1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2016, Intel Corporation. 26 */ 27 28 #include <stddef.h> 29 #include <string.h> 30 #include <libuutil.h> 31 #include <libzfs.h> 32 #include <sys/types.h> 33 #include <sys/time.h> 34 #include <sys/fs/zfs.h> 35 #include <sys/fm/protocol.h> 36 #include <sys/fm/fs/zfs.h> 37 38 #include "zfs_agents.h" 39 #include "fmd_api.h" 40 41 /* 42 * Our serd engines are named 'zfs_<pool_guid>_<vdev_guid>_{checksum,io}'. This 43 * #define reserves enough space for two 64-bit hex values plus the length of 44 * the longest string. 45 */ 46 #define MAX_SERDLEN (16 * 2 + sizeof ("zfs___checksum")) 47 48 /* 49 * On-disk case structure. This must maintain backwards compatibility with 50 * previous versions of the DE. By default, any members appended to the end 51 * will be filled with zeros if they don't exist in a previous version. 52 */ 53 typedef struct zfs_case_data { 54 uint64_t zc_version; 55 uint64_t zc_ena; 56 uint64_t zc_pool_guid; 57 uint64_t zc_vdev_guid; 58 int zc_pool_state; 59 char zc_serd_checksum[MAX_SERDLEN]; 60 char zc_serd_io[MAX_SERDLEN]; 61 int zc_has_remove_timer; 62 } zfs_case_data_t; 63 64 /* 65 * Time-of-day 66 */ 67 typedef struct er_timeval { 68 uint64_t ertv_sec; 69 uint64_t ertv_nsec; 70 } er_timeval_t; 71 72 /* 73 * In-core case structure. 74 */ 75 typedef struct zfs_case { 76 boolean_t zc_present; 77 uint32_t zc_version; 78 zfs_case_data_t zc_data; 79 fmd_case_t *zc_case; 80 uu_list_node_t zc_node; 81 id_t zc_remove_timer; 82 char *zc_fru; 83 er_timeval_t zc_when; 84 } zfs_case_t; 85 86 #define CASE_DATA "data" 87 #define CASE_FRU "fru" 88 #define CASE_DATA_VERSION_INITIAL 1 89 #define CASE_DATA_VERSION_SERD 2 90 91 typedef struct zfs_de_stats { 92 fmd_stat_t old_drops; 93 fmd_stat_t dev_drops; 94 fmd_stat_t vdev_drops; 95 fmd_stat_t import_drops; 96 fmd_stat_t resource_drops; 97 } zfs_de_stats_t; 98 99 zfs_de_stats_t zfs_stats = { 100 { "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" }, 101 { "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"}, 102 { "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"}, 103 { "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" }, 104 { "resource_drops", FMD_TYPE_UINT64, "resource related ereports" } 105 }; 106 107 static hrtime_t zfs_remove_timeout; 108 109 uu_list_pool_t *zfs_case_pool; 110 uu_list_t *zfs_cases; 111 112 #define ZFS_MAKE_RSRC(type) \ 113 FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type 114 #define ZFS_MAKE_EREPORT(type) \ 115 FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type 116 117 /* 118 * Write out the persistent representation of an active case. 119 */ 120 static void 121 zfs_case_serialize(zfs_case_t *zcp) 122 { 123 zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD; 124 } 125 126 /* 127 * Read back the persistent representation of an active case. 128 */ 129 static zfs_case_t * 130 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp) 131 { 132 zfs_case_t *zcp; 133 134 zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP); 135 zcp->zc_case = cp; 136 137 fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data, 138 sizeof (zcp->zc_data)); 139 140 if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) { 141 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 142 return (NULL); 143 } 144 145 /* 146 * fmd_buf_read() will have already zeroed out the remainder of the 147 * buffer, so we don't have to do anything special if the version 148 * doesn't include the SERD engine name. 149 */ 150 151 if (zcp->zc_data.zc_has_remove_timer) 152 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, 