1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 */ 37 38 #include <stdio.h> 39 #include <unistd.h> 40 #include <stdlib.h> 41 #include <ctype.h> 42 #include <getopt.h> 43 #include <sys/zfs_context.h> 44 #include <sys/spa.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dmu.h> 47 #include <sys/zap.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/zfs_znode.h> 50 #include <sys/zfs_sa.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/vdev.h> 54 #include <sys/vdev_impl.h> 55 #include <sys/metaslab_impl.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_dataset.h> 59 #include <sys/dsl_pool.h> 60 #include <sys/dsl_bookmark.h> 61 #include <sys/dbuf.h> 62 #include <sys/zil.h> 63 #include <sys/zil_impl.h> 64 #include <sys/stat.h> 65 #include <sys/resource.h> 66 #include <sys/dmu_send.h> 67 #include <sys/dmu_traverse.h> 68 #include <sys/zio_checksum.h> 69 #include <sys/zio_compress.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/arc.h> 72 #include <sys/arc_impl.h> 73 #include <sys/ddt.h> 74 #include <sys/zfeature.h> 75 #include <sys/abd.h> 76 #include <sys/blkptr.h> 77 #include <sys/dsl_crypt.h> 78 #include <sys/dsl_scan.h> 79 #include <sys/btree.h> 80 #include <zfs_comutil.h> 81 #include <sys/zstd/zstd.h> 82 83 #include <libnvpair.h> 84 #include <libzutil.h> 85 86 #include "zdb.h" 87 88 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 89 zio_compress_table[(idx)].ci_name : "UNKNOWN") 90 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 91 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 92 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 93 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 94 DMU_OT_ZAP_OTHER : \ 95 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 96 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 97 98 /* Some platforms require part of inode IDs to be remapped */ 99 #ifdef __APPLE__ 100 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2) 101 #else 102 #define ZDB_MAP_OBJECT_ID(obj) (obj) 103 #endif 104 105 static const char * 106 zdb_ot_name(dmu_object_type_t type) 107 { 108 if (type < DMU_OT_NUMTYPES) 109 return (dmu_ot[type].ot_name); 110 else if ((type & DMU_OT_NEWTYPE) && 111 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 112 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 113 else 114 return ("UNKNOWN"); 115 } 116 117 extern int reference_tracking_enable; 118 extern int zfs_recover; 119 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit; 120 extern uint_t zfs_vdev_async_read_max_active; 121 extern boolean_t spa_load_verify_dryrun; 122 extern boolean_t spa_mode_readable_spacemaps; 123 extern uint_t zfs_reconstruct_indirect_combinations_max; 124 extern uint_t zfs_btree_verify_intensity; 125 126 static const char cmdname[] = "zdb"; 127 uint8_t dump_opt[256]; 128 129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 130 131 static uint64_t *zopt_metaslab = NULL; 132 static unsigned zopt_metaslab_args = 0; 133 134 typedef struct zopt_object_range { 135 uint64_t zor_obj_start; 136 uint64_t zor_obj_end; 137 uint64_t zor_flags; 138 } zopt_object_range_t; 139 140 static zopt_object_range_t *zopt_object_ranges = NULL; 141 static unsigned zopt_object_args = 0; 142 143 static int flagbits[256]; 144 145 #define ZOR_FLAG_PLAIN_FILE 0x0001 146 #define ZOR_FLAG_DIRECTORY 0x0002 147 #define ZOR_FLAG_SPACE_MAP 0x0004 148 #define ZOR_FLAG_ZAP 0x0008 149 #define ZOR_FLAG_ALL_TYPES -1 150 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 151 ZOR_FLAG_DIRECTORY | \ 152 ZOR_FLAG_SPACE_MAP | \ 153 ZOR_FLAG_ZAP) 154 155 #define ZDB_FLAG_CHECKSUM 0x0001 156 #define ZDB_FLAG_DECOMPRESS 0x0002 157 #define ZDB_FLAG_BSWAP 0x0004 158 #define ZDB_FLAG_GBH 0x0008 159 #define ZDB_FLAG_INDIRECT 0x0010 160 #define ZDB_FLAG_RAW 0x0020 161 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 162 #define ZDB_FLAG_VERBOSE 0x0080 163 164 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 165 static int leaked_objects = 0; 166 static range_tree_t *mos_refd_objs; 167 168 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 169 boolean_t); 170 static void mos_obj_refd(uint64_t); 171 static void mos_obj_refd_multiple(uint64_t); 172 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 173 dmu_tx_t *tx); 174 175 typedef struct sublivelist_verify { 176 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 177 zfs_btree_t sv_pair; 178 179 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 180 zfs_btree_t sv_leftover; 181 } sublivelist_verify_t; 182 183 static int 184 livelist_compare(const void *larg, const void *rarg) 185 { 186 const blkptr_t *l = larg; 187 const blkptr_t *r = rarg; 188 189 /* Sort them according to dva[0] */ 190 uint64_t l_dva0_vdev, r_dva0_vdev; 191 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 192 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 193 if (l_dva0_vdev < r_dva0_vdev) 194 return (-1); 195 else if (l_dva0_vdev > r_dva0_vdev) 196 return (+1); 197 198 /* if vdevs are equal, sort by offsets. */ 199 uint64_t l_dva0_offset; 200 uint64_t r_dva0_offset; 201 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 202 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 203 if (l_dva0_offset < r_dva0_offset) { 204 return (-1); 205 } else if (l_dva0_offset > r_dva0_offset) { 206 return (+1); 207 } 208 209 /* 210 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 211 * it's possible the offsets are equal. In that case, sort by txg 212 */ 213 if (l->blk_birth < r->blk_birth) { 214 return (-1); 215 } else if (l->blk_birth > r->blk_birth) { 216 return (+1); 217 } 218 return (0); 219 } 220 221 typedef struct sublivelist_verify_block { 222 dva_t svb_dva; 223 224 /* 225 * We need this to check if the block marked as allocated 226 * in the livelist was freed (and potentially reallocated) 227 * in the metaslab spacemaps at a later TXG. 228 */ 229 uint64_t svb_allocated_txg; 230 } sublivelist_verify_block_t; 231 232 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 233 234 typedef struct sublivelist_verify_block_refcnt { 235 /* block pointer entry in livelist being verified */ 236 blkptr_t svbr_blk; 237 238 /* 239 * Refcount gets incremented to 1 when we encounter the first 240 * FREE entry for the svfbr block pointer and a node for it 241 * is created in our ZDB verification/tracking metadata. 242 * 243 * As we encounter more FREE entries we increment this counter 244 * and similarly decrement it whenever we find the respective 245 * ALLOC entries for this block. 246 * 247 * When the refcount gets to 0 it means that all the FREE and 248 * ALLOC entries of this block have paired up and we no longer 249 * need to track it in our verification logic (e.g. the node 250 * containing this struct in our verification data structure 251 * should be freed). 252 * 253 * [refer to sublivelist_verify_blkptr() for the actual code] 254 */ 255 uint32_t svbr_refcnt; 256 } sublivelist_verify_block_refcnt_t; 257 258 static int 259 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_refcnt_t *l = larg; 262 const sublivelist_verify_block_refcnt_t *r = rarg; 263 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 264 } 265 266 static int 267 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 268 dmu_tx_t *tx) 269 { 270 ASSERT3P(tx, ==, NULL); 271 struct sublivelist_verify *sv = arg; 272 sublivelist_verify_block_refcnt_t current = { 273 .svbr_blk = *bp, 274 275 /* 276 * Start with 1 in case this is the first free entry. 277 * This field is not used for our B-Tree comparisons 278 * anyway. 279 */ 280 .svbr_refcnt = 1, 281 }; 282 283 zfs_btree_index_t where; 284 sublivelist_verify_block_refcnt_t *pair = 285 zfs_btree_find(&sv->sv_pair, ¤t, &where); 286 if (free) { 287 if (pair == NULL) { 288 /* first free entry for this block pointer */ 289 zfs_btree_add(&sv->sv_pair, ¤t); 290 } else { 291 pair->svbr_refcnt++; 292 } 293 } else { 294 if (pair == NULL) { 295 /* block that is currently marked as allocated */ 296 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 297 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 298 break; 299 sublivelist_verify_block_t svb = { 300 .svb_dva = bp->blk_dva[i], 301 .svb_allocated_txg = bp->blk_birth 302 }; 303 304 if (zfs_btree_find(&sv->sv_leftover, &svb, 305 &where) == NULL) { 306 zfs_btree_add_idx(&sv->sv_leftover, 307 &svb, &where); 308 } 309 } 310 } else { 311 /* alloc matches a free entry */ 312 pair->svbr_refcnt--; 313 if (pair->svbr_refcnt == 0) { 314 /* all allocs and frees have been matched */ 315 zfs_btree_remove_idx(&sv->sv_pair, &where); 316 } 317 } 318 } 319 320 return (0); 321 } 322 323 static int 324 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 325 { 326 int err; 327 struct sublivelist_verify *sv = args; 328 329 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, 330 sizeof (sublivelist_verify_block_refcnt_t)); 331 332 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 333 sv, NULL); 334 335 sublivelist_verify_block_refcnt_t *e; 336 zfs_btree_index_t *cookie = NULL; 337 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 338 char blkbuf[BP_SPRINTF_LEN]; 339 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 340 &e->svbr_blk, B_TRUE); 341 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 342 e->svbr_refcnt, blkbuf); 343 } 344 zfs_btree_destroy(&sv->sv_pair); 345 346 return (err); 347 } 348 349 static int 350 livelist_block_compare(const void *larg, const void *rarg) 351 { 352 const sublivelist_verify_block_t *l = larg; 353 const sublivelist_verify_block_t *r = rarg; 354 355 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 356 return (-1); 357 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 358 return (+1); 359 360 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 361 return (-1); 362 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 363 return (+1); 364 365 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 366 return (-1); 367 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 368 return (+1); 369 370 return (0); 371 } 372 373 /* 374 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 375 * sublivelist_verify_t: sv->sv_leftover 376 */ 377 static void 378 livelist_verify(dsl_deadlist_t *dl, void *arg) 379 { 380 sublivelist_verify_t *sv = arg; 381 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 382 } 383 384 /* 385 * Check for errors in the livelist entry and discard the intermediary 386 * data structures 387 */ 388 static int 389 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 390 { 391 (void) args; 392 sublivelist_verify_t sv; 393 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 394 sizeof (sublivelist_verify_block_t)); 395 int err = sublivelist_verify_func(&sv, dle); 396 zfs_btree_clear(&sv.sv_leftover); 397 zfs_btree_destroy(&sv.sv_leftover); 398 return (err); 399 } 400 401 typedef struct metaslab_verify { 402 /* 403 * Tree containing all the leftover ALLOCs from the livelists 404 * that are part of this metaslab. 405 */ 406 zfs_btree_t mv_livelist_allocs; 407 408 /* 409 * Metaslab information. 410 */ 411 uint64_t mv_vdid; 412 uint64_t mv_msid; 413 uint64_t mv_start; 414 uint64_t mv_end; 415 416 /* 417 * What's currently allocated for this metaslab. 418 */ 419 range_tree_t *mv_allocated; 420 } metaslab_verify_t; 421 422 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 423 424 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 425 void *arg); 426 427 typedef struct unflushed_iter_cb_arg { 428 spa_t *uic_spa; 429 uint64_t uic_txg; 430 void *uic_arg; 431 zdb_log_sm_cb_t uic_cb; 432 } unflushed_iter_cb_arg_t; 433 434 static int 435 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 436 { 437 unflushed_iter_cb_arg_t *uic = arg; 438 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 439 } 440 441 static void 442 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 443 { 444 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 445 return; 446 447 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 448 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 449 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 450 space_map_t *sm = NULL; 451 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 452 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 453 454 unflushed_iter_cb_arg_t uic = { 455 .uic_spa = spa, 456 .uic_txg = sls->sls_txg, 457 .uic_arg = arg, 458 .uic_cb = cb 459 }; 460 VERIFY0(space_map_iterate(sm, space_map_length(sm), 461 iterate_through_spacemap_logs_cb, &uic)); 462 space_map_close(sm); 463 } 464 spa_config_exit(spa, SCL_CONFIG, FTAG); 465 } 466 467 static void 468 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 469 uint64_t offset, uint64_t size) 470 { 471 sublivelist_verify_block_t svb = {{{0}}}; 472 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 473 DVA_SET_OFFSET(&svb.svb_dva, offset); 474 DVA_SET_ASIZE(&svb.svb_dva, size); 475 zfs_btree_index_t where; 476 uint64_t end_offset = offset + size; 477 478 /* 479 * Look for an exact match for spacemap entry in the livelist entries. 480 * Then, look for other livelist entries that fall within the range 481 * of the spacemap entry as it may have been condensed 482 */ 483 sublivelist_verify_block_t *found = 484 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 485 if (found == NULL) { 486 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 487 } 488 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 489 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 490 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 491 if (found->svb_allocated_txg <= txg) { 492 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 493 "from TXG %llx FREED at TXG %llx\n", 494 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 495 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 496 (u_longlong_t)found->svb_allocated_txg, 497 (u_longlong_t)txg); 498 } 499 } 500 } 501 502 static int 503 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 504 { 505 metaslab_verify_t *mv = arg; 506 uint64_t offset = sme->sme_offset; 507 uint64_t size = sme->sme_run; 508 uint64_t txg = sme->sme_txg; 509 510 if (sme->sme_type == SM_ALLOC) { 511 if (range_tree_contains(mv->mv_allocated, 512 offset, size)) { 513 (void) printf("ERROR: DOUBLE ALLOC: " 514 "%llu [%llx:%llx] " 515 "%llu:%llu LOG_SM\n", 516 (u_longlong_t)txg, (u_longlong_t)offset, 517 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 518 (u_longlong_t)mv->mv_msid); 519 } else { 520 range_tree_add(mv->mv_allocated, 521 offset, size); 522 } 523 } else { 524 if (!range_tree_contains(mv->mv_allocated, 525 offset, size)) { 526 (void) printf("ERROR: DOUBLE FREE: " 527 "%llu [%llx:%llx] " 528 "%llu:%llu LOG_SM\n", 529 (u_longlong_t)txg, (u_longlong_t)offset, 530 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 531 (u_longlong_t)mv->mv_msid); 532 } else { 533 range_tree_remove(mv->mv_allocated, 534 offset, size); 535 } 536 } 537 538 if (sme->sme_type != SM_ALLOC) { 539 /* 540 * If something is freed in the spacemap, verify that 541 * it is not listed as allocated in the livelist. 542 */ 543 verify_livelist_allocs(mv, txg, offset, size); 544 } 545 return (0); 546 } 547 548 static int 549 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 550 uint64_t txg, void *arg) 551 { 552 metaslab_verify_t *mv = arg; 553 uint64_t offset = sme->sme_offset; 554 uint64_t vdev_id = sme->sme_vdev; 555 556 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 557 558 /* skip indirect vdevs */ 559 if (!vdev_is_concrete(vd)) 560 return (0); 561 562 if (vdev_id != mv->mv_vdid) 563 return (0); 564 565 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 566 if (ms->ms_id != mv->mv_msid) 567 return (0); 568 569 if (txg < metaslab_unflushed_txg(ms)) 570 return (0); 571 572 573 ASSERT3U(txg, ==, sme->sme_txg); 574 return (metaslab_spacemap_validation_cb(sme, mv)); 575 } 576 577 static void 578 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 579 { 580 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 581 } 582 583 static void 584 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 585 { 586 if (sm == NULL) 587 return; 588 589 VERIFY0(space_map_iterate(sm, space_map_length(sm), 590 metaslab_spacemap_validation_cb, mv)); 591 } 592 593 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 594 595 /* 596 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 597 * they are part of that metaslab (mv_msid). 598 */ 599 static void 600 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 601 { 602 zfs_btree_index_t where; 603 sublivelist_verify_block_t *svb; 604 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 605 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 606 svb != NULL; 607 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 608 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 609 continue; 610 611 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 612 (DVA_GET_OFFSET(&svb->svb_dva) + 613 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 614 (void) printf("ERROR: Found block that crosses " 615 "metaslab boundary: <%llu:%llx:%llx>\n", 616 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 617 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 618 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 619 continue; 620 } 621 622 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 623 continue; 624 625 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 626 continue; 627 628 if ((DVA_GET_OFFSET(&svb->svb_dva) + 629 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 630 (void) printf("ERROR: Found block that crosses " 631 "metaslab boundary: <%llu:%llx:%llx>\n", 632 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 633 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 634 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 635 continue; 636 } 637 638 zfs_btree_add(&mv->mv_livelist_allocs, svb); 639 } 640 641 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 642 svb != NULL; 643 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 644 zfs_btree_remove(&sv->sv_leftover, svb); 645 } 646 } 647 648 /* 649 * [Livelist Check] 650 * Iterate through all the sublivelists and: 651 * - report leftover frees (**) 652 * - record leftover ALLOCs together with their TXG [see Cross Check] 653 * 654 * (**) Note: Double ALLOCs are valid in datasets that have dedup 655 * enabled. Similarly double FREEs are allowed as well but 656 * only if they pair up with a corresponding ALLOC entry once 657 * we our done with our sublivelist iteration. 658 * 659 * [Spacemap Check] 660 * for each metaslab: 661 * - iterate over spacemap and then the metaslab's entries in the 662 * spacemap log, then report any double FREEs and ALLOCs (do not 663 * blow up). 664 * 665 * [Cross Check] 666 * After finishing the Livelist Check phase and while being in the 667 * Spacemap Check phase, we find all the recorded leftover ALLOCs 668 * of the livelist check that are part of the metaslab that we are 669 * currently looking at in the Spacemap Check. We report any entries 670 * that are marked as ALLOCs in the livelists but have been actually 671 * freed (and potentially allocated again) after their TXG stamp in 672 * the spacemaps. Also report any ALLOCs from the livelists that 673 * belong to indirect vdevs (e.g. their vdev completed removal). 674 * 675 * Note that this will miss Log Spacemap entries that cancelled each other 676 * out before being flushed to the metaslab, so we are not guaranteed 677 * to match all erroneous ALLOCs. 678 */ 679 static void 680 livelist_metaslab_validate(spa_t *spa) 681 { 682 (void) printf("Verifying deleted livelist entries\n"); 683 684 sublivelist_verify_t sv; 685 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 686 sizeof (sublivelist_verify_block_t)); 687 iterate_deleted_livelists(spa, livelist_verify, &sv); 688 689 (void) printf("Verifying metaslab entries\n"); 690 vdev_t *rvd = spa->spa_root_vdev; 691 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 692 vdev_t *vd = rvd->vdev_child[c]; 693 694 if (!vdev_is_concrete(vd)) 695 continue; 696 697 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 698 metaslab_t *m = vd->vdev_ms[mid]; 699 700 (void) fprintf(stderr, 701 "\rverifying concrete vdev %llu, " 702 "metaslab %llu of %llu ...", 703 (longlong_t)vd->vdev_id, 704 (longlong_t)mid, 705 (longlong_t)vd->vdev_ms_count); 706 707 uint64_t shift, start; 708 range_seg_type_t type = 709 metaslab_calculate_range_tree_type(vd, m, 710 &start, &shift); 711 metaslab_verify_t mv; 712 mv.mv_allocated = range_tree_create(NULL, 713 type, NULL, start, shift); 714 mv.mv_vdid = vd->vdev_id; 715 mv.mv_msid = m->ms_id; 716 mv.mv_start = m->ms_start; 717 mv.mv_end = m->ms_start + m->ms_size; 718 zfs_btree_create(&mv.mv_livelist_allocs, 719 livelist_block_compare, 720 sizeof (sublivelist_verify_block_t)); 721 722 mv_populate_livelist_allocs(&mv, &sv); 723 724 spacemap_check_ms_sm(m->ms_sm, &mv); 725 spacemap_check_sm_log(spa, &mv); 726 727 range_tree_vacate(mv.mv_allocated, NULL, NULL); 728 range_tree_destroy(mv.mv_allocated); 729 zfs_btree_clear(&mv.mv_livelist_allocs); 730 zfs_btree_destroy(&mv.mv_livelist_allocs); 731 } 732 } 733 (void) fprintf(stderr, "\n"); 734 735 /* 736 * If there are any segments in the leftover tree after we walked 737 * through all the metaslabs in the concrete vdevs then this means 738 * that we have segments in the livelists that belong to indirect 739 * vdevs and are marked as allocated. 740 */ 741 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 742 zfs_btree_destroy(&sv.sv_leftover); 743 return; 744 } 745 (void) printf("ERROR: Found livelist blocks marked as allocated " 746 "for indirect vdevs:\n"); 747 748 zfs_btree_index_t *where = NULL; 749 sublivelist_verify_block_t *svb; 750 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 751 NULL) { 752 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 753 ASSERT3U(vdev_id, <, rvd->vdev_children); 754 vdev_t *vd = rvd->vdev_child[vdev_id]; 755 ASSERT(!vdev_is_concrete(vd)); 756 (void) printf("<%d:%llx:%llx> TXG %llx\n", 757 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 758 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 759 (u_longlong_t)svb->svb_allocated_txg); 760 } 761 (void) printf("\n"); 762 zfs_btree_destroy(&sv.sv_leftover); 763 } 764 765 /* 766 * These libumem hooks provide a reasonable set of defaults for the allocator's 767 * debugging facilities. 768 */ 769 const char * 770 _umem_debug_init(void) 771 { 772 return ("default,verbose"); /* $UMEM_DEBUG setting */ 773 } 774 775 const char * 776 _umem_logging_init(void) 777 { 778 return ("fail,contents"); /* $UMEM_LOGGING setting */ 779 } 780 781 static void 782 usage(void) 783 { 784 (void) fprintf(stderr, 785 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 786 "[-I <inflight I/Os>]\n" 787 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 788 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 789 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 790 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 791 "\t%s [-v] <bookmark>\n" 792 "\t%s -C [-A] [-U <cache>]\n" 793 "\t%s -l [-Aqu] <device>\n" 794 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 795 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 796 "\t%s -O <dataset> <path>\n" 797 "\t%s -r <dataset> <path> <destination>\n" 798 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 799 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 800 "\t%s -E [-A] word0:word1:...:word15\n" 801 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 802 "<poolname>\n\n", 803 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 804 cmdname, cmdname, cmdname, cmdname); 805 806 (void) fprintf(stderr, " Dataset name must include at least one " 807 "separator character '/' or '@'\n"); 808 (void) fprintf(stderr, " If dataset name is specified, only that " 809 "dataset is dumped\n"); 810 (void) fprintf(stderr, " If object numbers or object number " 811 "ranges are specified, only those\n" 812 " objects or ranges are dumped.\n\n"); 813 (void) fprintf(stderr, 814 " Object ranges take the form <start>:<end>[:<flags>]\n" 815 " start Starting object number\n" 816 " end Ending object number, or -1 for no upper bound\n" 817 " flags Optional flags to select object types:\n" 818 " A All objects (this is the default)\n" 819 " d ZFS directories\n" 820 " f ZFS files \n" 821 " m SPA space maps\n" 822 " z ZAPs\n" 823 " - Negate effect of next flag\n\n"); 824 (void) fprintf(stderr, " Options to control amount of output:\n"); 825 (void) fprintf(stderr, " -b --block-stats " 826 "block statistics\n"); 827 (void) fprintf(stderr, " -c --checksum " 828 "checksum all metadata (twice for all data) blocks\n"); 829 (void) fprintf(stderr, " -C --config " 830 "config (or cachefile if alone)\n"); 831 (void) fprintf(stderr, " -d --datasets " 832 "dataset(s)\n"); 833 (void) fprintf(stderr, " -D --dedup-stats " 834 "dedup statistics\n"); 835 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 836 " decode and display block " 837 "from an embedded block pointer\n"); 838 (void) fprintf(stderr, " -h --history " 839 "pool history\n"); 840 (void) fprintf(stderr, " -i --intent-logs " 841 "intent logs\n"); 842 (void) fprintf(stderr, " -l --label " 843 "read label contents\n"); 844 (void) fprintf(stderr, " -k --checkpointed-state " 845 "examine the checkpointed state of the pool\n"); 846 (void) fprintf(stderr, " -L --disable-leak-tracking " 847 "disable leak tracking (do not load spacemaps)\n"); 848 (void) fprintf(stderr, " -m --metaslabs " 849 "metaslabs\n"); 850 (void) fprintf(stderr, " -M --metaslab-groups " 851 "metaslab groups\n"); 852 (void) fprintf(stderr, " -O --object-lookups " 853 "perform object lookups by path\n"); 854 (void) fprintf(stderr, " -r --copy-object " 855 "copy an object by path to file\n"); 856 (void) fprintf(stderr, " -R --read-block " 857 "read and display block from a device\n"); 858 (void) fprintf(stderr, " -s --io-stats " 859 "report stats on zdb's I/O\n"); 860 (void) fprintf(stderr, " -S --simulate-dedup " 861 "simulate dedup to measure effect\n"); 862 (void) fprintf(stderr, " -v --verbose " 863 "verbose (applies to all others)\n"); 864 (void) fprintf(stderr, " -y --livelist " 865 "perform livelist and metaslab validation on any livelists being " 866 "deleted\n\n"); 867 (void) fprintf(stderr, " Below options are intended for use " 868 "with other options:\n"); 869 (void) fprintf(stderr, " -A --ignore-assertions " 870 "ignore assertions (-A), enable panic recovery (-AA) or both " 871 "(-AAA)\n"); 872 (void) fprintf(stderr, " -e --exported " 873 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 874 (void) fprintf(stderr, " -F --automatic-rewind " 875 "attempt automatic rewind within safe range of transaction " 876 "groups\n"); 877 (void) fprintf(stderr, " -G --dump-debug-msg " 878 "dump zfs_dbgmsg buffer before exiting\n"); 879 (void) fprintf(stderr, " -I --inflight=INTEGER " 880 "specify the maximum number of checksumming I/Os " 881 "[default is 200]\n"); 882 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 883 "set global variable to an unsigned 32-bit integer\n"); 884 (void) fprintf(stderr, " -p --path==PATH " 885 "use one or more with -e to specify path to vdev dir\n"); 886 (void) fprintf(stderr, " -P --parseable " 887 "print numbers in parseable form\n"); 888 (void) fprintf(stderr, " -q --skip-label " 889 "don't print label contents\n"); 890 (void) fprintf(stderr, " -t --txg=INTEGER " 891 "highest txg to use when searching for uberblocks\n"); 892 (void) fprintf(stderr, " -u --uberblock " 893 "uberblock\n"); 894 (void) fprintf(stderr, " -U --cachefile=PATH " 895 "use alternate cachefile\n"); 896 (void) fprintf(stderr, " -V --verbatim " 897 "do verbatim import\n"); 898 (void) fprintf(stderr, " -x --dump-blocks=PATH " 899 "dump all read blocks into specified directory\n"); 900 (void) fprintf(stderr, " -X --extreme-rewind " 901 "attempt extreme rewind (does not work with dataset)\n"); 902 (void) fprintf(stderr, " -Y --all-reconstruction " 903 "attempt all reconstruction combinations for split blocks\n"); 904 (void) fprintf(stderr, " -Z --zstd-headers " 905 "show ZSTD headers \n"); 906 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 907 "to make only that option verbose\n"); 908 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 909 exit(1); 910 } 911 912 static void 913 dump_debug_buffer(void) 914 { 915 if (dump_opt['G']) { 916 (void) printf("\n"); 917 (void) fflush(stdout); 918 zfs_dbgmsg_print("zdb"); 919 } 920 } 921 922 /* 923 * Called for usage errors that are discovered after a call to spa_open(), 924 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 925 */ 926 927 static void 928 fatal(const char *fmt, ...) 929 { 930 va_list ap; 931 932 va_start(ap, fmt); 933 (void) fprintf(stderr, "%s: ", cmdname); 934 (void) vfprintf(stderr, fmt, ap); 935 va_end(ap); 936 (void) fprintf(stderr, "\n"); 937 938 dump_debug_buffer(); 939 940 exit(1); 941 } 942 943 static void 944 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 945 { 946 (void) size; 947 nvlist_t *nv; 948 size_t nvsize = *(uint64_t *)data; 949 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 950 951 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 952 953 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 954 955 umem_free(packed, nvsize); 956 957 dump_nvlist(nv, 8); 958 959 nvlist_free(nv); 960 } 961 962 static void 963 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 964 { 965 (void) os, (void) object, (void) size; 966 spa_history_phys_t *shp = data; 967 968 if (shp == NULL) 969 return; 970 971 (void) printf("\t\tpool_create_len = %llu\n", 972 (u_longlong_t)shp->sh_pool_create_len); 973 (void) printf("\t\tphys_max_off = %llu\n", 974 (u_longlong_t)shp->sh_phys_max_off); 975 (void) printf("\t\tbof = %llu\n", 976 (u_longlong_t)shp->sh_bof); 977 (void) printf("\t\teof = %llu\n", 978 (u_longlong_t)shp->sh_eof); 979 (void) printf("\t\trecords_lost = %llu\n", 980 (u_longlong_t)shp->sh_records_lost); 981 } 982 983 static void 984 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 985 { 986 if (dump_opt['P']) 987 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 988 else 989 nicenum(num, buf, buflen); 990 } 991 992 static const char histo_stars[] = "****************************************"; 993 static const uint64_t histo_width = sizeof (histo_stars) - 1; 994 995 static void 996 dump_histogram(const uint64_t *histo, int size, int offset) 997 { 998 int i; 999 int minidx = size - 1; 1000 int maxidx = 0; 1001 uint64_t max = 0; 1002 1003 for (i = 0; i < size; i++) { 1004 if (histo[i] > max) 1005 max = histo[i]; 1006 if (histo[i] > 0 && i > maxidx) 1007 maxidx = i; 1008 if (histo[i] > 0 && i < minidx) 1009 minidx = i; 1010 } 1011 1012 if (max < histo_width) 1013 max = histo_width; 1014 1015 for (i = minidx; i <= maxidx; i++) { 1016 (void) printf("\t\t\t%3u: %6llu %s\n", 1017 i + offset, (u_longlong_t)histo[i], 1018 &histo_stars[(max - histo[i]) * histo_width / max]); 1019 } 1020 } 1021 1022 static void 1023 dump_zap_stats(objset_t *os, uint64_t object) 1024 { 1025 int error; 1026 zap_stats_t zs; 1027 1028 error = zap_get_stats(os, object, &zs); 1029 if (error) 1030 return; 1031 1032 if (zs.zs_ptrtbl_len == 0) { 1033 ASSERT(zs.zs_num_blocks == 1); 1034 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 1035 (u_longlong_t)zs.zs_blocksize, 1036 (u_longlong_t)zs.zs_num_entries); 1037 return; 1038 } 1039 1040 (void) printf("\tFat ZAP stats:\n"); 1041 1042 (void) printf("\t\tPointer table:\n"); 1043 (void) printf("\t\t\t%llu elements\n", 1044 (u_longlong_t)zs.zs_ptrtbl_len); 1045 (void) printf("\t\t\tzt_blk: %llu\n", 1046 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1047 (void) printf("\t\t\tzt_numblks: %llu\n", 1048 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1049 (void) printf("\t\t\tzt_shift: %llu\n", 1050 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1051 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1052 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1053 (void) printf("\t\t\tzt_nextblk: %llu\n", 1054 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1055 1056 (void) printf("\t\tZAP entries: %llu\n", 1057 (u_longlong_t)zs.zs_num_entries); 1058 (void) printf("\t\tLeaf blocks: %llu\n", 1059 (u_longlong_t)zs.zs_num_leafs); 1060 (void) printf("\t\tTotal blocks: %llu\n", 1061 (u_longlong_t)zs.zs_num_blocks); 1062 (void) printf("\t\tzap_block_type: 0x%llx\n", 1063 (u_longlong_t)zs.zs_block_type); 1064 (void) printf("\t\tzap_magic: 0x%llx\n", 1065 (u_longlong_t)zs.zs_magic); 1066 (void) printf("\t\tzap_salt: 0x%llx\n", 1067 (u_longlong_t)zs.zs_salt); 1068 1069 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1070 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1071 1072 (void) printf("\t\tBlocks with n*5 entries:\n"); 1073 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1074 1075 (void) printf("\t\tBlocks n/10 full:\n"); 1076 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1077 1078 (void) printf("\t\tEntries with n chunks:\n"); 1079 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1080 1081 (void) printf("\t\tBuckets with n entries:\n"); 1082 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1083 } 1084 1085 static void 1086 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1087 { 1088 (void) os, (void) object, (void) data, (void) size; 1089 } 1090 1091 static void 1092 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1093 { 1094 (void) os, (void) object, (void) data, (void) size; 1095 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1096 } 1097 1098 static void 1099 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1100 { 1101 (void) os, (void) object, (void) data, (void) size; 1102 } 1103 1104 static void 1105 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1106 { 1107 uint64_t *arr; 1108 uint64_t oursize; 1109 if (dump_opt['d'] < 6) 1110 return; 1111 1112 if (data == NULL) { 1113 dmu_object_info_t doi; 1114 1115 VERIFY0(dmu_object_info(os, object, &doi)); 1116 size = doi.doi_max_offset; 1117 /* 1118 * We cap the size at 1 mebibyte here to prevent 1119 * allocation failures and nigh-infinite printing if the 1120 * object is extremely large. 