1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zfs_znode.h> 53 #include <sys/zfs_sa.h> 54 #include <sys/sa.h> 55 #include <sys/sa_impl.h> 56 #include <sys/vdev.h> 57 #include <sys/vdev_impl.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/dmu_objset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_dataset.h> 62 #include <sys/dsl_pool.h> 63 #include <sys/dsl_bookmark.h> 64 #include <sys/dbuf.h> 65 #include <sys/zil.h> 66 #include <sys/zil_impl.h> 67 #include <sys/stat.h> 68 #include <sys/resource.h> 69 #include <sys/dmu_send.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/zio_checksum.h> 72 #include <sys/zio_compress.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/arc.h> 75 #include <sys/arc_impl.h> 76 #include <sys/ddt.h> 77 #include <sys/zfeature.h> 78 #include <sys/abd.h> 79 #include <sys/blkptr.h> 80 #include <sys/dsl_crypt.h> 81 #include <sys/dsl_scan.h> 82 #include <sys/btree.h> 83 #include <sys/brt.h> 84 #include <sys/brt_impl.h> 85 #include <zfs_comutil.h> 86 #include <sys/zstd/zstd.h> 87 88 #include <libnvpair.h> 89 #include <libzutil.h> 90 91 #include "zdb.h" 92 93 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 94 zio_compress_table[(idx)].ci_name : "UNKNOWN") 95 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 96 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 97 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 98 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 99 DMU_OT_ZAP_OTHER : \ 100 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 101 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 102 103 /* Some platforms require part of inode IDs to be remapped */ 104 #ifdef __APPLE__ 105 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2) 106 #else 107 #define ZDB_MAP_OBJECT_ID(obj) (obj) 108 #endif 109 110 static const char * 111 zdb_ot_name(dmu_object_type_t type) 112 { 113 if (type < DMU_OT_NUMTYPES) 114 return (dmu_ot[type].ot_name); 115 else if ((type & DMU_OT_NEWTYPE) && 116 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 117 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 118 else 119 return ("UNKNOWN"); 120 } 121 122 extern int reference_tracking_enable; 123 extern int zfs_recover; 124 extern uint_t zfs_vdev_async_read_max_active; 125 extern boolean_t spa_load_verify_dryrun; 126 extern boolean_t spa_mode_readable_spacemaps; 127 extern uint_t zfs_reconstruct_indirect_combinations_max; 128 extern uint_t zfs_btree_verify_intensity; 129 130 static const char cmdname[] = "zdb"; 131 uint8_t dump_opt[256]; 132 133 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 134 135 static uint64_t *zopt_metaslab = NULL; 136 static unsigned zopt_metaslab_args = 0; 137 138 typedef struct zopt_object_range { 139 uint64_t zor_obj_start; 140 uint64_t zor_obj_end; 141 uint64_t zor_flags; 142 } zopt_object_range_t; 143 144 static zopt_object_range_t *zopt_object_ranges = NULL; 145 static unsigned zopt_object_args = 0; 146 147 static int flagbits[256]; 148 149 #define ZOR_FLAG_PLAIN_FILE 0x0001 150 #define ZOR_FLAG_DIRECTORY 0x0002 151 #define ZOR_FLAG_SPACE_MAP 0x0004 152 #define ZOR_FLAG_ZAP 0x0008 153 #define ZOR_FLAG_ALL_TYPES -1 154 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 155 ZOR_FLAG_DIRECTORY | \ 156 ZOR_FLAG_SPACE_MAP | \ 157 ZOR_FLAG_ZAP) 158 159 #define ZDB_FLAG_CHECKSUM 0x0001 160 #define ZDB_FLAG_DECOMPRESS 0x0002 161 #define ZDB_FLAG_BSWAP 0x0004 162 #define ZDB_FLAG_GBH 0x0008 163 #define ZDB_FLAG_INDIRECT 0x0010 164 #define ZDB_FLAG_RAW 0x0020 165 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 166 #define ZDB_FLAG_VERBOSE 0x0080 167 168 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 169 static int leaked_objects = 0; 170 static range_tree_t *mos_refd_objs; 171 172 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 173 boolean_t); 174 static void mos_obj_refd(uint64_t); 175 static void mos_obj_refd_multiple(uint64_t); 176 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 177 dmu_tx_t *tx); 178 179 typedef struct sublivelist_verify { 180 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 181 zfs_btree_t sv_pair; 182 183 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 184 zfs_btree_t sv_leftover; 185 } sublivelist_verify_t; 186 187 static int 188 livelist_compare(const void *larg, const void *rarg) 189 { 190 const blkptr_t *l = larg; 191 const blkptr_t *r = rarg; 192 193 /* Sort them according to dva[0] */ 194 uint64_t l_dva0_vdev, r_dva0_vdev; 195 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 196 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 197 if (l_dva0_vdev < r_dva0_vdev) 198 return (-1); 199 else if (l_dva0_vdev > r_dva0_vdev) 200 return (+1); 201 202 /* if vdevs are equal, sort by offsets. */ 203 uint64_t l_dva0_offset; 204 uint64_t r_dva0_offset; 205 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 206 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 207 if (l_dva0_offset < r_dva0_offset) { 208 return (-1); 209 } else if (l_dva0_offset > r_dva0_offset) { 210 return (+1); 211 } 212 213 /* 214 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 215 * it's possible the offsets are equal. In that case, sort by txg 216 */ 217 if (l->blk_birth < r->blk_birth) { 218 return (-1); 219 } else if (l->blk_birth > r->blk_birth) { 220 return (+1); 221 } 222 return (0); 223 } 224 225 typedef struct sublivelist_verify_block { 226 dva_t svb_dva; 227 228 /* 229 * We need this to check if the block marked as allocated 230 * in the livelist was freed (and potentially reallocated) 231 * in the metaslab spacemaps at a later TXG. 232 */ 233 uint64_t svb_allocated_txg; 234 } sublivelist_verify_block_t; 235 236 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 237 238 typedef struct sublivelist_verify_block_refcnt { 239 /* block pointer entry in livelist being verified */ 240 blkptr_t svbr_blk; 241 242 /* 243 * Refcount gets incremented to 1 when we encounter the first 244 * FREE entry for the svfbr block pointer and a node for it 245 * is created in our ZDB verification/tracking metadata. 246 * 247 * As we encounter more FREE entries we increment this counter 248 * and similarly decrement it whenever we find the respective 249 * ALLOC entries for this block. 250 * 251 * When the refcount gets to 0 it means that all the FREE and 252 * ALLOC entries of this block have paired up and we no longer 253 * need to track it in our verification logic (e.g. the node 254 * containing this struct in our verification data structure 255 * should be freed). 256 * 257 * [refer to sublivelist_verify_blkptr() for the actual code] 258 */ 259 uint32_t svbr_refcnt; 260 } sublivelist_verify_block_refcnt_t; 261 262 static int 263 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 264 { 265 const sublivelist_verify_block_refcnt_t *l = larg; 266 const sublivelist_verify_block_refcnt_t *r = rarg; 267 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 268 } 269 270 static int 271 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 272 dmu_tx_t *tx) 273 { 274 ASSERT3P(tx, ==, NULL); 275 struct sublivelist_verify *sv = arg; 276 sublivelist_verify_block_refcnt_t current = { 277 .svbr_blk = *bp, 278 279 /* 280 * Start with 1 in case this is the first free entry. 281 * This field is not used for our B-Tree comparisons 282 * anyway. 283 */ 284 .svbr_refcnt = 1, 285 }; 286 287 zfs_btree_index_t where; 288 sublivelist_verify_block_refcnt_t *pair = 289 zfs_btree_find(&sv->sv_pair, ¤t, &where); 290 if (free) { 291 if (pair == NULL) { 292 /* first free entry for this block pointer */ 293 zfs_btree_add(&sv->sv_pair, ¤t); 294 } else { 295 pair->svbr_refcnt++; 296 } 297 } else { 298 if (pair == NULL) { 299 /* block that is currently marked as allocated */ 300 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 301 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 302 break; 303 sublivelist_verify_block_t svb = { 304 .svb_dva = bp->blk_dva[i], 305 .svb_allocated_txg = bp->blk_birth 306 }; 307 308 if (zfs_btree_find(&sv->sv_leftover, &svb, 309 &where) == NULL) { 310 zfs_btree_add_idx(&sv->sv_leftover, 311 &svb, &where); 312 } 313 } 314 } else { 315 /* alloc matches a free entry */ 316 pair->svbr_refcnt--; 317 if (pair->svbr_refcnt == 0) { 318 /* all allocs and frees have been matched */ 319 zfs_btree_remove_idx(&sv->sv_pair, &where); 320 } 321 } 322 } 323 324 return (0); 325 } 326 327 static int 328 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 329 { 330 int err; 331 struct sublivelist_verify *sv = args; 332 333 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 334 sizeof (sublivelist_verify_block_refcnt_t)); 335 336 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 337 sv, NULL); 338 339 sublivelist_verify_block_refcnt_t *e; 340 zfs_btree_index_t *cookie = NULL; 341 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 342 char blkbuf[BP_SPRINTF_LEN]; 343 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 344 &e->svbr_blk, B_TRUE); 345 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 346 e->svbr_refcnt, blkbuf); 347 } 348 zfs_btree_destroy(&sv->sv_pair); 349 350 return (err); 351 } 352 353 static int 354 livelist_block_compare(const void *larg, const void *rarg) 355 { 356 const sublivelist_verify_block_t *l = larg; 357 const sublivelist_verify_block_t *r = rarg; 358 359 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 360 return (-1); 361 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 362 return (+1); 363 364 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 365 return (-1); 366 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 367 return (+1); 368 369 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 370 return (-1); 371 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 372 return (+1); 373 374 return (0); 375 } 376 377 /* 378 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 379 * sublivelist_verify_t: sv->sv_leftover 380 */ 381 static void 382 livelist_verify(dsl_deadlist_t *dl, void *arg) 383 { 384 sublivelist_verify_t *sv = arg; 385 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 386 } 387 388 /* 389 * Check for errors in the livelist entry and discard the intermediary 390 * data structures 391 */ 392 static int 393 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 394 { 395 (void) args; 396 sublivelist_verify_t sv; 397 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 398 sizeof (sublivelist_verify_block_t)); 399 int err = sublivelist_verify_func(&sv, dle); 400 zfs_btree_clear(&sv.sv_leftover); 401 zfs_btree_destroy(&sv.sv_leftover); 402 return (err); 403 } 404 405 typedef struct metaslab_verify { 406 /* 407 * Tree containing all the leftover ALLOCs from the livelists 408 * that are part of this metaslab. 409 */ 410 zfs_btree_t mv_livelist_allocs; 411 412 /* 413 * Metaslab information. 414 */ 415 uint64_t mv_vdid; 416 uint64_t mv_msid; 417 uint64_t mv_start; 418 uint64_t mv_end; 419 420 /* 421 * What's currently allocated for this metaslab. 422 */ 423 range_tree_t *mv_allocated; 424 } metaslab_verify_t; 425 426 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 427 428 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 429 void *arg); 430 431 typedef struct unflushed_iter_cb_arg { 432 spa_t *uic_spa; 433 uint64_t uic_txg; 434 void *uic_arg; 435 zdb_log_sm_cb_t uic_cb; 436 } unflushed_iter_cb_arg_t; 437 438 static int 439 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 440 { 441 unflushed_iter_cb_arg_t *uic = arg; 442 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 443 } 444 445 static void 446 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 447 { 448 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 449 return; 450 451 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 452 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 453 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 454 space_map_t *sm = NULL; 455 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 456 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 457 458 unflushed_iter_cb_arg_t uic = { 459 .uic_spa = spa, 460 .uic_txg = sls->sls_txg, 461 .uic_arg = arg, 462 .uic_cb = cb 463 }; 464 VERIFY0(space_map_iterate(sm, space_map_length(sm), 465 iterate_through_spacemap_logs_cb, &uic)); 466 space_map_close(sm); 467 } 468 spa_config_exit(spa, SCL_CONFIG, FTAG); 469 } 470 471 static void 472 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 473 uint64_t offset, uint64_t size) 474 { 475 sublivelist_verify_block_t svb = {{{0}}}; 476 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 477 DVA_SET_OFFSET(&svb.svb_dva, offset); 478 DVA_SET_ASIZE(&svb.svb_dva, size); 479 zfs_btree_index_t where; 480 uint64_t end_offset = offset + size; 481 482 /* 483 * Look for an exact match for spacemap entry in the livelist entries. 484 * Then, look for other livelist entries that fall within the range 485 * of the spacemap entry as it may have been condensed 486 */ 487 sublivelist_verify_block_t *found = 488 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 489 if (found == NULL) { 490 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 491 } 492 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 493 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 494 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 495 if (found->svb_allocated_txg <= txg) { 496 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 497 "from TXG %llx FREED at TXG %llx\n", 498 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 499 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 500 (u_longlong_t)found->svb_allocated_txg, 501 (u_longlong_t)txg); 502 } 503 } 504 } 505 506 static int 507 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 508 { 509 metaslab_verify_t *mv = arg; 510 uint64_t offset = sme->sme_offset; 511 uint64_t size = sme->sme_run; 512 uint64_t txg = sme->sme_txg; 513 514 if (sme->sme_type == SM_ALLOC) { 515 if (range_tree_contains(mv->mv_allocated, 516 offset, size)) { 517 (void) printf("ERROR: DOUBLE ALLOC: " 518 "%llu [%llx:%llx] " 519 "%llu:%llu LOG_SM\n", 520 (u_longlong_t)txg, (u_longlong_t)offset, 521 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 522 (u_longlong_t)mv->mv_msid); 523 } else { 524 range_tree_add(mv->mv_allocated, 525 offset, size); 526 } 527 } else { 528 if (!range_tree_contains(mv->mv_allocated, 529 offset, size)) { 530 (void) printf("ERROR: DOUBLE FREE: " 531 "%llu [%llx:%llx] " 532 "%llu:%llu LOG_SM\n", 533 (u_longlong_t)txg, (u_longlong_t)offset, 534 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 535 (u_longlong_t)mv->mv_msid); 536 } else { 537 range_tree_remove(mv->mv_allocated, 538 offset, size); 539 } 540 } 541 542 if (sme->sme_type != SM_ALLOC) { 543 /* 544 * If something is freed in the spacemap, verify that 545 * it is not listed as allocated in the livelist. 546 */ 547 verify_livelist_allocs(mv, txg, offset, size); 548 } 549 return (0); 550 } 551 552 static int 553 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 554 uint64_t txg, void *arg) 555 { 556 metaslab_verify_t *mv = arg; 557 uint64_t offset = sme->sme_offset; 558 uint64_t vdev_id = sme->sme_vdev; 559 560 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 561 562 /* skip indirect vdevs */ 563 if (!vdev_is_concrete(vd)) 564 return (0); 565 566 if (vdev_id != mv->mv_vdid) 567 return (0); 568 569 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 570 if (ms->ms_id != mv->mv_msid) 571 return (0); 572 573 if (txg < metaslab_unflushed_txg(ms)) 574 return (0); 575 576 577 ASSERT3U(txg, ==, sme->sme_txg); 578 return (metaslab_spacemap_validation_cb(sme, mv)); 579 } 580 581 static void 582 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 583 { 584 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 585 } 586 587 static void 588 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 589 { 590 if (sm == NULL) 591 return; 592 593 VERIFY0(space_map_iterate(sm, space_map_length(sm), 594 metaslab_spacemap_validation_cb, mv)); 595 } 596 597 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 598 599 /* 600 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 601 * they are part of that metaslab (mv_msid). 602 */ 603 static void 604 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 605 { 606 zfs_btree_index_t where; 607 sublivelist_verify_block_t *svb; 608 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 609 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 610 svb != NULL; 611 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 612 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 613 continue; 614 615 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 616 (DVA_GET_OFFSET(&svb->svb_dva) + 617 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 618 (void) printf("ERROR: Found block that crosses " 619 "metaslab boundary: <%llu:%llx:%llx>\n", 620 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 621 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 622 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 623 continue; 624 } 625 626 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 627 continue; 628 629 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 630 continue; 631 632 if ((DVA_GET_OFFSET(&svb->svb_dva) + 633 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 634 (void) printf("ERROR: Found block that crosses " 635 "metaslab boundary: <%llu:%llx:%llx>\n", 636 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 637 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 638 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 639 continue; 640 } 641 642 zfs_btree_add(&mv->mv_livelist_allocs, svb); 643 } 644 645 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 646 svb != NULL; 647 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 648 zfs_btree_remove(&sv->sv_leftover, svb); 649 } 650 } 651 652 /* 653 * [Livelist Check] 654 * Iterate through all the sublivelists and: 655 * - report leftover frees (**) 656 * - record leftover ALLOCs together with their TXG [see Cross Check] 657 * 658 * (**) Note: Double ALLOCs are valid in datasets that have dedup 659 * enabled. Similarly double FREEs are allowed as well but 660 * only if they pair up with a corresponding ALLOC entry once 661 * we our done with our sublivelist iteration. 662 * 663 * [Spacemap Check] 664 * for each metaslab: 665 * - iterate over spacemap and then the metaslab's entries in the 666 * spacemap log, then report any double FREEs and ALLOCs (do not 667 * blow up). 668 * 669 * [Cross Check] 670 * After finishing the Livelist Check phase and while being in the 671 * Spacemap Check phase, we find all the recorded leftover ALLOCs 672 * of the livelist check that are part of the metaslab that we are 673 * currently looking at in the Spacemap Check. We report any entries 674 * that are marked as ALLOCs in the livelists but have been actually 675 * freed (and potentially allocated again) after their TXG stamp in 676 * the spacemaps. Also report any ALLOCs from the livelists that 677 * belong to indirect vdevs (e.g. their vdev completed removal). 678 * 679 * Note that this will miss Log Spacemap entries that cancelled each other 680 * out before being flushed to the metaslab, so we are not guaranteed 681 * to match all erroneous ALLOCs. 682 */ 683 static void 684 livelist_metaslab_validate(spa_t *spa) 685 { 686 (void) printf("Verifying deleted livelist entries\n"); 687 688 sublivelist_verify_t sv; 689 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 690 sizeof (sublivelist_verify_block_t)); 691 iterate_deleted_livelists(spa, livelist_verify, &sv); 692 693 (void) printf("Verifying metaslab entries\n"); 694 vdev_t *rvd = spa->spa_root_vdev; 695 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 696 vdev_t *vd = rvd->vdev_child[c]; 697 698 if (!vdev_is_concrete(vd)) 699 continue; 700 701 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 702 metaslab_t *m = vd->vdev_ms[mid]; 703 704 (void) fprintf(stderr, 705 "\rverifying concrete vdev %llu, " 706 "metaslab %llu of %llu ...", 707 (longlong_t)vd->vdev_id, 708 (longlong_t)mid, 709 (longlong_t)vd->vdev_ms_count); 710 711 uint64_t shift, start; 712 range_seg_type_t type = 713 metaslab_calculate_range_tree_type(vd, m, 714 &start, &shift); 715 metaslab_verify_t mv; 716 mv.mv_allocated = range_tree_create(NULL, 717 type, NULL, start, shift); 718 mv.mv_vdid = vd->vdev_id; 719 mv.mv_msid = m->ms_id; 720 mv.mv_start = m->ms_start; 721 mv.mv_end = m->ms_start + m->ms_size; 722 zfs_btree_create(&mv.mv_livelist_allocs, 723 livelist_block_compare, NULL, 724 sizeof (sublivelist_verify_block_t)); 725 726 mv_populate_livelist_allocs(&mv, &sv); 727 728 spacemap_check_ms_sm(m->ms_sm, &mv); 729 spacemap_check_sm_log(spa, &mv); 730 731 range_tree_vacate(mv.mv_allocated, NULL, NULL); 732 range_tree_destroy(mv.mv_allocated); 733 zfs_btree_clear(&mv.mv_livelist_allocs); 734 zfs_btree_destroy(&mv.mv_livelist_allocs); 735 } 736 } 737 (void) fprintf(stderr, "\n"); 738 739 /* 740 * If there are any segments in the leftover tree after we walked 741 * through all the metaslabs in the concrete vdevs then this means 742 * that we have segments in the livelists that belong to indirect 743 * vdevs and are marked as allocated. 744 */ 745 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 746 zfs_btree_destroy(&sv.sv_leftover); 747 return; 748 } 749 (void) printf("ERROR: Found livelist blocks marked as allocated " 750 "for indirect vdevs:\n"); 751 752 zfs_btree_index_t *where = NULL; 753 sublivelist_verify_block_t *svb; 754 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 755 NULL) { 756 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 757 ASSERT3U(vdev_id, <, rvd->vdev_children); 758 vdev_t *vd = rvd->vdev_child[vdev_id]; 759 ASSERT(!vdev_is_concrete(vd)); 760 (void) printf("<%d:%llx:%llx> TXG %llx\n", 761 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 762 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 763 (u_longlong_t)svb->svb_allocated_txg); 764 } 765 (void) printf("\n"); 766 zfs_btree_destroy(&sv.sv_leftover); 767 } 768 769 /* 770 * These libumem hooks provide a reasonable set of defaults for the allocator's 771 * debugging facilities. 772 */ 773 const char * 774 _umem_debug_init(void) 775 { 776 return ("default,verbose"); /* $UMEM_DEBUG setting */ 777 } 778 779 const char * 780 _umem_logging_init(void) 781 { 782 return ("fail,contents"); /* $UMEM_LOGGING setting */ 783 } 784 785 static void 786 usage(void) 787 { 788 (void) fprintf(stderr, 789 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 790 "[-I <inflight I/Os>]\n" 791 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 792 "\t\t[-K <key>]\n" 793 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 794 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 795 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 796 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 797 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 798 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 799 "\t%s [-v] <bookmark>\n" 800 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 801 "\t%s -l [-Aqu] <device>\n" 802 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 803 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 804 "\t%s -O [-K <key>] <dataset> <path>\n" 805 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 806 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 807 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 808 "\t%s -E [-A] word0:word1:...:word15\n" 809 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 810 "<poolname>\n\n", 811 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 812 cmdname, cmdname, cmdname, cmdname, cmdname); 813 814 (void) fprintf(stderr, " Dataset name must include at least one " 815 "separator character '/' or '@'\n"); 816 (void) fprintf(stderr, " If dataset name is specified, only that " 817 "dataset is dumped\n"); 818 (void) fprintf(stderr, " If object numbers or object number " 819 "ranges are specified, only those\n" 820 " objects or ranges are dumped.\n\n"); 821 (void) fprintf(stderr, 822 " Object ranges take the form <start>:<end>[:<flags>]\n" 823 " start Starting object number\n" 824 " end Ending object number, or -1 for no upper bound\n" 825 " flags Optional flags to select object types:\n" 826 " A All objects (this is the default)\n" 827 " d ZFS directories\n" 828 " f ZFS files \n" 829 " m SPA space maps\n" 830 " z ZAPs\n" 831 " - Negate effect of next flag\n\n"); 832 (void) fprintf(stderr, " Options to control amount of output:\n"); 833 (void) fprintf(stderr, " -b --block-stats " 834 "block statistics\n"); 835 (void) fprintf(stderr, " -B --backup " 836 "backup stream\n"); 837 (void) fprintf(stderr, " -c --checksum " 838 "checksum all metadata (twice for all data) blocks\n"); 839 (void) fprintf(stderr, " -C --config " 840 "config (or cachefile if alone)\n"); 841 (void) fprintf(stderr, " -d --datasets " 842 "dataset(s)\n"); 843 (void) fprintf(stderr, " -D --dedup-stats " 844 "dedup statistics\n"); 845 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 846 " decode and display block " 847 "from an embedded block pointer\n"); 848 (void) fprintf(stderr, " -h --history " 849 "pool history\n"); 850 (void) fprintf(stderr, " -i --intent-logs " 851 "intent logs\n"); 852 (void) fprintf(stderr, " -l --label " 853 "read label contents\n"); 854 (void) fprintf(stderr, " -k --checkpointed-state " 855 "examine the checkpointed state of the pool\n"); 856 (void) fprintf(stderr, " -L --disable-leak-tracking " 857 "disable leak tracking (do not load spacemaps)\n"); 858 (void) fprintf(stderr, " -m --metaslabs " 859 "metaslabs\n"); 860 (void) fprintf(stderr, " -M --metaslab-groups " 861 "metaslab groups\n"); 862 (void) fprintf(stderr, " -O --object-lookups " 863 "perform object lookups by path\n"); 864 (void) fprintf(stderr, " -r --copy-object " 865 "copy an object by path to file\n"); 866 (void) fprintf(stderr, " -R --read-block " 867 "read and display block from a device\n"); 868 (void) fprintf(stderr, " -s --io-stats " 869 "report stats on zdb's I/O\n"); 870 (void) fprintf(stderr, " -S --simulate-dedup " 871 "simulate dedup to measure effect\n"); 872 (void) fprintf(stderr, " -v --verbose " 873 "verbose (applies to all others)\n"); 874 (void) fprintf(stderr, " -y --livelist " 875 "perform livelist and metaslab validation on any livelists being " 876 "deleted\n\n"); 877 (void) fprintf(stderr, " Below options are intended for use " 878 "with other options:\n"); 879 (void) fprintf(stderr, " -A --ignore-assertions " 880 "ignore assertions (-A), enable panic recovery (-AA) or both " 881 "(-AAA)\n"); 882 (void) fprintf(stderr, " -e --exported " 883 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 884 (void) fprintf(stderr, " -F --automatic-rewind " 885 "attempt automatic rewind within safe range of transaction " 886 "groups\n"); 887 (void) fprintf(stderr, " -G --dump-debug-msg " 888 "dump zfs_dbgmsg buffer before exiting\n"); 889 (void) fprintf(stderr, " -I --inflight=INTEGER " 890 "specify the maximum number of checksumming I/Os " 891 "[default is 200]\n"); 892 (void) fprintf(stderr, " -K --key=KEY " 893 "decryption key for encrypted dataset\n"); 894 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 895 "set global variable to an unsigned 32-bit integer\n"); 896 (void) fprintf(stderr, " -p --path==PATH " 897 "use one or more with -e to specify path to vdev dir\n"); 898 (void) fprintf(stderr, " -P --parseable " 899 "print numbers in parseable form\n"); 900 (void) fprintf(stderr, " -q --skip-label " 901 "don't print label contents\n"); 902 (void) fprintf(stderr, " -t --txg=INTEGER " 903 "highest txg to use when searching for uberblocks\n"); 904 (void) fprintf(stderr, " -T --brt-stats " 905 "BRT statistics\n"); 906 (void) fprintf(stderr, " -u --uberblock " 907 "uberblock\n"); 908 (void) fprintf(stderr, " -U --cachefile=PATH " 909 "use alternate cachefile\n"); 910 (void) fprintf(stderr, " -V --verbatim " 911 "do verbatim import\n"); 912 (void) fprintf(stderr, " -x --dump-blocks=PATH " 913 "dump all read blocks into specified directory\n"); 914 (void) fprintf(stderr, " -X --extreme-rewind " 915 "attempt extreme rewind (does not work with dataset)\n"); 916 (void) fprintf(stderr, " -Y --all-reconstruction " 917 "attempt all reconstruction combinations for split blocks\n"); 918 (void) fprintf(stderr, " -Z --zstd-headers " 919 "show ZSTD headers \n"); 920 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 921 "to make only that option verbose\n"); 922 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 923 exit(1); 924 } 925 926 static void 927 dump_debug_buffer(void) 928 { 929 if (dump_opt['G']) { 930 (void) printf("\n"); 931 (void) fflush(stdout); 932 zfs_dbgmsg_print("zdb"); 933 } 934 } 935 936 /* 937 * Called for usage errors that are discovered after a call to spa_open(), 938 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 939 */ 940 941 static void 942 fatal(const char *fmt, ...) 943 { 944 va_list ap; 945 946 va_start(ap, fmt); 947 (void) fprintf(stderr, "%s: ", cmdname); 948 (void) vfprintf(stderr, fmt, ap); 949 va_end(ap); 950 (void) fprintf(stderr, "\n"); 951 952 dump_debug_buffer(); 953 954 exit(1); 955 } 956 957 static void 958 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 959 { 960 (void) size; 961 nvlist_t *nv; 962 size_t nvsize = *(uint64_t *)data; 963 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 964 965 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 966 967 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 968 969 umem_free(packed, nvsize); 970 971 dump_nvlist(nv, 8); 972 973 nvlist_free(nv); 974 } 975 976 static void 977 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 978 { 979 (void) os, (void) object, (void) size; 980 spa_history_phys_t *shp = data; 981 982 if (shp == NULL) 983 return; 984 985 (void) printf("\t\tpool_create_len = %llu\n", 986 (u_longlong_t)shp->sh_pool_create_len); 987 (void) printf("\t\tphys_max_off = %llu\n", 988 (u_longlong_t)shp->sh_phys_max_off); 989 (void) printf("\t\tbof = %llu\n", 990 (u_longlong_t)shp->sh_bof); 991 (void) printf("\t\teof = %llu\n", 992 (u_longlong_t)shp->sh_eof); 993 (void) printf("\t\trecords_lost = %llu\n", 994 (u_longlong_t)shp->sh_records_lost); 995 } 996 997 static void 998 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 999 { 1000 if (dump_opt['P']) 1001 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 1002 else 1003 nicenum(num, buf, buflen); 1004 } 1005 1006 static void 1007 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 1008 { 1009 if (dump_opt['P']) 1010 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 1011 else 1012 zfs_nicebytes(bytes, buf, buflen); 1013 } 1014 1015 static const char histo_stars[] = "****************************************"; 1016 static const uint64_t histo_width = sizeof (histo_stars) - 1; 1017 1018 static void 1019 dump_histogram(const uint64_t *histo, int size, int offset) 1020 { 1021 int i; 1022 int minidx = size - 1; 1023 int maxidx = 0; 1024 uint64_t max = 0; 1025 1026 for (i = 0; i < size; i++) { 1027 if (histo[i] == 0) 1028 continue; 1029 if (histo[i] > max) 1030 max = histo[i]; 1031 if (i > maxidx) 1032 maxidx = i; 1033 if (i < minidx) 1034 minidx = i; 1035 } 1036 1037 if (max < histo_width) 1038 max = histo_width; 1039 1040 for (i = minidx; i <= maxidx; i++) { 1041 (void) printf("\t\t\t%3u: %6llu %s\n", 1042 i + offset, (u_longlong_t)histo[i], 1043 &histo_stars[(max - histo[i]) * histo_width / max]); 1044 } 1045 } 1046 1047 static void 1048 dump_zap_stats(objset_t *os, uint64_t object) 1049 { 1050 int error; 1051 zap_stats_t zs; 1052 1053 error = zap_get_stats(os, object, &zs); 1054 if (error) 1055 return; 1056 1057 if (zs.zs_ptrtbl_len == 0) { 1058 ASSERT(zs.zs_num_blocks == 1); 1059 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 1060 (u_longlong_t)zs.zs_blocksize, 1061 (u_longlong_t)zs.zs_num_entries); 1062 return; 1063 } 1064 1065 (void) printf("\tFat ZAP stats:\n"); 1066 1067 (void) printf("\t\tPointer table:\n"); 1068 (void) printf("\t\t\t%llu elements\n", 1069 (u_longlong_t)zs.zs_ptrtbl_len); 1070 (void) printf("\t\t\tzt_blk: %llu\n", 1071 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1072 (void) printf("\t\t\tzt_numblks: %llu\n", 1073 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1074 (void) printf("\t\t\tzt_shift: %llu\n", 1075 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1076 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1077 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1078 (void) printf("\t\t\tzt_nextblk: %llu\n", 1079 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1080 1081 (void) printf("\t\tZAP entries: %llu\n", 1082 (u_longlong_t)zs.zs_num_entries); 1083 (void) printf("\t\tLeaf blocks: %llu\n", 1084 (u_longlong_t)zs.zs_num_leafs); 1085 (void) printf("\t\tTotal blocks: %llu\n", 1086 (u_longlong_t)zs.zs_num_blocks); 1087 (void) printf("\t\tzap_block_type: 0x%llx\n", 1088 (u_longlong_t)zs.zs_block_type); 1089 (void) printf("\t\tzap_magic: 0x%llx\n", 1090 (u_longlong_t)zs.zs_magic); 1091 (void) printf("\t\tzap_salt: 0x%llx\n", 1092 (u_longlong_t)zs.zs_salt); 1093 1094 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1095 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1096 1097 (void) printf("\t\tBlocks with n*5 entries:\n"); 1098 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1099 1100 (void) printf("\t\tBlocks n/10 full:\n"); 1101 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1102 1103 (void) printf("\t\tEntries with n chunks:\n"); 1104 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1105 1106 (void) printf("\t\tBuckets with n entries:\n"); 1107 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1108 } 1109 1110 static void 1111 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1112 { 1113 (void) os, (void) object, (void) data, (void) size; 1114 } 1115 1116 static void 1117 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1118 { 1119 (void) os, (void) object, (void) data, (void) size; 1120 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1121 } 1122 1123 static void 1124 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1125 { 1126 (void) os, (void) object, (void) data, (void) size; 1127 } 1128 1129 static void 1130 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1131 { 1132 uint64_t *arr; 1133 uint64_t oursize; 1134 if (dump_opt['d'] < 6) 1135 return; 1136 1137 if (data == NULL) { 1138 dmu_object_info_t doi; 1139 1140 VERIFY0(dmu_object_info(os, object, &doi)); 1141 size = doi.doi_max_offset; 1142 /* 1143 * We cap the size at 1 mebibyte here to prevent 1144 * allocation failures and nigh-infinite printing if the 1145 * object is extremely large. 1146 */ 1147 oursize = MIN(size, 1 << 20); 1148 arr = kmem_alloc(oursize, KM_SLEEP); 1149 1150 int err = dmu_read(os, object, 0, oursize, arr, 0); 1151 if (err != 0) { 1152 (void) printf("got error %u from dmu_read\n", err); 1153 kmem_free(arr, oursize); 1154 return; 1155 } 1156 } else { 1157 /* 1158 * Even though the allocation is already done in this code path, 1159 * we still cap the size to prevent excessive printing. 