xref: /freebsd/sys/contrib/openzfs/cmd/zed/agents/zfs_diagnosis.c (revision 38b3683592d4c20a74f52a6e8e29368e6fa61858)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2016, Intel Corporation.
26  * Copyright (c) 2023, Klara Inc.
27  */
28 
29 #include <stddef.h>
30 #include <string.h>
31 #include <libuutil.h>
32 #include <libzfs.h>
33 #include <sys/types.h>
34 #include <sys/time.h>
35 #include <sys/fs/zfs.h>
36 #include <sys/fm/protocol.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/zio.h>
39 
40 #include "zfs_agents.h"
41 #include "fmd_api.h"
42 
43 /*
44  * Default values for the serd engine when processing checksum or io errors. The
45  * semantics are N <events> in T <seconds>.
46  */
47 #define	DEFAULT_CHECKSUM_N	10	/* events */
48 #define	DEFAULT_CHECKSUM_T	600	/* seconds */
49 #define	DEFAULT_IO_N		10	/* events */
50 #define	DEFAULT_IO_T		600	/* seconds */
51 #define	DEFAULT_SLOW_IO_N	10	/* events */
52 #define	DEFAULT_SLOW_IO_T	30	/* seconds */
53 
54 #define	CASE_GC_TIMEOUT_SECS	43200	/* 12 hours */
55 
56 /*
57  * Our serd engines are named in the following format:
58  *     'zfs_<pool_guid>_<vdev_guid>_{checksum,io,slow_io}'
59  * This #define reserves enough space for two 64-bit hex values plus the
60  * length of the longest string.
61  */
62 #define	MAX_SERDLEN	(16 * 2 + sizeof ("zfs___checksum"))
63 
64 /*
65  * On-disk case structure.  This must maintain backwards compatibility with
66  * previous versions of the DE.  By default, any members appended to the end
67  * will be filled with zeros if they don't exist in a previous version.
68  */
69 typedef struct zfs_case_data {
70 	uint64_t	zc_version;
71 	uint64_t	zc_ena;
72 	uint64_t	zc_pool_guid;
73 	uint64_t	zc_vdev_guid;
74 	int		zc_pool_state;
75 	char		zc_serd_checksum[MAX_SERDLEN];
76 	char		zc_serd_io[MAX_SERDLEN];
77 	char		zc_serd_slow_io[MAX_SERDLEN];
78 	int		zc_has_remove_timer;
79 } zfs_case_data_t;
80 
81 /*
82  * Time-of-day
83  */
84 typedef struct er_timeval {
85 	uint64_t	ertv_sec;
86 	uint64_t	ertv_nsec;
87 } er_timeval_t;
88 
89 /*
90  * In-core case structure.
91  */
92 typedef struct zfs_case {
93 	boolean_t	zc_present;
94 	uint32_t	zc_version;
95 	zfs_case_data_t	zc_data;
96 	fmd_case_t	*zc_case;
97 	uu_list_node_t	zc_node;
98 	id_t		zc_remove_timer;
99 	char		*zc_fru;
100 	er_timeval_t	zc_when;
101 } zfs_case_t;
102 
103 #define	CASE_DATA			"data"
104 #define	CASE_FRU			"fru"
105 #define	CASE_DATA_VERSION_INITIAL	1
106 #define	CASE_DATA_VERSION_SERD		2
107 
108 typedef struct zfs_de_stats {
109 	fmd_stat_t	old_drops;
110 	fmd_stat_t	dev_drops;
111 	fmd_stat_t	vdev_drops;
112 	fmd_stat_t	import_drops;
113 	fmd_stat_t	resource_drops;
114 } zfs_de_stats_t;
115 
116 zfs_de_stats_t zfs_stats = {
117 	{ "old_drops", FMD_TYPE_UINT64, "ereports dropped (from before load)" },
118 	{ "dev_drops", FMD_TYPE_UINT64, "ereports dropped (dev during open)"},
119 	{ "vdev_drops", FMD_TYPE_UINT64, "ereports dropped (weird vdev types)"},
120 	{ "import_drops", FMD_TYPE_UINT64, "ereports dropped (during import)" },
121 	{ "resource_drops", FMD_TYPE_UINT64, "resource related ereports" }
122 };
123 
124 /* wait 15 seconds after a removal */
125 static hrtime_t zfs_remove_timeout = SEC2NSEC(15);
126 
127 uu_list_pool_t *zfs_case_pool;
128 uu_list_t *zfs_cases;
129 
130 #define	ZFS_MAKE_RSRC(type)	\
131     FM_RSRC_CLASS "." ZFS_ERROR_CLASS "." type
132 #define	ZFS_MAKE_EREPORT(type)	\
133     FM_EREPORT_CLASS "." ZFS_ERROR_CLASS "." type
134 
135 static void zfs_purge_cases(fmd_hdl_t *hdl);
136 
137 /*
138  * Write out the persistent representation of an active case.
139  */
140 static void
141 zfs_case_serialize(zfs_case_t *zcp)
142 {
143 	zcp->zc_data.zc_version = CASE_DATA_VERSION_SERD;
144 }
145 
146 /*
147  * Read back the persistent representation of an active case.
148  */
149 static zfs_case_t *
150 zfs_case_unserialize(fmd_hdl_t *hdl, fmd_case_t *cp)
151 {
152 	zfs_case_t *zcp;
153 
154 	zcp = fmd_hdl_zalloc(hdl, sizeof (zfs_case_t), FMD_SLEEP);
155 	zcp->zc_case = cp;
156 
157 	fmd_buf_read(hdl, cp, CASE_DATA, &zcp->zc_data,
158 	    sizeof (zcp->zc_data));
159 
160 	if (zcp->zc_data.zc_version > CASE_DATA_VERSION_SERD) {
161 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
162 		return (NULL);
163 	}
164 
165 	/*
166 	 * fmd_buf_read() will have already zeroed out the remainder of the
167 	 * buffer, so we don't have to do anything special if the version
168 	 * doesn't include the SERD engine name.