1121 */ 1122 oursize = MIN(size, 1 << 20); 1123 arr = kmem_alloc(oursize, KM_SLEEP); 1124 1125 int err = dmu_read(os, object, 0, oursize, arr, 0); 1126 if (err != 0) { 1127 (void) printf("got error %u from dmu_read\n", err); 1128 kmem_free(arr, oursize); 1129 return; 1130 } 1131 } else { 1132 /* 1133 * Even though the allocation is already done in this code path, 1134 * we still cap the size to prevent excessive printing. 1135 */ 1136 oursize = MIN(size, 1 << 20); 1137 arr = data; 1138 } 1139 1140 if (size == 0) { 1141 if (data == NULL) 1142 kmem_free(arr, oursize); 1143 (void) printf("\t\t[]\n"); 1144 return; 1145 } 1146 1147 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1148 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1149 if (i % 4 != 0) 1150 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1151 else 1152 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1153 } 1154 if (oursize != size) 1155 (void) printf(", ... "); 1156 (void) printf("]\n"); 1157 1158 if (data == NULL) 1159 kmem_free(arr, oursize); 1160 } 1161 1162 static void 1163 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1164 { 1165 (void) data, (void) size; 1166 zap_cursor_t zc; 1167 zap_attribute_t attr; 1168 void *prop; 1169 unsigned i; 1170 1171 dump_zap_stats(os, object); 1172 (void) printf("\n"); 1173 1174 for (zap_cursor_init(&zc, os, object); 1175 zap_cursor_retrieve(&zc, &attr) == 0; 1176 zap_cursor_advance(&zc)) { 1177 (void) printf("\t\t%s = ", attr.za_name); 1178 if (attr.za_num_integers == 0) { 1179 (void) printf("\n"); 1180 continue; 1181 } 1182 prop = umem_zalloc(attr.za_num_integers * 1183 attr.za_integer_length, UMEM_NOFAIL); 1184 (void) zap_lookup(os, object, attr.za_name, 1185 attr.za_integer_length, attr.za_num_integers, prop); 1186 if (attr.za_integer_length == 1) { 1187 if (strcmp(attr.za_name, 1188 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1189 strcmp(attr.za_name, 1190 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1191 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1192 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1193 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1194 uint8_t *u8 = prop; 1195 1196 for (i = 0; i < attr.za_num_integers; i++) { 1197 (void) printf("%02x", u8[i]); 1198 } 1199 } else { 1200 (void) printf("%s", (char *)prop); 1201 } 1202 } else { 1203 for (i = 0; i < attr.za_num_integers; i++) { 1204 switch (attr.za_integer_length) { 1205 case 2: 1206 (void) printf("%u ", 1207 ((uint16_t *)prop)[i]); 1208 break; 1209 case 4: 1210 (void) printf("%u ", 1211 ((uint32_t *)prop)[i]); 1212 break; 1213 case 8: 1214 (void) printf("%lld ", 1215 (u_longlong_t)((int64_t *)prop)[i]); 1216 break; 1217 } 1218 } 1219 } 1220 (void) printf("\n"); 1221 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1222 } 1223 zap_cursor_fini(&zc); 1224 } 1225 1226 static void 1227 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1228 { 1229 bpobj_phys_t *bpop = data; 1230 uint64_t i; 1231 char bytes[32], comp[32], uncomp[32]; 1232 1233 /* make sure the output won't get truncated */ 1234 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1235 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1236 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1237 1238 if (bpop == NULL) 1239 return; 1240 1241 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1242 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1243 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1244 1245 (void) printf("\t\tnum_blkptrs = %llu\n", 1246 (u_longlong_t)bpop->bpo_num_blkptrs); 1247 (void) printf("\t\tbytes = %s\n", bytes); 1248 if (size >= BPOBJ_SIZE_V1) { 1249 (void) printf("\t\tcomp = %s\n", comp); 1250 (void) printf("\t\tuncomp = %s\n", uncomp); 1251 } 1252 if (size >= BPOBJ_SIZE_V2) { 1253 (void) printf("\t\tsubobjs = %llu\n", 1254 (u_longlong_t)bpop->bpo_subobjs); 1255 (void) printf("\t\tnum_subobjs = %llu\n", 1256 (u_longlong_t)bpop->bpo_num_subobjs); 1257 } 1258 if (size >= sizeof (*bpop)) { 1259 (void) printf("\t\tnum_freed = %llu\n", 1260 (u_longlong_t)bpop->bpo_num_freed); 1261 } 1262 1263 if (dump_opt['d'] < 5) 1264 return; 1265 1266 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1267 char blkbuf[BP_SPRINTF_LEN]; 1268 blkptr_t bp; 1269 1270 int err = dmu_read(os, object, 1271 i * sizeof (bp), sizeof (bp), &bp, 0); 1272 if (err != 0) { 1273 (void) printf("got error %u from dmu_read\n", err); 1274 break; 1275 } 1276 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1277 BP_GET_FREE(&bp)); 1278 (void) printf("\t%s\n", blkbuf); 1279 } 1280 } 1281 1282 static void 1283 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1284 { 1285 (void) data, (void) size; 1286 dmu_object_info_t doi; 1287 int64_t i; 1288 1289 VERIFY0(dmu_object_info(os, object, &doi)); 1290 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1291 1292 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1293 if (err != 0) { 1294 (void) printf("got error %u from dmu_read\n", err); 1295 kmem_free(subobjs, doi.doi_max_offset); 1296 return; 1297 } 1298 1299 int64_t last_nonzero = -1; 1300 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1301 if (subobjs[i] != 0) 1302 last_nonzero = i; 1303 } 1304 1305 for (i = 0; i <= last_nonzero; i++) { 1306 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1307 } 1308 kmem_free(subobjs, doi.doi_max_offset); 1309 } 1310 1311 static void 1312 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1313 { 1314 (void) data, (void) size; 1315 dump_zap_stats(os, object); 1316 /* contents are printed elsewhere, properly decoded */ 1317 } 1318 1319 static void 1320 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1321 { 1322 (void) data, (void) size; 1323 zap_cursor_t zc; 1324 zap_attribute_t attr; 1325 1326 dump_zap_stats(os, object); 1327 (void) printf("\n"); 1328 1329 for (zap_cursor_init(&zc, os, object); 1330 zap_cursor_retrieve(&zc, &attr) == 0; 1331 zap_cursor_advance(&zc)) { 1332 (void) printf("\t\t%s = ", attr.za_name); 1333 if (attr.za_num_integers == 0) { 1334 (void) printf("\n"); 1335 continue; 1336 } 1337 (void) printf(" %llx : [%d:%d:%d]\n", 1338 (u_longlong_t)attr.za_first_integer, 1339 (int)ATTR_LENGTH(attr.za_first_integer), 1340 (int)ATTR_BSWAP(attr.za_first_integer), 1341 (int)ATTR_NUM(attr.za_first_integer)); 1342 } 1343 zap_cursor_fini(&zc); 1344 } 1345 1346 static void 1347 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1348 { 1349 (void) data, (void) size; 1350 zap_cursor_t zc; 1351 zap_attribute_t attr; 1352 uint16_t *layout_attrs; 1353 unsigned i; 1354 1355 dump_zap_stats(os, object); 1356 (void) printf("\n"); 1357 1358 for (zap_cursor_init(&zc, os, object); 1359 zap_cursor_retrieve(&zc, &attr) == 0; 1360 zap_cursor_advance(&zc)) { 1361 (void) printf("\t\t%s = [", attr.za_name); 1362 if (attr.za_num_integers == 0) { 1363 (void) printf("\n"); 1364 continue; 1365 } 1366 1367 VERIFY(attr.za_integer_length == 2); 1368 layout_attrs = umem_zalloc(attr.za_num_integers * 1369 attr.za_integer_length, UMEM_NOFAIL); 1370 1371 VERIFY(zap_lookup(os, object, attr.za_name, 1372 attr.za_integer_length, 1373 attr.za_num_integers, layout_attrs) == 0); 1374 1375 for (i = 0; i != attr.za_num_integers; i++) 1376 (void) printf(" %d ", (int)layout_attrs[i]); 1377 (void) printf("]\n"); 1378 umem_free(layout_attrs, 1379 attr.za_num_integers * attr.za_integer_length); 1380 } 1381 zap_cursor_fini(&zc); 1382 } 1383 1384 static void 1385 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1386 { 1387 (void) data, (void) size; 1388 zap_cursor_t zc; 1389 zap_attribute_t attr; 1390 const char *typenames[] = { 1391 /* 0 */ "not specified", 1392 /* 1 */ "FIFO", 1393 /* 2 */ "Character Device", 1394 /* 3 */ "3 (invalid)", 1395 /* 4 */ "Directory", 1396 /* 5 */ "5 (invalid)", 1397 /* 6 */ "Block Device", 1398 /* 7 */ "7 (invalid)", 1399 /* 8 */ "Regular File", 1400 /* 9 */ "9 (invalid)", 1401 /* 10 */ "Symbolic Link", 1402 /* 11 */ "11 (invalid)", 1403 /* 12 */ "Socket", 1404 /* 13 */ "Door", 1405 /* 14 */ "Event Port", 1406 /* 15 */ "15 (invalid)", 1407 }; 1408 1409 dump_zap_stats(os, object); 1410 (void) printf("\n"); 1411 1412 for (zap_cursor_init(&zc, os, object); 1413 zap_cursor_retrieve(&zc, &attr) == 0; 1414 zap_cursor_advance(&zc)) { 1415 (void) printf("\t\t%s = %lld (type: %s)\n", 1416 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1417 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1418 } 1419 zap_cursor_fini(&zc); 1420 } 1421 1422 static int 1423 get_dtl_refcount(vdev_t *vd) 1424 { 1425 int refcount = 0; 1426 1427 if (vd->vdev_ops->vdev_op_leaf) { 1428 space_map_t *sm = vd->vdev_dtl_sm; 1429 1430 if (sm != NULL && 1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1432 return (1); 1433 return (0); 1434 } 1435 1436 for (unsigned c = 0; c < vd->vdev_children; c++) 1437 refcount += get_dtl_refcount(vd->vdev_child[c]); 1438 return (refcount); 1439 } 1440 1441 static int 1442 get_metaslab_refcount(vdev_t *vd) 1443 { 1444 int refcount = 0; 1445 1446 if (vd->vdev_top == vd) { 1447 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1448 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1449 1450 if (sm != NULL && 1451 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1452 refcount++; 1453 } 1454 } 1455 for (unsigned c = 0; c < vd->vdev_children; c++) 1456 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1457 1458 return (refcount); 1459 } 1460 1461 static int 1462 get_obsolete_refcount(vdev_t *vd) 1463 { 1464 uint64_t obsolete_sm_object; 1465 int refcount = 0; 1466 1467 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1468 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1469 dmu_object_info_t doi; 1470 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1471 obsolete_sm_object, &doi)); 1472 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1473 refcount++; 1474 } 1475 } else { 1476 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1477 ASSERT3U(obsolete_sm_object, ==, 0); 1478 } 1479 for (unsigned c = 0; c < vd->vdev_children; c++) { 1480 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1481 } 1482 1483 return (refcount); 1484 } 1485 1486 static int 1487 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1488 { 1489 uint64_t prev_obj = 1490 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1491 if (prev_obj != 0) { 1492 dmu_object_info_t doi; 1493 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1494 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1495 return (1); 1496 } 1497 } 1498 return (0); 1499 } 1500 1501 static int 1502 get_checkpoint_refcount(vdev_t *vd) 1503 { 1504 int refcount = 0; 1505 1506 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1507 zap_contains(spa_meta_objset(vd->vdev_spa), 1508 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1509 refcount++; 1510 1511 for (uint64_t c = 0; c < vd->vdev_children; c++) 1512 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1513 1514 return (refcount); 1515 } 1516 1517 static int 1518 get_log_spacemap_refcount(spa_t *spa) 1519 { 1520 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1521 } 1522 1523 static int 1524 verify_spacemap_refcounts(spa_t *spa) 1525 { 1526 uint64_t expected_refcount = 0; 1527 uint64_t actual_refcount; 1528 1529 (void) feature_get_refcount(spa, 1530 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1531 &expected_refcount); 1532 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1533 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1534 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1535 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1536 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1537 actual_refcount += get_log_spacemap_refcount(spa); 1538 1539 if (expected_refcount != actual_refcount) { 1540 (void) printf("space map refcount mismatch: expected %lld != " 1541 "actual %lld\n", 1542 (longlong_t)expected_refcount, 1543 (longlong_t)actual_refcount); 1544 return (2); 1545 } 1546 return (0); 1547 } 1548 1549 static void 1550 dump_spacemap(objset_t *os, space_map_t *sm) 1551 { 1552 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1553 "INVALID", "INVALID", "INVALID", "INVALID" }; 1554 1555 if (sm == NULL) 1556 return; 1557 1558 (void) printf("space map object %llu:\n", 1559 (longlong_t)sm->sm_object); 1560 (void) printf(" smp_length = 0x%llx\n", 1561 (longlong_t)sm->sm_phys->smp_length); 1562 (void) printf(" smp_alloc = 0x%llx\n", 1563 (longlong_t)sm->sm_phys->smp_alloc); 1564 1565 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1566 return; 1567 1568 /* 1569 * Print out the freelist entries in both encoded and decoded form. 1570 */ 1571 uint8_t mapshift = sm->sm_shift; 1572 int64_t alloc = 0; 1573 uint64_t word, entry_id = 0; 1574 for (uint64_t offset = 0; offset < space_map_length(sm); 1575 offset += sizeof (word)) { 1576 1577 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1578 sizeof (word), &word, DMU_READ_PREFETCH)); 1579 1580 if (sm_entry_is_debug(word)) { 1581 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1582 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1583 if (de_txg == 0) { 1584 (void) printf( 1585 "\t [%6llu] PADDING\n", 1586 (u_longlong_t)entry_id); 1587 } else { 1588 (void) printf( 1589 "\t [%6llu] %s: txg %llu pass %llu\n", 1590 (u_longlong_t)entry_id, 1591 ddata[SM_DEBUG_ACTION_DECODE(word)], 1592 (u_longlong_t)de_txg, 1593 (u_longlong_t)de_sync_pass); 1594 } 1595 entry_id++; 1596 continue; 1597 } 1598 1599 uint8_t words; 1600 char entry_type; 1601 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1602 1603 if (sm_entry_is_single_word(word)) { 1604 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1605 'A' : 'F'; 1606 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1607 sm->sm_start; 1608 entry_run = SM_RUN_DECODE(word) << mapshift; 1609 words = 1; 1610 } else { 1611 /* it is a two-word entry so we read another word */ 1612 ASSERT(sm_entry_is_double_word(word)); 1613 1614 uint64_t extra_word; 1615 offset += sizeof (extra_word); 1616 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1617 sizeof (extra_word), &extra_word, 1618 DMU_READ_PREFETCH)); 1619 1620 ASSERT3U(offset, <=, space_map_length(sm)); 1621 1622 entry_run = SM2_RUN_DECODE(word) << mapshift; 1623 entry_vdev = SM2_VDEV_DECODE(word); 1624 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1625 'A' : 'F'; 1626 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1627 mapshift) + sm->sm_start; 1628 words = 2; 1629 } 1630 1631 (void) printf("\t [%6llu] %c range:" 1632 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1633 (u_longlong_t)entry_id, 1634 entry_type, (u_longlong_t)entry_off, 1635 (u_longlong_t)(entry_off + entry_run), 1636 (u_longlong_t)entry_run, 1637 (u_longlong_t)entry_vdev, words); 1638 1639 if (entry_type == 'A') 1640 alloc += entry_run; 1641 else 1642 alloc -= entry_run; 1643 entry_id++; 1644 } 1645 if (alloc != space_map_allocated(sm)) { 1646 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1647 "with space map summary (%lld)\n", 1648 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1649 } 1650 } 1651 1652 static void 1653 dump_metaslab_stats(metaslab_t *msp) 1654 { 1655 char maxbuf[32]; 1656 range_tree_t *rt = msp->ms_allocatable; 1657 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1658 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1659 1660 /* max sure nicenum has enough space */ 1661 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1662 1663 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1664 1665 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1666 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1667 "freepct", free_pct); 1668 (void) printf("\tIn-memory histogram:\n"); 1669 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1670 } 1671 1672 static void 1673 dump_metaslab(metaslab_t *msp) 1674 { 1675 vdev_t *vd = msp->ms_group->mg_vd; 1676 spa_t *spa = vd->vdev_spa; 1677 space_map_t *sm = msp->ms_sm; 1678 char freebuf[32]; 1679 1680 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1681 sizeof (freebuf)); 1682 1683 (void) printf( 1684 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1685 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1686 (u_longlong_t)space_map_object(sm), freebuf); 1687 1688 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1689 mutex_enter(&msp->ms_lock); 1690 VERIFY0(metaslab_load(msp)); 1691 range_tree_stat_verify(msp->ms_allocatable); 1692 dump_metaslab_stats(msp); 1693 metaslab_unload(msp); 1694 mutex_exit(&msp->ms_lock); 1695 } 1696 1697 if (dump_opt['m'] > 1 && sm != NULL && 1698 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1699 /* 1700 * The space map histogram represents free space in chunks 1701 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1702 */ 1703 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1704 (u_longlong_t)msp->ms_fragmentation); 1705 dump_histogram(sm->sm_phys->smp_histogram, 1706 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1707 } 1708 1709 if (vd->vdev_ops == &vdev_draid_ops) 1710 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1711 else 1712 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1713 1714 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1715 1716 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1717 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1718 (u_longlong_t)metaslab_unflushed_txg(msp)); 1719 } 1720 } 1721 1722 static void 1723 print_vdev_metaslab_header(vdev_t *vd) 1724 { 1725 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1726 const char *bias_str = ""; 1727 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1728 bias_str = VDEV_ALLOC_BIAS_LOG; 1729 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1730 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1731 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1732 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1733 } 1734 1735 uint64_t ms_flush_data_obj = 0; 1736 if (vd->vdev_top_zap != 0) { 1737 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1738 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1739 sizeof (uint64_t), 1, &ms_flush_data_obj); 1740 if (error != ENOENT) { 1741 ASSERT0(error); 1742 } 1743 } 1744 1745 (void) printf("\tvdev %10llu %s", 1746 (u_longlong_t)vd->vdev_id, bias_str); 1747 1748 if (ms_flush_data_obj != 0) { 1749 (void) printf(" ms_unflushed_phys object %llu", 1750 (u_longlong_t)ms_flush_data_obj); 1751 } 1752 1753 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1754 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1755 "offset", "spacemap", "free"); 1756 (void) printf("\t%15s %19s %15s %12s\n", 1757 "---------------", "-------------------", 1758 "---------------", "------------"); 1759 } 1760 1761 static void 1762 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1763 { 1764 vdev_t *rvd = spa->spa_root_vdev; 1765 metaslab_class_t *mc = spa_normal_class(spa); 1766 metaslab_class_t *smc = spa_special_class(spa); 1767 uint64_t fragmentation; 1768 1769 metaslab_class_histogram_verify(mc); 1770 1771 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1772 vdev_t *tvd = rvd->vdev_child[c]; 1773 metaslab_group_t *mg = tvd->vdev_mg; 1774 1775 if (mg == NULL || (mg->mg_class != mc && 1776 (!show_special || mg->mg_class != smc))) 1777 continue; 1778 1779 metaslab_group_histogram_verify(mg); 1780 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1781 1782 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1783 "fragmentation", 1784 (u_longlong_t)tvd->vdev_id, 1785 (u_longlong_t)tvd->vdev_ms_count); 1786 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1787 (void) printf("%3s\n", "-"); 1788 } else { 1789 (void) printf("%3llu%%\n", 1790 (u_longlong_t)mg->mg_fragmentation); 1791 } 1792 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1793 } 1794 1795 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1796 fragmentation = metaslab_class_fragmentation(mc); 1797 if (fragmentation == ZFS_FRAG_INVALID) 1798 (void) printf("\t%3s\n", "-"); 1799 else 1800 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1801 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1802 } 1803 1804 static void 1805 print_vdev_indirect(vdev_t *vd) 1806 { 1807 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1808 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1809 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1810 1811 if (vim == NULL) { 1812 ASSERT3P(vib, ==, NULL); 1813 return; 1814 } 1815 1816 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1817 vic->vic_mapping_object); 1818 ASSERT3U(vdev_indirect_births_object(vib), ==, 1819 vic->vic_births_object); 1820 1821 (void) printf("indirect births obj %llu:\n", 1822 (longlong_t)vic->vic_births_object); 1823 (void) printf(" vib_count = %llu\n", 1824 (longlong_t)vdev_indirect_births_count(vib)); 1825 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1826 vdev_indirect_birth_entry_phys_t *cur_vibe = 1827 &vib->vib_entries[i]; 1828 (void) printf("\toffset %llx -> txg %llu\n", 1829 (longlong_t)cur_vibe->vibe_offset, 1830 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1831 } 1832 (void) printf("\n"); 1833 1834 (void) printf("indirect mapping obj %llu:\n", 1835 (longlong_t)vic->vic_mapping_object); 1836 (void) printf(" vim_max_offset = 0x%llx\n", 1837 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1838 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1839 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1840 (void) printf(" vim_count = %llu\n", 1841 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1842 1843 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1844 return; 1845 1846 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1847 1848 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1849 vdev_indirect_mapping_entry_phys_t *vimep = 1850 &vim->vim_entries[i]; 1851 (void) printf("\t<%llx:%llx:%llx> -> " 1852 "<%llx:%llx:%llx> (%x obsolete)\n", 1853 (longlong_t)vd->vdev_id, 1854 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1855 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1856 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1857 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1858 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1859 counts[i]); 1860 } 1861 (void) printf("\n"); 1862 1863 uint64_t obsolete_sm_object; 1864 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1865 if (obsolete_sm_object != 0) { 1866 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1867 (void) printf("obsolete space map object %llu:\n", 1868 (u_longlong_t)obsolete_sm_object); 1869 ASSERT(vd->vdev_obsolete_sm != NULL); 1870 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1871 obsolete_sm_object); 1872 dump_spacemap(mos, vd->vdev_obsolete_sm); 1873 (void) printf("\n"); 1874 } 1875 } 1876 1877 static void 1878 dump_metaslabs(spa_t *spa) 1879 { 1880 vdev_t *vd, *rvd = spa->spa_root_vdev; 1881 uint64_t m, c = 0, children = rvd->vdev_children; 1882 1883 (void) printf("\nMetaslabs:\n"); 1884 1885 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1886 c = zopt_metaslab[0]; 1887 1888 if (c >= children) 1889 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1890 1891 if (zopt_metaslab_args > 1) { 1892 vd = rvd->vdev_child[c]; 1893 print_vdev_metaslab_header(vd); 1894 1895 for (m = 1; m < zopt_metaslab_args; m++) { 1896 if (zopt_metaslab[m] < vd->vdev_ms_count) 1897 dump_metaslab( 1898 vd->vdev_ms[zopt_metaslab[m]]); 1899 else 1900 (void) fprintf(stderr, "bad metaslab " 1901 "number %llu\n", 1902 (u_longlong_t)zopt_metaslab[m]); 1903 } 1904 (void) printf("\n"); 1905 return; 1906 } 1907 children = c + 1; 1908 } 1909 for (; c < children; c++) { 1910 vd = rvd->vdev_child[c]; 1911 print_vdev_metaslab_header(vd); 1912 1913 print_vdev_indirect(vd); 1914 1915 for (m = 0; m < vd->vdev_ms_count; m++) 1916 dump_metaslab(vd->vdev_ms[m]); 1917 (void) printf("\n"); 1918 } 1919 } 1920 1921 static void 1922 dump_log_spacemaps(spa_t *spa) 1923 { 1924 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1925 return; 1926 1927 (void) printf("\nLog Space Maps in Pool:\n"); 1928 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1929 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1930 space_map_t *sm = NULL; 1931 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1932 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1933 1934 (void) printf("Log Spacemap object %llu txg %llu\n", 1935 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1936 dump_spacemap(spa->spa_meta_objset, sm); 1937 space_map_close(sm); 1938 } 1939 (void) printf("\n"); 1940 } 1941 1942 static void 1943 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1944 { 1945 const ddt_phys_t *ddp = dde->dde_phys; 1946 const ddt_key_t *ddk = &dde->dde_key; 1947 const char *types[4] = { "ditto", "single", "double", "triple" }; 1948 char blkbuf[BP_SPRINTF_LEN]; 1949 blkptr_t blk; 1950 int p; 1951 1952 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1953 if (ddp->ddp_phys_birth == 0) 1954 continue; 1955 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1956 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1957 (void) printf("index %llx refcnt %llu %s %s\n", 1958 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1959 types[p], blkbuf); 1960 } 1961 } 1962 1963 static void 1964 dump_dedup_ratio(const ddt_stat_t *dds) 1965 { 1966 double rL, rP, rD, D, dedup, compress, copies; 1967 1968 if (dds->dds_blocks == 0) 1969 return; 1970 1971 rL = (double)dds->dds_ref_lsize; 1972 rP = (double)dds->dds_ref_psize; 1973 rD = (double)dds->dds_ref_dsize; 1974 D = (double)dds->dds_dsize; 1975 1976 dedup = rD / D; 1977 compress = rL / rP; 1978 copies = rD / rP; 1979 1980 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1981 "dedup * compress / copies = %.2f\n\n", 1982 dedup, compress, copies, dedup * compress / copies); 1983 } 1984 1985 static void 1986 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1987 { 1988 char name[DDT_NAMELEN]; 1989 ddt_entry_t dde; 1990 uint64_t walk = 0; 1991 dmu_object_info_t doi; 1992 uint64_t count, dspace, mspace; 1993 int error; 1994 1995 error = ddt_object_info(ddt, type, class, &doi); 1996 1997 if (error == ENOENT) 1998 return; 1999 ASSERT(error == 0); 2000 2001 error = ddt_object_count(ddt, type, class, &count); 2002 ASSERT(error == 0); 2003 if (count == 0) 2004 return; 2005 2006 dspace = doi.doi_physical_blocks_512 << 9; 2007 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2008 2009 ddt_object_name(ddt, type, class, name); 2010 2011 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2012 name, 2013 (u_longlong_t)count, 2014 (u_longlong_t)(dspace / count), 2015 (u_longlong_t)(mspace / count)); 2016 2017 if (dump_opt['D'] < 3) 2018 return; 2019 2020 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2021 2022 if (dump_opt['D'] < 4) 2023 return; 2024 2025 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2026 return; 2027 2028 (void) printf("%s contents:\n\n", name); 2029 2030 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2031 dump_dde(ddt, &dde, walk); 2032 2033 ASSERT3U(error, ==, ENOENT); 2034 2035 (void) printf("\n"); 2036 } 2037 2038 static void 2039 dump_all_ddts(spa_t *spa) 2040 { 2041 ddt_histogram_t ddh_total = {{{0}}}; 2042 ddt_stat_t dds_total = {0}; 2043 2044 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2045 ddt_t *ddt = spa->spa_ddt[c]; 2046 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 2047 for (enum ddt_class class = 0; class < DDT_CLASSES; 2048 class++) { 2049 dump_ddt(ddt, type, class); 2050 } 2051 } 2052 } 2053 2054 ddt_get_dedup_stats(spa, &dds_total); 2055 2056 if (dds_total.dds_blocks == 0) { 2057 (void) printf("All DDTs are empty\n"); 2058 return; 2059 } 2060 2061 (void) printf("\n"); 2062 2063 if (dump_opt['D'] > 1) { 2064 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2065 ddt_get_dedup_histogram(spa, &ddh_total); 2066 zpool_dump_ddt(&dds_total, &ddh_total); 2067 } 2068 2069 dump_dedup_ratio(&dds_total); 2070 } 2071 2072 static void 2073 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2074 { 2075 char *prefix = arg; 2076 2077 (void) printf("%s [%llu,%llu) length %llu\n", 2078 prefix, 2079 (u_longlong_t)start, 2080 (u_longlong_t)(start + size), 2081 (u_longlong_t)(size)); 2082 } 2083 2084 static void 2085 dump_dtl(vdev_t *vd, int indent) 2086 { 2087 spa_t *spa = vd->vdev_spa; 2088 boolean_t required; 2089 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2090 "outage" }; 2091 char prefix[256]; 2092 2093 spa_vdev_state_enter(spa, SCL_NONE); 2094 required = vdev_dtl_required(vd); 2095 (void) spa_vdev_state_exit(spa, NULL, 0); 2096 2097 if (indent == 0) 2098 (void) printf("\nDirty time logs:\n\n"); 2099 2100 (void) printf("\t%*s%s [%s]\n", indent, "", 2101 vd->vdev_path ? vd->vdev_path : 2102 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2103 required ? "DTL-required" : "DTL-expendable"); 2104 2105 for (int t = 0; t < DTL_TYPES; t++) { 2106 range_tree_t *rt = vd->vdev_dtl[t]; 2107 if (range_tree_space(rt) == 0) 2108 continue; 2109 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2110 indent + 2, "", name[t]); 2111 range_tree_walk(rt, dump_dtl_seg, prefix); 2112 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2113 dump_spacemap(spa->spa_meta_objset, 2114 vd->vdev_dtl_sm); 2115 } 2116 2117 for (unsigned c = 0; c < vd->vdev_children; c++) 2118 dump_dtl(vd->vdev_child[c], indent + 4); 2119 } 2120 2121 static void 2122 dump_history(spa_t *spa) 2123 { 2124 nvlist_t **events = NULL; 2125 char *buf; 2126 uint64_t resid, len, off = 0; 2127 uint_t num = 0; 2128 int error; 2129 char tbuf[30]; 2130 2131 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2132 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2133 __func__); 2134 return; 2135 } 2136 2137 do { 2138 len = SPA_OLD_MAXBLOCKSIZE; 2139 2140 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2141 (void) fprintf(stderr, "Unable to read history: " 2142 "error %d\n", error); 2143 free(buf); 2144 return; 2145 } 2146 2147 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2148 break; 2149 2150 off -= resid; 2151 } while (len != 0); 2152 2153 (void) printf("\nHistory:\n"); 2154 for (unsigned i = 0; i < num; i++) { 2155 boolean_t printed = B_FALSE; 2156 2157 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2158 time_t tsec; 2159 struct tm t; 2160 2161 tsec = fnvlist_lookup_uint64(events[i], 2162 ZPOOL_HIST_TIME); 2163 (void) localtime_r(&tsec, &t); 2164 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2165 } else { 2166 tbuf[0] = '\0'; 2167 } 2168 2169 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2170 (void) printf("%s %s\n", tbuf, 2171 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2172 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2173 uint64_t ievent; 2174 2175 ievent = fnvlist_lookup_uint64(events[i], 2176 ZPOOL_HIST_INT_EVENT); 2177 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2178 goto next; 2179 2180 (void) printf(" %s [internal %s txg:%ju] %s\n", 2181 tbuf, 2182 zfs_history_event_names[ievent], 2183 fnvlist_lookup_uint64(events[i], 2184 ZPOOL_HIST_TXG), 2185 fnvlist_lookup_string(events[i], 2186 ZPOOL_HIST_INT_STR)); 2187 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2188 (void) printf("%s [txg:%ju] %s", tbuf, 2189 fnvlist_lookup_uint64(events[i], 2190 ZPOOL_HIST_TXG), 2191 fnvlist_lookup_string(events[i], 2192 ZPOOL_HIST_INT_NAME)); 2193 2194 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2195 (void) printf(" %s (%llu)", 2196 fnvlist_lookup_string(events[i], 2197 ZPOOL_HIST_DSNAME), 2198 (u_longlong_t)fnvlist_lookup_uint64( 2199 events[i], 2200 ZPOOL_HIST_DSID)); 2201 } 2202 2203 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2204 ZPOOL_HIST_INT_STR)); 2205 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2206 (void) printf("%s ioctl %s\n", tbuf, 2207 fnvlist_lookup_string(events[i], 2208 ZPOOL_HIST_IOCTL)); 2209 2210 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2211 (void) printf(" input:\n"); 2212 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2213 ZPOOL_HIST_INPUT_NVL), 8); 2214 } 2215 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2216 (void) printf(" output:\n"); 2217 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2218 ZPOOL_HIST_OUTPUT_NVL), 8); 2219 } 2220 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2221 (void) printf(" errno: %lld\n", 2222 (longlong_t)fnvlist_lookup_int64(events[i], 2223 ZPOOL_HIST_ERRNO)); 2224 } 2225 } else { 2226 goto next; 2227 } 2228 2229 printed = B_TRUE; 2230 next: 2231 if (dump_opt['h'] > 1) { 2232 if (!printed) 2233 (void) printf("unrecognized record:\n"); 2234 dump_nvlist(events[i], 2); 2235 } 2236 } 2237 free(buf); 2238 } 2239 2240 static void 2241 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2242 { 2243 (void) os, (void) object, (void) data, (void) size; 2244 } 2245 2246 static uint64_t 2247 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2248 const zbookmark_phys_t *zb) 2249 { 2250 if (dnp == NULL) { 2251 ASSERT(zb->zb_level < 0); 2252 if (zb->zb_object == 0) 2253 return (zb->zb_blkid); 2254 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2255 } 2256 2257 ASSERT(zb->zb_level >= 0); 2258 2259 return ((zb->zb_blkid << 2260 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2261 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2262 } 2263 2264 static void 2265 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2266 const blkptr_t *bp) 2267 { 2268 abd_t *pabd; 2269 void *buf; 2270 zio_t *zio; 2271 zfs_zstdhdr_t zstd_hdr; 2272 int error; 2273 2274 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2275 return; 2276 2277 if (BP_IS_HOLE(bp)) 2278 return; 2279 2280 if (BP_IS_EMBEDDED(bp)) { 2281 buf = malloc(SPA_MAXBLOCKSIZE); 2282 if (buf == NULL) { 2283 (void) fprintf(stderr, "out of memory\n"); 2284 exit(1); 2285 } 2286 decode_embedded_bp_compressed(bp, buf); 2287 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2288 free(buf); 2289 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2290 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2291 (void) snprintf(blkbuf + strlen(blkbuf), 2292 buflen - strlen(blkbuf), 2293 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2294 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2295 zfs_get_hdrlevel(&zstd_hdr)); 2296 return; 2297 } 2298 2299 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2300 