1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t attr; 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, &attr) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010llx = ", 1135 (u_longlong_t)*(uint64_t *)attr.za_name); 1136 else 1137 (void) printf("\t\t%s = ", attr.za_name); 1138 1139 if (attr.za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attr.za_num_integers * 1144 attr.za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attr.za_name, 1, 1149 attr.za_integer_length, attr.za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attr.za_name, 1153 attr.za_integer_length, attr.za_num_integers, 1154 prop); 1155 1156 if (attr.za_integer_length == 1 && !key64) { 1157 if (strcmp(attr.za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attr.za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1164 uint8_t *u8 = prop; 1165 1166 for (i = 0; i < attr.za_num_integers; i++) { 1167 (void) printf("%02x", u8[i]); 1168 } 1169 } else { 1170 (void) printf("%s", (char *)prop); 1171 } 1172 } else { 1173 for (i = 0; i < attr.za_num_integers; i++) { 1174 switch (attr.za_integer_length) { 1175 case 1: 1176 (void) printf("%u ", 1177 ((uint8_t *)prop)[i]); 1178 break; 1179 case 2: 1180 (void) printf("%u ", 1181 ((uint16_t *)prop)[i]); 1182 break; 1183 case 4: 1184 (void) printf("%u ", 1185 ((uint32_t *)prop)[i]); 1186 break; 1187 case 8: 1188 (void) printf("%lld ", 1189 (u_longlong_t)((int64_t *)prop)[i]); 1190 break; 1191 } 1192 } 1193 } 1194 (void) printf("\n"); 1195 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1196 } 1197 zap_cursor_fini(&zc); 1198 } 1199 1200 static void 1201 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1202 { 1203 bpobj_phys_t *bpop = data; 1204 uint64_t i; 1205 char bytes[32], comp[32], uncomp[32]; 1206 1207 /* make sure the output won't get truncated */ 1208 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1209 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1210 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1211 1212 if (bpop == NULL) 1213 return; 1214 1215 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1216 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1217 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1218 1219 (void) printf("\t\tnum_blkptrs = %llu\n", 1220 (u_longlong_t)bpop->bpo_num_blkptrs); 1221 (void) printf("\t\tbytes = %s\n", bytes); 1222 if (size >= BPOBJ_SIZE_V1) { 1223 (void) printf("\t\tcomp = %s\n", comp); 1224 (void) printf("\t\tuncomp = %s\n", uncomp); 1225 } 1226 if (size >= BPOBJ_SIZE_V2) { 1227 (void) printf("\t\tsubobjs = %llu\n", 1228 (u_longlong_t)bpop->bpo_subobjs); 1229 (void) printf("\t\tnum_subobjs = %llu\n", 1230 (u_longlong_t)bpop->bpo_num_subobjs); 1231 } 1232 if (size >= sizeof (*bpop)) { 1233 (void) printf("\t\tnum_freed = %llu\n", 1234 (u_longlong_t)bpop->bpo_num_freed); 1235 } 1236 1237 if (dump_opt['d'] < 5) 1238 return; 1239 1240 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1241 char blkbuf[BP_SPRINTF_LEN]; 1242 blkptr_t bp; 1243 1244 int err = dmu_read(os, object, 1245 i * sizeof (bp), sizeof (bp), &bp, 0); 1246 if (err != 0) { 1247 (void) printf("got error %u from dmu_read\n", err); 1248 break; 1249 } 1250 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1251 BP_GET_FREE(&bp)); 1252 (void) printf("\t%s\n", blkbuf); 1253 } 1254 } 1255 1256 static void 1257 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1258 { 1259 (void) data, (void) size; 1260 dmu_object_info_t doi; 1261 int64_t i; 1262 1263 VERIFY0(dmu_object_info(os, object, &doi)); 1264 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1265 1266 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1267 if (err != 0) { 1268 (void) printf("got error %u from dmu_read\n", err); 1269 kmem_free(subobjs, doi.doi_max_offset); 1270 return; 1271 } 1272 1273 int64_t last_nonzero = -1; 1274 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1275 if (subobjs[i] != 0) 1276 last_nonzero = i; 1277 } 1278 1279 for (i = 0; i <= last_nonzero; i++) { 1280 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1281 } 1282 kmem_free(subobjs, doi.doi_max_offset); 1283 } 1284 1285 static void 1286 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1287 { 1288 (void) data, (void) size; 1289 dump_zap_stats(os, object); 1290 /* contents are printed elsewhere, properly decoded */ 1291 } 1292 1293 static void 1294 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1295 { 1296 (void) data, (void) size; 1297 zap_cursor_t zc; 1298 zap_attribute_t attr; 1299 1300 dump_zap_stats(os, object); 1301 (void) printf("\n"); 1302 1303 for (zap_cursor_init(&zc, os, object); 1304 zap_cursor_retrieve(&zc, &attr) == 0; 1305 zap_cursor_advance(&zc)) { 1306 (void) printf("\t\t%s = ", attr.za_name); 1307 if (attr.za_num_integers == 0) { 1308 (void) printf("\n"); 1309 continue; 1310 } 1311 (void) printf(" %llx : [%d:%d:%d]\n", 1312 (u_longlong_t)attr.za_first_integer, 1313 (int)ATTR_LENGTH(attr.za_first_integer), 1314 (int)ATTR_BSWAP(attr.za_first_integer), 1315 (int)ATTR_NUM(attr.za_first_integer)); 1316 } 1317 zap_cursor_fini(&zc); 1318 } 1319 1320 static void 1321 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1322 { 1323 (void) data, (void) size; 1324 zap_cursor_t zc; 1325 zap_attribute_t attr; 1326 uint16_t *layout_attrs; 1327 unsigned i; 1328 1329 dump_zap_stats(os, object); 1330 (void) printf("\n"); 1331 1332 for (zap_cursor_init(&zc, os, object); 1333 zap_cursor_retrieve(&zc, &attr) == 0; 1334 zap_cursor_advance(&zc)) { 1335 (void) printf("\t\t%s = [", attr.za_name); 1336 if (attr.za_num_integers == 0) { 1337 (void) printf("\n"); 1338 continue; 1339 } 1340 1341 VERIFY(attr.za_integer_length == 2); 1342 layout_attrs = umem_zalloc(attr.za_num_integers * 1343 attr.za_integer_length, UMEM_NOFAIL); 1344 1345 VERIFY(zap_lookup(os, object, attr.za_name, 1346 attr.za_integer_length, 1347 attr.za_num_integers, layout_attrs) == 0); 1348 1349 for (i = 0; i != attr.za_num_integers; i++) 1350 (void) printf(" %d ", (int)layout_attrs[i]); 1351 (void) printf("]\n"); 1352 umem_free(layout_attrs, 1353 attr.za_num_integers * attr.za_integer_length); 1354 } 1355 zap_cursor_fini(&zc); 1356 } 1357 1358 static void 1359 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1360 { 1361 (void) data, (void) size; 1362 zap_cursor_t zc; 1363 zap_attribute_t attr; 1364 const char *typenames[] = { 1365 /* 0 */ "not specified", 1366 /* 1 */ "FIFO", 1367 /* 2 */ "Character Device", 1368 /* 3 */ "3 (invalid)", 1369 /* 4 */ "Directory", 1370 /* 5 */ "5 (invalid)", 1371 /* 6 */ "Block Device", 1372 /* 7 */ "7 (invalid)", 1373 /* 8 */ "Regular File", 1374 /* 9 */ "9 (invalid)", 1375 /* 10 */ "Symbolic Link", 1376 /* 11 */ "11 (invalid)", 1377 /* 12 */ "Socket", 1378 /* 13 */ "Door", 1379 /* 14 */ "Event Port", 1380 /* 15 */ "15 (invalid)", 1381 }; 1382 1383 dump_zap_stats(os, object); 1384 (void) printf("\n"); 1385 1386 for (zap_cursor_init(&zc, os, object); 1387 zap_cursor_retrieve(&zc, &attr) == 0; 1388 zap_cursor_advance(&zc)) { 1389 (void) printf("\t\t%s = %lld (type: %s)\n", 1390 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1391 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1392 } 1393 zap_cursor_fini(&zc); 1394 } 1395 1396 static int 1397 get_dtl_refcount(vdev_t *vd) 1398 { 1399 int refcount = 0; 1400 1401 if (vd->vdev_ops->vdev_op_leaf) { 1402 space_map_t *sm = vd->vdev_dtl_sm; 1403 1404 if (sm != NULL && 1405 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1406 return (1); 1407 return (0); 1408 } 1409 1410 for (unsigned c = 0; c < vd->vdev_children; c++) 1411 refcount += get_dtl_refcount(vd->vdev_child[c]); 1412 return (refcount); 1413 } 1414 1415 static int 1416 get_metaslab_refcount(vdev_t *vd) 1417 { 1418 int refcount = 0; 1419 1420 if (vd->vdev_top == vd) { 1421 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1422 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1423 1424 if (sm != NULL && 1425 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1426 refcount++; 1427 } 1428 } 1429 for (unsigned c = 0; c < vd->vdev_children; c++) 1430 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1431 1432 return (refcount); 1433 } 1434 1435 static int 1436 get_obsolete_refcount(vdev_t *vd) 1437 { 1438 uint64_t obsolete_sm_object; 1439 int refcount = 0; 1440 1441 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1442 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1443 dmu_object_info_t doi; 1444 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1445 obsolete_sm_object, &doi)); 1446 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1447 refcount++; 1448 } 1449 } else { 1450 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1451 ASSERT3U(obsolete_sm_object, ==, 0); 1452 } 1453 for (unsigned c = 0; c < vd->vdev_children; c++) { 1454 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1455 } 1456 1457 return (refcount); 1458 } 1459 1460 static int 1461 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1462 { 1463 uint64_t prev_obj = 1464 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1465 if (prev_obj != 0) { 1466 dmu_object_info_t doi; 1467 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1468 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1469 return (1); 1470 } 1471 } 1472 return (0); 1473 } 1474 1475 static int 1476 get_checkpoint_refcount(vdev_t *vd) 1477 { 1478 int refcount = 0; 1479 1480 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1481 zap_contains(spa_meta_objset(vd->vdev_spa), 1482 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1483 refcount++; 1484 1485 for (uint64_t c = 0; c < vd->vdev_children; c++) 1486 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1487 1488 return (refcount); 1489 } 1490 1491 static int 1492 get_log_spacemap_refcount(spa_t *spa) 1493 { 1494 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1495 } 1496 1497 static int 1498 verify_spacemap_refcounts(spa_t *spa) 1499 { 1500 uint64_t expected_refcount = 0; 1501 uint64_t actual_refcount; 1502 1503 (void) feature_get_refcount(spa, 1504 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1505 &expected_refcount); 1506 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1507 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1508 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1509 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1510 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1511 actual_refcount += get_log_spacemap_refcount(spa); 1512 1513 if (expected_refcount != actual_refcount) { 1514 (void) printf("space map refcount mismatch: expected %lld != " 1515 "actual %lld\n", 1516 (longlong_t)expected_refcount, 1517 (longlong_t)actual_refcount); 1518 return (2); 1519 } 1520 return (0); 1521 } 1522 1523 static void 1524 dump_spacemap(objset_t *os, space_map_t *sm) 1525 { 1526 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1527 "INVALID", "INVALID", "INVALID", "INVALID" }; 1528 1529 if (sm == NULL) 1530 return; 1531 1532 (void) printf("space map object %llu:\n", 1533 (longlong_t)sm->sm_object); 1534 (void) printf(" smp_length = 0x%llx\n", 1535 (longlong_t)sm->sm_phys->smp_length); 1536 (void) printf(" smp_alloc = 0x%llx\n", 1537 (longlong_t)sm->sm_phys->smp_alloc); 1538 1539 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1540 return; 1541 1542 /* 1543 * Print out the freelist entries in both encoded and decoded form. 1544 */ 1545 uint8_t mapshift = sm->sm_shift; 1546 int64_t alloc = 0; 1547 uint64_t word, entry_id = 0; 1548 for (uint64_t offset = 0; offset < space_map_length(sm); 1549 offset += sizeof (word)) { 1550 1551 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1552 sizeof (word), &word, DMU_READ_PREFETCH)); 1553 1554 if (sm_entry_is_debug(word)) { 1555 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1556 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1557 if (de_txg == 0) { 1558 (void) printf( 1559 "\t [%6llu] PADDING\n", 1560 (u_longlong_t)entry_id); 1561 } else { 1562 (void) printf( 1563 "\t [%6llu] %s: txg %llu pass %llu\n", 1564 (u_longlong_t)entry_id, 1565 ddata[SM_DEBUG_ACTION_DECODE(word)], 1566 (u_longlong_t)de_txg, 1567 (u_longlong_t)de_sync_pass); 1568 } 1569 entry_id++; 1570 continue; 1571 } 1572 1573 uint8_t words; 1574 char entry_type; 1575 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1576 1577 if (sm_entry_is_single_word(word)) { 1578 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1579 'A' : 'F'; 1580 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1581 sm->sm_start; 1582 entry_run = SM_RUN_DECODE(word) << mapshift; 1583 words = 1; 1584 } else { 1585 /* it is a two-word entry so we read another word */ 1586 ASSERT(sm_entry_is_double_word(word)); 1587 1588 uint64_t extra_word; 1589 offset += sizeof (extra_word); 1590 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1591 sizeof (extra_word), &extra_word, 1592 DMU_READ_PREFETCH)); 1593 1594 ASSERT3U(offset, <=, space_map_length(sm)); 1595 1596 entry_run = SM2_RUN_DECODE(word) << mapshift; 1597 entry_vdev = SM2_VDEV_DECODE(word); 1598 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1599 'A' : 'F'; 1600 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1601 mapshift) + sm->sm_start; 1602 words = 2; 1603 } 1604 1605 (void) printf("\t [%6llu] %c range:" 1606 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1607 (u_longlong_t)entry_id, 1608 entry_type, (u_longlong_t)entry_off, 1609 (u_longlong_t)(entry_off + entry_run), 1610 (u_longlong_t)entry_run, 1611 (u_longlong_t)entry_vdev, words); 1612 1613 if (entry_type == 'A') 1614 alloc += entry_run; 1615 else 1616 alloc -= entry_run; 1617 entry_id++; 1618 } 1619 if (alloc != space_map_allocated(sm)) { 1620 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1621 "with space map summary (%lld)\n", 1622 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1623 } 1624 } 1625 1626 static void 1627 dump_metaslab_stats(metaslab_t *msp) 1628 { 1629 char maxbuf[32]; 1630 range_tree_t *rt = msp->ms_allocatable; 1631 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1632 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1633 1634 /* max sure nicenum has enough space */ 1635 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1636 1637 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1638 1639 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1640 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1641 "freepct", free_pct); 1642 (void) printf("\tIn-memory histogram:\n"); 1643 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1644 } 1645 1646 static void 1647 dump_metaslab(metaslab_t *msp) 1648 { 1649 vdev_t *vd = msp->ms_group->mg_vd; 1650 spa_t *spa = vd->vdev_spa; 1651 space_map_t *sm = msp->ms_sm; 1652 char freebuf[32]; 1653 1654 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1655 sizeof (freebuf)); 1656 1657 (void) printf( 1658 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1659 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1660 (u_longlong_t)space_map_object(sm), freebuf); 1661 1662 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1663 mutex_enter(&msp->ms_lock); 1664 VERIFY0(metaslab_load(msp)); 1665 range_tree_stat_verify(msp->ms_allocatable); 1666 dump_metaslab_stats(msp); 1667 metaslab_unload(msp); 1668 mutex_exit(&msp->ms_lock); 1669 } 1670 1671 if (dump_opt['m'] > 1 && sm != NULL && 1672 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1673 /* 1674 * The space map histogram represents free space in chunks 1675 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1676 */ 1677 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1678 (u_longlong_t)msp->ms_fragmentation); 1679 dump_histogram(sm->sm_phys->smp_histogram, 1680 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1681 } 1682 1683 if (vd->vdev_ops == &vdev_draid_ops) 1684 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1685 else 1686 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1687 1688 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1689 1690 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1691 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1692 (u_longlong_t)metaslab_unflushed_txg(msp)); 1693 } 1694 } 1695 1696 static void 1697 print_vdev_metaslab_header(vdev_t *vd) 1698 { 1699 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1700 const char *bias_str = ""; 1701 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1702 bias_str = VDEV_ALLOC_BIAS_LOG; 1703 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1704 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1705 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1706 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1707 } 1708 1709 uint64_t ms_flush_data_obj = 0; 1710 if (vd->vdev_top_zap != 0) { 1711 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1712 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1713 sizeof (uint64_t), 1, &ms_flush_data_obj); 1714 if (error != ENOENT) { 1715 ASSERT0(error); 1716 } 1717 } 1718 1719 (void) printf("\tvdev %10llu %s", 1720 (u_longlong_t)vd->vdev_id, bias_str); 1721 1722 if (ms_flush_data_obj != 0) { 1723 (void) printf(" ms_unflushed_phys object %llu", 1724 (u_longlong_t)ms_flush_data_obj); 1725 } 1726 1727 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1728 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1729 "offset", "spacemap", "free"); 1730 (void) printf("\t%15s %19s %15s %12s\n", 1731 "---------------", "-------------------", 1732 "---------------", "------------"); 1733 } 1734 1735 static void 1736 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1737 { 1738 vdev_t *rvd = spa->spa_root_vdev; 1739 metaslab_class_t *mc = spa_normal_class(spa); 1740 metaslab_class_t *smc = spa_special_class(spa); 1741 uint64_t fragmentation; 1742 1743 metaslab_class_histogram_verify(mc); 1744 1745 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1746 vdev_t *tvd = rvd->vdev_child[c]; 1747 metaslab_group_t *mg = tvd->vdev_mg; 1748 1749 if (mg == NULL || (mg->mg_class != mc && 1750 (!show_special || mg->mg_class != smc))) 1751 continue; 1752 1753 metaslab_group_histogram_verify(mg); 1754 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1755 1756 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1757 "fragmentation", 1758 (u_longlong_t)tvd->vdev_id, 1759 (u_longlong_t)tvd->vdev_ms_count); 1760 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1761 (void) printf("%3s\n", "-"); 1762 } else { 1763 (void) printf("%3llu%%\n", 1764 (u_longlong_t)mg->mg_fragmentation); 1765 } 1766 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1767 } 1768 1769 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1770 fragmentation = metaslab_class_fragmentation(mc); 1771 if (fragmentation == ZFS_FRAG_INVALID) 1772 (void) printf("\t%3s\n", "-"); 1773 else 1774 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1775 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1776 } 1777 1778 static void 1779 print_vdev_indirect(vdev_t *vd) 1780 { 1781 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1782 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1783 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1784 1785 if (vim == NULL) { 1786 ASSERT3P(vib, ==, NULL); 1787 return; 1788 } 1789 1790 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1791 vic->vic_mapping_object); 1792 ASSERT3U(vdev_indirect_births_object(vib), ==, 1793 vic->vic_births_object); 1794 1795 (void) printf("indirect births obj %llu:\n", 1796 (longlong_t)vic->vic_births_object); 1797 (void) printf(" vib_count = %llu\n", 1798 (longlong_t)vdev_indirect_births_count(vib)); 1799 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1800 vdev_indirect_birth_entry_phys_t *cur_vibe = 1801 &vib->vib_entries[i]; 1802 (void) printf("\toffset %llx -> txg %llu\n", 1803 (longlong_t)cur_vibe->vibe_offset, 1804 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1805 } 1806 (void) printf("\n"); 1807 1808 (void) printf("indirect mapping obj %llu:\n", 1809 (longlong_t)vic->vic_mapping_object); 1810 (void) printf(" vim_max_offset = 0x%llx\n", 1811 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1812 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1813 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1814 (void) printf(" vim_count = %llu\n", 1815 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1816 1817 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1818 return; 1819 1820 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1821 1822 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1823 vdev_indirect_mapping_entry_phys_t *vimep = 1824 &vim->vim_entries[i]; 1825 (void) printf("\t<%llx:%llx:%llx> -> " 1826 "<%llx:%llx:%llx> (%x obsolete)\n", 1827 (longlong_t)vd->vdev_id, 1828 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1829 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1830 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1831 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1832 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1833 counts[i]); 1834 } 1835 (void) printf("\n"); 1836 1837 uint64_t obsolete_sm_object; 1838 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1839 if (obsolete_sm_object != 0) { 1840 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1841 (void) printf("obsolete space map object %llu:\n", 1842 (u_longlong_t)obsolete_sm_object); 1843 ASSERT(vd->vdev_obsolete_sm != NULL); 1844 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1845 obsolete_sm_object); 1846 dump_spacemap(mos, vd->vdev_obsolete_sm); 1847 (void) printf("\n"); 1848 } 1849 } 1850 1851 static void 1852 dump_metaslabs(spa_t *spa) 1853 { 1854 vdev_t *vd, *rvd = spa->spa_root_vdev; 1855 uint64_t m, c = 0, children = rvd->vdev_children; 1856 1857 (void) printf("\nMetaslabs:\n"); 1858 1859 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1860 c = zopt_metaslab[0]; 1861 1862 if (c >= children) 1863 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1864 1865 if (zopt_metaslab_args > 1) { 1866 vd = rvd->vdev_child[c]; 1867 print_vdev_metaslab_header(vd); 1868 1869 for (m = 1; m < zopt_metaslab_args; m++) { 1870 if (zopt_metaslab[m] < vd->vdev_ms_count) 1871 dump_metaslab( 1872 vd->vdev_ms[zopt_metaslab[m]]); 1873 else 1874 (void) fprintf(stderr, "bad metaslab " 1875 "number %llu\n", 1876 (u_longlong_t)zopt_metaslab[m]); 1877 } 1878 (void) printf("\n"); 1879 return; 1880 } 1881 children = c + 1; 1882 } 1883 for (; c < children; c++) { 1884 vd = rvd->vdev_child[c]; 1885 print_vdev_metaslab_header(vd); 1886 1887 print_vdev_indirect(vd); 1888 1889 for (m = 0; m < vd->vdev_ms_count; m++) 1890 dump_metaslab(vd->vdev_ms[m]); 1891 (void) printf("\n"); 1892 } 1893 } 1894 1895 static void 1896 dump_log_spacemaps(spa_t *spa) 1897 { 1898 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1899 return; 1900 1901 (void) printf("\nLog Space Maps in Pool:\n"); 1902 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1903 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1904 space_map_t *sm = NULL; 1905 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1906 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1907 1908 (void) printf("Log Spacemap object %llu txg %llu\n", 1909 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1910 dump_spacemap(spa->spa_meta_objset, sm); 1911 space_map_close(sm); 1912 } 1913 (void) printf("\n"); 1914 } 1915 1916 static void 1917 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1918 { 1919 const ddt_phys_t *ddp = dde->dde_phys; 1920 const ddt_key_t *ddk = &dde->dde_key; 1921 const char *types[4] = { "ditto", "single", "double", "triple" }; 1922 char blkbuf[BP_SPRINTF_LEN]; 1923 blkptr_t blk; 1924 int p; 1925 1926 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1927 if (ddp->ddp_phys_birth == 0) 1928 continue; 1929 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1930 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1931 (void) printf("index %llx refcnt %llu %s %s\n", 1932 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1933 types[p], blkbuf); 1934 } 1935 } 1936 1937 static void 1938 dump_dedup_ratio(const ddt_stat_t *dds) 1939 { 1940 double rL, rP, rD, D, dedup, compress, copies; 1941 1942 if (dds->dds_blocks == 0) 1943 return; 1944 1945 rL = (double)dds->dds_ref_lsize; 1946 rP = (double)dds->dds_ref_psize; 1947 rD = (double)dds->dds_ref_dsize; 1948 D = (double)dds->dds_dsize; 1949 1950 dedup = rD / D; 1951 compress = rL / rP; 1952 copies = rD / rP; 1953 1954 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1955 "dedup * compress / copies = %.2f\n\n", 1956 dedup, compress, copies, dedup * compress / copies); 1957 } 1958 1959 static void 1960 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1961 { 1962 char name[DDT_NAMELEN]; 1963 ddt_entry_t dde; 1964 uint64_t walk = 0; 1965 dmu_object_info_t doi; 1966 uint64_t count, dspace, mspace; 1967 int error; 1968 1969 error = ddt_object_info(ddt, type, class, &doi); 1970 1971 if (error == ENOENT) 1972 return; 1973 ASSERT(error == 0); 1974 1975 error = ddt_object_count(ddt, type, class, &count); 1976 ASSERT(error == 0); 1977 if (count == 0) 1978 return; 1979 1980 dspace = doi.doi_physical_blocks_512 << 9; 1981 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1982 1983 ddt_object_name(ddt, type, class, name); 1984 1985 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1986 name, 1987 (u_longlong_t)count, 1988 (u_longlong_t)dspace, 1989 (u_longlong_t)mspace); 1990 1991 if (dump_opt['D'] < 3) 1992 return; 1993 1994 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1995 1996 if (dump_opt['D'] < 4) 1997 return; 1998 1999 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2000 return; 2001 2002 (void) printf("%s contents:\n\n", name); 2003 2004 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2005 dump_dde(ddt, &dde, walk); 2006 2007 ASSERT3U(error, ==, ENOENT); 2008 2009 (void) printf("\n"); 2010 } 2011 2012 static void 2013 dump_all_ddts(spa_t *spa) 2014 { 2015 ddt_histogram_t ddh_total = {{{0}}}; 2016 ddt_stat_t dds_total = {0}; 2017 2018 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2019 ddt_t *ddt = spa->spa_ddt[c]; 2020 if (!ddt) 2021 continue; 2022 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2023 for (ddt_class_t class = 0; class < DDT_CLASSES; 2024 class++) { 2025 dump_ddt(ddt, type, class); 2026 } 2027 } 2028 } 2029 2030 ddt_get_dedup_stats(spa, &dds_total); 2031 2032 if (dds_total.dds_blocks == 0) { 2033 (void) printf("All DDTs are empty\n"); 2034 return; 2035 } 2036 2037 (void) printf("\n"); 2038 2039 if (dump_opt['D'] > 1) { 2040 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2041 ddt_get_dedup_histogram(spa, &ddh_total); 2042 zpool_dump_ddt(&dds_total, &ddh_total); 2043 } 2044 2045 dump_dedup_ratio(&dds_total); 2046 } 2047 2048 static void 2049 dump_brt(spa_t *spa) 2050 { 2051 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2052 printf("BRT: unsupported on this pool\n"); 2053 return; 2054 } 2055 2056 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2057 printf("BRT: empty\n"); 2058 return; 2059 } 2060 2061 brt_t *brt = spa->spa_brt; 2062 VERIFY(brt); 2063 2064 char count[32], used[32], saved[32]; 2065 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2066 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2067 uint64_t ratio = brt_get_ratio(spa); 2068 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2069 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2070 2071 if (dump_opt['T'] < 2) 2072 return; 2073 2074 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2075 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2076 if (brtvd == NULL) 2077 continue; 2078 2079 if (!brtvd->bv_initiated) { 2080 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2081 continue; 2082 } 2083 2084 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2085 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2086 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2087 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2088 vdevid, count, used, saved); 2089 } 2090 2091 if (dump_opt['T'] < 3) 2092 return; 2093 2094 char dva[64]; 2095 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2096 2097 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2098 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2099 if (brtvd == NULL || !brtvd->bv_initiated) 2100 continue; 2101 2102 zap_cursor_t zc; 2103 zap_attribute_t za; 2104 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2105 zap_cursor_retrieve(&zc, &za) == 0; 2106 zap_cursor_advance(&zc)) { 2107 uint64_t refcnt; 2108 VERIFY0(zap_lookup_uint64(brt->brt_mos, 2109 brtvd->bv_mos_entries, 2110 (const uint64_t *)za.za_name, 1, 2111 za.za_integer_length, za.za_num_integers, &refcnt)); 2112 2113 uint64_t offset = *(const uint64_t *)za.za_name; 2114 2115 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2116 (u_longlong_t)offset); 2117 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2118 } 2119 zap_cursor_fini(&zc); 2120 } 2121 } 2122 2123 static void 2124 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2125 { 2126 char *prefix = arg; 2127 2128 (void) printf("%s [%llu,%llu) length %llu\n", 2129 prefix, 2130 (u_longlong_t)start, 2131 (u_longlong_t)(start + size), 2132 (u_longlong_t)(size)); 2133 } 2134 2135 static void 2136 dump_dtl(vdev_t *vd, int indent) 2137 { 2138 spa_t *spa = vd->vdev_spa; 2139 boolean_t required; 2140 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2141 "outage" }; 2142 char prefix[256]; 2143 2144 spa_vdev_state_enter(spa, SCL_NONE); 2145 required = vdev_dtl_required(vd); 2146 (void) spa_vdev_state_exit(spa, NULL, 0); 2147 2148 if (indent == 0) 2149 (void) printf("\nDirty time logs:\n\n"); 2150 2151 (void) printf("\t%*s%s [%s]\n", indent, "", 2152 vd->vdev_path ? vd->vdev_path : 2153 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2154 required ? "DTL-required" : "DTL-expendable"); 2155 2156 for (int t = 0; t < DTL_TYPES; t++) { 2157 range_tree_t *rt = vd->vdev_dtl[t]; 2158 if (range_tree_space(rt) == 0) 2159 continue; 2160 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2161 indent + 2, "", name[t]); 2162 range_tree_walk(rt, dump_dtl_seg, prefix); 2163 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2164 dump_spacemap(spa->spa_meta_objset, 2165 vd->vdev_dtl_sm); 2166 } 2167 2168 for (unsigned c = 0; c < vd->vdev_children; c++) 2169 dump_dtl(vd->vdev_child[c], indent + 4); 2170 } 2171 2172 static void 2173 dump_history(spa_t *spa) 2174 { 2175 nvlist_t **events = NULL; 2176 char *buf; 2177 uint64_t resid, len, off = 0; 2178 uint_t num = 0; 2179 int error; 2180 char tbuf[30]; 2181 2182 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2183 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2184 __func__); 2185 return; 2186 } 2187 2188 do { 2189 len = SPA_OLD_MAXBLOCKSIZE; 2190 2191 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2192 (void) fprintf(stderr, "Unable to read history: " 2193 "error %d\n", error); 2194 free(buf); 2195 return; 2196 } 2197 2198 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2199 break; 2200 2201 off -= resid; 2202 } while (len != 0); 2203 2204 (void) printf("\nHistory:\n"); 2205 for (unsigned i = 0; i < num; i++) { 2206 boolean_t printed = B_FALSE; 2207 2208 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2209 time_t tsec; 2210 struct tm t; 2211 2212 tsec = fnvlist_lookup_uint64(events[i], 2213 ZPOOL_HIST_TIME); 2214 (void) localtime_r(&tsec, &t); 2215 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2216 } else { 2217 tbuf[0] = '\0'; 2218 } 2219 2220 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2221 (void) printf("%s %s\n", tbuf, 2222 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2223 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2224 uint64_t ievent; 2225 2226 ievent = fnvlist_lookup_uint64(events[i], 2227 ZPOOL_HIST_INT_EVENT); 2228 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2229 goto next; 2230 2231 (void) printf(" %s [internal %s txg:%ju] %s\n", 2232 tbuf, 2233 zfs_history_event_names[ievent], 2234 fnvlist_lookup_uint64(events[i], 2235 ZPOOL_HIST_TXG), 2236 fnvlist_lookup_string(events[i], 