169 	 */
170 
171 	if (zcp->zc_data.zc_has_remove_timer)
172 		zcp->zc_remove_timer = fmd_timer_install(hdl, zcp,
173 		    NULL, zfs_remove_timeout);
174 
175 	uu_list_node_init(zcp, &zcp->zc_node, zfs_case_pool);
176 	(void) uu_list_insert_before(zfs_cases, NULL, zcp);
177 
178 	fmd_case_setspecific(hdl, cp, zcp);
179 
180 	return (zcp);
181 }
182 
183 /*
184  * count other unique slow-io cases in a pool
185  */
186 static uint_t
187 zfs_other_slow_cases(fmd_hdl_t *hdl, const zfs_case_data_t *zfs_case)
188 {
189 	zfs_case_t *zcp;
190 	uint_t cases = 0;
191 	static hrtime_t next_check = 0;
192 
193 	/*
194 	 * Note that plumbing in some external GC would require adding locking,
195 	 * since most of this module code is not thread safe and assumes there
196 	 * is only one thread running against the module. So we perform GC here
197 	 * inline periodically so that future delay induced faults will be
198 	 * possible once the issue causing multiple vdev delays is resolved.
199 	 */
200 	if (gethrestime_sec() > next_check) {
201 		/* Periodically purge old SERD entries and stale cases */
202 		fmd_serd_gc(hdl);
203 		zfs_purge_cases(hdl);
204 		next_check = gethrestime_sec() + CASE_GC_TIMEOUT_SECS;
205 	}
206 
207 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
208 	    zcp = uu_list_next(zfs_cases, zcp)) {
209 		if (zcp->zc_data.zc_pool_guid == zfs_case->zc_pool_guid &&
210 		    zcp->zc_data.zc_vdev_guid != zfs_case->zc_vdev_guid &&
211 		    zcp->zc_data.zc_serd_slow_io[0] != '\0' &&
212 		    fmd_serd_active(hdl, zcp->zc_data.zc_serd_slow_io)) {
213 			cases++;
214 		}
215 	}
216 	return (cases);
217 }
218 
219 /*
220  * Iterate over any active cases.  If any cases are associated with a pool or
221  * vdev which is no longer present on the system, close the associated case.
222  */
223 static void
224 zfs_mark_vdev(uint64_t pool_guid, nvlist_t *vd, er_timeval_t *loaded)
225 {
226 	uint64_t vdev_guid = 0;
227 	uint_t c, children;
228 	nvlist_t **child;
229 	zfs_case_t *zcp;
230 
231 	(void) nvlist_lookup_uint64(vd, ZPOOL_CONFIG_GUID, &vdev_guid);
232 
233 	/*
234 	 * Mark any cases associated with this (pool, vdev) pair.
235 	 */
236 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
237 	    zcp = uu_list_next(zfs_cases, zcp)) {
238 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
239 		    zcp->zc_data.zc_vdev_guid == vdev_guid) {
240 			zcp->zc_present = B_TRUE;
241 			zcp->zc_when = *loaded;
242 		}
243 	}
244 
245 	/*
246 	 * Iterate over all children.
247 	 */
248 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_CHILDREN, &child,
249 	    &children) == 0) {
250 		for (c = 0; c < children; c++)
251 			zfs_mark_vdev(pool_guid, child[c], loaded);
252 	}
253 
254 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_L2CACHE, &child,
255 	    &children) == 0) {
256 		for (c = 0; c < children; c++)
257 			zfs_mark_vdev(pool_guid, child[c], loaded);
258 	}
259 
260 	if (nvlist_lookup_nvlist_array(vd, ZPOOL_CONFIG_SPARES, &child,
261 	    &children) == 0) {
262 		for (c = 0; c < children; c++)
263 			zfs_mark_vdev(pool_guid, child[c], loaded);
264 	}
265 }
266 
267 static int
268 zfs_mark_pool(zpool_handle_t *zhp, void *unused)
269 {
270 	(void) unused;
271 	zfs_case_t *zcp;
272 	uint64_t pool_guid;
273 	uint64_t *tod;
274 	er_timeval_t loaded = { 0 };
275 	nvlist_t *config, *vd;
276 	uint_t nelem = 0;
277 	int ret;
278 
279 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
280 	/*
281 	 * Mark any cases associated with just this pool.
