xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision e64fe029e9d3ce476e77a478318e0c3cd201ff08)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  * Copyright (c) 2023, Klara Inc.
37  */
38 
39 #include <stdio.h>
40 #include <unistd.h>
41 #include <stdlib.h>
42 #include <ctype.h>
43 #include <getopt.h>
44 #include <openssl/evp.h>
45 #include <sys/zfs_context.h>
46 #include <sys/spa.h>
47 #include <sys/spa_impl.h>
48 #include <sys/dmu.h>
49 #include <sys/zap.h>
50 #include <sys/fs/zfs.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zfs_sa.h>
53 #include <sys/sa.h>
54 #include <sys/sa_impl.h>
55 #include <sys/vdev.h>
56 #include <sys/vdev_impl.h>
57 #include <sys/metaslab_impl.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/dsl_dataset.h>
61 #include <sys/dsl_pool.h>
62 #include <sys/dsl_bookmark.h>
63 #include <sys/dbuf.h>
64 #include <sys/zil.h>
65 #include <sys/zil_impl.h>
66 #include <sys/stat.h>
67 #include <sys/resource.h>
68 #include <sys/dmu_send.h>
69 #include <sys/dmu_traverse.h>
70 #include <sys/zio_checksum.h>
71 #include <sys/zio_compress.h>
72 #include <sys/zfs_fuid.h>
73 #include <sys/arc.h>
74 #include <sys/arc_impl.h>
75 #include <sys/ddt.h>
76 #include <sys/zfeature.h>
77 #include <sys/abd.h>
78 #include <sys/blkptr.h>
79 #include <sys/dsl_crypt.h>
80 #include <sys/dsl_scan.h>
81 #include <sys/btree.h>
82 #include <zfs_comutil.h>
83 #include <sys/zstd/zstd.h>
84 
85 #include <libnvpair.h>
86 #include <libzutil.h>
87 
88 #include "zdb.h"
89 
90 #define	ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ?	\
91 	zio_compress_table[(idx)].ci_name : "UNKNOWN")
92 #define	ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ?	\
93 	zio_checksum_table[(idx)].ci_name : "UNKNOWN")
94 #define	ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) :		\
95 	(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ?	\
96 	DMU_OT_ZAP_OTHER : \
97 	(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
98 	DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
99 
100 /* Some platforms require part of inode IDs to be remapped */
101 #ifdef __APPLE__
102 #define	ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
103 #else
104 #define	ZDB_MAP_OBJECT_ID(obj) (obj)
105 #endif
106 
107 static const char *
108 zdb_ot_name(dmu_object_type_t type)
109 {
110 	if (type < DMU_OT_NUMTYPES)
111 		return (dmu_ot[type].ot_name);
112 	else if ((type & DMU_OT_NEWTYPE) &&
113 	    ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
114 		return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
115 	else
116 		return ("UNKNOWN");
117 }
118 
119 extern int reference_tracking_enable;
120 extern int zfs_recover;
121 extern uint_t zfs_vdev_async_read_max_active;
122 extern boolean_t spa_load_verify_dryrun;
123 extern boolean_t spa_mode_readable_spacemaps;
124 extern uint_t zfs_reconstruct_indirect_combinations_max;
125 extern uint_t zfs_btree_verify_intensity;
126 
127 static const char cmdname[] = "zdb";
128 uint8_t dump_opt[256];
129 
130 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
131 
132 static uint64_t *zopt_metaslab = NULL;
133 static unsigned zopt_metaslab_args = 0;
134 
135 typedef struct zopt_object_range {
136 	uint64_t zor_obj_start;
137 	uint64_t zor_obj_end;
138 	uint64_t zor_flags;
139 } zopt_object_range_t;
140 
141 static zopt_object_range_t *zopt_object_ranges = NULL;
142 static unsigned zopt_object_args = 0;
143 
144 static int flagbits[256];
145 
146 #define	ZOR_FLAG_PLAIN_FILE	0x0001
147 #define	ZOR_FLAG_DIRECTORY	0x0002
148 #define	ZOR_FLAG_SPACE_MAP	0x0004
149 #define	ZOR_FLAG_ZAP		0x0008
150 #define	ZOR_FLAG_ALL_TYPES	-1
151 #define	ZOR_SUPPORTED_FLAGS	(ZOR_FLAG_PLAIN_FILE	| \
152 				ZOR_FLAG_DIRECTORY	| \
153 				ZOR_FLAG_SPACE_MAP	| \
154 				ZOR_FLAG_ZAP)
155 
156 #define	ZDB_FLAG_CHECKSUM	0x0001
157 #define	ZDB_FLAG_DECOMPRESS	0x0002
158 #define	ZDB_FLAG_BSWAP		0x0004
159 #define	ZDB_FLAG_GBH		0x0008
160 #define	ZDB_FLAG_INDIRECT	0x0010
161 #define	ZDB_FLAG_RAW		0x0020
162 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
163 #define	ZDB_FLAG_VERBOSE	0x0080
164 
165 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
166 static int leaked_objects = 0;
167 static range_tree_t *mos_refd_objs;
168 
169 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
170     boolean_t);
171 static void mos_obj_refd(uint64_t);
172 static void mos_obj_refd_multiple(uint64_t);
173 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
174     dmu_tx_t *tx);
175 
176 typedef struct sublivelist_verify {
177 	/* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
178 	zfs_btree_t sv_pair;
179 
180 	/* ALLOC's without a matching FREE, accumulates across sub-livelists */
181 	zfs_btree_t sv_leftover;
182 } sublivelist_verify_t;
183 
184 static int
185 livelist_compare(const void *larg, const void *rarg)
186 {
187 	const blkptr_t *l = larg;
188 	const blkptr_t *r = rarg;
189 
190 	/* Sort them according to dva[0] */
191 	uint64_t l_dva0_vdev, r_dva0_vdev;
192 	l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
193 	r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
194 	if (l_dva0_vdev < r_dva0_vdev)
195 		return (-1);
196 	else if (l_dva0_vdev > r_dva0_vdev)
197 		return (+1);
198 
199 	/* if vdevs are equal, sort by offsets. */
200 	uint64_t l_dva0_offset;
201 	uint64_t r_dva0_offset;
202 	l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
203 	r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
204 	if (l_dva0_offset < r_dva0_offset) {
205 		return (-1);
206 	} else if (l_dva0_offset > r_dva0_offset) {
207 		return (+1);
208 	}
209 
210 	/*
211 	 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
212 	 * it's possible the offsets are equal. In that case, sort by txg
213 	 */
214 	if (l->blk_birth < r->blk_birth) {
215 		return (-1);