1160 */ 1161 oursize = MIN(size, 1 << 20); 1162 arr = data; 1163 } 1164 1165 if (size == 0) { 1166 if (data == NULL) 1167 kmem_free(arr, oursize); 1168 (void) printf("\t\t[]\n"); 1169 return; 1170 } 1171 1172 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1173 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1174 if (i % 4 != 0) 1175 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1176 else 1177 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1178 } 1179 if (oursize != size) 1180 (void) printf(", ... "); 1181 (void) printf("]\n"); 1182 1183 if (data == NULL) 1184 kmem_free(arr, oursize); 1185 } 1186 1187 static void 1188 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1189 { 1190 (void) data, (void) size; 1191 zap_cursor_t zc; 1192 zap_attribute_t attr; 1193 void *prop; 1194 unsigned i; 1195 1196 dump_zap_stats(os, object); 1197 (void) printf("\n"); 1198 1199 for (zap_cursor_init(&zc, os, object); 1200 zap_cursor_retrieve(&zc, &attr) == 0; 1201 zap_cursor_advance(&zc)) { 1202 (void) printf("\t\t%s = ", attr.za_name); 1203 if (attr.za_num_integers == 0) { 1204 (void) printf("\n"); 1205 continue; 1206 } 1207 prop = umem_zalloc(attr.za_num_integers * 1208 attr.za_integer_length, UMEM_NOFAIL); 1209 (void) zap_lookup(os, object, attr.za_name, 1210 attr.za_integer_length, attr.za_num_integers, prop); 1211 if (attr.za_integer_length == 1) { 1212 if (strcmp(attr.za_name, 1213 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1214 strcmp(attr.za_name, 1215 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1216 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1217 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1218 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1219 uint8_t *u8 = prop; 1220 1221 for (i = 0; i < attr.za_num_integers; i++) { 1222 (void) printf("%02x", u8[i]); 1223 } 1224 } else { 1225 (void) printf("%s", (char *)prop); 1226 } 1227 } else { 1228 for (i = 0; i < attr.za_num_integers; i++) { 1229 switch (attr.za_integer_length) { 1230 case 2: 1231 (void) printf("%u ", 1232 ((uint16_t *)prop)[i]); 1233 break; 1234 case 4: 1235 (void) printf("%u ", 1236 ((uint32_t *)prop)[i]); 1237 break; 1238 case 8: 1239 (void) printf("%lld ", 1240 (u_longlong_t)((int64_t *)prop)[i]); 1241 break; 1242 } 1243 } 1244 } 1245 (void) printf("\n"); 1246 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1247 } 1248 zap_cursor_fini(&zc); 1249 } 1250 1251 static void 1252 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1253 { 1254 bpobj_phys_t *bpop = data; 1255 uint64_t i; 1256 char bytes[32], comp[32], uncomp[32]; 1257 1258 /* make sure the output won't get truncated */ 1259 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1260 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1261 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1262 1263 if (bpop == NULL) 1264 return; 1265 1266 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1267 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1268 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1269 1270 (void) printf("\t\tnum_blkptrs = %llu\n", 1271 (u_longlong_t)bpop->bpo_num_blkptrs); 1272 (void) printf("\t\tbytes = %s\n", bytes); 1273 if (size >= BPOBJ_SIZE_V1) { 1274 (void) printf("\t\tcomp = %s\n", comp); 1275 (void) printf("\t\tuncomp = %s\n", uncomp); 1276 } 1277 if (size >= BPOBJ_SIZE_V2) { 1278 (void) printf("\t\tsubobjs = %llu\n", 1279 (u_longlong_t)bpop->bpo_subobjs); 1280 (void) printf("\t\tnum_subobjs = %llu\n", 1281 (u_longlong_t)bpop->bpo_num_subobjs); 1282 } 1283 if (size >= sizeof (*bpop)) { 1284 (void) printf("\t\tnum_freed = %llu\n", 1285 (u_longlong_t)bpop->bpo_num_freed); 1286 } 1287 1288 if (dump_opt['d'] < 5) 1289 return; 1290 1291 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1292 char blkbuf[BP_SPRINTF_LEN]; 1293 blkptr_t bp; 1294 1295 int err = dmu_read(os, object, 1296 i * sizeof (bp), sizeof (bp), &bp, 0); 1297 if (err != 0) { 1298 (void) printf("got error %u from dmu_read\n", err); 1299 break; 1300 } 1301 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1302 BP_GET_FREE(&bp)); 1303 (void) printf("\t%s\n", blkbuf); 1304 } 1305 } 1306 1307 static void 1308 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1309 { 1310 (void) data, (void) size; 1311 dmu_object_info_t doi; 1312 int64_t i; 1313 1314 VERIFY0(dmu_object_info(os, object, &doi)); 1315 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1316 1317 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1318 if (err != 0) { 1319 (void) printf("got error %u from dmu_read\n", err); 1320 kmem_free(subobjs, doi.doi_max_offset); 1321 return; 1322 } 1323 1324 int64_t last_nonzero = -1; 1325 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1326 if (subobjs[i] != 0) 1327 last_nonzero = i; 1328 } 1329 1330 for (i = 0; i <= last_nonzero; i++) { 1331 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1332 } 1333 kmem_free(subobjs, doi.doi_max_offset); 1334 } 1335 1336 static void 1337 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1338 { 1339 (void) data, (void) size; 1340 dump_zap_stats(os, object); 1341 /* contents are printed elsewhere, properly decoded */ 1342 } 1343 1344 static void 1345 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1346 { 1347 (void) data, (void) size; 1348 zap_cursor_t zc; 1349 zap_attribute_t attr; 1350 1351 dump_zap_stats(os, object); 1352 (void) printf("\n"); 1353 1354 for (zap_cursor_init(&zc, os, object); 1355 zap_cursor_retrieve(&zc, &attr) == 0; 1356 zap_cursor_advance(&zc)) { 1357 (void) printf("\t\t%s = ", attr.za_name); 1358 if (attr.za_num_integers == 0) { 1359 (void) printf("\n"); 1360 continue; 1361 } 1362 (void) printf(" %llx : [%d:%d:%d]\n", 1363 (u_longlong_t)attr.za_first_integer, 1364 (int)ATTR_LENGTH(attr.za_first_integer), 1365 (int)ATTR_BSWAP(attr.za_first_integer), 1366 (int)ATTR_NUM(attr.za_first_integer)); 1367 } 1368 zap_cursor_fini(&zc); 1369 } 1370 1371 static void 1372 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1373 { 1374 (void) data, (void) size; 1375 zap_cursor_t zc; 1376 zap_attribute_t attr; 1377 uint16_t *layout_attrs; 1378 unsigned i; 1379 1380 dump_zap_stats(os, object); 1381 (void) printf("\n"); 1382 1383 for (zap_cursor_init(&zc, os, object); 1384 zap_cursor_retrieve(&zc, &attr) == 0; 1385 zap_cursor_advance(&zc)) { 1386 (void) printf("\t\t%s = [", attr.za_name); 1387 if (attr.za_num_integers == 0) { 1388 (void) printf("\n"); 1389 continue; 1390 } 1391 1392 VERIFY(attr.za_integer_length == 2); 1393 layout_attrs = umem_zalloc(attr.za_num_integers * 1394 attr.za_integer_length, UMEM_NOFAIL); 1395 1396 VERIFY(zap_lookup(os, object, attr.za_name, 1397 attr.za_integer_length, 1398 attr.za_num_integers, layout_attrs) == 0); 1399 1400 for (i = 0; i != attr.za_num_integers; i++) 1401 (void) printf(" %d ", (int)layout_attrs[i]); 1402 (void) printf("]\n"); 1403 umem_free(layout_attrs, 1404 attr.za_num_integers * attr.za_integer_length); 1405 } 1406 zap_cursor_fini(&zc); 1407 } 1408 1409 static void 1410 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1411 { 1412 (void) data, (void) size; 1413 zap_cursor_t zc; 1414 zap_attribute_t attr; 1415 const char *typenames[] = { 1416 /* 0 */ "not specified", 1417 /* 1 */ "FIFO", 1418 /* 2 */ "Character Device", 1419 /* 3 */ "3 (invalid)", 1420 /* 4 */ "Directory", 1421 /* 5 */ "5 (invalid)", 1422 /* 6 */ "Block Device", 1423 /* 7 */ "7 (invalid)", 1424 /* 8 */ "Regular File", 1425 /* 9 */ "9 (invalid)", 1426 /* 10 */ "Symbolic Link", 1427 /* 11 */ "11 (invalid)", 1428 /* 12 */ "Socket", 1429 /* 13 */ "Door", 1430 /* 14 */ "Event Port", 1431 /* 15 */ "15 (invalid)", 1432 }; 1433 1434 dump_zap_stats(os, object); 1435 (void) printf("\n"); 1436 1437 for (zap_cursor_init(&zc, os, object); 1438 zap_cursor_retrieve(&zc, &attr) == 0; 1439 zap_cursor_advance(&zc)) { 1440 (void) printf("\t\t%s = %lld (type: %s)\n", 1441 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1442 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1443 } 1444 zap_cursor_fini(&zc); 1445 } 1446 1447 static int 1448 get_dtl_refcount(vdev_t *vd) 1449 { 1450 int refcount = 0; 1451 1452 if (vd->vdev_ops->vdev_op_leaf) { 1453 space_map_t *sm = vd->vdev_dtl_sm; 1454 1455 if (sm != NULL && 1456 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1457 return (1); 1458 return (0); 1459 } 1460 1461 for (unsigned c = 0; c < vd->vdev_children; c++) 1462 refcount += get_dtl_refcount(vd->vdev_child[c]); 1463 return (refcount); 1464 } 1465 1466 static int 1467 get_metaslab_refcount(vdev_t *vd) 1468 { 1469 int refcount = 0; 1470 1471 if (vd->vdev_top == vd) { 1472 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1473 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1474 1475 if (sm != NULL && 1476 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1477 refcount++; 1478 } 1479 } 1480 for (unsigned c = 0; c < vd->vdev_children; c++) 1481 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1482 1483 return (refcount); 1484 } 1485 1486 static int 1487 get_obsolete_refcount(vdev_t *vd) 1488 { 1489 uint64_t obsolete_sm_object; 1490 int refcount = 0; 1491 1492 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1493 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1494 dmu_object_info_t doi; 1495 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1496 obsolete_sm_object, &doi)); 1497 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1498 refcount++; 1499 } 1500 } else { 1501 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1502 ASSERT3U(obsolete_sm_object, ==, 0); 1503 } 1504 for (unsigned c = 0; c < vd->vdev_children; c++) { 1505 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1506 } 1507 1508 return (refcount); 1509 } 1510 1511 static int 1512 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1513 { 1514 uint64_t prev_obj = 1515 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1516 if (prev_obj != 0) { 1517 dmu_object_info_t doi; 1518 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1519 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1520 return (1); 1521 } 1522 } 1523 return (0); 1524 } 1525 1526 static int 1527 get_checkpoint_refcount(vdev_t *vd) 1528 { 1529 int refcount = 0; 1530 1531 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1532 zap_contains(spa_meta_objset(vd->vdev_spa), 1533 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1534 refcount++; 1535 1536 for (uint64_t c = 0; c < vd->vdev_children; c++) 1537 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1538 1539 return (refcount); 1540 } 1541 1542 static int 1543 get_log_spacemap_refcount(spa_t *spa) 1544 { 1545 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1546 } 1547 1548 static int 1549 verify_spacemap_refcounts(spa_t *spa) 1550 { 1551 uint64_t expected_refcount = 0; 1552 uint64_t actual_refcount; 1553 1554 (void) feature_get_refcount(spa, 1555 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1556 &expected_refcount); 1557 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1558 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1559 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1560 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1561 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1562 actual_refcount += get_log_spacemap_refcount(spa); 1563 1564 if (expected_refcount != actual_refcount) { 1565 (void) printf("space map refcount mismatch: expected %lld != " 1566 "actual %lld\n", 1567 (longlong_t)expected_refcount, 1568 (longlong_t)actual_refcount); 1569 return (2); 1570 } 1571 return (0); 1572 } 1573 1574 static void 1575 dump_spacemap(objset_t *os, space_map_t *sm) 1576 { 1577 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1578 "INVALID", "INVALID", "INVALID", "INVALID" }; 1579 1580 if (sm == NULL) 1581 return; 1582 1583 (void) printf("space map object %llu:\n", 1584 (longlong_t)sm->sm_object); 1585 (void) printf(" smp_length = 0x%llx\n", 1586 (longlong_t)sm->sm_phys->smp_length); 1587 (void) printf(" smp_alloc = 0x%llx\n", 1588 (longlong_t)sm->sm_phys->smp_alloc); 1589 1590 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1591 return; 1592 1593 /* 1594 * Print out the freelist entries in both encoded and decoded form. 1595 */ 1596 uint8_t mapshift = sm->sm_shift; 1597 int64_t alloc = 0; 1598 uint64_t word, entry_id = 0; 1599 for (uint64_t offset = 0; offset < space_map_length(sm); 1600 offset += sizeof (word)) { 1601 1602 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1603 sizeof (word), &word, DMU_READ_PREFETCH)); 1604 1605 if (sm_entry_is_debug(word)) { 1606 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1607 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1608 if (de_txg == 0) { 1609 (void) printf( 1610 "\t [%6llu] PADDING\n", 1611 (u_longlong_t)entry_id); 1612 } else { 1613 (void) printf( 1614 "\t [%6llu] %s: txg %llu pass %llu\n", 1615 (u_longlong_t)entry_id, 1616 ddata[SM_DEBUG_ACTION_DECODE(word)], 1617 (u_longlong_t)de_txg, 1618 (u_longlong_t)de_sync_pass); 1619 } 1620 entry_id++; 1621 continue; 1622 } 1623 1624 uint8_t words; 1625 char entry_type; 1626 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1627 1628 if (sm_entry_is_single_word(word)) { 1629 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1630 'A' : 'F'; 1631 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1632 sm->sm_start; 1633 entry_run = SM_RUN_DECODE(word) << mapshift; 1634 words = 1; 1635 } else { 1636 /* it is a two-word entry so we read another word */ 1637 ASSERT(sm_entry_is_double_word(word)); 1638 1639 uint64_t extra_word; 1640 offset += sizeof (extra_word); 1641 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1642 sizeof (extra_word), &extra_word, 1643 DMU_READ_PREFETCH)); 1644 1645 ASSERT3U(offset, <=, space_map_length(sm)); 1646 1647 entry_run = SM2_RUN_DECODE(word) << mapshift; 1648 entry_vdev = SM2_VDEV_DECODE(word); 1649 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1650 'A' : 'F'; 1651 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1652 mapshift) + sm->sm_start; 1653 words = 2; 1654 } 1655 1656 (void) printf("\t [%6llu] %c range:" 1657 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1658 (u_longlong_t)entry_id, 1659 entry_type, (u_longlong_t)entry_off, 1660 (u_longlong_t)(entry_off + entry_run), 1661 (u_longlong_t)entry_run, 1662 (u_longlong_t)entry_vdev, words); 1663 1664 if (entry_type == 'A') 1665 alloc += entry_run; 1666 else 1667 alloc -= entry_run; 1668 entry_id++; 1669 } 1670 if (alloc != space_map_allocated(sm)) { 1671 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1672 "with space map summary (%lld)\n", 1673 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1674 } 1675 } 1676 1677 static void 1678 dump_metaslab_stats(metaslab_t *msp) 1679 { 1680 char maxbuf[32]; 1681 range_tree_t *rt = msp->ms_allocatable; 1682 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1683 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1684 1685 /* max sure nicenum has enough space */ 1686 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1687 1688 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1689 1690 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1691 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1692 "freepct", free_pct); 1693 (void) printf("\tIn-memory histogram:\n"); 1694 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1695 } 1696 1697 static void 1698 dump_metaslab(metaslab_t *msp) 1699 { 1700 vdev_t *vd = msp->ms_group->mg_vd; 1701 spa_t *spa = vd->vdev_spa; 1702 space_map_t *sm = msp->ms_sm; 1703 char freebuf[32]; 1704 1705 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1706 sizeof (freebuf)); 1707 1708 (void) printf( 1709 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1710 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1711 (u_longlong_t)space_map_object(sm), freebuf); 1712 1713 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1714 mutex_enter(&msp->ms_lock); 1715 VERIFY0(metaslab_load(msp)); 1716 range_tree_stat_verify(msp->ms_allocatable); 1717 dump_metaslab_stats(msp); 1718 metaslab_unload(msp); 1719 mutex_exit(&msp->ms_lock); 1720 } 1721 1722 if (dump_opt['m'] > 1 && sm != NULL && 1723 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1724 /* 1725 * The space map histogram represents free space in chunks 1726 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1727 */ 1728 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1729 (u_longlong_t)msp->ms_fragmentation); 1730 dump_histogram(sm->sm_phys->smp_histogram, 1731 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1732 } 1733 1734 if (vd->vdev_ops == &vdev_draid_ops) 1735 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1736 else 1737 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1738 1739 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1740 1741 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1742 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1743 (u_longlong_t)metaslab_unflushed_txg(msp)); 1744 } 1745 } 1746 1747 static void 1748 print_vdev_metaslab_header(vdev_t *vd) 1749 { 1750 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1751 const char *bias_str = ""; 1752 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1753 bias_str = VDEV_ALLOC_BIAS_LOG; 1754 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1755 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1756 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1757 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1758 } 1759 1760 uint64_t ms_flush_data_obj = 0; 1761 if (vd->vdev_top_zap != 0) { 1762 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1763 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1764 sizeof (uint64_t), 1, &ms_flush_data_obj); 1765 if (error != ENOENT) { 1766 ASSERT0(error); 1767 } 1768 } 1769 1770 (void) printf("\tvdev %10llu %s", 1771 (u_longlong_t)vd->vdev_id, bias_str); 1772 1773 if (ms_flush_data_obj != 0) { 1774 (void) printf(" ms_unflushed_phys object %llu", 1775 (u_longlong_t)ms_flush_data_obj); 1776 } 1777 1778 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1779 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1780 "offset", "spacemap", "free"); 1781 (void) printf("\t%15s %19s %15s %12s\n", 1782 "---------------", "-------------------", 1783 "---------------", "------------"); 1784 } 1785 1786 static void 1787 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1788 { 1789 vdev_t *rvd = spa->spa_root_vdev; 1790 metaslab_class_t *mc = spa_normal_class(spa); 1791 metaslab_class_t *smc = spa_special_class(spa); 1792 uint64_t fragmentation; 1793 1794 metaslab_class_histogram_verify(mc); 1795 1796 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1797 vdev_t *tvd = rvd->vdev_child[c]; 1798 metaslab_group_t *mg = tvd->vdev_mg; 1799 1800 if (mg == NULL || (mg->mg_class != mc && 1801 (!show_special || mg->mg_class != smc))) 1802 continue; 1803 1804 metaslab_group_histogram_verify(mg); 1805 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1806 1807 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1808 "fragmentation", 1809 (u_longlong_t)tvd->vdev_id, 1810 (u_longlong_t)tvd->vdev_ms_count); 1811 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1812 (void) printf("%3s\n", "-"); 1813 } else { 1814 (void) printf("%3llu%%\n", 1815 (u_longlong_t)mg->mg_fragmentation); 1816 } 1817 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1818 } 1819 1820 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1821 fragmentation = metaslab_class_fragmentation(mc); 1822 if (fragmentation == ZFS_FRAG_INVALID) 1823 (void) printf("\t%3s\n", "-"); 1824 else 1825 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1826 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1827 } 1828 1829 static void 1830 print_vdev_indirect(vdev_t *vd) 1831 { 1832 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1833 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1834 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1835 1836 if (vim == NULL) { 1837 ASSERT3P(vib, ==, NULL); 1838 return; 1839 } 1840 1841 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1842 vic->vic_mapping_object); 1843 ASSERT3U(vdev_indirect_births_object(vib), ==, 1844 vic->vic_births_object); 1845 1846 (void) printf("indirect births obj %llu:\n", 1847 (longlong_t)vic->vic_births_object); 1848 (void) printf(" vib_count = %llu\n", 1849 (longlong_t)vdev_indirect_births_count(vib)); 1850 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1851 vdev_indirect_birth_entry_phys_t *cur_vibe = 1852 &vib->vib_entries[i]; 1853 (void) printf("\toffset %llx -> txg %llu\n", 1854 (longlong_t)cur_vibe->vibe_offset, 1855 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1856 } 1857 (void) printf("\n"); 1858 1859 (void) printf("indirect mapping obj %llu:\n", 1860 (longlong_t)vic->vic_mapping_object); 1861 (void) printf(" vim_max_offset = 0x%llx\n", 1862 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1863 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1864 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1865 (void) printf(" vim_count = %llu\n", 1866 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1867 1868 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1869 return; 1870 1871 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1872 1873 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1874 vdev_indirect_mapping_entry_phys_t *vimep = 1875 &vim->vim_entries[i]; 1876 (void) printf("\t<%llx:%llx:%llx> -> " 1877 "<%llx:%llx:%llx> (%x obsolete)\n", 1878 (longlong_t)vd->vdev_id, 1879 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1880 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1881 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1882 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1883 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1884 counts[i]); 1885 } 1886 (void) printf("\n"); 1887 1888 uint64_t obsolete_sm_object; 1889 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1890 if (obsolete_sm_object != 0) { 1891 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1892 (void) printf("obsolete space map object %llu:\n", 1893 (u_longlong_t)obsolete_sm_object); 1894 ASSERT(vd->vdev_obsolete_sm != NULL); 1895 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1896 obsolete_sm_object); 1897 dump_spacemap(mos, vd->vdev_obsolete_sm); 1898 (void) printf("\n"); 1899 } 1900 } 1901 1902 static void 1903 dump_metaslabs(spa_t *spa) 1904 { 1905 vdev_t *vd, *rvd = spa->spa_root_vdev; 1906 uint64_t m, c = 0, children = rvd->vdev_children; 1907 1908 (void) printf("\nMetaslabs:\n"); 1909 1910 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1911 c = zopt_metaslab[0]; 1912 1913 if (c >= children) 1914 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1915 1916 if (zopt_metaslab_args > 1) { 1917 vd = rvd->vdev_child[c]; 1918 print_vdev_metaslab_header(vd); 1919 1920 for (m = 1; m < zopt_metaslab_args; m++) { 1921 if (zopt_metaslab[m] < vd->vdev_ms_count) 1922 dump_metaslab( 1923 vd->vdev_ms[zopt_metaslab[m]]); 1924 else 1925 (void) fprintf(stderr, "bad metaslab " 1926 "number %llu\n", 1927 (u_longlong_t)zopt_metaslab[m]); 1928 } 1929 (void) printf("\n"); 1930 return; 1931 } 1932 children = c + 1; 1933 } 1934 for (; c < children; c++) { 1935 vd = rvd->vdev_child[c]; 1936 print_vdev_metaslab_header(vd); 1937 1938 print_vdev_indirect(vd); 1939 1940 for (m = 0; m < vd->vdev_ms_count; m++) 1941 dump_metaslab(vd->vdev_ms[m]); 1942 (void) printf("\n"); 1943 } 1944 } 1945 1946 static void 1947 dump_log_spacemaps(spa_t *spa) 1948 { 1949 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1950 return; 1951 1952 (void) printf("\nLog Space Maps in Pool:\n"); 1953 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1954 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1955 space_map_t *sm = NULL; 1956 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1957 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1958 1959 (void) printf("Log Spacemap object %llu txg %llu\n", 1960 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1961 dump_spacemap(spa->spa_meta_objset, sm); 1962 space_map_close(sm); 1963 } 1964 (void) printf("\n"); 1965 } 1966 1967 static void 1968 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1969 { 1970 const ddt_phys_t *ddp = dde->dde_phys; 1971 const ddt_key_t *ddk = &dde->dde_key; 1972 const char *types[4] = { "ditto", "single", "double", "triple" }; 1973 char blkbuf[BP_SPRINTF_LEN]; 1974 blkptr_t blk; 1975 int p; 1976 1977 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1978 if (ddp->ddp_phys_birth == 0) 1979 continue; 1980 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1981 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1982 (void) printf("index %llx refcnt %llu %s %s\n", 1983 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1984 types[p], blkbuf); 1985 } 1986 } 1987 1988 static void 1989 dump_dedup_ratio(const ddt_stat_t *dds) 1990 { 1991 double rL, rP, rD, D, dedup, compress, copies; 1992 1993 if (dds->dds_blocks == 0) 1994 return; 1995 1996 rL = (double)dds->dds_ref_lsize; 1997 rP = (double)dds->dds_ref_psize; 1998 rD = (double)dds->dds_ref_dsize; 1999 D = (double)dds->dds_dsize; 2000 2001 dedup = rD / D; 2002 compress = rL / rP; 2003 copies = rD / rP; 2004 2005 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 2006 "dedup * compress / copies = %.2f\n\n", 2007 dedup, compress, copies, dedup * compress / copies); 2008 } 2009 2010 static void 2011 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 2012 { 2013 char name[DDT_NAMELEN]; 2014 ddt_entry_t dde; 2015 uint64_t walk = 0; 2016 dmu_object_info_t doi; 2017 uint64_t count, dspace, mspace; 2018 int error; 2019 2020 error = ddt_object_info(ddt, type, class, &doi); 2021 2022 if (error == ENOENT) 2023 return; 2024 ASSERT(error == 0); 2025 2026 error = ddt_object_count(ddt, type, class, &count); 2027 ASSERT(error == 0); 2028 if (count == 0) 2029 return; 2030 2031 dspace = doi.doi_physical_blocks_512 << 9; 2032 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2033 2034 ddt_object_name(ddt, type, class, name); 2035 2036 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2037 name, 2038 (u_longlong_t)count, 2039 (u_longlong_t)(dspace / count), 2040 (u_longlong_t)(mspace / count)); 2041 2042 if (dump_opt['D'] < 3) 2043 return; 2044 2045 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2046 2047 if (dump_opt['D'] < 4) 2048 return; 2049 2050 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2051 return; 2052 2053 (void) printf("%s contents:\n\n", name); 2054 2055 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2056 dump_dde(ddt, &dde, walk); 2057 2058 ASSERT3U(error, ==, ENOENT); 2059 2060 (void) printf("\n"); 2061 } 2062 2063 static void 2064 dump_all_ddts(spa_t *spa) 2065 { 2066 ddt_histogram_t ddh_total = {{{0}}}; 2067 ddt_stat_t dds_total = {0}; 2068 2069 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2070 ddt_t *ddt = spa->spa_ddt[c]; 2071 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 2072 for (enum ddt_class class = 0; class < DDT_CLASSES; 2073 class++) { 2074 dump_ddt(ddt, type, class); 2075 } 2076 } 2077 } 2078 2079 ddt_get_dedup_stats(spa, &dds_total); 2080 2081 if (dds_total.dds_blocks == 0) { 2082 (void) printf("All DDTs are empty\n"); 2083 return; 2084 } 2085 2086 (void) printf("\n"); 2087 2088 if (dump_opt['D'] > 1) { 2089 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2090 ddt_get_dedup_histogram(spa, &ddh_total); 2091 zpool_dump_ddt(&dds_total, &ddh_total); 2092 } 2093 2094 dump_dedup_ratio(&dds_total); 2095 } 2096 2097 static void 2098 dump_brt(spa_t *spa) 2099 { 2100 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2101 printf("BRT: unsupported on this pool\n"); 2102 return; 2103 } 2104 2105 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2106 printf("BRT: empty\n"); 2107 return; 2108 } 2109 2110 brt_t *brt = spa->spa_brt; 2111 VERIFY(brt); 2112 2113 char count[32], used[32], saved[32]; 2114 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2115 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2116 uint64_t ratio = brt_get_ratio(spa); 2117 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2118 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2119 2120 if (dump_opt['T'] < 2) 2121 return; 2122 2123 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2124 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2125 if (brtvd == NULL) 2126 continue; 2127 2128 if (!brtvd->bv_initiated) { 2129 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2130 continue; 2131 } 2132 2133 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2134 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2135 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2136 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2137 vdevid, count, used, saved); 2138 } 2139 2140 if (dump_opt['T'] < 3) 2141 return; 2142 2143 char dva[64]; 2144 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2145 2146 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2147 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2148 if (brtvd == NULL || !brtvd->bv_initiated) 2149 continue; 2150 2151 zap_cursor_t zc; 2152 zap_attribute_t za; 2153 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2154 zap_cursor_retrieve(&zc, &za) == 0; 2155 zap_cursor_advance(&zc)) { 2156 uint64_t offset = *(uint64_t *)za.za_name; 2157 uint64_t refcnt = za.za_first_integer; 2158 2159 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2160 (u_longlong_t)offset); 2161 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2162 } 2163 zap_cursor_fini(&zc); 2164 } 2165 } 2166 2167 static void 2168 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2169 { 2170 char *prefix = arg; 2171 2172 (void) printf("%s [%llu,%llu) length %llu\n", 2173 prefix, 2174 (u_longlong_t)start, 2175 (u_longlong_t)(start + size), 2176 (u_longlong_t)(size)); 2177 } 2178 2179 static void 2180 dump_dtl(vdev_t *vd, int indent) 2181 { 2182 spa_t *spa = vd->vdev_spa; 2183 boolean_t required; 2184 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2185 "outage" }; 2186 char prefix[256]; 2187 2188 spa_vdev_state_enter(spa, SCL_NONE); 2189 required = vdev_dtl_required(vd); 2190 (void) spa_vdev_state_exit(spa, NULL, 0); 2191 2192 if (indent == 0) 2193 (void) printf("\nDirty time logs:\n\n"); 2194 2195 (void) printf("\t%*s%s [%s]\n", indent, "", 2196 vd->vdev_path ? vd->vdev_path : 2197 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2198 required ? "DTL-required" : "DTL-expendable"); 2199 2200 for (int t = 0; t < DTL_TYPES; t++) { 2201 range_tree_t *rt = vd->vdev_dtl[t]; 2202 if (range_tree_space(rt) == 0) 2203 continue; 2204 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2205 indent + 2, "", name[t]); 2206 range_tree_walk(rt, dump_dtl_seg, prefix); 2207 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2208 dump_spacemap(spa->spa_meta_objset, 2209 vd->vdev_dtl_sm); 2210 } 2211 2212 for (unsigned c = 0; c < vd->vdev_children; c++) 2213 dump_dtl(vd->vdev_child[c], indent + 4); 2214 } 2215 2216 static void 2217 dump_history(spa_t *spa) 2218 { 2219 nvlist_t **events = NULL; 2220 char *buf; 2221 uint64_t resid, len, off = 0; 2222 uint_t num = 0; 2223 int error; 2224 char tbuf[30]; 2225 2226 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2227 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2228 __func__); 2229 return; 2230 } 2231 2232 do { 2233 len = SPA_OLD_MAXBLOCKSIZE; 2234 2235 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2236 (void) fprintf(stderr, "Unable to read history: " 2237 "error %d\n", error); 2238 free(buf); 2239 return; 2240 } 2241 2242 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2243 break; 2244 2245 off -= resid; 2246 } while (len != 0); 2247 2248 (void) printf("\nHistory:\n"); 2249 for (unsigned i = 0; i < num; i++) { 2250 boolean_t printed = B_FALSE; 2251 2252 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2253 time_t tsec; 2254 struct tm t; 2255 2256 tsec = fnvlist_lookup_uint64(events[i], 2257 ZPOOL_HIST_TIME); 2258 (void) localtime_r(&tsec, &t); 2259 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2260 } else { 2261 tbuf[0] = '\0'; 2262 } 2263 2264 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2265 (void) printf("%s %s\n", tbuf, 2266 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2267 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2268 uint64_t ievent; 2269 2270 ievent = fnvlist_lookup_uint64(events[i], 2271 ZPOOL_HIST_INT_EVENT); 2272 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2273 goto next; 2274 2275 (void) printf(" %s [internal %s txg:%ju] %s\n", 2276 tbuf, 2277 zfs_history_event_names[ievent], 2278 fnvlist_lookup_uint64(events[i], 2279 ZPOOL_HIST_TXG), 2280 fnvlist_lookup_string(events[i], 2281 ZPOOL_HIST_INT_STR)); 2282 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2283 (void) printf("%s [txg:%ju] %s", tbuf, 2284 fnvlist_lookup_uint64(events[i], 2285 ZPOOL_HIST_TXG), 2286 fnvlist_lookup_string(events[i], 2287 ZPOOL_HIST_INT_NAME)); 2288 2289 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2290 (void) printf(" %s (%llu)", 2291 fnvlist_lookup_string(events[i], 2292 ZPOOL_HIST_DSNAME), 2293 (u_longlong_t)fnvlist_lookup_uint64( 2294 events[i], 2295 ZPOOL_HIST_DSID)); 2296 } 2297 2298 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2299 ZPOOL_HIST_INT_STR)); 2300 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2301 (void) printf("%s ioctl %s\n", tbuf, 2302 fnvlist_lookup_string(events[i], 2303 ZPOOL_HIST_IOCTL)); 2304 2305 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2306 (void) printf(" input:\n"); 2307 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2308 ZPOOL_HIST_INPUT_NVL), 8); 2309 } 2310 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2311 (void) printf(" output:\n"); 2312 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2313 ZPOOL_HIST_OUTPUT_NVL), 8); 2314 } 2315 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2316 (void) printf(" errno: %lld\n", 2317 (longlong_t)fnvlist_lookup_int64(events[i], 2318 ZPOOL_HIST_ERRNO)); 2319 } 2320 } else { 2321 goto next; 2322 } 2323 2324 printed = B_TRUE; 2325 next: 2326 if (dump_opt['h'] > 1) { 2327 if (!printed) 2328 (void) printf("unrecognized record:\n"); 2329 dump_nvlist(events[i], 2); 2330 } 2331 } 2332 free(buf); 2333 } 2334 2335 static void 2336 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2337 { 2338 (void) os, (void) object, (void) data, (void) size; 2339 } 2340 2341 static uint64_t 2342 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2343 const zbookmark_phys_t *zb) 2344 { 2345 if (dnp == NULL) { 2346 ASSERT(zb->zb_level < 0); 2347 if (zb->zb_object == 0) 2348 return (zb->zb_blkid); 2349 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2350 } 2351 2352 ASSERT(zb->zb_level >= 0); 2353 2354 return ((zb->zb_blkid << 2355 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2356 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2357 } 2358 2359 static void 2360 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2361 const blkptr_t *bp) 2362 { 2363 static abd_t *pabd = NULL; 2364 void *buf; 2365 zio_t *zio; 2366 zfs_zstdhdr_t zstd_hdr; 2367 int error; 2368 2369 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2370 return; 2371 2372 if (BP_IS_HOLE(bp)) 2373 return; 2374 2375 if (BP_IS_EMBEDDED(bp)) { 2376 buf = malloc(SPA_MAXBLOCKSIZE); 2377 if (buf == NULL) { 2378 (void) fprintf(stderr, "out of memory\n"); 2379 exit(1); 2380 } 2381 decode_embedded_bp_compressed(bp, buf); 2382 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2383 free(buf); 2384 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2385 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2386 (void) snprintf(blkbuf + strlen(blkbuf), 2387 buflen - strlen(blkbuf), 2388 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2389 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2390 zfs_get_hdrlevel(&zstd_hdr)); 2391 return; 2392 } 2393 2394 if (!pabd) 2395 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2396 zio = zio_root(spa, NULL, NULL, 0); 2397 2398 /* Decrypt but don't decompress so we can read the compression header */ 2399 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2400 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2401 NULL)); 2402 error = zio_wait(zio); 2403 if (error) { 2404 (void) fprintf(stderr, "read failed: %d\n", error); 2405 return; 2406 } 2407 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2408 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2409 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2410 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2411 2412 (void) snprintf(blkbuf + strlen(blkbuf), 2413 buflen - strlen(blkbuf), 2414 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2415 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2416 zfs_get_hdrlevel(&zstd_hdr)); 2417 2418 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2419 } 2420 2421 static void 2422 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2423 boolean_t bp_freed) 2424 { 2425 const dva_t *dva = bp->blk_dva; 2426 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2427 