zio = zio_root(spa, NULL, NULL, 0); 2301 2302 /* Decrypt but don't decompress so we can read the compression header */ 2303 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2304 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2305 NULL)); 2306 error = zio_wait(zio); 2307 if (error) { 2308 (void) fprintf(stderr, "read failed: %d\n", error); 2309 return; 2310 } 2311 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2312 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2313 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2314 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2315 2316 (void) snprintf(blkbuf + strlen(blkbuf), 2317 buflen - strlen(blkbuf), 2318 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2319 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2320 zfs_get_hdrlevel(&zstd_hdr)); 2321 2322 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2323 } 2324 2325 static void 2326 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2327 boolean_t bp_freed) 2328 { 2329 const dva_t *dva = bp->blk_dva; 2330 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2331 int i; 2332 2333 if (dump_opt['b'] >= 6) { 2334 snprintf_blkptr(blkbuf, buflen, bp); 2335 if (bp_freed) { 2336 (void) snprintf(blkbuf + strlen(blkbuf), 2337 buflen - strlen(blkbuf), " %s", "FREE"); 2338 } 2339 return; 2340 } 2341 2342 if (BP_IS_EMBEDDED(bp)) { 2343 (void) sprintf(blkbuf, 2344 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2345 (int)BPE_GET_ETYPE(bp), 2346 (u_longlong_t)BPE_GET_LSIZE(bp), 2347 (u_longlong_t)BPE_GET_PSIZE(bp), 2348 (u_longlong_t)bp->blk_birth); 2349 return; 2350 } 2351 2352 blkbuf[0] = '\0'; 2353 2354 for (i = 0; i < ndvas; i++) 2355 (void) snprintf(blkbuf + strlen(blkbuf), 2356 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2357 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2358 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2359 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2360 2361 if (BP_IS_HOLE(bp)) { 2362 (void) snprintf(blkbuf + strlen(blkbuf), 2363 buflen - strlen(blkbuf), 2364 "%llxL B=%llu", 2365 (u_longlong_t)BP_GET_LSIZE(bp), 2366 (u_longlong_t)bp->blk_birth); 2367 } else { 2368 (void) snprintf(blkbuf + strlen(blkbuf), 2369 buflen - strlen(blkbuf), 2370 "%llxL/%llxP F=%llu B=%llu/%llu", 2371 (u_longlong_t)BP_GET_LSIZE(bp), 2372 (u_longlong_t)BP_GET_PSIZE(bp), 2373 (u_longlong_t)BP_GET_FILL(bp), 2374 (u_longlong_t)bp->blk_birth, 2375 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2376 if (bp_freed) 2377 (void) snprintf(blkbuf + strlen(blkbuf), 2378 buflen - strlen(blkbuf), " %s", "FREE"); 2379 (void) snprintf(blkbuf + strlen(blkbuf), 2380 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx", 2381 (u_longlong_t)bp->blk_cksum.zc_word[0], 2382 (u_longlong_t)bp->blk_cksum.zc_word[1], 2383 (u_longlong_t)bp->blk_cksum.zc_word[2], 2384 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2385 } 2386 } 2387 2388 static void 2389 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2390 const dnode_phys_t *dnp) 2391 { 2392 char blkbuf[BP_SPRINTF_LEN]; 2393 int l; 2394 2395 if (!BP_IS_EMBEDDED(bp)) { 2396 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2397 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2398 } 2399 2400 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2401 2402 ASSERT(zb->zb_level >= 0); 2403 2404 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2405 if (l == zb->zb_level) { 2406 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2407 } else { 2408 (void) printf(" "); 2409 } 2410 } 2411 2412 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2413 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2414 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2415 (void) printf("%s\n", blkbuf); 2416 } 2417 2418 static int 2419 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2420 blkptr_t *bp, const zbookmark_phys_t *zb) 2421 { 2422 int err = 0; 2423 2424 if (bp->blk_birth == 0) 2425 return (0); 2426 2427 print_indirect(spa, bp, zb, dnp); 2428 2429 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2430 arc_flags_t flags = ARC_FLAG_WAIT; 2431 int i; 2432 blkptr_t *cbp; 2433 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2434 arc_buf_t *buf; 2435 uint64_t fill = 0; 2436 ASSERT(!BP_IS_REDACTED(bp)); 2437 2438 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2439 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2440 if (err) 2441 return (err); 2442 ASSERT(buf->b_data); 2443 2444 /* recursively visit blocks below this */ 2445 cbp = buf->b_data; 2446 for (i = 0; i < epb; i++, cbp++) { 2447 zbookmark_phys_t czb; 2448 2449 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2450 zb->zb_level - 1, 2451 zb->zb_blkid * epb + i); 2452 err = visit_indirect(spa, dnp, cbp, &czb); 2453 if (err) 2454 break; 2455 fill += BP_GET_FILL(cbp); 2456 } 2457 if (!err) 2458 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2459 arc_buf_destroy(buf, &buf); 2460 } 2461 2462 return (err); 2463 } 2464 2465 static void 2466 dump_indirect(dnode_t *dn) 2467 { 2468 dnode_phys_t *dnp = dn->dn_phys; 2469 zbookmark_phys_t czb; 2470 2471 (void) printf("Indirect blocks:\n"); 2472 2473 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2474 dn->dn_object, dnp->dn_nlevels - 1, 0); 2475 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2476 czb.zb_blkid = j; 2477 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2478 &dnp->dn_blkptr[j], &czb); 2479 } 2480 2481 (void) printf("\n"); 2482 } 2483 2484 static void 2485 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2486 { 2487 (void) os, (void) object; 2488 dsl_dir_phys_t *dd = data; 2489 time_t crtime; 2490 char nice[32]; 2491 2492 /* make sure nicenum has enough space */ 2493 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2494 2495 if (dd == NULL) 2496 return; 2497 2498 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2499 2500 crtime = dd->dd_creation_time; 2501 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2502 (void) printf("\t\thead_dataset_obj = %llu\n", 2503 (u_longlong_t)dd->dd_head_dataset_obj); 2504 (void) printf("\t\tparent_dir_obj = %llu\n", 2505 (u_longlong_t)dd->dd_parent_obj); 2506 (void) printf("\t\torigin_obj = %llu\n", 2507 (u_longlong_t)dd->dd_origin_obj); 2508 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2509 (u_longlong_t)dd->dd_child_dir_zapobj); 2510 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2511 (void) printf("\t\tused_bytes = %s\n", nice); 2512 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2513 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2514 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2515 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2516 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2517 (void) printf("\t\tquota = %s\n", nice); 2518 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2519 (void) printf("\t\treserved = %s\n", nice); 2520 (void) printf("\t\tprops_zapobj = %llu\n", 2521 (u_longlong_t)dd->dd_props_zapobj); 2522 (void) printf("\t\tdeleg_zapobj = %llu\n", 2523 (u_longlong_t)dd->dd_deleg_zapobj); 2524 (void) printf("\t\tflags = %llx\n", 2525 (u_longlong_t)dd->dd_flags); 2526 2527 #define DO(which) \ 2528 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2529 sizeof (nice)); \ 2530 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2531 DO(HEAD); 2532 DO(SNAP); 2533 DO(CHILD); 2534 DO(CHILD_RSRV); 2535 DO(REFRSRV); 2536 #undef DO 2537 (void) printf("\t\tclones = %llu\n", 2538 (u_longlong_t)dd->dd_clones); 2539 } 2540 2541 static void 2542 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2543 { 2544 (void) os, (void) object; 2545 dsl_dataset_phys_t *ds = data; 2546 time_t crtime; 2547 char used[32], compressed[32], uncompressed[32], unique[32]; 2548 char blkbuf[BP_SPRINTF_LEN]; 2549 2550 /* make sure nicenum has enough space */ 2551 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2552 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2553 "compressed truncated"); 2554 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2555 "uncompressed truncated"); 2556 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2557 2558 if (ds == NULL) 2559 return; 2560 2561 ASSERT(size == sizeof (*ds)); 2562 crtime = ds->ds_creation_time; 2563 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2564 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2565 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2566 sizeof (uncompressed)); 2567 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2568 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2569 2570 (void) printf("\t\tdir_obj = %llu\n", 2571 (u_longlong_t)ds->ds_dir_obj); 2572 (void) printf("\t\tprev_snap_obj = %llu\n", 2573 (u_longlong_t)ds->ds_prev_snap_obj); 2574 (void) printf("\t\tprev_snap_txg = %llu\n", 2575 (u_longlong_t)ds->ds_prev_snap_txg); 2576 (void) printf("\t\tnext_snap_obj = %llu\n", 2577 (u_longlong_t)ds->ds_next_snap_obj); 2578 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2579 (u_longlong_t)ds->ds_snapnames_zapobj); 2580 (void) printf("\t\tnum_children = %llu\n", 2581 (u_longlong_t)ds->ds_num_children); 2582 (void) printf("\t\tuserrefs_obj = %llu\n", 2583 (u_longlong_t)ds->ds_userrefs_obj); 2584 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2585 (void) printf("\t\tcreation_txg = %llu\n", 2586 (u_longlong_t)ds->ds_creation_txg); 2587 (void) printf("\t\tdeadlist_obj = %llu\n", 2588 (u_longlong_t)ds->ds_deadlist_obj); 2589 (void) printf("\t\tused_bytes = %s\n", used); 2590 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2591 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2592 (void) printf("\t\tunique = %s\n", unique); 2593 (void) printf("\t\tfsid_guid = %llu\n", 2594 (u_longlong_t)ds->ds_fsid_guid); 2595 (void) printf("\t\tguid = %llu\n", 2596 (u_longlong_t)ds->ds_guid); 2597 (void) printf("\t\tflags = %llx\n", 2598 (u_longlong_t)ds->ds_flags); 2599 (void) printf("\t\tnext_clones_obj = %llu\n", 2600 (u_longlong_t)ds->ds_next_clones_obj); 2601 (void) printf("\t\tprops_obj = %llu\n", 2602 (u_longlong_t)ds->ds_props_obj); 2603 (void) printf("\t\tbp = %s\n", blkbuf); 2604 } 2605 2606 static int 2607 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2608 { 2609 (void) arg, (void) tx; 2610 char blkbuf[BP_SPRINTF_LEN]; 2611 2612 if (bp->blk_birth != 0) { 2613 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2614 (void) printf("\t%s\n", blkbuf); 2615 } 2616 return (0); 2617 } 2618 2619 static void 2620 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2621 { 2622 char bytes[32]; 2623 bptree_phys_t *bt; 2624 dmu_buf_t *db; 2625 2626 /* make sure nicenum has enough space */ 2627 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2628 2629 if (dump_opt['d'] < 3) 2630 return; 2631 2632 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2633 bt = db->db_data; 2634 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2635 (void) printf("\n %s: %llu datasets, %s\n", 2636 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2637 dmu_buf_rele(db, FTAG); 2638 2639 if (dump_opt['d'] < 5) 2640 return; 2641 2642 (void) printf("\n"); 2643 2644 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2645 } 2646 2647 static int 2648 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2649 { 2650 (void) arg, (void) tx; 2651 char blkbuf[BP_SPRINTF_LEN]; 2652 2653 ASSERT(bp->blk_birth != 0); 2654 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2655 (void) printf("\t%s\n", blkbuf); 2656 return (0); 2657 } 2658 2659 static void 2660 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2661 { 2662 char bytes[32]; 2663 char comp[32]; 2664 char uncomp[32]; 2665 uint64_t i; 2666 2667 /* make sure nicenum has enough space */ 2668 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2669 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2670 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2671 2672 if (dump_opt['d'] < 3) 2673 return; 2674 2675 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2676 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2677 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2678 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2679 if (bpo->bpo_havefreed) { 2680 (void) printf(" %*s: object %llu, %llu local " 2681 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2682 "%s (%s/%s comp)\n", 2683 indent * 8, name, 2684 (u_longlong_t)bpo->bpo_object, 2685 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2686 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2687 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2688 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2689 bytes, comp, uncomp); 2690 } else { 2691 (void) printf(" %*s: object %llu, %llu local " 2692 "blkptrs, %llu subobjs in object %llu, " 2693 "%s (%s/%s comp)\n", 2694 indent * 8, name, 2695 (u_longlong_t)bpo->bpo_object, 2696 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2697 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2698 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2699 bytes, comp, uncomp); 2700 } 2701 2702 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2703 uint64_t subobj; 2704 bpobj_t subbpo; 2705 int error; 2706 VERIFY0(dmu_read(bpo->bpo_os, 2707 bpo->bpo_phys->bpo_subobjs, 2708 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2709 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2710 if (error != 0) { 2711 (void) printf("ERROR %u while trying to open " 2712 "subobj id %llu\n", 2713 error, (u_longlong_t)subobj); 2714 continue; 2715 } 2716 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2717 bpobj_close(&subbpo); 2718 } 2719 } else { 2720 if (bpo->bpo_havefreed) { 2721 (void) printf(" %*s: object %llu, %llu blkptrs, " 2722 "%llu freed, %s\n", 2723 indent * 8, name, 2724 (u_longlong_t)bpo->bpo_object, 2725 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2726 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2727 bytes); 2728 } else { 2729 (void) printf(" %*s: object %llu, %llu blkptrs, " 2730 "%s\n", 2731 indent * 8, name, 2732 (u_longlong_t)bpo->bpo_object, 2733 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2734 bytes); 2735 } 2736 } 2737 2738 if (dump_opt['d'] < 5) 2739 return; 2740 2741 2742 if (indent == 0) { 2743 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2744 (void) printf("\n"); 2745 } 2746 } 2747 2748 static int 2749 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2750 boolean_t print_list) 2751 { 2752 int err = 0; 2753 zfs_bookmark_phys_t prop; 2754 objset_t *mos = dp->dp_spa->spa_meta_objset; 2755 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2756 2757 if (err != 0) { 2758 return (err); 2759 } 2760 2761 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2762 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2763 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2764 (u_longlong_t)prop.zbm_creation_txg, 2765 (u_longlong_t)prop.zbm_creation_time, 2766 (u_longlong_t)prop.zbm_redaction_obj); 2767 2768 IMPLY(print_list, print_redact); 2769 if (!print_redact || prop.zbm_redaction_obj == 0) 2770 return (0); 2771 2772 redaction_list_t *rl; 2773 VERIFY0(dsl_redaction_list_hold_obj(dp, 2774 prop.zbm_redaction_obj, FTAG, &rl)); 2775 2776 redaction_list_phys_t *rlp = rl->rl_phys; 2777 (void) printf("\tRedacted:\n\t\tProgress: "); 2778 if (rlp->rlp_last_object != UINT64_MAX || 2779 rlp->rlp_last_blkid != UINT64_MAX) { 2780 (void) printf("%llu %llu (incomplete)\n", 2781 (u_longlong_t)rlp->rlp_last_object, 2782 (u_longlong_t)rlp->rlp_last_blkid); 2783 } else { 2784 (void) printf("complete\n"); 2785 } 2786 (void) printf("\t\tSnapshots: ["); 2787 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2788 if (i > 0) 2789 (void) printf(", "); 2790 (void) printf("%0llu", 2791 (u_longlong_t)rlp->rlp_snaps[i]); 2792 } 2793 (void) printf("]\n\t\tLength: %llu\n", 2794 (u_longlong_t)rlp->rlp_num_entries); 2795 2796 if (!print_list) { 2797 dsl_redaction_list_rele(rl, FTAG); 2798 return (0); 2799 } 2800 2801 if (rlp->rlp_num_entries == 0) { 2802 dsl_redaction_list_rele(rl, FTAG); 2803 (void) printf("\t\tRedaction List: []\n\n"); 2804 return (0); 2805 } 2806 2807 redact_block_phys_t *rbp_buf; 2808 uint64_t size; 2809 dmu_object_info_t doi; 2810 2811 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2812 size = doi.doi_max_offset; 2813 rbp_buf = kmem_alloc(size, KM_SLEEP); 2814 2815 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2816 rbp_buf, 0); 2817 if (err != 0) { 2818 dsl_redaction_list_rele(rl, FTAG); 2819 kmem_free(rbp_buf, size); 2820 return (err); 2821 } 2822 2823 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2824 "%llx, blksz: %x, count: %llx}", 2825 (u_longlong_t)rbp_buf[0].rbp_object, 2826 (u_longlong_t)rbp_buf[0].rbp_blkid, 2827 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2828 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2829 2830 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2831 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2832 "blksz: %x, count: %llx}", 2833 (u_longlong_t)rbp_buf[i].rbp_object, 2834 (u_longlong_t)rbp_buf[i].rbp_blkid, 2835 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2836 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2837 } 2838 dsl_redaction_list_rele(rl, FTAG); 2839 kmem_free(rbp_buf, size); 2840 (void) printf("]\n\n"); 2841 return (0); 2842 } 2843 2844 static void 2845 dump_bookmarks(objset_t *os, int verbosity) 2846 { 2847 zap_cursor_t zc; 2848 zap_attribute_t attr; 2849 dsl_dataset_t *ds = dmu_objset_ds(os); 2850 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2851 objset_t *mos = os->os_spa->spa_meta_objset; 2852 if (verbosity < 4) 2853 return; 2854 dsl_pool_config_enter(dp, FTAG); 2855 2856 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2857 zap_cursor_retrieve(&zc, &attr) == 0; 2858 zap_cursor_advance(&zc)) { 2859 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2860 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2861 int len; 2862 dmu_objset_name(os, osname); 2863 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2864 attr.za_name); 2865 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2866 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2867 } 2868 zap_cursor_fini(&zc); 2869 dsl_pool_config_exit(dp, FTAG); 2870 } 2871 2872 static void 2873 bpobj_count_refd(bpobj_t *bpo) 2874 { 2875 mos_obj_refd(bpo->bpo_object); 2876 2877 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2878 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2879 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2880 uint64_t subobj; 2881 bpobj_t subbpo; 2882 int error; 2883 VERIFY0(dmu_read(bpo->bpo_os, 2884 bpo->bpo_phys->bpo_subobjs, 2885 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2886 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2887 if (error != 0) { 2888 (void) printf("ERROR %u while trying to open " 2889 "subobj id %llu\n", 2890 error, (u_longlong_t)subobj); 2891 continue; 2892 } 2893 bpobj_count_refd(&subbpo); 2894 bpobj_close(&subbpo); 2895 } 2896 } 2897 } 2898 2899 static int 2900 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2901 { 2902 spa_t *spa = arg; 2903 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2904 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2905 bpobj_count_refd(&dle->dle_bpobj); 2906 return (0); 2907 } 2908 2909 static int 2910 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2911 { 2912 ASSERT(arg == NULL); 2913 if (dump_opt['d'] >= 5) { 2914 char buf[128]; 2915 (void) snprintf(buf, sizeof (buf), 2916 "mintxg %llu -> obj %llu", 2917 (longlong_t)dle->dle_mintxg, 2918 (longlong_t)dle->dle_bpobj.bpo_object); 2919 2920 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2921 } else { 2922 (void) printf("mintxg %llu -> obj %llu\n", 2923 (longlong_t)dle->dle_mintxg, 2924 (longlong_t)dle->dle_bpobj.bpo_object); 2925 } 2926 return (0); 2927 } 2928 2929 static void 2930 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2931 { 2932 char bytes[32]; 2933 char comp[32]; 2934 char uncomp[32]; 2935 char entries[32]; 2936 spa_t *spa = dmu_objset_spa(dl->dl_os); 2937 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2938 2939 if (dl->dl_oldfmt) { 2940 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2941 bpobj_count_refd(&dl->dl_bpobj); 2942 } else { 2943 mos_obj_refd(dl->dl_object); 2944 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2945 } 2946 2947 /* make sure nicenum has enough space */ 2948 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2949 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2950 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2951 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 2952 2953 if (dump_opt['d'] < 3) 2954 return; 2955 2956 if (dl->dl_oldfmt) { 2957 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2958 return; 2959 } 2960 2961 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2962 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2963 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2964 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2965 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2966 name, bytes, comp, uncomp, entries); 2967 2968 if (dump_opt['d'] < 4) 2969 return; 2970 2971 (void) putchar('\n'); 2972 2973 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2974 } 2975 2976 static int 2977 verify_dd_livelist(objset_t *os) 2978 { 2979 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2980 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2981 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2982 2983 ASSERT(!dmu_objset_is_snapshot(os)); 2984 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2985 return (0); 2986 2987 /* Iterate through the livelist to check for duplicates */ 2988 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2989 NULL); 2990 2991 dsl_pool_config_enter(dp, FTAG); 2992 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2993 &ll_comp, &ll_uncomp); 2994 2995 dsl_dataset_t *origin_ds; 2996 ASSERT(dsl_pool_config_held(dp)); 2997 VERIFY0(dsl_dataset_hold_obj(dp, 2998 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2999 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3000 &used, &comp, &uncomp)); 3001 dsl_dataset_rele(origin_ds, FTAG); 3002 dsl_pool_config_exit(dp, FTAG); 3003 /* 3004 * It's possible that the dataset's uncomp space is larger than the 3005 * livelist's because livelists do not track embedded block pointers 3006 */ 3007 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3008 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3009 (void) printf("Discrepancy in space accounting:\n"); 3010 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3011 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3012 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3013 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3014 nice_used, nice_comp, nice_uncomp); 3015 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3016 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3017 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3018 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3019 nice_used, nice_comp, nice_uncomp); 3020 return (1); 3021 } 3022 return (0); 3023 } 3024 3025 static avl_tree_t idx_tree; 3026 static avl_tree_t domain_tree; 3027 static boolean_t fuid_table_loaded; 3028 static objset_t *sa_os = NULL; 3029 static sa_attr_type_t *sa_attr_table = NULL; 3030 3031 static int 3032 open_objset(const char *path, const void *tag, objset_t **osp) 3033 { 3034 int err; 3035 uint64_t sa_attrs = 0; 3036 uint64_t version = 0; 3037 3038 VERIFY3P(sa_os, ==, NULL); 3039 /* 3040 * We can't own an objset if it's redacted. Therefore, we do this 3041 * dance: hold the objset, then acquire a long hold on its dataset, then 3042 * release the pool (which is held as part of holding the objset). 3043 */ 3044 err = dmu_objset_hold(path, tag, osp); 3045 if (err != 0) { 3046 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3047 path, strerror(err)); 3048 return (err); 3049 } 3050 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3051 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3052 3053 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) { 3054 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3055 8, 1, &version); 3056 if (version >= ZPL_VERSION_SA) { 3057 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3058 8, 1, &sa_attrs); 3059 } 3060 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3061 &sa_attr_table); 3062 if (err != 0) { 3063 (void) fprintf(stderr, "sa_setup failed: %s\n", 3064 strerror(err)); 3065 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3066 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3067 *osp = NULL; 3068 } 3069 } 3070 sa_os = *osp; 3071 3072 return (err); 3073 } 3074 3075 static void 3076 close_objset(objset_t *os, const void *tag) 3077 { 3078 VERIFY3P(os, ==, sa_os); 3079 if (os->os_sa != NULL) 3080 sa_tear_down(os); 3081 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3082 dsl_dataset_rele(dmu_objset_ds(os), tag); 3083 sa_attr_table = NULL; 3084 sa_os = NULL; 3085 } 3086 3087 static void 3088 fuid_table_destroy(void) 3089 { 3090 if (fuid_table_loaded) { 3091 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3092 fuid_table_loaded = B_FALSE; 3093 } 3094 } 3095 3096 /* 3097 * print uid or gid information. 3098 * For normal POSIX id just the id is printed in decimal format. 3099 * For CIFS files with FUID the fuid is printed in hex followed by 3100 * the domain-rid string. 3101 */ 3102 static void 3103 print_idstr(uint64_t id, const char *id_type) 3104 { 3105 if (FUID_INDEX(id)) { 3106 const char *domain = 3107 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3108 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3109 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3110 } else { 3111 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3112 } 3113 3114 } 3115 3116 static void 3117 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3118 { 3119 uint32_t uid_idx, gid_idx; 3120 3121 uid_idx = FUID_INDEX(uid); 3122 gid_idx = FUID_INDEX(gid); 3123 3124 /* Load domain table, if not already loaded */ 3125 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3126 uint64_t fuid_obj; 3127 3128 /* first find the fuid object. It lives in the master node */ 3129 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3130 8, 1, &fuid_obj) == 0); 3131 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3132 (void) zfs_fuid_table_load(os, fuid_obj, 3133 &idx_tree, &domain_tree); 3134 fuid_table_loaded = B_TRUE; 3135 } 3136 3137 print_idstr(uid, "uid"); 3138 print_idstr(gid, "gid"); 3139 } 3140 3141 static void 3142 dump_znode_sa_xattr(sa_handle_t *hdl) 3143 { 3144 nvlist_t *sa_xattr; 3145 nvpair_t *elem = NULL; 3146 int sa_xattr_size = 0; 3147 int sa_xattr_entries = 0; 3148 int error; 3149 char *sa_xattr_packed; 3150 3151 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3152 if (error || sa_xattr_size == 0) 3153 return; 3154 3155 sa_xattr_packed = malloc(sa_xattr_size); 3156 if (sa_xattr_packed == NULL) 3157 return; 3158 3159 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3160 sa_xattr_packed, sa_xattr_size); 3161 if (error) { 3162 free(sa_xattr_packed); 3163 return; 3164 } 3165 3166 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3167 if (error) { 3168 free(sa_xattr_packed); 3169 return; 3170 } 3171 3172 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3173 sa_xattr_entries++; 3174 3175 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3176 sa_xattr_size, sa_xattr_entries); 3177 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3178 uchar_t *value; 3179 uint_t cnt, idx; 3180 3181 (void) printf("\t\t%s = ", nvpair_name(elem)); 3182 nvpair_value_byte_array(elem, &value, &cnt); 3183 for (idx = 0; idx < cnt; ++idx) { 3184 if (isprint(value[idx])) 3185 (void) putchar(value[idx]); 3186 else 3187 (void) printf("\\%3.3o", value[idx]); 3188 } 3189 (void) putchar('\n'); 3190 } 3191 3192 nvlist_free(sa_xattr); 3193 free(sa_xattr_packed); 3194 } 3195 3196 static void 3197 dump_znode_symlink(sa_handle_t *hdl) 3198 { 3199 int sa_symlink_size = 0; 3200 char linktarget[MAXPATHLEN]; 3201 int error; 3202 3203 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3204 if (error || sa_symlink_size == 0) { 3205 return; 3206 } 3207 if (sa_symlink_size >= sizeof (linktarget)) { 3208 (void) printf("symlink size %d is too large\n", 3209 sa_symlink_size); 3210 return; 3211 } 3212 linktarget[sa_symlink_size] = '\0'; 3213 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3214 &linktarget, sa_symlink_size) == 0) 3215 (void) printf("\ttarget %s\n", linktarget); 3216 } 3217 3218 static void 3219 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3220 { 3221 (void) data, (void) size; 3222 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3223 sa_handle_t *hdl; 3224 uint64_t xattr, rdev, gen; 3225 uint64_t uid, gid, mode, fsize, parent, links; 3226 uint64_t pflags; 3227 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3228 time_t z_crtime, z_atime, z_mtime, z_ctime; 3229 sa_bulk_attr_t bulk[12]; 3230 int idx = 0; 3231 int error; 3232 3233 VERIFY3P(os, ==, sa_os); 3234 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3235 (void) printf("Failed to get handle for SA znode\n"); 3236 return; 3237 } 3238 3239 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3240 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3241 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3242 &links, 8); 3243 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3244 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3245 &mode, 8); 3246 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3247 NULL, &parent, 8); 3248 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3249 &fsize, 8); 3250 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3251 acctm, 16); 3252 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3253 modtm, 16); 3254 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3255 crtm, 16); 3256 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3257 chgtm, 16); 3258 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3259 &pflags, 8); 3260 3261 if (sa_bulk_lookup(hdl, bulk, idx)) { 3262 (void) sa_handle_destroy(hdl); 3263 return; 3264 } 3265 3266 z_crtime = (time_t)crtm[0]; 3267 z_atime = (time_t)acctm[0]; 3268 z_mtime = (time_t)modtm[0]; 3269 z_ctime = (time_t)chgtm[0]; 3270 3271 if (dump_opt['d'] > 4) { 3272 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3273 if (error == ESTALE) { 3274 (void) snprintf(path, sizeof (path), "on delete queue"); 3275 } else if (error != 0) { 3276 leaked_objects++; 3277 (void) snprintf(path, sizeof (path), 3278 "path not found, possibly leaked"); 3279 } 3280 (void) printf("\tpath %s\n", path); 3281 } 3282 3283 if (S_ISLNK(mode)) 3284 dump_znode_symlink(hdl); 3285 dump_uidgid(os, uid, gid); 3286 (void) printf("\tatime %s", ctime(&z_atime)); 3287 (void) printf("\tmtime %s", ctime(&z_mtime)); 3288 (void) printf("\tctime %s", ctime(&z_ctime)); 3289 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3290 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3291 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3292 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3293 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3294 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3295 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3296 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3297 uint64_t projid; 3298 3299 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3300 sizeof (uint64_t)) == 0) 3301 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3302 } 3303 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3304 sizeof (uint64_t)) == 0) 3305 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3306 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3307 sizeof (uint64_t)) == 0) 3308 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3309 dump_znode_sa_xattr(hdl); 3310 sa_handle_destroy(hdl); 3311 } 3312 3313 static void 3314 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3315 { 3316 (void) os, (void) object, (void) data, (void) size; 3317 } 3318 3319 static void 3320 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3321 { 3322 (void) os, (void) object, (void) data, (void) size; 3323 } 3324 3325 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3326 dump_none, /* unallocated */ 3327 dump_zap, /* object directory */ 3328 dump_uint64, /* object array */ 3329 dump_none, /* packed nvlist */ 3330 dump_packed_nvlist, /* packed nvlist size */ 3331 dump_none, /* bpobj */ 3332 dump_bpobj, /* bpobj header */ 3333 dump_none, /* SPA space map header */ 3334 dump_none, /* SPA space map */ 3335 dump_none, /* ZIL intent log */ 3336 dump_dnode, /* DMU dnode */ 3337 dump_dmu_objset, /* DMU objset */ 3338 dump_dsl_dir, /* DSL directory */ 3339 dump_zap, /* DSL directory child map */ 3340 dump_zap, /* DSL dataset snap map */ 3341 dump_zap, /* DSL props */ 3342 dump_dsl_dataset, /* DSL dataset */ 3343 dump_znode, /* ZFS znode */ 3344 dump_acl, /* ZFS V0 ACL */ 3345 dump_uint8, /* ZFS plain file */ 3346 dump_zpldir, /* ZFS directory */ 3347 dump_zap, /* ZFS master node */ 3348 dump_zap, /* ZFS delete queue */ 3349 dump_uint8, /* zvol object */ 3350 dump_zap, /* zvol prop */ 3351 dump_uint8, /* other uint8[] */ 3352 dump_uint64, /* other uint64[] */ 3353 dump_zap, /* other ZAP */ 3354 dump_zap, /* persistent error log */ 3355 dump_uint8, /* SPA history */ 3356 dump_history_offsets, /* SPA history offsets */ 3357 dump_zap, /* Pool properties */ 3358 dump_zap, /* DSL permissions */ 3359 dump_acl, /* ZFS ACL */ 3360 dump_uint8, /* ZFS SYSACL */ 3361 dump_none, /* FUID nvlist */ 3362 dump_packed_nvlist, /* FUID nvlist size */ 3363 dump_zap, /* DSL dataset next clones */ 3364 dump_zap, /* DSL scrub queue */ 3365 dump_zap, /* ZFS user/group/project used */ 3366 dump_zap, /* ZFS user/group/project quota */ 3367 dump_zap, /* snapshot refcount tags */ 3368 dump_ddt_zap, /* DDT ZAP object */ 3369 dump_zap, /* DDT statistics */ 3370 dump_znode, /* SA object */ 3371 dump_zap, /* SA Master Node */ 3372 dump_sa_attrs, /* SA attribute registration */ 3373 dump_sa_layouts, /* SA attribute layouts */ 3374 dump_zap, /* DSL scrub translations */ 3375 dump_none, /* fake dedup BP */ 3376 dump_zap, /* deadlist */ 3377 dump_none, /* deadlist hdr */ 3378 dump_zap, /* dsl clones */ 3379 dump_bpobj_subobjs, /* bpobj subobjs */ 3380 dump_unknown, /* Unknown type, must be last */ 3381 }; 3382 3383 static boolean_t 3384 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3385 { 3386 boolean_t match = B_TRUE; 3387 3388 switch (obj_type) { 3389 case DMU_OT_DIRECTORY_CONTENTS: 3390 if (!