216 	} else if (l->blk_birth > r->blk_birth) {
217 		return (+1);
218 	}
219 	return (0);
220 }
221 
222 typedef struct sublivelist_verify_block {
223 	dva_t svb_dva;
224 
225 	/*
226 	 * We need this to check if the block marked as allocated
227 	 * in the livelist was freed (and potentially reallocated)
228 	 * in the metaslab spacemaps at a later TXG.
229 	 */
230 	uint64_t svb_allocated_txg;
231 } sublivelist_verify_block_t;
232 
233 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
234 
235 typedef struct sublivelist_verify_block_refcnt {
236 	/* block pointer entry in livelist being verified */
237 	blkptr_t svbr_blk;
238 
239 	/*
240 	 * Refcount gets incremented to 1 when we encounter the first
241 	 * FREE entry for the svfbr block pointer and a node for it
242 	 * is created in our ZDB verification/tracking metadata.
243 	 *
244 	 * As we encounter more FREE entries we increment this counter
245 	 * and similarly decrement it whenever we find the respective
246 	 * ALLOC entries for this block.
247 	 *
248 	 * When the refcount gets to 0 it means that all the FREE and
249 	 * ALLOC entries of this block have paired up and we no longer
250 	 * need to track it in our verification logic (e.g. the node
251 	 * containing this struct in our verification data structure
252 	 * should be freed).
253 	 *
254 	 * [refer to sublivelist_verify_blkptr() for the actual code]
255 	 */
256 	uint32_t svbr_refcnt;
257 } sublivelist_verify_block_refcnt_t;
258 
259 static int
260 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
261 {
262 	const sublivelist_verify_block_refcnt_t *l = larg;
263 	const sublivelist_verify_block_refcnt_t *r = rarg;
264 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
265 }
266 
267 static int
268 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
269     dmu_tx_t *tx)
270 {
271 	ASSERT3P(tx, ==, NULL);
272 	struct sublivelist_verify *sv = arg;
273 	sublivelist_verify_block_refcnt_t current = {
274 			.svbr_blk = *bp,
275 
276 			/*
277 			 * Start with 1 in case this is the first free entry.
278 			 * This field is not used for our B-Tree comparisons
279 			 * anyway.
280 			 */
281 			.svbr_refcnt = 1,
282 	};
283 
284 	zfs_btree_index_t where;
285 	sublivelist_verify_block_refcnt_t *pair =
286 	    zfs_btree_find(&sv->sv_pair, &current, &where);
287 	if (free) {
288 		if (pair == NULL) {
289 			/* first free entry for this block pointer */
290 			zfs_btree_add(&sv->sv_pair, &current);
291 		} else {
292 			pair->svbr_refcnt++;
293 		}
294 	} else {
295 		if (pair == NULL) {
296 			/* block that is currently marked as allocated */
297 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
298 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
299 					break;
300 				sublivelist_verify_block_t svb = {
301 				    .svb_dva = bp->blk_dva[i],
302 				    .svb_allocated_txg = bp->blk_birth
303 				};
304 
305 				if (zfs_btree_find(&sv->sv_leftover, &svb,
306 				    &where) == NULL) {
307 					zfs_btree_add_idx(&sv->sv_leftover,
308 					    &svb, &where);
309 				}
310 			}
311 		} else {
312 			/* alloc matches a free entry */
313 			pair->svbr_refcnt--;
314 			if (pair->svbr_refcnt == 0) {
315 				/* all allocs and frees have been matched */
316 				zfs_btree_remove_idx(&sv->sv_pair, &where);
317 			}
318 		}
319 	}
320 
321 	return (0);
322 }
323 
324 static int
325 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
326 {
327 	int err;
328 	struct sublivelist_verify *sv = args;
329 
330 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
331 	    sizeof (sublivelist_verify_block_refcnt_t));
332 
333 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
334 	    sv, NULL);
335 
336 	sublivelist_verify_block_refcnt_t *e;
337 	zfs_btree_index_t *cookie = NULL;
338 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
339 		char blkbuf[BP_SPRINTF_LEN];
340 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
341 		    &e->svbr_blk, B_TRUE);
342 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
343 		    e->svbr_refcnt, blkbuf);
344 	}
345 	zfs_btree_destroy(&sv->sv_pair);
346 
347 	return (err);
348 }
349 
350 static int
351 livelist_block_compare(const void *larg, const void *rarg)
352 {
353 	const sublivelist_verify_block_t *l = larg;
354 	const sublivelist_verify_block_t *r = rarg;
355 
356 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
357 		return (-1);
358 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
359 		return (+1);
360 
361 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
362 		return (-1);
363 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
364 		return (+1);
365 
366 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
367 		return (-1);
368 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
369 		return (+1);
370 
371 	return (0);
372 }
373 
374 /*
375  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
376  * sublivelist_verify_t: sv->sv_leftover
377  */
378 static void
379 livelist_verify(dsl_deadlist_t *dl, void *arg)
380 {
381 	sublivelist_verify_t *sv = arg;
382 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
383 }
384 
385 /*
386  * Check for errors in the livelist entry and discard the intermediary
387  * data structures
388  */
389 static int
390 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
391 {
392 	(void) args;
393 	sublivelist_verify_t sv;
394 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
395 	    sizeof (sublivelist_verify_block_t));
396 	int err = sublivelist_verify_func(&sv, dle);
397 	zfs_btree_clear(&sv.sv_leftover);
398 	zfs_btree_destroy(&sv.sv_leftover);
399 	return (err);
400 }
401 
402 typedef struct metaslab_verify {
403 	/*
404 	 * Tree containing all the leftover ALLOCs from the livelists
405 	 * that are part of this metaslab.