153 NULL, zfs_remove_timeout); 154 155 uu_list_node_init(zcp, &zcp->zc_node, zfs_case_pool); 156 (void) uu_list_insert_before(zfs_cases, NULL, zcp); 157 158 fmd_case_setspecific(hdl, cp, zcp); 159 160 return (zcp); 161 } 162 163 /* 164 * Iterate over any active cases. If any cases are associated with a pool or 165 * vdev which is no longer present on the system, close the associated case. 166 */ 167 static void 168 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded) 169 { 170 uint64_t vdev_guid = 0; 171 uint_t c, children; 172 nvlist_t **child; 173 zfs_case_t *zcp; 174 175 (void) nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid); 176 177 /* 178 * Mark any cases associated with this (pool, vdev) pair. 179 */ 180 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 181 zcp = uu_list_next(zfs_cases, zcp)) { 182 if (zcp->zc_data.zc_pool_guid == pool_guid && 183 zcp->zc_data.zc_vdev_guid == vdev_guid) { 184 zcp->zc_present = B_TRUE; 185 zcp->zc_when = *loaded; 186 } 187 } 188 189 /* 190 * Iterate over all children. 191 */ 192 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child, 193 &children) == 0) { 194 for (c = 0; c < children; c++) 195 zfs_mark_vdev(pool_guid, child[c], loaded); 196 } 197 198 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child, 199 &children) == 0) { 200 for (c = 0; c < children; c++) 201 zfs_mark_vdev(pool_guid, child[c], loaded); 202 } 203 204 if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child, 205 &children) == 0) { 206 for (c = 0; c < children; c++) 207 zfs_mark_vdev(pool_guid, child[c], loaded); 208 } 209 } 210 211 static int 212 zfs_mark_pool(zpool_handle_t *zhp, void *unused) 213 { 214 (void) unused; 215 zfs_case_t *zcp; 216 uint64_t pool_guid; 217 uint64_t *tod; 218 er_timeval_t loaded = { 0 }; 219 nvlist_t *config, *vd; 220 uint_t nelem = 0; 221 int ret; 222 223 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 224 /* 225 * Mark any cases associated with just this pool. 226 */ 227 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 228 zcp = uu_list_next(zfs_cases, zcp)) { 229 if (zcp->zc_data.zc_pool_guid == pool_guid && 230 zcp->zc_data.zc_vdev_guid == 0) 231 zcp->zc_present = B_TRUE; 232 } 233 234 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 235 zpool_close(zhp); 236 return (-1); 237 } 238 239 (void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 240 &tod, &nelem); 241 if (nelem == 2) { 242 loaded.ertv_sec = tod[0]; 243 loaded.ertv_nsec = tod[1]; 244 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 245 zcp = uu_list_next(zfs_cases, zcp)) { 246 if (zcp->zc_data.zc_pool_guid == pool_guid && 247 zcp->zc_data.zc_vdev_guid == 0) { 248 zcp->zc_when = loaded; 249 } 250 } 251 } 252 253 ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd); 254 if (ret) { 255 zpool_close(zhp); 256 return (-1); 257 } 258 259 zfs_mark_vdev(pool_guid, vd, &loaded); 260 261 zpool_close(zhp); 262 263 return (0); 264 } 265 266 struct load_time_arg { 267 uint64_t lt_guid; 268 er_timeval_t *lt_time; 269 boolean_t lt_found; 270 }; 271 272 static int 273 zpool_find_load_time(zpool_handle_t *zhp, void *arg) 274 { 275 struct load_time_arg *lta = arg; 276 uint64_t pool_guid; 277 uint64_t *tod; 278 nvlist_t *config; 279 uint_t nelem; 280 281 if (lta->lt_found) { 282 zpool_close(zhp); 283 return (0); 284 } 285 286 pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL); 287 if (pool_guid != lta->lt_guid) { 288 zpool_close(zhp); 289 return (0); 290 } 291 292 if ((config = zpool_get_config(zhp, NULL)) == NULL) { 293 zpool_close(zhp); 294 return (-1); 295 } 296 297 if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME, 298 &tod, &nelem) == 0 && nelem == 2) { 299 lta->lt_found = B_TRUE; 300 lta->lt_time->ertv_sec = tod[0]; 301 lta->lt_time->ertv_nsec = tod[1]; 302 } 303 304 zpool_close(zhp); 305 306 return (0); 307 } 308 309 static void 310 zfs_purge_cases(fmd_hdl_t *hdl) 311 { 312 zfs_case_t *zcp; 313 uu_list_walk_t *walk; 314 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 315 316 /* 317 * There is no way to open a pool by GUID, or lookup a vdev by GUID. No 318 * matter what we do, we're going to have to stomach an O(vdevs * cases) 319 * algorithm. In reality, both quantities are likely so small that 320 * neither will matter. Given that iterating over pools is more 321 * expensive than iterating over the in-memory case list, we opt for a 322 * 'present' flag in each case that starts off cleared. We then iterate 323 * over all pools, marking those that are still present, and removing 324 * those that aren't found. 325 * 326 * Note that we could also construct an FMRI and rely on 327 * fmd_nvl_fmri_present(), but this would end up doing the same search. 328 */ 329 330 /* 331 * Mark the cases as not present. 332 */ 333 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 334 zcp = uu_list_next(zfs_cases, zcp)) 335 zcp->zc_present = B_FALSE; 336 337 /* 338 * Iterate over all pools and mark the pools and vdevs found. If this 339 * fails (most probably because we're out of memory), then don't close 340 * any of the cases and we cannot be sure they are accurate. 341 */ 342 if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0) 343 return; 344 345 /* 346 * Remove those cases which were not found. 347 */ 348 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 349 while ((zcp = uu_list_walk_next(walk)) != NULL) { 350 if (!zcp->zc_present) 351 fmd_case_close(hdl, zcp->zc_case); 352 } 353 uu_list_walk_end(walk); 354 } 355 356 /* 357 * Construct the name of a serd engine given the pool/vdev GUID and type (io or 358 * checksum). 359 */ 360 static void 361 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid, 362 const char *type) 363 { 364 (void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s", 365 (long long unsigned int)pool_guid, 366 (long long unsigned int)vdev_guid, type); 367 } 368 369 /* 370 * Solve a given ZFS case. This first checks to make sure the diagnosis is 371 * still valid, as well as cleaning up any pending timer associated with the 372 * case. 373 */ 374 static void 375 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname) 376 { 377 nvlist_t *detector, *fault; 378 boolean_t serialize; 379 nvlist_t *fru = NULL; 380 fmd_hdl_debug(hdl, "solving fault '%s'", faultname); 381 382 /* 383 * Construct the detector from the case data. The detector is in the 384 * ZFS scheme, and is either the pool or the vdev, depending on whether 385 * this is a vdev or pool fault. 386 */ 387 detector = fmd_nvl_alloc(hdl, FMD_SLEEP); 388 389 (void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0); 390 (void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS); 391 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL, 392 zcp->zc_data.zc_pool_guid); 393 if (zcp->zc_data.zc_vdev_guid != 0) { 394 (void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV, 395 zcp->zc_data.zc_vdev_guid); 396 } 397 398 fault = fmd_nvl_create_fault(hdl, faultname, 100, detector, 399 fru, detector); 400 fmd_case_add_suspect(hdl, zcp->zc_case, fault); 401 402 nvlist_free(fru); 403 404 fmd_case_solve(hdl, zcp->zc_case); 405 406 serialize = B_FALSE; 407 if (zcp->zc_data.zc_has_remove_timer) { 