int i; 2428 2429 if (dump_opt['b'] >= 6) { 2430 snprintf_blkptr(blkbuf, buflen, bp); 2431 if (bp_freed) { 2432 (void) snprintf(blkbuf + strlen(blkbuf), 2433 buflen - strlen(blkbuf), " %s", "FREE"); 2434 } 2435 return; 2436 } 2437 2438 if (BP_IS_EMBEDDED(bp)) { 2439 (void) sprintf(blkbuf, 2440 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2441 (int)BPE_GET_ETYPE(bp), 2442 (u_longlong_t)BPE_GET_LSIZE(bp), 2443 (u_longlong_t)BPE_GET_PSIZE(bp), 2444 (u_longlong_t)bp->blk_birth); 2445 return; 2446 } 2447 2448 blkbuf[0] = '\0'; 2449 2450 for (i = 0; i < ndvas; i++) 2451 (void) snprintf(blkbuf + strlen(blkbuf), 2452 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2453 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2454 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2455 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2456 2457 if (BP_IS_HOLE(bp)) { 2458 (void) snprintf(blkbuf + strlen(blkbuf), 2459 buflen - strlen(blkbuf), 2460 "%llxL B=%llu", 2461 (u_longlong_t)BP_GET_LSIZE(bp), 2462 (u_longlong_t)bp->blk_birth); 2463 } else { 2464 (void) snprintf(blkbuf + strlen(blkbuf), 2465 buflen - strlen(blkbuf), 2466 "%llxL/%llxP F=%llu B=%llu/%llu", 2467 (u_longlong_t)BP_GET_LSIZE(bp), 2468 (u_longlong_t)BP_GET_PSIZE(bp), 2469 (u_longlong_t)BP_GET_FILL(bp), 2470 (u_longlong_t)bp->blk_birth, 2471 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2472 if (bp_freed) 2473 (void) snprintf(blkbuf + strlen(blkbuf), 2474 buflen - strlen(blkbuf), " %s", "FREE"); 2475 (void) snprintf(blkbuf + strlen(blkbuf), 2476 buflen - strlen(blkbuf), 2477 " cksum=%016llx:%016llx:%016llx:%016llx", 2478 (u_longlong_t)bp->blk_cksum.zc_word[0], 2479 (u_longlong_t)bp->blk_cksum.zc_word[1], 2480 (u_longlong_t)bp->blk_cksum.zc_word[2], 2481 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2482 } 2483 } 2484 2485 static void 2486 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2487 const dnode_phys_t *dnp) 2488 { 2489 char blkbuf[BP_SPRINTF_LEN]; 2490 int l; 2491 2492 if (!BP_IS_EMBEDDED(bp)) { 2493 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2494 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2495 } 2496 2497 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2498 2499 ASSERT(zb->zb_level >= 0); 2500 2501 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2502 if (l == zb->zb_level) { 2503 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2504 } else { 2505 (void) printf(" "); 2506 } 2507 } 2508 2509 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2510 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2511 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2512 (void) printf("%s\n", blkbuf); 2513 } 2514 2515 static int 2516 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2517 blkptr_t *bp, const zbookmark_phys_t *zb) 2518 { 2519 int err = 0; 2520 2521 if (bp->blk_birth == 0) 2522 return (0); 2523 2524 print_indirect(spa, bp, zb, dnp); 2525 2526 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2527 arc_flags_t flags = ARC_FLAG_WAIT; 2528 int i; 2529 blkptr_t *cbp; 2530 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2531 arc_buf_t *buf; 2532 uint64_t fill = 0; 2533 ASSERT(!BP_IS_REDACTED(bp)); 2534 2535 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2536 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2537 if (err) 2538 return (err); 2539 ASSERT(buf->b_data); 2540 2541 /* recursively visit blocks below this */ 2542 cbp = buf->b_data; 2543 for (i = 0; i < epb; i++, cbp++) { 2544 zbookmark_phys_t czb; 2545 2546 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2547 zb->zb_level - 1, 2548 zb->zb_blkid * epb + i); 2549 err = visit_indirect(spa, dnp, cbp, &czb); 2550 if (err) 2551 break; 2552 fill += BP_GET_FILL(cbp); 2553 } 2554 if (!err) 2555 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2556 arc_buf_destroy(buf, &buf); 2557 } 2558 2559 return (err); 2560 } 2561 2562 static void 2563 dump_indirect(dnode_t *dn) 2564 { 2565 dnode_phys_t *dnp = dn->dn_phys; 2566 zbookmark_phys_t czb; 2567 2568 (void) printf("Indirect blocks:\n"); 2569 2570 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2571 dn->dn_object, dnp->dn_nlevels - 1, 0); 2572 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2573 czb.zb_blkid = j; 2574 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2575 &dnp->dn_blkptr[j], &czb); 2576 } 2577 2578 (void) printf("\n"); 2579 } 2580 2581 static void 2582 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2583 { 2584 (void) os, (void) object; 2585 dsl_dir_phys_t *dd = data; 2586 time_t crtime; 2587 char nice[32]; 2588 2589 /* make sure nicenum has enough space */ 2590 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2591 2592 if (dd == NULL) 2593 return; 2594 2595 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2596 2597 crtime = dd->dd_creation_time; 2598 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2599 (void) printf("\t\thead_dataset_obj = %llu\n", 2600 (u_longlong_t)dd->dd_head_dataset_obj); 2601 (void) printf("\t\tparent_dir_obj = %llu\n", 2602 (u_longlong_t)dd->dd_parent_obj); 2603 (void) printf("\t\torigin_obj = %llu\n", 2604 (u_longlong_t)dd->dd_origin_obj); 2605 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2606 (u_longlong_t)dd->dd_child_dir_zapobj); 2607 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2608 (void) printf("\t\tused_bytes = %s\n", nice); 2609 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2610 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2611 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2612 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2613 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2614 (void) printf("\t\tquota = %s\n", nice); 2615 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2616 (void) printf("\t\treserved = %s\n", nice); 2617 (void) printf("\t\tprops_zapobj = %llu\n", 2618 (u_longlong_t)dd->dd_props_zapobj); 2619 (void) printf("\t\tdeleg_zapobj = %llu\n", 2620 (u_longlong_t)dd->dd_deleg_zapobj); 2621 (void) printf("\t\tflags = %llx\n", 2622 (u_longlong_t)dd->dd_flags); 2623 2624 #define DO(which) \ 2625 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2626 sizeof (nice)); \ 2627 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2628 DO(HEAD); 2629 DO(SNAP); 2630 DO(CHILD); 2631 DO(CHILD_RSRV); 2632 DO(REFRSRV); 2633 #undef DO 2634 (void) printf("\t\tclones = %llu\n", 2635 (u_longlong_t)dd->dd_clones); 2636 } 2637 2638 static void 2639 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2640 { 2641 (void) os, (void) object; 2642 dsl_dataset_phys_t *ds = data; 2643 time_t crtime; 2644 char used[32], compressed[32], uncompressed[32], unique[32]; 2645 char blkbuf[BP_SPRINTF_LEN]; 2646 2647 /* make sure nicenum has enough space */ 2648 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2649 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2650 "compressed truncated"); 2651 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2652 "uncompressed truncated"); 2653 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2654 2655 if (ds == NULL) 2656 return; 2657 2658 ASSERT(size == sizeof (*ds)); 2659 crtime = ds->ds_creation_time; 2660 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2661 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2662 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2663 sizeof (uncompressed)); 2664 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2665 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2666 2667 (void) printf("\t\tdir_obj = %llu\n", 2668 (u_longlong_t)ds->ds_dir_obj); 2669 (void) printf("\t\tprev_snap_obj = %llu\n", 2670 (u_longlong_t)ds->ds_prev_snap_obj); 2671 (void) printf("\t\tprev_snap_txg = %llu\n", 2672 (u_longlong_t)ds->ds_prev_snap_txg); 2673 (void) printf("\t\tnext_snap_obj = %llu\n", 2674 (u_longlong_t)ds->ds_next_snap_obj); 2675 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2676 (u_longlong_t)ds->ds_snapnames_zapobj); 2677 (void) printf("\t\tnum_children = %llu\n", 2678 (u_longlong_t)ds->ds_num_children); 2679 (void) printf("\t\tuserrefs_obj = %llu\n", 2680 (u_longlong_t)ds->ds_userrefs_obj); 2681 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2682 (void) printf("\t\tcreation_txg = %llu\n", 2683 (u_longlong_t)ds->ds_creation_txg); 2684 (void) printf("\t\tdeadlist_obj = %llu\n", 2685 (u_longlong_t)ds->ds_deadlist_obj); 2686 (void) printf("\t\tused_bytes = %s\n", used); 2687 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2688 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2689 (void) printf("\t\tunique = %s\n", unique); 2690 (void) printf("\t\tfsid_guid = %llu\n", 2691 (u_longlong_t)ds->ds_fsid_guid); 2692 (void) printf("\t\tguid = %llu\n", 2693 (u_longlong_t)ds->ds_guid); 2694 (void) printf("\t\tflags = %llx\n", 2695 (u_longlong_t)ds->ds_flags); 2696 (void) printf("\t\tnext_clones_obj = %llu\n", 2697 (u_longlong_t)ds->ds_next_clones_obj); 2698 (void) printf("\t\tprops_obj = %llu\n", 2699 (u_longlong_t)ds->ds_props_obj); 2700 (void) printf("\t\tbp = %s\n", blkbuf); 2701 } 2702 2703 static int 2704 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2705 { 2706 (void) arg, (void) tx; 2707 char blkbuf[BP_SPRINTF_LEN]; 2708 2709 if (bp->blk_birth != 0) { 2710 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2711 (void) printf("\t%s\n", blkbuf); 2712 } 2713 return (0); 2714 } 2715 2716 static void 2717 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2718 { 2719 char bytes[32]; 2720 bptree_phys_t *bt; 2721 dmu_buf_t *db; 2722 2723 /* make sure nicenum has enough space */ 2724 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2725 2726 if (dump_opt['d'] < 3) 2727 return; 2728 2729 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2730 bt = db->db_data; 2731 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2732 (void) printf("\n %s: %llu datasets, %s\n", 2733 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2734 dmu_buf_rele(db, FTAG); 2735 2736 if (dump_opt['d'] < 5) 2737 return; 2738 2739 (void) printf("\n"); 2740 2741 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2742 } 2743 2744 static int 2745 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2746 { 2747 (void) arg, (void) tx; 2748 char blkbuf[BP_SPRINTF_LEN]; 2749 2750 ASSERT(bp->blk_birth != 0); 2751 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2752 (void) printf("\t%s\n", blkbuf); 2753 return (0); 2754 } 2755 2756 static void 2757 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2758 { 2759 char bytes[32]; 2760 char comp[32]; 2761 char uncomp[32]; 2762 uint64_t i; 2763 2764 /* make sure nicenum has enough space */ 2765 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2766 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2767 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2768 2769 if (dump_opt['d'] < 3) 2770 return; 2771 2772 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2773 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2774 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2775 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2776 if (bpo->bpo_havefreed) { 2777 (void) printf(" %*s: object %llu, %llu local " 2778 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2779 "%s (%s/%s comp)\n", 2780 indent * 8, name, 2781 (u_longlong_t)bpo->bpo_object, 2782 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2783 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2784 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2785 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2786 bytes, comp, uncomp); 2787 } else { 2788 (void) printf(" %*s: object %llu, %llu local " 2789 "blkptrs, %llu subobjs in object %llu, " 2790 "%s (%s/%s comp)\n", 2791 indent * 8, name, 2792 (u_longlong_t)bpo->bpo_object, 2793 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2794 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2795 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2796 bytes, comp, uncomp); 2797 } 2798 2799 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2800 uint64_t subobj; 2801 bpobj_t subbpo; 2802 int error; 2803 VERIFY0(dmu_read(bpo->bpo_os, 2804 bpo->bpo_phys->bpo_subobjs, 2805 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2806 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2807 if (error != 0) { 2808 (void) printf("ERROR %u while trying to open " 2809 "subobj id %llu\n", 2810 error, (u_longlong_t)subobj); 2811 continue; 2812 } 2813 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2814 bpobj_close(&subbpo); 2815 } 2816 } else { 2817 if (bpo->bpo_havefreed) { 2818 (void) printf(" %*s: object %llu, %llu blkptrs, " 2819 "%llu freed, %s\n", 2820 indent * 8, name, 2821 (u_longlong_t)bpo->bpo_object, 2822 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2823 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2824 bytes); 2825 } else { 2826 (void) printf(" %*s: object %llu, %llu blkptrs, " 2827 "%s\n", 2828 indent * 8, name, 2829 (u_longlong_t)bpo->bpo_object, 2830 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2831 bytes); 2832 } 2833 } 2834 2835 if (dump_opt['d'] < 5) 2836 return; 2837 2838 2839 if (indent == 0) { 2840 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2841 (void) printf("\n"); 2842 } 2843 } 2844 2845 static int 2846 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2847 boolean_t print_list) 2848 { 2849 int err = 0; 2850 zfs_bookmark_phys_t prop; 2851 objset_t *mos = dp->dp_spa->spa_meta_objset; 2852 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2853 2854 if (err != 0) { 2855 return (err); 2856 } 2857 2858 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2859 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2860 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2861 (u_longlong_t)prop.zbm_creation_txg, 2862 (u_longlong_t)prop.zbm_creation_time, 2863 (u_longlong_t)prop.zbm_redaction_obj); 2864 2865 IMPLY(print_list, print_redact); 2866 if (!print_redact || prop.zbm_redaction_obj == 0) 2867 return (0); 2868 2869 redaction_list_t *rl; 2870 VERIFY0(dsl_redaction_list_hold_obj(dp, 2871 prop.zbm_redaction_obj, FTAG, &rl)); 2872 2873 redaction_list_phys_t *rlp = rl->rl_phys; 2874 (void) printf("\tRedacted:\n\t\tProgress: "); 2875 if (rlp->rlp_last_object != UINT64_MAX || 2876 rlp->rlp_last_blkid != UINT64_MAX) { 2877 (void) printf("%llu %llu (incomplete)\n", 2878 (u_longlong_t)rlp->rlp_last_object, 2879 (u_longlong_t)rlp->rlp_last_blkid); 2880 } else { 2881 (void) printf("complete\n"); 2882 } 2883 (void) printf("\t\tSnapshots: ["); 2884 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2885 if (i > 0) 2886 (void) printf(", "); 2887 (void) printf("%0llu", 2888 (u_longlong_t)rlp->rlp_snaps[i]); 2889 } 2890 (void) printf("]\n\t\tLength: %llu\n", 2891 (u_longlong_t)rlp->rlp_num_entries); 2892 2893 if (!print_list) { 2894 dsl_redaction_list_rele(rl, FTAG); 2895 return (0); 2896 } 2897 2898 if (rlp->rlp_num_entries == 0) { 2899 dsl_redaction_list_rele(rl, FTAG); 2900 (void) printf("\t\tRedaction List: []\n\n"); 2901 return (0); 2902 } 2903 2904 redact_block_phys_t *rbp_buf; 2905 uint64_t size; 2906 dmu_object_info_t doi; 2907 2908 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2909 size = doi.doi_max_offset; 2910 rbp_buf = kmem_alloc(size, KM_SLEEP); 2911 2912 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2913 rbp_buf, 0); 2914 if (err != 0) { 2915 dsl_redaction_list_rele(rl, FTAG); 2916 kmem_free(rbp_buf, size); 2917 return (err); 2918 } 2919 2920 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2921 "%llx, blksz: %x, count: %llx}", 2922 (u_longlong_t)rbp_buf[0].rbp_object, 2923 (u_longlong_t)rbp_buf[0].rbp_blkid, 2924 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2925 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2926 2927 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2928 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2929 "blksz: %x, count: %llx}", 2930 (u_longlong_t)rbp_buf[i].rbp_object, 2931 (u_longlong_t)rbp_buf[i].rbp_blkid, 2932 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2933 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2934 } 2935 dsl_redaction_list_rele(rl, FTAG); 2936 kmem_free(rbp_buf, size); 2937 (void) printf("]\n\n"); 2938 return (0); 2939 } 2940 2941 static void 2942 dump_bookmarks(objset_t *os, int verbosity) 2943 { 2944 zap_cursor_t zc; 2945 zap_attribute_t attr; 2946 dsl_dataset_t *ds = dmu_objset_ds(os); 2947 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2948 objset_t *mos = os->os_spa->spa_meta_objset; 2949 if (verbosity < 4) 2950 return; 2951 dsl_pool_config_enter(dp, FTAG); 2952 2953 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2954 zap_cursor_retrieve(&zc, &attr) == 0; 2955 zap_cursor_advance(&zc)) { 2956 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2957 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2958 int len; 2959 dmu_objset_name(os, osname); 2960 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2961 attr.za_name); 2962 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2963 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2964 } 2965 zap_cursor_fini(&zc); 2966 dsl_pool_config_exit(dp, FTAG); 2967 } 2968 2969 static void 2970 bpobj_count_refd(bpobj_t *bpo) 2971 { 2972 mos_obj_refd(bpo->bpo_object); 2973 2974 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2975 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2976 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2977 uint64_t subobj; 2978 bpobj_t subbpo; 2979 int error; 2980 VERIFY0(dmu_read(bpo->bpo_os, 2981 bpo->bpo_phys->bpo_subobjs, 2982 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2983 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2984 if (error != 0) { 2985 (void) printf("ERROR %u while trying to open " 2986 "subobj id %llu\n", 2987 error, (u_longlong_t)subobj); 2988 continue; 2989 } 2990 bpobj_count_refd(&subbpo); 2991 bpobj_close(&subbpo); 2992 } 2993 } 2994 } 2995 2996 static int 2997 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2998 { 2999 spa_t *spa = arg; 3000 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3001 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3002 bpobj_count_refd(&dle->dle_bpobj); 3003 return (0); 3004 } 3005 3006 static int 3007 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3008 { 3009 ASSERT(arg == NULL); 3010 if (dump_opt['d'] >= 5) { 3011 char buf[128]; 3012 (void) snprintf(buf, sizeof (buf), 3013 "mintxg %llu -> obj %llu", 3014 (longlong_t)dle->dle_mintxg, 3015 (longlong_t)dle->dle_bpobj.bpo_object); 3016 3017 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3018 } else { 3019 (void) printf("mintxg %llu -> obj %llu\n", 3020 (longlong_t)dle->dle_mintxg, 3021 (longlong_t)dle->dle_bpobj.bpo_object); 3022 } 3023 return (0); 3024 } 3025 3026 static void 3027 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3028 { 3029 char bytes[32]; 3030 char comp[32]; 3031 char uncomp[32]; 3032 char entries[32]; 3033 spa_t *spa = dmu_objset_spa(dl->dl_os); 3034 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3035 3036 if (dl->dl_oldfmt) { 3037 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3038 bpobj_count_refd(&dl->dl_bpobj); 3039 } else { 3040 mos_obj_refd(dl->dl_object); 3041 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3042 } 3043 3044 /* make sure nicenum has enough space */ 3045 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3046 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3047 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3048 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3049 3050 if (dump_opt['d'] < 3) 3051 return; 3052 3053 if (dl->dl_oldfmt) { 3054 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3055 return; 3056 } 3057 3058 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3059 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3060 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3061 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3062 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3063 name, bytes, comp, uncomp, entries); 3064 3065 if (dump_opt['d'] < 4) 3066 return; 3067 3068 (void) putchar('\n'); 3069 3070 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3071 } 3072 3073 static int 3074 verify_dd_livelist(objset_t *os) 3075 { 3076 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3077 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3078 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3079 3080 ASSERT(!dmu_objset_is_snapshot(os)); 3081 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3082 return (0); 3083 3084 /* Iterate through the livelist to check for duplicates */ 3085 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3086 NULL); 3087 3088 dsl_pool_config_enter(dp, FTAG); 3089 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3090 &ll_comp, &ll_uncomp); 3091 3092 dsl_dataset_t *origin_ds; 3093 ASSERT(dsl_pool_config_held(dp)); 3094 VERIFY0(dsl_dataset_hold_obj(dp, 3095 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3096 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3097 &used, &comp, &uncomp)); 3098 dsl_dataset_rele(origin_ds, FTAG); 3099 dsl_pool_config_exit(dp, FTAG); 3100 /* 3101 * It's possible that the dataset's uncomp space is larger than the 3102 * livelist's because livelists do not track embedded block pointers 3103 */ 3104 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3105 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3106 (void) printf("Discrepancy in space accounting:\n"); 3107 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3108 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3109 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3110 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3111 nice_used, nice_comp, nice_uncomp); 3112 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3113 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3114 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3115 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3116 nice_used, nice_comp, nice_uncomp); 3117 return (1); 3118 } 3119 return (0); 3120 } 3121 3122 static char *key_material = NULL; 3123 3124 static boolean_t 3125 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3126 { 3127 uint64_t keyformat, salt, iters; 3128 int i; 3129 unsigned char c; 3130 3131 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3132 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3133 1, &keyformat)); 3134 3135 switch (keyformat) { 3136 case ZFS_KEYFORMAT_HEX: 3137 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3138 if (!isxdigit(key_material[i]) || 3139 !isxdigit(key_material[i+1])) 3140 return (B_FALSE); 3141 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3142 return (B_FALSE); 3143 key_out[i / 2] = c; 3144 } 3145 break; 3146 3147 case ZFS_KEYFORMAT_PASSPHRASE: 3148 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3149 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3150 sizeof (uint64_t), 1, &salt)); 3151 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3152 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3153 sizeof (uint64_t), 1, &iters)); 3154 3155 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3156 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3157 WRAPPING_KEY_LEN, key_out) != 1) 3158 return (B_FALSE); 3159 3160 break; 3161 3162 default: 3163 fatal("no support for key format %u\n", 3164 (unsigned int) keyformat); 3165 } 3166 3167 return (B_TRUE); 3168 } 3169 3170 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3171 static boolean_t key_loaded = B_FALSE; 3172 3173 static void 3174 zdb_load_key(objset_t *os) 3175 { 3176 dsl_pool_t *dp; 3177 dsl_dir_t *dd, *rdd; 3178 uint8_t key[WRAPPING_KEY_LEN]; 3179 uint64_t rddobj; 3180 int err; 3181 3182 dp = spa_get_dsl(os->os_spa); 3183 dd = os->os_dsl_dataset->ds_dir; 3184 3185 dsl_pool_config_enter(dp, FTAG); 3186 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3187 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3188 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3189 dsl_dir_name(rdd, encroot); 3190 dsl_dir_rele(rdd, FTAG); 3191 3192 if (!zdb_derive_key(dd, key)) 3193 fatal("couldn't derive encryption key"); 3194 3195 dsl_pool_config_exit(dp, FTAG); 3196 3197 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3198 3199 dsl_crypto_params_t *dcp; 3200 nvlist_t *crypto_args; 3201 3202 crypto_args = fnvlist_alloc(); 3203 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3204 (uint8_t *)key, WRAPPING_KEY_LEN); 3205 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3206 NULL, crypto_args, &dcp)); 3207 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3208 3209 dsl_crypto_params_free(dcp, (err != 0)); 3210 fnvlist_free(crypto_args); 3211 3212 if (err != 0) 3213 fatal( 3214 "couldn't load encryption key for %s: %s", 3215 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3216 "crypto params not supported" : strerror(err)); 3217 3218 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3219 3220 printf("Unlocked encryption root: %s\n", encroot); 3221 key_loaded = B_TRUE; 3222 } 3223 3224 static void 3225 zdb_unload_key(void) 3226 { 3227 if (!key_loaded) 3228 return; 3229 3230 VERIFY0(spa_keystore_unload_wkey(encroot)); 3231 key_loaded = B_FALSE; 3232 } 3233 3234 static avl_tree_t idx_tree; 3235 static avl_tree_t domain_tree; 3236 static boolean_t fuid_table_loaded; 3237 static objset_t *sa_os = NULL; 3238 static sa_attr_type_t *sa_attr_table = NULL; 3239 3240 static int 3241 open_objset(const char *path, const void *tag, objset_t **osp) 3242 { 3243 int err; 3244 uint64_t sa_attrs = 0; 3245 uint64_t version = 0; 3246 3247 VERIFY3P(sa_os, ==, NULL); 3248 3249 /* 3250 * We can't own an objset if it's redacted. Therefore, we do this 3251 * dance: hold the objset, then acquire a long hold on its dataset, then 3252 * release the pool (which is held as part of holding the objset). 3253 */ 3254 3255 if (dump_opt['K']) { 3256 /* decryption requested, try to load keys */ 3257 err = dmu_objset_hold(path, tag, osp); 3258 if (err != 0) { 3259 (void) fprintf(stderr, "failed to hold dataset " 3260 "'%s': %s\n", 3261 path, strerror(err)); 3262 return (err); 3263 } 3264 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3265 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3266 3267 /* succeeds or dies */ 3268 zdb_load_key(*osp); 3269 3270 /* release it all */ 3271 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3272 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3273 } 3274 3275 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3276 3277 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3278 if (err != 0) { 3279 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3280 path, strerror(err)); 3281 return (err); 3282 } 3283 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3284 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3285 3286 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3287 (key_loaded || !(*osp)->os_encrypted)) { 3288 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3289 8, 1, &version); 3290 if (version >= ZPL_VERSION_SA) { 3291 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3292 8, 1, &sa_attrs); 3293 } 3294 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3295 &sa_attr_table); 3296 if (err != 0) { 3297 (void) fprintf(stderr, "sa_setup failed: %s\n", 3298 strerror(err)); 3299 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3300 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3301 ds_hold_flags, tag); 3302 *osp = NULL; 3303 } 3304 } 3305 sa_os = *osp; 3306 3307 return (err); 3308 } 3309 3310 static void 3311 close_objset(objset_t *os, const void *tag) 3312 { 3313 VERIFY3P(os, ==, sa_os); 3314 if (os->os_sa != NULL) 3315 sa_tear_down(os); 3316 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3317 dsl_dataset_rele_flags(dmu_objset_ds(os), 3318 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3319 sa_attr_table = NULL; 3320 sa_os = NULL; 3321 3322 zdb_unload_key(); 3323 } 3324 3325 static void 3326 fuid_table_destroy(void) 3327 { 3328 if (fuid_table_loaded) { 3329 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3330 fuid_table_loaded = B_FALSE; 3331 } 3332 } 3333 3334 /* 3335 * print uid or gid information. 3336 * For normal POSIX id just the id is printed in decimal format. 3337 * For CIFS files with FUID the fuid is printed in hex followed by 3338 * the domain-rid string. 3339 */ 3340 static void 3341 print_idstr(uint64_t id, const char *id_type) 3342 { 3343 if (FUID_INDEX(id)) { 3344 const char *domain = 3345 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3346 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3347 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3348 } else { 3349 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3350 } 3351 3352 } 3353 3354 static void 3355 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3356 { 3357 uint32_t uid_idx, gid_idx; 3358 3359 uid_idx = FUID_INDEX(uid); 3360 gid_idx = FUID_INDEX(gid); 3361 3362 /* Load domain table, if not already loaded */ 3363 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3364 uint64_t fuid_obj; 3365 3366 /* first find the fuid object. It lives in the master node */ 3367 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3368 8, 1, &fuid_obj) == 0); 3369 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3370 (void) zfs_fuid_table_load(os, fuid_obj, 3371 &idx_tree, &domain_tree); 3372 fuid_table_loaded = B_TRUE; 3373 } 3374 3375 print_idstr(uid, "uid"); 3376 print_idstr(gid, "gid"); 3377 } 3378 3379 static void 3380 dump_znode_sa_xattr(sa_handle_t *hdl) 3381 { 3382 nvlist_t *sa_xattr; 3383 nvpair_t *elem = NULL; 3384 int sa_xattr_size = 0; 3385 int sa_xattr_entries = 0; 3386 int error; 3387 char *sa_xattr_packed; 3388 3389 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3390 if (error || sa_xattr_size == 0) 3391 return; 3392 3393 sa_xattr_packed = malloc(sa_xattr_size); 3394 if (sa_xattr_packed == NULL) 3395 return; 3396 3397 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3398 sa_xattr_packed, sa_xattr_size); 3399 if (error) { 3400 free(sa_xattr_packed); 3401 return; 3402 } 3403 3404 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3405 if (error) { 3406 free(sa_xattr_packed); 3407 return; 3408 } 3409 3410 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3411 sa_xattr_entries++; 3412 3413 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3414 sa_xattr_size, sa_xattr_entries); 3415 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3416 boolean_t can_print = !dump_opt['P']; 3417 uchar_t *value; 3418 uint_t cnt, idx; 3419 3420 (void) printf("\t\t%s = ", nvpair_name(elem)); 3421 nvpair_value_byte_array(elem, &value, &cnt); 3422 3423 for (idx = 0; idx < cnt; ++idx) { 3424 if (!isprint(value[idx])) { 3425 can_print = B_FALSE; 3426 break; 3427 } 3428 } 3429 3430 for (idx = 0; idx < cnt; ++idx) { 3431 if (can_print) 3432 (void) putchar(value[idx]); 3433 else 3434 (void) printf("\\%3.3o", value[idx]); 3435 } 3436 (void) putchar('\n'); 3437 } 3438 3439 nvlist_free(sa_xattr); 3440 free(sa_xattr_packed); 3441 } 3442 3443 static void 3444 dump_znode_symlink(sa_handle_t *hdl) 3445 { 3446 int sa_symlink_size = 0; 3447 char linktarget[MAXPATHLEN]; 3448 int error; 3449 3450 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3451 if (error || sa_symlink_size == 0) { 3452 return; 3453 } 3454 if (sa_symlink_size >= sizeof (linktarget)) { 3455 (void) printf("symlink size %d is too large\n", 3456 sa_symlink_size); 3457 return; 3458 } 3459 linktarget[sa_symlink_size] = '\0'; 3460 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3461 &linktarget, sa_symlink_size) == 0) 3462 (void) printf("\ttarget %s\n", linktarget); 3463 } 3464 3465 static void 3466 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3467 { 3468 (void) data, (void) size; 3469 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3470 sa_handle_t *hdl; 3471 uint64_t xattr, rdev, gen; 3472 uint64_t uid, gid, mode, fsize, parent, links; 3473 uint64_t pflags; 3474 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3475 time_t z_crtime, z_atime, z_mtime, z_ctime; 3476 sa_bulk_attr_t bulk[12]; 3477 int idx = 0; 3478 int error; 3479 3480 VERIFY3P(os, ==, sa_os); 3481 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3482 (void) printf("Failed to get handle for SA znode\n"); 3483 return; 3484 } 3485 3486 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3487 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3488 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3489 &links, 8); 3490 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3491 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3492 &mode, 8); 3493 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3494 NULL, &parent, 8); 3495 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3496 &fsize, 8); 3497 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3498 acctm, 16); 3499 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3500 modtm, 16); 3501 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3502 crtm, 16); 3503 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3504 chgtm, 16); 3505 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3506 &pflags, 8); 3507 3508 if (sa_bulk_lookup(hdl, bulk, idx)) { 3509 (void) sa_handle_destroy(hdl); 3510 return; 3511 } 3512 3513 z_crtime = (time_t)crtm[0]; 3514 z_atime = (time_t)acctm[0]; 3515 z_mtime = (time_t)modtm[0]; 3516 z_ctime = (time_t)chgtm[0]; 3517 3518 if (dump_opt['d'] > 4) { 3519 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3520 if (error == ESTALE) { 3521 (void) snprintf(path, sizeof (path), "on delete queue"); 3522 } else if (error != 0) { 3523 leaked_objects++; 3524 (void) snprintf(path, sizeof (path), 3525 "path not found, possibly leaked"); 3526 } 3527 (void) printf("\tpath %s\n", path); 3528 } 3529 3530 if (S_ISLNK(mode)) 3531 dump_znode_symlink(hdl); 3532 dump_uidgid(os, uid, gid); 3533 (void) printf("\tatime %s", ctime(&z_atime)); 3534 (void) printf("\tmtime %s", ctime(&z_mtime)); 3535 (void) printf("\tctime %s", ctime(&z_ctime)); 3536 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3537 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3538 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3539 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3540 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3541 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3542 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3543 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3544 uint64_t projid; 3545 3546 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3547 sizeof (uint64_t)) == 0) 3548 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3549 } 3550 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3551 sizeof (uint64_t)) == 0) 3552 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3553 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3554 sizeof (uint64_t)) == 0) 3555 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3556 dump_znode_sa_xattr(hdl); 3557 sa_handle_destroy(hdl); 3558 } 3559 3560 static void 3561 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3562 { 3563 (void) os, (void) object, (void) data, (void) size; 3564 } 3565 3566 static void 3567 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3568 { 3569 (void) os, (void) object, (void) data, (void) size; 3570 } 3571 3572 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3573 dump_none, /* unallocated */ 3574 dump_zap, /* object directory */ 3575 dump_uint64, /* object array */ 3576 dump_none, /* packed nvlist */ 3577 dump_packed_nvlist, /* packed nvlist size */ 3578 dump_none, /* bpobj */ 3579 dump_bpobj, /* bpobj header */ 3580 dump_none, /* SPA space map header */ 3581 dump_none, /* SPA space map */ 3582 dump_none, /* ZIL intent log */ 3583 dump_dnode, /* DMU dnode */ 3584 dump_dmu_objset, /* DMU objset */ 3585 dump_dsl_dir, /* DSL directory */ 3586 dump_zap, /* DSL directory child map */ 3587 dump_zap, /* DSL dataset snap map */ 3588 dump_zap, /* DSL props */ 3589 dump_dsl_dataset, /* DSL dataset */ 3590 dump_znode, /* ZFS znode */ 3591 dump_acl, /* ZFS V0 ACL */ 3592 dump_uint8, /* ZFS plain file */ 3593 dump_zpldir, /* ZFS directory */ 3594 dump_zap, /* ZFS master node */ 3595 dump_zap, /* ZFS delete queue */ 3596 dump_uint8, /* zvol object */ 3597 dump_zap, /* zvol prop */ 3598 dump_uint8, /* other uint8[] */ 3599 dump_uint64, /* other uint64[] */ 3600 dump_zap, /* other ZAP */ 3601 dump_zap, /* persistent error log */ 3602 dump_uint8, /* SPA history */ 3603 dump_history_offsets, /* SPA history offsets */ 3604 dump_zap, /* Pool properties */ 3605 dump_zap, /* DSL permissions */ 3606 dump_acl, /* ZFS ACL */ 3607 dump_uint8, /* ZFS SYSACL */ 3608 dump_none, /* FUID nvlist */ 3609 dump_packed_nvlist, /* FUID nvlist size */ 3610 dump_zap, /* DSL dataset next clones */ 3611 dump_zap, /* DSL scrub queue */ 3612 dump_zap, /* ZFS user/group/project used */ 3613 dump_zap, /* ZFS user/group/project quota */ 3614 dump_zap, /* snapshot refcount tags */ 3615 dump_ddt_zap, /* DDT ZAP object */ 3616 dump_zap, /* DDT statistics */ 3617 dump_znode, /* SA object */ 3618 dump_zap, /* SA Master Node */ 3619 dump_sa_attrs, /* SA attribute registration */ 3620 dump_sa_layouts, /* SA attribute layouts */ 3621 dump_zap, /* DSL scrub translations */ 3622 dump_none, /* fake dedup BP */ 3623 dump_zap, /* deadlist */ 3624 dump_none, /* deadlist hdr */ 3625 dump_zap, /* dsl clones */ 3626 dump_bpobj_subobjs, /* bpobj subobjs */ 3627 dump_unknown, /* Unknown type, must be last */ 3628 }; 3629 3630 static boolean_t 3631 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3632 { 3633 boolean_t match = B_TRUE; 3634 3635 switch (obj_type) { 3636 case DMU_OT_DIRECTORY_CONTENTS: 3637 if (!