406 	 */
407 	zfs_btree_t mv_livelist_allocs;
408 
409 	/*
410 	 * Metaslab information.
411 	 */
412 	uint64_t mv_vdid;
413 	uint64_t mv_msid;
414 	uint64_t mv_start;
415 	uint64_t mv_end;
416 
417 	/*
418 	 * What's currently allocated for this metaslab.
419 	 */
420 	range_tree_t *mv_allocated;
421 } metaslab_verify_t;
422 
423 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
424 
425 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
426     void *arg);
427 
428 typedef struct unflushed_iter_cb_arg {
429 	spa_t *uic_spa;
430 	uint64_t uic_txg;
431 	void *uic_arg;
432 	zdb_log_sm_cb_t uic_cb;
433 } unflushed_iter_cb_arg_t;
434 
435 static int
436 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
437 {
438 	unflushed_iter_cb_arg_t *uic = arg;
439 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
440 }
441 
442 static void
443 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
444 {
445 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
446 		return;
447 
448 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
449 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
450 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
451 		space_map_t *sm = NULL;
452 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
453 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
454 
455 		unflushed_iter_cb_arg_t uic = {
456 			.uic_spa = spa,
457 			.uic_txg = sls->sls_txg,
458 			.uic_arg = arg,
459 			.uic_cb = cb
460 		};
461 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
462 		    iterate_through_spacemap_logs_cb, &uic));
463 		space_map_close(sm);
464 	}
465 	spa_config_exit(spa, SCL_CONFIG, FTAG);
466 }
467 
468 static void
469 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
470     uint64_t offset, uint64_t size)
471 {
472 	sublivelist_verify_block_t svb = {{{0}}};
473 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
474 	DVA_SET_OFFSET(&svb.svb_dva, offset);
475 	DVA_SET_ASIZE(&svb.svb_dva, size);
476 	zfs_btree_index_t where;
477 	uint64_t end_offset = offset + size;
478 
479 	/*
480 	 *  Look for an exact match for spacemap entry in the livelist entries.
481 	 *  Then, look for other livelist entries that fall within the range
482 	 *  of the spacemap entry as it may have been condensed
483 	 */
484 	sublivelist_verify_block_t *found =
485 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
486 	if (found == NULL) {
487 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
488 	}
489 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
490 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
491 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
492 		if (found->svb_allocated_txg <= txg) {
493 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
494 			    "from TXG %llx FREED at TXG %llx\n",
495 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
496 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
497 			    (u_longlong_t)found->svb_allocated_txg,
498 			    (u_longlong_t)txg);
499 		}
500 	}
501 }
502 
503 static int
504 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
505 {
506 	metaslab_verify_t *mv = arg;
507 	uint64_t offset = sme->sme_offset;
508 	uint64_t size = sme->sme_run;
509 	uint64_t txg = sme->sme_txg;
510 
511 	if (sme->sme_type == SM_ALLOC) {
512 		if (range_tree_contains(mv->mv_allocated,
513 		    offset, size)) {
514 			(void) printf("ERROR: DOUBLE ALLOC: "
515 			    "%llu [%llx:%llx] "
516 			    "%llu:%llu LOG_SM\n",
517 			    (u_longlong_t)txg, (u_longlong_t)offset,
518 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
519 			    (u_longlong_t)mv->mv_msid);
520 		} else {
521 			range_tree_add(mv->mv_allocated,
522 			    offset, size);
523 		}
524 	} else {
525 		if (!range_tree_contains(mv->mv_allocated,
526 		    offset, size)) {
527 			(void) printf("ERROR: DOUBLE FREE: "
528 			    "%llu [%llx:%llx] "
529 			    "%llu:%llu LOG_SM\n",
530 			    (u_longlong_t)txg, (u_longlong_t)offset,
531 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
532 			    (u_longlong_t)mv->mv_msid);
533 		} else {
534 			range_tree_remove(mv->mv_allocated,
535 			    offset, size);
536 		}
537 	}
538 
539 	if (sme->sme_type != SM_ALLOC) {
540 		/*
541 		 * If something is freed in the spacemap, verify that
542 		 * it is not listed as allocated in the livelist.