2237 ZPOOL_HIST_INT_STR)); 2238 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2239 (void) printf("%s [txg:%ju] %s", tbuf, 2240 fnvlist_lookup_uint64(events[i], 2241 ZPOOL_HIST_TXG), 2242 fnvlist_lookup_string(events[i], 2243 ZPOOL_HIST_INT_NAME)); 2244 2245 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2246 (void) printf(" %s (%llu)", 2247 fnvlist_lookup_string(events[i], 2248 ZPOOL_HIST_DSNAME), 2249 (u_longlong_t)fnvlist_lookup_uint64( 2250 events[i], 2251 ZPOOL_HIST_DSID)); 2252 } 2253 2254 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2255 ZPOOL_HIST_INT_STR)); 2256 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2257 (void) printf("%s ioctl %s\n", tbuf, 2258 fnvlist_lookup_string(events[i], 2259 ZPOOL_HIST_IOCTL)); 2260 2261 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2262 (void) printf(" input:\n"); 2263 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2264 ZPOOL_HIST_INPUT_NVL), 8); 2265 } 2266 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2267 (void) printf(" output:\n"); 2268 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2269 ZPOOL_HIST_OUTPUT_NVL), 8); 2270 } 2271 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2272 (void) printf(" errno: %lld\n", 2273 (longlong_t)fnvlist_lookup_int64(events[i], 2274 ZPOOL_HIST_ERRNO)); 2275 } 2276 } else { 2277 goto next; 2278 } 2279 2280 printed = B_TRUE; 2281 next: 2282 if (dump_opt['h'] > 1) { 2283 if (!printed) 2284 (void) printf("unrecognized record:\n"); 2285 dump_nvlist(events[i], 2); 2286 } 2287 } 2288 free(buf); 2289 } 2290 2291 static void 2292 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2293 { 2294 (void) os, (void) object, (void) data, (void) size; 2295 } 2296 2297 static uint64_t 2298 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2299 const zbookmark_phys_t *zb) 2300 { 2301 if (dnp == NULL) { 2302 ASSERT(zb->zb_level < 0); 2303 if (zb->zb_object == 0) 2304 return (zb->zb_blkid); 2305 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2306 } 2307 2308 ASSERT(zb->zb_level >= 0); 2309 2310 return ((zb->zb_blkid << 2311 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2312 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2313 } 2314 2315 static void 2316 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2317 const blkptr_t *bp) 2318 { 2319 static abd_t *pabd = NULL; 2320 void *buf; 2321 zio_t *zio; 2322 zfs_zstdhdr_t zstd_hdr; 2323 int error; 2324 2325 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2326 return; 2327 2328 if (BP_IS_HOLE(bp)) 2329 return; 2330 2331 if (BP_IS_EMBEDDED(bp)) { 2332 buf = malloc(SPA_MAXBLOCKSIZE); 2333 if (buf == NULL) { 2334 (void) fprintf(stderr, "out of memory\n"); 2335 zdb_exit(1); 2336 } 2337 decode_embedded_bp_compressed(bp, buf); 2338 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2339 free(buf); 2340 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2341 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2342 (void) snprintf(blkbuf + strlen(blkbuf), 2343 buflen - strlen(blkbuf), 2344 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2345 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2346 zfs_get_hdrlevel(&zstd_hdr)); 2347 return; 2348 } 2349 2350 if (!pabd) 2351 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2352 zio = zio_root(spa, NULL, NULL, 0); 2353 2354 /* Decrypt but don't decompress so we can read the compression header */ 2355 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2356 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2357 NULL)); 2358 error = zio_wait(zio); 2359 if (error) { 2360 (void) fprintf(stderr, "read failed: %d\n", error); 2361 return; 2362 } 2363 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2364 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2365 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2366 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2367 2368 (void) snprintf(blkbuf + strlen(blkbuf), 2369 buflen - strlen(blkbuf), 2370 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2371 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2372 zfs_get_hdrlevel(&zstd_hdr)); 2373 2374 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2375 } 2376 2377 static void 2378 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2379 boolean_t bp_freed) 2380 { 2381 const dva_t *dva = bp->blk_dva; 2382 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2383 int i; 2384 2385 if (dump_opt['b'] >= 6) { 2386 snprintf_blkptr(blkbuf, buflen, bp); 2387 if (bp_freed) { 2388 (void) snprintf(blkbuf + strlen(blkbuf), 2389 buflen - strlen(blkbuf), " %s", "FREE"); 2390 } 2391 return; 2392 } 2393 2394 if (BP_IS_EMBEDDED(bp)) { 2395 (void) sprintf(blkbuf, 2396 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2397 (int)BPE_GET_ETYPE(bp), 2398 (u_longlong_t)BPE_GET_LSIZE(bp), 2399 (u_longlong_t)BPE_GET_PSIZE(bp), 2400 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2401 return; 2402 } 2403 2404 blkbuf[0] = '\0'; 2405 2406 for (i = 0; i < ndvas; i++) 2407 (void) snprintf(blkbuf + strlen(blkbuf), 2408 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2409 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2410 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2411 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2412 2413 if (BP_IS_HOLE(bp)) { 2414 (void) snprintf(blkbuf + strlen(blkbuf), 2415 buflen - strlen(blkbuf), 2416 "%llxL B=%llu", 2417 (u_longlong_t)BP_GET_LSIZE(bp), 2418 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2419 } else { 2420 (void) snprintf(blkbuf + strlen(blkbuf), 2421 buflen - strlen(blkbuf), 2422 "%llxL/%llxP F=%llu B=%llu/%llu", 2423 (u_longlong_t)BP_GET_LSIZE(bp), 2424 (u_longlong_t)BP_GET_PSIZE(bp), 2425 (u_longlong_t)BP_GET_FILL(bp), 2426 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2427 (u_longlong_t)BP_GET_BIRTH(bp)); 2428 if (bp_freed) 2429 (void) snprintf(blkbuf + strlen(blkbuf), 2430 buflen - strlen(blkbuf), " %s", "FREE"); 2431 (void) snprintf(blkbuf + strlen(blkbuf), 2432 buflen - strlen(blkbuf), 2433 " cksum=%016llx:%016llx:%016llx:%016llx", 2434 (u_longlong_t)bp->blk_cksum.zc_word[0], 2435 (u_longlong_t)bp->blk_cksum.zc_word[1], 2436 (u_longlong_t)bp->blk_cksum.zc_word[2], 2437 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2438 } 2439 } 2440 2441 static void 2442 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2443 const dnode_phys_t *dnp) 2444 { 2445 char blkbuf[BP_SPRINTF_LEN]; 2446 int l; 2447 2448 if (!BP_IS_EMBEDDED(bp)) { 2449 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2450 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2451 } 2452 2453 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2454 2455 ASSERT(zb->zb_level >= 0); 2456 2457 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2458 if (l == zb->zb_level) { 2459 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2460 } else { 2461 (void) printf(" "); 2462 } 2463 } 2464 2465 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2466 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2467 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2468 (void) printf("%s\n", blkbuf); 2469 } 2470 2471 static int 2472 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2473 blkptr_t *bp, const zbookmark_phys_t *zb) 2474 { 2475 int err = 0; 2476 2477 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2478 return (0); 2479 2480 print_indirect(spa, bp, zb, dnp); 2481 2482 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2483 arc_flags_t flags = ARC_FLAG_WAIT; 2484 int i; 2485 blkptr_t *cbp; 2486 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2487 arc_buf_t *buf; 2488 uint64_t fill = 0; 2489 ASSERT(!BP_IS_REDACTED(bp)); 2490 2491 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2492 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2493 if (err) 2494 return (err); 2495 ASSERT(buf->b_data); 2496 2497 /* recursively visit blocks below this */ 2498 cbp = buf->b_data; 2499 for (i = 0; i < epb; i++, cbp++) { 2500 zbookmark_phys_t czb; 2501 2502 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2503 zb->zb_level - 1, 2504 zb->zb_blkid * epb + i); 2505 err = visit_indirect(spa, dnp, cbp, &czb); 2506 if (err) 2507 break; 2508 fill += BP_GET_FILL(cbp); 2509 } 2510 if (!err) 2511 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2512 arc_buf_destroy(buf, &buf); 2513 } 2514 2515 return (err); 2516 } 2517 2518 static void 2519 dump_indirect(dnode_t *dn) 2520 { 2521 dnode_phys_t *dnp = dn->dn_phys; 2522 zbookmark_phys_t czb; 2523 2524 (void) printf("Indirect blocks:\n"); 2525 2526 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2527 dn->dn_object, dnp->dn_nlevels - 1, 0); 2528 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2529 czb.zb_blkid = j; 2530 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2531 &dnp->dn_blkptr[j], &czb); 2532 } 2533 2534 (void) printf("\n"); 2535 } 2536 2537 static void 2538 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2539 { 2540 (void) os, (void) object; 2541 dsl_dir_phys_t *dd = data; 2542 time_t crtime; 2543 char nice[32]; 2544 2545 /* make sure nicenum has enough space */ 2546 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2547 2548 if (dd == NULL) 2549 return; 2550 2551 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2552 2553 crtime = dd->dd_creation_time; 2554 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2555 (void) printf("\t\thead_dataset_obj = %llu\n", 2556 (u_longlong_t)dd->dd_head_dataset_obj); 2557 (void) printf("\t\tparent_dir_obj = %llu\n", 2558 (u_longlong_t)dd->dd_parent_obj); 2559 (void) printf("\t\torigin_obj = %llu\n", 2560 (u_longlong_t)dd->dd_origin_obj); 2561 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2562 (u_longlong_t)dd->dd_child_dir_zapobj); 2563 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2564 (void) printf("\t\tused_bytes = %s\n", nice); 2565 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2566 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2567 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2568 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2569 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2570 (void) printf("\t\tquota = %s\n", nice); 2571 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2572 (void) printf("\t\treserved = %s\n", nice); 2573 (void) printf("\t\tprops_zapobj = %llu\n", 2574 (u_longlong_t)dd->dd_props_zapobj); 2575 (void) printf("\t\tdeleg_zapobj = %llu\n", 2576 (u_longlong_t)dd->dd_deleg_zapobj); 2577 (void) printf("\t\tflags = %llx\n", 2578 (u_longlong_t)dd->dd_flags); 2579 2580 #define DO(which) \ 2581 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2582 sizeof (nice)); \ 2583 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2584 DO(HEAD); 2585 DO(SNAP); 2586 DO(CHILD); 2587 DO(CHILD_RSRV); 2588 DO(REFRSRV); 2589 #undef DO 2590 (void) printf("\t\tclones = %llu\n", 2591 (u_longlong_t)dd->dd_clones); 2592 } 2593 2594 static void 2595 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2596 { 2597 (void) os, (void) object; 2598 dsl_dataset_phys_t *ds = data; 2599 time_t crtime; 2600 char used[32], compressed[32], uncompressed[32], unique[32]; 2601 char blkbuf[BP_SPRINTF_LEN]; 2602 2603 /* make sure nicenum has enough space */ 2604 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2605 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2606 "compressed truncated"); 2607 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2608 "uncompressed truncated"); 2609 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2610 2611 if (ds == NULL) 2612 return; 2613 2614 ASSERT(size == sizeof (*ds)); 2615 crtime = ds->ds_creation_time; 2616 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2617 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2618 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2619 sizeof (uncompressed)); 2620 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2621 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2622 2623 (void) printf("\t\tdir_obj = %llu\n", 2624 (u_longlong_t)ds->ds_dir_obj); 2625 (void) printf("\t\tprev_snap_obj = %llu\n", 2626 (u_longlong_t)ds->ds_prev_snap_obj); 2627 (void) printf("\t\tprev_snap_txg = %llu\n", 2628 (u_longlong_t)ds->ds_prev_snap_txg); 2629 (void) printf("\t\tnext_snap_obj = %llu\n", 2630 (u_longlong_t)ds->ds_next_snap_obj); 2631 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2632 (u_longlong_t)ds->ds_snapnames_zapobj); 2633 (void) printf("\t\tnum_children = %llu\n", 2634 (u_longlong_t)ds->ds_num_children); 2635 (void) printf("\t\tuserrefs_obj = %llu\n", 2636 (u_longlong_t)ds->ds_userrefs_obj); 2637 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2638 (void) printf("\t\tcreation_txg = %llu\n", 2639 (u_longlong_t)ds->ds_creation_txg); 2640 (void) printf("\t\tdeadlist_obj = %llu\n", 2641 (u_longlong_t)ds->ds_deadlist_obj); 2642 (void) printf("\t\tused_bytes = %s\n", used); 2643 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2644 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2645 (void) printf("\t\tunique = %s\n", unique); 2646 (void) printf("\t\tfsid_guid = %llu\n", 2647 (u_longlong_t)ds->ds_fsid_guid); 2648 (void) printf("\t\tguid = %llu\n", 2649 (u_longlong_t)ds->ds_guid); 2650 (void) printf("\t\tflags = %llx\n", 2651 (u_longlong_t)ds->ds_flags); 2652 (void) printf("\t\tnext_clones_obj = %llu\n", 2653 (u_longlong_t)ds->ds_next_clones_obj); 2654 (void) printf("\t\tprops_obj = %llu\n", 2655 (u_longlong_t)ds->ds_props_obj); 2656 (void) printf("\t\tbp = %s\n", blkbuf); 2657 } 2658 2659 static int 2660 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2661 { 2662 (void) arg, (void) tx; 2663 char blkbuf[BP_SPRINTF_LEN]; 2664 2665 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2666 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2667 (void) printf("\t%s\n", blkbuf); 2668 } 2669 return (0); 2670 } 2671 2672 static void 2673 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2674 { 2675 char bytes[32]; 2676 bptree_phys_t *bt; 2677 dmu_buf_t *db; 2678 2679 /* make sure nicenum has enough space */ 2680 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2681 2682 if (dump_opt['d'] < 3) 2683 return; 2684 2685 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2686 bt = db->db_data; 2687 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2688 (void) printf("\n %s: %llu datasets, %s\n", 2689 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2690 dmu_buf_rele(db, FTAG); 2691 2692 if (dump_opt['d'] < 5) 2693 return; 2694 2695 (void) printf("\n"); 2696 2697 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2698 } 2699 2700 static int 2701 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2702 { 2703 (void) arg, (void) tx; 2704 char blkbuf[BP_SPRINTF_LEN]; 2705 2706 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2707 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2708 (void) printf("\t%s\n", blkbuf); 2709 return (0); 2710 } 2711 2712 static void 2713 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2714 { 2715 char bytes[32]; 2716 char comp[32]; 2717 char uncomp[32]; 2718 uint64_t i; 2719 2720 /* make sure nicenum has enough space */ 2721 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2722 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2723 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2724 2725 if (dump_opt['d'] < 3) 2726 return; 2727 2728 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2729 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2730 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2731 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2732 if (bpo->bpo_havefreed) { 2733 (void) printf(" %*s: object %llu, %llu local " 2734 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2735 "%s (%s/%s comp)\n", 2736 indent * 8, name, 2737 (u_longlong_t)bpo->bpo_object, 2738 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2739 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2740 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2741 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2742 bytes, comp, uncomp); 2743 } else { 2744 (void) printf(" %*s: object %llu, %llu local " 2745 "blkptrs, %llu subobjs in object %llu, " 2746 "%s (%s/%s comp)\n", 2747 indent * 8, name, 2748 (u_longlong_t)bpo->bpo_object, 2749 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2750 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2751 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2752 bytes, comp, uncomp); 2753 } 2754 2755 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2756 uint64_t subobj; 2757 bpobj_t subbpo; 2758 int error; 2759 VERIFY0(dmu_read(bpo->bpo_os, 2760 bpo->bpo_phys->bpo_subobjs, 2761 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2762 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2763 if (error != 0) { 2764 (void) printf("ERROR %u while trying to open " 2765 "subobj id %llu\n", 2766 error, (u_longlong_t)subobj); 2767 continue; 2768 } 2769 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2770 bpobj_close(&subbpo); 2771 } 2772 } else { 2773 if (bpo->bpo_havefreed) { 2774 (void) printf(" %*s: object %llu, %llu blkptrs, " 2775 "%llu freed, %s\n", 2776 indent * 8, name, 2777 (u_longlong_t)bpo->bpo_object, 2778 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2779 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2780 bytes); 2781 } else { 2782 (void) printf(" %*s: object %llu, %llu blkptrs, " 2783 "%s\n", 2784 indent * 8, name, 2785 (u_longlong_t)bpo->bpo_object, 2786 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2787 bytes); 2788 } 2789 } 2790 2791 if (dump_opt['d'] < 5) 2792 return; 2793 2794 2795 if (indent == 0) { 2796 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2797 (void) printf("\n"); 2798 } 2799 } 2800 2801 static int 2802 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2803 boolean_t print_list) 2804 { 2805 int err = 0; 2806 zfs_bookmark_phys_t prop; 2807 objset_t *mos = dp->dp_spa->spa_meta_objset; 2808 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2809 2810 if (err != 0) { 2811 return (err); 2812 } 2813 2814 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2815 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2816 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2817 (u_longlong_t)prop.zbm_creation_txg, 2818 (u_longlong_t)prop.zbm_creation_time, 2819 (u_longlong_t)prop.zbm_redaction_obj); 2820 2821 IMPLY(print_list, print_redact); 2822 if (!print_redact || prop.zbm_redaction_obj == 0) 2823 return (0); 2824 2825 redaction_list_t *rl; 2826 VERIFY0(dsl_redaction_list_hold_obj(dp, 2827 prop.zbm_redaction_obj, FTAG, &rl)); 2828 2829 redaction_list_phys_t *rlp = rl->rl_phys; 2830 (void) printf("\tRedacted:\n\t\tProgress: "); 2831 if (rlp->rlp_last_object != UINT64_MAX || 2832 rlp->rlp_last_blkid != UINT64_MAX) { 2833 (void) printf("%llu %llu (incomplete)\n", 2834 (u_longlong_t)rlp->rlp_last_object, 2835 (u_longlong_t)rlp->rlp_last_blkid); 2836 } else { 2837 (void) printf("complete\n"); 2838 } 2839 (void) printf("\t\tSnapshots: ["); 2840 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2841 if (i > 0) 2842 (void) printf(", "); 2843 (void) printf("%0llu", 2844 (u_longlong_t)rlp->rlp_snaps[i]); 2845 } 2846 (void) printf("]\n\t\tLength: %llu\n", 2847 (u_longlong_t)rlp->rlp_num_entries); 2848 2849 if (!print_list) { 2850 dsl_redaction_list_rele(rl, FTAG); 2851 return (0); 2852 } 2853 2854 if (rlp->rlp_num_entries == 0) { 2855 dsl_redaction_list_rele(rl, FTAG); 2856 (void) printf("\t\tRedaction List: []\n\n"); 2857 return (0); 2858 } 2859 2860 redact_block_phys_t *rbp_buf; 2861 uint64_t size; 2862 dmu_object_info_t doi; 2863 2864 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2865 size = doi.doi_max_offset; 2866 rbp_buf = kmem_alloc(size, KM_SLEEP); 2867 2868 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2869 rbp_buf, 0); 2870 if (err != 0) { 2871 dsl_redaction_list_rele(rl, FTAG); 2872 kmem_free(rbp_buf, size); 2873 return (err); 2874 } 2875 2876 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2877 "%llx, blksz: %x, count: %llx}", 2878 (u_longlong_t)rbp_buf[0].rbp_object, 2879 (u_longlong_t)rbp_buf[0].rbp_blkid, 2880 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2881 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2882 2883 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2884 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2885 "blksz: %x, count: %llx}", 2886 (u_longlong_t)rbp_buf[i].rbp_object, 2887 (u_longlong_t)rbp_buf[i].rbp_blkid, 2888 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2889 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2890 } 2891 dsl_redaction_list_rele(rl, FTAG); 2892 kmem_free(rbp_buf, size); 2893 (void) printf("]\n\n"); 2894 return (0); 2895 } 2896 2897 static void 2898 dump_bookmarks(objset_t *os, int verbosity) 2899 { 2900 zap_cursor_t zc; 2901 zap_attribute_t attr; 2902 dsl_dataset_t *ds = dmu_objset_ds(os); 2903 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2904 objset_t *mos = os->os_spa->spa_meta_objset; 2905 if (verbosity < 4) 2906 return; 2907 dsl_pool_config_enter(dp, FTAG); 2908 2909 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2910 zap_cursor_retrieve(&zc, &attr) == 0; 2911 zap_cursor_advance(&zc)) { 2912 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2913 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2914 int len; 2915 dmu_objset_name(os, osname); 2916 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2917 attr.za_name); 2918 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2919 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2920 } 2921 zap_cursor_fini(&zc); 2922 dsl_pool_config_exit(dp, FTAG); 2923 } 2924 2925 static void 2926 bpobj_count_refd(bpobj_t *bpo) 2927 { 2928 mos_obj_refd(bpo->bpo_object); 2929 2930 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2931 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2932 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2933 uint64_t subobj; 2934 bpobj_t subbpo; 2935 int error; 2936 VERIFY0(dmu_read(bpo->bpo_os, 2937 bpo->bpo_phys->bpo_subobjs, 2938 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2939 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2940 if (error != 0) { 2941 (void) printf("ERROR %u while trying to open " 2942 "subobj id %llu\n", 2943 error, (u_longlong_t)subobj); 2944 continue; 2945 } 2946 bpobj_count_refd(&subbpo); 2947 bpobj_close(&subbpo); 2948 } 2949 } 2950 } 2951 2952 static int 2953 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2954 { 2955 spa_t *spa = arg; 2956 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2957 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2958 bpobj_count_refd(&dle->dle_bpobj); 2959 return (0); 2960 } 2961 2962 static int 2963 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2964 { 2965 ASSERT(arg == NULL); 2966 if (dump_opt['d'] >= 5) { 2967 char buf[128]; 2968 (void) snprintf(buf, sizeof (buf), 2969 "mintxg %llu -> obj %llu", 2970 (longlong_t)dle->dle_mintxg, 2971 (longlong_t)dle->dle_bpobj.bpo_object); 2972 2973 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2974 } else { 2975 (void) printf("mintxg %llu -> obj %llu\n", 2976 (longlong_t)dle->dle_mintxg, 2977 (longlong_t)dle->dle_bpobj.bpo_object); 2978 } 2979 return (0); 2980 } 2981 2982 static void 2983 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2984 { 2985 char bytes[32]; 2986 char comp[32]; 2987 char uncomp[32]; 2988 char entries[32]; 2989 spa_t *spa = dmu_objset_spa(dl->dl_os); 2990 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2991 2992 if (dl->dl_oldfmt) { 2993 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2994 bpobj_count_refd(&dl->dl_bpobj); 2995 } else { 2996 mos_obj_refd(dl->dl_object); 2997 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2998 } 2999 3000 /* make sure nicenum has enough space */ 3001 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3002 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3003 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3004 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3005 3006 if (dump_opt['d'] < 3) 3007 return; 3008 3009 if (dl->dl_oldfmt) { 3010 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3011 return; 3012 } 3013 3014 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3015 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3016 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3017 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3018 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3019 name, bytes, comp, uncomp, entries); 3020 3021 if (dump_opt['d'] < 4) 3022 return; 3023 3024 (void) putchar('\n'); 3025 3026 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3027 } 3028 3029 static int 3030 verify_dd_livelist(objset_t *os) 3031 { 3032 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3033 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3034 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3035 3036 ASSERT(!dmu_objset_is_snapshot(os)); 3037 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3038 return (0); 3039 3040 /* Iterate through the livelist to check for duplicates */ 3041 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3042 NULL); 3043 3044 dsl_pool_config_enter(dp, FTAG); 3045 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3046 &ll_comp, &ll_uncomp); 3047 3048 dsl_dataset_t *origin_ds; 3049 ASSERT(dsl_pool_config_held(dp)); 3050 VERIFY0(dsl_dataset_hold_obj(dp, 3051 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3052 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3053 &used, &comp, &uncomp)); 3054 dsl_dataset_rele(origin_ds, FTAG); 3055 dsl_pool_config_exit(dp, FTAG); 3056 /* 3057 * It's possible that the dataset's uncomp space is larger than the 3058 * livelist's because livelists do not track embedded block pointers 3059 */ 3060 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3061 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3062 (void) printf("Discrepancy in space accounting:\n"); 3063 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3064 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3065 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3066 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3067 nice_used, nice_comp, nice_uncomp); 3068 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3069 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3070 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3071 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3072 nice_used, nice_comp, nice_uncomp); 3073 return (1); 3074 } 3075 return (0); 3076 } 3077 3078 static char *key_material = NULL; 3079 3080 static boolean_t 3081 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3082 { 3083 uint64_t keyformat, salt, iters; 3084 int i; 3085 unsigned char c; 3086 3087 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3088 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3089 1, &keyformat)); 3090 3091 switch (keyformat) { 3092 case ZFS_KEYFORMAT_HEX: 3093 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3094 if (!isxdigit(key_material[i]) || 3095 !isxdigit(key_material[i+1])) 3096 return (B_FALSE); 3097 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3098 return (B_FALSE); 3099 key_out[i / 2] = c; 3100 } 3101 break; 3102 3103 case ZFS_KEYFORMAT_PASSPHRASE: 3104 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3105 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3106 sizeof (uint64_t), 1, &salt)); 3107 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3108 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3109 sizeof (uint64_t), 1, &iters)); 3110 3111 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3112 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3113 WRAPPING_KEY_LEN, key_out) != 1) 3114 return (B_FALSE); 3115 3116 break; 3117 3118 default: 3119 fatal("no support for key format %u\n", 3120 (unsigned int) keyformat); 3121 } 3122 3123 return (B_TRUE); 3124 } 3125 3126 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3127 static boolean_t key_loaded = B_FALSE; 3128 3129 static void 3130 zdb_load_key(objset_t *os) 3131 { 3132 dsl_pool_t *dp; 3133 dsl_dir_t *dd, *rdd; 3134 uint8_t key[WRAPPING_KEY_LEN]; 3135 uint64_t rddobj; 3136 int err; 3137 3138 dp = spa_get_dsl(os->os_spa); 3139 dd = os->os_dsl_dataset->ds_dir; 3140 3141 dsl_pool_config_enter(dp, FTAG); 3142 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3143 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3144 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3145 dsl_dir_name(rdd, encroot); 3146 dsl_dir_rele(rdd, FTAG); 3147 3148 if (!zdb_derive_key(dd, key)) 3149 fatal("couldn't derive encryption key"); 3150 3151 dsl_pool_config_exit(dp, FTAG); 3152 3153 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3154 3155 dsl_crypto_params_t *dcp; 3156 nvlist_t *crypto_args; 3157 3158 crypto_args = fnvlist_alloc(); 3159 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3160 (uint8_t *)key, WRAPPING_KEY_LEN); 3161 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3162 NULL, crypto_args, &dcp)); 3163 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3164 3165 dsl_crypto_params_free(dcp, (err != 0)); 3166 fnvlist_free(crypto_args); 3167 3168 if (err != 0) 3169 fatal( 3170 "couldn't load encryption key for %s: %s", 3171 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3172 "crypto params not supported" : strerror(err)); 3173 3174 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3175 3176 printf("Unlocked encryption root: %s\n", encroot); 3177 key_loaded = B_TRUE; 3178 } 3179 3180 static void 3181 zdb_unload_key(void) 3182 { 3183 if (!key_loaded) 3184 return; 3185 3186 VERIFY0(spa_keystore_unload_wkey(encroot)); 3187 key_loaded = B_FALSE; 3188 } 3189 3190 static avl_tree_t idx_tree; 3191 static avl_tree_t domain_tree; 3192 static boolean_t fuid_table_loaded; 3193 static objset_t *sa_os = NULL; 3194 static sa_attr_type_t *sa_attr_table = NULL; 3195 3196 static int 3197 open_objset(const char *path, const void *tag, objset_t **osp) 3198 { 3199 int err; 3200 uint64_t sa_attrs = 0; 3201 uint64_t version = 0; 3202 3203 VERIFY3P(sa_os, ==, NULL); 3204 3205 /* 3206 * We can't own an objset if it's redacted. Therefore, we do this 3207 * dance: hold the objset, then acquire a long hold on its dataset, then 3208 * release the pool (which is held as part of holding the objset). 3209 */ 3210 3211 if (dump_opt['K']) { 3212 /* decryption requested, try to load keys */ 3213 err = dmu_objset_hold(path, tag, osp); 3214 if (err != 0) { 3215 (void) fprintf(stderr, "failed to hold dataset " 3216 "'%s': %s\n", 3217 path, strerror(err)); 3218 return (err); 3219 } 3220 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3221 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3222 3223 /* succeeds or dies */ 3224 zdb_load_key(*osp); 3225 3226 /* release it all */ 3227 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3228 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3229 } 3230 3231 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3232 3233 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3234 if (err != 0) { 3235 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3236 path, strerror(err)); 3237 return (err); 3238 } 3239 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3240 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3241 3242 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3243 (key_loaded || !