(flags & ZOR_FLAG_DIRECTORY)) 3638 match = B_FALSE; 3639 break; 3640 case DMU_OT_PLAIN_FILE_CONTENTS: 3641 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3642 match = B_FALSE; 3643 break; 3644 case DMU_OT_SPACE_MAP: 3645 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3646 match = B_FALSE; 3647 break; 3648 default: 3649 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3650 if (!(flags & ZOR_FLAG_ZAP)) 3651 match = B_FALSE; 3652 break; 3653 } 3654 3655 /* 3656 * If all bits except some of the supported flags are 3657 * set, the user combined the all-types flag (A) with 3658 * a negated flag to exclude some types (e.g. A-f to 3659 * show all object types except plain files). 3660 */ 3661 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3662 match = B_FALSE; 3663 3664 break; 3665 } 3666 3667 return (match); 3668 } 3669 3670 static void 3671 dump_object(objset_t *os, uint64_t object, int verbosity, 3672 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3673 { 3674 dmu_buf_t *db = NULL; 3675 dmu_object_info_t doi; 3676 dnode_t *dn; 3677 boolean_t dnode_held = B_FALSE; 3678 void *bonus = NULL; 3679 size_t bsize = 0; 3680 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3681 char bonus_size[32]; 3682 char aux[50]; 3683 int error; 3684 3685 /* make sure nicenum has enough space */ 3686 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3687 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3688 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3689 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3690 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3691 "bonus_size truncated"); 3692 3693 if (*print_header) { 3694 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3695 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3696 "lsize", "%full", "type"); 3697 *print_header = 0; 3698 } 3699 3700 if (object == 0) { 3701 dn = DMU_META_DNODE(os); 3702 dmu_object_info_from_dnode(dn, &doi); 3703 } else { 3704 /* 3705 * Encrypted datasets will have sensitive bonus buffers 3706 * encrypted. Therefore we cannot hold the bonus buffer and 3707 * must hold the dnode itself instead. 3708 */ 3709 error = dmu_object_info(os, object, &doi); 3710 if (error) 3711 fatal("dmu_object_info() failed, errno %u", error); 3712 3713 if (!key_loaded && os->os_encrypted && 3714 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3715 error = dnode_hold(os, object, FTAG, &dn); 3716 if (error) 3717 fatal("dnode_hold() failed, errno %u", error); 3718 dnode_held = B_TRUE; 3719 } else { 3720 error = dmu_bonus_hold(os, object, FTAG, &db); 3721 if (error) 3722 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3723 object, error); 3724 bonus = db->db_data; 3725 bsize = db->db_size; 3726 dn = DB_DNODE((dmu_buf_impl_t *)db); 3727 } 3728 } 3729 3730 /* 3731 * Default to showing all object types if no flags were specified. 3732 */ 3733 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3734 !match_object_type(doi.doi_type, flags)) 3735 goto out; 3736 3737 if (dnode_slots_used) 3738 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3739 3740 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3741 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3742 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3743 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3744 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3745 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3746 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3747 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3748 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3749 3750 aux[0] = '\0'; 3751 3752 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3753 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3754 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3755 } 3756 3757 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3758 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3759 const char *compname = NULL; 3760 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3761 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3762 &compname) == 0) { 3763 (void) snprintf(aux + strlen(aux), 3764 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3765 compname); 3766 } else { 3767 (void) snprintf(aux + strlen(aux), 3768 sizeof (aux) - strlen(aux), 3769 " (Z=inherit=%s-unknown)", 3770 ZDB_COMPRESS_NAME(os->os_compress)); 3771 } 3772 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3773 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3774 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3775 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3776 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3777 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3778 } 3779 3780 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3781 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3782 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3783 3784 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3785 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3786 "", "", "", "", "", "", bonus_size, "bonus", 3787 zdb_ot_name(doi.doi_bonus_type)); 3788 } 3789 3790 if (verbosity >= 4) { 3791 (void) printf("\tdnode flags: %s%s%s%s\n", 3792 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3793 "USED_BYTES " : "", 3794 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3795 "USERUSED_ACCOUNTED " : "", 3796 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3797 "USEROBJUSED_ACCOUNTED " : "", 3798 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3799 "SPILL_BLKPTR" : ""); 3800 (void) printf("\tdnode maxblkid: %llu\n", 3801 (longlong_t)dn->dn_phys->dn_maxblkid); 3802 3803 if (!dnode_held) { 3804 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3805 object, bonus, bsize); 3806 } else { 3807 (void) printf("\t\t(bonus encrypted)\n"); 3808 } 3809 3810 if (key_loaded || 3811 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3812 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3813 NULL, 0); 3814 } else { 3815 (void) printf("\t\t(object encrypted)\n"); 3816 } 3817 3818 *print_header = B_TRUE; 3819 } 3820 3821 if (verbosity >= 5) { 3822 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3823 char blkbuf[BP_SPRINTF_LEN]; 3824 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3825 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3826 (void) printf("\nSpill block: %s\n", blkbuf); 3827 } 3828 dump_indirect(dn); 3829 } 3830 3831 if (verbosity >= 5) { 3832 /* 3833 * Report the list of segments that comprise the object. 3834 */ 3835 uint64_t start = 0; 3836 uint64_t end; 3837 uint64_t blkfill = 1; 3838 int minlvl = 1; 3839 3840 if (dn->dn_type == DMU_OT_DNODE) { 3841 minlvl = 0; 3842 blkfill = DNODES_PER_BLOCK; 3843 } 3844 3845 for (;;) { 3846 char segsize[32]; 3847 /* make sure nicenum has enough space */ 3848 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3849 "segsize truncated"); 3850 error = dnode_next_offset(dn, 3851 0, &start, minlvl, blkfill, 0); 3852 if (error) 3853 break; 3854 end = start; 3855 error = dnode_next_offset(dn, 3856 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3857 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3858 (void) printf("\t\tsegment [%016llx, %016llx)" 3859 " size %5s\n", (u_longlong_t)start, 3860 (u_longlong_t)end, segsize); 3861 if (error) 3862 break; 3863 start = end; 3864 } 3865 } 3866 3867 out: 3868 if (db != NULL) 3869 dmu_buf_rele(db, FTAG); 3870 if (dnode_held) 3871 dnode_rele(dn, FTAG); 3872 } 3873 3874 static void 3875 count_dir_mos_objects(dsl_dir_t *dd) 3876 { 3877 mos_obj_refd(dd->dd_object); 3878 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3879 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3880 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3881 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3882 3883 /* 3884 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3885 * Ignore the references after the first one. 3886 */ 3887 mos_obj_refd_multiple(dd->dd_crypto_obj); 3888 } 3889 3890 static void 3891 count_ds_mos_objects(dsl_dataset_t *ds) 3892 { 3893 mos_obj_refd(ds->ds_object); 3894 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3895 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3896 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3897 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3898 mos_obj_refd(ds->ds_bookmarks_obj); 3899 3900 if (!dsl_dataset_is_snapshot(ds)) { 3901 count_dir_mos_objects(ds->ds_dir); 3902 } 3903 } 3904 3905 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3906 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3907 3908 /* 3909 * Parse a string denoting a range of object IDs of the form 3910 * <start>[:<end>[:flags]], and store the results in zor. 3911 * Return 0 on success. On error, return 1 and update the msg 3912 * pointer to point to a descriptive error message. 3913 */ 3914 static int 3915 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3916 { 3917 uint64_t flags = 0; 3918 char *p, *s, *dup, *flagstr, *tmp = NULL; 3919 size_t len; 3920 int i; 3921 int rc = 0; 3922 3923 if (strchr(range, ':') == NULL) { 3924 zor->zor_obj_start = strtoull(range, &p, 0); 3925 if (*p != '\0') { 3926 *msg = "Invalid characters in object ID"; 3927 rc = 1; 3928 } 3929 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3930 zor->zor_obj_end = zor->zor_obj_start; 3931 return (rc); 3932 } 3933 3934 if (strchr(range, ':') == range) { 3935 *msg = "Invalid leading colon"; 3936 rc = 1; 3937 return (rc); 3938 } 3939 3940 len = strlen(range); 3941 if (range[len - 1] == ':') { 3942 *msg = "Invalid trailing colon"; 3943 rc = 1; 3944 return (rc); 3945 } 3946 3947 dup = strdup(range); 3948 s = strtok_r(dup, ":", &tmp); 3949 zor->zor_obj_start = strtoull(s, &p, 0); 3950 3951 if (*p != '\0') { 3952 *msg = "Invalid characters in start object ID"; 3953 rc = 1; 3954 goto out; 3955 } 3956 3957 s = strtok_r(NULL, ":", &tmp); 3958 zor->zor_obj_end = strtoull(s, &p, 0); 3959 3960 if (*p != '\0') { 3961 *msg = "Invalid characters in end object ID"; 3962 rc = 1; 3963 goto out; 3964 } 3965 3966 if (zor->zor_obj_start > zor->zor_obj_end) { 3967 *msg = "Start object ID may not exceed end object ID"; 3968 rc = 1; 3969 goto out; 3970 } 3971 3972 s = strtok_r(NULL, ":", &tmp); 3973 if (s == NULL) { 3974 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3975 goto out; 3976 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3977 *msg = "Invalid colon-delimited field after flags"; 3978 rc = 1; 3979 goto out; 3980 } 3981 3982 flagstr = s; 3983 for (i = 0; flagstr[i]; i++) { 3984 int bit; 3985 boolean_t negation = (flagstr[i] == '-'); 3986 3987 if (negation) { 3988 i++; 3989 if (flagstr[i] == '\0') { 3990 *msg = "Invalid trailing negation operator"; 3991 rc = 1; 3992 goto out; 3993 } 3994 } 3995 bit = flagbits[(uchar_t)flagstr[i]]; 3996 if (bit == 0) { 3997 *msg = "Invalid flag"; 3998 rc = 1; 3999 goto out; 4000 } 4001 if (negation) 4002 flags &= ~bit; 4003 else 4004 flags |= bit; 4005 } 4006 zor->zor_flags = flags; 4007 4008 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4009 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4010 4011 out: 4012 free(dup); 4013 return (rc); 4014 } 4015 4016 static void 4017 dump_objset(objset_t *os) 4018 { 4019 dmu_objset_stats_t dds = { 0 }; 4020 uint64_t object, object_count; 4021 uint64_t refdbytes, usedobjs, scratch; 4022 char numbuf[32]; 4023 char blkbuf[BP_SPRINTF_LEN + 20]; 4024 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4025 const char *type = "UNKNOWN"; 4026 int verbosity = dump_opt['d']; 4027 boolean_t print_header; 4028 unsigned i; 4029 int error; 4030 uint64_t total_slots_used = 0; 4031 uint64_t max_slot_used = 0; 4032 uint64_t dnode_slots; 4033 uint64_t obj_start; 4034 uint64_t obj_end; 4035 uint64_t flags; 4036 4037 /* make sure nicenum has enough space */ 4038 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4039 4040 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4041 dmu_objset_fast_stat(os, &dds); 4042 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4043 4044 print_header = B_TRUE; 4045 4046 if (dds.dds_type < DMU_OST_NUMTYPES) 4047 type = objset_types[dds.dds_type]; 4048 4049 if (dds.dds_type == DMU_OST_META) { 4050 dds.dds_creation_txg = TXG_INITIAL; 4051 usedobjs = BP_GET_FILL(os->os_rootbp); 4052 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4053 dd_used_bytes; 4054 } else { 4055 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4056 } 4057 4058 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4059 4060 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4061 4062 if (verbosity >= 4) { 4063 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4064 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4065 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4066 } else { 4067 blkbuf[0] = '\0'; 4068 } 4069 4070 dmu_objset_name(os, osname); 4071 4072 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4073 "%s, %llu objects%s%s\n", 4074 osname, type, (u_longlong_t)dmu_objset_id(os), 4075 (u_longlong_t)dds.dds_creation_txg, 4076 numbuf, (u_longlong_t)usedobjs, blkbuf, 4077 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4078 4079 for (i = 0; i < zopt_object_args; i++) { 4080 obj_start = zopt_object_ranges[i].zor_obj_start; 4081 obj_end = zopt_object_ranges[i].zor_obj_end; 4082 flags = zopt_object_ranges[i].zor_flags; 4083 4084 object = obj_start; 4085 if (object == 0 || obj_start == obj_end) 4086 dump_object(os, object, verbosity, &print_header, NULL, 4087 flags); 4088 else 4089 object--; 4090 4091 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4092 object <= obj_end) { 4093 dump_object(os, object, verbosity, &print_header, NULL, 4094 flags); 4095 } 4096 } 4097 4098 if (zopt_object_args > 0) { 4099 (void) printf("\n"); 4100 return; 4101 } 4102 4103 if (dump_opt['i'] != 0 || verbosity >= 2) 4104 dump_intent_log(dmu_objset_zil(os)); 4105 4106 if (dmu_objset_ds(os) != NULL) { 4107 dsl_dataset_t *ds = dmu_objset_ds(os); 4108 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4109 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4110 !dmu_objset_is_snapshot(os)) { 4111 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4112 if (verify_dd_livelist(os) != 0) 4113 fatal("livelist is incorrect"); 4114 } 4115 4116 if (dsl_dataset_remap_deadlist_exists(ds)) { 4117 (void) printf("ds_remap_deadlist:\n"); 4118 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4119 } 4120 count_ds_mos_objects(ds); 4121 } 4122 4123 if (dmu_objset_ds(os) != NULL) 4124 dump_bookmarks(os, verbosity); 4125 4126 if (verbosity < 2) 4127 return; 4128 4129 if (BP_IS_HOLE(os->os_rootbp)) 4130 return; 4131 4132 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4133 object_count = 0; 4134 if (DMU_USERUSED_DNODE(os) != NULL && 4135 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4136 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4137 NULL, 0); 4138 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4139 NULL, 0); 4140 } 4141 4142 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4143 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4144 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4145 &print_header, NULL, 0); 4146 4147 object = 0; 4148 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4149 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4150 0); 4151 object_count++; 4152 total_slots_used += dnode_slots; 4153 max_slot_used = object + dnode_slots - 1; 4154 } 4155 4156 (void) printf("\n"); 4157 4158 (void) printf(" Dnode slots:\n"); 4159 (void) printf("\tTotal used: %10llu\n", 4160 (u_longlong_t)total_slots_used); 4161 (void) printf("\tMax used: %10llu\n", 4162 (u_longlong_t)max_slot_used); 4163 (void) printf("\tPercent empty: %10lf\n", 4164 (double)(max_slot_used - total_slots_used)*100 / 4165 (double)max_slot_used); 4166 (void) printf("\n"); 4167 4168 if (error != ESRCH) { 4169 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4170 abort(); 4171 } 4172 4173 ASSERT3U(object_count, ==, usedobjs); 4174 4175 if (leaked_objects != 0) { 4176 (void) printf("%d potentially leaked objects detected\n", 4177 leaked_objects); 4178 leaked_objects = 0; 4179 } 4180 } 4181 4182 static void 4183 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4184 { 4185 time_t timestamp = ub->ub_timestamp; 4186 4187 (void) printf("%s", header ? header : ""); 4188 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4189 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4190 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4191 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4192 (void) printf("\ttimestamp = %llu UTC = %s", 4193 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4194 4195 (void) printf("\tmmp_magic = %016llx\n", 4196 (u_longlong_t)ub->ub_mmp_magic); 4197 if (MMP_VALID(ub)) { 4198 (void) printf("\tmmp_delay = %0llu\n", 4199 (u_longlong_t)ub->ub_mmp_delay); 4200 if (MMP_SEQ_VALID(ub)) 4201 (void) printf("\tmmp_seq = %u\n", 4202 (unsigned int) MMP_SEQ(ub)); 4203 if (MMP_FAIL_INT_VALID(ub)) 4204 (void) printf("\tmmp_fail = %u\n", 4205 (unsigned int) MMP_FAIL_INT(ub)); 4206 if (MMP_INTERVAL_VALID(ub)) 4207 (void) printf("\tmmp_write = %u\n", 4208 (unsigned int) MMP_INTERVAL(ub)); 4209 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4210 (void) printf("\tmmp_valid = %x\n", 4211 (unsigned int) ub->ub_mmp_config & 0xFF); 4212 } 4213 4214 if (dump_opt['u'] >= 4) { 4215 char blkbuf[BP_SPRINTF_LEN]; 4216 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4217 (void) printf("\trootbp = %s\n", blkbuf); 4218 } 4219 (void) printf("\tcheckpoint_txg = %llu\n", 4220 (u_longlong_t)ub->ub_checkpoint_txg); 4221 4222 (void) printf("\traidz_reflow state=%u off=%llu\n", 4223 (int)RRSS_GET_STATE(ub), 4224 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4225 4226 (void) printf("%s", footer ? footer : ""); 4227 } 4228 4229 static void 4230 dump_config(spa_t *spa) 4231 { 4232 dmu_buf_t *db; 4233 size_t nvsize = 0; 4234 int error = 0; 4235 4236 4237 error = dmu_bonus_hold(spa->spa_meta_objset, 4238 spa->spa_config_object, FTAG, &db); 4239 4240 if (error == 0) { 4241 nvsize = *(uint64_t *)db->db_data; 4242 dmu_buf_rele(db, FTAG); 4243 4244 (void) printf("\nMOS Configuration:\n"); 4245 dump_packed_nvlist(spa->spa_meta_objset, 4246 spa->spa_config_object, (void *)&nvsize, 1); 4247 } else { 4248 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4249 (u_longlong_t)spa->spa_config_object, error); 4250 } 4251 } 4252 4253 static void 4254 dump_cachefile(const char *cachefile) 4255 { 4256 int fd; 4257 struct stat64 statbuf; 4258 char *buf; 4259 nvlist_t *config; 4260 4261 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4262 (void) printf("cannot open '%s': %s\n", cachefile, 4263 strerror(errno)); 4264 exit(1); 4265 } 4266 4267 if (fstat64(fd, &statbuf) != 0) { 4268 (void) printf("failed to stat '%s': %s\n", cachefile, 4269 strerror(errno)); 4270 exit(1); 4271 } 4272 4273 if ((buf = malloc(statbuf.st_size)) == NULL) { 4274 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4275 (u_longlong_t)statbuf.st_size); 4276 exit(1); 4277 } 4278 4279 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4280 (void) fprintf(stderr, "failed to read %llu bytes\n", 4281 (u_longlong_t)statbuf.st_size); 4282 exit(1); 4283 } 4284 4285 (void) close(fd); 4286 4287 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4288 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4289 exit(1); 4290 } 4291 4292 free(buf); 4293 4294 dump_nvlist(config, 0); 4295 4296 nvlist_free(config); 4297 } 4298 4299 /* 4300 * ZFS label nvlist stats 4301 */ 4302 typedef struct zdb_nvl_stats { 4303 int zns_list_count; 4304 int zns_leaf_count; 4305 size_t zns_leaf_largest; 4306 size_t zns_leaf_total; 4307 nvlist_t *zns_string; 4308 nvlist_t *zns_uint64; 4309 nvlist_t *zns_boolean; 4310 } zdb_nvl_stats_t; 4311 4312 static void 4313 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4314 { 4315 nvlist_t *list, **array; 4316 nvpair_t *nvp = NULL; 4317 const char *name; 4318 uint_t i, items; 4319 4320 stats->zns_list_count++; 4321 4322 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4323 name = nvpair_name(nvp); 4324 4325 switch (nvpair_type(nvp)) { 4326 case DATA_TYPE_STRING: 4327 fnvlist_add_string(stats->zns_string, name, 4328 fnvpair_value_string(nvp)); 4329 break; 4330 case DATA_TYPE_UINT64: 4331 fnvlist_add_uint64(stats->zns_uint64, name, 4332 fnvpair_value_uint64(nvp)); 4333 break; 4334 case DATA_TYPE_BOOLEAN: 4335 fnvlist_add_boolean(stats->zns_boolean, name); 4336 break; 4337 case DATA_TYPE_NVLIST: 4338 if (nvpair_value_nvlist(nvp, &list) == 0) 4339 collect_nvlist_stats(list, stats); 4340 break; 4341 case DATA_TYPE_NVLIST_ARRAY: 4342 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4343 break; 4344 4345 for (i = 0; i < items; i++) { 4346 collect_nvlist_stats(array[i], stats); 4347 4348 /* collect stats on leaf vdev */ 4349 if (strcmp(name, "children") == 0) { 4350 size_t size; 4351 4352 (void) nvlist_size(array[i], &size, 4353 NV_ENCODE_XDR); 4354 stats->zns_leaf_total += size; 4355 if (size > stats->zns_leaf_largest) 4356 stats->zns_leaf_largest = size; 4357 stats->zns_leaf_count++; 4358 } 4359 } 4360 break; 4361 default: 4362 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4363 } 4364 } 4365 } 4366 4367 static void 4368 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4369 { 4370 zdb_nvl_stats_t stats = { 0 }; 4371 size_t size, sum = 0, total; 4372 size_t noise; 4373 4374 /* requires nvlist with non-unique names for stat collection */ 4375 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4376 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4377 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4378 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4379 4380 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4381 4382 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4383 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4384 (int)total, (int)(cap - total), 100.0 * total / cap); 4385 4386 collect_nvlist_stats(nvl, &stats); 4387 4388 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4389 size -= noise; 4390 sum += size; 4391 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4392 (int)fnvlist_num_pairs(stats.zns_uint64), 4393 (int)size, 100.0 * size / total); 4394 4395 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4396 size -= noise; 4397 sum += size; 4398 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4399 (int)fnvlist_num_pairs(stats.zns_string), 4400 (int)size, 100.0 * size / total); 4401 4402 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4403 size -= noise; 4404 sum += size; 4405 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4406 (int)fnvlist_num_pairs(stats.zns_boolean), 4407 (int)size, 100.0 * size / total); 4408 4409 size = total - sum; /* treat remainder as nvlist overhead */ 4410 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4411 stats.zns_list_count, (int)size, 100.0 * size / total); 4412 4413 if (stats.zns_leaf_count > 0) { 4414 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4415 4416 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4417 stats.zns_leaf_count, (int)average); 4418 (void) printf("%24d bytes largest\n", 4419 (int)stats.zns_leaf_largest); 4420 4421 if (dump_opt['l'] >= 3 && average > 0) 4422 (void) printf(" space for %d additional leaf vdevs\n", 4423 (int)((cap - total) / average)); 4424 } 4425 (void) printf("\n"); 4426 4427 nvlist_free(stats.zns_string); 4428 nvlist_free(stats.zns_uint64); 4429 nvlist_free(stats.zns_boolean); 4430 } 4431 4432 typedef struct cksum_record { 4433 zio_cksum_t cksum; 4434 boolean_t labels[VDEV_LABELS]; 4435 avl_node_t link; 4436 } cksum_record_t; 4437 4438 static int 4439 cksum_record_compare(const void *x1, const void *x2) 4440 { 4441 const cksum_record_t *l = (cksum_record_t *)x1; 4442 const cksum_record_t *r = (cksum_record_t *)x2; 4443 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4444 int difference = 0; 4445 4446 for (int i = 0; i < arraysize; i++) { 4447 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4448 if (difference) 4449 break; 4450 } 4451 4452 return (difference); 4453 } 4454 4455 static cksum_record_t * 4456 cksum_record_alloc(zio_cksum_t *cksum, int l) 4457 { 4458 cksum_record_t *rec; 4459 4460 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4461 rec->cksum = *cksum; 4462 rec->labels[l] = B_TRUE; 4463 4464 return (rec); 4465 } 4466 4467 static cksum_record_t * 4468 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4469 { 4470 cksum_record_t lookup = { .cksum = *cksum }; 4471 avl_index_t where; 4472 4473 return (avl_find(tree, &lookup, &where)); 4474 } 4475 4476 static cksum_record_t * 4477 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4478 { 4479 cksum_record_t *rec; 4480 4481 rec = cksum_record_lookup(tree, cksum); 4482 if (rec) { 4483 rec->labels[l] = B_TRUE; 4484 } else { 4485 rec = cksum_record_alloc(cksum, l); 4486 avl_add(tree, rec); 4487 } 4488 4489 return (rec); 4490 } 4491 4492 static int 4493 first_label(cksum_record_t *rec) 4494 { 4495 for (int i = 0; i < VDEV_LABELS; i++) 4496 if (rec->labels[i]) 4497 return (i); 4498 4499 return (-1); 4500 } 4501 4502 static void 4503 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4504 { 4505 fputs(prefix, stdout); 4506 for (int i = 0; i < VDEV_LABELS; i++) 4507 if (rec->labels[i] == B_TRUE) 4508 printf("%d ", i); 4509 putchar('\n'); 4510 } 4511 4512 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4513 4514 typedef struct zdb_label { 4515 vdev_label_t label; 4516 uint64_t label_offset; 4517 nvlist_t *config_nv; 4518 cksum_record_t *config; 4519 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4520 boolean_t header_printed; 4521 boolean_t read_failed; 4522 boolean_t cksum_valid; 4523 } zdb_label_t; 4524 4525 static void 4526 print_label_header(zdb_label_t *label, int l) 4527 { 4528 4529 if (dump_opt['q']) 4530 return; 4531 4532 if (label->header_printed == B_TRUE) 4533 return; 4534 4535 (void) printf("------------------------------------\n"); 4536 (void) printf("LABEL %d %s\n", l, 4537 label->cksum_valid ? "" : "(Bad label cksum)"); 4538 (void) printf("------------------------------------\n"); 4539 4540 label->header_printed = B_TRUE; 4541 } 4542 4543 static void 4544 print_l2arc_header(void) 4545 { 4546 (void) printf("------------------------------------\n"); 4547 (void) printf("L2ARC device header\n"); 4548 (void) printf("------------------------------------\n"); 4549 } 4550 4551 static void 4552 print_l2arc_log_blocks(void) 4553 { 4554 (void) printf("------------------------------------\n"); 4555 (void) printf("L2ARC device log blocks\n"); 4556 (void) printf("------------------------------------\n"); 4557 } 4558 4559 static void 4560 dump_l2arc_log_entries(uint64_t log_entries, 4561 l2arc_log_ent_phys_t *le, uint64_t i) 4562 { 4563 for (int j = 0; j < log_entries; j++) { 4564 dva_t dva = le[j].le_dva; 4565 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4566 "vdev: %llu, offset: %llu\n", 4567 (u_longlong_t)i, j + 1, 4568 (u_longlong_t)DVA_GET_ASIZE(&dva), 4569 (u_longlong_t)DVA_GET_VDEV(&dva), 4570 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4571 (void) printf("|\t\t\t\tbirth: %llu\n", 4572 (u_longlong_t)le[j].le_birth); 4573 (void) printf("|\t\t\t\tlsize: %llu\n", 4574 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4575 (void) printf("|\t\t\t\tpsize: %llu\n", 4576 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4577 (void) printf("|\t\t\t\tcompr: %llu\n", 4578 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4579 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4580 (u_longlong_t)(&le[j])->le_complevel); 4581 (void) printf("|\t\t\t\ttype: %llu\n", 4582 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4583 (void) printf("|\t\t\t\tprotected: %llu\n", 4584 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4585 (void) printf("|\t\t\t\tprefetch: %llu\n", 4586 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4587 (void) printf("|\t\t\t\taddress: %llu\n", 4588 (u_longlong_t)le[j].le_daddr); 4589 (void) printf("|\t\t\t\tARC state: %llu\n", 4590 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4591 (void) printf("|\n"); 4592 } 4593 (void) printf("\n"); 4594 } 4595 4596 static void 4597 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4598 { 4599 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4600 (void) printf("|\t\tpayload_asize: %llu\n", 4601 (u_longlong_t)lbps->lbp_payload_asize); 4602 (void) printf("|\t\tpayload_start: %llu\n", 4603 (u_longlong_t)lbps->lbp_payload_start); 4604 (void) printf("|\t\tlsize: %llu\n", 4605 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4606 (void) printf("|\t\tasize: %llu\n", 4607 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4608 (void) printf("|\t\tcompralgo: %llu\n", 4609 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4610 (void) printf("|\t\tcksumalgo: %llu\n", 4611 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4612 (void) printf("|\n\n"); 4613 } 4614 4615 static void 4616 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4617 l2arc_dev_hdr_phys_t *rebuild) 4618 { 4619 l2arc_log_blk_phys_t this_lb; 4620 uint64_t asize; 4621 l2arc_log_blkptr_t lbps[2]; 4622 abd_t *abd; 4623 zio_cksum_t cksum; 4624 int failed = 0; 4625 l2arc_dev_t dev; 4626 4627 if (!dump_opt['q']) 4628 print_l2arc_log_blocks(); 4629 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4630 4631 dev.l2ad_evict = l2dhdr->dh_evict; 4632 dev.l2ad_start = l2dhdr->dh_start; 4633 dev.l2ad_end = l2dhdr->dh_end; 4634 4635 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4636 /* no log blocks to read */ 4637 if (!dump_opt['q']) { 4638 (void) printf("No log blocks to read\n"); 4639 (void) printf("\n"); 4640 } 4641 return; 4642 } else { 4643 dev.l2ad_hand = lbps[0].lbp_daddr + 4644 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4645 } 4646 4647 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4648 4649 for (;;) { 4650 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4651 break; 4652 4653 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4654 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4655 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4656 if (!dump_opt['q']) { 4657 (void) printf("Error while reading next log " 4658 "block\n\n"); 4659 } 4660 break; 4661 } 4662 4663 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4664 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4665 failed++; 4666 if (!dump_opt['q']) { 4667 (void) printf("Invalid cksum\n"); 4668 dump_l2arc_log_blkptr(&lbps[0]); 4669 } 4670 break; 4671 } 4672 4673 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4674 case ZIO_COMPRESS_OFF: 4675 break; 4676 default: 4677 abd = abd_alloc_for_io(asize, B_TRUE); 4678 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4679 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4680 (&lbps[0])->lbp_prop), abd, &this_lb, 4681 asize, sizeof (this_lb), NULL) != 0) { 4682 (void) printf("L2ARC block decompression " 4683 "failed\n"); 4684 abd_free(abd); 4685 goto out; 4686 } 4687 abd_free(abd); 4688 break; 4689 } 4690 4691 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4692 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4693 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4694 if (!dump_opt['q']) 4695 (void) printf("Invalid log block magic\n\n"); 4696 break; 4697 } 4698 4699 rebuild->dh_lb_count++; 4700 rebuild->dh_lb_asize += asize; 4701 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4702 (void) printf("lb[%4llu]\tmagic: %llu\n", 4703 (u_longlong_t)rebuild->dh_lb_count, 4704 (u_longlong_t)this_lb.lb_magic); 4705 dump_l2arc_log_blkptr(&lbps[0]); 4706 } 4707 4708 if (dump_opt['l'] > 2 && !dump_opt['q']) 4709 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4710 this_lb.lb_entries, 4711 rebuild->dh_lb_count); 4712 4713 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4714 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4715 !dev.l2ad_first) 4716 break; 4717 4718 lbps[0] = lbps[1]; 4719 lbps[1] = this_lb.lb_prev_lbp; 4720 } 4721 out: 4722 if (!dump_opt['q']) { 4723 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4724 (u_longlong_t)rebuild->dh_lb_count); 4725 (void) printf("\t\t %d with invalid cksum\n", failed); 4726 (void) printf("log_blk_asize:\t %llu\n\n", 4727 (u_longlong_t)rebuild->dh_lb_asize); 4728 } 4729 } 4730 4731 static int 4732 dump_l2arc_header(int fd) 4733 { 4734 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4735 int error = B_FALSE; 4736 4737 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4738 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4739 error = B_TRUE; 4740 } else { 4741 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4742 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4743 4744 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4745 error = B_TRUE; 4746 } 4747 4748 if (error) { 4749 (void) printf("L2ARC device header not found\n\n"); 4750 /* Do not return an error here for backward compatibility */ 4751 return (0); 4752 } else if (!dump_opt['q']) { 4753 print_l2arc_header(); 4754 4755 (void) printf(" magic: %llu\n", 4756 (u_longlong_t)l2dhdr.dh_magic); 4757 (void) printf(" version: %llu\n", 4758 (u_longlong_t)l2dhdr.dh_version); 4759 (void) printf(" pool_guid: %llu\n", 4760 (u_longlong_t)l2dhdr.dh_spa_guid); 4761 (void) printf(" flags: %llu\n", 4762 (u_longlong_t)l2dhdr.dh_flags); 4763 (void) printf(" start_lbps[0]: %llu\n", 4764 (u_longlong_t) 4765 l2dhdr.dh_start_lbps[0].lbp_daddr); 4766 (void) printf(" start_lbps[1]: %llu\n", 4767 (u_longlong_t) 4768 l2dhdr.dh_start_lbps[1].lbp_daddr); 4769 (void) printf(" log_blk_ent: %llu\n", 4770 (u_longlong_t)l2dhdr.dh_log_entries); 4771 (void) printf(" start: %llu\n", 4772 (u_longlong_t)l2dhdr.dh_start); 4773 (void) printf(" end: %llu\n", 4774 (u_longlong_t)l2dhdr.dh_end); 4775 (void) printf(" evict: %llu\n", 4776 (u_longlong_t)l2dhdr.dh_evict); 4777 (void) printf(" lb_asize_refcount: %llu\n", 4778 (u_longlong_t)l2dhdr.dh_lb_asize); 4779 (void) printf(" lb_count_refcount: %llu\n", 4780 (u_longlong_t)l2dhdr.dh_lb_count); 4781 (void) printf(" trim_action_time: %llu\n", 4782 (u_longlong_t)l2dhdr.dh_trim_action_time); 4783 (void) printf(" trim_state: %llu\n\n", 4784 (u_longlong_t)l2dhdr.dh_trim_state); 4785 } 4786 4787 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4788 /* 4789 * The total aligned size of log blocks and the number of log blocks 4790 * reported in the header of the device may be less than what zdb 4791 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4792 * This happens because dump_l2arc_log_blocks() lacks the memory 4793 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4794 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4795 * and dh_lb_count will be lower to begin with than what exists on the 4796 * device. This is normal and zdb should not exit with an error. The 4797 * opposite case should never happen though, the values reported in the 4798 * header should never be higher than what dump_l2arc_log_blocks() and 4799 * l2arc_rebuild() report. If this happens there is a leak in the 4800 * accounting of log blocks. 