(flags & ZOR_FLAG_DIRECTORY)) 3391 match = B_FALSE; 3392 break; 3393 case DMU_OT_PLAIN_FILE_CONTENTS: 3394 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3395 match = B_FALSE; 3396 break; 3397 case DMU_OT_SPACE_MAP: 3398 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3399 match = B_FALSE; 3400 break; 3401 default: 3402 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3403 if (!(flags & ZOR_FLAG_ZAP)) 3404 match = B_FALSE; 3405 break; 3406 } 3407 3408 /* 3409 * If all bits except some of the supported flags are 3410 * set, the user combined the all-types flag (A) with 3411 * a negated flag to exclude some types (e.g. A-f to 3412 * show all object types except plain files). 3413 */ 3414 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3415 match = B_FALSE; 3416 3417 break; 3418 } 3419 3420 return (match); 3421 } 3422 3423 static void 3424 dump_object(objset_t *os, uint64_t object, int verbosity, 3425 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3426 { 3427 dmu_buf_t *db = NULL; 3428 dmu_object_info_t doi; 3429 dnode_t *dn; 3430 boolean_t dnode_held = B_FALSE; 3431 void *bonus = NULL; 3432 size_t bsize = 0; 3433 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3434 char bonus_size[32]; 3435 char aux[50]; 3436 int error; 3437 3438 /* make sure nicenum has enough space */ 3439 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3440 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3441 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3442 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3443 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3444 "bonus_size truncated"); 3445 3446 if (*print_header) { 3447 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3448 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3449 "lsize", "%full", "type"); 3450 *print_header = 0; 3451 } 3452 3453 if (object == 0) { 3454 dn = DMU_META_DNODE(os); 3455 dmu_object_info_from_dnode(dn, &doi); 3456 } else { 3457 /* 3458 * Encrypted datasets will have sensitive bonus buffers 3459 * encrypted. Therefore we cannot hold the bonus buffer and 3460 * must hold the dnode itself instead. 3461 */ 3462 error = dmu_object_info(os, object, &doi); 3463 if (error) 3464 fatal("dmu_object_info() failed, errno %u", error); 3465 3466 if (os->os_encrypted && 3467 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3468 error = dnode_hold(os, object, FTAG, &dn); 3469 if (error) 3470 fatal("dnode_hold() failed, errno %u", error); 3471 dnode_held = B_TRUE; 3472 } else { 3473 error = dmu_bonus_hold(os, object, FTAG, &db); 3474 if (error) 3475 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3476 object, error); 3477 bonus = db->db_data; 3478 bsize = db->db_size; 3479 dn = DB_DNODE((dmu_buf_impl_t *)db); 3480 } 3481 } 3482 3483 /* 3484 * Default to showing all object types if no flags were specified. 3485 */ 3486 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3487 !match_object_type(doi.doi_type, flags)) 3488 goto out; 3489 3490 if (dnode_slots_used) 3491 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3492 3493 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3494 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3495 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3496 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3497 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3498 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3499 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3500 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3501 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3502 3503 aux[0] = '\0'; 3504 3505 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3506 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3507 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3508 } 3509 3510 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3511 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3512 const char *compname = NULL; 3513 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3514 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3515 &compname) == 0) { 3516 (void) snprintf(aux + strlen(aux), 3517 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3518 compname); 3519 } else { 3520 (void) snprintf(aux + strlen(aux), 3521 sizeof (aux) - strlen(aux), 3522 " (Z=inherit=%s-unknown)", 3523 ZDB_COMPRESS_NAME(os->os_compress)); 3524 } 3525 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3526 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3527 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3528 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3529 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3530 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3531 } 3532 3533 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3534 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3535 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3536 3537 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3538 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3539 "", "", "", "", "", "", bonus_size, "bonus", 3540 zdb_ot_name(doi.doi_bonus_type)); 3541 } 3542 3543 if (verbosity >= 4) { 3544 (void) printf("\tdnode flags: %s%s%s%s\n", 3545 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3546 "USED_BYTES " : "", 3547 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3548 "USERUSED_ACCOUNTED " : "", 3549 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3550 "USEROBJUSED_ACCOUNTED " : "", 3551 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3552 "SPILL_BLKPTR" : ""); 3553 (void) printf("\tdnode maxblkid: %llu\n", 3554 (longlong_t)dn->dn_phys->dn_maxblkid); 3555 3556 if (!dnode_held) { 3557 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3558 object, bonus, bsize); 3559 } else { 3560 (void) printf("\t\t(bonus encrypted)\n"); 3561 } 3562 3563 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) { 3564 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3565 NULL, 0); 3566 } else { 3567 (void) printf("\t\t(object encrypted)\n"); 3568 } 3569 3570 *print_header = B_TRUE; 3571 } 3572 3573 if (verbosity >= 5) { 3574 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3575 char blkbuf[BP_SPRINTF_LEN]; 3576 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3577 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3578 (void) printf("\nSpill block: %s\n", blkbuf); 3579 } 3580 dump_indirect(dn); 3581 } 3582 3583 if (verbosity >= 5) { 3584 /* 3585 * Report the list of segments that comprise the object. 3586 */ 3587 uint64_t start = 0; 3588 uint64_t end; 3589 uint64_t blkfill = 1; 3590 int minlvl = 1; 3591 3592 if (dn->dn_type == DMU_OT_DNODE) { 3593 minlvl = 0; 3594 blkfill = DNODES_PER_BLOCK; 3595 } 3596 3597 for (;;) { 3598 char segsize[32]; 3599 /* make sure nicenum has enough space */ 3600 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3601 "segsize truncated"); 3602 error = dnode_next_offset(dn, 3603 0, &start, minlvl, blkfill, 0); 3604 if (error) 3605 break; 3606 end = start; 3607 error = dnode_next_offset(dn, 3608 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3609 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3610 (void) printf("\t\tsegment [%016llx, %016llx)" 3611 " size %5s\n", (u_longlong_t)start, 3612 (u_longlong_t)end, segsize); 3613 if (error) 3614 break; 3615 start = end; 3616 } 3617 } 3618 3619 out: 3620 if (db != NULL) 3621 dmu_buf_rele(db, FTAG); 3622 if (dnode_held) 3623 dnode_rele(dn, FTAG); 3624 } 3625 3626 static void 3627 count_dir_mos_objects(dsl_dir_t *dd) 3628 { 3629 mos_obj_refd(dd->dd_object); 3630 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3631 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3632 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3633 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3634 3635 /* 3636 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3637 * Ignore the references after the first one. 3638 */ 3639 mos_obj_refd_multiple(dd->dd_crypto_obj); 3640 } 3641 3642 static void 3643 count_ds_mos_objects(dsl_dataset_t *ds) 3644 { 3645 mos_obj_refd(ds->ds_object); 3646 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3647 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3648 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3649 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3650 mos_obj_refd(ds->ds_bookmarks_obj); 3651 3652 if (!dsl_dataset_is_snapshot(ds)) { 3653 count_dir_mos_objects(ds->ds_dir); 3654 } 3655 } 3656 3657 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3658 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3659 3660 /* 3661 * Parse a string denoting a range of object IDs of the form 3662 * <start>[:<end>[:flags]], and store the results in zor. 3663 * Return 0 on success. On error, return 1 and update the msg 3664 * pointer to point to a descriptive error message. 3665 */ 3666 static int 3667 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3668 { 3669 uint64_t flags = 0; 3670 char *p, *s, *dup, *flagstr, *tmp = NULL; 3671 size_t len; 3672 int i; 3673 int rc = 0; 3674 3675 if (strchr(range, ':') == NULL) { 3676 zor->zor_obj_start = strtoull(range, &p, 0); 3677 if (*p != '\0') { 3678 *msg = "Invalid characters in object ID"; 3679 rc = 1; 3680 } 3681 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3682 zor->zor_obj_end = zor->zor_obj_start; 3683 return (rc); 3684 } 3685 3686 if (strchr(range, ':') == range) { 3687 *msg = "Invalid leading colon"; 3688 rc = 1; 3689 return (rc); 3690 } 3691 3692 len = strlen(range); 3693 if (range[len - 1] == ':') { 3694 *msg = "Invalid trailing colon"; 3695 rc = 1; 3696 return (rc); 3697 } 3698 3699 dup = strdup(range); 3700 s = strtok_r(dup, ":", &tmp); 3701 zor->zor_obj_start = strtoull(s, &p, 0); 3702 3703 if (*p != '\0') { 3704 *msg = "Invalid characters in start object ID"; 3705 rc = 1; 3706 goto out; 3707 } 3708 3709 s = strtok_r(NULL, ":", &tmp); 3710 zor->zor_obj_end = strtoull(s, &p, 0); 3711 3712 if (*p != '\0') { 3713 *msg = "Invalid characters in end object ID"; 3714 rc = 1; 3715 goto out; 3716 } 3717 3718 if (zor->zor_obj_start > zor->zor_obj_end) { 3719 *msg = "Start object ID may not exceed end object ID"; 3720 rc = 1; 3721 goto out; 3722 } 3723 3724 s = strtok_r(NULL, ":", &tmp); 3725 if (s == NULL) { 3726 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3727 goto out; 3728 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3729 *msg = "Invalid colon-delimited field after flags"; 3730 rc = 1; 3731 goto out; 3732 } 3733 3734 flagstr = s; 3735 for (i = 0; flagstr[i]; i++) { 3736 int bit; 3737 boolean_t negation = (flagstr[i] == '-'); 3738 3739 if (negation) { 3740 i++; 3741 if (flagstr[i] == '\0') { 3742 *msg = "Invalid trailing negation operator"; 3743 rc = 1; 3744 goto out; 3745 } 3746 } 3747 bit = flagbits[(uchar_t)flagstr[i]]; 3748 if (bit == 0) { 3749 *msg = "Invalid flag"; 3750 rc = 1; 3751 goto out; 3752 } 3753 if (negation) 3754 flags &= ~bit; 3755 else 3756 flags |= bit; 3757 } 3758 zor->zor_flags = flags; 3759 3760 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3761 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3762 3763 out: 3764 free(dup); 3765 return (rc); 3766 } 3767 3768 static void 3769 dump_objset(objset_t *os) 3770 { 3771 dmu_objset_stats_t dds = { 0 }; 3772 uint64_t object, object_count; 3773 uint64_t refdbytes, usedobjs, scratch; 3774 char numbuf[32]; 3775 char blkbuf[BP_SPRINTF_LEN + 20]; 3776 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3777 const char *type = "UNKNOWN"; 3778 int verbosity = dump_opt['d']; 3779 boolean_t print_header; 3780 unsigned i; 3781 int error; 3782 uint64_t total_slots_used = 0; 3783 uint64_t max_slot_used = 0; 3784 uint64_t dnode_slots; 3785 uint64_t obj_start; 3786 uint64_t obj_end; 3787 uint64_t flags; 3788 3789 /* make sure nicenum has enough space */ 3790 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 3791 3792 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3793 dmu_objset_fast_stat(os, &dds); 3794 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3795 3796 print_header = B_TRUE; 3797 3798 if (dds.dds_type < DMU_OST_NUMTYPES) 3799 type = objset_types[dds.dds_type]; 3800 3801 if (dds.dds_type == DMU_OST_META) { 3802 dds.dds_creation_txg = TXG_INITIAL; 3803 usedobjs = BP_GET_FILL(os->os_rootbp); 3804 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3805 dd_used_bytes; 3806 } else { 3807 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3808 } 3809 3810 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3811 3812 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3813 3814 if (verbosity >= 4) { 3815 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3816 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3817 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3818 } else { 3819 blkbuf[0] = '\0'; 3820 } 3821 3822 dmu_objset_name(os, osname); 3823 3824 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3825 "%s, %llu objects%s%s\n", 3826 osname, type, (u_longlong_t)dmu_objset_id(os), 3827 (u_longlong_t)dds.dds_creation_txg, 3828 numbuf, (u_longlong_t)usedobjs, blkbuf, 3829 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3830 3831 for (i = 0; i < zopt_object_args; i++) { 3832 obj_start = zopt_object_ranges[i].zor_obj_start; 3833 obj_end = zopt_object_ranges[i].zor_obj_end; 3834 flags = zopt_object_ranges[i].zor_flags; 3835 3836 object = obj_start; 3837 if (object == 0 || obj_start == obj_end) 3838 dump_object(os, object, verbosity, &print_header, NULL, 3839 flags); 3840 else 3841 object--; 3842 3843 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3844 object <= obj_end) { 3845 dump_object(os, object, verbosity, &print_header, NULL, 3846 flags); 3847 } 3848 } 3849 3850 if (zopt_object_args > 0) { 3851 (void) printf("\n"); 3852 return; 3853 } 3854 3855 if (dump_opt['i'] != 0 || verbosity >= 2) 3856 dump_intent_log(dmu_objset_zil(os)); 3857 3858 if (dmu_objset_ds(os) != NULL) { 3859 dsl_dataset_t *ds = dmu_objset_ds(os); 3860 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 3861 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 3862 !dmu_objset_is_snapshot(os)) { 3863 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 3864 if (verify_dd_livelist(os) != 0) 3865 fatal("livelist is incorrect"); 3866 } 3867 3868 if (dsl_dataset_remap_deadlist_exists(ds)) { 3869 (void) printf("ds_remap_deadlist:\n"); 3870 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 3871 } 3872 count_ds_mos_objects(ds); 3873 } 3874 3875 if (dmu_objset_ds(os) != NULL) 3876 dump_bookmarks(os, verbosity); 3877 3878 if (verbosity < 2) 3879 return; 3880 3881 if (BP_IS_HOLE(os->os_rootbp)) 3882 return; 3883 3884 dump_object(os, 0, verbosity, &print_header, NULL, 0); 3885 object_count = 0; 3886 if (DMU_USERUSED_DNODE(os) != NULL && 3887 DMU_USERUSED_DNODE(os)->dn_type != 0) { 3888 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 3889 NULL, 0); 3890 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 3891 NULL, 0); 3892 } 3893 3894 if (DMU_PROJECTUSED_DNODE(os) != NULL && 3895 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 3896 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 3897 &print_header, NULL, 0); 3898 3899 object = 0; 3900 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 3901 dump_object(os, object, verbosity, &print_header, &dnode_slots, 3902 0); 3903 object_count++; 3904 total_slots_used += dnode_slots; 3905 max_slot_used = object + dnode_slots - 1; 3906 } 3907 3908 (void) printf("\n"); 3909 3910 (void) printf(" Dnode slots:\n"); 3911 (void) printf("\tTotal used: %10llu\n", 3912 (u_longlong_t)total_slots_used); 3913 (void) printf("\tMax used: %10llu\n", 3914 (u_longlong_t)max_slot_used); 3915 (void) printf("\tPercent empty: %10lf\n", 3916 (double)(max_slot_used - total_slots_used)*100 / 3917 (double)max_slot_used); 3918 (void) printf("\n"); 3919 3920 if (error != ESRCH) { 3921 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 3922 abort(); 3923 } 3924 3925 ASSERT3U(object_count, ==, usedobjs); 3926 3927 if (leaked_objects != 0) { 3928 (void) printf("%d potentially leaked objects detected\n", 3929 leaked_objects); 3930 leaked_objects = 0; 3931 } 3932 } 3933 3934 static void 3935 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 3936 { 3937 time_t timestamp = ub->ub_timestamp; 3938 3939 (void) printf("%s", header ? header : ""); 3940 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 3941 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 3942 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 3943 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 3944 (void) printf("\ttimestamp = %llu UTC = %s", 3945 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 3946 3947 (void) printf("\tmmp_magic = %016llx\n", 3948 (u_longlong_t)ub->ub_mmp_magic); 3949 if (MMP_VALID(ub)) { 3950 (void) printf("\tmmp_delay = %0llu\n", 3951 (u_longlong_t)ub->ub_mmp_delay); 3952 if (MMP_SEQ_VALID(ub)) 3953 (void) printf("\tmmp_seq = %u\n", 3954 (unsigned int) MMP_SEQ(ub)); 3955 if (MMP_FAIL_INT_VALID(ub)) 3956 (void) printf("\tmmp_fail = %u\n", 3957 (unsigned int) MMP_FAIL_INT(ub)); 3958 if (MMP_INTERVAL_VALID(ub)) 3959 (void) printf("\tmmp_write = %u\n", 3960 (unsigned int) MMP_INTERVAL(ub)); 3961 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 3962 (void) printf("\tmmp_valid = %x\n", 3963 (unsigned int) ub->ub_mmp_config & 0xFF); 3964 } 3965 3966 if (dump_opt['u'] >= 4) { 3967 char blkbuf[BP_SPRINTF_LEN]; 3968 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 3969 (void) printf("\trootbp = %s\n", blkbuf); 3970 } 3971 (void) printf("\tcheckpoint_txg = %llu\n", 3972 (u_longlong_t)ub->ub_checkpoint_txg); 3973 (void) printf("%s", footer ? footer : ""); 3974 } 3975 3976 static void 3977 dump_config(spa_t *spa) 3978 { 3979 dmu_buf_t *db; 3980 size_t nvsize = 0; 3981 int error = 0; 3982 3983 3984 error = dmu_bonus_hold(spa->spa_meta_objset, 3985 spa->spa_config_object, FTAG, &db); 3986 3987 if (error == 0) { 3988 nvsize = *(uint64_t *)db->db_data; 3989 dmu_buf_rele(db, FTAG); 3990 3991 (void) printf("\nMOS Configuration:\n"); 3992 dump_packed_nvlist(spa->spa_meta_objset, 3993 spa->spa_config_object, (void *)&nvsize, 1); 3994 } else { 3995 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 3996 (u_longlong_t)spa->spa_config_object, error); 3997 } 3998 } 3999 4000 static void 4001 dump_cachefile(const char *cachefile) 4002 { 4003 int fd; 4004 struct stat64 statbuf; 4005 char *buf; 4006 nvlist_t *config; 4007 4008 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4009 (void) printf("cannot open '%s': %s\n", cachefile, 4010 strerror(errno)); 4011 exit(1); 4012 } 4013 4014 if (fstat64(fd, &statbuf) != 0) { 4015 (void) printf("failed to stat '%s': %s\n", cachefile, 4016 strerror(errno)); 4017 exit(1); 4018 } 4019 4020 if ((buf = malloc(statbuf.st_size)) == NULL) { 4021 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4022 (u_longlong_t)statbuf.st_size); 4023 exit(1); 4024 } 4025 4026 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4027 (void) fprintf(stderr, "failed to read %llu bytes\n", 4028 (u_longlong_t)statbuf.st_size); 4029 exit(1); 4030 } 4031 4032 (void) close(fd); 4033 4034 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4035 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4036 exit(1); 4037 } 4038 4039 free(buf); 4040 4041 dump_nvlist(config, 0); 4042 4043 nvlist_free(config); 4044 } 4045 4046 /* 4047 * ZFS label nvlist stats 4048 */ 4049 typedef struct zdb_nvl_stats { 4050 int zns_list_count; 4051 int zns_leaf_count; 4052 size_t zns_leaf_largest; 4053 size_t zns_leaf_total; 4054 nvlist_t *zns_string; 4055 nvlist_t *zns_uint64; 4056 nvlist_t *zns_boolean; 4057 } zdb_nvl_stats_t; 4058 4059 static void 4060 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4061 { 4062 nvlist_t *list, **array; 4063 nvpair_t *nvp = NULL; 4064 char *name; 4065 uint_t i, items; 4066 4067 stats->zns_list_count++; 4068 4069 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4070 name = nvpair_name(nvp); 4071 4072 switch (nvpair_type(nvp)) { 4073 case DATA_TYPE_STRING: 4074 fnvlist_add_string(stats->zns_string, name, 4075 fnvpair_value_string(nvp)); 4076 break; 4077 case DATA_TYPE_UINT64: 4078 fnvlist_add_uint64(stats->zns_uint64, name, 4079 fnvpair_value_uint64(nvp)); 4080 break; 4081 case DATA_TYPE_BOOLEAN: 4082 fnvlist_add_boolean(stats->zns_boolean, name); 4083 break; 4084 case DATA_TYPE_NVLIST: 4085 if (nvpair_value_nvlist(nvp, &list) == 0) 4086 collect_nvlist_stats(list, stats); 4087 break; 4088 case DATA_TYPE_NVLIST_ARRAY: 4089 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4090 break; 4091 4092 for (i = 0; i < items; i++) { 4093 collect_nvlist_stats(array[i], stats); 4094 4095 /* collect stats on leaf vdev */ 4096 if (strcmp(name, "children") == 0) { 4097 size_t size; 4098 4099 (void) nvlist_size(array[i], &size, 4100 NV_ENCODE_XDR); 4101 stats->zns_leaf_total += size; 4102 if (size > stats->zns_leaf_largest) 4103 stats->zns_leaf_largest = size; 4104 stats->zns_leaf_count++; 4105 } 4106 } 4107 break; 4108 default: 4109 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4110 } 4111 } 4112 } 4113 4114 static void 4115 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4116 { 4117 zdb_nvl_stats_t stats = { 0 }; 4118 size_t size, sum = 0, total; 4119 size_t noise; 4120 4121 /* requires nvlist with non-unique names for stat collection */ 4122 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4123 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4124 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4125 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4126 4127 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4128 4129 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4130 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4131 (int)total, (int)(cap - total), 100.0 * total / cap); 4132 4133 collect_nvlist_stats(nvl, &stats); 4134 4135 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4136 size -= noise; 4137 sum += size; 4138 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4139 (int)fnvlist_num_pairs(stats.zns_uint64), 4140 (int)size, 100.0 * size / total); 4141 4142 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4143 size -= noise; 4144 sum += size; 4145 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4146 (int)fnvlist_num_pairs(stats.zns_string), 4147 (int)size, 100.0 * size / total); 4148 4149 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4150 size -= noise; 4151 sum += size; 4152 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4153 (int)fnvlist_num_pairs(stats.zns_boolean), 4154 (int)size, 100.0 * size / total); 4155 4156 size = total - sum; /* treat remainder as nvlist overhead */ 4157 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4158 stats.zns_list_count, (int)size, 100.0 * size / total); 4159 4160 if (stats.zns_leaf_count > 0) { 4161 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4162 4163 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4164 stats.zns_leaf_count, (int)average); 4165 (void) printf("%24d bytes largest\n", 4166 (int)stats.zns_leaf_largest); 4167 4168 if (dump_opt['l'] >= 3 && average > 0) 4169 (void) printf(" space for %d additional leaf vdevs\n", 4170 (int)((cap - total) / average)); 4171 } 4172 (void) printf("\n"); 4173 4174 nvlist_free(stats.zns_string); 4175 nvlist_free(stats.zns_uint64); 4176 nvlist_free(stats.zns_boolean); 4177 } 4178 4179 typedef struct cksum_record { 4180 zio_cksum_t cksum; 4181 boolean_t labels[VDEV_LABELS]; 4182 avl_node_t link; 4183 } cksum_record_t; 4184 4185 static int 4186 cksum_record_compare(const void *x1, const void *x2) 4187 { 4188 const cksum_record_t *l = (cksum_record_t *)x1; 4189 const cksum_record_t *r = (cksum_record_t *)x2; 4190 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4191 int difference = 0; 4192 4193 for (int i = 0; i < arraysize; i++) { 4194 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4195 if (difference) 4196 break; 4197 } 4198 4199 return (difference); 4200 } 4201 4202 static cksum_record_t * 4203 cksum_record_alloc(zio_cksum_t *cksum, int l) 4204 { 4205 cksum_record_t *rec; 4206 4207 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4208 rec->cksum = *cksum; 4209 rec->labels[l] = B_TRUE; 4210 4211 return (rec); 4212 } 4213 4214 static cksum_record_t * 4215 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4216 { 4217 cksum_record_t lookup = { .cksum = *cksum }; 4218 avl_index_t where; 4219 4220 return (avl_find(tree, &lookup, &where)); 4221 } 4222 4223 static cksum_record_t * 4224 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4225 { 4226 cksum_record_t *rec; 4227 4228 rec = cksum_record_lookup(tree, cksum); 4229 if (rec) { 4230 rec->labels[l] = B_TRUE; 4231 } else { 4232 rec = cksum_record_alloc(cksum, l); 4233 avl_add(tree, rec); 4234 } 4235 4236 return (rec); 4237 } 4238 4239 static int 4240 first_label(cksum_record_t *rec) 4241 { 4242 for (int i = 0; i < VDEV_LABELS; i++) 4243 if (rec->labels[i]) 4244 return (i); 4245 4246 return (-1); 4247 } 4248 4249 static void 4250 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4251 { 4252 fputs(prefix, stdout); 4253 for (int i = 0; i < VDEV_LABELS; i++) 4254 if (rec->labels[i] == B_TRUE) 4255 printf("%d ", i); 4256 putchar('\n'); 4257 } 4258 4259 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4260 4261 typedef struct zdb_label { 4262 vdev_label_t label; 4263 uint64_t label_offset; 4264 nvlist_t *config_nv; 4265 cksum_record_t *config; 4266 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4267 boolean_t header_printed; 4268 boolean_t read_failed; 4269 boolean_t cksum_valid; 4270 } zdb_label_t; 4271 4272 static void 4273 print_label_header(zdb_label_t *label, int l) 4274 { 4275 4276 if (dump_opt['q']) 4277 return; 4278 4279 if (label->header_printed == B_TRUE) 4280 return; 4281 4282 (void) printf("------------------------------------\n"); 4283 (void) printf("LABEL %d %s\n", l, 4284 label->cksum_valid ? "" : "(Bad label cksum)"); 4285 (void) printf("------------------------------------\n"); 4286 4287 label->header_printed = B_TRUE; 4288 } 4289 4290 static void 4291 print_l2arc_header(void) 4292 { 4293 (void) printf("------------------------------------\n"); 4294 (void) printf("L2ARC device header\n"); 4295 (void) printf("------------------------------------\n"); 4296 } 4297 4298 static void 4299 print_l2arc_log_blocks(void) 4300 { 4301 (void) printf("------------------------------------\n"); 4302 (void) printf("L2ARC device log blocks\n"); 4303 (void) printf("------------------------------------\n"); 4304 } 4305 4306 static void 4307 dump_l2arc_log_entries(uint64_t log_entries, 4308 l2arc_log_ent_phys_t *le, uint64_t i) 4309 { 4310 for (int j = 0; j < log_entries; j++) { 4311 dva_t dva = le[j].le_dva; 4312 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4313 "vdev: %llu, offset: %llu\n", 4314 (u_longlong_t)i, j + 1, 4315 (u_longlong_t)DVA_GET_ASIZE(&dva), 4316 (u_longlong_t)DVA_GET_VDEV(&dva), 4317 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4318 (void) printf("|\t\t\t\tbirth: %llu\n", 4319 (u_longlong_t)le[j].le_birth); 4320 (void) printf("|\t\t\t\tlsize: %llu\n", 4321 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4322 (void) printf("|\t\t\t\tpsize: %llu\n", 4323 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4324 (void) printf("|\t\t\t\tcompr: %llu\n", 4325 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4326 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4327 (u_longlong_t)(&le[j])->le_complevel); 4328 (void) printf("|\t\t\t\ttype: %llu\n", 4329 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4330 (void) printf("|\t\t\t\tprotected: %llu\n", 4331 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4332 (void) printf("|\t\t\t\tprefetch: %llu\n", 4333 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4334 (void) printf("|\t\t\t\taddress: %llu\n", 4335 (u_longlong_t)le[j].le_daddr); 4336 (void) printf("|\t\t\t\tARC state: %llu\n", 4337 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4338 (void) printf("|\n"); 4339 } 4340 (void) printf("\n"); 4341 } 4342 4343 static void 4344 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4345 { 4346 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4347 (void) printf("|\t\tpayload_asize: %llu\n", 4348 (u_longlong_t)lbps->lbp_payload_asize); 4349 (void) printf("|\t\tpayload_start: %llu\n", 4350 (u_longlong_t)lbps->lbp_payload_start); 4351 (void) printf("|\t\tlsize: %llu\n", 4352 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4353 (void) printf("|\t\tasize: %llu\n", 4354 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4355 (void) printf("|\t\tcompralgo: %llu\n", 4356 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4357 (void) printf("|\t\tcksumalgo: %llu\n", 4358 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4359 (void) printf("|\n\n"); 4360 } 4361 4362 static void 4363 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4364 l2arc_dev_hdr_phys_t *rebuild) 4365 { 4366 l2arc_log_blk_phys_t this_lb; 4367 uint64_t asize; 4368 l2arc_log_blkptr_t lbps[2]; 4369 abd_t *abd; 4370 zio_cksum_t cksum; 4371 int failed = 0; 4372 l2arc_dev_t dev; 4373 4374 if (!dump_opt['q']) 4375 print_l2arc_log_blocks(); 4376 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4377 4378 dev.l2ad_evict = l2dhdr->dh_evict; 4379 dev.l2ad_start = l2dhdr->dh_start; 4380 dev.l2ad_end = l2dhdr->dh_end; 4381 4382 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4383 /* no log blocks to read */ 4384 if (!dump_opt['q']) { 4385 (void) printf("No log blocks to read\n"); 4386 (void) printf("\n"); 4387 } 4388 return; 4389 } else { 4390 dev.l2ad_hand = lbps[0].lbp_daddr + 4391 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4392 } 4393 4394 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4395 4396 for (;;) { 4397 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4398 break; 4399 4400 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4401 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4402 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4403 if (!dump_opt['q']) { 4404 (void) printf("Error while reading next log " 4405 "block\n\n"); 4406 } 4407 break; 4408 } 4409 4410 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4411 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4412 failed++; 4413 if (!dump_opt['q']) { 4414 (void) printf("Invalid cksum\n"); 4415 dump_l2arc_log_blkptr(&lbps[0]); 4416 } 4417 break; 4418 } 4419 4420 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4421 case ZIO_COMPRESS_OFF: 4422 break; 4423 default: 4424 abd = abd_alloc_for_io(asize, B_TRUE); 4425 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4426 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4427 (&lbps[0])->lbp_prop), abd, &this_lb, 4428 asize, sizeof (this_lb), NULL) != 0) { 4429 (void) printf("L2ARC block decompression " 4430 "failed\n"); 4431 abd_free(abd); 4432 goto out; 4433 } 4434 abd_free(abd); 4435 break; 4436 } 4437 4438 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4439 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4440 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4441 if (!dump_opt['q']) 4442 (void) printf("Invalid log block magic\n\n"); 4443 break; 4444 } 4445 4446 rebuild->dh_lb_count++; 4447 rebuild->dh_lb_asize += asize; 4448 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4449 (void) printf("lb[%4llu]\tmagic: %llu\n", 4450 (u_longlong_t)rebuild->dh_lb_count, 4451 (u_longlong_t)this_lb.lb_magic); 4452 dump_l2arc_log_blkptr(&lbps[0]); 4453 } 4454 4455 if (dump_opt['l'] > 2 && !dump_opt['q']) 4456 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4457 this_lb.lb_entries, 4458 rebuild->dh_lb_count); 4459 4460 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4461 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4462 !dev.l2ad_first) 4463 break; 4464 4465 lbps[0] = lbps[1]; 4466 lbps[1] = this_lb.lb_prev_lbp; 4467 } 4468 out: 4469 if (!dump_opt['q']) { 4470 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4471 (u_longlong_t)rebuild->dh_lb_count); 4472 (void) printf("\t\t %d with invalid cksum\n", failed); 4473 (void) printf("log_blk_asize:\t %llu\n\n", 4474 (u_longlong_t)rebuild->dh_lb_asize); 4475 } 4476 } 4477 4478 static int 4479 dump_l2arc_header(int fd) 4480 { 4481 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4482 int error = B_FALSE; 4483 4484 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4485 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4486 error = B_TRUE; 4487 } else { 4488 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4489 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4490 4491 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4492 error = B_TRUE; 4493 } 4494 4495 if (error) { 4496 (void) printf("L2ARC device header not found\n\n"); 4497 /* Do not return an error here for backward compatibility */ 4498 return (0); 4499 } else if (!dump_opt['q']) { 4500 print_l2arc_header(); 4501 4502 (void) printf(" magic: %llu\n", 4503 (u_longlong_t)l2dhdr.dh_magic); 4504 (void) printf(" version: %llu\n", 4505 (u_longlong_t)l2dhdr.dh_version); 4506 (void) printf(" pool_guid: %llu\n", 4507 (u_longlong_t)l2dhdr.dh_spa_guid); 4508 (void) printf(" flags: %llu\n", 4509 (u_longlong_t)l2dhdr.dh_flags); 4510 (void) printf(" start_lbps[0]: %llu\n", 4511 (u_longlong_t) 4512 l2dhdr.dh_start_lbps[0].lbp_daddr); 4513 (void) printf(" start_lbps[1]: %llu\n", 4514 (u_longlong_t) 4515 l2dhdr.dh_start_lbps[1].lbp_daddr); 4516 (void) printf(" log_blk_ent: %llu\n", 4517 (u_longlong_t)l2dhdr.dh_log_entries); 4518 (void) printf(" start: %llu\n", 4519 (u_longlong_t)l2dhdr.dh_start); 4520 (void) printf(" end: %llu\n", 4521 (u_longlong_t)l2dhdr.dh_end); 4522 (void) printf(" evict: %llu\n", 4523 (u_longlong_t)l2dhdr.dh_evict); 4524 (void) printf(" lb_asize_refcount: %llu\n", 4525 (u_longlong_t)l2dhdr.dh_lb_asize); 4526 (void) printf(" lb_count_refcount: %llu\n", 4527 (u_longlong_t)l2dhdr.dh_lb_count); 4528 (void) printf(" trim_action_time: %llu\n", 4529 (u_longlong_t)l2dhdr.dh_trim_action_time); 4530 (void) printf(" trim_state: %llu\n\n", 4531 (u_longlong_t)l2dhdr.dh_trim_state); 4532 } 4533 4534 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4535 /* 4536 * The total aligned size of log blocks and the number of log blocks 4537 * reported in the header of the device may be less than what zdb 4538 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4539 * This happens because dump_l2arc_log_blocks() lacks the memory 4540 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4541 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4542 * and dh_lb_count will be lower to begin with than what exists on the 4543 * device. This is normal and zdb should not exit with an error. The 4544 * opposite case should never happen though, the values reported in the 4545 * header should never be higher than what dump_l2arc_log_blocks() and 4546 * l2arc_rebuild() report. If this happens there is a leak in the 4547 * accounting of log blocks. 