408 fmd_timer_remove(hdl, zcp->zc_remove_timer); 409 zcp->zc_data.zc_has_remove_timer = 0; 410 serialize = B_TRUE; 411 } 412 if (serialize) 413 zfs_case_serialize(zcp); 414 415 nvlist_free(detector); 416 } 417 418 static boolean_t 419 timeval_earlier(er_timeval_t *a, er_timeval_t *b) 420 { 421 return (a->ertv_sec < b->ertv_sec || 422 (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec)); 423 } 424 425 static void 426 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when) 427 { 428 (void) hdl; 429 int64_t *tod; 430 uint_t nelem; 431 432 if (nvlist_lookup_int64_array(nvl, FM_EREPORT_TIME, &tod, 433 &nelem) == 0 && nelem == 2) { 434 when->ertv_sec = tod[0]; 435 when->ertv_nsec = tod[1]; 436 } else { 437 when->ertv_sec = when->ertv_nsec = UINT64_MAX; 438 } 439 } 440 441 /* 442 * Main fmd entry point. 443 */ 444 static void 445 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class) 446 { 447 zfs_case_t *zcp, *dcp; 448 int32_t pool_state; 449 uint64_t ena, pool_guid, vdev_guid; 450 er_timeval_t pool_load; 451 er_timeval_t er_when; 452 nvlist_t *detector; 453 boolean_t pool_found = B_FALSE; 454 boolean_t isresource; 455 char *type; 456 457 /* 458 * We subscribe to notifications for vdev or pool removal. In these 459 * cases, there may be cases that no longer apply. Purge any cases 460 * that no longer apply. 461 */ 462 if (fmd_nvl_class_match(hdl, nvl, "sysevent.fs.zfs.*")) { 463 fmd_hdl_debug(hdl, "purging orphaned cases from %s", 464 strrchr(class, '.') + 1); 465 zfs_purge_cases(hdl); 466 zfs_stats.resource_drops.fmds_value.ui64++; 467 return; 468 } 469 470 isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*"); 471 472 if (isresource) { 473 /* 474 * For resources, we don't have a normal payload. 475 */ 476 if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, 477 &vdev_guid) != 0) 478 pool_state = SPA_LOAD_OPEN; 479 else 480 pool_state = SPA_LOAD_NONE; 481 detector = NULL; 482 } else { 483 (void) nvlist_lookup_nvlist(nvl, 484 FM_EREPORT_DETECTOR, &detector); 485 (void) nvlist_lookup_int32(nvl, 486 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state); 487 } 488 489 /* 490 * We also ignore all ereports generated during an import of a pool, 491 * since the only possible fault (.pool) would result in import failure, 492 * and hence no persistent fault. Some day we may want to do something 493 * with these ereports, so we continue generating them internally. 494 */ 495 if (pool_state == SPA_LOAD_IMPORT) { 496 zfs_stats.import_drops.fmds_value.ui64++; 497 fmd_hdl_debug(hdl, "ignoring '%s' during import", class); 498 return; 499 } 500 501 /* 502 * Device I/O errors are ignored during pool open. 503 */ 504 if (pool_state == SPA_LOAD_OPEN && 505 (fmd_nvl_class_match(hdl, nvl, 506 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 507 fmd_nvl_class_match(hdl, nvl, 508 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 509 fmd_nvl_class_match(hdl, nvl, 510 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) { 511 fmd_hdl_debug(hdl, "ignoring '%s' during pool open", class); 512 zfs_stats.dev_drops.fmds_value.ui64++; 513 return; 514 } 515 516 /* 517 * We ignore ereports for anything except disks and files. 