(*osp)->os_encrypted)) { 3244 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3245 8, 1, &version); 3246 if (version >= ZPL_VERSION_SA) { 3247 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3248 8, 1, &sa_attrs); 3249 } 3250 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3251 &sa_attr_table); 3252 if (err != 0) { 3253 (void) fprintf(stderr, "sa_setup failed: %s\n", 3254 strerror(err)); 3255 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3256 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3257 ds_hold_flags, tag); 3258 *osp = NULL; 3259 } 3260 } 3261 sa_os = *osp; 3262 3263 return (err); 3264 } 3265 3266 static void 3267 close_objset(objset_t *os, const void *tag) 3268 { 3269 VERIFY3P(os, ==, sa_os); 3270 if (os->os_sa != NULL) 3271 sa_tear_down(os); 3272 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3273 dsl_dataset_rele_flags(dmu_objset_ds(os), 3274 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3275 sa_attr_table = NULL; 3276 sa_os = NULL; 3277 3278 zdb_unload_key(); 3279 } 3280 3281 static void 3282 fuid_table_destroy(void) 3283 { 3284 if (fuid_table_loaded) { 3285 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3286 fuid_table_loaded = B_FALSE; 3287 } 3288 } 3289 3290 static void 3291 zdb_exit(int reason) 3292 { 3293 if (os != NULL) { 3294 close_objset(os, FTAG); 3295 } else if (spa != NULL) { 3296 spa_close(spa, FTAG); 3297 } 3298 3299 fuid_table_destroy(); 3300 3301 if (kernel_init_done) 3302 kernel_fini(); 3303 3304 exit(reason); 3305 } 3306 3307 /* 3308 * print uid or gid information. 3309 * For normal POSIX id just the id is printed in decimal format. 3310 * For CIFS files with FUID the fuid is printed in hex followed by 3311 * the domain-rid string. 3312 */ 3313 static void 3314 print_idstr(uint64_t id, const char *id_type) 3315 { 3316 if (FUID_INDEX(id)) { 3317 const char *domain = 3318 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3319 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3320 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3321 } else { 3322 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3323 } 3324 3325 } 3326 3327 static void 3328 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3329 { 3330 uint32_t uid_idx, gid_idx; 3331 3332 uid_idx = FUID_INDEX(uid); 3333 gid_idx = FUID_INDEX(gid); 3334 3335 /* Load domain table, if not already loaded */ 3336 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3337 uint64_t fuid_obj; 3338 3339 /* first find the fuid object. It lives in the master node */ 3340 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3341 8, 1, &fuid_obj) == 0); 3342 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3343 (void) zfs_fuid_table_load(os, fuid_obj, 3344 &idx_tree, &domain_tree); 3345 fuid_table_loaded = B_TRUE; 3346 } 3347 3348 print_idstr(uid, "uid"); 3349 print_idstr(gid, "gid"); 3350 } 3351 3352 static void 3353 dump_znode_sa_xattr(sa_handle_t *hdl) 3354 { 3355 nvlist_t *sa_xattr; 3356 nvpair_t *elem = NULL; 3357 int sa_xattr_size = 0; 3358 int sa_xattr_entries = 0; 3359 int error; 3360 char *sa_xattr_packed; 3361 3362 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3363 if (error || sa_xattr_size == 0) 3364 return; 3365 3366 sa_xattr_packed = malloc(sa_xattr_size); 3367 if (sa_xattr_packed == NULL) 3368 return; 3369 3370 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3371 sa_xattr_packed, sa_xattr_size); 3372 if (error) { 3373 free(sa_xattr_packed); 3374 return; 3375 } 3376 3377 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3378 if (error) { 3379 free(sa_xattr_packed); 3380 return; 3381 } 3382 3383 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3384 sa_xattr_entries++; 3385 3386 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3387 sa_xattr_size, sa_xattr_entries); 3388 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3389 boolean_t can_print = !dump_opt['P']; 3390 uchar_t *value; 3391 uint_t cnt, idx; 3392 3393 (void) printf("\t\t%s = ", nvpair_name(elem)); 3394 nvpair_value_byte_array(elem, &value, &cnt); 3395 3396 for (idx = 0; idx < cnt; ++idx) { 3397 if (!isprint(value[idx])) { 3398 can_print = B_FALSE; 3399 break; 3400 } 3401 } 3402 3403 for (idx = 0; idx < cnt; ++idx) { 3404 if (can_print) 3405 (void) putchar(value[idx]); 3406 else 3407 (void) printf("\\%3.3o", value[idx]); 3408 } 3409 (void) putchar('\n'); 3410 } 3411 3412 nvlist_free(sa_xattr); 3413 free(sa_xattr_packed); 3414 } 3415 3416 static void 3417 dump_znode_symlink(sa_handle_t *hdl) 3418 { 3419 int sa_symlink_size = 0; 3420 char linktarget[MAXPATHLEN]; 3421 int error; 3422 3423 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3424 if (error || sa_symlink_size == 0) { 3425 return; 3426 } 3427 if (sa_symlink_size >= sizeof (linktarget)) { 3428 (void) printf("symlink size %d is too large\n", 3429 sa_symlink_size); 3430 return; 3431 } 3432 linktarget[sa_symlink_size] = '\0'; 3433 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3434 &linktarget, sa_symlink_size) == 0) 3435 (void) printf("\ttarget %s\n", linktarget); 3436 } 3437 3438 static void 3439 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3440 { 3441 (void) data, (void) size; 3442 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3443 sa_handle_t *hdl; 3444 uint64_t xattr, rdev, gen; 3445 uint64_t uid, gid, mode, fsize, parent, links; 3446 uint64_t pflags; 3447 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3448 time_t z_crtime, z_atime, z_mtime, z_ctime; 3449 sa_bulk_attr_t bulk[12]; 3450 int idx = 0; 3451 int error; 3452 3453 VERIFY3P(os, ==, sa_os); 3454 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3455 (void) printf("Failed to get handle for SA znode\n"); 3456 return; 3457 } 3458 3459 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3460 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3461 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3462 &links, 8); 3463 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3464 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3465 &mode, 8); 3466 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3467 NULL, &parent, 8); 3468 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3469 &fsize, 8); 3470 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3471 acctm, 16); 3472 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3473 modtm, 16); 3474 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3475 crtm, 16); 3476 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3477 chgtm, 16); 3478 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3479 &pflags, 8); 3480 3481 if (sa_bulk_lookup(hdl, bulk, idx)) { 3482 (void) sa_handle_destroy(hdl); 3483 return; 3484 } 3485 3486 z_crtime = (time_t)crtm[0]; 3487 z_atime = (time_t)acctm[0]; 3488 z_mtime = (time_t)modtm[0]; 3489 z_ctime = (time_t)chgtm[0]; 3490 3491 if (dump_opt['d'] > 4) { 3492 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3493 if (error == ESTALE) { 3494 (void) snprintf(path, sizeof (path), "on delete queue"); 3495 } else if (error != 0) { 3496 leaked_objects++; 3497 (void) snprintf(path, sizeof (path), 3498 "path not found, possibly leaked"); 3499 } 3500 (void) printf("\tpath %s\n", path); 3501 } 3502 3503 if (S_ISLNK(mode)) 3504 dump_znode_symlink(hdl); 3505 dump_uidgid(os, uid, gid); 3506 (void) printf("\tatime %s", ctime(&z_atime)); 3507 (void) printf("\tmtime %s", ctime(&z_mtime)); 3508 (void) printf("\tctime %s", ctime(&z_ctime)); 3509 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3510 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3511 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3512 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3513 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3514 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3515 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3516 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3517 uint64_t projid; 3518 3519 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3520 sizeof (uint64_t)) == 0) 3521 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3522 } 3523 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3524 sizeof (uint64_t)) == 0) 3525 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3526 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3527 sizeof (uint64_t)) == 0) 3528 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3529 dump_znode_sa_xattr(hdl); 3530 sa_handle_destroy(hdl); 3531 } 3532 3533 static void 3534 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3535 { 3536 (void) os, (void) object, (void) data, (void) size; 3537 } 3538 3539 static void 3540 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3541 { 3542 (void) os, (void) object, (void) data, (void) size; 3543 } 3544 3545 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3546 dump_none, /* unallocated */ 3547 dump_zap, /* object directory */ 3548 dump_uint64, /* object array */ 3549 dump_none, /* packed nvlist */ 3550 dump_packed_nvlist, /* packed nvlist size */ 3551 dump_none, /* bpobj */ 3552 dump_bpobj, /* bpobj header */ 3553 dump_none, /* SPA space map header */ 3554 dump_none, /* SPA space map */ 3555 dump_none, /* ZIL intent log */ 3556 dump_dnode, /* DMU dnode */ 3557 dump_dmu_objset, /* DMU objset */ 3558 dump_dsl_dir, /* DSL directory */ 3559 dump_zap, /* DSL directory child map */ 3560 dump_zap, /* DSL dataset snap map */ 3561 dump_zap, /* DSL props */ 3562 dump_dsl_dataset, /* DSL dataset */ 3563 dump_znode, /* ZFS znode */ 3564 dump_acl, /* ZFS V0 ACL */ 3565 dump_uint8, /* ZFS plain file */ 3566 dump_zpldir, /* ZFS directory */ 3567 dump_zap, /* ZFS master node */ 3568 dump_zap, /* ZFS delete queue */ 3569 dump_uint8, /* zvol object */ 3570 dump_zap, /* zvol prop */ 3571 dump_uint8, /* other uint8[] */ 3572 dump_uint64, /* other uint64[] */ 3573 dump_zap, /* other ZAP */ 3574 dump_zap, /* persistent error log */ 3575 dump_uint8, /* SPA history */ 3576 dump_history_offsets, /* SPA history offsets */ 3577 dump_zap, /* Pool properties */ 3578 dump_zap, /* DSL permissions */ 3579 dump_acl, /* ZFS ACL */ 3580 dump_uint8, /* ZFS SYSACL */ 3581 dump_none, /* FUID nvlist */ 3582 dump_packed_nvlist, /* FUID nvlist size */ 3583 dump_zap, /* DSL dataset next clones */ 3584 dump_zap, /* DSL scrub queue */ 3585 dump_zap, /* ZFS user/group/project used */ 3586 dump_zap, /* ZFS user/group/project quota */ 3587 dump_zap, /* snapshot refcount tags */ 3588 dump_ddt_zap, /* DDT ZAP object */ 3589 dump_zap, /* DDT statistics */ 3590 dump_znode, /* SA object */ 3591 dump_zap, /* SA Master Node */ 3592 dump_sa_attrs, /* SA attribute registration */ 3593 dump_sa_layouts, /* SA attribute layouts */ 3594 dump_zap, /* DSL scrub translations */ 3595 dump_none, /* fake dedup BP */ 3596 dump_zap, /* deadlist */ 3597 dump_none, /* deadlist hdr */ 3598 dump_zap, /* dsl clones */ 3599 dump_bpobj_subobjs, /* bpobj subobjs */ 3600 dump_unknown, /* Unknown type, must be last */ 3601 }; 3602 3603 static boolean_t 3604 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3605 { 3606 boolean_t match = B_TRUE; 3607 3608 switch (obj_type) { 3609 case DMU_OT_DIRECTORY_CONTENTS: 3610 if (!(flags & ZOR_FLAG_DIRECTORY)) 3611 match = B_FALSE; 3612 break; 3613 case DMU_OT_PLAIN_FILE_CONTENTS: 3614 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3615 match = B_FALSE; 3616 break; 3617 case DMU_OT_SPACE_MAP: 3618 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3619 match = B_FALSE; 3620 break; 3621 default: 3622 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3623 if (!(flags & ZOR_FLAG_ZAP)) 3624 match = B_FALSE; 3625 break; 3626 } 3627 3628 /* 3629 * If all bits except some of the supported flags are 3630 * set, the user combined the all-types flag (A) with 3631 * a negated flag to exclude some types (e.g. A-f to 3632 * show all object types except plain files). 3633 */ 3634 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3635 match = B_FALSE; 3636 3637 break; 3638 } 3639 3640 return (match); 3641 } 3642 3643 static void 3644 dump_object(objset_t *os, uint64_t object, int verbosity, 3645 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3646 { 3647 dmu_buf_t *db = NULL; 3648 dmu_object_info_t doi; 3649 dnode_t *dn; 3650 boolean_t dnode_held = B_FALSE; 3651 void *bonus = NULL; 3652 size_t bsize = 0; 3653 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3654 char bonus_size[32]; 3655 char aux[50]; 3656 int error; 3657 3658 /* make sure nicenum has enough space */ 3659 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3660 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3661 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3662 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3663 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3664 "bonus_size truncated"); 3665 3666 if (*print_header) { 3667 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3668 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3669 "lsize", "%full", "type"); 3670 *print_header = 0; 3671 } 3672 3673 if (object == 0) { 3674 dn = DMU_META_DNODE(os); 3675 dmu_object_info_from_dnode(dn, &doi); 3676 } else { 3677 /* 3678 * Encrypted datasets will have sensitive bonus buffers 3679 * encrypted. Therefore we cannot hold the bonus buffer and 3680 * must hold the dnode itself instead. 3681 */ 3682 error = dmu_object_info(os, object, &doi); 3683 if (error) 3684 fatal("dmu_object_info() failed, errno %u", error); 3685 3686 if (!key_loaded && os->os_encrypted && 3687 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3688 error = dnode_hold(os, object, FTAG, &dn); 3689 if (error) 3690 fatal("dnode_hold() failed, errno %u", error); 3691 dnode_held = B_TRUE; 3692 } else { 3693 error = dmu_bonus_hold(os, object, FTAG, &db); 3694 if (error) 3695 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3696 object, error); 3697 bonus = db->db_data; 3698 bsize = db->db_size; 3699 dn = DB_DNODE((dmu_buf_impl_t *)db); 3700 } 3701 } 3702 3703 /* 3704 * Default to showing all object types if no flags were specified. 3705 */ 3706 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3707 !match_object_type(doi.doi_type, flags)) 3708 goto out; 3709 3710 if (dnode_slots_used) 3711 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3712 3713 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3714 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3715 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3716 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3717 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3718 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3719 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3720 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3721 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3722 3723 aux[0] = '\0'; 3724 3725 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3726 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3727 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3728 } 3729 3730 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3731 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3732 const char *compname = NULL; 3733 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3734 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3735 &compname) == 0) { 3736 (void) snprintf(aux + strlen(aux), 3737 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3738 compname); 3739 } else { 3740 (void) snprintf(aux + strlen(aux), 3741 sizeof (aux) - strlen(aux), 3742 " (Z=inherit=%s-unknown)", 3743 ZDB_COMPRESS_NAME(os->os_compress)); 3744 } 3745 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3746 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3747 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3748 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3749 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3750 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3751 } 3752 3753 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3754 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3755 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3756 3757 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3758 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3759 "", "", "", "", "", "", bonus_size, "bonus", 3760 zdb_ot_name(doi.doi_bonus_type)); 3761 } 3762 3763 if (verbosity >= 4) { 3764 (void) printf("\tdnode flags: %s%s%s%s\n", 3765 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3766 "USED_BYTES " : "", 3767 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3768 "USERUSED_ACCOUNTED " : "", 3769 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3770 "USEROBJUSED_ACCOUNTED " : "", 3771 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3772 "SPILL_BLKPTR" : ""); 3773 (void) printf("\tdnode maxblkid: %llu\n", 3774 (longlong_t)dn->dn_phys->dn_maxblkid); 3775 3776 if (!dnode_held) { 3777 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3778 object, bonus, bsize); 3779 } else { 3780 (void) printf("\t\t(bonus encrypted)\n"); 3781 } 3782 3783 if (key_loaded || 3784 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3785 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3786 NULL, 0); 3787 } else { 3788 (void) printf("\t\t(object encrypted)\n"); 3789 } 3790 3791 *print_header = B_TRUE; 3792 } 3793 3794 if (verbosity >= 5) { 3795 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3796 char blkbuf[BP_SPRINTF_LEN]; 3797 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3798 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3799 (void) printf("\nSpill block: %s\n", blkbuf); 3800 } 3801 dump_indirect(dn); 3802 } 3803 3804 if (verbosity >= 5) { 3805 /* 3806 * Report the list of segments that comprise the object. 3807 */ 3808 uint64_t start = 0; 3809 uint64_t end; 3810 uint64_t blkfill = 1; 3811 int minlvl = 1; 3812 3813 if (dn->dn_type == DMU_OT_DNODE) { 3814 minlvl = 0; 3815 blkfill = DNODES_PER_BLOCK; 3816 } 3817 3818 for (;;) { 3819 char segsize[32]; 3820 /* make sure nicenum has enough space */ 3821 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3822 "segsize truncated"); 3823 error = dnode_next_offset(dn, 3824 0, &start, minlvl, blkfill, 0); 3825 if (error) 3826 break; 3827 end = start; 3828 error = dnode_next_offset(dn, 3829 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3830 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3831 (void) printf("\t\tsegment [%016llx, %016llx)" 3832 " size %5s\n", (u_longlong_t)start, 3833 (u_longlong_t)end, segsize); 3834 if (error) 3835 break; 3836 start = end; 3837 } 3838 } 3839 3840 out: 3841 if (db != NULL) 3842 dmu_buf_rele(db, FTAG); 3843 if (dnode_held) 3844 dnode_rele(dn, FTAG); 3845 } 3846 3847 static void 3848 count_dir_mos_objects(dsl_dir_t *dd) 3849 { 3850 mos_obj_refd(dd->dd_object); 3851 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3852 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3853 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3854 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3855 3856 /* 3857 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3858 * Ignore the references after the first one. 3859 */ 3860 mos_obj_refd_multiple(dd->dd_crypto_obj); 3861 } 3862 3863 static void 3864 count_ds_mos_objects(dsl_dataset_t *ds) 3865 { 3866 mos_obj_refd(ds->ds_object); 3867 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3868 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3869 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3870 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3871 mos_obj_refd(ds->ds_bookmarks_obj); 3872 3873 if (!dsl_dataset_is_snapshot(ds)) { 3874 count_dir_mos_objects(ds->ds_dir); 3875 } 3876 } 3877 3878 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3879 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3880 3881 /* 3882 * Parse a string denoting a range of object IDs of the form 3883 * <start>[:<end>[:flags]], and store the results in zor. 3884 * Return 0 on success. On error, return 1 and update the msg 3885 * pointer to point to a descriptive error message. 3886 */ 3887 static int 3888 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3889 { 3890 uint64_t flags = 0; 3891 char *p, *s, *dup, *flagstr, *tmp = NULL; 3892 size_t len; 3893 int i; 3894 int rc = 0; 3895 3896 if (strchr(range, ':') == NULL) { 3897 zor->zor_obj_start = strtoull(range, &p, 0); 3898 if (*p != '\0') { 3899 *msg = "Invalid characters in object ID"; 3900 rc = 1; 3901 } 3902 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3903 zor->zor_obj_end = zor->zor_obj_start; 3904 return (rc); 3905 } 3906 3907 if (strchr(range, ':') == range) { 3908 *msg = "Invalid leading colon"; 3909 rc = 1; 3910 return (rc); 3911 } 3912 3913 len = strlen(range); 3914 if (range[len - 1] == ':') { 3915 *msg = "Invalid trailing colon"; 3916 rc = 1; 3917 return (rc); 3918 } 3919 3920 dup = strdup(range); 3921 s = strtok_r(dup, ":", &tmp); 3922 zor->zor_obj_start = strtoull(s, &p, 0); 3923 3924 if (*p != '\0') { 3925 *msg = "Invalid characters in start object ID"; 3926 rc = 1; 3927 goto out; 3928 } 3929 3930 s = strtok_r(NULL, ":", &tmp); 3931 zor->zor_obj_end = strtoull(s, &p, 0); 3932 3933 if (*p != '\0') { 3934 *msg = "Invalid characters in end object ID"; 3935 rc = 1; 3936 goto out; 3937 } 3938 3939 if (zor->zor_obj_start > zor->zor_obj_end) { 3940 *msg = "Start object ID may not exceed end object ID"; 3941 rc = 1; 3942 goto out; 3943 } 3944 3945 s = strtok_r(NULL, ":", &tmp); 3946 if (s == NULL) { 3947 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3948 goto out; 3949 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3950 *msg = "Invalid colon-delimited field after flags"; 3951 rc = 1; 3952 goto out; 3953 } 3954 3955 flagstr = s; 3956 for (i = 0; flagstr[i]; i++) { 3957 int bit; 3958 boolean_t negation = (flagstr[i] == '-'); 3959 3960 if (negation) { 3961 i++; 3962 if (flagstr[i] == '\0') { 3963 *msg = "Invalid trailing negation operator"; 3964 rc = 1; 3965 goto out; 3966 } 3967 } 3968 bit = flagbits[(uchar_t)flagstr[i]]; 3969 if (bit == 0) { 3970 *msg = "Invalid flag"; 3971 rc = 1; 3972 goto out; 3973 } 3974 if (negation) 3975 flags &= ~bit; 3976 else 3977 flags |= bit; 3978 } 3979 zor->zor_flags = flags; 3980 3981 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3982 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3983 3984 out: 3985 free(dup); 3986 return (rc); 3987 } 3988 3989 static void 3990 dump_objset(objset_t *os) 3991 { 3992 dmu_objset_stats_t dds = { 0 }; 3993 uint64_t object, object_count; 3994 uint64_t refdbytes, usedobjs, scratch; 3995 char numbuf[32]; 3996 char blkbuf[BP_SPRINTF_LEN + 20]; 3997 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3998 const char *type = "UNKNOWN"; 3999 int verbosity = dump_opt['d']; 4000 boolean_t print_header; 4001 unsigned i; 4002 int error; 4003 uint64_t total_slots_used = 0; 4004 uint64_t max_slot_used = 0; 4005 uint64_t dnode_slots; 4006 uint64_t obj_start; 4007 uint64_t obj_end; 4008 uint64_t flags; 4009 4010 /* make sure nicenum has enough space */ 4011 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4012 4013 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4014 dmu_objset_fast_stat(os, &dds); 4015 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4016 4017 print_header = B_TRUE; 4018 4019 if (dds.dds_type < DMU_OST_NUMTYPES) 4020 type = objset_types[dds.dds_type]; 4021 4022 if (dds.dds_type == DMU_OST_META) { 4023 dds.dds_creation_txg = TXG_INITIAL; 4024 usedobjs = BP_GET_FILL(os->os_rootbp); 4025 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4026 dd_used_bytes; 4027 } else { 4028 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4029 } 4030 4031 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4032 4033 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4034 4035 if (verbosity >= 4) { 4036 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4037 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4038 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4039 } else { 4040 blkbuf[0] = '\0'; 4041 } 4042 4043 dmu_objset_name(os, osname); 4044 4045 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4046 "%s, %llu objects%s%s\n", 4047 osname, type, (u_longlong_t)dmu_objset_id(os), 4048 (u_longlong_t)dds.dds_creation_txg, 4049 numbuf, (u_longlong_t)usedobjs, blkbuf, 4050 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4051 4052 for (i = 0; i < zopt_object_args; i++) { 4053 obj_start = zopt_object_ranges[i].zor_obj_start; 4054 obj_end = zopt_object_ranges[i].zor_obj_end; 4055 flags = zopt_object_ranges[i].zor_flags; 4056 4057 object = obj_start; 4058 if (object == 0 || obj_start == obj_end) 4059 dump_object(os, object, verbosity, &print_header, NULL, 4060 flags); 4061 else 4062 object--; 4063 4064 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4065 object <= obj_end) { 4066 dump_object(os, object, verbosity, &print_header, NULL, 4067 flags); 4068 } 4069 } 4070 4071 if (zopt_object_args > 0) { 4072 (void) printf("\n"); 4073 return; 4074 } 4075 4076 if (dump_opt['i'] != 0 || verbosity >= 2) 4077 dump_intent_log(dmu_objset_zil(os)); 4078 4079 if (dmu_objset_ds(os) != NULL) { 4080 dsl_dataset_t *ds = dmu_objset_ds(os); 4081 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4082 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4083 !dmu_objset_is_snapshot(os)) { 4084 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4085 if (verify_dd_livelist(os) != 0) 4086 fatal("livelist is incorrect"); 4087 } 4088 4089 if (dsl_dataset_remap_deadlist_exists(ds)) { 4090 (void) printf("ds_remap_deadlist:\n"); 4091 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4092 } 4093 count_ds_mos_objects(ds); 4094 } 4095 4096 if (dmu_objset_ds(os) != NULL) 4097 dump_bookmarks(os, verbosity); 4098 4099 if (verbosity < 2) 4100 return; 4101 4102 if (BP_IS_HOLE(os->os_rootbp)) 4103 return; 4104 4105 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4106 object_count = 0; 4107 if (DMU_USERUSED_DNODE(os) != NULL && 4108 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4109 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4110 NULL, 0); 4111 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4112 NULL, 0); 4113 } 4114 4115 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4116 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4117 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4118 &print_header, NULL, 0); 4119 4120 object = 0; 4121 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4122 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4123 0); 4124 object_count++; 4125 total_slots_used += dnode_slots; 4126 max_slot_used = object + dnode_slots - 1; 4127 } 4128 4129 (void) printf("\n"); 4130 4131 (void) printf(" Dnode slots:\n"); 4132 (void) printf("\tTotal used: %10llu\n", 4133 (u_longlong_t)total_slots_used); 4134 (void) printf("\tMax used: %10llu\n", 4135 (u_longlong_t)max_slot_used); 4136 (void) printf("\tPercent empty: %10lf\n", 4137 (double)(max_slot_used - total_slots_used)*100 / 4138 (double)max_slot_used); 4139 (void) printf("\n"); 4140 4141 if (error != ESRCH) { 4142 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4143 abort(); 4144 } 4145 4146 ASSERT3U(object_count, ==, usedobjs); 4147 4148 if (leaked_objects != 0) { 4149 (void) printf("%d potentially leaked objects detected\n", 4150 leaked_objects); 4151 leaked_objects = 0; 4152 } 4153 } 4154 4155 static void 4156 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4157 { 4158 time_t timestamp = ub->ub_timestamp; 4159 4160 (void) printf("%s", header ? header : ""); 4161 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4162 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4163 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4164 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4165 (void) printf("\ttimestamp = %llu UTC = %s", 4166 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4167 4168 (void) printf("\tmmp_magic = %016llx\n", 4169 (u_longlong_t)ub->ub_mmp_magic); 4170 if (MMP_VALID(ub)) { 4171 (void) printf("\tmmp_delay = %0llu\n", 4172 (u_longlong_t)ub->ub_mmp_delay); 4173 if (MMP_SEQ_VALID(ub)) 4174 (void) printf("\tmmp_seq = %u\n", 4175 (unsigned int) MMP_SEQ(ub)); 4176 if (MMP_FAIL_INT_VALID(ub)) 4177 (void) printf("\tmmp_fail = %u\n", 4178 (unsigned int) MMP_FAIL_INT(ub)); 4179 if (MMP_INTERVAL_VALID(ub)) 4180 (void) printf("\tmmp_write = %u\n", 4181 (unsigned int) MMP_INTERVAL(ub)); 4182 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4183 (void) printf("\tmmp_valid = %x\n", 4184 (unsigned int) ub->ub_mmp_config & 0xFF); 4185 } 4186 4187 if (dump_opt['u'] >= 4) { 4188 char blkbuf[BP_SPRINTF_LEN]; 4189 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4190 (void) printf("\trootbp = %s\n", blkbuf); 4191 } 4192 (void) printf("\tcheckpoint_txg = %llu\n", 4193 (u_longlong_t)ub->ub_checkpoint_txg); 4194 4195 (void) printf("\traidz_reflow state=%u off=%llu\n", 4196 (int)RRSS_GET_STATE(ub), 4197 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4198 4199 (void) printf("%s", footer ? footer : ""); 4200 } 4201 4202 static void 4203 dump_config(spa_t *spa) 4204 { 4205 dmu_buf_t *db; 4206 size_t nvsize = 0; 4207 int error = 0; 4208 4209 4210 error = dmu_bonus_hold(spa->spa_meta_objset, 4211 spa->spa_config_object, FTAG, &db); 4212 4213 if (error == 0) { 4214 nvsize = *(uint64_t *)db->db_data; 4215 dmu_buf_rele(db, FTAG); 4216 4217 (void) printf("\nMOS Configuration:\n"); 4218 dump_packed_nvlist(spa->spa_meta_objset, 4219 spa->spa_config_object, (void *)&nvsize, 1); 4220 } else { 4221 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4222 (u_longlong_t)spa->spa_config_object, error); 4223 } 4224 } 4225 4226 static void 4227 dump_cachefile(const char *cachefile) 4228 { 4229 int fd; 4230 struct stat64 statbuf; 4231 char *buf; 4232 nvlist_t *config; 4233 4234 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4235 (void) printf("cannot open '%s': %s\n", cachefile, 4236 strerror(errno)); 4237 zdb_exit(1); 4238 } 4239 4240 if (fstat64(fd, &statbuf) != 0) { 4241 (void) printf("failed to stat '%s': %s\n", cachefile, 4242 strerror(errno)); 4243 zdb_exit(1); 4244 } 4245 4246 if ((buf = malloc(statbuf.st_size)) == NULL) { 4247 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4248 (u_longlong_t)statbuf.st_size); 4249 zdb_exit(1); 4250 } 4251 4252 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4253 (void) fprintf(stderr, "failed to read %llu bytes\n", 4254 (u_longlong_t)statbuf.st_size); 4255 zdb_exit(1); 4256 } 4257 4258 (void) close(fd); 4259 4260 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4261 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4262 zdb_exit(1); 4263 } 4264 4265 free(buf); 4266 4267 dump_nvlist(config, 0); 4268 4269 nvlist_free(config); 4270 } 4271 4272 /* 4273 * ZFS label nvlist stats 4274 */ 4275 typedef struct zdb_nvl_stats { 4276 int zns_list_count; 4277 int zns_leaf_count; 4278 size_t zns_leaf_largest; 4279 size_t zns_leaf_total; 4280 nvlist_t *zns_string; 4281 nvlist_t *zns_uint64; 4282 nvlist_t *zns_boolean; 4283 } zdb_nvl_stats_t; 4284 4285 static void 4286 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4287 { 4288 nvlist_t *list, **array; 4289 nvpair_t *nvp = NULL; 4290 const char *name; 4291 uint_t i, items; 4292 4293 stats->zns_list_count++; 4294 4295 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4296 name = nvpair_name(nvp); 4297 4298 switch (nvpair_type(nvp)) { 4299 case DATA_TYPE_STRING: 4300 fnvlist_add_string(stats->zns_string, name, 4301 fnvpair_value_string(nvp)); 4302 break; 4303 case DATA_TYPE_UINT64: 4304 fnvlist_add_uint64(stats->zns_uint64, name, 4305 fnvpair_value_uint64(nvp)); 4306 break; 4307 case DATA_TYPE_BOOLEAN: 4308 fnvlist_add_boolean(stats->zns_boolean, name); 4309 break; 4310 case DATA_TYPE_NVLIST: 4311 if (nvpair_value_nvlist(nvp, &list) == 0) 4312 collect_nvlist_stats(list, stats); 4313 break; 4314 case DATA_TYPE_NVLIST_ARRAY: 4315 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4316 break; 4317 4318 for (i = 0; i < items; i++) { 4319 collect_nvlist_stats(array[i], stats); 4320 4321 /* collect stats on leaf vdev */ 4322 if (strcmp(name, "children") == 0) { 4323 size_t size; 4324 4325 (void) nvlist_size(array[i], &size, 4326 NV_ENCODE_XDR); 4327 stats->zns_leaf_total += size; 4328 if (size > stats->zns_leaf_largest) 4329 stats->zns_leaf_largest = size; 4330 stats->zns_leaf_count++; 4331 } 4332 } 4333 break; 4334 default: 4335 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4336 } 4337 } 4338 } 4339 4340 static void 4341 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4342 { 4343 zdb_nvl_stats_t stats = { 0 }; 4344 size_t size, sum = 0, total; 4345 