4548 */ 4549 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4550 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4551 return (1); 4552 4553 return (0); 4554 } 4555 4556 static void 4557 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4558 { 4559 if (dump_opt['q']) 4560 return; 4561 4562 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4563 return; 4564 4565 print_label_header(label, l); 4566 dump_nvlist(label->config_nv, 4); 4567 print_label_numbers(" labels = ", label->config); 4568 4569 if (dump_opt['l'] >= 2) 4570 dump_nvlist_stats(label->config_nv, buflen); 4571 } 4572 4573 #define ZDB_MAX_UB_HEADER_SIZE 32 4574 4575 static void 4576 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4577 { 4578 4579 vdev_t vd; 4580 char header[ZDB_MAX_UB_HEADER_SIZE]; 4581 4582 vd.vdev_ashift = ashift; 4583 vd.vdev_top = &vd; 4584 4585 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4586 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4587 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4588 cksum_record_t *rec = label->uberblocks[i]; 4589 4590 if (rec == NULL) { 4591 if (dump_opt['u'] >= 2) { 4592 print_label_header(label, label_num); 4593 (void) printf(" Uberblock[%d] invalid\n", i); 4594 } 4595 continue; 4596 } 4597 4598 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4599 continue; 4600 4601 if ((dump_opt['u'] < 4) && 4602 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4603 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4604 continue; 4605 4606 print_label_header(label, label_num); 4607 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4608 " Uberblock[%d]\n", i); 4609 dump_uberblock(ub, header, ""); 4610 print_label_numbers(" labels = ", rec); 4611 } 4612 } 4613 4614 static char curpath[PATH_MAX]; 4615 4616 /* 4617 * Iterate through the path components, recursively passing 4618 * current one's obj and remaining path until we find the obj 4619 * for the last one. 4620 */ 4621 static int 4622 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4623 { 4624 int err; 4625 boolean_t header = B_TRUE; 4626 uint64_t child_obj; 4627 char *s; 4628 dmu_buf_t *db; 4629 dmu_object_info_t doi; 4630 4631 if ((s = strchr(name, '/')) != NULL) 4632 *s = '\0'; 4633 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4634 4635 (void) strlcat(curpath, name, sizeof (curpath)); 4636 4637 if (err != 0) { 4638 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4639 curpath, strerror(err)); 4640 return (err); 4641 } 4642 4643 child_obj = ZFS_DIRENT_OBJ(child_obj); 4644 err = sa_buf_hold(os, child_obj, FTAG, &db); 4645 if (err != 0) { 4646 (void) fprintf(stderr, 4647 "failed to get SA dbuf for obj %llu: %s\n", 4648 (u_longlong_t)child_obj, strerror(err)); 4649 return (EINVAL); 4650 } 4651 dmu_object_info_from_db(db, &doi); 4652 sa_buf_rele(db, FTAG); 4653 4654 if (doi.doi_bonus_type != DMU_OT_SA && 4655 doi.doi_bonus_type != DMU_OT_ZNODE) { 4656 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4657 doi.doi_bonus_type, (u_longlong_t)child_obj); 4658 return (EINVAL); 4659 } 4660 4661 if (dump_opt['v'] > 6) { 4662 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4663 (u_longlong_t)child_obj, curpath, doi.doi_type, 4664 doi.doi_bonus_type); 4665 } 4666 4667 (void) strlcat(curpath, "/", sizeof (curpath)); 4668 4669 switch (doi.doi_type) { 4670 case DMU_OT_DIRECTORY_CONTENTS: 4671 if (s != NULL && *(s + 1) != '\0') 4672 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4673 zfs_fallthrough; 4674 case DMU_OT_PLAIN_FILE_CONTENTS: 4675 if (retobj != NULL) { 4676 *retobj = child_obj; 4677 } else { 4678 dump_object(os, child_obj, dump_opt['v'], &header, 4679 NULL, 0); 4680 } 4681 return (0); 4682 default: 4683 (void) fprintf(stderr, "object %llu has non-file/directory " 4684 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4685 break; 4686 } 4687 4688 return (EINVAL); 4689 } 4690 4691 /* 4692 * Dump the blocks for the object specified by path inside the dataset. 4693 */ 4694 static int 4695 dump_path(char *ds, char *path, uint64_t *retobj) 4696 { 4697 int err; 4698 objset_t *os; 4699 uint64_t root_obj; 4700 4701 err = open_objset(ds, FTAG, &os); 4702 if (err != 0) 4703 return (err); 4704 4705 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4706 if (err != 0) { 4707 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4708 strerror(err)); 4709 close_objset(os, FTAG); 4710 return (EINVAL); 4711 } 4712 4713 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4714 4715 err = dump_path_impl(os, root_obj, path, retobj); 4716 4717 close_objset(os, FTAG); 4718 return (err); 4719 } 4720 4721 static int 4722 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4723 { 4724 int err = 0; 4725 uint64_t size, readsize, oursize, offset; 4726 ssize_t writesize; 4727 sa_handle_t *hdl; 4728 4729 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4730 destfile); 4731 4732 VERIFY3P(os, ==, sa_os); 4733 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4734 (void) printf("Failed to get handle for SA znode\n"); 4735 return (err); 4736 } 4737 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4738 (void) sa_handle_destroy(hdl); 4739 return (err); 4740 } 4741 (void) sa_handle_destroy(hdl); 4742 4743 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4744 size); 4745 if (size == 0) { 4746 return (EINVAL); 4747 } 4748 4749 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4750 if (fd == -1) 4751 return (errno); 4752 /* 4753 * We cap the size at 1 mebibyte here to prevent 4754 * allocation failures and nigh-infinite printing if the 4755 * object is extremely large. 4756 */ 4757 oursize = MIN(size, 1 << 20); 4758 offset = 0; 4759 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4760 if (buf == NULL) { 4761 (void) close(fd); 4762 return (ENOMEM); 4763 } 4764 4765 while (offset < size) { 4766 readsize = MIN(size - offset, 1 << 20); 4767 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 4768 if (err != 0) { 4769 (void) printf("got error %u from dmu_read\n", err); 4770 kmem_free(buf, oursize); 4771 (void) close(fd); 4772 return (err); 4773 } 4774 if (dump_opt['v'] > 3) { 4775 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 4776 " error=%d\n", offset, readsize, err); 4777 } 4778 4779 writesize = write(fd, buf, readsize); 4780 if (writesize < 0) { 4781 err = errno; 4782 break; 4783 } else if (writesize != readsize) { 4784 /* Incomplete write */ 4785 (void) fprintf(stderr, "Short write, only wrote %llu of" 4786 " %" PRIu64 " bytes, exiting...\n", 4787 (u_longlong_t)writesize, readsize); 4788 break; 4789 } 4790 4791 offset += readsize; 4792 } 4793 4794 (void) close(fd); 4795 4796 if (buf != NULL) 4797 kmem_free(buf, oursize); 4798 4799 return (err); 4800 } 4801 4802 static boolean_t 4803 label_cksum_valid(vdev_label_t *label, uint64_t offset) 4804 { 4805 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 4806 zio_cksum_t expected_cksum; 4807 zio_cksum_t actual_cksum; 4808 zio_cksum_t verifier; 4809 zio_eck_t *eck; 4810 int byteswap; 4811 4812 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 4813 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 4814 4815 offset += offsetof(vdev_label_t, vl_vdev_phys); 4816 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 4817 4818 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 4819 if (byteswap) 4820 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 4821 4822 expected_cksum = eck->zec_cksum; 4823 eck->zec_cksum = verifier; 4824 4825 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 4826 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 4827 abd_free(abd); 4828 4829 if (byteswap) 4830 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 4831 4832 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 4833 return (B_TRUE); 4834 4835 return (B_FALSE); 4836 } 4837 4838 static int 4839 dump_label(const char *dev) 4840 { 4841 char path[MAXPATHLEN]; 4842 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 4843 uint64_t psize, ashift, l2cache; 4844 struct stat64 statbuf; 4845 boolean_t config_found = B_FALSE; 4846 boolean_t error = B_FALSE; 4847 boolean_t read_l2arc_header = B_FALSE; 4848 avl_tree_t config_tree; 4849 avl_tree_t uberblock_tree; 4850 void *node, *cookie; 4851 int fd; 4852 4853 /* 4854 * Check if we were given absolute path and use it as is. 4855 * Otherwise if the provided vdev name doesn't point to a file, 4856 * try prepending expected disk paths and partition numbers. 4857 */ 4858 (void) strlcpy(path, dev, sizeof (path)); 4859 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 4860 int error; 4861 4862 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 4863 if (error == 0 && zfs_dev_is_whole_disk(path)) { 4864 if (zfs_append_partition(path, MAXPATHLEN) == -1) 4865 error = ENOENT; 4866 } 4867 4868 if (error || (stat64(path, &statbuf) != 0)) { 4869 (void) printf("failed to find device %s, try " 4870 "specifying absolute path instead\n", dev); 4871 return (1); 4872 } 4873 } 4874 4875 if ((fd = open64(path, O_RDONLY)) < 0) { 4876 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 4877 exit(1); 4878 } 4879 4880 if (fstat64_blk(fd, &statbuf) != 0) { 4881 (void) printf("failed to stat '%s': %s\n", path, 4882 strerror(errno)); 4883 (void) close(fd); 4884 exit(1); 4885 } 4886 4887 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 4888 (void) printf("failed to invalidate cache '%s' : %s\n", path, 4889 strerror(errno)); 4890 4891 avl_create(&config_tree, cksum_record_compare, 4892 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4893 avl_create(&uberblock_tree, cksum_record_compare, 4894 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4895 4896 psize = statbuf.st_size; 4897 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 4898 ashift = SPA_MINBLOCKSHIFT; 4899 4900 /* 4901 * 1. Read the label from disk 4902 * 2. Verify label cksum 4903 * 3. Unpack the configuration and insert in config tree. 4904 * 4. Traverse all uberblocks and insert in uberblock tree. 4905 */ 4906 for (int l = 0; l < VDEV_LABELS; l++) { 4907 zdb_label_t *label = &labels[l]; 4908 char *buf = label->label.vl_vdev_phys.vp_nvlist; 4909 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4910 nvlist_t *config; 4911 cksum_record_t *rec; 4912 zio_cksum_t cksum; 4913 vdev_t vd; 4914 4915 label->label_offset = vdev_label_offset(psize, l, 0); 4916 4917 if (pread64(fd, &label->label, sizeof (label->label), 4918 label->label_offset) != sizeof (label->label)) { 4919 if (!dump_opt['q']) 4920 (void) printf("failed to read label %d\n", l); 4921 label->read_failed = B_TRUE; 4922 error = B_TRUE; 4923 continue; 4924 } 4925 4926 label->read_failed = B_FALSE; 4927 label->cksum_valid = label_cksum_valid(&label->label, 4928 label->label_offset); 4929 4930 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 4931 nvlist_t *vdev_tree = NULL; 4932 size_t size; 4933 4934 if ((nvlist_lookup_nvlist(config, 4935 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 4936 (nvlist_lookup_uint64(vdev_tree, 4937 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 4938 ashift = SPA_MINBLOCKSHIFT; 4939 4940 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 4941 size = buflen; 4942 4943 /* If the device is a cache device clear the header. */ 4944 if (!read_l2arc_header) { 4945 if (nvlist_lookup_uint64(config, 4946 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 4947 l2cache == POOL_STATE_L2CACHE) { 4948 read_l2arc_header = B_TRUE; 4949 } 4950 } 4951 4952 fletcher_4_native_varsize(buf, size, &cksum); 4953 rec = cksum_record_insert(&config_tree, &cksum, l); 4954 4955 label->config = rec; 4956 label->config_nv = config; 4957 config_found = B_TRUE; 4958 } else { 4959 error = B_TRUE; 4960 } 4961 4962 vd.vdev_ashift = ashift; 4963 vd.vdev_top = &vd; 4964 4965 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4966 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4967 uberblock_t *ub = (void *)((char *)label + uoff); 4968 4969 if (uberblock_verify(ub)) 4970 continue; 4971 4972 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 4973 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 4974 4975 label->uberblocks[i] = rec; 4976 } 4977 } 4978 4979 /* 4980 * Dump the label and uberblocks. 4981 */ 4982 for (int l = 0; l < VDEV_LABELS; l++) { 4983 zdb_label_t *label = &labels[l]; 4984 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4985 4986 if (label->read_failed == B_TRUE) 4987 continue; 4988 4989 if (label->config_nv) { 4990 dump_config_from_label(label, buflen, l); 4991 } else { 4992 if (!dump_opt['q']) 4993 (void) printf("failed to unpack label %d\n", l); 4994 } 4995 4996 if (dump_opt['u']) 4997 dump_label_uberblocks(label, ashift, l); 4998 4999 nvlist_free(label->config_nv); 5000 } 5001 5002 /* 5003 * Dump the L2ARC header, if existent. 5004 */ 5005 if (read_l2arc_header) 5006 error |= dump_l2arc_header(fd); 5007 5008 cookie = NULL; 5009 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5010 umem_free(node, sizeof (cksum_record_t)); 5011 5012 cookie = NULL; 5013 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5014 umem_free(node, sizeof (cksum_record_t)); 5015 5016 avl_destroy(&config_tree); 5017 avl_destroy(&uberblock_tree); 5018 5019 (void) close(fd); 5020 5021 return (config_found == B_FALSE ? 2 : 5022 (error == B_TRUE ? 1 : 0)); 5023 } 5024 5025 static uint64_t dataset_feature_count[SPA_FEATURES]; 5026 static uint64_t global_feature_count[SPA_FEATURES]; 5027 static uint64_t remap_deadlist_count = 0; 5028 5029 static int 5030 dump_one_objset(const char *dsname, void *arg) 5031 { 5032 (void) arg; 5033 int error; 5034 objset_t *os; 5035 spa_feature_t f; 5036 5037 error = open_objset(dsname, FTAG, &os); 5038 if (error != 0) 5039 return (0); 5040 5041 for (f = 0; f < SPA_FEATURES; f++) { 5042 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5043 continue; 5044 ASSERT(spa_feature_table[f].fi_flags & 5045 ZFEATURE_FLAG_PER_DATASET); 5046 dataset_feature_count[f]++; 5047 } 5048 5049 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5050 remap_deadlist_count++; 5051 } 5052 5053 for (dsl_bookmark_node_t *dbn = 5054 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5055 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5056 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5057 if (dbn->dbn_phys.zbm_redaction_obj != 0) 5058 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; 5059 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5060 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5061 } 5062 5063 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5064 !dmu_objset_is_snapshot(os)) { 5065 global_feature_count[SPA_FEATURE_LIVELIST]++; 5066 } 5067 5068 dump_objset(os); 5069 close_objset(os, FTAG); 5070 fuid_table_destroy(); 5071 return (0); 5072 } 5073 5074 /* 5075 * Block statistics. 5076 */ 5077 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5078 typedef struct zdb_blkstats { 5079 uint64_t zb_asize; 5080 uint64_t zb_lsize; 5081 uint64_t zb_psize; 5082 uint64_t zb_count; 5083 uint64_t zb_gangs; 5084 uint64_t zb_ditto_samevdev; 5085 uint64_t zb_ditto_same_ms; 5086 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5087 } zdb_blkstats_t; 5088 5089 /* 5090 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5091 */ 5092 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5093 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5094 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5095 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5096 5097 static const char *zdb_ot_extname[] = { 5098 "deferred free", 5099 "dedup ditto", 5100 "other", 5101 "Total", 5102 }; 5103 5104 #define ZB_TOTAL DN_MAX_LEVELS 5105 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5106 5107 typedef struct zdb_cb { 5108 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5109 uint64_t zcb_removing_size; 5110 uint64_t zcb_checkpoint_size; 5111 uint64_t zcb_dedup_asize; 5112 uint64_t zcb_dedup_blocks; 5113 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5114 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5115 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5116 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5117 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5118 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5119 uint64_t zcb_psize_total; 5120 uint64_t zcb_lsize_total; 5121 uint64_t zcb_asize_total; 5122 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5123 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5124 [BPE_PAYLOAD_SIZE + 1]; 5125 uint64_t zcb_start; 5126 hrtime_t zcb_lastprint; 5127 uint64_t zcb_totalasize; 5128 uint64_t zcb_errors[256]; 5129 int zcb_readfails; 5130 int zcb_haderrors; 5131 spa_t *zcb_spa; 5132 uint32_t **zcb_vd_obsolete_counts; 5133 } zdb_cb_t; 5134 5135 /* test if two DVA offsets from same vdev are within the same metaslab */ 5136 static boolean_t 5137 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5138 { 5139 vdev_t *vd = vdev_lookup_top(spa, vdev); 5140 uint64_t ms_shift = vd->vdev_ms_shift; 5141 5142 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5143 } 5144 5145 /* 5146 * Used to simplify reporting of the histogram data. 5147 */ 5148 typedef struct one_histo { 5149 const char *name; 5150 uint64_t *count; 5151 uint64_t *len; 5152 uint64_t cumulative; 5153 } one_histo_t; 5154 5155 /* 5156 * The number of separate histograms processed for psize, lsize and asize. 5157 */ 5158 #define NUM_HISTO 3 5159 5160 /* 5161 * This routine will create a fixed column size output of three different 5162 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5163 * the count, length and cumulative length of the psize, lsize and 5164 * asize blocks. 5165 * 5166 * All three types of blocks are listed on a single line 5167 * 5168 * By default the table is printed in nicenumber format (e.g. 123K) but 5169 * if the '-P' parameter is specified then the full raw number (parseable) 5170 * is printed out. 5171 */ 5172 static void 5173 dump_size_histograms(zdb_cb_t *zcb) 5174 { 5175 /* 5176 * A temporary buffer that allows us to convert a number into 5177 * a string using zdb_nicenumber to allow either raw or human 5178 * readable numbers to be output. 5179 */ 5180 char numbuf[32]; 5181 5182 /* 5183 * Define titles which are used in the headers of the tables 5184 * printed by this routine. 5185 */ 5186 const char blocksize_title1[] = "block"; 5187 const char blocksize_title2[] = "size"; 5188 const char count_title[] = "Count"; 5189 const char length_title[] = "Size"; 5190 const char cumulative_title[] = "Cum."; 5191 5192 /* 5193 * Setup the histogram arrays (psize, lsize, and asize). 5194 */ 5195 one_histo_t parm_histo[NUM_HISTO]; 5196 5197 parm_histo[0].name = "psize"; 5198 parm_histo[0].count = zcb->zcb_psize_count; 5199 parm_histo[0].len = zcb->zcb_psize_len; 5200 parm_histo[0].cumulative = 0; 5201 5202 parm_histo[1].name = "lsize"; 5203 parm_histo[1].count = zcb->zcb_lsize_count; 5204 parm_histo[1].len = zcb->zcb_lsize_len; 5205 parm_histo[1].cumulative = 0; 5206 5207 parm_histo[2].name = "asize"; 5208 parm_histo[2].count = zcb->zcb_asize_count; 5209 parm_histo[2].len = zcb->zcb_asize_len; 5210 parm_histo[2].cumulative = 0; 5211 5212 5213 (void) printf("\nBlock Size Histogram\n"); 5214 /* 5215 * Print the first line titles 5216 */ 5217 if (dump_opt['P']) 5218 (void) printf("\n%s\t", blocksize_title1); 5219 else 5220 (void) printf("\n%7s ", blocksize_title1); 5221 5222 for (int j = 0; j < NUM_HISTO; j++) { 5223 if (dump_opt['P']) { 5224 if (j < NUM_HISTO - 1) { 5225 (void) printf("%s\t\t\t", parm_histo[j].name); 5226 } else { 5227 /* Don't print trailing spaces */ 5228 (void) printf(" %s", parm_histo[j].name); 5229 } 5230 } else { 5231 if (j < NUM_HISTO - 1) { 5232 /* Left aligned strings in the output */ 5233 (void) printf("%-7s ", 5234 parm_histo[j].name); 5235 } else { 5236 /* Don't print trailing spaces */ 5237 (void) printf("%s", parm_histo[j].name); 5238 } 5239 } 5240 } 5241 (void) printf("\n"); 5242 5243 /* 5244 * Print the second line titles 5245 */ 5246 if (dump_opt['P']) { 5247 (void) printf("%s\t", blocksize_title2); 5248 } else { 5249 (void) printf("%7s ", blocksize_title2); 5250 } 5251 5252 for (int i = 0; i < NUM_HISTO; i++) { 5253 if (dump_opt['P']) { 5254 (void) printf("%s\t%s\t%s\t", 5255 count_title, length_title, cumulative_title); 5256 } else { 5257 (void) printf("%7s%7s%7s", 5258 count_title, length_title, cumulative_title); 5259 } 5260 } 5261 (void) printf("\n"); 5262 5263 /* 5264 * Print the rows 5265 */ 5266 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5267 5268 /* 5269 * Print the first column showing the blocksize 5270 */ 5271 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5272 5273 if (dump_opt['P']) { 5274 printf("%s", numbuf); 5275 } else { 5276 printf("%7s:", numbuf); 5277 } 5278 5279 /* 5280 * Print the remaining set of 3 columns per size: 5281 * for psize, lsize and asize 5282 */ 5283 for (int j = 0; j < NUM_HISTO; j++) { 5284 parm_histo[j].cumulative += parm_histo[j].len[i]; 5285 5286 zdb_nicenum(parm_histo[j].count[i], 5287 numbuf, sizeof (numbuf)); 5288 if (dump_opt['P']) 5289 (void) printf("\t%s", numbuf); 5290 else 5291 (void) printf("%7s", numbuf); 5292 5293 zdb_nicenum(parm_histo[j].len[i], 5294 numbuf, sizeof (numbuf)); 5295 if (dump_opt['P']) 5296 (void) printf("\t%s", numbuf); 5297 else 5298 (void) printf("%7s", numbuf); 5299 5300 zdb_nicenum(parm_histo[j].cumulative, 5301 numbuf, sizeof (numbuf)); 5302 if (dump_opt['P']) 5303 (void) printf("\t%s", numbuf); 5304 else 5305 (void) printf("%7s", numbuf); 5306 } 5307 (void) printf("\n"); 5308 } 5309 } 5310 5311 static void 5312 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5313 dmu_object_type_t type) 5314 { 5315 uint64_t refcnt = 0; 5316 int i; 5317 5318 ASSERT(type < ZDB_OT_TOTAL); 5319 5320 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5321 return; 5322 5323 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5324 5325 for (i = 0; i < 4; i++) { 5326 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5327 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5328 int equal; 5329 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5330 5331 zb->zb_asize += BP_GET_ASIZE(bp); 5332 zb->zb_lsize += BP_GET_LSIZE(bp); 5333 zb->zb_psize += BP_GET_PSIZE(bp); 5334 zb->zb_count++; 5335 5336 /* 5337 * The histogram is only big enough to record blocks up to 5338 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5339 * "other", bucket. 5340 */ 5341 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5342 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5343 zb->zb_psize_histogram[idx]++; 5344 5345 zb->zb_gangs += BP_COUNT_GANG(bp); 5346 5347 switch (BP_GET_NDVAS(bp)) { 5348 case 2: 5349 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5350 DVA_GET_VDEV(&bp->blk_dva[1])) { 5351 zb->zb_ditto_samevdev++; 5352 5353 if (same_metaslab(zcb->zcb_spa, 5354 DVA_GET_VDEV(&bp->blk_dva[0]), 5355 DVA_GET_OFFSET(&bp->blk_dva[0]), 5356 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5357 zb->zb_ditto_same_ms++; 5358 } 5359 break; 5360 case 3: 5361 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5362 DVA_GET_VDEV(&bp->blk_dva[1])) + 5363 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5364 DVA_GET_VDEV(&bp->blk_dva[2])) + 5365 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5366 DVA_GET_VDEV(&bp->blk_dva[2])); 5367 if (equal != 0) { 5368 zb->zb_ditto_samevdev++; 5369 5370 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5371 DVA_GET_VDEV(&bp->blk_dva[1]) && 5372 same_metaslab(zcb->zcb_spa, 5373 DVA_GET_VDEV(&bp->blk_dva[0]), 5374 DVA_GET_OFFSET(&bp->blk_dva[0]), 5375 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5376 zb->zb_ditto_same_ms++; 5377 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5378 DVA_GET_VDEV(&bp->blk_dva[2]) && 5379 same_metaslab(zcb->zcb_spa, 5380 DVA_GET_VDEV(&bp->blk_dva[0]), 5381 DVA_GET_OFFSET(&bp->blk_dva[0]), 5382 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5383 zb->zb_ditto_same_ms++; 5384 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5385 DVA_GET_VDEV(&bp->blk_dva[2]) && 5386 same_metaslab(zcb->zcb_spa, 5387 DVA_GET_VDEV(&bp->blk_dva[1]), 5388 DVA_GET_OFFSET(&bp->blk_dva[1]), 5389 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5390 zb->zb_ditto_same_ms++; 5391 } 5392 break; 5393 } 5394 } 5395 5396 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5397 5398 if (BP_IS_EMBEDDED(bp)) { 5399 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5400 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5401 [BPE_GET_PSIZE(bp)]++; 5402 return; 5403 } 5404 /* 5405 * The binning histogram bins by powers of two up to 5406 * SPA_MAXBLOCKSIZE rather than creating bins for 5407 * every possible blocksize found in the pool. 5408 */ 5409 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5410 5411 zcb->zcb_psize_count[bin]++; 5412 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5413 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5414 5415 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5416 5417 zcb->zcb_lsize_count[bin]++; 5418 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5419 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5420 5421 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5422 5423 zcb->zcb_asize_count[bin]++; 5424 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5425 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5426 5427 if (dump_opt['L']) 5428 return; 5429 5430 if (BP_GET_DEDUP(bp)) { 5431 ddt_t *ddt; 5432 ddt_entry_t *dde; 5433 5434 ddt = ddt_select(zcb->zcb_spa, bp); 5435 ddt_enter(ddt); 5436 dde = ddt_lookup(ddt, bp, B_FALSE); 5437 5438 if (dde == NULL) { 5439 refcnt = 0; 5440 } else { 5441 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5442 ddt_phys_decref(ddp); 5443 refcnt = ddp->ddp_refcnt; 5444 if (ddt_phys_total_refcnt(dde) == 0) 5445 ddt_remove(ddt, dde); 5446 } 5447 ddt_exit(ddt); 5448 } 5449 5450 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5451 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5452 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5453 } 5454 5455 static void 5456 zdb_blkptr_done(zio_t *zio) 5457 { 5458 spa_t *spa = zio->io_spa; 5459 blkptr_t *bp = zio->io_bp; 5460 int ioerr = zio->io_error; 5461 zdb_cb_t *zcb = zio->io_private; 5462 zbookmark_phys_t *zb = &zio->io_bookmark; 5463 5464 mutex_enter(&spa->spa_scrub_lock); 5465 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5466 cv_broadcast(&spa->spa_scrub_io_cv); 5467 5468 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5469 char blkbuf[BP_SPRINTF_LEN]; 5470 5471 zcb->zcb_haderrors = 1; 5472 zcb->zcb_errors[ioerr]++; 5473 5474 if (dump_opt['b'] >= 2) 5475 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5476 else 5477 blkbuf[0] = '\0'; 5478 5479 (void) printf("zdb_blkptr_cb: " 5480 "Got error %d reading " 5481 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5482 ioerr, 5483 (u_longlong_t)zb->zb_objset, 5484 (u_longlong_t)zb->zb_object, 5485 (u_longlong_t)zb->zb_level, 5486 (u_longlong_t)zb->zb_blkid, 5487 blkbuf); 5488 } 5489 mutex_exit(&spa->spa_scrub_lock); 5490 5491 abd_free(zio->io_abd); 5492 } 5493 5494 static int 5495 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5496 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5497 { 5498 zdb_cb_t *zcb = arg; 5499 dmu_object_type_t type; 5500 boolean_t is_metadata; 5501 5502 if (zb->zb_level == ZB_DNODE_LEVEL) 5503 return (0); 5504 5505 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5506 char blkbuf[BP_SPRINTF_LEN]; 5507 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5508 (void) printf("objset %llu object %llu " 5509 "level %lld offset 0x%llx %s\n", 5510 (u_longlong_t)zb->zb_objset, 5511 (u_longlong_t)zb->zb_object, 5512 (longlong_t)zb->zb_level, 5513 (u_longlong_t)blkid2offset(dnp, bp, zb), 5514 blkbuf); 5515 } 5516 5517 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5518 return (0); 5519 5520 type = BP_GET_TYPE(bp); 5521 5522 zdb_count_block(zcb, zilog, bp, 5523 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5524 5525 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5526 5527 if (!BP_IS_EMBEDDED(bp) && 5528 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5529 size_t size = BP_GET_PSIZE(bp); 5530 abd_t *abd = abd_alloc(size, B_FALSE); 5531 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5532 5533 /* If it's an intent log block, failure is expected. */ 5534 if (zb->zb_level == ZB_ZIL_LEVEL) 5535 flags |= ZIO_FLAG_SPECULATIVE; 5536 5537 mutex_enter(&spa->spa_scrub_lock); 5538 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5539 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5540 spa->spa_load_verify_bytes += size; 5541 mutex_exit(&spa->spa_scrub_lock); 5542 5543 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5544 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5545 } 5546 5547 zcb->zcb_readfails = 0; 5548 5549 /* only call gethrtime() every 100 blocks */ 5550 static int iters; 5551 if (++iters > 100) 5552 iters = 0; 5553 else 5554 return (0); 5555 5556 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5557 uint64_t now = gethrtime(); 5558 char buf[10]; 5559 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5560 uint64_t kb_per_sec = 5561 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5562 uint64_t sec_remaining = 5563 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5564 5565 /* make sure nicenum has enough space */ 5566 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5567 5568 zfs_nicebytes(bytes, buf, sizeof (buf)); 5569 (void) fprintf(stderr, 5570 "\r%5s completed (%4"PRIu64"MB/s) " 5571 "estimated time remaining: " 5572 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5573 buf, kb_per_sec / 1024, 5574 sec_remaining / 60 / 60, 5575 sec_remaining / 60 % 60, 5576 sec_remaining % 60); 5577 5578 zcb->zcb_lastprint = now; 5579 } 5580 5581 return (0); 5582 } 5583 5584 static void 5585 zdb_leak(void *arg, uint64_t start, uint64_t size) 5586 { 5587 vdev_t *vd = arg; 5588 5589 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5590 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5591 } 5592 5593 static metaslab_ops_t zdb_metaslab_ops = { 5594 NULL /* alloc */ 5595 }; 5596 5597 static int 5598 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5599 uint64_t txg, void *arg) 5600 { 5601 spa_vdev_removal_t *svr = arg; 5602 5603 uint64_t offset = sme->sme_offset; 5604 uint64_t size = sme->sme_run; 5605 5606 /* skip vdevs we don't care about */ 5607 if (sme->sme_vdev != svr->svr_vdev_id) 5608 return (0); 5609 5610 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5611 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5612 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5613 5614 if (txg < metaslab_unflushed_txg(ms)) 5615 return (0); 5616 5617 if (sme->sme_type == SM_ALLOC) 5618 range_tree_add(svr->svr_allocd_segs, offset, size); 5619 else 5620 range_tree_remove(svr->svr_allocd_segs, offset, size); 5621 5622 return (0); 5623 } 5624 5625 static void 5626 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5627 uint64_t size, void *arg) 5628 { 5629 (void) inner_offset, (void) arg; 5630 5631 /* 5632 * This callback was called through a remap from 5633 * a device being removed. Therefore, the vdev that 5634 * this callback is applied to is a concrete 5635 * vdev. 5636 */ 5637 ASSERT(vdev_is_concrete(vd)); 5638 5639 VERIFY0(metaslab_claim_impl(vd, offset, size, 5640 spa_min_claim_txg(vd->vdev_spa))); 5641 } 5642 5643 static void 5644 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5645 { 5646 vdev_t *vd = arg; 5647 5648 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5649 claim_segment_impl_cb, NULL); 5650 } 5651 5652 /* 5653 * After accounting for all allocated blocks that are directly referenced, 5654 * we might have missed a reference to a block from a partially complete 5655 * (and thus unused) indirect mapping object. We perform a secondary pass 5656 * through the metaslabs we have already mapped and claim the destination 5657 * blocks. 