543 		 */
544 		verify_livelist_allocs(mv, txg, offset, size);
545 	}
546 	return (0);
547 }
548 
549 static int
550 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
551     uint64_t txg, void *arg)
552 {
553 	metaslab_verify_t *mv = arg;
554 	uint64_t offset = sme->sme_offset;
555 	uint64_t vdev_id = sme->sme_vdev;
556 
557 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
558 
559 	/* skip indirect vdevs */
560 	if (!vdev_is_concrete(vd))
561 		return (0);
562 
563 	if (vdev_id != mv->mv_vdid)
564 		return (0);
565 
566 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
567 	if (ms->ms_id != mv->mv_msid)
568 		return (0);
569 
570 	if (txg < metaslab_unflushed_txg(ms))
571 		return (0);
572 
573 
574 	ASSERT3U(txg, ==, sme->sme_txg);
575 	return (metaslab_spacemap_validation_cb(sme, mv));
576 }
577 
578 static void
579 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
580 {
581 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
582 }
583 
584 static void
585 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
586 {
587 	if (sm == NULL)
588 		return;
589 
590 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
591 	    metaslab_spacemap_validation_cb, mv));
592 }
593 
594 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
595 
596 /*
597  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
598  * they are part of that metaslab (mv_msid).
599  */
600 static void
601 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
602 {
603 	zfs_btree_index_t where;
604 	sublivelist_verify_block_t *svb;
605 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
606 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
607 	    svb != NULL;
608 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
609 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
610 			continue;
611 
612 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
613 		    (DVA_GET_OFFSET(&svb->svb_dva) +
614 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
615 			(void) printf("ERROR: Found block that crosses "
616 			    "metaslab boundary: <%llu:%llx:%llx>\n",
617 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
618 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
619 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
620 			continue;
621 		}
622 
623 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
624 			continue;
625 
626 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
627 			continue;
628 
629 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
630 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
631 			(void) printf("ERROR: Found block that crosses "
632 			    "metaslab boundary: <%llu:%llx:%llx>\n",
633 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
634 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
635 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
636 			continue;
637 		}
638 
639 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
640 	}
641 
642 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
643 	    svb != NULL;
644 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
645 		zfs_btree_remove(&sv->sv_leftover, svb);
646 	}
647 }
648 
649 /*
650  * [Livelist Check]
651  * Iterate through all the sublivelists and:
652  * - report leftover frees (**)
653  * - record leftover ALLOCs together with their TXG [see Cross Check]
654  *
655  * (**) Note: Double ALLOCs are valid in datasets that have dedup
656  *      enabled. Similarly double FREEs are allowed as well but
657  *      only if they pair up with a corresponding ALLOC entry once
658  *      we our done with our sublivelist iteration.
659  *
660  * [Spacemap Check]
661  * for each metaslab:
662  * - iterate over spacemap and then the metaslab's entries in the
663  *   spacemap log, then report any double FREEs and ALLOCs (do not
664  *   blow up).
665  *
666  * [Cross Check]
667  * After finishing the Livelist Check phase and while being in the
668  * Spacemap Check phase, we find all the recorded leftover ALLOCs
669  * of the livelist check that are part of the metaslab that we are
670  * currently looking at in the Spacemap Check. We report any entries
671  * that are marked as ALLOCs in the livelists but have been actually
672  * freed (and potentially allocated again) after their TXG stamp in
673  * the spacemaps. Also report any ALLOCs from the livelists that
674  * belong to indirect vdevs (e.g. their vdev completed removal).
675  *
676  * Note that this will miss Log Spacemap entries that cancelled each other
677  * out before being flushed to the metaslab, so we are not guaranteed
678  * to match all erroneous ALLOCs.
679  */
680 static void
681 livelist_metaslab_validate(spa_t *spa)
682 {
683 	(void) printf("Verifying deleted livelist entries\n");
684 
685 	sublivelist_verify_t sv;
686 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
687 	    sizeof (sublivelist_verify_block_t));
688 	iterate_deleted_livelists(spa, livelist_verify, &sv);
689 
690 	(void) printf("Verifying metaslab entries\n");
691 	vdev_t *rvd = spa->spa_root_vdev;
692 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
693 		vdev_t *vd = rvd->vdev_child[c];
694 
695 		if (!vdev_is_concrete(vd))
696 			continue;
697 
698 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
699 			metaslab_t *m = vd->vdev_ms[mid];
700 
701 			(void) fprintf(stderr,
702 			    "\rverifying concrete vdev %llu, "
703 			    "metaslab %llu of %llu ...",
704 			    (longlong_t)vd->vdev_id,
705 			    (longlong_t)mid,
706 			    (longlong_t)vd->vdev_ms_count);
707 
708 			uint64_t shift, start;
709 			range_seg_type_t type =
710 			    metaslab_calculate_range_tree_type(vd, m,
711 			    &start, &shift);
712 			metaslab_verify_t mv;
713 			mv.mv_allocated = range_tree_create(NULL,
714 			    type, NULL, start, shift);
715 			mv.mv_vdid = vd->vdev_id;
716 			mv.mv_msid = m->ms_id;
717 			mv.mv_start = m->ms_start;
718 			mv.mv_end = m->ms_start + m->ms_size;
719 			zfs_btree_create(&mv.mv_livelist_allocs,
720 			    livelist_block_compare, NULL,
721 			    sizeof (sublivelist_verify_block_t));
722 
723 			mv_populate_livelist_allocs(&mv, &sv);
724 
725 			spacemap_check_ms_sm(m->ms_sm, &mv);
726 			spacemap_check_sm_log(spa, &mv);
727 
728 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
729 			range_tree_destroy(mv.mv_allocated);
730 			zfs_btree_clear(&mv.mv_livelist_allocs);
731 			zfs_btree_destroy(&mv.mv_livelist_allocs);
732 		}
733 	}
734 	(void) fprintf(stderr, "\n");
735 
736 	/*
737 	 * If there are any segments in the leftover tree after we walked
738 	 * through all the metaslabs in the concrete vdevs then this means
739 	 * that we have segments in the livelists that belong to indirect
740 	 * vdevs and are marked as allocated.