282 	 */
283 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
284 	    zcp = uu_list_next(zfs_cases, zcp)) {
285 		if (zcp->zc_data.zc_pool_guid == pool_guid &&
286 		    zcp->zc_data.zc_vdev_guid == 0)
287 			zcp->zc_present = B_TRUE;
288 	}
289 
290 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
291 		zpool_close(zhp);
292 		return (-1);
293 	}
294 
295 	(void) nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
296 	    &tod, &nelem);
297 	if (nelem == 2) {
298 		loaded.ertv_sec = tod[0];
299 		loaded.ertv_nsec = tod[1];
300 		for (zcp = uu_list_first(zfs_cases); zcp != NULL;
301 		    zcp = uu_list_next(zfs_cases, zcp)) {
302 			if (zcp->zc_data.zc_pool_guid == pool_guid &&
303 			    zcp->zc_data.zc_vdev_guid == 0) {
304 				zcp->zc_when = loaded;
305 			}
306 		}
307 	}
308 
309 	ret = nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &vd);
310 	if (ret) {
311 		zpool_close(zhp);
312 		return (-1);
313 	}
314 
315 	zfs_mark_vdev(pool_guid, vd, &loaded);
316 
317 	zpool_close(zhp);
318 
319 	return (0);
320 }
321 
322 struct load_time_arg {
323 	uint64_t lt_guid;
324 	er_timeval_t *lt_time;
325 	boolean_t lt_found;
326 };
327 
328 static int
329 zpool_find_load_time(zpool_handle_t *zhp, void *arg)
330 {
331 	struct load_time_arg *lta = arg;
332 	uint64_t pool_guid;
333 	uint64_t *tod;
334 	nvlist_t *config;
335 	uint_t nelem;
336 
337 	if (lta->lt_found) {
338 		zpool_close(zhp);
339 		return (0);
340 	}
341 
342 	pool_guid = zpool_get_prop_int(zhp, ZPOOL_PROP_GUID, NULL);
343 	if (pool_guid != lta->lt_guid) {
344 		zpool_close(zhp);
345 		return (0);
346 	}
347 
348 	if ((config = zpool_get_config(zhp, NULL)) == NULL) {
349 		zpool_close(zhp);
350 		return (-1);
351 	}
352 
353 	if (nvlist_lookup_uint64_array(config, ZPOOL_CONFIG_LOADED_TIME,
354 	    &tod, &nelem) == 0 && nelem == 2) {
355 		lta->lt_found = B_TRUE;
356 		lta->lt_time->ertv_sec = tod[0];
357 		lta->lt_time->ertv_nsec = tod[1];
358 	}
359 
360 	zpool_close(zhp);
361 
362 	return (0);
363 }
364 
365 static void
366 zfs_purge_cases(fmd_hdl_t *hdl)
367 {
368 	zfs_case_t *zcp;
369 	uu_list_walk_t *walk;
370 	libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
371 
372 	/*
373 	 * There is no way to open a pool by GUID, or lookup a vdev by GUID.  No
374 	 * matter what we do, we're going to have to stomach an O(vdevs * cases)
375 	 * algorithm.  In reality, both quantities are likely so small that
376 	 * neither will matter. Given that iterating over pools is more
377 	 * expensive than iterating over the in-memory case list, we opt for a
378 	 * 'present' flag in each case that starts off cleared.  We then iterate
379 	 * over all pools, marking those that are still present, and removing
380 	 * those that aren't found.
381 	 *
382 	 * Note that we could also construct an FMRI and rely on
383 	 * fmd_nvl_fmri_present(), but this would end up doing the same search.
384 	 */
385 
386 	/*
387 	 * Mark the cases as not present.
388 	 */
389 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
390 	    zcp = uu_list_next(zfs_cases, zcp))
391 		zcp->zc_present = B_FALSE;
392 
393 	/*
394 	 * Iterate over all pools and mark the pools and vdevs found.  If this
395 	 * fails (most probably because we're out of memory), then don't close
396 	 * any of the cases and we cannot be sure they are accurate.
397 	 */
398 	if (zpool_iter(zhdl, zfs_mark_pool, NULL) != 0)
399 		return;
400 
401 	/*
402 	 * Remove those cases which were not found.
403 	 */
404 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
405 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
406 		if (!zcp->zc_present)
407 			fmd_case_close(hdl, zcp->zc_case);
408 	}
409 	uu_list_walk_end(walk);
410 }
411 
412 /*
413  * Construct the name of a serd engine given the pool/vdev GUID and type (io or
414  * checksum).
415  */
416 static void
417 zfs_serd_name(char *buf, uint64_t pool_guid, uint64_t vdev_guid,
418     const char *type)
419 {
420 	(void) snprintf(buf, MAX_SERDLEN, "zfs_%llx_%llx_%s",
421 	    (long long unsigned int)pool_guid,
422 	    (long long unsigned int)vdev_guid, type);
423 }
424 
425 static void
426 zfs_case_retire(fmd_hdl_t *hdl, zfs_case_t *zcp)
427 {
428 	fmd_hdl_debug(hdl, "retiring case");
429 
430 	fmd_case_close(hdl, zcp->zc_case);
431 }
432 
433 /*
434  * Solve a given ZFS case.  This first checks to make sure the diagnosis is
435  * still valid, as well as cleaning up any pending timer associated with the
436  * case.
437  */
438 static void
439 zfs_case_solve(fmd_hdl_t *hdl, zfs_case_t *zcp, const char *faultname)
440 {
441 	nvlist_t *detector, *fault;
442 	boolean_t serialize;
443 	nvlist_t *fru = NULL;
444 	fmd_hdl_debug(hdl, "solving fault '%s'", faultname);
445 
446 	/*
447 	 * Construct the detector from the case data.  The detector is in the
448 	 * ZFS scheme, and is either the pool or the vdev, depending on whether
449 	 * this is a vdev or pool fault.