5658 */ 5659 static void 5660 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5661 { 5662 if (dump_opt['L']) 5663 return; 5664 5665 if (spa->spa_vdev_removal == NULL) 5666 return; 5667 5668 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5669 5670 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5671 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5672 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5673 5674 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5675 5676 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5677 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5678 metaslab_t *msp = vd->vdev_ms[msi]; 5679 5680 ASSERT0(range_tree_space(allocs)); 5681 if (msp->ms_sm != NULL) 5682 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5683 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5684 } 5685 range_tree_destroy(allocs); 5686 5687 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5688 5689 /* 5690 * Clear everything past what has been synced, 5691 * because we have not allocated mappings for 5692 * it yet. 5693 */ 5694 range_tree_clear(svr->svr_allocd_segs, 5695 vdev_indirect_mapping_max_offset(vim), 5696 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5697 5698 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5699 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5700 5701 spa_config_exit(spa, SCL_CONFIG, FTAG); 5702 } 5703 5704 static int 5705 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5706 dmu_tx_t *tx) 5707 { 5708 (void) tx; 5709 zdb_cb_t *zcb = arg; 5710 spa_t *spa = zcb->zcb_spa; 5711 vdev_t *vd; 5712 const dva_t *dva = &bp->blk_dva[0]; 5713 5714 ASSERT(!bp_freed); 5715 ASSERT(!dump_opt['L']); 5716 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 5717 5718 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5719 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 5720 ASSERT3P(vd, !=, NULL); 5721 spa_config_exit(spa, SCL_VDEV, FTAG); 5722 5723 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 5724 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 5725 5726 vdev_indirect_mapping_increment_obsolete_count( 5727 vd->vdev_indirect_mapping, 5728 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 5729 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5730 5731 return (0); 5732 } 5733 5734 static uint32_t * 5735 zdb_load_obsolete_counts(vdev_t *vd) 5736 { 5737 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5738 spa_t *spa = vd->vdev_spa; 5739 spa_condensing_indirect_phys_t *scip = 5740 &spa->spa_condensing_indirect_phys; 5741 uint64_t obsolete_sm_object; 5742 uint32_t *counts; 5743 5744 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 5745 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 5746 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 5747 if (vd->vdev_obsolete_sm != NULL) { 5748 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5749 vd->vdev_obsolete_sm); 5750 } 5751 if (scip->scip_vdev == vd->vdev_id && 5752 scip->scip_prev_obsolete_sm_object != 0) { 5753 space_map_t *prev_obsolete_sm = NULL; 5754 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 5755 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 5756 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5757 prev_obsolete_sm); 5758 space_map_close(prev_obsolete_sm); 5759 } 5760 return (counts); 5761 } 5762 5763 static void 5764 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 5765 { 5766 ddt_bookmark_t ddb = {0}; 5767 ddt_entry_t dde; 5768 int error; 5769 int p; 5770 5771 ASSERT(!dump_opt['L']); 5772 5773 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 5774 blkptr_t blk; 5775 ddt_phys_t *ddp = dde.dde_phys; 5776 5777 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 5778 return; 5779 5780 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 5781 5782 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 5783 if (ddp->ddp_phys_birth == 0) 5784 continue; 5785 ddt_bp_create(ddb.ddb_checksum, 5786 &dde.dde_key, ddp, &blk); 5787 if (p == DDT_PHYS_DITTO) { 5788 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 5789 } else { 5790 zcb->zcb_dedup_asize += 5791 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 5792 zcb->zcb_dedup_blocks++; 5793 } 5794 } 5795 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 5796 ddt_enter(ddt); 5797 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 5798 ddt_exit(ddt); 5799 } 5800 5801 ASSERT(error == ENOENT); 5802 } 5803 5804 typedef struct checkpoint_sm_exclude_entry_arg { 5805 vdev_t *cseea_vd; 5806 uint64_t cseea_checkpoint_size; 5807 } checkpoint_sm_exclude_entry_arg_t; 5808 5809 static int 5810 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 5811 { 5812 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 5813 vdev_t *vd = cseea->cseea_vd; 5814 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 5815 uint64_t end = sme->sme_offset + sme->sme_run; 5816 5817 ASSERT(sme->sme_type == SM_FREE); 5818 5819 /* 5820 * Since the vdev_checkpoint_sm exists in the vdev level 5821 * and the ms_sm space maps exist in the metaslab level, 5822 * an entry in the checkpoint space map could theoretically 5823 * cross the boundaries of the metaslab that it belongs. 5824 * 5825 * In reality, because of the way that we populate and 5826 * manipulate the checkpoint's space maps currently, 5827 * there shouldn't be any entries that cross metaslabs. 5828 * Hence the assertion below. 5829 * 5830 * That said, there is no fundamental requirement that 5831 * the checkpoint's space map entries should not cross 5832 * metaslab boundaries. So if needed we could add code 5833 * that handles metaslab-crossing segments in the future. 5834 */ 5835 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 5836 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 5837 5838 /* 5839 * By removing the entry from the allocated segments we 5840 * also verify that the entry is there to begin with. 5841 */ 5842 mutex_enter(&ms->ms_lock); 5843 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 5844 mutex_exit(&ms->ms_lock); 5845 5846 cseea->cseea_checkpoint_size += sme->sme_run; 5847 return (0); 5848 } 5849 5850 static void 5851 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 5852 { 5853 spa_t *spa = vd->vdev_spa; 5854 space_map_t *checkpoint_sm = NULL; 5855 uint64_t checkpoint_sm_obj; 5856 5857 /* 5858 * If there is no vdev_top_zap, we are in a pool whose 5859 * version predates the pool checkpoint feature. 5860 */ 5861 if (vd->vdev_top_zap == 0) 5862 return; 5863 5864 /* 5865 * If there is no reference of the vdev_checkpoint_sm in 5866 * the vdev_top_zap, then one of the following scenarios 5867 * is true: 5868 * 5869 * 1] There is no checkpoint 5870 * 2] There is a checkpoint, but no checkpointed blocks 5871 * have been freed yet 5872 * 3] The current vdev is indirect 5873 * 5874 * In these cases we return immediately. 5875 */ 5876 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 5877 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 5878 return; 5879 5880 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 5881 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 5882 &checkpoint_sm_obj)); 5883 5884 checkpoint_sm_exclude_entry_arg_t cseea; 5885 cseea.cseea_vd = vd; 5886 cseea.cseea_checkpoint_size = 0; 5887 5888 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 5889 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 5890 5891 VERIFY0(space_map_iterate(checkpoint_sm, 5892 space_map_length(checkpoint_sm), 5893 checkpoint_sm_exclude_entry_cb, &cseea)); 5894 space_map_close(checkpoint_sm); 5895 5896 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 5897 } 5898 5899 static void 5900 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 5901 { 5902 ASSERT(!dump_opt['L']); 5903 5904 vdev_t *rvd = spa->spa_root_vdev; 5905 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5906 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 5907 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 5908 } 5909 } 5910 5911 static int 5912 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 5913 uint64_t txg, void *arg) 5914 { 5915 int64_t *ualloc_space = arg; 5916 5917 uint64_t offset = sme->sme_offset; 5918 uint64_t vdev_id = sme->sme_vdev; 5919 5920 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5921 if (!vdev_is_concrete(vd)) 5922 return (0); 5923 5924 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5925 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5926 5927 if (txg < metaslab_unflushed_txg(ms)) 5928 return (0); 5929 5930 if (sme->sme_type == SM_ALLOC) 5931 *ualloc_space += sme->sme_run; 5932 else 5933 *ualloc_space -= sme->sme_run; 5934 5935 return (0); 5936 } 5937 5938 static int64_t 5939 get_unflushed_alloc_space(spa_t *spa) 5940 { 5941 if (dump_opt['L']) 5942 return (0); 5943 5944 int64_t ualloc_space = 0; 5945 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 5946 &ualloc_space); 5947 return (ualloc_space); 5948 } 5949 5950 static int 5951 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 5952 { 5953 maptype_t *uic_maptype = arg; 5954 5955 uint64_t offset = sme->sme_offset; 5956 uint64_t size = sme->sme_run; 5957 uint64_t vdev_id = sme->sme_vdev; 5958 5959 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5960 5961 /* skip indirect vdevs */ 5962 if (!vdev_is_concrete(vd)) 5963 return (0); 5964 5965 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5966 5967 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5968 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 5969 5970 if (txg < metaslab_unflushed_txg(ms)) 5971 return (0); 5972 5973 if (*uic_maptype == sme->sme_type) 5974 range_tree_add(ms->ms_allocatable, offset, size); 5975 else 5976 range_tree_remove(ms->ms_allocatable, offset, size); 5977 5978 return (0); 5979 } 5980 5981 static void 5982 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 5983 { 5984 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 5985 } 5986 5987 static void 5988 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 5989 { 5990 vdev_t *rvd = spa->spa_root_vdev; 5991 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5992 vdev_t *vd = rvd->vdev_child[i]; 5993 5994 ASSERT3U(i, ==, vd->vdev_id); 5995 5996 if (vd->vdev_ops == &vdev_indirect_ops) 5997 continue; 5998 5999 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6000 metaslab_t *msp = vd->vdev_ms[m]; 6001 6002 (void) fprintf(stderr, 6003 "\rloading concrete vdev %llu, " 6004 "metaslab %llu of %llu ...", 6005 (longlong_t)vd->vdev_id, 6006 (longlong_t)msp->ms_id, 6007 (longlong_t)vd->vdev_ms_count); 6008 6009 mutex_enter(&msp->ms_lock); 6010 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6011 6012 /* 6013 * We don't want to spend the CPU manipulating the 6014 * size-ordered tree, so clear the range_tree ops. 6015 */ 6016 msp->ms_allocatable->rt_ops = NULL; 6017 6018 if (msp->ms_sm != NULL) { 6019 VERIFY0(space_map_load(msp->ms_sm, 6020 msp->ms_allocatable, maptype)); 6021 } 6022 if (!msp->ms_loaded) 6023 msp->ms_loaded = B_TRUE; 6024 mutex_exit(&msp->ms_lock); 6025 } 6026 } 6027 6028 load_unflushed_to_ms_allocatables(spa, maptype); 6029 } 6030 6031 /* 6032 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6033 * index in vim_entries that has the first entry in this metaslab. 6034 * On return, it will be set to the first entry after this metaslab. 6035 */ 6036 static void 6037 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6038 uint64_t *vim_idxp) 6039 { 6040 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6041 6042 mutex_enter(&msp->ms_lock); 6043 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6044 6045 /* 6046 * We don't want to spend the CPU manipulating the 6047 * size-ordered tree, so clear the range_tree ops. 6048 */ 6049 msp->ms_allocatable->rt_ops = NULL; 6050 6051 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6052 (*vim_idxp)++) { 6053 vdev_indirect_mapping_entry_phys_t *vimep = 6054 &vim->vim_entries[*vim_idxp]; 6055 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6056 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6057 ASSERT3U(ent_offset, >=, msp->ms_start); 6058 if (ent_offset >= msp->ms_start + msp->ms_size) 6059 break; 6060 6061 /* 6062 * Mappings do not cross metaslab boundaries, 6063 * because we create them by walking the metaslabs. 6064 */ 6065 ASSERT3U(ent_offset + ent_len, <=, 6066 msp->ms_start + msp->ms_size); 6067 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6068 } 6069 6070 if (!msp->ms_loaded) 6071 msp->ms_loaded = B_TRUE; 6072 mutex_exit(&msp->ms_lock); 6073 } 6074 6075 static void 6076 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6077 { 6078 ASSERT(!dump_opt['L']); 6079 6080 vdev_t *rvd = spa->spa_root_vdev; 6081 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6082 vdev_t *vd = rvd->vdev_child[c]; 6083 6084 ASSERT3U(c, ==, vd->vdev_id); 6085 6086 if (vd->vdev_ops != &vdev_indirect_ops) 6087 continue; 6088 6089 /* 6090 * Note: we don't check for mapping leaks on 6091 * removing vdevs because their ms_allocatable's 6092 * are used to look for leaks in allocated space. 6093 */ 6094 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6095 6096 /* 6097 * Normally, indirect vdevs don't have any 6098 * metaslabs. We want to set them up for 6099 * zio_claim(). 6100 */ 6101 vdev_metaslab_group_create(vd); 6102 VERIFY0(vdev_metaslab_init(vd, 0)); 6103 6104 vdev_indirect_mapping_t *vim __maybe_unused = 6105 vd->vdev_indirect_mapping; 6106 uint64_t vim_idx = 0; 6107 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6108 6109 (void) fprintf(stderr, 6110 "\rloading indirect vdev %llu, " 6111 "metaslab %llu of %llu ...", 6112 (longlong_t)vd->vdev_id, 6113 (longlong_t)vd->vdev_ms[m]->ms_id, 6114 (longlong_t)vd->vdev_ms_count); 6115 6116 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6117 &vim_idx); 6118 } 6119 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6120 } 6121 } 6122 6123 static void 6124 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6125 { 6126 zcb->zcb_spa = spa; 6127 6128 if (dump_opt['L']) 6129 return; 6130 6131 dsl_pool_t *dp = spa->spa_dsl_pool; 6132 vdev_t *rvd = spa->spa_root_vdev; 6133 6134 /* 6135 * We are going to be changing the meaning of the metaslab's 6136 * ms_allocatable. Ensure that the allocator doesn't try to 6137 * use the tree. 6138 */ 6139 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6140 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6141 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6142 6143 zcb->zcb_vd_obsolete_counts = 6144 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6145 UMEM_NOFAIL); 6146 6147 /* 6148 * For leak detection, we overload the ms_allocatable trees 6149 * to contain allocated segments instead of free segments. 6150 * As a result, we can't use the normal metaslab_load/unload 6151 * interfaces. 6152 */ 6153 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6154 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6155 6156 /* 6157 * On load_concrete_ms_allocatable_trees() we loaded all the 6158 * allocated entries from the ms_sm to the ms_allocatable for 6159 * each metaslab. If the pool has a checkpoint or is in the 6160 * middle of discarding a checkpoint, some of these blocks 6161 * may have been freed but their ms_sm may not have been 6162 * updated because they are referenced by the checkpoint. In 6163 * order to avoid false-positives during leak-detection, we 6164 * go through the vdev's checkpoint space map and exclude all 6165 * its entries from their relevant ms_allocatable. 6166 * 6167 * We also aggregate the space held by the checkpoint and add 6168 * it to zcb_checkpoint_size. 6169 * 6170 * Note that at this point we are also verifying that all the 6171 * entries on the checkpoint_sm are marked as allocated in 6172 * the ms_sm of their relevant metaslab. 6173 * [see comment in checkpoint_sm_exclude_entry_cb()] 6174 */ 6175 zdb_leak_init_exclude_checkpoint(spa, zcb); 6176 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6177 6178 /* for cleaner progress output */ 6179 (void) fprintf(stderr, "\n"); 6180 6181 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6182 ASSERT(spa_feature_is_enabled(spa, 6183 SPA_FEATURE_DEVICE_REMOVAL)); 6184 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6185 increment_indirect_mapping_cb, zcb, NULL); 6186 } 6187 6188 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6189 zdb_ddt_leak_init(spa, zcb); 6190 spa_config_exit(spa, SCL_CONFIG, FTAG); 6191 } 6192 6193 static boolean_t 6194 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6195 { 6196 boolean_t leaks = B_FALSE; 6197 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6198 uint64_t total_leaked = 0; 6199 boolean_t are_precise = B_FALSE; 6200 6201 ASSERT(vim != NULL); 6202 6203 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6204 vdev_indirect_mapping_entry_phys_t *vimep = 6205 &vim->vim_entries[i]; 6206 uint64_t obsolete_bytes = 0; 6207 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6208 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6209 6210 /* 6211 * This is not very efficient but it's easy to 6212 * verify correctness. 6213 */ 6214 for (uint64_t inner_offset = 0; 6215 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6216 inner_offset += 1ULL << vd->vdev_ashift) { 6217 if (range_tree_contains(msp->ms_allocatable, 6218 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6219 obsolete_bytes += 1ULL << vd->vdev_ashift; 6220 } 6221 } 6222 6223 int64_t bytes_leaked = obsolete_bytes - 6224 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6225 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6226 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6227 6228 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6229 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6230 (void) printf("obsolete indirect mapping count " 6231 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6232 (u_longlong_t)vd->vdev_id, 6233 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6234 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6235 (u_longlong_t)bytes_leaked); 6236 } 6237 total_leaked += ABS(bytes_leaked); 6238 } 6239 6240 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6241 if (!are_precise && total_leaked > 0) { 6242 int pct_leaked = total_leaked * 100 / 6243 vdev_indirect_mapping_bytes_mapped(vim); 6244 (void) printf("cannot verify obsolete indirect mapping " 6245 "counts of vdev %llu because precise feature was not " 6246 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6247 "unreferenced\n", 6248 (u_longlong_t)vd->vdev_id, pct_leaked, 6249 (u_longlong_t)total_leaked); 6250 } else if (total_leaked > 0) { 6251 (void) printf("obsolete indirect mapping count mismatch " 6252 "for vdev %llu -- %llx total bytes mismatched\n", 6253 (u_longlong_t)vd->vdev_id, 6254 (u_longlong_t)total_leaked); 6255 leaks |= B_TRUE; 6256 } 6257 6258 vdev_indirect_mapping_free_obsolete_counts(vim, 6259 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6260 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6261 6262 return (leaks); 6263 } 6264 6265 static boolean_t 6266 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6267 { 6268 if (dump_opt['L']) 6269 return (B_FALSE); 6270 6271 boolean_t leaks = B_FALSE; 6272 vdev_t *rvd = spa->spa_root_vdev; 6273 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6274 vdev_t *vd = rvd->vdev_child[c]; 6275 6276 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6277 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6278 } 6279 6280 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6281 metaslab_t *msp = vd->vdev_ms[m]; 6282 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6283 spa_embedded_log_class(spa)) ? 6284 vd->vdev_log_mg : vd->vdev_mg); 6285 6286 /* 6287 * ms_allocatable has been overloaded 6288 * to contain allocated segments. Now that 6289 * we finished traversing all blocks, any 6290 * block that remains in the ms_allocatable 6291 * represents an allocated block that we 6292 * did not claim during the traversal. 6293 * Claimed blocks would have been removed 6294 * from the ms_allocatable. For indirect 6295 * vdevs, space remaining in the tree 6296 * represents parts of the mapping that are 6297 * not referenced, which is not a bug. 6298 */ 6299 if (vd->vdev_ops == &vdev_indirect_ops) { 6300 range_tree_vacate(msp->ms_allocatable, 6301 NULL, NULL); 6302 } else { 6303 range_tree_vacate(msp->ms_allocatable, 6304 zdb_leak, vd); 6305 } 6306 if (msp->ms_loaded) { 6307 msp->ms_loaded = B_FALSE; 6308 } 6309 } 6310 } 6311 6312 umem_free(zcb->zcb_vd_obsolete_counts, 6313 rvd->vdev_children * sizeof (uint32_t *)); 6314 zcb->zcb_vd_obsolete_counts = NULL; 6315 6316 return (leaks); 6317 } 6318 6319 static int 6320 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6321 { 6322 (void) tx; 6323 zdb_cb_t *zcb = arg; 6324 6325 if (dump_opt['b'] >= 5) { 6326 char blkbuf[BP_SPRINTF_LEN]; 6327 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6328 (void) printf("[%s] %s\n", 6329 "deferred free", blkbuf); 6330 } 6331 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6332 return (0); 6333 } 6334 6335 /* 6336 * Iterate over livelists which have been destroyed by the user but 6337 * are still present in the MOS, waiting to be freed 6338 */ 6339 static void 6340 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6341 { 6342 objset_t *mos = spa->spa_meta_objset; 6343 uint64_t zap_obj; 6344 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6345 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6346 if (err == ENOENT) 6347 return; 6348 ASSERT0(err); 6349 6350 zap_cursor_t zc; 6351 zap_attribute_t attr; 6352 dsl_deadlist_t ll; 6353 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6354 ll.dl_os = NULL; 6355 for (zap_cursor_init(&zc, mos, zap_obj); 6356 zap_cursor_retrieve(&zc, &attr) == 0; 6357 (void) zap_cursor_advance(&zc)) { 6358 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6359 func(&ll, arg); 6360 dsl_deadlist_close(&ll); 6361 } 6362 zap_cursor_fini(&zc); 6363 } 6364 6365 static int 6366 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6367 dmu_tx_t *tx) 6368 { 6369 ASSERT(!bp_freed); 6370 return (count_block_cb(arg, bp, tx)); 6371 } 6372 6373 static int 6374 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6375 { 6376 zdb_cb_t *zbc = args; 6377 bplist_t blks; 6378 bplist_create(&blks); 6379 /* determine which blocks have been alloc'd but not freed */ 6380 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6381 /* count those blocks */ 6382 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6383 bplist_destroy(&blks); 6384 return (0); 6385 } 6386 6387 static void 6388 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6389 { 6390 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6391 } 6392 6393 /* 6394 * Count the blocks in the livelists that have been destroyed by the user 6395 * but haven't yet been freed. 6396 */ 6397 static void 6398 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6399 { 6400 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6401 } 6402 6403 static void 6404 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6405 { 6406 ASSERT3P(arg, ==, NULL); 6407 global_feature_count[SPA_FEATURE_LIVELIST]++; 6408 dump_blkptr_list(ll, "Deleted Livelist"); 6409 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6410 } 6411 6412 /* 6413 * Print out, register object references to, and increment feature counts for 6414 * livelists that have been destroyed by the user but haven't yet been freed. 6415 */ 6416 static void 6417 deleted_livelists_dump_mos(spa_t *spa) 6418 { 6419 uint64_t zap_obj; 6420 objset_t *mos = spa->spa_meta_objset; 6421 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6422 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6423 if (err == ENOENT) 6424 return; 6425 mos_obj_refd(zap_obj); 6426 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6427 } 6428 6429 static int 6430 dump_block_stats(spa_t *spa) 6431 { 6432 zdb_cb_t *zcb; 6433 zdb_blkstats_t *zb, *tzb; 6434 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6435 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6436 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6437 boolean_t leaks = B_FALSE; 6438 int e, c, err; 6439 bp_embedded_type_t i; 6440 6441 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6442 6443 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6444 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6445 (dump_opt['c'] == 1) ? "metadata " : "", 6446 dump_opt['c'] ? "checksums " : "", 6447 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6448 !dump_opt['L'] ? "nothing leaked " : ""); 6449 6450 /* 6451 * When leak detection is enabled we load all space maps as SM_ALLOC 6452 * maps, then traverse the pool claiming each block we discover. If 6453 * the pool is perfectly consistent, the segment trees will be empty 6454 * when we're done. Anything left over is a leak; any block we can't 6455 * claim (because it's not part of any space map) is a double 6456 * allocation, reference to a freed block, or an unclaimed log block. 6457 * 6458 * When leak detection is disabled (-L option) we still traverse the 6459 * pool claiming each block we discover, but we skip opening any space 6460 * maps. 6461 */ 6462 zdb_leak_init(spa, zcb); 6463 6464 /* 6465 * If there's a deferred-free bplist, process that first. 6466 */ 6467 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6468 bpobj_count_block_cb, zcb, NULL); 6469 6470 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6471 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6472 bpobj_count_block_cb, zcb, NULL); 6473 } 6474 6475 zdb_claim_removing(spa, zcb); 6476 6477 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6478 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6479 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6480 zcb, NULL)); 6481 } 6482 6483 deleted_livelists_count_blocks(spa, zcb); 6484 6485 if (dump_opt['c'] > 1) 6486 flags |= TRAVERSE_PREFETCH_DATA; 6487 6488 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6489 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6490 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6491 zcb->zcb_totalasize += 6492 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6493 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6494 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6495 6496 /* 6497 * If we've traversed the data blocks then we need to wait for those 6498 * I/Os to complete. We leverage "The Godfather" zio to wait on 6499 * all async I/Os to complete. 6500 */ 6501 if (dump_opt['c']) { 6502 for (c = 0; c < max_ncpus; c++) { 6503 (void) zio_wait(spa->spa_async_zio_root[c]); 6504 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6505 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6506 ZIO_FLAG_GODFATHER); 6507 } 6508 } 6509 ASSERT0(spa->spa_load_verify_bytes); 6510 6511 /* 6512 * Done after zio_wait() since zcb_haderrors is modified in 6513 * zdb_blkptr_done() 6514 */ 6515 zcb->zcb_haderrors |= err; 6516 6517 if (zcb->zcb_haderrors) { 6518 (void) printf("\nError counts:\n\n"); 6519 (void) printf("\t%5s %s\n", "errno", "count"); 6520 for (e = 0; e < 256; e++) { 6521 if (zcb->zcb_errors[e] != 0) { 6522 (void) printf("\t%5d %llu\n", 6523 e, (u_longlong_t)zcb->zcb_errors[e]); 6524 } 6525 } 6526 } 6527 6528 /* 6529 * Report any leaked segments. 6530 */ 6531 leaks |= zdb_leak_fini(spa, zcb); 6532 6533 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6534 6535 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6536 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6537 6538 total_alloc = norm_alloc + 6539 metaslab_class_get_alloc(spa_log_class(spa)) + 6540 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6541 metaslab_class_get_alloc(spa_special_class(spa)) + 6542 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6543 get_unflushed_alloc_space(spa); 6544 total_found = tzb->zb_asize - zcb->zcb_dedup_asize + 6545 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6546 6547 if (total_found == total_alloc && !dump_opt['L']) { 6548 (void) printf("\n\tNo leaks (block sum matches space" 6549 " maps exactly)\n"); 6550 } else if (!dump_opt['L']) { 6551 (void) printf("block traversal size %llu != alloc %llu " 6552 "(%s %lld)\n", 6553 (u_longlong_t)total_found, 6554 (u_longlong_t)total_alloc, 6555 (dump_opt['L']) ? "unreachable" : "leaked", 6556 (longlong_t)(total_alloc - total_found)); 6557 leaks = B_TRUE; 6558 } 6559 6560 if (tzb->zb_count == 0) { 6561 umem_free(zcb, sizeof (zdb_cb_t)); 6562 return (2); 6563 } 6564 6565 (void) printf("\n"); 6566 (void) printf("\t%-16s %14llu\n", "bp count:", 6567 (u_longlong_t)tzb->zb_count); 6568 (void) printf("\t%-16s %14llu\n", "ganged count:", 6569 (longlong_t)tzb->zb_gangs); 6570 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6571 (u_longlong_t)tzb->zb_lsize, 6572 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6573 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6574 "bp physical:", (u_longlong_t)tzb->zb_psize, 6575 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6576 (double)tzb->zb_lsize / tzb->zb_psize); 6577 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6578 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6579 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6580 (double)tzb->zb_lsize / tzb->zb_asize); 6581 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6582 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6583 (u_longlong_t)zcb->zcb_dedup_blocks, 6584 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6585 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6586 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6587 6588 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6589 uint64_t alloc = metaslab_class_get_alloc( 6590 spa_special_class(spa)); 6591 uint64_t space = metaslab_class_get_space( 6592 spa_special_class(spa)); 6593 6594 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6595 "Special class", (u_longlong_t)alloc, 6596 100.0 * alloc / space); 6597 } 6598 6599 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6600 uint64_t alloc = metaslab_class_get_alloc( 6601 spa_dedup_class(spa)); 6602 uint64_t space = metaslab_class_get_space( 6603 spa_dedup_class(spa)); 6604 6605 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6606 "Dedup class", (u_longlong_t)alloc, 6607 100.0 * alloc / space); 6608 } 6609 6610 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6611 uint64_t alloc = metaslab_class_get_alloc( 6612 spa_embedded_log_class(spa)); 6613 uint64_t space = metaslab_class_get_space( 6614 spa_embedded_log_class(spa)); 6615 6616 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6617 "Embedded log class", (u_longlong_t)alloc, 6618 100.0 * alloc / space); 6619 } 6620 6621 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6622 if (zcb->zcb_embedded_blocks[i] == 0) 6623 continue; 6624 (void) printf("\n"); 6625 (void) printf("\tadditional, non-pointer bps of type %u: " 6626 "%10llu\n", 6627 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 6628 6629 if (dump_opt['b'] >= 3) { 6630 (void) printf("\t number of (compressed) bytes: " 6631 "number of bps\n"); 6632 dump_histogram(zcb->zcb_embedded_histogram[i], 6633 sizeof (zcb->zcb_embedded_histogram[i]) / 6634 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 6635 } 6636 } 6637 6638 if (tzb->zb_ditto_samevdev != 0) { 6639 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6640 (longlong_t)tzb->zb_ditto_samevdev); 6641 } 6642 if (tzb->zb_ditto_same_ms != 0) { 6643 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6644 (longlong_t)tzb->zb_ditto_same_ms); 6645 } 6646 6647 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6648 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6649 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6650 6651 if (vim == NULL) { 6652 continue; 6653 } 6654 6655 char mem[32]; 6656 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6657 mem, vdev_indirect_mapping_size(vim)); 6658 6659 (void) printf("\tindirect vdev id %llu has %llu segments " 6660 "(%s in memory)\n", 6661 (longlong_t)vd->vdev_id, 6662 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6663 } 6664 6665 if (dump_opt['b'] >= 2) { 6666 int l, t, level; 6667 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6668 "\t avg\t comp\t%%Total\tType\n"); 6669 6670 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6671 char csize[32], lsize[32], psize[32], asize[32]; 6672 char avg[32], gang[32]; 6673 const char *typename; 6674 6675 /* make sure nicenum has enough space */ 6676 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 6677 "csize truncated"); 6678 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 6679 "lsize truncated"); 6680 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 6681 "psize truncated"); 6682 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 6683 "asize truncated"); 6684 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 6685 "avg truncated"); 6686 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 6687 "gang truncated"); 6688 6689 if (t < DMU_OT_NUMTYPES) 6690 typename = dmu_ot[t].ot_name; 6691 else 6692 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 6693 6694 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 6695 (void) printf("%6s\t%5s\t%5s\t%5s" 6696 "\t%5s\t%5s\t%6s\t%s\n", 6697 "-", 6698 "-", 6699 "-", 6700 "-", 6701 "-", 6702 "-", 6703 "-", 6704 typename); 6705 continue; 6706 } 6707 6708 for (l = ZB_TOTAL - 1; l >= -1; l--) { 6709 level = (l == -1 ? ZB_TOTAL : l); 6710 zb = &zcb->zcb_type[level][t]; 6711 6712 if (zb->zb_asize == 0) 6713 continue; 6714 6715 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 6716 continue; 6717 6718 if (level == 0 && zb->zb_asize == 6719 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 6720 continue; 6721 6722 zdb_nicenum(zb->zb_count, csize, 6723 sizeof (csize)); 6724 zdb_nicenum(zb->zb_lsize, lsize, 6725 sizeof (lsize)); 6726 zdb_nicenum(zb->zb_psize, psize, 6727 sizeof (psize)); 6728 zdb_nicenum(zb->zb_asize, asize, 6729 sizeof (asize)); 6730 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 6731 sizeof (avg)); 6732 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 6733 6734 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 6735 "\t%5.2f\t%6.2f\t", 6736 csize, lsize, psize, asize, avg, 6737 (double)zb->zb_lsize / zb->zb_psize, 6738 100.0 * zb->zb_asize / tzb->zb_asize); 6739 6740 if (level == ZB_TOTAL) 6741 (void) printf("%s\n", typename); 6742 else 6743 (void) printf(" L%d %s\n", 6744 level, typename); 6745 6746 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 6747 (void) printf("\t number of ganged " 6748 "blocks: %s\n", gang); 6749 } 6750 6751 if (dump_opt['b'] >= 4) { 6752 (void) printf("psize " 6753 "(in 512-byte sectors): " 6754 "number of blocks\n"); 6755 dump_histogram(zb->zb_psize_histogram, 6756 PSIZE_HISTO_SIZE, 0); 6757 } 6758 } 6759 } 6760 6761 /* Output a table summarizing block sizes in the pool */ 6762 if (dump_opt['b'] >= 2) { 6763 dump_size_histograms(zcb); 6764 } 6765 } 6766 6767 (void) printf("\n"); 6768 6769 if (leaks) { 6770 umem_free(zcb, sizeof (zdb_cb_t)); 6771 