741 	 */
742 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
743 		zfs_btree_destroy(&sv.sv_leftover);
744 		return;
745 	}
746 	(void) printf("ERROR: Found livelist blocks marked as allocated "
747 	    "for indirect vdevs:\n");
748 
749 	zfs_btree_index_t *where = NULL;
750 	sublivelist_verify_block_t *svb;
751 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
752 	    NULL) {
753 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
754 		ASSERT3U(vdev_id, <, rvd->vdev_children);
755 		vdev_t *vd = rvd->vdev_child[vdev_id];
756 		ASSERT(!vdev_is_concrete(vd));
757 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
758 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
759 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
760 		    (u_longlong_t)svb->svb_allocated_txg);
761 	}
762 	(void) printf("\n");
763 	zfs_btree_destroy(&sv.sv_leftover);
764 }
765 
766 /*
767  * These libumem hooks provide a reasonable set of defaults for the allocator's
768  * debugging facilities.
769  */
770 const char *
771 _umem_debug_init(void)
772 {
773 	return ("default,verbose"); /* $UMEM_DEBUG setting */
774 }
775 
776 const char *
777 _umem_logging_init(void)
778 {
779 	return ("fail,contents"); /* $UMEM_LOGGING setting */
780 }
781 
782 static void
783 usage(void)
784 {
785 	(void) fprintf(stderr,
786 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
787 	    "[-I <inflight I/Os>]\n"
788 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
789 	    "\t\t[-K <key>]\n"
790 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
791 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
792 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
793 	    "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
794 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
795 	    "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
796 	    "\t%s [-v] <bookmark>\n"
797 	    "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
798 	    "\t%s -l [-Aqu] <device>\n"
799 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
800 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
801 	    "\t%s -O [-K <key>] <dataset> <path>\n"
802 	    "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
803 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
804 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
805 	    "\t%s -E [-A] word0:word1:...:word15\n"
806 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
807 	    "<poolname>\n\n",
808 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
809 	    cmdname, cmdname, cmdname, cmdname, cmdname);
810 
811 	(void) fprintf(stderr, "    Dataset name must include at least one "
812 	    "separator character '/' or '@'\n");
813 	(void) fprintf(stderr, "    If dataset name is specified, only that "
814 	    "dataset is dumped\n");
815 	(void) fprintf(stderr,  "    If object numbers or object number "
816 	    "ranges are specified, only those\n"
817 	    "    objects or ranges are dumped.\n\n");
818 	(void) fprintf(stderr,
819 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
820 	    "        start    Starting object number\n"
821 	    "        end      Ending object number, or -1 for no upper bound\n"
822 	    "        flags    Optional flags to select object types:\n"
823 	    "            A     All objects (this is the default)\n"
824 	    "            d     ZFS directories\n"
825 	    "            f     ZFS files \n"
826 	    "            m     SPA space maps\n"
827 	    "            z     ZAPs\n"
828 	    "            -     Negate effect of next flag\n\n");
829 	(void) fprintf(stderr, "    Options to control amount of output:\n");
830 	(void) fprintf(stderr, "        -b --block-stats             "
831 	    "block statistics\n");
832 	(void) fprintf(stderr, "        -B --backup                  "
833 	    "backup stream\n");
834 	(void) fprintf(stderr, "        -c --checksum                "
835 	    "checksum all metadata (twice for all data) blocks\n");
836 	(void) fprintf(stderr, "        -C --config                  "
837 	    "config (or cachefile if alone)\n");
838 	(void) fprintf(stderr, "        -d --datasets                "
839 	    "dataset(s)\n");
840 	(void) fprintf(stderr, "        -D --dedup-stats             "
841 	    "dedup statistics\n");
842 	(void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
843 	    "                                     decode and display block "
844 	    "from an embedded block pointer\n");
845 	(void) fprintf(stderr, "        -h --history                 "