518 */ 519 if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE, 520 &type) == 0) { 521 if (strcmp(type, VDEV_TYPE_DISK) != 0 && 522 strcmp(type, VDEV_TYPE_FILE) != 0) { 523 zfs_stats.vdev_drops.fmds_value.ui64++; 524 return; 525 } 526 } 527 528 /* 529 * Determine if this ereport corresponds to an open case. 530 * Each vdev or pool can have a single case. 531 */ 532 (void) nvlist_lookup_uint64(nvl, 533 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid); 534 if (nvlist_lookup_uint64(nvl, 535 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0) 536 vdev_guid = 0; 537 if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0) 538 ena = 0; 539 540 zfs_ereport_when(hdl, nvl, &er_when); 541 542 for (zcp = uu_list_first(zfs_cases); zcp != NULL; 543 zcp = uu_list_next(zfs_cases, zcp)) { 544 if (zcp->zc_data.zc_pool_guid == pool_guid) { 545 pool_found = B_TRUE; 546 pool_load = zcp->zc_when; 547 } 548 if (zcp->zc_data.zc_vdev_guid == vdev_guid) 549 break; 550 } 551 552 /* 553 * Avoid falsely accusing a pool of being faulty. Do so by 554 * not replaying ereports that were generated prior to the 555 * current import. If the failure that generated them was 556 * transient because the device was actually removed but we 557 * didn't receive the normal asynchronous notification, we 558 * don't want to mark it as faulted and potentially panic. If 559 * there is still a problem we'd expect not to be able to 560 * import the pool, or that new ereports will be generated 561 * once the pool is used. 562 */ 563 if (pool_found && timeval_earlier(&er_when, &pool_load)) { 564 fmd_hdl_debug(hdl, "ignoring pool %llx, " 565 "ereport time %lld.%lld, pool load time = %lld.%lld", 566 pool_guid, er_when.ertv_sec, er_when.ertv_nsec, 567 pool_load.ertv_sec, pool_load.ertv_nsec); 568 zfs_stats.old_drops.fmds_value.ui64++; 569 return; 570 } 571 572 if (!pool_found) { 573 /* 574 * Haven't yet seen this pool, but same situation 575 * may apply. 576 */ 577 libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl); 578 struct load_time_arg la; 579 580 la.lt_guid = pool_guid; 581 la.lt_time = &pool_load; 582 la.lt_found = B_FALSE; 583 584 if (zhdl != NULL && 585 zpool_iter(zhdl, zpool_find_load_time, &la) == 0 && 586 la.lt_found == B_TRUE) { 587 pool_found = B_TRUE; 588 589 if (timeval_earlier(&er_when, &pool_load)) { 590 fmd_hdl_debug(hdl, "ignoring pool %llx, " 591 "ereport time %lld.%lld, " 592 "pool load time = %lld.%lld", 593 pool_guid, er_when.ertv_sec, 594 er_when.ertv_nsec, pool_load.ertv_sec, 595 pool_load.ertv_nsec); 596 zfs_stats.old_drops.fmds_value.ui64++; 597 return; 598 } 599 } 600 } 601 602 if (zcp == NULL) { 603 fmd_case_t *cs; 604 zfs_case_data_t data = { 0 }; 605 606 /* 607 * If this is one of our 'fake' resource ereports, and there is 608 * no case open, simply discard it. 609 */ 610 if (isresource) { 611 zfs_stats.resource_drops.fmds_value.ui64++; 612 fmd_hdl_debug(hdl, "discarding '%s for vdev %llu", 613 class, vdev_guid); 614 return; 615 } 616 617 /* 618 * Skip tracking some ereports 619 */ 620 if (strcmp(class, 621 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DATA)) == 0 || 622 strcmp(class, 623 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE)) == 0 || 624 strcmp(class, 625 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY)) == 0) { 626 zfs_stats.resource_drops.fmds_value.ui64++; 627 return; 628 } 629 630 /* 631 * Open a new case. 632 */ 633 cs = fmd_case_open(hdl, NULL); 634 635 fmd_hdl_debug(hdl, "opening case for vdev %llu due to '%s'", 636 vdev_guid, class); 637 638 /* 639 * Initialize the case buffer. To commonize code, we actually 640 * create the buffer with existing data, and then call 641 * zfs_case_unserialize() to instantiate the in-core structure. 