return (2); 6772 } 6773 6774 if (zcb->zcb_haderrors) { 6775 umem_free(zcb, sizeof (zdb_cb_t)); 6776 return (3); 6777 } 6778 6779 umem_free(zcb, sizeof (zdb_cb_t)); 6780 return (0); 6781 } 6782 6783 typedef struct zdb_ddt_entry { 6784 ddt_key_t zdde_key; 6785 uint64_t zdde_ref_blocks; 6786 uint64_t zdde_ref_lsize; 6787 uint64_t zdde_ref_psize; 6788 uint64_t zdde_ref_dsize; 6789 avl_node_t zdde_node; 6790 } zdb_ddt_entry_t; 6791 6792 static int 6793 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6794 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6795 { 6796 (void) zilog, (void) dnp; 6797 avl_tree_t *t = arg; 6798 avl_index_t where; 6799 zdb_ddt_entry_t *zdde, zdde_search; 6800 6801 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 6802 BP_IS_EMBEDDED(bp)) 6803 return (0); 6804 6805 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 6806 (void) printf("traversing objset %llu, %llu objects, " 6807 "%lu blocks so far\n", 6808 (u_longlong_t)zb->zb_objset, 6809 (u_longlong_t)BP_GET_FILL(bp), 6810 avl_numnodes(t)); 6811 } 6812 6813 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 6814 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 6815 return (0); 6816 6817 ddt_key_fill(&zdde_search.zdde_key, bp); 6818 6819 zdde = avl_find(t, &zdde_search, &where); 6820 6821 if (zdde == NULL) { 6822 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 6823 zdde->zdde_key = zdde_search.zdde_key; 6824 avl_insert(t, zdde, where); 6825 } 6826 6827 zdde->zdde_ref_blocks += 1; 6828 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 6829 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 6830 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 6831 6832 return (0); 6833 } 6834 6835 static void 6836 dump_simulated_ddt(spa_t *spa) 6837 { 6838 avl_tree_t t; 6839 void *cookie = NULL; 6840 zdb_ddt_entry_t *zdde; 6841 ddt_histogram_t ddh_total = {{{0}}}; 6842 ddt_stat_t dds_total = {0}; 6843 6844 avl_create(&t, ddt_entry_compare, 6845 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 6846 6847 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6848 6849 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6850 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 6851 6852 spa_config_exit(spa, SCL_CONFIG, FTAG); 6853 6854 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 6855 ddt_stat_t dds; 6856 uint64_t refcnt = zdde->zdde_ref_blocks; 6857 ASSERT(refcnt != 0); 6858 6859 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 6860 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 6861 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 6862 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 6863 6864 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 6865 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 6866 dds.dds_ref_psize = zdde->zdde_ref_psize; 6867 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 6868 6869 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 6870 &dds, 0); 6871 6872 umem_free(zdde, sizeof (*zdde)); 6873 } 6874 6875 avl_destroy(&t); 6876 6877 ddt_histogram_stat(&dds_total, &ddh_total); 6878 6879 (void) printf("Simulated DDT histogram:\n"); 6880 6881 zpool_dump_ddt(&dds_total, &ddh_total); 6882 6883 dump_dedup_ratio(&dds_total); 6884 } 6885 6886 static int 6887 verify_device_removal_feature_counts(spa_t *spa) 6888 { 6889 uint64_t dr_feature_refcount = 0; 6890 uint64_t oc_feature_refcount = 0; 6891 uint64_t indirect_vdev_count = 0; 6892 uint64_t precise_vdev_count = 0; 6893 uint64_t obsolete_counts_object_count = 0; 6894 uint64_t obsolete_sm_count = 0; 6895 uint64_t obsolete_counts_count = 0; 6896 uint64_t scip_count = 0; 6897 uint64_t obsolete_bpobj_count = 0; 6898 int ret = 0; 6899 6900 spa_condensing_indirect_phys_t *scip = 6901 &spa->spa_condensing_indirect_phys; 6902 if (scip->scip_next_mapping_object != 0) { 6903 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 6904 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 6905 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 6906 6907 (void) printf("Condensing indirect vdev %llu: new mapping " 6908 "object %llu, prev obsolete sm %llu\n", 6909 (u_longlong_t)scip->scip_vdev, 6910 (u_longlong_t)scip->scip_next_mapping_object, 6911 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 6912 if (scip->scip_prev_obsolete_sm_object != 0) { 6913 space_map_t *prev_obsolete_sm = NULL; 6914 VERIFY0(space_map_open(&prev_obsolete_sm, 6915 spa->spa_meta_objset, 6916 scip->scip_prev_obsolete_sm_object, 6917 0, vd->vdev_asize, 0)); 6918 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 6919 (void) printf("\n"); 6920 space_map_close(prev_obsolete_sm); 6921 } 6922 6923 scip_count += 2; 6924 } 6925 6926 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 6927 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 6928 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 6929 6930 if (vic->vic_mapping_object != 0) { 6931 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 6932 vd->vdev_removing); 6933 indirect_vdev_count++; 6934 6935 if (vd->vdev_indirect_mapping->vim_havecounts) { 6936 obsolete_counts_count++; 6937 } 6938 } 6939 6940 boolean_t are_precise; 6941 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6942 if (are_precise) { 6943 ASSERT(vic->vic_mapping_object != 0); 6944 precise_vdev_count++; 6945 } 6946 6947 uint64_t obsolete_sm_object; 6948 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6949 if (obsolete_sm_object != 0) { 6950 ASSERT(vic->vic_mapping_object != 0); 6951 obsolete_sm_count++; 6952 } 6953 } 6954 6955 (void) feature_get_refcount(spa, 6956 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 6957 &dr_feature_refcount); 6958 (void) feature_get_refcount(spa, 6959 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 6960 &oc_feature_refcount); 6961 6962 if (dr_feature_refcount != indirect_vdev_count) { 6963 ret = 1; 6964 (void) printf("Number of indirect vdevs (%llu) " \ 6965 "does not match feature count (%llu)\n", 6966 (u_longlong_t)indirect_vdev_count, 6967 (u_longlong_t)dr_feature_refcount); 6968 } else { 6969 (void) printf("Verified device_removal feature refcount " \ 6970 "of %llu is correct\n", 6971 (u_longlong_t)dr_feature_refcount); 6972 } 6973 6974 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 6975 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 6976 obsolete_bpobj_count++; 6977 } 6978 6979 6980 obsolete_counts_object_count = precise_vdev_count; 6981 obsolete_counts_object_count += obsolete_sm_count; 6982 obsolete_counts_object_count += obsolete_counts_count; 6983 obsolete_counts_object_count += scip_count; 6984 obsolete_counts_object_count += obsolete_bpobj_count; 6985 obsolete_counts_object_count += remap_deadlist_count; 6986 6987 if (oc_feature_refcount != obsolete_counts_object_count) { 6988 ret = 1; 6989 (void) printf("Number of obsolete counts objects (%llu) " \ 6990 "does not match feature count (%llu)\n", 6991 (u_longlong_t)obsolete_counts_object_count, 6992 (u_longlong_t)oc_feature_refcount); 6993 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 6994 "ob:%llu rd:%llu\n", 6995 (u_longlong_t)precise_vdev_count, 6996 (u_longlong_t)obsolete_sm_count, 6997 (u_longlong_t)obsolete_counts_count, 6998 (u_longlong_t)scip_count, 6999 (u_longlong_t)obsolete_bpobj_count, 7000 (u_longlong_t)remap_deadlist_count); 7001 } else { 7002 (void) printf("Verified indirect_refcount feature refcount " \ 7003 "of %llu is correct\n", 7004 (u_longlong_t)oc_feature_refcount); 7005 } 7006 return (ret); 7007 } 7008 7009 static void 7010 zdb_set_skip_mmp(char *target) 7011 { 7012 spa_t *spa; 7013 7014 /* 7015 * Disable the activity check to allow examination of 7016 * active pools. 7017 */ 7018 mutex_enter(&spa_namespace_lock); 7019 if ((spa = spa_lookup(target)) != NULL) { 7020 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7021 } 7022 mutex_exit(&spa_namespace_lock); 7023 } 7024 7025 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7026 /* 7027 * Import the checkpointed state of the pool specified by the target 7028 * parameter as readonly. The function also accepts a pool config 7029 * as an optional parameter, else it attempts to infer the config by 7030 * the name of the target pool. 7031 * 7032 * Note that the checkpointed state's pool name will be the name of 7033 * the original pool with the above suffix appended to it. In addition, 7034 * if the target is not a pool name (e.g. a path to a dataset) then 7035 * the new_path parameter is populated with the updated path to 7036 * reflect the fact that we are looking into the checkpointed state. 7037 * 7038 * The function returns a newly-allocated copy of the name of the 7039 * pool containing the checkpointed state. When this copy is no 7040 * longer needed it should be freed with free(3C). Same thing 7041 * applies to the new_path parameter if allocated. 7042 */ 7043 static char * 7044 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7045 { 7046 int error = 0; 7047 char *poolname, *bogus_name = NULL; 7048 boolean_t freecfg = B_FALSE; 7049 7050 /* If the target is not a pool, the extract the pool name */ 7051 char *path_start = strchr(target, '/'); 7052 if (path_start != NULL) { 7053 size_t poolname_len = path_start - target; 7054 poolname = strndup(target, poolname_len); 7055 } else { 7056 poolname = target; 7057 } 7058 7059 if (cfg == NULL) { 7060 zdb_set_skip_mmp(poolname); 7061 error = spa_get_stats(poolname, &cfg, NULL, 0); 7062 if (error != 0) { 7063 fatal("Tried to read config of pool \"%s\" but " 7064 "spa_get_stats() failed with error %d\n", 7065 poolname, error); 7066 } 7067 freecfg = B_TRUE; 7068 } 7069 7070 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7071 if (target != poolname) 7072 free(poolname); 7073 return (NULL); 7074 } 7075 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7076 7077 error = spa_import(bogus_name, cfg, NULL, 7078 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7079 ZFS_IMPORT_SKIP_MMP); 7080 if (freecfg) 7081 nvlist_free(cfg); 7082 if (error != 0) { 7083 fatal("Tried to import pool \"%s\" but spa_import() failed " 7084 "with error %d\n", bogus_name, error); 7085 } 7086 7087 if (new_path != NULL && path_start != NULL) { 7088 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7089 free(bogus_name); 7090 if (path_start != NULL) 7091 free(poolname); 7092 return (NULL); 7093 } 7094 } 7095 7096 if (target != poolname) 7097 free(poolname); 7098 7099 return (bogus_name); 7100 } 7101 7102 typedef struct verify_checkpoint_sm_entry_cb_arg { 7103 vdev_t *vcsec_vd; 7104 7105 /* the following fields are only used for printing progress */ 7106 uint64_t vcsec_entryid; 7107 uint64_t vcsec_num_entries; 7108 } verify_checkpoint_sm_entry_cb_arg_t; 7109 7110 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7111 7112 static int 7113 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7114 { 7115 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7116 vdev_t *vd = vcsec->vcsec_vd; 7117 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7118 uint64_t end = sme->sme_offset + sme->sme_run; 7119 7120 ASSERT(sme->sme_type == SM_FREE); 7121 7122 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7123 (void) fprintf(stderr, 7124 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7125 (longlong_t)vd->vdev_id, 7126 (longlong_t)vcsec->vcsec_entryid, 7127 (longlong_t)vcsec->vcsec_num_entries); 7128 } 7129 vcsec->vcsec_entryid++; 7130 7131 /* 7132 * See comment in checkpoint_sm_exclude_entry_cb() 7133 */ 7134 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7135 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7136 7137 /* 7138 * The entries in the vdev_checkpoint_sm should be marked as 7139 * allocated in the checkpointed state of the pool, therefore 7140 * their respective ms_allocateable trees should not contain them. 7141 */ 7142 mutex_enter(&ms->ms_lock); 7143 range_tree_verify_not_present(ms->ms_allocatable, 7144 sme->sme_offset, sme->sme_run); 7145 mutex_exit(&ms->ms_lock); 7146 7147 return (0); 7148 } 7149 7150 /* 7151 * Verify that all segments in the vdev_checkpoint_sm are allocated 7152 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7153 * ms_allocatable). 7154 * 7155 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7156 * each vdev in the current state of the pool to the metaslab space maps 7157 * (ms_sm) of the checkpointed state of the pool. 7158 * 7159 * Note that the function changes the state of the ms_allocatable 7160 * trees of the current spa_t. The entries of these ms_allocatable 7161 * trees are cleared out and then repopulated from with the free 7162 * entries of their respective ms_sm space maps. 7163 */ 7164 static void 7165 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7166 { 7167 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7168 vdev_t *current_rvd = current->spa_root_vdev; 7169 7170 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7171 7172 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7173 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7174 vdev_t *current_vd = current_rvd->vdev_child[c]; 7175 7176 space_map_t *checkpoint_sm = NULL; 7177 uint64_t checkpoint_sm_obj; 7178 7179 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7180 /* 7181 * Since we don't allow device removal in a pool 7182 * that has a checkpoint, we expect that all removed 7183 * vdevs were removed from the pool before the 7184 * checkpoint. 7185 */ 7186 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7187 continue; 7188 } 7189 7190 /* 7191 * If the checkpoint space map doesn't exist, then nothing 7192 * here is checkpointed so there's nothing to verify. 7193 */ 7194 if (current_vd->vdev_top_zap == 0 || 7195 zap_contains(spa_meta_objset(current), 7196 current_vd->vdev_top_zap, 7197 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7198 continue; 7199 7200 VERIFY0(zap_lookup(spa_meta_objset(current), 7201 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7202 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7203 7204 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7205 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7206 current_vd->vdev_ashift)); 7207 7208 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7209 vcsec.vcsec_vd = ckpoint_vd; 7210 vcsec.vcsec_entryid = 0; 7211 vcsec.vcsec_num_entries = 7212 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7213 VERIFY0(space_map_iterate(checkpoint_sm, 7214 space_map_length(checkpoint_sm), 7215 verify_checkpoint_sm_entry_cb, &vcsec)); 7216 if (dump_opt['m'] > 3) 7217 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7218 space_map_close(checkpoint_sm); 7219 } 7220 7221 /* 7222 * If we've added vdevs since we took the checkpoint, ensure 7223 * that their checkpoint space maps are empty. 7224 */ 7225 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7226 for (uint64_t c = ckpoint_rvd->vdev_children; 7227 c < current_rvd->vdev_children; c++) { 7228 vdev_t *current_vd = current_rvd->vdev_child[c]; 7229 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7230 } 7231 } 7232 7233 /* for cleaner progress output */ 7234 (void) fprintf(stderr, "\n"); 7235 } 7236 7237 /* 7238 * Verifies that all space that's allocated in the checkpoint is 7239 * still allocated in the current version, by checking that everything 7240 * in checkpoint's ms_allocatable (which is actually allocated, not 7241 * allocatable/free) is not present in current's ms_allocatable. 7242 * 7243 * Note that the function changes the state of the ms_allocatable 7244 * trees of both spas when called. The entries of all ms_allocatable 7245 * trees are cleared out and then repopulated from their respective 7246 * ms_sm space maps. In the checkpointed state we load the allocated 7247 * entries, and in the current state we load the free entries. 7248 */ 7249 static void 7250 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7251 { 7252 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7253 vdev_t *current_rvd = current->spa_root_vdev; 7254 7255 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7256 load_concrete_ms_allocatable_trees(current, SM_FREE); 7257 7258 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7259 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7260 vdev_t *current_vd = current_rvd->vdev_child[i]; 7261 7262 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7263 /* 7264 * See comment in verify_checkpoint_vdev_spacemaps() 7265 */ 7266 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7267 continue; 7268 } 7269 7270 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7271 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7272 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7273 7274 (void) fprintf(stderr, 7275 "\rverifying vdev %llu of %llu, " 7276 "metaslab %llu of %llu ...", 7277 (longlong_t)current_vd->vdev_id, 7278 (longlong_t)current_rvd->vdev_children, 7279 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7280 (longlong_t)current_vd->vdev_ms_count); 7281 7282 /* 7283 * We walk through the ms_allocatable trees that 7284 * are loaded with the allocated blocks from the 7285 * ms_sm spacemaps of the checkpoint. For each 7286 * one of these ranges we ensure that none of them 7287 * exists in the ms_allocatable trees of the 7288 * current state which are loaded with the ranges 7289 * that are currently free. 7290 * 7291 * This way we ensure that none of the blocks that 7292 * are part of the checkpoint were freed by mistake. 7293 */ 7294 range_tree_walk(ckpoint_msp->ms_allocatable, 7295 (range_tree_func_t *)range_tree_verify_not_present, 7296 current_msp->ms_allocatable); 7297 } 7298 } 7299 7300 /* for cleaner progress output */ 7301 (void) fprintf(stderr, "\n"); 7302 } 7303 7304 static void 7305 verify_checkpoint_blocks(spa_t *spa) 7306 { 7307 ASSERT(!dump_opt['L']); 7308 7309 spa_t *checkpoint_spa; 7310 char *checkpoint_pool; 7311 int error = 0; 7312 7313 /* 7314 * We import the checkpointed state of the pool (under a different 7315 * name) so we can do verification on it against the current state 7316 * of the pool. 7317 */ 7318 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7319 NULL); 7320 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7321 7322 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7323 if (error != 0) { 7324 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7325 "error %d\n", checkpoint_pool, error); 7326 } 7327 7328 /* 7329 * Ensure that ranges in the checkpoint space maps of each vdev 7330 * are allocated according to the checkpointed state's metaslab 7331 * space maps. 7332 */ 7333 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7334 7335 /* 7336 * Ensure that allocated ranges in the checkpoint's metaslab 7337 * space maps remain allocated in the metaslab space maps of 7338 * the current state. 7339 */ 7340 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7341 7342 /* 7343 * Once we are done, we get rid of the checkpointed state. 7344 */ 7345 spa_close(checkpoint_spa, FTAG); 7346 free(checkpoint_pool); 7347 } 7348 7349 static void 7350 dump_leftover_checkpoint_blocks(spa_t *spa) 7351 { 7352 vdev_t *rvd = spa->spa_root_vdev; 7353 7354 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7355 vdev_t *vd = rvd->vdev_child[i]; 7356 7357 space_map_t *checkpoint_sm = NULL; 7358 uint64_t checkpoint_sm_obj; 7359 7360 if (vd->vdev_top_zap == 0) 7361 continue; 7362 7363 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7364 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7365 continue; 7366 7367 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7368 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7369 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7370 7371 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7372 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7373 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7374 space_map_close(checkpoint_sm); 7375 } 7376 } 7377 7378 static int 7379 verify_checkpoint(spa_t *spa) 7380 { 7381 uberblock_t checkpoint; 7382 int error; 7383 7384 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7385 return (0); 7386 7387 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7388 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7389 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7390 7391 if (error == ENOENT && !dump_opt['L']) { 7392 /* 7393 * If the feature is active but the uberblock is missing 7394 * then we must be in the middle of discarding the 7395 * checkpoint. 7396 */ 7397 (void) printf("\nPartially discarded checkpoint " 7398 "state found:\n"); 7399 if (dump_opt['m'] > 3) 7400 dump_leftover_checkpoint_blocks(spa); 7401 return (0); 7402 } else if (error != 0) { 7403 (void) printf("lookup error %d when looking for " 7404 "checkpointed uberblock in MOS\n", error); 7405 return (error); 7406 } 7407 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7408 7409 if (checkpoint.ub_checkpoint_txg == 0) { 7410 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7411 "uberblock\n"); 7412 error = 3; 7413 } 7414 7415 if (error == 0 && !dump_opt['L']) 7416 verify_checkpoint_blocks(spa); 7417 7418 return (error); 7419 } 7420 7421 static void 7422 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7423 { 7424 (void) arg; 7425 for (uint64_t i = start; i < size; i++) { 7426 (void) printf("MOS object %llu referenced but not allocated\n", 7427 (u_longlong_t)i); 7428 } 7429 } 7430 7431 static void 7432 mos_obj_refd(uint64_t obj) 7433 { 7434 if (obj != 0 && mos_refd_objs != NULL) 7435 range_tree_add(mos_refd_objs, obj, 1); 7436 } 7437 7438 /* 7439 * Call on a MOS object that may already have been referenced. 7440 */ 7441 static void 7442 mos_obj_refd_multiple(uint64_t obj) 7443 { 7444 if (obj != 0 && mos_refd_objs != NULL && 7445 !range_tree_contains(mos_refd_objs, obj, 1)) 7446 range_tree_add(mos_refd_objs, obj, 1); 7447 } 7448 7449 static void 7450 mos_leak_vdev_top_zap(vdev_t *vd) 7451 { 7452 uint64_t ms_flush_data_obj; 7453 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7454 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7455 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7456 if (error == ENOENT) 7457 return; 7458 ASSERT0(error); 7459 7460 mos_obj_refd(ms_flush_data_obj); 7461 } 7462 7463 static void 7464 mos_leak_vdev(vdev_t *vd) 7465 { 7466 mos_obj_refd(vd->vdev_dtl_object); 7467 mos_obj_refd(vd->vdev_ms_array); 7468 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7469 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7470 mos_obj_refd(vd->vdev_leaf_zap); 7471 if (vd->vdev_checkpoint_sm != NULL) 7472 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7473 if (vd->vdev_indirect_mapping != NULL) { 7474 mos_obj_refd(vd->vdev_indirect_mapping-> 7475 vim_phys->vimp_counts_object); 7476 } 7477 if (vd->vdev_obsolete_sm != NULL) 7478 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7479 7480 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7481 metaslab_t *ms = vd->vdev_ms[m]; 7482 mos_obj_refd(space_map_object(ms->ms_sm)); 7483 } 7484 7485 if (vd->vdev_top_zap != 0) { 7486 mos_obj_refd(vd->vdev_top_zap); 7487 mos_leak_vdev_top_zap(vd); 7488 } 7489 7490 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7491 mos_leak_vdev(vd->vdev_child[c]); 7492 } 7493 } 7494 7495 static void 7496 mos_leak_log_spacemaps(spa_t *spa) 7497 { 7498 uint64_t spacemap_zap; 7499 int error = zap_lookup(spa_meta_objset(spa), 7500 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7501 sizeof (spacemap_zap), 1, &spacemap_zap); 7502 if (error == ENOENT) 7503 return; 7504 ASSERT0(error); 7505 7506 mos_obj_refd(spacemap_zap); 7507 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7508 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7509 mos_obj_refd(sls->sls_sm_obj); 7510 } 7511 7512 static int 7513 dump_mos_leaks(spa_t *spa) 7514 { 7515 int rv = 0; 7516 objset_t *mos = spa->spa_meta_objset; 7517 dsl_pool_t *dp = spa->spa_dsl_pool; 7518 7519 /* Visit and mark all referenced objects in the MOS */ 7520 7521 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7522 mos_obj_refd(spa->spa_pool_props_object); 7523 mos_obj_refd(spa->spa_config_object); 7524 mos_obj_refd(spa->spa_ddt_stat_object); 7525 mos_obj_refd(spa->spa_feat_desc_obj); 7526 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7527 mos_obj_refd(spa->spa_feat_for_read_obj); 7528 mos_obj_refd(spa->spa_feat_for_write_obj); 7529 mos_obj_refd(spa->spa_history); 7530 mos_obj_refd(spa->spa_errlog_last); 7531 mos_obj_refd(spa->spa_errlog_scrub); 7532 mos_obj_refd(spa->spa_all_vdev_zaps); 7533 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7534 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7535 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7536 bpobj_count_refd(&spa->spa_deferred_bpobj); 7537 mos_obj_refd(dp->dp_empty_bpobj); 7538 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7539 bpobj_count_refd(&dp->dp_free_bpobj); 7540 mos_obj_refd(spa->spa_l2cache.sav_object); 7541 mos_obj_refd(spa->spa_spares.sav_object); 7542 7543 if (spa->spa_syncing_log_sm != NULL) 7544 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7545 mos_leak_log_spacemaps(spa); 7546 7547 mos_obj_refd(spa->spa_condensing_indirect_phys. 7548 scip_next_mapping_object); 7549 mos_obj_refd(spa->spa_condensing_indirect_phys. 7550 scip_prev_obsolete_sm_object); 7551 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7552 vdev_indirect_mapping_t *vim = 7553 vdev_indirect_mapping_open(mos, 7554 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7555 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7556 vdev_indirect_mapping_close(vim); 7557 } 7558 deleted_livelists_dump_mos(spa); 7559 7560 if (dp->dp_origin_snap != NULL) { 7561 dsl_dataset_t *ds; 7562 7563 dsl_pool_config_enter(dp, FTAG); 7564 VERIFY0(dsl_dataset_hold_obj(dp, 7565 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7566 FTAG, &ds)); 7567 count_ds_mos_objects(ds); 7568 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7569 dsl_dataset_rele(ds, FTAG); 7570 dsl_pool_config_exit(dp, FTAG); 7571 7572 count_ds_mos_objects(dp->dp_origin_snap); 7573 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7574 } 7575 count_dir_mos_objects(dp->dp_mos_dir); 7576 if (dp->dp_free_dir != NULL) 7577 count_dir_mos_objects(dp->dp_free_dir); 7578 if (dp->dp_leak_dir != NULL) 7579 count_dir_mos_objects(dp->dp_leak_dir); 7580 7581 mos_leak_vdev(spa->spa_root_vdev); 7582 7583 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7584 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7585 for (uint64_t cksum = 0; 7586 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7587 ddt_t *ddt = spa->spa_ddt[cksum]; 7588 mos_obj_refd(ddt->ddt_object[type][class]); 7589 } 7590 } 7591 } 7592 7593 /* 7594 * Visit all allocated objects and make sure they are referenced. 7595 */ 7596 uint64_t object = 0; 7597 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7598 if (range_tree_contains(mos_refd_objs, object, 1)) { 7599 range_tree_remove(mos_refd_objs, object, 1); 7600 } else { 7601 dmu_object_info_t doi; 7602 const char *name; 7603 VERIFY0(dmu_object_info(mos, object, &doi)); 7604 if (doi.doi_type & DMU_OT_NEWTYPE) { 7605 dmu_object_byteswap_t bswap = 7606 DMU_OT_BYTESWAP(doi.doi_type); 7607 name = dmu_ot_byteswap[bswap].ob_name; 7608 } else { 7609 name = dmu_ot[doi.doi_type].ot_name; 7610 } 7611 7612 (void) printf("MOS object %llu (%s) leaked\n", 7613 (u_longlong_t)object, name); 7614 rv = 2; 7615 } 7616 } 7617 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7618 if (!range_tree_is_empty(mos_refd_objs)) 7619 rv = 2; 7620 range_tree_vacate(mos_refd_objs, NULL, NULL); 7621 range_tree_destroy(mos_refd_objs); 7622 return (rv); 7623 } 7624 7625 typedef struct log_sm_obsolete_stats_arg { 7626 uint64_t lsos_current_txg; 7627 7628 uint64_t lsos_total_entries; 7629 uint64_t lsos_valid_entries; 7630 7631 uint64_t lsos_sm_entries; 7632 uint64_t lsos_valid_sm_entries; 7633 } log_sm_obsolete_stats_arg_t; 7634 7635 static int 7636 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 7637 uint64_t txg, void *arg) 7638 { 7639 log_sm_obsolete_stats_arg_t *lsos = arg; 7640 7641 uint64_t offset = sme->sme_offset; 7642 uint64_t vdev_id = sme->sme_vdev; 7643 7644 if (lsos->lsos_current_txg == 0) { 7645 /* this is the first log */ 7646 lsos->lsos_current_txg = txg; 7647 } else if (lsos->lsos_current_txg < txg) { 7648 /* we just changed log - print stats and reset */ 7649 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7650 (u_longlong_t)lsos->lsos_valid_sm_entries, 7651 (u_longlong_t)lsos->lsos_sm_entries, 7652 (u_longlong_t)lsos->lsos_current_txg); 7653 lsos->lsos_valid_sm_entries = 0; 7654 lsos->lsos_sm_entries = 0; 7655 lsos->lsos_current_txg = txg; 7656 } 7657 ASSERT3U(lsos->lsos_current_txg, ==, txg); 7658 7659 lsos->lsos_sm_entries++; 7660 lsos->lsos_total_entries++; 7661 7662 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 7663 if (!vdev_is_concrete(vd)) 7664 return (0); 7665 7666 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 7667 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 7668 7669 if (txg < metaslab_unflushed_txg(ms)) 7670 return (0); 7671 lsos->lsos_valid_sm_entries++; 7672 lsos->lsos_valid_entries++; 7673 return (0); 7674 } 7675 7676 static void 7677 dump_log_spacemap_obsolete_stats(spa_t *spa) 7678 { 7679 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 7680 return; 7681 7682 log_sm_obsolete_stats_arg_t lsos = {0}; 7683 7684 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 7685 7686 iterate_through_spacemap_logs(spa, 7687 log_spacemap_obsolete_stats_cb, &lsos); 7688 7689 /* print stats for latest log */ 7690 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7691 (u_longlong_t)lsos.lsos_valid_sm_entries, 7692 (u_longlong_t)lsos.lsos_sm_entries, 7693 (u_longlong_t)lsos.lsos_current_txg); 7694 7695 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 7696 (u_longlong_t)lsos.lsos_valid_entries, 7697 (u_longlong_t)lsos.lsos_total_entries); 7698 } 7699 7700 static void 7701 dump_zpool(spa_t *spa) 7702 { 7703 dsl_pool_t *dp = spa_get_dsl(spa); 7704 int rc = 0; 7705 7706 if (dump_opt['y']) { 7707 livelist_metaslab_validate(spa); 7708 } 7709 7710 if (dump_opt['S']) { 7711 dump_simulated_ddt(spa); 7712 return; 7713 } 7714 7715 if (!dump_opt['e'] && dump_opt['C'] > 1) { 7716 (void) printf("\nCached configuration:\n"); 7717 dump_nvlist(spa->spa_config, 8); 7718 } 7719 7720 if (dump_opt['C']) 7721 dump_config(spa); 7722 7723 if (dump_opt['u']) 7724 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 7725 7726 if (dump_opt['D']) 7727 dump_all_ddts(spa); 7728 7729 if (dump_opt['d'] > 2 || dump_opt['m']) 7730 dump_metaslabs(spa); 7731 if (dump_opt['M']) 7732 dump_metaslab_groups(spa, dump_opt['M'] > 1); 7733 if (dump_opt['d'] > 2 || dump_opt['m']) { 7734 dump_log_spacemaps(spa); 7735 dump_log_spacemap_obsolete_stats(spa); 7736 } 7737 7738 if (dump_opt['d'] || dump_opt['i']) { 7739 spa_feature_t f; 7740 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 7741 0); 7742 dump_objset(dp->dp_meta_objset); 7743 7744 if (dump_opt['d'] >= 3) { 7745 dsl_pool_t *dp = spa->spa_dsl_pool; 7746 dump_full_bpobj(&spa->spa_deferred_bpobj, 7747 "Deferred frees", 0); 7748 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7749 dump_full_bpobj(&dp->dp_free_bpobj, 7750 "Pool snapshot frees", 0); 7751 } 7752 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 7753 ASSERT(spa_feature_is_enabled(spa, 7754 SPA_FEATURE_DEVICE_REMOVAL)); 7755 dump_full_bpobj(&dp->dp_obsolete_bpobj, 7756 "Pool obsolete blocks", 0); 7757 } 7758 7759 if (spa_feature_is_active(spa, 7760 SPA_FEATURE_ASYNC_DESTROY)) { 7761 dump_bptree(spa->spa_meta_objset, 7762 dp->dp_bptree_obj, 7763 "Pool dataset frees"); 7764 } 7765 dump_dtl(spa->spa_root_vdev, 0); 7766 } 7767 7768 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 7769 global_feature_count[f] = UINT64_MAX; 7770 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 7771 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 7772 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 7773 7774 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 7775 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7776 7777 if (rc == 0 && !dump_opt['L']) 7778 rc = dump_mos_leaks(spa); 7779 7780 for (f = 0; f < SPA_FEATURES; f++) { 7781 uint64_t refcount; 7782 7783 uint64_t *arr; 7784 if (!