846 	    "pool history\n");
847 	(void) fprintf(stderr, "        -i --intent-logs             "
848 	    "intent logs\n");
849 	(void) fprintf(stderr, "        -l --label                   "
850 	    "read label contents\n");
851 	(void) fprintf(stderr, "        -k --checkpointed-state      "
852 	    "examine the checkpointed state of the pool\n");
853 	(void) fprintf(stderr, "        -L --disable-leak-tracking   "
854 	    "disable leak tracking (do not load spacemaps)\n");
855 	(void) fprintf(stderr, "        -m --metaslabs               "
856 	    "metaslabs\n");
857 	(void) fprintf(stderr, "        -M --metaslab-groups         "
858 	    "metaslab groups\n");
859 	(void) fprintf(stderr, "        -O --object-lookups          "
860 	    "perform object lookups by path\n");
861 	(void) fprintf(stderr, "        -r --copy-object             "
862 	    "copy an object by path to file\n");
863 	(void) fprintf(stderr, "        -R --read-block              "
864 	    "read and display block from a device\n");
865 	(void) fprintf(stderr, "        -s --io-stats                "
866 	    "report stats on zdb's I/O\n");
867 	(void) fprintf(stderr, "        -S --simulate-dedup          "
868 	    "simulate dedup to measure effect\n");
869 	(void) fprintf(stderr, "        -v --verbose                 "
870 	    "verbose (applies to all others)\n");
871 	(void) fprintf(stderr, "        -y --livelist                "
872 	    "perform livelist and metaslab validation on any livelists being "
873 	    "deleted\n\n");
874 	(void) fprintf(stderr, "    Below options are intended for use "
875 	    "with other options:\n");
876 	(void) fprintf(stderr, "        -A --ignore-assertions       "
877 	    "ignore assertions (-A), enable panic recovery (-AA) or both "
878 	    "(-AAA)\n");
879 	(void) fprintf(stderr, "        -e --exported                "
880 	    "pool is exported/destroyed/has altroot/not in a cachefile\n");
881 	(void) fprintf(stderr, "        -F --automatic-rewind        "
882 	    "attempt automatic rewind within safe range of transaction "
883 	    "groups\n");
884 	(void) fprintf(stderr, "        -G --dump-debug-msg          "
885 	    "dump zfs_dbgmsg buffer before exiting\n");
886 	(void) fprintf(stderr, "        -I --inflight=INTEGER        "
887 	    "specify the maximum number of checksumming I/Os "
888 	    "[default is 200]\n");
889 	(void) fprintf(stderr, "        -K --key=KEY                 "
890 	    "decryption key for encrypted dataset\n");
891 	(void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
892 	    "set global variable to an unsigned 32-bit integer\n");
893 	(void) fprintf(stderr, "        -p --path==PATH              "
894 	    "use one or more with -e to specify path to vdev dir\n");
895 	(void) fprintf(stderr, "        -P --parseable               "
896 	    "print numbers in parseable form\n");
897 	(void) fprintf(stderr, "        -q --skip-label              "
898 	    "don't print label contents\n");
899 	(void) fprintf(stderr, "        -t --txg=INTEGER             "
900 	    "highest txg to use when searching for uberblocks\n");
901 	(void) fprintf(stderr, "        -u --uberblock               "
902 	    "uberblock\n");
903 	(void) fprintf(stderr, "        -U --cachefile=PATH          "
904 	    "use alternate cachefile\n");
905 	(void) fprintf(stderr, "        -V --verbatim                "
906 	    "do verbatim import\n");
907 	(void) fprintf(stderr, "        -x --dump-blocks=PATH        "
908 	    "dump all read blocks into specified directory\n");
909 	(void) fprintf(stderr, "        -X --extreme-rewind          "
910 	    "attempt extreme rewind (does not work with dataset)\n");
911 	(void) fprintf(stderr, "        -Y --all-reconstruction      "
912 	    "attempt all reconstruction combinations for split blocks\n");
913 	(void) fprintf(stderr, "        -Z --zstd-headers            "
914 	    "show ZSTD headers \n");
915 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
916 	    "to make only that option verbose\n");
917 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
918 	exit(1);
919 }
920 
921 static void
922 dump_debug_buffer(void)
923 {
924 	if (dump_opt['G']) {
925 		(void) printf("\n");
926 		(void) fflush(stdout);
927 		zfs_dbgmsg_print("zdb");
928 	}
929 }
930 
931 /*
932  * Called for usage errors that are discovered after a call to spa_open(),
933  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
934  */
935 
936 static void
937 fatal(const char *fmt, ...)