size_t noise; 4346 4347 /* requires nvlist with non-unique names for stat collection */ 4348 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4349 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4350 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4351 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4352 4353 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4354 4355 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4356 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4357 (int)total, (int)(cap - total), 100.0 * total / cap); 4358 4359 collect_nvlist_stats(nvl, &stats); 4360 4361 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4362 size -= noise; 4363 sum += size; 4364 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4365 (int)fnvlist_num_pairs(stats.zns_uint64), 4366 (int)size, 100.0 * size / total); 4367 4368 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4369 size -= noise; 4370 sum += size; 4371 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4372 (int)fnvlist_num_pairs(stats.zns_string), 4373 (int)size, 100.0 * size / total); 4374 4375 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4376 size -= noise; 4377 sum += size; 4378 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4379 (int)fnvlist_num_pairs(stats.zns_boolean), 4380 (int)size, 100.0 * size / total); 4381 4382 size = total - sum; /* treat remainder as nvlist overhead */ 4383 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4384 stats.zns_list_count, (int)size, 100.0 * size / total); 4385 4386 if (stats.zns_leaf_count > 0) { 4387 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4388 4389 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4390 stats.zns_leaf_count, (int)average); 4391 (void) printf("%24d bytes largest\n", 4392 (int)stats.zns_leaf_largest); 4393 4394 if (dump_opt['l'] >= 3 && average > 0) 4395 (void) printf(" space for %d additional leaf vdevs\n", 4396 (int)((cap - total) / average)); 4397 } 4398 (void) printf("\n"); 4399 4400 nvlist_free(stats.zns_string); 4401 nvlist_free(stats.zns_uint64); 4402 nvlist_free(stats.zns_boolean); 4403 } 4404 4405 typedef struct cksum_record { 4406 zio_cksum_t cksum; 4407 boolean_t labels[VDEV_LABELS]; 4408 avl_node_t link; 4409 } cksum_record_t; 4410 4411 static int 4412 cksum_record_compare(const void *x1, const void *x2) 4413 { 4414 const cksum_record_t *l = (cksum_record_t *)x1; 4415 const cksum_record_t *r = (cksum_record_t *)x2; 4416 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4417 int difference = 0; 4418 4419 for (int i = 0; i < arraysize; i++) { 4420 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4421 if (difference) 4422 break; 4423 } 4424 4425 return (difference); 4426 } 4427 4428 static cksum_record_t * 4429 cksum_record_alloc(zio_cksum_t *cksum, int l) 4430 { 4431 cksum_record_t *rec; 4432 4433 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4434 rec->cksum = *cksum; 4435 rec->labels[l] = B_TRUE; 4436 4437 return (rec); 4438 } 4439 4440 static cksum_record_t * 4441 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4442 { 4443 cksum_record_t lookup = { .cksum = *cksum }; 4444 avl_index_t where; 4445 4446 return (avl_find(tree, &lookup, &where)); 4447 } 4448 4449 static cksum_record_t * 4450 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4451 { 4452 cksum_record_t *rec; 4453 4454 rec = cksum_record_lookup(tree, cksum); 4455 if (rec) { 4456 rec->labels[l] = B_TRUE; 4457 } else { 4458 rec = cksum_record_alloc(cksum, l); 4459 avl_add(tree, rec); 4460 } 4461 4462 return (rec); 4463 } 4464 4465 static int 4466 first_label(cksum_record_t *rec) 4467 { 4468 for (int i = 0; i < VDEV_LABELS; i++) 4469 if (rec->labels[i]) 4470 return (i); 4471 4472 return (-1); 4473 } 4474 4475 static void 4476 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4477 { 4478 fputs(prefix, stdout); 4479 for (int i = 0; i < VDEV_LABELS; i++) 4480 if (rec->labels[i] == B_TRUE) 4481 printf("%d ", i); 4482 putchar('\n'); 4483 } 4484 4485 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4486 4487 typedef struct zdb_label { 4488 vdev_label_t label; 4489 uint64_t label_offset; 4490 nvlist_t *config_nv; 4491 cksum_record_t *config; 4492 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4493 boolean_t header_printed; 4494 boolean_t read_failed; 4495 boolean_t cksum_valid; 4496 } zdb_label_t; 4497 4498 static void 4499 print_label_header(zdb_label_t *label, int l) 4500 { 4501 4502 if (dump_opt['q']) 4503 return; 4504 4505 if (label->header_printed == B_TRUE) 4506 return; 4507 4508 (void) printf("------------------------------------\n"); 4509 (void) printf("LABEL %d %s\n", l, 4510 label->cksum_valid ? "" : "(Bad label cksum)"); 4511 (void) printf("------------------------------------\n"); 4512 4513 label->header_printed = B_TRUE; 4514 } 4515 4516 static void 4517 print_l2arc_header(void) 4518 { 4519 (void) printf("------------------------------------\n"); 4520 (void) printf("L2ARC device header\n"); 4521 (void) printf("------------------------------------\n"); 4522 } 4523 4524 static void 4525 print_l2arc_log_blocks(void) 4526 { 4527 (void) printf("------------------------------------\n"); 4528 (void) printf("L2ARC device log blocks\n"); 4529 (void) printf("------------------------------------\n"); 4530 } 4531 4532 static void 4533 dump_l2arc_log_entries(uint64_t log_entries, 4534 l2arc_log_ent_phys_t *le, uint64_t i) 4535 { 4536 for (int j = 0; j < log_entries; j++) { 4537 dva_t dva = le[j].le_dva; 4538 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4539 "vdev: %llu, offset: %llu\n", 4540 (u_longlong_t)i, j + 1, 4541 (u_longlong_t)DVA_GET_ASIZE(&dva), 4542 (u_longlong_t)DVA_GET_VDEV(&dva), 4543 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4544 (void) printf("|\t\t\t\tbirth: %llu\n", 4545 (u_longlong_t)le[j].le_birth); 4546 (void) printf("|\t\t\t\tlsize: %llu\n", 4547 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4548 (void) printf("|\t\t\t\tpsize: %llu\n", 4549 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4550 (void) printf("|\t\t\t\tcompr: %llu\n", 4551 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4552 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4553 (u_longlong_t)(&le[j])->le_complevel); 4554 (void) printf("|\t\t\t\ttype: %llu\n", 4555 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4556 (void) printf("|\t\t\t\tprotected: %llu\n", 4557 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4558 (void) printf("|\t\t\t\tprefetch: %llu\n", 4559 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4560 (void) printf("|\t\t\t\taddress: %llu\n", 4561 (u_longlong_t)le[j].le_daddr); 4562 (void) printf("|\t\t\t\tARC state: %llu\n", 4563 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4564 (void) printf("|\n"); 4565 } 4566 (void) printf("\n"); 4567 } 4568 4569 static void 4570 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4571 { 4572 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4573 (void) printf("|\t\tpayload_asize: %llu\n", 4574 (u_longlong_t)lbps->lbp_payload_asize); 4575 (void) printf("|\t\tpayload_start: %llu\n", 4576 (u_longlong_t)lbps->lbp_payload_start); 4577 (void) printf("|\t\tlsize: %llu\n", 4578 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4579 (void) printf("|\t\tasize: %llu\n", 4580 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4581 (void) printf("|\t\tcompralgo: %llu\n", 4582 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4583 (void) printf("|\t\tcksumalgo: %llu\n", 4584 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4585 (void) printf("|\n\n"); 4586 } 4587 4588 static void 4589 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4590 l2arc_dev_hdr_phys_t *rebuild) 4591 { 4592 l2arc_log_blk_phys_t this_lb; 4593 uint64_t asize; 4594 l2arc_log_blkptr_t lbps[2]; 4595 abd_t *abd; 4596 zio_cksum_t cksum; 4597 int failed = 0; 4598 l2arc_dev_t dev; 4599 4600 if (!dump_opt['q']) 4601 print_l2arc_log_blocks(); 4602 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4603 4604 dev.l2ad_evict = l2dhdr->dh_evict; 4605 dev.l2ad_start = l2dhdr->dh_start; 4606 dev.l2ad_end = l2dhdr->dh_end; 4607 4608 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4609 /* no log blocks to read */ 4610 if (!dump_opt['q']) { 4611 (void) printf("No log blocks to read\n"); 4612 (void) printf("\n"); 4613 } 4614 return; 4615 } else { 4616 dev.l2ad_hand = lbps[0].lbp_daddr + 4617 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4618 } 4619 4620 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4621 4622 for (;;) { 4623 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4624 break; 4625 4626 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4627 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4628 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4629 if (!dump_opt['q']) { 4630 (void) printf("Error while reading next log " 4631 "block\n\n"); 4632 } 4633 break; 4634 } 4635 4636 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4637 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4638 failed++; 4639 if (!dump_opt['q']) { 4640 (void) printf("Invalid cksum\n"); 4641 dump_l2arc_log_blkptr(&lbps[0]); 4642 } 4643 break; 4644 } 4645 4646 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4647 case ZIO_COMPRESS_OFF: 4648 break; 4649 default: 4650 abd = abd_alloc_for_io(asize, B_TRUE); 4651 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4652 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4653 (&lbps[0])->lbp_prop), abd, &this_lb, 4654 asize, sizeof (this_lb), NULL) != 0) { 4655 (void) printf("L2ARC block decompression " 4656 "failed\n"); 4657 abd_free(abd); 4658 goto out; 4659 } 4660 abd_free(abd); 4661 break; 4662 } 4663 4664 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4665 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4666 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4667 if (!dump_opt['q']) 4668 (void) printf("Invalid log block magic\n\n"); 4669 break; 4670 } 4671 4672 rebuild->dh_lb_count++; 4673 rebuild->dh_lb_asize += asize; 4674 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4675 (void) printf("lb[%4llu]\tmagic: %llu\n", 4676 (u_longlong_t)rebuild->dh_lb_count, 4677 (u_longlong_t)this_lb.lb_magic); 4678 dump_l2arc_log_blkptr(&lbps[0]); 4679 } 4680 4681 if (dump_opt['l'] > 2 && !dump_opt['q']) 4682 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4683 this_lb.lb_entries, 4684 rebuild->dh_lb_count); 4685 4686 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4687 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4688 !dev.l2ad_first) 4689 break; 4690 4691 lbps[0] = lbps[1]; 4692 lbps[1] = this_lb.lb_prev_lbp; 4693 } 4694 out: 4695 if (!dump_opt['q']) { 4696 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4697 (u_longlong_t)rebuild->dh_lb_count); 4698 (void) printf("\t\t %d with invalid cksum\n", failed); 4699 (void) printf("log_blk_asize:\t %llu\n\n", 4700 (u_longlong_t)rebuild->dh_lb_asize); 4701 } 4702 } 4703 4704 static int 4705 dump_l2arc_header(int fd) 4706 { 4707 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4708 int error = B_FALSE; 4709 4710 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4711 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4712 error = B_TRUE; 4713 } else { 4714 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4715 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4716 4717 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4718 error = B_TRUE; 4719 } 4720 4721 if (error) { 4722 (void) printf("L2ARC device header not found\n\n"); 4723 /* Do not return an error here for backward compatibility */ 4724 return (0); 4725 } else if (!dump_opt['q']) { 4726 print_l2arc_header(); 4727 4728 (void) printf(" magic: %llu\n", 4729 (u_longlong_t)l2dhdr.dh_magic); 4730 (void) printf(" version: %llu\n", 4731 (u_longlong_t)l2dhdr.dh_version); 4732 (void) printf(" pool_guid: %llu\n", 4733 (u_longlong_t)l2dhdr.dh_spa_guid); 4734 (void) printf(" flags: %llu\n", 4735 (u_longlong_t)l2dhdr.dh_flags); 4736 (void) printf(" start_lbps[0]: %llu\n", 4737 (u_longlong_t) 4738 l2dhdr.dh_start_lbps[0].lbp_daddr); 4739 (void) printf(" start_lbps[1]: %llu\n", 4740 (u_longlong_t) 4741 l2dhdr.dh_start_lbps[1].lbp_daddr); 4742 (void) printf(" log_blk_ent: %llu\n", 4743 (u_longlong_t)l2dhdr.dh_log_entries); 4744 (void) printf(" start: %llu\n", 4745 (u_longlong_t)l2dhdr.dh_start); 4746 (void) printf(" end: %llu\n", 4747 (u_longlong_t)l2dhdr.dh_end); 4748 (void) printf(" evict: %llu\n", 4749 (u_longlong_t)l2dhdr.dh_evict); 4750 (void) printf(" lb_asize_refcount: %llu\n", 4751 (u_longlong_t)l2dhdr.dh_lb_asize); 4752 (void) printf(" lb_count_refcount: %llu\n", 4753 (u_longlong_t)l2dhdr.dh_lb_count); 4754 (void) printf(" trim_action_time: %llu\n", 4755 (u_longlong_t)l2dhdr.dh_trim_action_time); 4756 (void) printf(" trim_state: %llu\n\n", 4757 (u_longlong_t)l2dhdr.dh_trim_state); 4758 } 4759 4760 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4761 /* 4762 * The total aligned size of log blocks and the number of log blocks 4763 * reported in the header of the device may be less than what zdb 4764 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4765 * This happens because dump_l2arc_log_blocks() lacks the memory 4766 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4767 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4768 * and dh_lb_count will be lower to begin with than what exists on the 4769 * device. This is normal and zdb should not exit with an error. The 4770 * opposite case should never happen though, the values reported in the 4771 * header should never be higher than what dump_l2arc_log_blocks() and 4772 * l2arc_rebuild() report. If this happens there is a leak in the 4773 * accounting of log blocks. 4774 */ 4775 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4776 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4777 return (1); 4778 4779 return (0); 4780 } 4781 4782 static void 4783 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4784 { 4785 if (dump_opt['q']) 4786 return; 4787 4788 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4789 return; 4790 4791 print_label_header(label, l); 4792 dump_nvlist(label->config_nv, 4); 4793 print_label_numbers(" labels = ", label->config); 4794 4795 if (dump_opt['l'] >= 2) 4796 dump_nvlist_stats(label->config_nv, buflen); 4797 } 4798 4799 #define ZDB_MAX_UB_HEADER_SIZE 32 4800 4801 static void 4802 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4803 { 4804 4805 vdev_t vd; 4806 char header[ZDB_MAX_UB_HEADER_SIZE]; 4807 4808 vd.vdev_ashift = ashift; 4809 vd.vdev_top = &vd; 4810 4811 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4812 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4813 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4814 cksum_record_t *rec = label->uberblocks[i]; 4815 4816 if (rec == NULL) { 4817 if (dump_opt['u'] >= 2) { 4818 print_label_header(label, label_num); 4819 (void) printf(" Uberblock[%d] invalid\n", i); 4820 } 4821 continue; 4822 } 4823 4824 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4825 continue; 4826 4827 if ((dump_opt['u'] < 4) && 4828 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4829 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4830 continue; 4831 4832 print_label_header(label, label_num); 4833 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4834 " Uberblock[%d]\n", i); 4835 dump_uberblock(ub, header, ""); 4836 print_label_numbers(" labels = ", rec); 4837 } 4838 } 4839 4840 static char curpath[PATH_MAX]; 4841 4842 /* 4843 * Iterate through the path components, recursively passing 4844 * current one's obj and remaining path until we find the obj 4845 * for the last one. 4846 */ 4847 static int 4848 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4849 { 4850 int err; 4851 boolean_t header = B_TRUE; 4852 uint64_t child_obj; 4853 char *s; 4854 dmu_buf_t *db; 4855 dmu_object_info_t doi; 4856 4857 if ((s = strchr(name, '/')) != NULL) 4858 *s = '\0'; 4859 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4860 4861 (void) strlcat(curpath, name, sizeof (curpath)); 4862 4863 if (err != 0) { 4864 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4865 curpath, strerror(err)); 4866 return (err); 4867 } 4868 4869 child_obj = ZFS_DIRENT_OBJ(child_obj); 4870 err = sa_buf_hold(os, child_obj, FTAG, &db); 4871 if (err != 0) { 4872 (void) fprintf(stderr, 4873 "failed to get SA dbuf for obj %llu: %s\n", 4874 (u_longlong_t)child_obj, strerror(err)); 4875 return (EINVAL); 4876 } 4877 dmu_object_info_from_db(db, &doi); 4878 sa_buf_rele(db, FTAG); 4879 4880 if (doi.doi_bonus_type != DMU_OT_SA && 4881 doi.doi_bonus_type != DMU_OT_ZNODE) { 4882 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4883 doi.doi_bonus_type, (u_longlong_t)child_obj); 4884 return (EINVAL); 4885 } 4886 4887 if (dump_opt['v'] > 6) { 4888 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4889 (u_longlong_t)child_obj, curpath, doi.doi_type, 4890 doi.doi_bonus_type); 4891 } 4892 4893 (void) strlcat(curpath, "/", sizeof (curpath)); 4894 4895 switch (doi.doi_type) { 4896 case DMU_OT_DIRECTORY_CONTENTS: 4897 if (s != NULL && *(s + 1) != '\0') 4898 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4899 zfs_fallthrough; 4900 case DMU_OT_PLAIN_FILE_CONTENTS: 4901 if (retobj != NULL) { 4902 *retobj = child_obj; 4903 } else { 4904 dump_object(os, child_obj, dump_opt['v'], &header, 4905 NULL, 0); 4906 } 4907 return (0); 4908 default: 4909 (void) fprintf(stderr, "object %llu has non-file/directory " 4910 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4911 break; 4912 } 4913 4914 return (EINVAL); 4915 } 4916 4917 /* 4918 * Dump the blocks for the object specified by path inside the dataset. 4919 */ 4920 static int 4921 dump_path(char *ds, char *path, uint64_t *retobj) 4922 { 4923 int err; 4924 objset_t *os; 4925 uint64_t root_obj; 4926 4927 err = open_objset(ds, FTAG, &os); 4928 if (err != 0) 4929 return (err); 4930 4931 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4932 if (err != 0) { 4933 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4934 strerror(err)); 4935 close_objset(os, FTAG); 4936 return (EINVAL); 4937 } 4938 4939 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4940 4941 err = dump_path_impl(os, root_obj, path, retobj); 4942 4943 close_objset(os, FTAG); 4944 return (err); 4945 } 4946 4947 static int 4948 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4949 { 4950 const char *p = (const char *)buf; 4951 ssize_t nwritten; 4952 4953 (void) os; 4954 (void) arg; 4955 4956 /* Write the data out, handling short writes and signals. */ 4957 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4958 if (nwritten < 0) { 4959 if (errno == EINTR) 4960 continue; 4961 return (errno); 4962 } 4963 p += nwritten; 4964 len -= nwritten; 4965 } 4966 4967 return (0); 4968 } 4969 4970 static void 4971 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4972 { 4973 boolean_t embed = B_FALSE; 4974 boolean_t large_block = B_FALSE; 4975 boolean_t compress = B_FALSE; 4976 boolean_t raw = B_FALSE; 4977 4978 const char *c; 4979 for (c = flagstr; c != NULL && *c != '\0'; c++) { 4980 switch (*c) { 4981 case 'e': 4982 embed = B_TRUE; 4983 break; 4984 case 'L': 4985 large_block = B_TRUE; 4986 break; 4987 case 'c': 4988 compress = B_TRUE; 4989 break; 4990 case 'w': 4991 raw = B_TRUE; 4992 break; 4993 default: 4994 fprintf(stderr, "dump_backup: invalid flag " 4995 "'%c'\n", *c); 4996 return; 4997 } 4998 } 4999 5000 if (isatty(STDOUT_FILENO)) { 5001 fprintf(stderr, "dump_backup: stream cannot be written " 5002 "to a terminal\n"); 5003 return; 5004 } 5005 5006 offset_t off = 0; 5007 dmu_send_outparams_t out = { 5008 .dso_outfunc = dump_backup_bytes, 5009 .dso_dryrun = B_FALSE, 5010 }; 5011 5012 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5013 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5014 &off, &out); 5015 if (err != 0) { 5016 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5017 strerror(err)); 5018 return; 5019 } 5020 } 5021 5022 static int 5023 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5024 { 5025 int err = 0; 5026 uint64_t size, readsize, oursize, offset; 5027 ssize_t writesize; 5028 sa_handle_t *hdl; 5029 5030 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5031 destfile); 5032 5033 VERIFY3P(os, ==, sa_os); 5034 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5035 (void) printf("Failed to get handle for SA znode\n"); 5036 return (err); 5037 } 5038 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5039 (void) sa_handle_destroy(hdl); 5040 return (err); 5041 } 5042 (void) sa_handle_destroy(hdl); 5043 5044 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5045 size); 5046 if (size == 0) { 5047 return (EINVAL); 5048 } 5049 5050 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5051 if (fd == -1) 5052 return (errno); 5053 /* 5054 * We cap the size at 1 mebibyte here to prevent 5055 * allocation failures and nigh-infinite printing if the 5056 * object is extremely large. 5057 */ 5058 oursize = MIN(size, 1 << 20); 5059 offset = 0; 5060 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5061 if (buf == NULL) { 5062 (void) close(fd); 5063 return (ENOMEM); 5064 } 5065 5066 while (offset < size) { 5067 readsize = MIN(size - offset, 1 << 20); 5068 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5069 if (err != 0) { 5070 (void) printf("got error %u from dmu_read\n", err); 5071 kmem_free(buf, oursize); 5072 (void) close(fd); 5073 return (err); 5074 } 5075 if (dump_opt['v'] > 3) { 5076 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5077 " error=%d\n", offset, readsize, err); 5078 } 5079 5080 writesize = write(fd, buf, readsize); 5081 if (writesize < 0) { 5082 err = errno; 5083 break; 5084 } else if (writesize != readsize) { 5085 /* Incomplete write */ 5086 (void) fprintf(stderr, "Short write, only wrote %llu of" 5087 " %" PRIu64 " bytes, exiting...\n", 5088 (u_longlong_t)writesize, readsize); 5089 break; 5090 } 5091 5092 offset += readsize; 5093 } 5094 5095 (void) close(fd); 5096 5097 if (buf != NULL) 5098 kmem_free(buf, oursize); 5099 5100 return (err); 5101 } 5102 5103 static boolean_t 5104 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5105 { 5106 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5107 zio_cksum_t expected_cksum; 5108 zio_cksum_t actual_cksum; 5109 zio_cksum_t verifier; 5110 zio_eck_t *eck; 5111 int byteswap; 5112 5113 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5114 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5115 5116 offset += offsetof(vdev_label_t, vl_vdev_phys); 5117 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5118 5119 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5120 if (byteswap) 5121 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5122 5123 expected_cksum = eck->zec_cksum; 5124 eck->zec_cksum = verifier; 5125 5126 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5127 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5128 abd_free(abd); 5129 5130 if (byteswap) 5131 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5132 5133 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5134 return (B_TRUE); 5135 5136 return (B_FALSE); 5137 } 5138 5139 static int 5140 dump_label(const char *dev) 5141 { 5142 char path[MAXPATHLEN]; 5143 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5144 uint64_t psize, ashift, l2cache; 5145 struct stat64 statbuf; 5146 boolean_t config_found = B_FALSE; 5147 boolean_t error = B_FALSE; 5148 boolean_t read_l2arc_header = B_FALSE; 5149 avl_tree_t config_tree; 5150 avl_tree_t uberblock_tree; 5151 void *node, *cookie; 5152 int fd; 5153 5154 /* 5155 * Check if we were given absolute path and use it as is. 5156 * Otherwise if the provided vdev name doesn't point to a file, 5157 * try prepending expected disk paths and partition numbers. 5158 */ 5159 (void) strlcpy(path, dev, sizeof (path)); 5160 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5161 int error; 5162 5163 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5164 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5165 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5166 error = ENOENT; 5167 } 5168 5169 if (error || (stat64(path, &statbuf) != 0)) { 5170 (void) printf("failed to find device %s, try " 5171 "specifying absolute path instead\n", dev); 5172 return (1); 5173 } 5174 } 5175 5176 if ((fd = open64(path, O_RDONLY)) < 0) { 5177 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5178 zdb_exit(1); 5179 } 5180 5181 if (fstat64_blk(fd, &statbuf) != 0) { 5182 (void) printf("failed to stat '%s': %s\n", path, 5183 strerror(errno)); 5184 (void) close(fd); 5185 zdb_exit(1); 5186 } 5187 5188 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5189 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5190 strerror(errno)); 5191 5192 avl_create(&config_tree, cksum_record_compare, 5193 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5194 avl_create(&uberblock_tree, cksum_record_compare, 5195 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5196 5197 psize = statbuf.st_size; 5198 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5199 ashift = SPA_MINBLOCKSHIFT; 5200 5201 /* 5202 * 1. Read the label from disk 5203 * 2. Verify label cksum 5204 * 3. Unpack the configuration and insert in config tree. 5205 * 4. Traverse all uberblocks and insert in uberblock tree. 5206 */ 5207 for (int l = 0; l < VDEV_LABELS; l++) { 5208 zdb_label_t *label = &labels[l]; 5209 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5210 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5211 nvlist_t *config; 5212 cksum_record_t *rec; 5213 zio_cksum_t cksum; 5214 vdev_t vd; 5215 5216 label->label_offset = vdev_label_offset(psize, l, 0); 5217 5218 if (pread64(fd, &label->label, sizeof (label->label), 5219 label->label_offset) != sizeof (label->label)) { 5220 if (!dump_opt['q']) 5221 (void) printf("failed to read label %d\n", l); 5222 label->read_failed = B_TRUE; 5223 error = B_TRUE; 5224 continue; 5225 } 5226 5227 label->read_failed = B_FALSE; 5228 label->cksum_valid = label_cksum_valid(&label->label, 5229 label->label_offset); 5230 5231 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5232 nvlist_t *vdev_tree = NULL; 5233 size_t size; 5234 5235 if ((nvlist_lookup_nvlist(config, 5236 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5237 (nvlist_lookup_uint64(vdev_tree, 5238 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5239 ashift = SPA_MINBLOCKSHIFT; 5240 5241 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5242 size = buflen; 5243 5244 /* If the device is a cache device read the header. */ 5245 if (!read_l2arc_header) { 5246 if (nvlist_lookup_uint64(config, 5247 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5248 l2cache == POOL_STATE_L2CACHE) { 5249 read_l2arc_header = B_TRUE; 5250 } 5251 } 5252 5253 fletcher_4_native_varsize(buf, size, &cksum); 5254 rec = cksum_record_insert(&config_tree, &cksum, l); 5255 5256 label->config = rec; 5257 label->config_nv = config; 5258 config_found = B_TRUE; 5259 } else { 5260 error = B_TRUE; 5261 } 5262 5263 vd.vdev_ashift = ashift; 5264 vd.vdev_top = &vd; 5265 5266 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5267 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5268 uberblock_t *ub = (void *)((char *)label + uoff); 5269 5270 if (uberblock_verify(ub)) 5271 continue; 5272 5273 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5274 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5275 5276 label->uberblocks[i] = rec; 5277 } 5278 } 5279 5280 /* 5281 * Dump the label and uberblocks. 5282 */ 5283 for (int l = 0; l < VDEV_LABELS; l++) { 5284 zdb_label_t *label = &labels[l]; 5285 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5286 5287 if (label->read_failed == B_TRUE) 5288 continue; 5289 5290 if (label->config_nv) { 5291 dump_config_from_label(label, buflen, l); 5292 } else { 5293 if (!dump_opt['q']) 5294 (void) printf("failed to unpack label %d\n", l); 5295 } 5296 5297 if (dump_opt['u']) 5298 dump_label_uberblocks(label, ashift, l); 5299 5300 nvlist_free(label->config_nv); 5301 } 5302 5303 /* 5304 * Dump the L2ARC header, if existent. 5305 */ 5306 if (read_l2arc_header) 5307 error |= dump_l2arc_header(fd); 5308 5309 cookie = NULL; 5310 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5311 umem_free(node, sizeof (cksum_record_t)); 5312 5313 cookie = NULL; 5314 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5315 umem_free(node, sizeof (cksum_record_t)); 5316 5317 avl_destroy(&config_tree); 5318 avl_destroy(&uberblock_tree); 5319 5320 (void) close(fd); 5321 5322 return (config_found == B_FALSE ? 2 : 5323 (error == B_TRUE ? 1 : 0)); 5324 } 5325 5326 static uint64_t dataset_feature_count[SPA_FEATURES]; 5327 static uint64_t global_feature_count[SPA_FEATURES]; 5328 static uint64_t remap_deadlist_count = 0; 5329 5330 static int 5331 dump_one_objset(const char *dsname, void *arg) 5332 { 5333 (void) arg; 5334 int error; 5335 objset_t *os; 5336 spa_feature_t f; 5337 5338 error = open_objset(dsname, FTAG, &os); 5339 if (error != 0) 5340 return (0); 5341 5342 for (f = 0; f < SPA_FEATURES; f++) { 5343 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5344 continue; 5345 ASSERT(spa_feature_table[f].fi_flags & 5346 ZFEATURE_FLAG_PER_DATASET); 5347 dataset_feature_count[f]++; 5348 } 5349 5350 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5351 remap_deadlist_count++; 5352 } 5353 5354 for (dsl_bookmark_node_t *dbn = 5355 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5356 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5357 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5358 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5359 global_feature_count[ 5360 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5361 objset_t *mos = os->os_spa->spa_meta_objset; 5362 dnode_t *rl; 5363 VERIFY0(dnode_hold(mos, 5364 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5365 if (rl->dn_have_spill) { 5366 global_feature_count[ 5367 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5368 } 5369 } 5370 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5371 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5372 } 5373 5374 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5375 !dmu_objset_is_snapshot(os)) { 5376 global_feature_count[SPA_FEATURE_LIVELIST]++; 5377 } 5378 5379 dump_objset(os); 5380 close_objset(os, FTAG); 5381 fuid_table_destroy(); 5382 return (0); 5383 } 5384 5385 /* 5386 * Block statistics. 5387 */ 5388 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5389 typedef struct zdb_blkstats { 5390 uint64_t zb_asize; 5391 uint64_t zb_lsize; 5392 uint64_t zb_psize; 5393 uint64_t zb_count; 5394 uint64_t zb_gangs; 5395 uint64_t zb_ditto_samevdev; 5396 uint64_t zb_ditto_same_ms; 5397 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5398 } zdb_blkstats_t; 5399 5400 /* 5401 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5402 */ 5403 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5404 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5405 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5406 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5407 5408 static const char *zdb_ot_extname[] = { 5409 "deferred free", 5410 "dedup ditto", 5411 "other", 5412 "Total", 5413 }; 5414 5415 #define ZB_TOTAL DN_MAX_LEVELS 5416 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5417 5418 typedef struct zdb_brt_entry { 5419 dva_t zbre_dva; 5420 uint64_t zbre_refcount; 5421 avl_node_t zbre_node; 5422 } zdb_brt_entry_t; 5423 5424 typedef struct zdb_cb { 5425 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5426 uint64_t zcb_removing_size; 5427 uint64_t zcb_checkpoint_size; 5428 uint64_t zcb_dedup_asize; 5429 uint64_t zcb_dedup_blocks; 5430 uint64_t zcb_clone_asize; 5431 uint64_t zcb_clone_blocks; 5432 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5433 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5434 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5435 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5436 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5437 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5438 uint64_t zcb_psize_total; 5439 uint64_t zcb_lsize_total; 5440 uint64_t zcb_asize_total; 5441 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5442 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5443 [BPE_PAYLOAD_SIZE + 1]; 5444 uint64_t zcb_start; 5445 hrtime_t zcb_lastprint; 5446 uint64_t zcb_totalasize; 5447 uint64_t zcb_errors[256]; 5448 int zcb_readfails; 5449 int zcb_haderrors; 5450 spa_t *zcb_spa; 5451 uint32_t **zcb_vd_obsolete_counts; 5452 avl_tree_t zcb_brt; 5453 boolean_t zcb_brt_is_active; 5454 } zdb_cb_t; 5455 5456 /* test if two DVA offsets from same vdev are within the same metaslab */ 5457 static boolean_t 5458 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5459 { 5460 vdev_t *vd = vdev_lookup_top(spa, vdev); 5461 uint64_t ms_shift = vd->vdev_ms_shift; 5462 5463 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5464 } 5465 5466 /* 5467 * Used to simplify reporting of the histogram data. 5468 */ 5469 typedef struct one_histo { 5470 const char *name; 5471 uint64_t *count; 5472 uint64_t *len; 5473 uint64_t cumulative; 5474 } one_histo_t; 5475 5476 /* 5477 * The number of separate histograms processed for psize, lsize and asize. 