450 	 */
451 	detector = fmd_nvl_alloc(hdl, FMD_SLEEP);
452 
453 	(void) nvlist_add_uint8(detector, FM_VERSION, ZFS_SCHEME_VERSION0);
454 	(void) nvlist_add_string(detector, FM_FMRI_SCHEME, FM_FMRI_SCHEME_ZFS);
455 	(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_POOL,
456 	    zcp->zc_data.zc_pool_guid);
457 	if (zcp->zc_data.zc_vdev_guid != 0) {
458 		(void) nvlist_add_uint64(detector, FM_FMRI_ZFS_VDEV,
459 		    zcp->zc_data.zc_vdev_guid);
460 	}
461 
462 	fault = fmd_nvl_create_fault(hdl, faultname, 100, detector,
463 	    fru, detector);
464 	fmd_case_add_suspect(hdl, zcp->zc_case, fault);
465 
466 	nvlist_free(fru);
467 
468 	fmd_case_solve(hdl, zcp->zc_case);
469 
470 	serialize = B_FALSE;
471 	if (zcp->zc_data.zc_has_remove_timer) {
472 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
473 		zcp->zc_data.zc_has_remove_timer = 0;
474 		serialize = B_TRUE;
475 	}
476 	if (serialize)
477 		zfs_case_serialize(zcp);
478 
479 	nvlist_free(detector);
480 }
481 
482 static boolean_t
483 timeval_earlier(er_timeval_t *a, er_timeval_t *b)
484 {
485 	return (a->ertv_sec < b->ertv_sec ||
486 	    (a->ertv_sec == b->ertv_sec && a->ertv_nsec < b->ertv_nsec));
487 }
488 
489 static void
490 zfs_ereport_when(fmd_hdl_t *hdl, nvlist_t *nvl, er_timeval_t *when)
491 {
492 	(void) hdl;
493 	int64_t *tod;
494 	uint_t	nelem;
495 
496 	if (nvlist_lookup_int64_array(nvl, FM_EREPORT_TIME, &tod,
497 	    &nelem) == 0 && nelem == 2) {
498 		when->ertv_sec = tod[0];
499 		when->ertv_nsec = tod[1];
500 	} else {
501 		when->ertv_sec = when->ertv_nsec = UINT64_MAX;
502 	}
503 }
504 
505 /*
506  * Main fmd entry point.
507  */
508 static void
509 zfs_fm_recv(fmd_hdl_t *hdl, fmd_event_t *ep, nvlist_t *nvl, const char *class)
510 {
511 	zfs_case_t *zcp, *dcp;
512 	int32_t pool_state;
513 	uint64_t ena, pool_guid, vdev_guid;
514 	uint64_t checksum_n, checksum_t;
515 	uint64_t io_n, io_t;
516 	er_timeval_t pool_load;
517 	er_timeval_t er_when;
518 	nvlist_t *detector;
519 	boolean_t pool_found = B_FALSE;
520 	boolean_t isresource;
521 	const char *type;
522 
523 	/*
524 	 * We subscribe to notifications for vdev or pool removal.  In these
525 	 * cases, there may be cases that no longer apply.  Purge any cases
526 	 * that no longer apply.
527 	 */
528 	if (fmd_nvl_class_match(hdl, nvl, "sysevent.fs.zfs.*")) {
529 		fmd_hdl_debug(hdl, "purging orphaned cases from %s",
530 		    strrchr(class, '.') + 1);
531 		zfs_purge_cases(hdl);
532 		zfs_stats.resource_drops.fmds_value.ui64++;
533 		return;
534 	}
535 
536 	isresource = fmd_nvl_class_match(hdl, nvl, "resource.fs.zfs.*");
537 
538 	if (isresource) {
539 		/*
540 		 * For resources, we don't have a normal payload.
541 		 */
542 		if (nvlist_lookup_uint64(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
543 		    &vdev_guid) != 0)
544 			pool_state = SPA_LOAD_OPEN;
545 		else
546 			pool_state = SPA_LOAD_NONE;
547 		detector = NULL;
548 	} else {
549 		(void) nvlist_lookup_nvlist(nvl,
550 		    FM_EREPORT_DETECTOR, &detector);
551 		(void) nvlist_lookup_int32(nvl,
552 		    FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, &pool_state);
553 	}
554 
555 	/*
556 	 * We also ignore all ereports generated during an import of a pool,
557 	 * since the only possible fault (.pool) would result in import failure,
558 	 * and hence no persistent fault.  Some day we may want to do something
559 	 * with these ereports, so we continue generating them internally.
560 	 */
561 	if (pool_state == SPA_LOAD_IMPORT) {
562 		zfs_stats.import_drops.fmds_value.ui64++;
563 		fmd_hdl_debug(hdl, "ignoring '%s' during import", class);
564 		return;
565 	}
566 
567 	/*
568 	 * Device I/O errors are ignored during pool open.
569 	 */
570 	if (pool_state == SPA_LOAD_OPEN &&
571 	    (fmd_nvl_class_match(hdl, nvl,
572 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
573 	    fmd_nvl_class_match(hdl, nvl,
574 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
575 	    fmd_nvl_class_match(hdl, nvl,
576 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE)))) {
577 		fmd_hdl_debug(hdl, "ignoring '%s' during pool open", class);
578 		zfs_stats.dev_drops.fmds_value.ui64++;
579 		return;
580 	}
581 
582 	/*
583 	 * We ignore ereports for anything except disks and files.
584 	 */
585 	if (nvlist_lookup_string(nvl, FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
586 	    &type) == 0) {
587 		if (strcmp(type, VDEV_TYPE_DISK) != 0 &&
588 		    strcmp(type, VDEV_TYPE_FILE) != 0) {
589 			zfs_stats.vdev_drops.fmds_value.ui64++;
590 			return;
591 		}
592 	}
593 
594 	/*
595 	 * Determine if this ereport corresponds to an open case.
596 	 * Each vdev or pool can have a single case.