938 {
939 	va_list ap;
940 
941 	va_start(ap, fmt);
942 	(void) fprintf(stderr, "%s: ", cmdname);
943 	(void) vfprintf(stderr, fmt, ap);
944 	va_end(ap);
945 	(void) fprintf(stderr, "\n");
946 
947 	dump_debug_buffer();
948 
949 	exit(1);
950 }
951 
952 static void
953 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
954 {
955 	(void) size;
956 	nvlist_t *nv;
957 	size_t nvsize = *(uint64_t *)data;
958 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
959 
960 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
961 
962 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
963 
964 	umem_free(packed, nvsize);
965 
966 	dump_nvlist(nv, 8);
967 
968 	nvlist_free(nv);
969 }
970 
971 static void
972 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
973 {
974 	(void) os, (void) object, (void) size;
975 	spa_history_phys_t *shp = data;
976 
977 	if (shp == NULL)
978 		return;
979 
980 	(void) printf("\t\tpool_create_len = %llu\n",
981 	    (u_longlong_t)shp->sh_pool_create_len);
982 	(void) printf("\t\tphys_max_off = %llu\n",
983 	    (u_longlong_t)shp->sh_phys_max_off);
984 	(void) printf("\t\tbof = %llu\n",
985 	    (u_longlong_t)shp->sh_bof);
986 	(void) printf("\t\teof = %llu\n",
987 	    (u_longlong_t)shp->sh_eof);
988 	(void) printf("\t\trecords_lost = %llu\n",
989 	    (u_longlong_t)shp->sh_records_lost);
990 }
991 
992 static void
993 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
994 {
995 	if (dump_opt['P'])
996 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
997 	else
998 		nicenum(num, buf, buflen);
999 }
1000 
1001 static const char histo_stars[] = "****************************************";
1002 static const uint64_t histo_width = sizeof (histo_stars) - 1;
1003 
1004 static void
1005 dump_histogram(const uint64_t *histo, int size, int offset)
1006 {
1007 	int i;
1008 	int minidx = size - 1;
1009 	int maxidx = 0;
1010 	uint64_t max = 0;
1011 
1012 	for (i = 0; i < size; i++) {
1013 		if (histo[i] == 0)
1014 			continue;
1015 		if (histo[i] > max)
1016 			max = histo[i];
1017 		if (i > maxidx)
1018 			maxidx = i;
1019 		if (i < minidx)
1020 			minidx = i;
1021 	}
1022 
1023 	if (max < histo_width)
1024 		max = histo_width;
1025 
1026 	for (i = minidx; i <= maxidx; i++) {
1027 		(void) printf("\t\t\t%3u: %6llu %s\n",
1028 		    i + offset, (u_longlong_t)histo[i],
1029 		    &histo_stars[(max - histo[i]) * histo_width / max]);
1030 	}
1031 }
1032 
1033 static void
1034 dump_zap_stats(objset_t *os, uint64_t object)
1035 {
1036 	int error;
1037 	zap_stats_t zs;
1038 
1039 	error = zap_get_stats(os, object, &zs);
1040 	if (error)
1041 		return;
1042 
1043 	if (zs.zs_ptrtbl_len == 0) {
1044 		ASSERT(zs.zs_num_blocks == 1);
1045 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1046 		    (u_longlong_t)zs.zs_blocksize,
1047 		    (u_longlong_t)zs.zs_num_entries);
1048 		return;
1049 	}
1050 
1051 	(void) printf("\tFat ZAP stats:\n");
1052 
1053 	(void) printf("\t\tPointer table:\n");
1054 	(void) printf("\t\t\t%llu elements\n",
1055 	    (u_longlong_t)zs.zs_ptrtbl_len);
1056 	(void) printf("\t\t\tzt_blk: %llu\n",
1057 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1058 	(void) printf("\t\t\tzt_numblks: %llu\n",
1059 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1060 	(void) printf("\t\t\tzt_shift: %llu\n",
1061 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1062 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1063 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1064 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1065 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1066 
1067 	(void) printf("\t\tZAP entries: %llu\n",
1068 	    (u_longlong_t)zs.zs_num_entries);
1069 	(void) printf("\t\tLeaf blocks: %llu\n",
1070 	    (u_longlong_t)zs.zs_num_leafs);
1071 	(void) printf("\t\tTotal blocks: %llu\n",
1072 	    (u_longlong_t)zs.zs_num_blocks);
1073 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1074 	    (u_longlong_t)zs.zs_block_type);
1075 	(void) printf("\t\tzap_magic: 0x%llx\n",
1076 	    (u_longlong_t)zs.zs_magic);
1077 	(void) printf("\t\tzap_salt: 0x%llx\n",
1078 	    (u_longlong_t)zs.zs_salt);
1079 
1080 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1081 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1082 
1083 	(void) printf("\t\tBlocks with n*5 entries:\n");
1084 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1085 
1086 	(void) printf("\t\tBlocks n/10 full:\n");
1087 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1088 
1089 	(void) printf("\t\tEntries with n chunks:\n");
1090 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1091 
1092 	(void) printf("\t\tBuckets with n entries:\n");
1093 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1094 }
1095 
1096 static void
1097 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1098 {
1099 	(void) os, (void) object, (void) data, (void) size;
1100 }
1101 
1102 static void
1103 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1104 {
1105 	(void) os, (void) object, (void) data, (void) size;
1106 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1107 }
1108 
1109 static void
1110 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1111 {
1112 	(void) os, (void) object, (void) data, (void) size;
1113 }
1114 
1115 static void
1116 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1117 {
1118 	uint64_t *arr;
1119 	uint64_t oursize;
1120 	if (dump_opt['d'] < 6)
1121 		return;
1122 
1123 	if (data == NULL) {
1124 		dmu_object_info_t doi;
1125 
1126 		VERIFY0(dmu_object_info(os, object, &doi));
1127 		size = doi.doi_max_offset;
1128 		/*
1129 		 * We cap the size at 1 mebibyte here to prevent
1130 		 * allocation failures and nigh-infinite printing if the
1131 		 * object is extremely large.
1132 		 */
1133 		oursize = MIN(size, 1 << 20);
1134 		arr = kmem_alloc(oursize, KM_SLEEP);
1135 
1136 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1137 		if (err != 0) {
1138 			(void) printf("got error %u from dmu_read\n", err);
1139 			kmem_free(arr, oursize);
1140 			return;
1141 		}
1142 	} else {
1143 		/*
1144 		 * Even though the allocation is already done in this code path,
1145 		 * we still cap the size to prevent excessive printing.