5478 */ 5479 #define NUM_HISTO 3 5480 5481 /* 5482 * This routine will create a fixed column size output of three different 5483 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5484 * the count, length and cumulative length of the psize, lsize and 5485 * asize blocks. 5486 * 5487 * All three types of blocks are listed on a single line 5488 * 5489 * By default the table is printed in nicenumber format (e.g. 123K) but 5490 * if the '-P' parameter is specified then the full raw number (parseable) 5491 * is printed out. 5492 */ 5493 static void 5494 dump_size_histograms(zdb_cb_t *zcb) 5495 { 5496 /* 5497 * A temporary buffer that allows us to convert a number into 5498 * a string using zdb_nicenumber to allow either raw or human 5499 * readable numbers to be output. 5500 */ 5501 char numbuf[32]; 5502 5503 /* 5504 * Define titles which are used in the headers of the tables 5505 * printed by this routine. 5506 */ 5507 const char blocksize_title1[] = "block"; 5508 const char blocksize_title2[] = "size"; 5509 const char count_title[] = "Count"; 5510 const char length_title[] = "Size"; 5511 const char cumulative_title[] = "Cum."; 5512 5513 /* 5514 * Setup the histogram arrays (psize, lsize, and asize). 5515 */ 5516 one_histo_t parm_histo[NUM_HISTO]; 5517 5518 parm_histo[0].name = "psize"; 5519 parm_histo[0].count = zcb->zcb_psize_count; 5520 parm_histo[0].len = zcb->zcb_psize_len; 5521 parm_histo[0].cumulative = 0; 5522 5523 parm_histo[1].name = "lsize"; 5524 parm_histo[1].count = zcb->zcb_lsize_count; 5525 parm_histo[1].len = zcb->zcb_lsize_len; 5526 parm_histo[1].cumulative = 0; 5527 5528 parm_histo[2].name = "asize"; 5529 parm_histo[2].count = zcb->zcb_asize_count; 5530 parm_histo[2].len = zcb->zcb_asize_len; 5531 parm_histo[2].cumulative = 0; 5532 5533 5534 (void) printf("\nBlock Size Histogram\n"); 5535 /* 5536 * Print the first line titles 5537 */ 5538 if (dump_opt['P']) 5539 (void) printf("\n%s\t", blocksize_title1); 5540 else 5541 (void) printf("\n%7s ", blocksize_title1); 5542 5543 for (int j = 0; j < NUM_HISTO; j++) { 5544 if (dump_opt['P']) { 5545 if (j < NUM_HISTO - 1) { 5546 (void) printf("%s\t\t\t", parm_histo[j].name); 5547 } else { 5548 /* Don't print trailing spaces */ 5549 (void) printf(" %s", parm_histo[j].name); 5550 } 5551 } else { 5552 if (j < NUM_HISTO - 1) { 5553 /* Left aligned strings in the output */ 5554 (void) printf("%-7s ", 5555 parm_histo[j].name); 5556 } else { 5557 /* Don't print trailing spaces */ 5558 (void) printf("%s", parm_histo[j].name); 5559 } 5560 } 5561 } 5562 (void) printf("\n"); 5563 5564 /* 5565 * Print the second line titles 5566 */ 5567 if (dump_opt['P']) { 5568 (void) printf("%s\t", blocksize_title2); 5569 } else { 5570 (void) printf("%7s ", blocksize_title2); 5571 } 5572 5573 for (int i = 0; i < NUM_HISTO; i++) { 5574 if (dump_opt['P']) { 5575 (void) printf("%s\t%s\t%s\t", 5576 count_title, length_title, cumulative_title); 5577 } else { 5578 (void) printf("%7s%7s%7s", 5579 count_title, length_title, cumulative_title); 5580 } 5581 } 5582 (void) printf("\n"); 5583 5584 /* 5585 * Print the rows 5586 */ 5587 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5588 5589 /* 5590 * Print the first column showing the blocksize 5591 */ 5592 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5593 5594 if (dump_opt['P']) { 5595 printf("%s", numbuf); 5596 } else { 5597 printf("%7s:", numbuf); 5598 } 5599 5600 /* 5601 * Print the remaining set of 3 columns per size: 5602 * for psize, lsize and asize 5603 */ 5604 for (int j = 0; j < NUM_HISTO; j++) { 5605 parm_histo[j].cumulative += parm_histo[j].len[i]; 5606 5607 zdb_nicenum(parm_histo[j].count[i], 5608 numbuf, sizeof (numbuf)); 5609 if (dump_opt['P']) 5610 (void) printf("\t%s", numbuf); 5611 else 5612 (void) printf("%7s", numbuf); 5613 5614 zdb_nicenum(parm_histo[j].len[i], 5615 numbuf, sizeof (numbuf)); 5616 if (dump_opt['P']) 5617 (void) printf("\t%s", numbuf); 5618 else 5619 (void) printf("%7s", numbuf); 5620 5621 zdb_nicenum(parm_histo[j].cumulative, 5622 numbuf, sizeof (numbuf)); 5623 if (dump_opt['P']) 5624 (void) printf("\t%s", numbuf); 5625 else 5626 (void) printf("%7s", numbuf); 5627 } 5628 (void) printf("\n"); 5629 } 5630 } 5631 5632 static void 5633 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5634 dmu_object_type_t type) 5635 { 5636 uint64_t refcnt = 0; 5637 int i; 5638 5639 ASSERT(type < ZDB_OT_TOTAL); 5640 5641 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5642 return; 5643 5644 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5645 5646 for (i = 0; i < 4; i++) { 5647 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5648 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5649 int equal; 5650 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5651 5652 zb->zb_asize += BP_GET_ASIZE(bp); 5653 zb->zb_lsize += BP_GET_LSIZE(bp); 5654 zb->zb_psize += BP_GET_PSIZE(bp); 5655 zb->zb_count++; 5656 5657 /* 5658 * The histogram is only big enough to record blocks up to 5659 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5660 * "other", bucket. 5661 */ 5662 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5663 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5664 zb->zb_psize_histogram[idx]++; 5665 5666 zb->zb_gangs += BP_COUNT_GANG(bp); 5667 5668 switch (BP_GET_NDVAS(bp)) { 5669 case 2: 5670 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5671 DVA_GET_VDEV(&bp->blk_dva[1])) { 5672 zb->zb_ditto_samevdev++; 5673 5674 if (same_metaslab(zcb->zcb_spa, 5675 DVA_GET_VDEV(&bp->blk_dva[0]), 5676 DVA_GET_OFFSET(&bp->blk_dva[0]), 5677 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5678 zb->zb_ditto_same_ms++; 5679 } 5680 break; 5681 case 3: 5682 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5683 DVA_GET_VDEV(&bp->blk_dva[1])) + 5684 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5685 DVA_GET_VDEV(&bp->blk_dva[2])) + 5686 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5687 DVA_GET_VDEV(&bp->blk_dva[2])); 5688 if (equal != 0) { 5689 zb->zb_ditto_samevdev++; 5690 5691 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5692 DVA_GET_VDEV(&bp->blk_dva[1]) && 5693 same_metaslab(zcb->zcb_spa, 5694 DVA_GET_VDEV(&bp->blk_dva[0]), 5695 DVA_GET_OFFSET(&bp->blk_dva[0]), 5696 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5697 zb->zb_ditto_same_ms++; 5698 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5699 DVA_GET_VDEV(&bp->blk_dva[2]) && 5700 same_metaslab(zcb->zcb_spa, 5701 DVA_GET_VDEV(&bp->blk_dva[0]), 5702 DVA_GET_OFFSET(&bp->blk_dva[0]), 5703 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5704 zb->zb_ditto_same_ms++; 5705 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5706 DVA_GET_VDEV(&bp->blk_dva[2]) && 5707 same_metaslab(zcb->zcb_spa, 5708 DVA_GET_VDEV(&bp->blk_dva[1]), 5709 DVA_GET_OFFSET(&bp->blk_dva[1]), 5710 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5711 zb->zb_ditto_same_ms++; 5712 } 5713 break; 5714 } 5715 } 5716 5717 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5718 5719 if (BP_IS_EMBEDDED(bp)) { 5720 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5721 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5722 [BPE_GET_PSIZE(bp)]++; 5723 return; 5724 } 5725 /* 5726 * The binning histogram bins by powers of two up to 5727 * SPA_MAXBLOCKSIZE rather than creating bins for 5728 * every possible blocksize found in the pool. 5729 */ 5730 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5731 5732 zcb->zcb_psize_count[bin]++; 5733 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5734 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5735 5736 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5737 5738 zcb->zcb_lsize_count[bin]++; 5739 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5740 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5741 5742 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5743 5744 zcb->zcb_asize_count[bin]++; 5745 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5746 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5747 5748 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5749 /* 5750 * Cloned blocks are special. We need to count them, so we can 5751 * later uncount them when reporting leaked space, and we must 5752 * only claim them them once. 5753 * 5754 * To do this, we keep our own in-memory BRT. For each block 5755 * we haven't seen before, we look it up in the real BRT and 5756 * if its there, we note it and its refcount then proceed as 5757 * normal. If we see the block again, we count it as a clone 5758 * and then give it no further consideration. 5759 */ 5760 zdb_brt_entry_t zbre_search, *zbre; 5761 avl_index_t where; 5762 5763 zbre_search.zbre_dva = bp->blk_dva[0]; 5764 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5765 if (zbre != NULL) { 5766 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5767 zcb->zcb_clone_blocks++; 5768 5769 zbre->zbre_refcount--; 5770 if (zbre->zbre_refcount == 0) { 5771 avl_remove(&zcb->zcb_brt, zbre); 5772 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5773 } 5774 return; 5775 } 5776 5777 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5778 if (crefcnt > 0) { 5779 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5780 UMEM_NOFAIL); 5781 zbre->zbre_dva = bp->blk_dva[0]; 5782 zbre->zbre_refcount = crefcnt; 5783 avl_insert(&zcb->zcb_brt, zbre, where); 5784 } 5785 } 5786 5787 if (dump_opt['L']) 5788 return; 5789 5790 if (BP_GET_DEDUP(bp)) { 5791 ddt_t *ddt; 5792 ddt_entry_t *dde; 5793 5794 ddt = ddt_select(zcb->zcb_spa, bp); 5795 ddt_enter(ddt); 5796 dde = ddt_lookup(ddt, bp, B_FALSE); 5797 5798 if (dde == NULL) { 5799 refcnt = 0; 5800 } else { 5801 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5802 ddt_phys_decref(ddp); 5803 refcnt = ddp->ddp_refcnt; 5804 if (ddt_phys_total_refcnt(dde) == 0) 5805 ddt_remove(ddt, dde); 5806 } 5807 ddt_exit(ddt); 5808 } 5809 5810 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5811 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5812 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5813 } 5814 5815 static void 5816 zdb_blkptr_done(zio_t *zio) 5817 { 5818 spa_t *spa = zio->io_spa; 5819 blkptr_t *bp = zio->io_bp; 5820 int ioerr = zio->io_error; 5821 zdb_cb_t *zcb = zio->io_private; 5822 zbookmark_phys_t *zb = &zio->io_bookmark; 5823 5824 mutex_enter(&spa->spa_scrub_lock); 5825 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5826 cv_broadcast(&spa->spa_scrub_io_cv); 5827 5828 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5829 char blkbuf[BP_SPRINTF_LEN]; 5830 5831 zcb->zcb_haderrors = 1; 5832 zcb->zcb_errors[ioerr]++; 5833 5834 if (dump_opt['b'] >= 2) 5835 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5836 else 5837 blkbuf[0] = '\0'; 5838 5839 (void) printf("zdb_blkptr_cb: " 5840 "Got error %d reading " 5841 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5842 ioerr, 5843 (u_longlong_t)zb->zb_objset, 5844 (u_longlong_t)zb->zb_object, 5845 (u_longlong_t)zb->zb_level, 5846 (u_longlong_t)zb->zb_blkid, 5847 blkbuf); 5848 } 5849 mutex_exit(&spa->spa_scrub_lock); 5850 5851 abd_free(zio->io_abd); 5852 } 5853 5854 static int 5855 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5856 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5857 { 5858 zdb_cb_t *zcb = arg; 5859 dmu_object_type_t type; 5860 boolean_t is_metadata; 5861 5862 if (zb->zb_level == ZB_DNODE_LEVEL) 5863 return (0); 5864 5865 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 5866 char blkbuf[BP_SPRINTF_LEN]; 5867 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5868 (void) printf("objset %llu object %llu " 5869 "level %lld offset 0x%llx %s\n", 5870 (u_longlong_t)zb->zb_objset, 5871 (u_longlong_t)zb->zb_object, 5872 (longlong_t)zb->zb_level, 5873 (u_longlong_t)blkid2offset(dnp, bp, zb), 5874 blkbuf); 5875 } 5876 5877 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5878 return (0); 5879 5880 type = BP_GET_TYPE(bp); 5881 5882 zdb_count_block(zcb, zilog, bp, 5883 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5884 5885 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5886 5887 if (!BP_IS_EMBEDDED(bp) && 5888 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5889 size_t size = BP_GET_PSIZE(bp); 5890 abd_t *abd = abd_alloc(size, B_FALSE); 5891 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5892 5893 /* If it's an intent log block, failure is expected. */ 5894 if (zb->zb_level == ZB_ZIL_LEVEL) 5895 flags |= ZIO_FLAG_SPECULATIVE; 5896 5897 mutex_enter(&spa->spa_scrub_lock); 5898 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5899 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5900 spa->spa_load_verify_bytes += size; 5901 mutex_exit(&spa->spa_scrub_lock); 5902 5903 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5904 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5905 } 5906 5907 zcb->zcb_readfails = 0; 5908 5909 /* only call gethrtime() every 100 blocks */ 5910 static int iters; 5911 if (++iters > 100) 5912 iters = 0; 5913 else 5914 return (0); 5915 5916 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5917 uint64_t now = gethrtime(); 5918 char buf[10]; 5919 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5920 uint64_t kb_per_sec = 5921 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5922 uint64_t sec_remaining = 5923 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5924 5925 /* make sure nicenum has enough space */ 5926 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5927 5928 zfs_nicebytes(bytes, buf, sizeof (buf)); 5929 (void) fprintf(stderr, 5930 "\r%5s completed (%4"PRIu64"MB/s) " 5931 "estimated time remaining: " 5932 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5933 buf, kb_per_sec / 1024, 5934 sec_remaining / 60 / 60, 5935 sec_remaining / 60 % 60, 5936 sec_remaining % 60); 5937 5938 zcb->zcb_lastprint = now; 5939 } 5940 5941 return (0); 5942 } 5943 5944 static void 5945 zdb_leak(void *arg, uint64_t start, uint64_t size) 5946 { 5947 vdev_t *vd = arg; 5948 5949 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5950 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5951 } 5952 5953 static metaslab_ops_t zdb_metaslab_ops = { 5954 NULL /* alloc */ 5955 }; 5956 5957 static int 5958 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5959 uint64_t txg, void *arg) 5960 { 5961 spa_vdev_removal_t *svr = arg; 5962 5963 uint64_t offset = sme->sme_offset; 5964 uint64_t size = sme->sme_run; 5965 5966 /* skip vdevs we don't care about */ 5967 if (sme->sme_vdev != svr->svr_vdev_id) 5968 return (0); 5969 5970 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5971 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5972 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5973 5974 if (txg < metaslab_unflushed_txg(ms)) 5975 return (0); 5976 5977 if (sme->sme_type == SM_ALLOC) 5978 range_tree_add(svr->svr_allocd_segs, offset, size); 5979 else 5980 range_tree_remove(svr->svr_allocd_segs, offset, size); 5981 5982 return (0); 5983 } 5984 5985 static void 5986 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5987 uint64_t size, void *arg) 5988 { 5989 (void) inner_offset, (void) arg; 5990 5991 /* 5992 * This callback was called through a remap from 5993 * a device being removed. Therefore, the vdev that 5994 * this callback is applied to is a concrete 5995 * vdev. 5996 */ 5997 ASSERT(vdev_is_concrete(vd)); 5998 5999 VERIFY0(metaslab_claim_impl(vd, offset, size, 6000 spa_min_claim_txg(vd->vdev_spa))); 6001 } 6002 6003 static void 6004 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6005 { 6006 vdev_t *vd = arg; 6007 6008 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6009 claim_segment_impl_cb, NULL); 6010 } 6011 6012 /* 6013 * After accounting for all allocated blocks that are directly referenced, 6014 * we might have missed a reference to a block from a partially complete 6015 * (and thus unused) indirect mapping object. We perform a secondary pass 6016 * through the metaslabs we have already mapped and claim the destination 6017 * blocks. 6018 */ 6019 static void 6020 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6021 { 6022 if (dump_opt['L']) 6023 return; 6024 6025 if (spa->spa_vdev_removal == NULL) 6026 return; 6027 6028 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6029 6030 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6031 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6032 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6033 6034 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6035 6036 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6037 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6038 metaslab_t *msp = vd->vdev_ms[msi]; 6039 6040 ASSERT0(range_tree_space(allocs)); 6041 if (msp->ms_sm != NULL) 6042 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6043 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6044 } 6045 range_tree_destroy(allocs); 6046 6047 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6048 6049 /* 6050 * Clear everything past what has been synced, 6051 * because we have not allocated mappings for 6052 * it yet. 6053 */ 6054 range_tree_clear(svr->svr_allocd_segs, 6055 vdev_indirect_mapping_max_offset(vim), 6056 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6057 6058 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6059 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6060 6061 spa_config_exit(spa, SCL_CONFIG, FTAG); 6062 } 6063 6064 static int 6065 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6066 dmu_tx_t *tx) 6067 { 6068 (void) tx; 6069 zdb_cb_t *zcb = arg; 6070 spa_t *spa = zcb->zcb_spa; 6071 vdev_t *vd; 6072 const dva_t *dva = &bp->blk_dva[0]; 6073 6074 ASSERT(!bp_freed); 6075 ASSERT(!dump_opt['L']); 6076 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6077 6078 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6079 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6080 ASSERT3P(vd, !=, NULL); 6081 spa_config_exit(spa, SCL_VDEV, FTAG); 6082 6083 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6084 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6085 6086 vdev_indirect_mapping_increment_obsolete_count( 6087 vd->vdev_indirect_mapping, 6088 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6089 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6090 6091 return (0); 6092 } 6093 6094 static uint32_t * 6095 zdb_load_obsolete_counts(vdev_t *vd) 6096 { 6097 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6098 spa_t *spa = vd->vdev_spa; 6099 spa_condensing_indirect_phys_t *scip = 6100 &spa->spa_condensing_indirect_phys; 6101 uint64_t obsolete_sm_object; 6102 uint32_t *counts; 6103 6104 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6105 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6106 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6107 if (vd->vdev_obsolete_sm != NULL) { 6108 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6109 vd->vdev_obsolete_sm); 6110 } 6111 if (scip->scip_vdev == vd->vdev_id && 6112 scip->scip_prev_obsolete_sm_object != 0) { 6113 space_map_t *prev_obsolete_sm = NULL; 6114 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6115 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6116 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6117 prev_obsolete_sm); 6118 space_map_close(prev_obsolete_sm); 6119 } 6120 return (counts); 6121 } 6122 6123 static void 6124 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6125 { 6126 ddt_bookmark_t ddb = {0}; 6127 ddt_entry_t dde; 6128 int error; 6129 int p; 6130 6131 ASSERT(!dump_opt['L']); 6132 6133 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6134 blkptr_t blk; 6135 ddt_phys_t *ddp = dde.dde_phys; 6136 6137 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6138 return; 6139 6140 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6141 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6142 VERIFY(ddt); 6143 6144 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6145 if (ddp->ddp_phys_birth == 0) 6146 continue; 6147 ddt_bp_create(ddb.ddb_checksum, 6148 &dde.dde_key, ddp, &blk); 6149 if (p == DDT_PHYS_DITTO) { 6150 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6151 } else { 6152 zcb->zcb_dedup_asize += 6153 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6154 zcb->zcb_dedup_blocks++; 6155 } 6156 } 6157 6158 ddt_enter(ddt); 6159 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6160 ddt_exit(ddt); 6161 } 6162 6163 ASSERT(error == ENOENT); 6164 } 6165 6166 typedef struct checkpoint_sm_exclude_entry_arg { 6167 vdev_t *cseea_vd; 6168 uint64_t cseea_checkpoint_size; 6169 } checkpoint_sm_exclude_entry_arg_t; 6170 6171 static int 6172 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6173 { 6174 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6175 vdev_t *vd = cseea->cseea_vd; 6176 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6177 uint64_t end = sme->sme_offset + sme->sme_run; 6178 6179 ASSERT(sme->sme_type == SM_FREE); 6180 6181 /* 6182 * Since the vdev_checkpoint_sm exists in the vdev level 6183 * and the ms_sm space maps exist in the metaslab level, 6184 * an entry in the checkpoint space map could theoretically 6185 * cross the boundaries of the metaslab that it belongs. 6186 * 6187 * In reality, because of the way that we populate and 6188 * manipulate the checkpoint's space maps currently, 6189 * there shouldn't be any entries that cross metaslabs. 6190 * Hence the assertion below. 6191 * 6192 * That said, there is no fundamental requirement that 6193 * the checkpoint's space map entries should not cross 6194 * metaslab boundaries. So if needed we could add code 6195 * that handles metaslab-crossing segments in the future. 6196 */ 6197 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6198 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6199 6200 /* 6201 * By removing the entry from the allocated segments we 6202 * also verify that the entry is there to begin with. 6203 */ 6204 mutex_enter(&ms->ms_lock); 6205 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6206 mutex_exit(&ms->ms_lock); 6207 6208 cseea->cseea_checkpoint_size += sme->sme_run; 6209 return (0); 6210 } 6211 6212 static void 6213 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6214 { 6215 spa_t *spa = vd->vdev_spa; 6216 space_map_t *checkpoint_sm = NULL; 6217 uint64_t checkpoint_sm_obj; 6218 6219 /* 6220 * If there is no vdev_top_zap, we are in a pool whose 6221 * version predates the pool checkpoint feature. 6222 */ 6223 if (vd->vdev_top_zap == 0) 6224 return; 6225 6226 /* 6227 * If there is no reference of the vdev_checkpoint_sm in 6228 * the vdev_top_zap, then one of the following scenarios 6229 * is true: 6230 * 6231 * 1] There is no checkpoint 6232 * 2] There is a checkpoint, but no checkpointed blocks 6233 * have been freed yet 6234 * 3] The current vdev is indirect 6235 * 6236 * In these cases we return immediately. 6237 */ 6238 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6239 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6240 return; 6241 6242 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6243 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6244 &checkpoint_sm_obj)); 6245 6246 checkpoint_sm_exclude_entry_arg_t cseea; 6247 cseea.cseea_vd = vd; 6248 cseea.cseea_checkpoint_size = 0; 6249 6250 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6251 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6252 6253 VERIFY0(space_map_iterate(checkpoint_sm, 6254 space_map_length(checkpoint_sm), 6255 checkpoint_sm_exclude_entry_cb, &cseea)); 6256 space_map_close(checkpoint_sm); 6257 6258 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6259 } 6260 6261 static void 6262 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6263 { 6264 ASSERT(!dump_opt['L']); 6265 6266 vdev_t *rvd = spa->spa_root_vdev; 6267 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6268 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6269 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6270 } 6271 } 6272 6273 static int 6274 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6275 uint64_t txg, void *arg) 6276 { 6277 int64_t *ualloc_space = arg; 6278 6279 uint64_t offset = sme->sme_offset; 6280 uint64_t vdev_id = sme->sme_vdev; 6281 6282 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6283 if (!vdev_is_concrete(vd)) 6284 return (0); 6285 6286 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6287 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6288 6289 if (txg < metaslab_unflushed_txg(ms)) 6290 return (0); 6291 6292 if (sme->sme_type == SM_ALLOC) 6293 *ualloc_space += sme->sme_run; 6294 else 6295 *ualloc_space -= sme->sme_run; 6296 6297 return (0); 6298 } 6299 6300 static int64_t 6301 get_unflushed_alloc_space(spa_t *spa) 6302 { 6303 if (dump_opt['L']) 6304 return (0); 6305 6306 int64_t ualloc_space = 0; 6307 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6308 &ualloc_space); 6309 return (ualloc_space); 6310 } 6311 6312 static int 6313 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6314 { 6315 maptype_t *uic_maptype = arg; 6316 6317 uint64_t offset = sme->sme_offset; 6318 uint64_t size = sme->sme_run; 6319 uint64_t vdev_id = sme->sme_vdev; 6320 6321 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6322 6323 /* skip indirect vdevs */ 6324 if (!vdev_is_concrete(vd)) 6325 return (0); 6326 6327 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6328 6329 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6330 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6331 6332 if (txg < metaslab_unflushed_txg(ms)) 6333 return (0); 6334 6335 if (*uic_maptype == sme->sme_type) 6336 range_tree_add(ms->ms_allocatable, offset, size); 6337 else 6338 range_tree_remove(ms->ms_allocatable, offset, size); 6339 6340 return (0); 6341 } 6342 6343 static void 6344 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6345 { 6346 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6347 } 6348 6349 static void 6350 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6351 { 6352 vdev_t *rvd = spa->spa_root_vdev; 6353 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6354 vdev_t *vd = rvd->vdev_child[i]; 6355 6356 ASSERT3U(i, ==, vd->vdev_id); 6357 6358 if (vd->vdev_ops == &vdev_indirect_ops) 6359 continue; 6360 6361 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6362 metaslab_t *msp = vd->vdev_ms[m]; 6363 6364 (void) fprintf(stderr, 6365 "\rloading concrete vdev %llu, " 6366 "metaslab %llu of %llu ...", 6367 (longlong_t)vd->vdev_id, 6368 (longlong_t)msp->ms_id, 6369 (longlong_t)vd->vdev_ms_count); 6370 6371 mutex_enter(&msp->ms_lock); 6372 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6373 6374 /* 6375 * We don't want to spend the CPU manipulating the 6376 * size-ordered tree, so clear the range_tree ops. 6377 */ 6378 msp->ms_allocatable->rt_ops = NULL; 6379 6380 if (msp->ms_sm != NULL) { 6381 VERIFY0(space_map_load(msp->ms_sm, 6382 msp->ms_allocatable, maptype)); 6383 } 6384 if (!msp->ms_loaded) 6385 msp->ms_loaded = B_TRUE; 6386 mutex_exit(&msp->ms_lock); 6387 } 6388 } 6389 6390 load_unflushed_to_ms_allocatables(spa, maptype); 6391 } 6392 6393 /* 6394 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6395 * index in vim_entries that has the first entry in this metaslab. 6396 * On return, it will be set to the first entry after this metaslab. 6397 */ 6398 static void 6399 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6400 uint64_t *vim_idxp) 6401 { 6402 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6403 6404 mutex_enter(&msp->ms_lock); 6405 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6406 6407 /* 6408 * We don't want to spend the CPU manipulating the 6409 * size-ordered tree, so clear the range_tree ops. 6410 */ 6411 msp->ms_allocatable->rt_ops = NULL; 6412 6413 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6414 (*vim_idxp)++) { 6415 vdev_indirect_mapping_entry_phys_t *vimep = 6416 &vim->vim_entries[*vim_idxp]; 6417 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6418 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6419 ASSERT3U(ent_offset, >=, msp->ms_start); 6420 if (ent_offset >= msp->ms_start + msp->ms_size) 6421 break; 6422 6423 /* 6424 * Mappings do not cross metaslab boundaries, 6425 * because we create them by walking the metaslabs. 6426 */ 6427 ASSERT3U(ent_offset + ent_len, <=, 6428 msp->ms_start + msp->ms_size); 6429 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6430 } 6431 6432 if (!msp->ms_loaded) 6433 msp->ms_loaded = B_TRUE; 6434 mutex_exit(&msp->ms_lock); 6435 } 6436 6437 static void 6438 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6439 { 6440 ASSERT(!dump_opt['L']); 6441 6442 vdev_t *rvd = spa->spa_root_vdev; 6443 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6444 vdev_t *vd = rvd->vdev_child[c]; 6445 6446 ASSERT3U(c, ==, vd->vdev_id); 6447 6448 if (vd->vdev_ops != &vdev_indirect_ops) 6449 continue; 6450 6451 /* 6452 * Note: we don't check for mapping leaks on 6453 * removing vdevs because their ms_allocatable's 6454 * are used to look for leaks in allocated space. 6455 */ 6456 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6457 6458 /* 6459 * Normally, indirect vdevs don't have any 6460 * metaslabs. We want to set them up for 6461 * zio_claim(). 6462 */ 6463 vdev_metaslab_group_create(vd); 6464 VERIFY0(vdev_metaslab_init(vd, 0)); 6465 6466 vdev_indirect_mapping_t *vim __maybe_unused = 6467 vd->vdev_indirect_mapping; 6468 uint64_t vim_idx = 0; 6469 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6470 6471 (void) fprintf(stderr, 6472 "\rloading indirect vdev %llu, " 6473 "metaslab %llu of %llu ...", 6474 (longlong_t)vd->vdev_id, 6475 (longlong_t)vd->vdev_ms[m]->ms_id, 6476 (longlong_t)vd->vdev_ms_count); 6477 6478 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6479 &vim_idx); 6480 } 6481 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6482 } 6483 } 6484 6485 static void 6486 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6487 { 6488 zcb->zcb_spa = spa; 6489 6490 if (dump_opt['L']) 6491 return; 6492 6493 dsl_pool_t *dp = spa->spa_dsl_pool; 6494 vdev_t *rvd = spa->spa_root_vdev; 6495 6496 /* 6497 * We are going to be changing the meaning of the metaslab's 6498 * ms_allocatable. Ensure that the allocator doesn't try to 6499 * use the tree. 6500 */ 6501 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6502 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6503 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6504 6505 zcb->zcb_vd_obsolete_counts = 6506 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6507 UMEM_NOFAIL); 6508 6509 /* 6510 * For leak detection, we overload the ms_allocatable trees 6511 * to contain allocated segments instead of free segments. 6512 * As a result, we can't use the normal metaslab_load/unload 6513 * interfaces. 