597 	 */
598 	(void) nvlist_lookup_uint64(nvl,
599 	    FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, &pool_guid);
600 	if (nvlist_lookup_uint64(nvl,
601 	    FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, &vdev_guid) != 0)
602 		vdev_guid = 0;
603 	if (nvlist_lookup_uint64(nvl, FM_EREPORT_ENA, &ena) != 0)
604 		ena = 0;
605 
606 	zfs_ereport_when(hdl, nvl, &er_when);
607 
608 	for (zcp = uu_list_first(zfs_cases); zcp != NULL;
609 	    zcp = uu_list_next(zfs_cases, zcp)) {
610 		if (zcp->zc_data.zc_pool_guid == pool_guid) {
611 			pool_found = B_TRUE;
612 			pool_load = zcp->zc_when;
613 		}
614 		if (zcp->zc_data.zc_vdev_guid == vdev_guid)
615 			break;
616 	}
617 
618 	/*
619 	 * Avoid falsely accusing a pool of being faulty.  Do so by
620 	 * not replaying ereports that were generated prior to the
621 	 * current import.  If the failure that generated them was
622 	 * transient because the device was actually removed but we
623 	 * didn't receive the normal asynchronous notification, we
624 	 * don't want to mark it as faulted and potentially panic. If
625 	 * there is still a problem we'd expect not to be able to
626 	 * import the pool, or that new ereports will be generated
627 	 * once the pool is used.
628 	 */
629 	if (pool_found && timeval_earlier(&er_when, &pool_load)) {
630 		fmd_hdl_debug(hdl, "ignoring pool %llx, "
631 		    "ereport time %lld.%lld, pool load time = %lld.%lld",
632 		    pool_guid, er_when.ertv_sec, er_when.ertv_nsec,
633 		    pool_load.ertv_sec, pool_load.ertv_nsec);
634 		zfs_stats.old_drops.fmds_value.ui64++;
635 		return;
636 	}
637 
638 	if (!pool_found) {
639 		/*
640 		 * Haven't yet seen this pool, but same situation
641 		 * may apply.
642 		 */
643 		libzfs_handle_t *zhdl = fmd_hdl_getspecific(hdl);
644 		struct load_time_arg la;
645 
646 		la.lt_guid = pool_guid;
647 		la.lt_time = &pool_load;
648 		la.lt_found = B_FALSE;
649 
650 		if (zhdl != NULL &&
651 		    zpool_iter(zhdl, zpool_find_load_time, &la) == 0 &&
652 		    la.lt_found == B_TRUE) {
653 			pool_found = B_TRUE;
654 
655 			if (timeval_earlier(&er_when, &pool_load)) {
656 				fmd_hdl_debug(hdl, "ignoring pool %llx, "
657 				    "ereport time %lld.%lld, "
658 				    "pool load time = %lld.%lld",
659 				    pool_guid, er_when.ertv_sec,
660 				    er_when.ertv_nsec, pool_load.ertv_sec,
661 				    pool_load.ertv_nsec);
662 				zfs_stats.old_drops.fmds_value.ui64++;
663 				return;
664 			}
665 		}
666 	}
667 
668 	if (zcp == NULL) {
669 		fmd_case_t *cs;
670 		zfs_case_data_t data = { 0 };
671 
672 		/*
673 		 * If this is one of our 'fake' resource ereports, and there is
674 		 * no case open, simply discard it.
675 		 */
676 		if (isresource) {
677 			zfs_stats.resource_drops.fmds_value.ui64++;
678 			fmd_hdl_debug(hdl, "discarding '%s for vdev %llu",
679 			    class, vdev_guid);
680 			return;
681 		}
682 
683 		/*
684 		 * Skip tracking some ereports
685 		 */
686 		if (strcmp(class,
687 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DATA)) == 0 ||
688 		    strcmp(class,
689 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CONFIG_CACHE_WRITE)) == 0) {
690 			zfs_stats.resource_drops.fmds_value.ui64++;
691 			return;
692 		}
693 
694 		/*
695 		 * Open a new case.
696 		 */
697 		cs = fmd_case_open(hdl, NULL);
698 
699 		fmd_hdl_debug(hdl, "opening case for vdev %llu due to '%s'",
700 		    vdev_guid, class);
701 
702 		/*
703 		 * Initialize the case buffer.  To commonize code, we actually
704 		 * create the buffer with existing data, and then call
705 		 * zfs_case_unserialize() to instantiate the in-core structure.
706 		 */
707 		fmd_buf_create(hdl, cs, CASE_DATA, sizeof (zfs_case_data_t));
708 
709 		data.zc_version = CASE_DATA_VERSION_SERD;
710 		data.zc_ena = ena;
711 		data.zc_pool_guid = pool_guid;
712 		data.zc_vdev_guid = vdev_guid;
713 		data.zc_pool_state = (int)pool_state;
714 
715 		fmd_buf_write(hdl, cs, CASE_DATA, &data, sizeof (data));
716 
717 		zcp = zfs_case_unserialize(hdl, cs);
718 		assert(zcp != NULL);
719 		if (pool_found)
720 			zcp->zc_when = pool_load;
721 	}
722 
723 	if (isresource) {
724 		fmd_hdl_debug(hdl, "resource event '%s'", class);
725 
726 		if (fmd_nvl_class_match(hdl, nvl,
727 		    ZFS_MAKE_RSRC(FM_RESOURCE_AUTOREPLACE))) {
728 			/*
729 			 * The 'resource.fs.zfs.autoreplace' event indicates
730 			 * that the pool was loaded with the 'autoreplace'
731 			 * property set.  In this case, any pending device
732 			 * failures should be ignored, as the asynchronous
733 			 * autoreplace handling will take care of them.
734 			 */
735 			fmd_case_close(hdl, zcp->zc_case);
736 		} else if (fmd_nvl_class_match(hdl, nvl,
737 		    ZFS_MAKE_RSRC(FM_RESOURCE_REMOVED))) {
738 			/*
739 			 * The 'resource.fs.zfs.removed' event indicates that
740 			 * device removal was detected, and the device was
741 			 * closed asynchronously.  If this is the case, we
742 			 * assume that any recent I/O errors were due to the
743 			 * device removal, not any fault of the device itself.