642 */ 643 fmd_buf_create(hdl, cs, CASE_DATA, sizeof (zfs_case_data_t)); 644 645 data.zc_version = CASE_DATA_VERSION_SERD; 646 data.zc_ena = ena; 647 data.zc_pool_guid = pool_guid; 648 data.zc_vdev_guid = vdev_guid; 649 data.zc_pool_state = (int)pool_state; 650 651 fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data)); 652 653 zcp = zfs_case_unserialize(hdl, cs); 654 assert(zcp != NULL); 655 if (pool_found) 656 zcp->zc_when = pool_load; 657 } 658 659 if (isresource) { 660 fmd_hdl_debug(hdl, "resource event '%s'", class); 661 662 if (fmd_nvl_class_match(hdl, nvl, 663 ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) { 664 /* 665 * The 'resource.fs.zfs.autoreplace' event indicates 666 * that the pool was loaded with the 'autoreplace' 667 * property set. In this case, any pending device 668 * failures should be ignored, as the asynchronous 669 * autoreplace handling will take care of them. 670 */ 671 fmd_case_close(hdl, zcp->zc_case); 672 } else if (fmd_nvl_class_match(hdl, nvl, 673 ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) { 674 /* 675 * The 'resource.fs.zfs.removed' event indicates that 676 * device removal was detected, and the device was 677 * closed asynchronously. If this is the case, we 678 * assume that any recent I/O errors were due to the 679 * device removal, not any fault of the device itself. 680 * We reset the SERD engine, and cancel any pending 681 * timers. 682 */ 683 if (zcp->zc_data.zc_has_remove_timer) { 684 fmd_timer_remove(hdl, zcp->zc_remove_timer); 685 zcp->zc_data.zc_has_remove_timer = 0; 686 zfs_case_serialize(zcp); 687 } 688 if (zcp->zc_data.zc_serd_io[0] != '\0') 689 fmd_serd_reset(hdl, zcp->zc_data.zc_serd_io); 690 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 691 fmd_serd_reset(hdl, 692 zcp->zc_data.zc_serd_checksum); 693 } else if (fmd_nvl_class_match(hdl, nvl, 694 ZFS_MAKE_RSRC(FM_RESOURCE_STATECHANGE))) { 695 uint64_t state = 0; 696 697 if (zcp != NULL && 698 nvlist_lookup_uint64(nvl, 699 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state) == 0 && 700 state == VDEV_STATE_HEALTHY) { 701 fmd_hdl_debug(hdl, "closing case after a " 702 "device statechange to healthy"); 703 fmd_case_close(hdl, zcp->zc_case); 704 } 705 } 706 zfs_stats.resource_drops.fmds_value.ui64++; 707 return; 708 } 709 710 /* 711 * Associate the ereport with this case. 712 */ 713 fmd_case_add_ereport(hdl, zcp->zc_case, ep); 714 715 /* 716 * Don't do anything else if this case is already solved. 717 */ 718 if (fmd_case_solved(hdl, zcp->zc_case)) 719 return; 720 721 fmd_hdl_debug(hdl, "error event '%s'", class); 722 723 /* 724 * Determine if we should solve the case and generate a fault. We solve 725 * a case if: 726 * 727 * a. A pool failed to open (ereport.fs.zfs.pool) 728 * b. A device failed to open (ereport.fs.zfs.pool) while a pool 729 * was up and running. 730 * 731 * We may see a series of ereports associated with a pool open, all 732 * chained together by the same ENA. If the pool open succeeds, then 733 * we'll see no further ereports. To detect when a pool open has 734 * succeeded, we associate a timer with the event. When it expires, we 735 * close the case. 736 */ 737 if (fmd_nvl_class_match(hdl, nvl, 738 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) { 739 /* 740 * Pool level fault. Before solving the case, go through and 741 * close any open device cases that may be pending. 742 */ 743 for (dcp = uu_list_first(zfs_cases); dcp != NULL; 744 dcp = uu_list_next(zfs_cases, dcp)) { 745 if (dcp->zc_data.zc_pool_guid == 746 zcp->zc_data.zc_pool_guid && 747 dcp->zc_data.zc_vdev_guid != 0) 748 fmd_case_close(hdl, dcp->zc_case); 749 } 750 751 zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool"); 752 } else if (fmd_nvl_class_match(hdl, nvl, 753 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) { 754 /* 755 * Pool level fault for reading the intent logs. 756 */ 757 zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay"); 758 } else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) { 759 /* 760 * Device fault. 