4801 */ 4802 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4803 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4804 return (1); 4805 4806 return (0); 4807 } 4808 4809 static void 4810 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4811 { 4812 if (dump_opt['q']) 4813 return; 4814 4815 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4816 return; 4817 4818 print_label_header(label, l); 4819 dump_nvlist(label->config_nv, 4); 4820 print_label_numbers(" labels = ", label->config); 4821 4822 if (dump_opt['l'] >= 2) 4823 dump_nvlist_stats(label->config_nv, buflen); 4824 } 4825 4826 #define ZDB_MAX_UB_HEADER_SIZE 32 4827 4828 static void 4829 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4830 { 4831 4832 vdev_t vd; 4833 char header[ZDB_MAX_UB_HEADER_SIZE]; 4834 4835 vd.vdev_ashift = ashift; 4836 vd.vdev_top = &vd; 4837 4838 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4839 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4840 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4841 cksum_record_t *rec = label->uberblocks[i]; 4842 4843 if (rec == NULL) { 4844 if (dump_opt['u'] >= 2) { 4845 print_label_header(label, label_num); 4846 (void) printf(" Uberblock[%d] invalid\n", i); 4847 } 4848 continue; 4849 } 4850 4851 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4852 continue; 4853 4854 if ((dump_opt['u'] < 4) && 4855 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4856 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4857 continue; 4858 4859 print_label_header(label, label_num); 4860 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4861 " Uberblock[%d]\n", i); 4862 dump_uberblock(ub, header, ""); 4863 print_label_numbers(" labels = ", rec); 4864 } 4865 } 4866 4867 static char curpath[PATH_MAX]; 4868 4869 /* 4870 * Iterate through the path components, recursively passing 4871 * current one's obj and remaining path until we find the obj 4872 * for the last one. 4873 */ 4874 static int 4875 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4876 { 4877 int err; 4878 boolean_t header = B_TRUE; 4879 uint64_t child_obj; 4880 char *s; 4881 dmu_buf_t *db; 4882 dmu_object_info_t doi; 4883 4884 if ((s = strchr(name, '/')) != NULL) 4885 *s = '\0'; 4886 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4887 4888 (void) strlcat(curpath, name, sizeof (curpath)); 4889 4890 if (err != 0) { 4891 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4892 curpath, strerror(err)); 4893 return (err); 4894 } 4895 4896 child_obj = ZFS_DIRENT_OBJ(child_obj); 4897 err = sa_buf_hold(os, child_obj, FTAG, &db); 4898 if (err != 0) { 4899 (void) fprintf(stderr, 4900 "failed to get SA dbuf for obj %llu: %s\n", 4901 (u_longlong_t)child_obj, strerror(err)); 4902 return (EINVAL); 4903 } 4904 dmu_object_info_from_db(db, &doi); 4905 sa_buf_rele(db, FTAG); 4906 4907 if (doi.doi_bonus_type != DMU_OT_SA && 4908 doi.doi_bonus_type != DMU_OT_ZNODE) { 4909 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4910 doi.doi_bonus_type, (u_longlong_t)child_obj); 4911 return (EINVAL); 4912 } 4913 4914 if (dump_opt['v'] > 6) { 4915 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4916 (u_longlong_t)child_obj, curpath, doi.doi_type, 4917 doi.doi_bonus_type); 4918 } 4919 4920 (void) strlcat(curpath, "/", sizeof (curpath)); 4921 4922 switch (doi.doi_type) { 4923 case DMU_OT_DIRECTORY_CONTENTS: 4924 if (s != NULL && *(s + 1) != '\0') 4925 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4926 zfs_fallthrough; 4927 case DMU_OT_PLAIN_FILE_CONTENTS: 4928 if (retobj != NULL) { 4929 *retobj = child_obj; 4930 } else { 4931 dump_object(os, child_obj, dump_opt['v'], &header, 4932 NULL, 0); 4933 } 4934 return (0); 4935 default: 4936 (void) fprintf(stderr, "object %llu has non-file/directory " 4937 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4938 break; 4939 } 4940 4941 return (EINVAL); 4942 } 4943 4944 /* 4945 * Dump the blocks for the object specified by path inside the dataset. 4946 */ 4947 static int 4948 dump_path(char *ds, char *path, uint64_t *retobj) 4949 { 4950 int err; 4951 objset_t *os; 4952 uint64_t root_obj; 4953 4954 err = open_objset(ds, FTAG, &os); 4955 if (err != 0) 4956 return (err); 4957 4958 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4959 if (err != 0) { 4960 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4961 strerror(err)); 4962 close_objset(os, FTAG); 4963 return (EINVAL); 4964 } 4965 4966 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4967 4968 err = dump_path_impl(os, root_obj, path, retobj); 4969 4970 close_objset(os, FTAG); 4971 return (err); 4972 } 4973 4974 static int 4975 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4976 { 4977 const char *p = (const char *)buf; 4978 ssize_t nwritten; 4979 4980 (void) os; 4981 (void) arg; 4982 4983 /* Write the data out, handling short writes and signals. */ 4984 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4985 if (nwritten < 0) { 4986 if (errno == EINTR) 4987 continue; 4988 return (errno); 4989 } 4990 p += nwritten; 4991 len -= nwritten; 4992 } 4993 4994 return (0); 4995 } 4996 4997 static void 4998 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4999 { 5000 boolean_t embed = B_FALSE; 5001 boolean_t large_block = B_FALSE; 5002 boolean_t compress = B_FALSE; 5003 boolean_t raw = B_FALSE; 5004 5005 const char *c; 5006 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5007 switch (*c) { 5008 case 'e': 5009 embed = B_TRUE; 5010 break; 5011 case 'L': 5012 large_block = B_TRUE; 5013 break; 5014 case 'c': 5015 compress = B_TRUE; 5016 break; 5017 case 'w': 5018 raw = B_TRUE; 5019 break; 5020 default: 5021 fprintf(stderr, "dump_backup: invalid flag " 5022 "'%c'\n", *c); 5023 return; 5024 } 5025 } 5026 5027 if (isatty(STDOUT_FILENO)) { 5028 fprintf(stderr, "dump_backup: stream cannot be written " 5029 "to a terminal\n"); 5030 return; 5031 } 5032 5033 offset_t off = 0; 5034 dmu_send_outparams_t out = { 5035 .dso_outfunc = dump_backup_bytes, 5036 .dso_dryrun = B_FALSE, 5037 }; 5038 5039 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5040 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5041 &off, &out); 5042 if (err != 0) { 5043 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5044 strerror(err)); 5045 return; 5046 } 5047 } 5048 5049 static int 5050 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5051 { 5052 int err = 0; 5053 uint64_t size, readsize, oursize, offset; 5054 ssize_t writesize; 5055 sa_handle_t *hdl; 5056 5057 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5058 destfile); 5059 5060 VERIFY3P(os, ==, sa_os); 5061 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5062 (void) printf("Failed to get handle for SA znode\n"); 5063 return (err); 5064 } 5065 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5066 (void) sa_handle_destroy(hdl); 5067 return (err); 5068 } 5069 (void) sa_handle_destroy(hdl); 5070 5071 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5072 size); 5073 if (size == 0) { 5074 return (EINVAL); 5075 } 5076 5077 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5078 if (fd == -1) 5079 return (errno); 5080 /* 5081 * We cap the size at 1 mebibyte here to prevent 5082 * allocation failures and nigh-infinite printing if the 5083 * object is extremely large. 5084 */ 5085 oursize = MIN(size, 1 << 20); 5086 offset = 0; 5087 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5088 if (buf == NULL) { 5089 (void) close(fd); 5090 return (ENOMEM); 5091 } 5092 5093 while (offset < size) { 5094 readsize = MIN(size - offset, 1 << 20); 5095 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5096 if (err != 0) { 5097 (void) printf("got error %u from dmu_read\n", err); 5098 kmem_free(buf, oursize); 5099 (void) close(fd); 5100 return (err); 5101 } 5102 if (dump_opt['v'] > 3) { 5103 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5104 " error=%d\n", offset, readsize, err); 5105 } 5106 5107 writesize = write(fd, buf, readsize); 5108 if (writesize < 0) { 5109 err = errno; 5110 break; 5111 } else if (writesize != readsize) { 5112 /* Incomplete write */ 5113 (void) fprintf(stderr, "Short write, only wrote %llu of" 5114 " %" PRIu64 " bytes, exiting...\n", 5115 (u_longlong_t)writesize, readsize); 5116 break; 5117 } 5118 5119 offset += readsize; 5120 } 5121 5122 (void) close(fd); 5123 5124 if (buf != NULL) 5125 kmem_free(buf, oursize); 5126 5127 return (err); 5128 } 5129 5130 static boolean_t 5131 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5132 { 5133 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5134 zio_cksum_t expected_cksum; 5135 zio_cksum_t actual_cksum; 5136 zio_cksum_t verifier; 5137 zio_eck_t *eck; 5138 int byteswap; 5139 5140 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5141 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5142 5143 offset += offsetof(vdev_label_t, vl_vdev_phys); 5144 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5145 5146 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5147 if (byteswap) 5148 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5149 5150 expected_cksum = eck->zec_cksum; 5151 eck->zec_cksum = verifier; 5152 5153 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5154 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5155 abd_free(abd); 5156 5157 if (byteswap) 5158 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5159 5160 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5161 return (B_TRUE); 5162 5163 return (B_FALSE); 5164 } 5165 5166 static int 5167 dump_label(const char *dev) 5168 { 5169 char path[MAXPATHLEN]; 5170 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5171 uint64_t psize, ashift, l2cache; 5172 struct stat64 statbuf; 5173 boolean_t config_found = B_FALSE; 5174 boolean_t error = B_FALSE; 5175 boolean_t read_l2arc_header = B_FALSE; 5176 avl_tree_t config_tree; 5177 avl_tree_t uberblock_tree; 5178 void *node, *cookie; 5179 int fd; 5180 5181 /* 5182 * Check if we were given absolute path and use it as is. 5183 * Otherwise if the provided vdev name doesn't point to a file, 5184 * try prepending expected disk paths and partition numbers. 5185 */ 5186 (void) strlcpy(path, dev, sizeof (path)); 5187 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5188 int error; 5189 5190 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5191 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5192 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5193 error = ENOENT; 5194 } 5195 5196 if (error || (stat64(path, &statbuf) != 0)) { 5197 (void) printf("failed to find device %s, try " 5198 "specifying absolute path instead\n", dev); 5199 return (1); 5200 } 5201 } 5202 5203 if ((fd = open64(path, O_RDONLY)) < 0) { 5204 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5205 exit(1); 5206 } 5207 5208 if (fstat64_blk(fd, &statbuf) != 0) { 5209 (void) printf("failed to stat '%s': %s\n", path, 5210 strerror(errno)); 5211 (void) close(fd); 5212 exit(1); 5213 } 5214 5215 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5216 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5217 strerror(errno)); 5218 5219 avl_create(&config_tree, cksum_record_compare, 5220 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5221 avl_create(&uberblock_tree, cksum_record_compare, 5222 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5223 5224 psize = statbuf.st_size; 5225 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 5226 ashift = SPA_MINBLOCKSHIFT; 5227 5228 /* 5229 * 1. Read the label from disk 5230 * 2. Verify label cksum 5231 * 3. Unpack the configuration and insert in config tree. 5232 * 4. Traverse all uberblocks and insert in uberblock tree. 5233 */ 5234 for (int l = 0; l < VDEV_LABELS; l++) { 5235 zdb_label_t *label = &labels[l]; 5236 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5237 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5238 nvlist_t *config; 5239 cksum_record_t *rec; 5240 zio_cksum_t cksum; 5241 vdev_t vd; 5242 5243 label->label_offset = vdev_label_offset(psize, l, 0); 5244 5245 if (pread64(fd, &label->label, sizeof (label->label), 5246 label->label_offset) != sizeof (label->label)) { 5247 if (!dump_opt['q']) 5248 (void) printf("failed to read label %d\n", l); 5249 label->read_failed = B_TRUE; 5250 error = B_TRUE; 5251 continue; 5252 } 5253 5254 label->read_failed = B_FALSE; 5255 label->cksum_valid = label_cksum_valid(&label->label, 5256 label->label_offset); 5257 5258 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5259 nvlist_t *vdev_tree = NULL; 5260 size_t size; 5261 5262 if ((nvlist_lookup_nvlist(config, 5263 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5264 (nvlist_lookup_uint64(vdev_tree, 5265 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5266 ashift = SPA_MINBLOCKSHIFT; 5267 5268 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5269 size = buflen; 5270 5271 /* If the device is a cache device read the header. */ 5272 if (!read_l2arc_header) { 5273 if (nvlist_lookup_uint64(config, 5274 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5275 l2cache == POOL_STATE_L2CACHE) { 5276 read_l2arc_header = B_TRUE; 5277 } 5278 } 5279 5280 fletcher_4_native_varsize(buf, size, &cksum); 5281 rec = cksum_record_insert(&config_tree, &cksum, l); 5282 5283 label->config = rec; 5284 label->config_nv = config; 5285 config_found = B_TRUE; 5286 } else { 5287 error = B_TRUE; 5288 } 5289 5290 vd.vdev_ashift = ashift; 5291 vd.vdev_top = &vd; 5292 5293 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5294 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5295 uberblock_t *ub = (void *)((char *)label + uoff); 5296 5297 if (uberblock_verify(ub)) 5298 continue; 5299 5300 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5301 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5302 5303 label->uberblocks[i] = rec; 5304 } 5305 } 5306 5307 /* 5308 * Dump the label and uberblocks. 5309 */ 5310 for (int l = 0; l < VDEV_LABELS; l++) { 5311 zdb_label_t *label = &labels[l]; 5312 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5313 5314 if (label->read_failed == B_TRUE) 5315 continue; 5316 5317 if (label->config_nv) { 5318 dump_config_from_label(label, buflen, l); 5319 } else { 5320 if (!dump_opt['q']) 5321 (void) printf("failed to unpack label %d\n", l); 5322 } 5323 5324 if (dump_opt['u']) 5325 dump_label_uberblocks(label, ashift, l); 5326 5327 nvlist_free(label->config_nv); 5328 } 5329 5330 /* 5331 * Dump the L2ARC header, if existent. 5332 */ 5333 if (read_l2arc_header) 5334 error |= dump_l2arc_header(fd); 5335 5336 cookie = NULL; 5337 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5338 umem_free(node, sizeof (cksum_record_t)); 5339 5340 cookie = NULL; 5341 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5342 umem_free(node, sizeof (cksum_record_t)); 5343 5344 avl_destroy(&config_tree); 5345 avl_destroy(&uberblock_tree); 5346 5347 (void) close(fd); 5348 5349 return (config_found == B_FALSE ? 2 : 5350 (error == B_TRUE ? 1 : 0)); 5351 } 5352 5353 static uint64_t dataset_feature_count[SPA_FEATURES]; 5354 static uint64_t global_feature_count[SPA_FEATURES]; 5355 static uint64_t remap_deadlist_count = 0; 5356 5357 static int 5358 dump_one_objset(const char *dsname, void *arg) 5359 { 5360 (void) arg; 5361 int error; 5362 objset_t *os; 5363 spa_feature_t f; 5364 5365 error = open_objset(dsname, FTAG, &os); 5366 if (error != 0) 5367 return (0); 5368 5369 for (f = 0; f < SPA_FEATURES; f++) { 5370 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5371 continue; 5372 ASSERT(spa_feature_table[f].fi_flags & 5373 ZFEATURE_FLAG_PER_DATASET); 5374 dataset_feature_count[f]++; 5375 } 5376 5377 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5378 remap_deadlist_count++; 5379 } 5380 5381 for (dsl_bookmark_node_t *dbn = 5382 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5383 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5384 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5385 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5386 global_feature_count[ 5387 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5388 objset_t *mos = os->os_spa->spa_meta_objset; 5389 dnode_t *rl; 5390 VERIFY0(dnode_hold(mos, 5391 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5392 if (rl->dn_have_spill) { 5393 global_feature_count[ 5394 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5395 } 5396 } 5397 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5398 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5399 } 5400 5401 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5402 !dmu_objset_is_snapshot(os)) { 5403 global_feature_count[SPA_FEATURE_LIVELIST]++; 5404 } 5405 5406 dump_objset(os); 5407 close_objset(os, FTAG); 5408 fuid_table_destroy(); 5409 return (0); 5410 } 5411 5412 /* 5413 * Block statistics. 5414 */ 5415 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5416 typedef struct zdb_blkstats { 5417 uint64_t zb_asize; 5418 uint64_t zb_lsize; 5419 uint64_t zb_psize; 5420 uint64_t zb_count; 5421 uint64_t zb_gangs; 5422 uint64_t zb_ditto_samevdev; 5423 uint64_t zb_ditto_same_ms; 5424 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5425 } zdb_blkstats_t; 5426 5427 /* 5428 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5429 */ 5430 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5431 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5432 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5433 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5434 5435 static const char *zdb_ot_extname[] = { 5436 "deferred free", 5437 "dedup ditto", 5438 "other", 5439 "Total", 5440 }; 5441 5442 #define ZB_TOTAL DN_MAX_LEVELS 5443 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5444 5445 typedef struct zdb_brt_entry { 5446 dva_t zbre_dva; 5447 uint64_t zbre_refcount; 5448 avl_node_t zbre_node; 5449 } zdb_brt_entry_t; 5450 5451 typedef struct zdb_cb { 5452 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5453 uint64_t zcb_removing_size; 5454 uint64_t zcb_checkpoint_size; 5455 uint64_t zcb_dedup_asize; 5456 uint64_t zcb_dedup_blocks; 5457 uint64_t zcb_clone_asize; 5458 uint64_t zcb_clone_blocks; 5459 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5460 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5461 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5462 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5463 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5464 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5465 uint64_t zcb_psize_total; 5466 uint64_t zcb_lsize_total; 5467 uint64_t zcb_asize_total; 5468 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5469 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5470 [BPE_PAYLOAD_SIZE + 1]; 5471 uint64_t zcb_start; 5472 hrtime_t zcb_lastprint; 5473 uint64_t zcb_totalasize; 5474 uint64_t zcb_errors[256]; 5475 int zcb_readfails; 5476 int zcb_haderrors; 5477 spa_t *zcb_spa; 5478 uint32_t **zcb_vd_obsolete_counts; 5479 avl_tree_t zcb_brt; 5480 boolean_t zcb_brt_is_active; 5481 } zdb_cb_t; 5482 5483 /* test if two DVA offsets from same vdev are within the same metaslab */ 5484 static boolean_t 5485 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5486 { 5487 vdev_t *vd = vdev_lookup_top(spa, vdev); 5488 uint64_t ms_shift = vd->vdev_ms_shift; 5489 5490 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5491 } 5492 5493 /* 5494 * Used to simplify reporting of the histogram data. 5495 */ 5496 typedef struct one_histo { 5497 const char *name; 5498 uint64_t *count; 5499 uint64_t *len; 5500 uint64_t cumulative; 5501 } one_histo_t; 5502 5503 /* 5504 * The number of separate histograms processed for psize, lsize and asize. 5505 */ 5506 #define NUM_HISTO 3 5507 5508 /* 5509 * This routine will create a fixed column size output of three different 5510 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5511 * the count, length and cumulative length of the psize, lsize and 5512 * asize blocks. 5513 * 5514 * All three types of blocks are listed on a single line 5515 * 5516 * By default the table is printed in nicenumber format (e.g. 123K) but 5517 * if the '-P' parameter is specified then the full raw number (parseable) 5518 * is printed out. 5519 */ 5520 static void 5521 dump_size_histograms(zdb_cb_t *zcb) 5522 { 5523 /* 5524 * A temporary buffer that allows us to convert a number into 5525 * a string using zdb_nicenumber to allow either raw or human 5526 * readable numbers to be output. 5527 */ 5528 char numbuf[32]; 5529 5530 /* 5531 * Define titles which are used in the headers of the tables 5532 * printed by this routine. 5533 */ 5534 const char blocksize_title1[] = "block"; 5535 const char blocksize_title2[] = "size"; 5536 const char count_title[] = "Count"; 5537 const char length_title[] = "Size"; 5538 const char cumulative_title[] = "Cum."; 5539 5540 /* 5541 * Setup the histogram arrays (psize, lsize, and asize). 5542 */ 5543 one_histo_t parm_histo[NUM_HISTO]; 5544 5545 parm_histo[0].name = "psize"; 5546 parm_histo[0].count = zcb->zcb_psize_count; 5547 parm_histo[0].len = zcb->zcb_psize_len; 5548 parm_histo[0].cumulative = 0; 5549 5550 parm_histo[1].name = "lsize"; 5551 parm_histo[1].count = zcb->zcb_lsize_count; 5552 parm_histo[1].len = zcb->zcb_lsize_len; 5553 parm_histo[1].cumulative = 0; 5554 5555 parm_histo[2].name = "asize"; 5556 parm_histo[2].count = zcb->zcb_asize_count; 5557 parm_histo[2].len = zcb->zcb_asize_len; 5558 parm_histo[2].cumulative = 0; 5559 5560 5561 (void) printf("\nBlock Size Histogram\n"); 5562 /* 5563 * Print the first line titles 5564 */ 5565 if (dump_opt['P']) 5566 (void) printf("\n%s\t", blocksize_title1); 5567 else 5568 (void) printf("\n%7s ", blocksize_title1); 5569 5570 for (int j = 0; j < NUM_HISTO; j++) { 5571 if (dump_opt['P']) { 5572 if (j < NUM_HISTO - 1) { 5573 (void) printf("%s\t\t\t", parm_histo[j].name); 5574 } else { 5575 /* Don't print trailing spaces */ 5576 (void) printf(" %s", parm_histo[j].name); 5577 } 5578 } else { 5579 if (j < NUM_HISTO - 1) { 5580 /* Left aligned strings in the output */ 5581 (void) printf("%-7s ", 5582 parm_histo[j].name); 5583 } else { 5584 /* Don't print trailing spaces */ 5585 (void) printf("%s", parm_histo[j].name); 5586 } 5587 } 5588 } 5589 (void) printf("\n"); 5590 5591 /* 5592 * Print the second line titles 5593 */ 5594 if (dump_opt['P']) { 5595 (void) printf("%s\t", blocksize_title2); 5596 } else { 5597 (void) printf("%7s ", blocksize_title2); 5598 } 5599 5600 for (int i = 0; i < NUM_HISTO; i++) { 5601 if (dump_opt['P']) { 5602 (void) printf("%s\t%s\t%s\t", 5603 count_title, length_title, cumulative_title); 5604 } else { 5605 (void) printf("%7s%7s%7s", 5606 count_title, length_title, cumulative_title); 5607 } 5608 } 5609 (void) printf("\n"); 5610 5611 /* 5612 * Print the rows 5613 */ 5614 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5615 5616 /* 5617 * Print the first column showing the blocksize 5618 */ 5619 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5620 5621 if (dump_opt['P']) { 5622 printf("%s", numbuf); 5623 } else { 5624 printf("%7s:", numbuf); 5625 } 5626 5627 /* 5628 * Print the remaining set of 3 columns per size: 5629 * for psize, lsize and asize 5630 */ 5631 for (int j = 0; j < NUM_HISTO; j++) { 5632 parm_histo[j].cumulative += parm_histo[j].len[i]; 5633 5634 zdb_nicenum(parm_histo[j].count[i], 5635 numbuf, sizeof (numbuf)); 5636 if (dump_opt['P']) 5637 (void) printf("\t%s", numbuf); 5638 else 5639 (void) printf("%7s", numbuf); 5640 5641 zdb_nicenum(parm_histo[j].len[i], 5642 numbuf, sizeof (numbuf)); 5643 if (dump_opt['P']) 5644 (void) printf("\t%s", numbuf); 5645 else 5646 (void) printf("%7s", numbuf); 5647 5648 zdb_nicenum(parm_histo[j].cumulative, 5649 numbuf, sizeof (numbuf)); 5650 if (dump_opt['P']) 5651 (void) printf("\t%s", numbuf); 5652 else 5653 (void) printf("%7s", numbuf); 5654 } 5655 (void) printf("\n"); 5656 } 5657 } 5658 5659 static void 5660 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5661 dmu_object_type_t type) 5662 { 5663 uint64_t refcnt = 0; 5664 int i; 5665 5666 ASSERT(type < ZDB_OT_TOTAL); 5667 5668 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5669 return; 5670 5671 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5672 5673 for (i = 0; i < 4; i++) { 5674 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5675 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5676 int equal; 5677 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5678 5679 zb->zb_asize += BP_GET_ASIZE(bp); 5680 zb->zb_lsize += BP_GET_LSIZE(bp); 5681 zb->zb_psize += BP_GET_PSIZE(bp); 5682 zb->zb_count++; 5683 5684 /* 5685 * The histogram is only big enough to record blocks up to 5686 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5687 * "other", bucket. 5688 */ 5689 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5690 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5691 zb->zb_psize_histogram[idx]++; 5692 5693 zb->zb_gangs += BP_COUNT_GANG(bp); 5694 5695 switch (BP_GET_NDVAS(bp)) { 5696 case 2: 5697 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5698 DVA_GET_VDEV(&bp->blk_dva[1])) { 5699 zb->zb_ditto_samevdev++; 5700 5701 if (same_metaslab(zcb->zcb_spa, 5702 DVA_GET_VDEV(&bp->blk_dva[0]), 5703 DVA_GET_OFFSET(&bp->blk_dva[0]), 5704 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5705 zb->zb_ditto_same_ms++; 5706 } 5707 break; 5708 case 3: 5709 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5710 DVA_GET_VDEV(&bp->blk_dva[1])) + 5711 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5712 DVA_GET_VDEV(&bp->blk_dva[2])) + 5713 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5714 DVA_GET_VDEV(&bp->blk_dva[2])); 5715 if (equal != 0) { 5716 zb->zb_ditto_samevdev++; 5717 5718 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5719 DVA_GET_VDEV(&bp->blk_dva[1]) && 5720 same_metaslab(zcb->zcb_spa, 5721 DVA_GET_VDEV(&bp->blk_dva[0]), 5722 DVA_GET_OFFSET(&bp->blk_dva[0]), 5723 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5724 zb->zb_ditto_same_ms++; 5725 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5726 DVA_GET_VDEV(&bp->blk_dva[2]) && 5727 same_metaslab(zcb->zcb_spa, 5728 DVA_GET_VDEV(&bp->blk_dva[0]), 5729 DVA_GET_OFFSET(&bp->blk_dva[0]), 5730 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5731 zb->zb_ditto_same_ms++; 5732 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5733 DVA_GET_VDEV(&bp->blk_dva[2]) && 5734 same_metaslab(zcb->zcb_spa, 5735 DVA_GET_VDEV(&bp->blk_dva[1]), 5736 DVA_GET_OFFSET(&bp->blk_dva[1]), 5737 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5738 zb->zb_ditto_same_ms++; 5739 } 5740 break; 5741 } 5742 } 5743 5744 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5745 5746 if (BP_IS_EMBEDDED(bp)) { 5747 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5748 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5749 [BPE_GET_PSIZE(bp)]++; 5750 return; 5751 } 5752 /* 5753 * The binning histogram bins by powers of two up to 5754 * SPA_MAXBLOCKSIZE rather than creating bins for 5755 * every possible blocksize found in the pool. 5756 */ 5757 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5758 5759 zcb->zcb_psize_count[bin]++; 5760 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5761 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5762 5763 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5764 5765 zcb->zcb_lsize_count[bin]++; 5766 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5767 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5768 5769 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5770 5771 zcb->zcb_asize_count[bin]++; 5772 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5773 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5774 5775 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5776 /* 5777 * Cloned blocks are special. We need to count them, so we can 5778 * later uncount them when reporting leaked space, and we must 5779 * only claim them them once. 5780 * 5781 * To do this, we keep our own in-memory BRT. For each block 5782 * we haven't seen before, we look it up in the real BRT and 5783 * if its there, we note it and its refcount then proceed as 5784 * normal. If we see the block again, we count it as a clone 5785 * and then give it no further consideration. 5786 */ 5787 zdb_brt_entry_t zbre_search, *zbre; 5788 avl_index_t where; 5789 5790 zbre_search.zbre_dva = bp->blk_dva[0]; 5791 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5792 if (zbre != NULL) { 5793 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5794 zcb->zcb_clone_blocks++; 5795 5796 zbre->zbre_refcount--; 5797 if (zbre->zbre_refcount == 0) { 5798 avl_remove(&zcb->zcb_brt, zbre); 5799 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5800 } 5801 return; 5802 } 5803 5804 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5805 if (crefcnt > 0) { 5806 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5807 UMEM_NOFAIL); 5808 zbre->zbre_dva = bp->blk_dva[0]; 5809 zbre->zbre_refcount = crefcnt; 5810 avl_insert(&zcb->zcb_brt, zbre, where); 5811 } 5812 } 5813 5814 if (dump_opt['L']) 5815 return; 5816 5817 if (BP_GET_DEDUP(bp)) { 5818 ddt_t *ddt; 5819 ddt_entry_t *dde; 5820 5821 ddt = ddt_select(zcb->zcb_spa, bp); 5822 ddt_enter(ddt); 5823 dde = ddt_lookup(ddt, bp, B_FALSE); 5824 5825 if (dde == NULL) { 5826 refcnt = 0; 5827 } else { 5828 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5829 ddt_phys_decref(ddp); 5830 refcnt = ddp->ddp_refcnt; 5831 if (ddt_phys_total_refcnt(dde) == 0) 5832 ddt_remove(ddt, dde); 5833 } 5834 ddt_exit(ddt); 5835 } 5836 5837 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5838 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5839 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5840 } 5841 5842 static void 5843 zdb_blkptr_done(zio_t *zio) 5844 { 5845 spa_t *spa = zio->io_spa; 5846 blkptr_t *bp = zio->io_bp; 5847 int ioerr = zio->io_error; 5848 zdb_cb_t *zcb = zio->io_private; 5849 zbookmark_phys_t *zb = &zio->io_bookmark; 5850 5851 mutex_enter(&spa->spa_scrub_lock); 5852 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5853 cv_broadcast(&spa->spa_scrub_io_cv); 5854 5855 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5856 char blkbuf[BP_SPRINTF_LEN]; 5857 5858 zcb->zcb_haderrors = 1; 5859 zcb->zcb_errors[ioerr]++; 5860 5861 if (dump_opt['b'] >= 2) 5862 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5863 else 5864 blkbuf[0] = '\0'; 5865 5866 (void) printf("zdb_blkptr_cb: " 5867 "Got error %d reading " 5868 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5869 ioerr, 5870 (u_longlong_t)zb->zb_objset, 5871 (u_longlong_t)zb->zb_object, 5872 (u_longlong_t)zb->zb_level, 5873 (u_longlong_t)zb->zb_blkid, 5874 blkbuf); 5875 } 5876 mutex_exit(&spa->spa_scrub_lock); 5877 5878 abd_free(zio->io_abd); 5879 } 5880 5881 static int 5882 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5883 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5884 { 5885 zdb_cb_t *zcb = arg; 5886 dmu_object_type_t type; 5887 boolean_t is_metadata; 5888 5889 if (zb->zb_level == ZB_DNODE_LEVEL) 5890 return (0); 5891 5892 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5893 char blkbuf[BP_SPRINTF_LEN]; 5894 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5895 (void) printf("objset %llu object %llu " 5896 "level %lld offset 0x%llx %s\n", 5897 (u_longlong_t)zb->zb_objset, 5898 (u_longlong_t)zb->zb_object, 5899 (longlong_t)zb->zb_level, 5900 (u_longlong_t)blkid2offset(dnp, bp, zb), 5901 blkbuf); 5902 } 5903 5904 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5905 return (0); 5906 5907 type = BP_GET_TYPE(bp); 5908 5909 zdb_count_block(zcb, zilog, bp, 5910 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5911 5912 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5913 5914 if (!BP_IS_EMBEDDED(bp) && 5915 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5916 size_t size = BP_GET_PSIZE(bp); 5917 abd_t *abd = abd_alloc(size, B_FALSE); 5918 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5919 5920 /* If it's an intent log block, failure is expected. */ 5921 if (zb->zb_level == ZB_ZIL_LEVEL) 5922 flags |= ZIO_FLAG_SPECULATIVE; 5923 5924 mutex_enter(&spa->spa_scrub_lock); 5925 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5926 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5927 spa->spa_load_verify_bytes += size; 5928 mutex_exit(&spa->spa_scrub_lock); 5929 5930 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5931 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5932 } 5933 5934 zcb->zcb_readfails = 0; 5935 5936 /* only call gethrtime() every 100 blocks */ 5937 static int iters; 5938 if (++iters > 100) 5939 iters = 0; 5940 else 5941 return (0); 5942 5943 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5944 uint64_t now = gethrtime(); 5945 char buf[10]; 5946 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5947 uint64_t kb_per_sec = 5948 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5949 uint64_t sec_remaining = 5950 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5951 5952 /* make sure nicenum has enough space */ 5953 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5954 5955 zfs_nicebytes(bytes, buf, sizeof (buf)); 5956 (void) fprintf(stderr, 5957 "\r%5s completed (%4"PRIu64"MB/s) " 5958 "estimated time remaining: " 5959 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5960 buf, kb_per_sec / 1024, 5961 sec_remaining / 60 / 60, 5962 sec_remaining / 60 % 60, 5963 sec_remaining % 60); 5964 5965 zcb->zcb_lastprint = now; 5966 } 5967 5968 return (0); 5969 } 5970 5971 static void 5972 zdb_leak(void *arg, uint64_t start, uint64_t size) 5973 { 5974 vdev_t *vd = arg; 5975 5976 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5977 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5978 } 5979 5980 static metaslab_ops_t zdb_metaslab_ops = { 5981 NULL /* alloc */ 5982 }; 5983 5984 static int 5985 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5986 uint64_t txg, void *arg) 5987 { 5988 spa_vdev_removal_t *svr = arg; 5989 5990 uint64_t offset = sme->sme_offset; 5991 uint64_t size = sme->sme_run; 5992 5993 /* skip vdevs we don't care about */ 5994 if (sme->sme_vdev != svr->svr_vdev_id) 5995 return (0); 5996 5997 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5998 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5999 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6000 6001 if (txg < metaslab_unflushed_txg(ms)) 6002 return (0); 6003 6004 if (sme->sme_type == SM_ALLOC) 6005 range_tree_add(svr->svr_allocd_segs, offset, size); 6006 else 6007 range_tree_remove(svr->svr_allocd_segs, offset, size); 6008 6009 return (0); 6010 } 6011 6012 static void 6013 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6014 uint64_t size, void *arg) 6015 { 6016 (void) inner_offset, (void) arg; 6017 6018 /* 6019 * This callback was called through a remap from 6020 * a device being removed. Therefore, the vdev that 6021 * this callback is applied to is a concrete 6022 * vdev. 6023 */ 6024 ASSERT(vdev_is_concrete(vd)); 6025 6026 VERIFY0(metaslab_claim_impl(vd, offset, size, 6027 spa_min_claim_txg(vd->vdev_spa))); 6028 } 6029 6030 static void 6031 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6032 { 6033 vdev_t *vd = arg; 6034 6035 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6036 claim_segment_impl_cb, NULL); 6037 } 6038 6039 /* 6040 * After accounting for all allocated blocks that are directly referenced, 6041 * we might have missed a reference to a block from a partially complete 6042 * (and thus unused) indirect mapping object. We perform a secondary pass 6043 * through the metaslabs we have already mapped and claim the destination 6044 * blocks. 