(spa_feature_table[f].fi_flags & 7785 ZFEATURE_FLAG_PER_DATASET)) { 7786 if (global_feature_count[f] == UINT64_MAX) 7787 continue; 7788 if (!spa_feature_is_enabled(spa, f)) { 7789 ASSERT0(global_feature_count[f]); 7790 continue; 7791 } 7792 arr = global_feature_count; 7793 } else { 7794 if (!spa_feature_is_enabled(spa, f)) { 7795 ASSERT0(dataset_feature_count[f]); 7796 continue; 7797 } 7798 arr = dataset_feature_count; 7799 } 7800 if (feature_get_refcount(spa, &spa_feature_table[f], 7801 &refcount) == ENOTSUP) 7802 continue; 7803 if (arr[f] != refcount) { 7804 (void) printf("%s feature refcount mismatch: " 7805 "%lld consumers != %lld refcount\n", 7806 spa_feature_table[f].fi_uname, 7807 (longlong_t)arr[f], (longlong_t)refcount); 7808 rc = 2; 7809 } else { 7810 (void) printf("Verified %s feature refcount " 7811 "of %llu is correct\n", 7812 spa_feature_table[f].fi_uname, 7813 (longlong_t)refcount); 7814 } 7815 } 7816 7817 if (rc == 0) 7818 rc = verify_device_removal_feature_counts(spa); 7819 } 7820 7821 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 7822 rc = dump_block_stats(spa); 7823 7824 if (rc == 0) 7825 rc = verify_spacemap_refcounts(spa); 7826 7827 if (dump_opt['s']) 7828 show_pool_stats(spa); 7829 7830 if (dump_opt['h']) 7831 dump_history(spa); 7832 7833 if (rc == 0) 7834 rc = verify_checkpoint(spa); 7835 7836 if (rc != 0) { 7837 dump_debug_buffer(); 7838 exit(rc); 7839 } 7840 } 7841 7842 #define ZDB_FLAG_CHECKSUM 0x0001 7843 #define ZDB_FLAG_DECOMPRESS 0x0002 7844 #define ZDB_FLAG_BSWAP 0x0004 7845 #define ZDB_FLAG_GBH 0x0008 7846 #define ZDB_FLAG_INDIRECT 0x0010 7847 #define ZDB_FLAG_RAW 0x0020 7848 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 7849 #define ZDB_FLAG_VERBOSE 0x0080 7850 7851 static int flagbits[256]; 7852 static char flagbitstr[16]; 7853 7854 static void 7855 zdb_print_blkptr(const blkptr_t *bp, int flags) 7856 { 7857 char blkbuf[BP_SPRINTF_LEN]; 7858 7859 if (flags & ZDB_FLAG_BSWAP) 7860 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 7861 7862 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 7863 (void) printf("%s\n", blkbuf); 7864 } 7865 7866 static void 7867 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 7868 { 7869 int i; 7870 7871 for (i = 0; i < nbps; i++) 7872 zdb_print_blkptr(&bp[i], flags); 7873 } 7874 7875 static void 7876 zdb_dump_gbh(void *buf, int flags) 7877 { 7878 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 7879 } 7880 7881 static void 7882 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 7883 { 7884 if (flags & ZDB_FLAG_BSWAP) 7885 byteswap_uint64_array(buf, size); 7886 VERIFY(write(fileno(stdout), buf, size) == size); 7887 } 7888 7889 static void 7890 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 7891 { 7892 uint64_t *d = (uint64_t *)buf; 7893 unsigned nwords = size / sizeof (uint64_t); 7894 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 7895 unsigned i, j; 7896 const char *hdr; 7897 char *c; 7898 7899 7900 if (do_bswap) 7901 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 7902 else 7903 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 7904 7905 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 7906 7907 #ifdef _LITTLE_ENDIAN 7908 /* correct the endianness */ 7909 do_bswap = !do_bswap; 7910 #endif 7911 for (i = 0; i < nwords; i += 2) { 7912 (void) printf("%06llx: %016llx %016llx ", 7913 (u_longlong_t)(i * sizeof (uint64_t)), 7914 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 7915 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 7916 7917 c = (char *)&d[i]; 7918 for (j = 0; j < 2 * sizeof (uint64_t); j++) 7919 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 7920 (void) printf("\n"); 7921 } 7922 } 7923 7924 /* 7925 * There are two acceptable formats: 7926 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 7927 * child[.child]* - For example: 0.1.1 7928 * 7929 * The second form can be used to specify arbitrary vdevs anywhere 7930 * in the hierarchy. For example, in a pool with a mirror of 7931 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 7932 */ 7933 static vdev_t * 7934 zdb_vdev_lookup(vdev_t *vdev, const char *path) 7935 { 7936 char *s, *p, *q; 7937 unsigned i; 7938 7939 if (vdev == NULL) 7940 return (NULL); 7941 7942 /* First, assume the x.x.x.x format */ 7943 i = strtoul(path, &s, 10); 7944 if (s == path || (s && *s != '.' && *s != '\0')) 7945 goto name; 7946 if (i >= vdev->vdev_children) 7947 return (NULL); 7948 7949 vdev = vdev->vdev_child[i]; 7950 if (s && *s == '\0') 7951 return (vdev); 7952 return (zdb_vdev_lookup(vdev, s+1)); 7953 7954 name: 7955 for (i = 0; i < vdev->vdev_children; i++) { 7956 vdev_t *vc = vdev->vdev_child[i]; 7957 7958 if (vc->vdev_path == NULL) { 7959 vc = zdb_vdev_lookup(vc, path); 7960 if (vc == NULL) 7961 continue; 7962 else 7963 return (vc); 7964 } 7965 7966 p = strrchr(vc->vdev_path, '/'); 7967 p = p ? p + 1 : vc->vdev_path; 7968 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 7969 7970 if (strcmp(vc->vdev_path, path) == 0) 7971 return (vc); 7972 if (strcmp(p, path) == 0) 7973 return (vc); 7974 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 7975 return (vc); 7976 } 7977 7978 return (NULL); 7979 } 7980 7981 static int 7982 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 7983 { 7984 dsl_dataset_t *ds; 7985 7986 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 7987 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 7988 NULL, &ds); 7989 if (error != 0) { 7990 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 7991 (u_longlong_t)objset_id, strerror(error)); 7992 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7993 return (error); 7994 } 7995 dsl_dataset_name(ds, outstr); 7996 dsl_dataset_rele(ds, NULL); 7997 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7998 return (0); 7999 } 8000 8001 static boolean_t 8002 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8003 { 8004 char *s0, *s1, *tmp = NULL; 8005 8006 if (sizes == NULL) 8007 return (B_FALSE); 8008 8009 s0 = strtok_r(sizes, "/", &tmp); 8010 if (s0 == NULL) 8011 return (B_FALSE); 8012 s1 = strtok_r(NULL, "/", &tmp); 8013 *lsize = strtoull(s0, NULL, 16); 8014 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8015 return (*lsize >= *psize && *psize > 0); 8016 } 8017 8018 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8019 8020 static boolean_t 8021 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8022 uint64_t psize, int flags) 8023 { 8024 (void) buf; 8025 boolean_t exceeded = B_FALSE; 8026 /* 8027 * We don't know how the data was compressed, so just try 8028 * every decompress function at every inflated blocksize. 8029 */ 8030 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8031 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8032 int *cfuncp = cfuncs; 8033 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8034 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8035 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8036 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 8037 *cfuncp++ = ZIO_COMPRESS_LZ4; 8038 *cfuncp++ = ZIO_COMPRESS_LZJB; 8039 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8040 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8041 if (((1ULL << c) & mask) == 0) 8042 *cfuncp++ = c; 8043 8044 /* 8045 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8046 * could take a while and we should let the user know 8047 * we are not stuck. On the other hand, printing progress 8048 * info gets old after a while. User can specify 'v' flag 8049 * to see the progression. 8050 */ 8051 if (lsize == psize) 8052 lsize += SPA_MINBLOCKSIZE; 8053 else 8054 maxlsize = lsize; 8055 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8056 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8057 if (flags & ZDB_FLAG_VERBOSE) { 8058 (void) fprintf(stderr, 8059 "Trying %05llx -> %05llx (%s)\n", 8060 (u_longlong_t)psize, 8061 (u_longlong_t)lsize, 8062 zio_compress_table[*cfuncp].\ 8063 ci_name); 8064 } 8065 8066 /* 8067 * We randomize lbuf2, and decompress to both 8068 * lbuf and lbuf2. This way, we will know if 8069 * decompression fill exactly to lsize. 8070 */ 8071 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 8072 8073 if (zio_decompress_data(*cfuncp, pabd, 8074 lbuf, psize, lsize, NULL) == 0 && 8075 zio_decompress_data(*cfuncp, pabd, 8076 lbuf2, psize, lsize, NULL) == 0 && 8077 memcmp(lbuf, lbuf2, lsize) == 0) 8078 break; 8079 } 8080 if (*cfuncp != 0) 8081 break; 8082 } 8083 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8084 8085 if (lsize > maxlsize) { 8086 exceeded = B_TRUE; 8087 } 8088 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8089 printf("\nZLE decompression was selected. If you " 8090 "suspect the results are wrong,\ntry avoiding ZLE " 8091 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8092 } 8093 8094 return (exceeded); 8095 } 8096 8097 /* 8098 * Read a block from a pool and print it out. The syntax of the 8099 * block descriptor is: 8100 * 8101 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8102 * 8103 * pool - The name of the pool you wish to read from 8104 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8105 * offset - offset, in hex, in bytes 8106 * size - Amount of data to read, in hex, in bytes 8107 * flags - A string of characters specifying options 8108 * b: Decode a blkptr at given offset within block 8109 * c: Calculate and display checksums 8110 * d: Decompress data before dumping 8111 * e: Byteswap data before dumping 8112 * g: Display data as a gang block header 8113 * i: Display as an indirect block 8114 * r: Dump raw data to stdout 8115 * v: Verbose 8116 * 8117 */ 8118 static void 8119 zdb_read_block(char *thing, spa_t *spa) 8120 { 8121 blkptr_t blk, *bp = &blk; 8122 dva_t *dva = bp->blk_dva; 8123 int flags = 0; 8124 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8125 zio_t *zio; 8126 vdev_t *vd; 8127 abd_t *pabd; 8128 void *lbuf, *buf; 8129 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8130 const char *vdev, *errmsg = NULL; 8131 int i, error; 8132 boolean_t borrowed = B_FALSE, found = B_FALSE; 8133 8134 dup = strdup(thing); 8135 s = strtok_r(dup, ":", &tmp); 8136 vdev = s ?: ""; 8137 s = strtok_r(NULL, ":", &tmp); 8138 offset = strtoull(s ? s : "", NULL, 16); 8139 sizes = strtok_r(NULL, ":", &tmp); 8140 s = strtok_r(NULL, ":", &tmp); 8141 flagstr = strdup(s ?: ""); 8142 8143 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8144 errmsg = "invalid size(s)"; 8145 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8146 errmsg = "size must be a multiple of sector size"; 8147 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8148 errmsg = "offset must be a multiple of sector size"; 8149 if (errmsg) { 8150 (void) printf("Invalid block specifier: %s - %s\n", 8151 thing, errmsg); 8152 goto done; 8153 } 8154 8155 tmp = NULL; 8156 for (s = strtok_r(flagstr, ":", &tmp); 8157 s != NULL; 8158 s = strtok_r(NULL, ":", &tmp)) { 8159 for (i = 0; i < strlen(flagstr); i++) { 8160 int bit = flagbits[(uchar_t)flagstr[i]]; 8161 8162 if (bit == 0) { 8163 (void) printf("***Ignoring flag: %c\n", 8164 (uchar_t)flagstr[i]); 8165 continue; 8166 } 8167 found = B_TRUE; 8168 flags |= bit; 8169 8170 p = &flagstr[i + 1]; 8171 if (*p != ':' && *p != '\0') { 8172 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8173 char *end, offstr[8] = { 0 }; 8174 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8175 (nextbit == 0)) { 8176 /* look ahead to isolate the offset */ 8177 while (nextbit == 0 && 8178 strchr(flagbitstr, *p) == NULL) { 8179 offstr[j] = *p; 8180 j++; 8181 if (i + j > strlen(flagstr)) 8182 break; 8183 p++; 8184 nextbit = flagbits[(uchar_t)*p]; 8185 } 8186 blkptr_offset = strtoull(offstr, &end, 8187 16); 8188 i += j; 8189 } else if (nextbit == 0) { 8190 (void) printf("***Ignoring flag arg:" 8191 " '%c'\n", (uchar_t)*p); 8192 } 8193 } 8194 } 8195 } 8196 if (blkptr_offset % sizeof (blkptr_t)) { 8197 printf("Block pointer offset 0x%llx " 8198 "must be divisible by 0x%x\n", 8199 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8200 goto done; 8201 } 8202 if (found == B_FALSE && strlen(flagstr) > 0) { 8203 printf("Invalid flag arg: '%s'\n", flagstr); 8204 goto done; 8205 } 8206 8207 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8208 if (vd == NULL) { 8209 (void) printf("***Invalid vdev: %s\n", vdev); 8210 goto done; 8211 } else { 8212 if (vd->vdev_path) 8213 (void) fprintf(stderr, "Found vdev: %s\n", 8214 vd->vdev_path); 8215 else 8216 (void) fprintf(stderr, "Found vdev type: %s\n", 8217 vd->vdev_ops->vdev_op_type); 8218 } 8219 8220 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8221 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8222 8223 BP_ZERO(bp); 8224 8225 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8226 DVA_SET_OFFSET(&dva[0], offset); 8227 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8228 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8229 8230 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8231 8232 BP_SET_LSIZE(bp, lsize); 8233 BP_SET_PSIZE(bp, psize); 8234 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8235 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8236 BP_SET_TYPE(bp, DMU_OT_NONE); 8237 BP_SET_LEVEL(bp, 0); 8238 BP_SET_DEDUP(bp, 0); 8239 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8240 8241 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8242 zio = zio_root(spa, NULL, NULL, 0); 8243 8244 if (vd == vd->vdev_top) { 8245 /* 8246 * Treat this as a normal block read. 8247 */ 8248 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8249 ZIO_PRIORITY_SYNC_READ, 8250 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8251 } else { 8252 /* 8253 * Treat this as a vdev child I/O. 8254 */ 8255 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8256 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8257 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | 8258 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8259 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8260 } 8261 8262 error = zio_wait(zio); 8263 spa_config_exit(spa, SCL_STATE, FTAG); 8264 8265 if (error) { 8266 (void) printf("Read of %s failed, error: %d\n", thing, error); 8267 goto out; 8268 } 8269 8270 uint64_t orig_lsize = lsize; 8271 buf = lbuf; 8272 if (flags & ZDB_FLAG_DECOMPRESS) { 8273 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 8274 lsize, psize, flags); 8275 if (failed) { 8276 (void) printf("Decompress of %s failed\n", thing); 8277 goto out; 8278 } 8279 } else { 8280 buf = abd_borrow_buf_copy(pabd, lsize); 8281 borrowed = B_TRUE; 8282 } 8283 /* 8284 * Try to detect invalid block pointer. If invalid, try 8285 * decompressing. 8286 */ 8287 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8288 !(flags & ZDB_FLAG_DECOMPRESS)) { 8289 const blkptr_t *b = (const blkptr_t *)(void *) 8290 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8291 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) == 8292 B_FALSE) { 8293 abd_return_buf_copy(pabd, buf, lsize); 8294 borrowed = B_FALSE; 8295 buf = lbuf; 8296 boolean_t failed = zdb_decompress_block(pabd, buf, 8297 lbuf, lsize, psize, flags); 8298 b = (const blkptr_t *)(void *) 8299 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8300 if (failed || zfs_blkptr_verify(spa, b, B_FALSE, 8301 BLK_VERIFY_LOG) == B_FALSE) { 8302 printf("invalid block pointer at this DVA\n"); 8303 goto out; 8304 } 8305 } 8306 } 8307 8308 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8309 zdb_print_blkptr((blkptr_t *)(void *) 8310 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8311 else if (flags & ZDB_FLAG_RAW) 8312 zdb_dump_block_raw(buf, lsize, flags); 8313 else if (flags & ZDB_FLAG_INDIRECT) 8314 zdb_dump_indirect((blkptr_t *)buf, 8315 orig_lsize / sizeof (blkptr_t), flags); 8316 else if (flags & ZDB_FLAG_GBH) 8317 zdb_dump_gbh(buf, flags); 8318 else 8319 zdb_dump_block(thing, buf, lsize, flags); 8320 8321 /* 8322 * If :c was specified, iterate through the checksum table to 8323 * calculate and display each checksum for our specified 8324 * DVA and length. 8325 */ 8326 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8327 !(flags & ZDB_FLAG_GBH)) { 8328 zio_t *czio; 8329 (void) printf("\n"); 8330 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8331 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8332 8333 if ((zio_checksum_table[ck].ci_flags & 8334 ZCHECKSUM_FLAG_EMBEDDED) || 8335 ck == ZIO_CHECKSUM_NOPARITY) { 8336 continue; 8337 } 8338 BP_SET_CHECKSUM(bp, ck); 8339 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8340 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8341 czio->io_bp = bp; 8342 8343 if (vd == vd->vdev_top) { 8344 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8345 NULL, NULL, 8346 ZIO_PRIORITY_SYNC_READ, 8347 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8348 ZIO_FLAG_DONT_RETRY, NULL)); 8349 } else { 8350 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8351 offset, pabd, psize, ZIO_TYPE_READ, 8352 ZIO_PRIORITY_SYNC_READ, 8353 ZIO_FLAG_DONT_CACHE | 8354 ZIO_FLAG_DONT_PROPAGATE | 8355 ZIO_FLAG_DONT_RETRY | 8356 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8357 ZIO_FLAG_SPECULATIVE | 8358 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8359 } 8360 error = zio_wait(czio); 8361 if (error == 0 || error == ECKSUM) { 8362 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8363 ck_zio->io_offset = 8364 DVA_GET_OFFSET(&bp->blk_dva[0]); 8365 ck_zio->io_bp = bp; 8366 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8367 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n", 8368 zio_checksum_table[ck].ci_name, 8369 (u_longlong_t)bp->blk_cksum.zc_word[0], 8370 (u_longlong_t)bp->blk_cksum.zc_word[1], 8371 (u_longlong_t)bp->blk_cksum.zc_word[2], 8372 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8373 zio_wait(ck_zio); 8374 } else { 8375 printf("error %d reading block\n", error); 8376 } 8377 spa_config_exit(spa, SCL_STATE, FTAG); 8378 } 8379 } 8380 8381 if (borrowed) 8382 abd_return_buf_copy(pabd, buf, lsize); 8383 8384 out: 8385 abd_free(pabd); 8386 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8387 done: 8388 free(flagstr); 8389 free(dup); 8390 } 8391 8392 static void 8393 zdb_embedded_block(char *thing) 8394 { 8395 blkptr_t bp = {{{{0}}}}; 8396 unsigned long long *words = (void *)&bp; 8397 char *buf; 8398 int err; 8399 8400 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8401 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8402 words + 0, words + 1, words + 2, words + 3, 8403 words + 4, words + 5, words + 6, words + 7, 8404 words + 8, words + 9, words + 10, words + 11, 8405 words + 12, words + 13, words + 14, words + 15); 8406 if (err != 16) { 8407 (void) fprintf(stderr, "invalid input format\n"); 8408 exit(1); 8409 } 8410 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8411 buf = malloc(SPA_MAXBLOCKSIZE); 8412 if (buf == NULL) { 8413 (void) fprintf(stderr, "out of memory\n"); 8414 exit(1); 8415 } 8416 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8417 if (err != 0) { 8418 (void) fprintf(stderr, "decode failed: %u\n", err); 8419 exit(1); 8420 } 8421 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8422 free(buf); 8423 } 8424 8425 /* check for valid hex or decimal numeric string */ 8426 static boolean_t 8427 zdb_numeric(char *str) 8428 { 8429 int i = 0; 8430 8431 if (strlen(str) == 0) 8432 return (B_FALSE); 8433 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8434 i = 2; 8435 for (; i < strlen(str); i++) { 8436 if (!isxdigit(str[i])) 8437 return (B_FALSE); 8438 } 8439 return (B_TRUE); 8440 } 8441 8442 int 8443 main(int argc, char **argv) 8444 { 8445 int c; 8446 spa_t *spa = NULL; 8447 objset_t *os = NULL; 8448 int dump_all = 1; 8449 int verbose = 0; 8450 int error = 0; 8451 char **searchdirs = NULL; 8452 int nsearch = 0; 8453 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8454 nvlist_t *policy = NULL; 8455 uint64_t max_txg = UINT64_MAX; 8456 int64_t objset_id = -1; 8457 uint64_t object; 8458 int flags = ZFS_IMPORT_MISSING_LOG; 8459 int rewind = ZPOOL_NEVER_REWIND; 8460 char *spa_config_path_env, *objset_str; 8461 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8462 nvlist_t *cfg = NULL; 8463 8464 dprintf_setup(&argc, argv); 8465 8466 /* 8467 * If there is an environment variable SPA_CONFIG_PATH it overrides 8468 * default spa_config_path setting. If -U flag is specified it will 8469 * override this environment variable settings once again. 8470 */ 8471 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8472 if (spa_config_path_env != NULL) 8473 spa_config_path = spa_config_path_env; 8474 8475 /* 8476 * For performance reasons, we set this tunable down. We do so before 8477 * the arg parsing section so that the user can override this value if 8478 * they choose. 8479 */ 8480 zfs_btree_verify_intensity = 3; 8481 8482 struct option long_options[] = { 8483 {"ignore-assertions", no_argument, NULL, 'A'}, 8484 {"block-stats", no_argument, NULL, 'b'}, 8485 {"checksum", no_argument, NULL, 'c'}, 8486 {"config", no_argument, NULL, 'C'}, 8487 {"datasets", no_argument, NULL, 'd'}, 8488 {"dedup-stats", no_argument, NULL, 'D'}, 8489 {"exported", no_argument, NULL, 'e'}, 8490 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8491 {"automatic-rewind", no_argument, NULL, 'F'}, 8492 {"dump-debug-msg", no_argument, NULL, 'G'}, 8493 {"history", no_argument, NULL, 'h'}, 8494 {"intent-logs", no_argument, NULL, 'i'}, 8495 {"inflight", required_argument, NULL, 'I'}, 8496 {"checkpointed-state", no_argument, NULL, 'k'}, 8497 {"label", no_argument, NULL, 'l'}, 8498 {"disable-leak-tracking", no_argument, NULL, 'L'}, 8499 {"metaslabs", no_argument, NULL, 'm'}, 8500 {"metaslab-groups", no_argument, NULL, 'M'}, 8501 {"numeric", no_argument, NULL, 'N'}, 8502 {"option", required_argument, NULL, 'o'}, 8503 {"object-lookups", no_argument, NULL, 'O'}, 8504 {"path", required_argument, NULL, 'p'}, 8505 {"parseable", no_argument, NULL, 'P'}, 8506 {"skip-label", no_argument, NULL, 'q'}, 8507 {"copy-object", no_argument, NULL, 'r'}, 8508 {"read-block", no_argument, NULL, 'R'}, 8509 {"io-stats", no_argument, NULL, 's'}, 8510 {"simulate-dedup", no_argument, NULL, 'S'}, 8511 {"txg", required_argument, NULL, 't'}, 8512 {"uberblock", no_argument, NULL, 'u'}, 8513 {"cachefile", required_argument, NULL, 'U'}, 8514 {"verbose", no_argument, NULL, 'v'}, 8515 {"verbatim", no_argument, NULL, 'V'}, 8516 {"dump-blocks", required_argument, NULL, 'x'}, 8517 {"extreme-rewind", no_argument, NULL, 'X'}, 8518 {"all-reconstruction", no_argument, NULL, 'Y'}, 8519 {"livelist", no_argument, NULL, 'y'}, 8520 {"zstd-headers", no_argument, NULL, 'Z'}, 8521 {0, 0, 0, 0} 8522 }; 8523 8524 while ((c = getopt_long(argc, argv, 8525 "AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ", 8526 long_options, NULL)) != -1) { 8527 switch (c) { 8528 case 'b': 8529 case 'c': 8530 case 'C': 8531 case 'd': 8532 case 'D': 8533 case 'E': 8534 case 'G': 8535 case 'h': 8536 case 'i': 8537 case 'l': 8538 case 'm': 8539 case 'M': 8540 case 'N': 8541 case 'O': 8542 case 'r': 8543 case 'R': 8544 case 's': 8545 case 'S': 8546 case 'u': 8547 case 'y': 8548 case 'Z': 8549 dump_opt[c]++; 8550 dump_all = 0; 8551 break; 8552 case 'A': 8553 case 'e': 8554 case 'F': 8555 case 'k': 8556 case 'L': 8557 case 'P': 8558 case 'q': 8559 case 'X': 8560 dump_opt[c]++; 8561 break; 8562 case 'Y': 8563 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8564 zfs_deadman_enabled = 0; 8565 break; 8566 /* NB: Sort single match options below. */ 8567 case 'I': 8568 max_inflight_bytes = strtoull(optarg, NULL, 0); 8569 if (max_inflight_bytes == 0) { 8570 (void) fprintf(stderr, "maximum number " 8571 "of inflight bytes must be greater " 8572 "than 0\n"); 8573 usage(); 8574 } 8575 break; 8576 case 'o': 8577 error = set_global_var(optarg); 8578 if (error != 0) 8579 usage(); 8580 break; 8581 case 'p': 8582 if (searchdirs == NULL) { 8583 searchdirs = umem_alloc(sizeof (char *), 8584 UMEM_NOFAIL); 8585 } else { 8586 char **tmp = umem_alloc((nsearch + 1) * 8587 sizeof (char *), UMEM_NOFAIL); 8588 memcpy(tmp, searchdirs, nsearch * 8589 sizeof (char *)); 8590 umem_free(searchdirs, 8591 nsearch * sizeof (char *)); 8592 searchdirs = tmp; 8593 } 8594 searchdirs[nsearch++] = optarg; 8595 break; 8596 case 't': 8597 max_txg = strtoull(optarg, NULL, 0); 8598 if (max_txg < TXG_INITIAL) { 8599 (void) fprintf(stderr, "incorrect txg " 8600 "specified: %s\n", optarg); 8601 usage(); 8602 } 8603 break; 8604 case 'U': 8605 spa_config_path = optarg; 8606 if (spa_config_path[0] != '/') { 8607 (void) fprintf(stderr, 8608 "cachefile must be an absolute path " 8609 "(i.e. start with a slash)\n"); 8610 usage(); 8611 } 8612 break; 8613 case 'v': 8614 verbose++; 8615 break; 8616 case 'V': 8617 flags = ZFS_IMPORT_VERBATIM; 8618 break; 8619 case 'x': 8620 vn_dumpdir = optarg; 8621 break; 8622 default: 8623 usage(); 8624 break; 8625 } 8626 } 8627 8628 if (!dump_opt['e'] && searchdirs != NULL) { 8629 (void) fprintf(stderr, "-p option requires use of -e\n"); 8630 usage(); 8631 } 8632 #if defined(_LP64) 8633 /* 8634 * ZDB does not typically re-read blocks; therefore limit the ARC 8635 * to 256 MB, which can be used entirely for metadata. 8636 */ 8637 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT; 8638 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; 8639 #endif 8640 8641 /* 8642 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 8643 * "zdb -b" uses traversal prefetch which uses async reads. 8644 * For good performance, let several of them be active at once. 8645 */ 8646 zfs_vdev_async_read_max_active = 10; 8647 8648 /* 8649 * Disable reference tracking for better performance. 8650 */ 8651 reference_tracking_enable = B_FALSE; 8652 8653 /* 8654 * Do not fail spa_load when spa_load_verify fails. This is needed 8655 * to load non-idle pools. 8656 */ 8657 spa_load_verify_dryrun = B_TRUE; 8658 8659 /* 8660 * ZDB should have ability to read spacemaps. 8661 */ 8662 spa_mode_readable_spacemaps = B_TRUE; 8663 8664 kernel_init(SPA_MODE_READ); 8665 8666 if (dump_all) 8667 verbose = MAX(verbose, 1); 8668 8669 for (c = 0; c < 256; c++) { 8670 if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL) 8671 dump_opt[c] = 1; 8672 if (dump_opt[c]) 8673 dump_opt[c] += verbose; 8674 } 8675 8676 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 8677 zfs_recover = (dump_opt['A'] > 1); 8678 8679 argc -= optind; 8680 argv += optind; 8681 if (argc < 2 && dump_opt['R']) 8682 usage(); 8683 8684 if (dump_opt['E']) { 8685 if (argc != 1) 8686 usage(); 8687 zdb_embedded_block(argv[0]); 8688 return (0); 8689 } 8690 8691 if (argc < 1) { 8692 if (!dump_opt['e'] && dump_opt['C']) { 8693 dump_cachefile(spa_config_path); 8694 return (0); 8695 } 8696 usage(); 8697 } 8698 8699 if (dump_opt['l']) 8700 return (dump_label(argv[0])); 8701 8702 if (dump_opt['O']) { 8703 if (argc != 2) 8704 usage(); 8705 dump_opt['v'] = verbose + 3; 8706 return (dump_path(argv[0], argv[1], NULL)); 8707 } 8708 if (dump_opt['r']) { 8709 target_is_spa = B_FALSE; 8710 if (argc != 3) 8711 usage(); 8712 dump_opt['v'] = verbose; 8713 error = dump_path(argv[0], argv[1], &object); 8714 if (error != 0) 8715 fatal("internal error: %s", strerror(error)); 8716 } 8717 8718 if (dump_opt['X'] || dump_opt['F']) 8719 rewind = ZPOOL_DO_REWIND | 8720 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 8721 8722 /* -N implies -d */ 8723 if (dump_opt['N'] && dump_opt['d'] == 0) 8724 dump_opt['d'] = dump_opt['N']; 8725 8726 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 8727 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 8728 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 8729 fatal("internal error: %s", strerror(ENOMEM)); 8730 8731 error = 0; 8732 target = argv[0]; 8733 8734 if (strpbrk(target, "/@") != NULL) { 8735 size_t targetlen; 8736 8737 target_pool = strdup(target); 8738 *strpbrk(target_pool, "/@") = '\0'; 8739 8740 target_is_spa = B_FALSE; 8741 targetlen = strlen(target); 8742 if (targetlen && target[targetlen - 1] == '/') 8743 target[targetlen - 1] = '\0'; 8744 8745 /* 8746 * See if an objset ID was supplied (-d <pool>/<objset ID>). 8747 * To disambiguate tank/100, consider the 100 as objsetID 8748 * if -N was given, otherwise 100 is an objsetID iff 8749 * tank/100 as a named dataset fails on lookup. 8750 */ 8751 objset_str = strchr(target, '/'); 8752 if (objset_str && strlen(objset_str) > 1 && 8753 zdb_numeric(objset_str + 1)) { 8754 char *endptr; 8755 errno = 0; 8756 objset_str++; 8757 objset_id = strtoull(objset_str, &endptr, 0); 8758 /* dataset 0 is the same as opening the pool */ 8759 if (errno == 0 && endptr != objset_str && 8760 objset_id != 0) { 8761 if (dump_opt['N']) 8762 dataset_lookup = B_TRUE; 8763 } 8764 /* normal dataset name not an objset ID */ 8765 if (endptr == objset_str) { 8766 objset_id = -1; 8767 } 8768 } else if (objset_str && !zdb_numeric(objset_str + 1) && 8769 dump_opt['N']) { 8770 printf("Supply a numeric objset ID with -N\n"); 8771 exit(1); 8772 } 8773 } else { 8774 target_pool = target; 8775 } 8776 8777 if (dump_opt['e']) { 8778 importargs_t args = { 0 }; 8779 8780 args.paths = nsearch; 8781 args.path = searchdirs; 8782 args.can_be_active = B_TRUE; 8783 8784 libpc_handle_t lpch = { 8785 .lpc_lib_handle = NULL, 8786 .lpc_ops = &libzpool_config_ops, 8787 .lpc_printerr = B_TRUE 8788 }; 8789 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 8790 8791 if (error == 0) { 8792 8793 if (nvlist_add_nvlist(cfg, 8794 ZPOOL_LOAD_POLICY, policy) != 0) { 8795 fatal("can't open '%s': %s", 8796 target, strerror(ENOMEM)); 8797 } 8798 8799 if (dump_opt['C'] > 1) { 8800 (void) printf("\nConfiguration for import:\n"); 8801 dump_nvlist(cfg, 8); 8802 } 8803 8804 /* 8805 * Disable the activity check to allow examination of 8806 * active pools. 8807 */ 8808 error = spa_import(target_pool, cfg, NULL, 8809 flags | ZFS_IMPORT_SKIP_MMP); 8810 } 8811 } 8812 8813 if (searchdirs != NULL) { 8814 umem_free(searchdirs, nsearch * sizeof (char *)); 8815 searchdirs = NULL; 8816 } 8817 8818 /* 8819 * import_checkpointed_state makes the assumption that the 8820 * target pool that we pass it is already part of the spa 8821 * namespace. Because of that we need to make sure to call 8822 * it always after the -e option has been processed, which 8823 * imports the pool to the namespace if it's not in the 8824 * cachefile. 8825 */ 8826 char *checkpoint_pool = NULL; 8827 char *checkpoint_target = NULL; 8828 if (dump_opt['k']) { 8829 checkpoint_pool = import_checkpointed_state(target, cfg, 8830 &checkpoint_target); 8831 8832 if (checkpoint_target != NULL) 8833 target = checkpoint_target; 8834 } 8835 8836 if (cfg != NULL) { 8837 nvlist_free(cfg); 8838 cfg = NULL; 8839 } 8840 8841 if (target_pool != target) 8842 free(target_pool); 8843 8844 if (error == 0) { 8845 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 8846 ASSERT(checkpoint_pool != NULL); 8847 ASSERT(checkpoint_target == NULL); 8848 8849 error = spa_open(checkpoint_pool, &spa, FTAG); 8850 if (error != 0) { 8851 fatal("Tried to open pool \"%s\" but " 8852 "spa_open() failed with error %d\n", 8853 checkpoint_pool, error); 8854 } 8855 8856 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) { 8857 zdb_set_skip_mmp(target); 8858 error = spa_open_rewind(target, &spa, FTAG, policy, 8859 NULL); 8860 if (error) { 8861 /* 8862 * If we're missing the log device then 8863 * try opening the pool after clearing the 8864 * log state. 8865 */ 8866 mutex_enter(&spa_namespace_lock); 8867 if ((spa = spa_lookup(target)) != NULL && 8868 spa->spa_log_state == SPA_LOG_MISSING) { 8869 spa->spa_log_state = SPA_LOG_CLEAR; 8870 error = 0; 8871 } 8872 mutex_exit(&spa_namespace_lock); 8873 8874 if (!error) { 8875 error = spa_open_rewind(target, &spa, 8876 FTAG, policy, NULL); 8877 } 8878 } 8879 } else if (strpbrk(target, "#") != NULL) { 8880 dsl_pool_t *dp; 8881 error = dsl_pool_hold(target, FTAG, &dp); 8882 if (error != 0) { 8883 fatal("can't dump '%s': %s", target, 8884 strerror(error)); 8885 } 8886 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 8887 dsl_pool_rele(dp, FTAG); 8888 if (error != 0) { 8889 fatal("can't dump '%s': %s", target, 8890 strerror(error)); 8891 } 8892 return (error); 8893 } else { 8894 target_pool = strdup(target); 8895 if (strpbrk(target, "/@") != NULL) 8896 *strpbrk(target_pool, "/@") = '\0'; 8897 8898 zdb_set_skip_mmp(target); 8899 /* 8900 * If -N was supplied, the user has indicated that 8901 * zdb -d <pool>/<objsetID> is in effect. Otherwise 8902 * we first assume that the dataset string is the 8903 * dataset name. If dmu_objset_hold fails with the 8904 * dataset string, and we have an objset_id, retry the 8905 * lookup with the objsetID. 8906 */ 8907 boolean_t retry = B_TRUE; 8908 retry_lookup: 8909 if (dataset_lookup == B_TRUE) { 8910 /* 8911 * Use the supplied id to get the name 8912 * for open_objset. 8913 */ 8914 error = spa_open(target_pool, &spa, FTAG); 8915 if (error == 0) { 8916 error = name_from_objset_id(spa, 8917 objset_id, dsname); 8918 spa_close(spa, FTAG); 8919 if (error == 0) 8920 target = dsname; 8921 } 8922 } 8923 if (error == 0) { 8924 if (objset_id > 0 && retry) { 8925 int err = dmu_objset_hold(target, FTAG, 8926 &os); 8927 if (err) { 8928 dataset_lookup = B_TRUE; 8929 retry = B_FALSE; 8930 goto retry_lookup; 8931 } else { 8932 dmu_objset_rele(os, FTAG); 8933 } 8934 } 8935 error = open_objset(target, FTAG, &os); 8936 } 8937 if (error == 0) 8938 spa = dmu_objset_spa(os); 8939 free(target_pool); 8940 } 8941 } 8942 nvlist_free(policy); 8943 8944 if (error) 8945 fatal("can't open '%s': %s", target, strerror(error)); 8946 8947 /* 8948 * Set the pool failure mode to panic in order to prevent the pool 8949 * from suspending. A suspended I/O will have no way to resume and 8950 * can prevent the zdb(8) command from terminating as expected. 8951 */ 8952 if (spa != NULL) 8953 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 8954 8955 argv++; 8956 argc--; 8957 if (dump_opt['r']) { 8958 error = zdb_copy_object(os, object, argv[1]); 8959 } else if (!dump_opt['R']) { 8960 flagbits['d'] = ZOR_FLAG_DIRECTORY; 8961 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 8962 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 8963 flagbits['z'] = ZOR_FLAG_ZAP; 8964 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 8965 8966 if (argc > 0 && dump_opt['d']) { 8967 zopt_object_args = argc; 8968 zopt_object_ranges = calloc(zopt_object_args, 8969 sizeof (zopt_object_range_t)); 8970 for (unsigned i = 0; i < zopt_object_args; i++) { 8971 int err; 8972 const char *msg = NULL; 8973 8974 err = parse_object_range(argv[i], 8975 &zopt_object_ranges[i], &msg); 8976 if (err != 0) 8977 fatal("Bad object or range: '%s': %s\n", 8978 argv[i], msg ?: ""); 8979 } 8980 } else if (argc > 0 && dump_opt['m']) { 8981 zopt_metaslab_args = argc; 8982 zopt_metaslab = calloc(zopt_metaslab_args, 8983 sizeof (uint64_t)); 8984 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 8985 errno = 0; 8986 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 8987 if (zopt_metaslab[i] == 0 && errno != 0) 8988 fatal("bad number %s: %s", argv[i], 8989 strerror(errno)); 8990 } 8991 } 8992 if (os != NULL) { 8993 dump_objset(os); 8994 } else if (zopt_object_args > 0 && !dump_opt['m']) { 8995 dump_objset(spa->spa_meta_objset); 8996 } else { 8997 dump_zpool(spa); 8998 } 8999 } else { 9000 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9001 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9002 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9003 flagbits['e'] = ZDB_FLAG_BSWAP; 9004 flagbits['g'] = ZDB_FLAG_GBH; 9005 flagbits['i'] = ZDB_FLAG_INDIRECT; 9006 flagbits['r'] = ZDB_FLAG_RAW; 9007 flagbits['v'] = ZDB_FLAG_VERBOSE; 9008 9009 for (int i = 0; i < argc; i++) 9010 zdb_read_block(argv[i], spa); 9011 } 9012 9013 if (dump_opt['k']) { 9014 free(checkpoint_pool); 9015 if (!target_is_spa) 9016 free(checkpoint_target); 9017 } 9018 9019 if (os != NULL) { 9020 close_objset(os, FTAG); 9021 } else { 9022 spa_close(spa, FTAG); 9023 } 9024 9025 fuid_table_destroy(); 9026 9027 dump_debug_buffer(); 9028 9029 kernel_fini(); 9030 9031 return (error); 9032 } 9033