6514 */ 6515 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6516 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6517 6518 /* 6519 * On load_concrete_ms_allocatable_trees() we loaded all the 6520 * allocated entries from the ms_sm to the ms_allocatable for 6521 * each metaslab. If the pool has a checkpoint or is in the 6522 * middle of discarding a checkpoint, some of these blocks 6523 * may have been freed but their ms_sm may not have been 6524 * updated because they are referenced by the checkpoint. In 6525 * order to avoid false-positives during leak-detection, we 6526 * go through the vdev's checkpoint space map and exclude all 6527 * its entries from their relevant ms_allocatable. 6528 * 6529 * We also aggregate the space held by the checkpoint and add 6530 * it to zcb_checkpoint_size. 6531 * 6532 * Note that at this point we are also verifying that all the 6533 * entries on the checkpoint_sm are marked as allocated in 6534 * the ms_sm of their relevant metaslab. 6535 * [see comment in checkpoint_sm_exclude_entry_cb()] 6536 */ 6537 zdb_leak_init_exclude_checkpoint(spa, zcb); 6538 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6539 6540 /* for cleaner progress output */ 6541 (void) fprintf(stderr, "\n"); 6542 6543 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6544 ASSERT(spa_feature_is_enabled(spa, 6545 SPA_FEATURE_DEVICE_REMOVAL)); 6546 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6547 increment_indirect_mapping_cb, zcb, NULL); 6548 } 6549 6550 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6551 zdb_ddt_leak_init(spa, zcb); 6552 spa_config_exit(spa, SCL_CONFIG, FTAG); 6553 } 6554 6555 static boolean_t 6556 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6557 { 6558 boolean_t leaks = B_FALSE; 6559 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6560 uint64_t total_leaked = 0; 6561 boolean_t are_precise = B_FALSE; 6562 6563 ASSERT(vim != NULL); 6564 6565 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6566 vdev_indirect_mapping_entry_phys_t *vimep = 6567 &vim->vim_entries[i]; 6568 uint64_t obsolete_bytes = 0; 6569 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6570 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6571 6572 /* 6573 * This is not very efficient but it's easy to 6574 * verify correctness. 6575 */ 6576 for (uint64_t inner_offset = 0; 6577 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6578 inner_offset += 1ULL << vd->vdev_ashift) { 6579 if (range_tree_contains(msp->ms_allocatable, 6580 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6581 obsolete_bytes += 1ULL << vd->vdev_ashift; 6582 } 6583 } 6584 6585 int64_t bytes_leaked = obsolete_bytes - 6586 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6587 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6588 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6589 6590 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6591 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6592 (void) printf("obsolete indirect mapping count " 6593 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6594 (u_longlong_t)vd->vdev_id, 6595 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6596 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6597 (u_longlong_t)bytes_leaked); 6598 } 6599 total_leaked += ABS(bytes_leaked); 6600 } 6601 6602 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6603 if (!are_precise && total_leaked > 0) { 6604 int pct_leaked = total_leaked * 100 / 6605 vdev_indirect_mapping_bytes_mapped(vim); 6606 (void) printf("cannot verify obsolete indirect mapping " 6607 "counts of vdev %llu because precise feature was not " 6608 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6609 "unreferenced\n", 6610 (u_longlong_t)vd->vdev_id, pct_leaked, 6611 (u_longlong_t)total_leaked); 6612 } else if (total_leaked > 0) { 6613 (void) printf("obsolete indirect mapping count mismatch " 6614 "for vdev %llu -- %llx total bytes mismatched\n", 6615 (u_longlong_t)vd->vdev_id, 6616 (u_longlong_t)total_leaked); 6617 leaks |= B_TRUE; 6618 } 6619 6620 vdev_indirect_mapping_free_obsolete_counts(vim, 6621 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6622 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6623 6624 return (leaks); 6625 } 6626 6627 static boolean_t 6628 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6629 { 6630 if (dump_opt['L']) 6631 return (B_FALSE); 6632 6633 boolean_t leaks = B_FALSE; 6634 vdev_t *rvd = spa->spa_root_vdev; 6635 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6636 vdev_t *vd = rvd->vdev_child[c]; 6637 6638 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6639 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6640 } 6641 6642 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6643 metaslab_t *msp = vd->vdev_ms[m]; 6644 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6645 spa_embedded_log_class(spa)) ? 6646 vd->vdev_log_mg : vd->vdev_mg); 6647 6648 /* 6649 * ms_allocatable has been overloaded 6650 * to contain allocated segments. Now that 6651 * we finished traversing all blocks, any 6652 * block that remains in the ms_allocatable 6653 * represents an allocated block that we 6654 * did not claim during the traversal. 6655 * Claimed blocks would have been removed 6656 * from the ms_allocatable. For indirect 6657 * vdevs, space remaining in the tree 6658 * represents parts of the mapping that are 6659 * not referenced, which is not a bug. 6660 */ 6661 if (vd->vdev_ops == &vdev_indirect_ops) { 6662 range_tree_vacate(msp->ms_allocatable, 6663 NULL, NULL); 6664 } else { 6665 range_tree_vacate(msp->ms_allocatable, 6666 zdb_leak, vd); 6667 } 6668 if (msp->ms_loaded) { 6669 msp->ms_loaded = B_FALSE; 6670 } 6671 } 6672 } 6673 6674 umem_free(zcb->zcb_vd_obsolete_counts, 6675 rvd->vdev_children * sizeof (uint32_t *)); 6676 zcb->zcb_vd_obsolete_counts = NULL; 6677 6678 return (leaks); 6679 } 6680 6681 static int 6682 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6683 { 6684 (void) tx; 6685 zdb_cb_t *zcb = arg; 6686 6687 if (dump_opt['b'] >= 5) { 6688 char blkbuf[BP_SPRINTF_LEN]; 6689 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6690 (void) printf("[%s] %s\n", 6691 "deferred free", blkbuf); 6692 } 6693 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6694 return (0); 6695 } 6696 6697 /* 6698 * Iterate over livelists which have been destroyed by the user but 6699 * are still present in the MOS, waiting to be freed 6700 */ 6701 static void 6702 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6703 { 6704 objset_t *mos = spa->spa_meta_objset; 6705 uint64_t zap_obj; 6706 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6707 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6708 if (err == ENOENT) 6709 return; 6710 ASSERT0(err); 6711 6712 zap_cursor_t zc; 6713 zap_attribute_t attr; 6714 dsl_deadlist_t ll; 6715 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6716 ll.dl_os = NULL; 6717 for (zap_cursor_init(&zc, mos, zap_obj); 6718 zap_cursor_retrieve(&zc, &attr) == 0; 6719 (void) zap_cursor_advance(&zc)) { 6720 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6721 func(&ll, arg); 6722 dsl_deadlist_close(&ll); 6723 } 6724 zap_cursor_fini(&zc); 6725 } 6726 6727 static int 6728 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6729 dmu_tx_t *tx) 6730 { 6731 ASSERT(!bp_freed); 6732 return (count_block_cb(arg, bp, tx)); 6733 } 6734 6735 static int 6736 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6737 { 6738 zdb_cb_t *zbc = args; 6739 bplist_t blks; 6740 bplist_create(&blks); 6741 /* determine which blocks have been alloc'd but not freed */ 6742 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6743 /* count those blocks */ 6744 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6745 bplist_destroy(&blks); 6746 return (0); 6747 } 6748 6749 static void 6750 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6751 { 6752 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6753 } 6754 6755 /* 6756 * Count the blocks in the livelists that have been destroyed by the user 6757 * but haven't yet been freed. 6758 */ 6759 static void 6760 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6761 { 6762 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6763 } 6764 6765 static void 6766 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6767 { 6768 ASSERT3P(arg, ==, NULL); 6769 global_feature_count[SPA_FEATURE_LIVELIST]++; 6770 dump_blkptr_list(ll, "Deleted Livelist"); 6771 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6772 } 6773 6774 /* 6775 * Print out, register object references to, and increment feature counts for 6776 * livelists that have been destroyed by the user but haven't yet been freed. 6777 */ 6778 static void 6779 deleted_livelists_dump_mos(spa_t *spa) 6780 { 6781 uint64_t zap_obj; 6782 objset_t *mos = spa->spa_meta_objset; 6783 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6784 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6785 if (err == ENOENT) 6786 return; 6787 mos_obj_refd(zap_obj); 6788 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6789 } 6790 6791 static int 6792 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6793 { 6794 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6795 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6796 int cmp; 6797 6798 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6799 if (cmp == 0) 6800 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6801 6802 return (cmp); 6803 } 6804 6805 static int 6806 dump_block_stats(spa_t *spa) 6807 { 6808 zdb_cb_t *zcb; 6809 zdb_blkstats_t *zb, *tzb; 6810 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6811 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6812 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6813 boolean_t leaks = B_FALSE; 6814 int e, c, err; 6815 bp_embedded_type_t i; 6816 6817 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6818 6819 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6820 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6821 sizeof (zdb_brt_entry_t), 6822 offsetof(zdb_brt_entry_t, zbre_node)); 6823 zcb->zcb_brt_is_active = B_TRUE; 6824 } 6825 6826 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6827 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6828 (dump_opt['c'] == 1) ? "metadata " : "", 6829 dump_opt['c'] ? "checksums " : "", 6830 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6831 !dump_opt['L'] ? "nothing leaked " : ""); 6832 6833 /* 6834 * When leak detection is enabled we load all space maps as SM_ALLOC 6835 * maps, then traverse the pool claiming each block we discover. If 6836 * the pool is perfectly consistent, the segment trees will be empty 6837 * when we're done. Anything left over is a leak; any block we can't 6838 * claim (because it's not part of any space map) is a double 6839 * allocation, reference to a freed block, or an unclaimed log block. 6840 * 6841 * When leak detection is disabled (-L option) we still traverse the 6842 * pool claiming each block we discover, but we skip opening any space 6843 * maps. 6844 */ 6845 zdb_leak_init(spa, zcb); 6846 6847 /* 6848 * If there's a deferred-free bplist, process that first. 6849 */ 6850 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6851 bpobj_count_block_cb, zcb, NULL); 6852 6853 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6854 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6855 bpobj_count_block_cb, zcb, NULL); 6856 } 6857 6858 zdb_claim_removing(spa, zcb); 6859 6860 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6861 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6862 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6863 zcb, NULL)); 6864 } 6865 6866 deleted_livelists_count_blocks(spa, zcb); 6867 6868 if (dump_opt['c'] > 1) 6869 flags |= TRAVERSE_PREFETCH_DATA; 6870 6871 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6872 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6873 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6874 zcb->zcb_totalasize += 6875 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6876 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6877 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6878 6879 /* 6880 * If we've traversed the data blocks then we need to wait for those 6881 * I/Os to complete. We leverage "The Godfather" zio to wait on 6882 * all async I/Os to complete. 6883 */ 6884 if (dump_opt['c']) { 6885 for (c = 0; c < max_ncpus; c++) { 6886 (void) zio_wait(spa->spa_async_zio_root[c]); 6887 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6888 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6889 ZIO_FLAG_GODFATHER); 6890 } 6891 } 6892 ASSERT0(spa->spa_load_verify_bytes); 6893 6894 /* 6895 * Done after zio_wait() since zcb_haderrors is modified in 6896 * zdb_blkptr_done() 6897 */ 6898 zcb->zcb_haderrors |= err; 6899 6900 if (zcb->zcb_haderrors) { 6901 (void) printf("\nError counts:\n\n"); 6902 (void) printf("\t%5s %s\n", "errno", "count"); 6903 for (e = 0; e < 256; e++) { 6904 if (zcb->zcb_errors[e] != 0) { 6905 (void) printf("\t%5d %llu\n", 6906 e, (u_longlong_t)zcb->zcb_errors[e]); 6907 } 6908 } 6909 } 6910 6911 /* 6912 * Report any leaked segments. 6913 */ 6914 leaks |= zdb_leak_fini(spa, zcb); 6915 6916 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6917 6918 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6919 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6920 6921 total_alloc = norm_alloc + 6922 metaslab_class_get_alloc(spa_log_class(spa)) + 6923 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6924 metaslab_class_get_alloc(spa_special_class(spa)) + 6925 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6926 get_unflushed_alloc_space(spa); 6927 total_found = 6928 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6929 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6930 6931 if (total_found == total_alloc && !dump_opt['L']) { 6932 (void) printf("\n\tNo leaks (block sum matches space" 6933 " maps exactly)\n"); 6934 } else if (!dump_opt['L']) { 6935 (void) printf("block traversal size %llu != alloc %llu " 6936 "(%s %lld)\n", 6937 (u_longlong_t)total_found, 6938 (u_longlong_t)total_alloc, 6939 (dump_opt['L']) ? "unreachable" : "leaked", 6940 (longlong_t)(total_alloc - total_found)); 6941 leaks = B_TRUE; 6942 } 6943 6944 if (tzb->zb_count == 0) { 6945 umem_free(zcb, sizeof (zdb_cb_t)); 6946 return (2); 6947 } 6948 6949 (void) printf("\n"); 6950 (void) printf("\t%-16s %14llu\n", "bp count:", 6951 (u_longlong_t)tzb->zb_count); 6952 (void) printf("\t%-16s %14llu\n", "ganged count:", 6953 (longlong_t)tzb->zb_gangs); 6954 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6955 (u_longlong_t)tzb->zb_lsize, 6956 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6957 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6958 "bp physical:", (u_longlong_t)tzb->zb_psize, 6959 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6960 (double)tzb->zb_lsize / tzb->zb_psize); 6961 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6962 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6963 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6964 (double)tzb->zb_lsize / tzb->zb_asize); 6965 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6966 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6967 (u_longlong_t)zcb->zcb_dedup_blocks, 6968 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6969 (void) printf("\t%-16s %14llu count: %6llu\n", 6970 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6971 (u_longlong_t)zcb->zcb_clone_blocks); 6972 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6973 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6974 6975 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6976 uint64_t alloc = metaslab_class_get_alloc( 6977 spa_special_class(spa)); 6978 uint64_t space = metaslab_class_get_space( 6979 spa_special_class(spa)); 6980 6981 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6982 "Special class", (u_longlong_t)alloc, 6983 100.0 * alloc / space); 6984 } 6985 6986 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6987 uint64_t alloc = metaslab_class_get_alloc( 6988 spa_dedup_class(spa)); 6989 uint64_t space = metaslab_class_get_space( 6990 spa_dedup_class(spa)); 6991 6992 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6993 "Dedup class", (u_longlong_t)alloc, 6994 100.0 * alloc / space); 6995 } 6996 6997 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6998 uint64_t alloc = metaslab_class_get_alloc( 6999 spa_embedded_log_class(spa)); 7000 uint64_t space = metaslab_class_get_space( 7001 spa_embedded_log_class(spa)); 7002 7003 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7004 "Embedded log class", (u_longlong_t)alloc, 7005 100.0 * alloc / space); 7006 } 7007 7008 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7009 if (zcb->zcb_embedded_blocks[i] == 0) 7010 continue; 7011 (void) printf("\n"); 7012 (void) printf("\tadditional, non-pointer bps of type %u: " 7013 "%10llu\n", 7014 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7015 7016 if (dump_opt['b'] >= 3) { 7017 (void) printf("\t number of (compressed) bytes: " 7018 "number of bps\n"); 7019 dump_histogram(zcb->zcb_embedded_histogram[i], 7020 sizeof (zcb->zcb_embedded_histogram[i]) / 7021 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7022 } 7023 } 7024 7025 if (tzb->zb_ditto_samevdev != 0) { 7026 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7027 (longlong_t)tzb->zb_ditto_samevdev); 7028 } 7029 if (tzb->zb_ditto_same_ms != 0) { 7030 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7031 (longlong_t)tzb->zb_ditto_same_ms); 7032 } 7033 7034 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7035 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7036 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7037 7038 if (vim == NULL) { 7039 continue; 7040 } 7041 7042 char mem[32]; 7043 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7044 mem, vdev_indirect_mapping_size(vim)); 7045 7046 (void) printf("\tindirect vdev id %llu has %llu segments " 7047 "(%s in memory)\n", 7048 (longlong_t)vd->vdev_id, 7049 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7050 } 7051 7052 if (dump_opt['b'] >= 2) { 7053 int l, t, level; 7054 char csize[32], lsize[32], psize[32], asize[32]; 7055 char avg[32], gang[32]; 7056 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7057 "\t avg\t comp\t%%Total\tType\n"); 7058 7059 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7060 UMEM_NOFAIL); 7061 7062 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7063 const char *typename; 7064 7065 /* make sure nicenum has enough space */ 7066 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7067 "csize truncated"); 7068 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7069 "lsize truncated"); 7070 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7071 "psize truncated"); 7072 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7073 "asize truncated"); 7074 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7075 "avg truncated"); 7076 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7077 "gang truncated"); 7078 7079 if (t < DMU_OT_NUMTYPES) 7080 typename = dmu_ot[t].ot_name; 7081 else 7082 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7083 7084 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7085 (void) printf("%6s\t%5s\t%5s\t%5s" 7086 "\t%5s\t%5s\t%6s\t%s\n", 7087 "-", 7088 "-", 7089 "-", 7090 "-", 7091 "-", 7092 "-", 7093 "-", 7094 typename); 7095 continue; 7096 } 7097 7098 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7099 level = (l == -1 ? ZB_TOTAL : l); 7100 zb = &zcb->zcb_type[level][t]; 7101 7102 if (zb->zb_asize == 0) 7103 continue; 7104 7105 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7106 (level > 0 || DMU_OT_IS_METADATA(t))) { 7107 mdstats->zb_count += zb->zb_count; 7108 mdstats->zb_lsize += zb->zb_lsize; 7109 mdstats->zb_psize += zb->zb_psize; 7110 mdstats->zb_asize += zb->zb_asize; 7111 mdstats->zb_gangs += zb->zb_gangs; 7112 } 7113 7114 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7115 continue; 7116 7117 if (level == 0 && zb->zb_asize == 7118 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7119 continue; 7120 7121 zdb_nicenum(zb->zb_count, csize, 7122 sizeof (csize)); 7123 zdb_nicenum(zb->zb_lsize, lsize, 7124 sizeof (lsize)); 7125 zdb_nicenum(zb->zb_psize, psize, 7126 sizeof (psize)); 7127 zdb_nicenum(zb->zb_asize, asize, 7128 sizeof (asize)); 7129 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7130 sizeof (avg)); 7131 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7132 7133 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7134 "\t%5.2f\t%6.2f\t", 7135 csize, lsize, psize, asize, avg, 7136 (double)zb->zb_lsize / zb->zb_psize, 7137 100.0 * zb->zb_asize / tzb->zb_asize); 7138 7139 if (level == ZB_TOTAL) 7140 (void) printf("%s\n", typename); 7141 else 7142 (void) printf(" L%d %s\n", 7143 level, typename); 7144 7145 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7146 (void) printf("\t number of ganged " 7147 "blocks: %s\n", gang); 7148 } 7149 7150 if (dump_opt['b'] >= 4) { 7151 (void) printf("psize " 7152 "(in 512-byte sectors): " 7153 "number of blocks\n"); 7154 dump_histogram(zb->zb_psize_histogram, 7155 PSIZE_HISTO_SIZE, 0); 7156 } 7157 } 7158 } 7159 zdb_nicenum(mdstats->zb_count, csize, 7160 sizeof (csize)); 7161 zdb_nicenum(mdstats->zb_lsize, lsize, 7162 sizeof (lsize)); 7163 zdb_nicenum(mdstats->zb_psize, psize, 7164 sizeof (psize)); 7165 zdb_nicenum(mdstats->zb_asize, asize, 7166 sizeof (asize)); 7167 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7168 sizeof (avg)); 7169 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7170 7171 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7172 "\t%5.2f\t%6.2f\t", 7173 csize, lsize, psize, asize, avg, 7174 (double)mdstats->zb_lsize / mdstats->zb_psize, 7175 100.0 * mdstats->zb_asize / tzb->zb_asize); 7176 (void) printf("%s\n", "Metadata Total"); 7177 7178 /* Output a table summarizing block sizes in the pool */ 7179 if (dump_opt['b'] >= 2) { 7180 dump_size_histograms(zcb); 7181 } 7182 7183 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7184 } 7185 7186 (void) printf("\n"); 7187 7188 if (leaks) { 7189 umem_free(zcb, sizeof (zdb_cb_t)); 7190 return (2); 7191 } 7192 7193 if (zcb->zcb_haderrors) { 7194 umem_free(zcb, sizeof (zdb_cb_t)); 7195 return (3); 7196 } 7197 7198 umem_free(zcb, sizeof (zdb_cb_t)); 7199 return (0); 7200 } 7201 7202 typedef struct zdb_ddt_entry { 7203 /* key must be first for ddt_key_compare */ 7204 ddt_key_t zdde_key; 7205 uint64_t zdde_ref_blocks; 7206 uint64_t zdde_ref_lsize; 7207 uint64_t zdde_ref_psize; 7208 uint64_t zdde_ref_dsize; 7209 avl_node_t zdde_node; 7210 } zdb_ddt_entry_t; 7211 7212 static int 7213 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7214 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7215 { 7216 (void) zilog, (void) dnp; 7217 avl_tree_t *t = arg; 7218 avl_index_t where; 7219 zdb_ddt_entry_t *zdde, zdde_search; 7220 7221 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7222 BP_IS_EMBEDDED(bp)) 7223 return (0); 7224 7225 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7226 (void) printf("traversing objset %llu, %llu objects, " 7227 "%lu blocks so far\n", 7228 (u_longlong_t)zb->zb_objset, 7229 (u_longlong_t)BP_GET_FILL(bp), 7230 avl_numnodes(t)); 7231 } 7232 7233 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7234 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7235 return (0); 7236 7237 ddt_key_fill(&zdde_search.zdde_key, bp); 7238 7239 zdde = avl_find(t, &zdde_search, &where); 7240 7241 if (zdde == NULL) { 7242 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7243 zdde->zdde_key = zdde_search.zdde_key; 7244 avl_insert(t, zdde, where); 7245 } 7246 7247 zdde->zdde_ref_blocks += 1; 7248 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7249 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7250 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7251 7252 return (0); 7253 } 7254 7255 static void 7256 dump_simulated_ddt(spa_t *spa) 7257 { 7258 avl_tree_t t; 7259 void *cookie = NULL; 7260 zdb_ddt_entry_t *zdde; 7261 ddt_histogram_t ddh_total = {{{0}}}; 7262 ddt_stat_t dds_total = {0}; 7263 7264 avl_create(&t, ddt_key_compare, 7265 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7266 7267 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7268 7269 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7270 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7271 7272 spa_config_exit(spa, SCL_CONFIG, FTAG); 7273 7274 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7275 ddt_stat_t dds; 7276 uint64_t refcnt = zdde->zdde_ref_blocks; 7277 ASSERT(refcnt != 0); 7278 7279 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7280 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7281 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7282 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7283 7284 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7285 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7286 dds.dds_ref_psize = zdde->zdde_ref_psize; 7287 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7288 7289 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7290 &dds, 0); 7291 7292 umem_free(zdde, sizeof (*zdde)); 7293 } 7294 7295 avl_destroy(&t); 7296 7297 ddt_histogram_stat(&dds_total, &ddh_total); 7298 7299 (void) printf("Simulated DDT histogram:\n"); 7300 7301 zpool_dump_ddt(&dds_total, &ddh_total); 7302 7303 dump_dedup_ratio(&dds_total); 7304 } 7305 7306 static int 7307 verify_device_removal_feature_counts(spa_t *spa) 7308 { 7309 uint64_t dr_feature_refcount = 0; 7310 uint64_t oc_feature_refcount = 0; 7311 uint64_t indirect_vdev_count = 0; 7312 uint64_t precise_vdev_count = 0; 7313 uint64_t obsolete_counts_object_count = 0; 7314 uint64_t obsolete_sm_count = 0; 7315 uint64_t obsolete_counts_count = 0; 7316 uint64_t scip_count = 0; 7317 uint64_t obsolete_bpobj_count = 0; 7318 int ret = 0; 7319 7320 spa_condensing_indirect_phys_t *scip = 7321 &spa->spa_condensing_indirect_phys; 7322 if (scip->scip_next_mapping_object != 0) { 7323 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7324 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7325 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7326 7327 (void) printf("Condensing indirect vdev %llu: new mapping " 7328 "object %llu, prev obsolete sm %llu\n", 7329 (u_longlong_t)scip->scip_vdev, 7330 (u_longlong_t)scip->scip_next_mapping_object, 7331 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7332 if (scip->scip_prev_obsolete_sm_object != 0) { 7333 space_map_t *prev_obsolete_sm = NULL; 7334 VERIFY0(space_map_open(&prev_obsolete_sm, 7335 spa->spa_meta_objset, 7336 scip->scip_prev_obsolete_sm_object, 7337 0, vd->vdev_asize, 0)); 7338 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7339 (void) printf("\n"); 7340 space_map_close(prev_obsolete_sm); 7341 } 7342 7343 scip_count += 2; 7344 } 7345 7346 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7347 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7348 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7349 7350 if (vic->vic_mapping_object != 0) { 7351 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7352 vd->vdev_removing); 7353 indirect_vdev_count++; 7354 7355 if (vd->vdev_indirect_mapping->vim_havecounts) { 7356 obsolete_counts_count++; 7357 } 7358 } 7359 7360 boolean_t are_precise; 7361 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7362 if (are_precise) { 7363 ASSERT(vic->vic_mapping_object != 0); 7364 precise_vdev_count++; 7365 } 7366 7367 uint64_t obsolete_sm_object; 7368 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7369 if (obsolete_sm_object != 0) { 7370 ASSERT(vic->vic_mapping_object != 0); 7371 obsolete_sm_count++; 7372 } 7373 } 7374 7375 (void) feature_get_refcount(spa, 7376 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7377 &dr_feature_refcount); 7378 (void) feature_get_refcount(spa, 7379 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7380 &oc_feature_refcount); 7381 7382 if (dr_feature_refcount != indirect_vdev_count) { 7383 ret = 1; 7384 (void) printf("Number of indirect vdevs (%llu) " \ 7385 "does not match feature count (%llu)\n", 7386 (u_longlong_t)indirect_vdev_count, 7387 (u_longlong_t)dr_feature_refcount); 7388 } else { 7389 (void) printf("Verified device_removal feature refcount " \ 7390 "of %llu is correct\n", 7391 (u_longlong_t)dr_feature_refcount); 7392 } 7393 7394 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7395 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7396 obsolete_bpobj_count++; 7397 } 7398 7399 7400 obsolete_counts_object_count = precise_vdev_count; 7401 obsolete_counts_object_count += obsolete_sm_count; 7402 obsolete_counts_object_count += obsolete_counts_count; 7403 obsolete_counts_object_count += scip_count; 7404 obsolete_counts_object_count += obsolete_bpobj_count; 7405 obsolete_counts_object_count += remap_deadlist_count; 7406 7407 if (oc_feature_refcount != obsolete_counts_object_count) { 7408 ret = 1; 7409 (void) printf("Number of obsolete counts objects (%llu) " \ 7410 "does not match feature count (%llu)\n", 7411 (u_longlong_t)obsolete_counts_object_count, 7412 (u_longlong_t)oc_feature_refcount); 7413 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7414 "ob:%llu rd:%llu\n", 7415 (u_longlong_t)precise_vdev_count, 7416 (u_longlong_t)obsolete_sm_count, 7417 (u_longlong_t)obsolete_counts_count, 7418 (u_longlong_t)scip_count, 7419 (u_longlong_t)obsolete_bpobj_count, 7420 (u_longlong_t)remap_deadlist_count); 7421 } else { 7422 (void) printf("Verified indirect_refcount feature refcount " \ 7423 "of %llu is correct\n", 7424 (u_longlong_t)oc_feature_refcount); 7425 } 7426 return (ret); 7427 } 7428 7429 static void 7430 zdb_set_skip_mmp(char *target) 7431 { 7432 spa_t *spa; 7433 7434 /* 7435 * Disable the activity check to allow examination of 7436 * active pools. 7437 */ 7438 mutex_enter(&spa_namespace_lock); 7439 if ((spa = spa_lookup(target)) != NULL) { 7440 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7441 } 7442 mutex_exit(&spa_namespace_lock); 7443 } 7444 7445 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7446 /* 7447 * Import the checkpointed state of the pool specified by the target 7448 * parameter as readonly. The function also accepts a pool config 7449 * as an optional parameter, else it attempts to infer the config by 7450 * the name of the target pool. 7451 * 7452 * Note that the checkpointed state's pool name will be the name of 7453 * the original pool with the above suffix appended to it. In addition, 7454 * if the target is not a pool name (e.g. a path to a dataset) then 7455 * the new_path parameter is populated with the updated path to 7456 * reflect the fact that we are looking into the checkpointed state. 7457 * 7458 * The function returns a newly-allocated copy of the name of the 7459 * pool containing the checkpointed state. When this copy is no 7460 * longer needed it should be freed with free(3C). Same thing 7461 * applies to the new_path parameter if allocated. 