6045 */ 6046 static void 6047 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6048 { 6049 if (dump_opt['L']) 6050 return; 6051 6052 if (spa->spa_vdev_removal == NULL) 6053 return; 6054 6055 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6056 6057 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6058 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6059 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6060 6061 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6062 6063 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6064 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6065 metaslab_t *msp = vd->vdev_ms[msi]; 6066 6067 ASSERT0(range_tree_space(allocs)); 6068 if (msp->ms_sm != NULL) 6069 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6070 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6071 } 6072 range_tree_destroy(allocs); 6073 6074 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6075 6076 /* 6077 * Clear everything past what has been synced, 6078 * because we have not allocated mappings for 6079 * it yet. 6080 */ 6081 range_tree_clear(svr->svr_allocd_segs, 6082 vdev_indirect_mapping_max_offset(vim), 6083 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6084 6085 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6086 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6087 6088 spa_config_exit(spa, SCL_CONFIG, FTAG); 6089 } 6090 6091 static int 6092 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6093 dmu_tx_t *tx) 6094 { 6095 (void) tx; 6096 zdb_cb_t *zcb = arg; 6097 spa_t *spa = zcb->zcb_spa; 6098 vdev_t *vd; 6099 const dva_t *dva = &bp->blk_dva[0]; 6100 6101 ASSERT(!bp_freed); 6102 ASSERT(!dump_opt['L']); 6103 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6104 6105 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6106 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6107 ASSERT3P(vd, !=, NULL); 6108 spa_config_exit(spa, SCL_VDEV, FTAG); 6109 6110 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6111 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6112 6113 vdev_indirect_mapping_increment_obsolete_count( 6114 vd->vdev_indirect_mapping, 6115 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6116 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6117 6118 return (0); 6119 } 6120 6121 static uint32_t * 6122 zdb_load_obsolete_counts(vdev_t *vd) 6123 { 6124 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6125 spa_t *spa = vd->vdev_spa; 6126 spa_condensing_indirect_phys_t *scip = 6127 &spa->spa_condensing_indirect_phys; 6128 uint64_t obsolete_sm_object; 6129 uint32_t *counts; 6130 6131 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6132 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6133 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6134 if (vd->vdev_obsolete_sm != NULL) { 6135 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6136 vd->vdev_obsolete_sm); 6137 } 6138 if (scip->scip_vdev == vd->vdev_id && 6139 scip->scip_prev_obsolete_sm_object != 0) { 6140 space_map_t *prev_obsolete_sm = NULL; 6141 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6142 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6143 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6144 prev_obsolete_sm); 6145 space_map_close(prev_obsolete_sm); 6146 } 6147 return (counts); 6148 } 6149 6150 static void 6151 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6152 { 6153 ddt_bookmark_t ddb = {0}; 6154 ddt_entry_t dde; 6155 int error; 6156 int p; 6157 6158 ASSERT(!dump_opt['L']); 6159 6160 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6161 blkptr_t blk; 6162 ddt_phys_t *ddp = dde.dde_phys; 6163 6164 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6165 return; 6166 6167 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6168 6169 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6170 if (ddp->ddp_phys_birth == 0) 6171 continue; 6172 ddt_bp_create(ddb.ddb_checksum, 6173 &dde.dde_key, ddp, &blk); 6174 if (p == DDT_PHYS_DITTO) { 6175 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6176 } else { 6177 zcb->zcb_dedup_asize += 6178 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6179 zcb->zcb_dedup_blocks++; 6180 } 6181 } 6182 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6183 ddt_enter(ddt); 6184 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6185 ddt_exit(ddt); 6186 } 6187 6188 ASSERT(error == ENOENT); 6189 } 6190 6191 typedef struct checkpoint_sm_exclude_entry_arg { 6192 vdev_t *cseea_vd; 6193 uint64_t cseea_checkpoint_size; 6194 } checkpoint_sm_exclude_entry_arg_t; 6195 6196 static int 6197 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6198 { 6199 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6200 vdev_t *vd = cseea->cseea_vd; 6201 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6202 uint64_t end = sme->sme_offset + sme->sme_run; 6203 6204 ASSERT(sme->sme_type == SM_FREE); 6205 6206 /* 6207 * Since the vdev_checkpoint_sm exists in the vdev level 6208 * and the ms_sm space maps exist in the metaslab level, 6209 * an entry in the checkpoint space map could theoretically 6210 * cross the boundaries of the metaslab that it belongs. 6211 * 6212 * In reality, because of the way that we populate and 6213 * manipulate the checkpoint's space maps currently, 6214 * there shouldn't be any entries that cross metaslabs. 6215 * Hence the assertion below. 6216 * 6217 * That said, there is no fundamental requirement that 6218 * the checkpoint's space map entries should not cross 6219 * metaslab boundaries. So if needed we could add code 6220 * that handles metaslab-crossing segments in the future. 6221 */ 6222 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6223 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6224 6225 /* 6226 * By removing the entry from the allocated segments we 6227 * also verify that the entry is there to begin with. 6228 */ 6229 mutex_enter(&ms->ms_lock); 6230 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6231 mutex_exit(&ms->ms_lock); 6232 6233 cseea->cseea_checkpoint_size += sme->sme_run; 6234 return (0); 6235 } 6236 6237 static void 6238 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6239 { 6240 spa_t *spa = vd->vdev_spa; 6241 space_map_t *checkpoint_sm = NULL; 6242 uint64_t checkpoint_sm_obj; 6243 6244 /* 6245 * If there is no vdev_top_zap, we are in a pool whose 6246 * version predates the pool checkpoint feature. 6247 */ 6248 if (vd->vdev_top_zap == 0) 6249 return; 6250 6251 /* 6252 * If there is no reference of the vdev_checkpoint_sm in 6253 * the vdev_top_zap, then one of the following scenarios 6254 * is true: 6255 * 6256 * 1] There is no checkpoint 6257 * 2] There is a checkpoint, but no checkpointed blocks 6258 * have been freed yet 6259 * 3] The current vdev is indirect 6260 * 6261 * In these cases we return immediately. 6262 */ 6263 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6264 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6265 return; 6266 6267 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6268 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6269 &checkpoint_sm_obj)); 6270 6271 checkpoint_sm_exclude_entry_arg_t cseea; 6272 cseea.cseea_vd = vd; 6273 cseea.cseea_checkpoint_size = 0; 6274 6275 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6276 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6277 6278 VERIFY0(space_map_iterate(checkpoint_sm, 6279 space_map_length(checkpoint_sm), 6280 checkpoint_sm_exclude_entry_cb, &cseea)); 6281 space_map_close(checkpoint_sm); 6282 6283 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6284 } 6285 6286 static void 6287 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6288 { 6289 ASSERT(!dump_opt['L']); 6290 6291 vdev_t *rvd = spa->spa_root_vdev; 6292 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6293 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6294 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6295 } 6296 } 6297 6298 static int 6299 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6300 uint64_t txg, void *arg) 6301 { 6302 int64_t *ualloc_space = arg; 6303 6304 uint64_t offset = sme->sme_offset; 6305 uint64_t vdev_id = sme->sme_vdev; 6306 6307 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6308 if (!vdev_is_concrete(vd)) 6309 return (0); 6310 6311 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6312 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6313 6314 if (txg < metaslab_unflushed_txg(ms)) 6315 return (0); 6316 6317 if (sme->sme_type == SM_ALLOC) 6318 *ualloc_space += sme->sme_run; 6319 else 6320 *ualloc_space -= sme->sme_run; 6321 6322 return (0); 6323 } 6324 6325 static int64_t 6326 get_unflushed_alloc_space(spa_t *spa) 6327 { 6328 if (dump_opt['L']) 6329 return (0); 6330 6331 int64_t ualloc_space = 0; 6332 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6333 &ualloc_space); 6334 return (ualloc_space); 6335 } 6336 6337 static int 6338 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6339 { 6340 maptype_t *uic_maptype = arg; 6341 6342 uint64_t offset = sme->sme_offset; 6343 uint64_t size = sme->sme_run; 6344 uint64_t vdev_id = sme->sme_vdev; 6345 6346 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6347 6348 /* skip indirect vdevs */ 6349 if (!vdev_is_concrete(vd)) 6350 return (0); 6351 6352 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6353 6354 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6355 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6356 6357 if (txg < metaslab_unflushed_txg(ms)) 6358 return (0); 6359 6360 if (*uic_maptype == sme->sme_type) 6361 range_tree_add(ms->ms_allocatable, offset, size); 6362 else 6363 range_tree_remove(ms->ms_allocatable, offset, size); 6364 6365 return (0); 6366 } 6367 6368 static void 6369 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6370 { 6371 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6372 } 6373 6374 static void 6375 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6376 { 6377 vdev_t *rvd = spa->spa_root_vdev; 6378 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6379 vdev_t *vd = rvd->vdev_child[i]; 6380 6381 ASSERT3U(i, ==, vd->vdev_id); 6382 6383 if (vd->vdev_ops == &vdev_indirect_ops) 6384 continue; 6385 6386 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6387 metaslab_t *msp = vd->vdev_ms[m]; 6388 6389 (void) fprintf(stderr, 6390 "\rloading concrete vdev %llu, " 6391 "metaslab %llu of %llu ...", 6392 (longlong_t)vd->vdev_id, 6393 (longlong_t)msp->ms_id, 6394 (longlong_t)vd->vdev_ms_count); 6395 6396 mutex_enter(&msp->ms_lock); 6397 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6398 6399 /* 6400 * We don't want to spend the CPU manipulating the 6401 * size-ordered tree, so clear the range_tree ops. 6402 */ 6403 msp->ms_allocatable->rt_ops = NULL; 6404 6405 if (msp->ms_sm != NULL) { 6406 VERIFY0(space_map_load(msp->ms_sm, 6407 msp->ms_allocatable, maptype)); 6408 } 6409 if (!msp->ms_loaded) 6410 msp->ms_loaded = B_TRUE; 6411 mutex_exit(&msp->ms_lock); 6412 } 6413 } 6414 6415 load_unflushed_to_ms_allocatables(spa, maptype); 6416 } 6417 6418 /* 6419 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6420 * index in vim_entries that has the first entry in this metaslab. 6421 * On return, it will be set to the first entry after this metaslab. 6422 */ 6423 static void 6424 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6425 uint64_t *vim_idxp) 6426 { 6427 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6428 6429 mutex_enter(&msp->ms_lock); 6430 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6431 6432 /* 6433 * We don't want to spend the CPU manipulating the 6434 * size-ordered tree, so clear the range_tree ops. 6435 */ 6436 msp->ms_allocatable->rt_ops = NULL; 6437 6438 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6439 (*vim_idxp)++) { 6440 vdev_indirect_mapping_entry_phys_t *vimep = 6441 &vim->vim_entries[*vim_idxp]; 6442 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6443 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6444 ASSERT3U(ent_offset, >=, msp->ms_start); 6445 if (ent_offset >= msp->ms_start + msp->ms_size) 6446 break; 6447 6448 /* 6449 * Mappings do not cross metaslab boundaries, 6450 * because we create them by walking the metaslabs. 6451 */ 6452 ASSERT3U(ent_offset + ent_len, <=, 6453 msp->ms_start + msp->ms_size); 6454 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6455 } 6456 6457 if (!msp->ms_loaded) 6458 msp->ms_loaded = B_TRUE; 6459 mutex_exit(&msp->ms_lock); 6460 } 6461 6462 static void 6463 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6464 { 6465 ASSERT(!dump_opt['L']); 6466 6467 vdev_t *rvd = spa->spa_root_vdev; 6468 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6469 vdev_t *vd = rvd->vdev_child[c]; 6470 6471 ASSERT3U(c, ==, vd->vdev_id); 6472 6473 if (vd->vdev_ops != &vdev_indirect_ops) 6474 continue; 6475 6476 /* 6477 * Note: we don't check for mapping leaks on 6478 * removing vdevs because their ms_allocatable's 6479 * are used to look for leaks in allocated space. 6480 */ 6481 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6482 6483 /* 6484 * Normally, indirect vdevs don't have any 6485 * metaslabs. We want to set them up for 6486 * zio_claim(). 6487 */ 6488 vdev_metaslab_group_create(vd); 6489 VERIFY0(vdev_metaslab_init(vd, 0)); 6490 6491 vdev_indirect_mapping_t *vim __maybe_unused = 6492 vd->vdev_indirect_mapping; 6493 uint64_t vim_idx = 0; 6494 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6495 6496 (void) fprintf(stderr, 6497 "\rloading indirect vdev %llu, " 6498 "metaslab %llu of %llu ...", 6499 (longlong_t)vd->vdev_id, 6500 (longlong_t)vd->vdev_ms[m]->ms_id, 6501 (longlong_t)vd->vdev_ms_count); 6502 6503 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6504 &vim_idx); 6505 } 6506 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6507 } 6508 } 6509 6510 static void 6511 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6512 { 6513 zcb->zcb_spa = spa; 6514 6515 if (dump_opt['L']) 6516 return; 6517 6518 dsl_pool_t *dp = spa->spa_dsl_pool; 6519 vdev_t *rvd = spa->spa_root_vdev; 6520 6521 /* 6522 * We are going to be changing the meaning of the metaslab's 6523 * ms_allocatable. Ensure that the allocator doesn't try to 6524 * use the tree. 6525 */ 6526 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6527 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6528 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6529 6530 zcb->zcb_vd_obsolete_counts = 6531 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6532 UMEM_NOFAIL); 6533 6534 /* 6535 * For leak detection, we overload the ms_allocatable trees 6536 * to contain allocated segments instead of free segments. 6537 * As a result, we can't use the normal metaslab_load/unload 6538 * interfaces. 6539 */ 6540 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6541 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6542 6543 /* 6544 * On load_concrete_ms_allocatable_trees() we loaded all the 6545 * allocated entries from the ms_sm to the ms_allocatable for 6546 * each metaslab. If the pool has a checkpoint or is in the 6547 * middle of discarding a checkpoint, some of these blocks 6548 * may have been freed but their ms_sm may not have been 6549 * updated because they are referenced by the checkpoint. In 6550 * order to avoid false-positives during leak-detection, we 6551 * go through the vdev's checkpoint space map and exclude all 6552 * its entries from their relevant ms_allocatable. 6553 * 6554 * We also aggregate the space held by the checkpoint and add 6555 * it to zcb_checkpoint_size. 6556 * 6557 * Note that at this point we are also verifying that all the 6558 * entries on the checkpoint_sm are marked as allocated in 6559 * the ms_sm of their relevant metaslab. 6560 * [see comment in checkpoint_sm_exclude_entry_cb()] 6561 */ 6562 zdb_leak_init_exclude_checkpoint(spa, zcb); 6563 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6564 6565 /* for cleaner progress output */ 6566 (void) fprintf(stderr, "\n"); 6567 6568 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6569 ASSERT(spa_feature_is_enabled(spa, 6570 SPA_FEATURE_DEVICE_REMOVAL)); 6571 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6572 increment_indirect_mapping_cb, zcb, NULL); 6573 } 6574 6575 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6576 zdb_ddt_leak_init(spa, zcb); 6577 spa_config_exit(spa, SCL_CONFIG, FTAG); 6578 } 6579 6580 static boolean_t 6581 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6582 { 6583 boolean_t leaks = B_FALSE; 6584 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6585 uint64_t total_leaked = 0; 6586 boolean_t are_precise = B_FALSE; 6587 6588 ASSERT(vim != NULL); 6589 6590 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6591 vdev_indirect_mapping_entry_phys_t *vimep = 6592 &vim->vim_entries[i]; 6593 uint64_t obsolete_bytes = 0; 6594 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6595 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6596 6597 /* 6598 * This is not very efficient but it's easy to 6599 * verify correctness. 6600 */ 6601 for (uint64_t inner_offset = 0; 6602 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6603 inner_offset += 1ULL << vd->vdev_ashift) { 6604 if (range_tree_contains(msp->ms_allocatable, 6605 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6606 obsolete_bytes += 1ULL << vd->vdev_ashift; 6607 } 6608 } 6609 6610 int64_t bytes_leaked = obsolete_bytes - 6611 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6612 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6613 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6614 6615 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6616 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6617 (void) printf("obsolete indirect mapping count " 6618 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6619 (u_longlong_t)vd->vdev_id, 6620 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6621 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6622 (u_longlong_t)bytes_leaked); 6623 } 6624 total_leaked += ABS(bytes_leaked); 6625 } 6626 6627 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6628 if (!are_precise && total_leaked > 0) { 6629 int pct_leaked = total_leaked * 100 / 6630 vdev_indirect_mapping_bytes_mapped(vim); 6631 (void) printf("cannot verify obsolete indirect mapping " 6632 "counts of vdev %llu because precise feature was not " 6633 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6634 "unreferenced\n", 6635 (u_longlong_t)vd->vdev_id, pct_leaked, 6636 (u_longlong_t)total_leaked); 6637 } else if (total_leaked > 0) { 6638 (void) printf("obsolete indirect mapping count mismatch " 6639 "for vdev %llu -- %llx total bytes mismatched\n", 6640 (u_longlong_t)vd->vdev_id, 6641 (u_longlong_t)total_leaked); 6642 leaks |= B_TRUE; 6643 } 6644 6645 vdev_indirect_mapping_free_obsolete_counts(vim, 6646 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6647 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6648 6649 return (leaks); 6650 } 6651 6652 static boolean_t 6653 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6654 { 6655 if (dump_opt['L']) 6656 return (B_FALSE); 6657 6658 boolean_t leaks = B_FALSE; 6659 vdev_t *rvd = spa->spa_root_vdev; 6660 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6661 vdev_t *vd = rvd->vdev_child[c]; 6662 6663 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6664 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6665 } 6666 6667 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6668 metaslab_t *msp = vd->vdev_ms[m]; 6669 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6670 spa_embedded_log_class(spa)) ? 6671 vd->vdev_log_mg : vd->vdev_mg); 6672 6673 /* 6674 * ms_allocatable has been overloaded 6675 * to contain allocated segments. Now that 6676 * we finished traversing all blocks, any 6677 * block that remains in the ms_allocatable 6678 * represents an allocated block that we 6679 * did not claim during the traversal. 6680 * Claimed blocks would have been removed 6681 * from the ms_allocatable. For indirect 6682 * vdevs, space remaining in the tree 6683 * represents parts of the mapping that are 6684 * not referenced, which is not a bug. 6685 */ 6686 if (vd->vdev_ops == &vdev_indirect_ops) { 6687 range_tree_vacate(msp->ms_allocatable, 6688 NULL, NULL); 6689 } else { 6690 range_tree_vacate(msp->ms_allocatable, 6691 zdb_leak, vd); 6692 } 6693 if (msp->ms_loaded) { 6694 msp->ms_loaded = B_FALSE; 6695 } 6696 } 6697 } 6698 6699 umem_free(zcb->zcb_vd_obsolete_counts, 6700 rvd->vdev_children * sizeof (uint32_t *)); 6701 zcb->zcb_vd_obsolete_counts = NULL; 6702 6703 return (leaks); 6704 } 6705 6706 static int 6707 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6708 { 6709 (void) tx; 6710 zdb_cb_t *zcb = arg; 6711 6712 if (dump_opt['b'] >= 5) { 6713 char blkbuf[BP_SPRINTF_LEN]; 6714 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6715 (void) printf("[%s] %s\n", 6716 "deferred free", blkbuf); 6717 } 6718 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6719 return (0); 6720 } 6721 6722 /* 6723 * Iterate over livelists which have been destroyed by the user but 6724 * are still present in the MOS, waiting to be freed 6725 */ 6726 static void 6727 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6728 { 6729 objset_t *mos = spa->spa_meta_objset; 6730 uint64_t zap_obj; 6731 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6732 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6733 if (err == ENOENT) 6734 return; 6735 ASSERT0(err); 6736 6737 zap_cursor_t zc; 6738 zap_attribute_t attr; 6739 dsl_deadlist_t ll; 6740 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6741 ll.dl_os = NULL; 6742 for (zap_cursor_init(&zc, mos, zap_obj); 6743 zap_cursor_retrieve(&zc, &attr) == 0; 6744 (void) zap_cursor_advance(&zc)) { 6745 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6746 func(&ll, arg); 6747 dsl_deadlist_close(&ll); 6748 } 6749 zap_cursor_fini(&zc); 6750 } 6751 6752 static int 6753 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6754 dmu_tx_t *tx) 6755 { 6756 ASSERT(!bp_freed); 6757 return (count_block_cb(arg, bp, tx)); 6758 } 6759 6760 static int 6761 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6762 { 6763 zdb_cb_t *zbc = args; 6764 bplist_t blks; 6765 bplist_create(&blks); 6766 /* determine which blocks have been alloc'd but not freed */ 6767 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6768 /* count those blocks */ 6769 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6770 bplist_destroy(&blks); 6771 return (0); 6772 } 6773 6774 static void 6775 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6776 { 6777 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6778 } 6779 6780 /* 6781 * Count the blocks in the livelists that have been destroyed by the user 6782 * but haven't yet been freed. 6783 */ 6784 static void 6785 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6786 { 6787 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6788 } 6789 6790 static void 6791 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6792 { 6793 ASSERT3P(arg, ==, NULL); 6794 global_feature_count[SPA_FEATURE_LIVELIST]++; 6795 dump_blkptr_list(ll, "Deleted Livelist"); 6796 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6797 } 6798 6799 /* 6800 * Print out, register object references to, and increment feature counts for 6801 * livelists that have been destroyed by the user but haven't yet been freed. 6802 */ 6803 static void 6804 deleted_livelists_dump_mos(spa_t *spa) 6805 { 6806 uint64_t zap_obj; 6807 objset_t *mos = spa->spa_meta_objset; 6808 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6809 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6810 if (err == ENOENT) 6811 return; 6812 mos_obj_refd(zap_obj); 6813 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6814 } 6815 6816 static int 6817 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6818 { 6819 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6820 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6821 int cmp; 6822 6823 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6824 if (cmp == 0) 6825 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6826 6827 return (cmp); 6828 } 6829 6830 static int 6831 dump_block_stats(spa_t *spa) 6832 { 6833 zdb_cb_t *zcb; 6834 zdb_blkstats_t *zb, *tzb; 6835 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6836 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6837 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6838 boolean_t leaks = B_FALSE; 6839 int e, c, err; 6840 bp_embedded_type_t i; 6841 6842 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6843 6844 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6845 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6846 sizeof (zdb_brt_entry_t), 6847 offsetof(zdb_brt_entry_t, zbre_node)); 6848 zcb->zcb_brt_is_active = B_TRUE; 6849 } 6850 6851 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6852 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6853 (dump_opt['c'] == 1) ? "metadata " : "", 6854 dump_opt['c'] ? "checksums " : "", 6855 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6856 !dump_opt['L'] ? "nothing leaked " : ""); 6857 6858 /* 6859 * When leak detection is enabled we load all space maps as SM_ALLOC 6860 * maps, then traverse the pool claiming each block we discover. If 6861 * the pool is perfectly consistent, the segment trees will be empty 6862 * when we're done. Anything left over is a leak; any block we can't 6863 * claim (because it's not part of any space map) is a double 6864 * allocation, reference to a freed block, or an unclaimed log block. 6865 * 6866 * When leak detection is disabled (-L option) we still traverse the 6867 * pool claiming each block we discover, but we skip opening any space 6868 * maps. 6869 */ 6870 zdb_leak_init(spa, zcb); 6871 6872 /* 6873 * If there's a deferred-free bplist, process that first. 6874 */ 6875 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6876 bpobj_count_block_cb, zcb, NULL); 6877 6878 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6879 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6880 bpobj_count_block_cb, zcb, NULL); 6881 } 6882 6883 zdb_claim_removing(spa, zcb); 6884 6885 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6886 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6887 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6888 zcb, NULL)); 6889 } 6890 6891 deleted_livelists_count_blocks(spa, zcb); 6892 6893 if (dump_opt['c'] > 1) 6894 flags |= TRAVERSE_PREFETCH_DATA; 6895 6896 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6897 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6898 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6899 zcb->zcb_totalasize += 6900 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6901 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6902 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6903 6904 /* 6905 * If we've traversed the data blocks then we need to wait for those 6906 * I/Os to complete. We leverage "The Godfather" zio to wait on 6907 * all async I/Os to complete. 6908 */ 6909 if (dump_opt['c']) { 6910 for (c = 0; c < max_ncpus; c++) { 6911 (void) zio_wait(spa->spa_async_zio_root[c]); 6912 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6913 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6914 ZIO_FLAG_GODFATHER); 6915 } 6916 } 6917 ASSERT0(spa->spa_load_verify_bytes); 6918 6919 /* 6920 * Done after zio_wait() since zcb_haderrors is modified in 6921 * zdb_blkptr_done() 6922 */ 6923 zcb->zcb_haderrors |= err; 6924 6925 if (zcb->zcb_haderrors) { 6926 (void) printf("\nError counts:\n\n"); 6927 (void) printf("\t%5s %s\n", "errno", "count"); 6928 for (e = 0; e < 256; e++) { 6929 if (zcb->zcb_errors[e] != 0) { 6930 (void) printf("\t%5d %llu\n", 6931 e, (u_longlong_t)zcb->zcb_errors[e]); 6932 } 6933 } 6934 } 6935 6936 /* 6937 * Report any leaked segments. 6938 */ 6939 leaks |= zdb_leak_fini(spa, zcb); 6940 6941 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6942 6943 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6944 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6945 6946 total_alloc = norm_alloc + 6947 metaslab_class_get_alloc(spa_log_class(spa)) + 6948 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6949 metaslab_class_get_alloc(spa_special_class(spa)) + 6950 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6951 get_unflushed_alloc_space(spa); 6952 total_found = 6953 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6954 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6955 6956 if (total_found == total_alloc && !dump_opt['L']) { 6957 (void) printf("\n\tNo leaks (block sum matches space" 6958 " maps exactly)\n"); 6959 } else if (!dump_opt['L']) { 6960 (void) printf("block traversal size %llu != alloc %llu " 6961 "(%s %lld)\n", 6962 (u_longlong_t)total_found, 6963 (u_longlong_t)total_alloc, 6964 (dump_opt['L']) ? "unreachable" : "leaked", 6965 (longlong_t)(total_alloc - total_found)); 6966 leaks = B_TRUE; 6967 } 6968 6969 if (tzb->zb_count == 0) { 6970 umem_free(zcb, sizeof (zdb_cb_t)); 6971 return (2); 6972 } 6973 6974 (void) printf("\n"); 6975 (void) printf("\t%-16s %14llu\n", "bp count:", 6976 (u_longlong_t)tzb->zb_count); 6977 (void) printf("\t%-16s %14llu\n", "ganged count:", 6978 (longlong_t)tzb->zb_gangs); 6979 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6980 (u_longlong_t)tzb->zb_lsize, 6981 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6982 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6983 "bp physical:", (u_longlong_t)tzb->zb_psize, 6984 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6985 (double)tzb->zb_lsize / tzb->zb_psize); 6986 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6987 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6988 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6989 (double)tzb->zb_lsize / tzb->zb_asize); 6990 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6991 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6992 (u_longlong_t)zcb->zcb_dedup_blocks, 6993 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6994 (void) printf("\t%-16s %14llu count: %6llu\n", 6995 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6996 (u_longlong_t)zcb->zcb_clone_blocks); 6997 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6998 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6999 7000 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7001 uint64_t alloc = metaslab_class_get_alloc( 7002 spa_special_class(spa)); 7003 uint64_t space = metaslab_class_get_space( 7004 spa_special_class(spa)); 7005 7006 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7007 "Special class", (u_longlong_t)alloc, 7008 100.0 * alloc / space); 7009 } 7010 7011 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7012 uint64_t alloc = metaslab_class_get_alloc( 7013 spa_dedup_class(spa)); 7014 uint64_t space = metaslab_class_get_space( 7015 spa_dedup_class(spa)); 7016 7017 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7018 "Dedup class", (u_longlong_t)alloc, 7019 100.0 * alloc / space); 7020 } 7021 7022 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7023 uint64_t alloc = metaslab_class_get_alloc( 7024 spa_embedded_log_class(spa)); 7025 uint64_t space = metaslab_class_get_space( 7026 spa_embedded_log_class(spa)); 7027 7028 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7029 "Embedded log class", (u_longlong_t)alloc, 7030 100.0 * alloc / space); 7031 } 7032 7033 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7034 if (zcb->zcb_embedded_blocks[i] == 0) 7035 continue; 7036 (void) printf("\n"); 7037 (void) printf("\tadditional, non-pointer bps of type %u: " 7038 "%10llu\n", 7039 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7040 7041 if (dump_opt['b'] >= 3) { 7042 (void) printf("\t number of (compressed) bytes: " 7043 "number of bps\n"); 7044 dump_histogram(zcb->zcb_embedded_histogram[i], 7045 sizeof (zcb->zcb_embedded_histogram[i]) / 7046 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7047 } 7048 } 7049 7050 if (tzb->zb_ditto_samevdev != 0) { 7051 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7052 (longlong_t)tzb->zb_ditto_samevdev); 7053 } 7054 if (tzb->zb_ditto_same_ms != 0) { 7055 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7056 (longlong_t)tzb->zb_ditto_same_ms); 7057 } 7058 7059 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7060 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7061 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7062 7063 if (vim == NULL) { 7064 continue; 7065 } 7066 7067 char mem[32]; 7068 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7069 mem, vdev_indirect_mapping_size(vim)); 7070 7071 (void) printf("\tindirect vdev id %llu has %llu segments " 7072 "(%s in memory)\n", 7073 (longlong_t)vd->vdev_id, 7074 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7075 } 7076 7077 if (dump_opt['b'] >= 2) { 7078 int l, t, level; 7079 char csize[32], lsize[32], psize[32], asize[32]; 7080 char avg[32], gang[32]; 7081 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7082 "\t avg\t comp\t%%Total\tType\n"); 7083 7084 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7085 UMEM_NOFAIL); 7086 7087 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7088 const char *typename; 7089 7090 /* make sure nicenum has enough space */ 7091 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7092 "csize truncated"); 7093 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7094 "lsize truncated"); 7095 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7096 "psize truncated"); 7097 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7098 "asize truncated"); 7099 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7100 "avg truncated"); 7101 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7102 "gang truncated"); 7103 7104 if (t < DMU_OT_NUMTYPES) 7105 typename = dmu_ot[t].ot_name; 7106 else 7107 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7108 7109 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7110 (void) printf("%6s\t%5s\t%5s\t%5s" 7111 "\t%5s\t%5s\t%6s\t%s\n", 7112 "-", 7113 "-", 7114 "-", 7115 "-", 7116 "-", 7117 "-", 7118 "-", 7119 typename); 7120 continue; 7121 } 7122 7123 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7124 level = (l == -1 ? ZB_TOTAL : l); 7125 zb = &zcb->zcb_type[level][t]; 7126 7127 if (zb->zb_asize == 0) 7128 continue; 7129 7130 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7131 (level > 0 || DMU_OT_IS_METADATA(t))) { 7132 mdstats->zb_count += zb->zb_count; 7133 mdstats->zb_lsize += zb->zb_lsize; 7134 mdstats->zb_psize += zb->zb_psize; 7135 mdstats->zb_asize += zb->zb_asize; 7136 mdstats->zb_gangs += zb->zb_gangs; 7137 } 7138 7139 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7140 continue; 7141 7142 if (level == 0 && zb->zb_asize == 7143 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7144 continue; 7145 7146 zdb_nicenum(zb->zb_count, csize, 7147 sizeof (csize)); 7148 zdb_nicenum(zb->zb_lsize, lsize, 7149 sizeof (lsize)); 7150 zdb_nicenum(zb->zb_psize, psize, 7151 sizeof (psize)); 7152 zdb_nicenum(zb->zb_asize, asize, 7153 sizeof (asize)); 7154 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7155 sizeof (avg)); 7156 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7157 7158 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7159 "\t%5.2f\t%6.2f\t", 7160 csize, lsize, psize, asize, avg, 7161 (double)zb->zb_lsize / zb->zb_psize, 7162 100.0 * zb->zb_asize / tzb->zb_asize); 7163 7164 if (level == ZB_TOTAL) 7165 (void) printf("%s\n", typename); 7166 else 7167 (void) printf(" L%d %s\n", 7168 level, typename); 7169 7170 