761 */ 762 zfs_case_solve(hdl, zcp, "fault.fs.zfs.device"); 763 } else if (fmd_nvl_class_match(hdl, nvl, 764 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) || 765 fmd_nvl_class_match(hdl, nvl, 766 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) || 767 fmd_nvl_class_match(hdl, nvl, 768 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) || 769 fmd_nvl_class_match(hdl, nvl, 770 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 771 char *failmode = NULL; 772 boolean_t checkremove = B_FALSE; 773 774 /* 775 * If this is a checksum or I/O error, then toss it into the 776 * appropriate SERD engine and check to see if it has fired. 777 * Ideally, we want to do something more sophisticated, 778 * (persistent errors for a single data block, etc). For now, 779 * a single SERD engine is sufficient. 780 */ 781 if (fmd_nvl_class_match(hdl, nvl, 782 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) { 783 if (zcp->zc_data.zc_serd_io[0] == '\0') { 784 zfs_serd_name(zcp->zc_data.zc_serd_io, 785 pool_guid, vdev_guid, "io"); 786 fmd_serd_create(hdl, zcp->zc_data.zc_serd_io, 787 fmd_prop_get_int32(hdl, "io_N"), 788 fmd_prop_get_int64(hdl, "io_T")); 789 zfs_case_serialize(zcp); 790 } 791 if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep)) 792 checkremove = B_TRUE; 793 } else if (fmd_nvl_class_match(hdl, nvl, 794 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) { 795 if (zcp->zc_data.zc_serd_checksum[0] == '\0') { 796 zfs_serd_name(zcp->zc_data.zc_serd_checksum, 797 pool_guid, vdev_guid, "checksum"); 798 fmd_serd_create(hdl, 799 zcp->zc_data.zc_serd_checksum, 800 fmd_prop_get_int32(hdl, "checksum_N"), 801 fmd_prop_get_int64(hdl, "checksum_T")); 802 zfs_case_serialize(zcp); 803 } 804 if (fmd_serd_record(hdl, 805 zcp->zc_data.zc_serd_checksum, ep)) { 806 zfs_case_solve(hdl, zcp, 807 "fault.fs.zfs.vdev.checksum"); 808 } 809 } else if (fmd_nvl_class_match(hdl, nvl, 810 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) && 811 (nvlist_lookup_string(nvl, 812 FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) && 813 failmode != NULL) { 814 if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE, 815 strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) { 816 zfs_case_solve(hdl, zcp, 817 "fault.fs.zfs.io_failure_continue"); 818 } else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT, 819 strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) { 820 zfs_case_solve(hdl, zcp, 821 "fault.fs.zfs.io_failure_wait"); 822 } 823 } else if (fmd_nvl_class_match(hdl, nvl, 824 ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) { 825 #ifndef __linux__ 826 /* This causes an unexpected fault diagnosis on linux */ 827 checkremove = B_TRUE; 828 #endif 829 } 830 831 /* 832 * Because I/O errors may be due to device removal, we postpone 833 * any diagnosis until we're sure that we aren't about to 834 * receive a 'resource.fs.zfs.removed' event. 835 */ 836 if (checkremove) { 837 if (zcp->zc_data.zc_has_remove_timer) 838 fmd_timer_remove(hdl, zcp->zc_remove_timer); 839 zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL, 840 zfs_remove_timeout); 841 if (!zcp->zc_data.zc_has_remove_timer) { 842 zcp->zc_data.zc_has_remove_timer = 1; 843 zfs_case_serialize(zcp); 844 } 845 } 846 } 847 } 848 849 /* 850 * The timeout is fired when we diagnosed an I/O error, and it was not due to 851 * device removal (which would cause the timeout to be cancelled). 