7462 */ 7463 static char * 7464 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7465 { 7466 int error = 0; 7467 char *poolname, *bogus_name = NULL; 7468 boolean_t freecfg = B_FALSE; 7469 7470 /* If the target is not a pool, the extract the pool name */ 7471 char *path_start = strchr(target, '/'); 7472 if (path_start != NULL) { 7473 size_t poolname_len = path_start - target; 7474 poolname = strndup(target, poolname_len); 7475 } else { 7476 poolname = target; 7477 } 7478 7479 if (cfg == NULL) { 7480 zdb_set_skip_mmp(poolname); 7481 error = spa_get_stats(poolname, &cfg, NULL, 0); 7482 if (error != 0) { 7483 fatal("Tried to read config of pool \"%s\" but " 7484 "spa_get_stats() failed with error %d\n", 7485 poolname, error); 7486 } 7487 freecfg = B_TRUE; 7488 } 7489 7490 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7491 if (target != poolname) 7492 free(poolname); 7493 return (NULL); 7494 } 7495 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7496 7497 error = spa_import(bogus_name, cfg, NULL, 7498 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7499 ZFS_IMPORT_SKIP_MMP); 7500 if (freecfg) 7501 nvlist_free(cfg); 7502 if (error != 0) { 7503 fatal("Tried to import pool \"%s\" but spa_import() failed " 7504 "with error %d\n", bogus_name, error); 7505 } 7506 7507 if (new_path != NULL && path_start != NULL) { 7508 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7509 free(bogus_name); 7510 if (path_start != NULL) 7511 free(poolname); 7512 return (NULL); 7513 } 7514 } 7515 7516 if (target != poolname) 7517 free(poolname); 7518 7519 return (bogus_name); 7520 } 7521 7522 typedef struct verify_checkpoint_sm_entry_cb_arg { 7523 vdev_t *vcsec_vd; 7524 7525 /* the following fields are only used for printing progress */ 7526 uint64_t vcsec_entryid; 7527 uint64_t vcsec_num_entries; 7528 } verify_checkpoint_sm_entry_cb_arg_t; 7529 7530 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7531 7532 static int 7533 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7534 { 7535 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7536 vdev_t *vd = vcsec->vcsec_vd; 7537 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7538 uint64_t end = sme->sme_offset + sme->sme_run; 7539 7540 ASSERT(sme->sme_type == SM_FREE); 7541 7542 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7543 (void) fprintf(stderr, 7544 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7545 (longlong_t)vd->vdev_id, 7546 (longlong_t)vcsec->vcsec_entryid, 7547 (longlong_t)vcsec->vcsec_num_entries); 7548 } 7549 vcsec->vcsec_entryid++; 7550 7551 /* 7552 * See comment in checkpoint_sm_exclude_entry_cb() 7553 */ 7554 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7555 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7556 7557 /* 7558 * The entries in the vdev_checkpoint_sm should be marked as 7559 * allocated in the checkpointed state of the pool, therefore 7560 * their respective ms_allocateable trees should not contain them. 7561 */ 7562 mutex_enter(&ms->ms_lock); 7563 range_tree_verify_not_present(ms->ms_allocatable, 7564 sme->sme_offset, sme->sme_run); 7565 mutex_exit(&ms->ms_lock); 7566 7567 return (0); 7568 } 7569 7570 /* 7571 * Verify that all segments in the vdev_checkpoint_sm are allocated 7572 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7573 * ms_allocatable). 7574 * 7575 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7576 * each vdev in the current state of the pool to the metaslab space maps 7577 * (ms_sm) of the checkpointed state of the pool. 7578 * 7579 * Note that the function changes the state of the ms_allocatable 7580 * trees of the current spa_t. The entries of these ms_allocatable 7581 * trees are cleared out and then repopulated from with the free 7582 * entries of their respective ms_sm space maps. 7583 */ 7584 static void 7585 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7586 { 7587 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7588 vdev_t *current_rvd = current->spa_root_vdev; 7589 7590 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7591 7592 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7593 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7594 vdev_t *current_vd = current_rvd->vdev_child[c]; 7595 7596 space_map_t *checkpoint_sm = NULL; 7597 uint64_t checkpoint_sm_obj; 7598 7599 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7600 /* 7601 * Since we don't allow device removal in a pool 7602 * that has a checkpoint, we expect that all removed 7603 * vdevs were removed from the pool before the 7604 * checkpoint. 7605 */ 7606 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7607 continue; 7608 } 7609 7610 /* 7611 * If the checkpoint space map doesn't exist, then nothing 7612 * here is checkpointed so there's nothing to verify. 7613 */ 7614 if (current_vd->vdev_top_zap == 0 || 7615 zap_contains(spa_meta_objset(current), 7616 current_vd->vdev_top_zap, 7617 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7618 continue; 7619 7620 VERIFY0(zap_lookup(spa_meta_objset(current), 7621 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7622 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7623 7624 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7625 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7626 current_vd->vdev_ashift)); 7627 7628 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7629 vcsec.vcsec_vd = ckpoint_vd; 7630 vcsec.vcsec_entryid = 0; 7631 vcsec.vcsec_num_entries = 7632 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7633 VERIFY0(space_map_iterate(checkpoint_sm, 7634 space_map_length(checkpoint_sm), 7635 verify_checkpoint_sm_entry_cb, &vcsec)); 7636 if (dump_opt['m'] > 3) 7637 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7638 space_map_close(checkpoint_sm); 7639 } 7640 7641 /* 7642 * If we've added vdevs since we took the checkpoint, ensure 7643 * that their checkpoint space maps are empty. 7644 */ 7645 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7646 for (uint64_t c = ckpoint_rvd->vdev_children; 7647 c < current_rvd->vdev_children; c++) { 7648 vdev_t *current_vd = current_rvd->vdev_child[c]; 7649 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7650 } 7651 } 7652 7653 /* for cleaner progress output */ 7654 (void) fprintf(stderr, "\n"); 7655 } 7656 7657 /* 7658 * Verifies that all space that's allocated in the checkpoint is 7659 * still allocated in the current version, by checking that everything 7660 * in checkpoint's ms_allocatable (which is actually allocated, not 7661 * allocatable/free) is not present in current's ms_allocatable. 7662 * 7663 * Note that the function changes the state of the ms_allocatable 7664 * trees of both spas when called. The entries of all ms_allocatable 7665 * trees are cleared out and then repopulated from their respective 7666 * ms_sm space maps. In the checkpointed state we load the allocated 7667 * entries, and in the current state we load the free entries. 7668 */ 7669 static void 7670 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7671 { 7672 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7673 vdev_t *current_rvd = current->spa_root_vdev; 7674 7675 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7676 load_concrete_ms_allocatable_trees(current, SM_FREE); 7677 7678 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7679 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7680 vdev_t *current_vd = current_rvd->vdev_child[i]; 7681 7682 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7683 /* 7684 * See comment in verify_checkpoint_vdev_spacemaps() 7685 */ 7686 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7687 continue; 7688 } 7689 7690 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7691 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7692 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7693 7694 (void) fprintf(stderr, 7695 "\rverifying vdev %llu of %llu, " 7696 "metaslab %llu of %llu ...", 7697 (longlong_t)current_vd->vdev_id, 7698 (longlong_t)current_rvd->vdev_children, 7699 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7700 (longlong_t)current_vd->vdev_ms_count); 7701 7702 /* 7703 * We walk through the ms_allocatable trees that 7704 * are loaded with the allocated blocks from the 7705 * ms_sm spacemaps of the checkpoint. For each 7706 * one of these ranges we ensure that none of them 7707 * exists in the ms_allocatable trees of the 7708 * current state which are loaded with the ranges 7709 * that are currently free. 7710 * 7711 * This way we ensure that none of the blocks that 7712 * are part of the checkpoint were freed by mistake. 7713 */ 7714 range_tree_walk(ckpoint_msp->ms_allocatable, 7715 (range_tree_func_t *)range_tree_verify_not_present, 7716 current_msp->ms_allocatable); 7717 } 7718 } 7719 7720 /* for cleaner progress output */ 7721 (void) fprintf(stderr, "\n"); 7722 } 7723 7724 static void 7725 verify_checkpoint_blocks(spa_t *spa) 7726 { 7727 ASSERT(!dump_opt['L']); 7728 7729 spa_t *checkpoint_spa; 7730 char *checkpoint_pool; 7731 int error = 0; 7732 7733 /* 7734 * We import the checkpointed state of the pool (under a different 7735 * name) so we can do verification on it against the current state 7736 * of the pool. 7737 */ 7738 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7739 NULL); 7740 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7741 7742 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7743 if (error != 0) { 7744 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7745 "error %d\n", checkpoint_pool, error); 7746 } 7747 7748 /* 7749 * Ensure that ranges in the checkpoint space maps of each vdev 7750 * are allocated according to the checkpointed state's metaslab 7751 * space maps. 7752 */ 7753 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7754 7755 /* 7756 * Ensure that allocated ranges in the checkpoint's metaslab 7757 * space maps remain allocated in the metaslab space maps of 7758 * the current state. 7759 */ 7760 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7761 7762 /* 7763 * Once we are done, we get rid of the checkpointed state. 7764 */ 7765 spa_close(checkpoint_spa, FTAG); 7766 free(checkpoint_pool); 7767 } 7768 7769 static void 7770 dump_leftover_checkpoint_blocks(spa_t *spa) 7771 { 7772 vdev_t *rvd = spa->spa_root_vdev; 7773 7774 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7775 vdev_t *vd = rvd->vdev_child[i]; 7776 7777 space_map_t *checkpoint_sm = NULL; 7778 uint64_t checkpoint_sm_obj; 7779 7780 if (vd->vdev_top_zap == 0) 7781 continue; 7782 7783 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7784 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7785 continue; 7786 7787 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7788 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7789 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7790 7791 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7792 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7793 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7794 space_map_close(checkpoint_sm); 7795 } 7796 } 7797 7798 static int 7799 verify_checkpoint(spa_t *spa) 7800 { 7801 uberblock_t checkpoint; 7802 int error; 7803 7804 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7805 return (0); 7806 7807 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7808 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7809 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7810 7811 if (error == ENOENT && !dump_opt['L']) { 7812 /* 7813 * If the feature is active but the uberblock is missing 7814 * then we must be in the middle of discarding the 7815 * checkpoint. 7816 */ 7817 (void) printf("\nPartially discarded checkpoint " 7818 "state found:\n"); 7819 if (dump_opt['m'] > 3) 7820 dump_leftover_checkpoint_blocks(spa); 7821 return (0); 7822 } else if (error != 0) { 7823 (void) printf("lookup error %d when looking for " 7824 "checkpointed uberblock in MOS\n", error); 7825 return (error); 7826 } 7827 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7828 7829 if (checkpoint.ub_checkpoint_txg == 0) { 7830 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7831 "uberblock\n"); 7832 error = 3; 7833 } 7834 7835 if (error == 0 && !dump_opt['L']) 7836 verify_checkpoint_blocks(spa); 7837 7838 return (error); 7839 } 7840 7841 static void 7842 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7843 { 7844 (void) arg; 7845 for (uint64_t i = start; i < size; i++) { 7846 (void) printf("MOS object %llu referenced but not allocated\n", 7847 (u_longlong_t)i); 7848 } 7849 } 7850 7851 static void 7852 mos_obj_refd(uint64_t obj) 7853 { 7854 if (obj != 0 && mos_refd_objs != NULL) 7855 range_tree_add(mos_refd_objs, obj, 1); 7856 } 7857 7858 /* 7859 * Call on a MOS object that may already have been referenced. 7860 */ 7861 static void 7862 mos_obj_refd_multiple(uint64_t obj) 7863 { 7864 if (obj != 0 && mos_refd_objs != NULL && 7865 !range_tree_contains(mos_refd_objs, obj, 1)) 7866 range_tree_add(mos_refd_objs, obj, 1); 7867 } 7868 7869 static void 7870 mos_leak_vdev_top_zap(vdev_t *vd) 7871 { 7872 uint64_t ms_flush_data_obj; 7873 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7874 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7875 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7876 if (error == ENOENT) 7877 return; 7878 ASSERT0(error); 7879 7880 mos_obj_refd(ms_flush_data_obj); 7881 } 7882 7883 static void 7884 mos_leak_vdev(vdev_t *vd) 7885 { 7886 mos_obj_refd(vd->vdev_dtl_object); 7887 mos_obj_refd(vd->vdev_ms_array); 7888 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7889 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7890 mos_obj_refd(vd->vdev_leaf_zap); 7891 if (vd->vdev_checkpoint_sm != NULL) 7892 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7893 if (vd->vdev_indirect_mapping != NULL) { 7894 mos_obj_refd(vd->vdev_indirect_mapping-> 7895 vim_phys->vimp_counts_object); 7896 } 7897 if (vd->vdev_obsolete_sm != NULL) 7898 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7899 7900 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7901 metaslab_t *ms = vd->vdev_ms[m]; 7902 mos_obj_refd(space_map_object(ms->ms_sm)); 7903 } 7904 7905 if (vd->vdev_root_zap != 0) 7906 mos_obj_refd(vd->vdev_root_zap); 7907 7908 if (vd->vdev_top_zap != 0) { 7909 mos_obj_refd(vd->vdev_top_zap); 7910 mos_leak_vdev_top_zap(vd); 7911 } 7912 7913 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7914 mos_leak_vdev(vd->vdev_child[c]); 7915 } 7916 } 7917 7918 static void 7919 mos_leak_log_spacemaps(spa_t *spa) 7920 { 7921 uint64_t spacemap_zap; 7922 int error = zap_lookup(spa_meta_objset(spa), 7923 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7924 sizeof (spacemap_zap), 1, &spacemap_zap); 7925 if (error == ENOENT) 7926 return; 7927 ASSERT0(error); 7928 7929 mos_obj_refd(spacemap_zap); 7930 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7931 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7932 mos_obj_refd(sls->sls_sm_obj); 7933 } 7934 7935 static void 7936 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7937 { 7938 zap_cursor_t zc; 7939 zap_attribute_t za; 7940 for (zap_cursor_init(&zc, mos, errlog); 7941 zap_cursor_retrieve(&zc, &za) == 0; 7942 zap_cursor_advance(&zc)) { 7943 mos_obj_refd(za.za_first_integer); 7944 } 7945 zap_cursor_fini(&zc); 7946 } 7947 7948 static int 7949 dump_mos_leaks(spa_t *spa) 7950 { 7951 int rv = 0; 7952 objset_t *mos = spa->spa_meta_objset; 7953 dsl_pool_t *dp = spa->spa_dsl_pool; 7954 7955 /* Visit and mark all referenced objects in the MOS */ 7956 7957 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7958 mos_obj_refd(spa->spa_pool_props_object); 7959 mos_obj_refd(spa->spa_config_object); 7960 mos_obj_refd(spa->spa_ddt_stat_object); 7961 mos_obj_refd(spa->spa_feat_desc_obj); 7962 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7963 mos_obj_refd(spa->spa_feat_for_read_obj); 7964 mos_obj_refd(spa->spa_feat_for_write_obj); 7965 mos_obj_refd(spa->spa_history); 7966 mos_obj_refd(spa->spa_errlog_last); 7967 mos_obj_refd(spa->spa_errlog_scrub); 7968 7969 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7970 errorlog_count_refd(mos, spa->spa_errlog_last); 7971 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7972 } 7973 7974 mos_obj_refd(spa->spa_all_vdev_zaps); 7975 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7976 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7977 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7978 bpobj_count_refd(&spa->spa_deferred_bpobj); 7979 mos_obj_refd(dp->dp_empty_bpobj); 7980 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7981 bpobj_count_refd(&dp->dp_free_bpobj); 7982 mos_obj_refd(spa->spa_l2cache.sav_object); 7983 mos_obj_refd(spa->spa_spares.sav_object); 7984 7985 if (spa->spa_syncing_log_sm != NULL) 7986 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7987 mos_leak_log_spacemaps(spa); 7988 7989 mos_obj_refd(spa->spa_condensing_indirect_phys. 7990 scip_next_mapping_object); 7991 mos_obj_refd(spa->spa_condensing_indirect_phys. 7992 scip_prev_obsolete_sm_object); 7993 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7994 vdev_indirect_mapping_t *vim = 7995 vdev_indirect_mapping_open(mos, 7996 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7997 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7998 vdev_indirect_mapping_close(vim); 7999 } 8000 deleted_livelists_dump_mos(spa); 8001 8002 if (dp->dp_origin_snap != NULL) { 8003 dsl_dataset_t *ds; 8004 8005 dsl_pool_config_enter(dp, FTAG); 8006 VERIFY0(dsl_dataset_hold_obj(dp, 8007 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8008 FTAG, &ds)); 8009 count_ds_mos_objects(ds); 8010 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8011 dsl_dataset_rele(ds, FTAG); 8012 dsl_pool_config_exit(dp, FTAG); 8013 8014 count_ds_mos_objects(dp->dp_origin_snap); 8015 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8016 } 8017 count_dir_mos_objects(dp->dp_mos_dir); 8018 if (dp->dp_free_dir != NULL) 8019 count_dir_mos_objects(dp->dp_free_dir); 8020 if (dp->dp_leak_dir != NULL) 8021 count_dir_mos_objects(dp->dp_leak_dir); 8022 8023 mos_leak_vdev(spa->spa_root_vdev); 8024 8025 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 8026 for (uint64_t type = 0; type < DDT_TYPES; type++) { 8027 for (uint64_t cksum = 0; 8028 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 8029 ddt_t *ddt = spa->spa_ddt[cksum]; 8030 if (!ddt) 8031 continue; 8032 mos_obj_refd(ddt->ddt_object[type][class]); 8033 } 8034 } 8035 } 8036 8037 if (spa->spa_brt != NULL) { 8038 brt_t *brt = spa->spa_brt; 8039 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 8040 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 8041 if (brtvd != NULL && brtvd->bv_initiated) { 8042 mos_obj_refd(brtvd->bv_mos_brtvdev); 8043 mos_obj_refd(brtvd->bv_mos_entries); 8044 } 8045 } 8046 } 8047 8048 /* 8049 * Visit all allocated objects and make sure they are referenced. 8050 */ 8051 uint64_t object = 0; 8052 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8053 if (range_tree_contains(mos_refd_objs, object, 1)) { 8054 range_tree_remove(mos_refd_objs, object, 1); 8055 } else { 8056 dmu_object_info_t doi; 8057 const char *name; 8058 VERIFY0(dmu_object_info(mos, object, &doi)); 8059 if (doi.doi_type & DMU_OT_NEWTYPE) { 8060 dmu_object_byteswap_t bswap = 8061 DMU_OT_BYTESWAP(doi.doi_type); 8062 name = dmu_ot_byteswap[bswap].ob_name; 8063 } else { 8064 name = dmu_ot[doi.doi_type].ot_name; 8065 } 8066 8067 (void) printf("MOS object %llu (%s) leaked\n", 8068 (u_longlong_t)object, name); 8069 rv = 2; 8070 } 8071 } 8072 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8073 if (!range_tree_is_empty(mos_refd_objs)) 8074 rv = 2; 8075 range_tree_vacate(mos_refd_objs, NULL, NULL); 8076 range_tree_destroy(mos_refd_objs); 8077 return (rv); 8078 } 8079 8080 typedef struct log_sm_obsolete_stats_arg { 8081 uint64_t lsos_current_txg; 8082 8083 uint64_t lsos_total_entries; 8084 uint64_t lsos_valid_entries; 8085 8086 uint64_t lsos_sm_entries; 8087 uint64_t lsos_valid_sm_entries; 8088 } log_sm_obsolete_stats_arg_t; 8089 8090 static int 8091 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8092 uint64_t txg, void *arg) 8093 { 8094 log_sm_obsolete_stats_arg_t *lsos = arg; 8095 8096 uint64_t offset = sme->sme_offset; 8097 uint64_t vdev_id = sme->sme_vdev; 8098 8099 if (lsos->lsos_current_txg == 0) { 8100 /* this is the first log */ 8101 lsos->lsos_current_txg = txg; 8102 } else if (lsos->lsos_current_txg < txg) { 8103 /* we just changed log - print stats and reset */ 8104 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8105 (u_longlong_t)lsos->lsos_valid_sm_entries, 8106 (u_longlong_t)lsos->lsos_sm_entries, 8107 (u_longlong_t)lsos->lsos_current_txg); 8108 lsos->lsos_valid_sm_entries = 0; 8109 lsos->lsos_sm_entries = 0; 8110 lsos->lsos_current_txg = txg; 8111 } 8112 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8113 8114 lsos->lsos_sm_entries++; 8115 lsos->lsos_total_entries++; 8116 8117 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8118 if (!vdev_is_concrete(vd)) 8119 return (0); 8120 8121 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8122 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8123 8124 if (txg < metaslab_unflushed_txg(ms)) 8125 return (0); 8126 lsos->lsos_valid_sm_entries++; 8127 lsos->lsos_valid_entries++; 8128 return (0); 8129 } 8130 8131 static void 8132 dump_log_spacemap_obsolete_stats(spa_t *spa) 8133 { 8134 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8135 return; 8136 8137 log_sm_obsolete_stats_arg_t lsos = {0}; 8138 8139 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8140 8141 iterate_through_spacemap_logs(spa, 8142 log_spacemap_obsolete_stats_cb, &lsos); 8143 8144 /* print stats for latest log */ 8145 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8146 (u_longlong_t)lsos.lsos_valid_sm_entries, 8147 (u_longlong_t)lsos.lsos_sm_entries, 8148 (u_longlong_t)lsos.lsos_current_txg); 8149 8150 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8151 (u_longlong_t)lsos.lsos_valid_entries, 8152 (u_longlong_t)lsos.lsos_total_entries); 8153 } 8154 8155 static void 8156 dump_zpool(spa_t *spa) 8157 { 8158 dsl_pool_t *dp = spa_get_dsl(spa); 8159 int rc = 0; 8160 8161 if (dump_opt['y']) { 8162 livelist_metaslab_validate(spa); 8163 } 8164 8165 if (dump_opt['S']) { 8166 dump_simulated_ddt(spa); 8167 return; 8168 } 8169 8170 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8171 (void) printf("\nCached configuration:\n"); 8172 dump_nvlist(spa->spa_config, 8); 8173 } 8174 8175 if (dump_opt['C']) 8176 dump_config(spa); 8177 8178 if (dump_opt['u']) 8179 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8180 8181 if (dump_opt['D']) 8182 dump_all_ddts(spa); 8183 8184 if (dump_opt['T']) 8185 dump_brt(spa); 8186 8187 if (dump_opt['d'] > 2 || dump_opt['m']) 8188 dump_metaslabs(spa); 8189 if (dump_opt['M']) 8190 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8191 if (dump_opt['d'] > 2 || dump_opt['m']) { 8192 dump_log_spacemaps(spa); 8193 dump_log_spacemap_obsolete_stats(spa); 8194 } 8195 8196 if (dump_opt['d'] || dump_opt['i']) { 8197 spa_feature_t f; 8198 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8199 0); 8200 dump_objset(dp->dp_meta_objset); 8201 8202 if (dump_opt['d'] >= 3) { 8203 dsl_pool_t *dp = spa->spa_dsl_pool; 8204 dump_full_bpobj(&spa->spa_deferred_bpobj, 8205 "Deferred frees", 0); 8206 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8207 dump_full_bpobj(&dp->dp_free_bpobj, 8208 "Pool snapshot frees", 0); 8209 } 8210 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8211 ASSERT(spa_feature_is_enabled(spa, 8212 SPA_FEATURE_DEVICE_REMOVAL)); 8213 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8214 "Pool obsolete blocks", 0); 8215 } 8216 8217 if (spa_feature_is_active(spa, 8218 SPA_FEATURE_ASYNC_DESTROY)) { 8219 dump_bptree(spa->spa_meta_objset, 8220 dp->dp_bptree_obj, 8221 "Pool dataset frees"); 8222 } 8223 dump_dtl(spa->spa_root_vdev, 0); 8224 } 8225 8226 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8227 global_feature_count[f] = UINT64_MAX; 8228 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8229 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8230 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8231 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8232 8233 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8234 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8235 8236 if (rc == 0 && !dump_opt['L']) 8237 rc = dump_mos_leaks(spa); 8238 8239 for (f = 0; f < SPA_FEATURES; f++) { 8240 uint64_t refcount; 8241 8242 uint64_t *arr; 8243 if (!(spa_feature_table[f].fi_flags & 8244 ZFEATURE_FLAG_PER_DATASET)) { 8245 if (global_feature_count[f] == UINT64_MAX) 8246 continue; 8247 if (!spa_feature_is_enabled(spa, f)) { 8248 ASSERT0(global_feature_count[f]); 8249 continue; 8250 } 8251 arr = global_feature_count; 8252 } else { 8253 if (!spa_feature_is_enabled(spa, f)) { 8254 ASSERT0(dataset_feature_count[f]); 8255 continue; 8256 } 8257 arr = dataset_feature_count; 8258 } 8259 if (feature_get_refcount(spa, &spa_feature_table[f], 8260 &refcount) == ENOTSUP) 8261 continue; 8262 if (arr[f] != refcount) { 8263 (void) printf("%s feature refcount mismatch: " 8264 "%lld consumers != %lld refcount\n", 8265 spa_feature_table[f].fi_uname, 8266 (longlong_t)arr[f], (longlong_t)refcount); 8267 rc = 2; 8268 } else { 8269 (void) printf("Verified %s feature refcount " 8270 "of %llu is correct\n", 8271 spa_feature_table[f].fi_uname, 8272 (longlong_t)refcount); 8273 } 8274 } 8275 8276 if (rc == 0) 8277 rc = verify_device_removal_feature_counts(spa); 8278 } 8279 8280 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8281 rc = dump_block_stats(spa); 8282 8283 if (rc == 0) 8284 rc = verify_spacemap_refcounts(spa); 8285 8286 if (dump_opt['s']) 8287 show_pool_stats(spa); 8288 8289 if (dump_opt['h']) 8290 dump_history(spa); 8291 8292 if (rc == 0) 8293 rc = verify_checkpoint(spa); 8294 8295 if (rc != 0) { 8296 dump_debug_buffer(); 8297 zdb_exit(rc); 8298 } 8299 } 8300 8301 #define ZDB_FLAG_CHECKSUM 0x0001 8302 #define ZDB_FLAG_DECOMPRESS 0x0002 8303 #define ZDB_FLAG_BSWAP 0x0004 8304 #define ZDB_FLAG_GBH 0x0008 8305 #define ZDB_FLAG_INDIRECT 0x0010 8306 #define ZDB_FLAG_RAW 0x0020 8307 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8308 #define ZDB_FLAG_VERBOSE 0x0080 8309 8310 static int flagbits[256]; 8311 static char flagbitstr[16]; 8312 8313 static void 8314 zdb_print_blkptr(const blkptr_t *bp, int flags) 8315 { 8316 char blkbuf[BP_SPRINTF_LEN]; 8317 8318 if (flags & ZDB_FLAG_BSWAP) 8319 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8320 8321 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8322 (void) printf("%s\n", blkbuf); 8323 } 8324 8325 static void 8326 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8327 { 8328 int i; 8329 8330 for (i = 0; i < nbps; i++) 8331 zdb_print_blkptr(&bp[i], flags); 8332 } 8333 8334 static void 8335 zdb_dump_gbh(void *buf, int flags) 8336 { 8337 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8338 } 8339 8340 static void 8341 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8342 { 8343 if (flags & ZDB_FLAG_BSWAP) 8344 byteswap_uint64_array(buf, size); 8345 VERIFY(write(fileno(stdout), buf, size) == size); 8346 } 8347 8348 static void 8349 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8350 { 8351 uint64_t *d = (uint64_t *)buf; 8352 unsigned nwords = size / sizeof (uint64_t); 8353 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8354 unsigned i, j; 8355 const char *hdr; 8356 char *c; 8357 8358 8359 if (do_bswap) 8360 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8361 else 8362 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8363 8364 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8365 8366 #ifdef _ZFS_LITTLE_ENDIAN 8367 /* correct the endianness */ 8368 do_bswap = !do_bswap; 8369 #endif 8370 for (i = 0; i < nwords; i += 2) { 8371 (void) printf("%06llx: %016llx %016llx ", 8372 (u_longlong_t)(i * sizeof (uint64_t)), 8373 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8374 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8375 8376 c = (char *)&d[i]; 8377 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8378 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8379 (void) printf("\n"); 8380 } 8381 } 8382 8383 /* 8384 * There are two acceptable formats: 8385 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8386 * child[.child]* - For example: 0.1.1 8387 * 8388 * The second form can be used to specify arbitrary vdevs anywhere 8389 * in the hierarchy. For example, in a pool with a mirror of 8390 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8391 */ 8392 static vdev_t * 8393 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8394 { 8395 char *s, *p, *q; 8396 unsigned i; 8397 8398 if (vdev == NULL) 8399 return (NULL); 8400 8401 /* First, assume the x.x.x.x format */ 8402 i = strtoul(path, &s, 10); 8403 if (s == path || (s && *s != '.' && *s != '\0')) 8404 goto name; 8405 if (i >= vdev->vdev_children) 8406 return (NULL); 8407 8408 vdev = vdev->vdev_child[i]; 8409 if (s && *s == '\0') 8410 return (vdev); 8411 return (zdb_vdev_lookup(vdev, s+1)); 8412 8413 name: 8414 for (i = 0; i < vdev->vdev_children; i++) { 8415 vdev_t *vc = vdev->vdev_child[i]; 8416 8417 if (vc->vdev_path == NULL) { 8418 vc = zdb_vdev_lookup(vc, path); 8419 if (vc == NULL) 8420 continue; 8421 else 8422 return (vc); 8423 } 8424 8425 p = strrchr(vc->vdev_path, '/'); 8426 p = p ? p + 1 : vc->vdev_path; 8427 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8428 8429 if (strcmp(vc->vdev_path, path) == 0) 8430 return (vc); 8431 if (strcmp(p, path) == 0) 8432 return (vc); 8433 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8434 return (vc); 8435 } 8436 8437 return (NULL); 8438 } 8439 8440 static int 8441 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8442 { 8443 dsl_dataset_t *ds; 8444 8445 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8446 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8447 NULL, &ds); 8448 if (error != 0) { 8449 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8450 (u_longlong_t)objset_id, strerror(error)); 8451 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8452 return (error); 8453 } 8454 dsl_dataset_name(ds, outstr); 8455 dsl_dataset_rele(ds, NULL); 8456 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8457 return (0); 8458 } 8459 8460 static boolean_t 8461 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8462 { 8463 char *s0, *s1, *tmp = NULL; 8464 8465 if (sizes == NULL) 8466 return (B_FALSE); 8467 8468 s0 = strtok_r(sizes, "/", &tmp); 8469 if (s0 == NULL) 8470 return (B_FALSE); 8471 s1 = strtok_r(NULL, "/", &tmp); 8472 *lsize = strtoull(s0, NULL, 16); 8473 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8474 return (*lsize >= *psize && *psize > 0); 8475 } 8476 8477 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8478 8479 static boolean_t 8480 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8481 int flags, int cfunc, void *lbuf, void *lbuf2) 8482 { 8483 if (flags & ZDB_FLAG_VERBOSE) { 8484 (void) fprintf(stderr, 8485 "Trying %05llx -> %05llx (%s)\n", 8486 (u_longlong_t)psize, 8487 (u_longlong_t)lsize, 8488 zio_compress_table[cfunc].ci_name); 8489 } 8490 8491 /* 8492 * We set lbuf to all zeros and lbuf2 to all 8493 * ones, then decompress to both buffers and 8494 * compare their contents. This way we can 8495 * know if decompression filled exactly to 8496 * lsize or if it left some bytes unwritten. 8497 */ 8498 8499 memset(lbuf, 0x00, lsize); 8500 memset(lbuf2, 0xff, lsize); 8501 8502 if (zio_decompress_data(cfunc, pabd, 8503 lbuf, psize, lsize, NULL) == 0 && 8504 zio_decompress_data(cfunc, pabd, 8505 lbuf2, psize, lsize, NULL) == 0 && 8506 memcmp(lbuf, lbuf2, lsize) == 0) 8507 return (B_TRUE); 8508 return (B_FALSE); 8509 } 8510 8511 static uint64_t 8512 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8513 uint64_t psize, int flags) 8514 { 8515 (void) buf; 8516 uint64_t orig_lsize = lsize; 8517 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8518 boolean_t found = B_FALSE; 8519 /* 8520 * We don't know how the data was compressed, so just try 8521 * every decompress function at every inflated blocksize. 8522 */ 8523 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8524 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8525 int *cfuncp = cfuncs; 8526 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8527 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8528 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8529 ZIO_COMPRESS_MASK(ZLE); 8530 *cfuncp++ = ZIO_COMPRESS_LZ4; 8531 *cfuncp++ = ZIO_COMPRESS_LZJB; 8532 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8533 /* 8534 * Every gzip level has the same decompressor, no need to 8535 * run it 9 times per bruteforce attempt. 