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7171 (void) printf("\t number of ganged " 7172 "blocks: %s\n", gang); 7173 } 7174 7175 if (dump_opt['b'] >= 4) { 7176 (void) printf("psize " 7177 "(in 512-byte sectors): " 7178 "number of blocks\n"); 7179 dump_histogram(zb->zb_psize_histogram, 7180 PSIZE_HISTO_SIZE, 0); 7181 } 7182 } 7183 } 7184 zdb_nicenum(mdstats->zb_count, csize, 7185 sizeof (csize)); 7186 zdb_nicenum(mdstats->zb_lsize, lsize, 7187 sizeof (lsize)); 7188 zdb_nicenum(mdstats->zb_psize, psize, 7189 sizeof (psize)); 7190 zdb_nicenum(mdstats->zb_asize, asize, 7191 sizeof (asize)); 7192 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7193 sizeof (avg)); 7194 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7195 7196 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7197 "\t%5.2f\t%6.2f\t", 7198 csize, lsize, psize, asize, avg, 7199 (double)mdstats->zb_lsize / mdstats->zb_psize, 7200 100.0 * mdstats->zb_asize / tzb->zb_asize); 7201 (void) printf("%s\n", "Metadata Total"); 7202 7203 /* Output a table summarizing block sizes in the pool */ 7204 if (dump_opt['b'] >= 2) { 7205 dump_size_histograms(zcb); 7206 } 7207 7208 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7209 } 7210 7211 (void) printf("\n"); 7212 7213 if (leaks) { 7214 umem_free(zcb, sizeof (zdb_cb_t)); 7215 return (2); 7216 } 7217 7218 if (zcb->zcb_haderrors) { 7219 umem_free(zcb, sizeof (zdb_cb_t)); 7220 return (3); 7221 } 7222 7223 umem_free(zcb, sizeof (zdb_cb_t)); 7224 return (0); 7225 } 7226 7227 typedef struct zdb_ddt_entry { 7228 ddt_key_t zdde_key; 7229 uint64_t zdde_ref_blocks; 7230 uint64_t zdde_ref_lsize; 7231 uint64_t zdde_ref_psize; 7232 uint64_t zdde_ref_dsize; 7233 avl_node_t zdde_node; 7234 } zdb_ddt_entry_t; 7235 7236 static int 7237 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7238 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7239 { 7240 (void) zilog, (void) dnp; 7241 avl_tree_t *t = arg; 7242 avl_index_t where; 7243 zdb_ddt_entry_t *zdde, zdde_search; 7244 7245 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7246 BP_IS_EMBEDDED(bp)) 7247 return (0); 7248 7249 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7250 (void) printf("traversing objset %llu, %llu objects, " 7251 "%lu blocks so far\n", 7252 (u_longlong_t)zb->zb_objset, 7253 (u_longlong_t)BP_GET_FILL(bp), 7254 avl_numnodes(t)); 7255 } 7256 7257 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7258 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7259 return (0); 7260 7261 ddt_key_fill(&zdde_search.zdde_key, bp); 7262 7263 zdde = avl_find(t, &zdde_search, &where); 7264 7265 if (zdde == NULL) { 7266 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7267 zdde->zdde_key = zdde_search.zdde_key; 7268 avl_insert(t, zdde, where); 7269 } 7270 7271 zdde->zdde_ref_blocks += 1; 7272 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7273 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7274 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7275 7276 return (0); 7277 } 7278 7279 static void 7280 dump_simulated_ddt(spa_t *spa) 7281 { 7282 avl_tree_t t; 7283 void *cookie = NULL; 7284 zdb_ddt_entry_t *zdde; 7285 ddt_histogram_t ddh_total = {{{0}}}; 7286 ddt_stat_t dds_total = {0}; 7287 7288 avl_create(&t, ddt_entry_compare, 7289 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7290 7291 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7292 7293 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7294 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7295 7296 spa_config_exit(spa, SCL_CONFIG, FTAG); 7297 7298 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7299 ddt_stat_t dds; 7300 uint64_t refcnt = zdde->zdde_ref_blocks; 7301 ASSERT(refcnt != 0); 7302 7303 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7304 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7305 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7306 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7307 7308 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7309 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7310 dds.dds_ref_psize = zdde->zdde_ref_psize; 7311 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7312 7313 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7314 &dds, 0); 7315 7316 umem_free(zdde, sizeof (*zdde)); 7317 } 7318 7319 avl_destroy(&t); 7320 7321 ddt_histogram_stat(&dds_total, &ddh_total); 7322 7323 (void) printf("Simulated DDT histogram:\n"); 7324 7325 zpool_dump_ddt(&dds_total, &ddh_total); 7326 7327 dump_dedup_ratio(&dds_total); 7328 } 7329 7330 static int 7331 verify_device_removal_feature_counts(spa_t *spa) 7332 { 7333 uint64_t dr_feature_refcount = 0; 7334 uint64_t oc_feature_refcount = 0; 7335 uint64_t indirect_vdev_count = 0; 7336 uint64_t precise_vdev_count = 0; 7337 uint64_t obsolete_counts_object_count = 0; 7338 uint64_t obsolete_sm_count = 0; 7339 uint64_t obsolete_counts_count = 0; 7340 uint64_t scip_count = 0; 7341 uint64_t obsolete_bpobj_count = 0; 7342 int ret = 0; 7343 7344 spa_condensing_indirect_phys_t *scip = 7345 &spa->spa_condensing_indirect_phys; 7346 if (scip->scip_next_mapping_object != 0) { 7347 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7348 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7349 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7350 7351 (void) printf("Condensing indirect vdev %llu: new mapping " 7352 "object %llu, prev obsolete sm %llu\n", 7353 (u_longlong_t)scip->scip_vdev, 7354 (u_longlong_t)scip->scip_next_mapping_object, 7355 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7356 if (scip->scip_prev_obsolete_sm_object != 0) { 7357 space_map_t *prev_obsolete_sm = NULL; 7358 VERIFY0(space_map_open(&prev_obsolete_sm, 7359 spa->spa_meta_objset, 7360 scip->scip_prev_obsolete_sm_object, 7361 0, vd->vdev_asize, 0)); 7362 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7363 (void) printf("\n"); 7364 space_map_close(prev_obsolete_sm); 7365 } 7366 7367 scip_count += 2; 7368 } 7369 7370 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7371 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7372 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7373 7374 if (vic->vic_mapping_object != 0) { 7375 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7376 vd->vdev_removing); 7377 indirect_vdev_count++; 7378 7379 if (vd->vdev_indirect_mapping->vim_havecounts) { 7380 obsolete_counts_count++; 7381 } 7382 } 7383 7384 boolean_t are_precise; 7385 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7386 if (are_precise) { 7387 ASSERT(vic->vic_mapping_object != 0); 7388 precise_vdev_count++; 7389 } 7390 7391 uint64_t obsolete_sm_object; 7392 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7393 if (obsolete_sm_object != 0) { 7394 ASSERT(vic->vic_mapping_object != 0); 7395 obsolete_sm_count++; 7396 } 7397 } 7398 7399 (void) feature_get_refcount(spa, 7400 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7401 &dr_feature_refcount); 7402 (void) feature_get_refcount(spa, 7403 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7404 &oc_feature_refcount); 7405 7406 if (dr_feature_refcount != indirect_vdev_count) { 7407 ret = 1; 7408 (void) printf("Number of indirect vdevs (%llu) " \ 7409 "does not match feature count (%llu)\n", 7410 (u_longlong_t)indirect_vdev_count, 7411 (u_longlong_t)dr_feature_refcount); 7412 } else { 7413 (void) printf("Verified device_removal feature refcount " \ 7414 "of %llu is correct\n", 7415 (u_longlong_t)dr_feature_refcount); 7416 } 7417 7418 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7419 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7420 obsolete_bpobj_count++; 7421 } 7422 7423 7424 obsolete_counts_object_count = precise_vdev_count; 7425 obsolete_counts_object_count += obsolete_sm_count; 7426 obsolete_counts_object_count += obsolete_counts_count; 7427 obsolete_counts_object_count += scip_count; 7428 obsolete_counts_object_count += obsolete_bpobj_count; 7429 obsolete_counts_object_count += remap_deadlist_count; 7430 7431 if (oc_feature_refcount != obsolete_counts_object_count) { 7432 ret = 1; 7433 (void) printf("Number of obsolete counts objects (%llu) " \ 7434 "does not match feature count (%llu)\n", 7435 (u_longlong_t)obsolete_counts_object_count, 7436 (u_longlong_t)oc_feature_refcount); 7437 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7438 "ob:%llu rd:%llu\n", 7439 (u_longlong_t)precise_vdev_count, 7440 (u_longlong_t)obsolete_sm_count, 7441 (u_longlong_t)obsolete_counts_count, 7442 (u_longlong_t)scip_count, 7443 (u_longlong_t)obsolete_bpobj_count, 7444 (u_longlong_t)remap_deadlist_count); 7445 } else { 7446 (void) printf("Verified indirect_refcount feature refcount " \ 7447 "of %llu is correct\n", 7448 (u_longlong_t)oc_feature_refcount); 7449 } 7450 return (ret); 7451 } 7452 7453 static void 7454 zdb_set_skip_mmp(char *target) 7455 { 7456 spa_t *spa; 7457 7458 /* 7459 * Disable the activity check to allow examination of 7460 * active pools. 7461 */ 7462 mutex_enter(&spa_namespace_lock); 7463 if ((spa = spa_lookup(target)) != NULL) { 7464 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7465 } 7466 mutex_exit(&spa_namespace_lock); 7467 } 7468 7469 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7470 /* 7471 * Import the checkpointed state of the pool specified by the target 7472 * parameter as readonly. The function also accepts a pool config 7473 * as an optional parameter, else it attempts to infer the config by 7474 * the name of the target pool. 7475 * 7476 * Note that the checkpointed state's pool name will be the name of 7477 * the original pool with the above suffix appended to it. In addition, 7478 * if the target is not a pool name (e.g. a path to a dataset) then 7479 * the new_path parameter is populated with the updated path to 7480 * reflect the fact that we are looking into the checkpointed state. 7481 * 7482 * The function returns a newly-allocated copy of the name of the 7483 * pool containing the checkpointed state. When this copy is no 7484 * longer needed it should be freed with free(3C). Same thing 7485 * applies to the new_path parameter if allocated. 7486 */ 7487 static char * 7488 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7489 { 7490 int error = 0; 7491 char *poolname, *bogus_name = NULL; 7492 boolean_t freecfg = B_FALSE; 7493 7494 /* If the target is not a pool, the extract the pool name */ 7495 char *path_start = strchr(target, '/'); 7496 if (path_start != NULL) { 7497 size_t poolname_len = path_start - target; 7498 poolname = strndup(target, poolname_len); 7499 } else { 7500 poolname = target; 7501 } 7502 7503 if (cfg == NULL) { 7504 zdb_set_skip_mmp(poolname); 7505 error = spa_get_stats(poolname, &cfg, NULL, 0); 7506 if (error != 0) { 7507 fatal("Tried to read config of pool \"%s\" but " 7508 "spa_get_stats() failed with error %d\n", 7509 poolname, error); 7510 } 7511 freecfg = B_TRUE; 7512 } 7513 7514 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7515 if (target != poolname) 7516 free(poolname); 7517 return (NULL); 7518 } 7519 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7520 7521 error = spa_import(bogus_name, cfg, NULL, 7522 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7523 ZFS_IMPORT_SKIP_MMP); 7524 if (freecfg) 7525 nvlist_free(cfg); 7526 if (error != 0) { 7527 fatal("Tried to import pool \"%s\" but spa_import() failed " 7528 "with error %d\n", bogus_name, error); 7529 } 7530 7531 if (new_path != NULL && path_start != NULL) { 7532 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7533 free(bogus_name); 7534 if (path_start != NULL) 7535 free(poolname); 7536 return (NULL); 7537 } 7538 } 7539 7540 if (target != poolname) 7541 free(poolname); 7542 7543 return (bogus_name); 7544 } 7545 7546 typedef struct verify_checkpoint_sm_entry_cb_arg { 7547 vdev_t *vcsec_vd; 7548 7549 /* the following fields are only used for printing progress */ 7550 uint64_t vcsec_entryid; 7551 uint64_t vcsec_num_entries; 7552 } verify_checkpoint_sm_entry_cb_arg_t; 7553 7554 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7555 7556 static int 7557 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7558 { 7559 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7560 vdev_t *vd = vcsec->vcsec_vd; 7561 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7562 uint64_t end = sme->sme_offset + sme->sme_run; 7563 7564 ASSERT(sme->sme_type == SM_FREE); 7565 7566 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7567 (void) fprintf(stderr, 7568 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7569 (longlong_t)vd->vdev_id, 7570 (longlong_t)vcsec->vcsec_entryid, 7571 (longlong_t)vcsec->vcsec_num_entries); 7572 } 7573 vcsec->vcsec_entryid++; 7574 7575 /* 7576 * See comment in checkpoint_sm_exclude_entry_cb() 7577 */ 7578 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7579 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7580 7581 /* 7582 * The entries in the vdev_checkpoint_sm should be marked as 7583 * allocated in the checkpointed state of the pool, therefore 7584 * their respective ms_allocateable trees should not contain them. 7585 */ 7586 mutex_enter(&ms->ms_lock); 7587 range_tree_verify_not_present(ms->ms_allocatable, 7588 sme->sme_offset, sme->sme_run); 7589 mutex_exit(&ms->ms_lock); 7590 7591 return (0); 7592 } 7593 7594 /* 7595 * Verify that all segments in the vdev_checkpoint_sm are allocated 7596 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7597 * ms_allocatable). 7598 * 7599 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7600 * each vdev in the current state of the pool to the metaslab space maps 7601 * (ms_sm) of the checkpointed state of the pool. 7602 * 7603 * Note that the function changes the state of the ms_allocatable 7604 * trees of the current spa_t. The entries of these ms_allocatable 7605 * trees are cleared out and then repopulated from with the free 7606 * entries of their respective ms_sm space maps. 7607 */ 7608 static void 7609 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7610 { 7611 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7612 vdev_t *current_rvd = current->spa_root_vdev; 7613 7614 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7615 7616 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7617 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7618 vdev_t *current_vd = current_rvd->vdev_child[c]; 7619 7620 space_map_t *checkpoint_sm = NULL; 7621 uint64_t checkpoint_sm_obj; 7622 7623 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7624 /* 7625 * Since we don't allow device removal in a pool 7626 * that has a checkpoint, we expect that all removed 7627 * vdevs were removed from the pool before the 7628 * checkpoint. 7629 */ 7630 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7631 continue; 7632 } 7633 7634 /* 7635 * If the checkpoint space map doesn't exist, then nothing 7636 * here is checkpointed so there's nothing to verify. 7637 */ 7638 if (current_vd->vdev_top_zap == 0 || 7639 zap_contains(spa_meta_objset(current), 7640 current_vd->vdev_top_zap, 7641 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7642 continue; 7643 7644 VERIFY0(zap_lookup(spa_meta_objset(current), 7645 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7646 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7647 7648 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7649 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7650 current_vd->vdev_ashift)); 7651 7652 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7653 vcsec.vcsec_vd = ckpoint_vd; 7654 vcsec.vcsec_entryid = 0; 7655 vcsec.vcsec_num_entries = 7656 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7657 VERIFY0(space_map_iterate(checkpoint_sm, 7658 space_map_length(checkpoint_sm), 7659 verify_checkpoint_sm_entry_cb, &vcsec)); 7660 if (dump_opt['m'] > 3) 7661 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7662 space_map_close(checkpoint_sm); 7663 } 7664 7665 /* 7666 * If we've added vdevs since we took the checkpoint, ensure 7667 * that their checkpoint space maps are empty. 7668 */ 7669 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7670 for (uint64_t c = ckpoint_rvd->vdev_children; 7671 c < current_rvd->vdev_children; c++) { 7672 vdev_t *current_vd = current_rvd->vdev_child[c]; 7673 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7674 } 7675 } 7676 7677 /* for cleaner progress output */ 7678 (void) fprintf(stderr, "\n"); 7679 } 7680 7681 /* 7682 * Verifies that all space that's allocated in the checkpoint is 7683 * still allocated in the current version, by checking that everything 7684 * in checkpoint's ms_allocatable (which is actually allocated, not 7685 * allocatable/free) is not present in current's ms_allocatable. 7686 * 7687 * Note that the function changes the state of the ms_allocatable 7688 * trees of both spas when called. The entries of all ms_allocatable 7689 * trees are cleared out and then repopulated from their respective 7690 * ms_sm space maps. In the checkpointed state we load the allocated 7691 * entries, and in the current state we load the free entries. 7692 */ 7693 static void 7694 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7695 { 7696 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7697 vdev_t *current_rvd = current->spa_root_vdev; 7698 7699 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7700 load_concrete_ms_allocatable_trees(current, SM_FREE); 7701 7702 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7703 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7704 vdev_t *current_vd = current_rvd->vdev_child[i]; 7705 7706 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7707 /* 7708 * See comment in verify_checkpoint_vdev_spacemaps() 7709 */ 7710 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7711 continue; 7712 } 7713 7714 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7715 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7716 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7717 7718 (void) fprintf(stderr, 7719 "\rverifying vdev %llu of %llu, " 7720 "metaslab %llu of %llu ...", 7721 (longlong_t)current_vd->vdev_id, 7722 (longlong_t)current_rvd->vdev_children, 7723 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7724 (longlong_t)current_vd->vdev_ms_count); 7725 7726 /* 7727 * We walk through the ms_allocatable trees that 7728 * are loaded with the allocated blocks from the 7729 * ms_sm spacemaps of the checkpoint. For each 7730 * one of these ranges we ensure that none of them 7731 * exists in the ms_allocatable trees of the 7732 * current state which are loaded with the ranges 7733 * that are currently free. 7734 * 7735 * This way we ensure that none of the blocks that 7736 * are part of the checkpoint were freed by mistake. 7737 */ 7738 range_tree_walk(ckpoint_msp->ms_allocatable, 7739 (range_tree_func_t *)range_tree_verify_not_present, 7740 current_msp->ms_allocatable); 7741 } 7742 } 7743 7744 /* for cleaner progress output */ 7745 (void) fprintf(stderr, "\n"); 7746 } 7747 7748 static void 7749 verify_checkpoint_blocks(spa_t *spa) 7750 { 7751 ASSERT(!dump_opt['L']); 7752 7753 spa_t *checkpoint_spa; 7754 char *checkpoint_pool; 7755 int error = 0; 7756 7757 /* 7758 * We import the checkpointed state of the pool (under a different 7759 * name) so we can do verification on it against the current state 7760 * of the pool. 7761 */ 7762 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7763 NULL); 7764 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7765 7766 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7767 if (error != 0) { 7768 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7769 "error %d\n", checkpoint_pool, error); 7770 } 7771 7772 /* 7773 * Ensure that ranges in the checkpoint space maps of each vdev 7774 * are allocated according to the checkpointed state's metaslab 7775 * space maps. 7776 */ 7777 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7778 7779 /* 7780 * Ensure that allocated ranges in the checkpoint's metaslab 7781 * space maps remain allocated in the metaslab space maps of 7782 * the current state. 7783 */ 7784 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7785 7786 /* 7787 * Once we are done, we get rid of the checkpointed state. 7788 */ 7789 spa_close(checkpoint_spa, FTAG); 7790 free(checkpoint_pool); 7791 } 7792 7793 static void 7794 dump_leftover_checkpoint_blocks(spa_t *spa) 7795 { 7796 vdev_t *rvd = spa->spa_root_vdev; 7797 7798 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7799 vdev_t *vd = rvd->vdev_child[i]; 7800 7801 space_map_t *checkpoint_sm = NULL; 7802 uint64_t checkpoint_sm_obj; 7803 7804 if (vd->vdev_top_zap == 0) 7805 continue; 7806 7807 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7808 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7809 continue; 7810 7811 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7812 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7813 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7814 7815 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7816 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7817 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7818 space_map_close(checkpoint_sm); 7819 } 7820 } 7821 7822 static int 7823 verify_checkpoint(spa_t *spa) 7824 { 7825 uberblock_t checkpoint; 7826 int error; 7827 7828 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7829 return (0); 7830 7831 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7832 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7833 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7834 7835 if (error == ENOENT && !dump_opt['L']) { 7836 /* 7837 * If the feature is active but the uberblock is missing 7838 * then we must be in the middle of discarding the 7839 * checkpoint. 7840 */ 7841 (void) printf("\nPartially discarded checkpoint " 7842 "state found:\n"); 7843 if (dump_opt['m'] > 3) 7844 dump_leftover_checkpoint_blocks(spa); 7845 return (0); 7846 } else if (error != 0) { 7847 (void) printf("lookup error %d when looking for " 7848 "checkpointed uberblock in MOS\n", error); 7849 return (error); 7850 } 7851 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7852 7853 if (checkpoint.ub_checkpoint_txg == 0) { 7854 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7855 "uberblock\n"); 7856 error = 3; 7857 } 7858 7859 if (error == 0 && !dump_opt['L']) 7860 verify_checkpoint_blocks(spa); 7861 7862 return (error); 7863 } 7864 7865 static void 7866 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7867 { 7868 (void) arg; 7869 for (uint64_t i = start; i < size; i++) { 7870 (void) printf("MOS object %llu referenced but not allocated\n", 7871 (u_longlong_t)i); 7872 } 7873 } 7874 7875 static void 7876 mos_obj_refd(uint64_t obj) 7877 { 7878 if (obj != 0 && mos_refd_objs != NULL) 7879 range_tree_add(mos_refd_objs, obj, 1); 7880 } 7881 7882 /* 7883 * Call on a MOS object that may already have been referenced. 7884 */ 7885 static void 7886 mos_obj_refd_multiple(uint64_t obj) 7887 { 7888 if (obj != 0 && mos_refd_objs != NULL && 7889 !range_tree_contains(mos_refd_objs, obj, 1)) 7890 range_tree_add(mos_refd_objs, obj, 1); 7891 } 7892 7893 static void 7894 mos_leak_vdev_top_zap(vdev_t *vd) 7895 { 7896 uint64_t ms_flush_data_obj; 7897 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7898 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7899 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7900 if (error == ENOENT) 7901 return; 7902 ASSERT0(error); 7903 7904 mos_obj_refd(ms_flush_data_obj); 7905 } 7906 7907 static void 7908 mos_leak_vdev(vdev_t *vd) 7909 { 7910 mos_obj_refd(vd->vdev_dtl_object); 7911 mos_obj_refd(vd->vdev_ms_array); 7912 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7913 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7914 mos_obj_refd(vd->vdev_leaf_zap); 7915 if (vd->vdev_checkpoint_sm != NULL) 7916 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7917 if (vd->vdev_indirect_mapping != NULL) { 7918 mos_obj_refd(vd->vdev_indirect_mapping-> 7919 vim_phys->vimp_counts_object); 7920 } 7921 if (vd->vdev_obsolete_sm != NULL) 7922 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7923 7924 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7925 metaslab_t *ms = vd->vdev_ms[m]; 7926 mos_obj_refd(space_map_object(ms->ms_sm)); 7927 } 7928 7929 if (vd->vdev_root_zap != 0) 7930 mos_obj_refd(vd->vdev_root_zap); 7931 7932 if (vd->vdev_top_zap != 0) { 7933 mos_obj_refd(vd->vdev_top_zap); 7934 mos_leak_vdev_top_zap(vd); 7935 } 7936 7937 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7938 mos_leak_vdev(vd->vdev_child[c]); 7939 } 7940 } 7941 7942 static void 7943 mos_leak_log_spacemaps(spa_t *spa) 7944 { 7945 uint64_t spacemap_zap; 7946 int error = zap_lookup(spa_meta_objset(spa), 7947 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7948 sizeof (spacemap_zap), 1, &spacemap_zap); 7949 if (error == ENOENT) 7950 return; 7951 ASSERT0(error); 7952 7953 mos_obj_refd(spacemap_zap); 7954 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7955 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7956 mos_obj_refd(sls->sls_sm_obj); 7957 } 7958 7959 static void 7960 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7961 { 7962 zap_cursor_t zc; 7963 zap_attribute_t za; 7964 for (zap_cursor_init(&zc, mos, errlog); 7965 zap_cursor_retrieve(&zc, &za) == 0; 7966 zap_cursor_advance(&zc)) { 7967 mos_obj_refd(za.za_first_integer); 7968 } 7969 zap_cursor_fini(&zc); 7970 } 7971 7972 static int 7973 dump_mos_leaks(spa_t *spa) 7974 { 7975 int rv = 0; 7976 objset_t *mos = spa->spa_meta_objset; 7977 dsl_pool_t *dp = spa->spa_dsl_pool; 7978 7979 /* Visit and mark all referenced objects in the MOS */ 7980 7981 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7982 mos_obj_refd(spa->spa_pool_props_object); 7983 mos_obj_refd(spa->spa_config_object); 7984 mos_obj_refd(spa->spa_ddt_stat_object); 7985 mos_obj_refd(spa->spa_feat_desc_obj); 7986 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7987 mos_obj_refd(spa->spa_feat_for_read_obj); 7988 mos_obj_refd(spa->spa_feat_for_write_obj); 7989 mos_obj_refd(spa->spa_history); 7990 mos_obj_refd(spa->spa_errlog_last); 7991 mos_obj_refd(spa->spa_errlog_scrub); 7992 7993 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7994 errorlog_count_refd(mos, spa->spa_errlog_last); 7995 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7996 } 7997 7998 mos_obj_refd(spa->spa_all_vdev_zaps); 7999 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8000 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8001 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8002 bpobj_count_refd(&spa->spa_deferred_bpobj); 8003 mos_obj_refd(dp->dp_empty_bpobj); 8004 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8005 bpobj_count_refd(&dp->dp_free_bpobj); 8006 mos_obj_refd(spa->spa_l2cache.sav_object); 8007 mos_obj_refd(spa->spa_spares.sav_object); 8008 8009 if (spa->spa_syncing_log_sm != NULL) 8010 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8011 mos_leak_log_spacemaps(spa); 8012 8013 mos_obj_refd(spa->spa_condensing_indirect_phys. 8014 scip_next_mapping_object); 8015 mos_obj_refd(spa->spa_condensing_indirect_phys. 8016 scip_prev_obsolete_sm_object); 8017 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8018 vdev_indirect_mapping_t *vim = 8019 vdev_indirect_mapping_open(mos, 8020 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8021 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8022 vdev_indirect_mapping_close(vim); 8023 } 8024 deleted_livelists_dump_mos(spa); 8025 8026 if (dp->dp_origin_snap != NULL) { 8027 dsl_dataset_t *ds; 8028 8029 dsl_pool_config_enter(dp, FTAG); 8030 VERIFY0(dsl_dataset_hold_obj(dp, 8031 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8032 FTAG, &ds)); 8033 count_ds_mos_objects(ds); 8034 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8035 dsl_dataset_rele(ds, FTAG); 8036 dsl_pool_config_exit(dp, FTAG); 8037 8038 count_ds_mos_objects(dp->dp_origin_snap); 8039 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8040 } 8041 count_dir_mos_objects(dp->dp_mos_dir); 8042 if (dp->dp_free_dir != NULL) 8043 count_dir_mos_objects(dp->dp_free_dir); 8044 if (dp->dp_leak_dir != NULL) 8045 count_dir_mos_objects(dp->dp_leak_dir); 8046 8047 mos_leak_vdev(spa->spa_root_vdev); 8048 8049 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 8050 for (uint64_t type = 0; type < DDT_TYPES; type++) { 8051 for (uint64_t cksum = 0; 8052 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 8053 ddt_t *ddt = spa->spa_ddt[cksum]; 8054 mos_obj_refd(ddt->ddt_object[type][class]); 8055 } 8056 } 8057 } 8058 8059 /* 8060 * Visit all allocated objects and make sure they are referenced. 8061 */ 8062 uint64_t object = 0; 8063 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8064 if (range_tree_contains(mos_refd_objs, object, 1)) { 8065 range_tree_remove(mos_refd_objs, object, 1); 8066 } else { 8067 dmu_object_info_t doi; 8068 const char *name; 8069 VERIFY0(dmu_object_info(mos, object, &doi)); 8070 if (doi.doi_type & DMU_OT_NEWTYPE) { 8071 dmu_object_byteswap_t bswap = 8072 DMU_OT_BYTESWAP(doi.doi_type); 8073 name = dmu_ot_byteswap[bswap].ob_name; 8074 } else { 8075 name = dmu_ot[doi.doi_type].ot_name; 8076 } 8077 8078 (void) printf("MOS object %llu (%s) leaked\n", 8079 (u_longlong_t)object, name); 8080 rv = 2; 8081 } 8082 } 8083 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8084 if (!range_tree_is_empty(mos_refd_objs)) 8085 rv = 2; 8086 range_tree_vacate(mos_refd_objs, NULL, NULL); 8087 range_tree_destroy(mos_refd_objs); 8088 return (rv); 8089 } 8090 8091 typedef struct log_sm_obsolete_stats_arg { 8092 uint64_t lsos_current_txg; 8093 8094 uint64_t lsos_total_entries; 8095 uint64_t lsos_valid_entries; 8096 8097 uint64_t lsos_sm_entries; 8098 uint64_t lsos_valid_sm_entries; 8099 } log_sm_obsolete_stats_arg_t; 8100 8101 static int 8102 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8103 uint64_t txg, void *arg) 8104 { 8105 log_sm_obsolete_stats_arg_t *lsos = arg; 8106 8107 uint64_t offset = sme->sme_offset; 8108 uint64_t vdev_id = sme->sme_vdev; 8109 8110 if (lsos->lsos_current_txg == 0) { 8111 /* this is the first log */ 8112 lsos->lsos_current_txg = txg; 8113 } else if (lsos->lsos_current_txg < txg) { 8114 /* we just changed log - print stats and reset */ 8115 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8116 (u_longlong_t)lsos->lsos_valid_sm_entries, 8117 (u_longlong_t)lsos->lsos_sm_entries, 8118 (u_longlong_t)lsos->lsos_current_txg); 8119 lsos->lsos_valid_sm_entries = 0; 8120 lsos->lsos_sm_entries = 0; 8121 lsos->lsos_current_txg = txg; 8122 } 8123 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8124 8125 lsos->lsos_sm_entries++; 8126 lsos->lsos_total_entries++; 8127 8128 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8129 if (!vdev_is_concrete(vd)) 8130 return (0); 8131 8132 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8133 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8134 8135 if (txg < metaslab_unflushed_txg(ms)) 8136 return (0); 8137 lsos->lsos_valid_sm_entries++; 8138 lsos->lsos_valid_entries++; 8139 return (0); 8140 } 8141 8142 static void 8143 dump_log_spacemap_obsolete_stats(spa_t *spa) 8144 { 8145 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8146 return; 8147 8148 log_sm_obsolete_stats_arg_t lsos = {0}; 8149 8150 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8151 8152 iterate_through_spacemap_logs(spa, 8153 log_spacemap_obsolete_stats_cb, &lsos); 8154 8155 /* print stats for latest log */ 8156 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8157 (u_longlong_t)lsos.lsos_valid_sm_entries, 8158 (u_longlong_t)lsos.lsos_sm_entries, 8159 (u_longlong_t)lsos.lsos_current_txg); 8160 8161 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8162 (u_longlong_t)lsos.lsos_valid_entries, 8163 (u_longlong_t)lsos.lsos_total_entries); 8164 } 8165 8166 static void 8167 dump_zpool(spa_t *spa) 8168 { 8169 dsl_pool_t *dp = spa_get_dsl(spa); 8170 int rc = 0; 8171 8172 if (dump_opt['y']) { 8173 livelist_metaslab_validate(spa); 8174 } 8175 8176 if (dump_opt['S']) { 8177 dump_simulated_ddt(spa); 8178 return; 8179 } 8180 8181 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8182 (void) printf("\nCached configuration:\n"); 8183 dump_nvlist(spa->spa_config, 8); 8184 } 8185 8186 if (dump_opt['C']) 8187 dump_config(spa); 8188 8189 if (dump_opt['u']) 8190 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8191 8192 if (dump_opt['D']) 8193 dump_all_ddts(spa); 8194 8195 if (dump_opt['T']) 8196 dump_brt(spa); 8197 8198 if (dump_opt['d'] > 2 || dump_opt['m']) 8199 dump_metaslabs(spa); 8200 if (dump_opt['M']) 8201 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8202 if (dump_opt['d'] > 2 || dump_opt['m']) { 8203 dump_log_spacemaps(spa); 8204 dump_log_spacemap_obsolete_stats(spa); 8205 } 8206 8207 if (dump_opt['d'] || dump_opt['i']) { 8208 spa_feature_t f; 8209 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8210 0); 8211 dump_objset(dp->dp_meta_objset); 8212 8213 if (dump_opt['d'] >= 3) { 8214 dsl_pool_t *dp = spa->spa_dsl_pool; 8215 dump_full_bpobj(&spa->spa_deferred_bpobj, 8216 "Deferred frees", 0); 8217 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8218 dump_full_bpobj(&dp->dp_free_bpobj, 8219 "Pool snapshot frees", 0); 8220 } 8221 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8222 ASSERT(spa_feature_is_enabled(spa, 8223 SPA_FEATURE_DEVICE_REMOVAL)); 8224 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8225 "Pool obsolete blocks", 0); 8226 } 8227 8228 if (spa_feature_is_active(spa, 8229 SPA_FEATURE_ASYNC_DESTROY)) { 8230 dump_bptree(spa->spa_meta_objset, 8231 dp->dp_bptree_obj, 8232 "Pool dataset frees"); 8233 } 8234 dump_dtl(spa->spa_root_vdev, 0); 8235 } 8236 8237 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8238 global_feature_count[f] = UINT64_MAX; 8239 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8240 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8241 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8242 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8243 8244 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8245 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8246 8247 if (rc == 0 && !dump_opt['L']) 8248 rc = dump_mos_leaks(spa); 8249 8250 for (f = 0; f < SPA_FEATURES; f++) { 8251 uint64_t refcount; 8252 8253 uint64_t *arr; 8254 if (!