852 */ 853 static void 854 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data) 855 { 856 zfs_case_t *zcp = data; 857 858 if (id == zcp->zc_remove_timer) 859 zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io"); 860 } 861 862 /* 863 * The specified case has been closed and any case-specific 864 * data structures should be deallocated. 865 */ 866 static void 867 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs) 868 { 869 zfs_case_t *zcp = fmd_case_getspecific(hdl, cs); 870 871 if (zcp->zc_data.zc_serd_checksum[0] != '\0') 872 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum); 873 if (zcp->zc_data.zc_serd_io[0] != '\0') 874 fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io); 875 if (zcp->zc_data.zc_has_remove_timer) 876 fmd_timer_remove(hdl, zcp->zc_remove_timer); 877 878 uu_list_remove(zfs_cases, zcp); 879 uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool); 880 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 881 } 882 883 /* 884 * We use the fmd gc entry point to look for old cases that no longer apply. 885 * This allows us to keep our set of case data small in a long running system. 886 */ 887 static void 888 zfs_fm_gc(fmd_hdl_t *hdl) 889 { 890 zfs_purge_cases(hdl); 891 } 892 893 static const fmd_hdl_ops_t fmd_ops = { 894 zfs_fm_recv, /* fmdo_recv */ 895 zfs_fm_timeout, /* fmdo_timeout */ 896 zfs_fm_close, /* fmdo_close */ 897 NULL, /* fmdo_stats */ 898 zfs_fm_gc, /* fmdo_gc */ 899 }; 900 901 static const fmd_prop_t fmd_props[] = { 902 { "checksum_N", FMD_TYPE_UINT32, "10" }, 903 { "checksum_T", FMD_TYPE_TIME, "10min" }, 904 { "io_N", FMD_TYPE_UINT32, "10" }, 905 { "io_T", FMD_TYPE_TIME, "10min" }, 906 { "remove_timeout", FMD_TYPE_TIME, "15sec" }, 907 { NULL, 0, NULL } 908 }; 909 910 static const fmd_hdl_info_t fmd_info = { 911 "ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props 912 }; 913 914 void 915 _zfs_diagnosis_init(fmd_hdl_t *hdl) 916 { 917 libzfs_handle_t *zhdl; 918 919 if ((zhdl = libzfs_init()) == NULL) 920 return; 921 922 if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool", 923 sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node), 924 NULL, UU_LIST_POOL_DEBUG)) == NULL) { 925 libzfs_fini(zhdl); 926 return; 927 } 928 929 if ((zfs_cases = uu_list_create(zfs_case_pool, NULL, 930 UU_LIST_DEBUG)) == NULL) { 931 uu_list_pool_destroy(zfs_case_pool); 932 libzfs_fini(zhdl); 933 return; 934 } 935 936 if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) { 937 uu_list_destroy(zfs_cases); 938 uu_list_pool_destroy(zfs_case_pool); 939 libzfs_fini(zhdl); 940 return; 941 } 942 943 fmd_hdl_setspecific(hdl, zhdl); 944 945 (void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) / 946 sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats); 947 948 zfs_remove_timeout = fmd_prop_get_int64(hdl, "remove_timeout"); 949 } 950 951 void 952 _zfs_diagnosis_fini(fmd_hdl_t *hdl) 953 { 954 zfs_case_t *zcp; 955 uu_list_walk_t *walk; 956 libzfs_handle_t *zhdl; 957 958 /* 959 * Remove all active cases. 960 */ 961 walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST); 962 while ((zcp = uu_list_walk_next(walk)) != NULL) { 963 fmd_hdl_debug(hdl, "removing case ena %llu", 964 (long long unsigned)zcp->zc_data.zc_ena); 965 uu_list_remove(zfs_cases, zcp); 966 uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool); 967 fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t)); 968 } 969 uu_list_walk_end(walk); 970 971 uu_list_destroy(zfs_cases); 972 uu_list_pool_destroy(zfs_case_pool); 973 974 zhdl = fmd_hdl_getspecific(hdl); 975 libzfs_fini(zhdl); 976 } 977