744 			 * We reset the SERD engine, and cancel any pending
745 			 * timers.
746 			 */
747 			if (zcp->zc_data.zc_has_remove_timer) {
748 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
749 				zcp->zc_data.zc_has_remove_timer = 0;
750 				zfs_case_serialize(zcp);
751 			}
752 			if (zcp->zc_data.zc_serd_io[0] != '\0')
753 				fmd_serd_reset(hdl, zcp->zc_data.zc_serd_io);
754 			if (zcp->zc_data.zc_serd_checksum[0] != '\0')
755 				fmd_serd_reset(hdl,
756 				    zcp->zc_data.zc_serd_checksum);
757 			if (zcp->zc_data.zc_serd_slow_io[0] != '\0')
758 				fmd_serd_reset(hdl,
759 				    zcp->zc_data.zc_serd_slow_io);
760 		} else if (fmd_nvl_class_match(hdl, nvl,
761 		    ZFS_MAKE_RSRC(FM_RESOURCE_STATECHANGE))) {
762 			uint64_t state = 0;
763 
764 			if (zcp != NULL &&
765 			    nvlist_lookup_uint64(nvl,
766 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, &state) == 0 &&
767 			    state == VDEV_STATE_HEALTHY) {
768 				fmd_hdl_debug(hdl, "closing case after a "
769 				    "device statechange to healthy");
770 				fmd_case_close(hdl, zcp->zc_case);
771 			}
772 		}
773 		zfs_stats.resource_drops.fmds_value.ui64++;
774 		return;
775 	}
776 
777 	/*
778 	 * Associate the ereport with this case.
779 	 */
780 	fmd_case_add_ereport(hdl, zcp->zc_case, ep);
781 
782 	/*
783 	 * Don't do anything else if this case is already solved.
784 	 */
785 	if (fmd_case_solved(hdl, zcp->zc_case))
786 		return;
787 
788 	if (vdev_guid)
789 		fmd_hdl_debug(hdl, "error event '%s', vdev %llu", class,
790 		    vdev_guid);
791 	else
792 		fmd_hdl_debug(hdl, "error event '%s'", class);
793 
794 	/*
795 	 * Determine if we should solve the case and generate a fault.  We solve
796 	 * a case if:
797 	 *
798 	 * 	a. A pool failed to open (ereport.fs.zfs.pool)
799 	 * 	b. A device failed to open (ereport.fs.zfs.pool) while a pool
800 	 *	   was up and running.
801 	 *
802 	 * We may see a series of ereports associated with a pool open, all
803 	 * chained together by the same ENA.  If the pool open succeeds, then
804 	 * we'll see no further ereports.  To detect when a pool open has
805 	 * succeeded, we associate a timer with the event.  When it expires, we
806 	 * close the case.
807 	 */
808 	if (fmd_nvl_class_match(hdl, nvl,
809 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_POOL))) {
810 		/*
811 		 * Pool level fault.  Before solving the case, go through and
812 		 * close any open device cases that may be pending.
813 		 */
814 		for (dcp = uu_list_first(zfs_cases); dcp != NULL;
815 		    dcp = uu_list_next(zfs_cases, dcp)) {
816 			if (dcp->zc_data.zc_pool_guid ==
817 			    zcp->zc_data.zc_pool_guid &&
818 			    dcp->zc_data.zc_vdev_guid != 0)
819 				fmd_case_close(hdl, dcp->zc_case);
820 		}
821 
822 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.pool");
823 	} else if (fmd_nvl_class_match(hdl, nvl,
824 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_LOG_REPLAY))) {
825 		/*
826 		 * Pool level fault for reading the intent logs.
827 		 */
828 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.log_replay");
829 	} else if (fmd_nvl_class_match(hdl, nvl, "ereport.fs.zfs.vdev.*")) {
830 		/*
831 		 * Device fault.
832 		 */
833 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.device");
834 	} else if (fmd_nvl_class_match(hdl, nvl,
835 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO)) ||
836 	    fmd_nvl_class_match(hdl, nvl,
837 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM)) ||
838 	    fmd_nvl_class_match(hdl, nvl,
839 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) ||
840 	    fmd_nvl_class_match(hdl, nvl,
841 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY)) ||
842 	    fmd_nvl_class_match(hdl, nvl,
843 	    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
844 		const char *failmode = NULL;
845 		boolean_t checkremove = B_FALSE;
846 		uint32_t pri = 0;
847 		int32_t flags = 0;
848 
849 		/*
850 		 * If this is a checksum or I/O error, then toss it into the
851 		 * appropriate SERD engine and check to see if it has fired.
852 		 * Ideally, we want to do something more sophisticated,
853 		 * (persistent errors for a single data block, etc).  For now,
854 		 * a single SERD engine is sufficient.
855 		 */
856 		if (fmd_nvl_class_match(hdl, nvl,
857 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO))) {
858 			if (zcp->zc_data.zc_serd_io[0] == '\0') {
859 				if (nvlist_lookup_uint64(nvl,
860 				    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_N,
861 				    &io_n) != 0) {
862 					io_n = DEFAULT_IO_N;
863 				}
864 				if (nvlist_lookup_uint64(nvl,
865 				    FM_EREPORT_PAYLOAD_ZFS_VDEV_IO_T,
866 				    &io_t) != 0) {
867 					io_t = DEFAULT_IO_T;
868 				}
869 				zfs_serd_name(zcp->zc_data.zc_serd_io,
870 				    pool_guid, vdev_guid, "io");
871 				fmd_serd_create(hdl, zcp->zc_data.zc_serd_io,
872 				    io_n,
873 				    SEC2NSEC(io_t));
874 				zfs_case_serialize(zcp);
875 			}
876 			if (fmd_serd_record(hdl, zcp->zc_data.zc_serd_io, ep))
877 				checkremove = B_TRUE;
878 		} else if (fmd_nvl_class_match(hdl, nvl,
879 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_DELAY))) {
880 			uint64_t slow_io_n, slow_io_t;
881 
882 			/*
883 			 * Create a slow io SERD engine when the VDEV has the
884 			 * 'vdev_slow_io_n' and 'vdev_slow_io_n' properties.