(spa_feature_table[f].fi_flags & 8255 ZFEATURE_FLAG_PER_DATASET)) { 8256 if (global_feature_count[f] == UINT64_MAX) 8257 continue; 8258 if (!spa_feature_is_enabled(spa, f)) { 8259 ASSERT0(global_feature_count[f]); 8260 continue; 8261 } 8262 arr = global_feature_count; 8263 } else { 8264 if (!spa_feature_is_enabled(spa, f)) { 8265 ASSERT0(dataset_feature_count[f]); 8266 continue; 8267 } 8268 arr = dataset_feature_count; 8269 } 8270 if (feature_get_refcount(spa, &spa_feature_table[f], 8271 &refcount) == ENOTSUP) 8272 continue; 8273 if (arr[f] != refcount) { 8274 (void) printf("%s feature refcount mismatch: " 8275 "%lld consumers != %lld refcount\n", 8276 spa_feature_table[f].fi_uname, 8277 (longlong_t)arr[f], (longlong_t)refcount); 8278 rc = 2; 8279 } else { 8280 (void) printf("Verified %s feature refcount " 8281 "of %llu is correct\n", 8282 spa_feature_table[f].fi_uname, 8283 (longlong_t)refcount); 8284 } 8285 } 8286 8287 if (rc == 0) 8288 rc = verify_device_removal_feature_counts(spa); 8289 } 8290 8291 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8292 rc = dump_block_stats(spa); 8293 8294 if (rc == 0) 8295 rc = verify_spacemap_refcounts(spa); 8296 8297 if (dump_opt['s']) 8298 show_pool_stats(spa); 8299 8300 if (dump_opt['h']) 8301 dump_history(spa); 8302 8303 if (rc == 0) 8304 rc = verify_checkpoint(spa); 8305 8306 if (rc != 0) { 8307 dump_debug_buffer(); 8308 exit(rc); 8309 } 8310 } 8311 8312 #define ZDB_FLAG_CHECKSUM 0x0001 8313 #define ZDB_FLAG_DECOMPRESS 0x0002 8314 #define ZDB_FLAG_BSWAP 0x0004 8315 #define ZDB_FLAG_GBH 0x0008 8316 #define ZDB_FLAG_INDIRECT 0x0010 8317 #define ZDB_FLAG_RAW 0x0020 8318 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8319 #define ZDB_FLAG_VERBOSE 0x0080 8320 8321 static int flagbits[256]; 8322 static char flagbitstr[16]; 8323 8324 static void 8325 zdb_print_blkptr(const blkptr_t *bp, int flags) 8326 { 8327 char blkbuf[BP_SPRINTF_LEN]; 8328 8329 if (flags & ZDB_FLAG_BSWAP) 8330 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8331 8332 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8333 (void) printf("%s\n", blkbuf); 8334 } 8335 8336 static void 8337 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8338 { 8339 int i; 8340 8341 for (i = 0; i < nbps; i++) 8342 zdb_print_blkptr(&bp[i], flags); 8343 } 8344 8345 static void 8346 zdb_dump_gbh(void *buf, int flags) 8347 { 8348 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8349 } 8350 8351 static void 8352 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8353 { 8354 if (flags & ZDB_FLAG_BSWAP) 8355 byteswap_uint64_array(buf, size); 8356 VERIFY(write(fileno(stdout), buf, size) == size); 8357 } 8358 8359 static void 8360 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8361 { 8362 uint64_t *d = (uint64_t *)buf; 8363 unsigned nwords = size / sizeof (uint64_t); 8364 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8365 unsigned i, j; 8366 const char *hdr; 8367 char *c; 8368 8369 8370 if (do_bswap) 8371 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8372 else 8373 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8374 8375 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8376 8377 #ifdef _LITTLE_ENDIAN 8378 /* correct the endianness */ 8379 do_bswap = !do_bswap; 8380 #endif 8381 for (i = 0; i < nwords; i += 2) { 8382 (void) printf("%06llx: %016llx %016llx ", 8383 (u_longlong_t)(i * sizeof (uint64_t)), 8384 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8385 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8386 8387 c = (char *)&d[i]; 8388 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8389 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8390 (void) printf("\n"); 8391 } 8392 } 8393 8394 /* 8395 * There are two acceptable formats: 8396 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8397 * child[.child]* - For example: 0.1.1 8398 * 8399 * The second form can be used to specify arbitrary vdevs anywhere 8400 * in the hierarchy. For example, in a pool with a mirror of 8401 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8402 */ 8403 static vdev_t * 8404 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8405 { 8406 char *s, *p, *q; 8407 unsigned i; 8408 8409 if (vdev == NULL) 8410 return (NULL); 8411 8412 /* First, assume the x.x.x.x format */ 8413 i = strtoul(path, &s, 10); 8414 if (s == path || (s && *s != '.' && *s != '\0')) 8415 goto name; 8416 if (i >= vdev->vdev_children) 8417 return (NULL); 8418 8419 vdev = vdev->vdev_child[i]; 8420 if (s && *s == '\0') 8421 return (vdev); 8422 return (zdb_vdev_lookup(vdev, s+1)); 8423 8424 name: 8425 for (i = 0; i < vdev->vdev_children; i++) { 8426 vdev_t *vc = vdev->vdev_child[i]; 8427 8428 if (vc->vdev_path == NULL) { 8429 vc = zdb_vdev_lookup(vc, path); 8430 if (vc == NULL) 8431 continue; 8432 else 8433 return (vc); 8434 } 8435 8436 p = strrchr(vc->vdev_path, '/'); 8437 p = p ? p + 1 : vc->vdev_path; 8438 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8439 8440 if (strcmp(vc->vdev_path, path) == 0) 8441 return (vc); 8442 if (strcmp(p, path) == 0) 8443 return (vc); 8444 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8445 return (vc); 8446 } 8447 8448 return (NULL); 8449 } 8450 8451 static int 8452 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8453 { 8454 dsl_dataset_t *ds; 8455 8456 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8457 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8458 NULL, &ds); 8459 if (error != 0) { 8460 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8461 (u_longlong_t)objset_id, strerror(error)); 8462 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8463 return (error); 8464 } 8465 dsl_dataset_name(ds, outstr); 8466 dsl_dataset_rele(ds, NULL); 8467 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8468 return (0); 8469 } 8470 8471 static boolean_t 8472 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8473 { 8474 char *s0, *s1, *tmp = NULL; 8475 8476 if (sizes == NULL) 8477 return (B_FALSE); 8478 8479 s0 = strtok_r(sizes, "/", &tmp); 8480 if (s0 == NULL) 8481 return (B_FALSE); 8482 s1 = strtok_r(NULL, "/", &tmp); 8483 *lsize = strtoull(s0, NULL, 16); 8484 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8485 return (*lsize >= *psize && *psize > 0); 8486 } 8487 8488 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8489 8490 static boolean_t 8491 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8492 int flags, int cfunc, void *lbuf, void *lbuf2) 8493 { 8494 if (flags & ZDB_FLAG_VERBOSE) { 8495 (void) fprintf(stderr, 8496 "Trying %05llx -> %05llx (%s)\n", 8497 (u_longlong_t)psize, 8498 (u_longlong_t)lsize, 8499 zio_compress_table[cfunc].ci_name); 8500 } 8501 8502 /* 8503 * We set lbuf to all zeros and lbuf2 to all 8504 * ones, then decompress to both buffers and 8505 * compare their contents. This way we can 8506 * know if decompression filled exactly to 8507 * lsize or if it left some bytes unwritten. 8508 */ 8509 8510 memset(lbuf, 0x00, lsize); 8511 memset(lbuf2, 0xff, lsize); 8512 8513 if (zio_decompress_data(cfunc, pabd, 8514 lbuf, psize, lsize, NULL) == 0 && 8515 zio_decompress_data(cfunc, pabd, 8516 lbuf2, psize, lsize, NULL) == 0 && 8517 memcmp(lbuf, lbuf2, lsize) == 0) 8518 return (B_TRUE); 8519 return (B_FALSE); 8520 } 8521 8522 static uint64_t 8523 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8524 uint64_t psize, int flags) 8525 { 8526 (void) buf; 8527 uint64_t orig_lsize = lsize; 8528 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8529 boolean_t found = B_FALSE; 8530 /* 8531 * We don't know how the data was compressed, so just try 8532 * every decompress function at every inflated blocksize. 8533 */ 8534 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8535 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8536 int *cfuncp = cfuncs; 8537 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8538 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8539 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8540 ZIO_COMPRESS_MASK(ZLE); 8541 *cfuncp++ = ZIO_COMPRESS_LZ4; 8542 *cfuncp++ = ZIO_COMPRESS_LZJB; 8543 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8544 /* 8545 * Every gzip level has the same decompressor, no need to 8546 * run it 9 times per bruteforce attempt. 8547 */ 8548 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8549 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8550 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8551 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8552 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8553 if (((1ULL << c) & mask) == 0) 8554 *cfuncp++ = c; 8555 8556 /* 8557 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8558 * could take a while and we should let the user know 8559 * we are not stuck. On the other hand, printing progress 8560 * info gets old after a while. User can specify 'v' flag 8561 * to see the progression. 8562 */ 8563 if (lsize == psize) 8564 lsize += SPA_MINBLOCKSIZE; 8565 else 8566 maxlsize = lsize; 8567 8568 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8569 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8570 if (try_decompress_block(pabd, lsize, psize, flags, 8571 *cfuncp, lbuf, lbuf2)) { 8572 found = B_TRUE; 8573 break; 8574 } 8575 } 8576 if (*cfuncp != 0) 8577 break; 8578 } 8579 if (!found && tryzle) { 8580 for (lsize = orig_lsize; lsize <= maxlsize; 8581 lsize += SPA_MINBLOCKSIZE) { 8582 if (try_decompress_block(pabd, lsize, psize, flags, 8583 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8584 *cfuncp = ZIO_COMPRESS_ZLE; 8585 found = B_TRUE; 8586 break; 8587 } 8588 } 8589 } 8590 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8591 8592 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8593 printf("\nZLE decompression was selected. If you " 8594 "suspect the results are wrong,\ntry avoiding ZLE " 8595 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8596 } 8597 8598 return (lsize > maxlsize ? -1 : lsize); 8599 } 8600 8601 /* 8602 * Read a block from a pool and print it out. The syntax of the 8603 * block descriptor is: 8604 * 8605 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8606 * 8607 * pool - The name of the pool you wish to read from 8608 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8609 * offset - offset, in hex, in bytes 8610 * size - Amount of data to read, in hex, in bytes 8611 * flags - A string of characters specifying options 8612 * b: Decode a blkptr at given offset within block 8613 * c: Calculate and display checksums 8614 * d: Decompress data before dumping 8615 * e: Byteswap data before dumping 8616 * g: Display data as a gang block header 8617 * i: Display as an indirect block 8618 * r: Dump raw data to stdout 8619 * v: Verbose 8620 * 8621 */ 8622 static void 8623 zdb_read_block(char *thing, spa_t *spa) 8624 { 8625 blkptr_t blk, *bp = &blk; 8626 dva_t *dva = bp->blk_dva; 8627 int flags = 0; 8628 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8629 zio_t *zio; 8630 vdev_t *vd; 8631 abd_t *pabd; 8632 void *lbuf, *buf; 8633 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8634 const char *vdev, *errmsg = NULL; 8635 int i, error; 8636 boolean_t borrowed = B_FALSE, found = B_FALSE; 8637 8638 dup = strdup(thing); 8639 s = strtok_r(dup, ":", &tmp); 8640 vdev = s ?: ""; 8641 s = strtok_r(NULL, ":", &tmp); 8642 offset = strtoull(s ? s : "", NULL, 16); 8643 sizes = strtok_r(NULL, ":", &tmp); 8644 s = strtok_r(NULL, ":", &tmp); 8645 flagstr = strdup(s ?: ""); 8646 8647 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8648 errmsg = "invalid size(s)"; 8649 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8650 errmsg = "size must be a multiple of sector size"; 8651 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8652 errmsg = "offset must be a multiple of sector size"; 8653 if (errmsg) { 8654 (void) printf("Invalid block specifier: %s - %s\n", 8655 thing, errmsg); 8656 goto done; 8657 } 8658 8659 tmp = NULL; 8660 for (s = strtok_r(flagstr, ":", &tmp); 8661 s != NULL; 8662 s = strtok_r(NULL, ":", &tmp)) { 8663 for (i = 0; i < strlen(flagstr); i++) { 8664 int bit = flagbits[(uchar_t)flagstr[i]]; 8665 8666 if (bit == 0) { 8667 (void) printf("***Ignoring flag: %c\n", 8668 (uchar_t)flagstr[i]); 8669 continue; 8670 } 8671 found = B_TRUE; 8672 flags |= bit; 8673 8674 p = &flagstr[i + 1]; 8675 if (*p != ':' && *p != '\0') { 8676 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8677 char *end, offstr[8] = { 0 }; 8678 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8679 (nextbit == 0)) { 8680 /* look ahead to isolate the offset */ 8681 while (nextbit == 0 && 8682 strchr(flagbitstr, *p) == NULL) { 8683 offstr[j] = *p; 8684 j++; 8685 if (i + j > strlen(flagstr)) 8686 break; 8687 p++; 8688 nextbit = flagbits[(uchar_t)*p]; 8689 } 8690 blkptr_offset = strtoull(offstr, &end, 8691 16); 8692 i += j; 8693 } else if (nextbit == 0) { 8694 (void) printf("***Ignoring flag arg:" 8695 " '%c'\n", (uchar_t)*p); 8696 } 8697 } 8698 } 8699 } 8700 if (blkptr_offset % sizeof (blkptr_t)) { 8701 printf("Block pointer offset 0x%llx " 8702 "must be divisible by 0x%x\n", 8703 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8704 goto done; 8705 } 8706 if (found == B_FALSE && strlen(flagstr) > 0) { 8707 printf("Invalid flag arg: '%s'\n", flagstr); 8708 goto done; 8709 } 8710 8711 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8712 if (vd == NULL) { 8713 (void) printf("***Invalid vdev: %s\n", vdev); 8714 goto done; 8715 } else { 8716 if (vd->vdev_path) 8717 (void) fprintf(stderr, "Found vdev: %s\n", 8718 vd->vdev_path); 8719 else 8720 (void) fprintf(stderr, "Found vdev type: %s\n", 8721 vd->vdev_ops->vdev_op_type); 8722 } 8723 8724 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8725 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8726 8727 BP_ZERO(bp); 8728 8729 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8730 DVA_SET_OFFSET(&dva[0], offset); 8731 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8732 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8733 8734 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8735 8736 BP_SET_LSIZE(bp, lsize); 8737 BP_SET_PSIZE(bp, psize); 8738 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8739 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8740 BP_SET_TYPE(bp, DMU_OT_NONE); 8741 BP_SET_LEVEL(bp, 0); 8742 BP_SET_DEDUP(bp, 0); 8743 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8744 8745 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8746 zio = zio_root(spa, NULL, NULL, 0); 8747 8748 if (vd == vd->vdev_top) { 8749 /* 8750 * Treat this as a normal block read. 8751 */ 8752 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8753 ZIO_PRIORITY_SYNC_READ, 8754 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8755 } else { 8756 /* 8757 * Treat this as a vdev child I/O. 8758 */ 8759 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8760 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8761 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8762 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8763 NULL, NULL)); 8764 } 8765 8766 error = zio_wait(zio); 8767 spa_config_exit(spa, SCL_STATE, FTAG); 8768 8769 if (error) { 8770 (void) printf("Read of %s failed, error: %d\n", thing, error); 8771 goto out; 8772 } 8773 8774 uint64_t orig_lsize = lsize; 8775 buf = lbuf; 8776 if (flags & ZDB_FLAG_DECOMPRESS) { 8777 lsize = zdb_decompress_block(pabd, buf, lbuf, 8778 lsize, psize, flags); 8779 if (lsize == -1) { 8780 (void) printf("Decompress of %s failed\n", thing); 8781 goto out; 8782 } 8783 } else { 8784 buf = abd_borrow_buf_copy(pabd, lsize); 8785 borrowed = B_TRUE; 8786 } 8787 /* 8788 * Try to detect invalid block pointer. If invalid, try 8789 * decompressing. 8790 */ 8791 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8792 !(flags & ZDB_FLAG_DECOMPRESS)) { 8793 const blkptr_t *b = (const blkptr_t *)(void *) 8794 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8795 if (zfs_blkptr_verify(spa, b, 8796 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8797 abd_return_buf_copy(pabd, buf, lsize); 8798 borrowed = B_FALSE; 8799 buf = lbuf; 8800 lsize = zdb_decompress_block(pabd, buf, 8801 lbuf, lsize, psize, flags); 8802 b = (const blkptr_t *)(void *) 8803 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8804 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8805 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8806 printf("invalid block pointer at this DVA\n"); 8807 goto out; 8808 } 8809 } 8810 } 8811 8812 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8813 zdb_print_blkptr((blkptr_t *)(void *) 8814 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8815 else if (flags & ZDB_FLAG_RAW) 8816 zdb_dump_block_raw(buf, lsize, flags); 8817 else if (flags & ZDB_FLAG_INDIRECT) 8818 zdb_dump_indirect((blkptr_t *)buf, 8819 orig_lsize / sizeof (blkptr_t), flags); 8820 else if (flags & ZDB_FLAG_GBH) 8821 zdb_dump_gbh(buf, flags); 8822 else 8823 zdb_dump_block(thing, buf, lsize, flags); 8824 8825 /* 8826 * If :c was specified, iterate through the checksum table to 8827 * calculate and display each checksum for our specified 8828 * DVA and length. 8829 */ 8830 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8831 !(flags & ZDB_FLAG_GBH)) { 8832 zio_t *czio; 8833 (void) printf("\n"); 8834 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8835 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8836 8837 if ((zio_checksum_table[ck].ci_flags & 8838 ZCHECKSUM_FLAG_EMBEDDED) || 8839 ck == ZIO_CHECKSUM_NOPARITY) { 8840 continue; 8841 } 8842 BP_SET_CHECKSUM(bp, ck); 8843 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8844 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8845 if (vd == vd->vdev_top) { 8846 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8847 NULL, NULL, 8848 ZIO_PRIORITY_SYNC_READ, 8849 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8850 ZIO_FLAG_DONT_RETRY, NULL)); 8851 } else { 8852 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8853 offset, pabd, psize, ZIO_TYPE_READ, 8854 ZIO_PRIORITY_SYNC_READ, 8855 ZIO_FLAG_DONT_PROPAGATE | 8856 ZIO_FLAG_DONT_RETRY | 8857 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8858 ZIO_FLAG_SPECULATIVE | 8859 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8860 } 8861 error = zio_wait(czio); 8862 if (error == 0 || error == ECKSUM) { 8863 zio_t *ck_zio = zio_null(NULL, spa, NULL, 8864 NULL, NULL, 0); 8865 ck_zio->io_offset = 8866 DVA_GET_OFFSET(&bp->blk_dva[0]); 8867 ck_zio->io_bp = bp; 8868 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8869 printf( 8870 "%12s\t" 8871 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8872 zio_checksum_table[ck].ci_name, 8873 (u_longlong_t)bp->blk_cksum.zc_word[0], 8874 (u_longlong_t)bp->blk_cksum.zc_word[1], 8875 (u_longlong_t)bp->blk_cksum.zc_word[2], 8876 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8877 zio_wait(ck_zio); 8878 } else { 8879 printf("error %d reading block\n", error); 8880 } 8881 spa_config_exit(spa, SCL_STATE, FTAG); 8882 } 8883 } 8884 8885 if (borrowed) 8886 abd_return_buf_copy(pabd, buf, lsize); 8887 8888 out: 8889 abd_free(pabd); 8890 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8891 done: 8892 free(flagstr); 8893 free(dup); 8894 } 8895 8896 static void 8897 zdb_embedded_block(char *thing) 8898 { 8899 blkptr_t bp = {{{{0}}}}; 8900 unsigned long long *words = (void *)&bp; 8901 char *buf; 8902 int err; 8903 8904 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8905 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8906 words + 0, words + 1, words + 2, words + 3, 8907 words + 4, words + 5, words + 6, words + 7, 8908 words + 8, words + 9, words + 10, words + 11, 8909 words + 12, words + 13, words + 14, words + 15); 8910 if (err != 16) { 8911 (void) fprintf(stderr, "invalid input format\n"); 8912 exit(1); 8913 } 8914 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8915 buf = malloc(SPA_MAXBLOCKSIZE); 8916 if (buf == NULL) { 8917 (void) fprintf(stderr, "out of memory\n"); 8918 exit(1); 8919 } 8920 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8921 if (err != 0) { 8922 (void) fprintf(stderr, "decode failed: %u\n", err); 8923 exit(1); 8924 } 8925 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8926 free(buf); 8927 } 8928 8929 /* check for valid hex or decimal numeric string */ 8930 static boolean_t 8931 zdb_numeric(char *str) 8932 { 8933 int i = 0; 8934 8935 if (strlen(str) == 0) 8936 return (B_FALSE); 8937 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8938 i = 2; 8939 for (; i < strlen(str); i++) { 8940 if (!isxdigit(str[i])) 8941 return (B_FALSE); 8942 } 8943 return (B_TRUE); 8944 } 8945 8946 int 8947 main(int argc, char **argv) 8948 { 8949 int c; 8950 spa_t *spa = NULL; 8951 objset_t *os = NULL; 8952 int dump_all = 1; 8953 int verbose = 0; 8954 int error = 0; 8955 char **searchdirs = NULL; 8956 int nsearch = 0; 8957 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8958 nvlist_t *policy = NULL; 8959 uint64_t max_txg = UINT64_MAX; 8960 int64_t objset_id = -1; 8961 uint64_t object; 8962 int flags = ZFS_IMPORT_MISSING_LOG; 8963 int rewind = ZPOOL_NEVER_REWIND; 8964 char *spa_config_path_env, *objset_str; 8965 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8966 nvlist_t *cfg = NULL; 8967 8968 dprintf_setup(&argc, argv); 8969 8970 /* 8971 * If there is an environment variable SPA_CONFIG_PATH it overrides 8972 * default spa_config_path setting. If -U flag is specified it will 8973 * override this environment variable settings once again. 8974 */ 8975 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8976 if (spa_config_path_env != NULL) 8977 spa_config_path = spa_config_path_env; 8978 8979 /* 8980 * For performance reasons, we set this tunable down. We do so before 8981 * the arg parsing section so that the user can override this value if 8982 * they choose. 8983 */ 8984 zfs_btree_verify_intensity = 3; 8985 8986 struct option long_options[] = { 8987 {"ignore-assertions", no_argument, NULL, 'A'}, 8988 {"block-stats", no_argument, NULL, 'b'}, 8989 {"backup", no_argument, NULL, 'B'}, 8990 {"checksum", no_argument, NULL, 'c'}, 8991 {"config", no_argument, NULL, 'C'}, 8992 {"datasets", no_argument, NULL, 'd'}, 8993 {"dedup-stats", no_argument, NULL, 'D'}, 8994 {"exported", no_argument, NULL, 'e'}, 8995 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8996 {"automatic-rewind", no_argument, NULL, 'F'}, 8997 {"dump-debug-msg", no_argument, NULL, 'G'}, 8998 {"history", no_argument, NULL, 'h'}, 8999 {"intent-logs", no_argument, NULL, 'i'}, 9000 {"inflight", required_argument, NULL, 'I'}, 9001 {"checkpointed-state", no_argument, NULL, 'k'}, 9002 {"key", required_argument, NULL, 'K'}, 9003 {"label", no_argument, NULL, 'l'}, 9004 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9005 {"metaslabs", no_argument, NULL, 'm'}, 9006 {"metaslab-groups", no_argument, NULL, 'M'}, 9007 {"numeric", no_argument, NULL, 'N'}, 9008 {"option", required_argument, NULL, 'o'}, 9009 {"object-lookups", no_argument, NULL, 'O'}, 9010 {"path", required_argument, NULL, 'p'}, 9011 {"parseable", no_argument, NULL, 'P'}, 9012 {"skip-label", no_argument, NULL, 'q'}, 9013 {"copy-object", no_argument, NULL, 'r'}, 9014 {"read-block", no_argument, NULL, 'R'}, 9015 {"io-stats", no_argument, NULL, 's'}, 9016 {"simulate-dedup", no_argument, NULL, 'S'}, 9017 {"txg", required_argument, NULL, 't'}, 9018 {"brt-stats", no_argument, NULL, 'T'}, 9019 {"uberblock", no_argument, NULL, 'u'}, 9020 {"cachefile", required_argument, NULL, 'U'}, 9021 {"verbose", no_argument, NULL, 'v'}, 9022 {"verbatim", no_argument, NULL, 'V'}, 9023 {"dump-blocks", required_argument, NULL, 'x'}, 9024 {"extreme-rewind", no_argument, NULL, 'X'}, 9025 {"all-reconstruction", no_argument, NULL, 'Y'}, 9026 {"livelist", no_argument, NULL, 'y'}, 9027 {"zstd-headers", no_argument, NULL, 'Z'}, 9028 {0, 0, 0, 0} 9029 }; 9030 9031 while ((c = getopt_long(argc, argv, 9032 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9033 long_options, NULL)) != -1) { 9034 switch (c) { 9035 case 'b': 9036 case 'B': 9037 case 'c': 9038 case 'C': 9039 case 'd': 9040 case 'D': 9041 case 'E': 9042 case 'G': 9043 case 'h': 9044 case 'i': 9045 case 'l': 9046 case 'm': 9047 case 'M': 9048 case 'N': 9049 case 'O': 9050 case 'r': 9051 case 'R': 9052 case 's': 9053 case 'S': 9054 case 'T': 9055 case 'u': 9056 case 'y': 9057 case 'Z': 9058 dump_opt[c]++; 9059 dump_all = 0; 9060 break; 9061 case 'A': 9062 case 'e': 9063 case 'F': 9064 case 'k': 9065 case 'L': 9066 case 'P': 9067 case 'q': 9068 case 'X': 9069 dump_opt[c]++; 9070 break; 9071 case 'Y': 9072 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9073 zfs_deadman_enabled = 0; 9074 break; 9075 /* NB: Sort single match options below. */ 9076 case 'I': 9077 max_inflight_bytes = strtoull(optarg, NULL, 0); 9078 if (max_inflight_bytes == 0) { 9079 (void) fprintf(stderr, "maximum number " 9080 "of inflight bytes must be greater " 9081 "than 0\n"); 9082 usage(); 9083 } 9084 break; 9085 case 'K': 9086 dump_opt[c]++; 9087 key_material = strdup(optarg); 9088 /* redact key material in process table */ 9089 while (*optarg != '\0') { *optarg++ = '*'; } 9090 break; 9091 case 'o': 9092 error = set_global_var(optarg); 9093 if (error != 0) 9094 usage(); 9095 break; 9096 case 'p': 9097 if (searchdirs == NULL) { 9098 searchdirs = umem_alloc(sizeof (char *), 9099 UMEM_NOFAIL); 9100 } else { 9101 char **tmp = umem_alloc((nsearch + 1) * 9102 sizeof (char *), UMEM_NOFAIL); 9103 memcpy(tmp, searchdirs, nsearch * 9104 sizeof (char *)); 9105 umem_free(searchdirs, 9106 nsearch * sizeof (char *)); 9107 searchdirs = tmp; 9108 } 9109 searchdirs[nsearch++] = optarg; 9110 break; 9111 case 't': 9112 max_txg = strtoull(optarg, NULL, 0); 9113 if (max_txg < TXG_INITIAL) { 9114 (void) fprintf(stderr, "incorrect txg " 9115 "specified: %s\n", optarg); 9116 usage(); 9117 } 9118 break; 9119 case 'U': 9120 spa_config_path = optarg; 9121 if (spa_config_path[0] != '/') { 9122 (void) fprintf(stderr, 9123 "cachefile must be an absolute path " 9124 "(i.e. start with a slash)\n"); 9125 usage(); 9126 } 9127 break; 9128 case 'v': 9129 verbose++; 9130 break; 9131 case 'V': 9132 flags = ZFS_IMPORT_VERBATIM; 9133 break; 9134 case 'x': 9135 vn_dumpdir = optarg; 9136 break; 9137 default: 9138 usage(); 9139 break; 9140 } 9141 } 9142 9143 if (!dump_opt['e'] && searchdirs != NULL) { 9144 (void) fprintf(stderr, "-p option requires use of -e\n"); 9145 usage(); 9146 } 9147 #if defined(_LP64) 9148 /* 9149 * ZDB does not typically re-read blocks; therefore limit the ARC 9150 * to 256 MB, which can be used entirely for metadata. 9151 */ 9152 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9153 zfs_arc_max = 256 * 1024 * 1024; 9154 #endif 9155 9156 /* 9157 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9158 * "zdb -b" uses traversal prefetch which uses async reads. 9159 * For good performance, let several of them be active at once. 9160 */ 9161 zfs_vdev_async_read_max_active = 10; 9162 9163 /* 9164 * Disable reference tracking for better performance. 9165 */ 9166 reference_tracking_enable = B_FALSE; 9167 9168 /* 9169 * Do not fail spa_load when spa_load_verify fails. This is needed 9170 * to load non-idle pools. 9171 */ 9172 spa_load_verify_dryrun = B_TRUE; 9173 9174 /* 9175 * ZDB should have ability to read spacemaps. 9176 */ 9177 spa_mode_readable_spacemaps = B_TRUE; 9178 9179 kernel_init(SPA_MODE_READ); 9180 9181 if (dump_all) 9182 verbose = MAX(verbose, 1); 9183 9184 for (c = 0; c < 256; c++) { 9185 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9186 dump_opt[c] = 1; 9187 if (dump_opt[c]) 9188 dump_opt[c] += verbose; 9189 } 9190 9191 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9192 zfs_recover = (dump_opt['A'] > 1); 9193 9194 argc -= optind; 9195 argv += optind; 9196 if (argc < 2 && dump_opt['R']) 9197 usage(); 9198 9199 if (dump_opt['E']) { 9200 if (argc != 1) 9201 usage(); 9202 zdb_embedded_block(argv[0]); 9203 return (0); 9204 } 9205 9206 if (argc < 1) { 9207 if (!dump_opt['e'] && dump_opt['C']) { 9208 dump_cachefile(spa_config_path); 9209 return (0); 9210 } 9211 usage(); 9212 } 9213 9214 if (dump_opt['l']) 9215 return (dump_label(argv[0])); 9216 9217 if (dump_opt['X'] || dump_opt['F']) 9218 rewind = ZPOOL_DO_REWIND | 9219 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9220 9221 /* -N implies -d */ 9222 if (dump_opt['N'] && dump_opt['d'] == 0) 9223 dump_opt['d'] = dump_opt['N']; 9224 9225 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9226 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9227 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9228 fatal("internal error: %s", strerror(ENOMEM)); 9229 9230 error = 0; 9231 target = argv[0]; 9232 9233 if (strpbrk(target, "/@") != NULL) { 9234 size_t targetlen; 9235 9236 target_pool = strdup(target); 9237 *strpbrk(target_pool, "/@") = '\0'; 9238 9239 target_is_spa = B_FALSE; 9240 targetlen = strlen(target); 9241 if (targetlen && target[targetlen - 1] == '/') 9242 target[targetlen - 1] = '\0'; 9243 9244 /* 9245 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9246 * To disambiguate tank/100, consider the 100 as objsetID 9247 * if -N was given, otherwise 100 is an objsetID iff 9248 * tank/100 as a named dataset fails on lookup. 9249 */ 9250 objset_str = strchr(target, '/'); 9251 if (objset_str && strlen(objset_str) > 1 && 9252 zdb_numeric(objset_str + 1)) { 9253 char *endptr; 9254 errno = 0; 9255 objset_str++; 9256 objset_id = strtoull(objset_str, &endptr, 0); 9257 /* dataset 0 is the same as opening the pool */ 9258 if (errno == 0 && endptr != objset_str && 9259 objset_id != 0) { 9260 if (dump_opt['N']) 9261 dataset_lookup = B_TRUE; 9262 } 9263 /* normal dataset name not an objset ID */ 9264 if (endptr == objset_str) { 9265 objset_id = -1; 9266 } 9267 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9268 dump_opt['N']) { 9269 printf("Supply a numeric objset ID with -N\n"); 9270 exit(1); 9271 } 9272 } else { 9273 target_pool = target; 9274 } 9275 9276 if (dump_opt['e']) { 9277 importargs_t args = { 0 }; 9278 9279 args.paths = nsearch; 9280 args.path = searchdirs; 9281 args.can_be_active = B_TRUE; 9282 9283 libpc_handle_t lpch = { 9284 .lpc_lib_handle = NULL, 9285 .lpc_ops = &libzpool_config_ops, 9286 .lpc_printerr = B_TRUE 9287 }; 9288 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9289 9290 if (error == 0) { 9291 9292 if (nvlist_add_nvlist(cfg, 9293 ZPOOL_LOAD_POLICY, policy) != 0) { 9294 fatal("can't open '%s': %s", 9295 target, strerror(ENOMEM)); 9296 } 9297 9298 if (dump_opt['C'] > 1) { 9299 (void) printf("\nConfiguration for import:\n"); 9300 dump_nvlist(cfg, 8); 9301 } 9302 9303 /* 9304 * Disable the activity check to allow examination of 9305 * active pools. 9306 */ 9307 error = spa_import(target_pool, cfg, NULL, 9308 flags | ZFS_IMPORT_SKIP_MMP); 9309 } 9310 } 9311 9312 if (searchdirs != NULL) { 9313 umem_free(searchdirs, nsearch * sizeof (char *)); 9314 searchdirs = NULL; 9315 } 9316 9317 /* 9318 * We need to make sure to process -O option or call 9319 * dump_path after the -e option has been processed, 9320 * which imports the pool to the namespace if it's 9321 * not in the cachefile. 9322 */ 9323 if (dump_opt['O']) { 9324 if (argc != 2) 9325 usage(); 9326 dump_opt['v'] = verbose + 3; 9327 return (dump_path(argv[0], argv[1], NULL)); 9328 } 9329 9330 if (dump_opt['r']) { 9331 target_is_spa = B_FALSE; 9332 if (argc != 3) 9333 usage(); 9334 dump_opt['v'] = verbose; 9335 error = dump_path(argv[0], argv[1], &object); 9336 if (error != 0) 9337 fatal("internal error: %s", strerror(error)); 9338 } 9339 9340 /* 9341 * import_checkpointed_state makes the assumption that the 9342 * target pool that we pass it is already part of the spa 9343 * namespace. Because of that we need to make sure to call 9344 * it always after the -e option has been processed, which 9345 * imports the pool to the namespace if it's not in the 9346 * cachefile. 9347 */ 9348 char *checkpoint_pool = NULL; 9349 char *checkpoint_target = NULL; 9350 if (dump_opt['k']) { 9351 checkpoint_pool = import_checkpointed_state(target, cfg, 9352 &checkpoint_target); 9353 9354 if (checkpoint_target != NULL) 9355 target = checkpoint_target; 9356 } 9357 9358 if (cfg != NULL) { 9359 nvlist_free(cfg); 9360 cfg = NULL; 9361 } 9362 9363 if (target_pool != target) 9364 free(target_pool); 9365 9366 if (error == 0) { 9367 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9368 ASSERT(checkpoint_pool != NULL); 9369 ASSERT(checkpoint_target == NULL); 9370 9371 error = spa_open(checkpoint_pool, &spa, FTAG); 9372 if (error != 0) { 9373 fatal("Tried to open pool \"%s\" but " 9374 "spa_open() failed with error %d\n", 9375 checkpoint_pool, error); 9376 } 9377 9378 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9379 objset_id == 0) { 9380 zdb_set_skip_mmp(target); 9381 error = spa_open_rewind(target, &spa, FTAG, policy, 9382 NULL); 9383 if (error) { 9384 /* 9385 * If we're missing the log device then 9386 * try opening the pool after clearing the 9387 * log state. 9388 */ 9389 mutex_enter(&spa_namespace_lock); 9390 if ((spa = spa_lookup(target)) != NULL && 9391 spa->spa_log_state == SPA_LOG_MISSING) { 9392 spa->spa_log_state = SPA_LOG_CLEAR; 9393 error = 0; 9394 } 9395 mutex_exit(&spa_namespace_lock); 9396 9397 if (!error) { 9398 error = spa_open_rewind(target, &spa, 9399 FTAG, policy, NULL); 9400 } 9401 } 9402 } else if (strpbrk(target, "#") != NULL) { 9403 dsl_pool_t *dp; 9404 error = dsl_pool_hold(target, FTAG, &dp); 9405 if (error != 0) { 9406 fatal("can't dump '%s': %s", target, 9407 strerror(error)); 9408 } 9409 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9410 dsl_pool_rele(dp, FTAG); 9411 if (error != 0) { 9412 fatal("can't dump '%s': %s", target, 9413 strerror(error)); 9414 } 9415 return (error); 9416 } else { 9417 target_pool = strdup(target); 9418 if (strpbrk(target, "/@") != NULL) 9419 *strpbrk(target_pool, "/@") = '\0'; 9420 9421 zdb_set_skip_mmp(target); 9422 /* 9423 * If -N was supplied, the user has indicated that 9424 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9425 * we first assume that the dataset string is the 9426 * dataset name. If dmu_objset_hold fails with the 9427 * dataset string, and we have an objset_id, retry the 9428 * lookup with the objsetID. 9429 */ 9430 boolean_t retry = B_TRUE; 9431 retry_lookup: 9432 if (dataset_lookup == B_TRUE) { 9433 /* 9434 * Use the supplied id to get the name 9435 * for open_objset. 9436 */ 9437 error = spa_open(target_pool, &spa, FTAG); 9438 if (error == 0) { 9439 error = name_from_objset_id(spa, 9440 objset_id, dsname); 9441 spa_close(spa, FTAG); 9442 if (error == 0) 9443 target = dsname; 9444 } 9445 } 9446 if (error == 0) { 9447 if (objset_id > 0 && retry) { 9448 int err = dmu_objset_hold(target, FTAG, 9449 &os); 9450 if (err) { 9451 dataset_lookup = B_TRUE; 9452 retry = B_FALSE; 9453 goto retry_lookup; 9454 } else { 9455 dmu_objset_rele(os, FTAG); 9456 } 9457 } 9458 error = open_objset(target, FTAG, &os); 9459 } 9460 if (error == 0) 9461 spa = dmu_objset_spa(os); 9462 free(target_pool); 9463 } 9464 } 9465 nvlist_free(policy); 9466 9467 if (error) 9468 fatal("can't open '%s': %s", target, strerror(error)); 9469 9470 /* 9471 * Set the pool failure mode to panic in order to prevent the pool 9472 * from suspending. A suspended I/O will have no way to resume and 9473 * can prevent the zdb(8) command from terminating as expected. 9474 */ 9475 if (spa != NULL) 9476 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9477 9478 argv++; 9479 argc--; 9480 if (dump_opt['r']) { 9481 error = zdb_copy_object(os, object, argv[1]); 9482 } else if (!dump_opt['R']) { 9483 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9484 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9485 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9486 flagbits['z'] = ZOR_FLAG_ZAP; 9487 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9488 9489 if (argc > 0 && dump_opt['d']) { 9490 zopt_object_args = argc; 9491 zopt_object_ranges = calloc(zopt_object_args, 9492 sizeof (zopt_object_range_t)); 9493 for (unsigned i = 0; i < zopt_object_args; i++) { 9494 int err; 9495 const char *msg = NULL; 9496 9497 err = parse_object_range(argv[i], 9498 &zopt_object_ranges[i], &msg); 9499 if (err != 0) 9500 fatal("Bad object or range: '%s': %s\n", 9501 argv[i], msg ?: ""); 9502 } 9503 } else if (argc > 0 && dump_opt['m']) { 9504 zopt_metaslab_args = argc; 9505 zopt_metaslab = calloc(zopt_metaslab_args, 9506 sizeof (uint64_t)); 9507 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9508 errno = 0; 9509 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9510 if (zopt_metaslab[i] == 0 && errno != 0) 9511 fatal("bad number %s: %s", argv[i], 9512 strerror(errno)); 9513 } 9514 } 9515 if (dump_opt['B']) { 9516 dump_backup(target, objset_id, 9517 argc > 0 ? argv[0] : NULL); 9518 } else if (os != NULL) { 9519 dump_objset(os); 9520 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9521 dump_objset(spa->spa_meta_objset); 9522 } else { 9523 dump_zpool(spa); 9524 } 9525 } else { 9526 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9527 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9528 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9529 flagbits['e'] = ZDB_FLAG_BSWAP; 9530 flagbits['g'] = ZDB_FLAG_GBH; 9531 flagbits['i'] = ZDB_FLAG_INDIRECT; 9532 flagbits['r'] = ZDB_FLAG_RAW; 9533 flagbits['v'] = ZDB_FLAG_VERBOSE; 9534 9535 for (int i = 0; i < argc; i++) 9536 zdb_read_block(argv[i], spa); 9537 } 9538 9539 if (dump_opt['k']) { 9540 free(checkpoint_pool); 9541 if (!target_is_spa) 9542 free(checkpoint_target); 9543 } 9544 9545 if (os != NULL) { 9546 close_objset(os, FTAG); 9547 } else { 9548 spa_close(spa, FTAG); 9549 } 9550 9551 fuid_table_destroy(); 9552 9553 dump_debug_buffer(); 9554 9555 kernel_fini(); 9556 9557 return (error); 9558 } 9559