8536 */ 8537 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8538 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8539 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8540 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8541 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8542 if (((1ULL << c) & mask) == 0) 8543 *cfuncp++ = c; 8544 8545 /* 8546 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8547 * could take a while and we should let the user know 8548 * we are not stuck. On the other hand, printing progress 8549 * info gets old after a while. User can specify 'v' flag 8550 * to see the progression. 8551 */ 8552 if (lsize == psize) 8553 lsize += SPA_MINBLOCKSIZE; 8554 else 8555 maxlsize = lsize; 8556 8557 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8558 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8559 if (try_decompress_block(pabd, lsize, psize, flags, 8560 *cfuncp, lbuf, lbuf2)) { 8561 found = B_TRUE; 8562 break; 8563 } 8564 } 8565 if (*cfuncp != 0) 8566 break; 8567 } 8568 if (!found && tryzle) { 8569 for (lsize = orig_lsize; lsize <= maxlsize; 8570 lsize += SPA_MINBLOCKSIZE) { 8571 if (try_decompress_block(pabd, lsize, psize, flags, 8572 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8573 *cfuncp = ZIO_COMPRESS_ZLE; 8574 found = B_TRUE; 8575 break; 8576 } 8577 } 8578 } 8579 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8580 8581 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8582 printf("\nZLE decompression was selected. If you " 8583 "suspect the results are wrong,\ntry avoiding ZLE " 8584 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8585 } 8586 8587 return (lsize > maxlsize ? -1 : lsize); 8588 } 8589 8590 /* 8591 * Read a block from a pool and print it out. The syntax of the 8592 * block descriptor is: 8593 * 8594 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8595 * 8596 * pool - The name of the pool you wish to read from 8597 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8598 * offset - offset, in hex, in bytes 8599 * size - Amount of data to read, in hex, in bytes 8600 * flags - A string of characters specifying options 8601 * b: Decode a blkptr at given offset within block 8602 * c: Calculate and display checksums 8603 * d: Decompress data before dumping 8604 * e: Byteswap data before dumping 8605 * g: Display data as a gang block header 8606 * i: Display as an indirect block 8607 * r: Dump raw data to stdout 8608 * v: Verbose 8609 * 8610 */ 8611 static void 8612 zdb_read_block(char *thing, spa_t *spa) 8613 { 8614 blkptr_t blk, *bp = &blk; 8615 dva_t *dva = bp->blk_dva; 8616 int flags = 0; 8617 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8618 zio_t *zio; 8619 vdev_t *vd; 8620 abd_t *pabd; 8621 void *lbuf, *buf; 8622 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8623 const char *vdev, *errmsg = NULL; 8624 int i, error; 8625 boolean_t borrowed = B_FALSE, found = B_FALSE; 8626 8627 dup = strdup(thing); 8628 s = strtok_r(dup, ":", &tmp); 8629 vdev = s ?: ""; 8630 s = strtok_r(NULL, ":", &tmp); 8631 offset = strtoull(s ? s : "", NULL, 16); 8632 sizes = strtok_r(NULL, ":", &tmp); 8633 s = strtok_r(NULL, ":", &tmp); 8634 flagstr = strdup(s ?: ""); 8635 8636 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8637 errmsg = "invalid size(s)"; 8638 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8639 errmsg = "size must be a multiple of sector size"; 8640 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8641 errmsg = "offset must be a multiple of sector size"; 8642 if (errmsg) { 8643 (void) printf("Invalid block specifier: %s - %s\n", 8644 thing, errmsg); 8645 goto done; 8646 } 8647 8648 tmp = NULL; 8649 for (s = strtok_r(flagstr, ":", &tmp); 8650 s != NULL; 8651 s = strtok_r(NULL, ":", &tmp)) { 8652 for (i = 0; i < strlen(flagstr); i++) { 8653 int bit = flagbits[(uchar_t)flagstr[i]]; 8654 8655 if (bit == 0) { 8656 (void) printf("***Ignoring flag: %c\n", 8657 (uchar_t)flagstr[i]); 8658 continue; 8659 } 8660 found = B_TRUE; 8661 flags |= bit; 8662 8663 p = &flagstr[i + 1]; 8664 if (*p != ':' && *p != '\0') { 8665 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8666 char *end, offstr[8] = { 0 }; 8667 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8668 (nextbit == 0)) { 8669 /* look ahead to isolate the offset */ 8670 while (nextbit == 0 && 8671 strchr(flagbitstr, *p) == NULL) { 8672 offstr[j] = *p; 8673 j++; 8674 if (i + j > strlen(flagstr)) 8675 break; 8676 p++; 8677 nextbit = flagbits[(uchar_t)*p]; 8678 } 8679 blkptr_offset = strtoull(offstr, &end, 8680 16); 8681 i += j; 8682 } else if (nextbit == 0) { 8683 (void) printf("***Ignoring flag arg:" 8684 " '%c'\n", (uchar_t)*p); 8685 } 8686 } 8687 } 8688 } 8689 if (blkptr_offset % sizeof (blkptr_t)) { 8690 printf("Block pointer offset 0x%llx " 8691 "must be divisible by 0x%x\n", 8692 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8693 goto done; 8694 } 8695 if (found == B_FALSE && strlen(flagstr) > 0) { 8696 printf("Invalid flag arg: '%s'\n", flagstr); 8697 goto done; 8698 } 8699 8700 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8701 if (vd == NULL) { 8702 (void) printf("***Invalid vdev: %s\n", vdev); 8703 goto done; 8704 } else { 8705 if (vd->vdev_path) 8706 (void) fprintf(stderr, "Found vdev: %s\n", 8707 vd->vdev_path); 8708 else 8709 (void) fprintf(stderr, "Found vdev type: %s\n", 8710 vd->vdev_ops->vdev_op_type); 8711 } 8712 8713 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8714 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8715 8716 BP_ZERO(bp); 8717 8718 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8719 DVA_SET_OFFSET(&dva[0], offset); 8720 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8721 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8722 8723 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8724 8725 BP_SET_LSIZE(bp, lsize); 8726 BP_SET_PSIZE(bp, psize); 8727 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8728 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8729 BP_SET_TYPE(bp, DMU_OT_NONE); 8730 BP_SET_LEVEL(bp, 0); 8731 BP_SET_DEDUP(bp, 0); 8732 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8733 8734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8735 zio = zio_root(spa, NULL, NULL, 0); 8736 8737 if (vd == vd->vdev_top) { 8738 /* 8739 * Treat this as a normal block read. 8740 */ 8741 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8742 ZIO_PRIORITY_SYNC_READ, 8743 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8744 } else { 8745 /* 8746 * Treat this as a vdev child I/O. 8747 */ 8748 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8749 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8750 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8751 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8752 NULL, NULL)); 8753 } 8754 8755 error = zio_wait(zio); 8756 spa_config_exit(spa, SCL_STATE, FTAG); 8757 8758 if (error) { 8759 (void) printf("Read of %s failed, error: %d\n", thing, error); 8760 goto out; 8761 } 8762 8763 uint64_t orig_lsize = lsize; 8764 buf = lbuf; 8765 if (flags & ZDB_FLAG_DECOMPRESS) { 8766 lsize = zdb_decompress_block(pabd, buf, lbuf, 8767 lsize, psize, flags); 8768 if (lsize == -1) { 8769 (void) printf("Decompress of %s failed\n", thing); 8770 goto out; 8771 } 8772 } else { 8773 buf = abd_borrow_buf_copy(pabd, lsize); 8774 borrowed = B_TRUE; 8775 } 8776 /* 8777 * Try to detect invalid block pointer. If invalid, try 8778 * decompressing. 8779 */ 8780 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8781 !(flags & ZDB_FLAG_DECOMPRESS)) { 8782 const blkptr_t *b = (const blkptr_t *)(void *) 8783 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8784 if (zfs_blkptr_verify(spa, b, 8785 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8786 abd_return_buf_copy(pabd, buf, lsize); 8787 borrowed = B_FALSE; 8788 buf = lbuf; 8789 lsize = zdb_decompress_block(pabd, buf, 8790 lbuf, lsize, psize, flags); 8791 b = (const blkptr_t *)(void *) 8792 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8793 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8794 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8795 printf("invalid block pointer at this DVA\n"); 8796 goto out; 8797 } 8798 } 8799 } 8800 8801 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8802 zdb_print_blkptr((blkptr_t *)(void *) 8803 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8804 else if (flags & ZDB_FLAG_RAW) 8805 zdb_dump_block_raw(buf, lsize, flags); 8806 else if (flags & ZDB_FLAG_INDIRECT) 8807 zdb_dump_indirect((blkptr_t *)buf, 8808 orig_lsize / sizeof (blkptr_t), flags); 8809 else if (flags & ZDB_FLAG_GBH) 8810 zdb_dump_gbh(buf, flags); 8811 else 8812 zdb_dump_block(thing, buf, lsize, flags); 8813 8814 /* 8815 * If :c was specified, iterate through the checksum table to 8816 * calculate and display each checksum for our specified 8817 * DVA and length. 8818 */ 8819 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8820 !(flags & ZDB_FLAG_GBH)) { 8821 zio_t *czio; 8822 (void) printf("\n"); 8823 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8824 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8825 8826 if ((zio_checksum_table[ck].ci_flags & 8827 ZCHECKSUM_FLAG_EMBEDDED) || 8828 ck == ZIO_CHECKSUM_NOPARITY) { 8829 continue; 8830 } 8831 BP_SET_CHECKSUM(bp, ck); 8832 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8833 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8834 if (vd == vd->vdev_top) { 8835 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8836 NULL, NULL, 8837 ZIO_PRIORITY_SYNC_READ, 8838 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8839 ZIO_FLAG_DONT_RETRY, NULL)); 8840 } else { 8841 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8842 offset, pabd, psize, ZIO_TYPE_READ, 8843 ZIO_PRIORITY_SYNC_READ, 8844 ZIO_FLAG_DONT_PROPAGATE | 8845 ZIO_FLAG_DONT_RETRY | 8846 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8847 ZIO_FLAG_SPECULATIVE | 8848 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8849 } 8850 error = zio_wait(czio); 8851 if (error == 0 || error == ECKSUM) { 8852 zio_t *ck_zio = zio_null(NULL, spa, NULL, 8853 NULL, NULL, 0); 8854 ck_zio->io_offset = 8855 DVA_GET_OFFSET(&bp->blk_dva[0]); 8856 ck_zio->io_bp = bp; 8857 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8858 printf( 8859 "%12s\t" 8860 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8861 zio_checksum_table[ck].ci_name, 8862 (u_longlong_t)bp->blk_cksum.zc_word[0], 8863 (u_longlong_t)bp->blk_cksum.zc_word[1], 8864 (u_longlong_t)bp->blk_cksum.zc_word[2], 8865 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8866 zio_wait(ck_zio); 8867 } else { 8868 printf("error %d reading block\n", error); 8869 } 8870 spa_config_exit(spa, SCL_STATE, FTAG); 8871 } 8872 } 8873 8874 if (borrowed) 8875 abd_return_buf_copy(pabd, buf, lsize); 8876 8877 out: 8878 abd_free(pabd); 8879 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8880 done: 8881 free(flagstr); 8882 free(dup); 8883 } 8884 8885 static void 8886 zdb_embedded_block(char *thing) 8887 { 8888 blkptr_t bp = {{{{0}}}}; 8889 unsigned long long *words = (void *)&bp; 8890 char *buf; 8891 int err; 8892 8893 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8894 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8895 words + 0, words + 1, words + 2, words + 3, 8896 words + 4, words + 5, words + 6, words + 7, 8897 words + 8, words + 9, words + 10, words + 11, 8898 words + 12, words + 13, words + 14, words + 15); 8899 if (err != 16) { 8900 (void) fprintf(stderr, "invalid input format\n"); 8901 zdb_exit(1); 8902 } 8903 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8904 buf = malloc(SPA_MAXBLOCKSIZE); 8905 if (buf == NULL) { 8906 (void) fprintf(stderr, "out of memory\n"); 8907 zdb_exit(1); 8908 } 8909 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8910 if (err != 0) { 8911 (void) fprintf(stderr, "decode failed: %u\n", err); 8912 zdb_exit(1); 8913 } 8914 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8915 free(buf); 8916 } 8917 8918 /* check for valid hex or decimal numeric string */ 8919 static boolean_t 8920 zdb_numeric(char *str) 8921 { 8922 int i = 0; 8923 8924 if (strlen(str) == 0) 8925 return (B_FALSE); 8926 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8927 i = 2; 8928 for (; i < strlen(str); i++) { 8929 if (!isxdigit(str[i])) 8930 return (B_FALSE); 8931 } 8932 return (B_TRUE); 8933 } 8934 8935 static int 8936 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 8937 zfs_file_info_t *zoi) 8938 { 8939 (void) data, (void) zoi; 8940 8941 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 8942 return (ENOENT); 8943 8944 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 8945 abort(); 8946 } 8947 8948 int 8949 main(int argc, char **argv) 8950 { 8951 int c; 8952 int dump_all = 1; 8953 int verbose = 0; 8954 int error = 0; 8955 char **searchdirs = NULL; 8956 int nsearch = 0; 8957 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8958 nvlist_t *policy = NULL; 8959 uint64_t max_txg = UINT64_MAX; 8960 int64_t objset_id = -1; 8961 uint64_t object; 8962 int flags = ZFS_IMPORT_MISSING_LOG; 8963 int rewind = ZPOOL_NEVER_REWIND; 8964 char *spa_config_path_env, *objset_str; 8965 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8966 nvlist_t *cfg = NULL; 8967 struct sigaction action; 8968 boolean_t force_import = B_FALSE; 8969 boolean_t config_path_console = B_FALSE; 8970 char pbuf[MAXPATHLEN]; 8971 8972 dprintf_setup(&argc, argv); 8973 8974 /* 8975 * Set up signal handlers, so if we crash due to bad on-disk data we 8976 * can get more info. Unlike ztest, we don't bail out if we can't set 8977 * up signal handlers, because zdb is very useful without them. 8978 */ 8979 action.sa_handler = sig_handler; 8980 sigemptyset(&action.sa_mask); 8981 action.sa_flags = 0; 8982 if (sigaction(SIGSEGV, &action, NULL) < 0) { 8983 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 8984 strerror(errno)); 8985 } 8986 if (sigaction(SIGABRT, &action, NULL) < 0) { 8987 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 8988 strerror(errno)); 8989 } 8990 8991 /* 8992 * If there is an environment variable SPA_CONFIG_PATH it overrides 8993 * default spa_config_path setting. If -U flag is specified it will 8994 * override this environment variable settings once again. 8995 */ 8996 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8997 if (spa_config_path_env != NULL) 8998 spa_config_path = spa_config_path_env; 8999 9000 /* 9001 * For performance reasons, we set this tunable down. We do so before 9002 * the arg parsing section so that the user can override this value if 9003 * they choose. 9004 */ 9005 zfs_btree_verify_intensity = 3; 9006 9007 struct option long_options[] = { 9008 {"ignore-assertions", no_argument, NULL, 'A'}, 9009 {"block-stats", no_argument, NULL, 'b'}, 9010 {"backup", no_argument, NULL, 'B'}, 9011 {"checksum", no_argument, NULL, 'c'}, 9012 {"config", no_argument, NULL, 'C'}, 9013 {"datasets", no_argument, NULL, 'd'}, 9014 {"dedup-stats", no_argument, NULL, 'D'}, 9015 {"exported", no_argument, NULL, 'e'}, 9016 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9017 {"automatic-rewind", no_argument, NULL, 'F'}, 9018 {"dump-debug-msg", no_argument, NULL, 'G'}, 9019 {"history", no_argument, NULL, 'h'}, 9020 {"intent-logs", no_argument, NULL, 'i'}, 9021 {"inflight", required_argument, NULL, 'I'}, 9022 {"checkpointed-state", no_argument, NULL, 'k'}, 9023 {"key", required_argument, NULL, 'K'}, 9024 {"label", no_argument, NULL, 'l'}, 9025 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9026 {"metaslabs", no_argument, NULL, 'm'}, 9027 {"metaslab-groups", no_argument, NULL, 'M'}, 9028 {"numeric", no_argument, NULL, 'N'}, 9029 {"option", required_argument, NULL, 'o'}, 9030 {"object-lookups", no_argument, NULL, 'O'}, 9031 {"path", required_argument, NULL, 'p'}, 9032 {"parseable", no_argument, NULL, 'P'}, 9033 {"skip-label", no_argument, NULL, 'q'}, 9034 {"copy-object", no_argument, NULL, 'r'}, 9035 {"read-block", no_argument, NULL, 'R'}, 9036 {"io-stats", no_argument, NULL, 's'}, 9037 {"simulate-dedup", no_argument, NULL, 'S'}, 9038 {"txg", required_argument, NULL, 't'}, 9039 {"brt-stats", no_argument, NULL, 'T'}, 9040 {"uberblock", no_argument, NULL, 'u'}, 9041 {"cachefile", required_argument, NULL, 'U'}, 9042 {"verbose", no_argument, NULL, 'v'}, 9043 {"verbatim", no_argument, NULL, 'V'}, 9044 {"dump-blocks", required_argument, NULL, 'x'}, 9045 {"extreme-rewind", no_argument, NULL, 'X'}, 9046 {"all-reconstruction", no_argument, NULL, 'Y'}, 9047 {"livelist", no_argument, NULL, 'y'}, 9048 {"zstd-headers", no_argument, NULL, 'Z'}, 9049 {0, 0, 0, 0} 9050 }; 9051 9052 while ((c = getopt_long(argc, argv, 9053 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9054 long_options, NULL)) != -1) { 9055 switch (c) { 9056 case 'b': 9057 case 'B': 9058 case 'c': 9059 case 'C': 9060 case 'd': 9061 case 'D': 9062 case 'E': 9063 case 'G': 9064 case 'h': 9065 case 'i': 9066 case 'l': 9067 case 'm': 9068 case 'M': 9069 case 'N': 9070 case 'O': 9071 case 'r': 9072 case 'R': 9073 case 's': 9074 case 'S': 9075 case 'T': 9076 case 'u': 9077 case 'y': 9078 case 'Z': 9079 dump_opt[c]++; 9080 dump_all = 0; 9081 break; 9082 case 'A': 9083 case 'e': 9084 case 'F': 9085 case 'k': 9086 case 'L': 9087 case 'P': 9088 case 'q': 9089 case 'X': 9090 dump_opt[c]++; 9091 break; 9092 case 'Y': 9093 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9094 zfs_deadman_enabled = 0; 9095 break; 9096 /* NB: Sort single match options below. */ 9097 case 'I': 9098 max_inflight_bytes = strtoull(optarg, NULL, 0); 9099 if (max_inflight_bytes == 0) { 9100 (void) fprintf(stderr, "maximum number " 9101 "of inflight bytes must be greater " 9102 "than 0\n"); 9103 usage(); 9104 } 9105 break; 9106 case 'K': 9107 dump_opt[c]++; 9108 key_material = strdup(optarg); 9109 /* redact key material in process table */ 9110 while (*optarg != '\0') { *optarg++ = '*'; } 9111 break; 9112 case 'o': 9113 error = set_global_var(optarg); 9114 if (error != 0) 9115 usage(); 9116 break; 9117 case 'p': 9118 if (searchdirs == NULL) { 9119 searchdirs = umem_alloc(sizeof (char *), 9120 UMEM_NOFAIL); 9121 } else { 9122 char **tmp = umem_alloc((nsearch + 1) * 9123 sizeof (char *), UMEM_NOFAIL); 9124 memcpy(tmp, searchdirs, nsearch * 9125 sizeof (char *)); 9126 umem_free(searchdirs, 9127 nsearch * sizeof (char *)); 9128 searchdirs = tmp; 9129 } 9130 searchdirs[nsearch++] = optarg; 9131 break; 9132 case 't': 9133 max_txg = strtoull(optarg, NULL, 0); 9134 if (max_txg < TXG_INITIAL) { 9135 (void) fprintf(stderr, "incorrect txg " 9136 "specified: %s\n", optarg); 9137 usage(); 9138 } 9139 break; 9140 case 'U': 9141 config_path_console = B_TRUE; 9142 spa_config_path = optarg; 9143 if (spa_config_path[0] != '/') { 9144 (void) fprintf(stderr, 9145 "cachefile must be an absolute path " 9146 "(i.e. start with a slash)\n"); 9147 usage(); 9148 } 9149 break; 9150 case 'v': 9151 verbose++; 9152 break; 9153 case 'V': 9154 flags = ZFS_IMPORT_VERBATIM; 9155 break; 9156 case 'x': 9157 vn_dumpdir = optarg; 9158 break; 9159 default: 9160 usage(); 9161 break; 9162 } 9163 } 9164 9165 if (!dump_opt['e'] && searchdirs != NULL) { 9166 (void) fprintf(stderr, "-p option requires use of -e\n"); 9167 usage(); 9168 } 9169 #if defined(_LP64) 9170 /* 9171 * ZDB does not typically re-read blocks; therefore limit the ARC 9172 * to 256 MB, which can be used entirely for metadata. 9173 */ 9174 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9175 zfs_arc_max = 256 * 1024 * 1024; 9176 #endif 9177 9178 /* 9179 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9180 * "zdb -b" uses traversal prefetch which uses async reads. 9181 * For good performance, let several of them be active at once. 9182 */ 9183 zfs_vdev_async_read_max_active = 10; 9184 9185 /* 9186 * Disable reference tracking for better performance. 9187 */ 9188 reference_tracking_enable = B_FALSE; 9189 9190 /* 9191 * Do not fail spa_load when spa_load_verify fails. This is needed 9192 * to load non-idle pools. 9193 */ 9194 spa_load_verify_dryrun = B_TRUE; 9195 9196 /* 9197 * ZDB should have ability to read spacemaps. 9198 */ 9199 spa_mode_readable_spacemaps = B_TRUE; 9200 9201 if (dump_all) 9202 verbose = MAX(verbose, 1); 9203 9204 for (c = 0; c < 256; c++) { 9205 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9206 dump_opt[c] = 1; 9207 if (dump_opt[c]) 9208 dump_opt[c] += verbose; 9209 } 9210 9211 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9212 zfs_recover = (dump_opt['A'] > 1); 9213 9214 argc -= optind; 9215 argv += optind; 9216 if (argc < 2 && dump_opt['R']) 9217 usage(); 9218 9219 target = argv[0]; 9220 9221 /* 9222 * Automate cachefile 9223 */ 9224 if (!spa_config_path_env && !config_path_console && target && 9225 libzfs_core_init() == 0) { 9226 char *pname = strdup(target); 9227 const char *value; 9228 nvlist_t *pnvl = NULL; 9229 nvlist_t *vnvl = NULL; 9230 9231 if (strpbrk(pname, "/@") != NULL) 9232 *strpbrk(pname, "/@") = '\0'; 9233 9234 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9235 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9236 &vnvl) == 0) { 9237 value = fnvlist_lookup_string(vnvl, 9238 ZPROP_VALUE); 9239 } else { 9240 value = "-"; 9241 } 9242 strlcpy(pbuf, value, sizeof (pbuf)); 9243 if (pbuf[0] != '\0') { 9244 if (pbuf[0] == '/') { 9245 if (access(pbuf, F_OK) == 0) 9246 spa_config_path = pbuf; 9247 else 9248 force_import = B_TRUE; 9249 } else if ((strcmp(pbuf, "-") == 0 && 9250 access(ZPOOL_CACHE, F_OK) != 0) || 9251 strcmp(pbuf, "none") == 0) { 9252 force_import = B_TRUE; 9253 } 9254 } 9255 nvlist_free(vnvl); 9256 } 9257 9258 free(pname); 9259 nvlist_free(pnvl); 9260 libzfs_core_fini(); 9261 } 9262 9263 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9264 kernel_init(SPA_MODE_READ); 9265 kernel_init_done = B_TRUE; 9266 9267 if (dump_opt['E']) { 9268 if (argc != 1) 9269 usage(); 9270 zdb_embedded_block(argv[0]); 9271 error = 0; 9272 goto fini; 9273 } 9274 9275 if (argc < 1) { 9276 if (!dump_opt['e'] && dump_opt['C']) { 9277 dump_cachefile(spa_config_path); 9278 error = 0; 9279 goto fini; 9280 } 9281 usage(); 9282 } 9283 9284 if (dump_opt['l']) { 9285 error = dump_label(argv[0]); 9286 goto fini; 9287 } 9288 9289 if (dump_opt['X'] || dump_opt['F']) 9290 rewind = ZPOOL_DO_REWIND | 9291 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9292 9293 /* -N implies -d */ 9294 if (dump_opt['N'] && dump_opt['d'] == 0) 9295 dump_opt['d'] = dump_opt['N']; 9296 9297 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9298 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9299 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9300 fatal("internal error: %s", strerror(ENOMEM)); 9301 9302 error = 0; 9303 9304 if (strpbrk(target, "/@") != NULL) { 9305 size_t targetlen; 9306 9307 target_pool = strdup(target); 9308 *strpbrk(target_pool, "/@") = '\0'; 9309 9310 target_is_spa = B_FALSE; 9311 targetlen = strlen(target); 9312 if (targetlen && target[targetlen - 1] == '/') 9313 target[targetlen - 1] = '\0'; 9314 9315 /* 9316 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9317 * To disambiguate tank/100, consider the 100 as objsetID 9318 * if -N was given, otherwise 100 is an objsetID iff 9319 * tank/100 as a named dataset fails on lookup. 9320 */ 9321 objset_str = strchr(target, '/'); 9322 if (objset_str && strlen(objset_str) > 1 && 9323 zdb_numeric(objset_str + 1)) { 9324 char *endptr; 9325 errno = 0; 9326 objset_str++; 9327 objset_id = strtoull(objset_str, &endptr, 0); 9328 /* dataset 0 is the same as opening the pool */ 9329 if (errno == 0 && endptr != objset_str && 9330 objset_id != 0) { 9331 if (dump_opt['N']) 9332 dataset_lookup = B_TRUE; 9333 } 9334 /* normal dataset name not an objset ID */ 9335 if (endptr == objset_str) { 9336 objset_id = -1; 9337 } 9338 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9339 dump_opt['N']) { 9340 printf("Supply a numeric objset ID with -N\n"); 9341 error = 1; 9342 goto fini; 9343 } 9344 } else { 9345 target_pool = target; 9346 } 9347 9348 if (dump_opt['e'] || force_import) { 9349 importargs_t args = { 0 }; 9350 9351 /* 9352 * If path is not provided, search in /dev 9353 */ 9354 if (searchdirs == NULL) { 9355 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9356 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9357 } 9358 9359 args.paths = nsearch; 9360 args.path = searchdirs; 9361 args.can_be_active = B_TRUE; 9362 9363 libpc_handle_t lpch = { 9364 .lpc_lib_handle = NULL, 9365 .lpc_ops = &libzpool_config_ops, 9366 .lpc_printerr = B_TRUE 9367 }; 9368 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9369 9370 if (error == 0) { 9371 9372 if (nvlist_add_nvlist(cfg, 9373 ZPOOL_LOAD_POLICY, policy) != 0) { 9374 fatal("can't open '%s': %s", 9375 target, strerror(ENOMEM)); 9376 } 9377 9378 if (dump_opt['C'] > 1) { 9379 (void) printf("\nConfiguration for import:\n"); 9380 dump_nvlist(cfg, 8); 9381 } 9382 9383 /* 9384 * Disable the activity check to allow examination of 9385 * active pools. 9386 */ 9387 error = spa_import(target_pool, cfg, NULL, 9388 flags | ZFS_IMPORT_SKIP_MMP); 9389 } 9390 } 9391 9392 if (searchdirs != NULL) { 9393 umem_free(searchdirs, nsearch * sizeof (char *)); 9394 searchdirs = NULL; 9395 } 9396 9397 /* 9398 * We need to make sure to process -O option or call 9399 * dump_path after the -e option has been processed, 9400 * which imports the pool to the namespace if it's 9401 * not in the cachefile. 9402 */ 9403 if (dump_opt['O']) { 9404 if (argc != 2) 9405 usage(); 9406 dump_opt['v'] = verbose + 3; 9407 error = dump_path(argv[0], argv[1], NULL); 9408 goto fini; 9409 } 9410 9411 if (dump_opt['r']) { 9412 target_is_spa = B_FALSE; 9413 if (argc != 3) 9414 usage(); 9415 dump_opt['v'] = verbose; 9416 error = dump_path(argv[0], argv[1], &object); 9417 if (error != 0) 9418 fatal("internal error: %s", strerror(error)); 9419 } 9420 9421 /* 9422 * import_checkpointed_state makes the assumption that the 9423 * target pool that we pass it is already part of the spa 9424 * namespace. Because of that we need to make sure to call 9425 * it always after the -e option has been processed, which 9426 * imports the pool to the namespace if it's not in the 9427 * cachefile. 9428 */ 9429 char *checkpoint_pool = NULL; 9430 char *checkpoint_target = NULL; 9431 if (dump_opt['k']) { 9432 checkpoint_pool = import_checkpointed_state(target, cfg, 9433 &checkpoint_target); 9434 9435 if (checkpoint_target != NULL) 9436 target = checkpoint_target; 9437 } 9438 9439 if (cfg != NULL) { 9440 nvlist_free(cfg); 9441 cfg = NULL; 9442 } 9443 9444 if (target_pool != target) 9445 free(target_pool); 9446 9447 if (error == 0) { 9448 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9449 ASSERT(checkpoint_pool != NULL); 9450 ASSERT(checkpoint_target == NULL); 9451 9452 error = spa_open(checkpoint_pool, &spa, FTAG); 9453 if (error != 0) { 9454 fatal("Tried to open pool \"%s\" but " 9455 "spa_open() failed with error %d\n", 9456 checkpoint_pool, error); 9457 } 9458 9459 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9460 objset_id == 0) { 9461 zdb_set_skip_mmp(target); 9462 error = spa_open_rewind(target, &spa, FTAG, policy, 9463 NULL); 9464 if (error) { 9465 /* 9466 * If we're missing the log device then 9467 * try opening the pool after clearing the 9468 * log state. 9469 */ 9470 mutex_enter(&spa_namespace_lock); 9471 if ((spa = spa_lookup(target)) != NULL && 9472 spa->spa_log_state == SPA_LOG_MISSING) { 9473 spa->spa_log_state = SPA_LOG_CLEAR; 9474 error = 0; 9475 } 9476 mutex_exit(&spa_namespace_lock); 9477 9478 if (!error) { 9479 error = spa_open_rewind(target, &spa, 9480 FTAG, policy, NULL); 9481 } 9482 } 9483 } else if (strpbrk(target, "#") != NULL) { 9484 dsl_pool_t *dp; 9485 error = dsl_pool_hold(target, FTAG, &dp); 9486 if (error != 0) { 9487 fatal("can't dump '%s': %s", target, 9488 strerror(error)); 9489 } 9490 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9491 dsl_pool_rele(dp, FTAG); 9492 if (error != 0) { 9493 fatal("can't dump '%s': %s", target, 9494 strerror(error)); 9495 } 9496 goto fini; 9497 } else { 9498 target_pool = strdup(target); 9499 if (strpbrk(target, "/@") != NULL) 9500 *strpbrk(target_pool, "/@") = '\0'; 9501 9502 zdb_set_skip_mmp(target); 9503 /* 9504 * If -N was supplied, the user has indicated that 9505 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9506 * we first assume that the dataset string is the 9507 * dataset name. If dmu_objset_hold fails with the 9508 * dataset string, and we have an objset_id, retry the 9509 * lookup with the objsetID. 9510 */ 9511 boolean_t retry = B_TRUE; 9512 retry_lookup: 9513 if (dataset_lookup == B_TRUE) { 9514 /* 9515 * Use the supplied id to get the name 9516 * for open_objset. 9517 */ 9518 error = spa_open(target_pool, &spa, FTAG); 9519 if (error == 0) { 9520 error = name_from_objset_id(spa, 9521 objset_id, dsname); 9522 spa_close(spa, FTAG); 9523 if (error == 0) 9524 target = dsname; 9525 } 9526 } 9527 if (error == 0) { 9528 if (objset_id > 0 && retry) { 9529 int err = dmu_objset_hold(target, FTAG, 9530 &os); 9531 if (err) { 9532 dataset_lookup = B_TRUE; 9533 retry = B_FALSE; 9534 goto retry_lookup; 9535 } else { 9536 dmu_objset_rele(os, FTAG); 9537 } 9538 } 9539 error = open_objset(target, FTAG, &os); 9540 } 9541 if (error == 0) 9542 spa = dmu_objset_spa(os); 9543 free(target_pool); 9544 } 9545 } 9546 nvlist_free(policy); 9547 9548 if (error) 9549 fatal("can't open '%s': %s", target, strerror(error)); 9550 9551 /* 9552 * Set the pool failure mode to panic in order to prevent the pool 9553 * from suspending. A suspended I/O will have no way to resume and 9554 * can prevent the zdb(8) command from terminating as expected. 9555 */ 9556 if (spa != NULL) 9557 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9558 9559 argv++; 9560 argc--; 9561 if (dump_opt['r']) { 9562 error = zdb_copy_object(os, object, argv[1]); 9563 } else if (!dump_opt['R']) { 9564 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9565 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9566 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9567 flagbits['z'] = ZOR_FLAG_ZAP; 9568 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9569 9570 if (argc > 0 && dump_opt['d']) { 9571 zopt_object_args = argc; 9572 zopt_object_ranges = calloc(zopt_object_args, 9573 sizeof (zopt_object_range_t)); 9574 for (unsigned i = 0; i < zopt_object_args; i++) { 9575 int err; 9576 const char *msg = NULL; 9577 9578 err = parse_object_range(argv[i], 9579 &zopt_object_ranges[i], &msg); 9580 if (err != 0) 9581 fatal("Bad object or range: '%s': %s\n", 9582 argv[i], msg ?: ""); 9583 } 9584 } else if (argc > 0 && dump_opt['m']) { 9585 zopt_metaslab_args = argc; 9586 zopt_metaslab = calloc(zopt_metaslab_args, 9587 sizeof (uint64_t)); 9588 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9589 errno = 0; 9590 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9591 if (zopt_metaslab[i] == 0 && errno != 0) 9592 fatal("bad number %s: %s", argv[i], 9593 strerror(errno)); 9594 } 9595 } 9596 if (dump_opt['B']) { 9597 dump_backup(target, objset_id, 9598 argc > 0 ? argv[0] : NULL); 9599 } else if (os != NULL) { 9600 dump_objset(os); 9601 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9602 dump_objset(spa->spa_meta_objset); 9603 } else { 9604 dump_zpool(spa); 9605 } 9606 } else { 9607 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9608 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9609 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9610 flagbits['e'] = ZDB_FLAG_BSWAP; 9611 flagbits['g'] = ZDB_FLAG_GBH; 9612 flagbits['i'] = ZDB_FLAG_INDIRECT; 9613 flagbits['r'] = ZDB_FLAG_RAW; 9614 flagbits['v'] = ZDB_FLAG_VERBOSE; 9615 9616 for (int i = 0; i < argc; i++) 9617 zdb_read_block(argv[i], spa); 9618 } 9619 9620 if (dump_opt['k']) { 9621 free(checkpoint_pool); 9622 if (!target_is_spa) 9623 free(checkpoint_target); 9624 } 9625 9626 fini: 9627 if (os != NULL) { 9628 close_objset(os, FTAG); 9629 } else if (spa != NULL) { 9630 spa_close(spa, FTAG); 9631 } 9632 9633 fuid_table_destroy(); 9634 9635 dump_debug_buffer(); 9636 9637 if (kernel_init_done) 9638 kernel_fini(); 9639 9640 return (error); 9641 } 9642