885 			 */
886 			if (zcp->zc_data.zc_serd_slow_io[0] == '\0' &&
887 			    nvlist_lookup_uint64(nvl,
888 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_N,
889 			    &slow_io_n) == 0 &&
890 			    nvlist_lookup_uint64(nvl,
891 			    FM_EREPORT_PAYLOAD_ZFS_VDEV_SLOW_IO_T,
892 			    &slow_io_t) == 0) {
893 				zfs_serd_name(zcp->zc_data.zc_serd_slow_io,
894 				    pool_guid, vdev_guid, "slow_io");
895 				fmd_serd_create(hdl,
896 				    zcp->zc_data.zc_serd_slow_io,
897 				    slow_io_n,
898 				    SEC2NSEC(slow_io_t));
899 				zfs_case_serialize(zcp);
900 			}
901 			/* Pass event to SERD engine and see if this triggers */
902 			if (zcp->zc_data.zc_serd_slow_io[0] != '\0' &&
903 			    fmd_serd_record(hdl, zcp->zc_data.zc_serd_slow_io,
904 			    ep)) {
905 				/*
906 				 * Ignore a slow io diagnosis when other
907 				 * VDEVs in the pool show signs of being slow.
908 				 */
909 				if (zfs_other_slow_cases(hdl, &zcp->zc_data)) {
910 					zfs_case_retire(hdl, zcp);
911 					fmd_hdl_debug(hdl, "pool %llu has "
912 					    "multiple slow io cases -- skip "
913 					    "degrading vdev %llu",
914 					    (u_longlong_t)
915 					    zcp->zc_data.zc_pool_guid,
916 					    (u_longlong_t)
917 					    zcp->zc_data.zc_vdev_guid);
918 				} else {
919 					zfs_case_solve(hdl, zcp,
920 					    "fault.fs.zfs.vdev.slow_io");
921 				}
922 			}
923 		} else if (fmd_nvl_class_match(hdl, nvl,
924 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_CHECKSUM))) {
925 			/*
926 			 * We ignore ereports for checksum errors generated by
927 			 * scrub/resilver I/O to avoid potentially further
928 			 * degrading the pool while it's being repaired.
929 			 */
930 			if (((nvlist_lookup_uint32(nvl,
931 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY, &pri) == 0) &&
932 			    (pri == ZIO_PRIORITY_SCRUB ||
933 			    pri == ZIO_PRIORITY_REBUILD)) ||
934 			    ((nvlist_lookup_int32(nvl,
935 			    FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS, &flags) == 0) &&
936 			    (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))) {
937 				fmd_hdl_debug(hdl, "ignoring '%s' for "
938 				    "scrub/resilver I/O", class);
939 				return;
940 			}
941 
942 			if (zcp->zc_data.zc_serd_checksum[0] == '\0') {
943 				if (nvlist_lookup_uint64(nvl,
944 				    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_N,
945 				    &checksum_n) != 0) {
946 					checksum_n = DEFAULT_CHECKSUM_N;
947 				}
948 				if (nvlist_lookup_uint64(nvl,
949 				    FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_T,
950 				    &checksum_t) != 0) {
951 					checksum_t = DEFAULT_CHECKSUM_T;
952 				}
953 
954 				zfs_serd_name(zcp->zc_data.zc_serd_checksum,
955 				    pool_guid, vdev_guid, "checksum");
956 				fmd_serd_create(hdl,
957 				    zcp->zc_data.zc_serd_checksum,
958 				    checksum_n,
959 				    SEC2NSEC(checksum_t));
960 				zfs_case_serialize(zcp);
961 			}
962 			if (fmd_serd_record(hdl,
963 			    zcp->zc_data.zc_serd_checksum, ep)) {
964 				zfs_case_solve(hdl, zcp,
965 				    "fault.fs.zfs.vdev.checksum");
966 			}
967 		} else if (fmd_nvl_class_match(hdl, nvl,
968 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_IO_FAILURE)) &&
969 		    (nvlist_lookup_string(nvl,
970 		    FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE, &failmode) == 0) &&
971 		    failmode != NULL) {
972 			if (strncmp(failmode, FM_EREPORT_FAILMODE_CONTINUE,
973 			    strlen(FM_EREPORT_FAILMODE_CONTINUE)) == 0) {
974 				zfs_case_solve(hdl, zcp,
975 				    "fault.fs.zfs.io_failure_continue");
976 			} else if (strncmp(failmode, FM_EREPORT_FAILMODE_WAIT,
977 			    strlen(FM_EREPORT_FAILMODE_WAIT)) == 0) {
978 				zfs_case_solve(hdl, zcp,
979 				    "fault.fs.zfs.io_failure_wait");
980 			}
981 		} else if (fmd_nvl_class_match(hdl, nvl,
982 		    ZFS_MAKE_EREPORT(FM_EREPORT_ZFS_PROBE_FAILURE))) {
983 #ifndef __linux__
984 			/* This causes an unexpected fault diagnosis on linux */
985 			checkremove = B_TRUE;
986 #endif
987 		}
988 
989 		/*
990 		 * Because I/O errors may be due to device removal, we postpone
991 		 * any diagnosis until we're sure that we aren't about to
992 		 * receive a 'resource.fs.zfs.removed' event.
993 		 */
994 		if (checkremove) {
995 			if (zcp->zc_data.zc_has_remove_timer)
996 				fmd_timer_remove(hdl, zcp->zc_remove_timer);
997 			zcp->zc_remove_timer = fmd_timer_install(hdl, zcp, NULL,
998 			    zfs_remove_timeout);
999 			if (!zcp->zc_data.zc_has_remove_timer) {
1000 				zcp->zc_data.zc_has_remove_timer = 1;
1001 				zfs_case_serialize(zcp);
1002 			}
1003 		}
1004 	}
1005 }
1006 
1007 /*
1008  * The timeout is fired when we diagnosed an I/O error, and it was not due to
1009  * device removal (which would cause the timeout to be cancelled).
1010  */
1011 static void
1012 zfs_fm_timeout(fmd_hdl_t *hdl, id_t id, void *data)
1013 {
1014 	zfs_case_t *zcp = data;
1015 
1016 	if (id == zcp->zc_remove_timer)
1017 		zfs_case_solve(hdl, zcp, "fault.fs.zfs.vdev.io");
1018 }
1019 
1020 /*
1021  * The specified case has been closed and any case-specific
1022  * data structures should be deallocated.
1023  */
1024 static void
1025 zfs_fm_close(fmd_hdl_t *hdl, fmd_case_t *cs)
1026 {
1027 	zfs_case_t *zcp = fmd_case_getspecific(hdl, cs);
1028 
1029 	if (zcp->zc_data.zc_serd_checksum[0] != '\0')
1030 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_checksum);
1031 	if (zcp->zc_data.zc_serd_io[0] != '\0')
1032 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_io);
1033 	if (zcp->zc_data.zc_serd_slow_io[0] != '\0')
1034 		fmd_serd_destroy(hdl, zcp->zc_data.zc_serd_slow_io);
1035 	if (zcp->zc_data.zc_has_remove_timer)
1036 		fmd_timer_remove(hdl, zcp->zc_remove_timer);
1037 
1038 	uu_list_remove(zfs_cases, zcp);
1039 	uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool);
1040 	fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1041 }
1042 
1043 static const fmd_hdl_ops_t fmd_ops = {
1044 	zfs_fm_recv,	/* fmdo_recv */
1045 	zfs_fm_timeout,	/* fmdo_timeout */
1046 	zfs_fm_close,	/* fmdo_close */
1047 	NULL,		/* fmdo_stats */
1048 	NULL,	/* fmdo_gc */
1049 };
1050 
1051 static const fmd_prop_t fmd_props[] = {
1052 	{ NULL, 0, NULL }
1053 };
1054 
1055 static const fmd_hdl_info_t fmd_info = {
1056 	"ZFS Diagnosis Engine", "1.0", &fmd_ops, fmd_props
1057 };
1058 
1059 void
1060 _zfs_diagnosis_init(fmd_hdl_t *hdl)
1061 {
1062 	libzfs_handle_t *zhdl;
1063 
1064 	if ((zhdl = libzfs_init()) == NULL)
1065 		return;
1066 
1067 	if ((zfs_case_pool = uu_list_pool_create("zfs_case_pool",
1068 	    sizeof (zfs_case_t), offsetof(zfs_case_t, zc_node),
1069 	    NULL, UU_LIST_POOL_DEBUG)) == NULL) {
1070 		libzfs_fini(zhdl);
1071 		return;
1072 	}
1073 
1074 	if ((zfs_cases = uu_list_create(zfs_case_pool, NULL,
1075 	    UU_LIST_DEBUG)) == NULL) {
1076 		uu_list_pool_destroy(zfs_case_pool);
1077 		libzfs_fini(zhdl);
1078 		return;
1079 	}
1080 
1081 	if (fmd_hdl_register(hdl, FMD_API_VERSION, &fmd_info) != 0) {
1082 		uu_list_destroy(zfs_cases);
1083 		uu_list_pool_destroy(zfs_case_pool);
1084 		libzfs_fini(zhdl);
1085 		return;
1086 	}
1087 
1088 	fmd_hdl_setspecific(hdl, zhdl);
1089 
1090 	(void) fmd_stat_create(hdl, FMD_STAT_NOALLOC, sizeof (zfs_stats) /
1091 	    sizeof (fmd_stat_t), (fmd_stat_t *)&zfs_stats);
1092 }
1093 
1094 void
1095 _zfs_diagnosis_fini(fmd_hdl_t *hdl)
1096 {
1097 	zfs_case_t *zcp;
1098 	uu_list_walk_t *walk;
1099 	libzfs_handle_t *zhdl;
1100 
1101 	/*
1102 	 * Remove all active cases.
1103 	 */
1104 	walk = uu_list_walk_start(zfs_cases, UU_WALK_ROBUST);
1105 	while ((zcp = uu_list_walk_next(walk)) != NULL) {
1106 		fmd_hdl_debug(hdl, "removing case ena %llu",
1107 		    (long long unsigned)zcp->zc_data.zc_ena);
1108 		uu_list_remove(zfs_cases, zcp);
1109 		uu_list_node_fini(zcp, &zcp->zc_node, zfs_case_pool);
1110 		fmd_hdl_free(hdl, zcp, sizeof (zfs_case_t));
1111 	}
1112 	uu_list_walk_end(walk);
1113 
1114 	uu_list_destroy(zfs_cases);
1115 	uu_list_pool_destroy(zfs_case_pool);
1116 
1117 	zhdl = fmd_hdl_getspecific(hdl);
1118 	libzfs_fini(zhdl);
1119 }
1120