1146 		 */
1147 		oursize = MIN(size, 1 << 20);
1148 		arr = data;
1149 	}
1150 
1151 	if (size == 0) {
1152 		if (data == NULL)
1153 			kmem_free(arr, oursize);
1154 		(void) printf("\t\t[]\n");
1155 		return;
1156 	}
1157 
1158 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1159 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1160 		if (i % 4 != 0)
1161 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1162 		else
1163 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1164 	}
1165 	if (oursize != size)
1166 		(void) printf(", ... ");
1167 	(void) printf("]\n");
1168 
1169 	if (data == NULL)
1170 		kmem_free(arr, oursize);
1171 }
1172 
1173 static void
1174 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1175 {
1176 	(void) data, (void) size;
1177 	zap_cursor_t zc;
1178 	zap_attribute_t attr;
1179 	void *prop;
1180 	unsigned i;
1181 
1182 	dump_zap_stats(os, object);
1183 	(void) printf("\n");
1184 
1185 	for (zap_cursor_init(&zc, os, object);
1186 	    zap_cursor_retrieve(&zc, &attr) == 0;
1187 	    zap_cursor_advance(&zc)) {
1188 		(void) printf("\t\t%s = ", attr.za_name);
1189 		if (attr.za_num_integers == 0) {
1190 			(void) printf("\n");
1191 			continue;
1192 		}
1193 		prop = umem_zalloc(attr.za_num_integers *
1194 		    attr.za_integer_length, UMEM_NOFAIL);
1195 		(void) zap_lookup(os, object, attr.za_name,
1196 		    attr.za_integer_length, attr.za_num_integers, prop);
1197 		if (attr.za_integer_length == 1) {
1198 			if (strcmp(attr.za_name,
1199 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1200 			    strcmp(attr.za_name,
1201 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1202 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1203 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1204 			    strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1205 				uint8_t *u8 = prop;
1206 
1207 				for (i = 0; i < attr.za_num_integers; i++) {
1208 					(void) printf("%02x", u8[i]);
1209 				}
1210 			} else {
1211 				(void) printf("%s", (char *)prop);
1212 			}
1213 		} else {
1214 			for (i = 0; i < attr.za_num_integers; i++) {
1215 				switch (attr.za_integer_length) {
1216 				case 2:
1217 					(void) printf("%u ",
1218 					    ((uint16_t *)prop)[i]);
1219 					break;
1220 				case 4:
1221 					(void) printf("%u ",
1222 					    ((uint32_t *)prop)[i]);
1223 					break;
1224 				case 8:
1225 					(void) printf("%lld ",
1226 					    (u_longlong_t)((int64_t *)prop)[i]);
1227 					break;
1228 				}
1229 			}
1230 		}
1231 		(void) printf("\n");
1232 		umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1233 	}
1234 	zap_cursor_fini(&zc);
1235 }
1236 
1237 static void
1238 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1239 {
1240 	bpobj_phys_t *bpop = data;
1241 	uint64_t i;
1242 	char bytes[32], comp[32], uncomp[32];
1243 
1244 	/* make sure the output won't get truncated */
1245 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1246 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1247 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1248 
1249 	if (bpop == NULL)
1250 		return;
1251 
1252 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1253 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1254 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1255 
1256 	(void) printf("\t\tnum_blkptrs = %llu\n",
1257 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1258 	(void) printf("\t\tbytes = %s\n", bytes);
1259 	if (size >= BPOBJ_SIZE_V1) {
1260 		(void) printf("\t\tcomp = %s\n", comp);
1261 		(void) printf("\t\tuncomp = %s\n", uncomp);
1262 	}
1263 	if (size >= BPOBJ_SIZE_V2) {
1264 		(void) printf("\t\tsubobjs = %llu\n",
1265 		    (u_longlong_t)bpop->bpo_subobjs);
1266 		(void) printf("\t\tnum_subobjs = %llu\n",
1267 		    (u_longlong_t)bpop->bpo_num_subobjs);
1268 	}
1269 	if (size >= sizeof (*bpop)) {
1270 		(void) printf("\t\tnum_freed = %llu\n",
1271 		    (u_longlong_t)bpop->bpo_num_freed);
1272 	}
1273 
1274 	if (dump_opt['d'] < 5)
1275 		return;
1276 
1277 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1278 		char blkbuf[BP_SPRINTF_LEN];
1279 		blkptr_t bp;
1280 
1281 		int err = dmu_read(os, object,
1282 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1283 		if (err != 0) {
1284 			(void) printf("got error %u from dmu_read\n", err);
1285 			break;
1286 		}
1287 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1288 		    BP_GET_FREE(&bp));
1289 		(void) printf("\t%s\n", blkbuf);
1290 	}
1291 }
1292 
1293 static void
1294 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1295 {
1296 	(void) data, (void) size;
1297 	dmu_object_info_t doi;
1298 	int64_t i;
1299 
1300 	VERIFY0(dmu_object_info(os, object, &doi));
1301 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1302 
1303 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1304 	if (err != 0) {
1305 		(void) printf("got error %u from dmu_read\n", err);
1306 		kmem_free(subobjs, doi.doi_max_offset);
1307 		return;
1308 	}
1309 
1310 	int64_t last_nonzero = -1;
1311 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1312 		if (subobjs[i] != 0)
1313 			last_nonzero = i;
1314 	}
1315 
1316 	for (i = 0; i <= last_nonzero; i++) {
1317 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1318 	}
1319 	kmem_free(subobjs, doi.doi_max_offset);
1320 }
1321 
1322 static void
1323 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1324 {
1325 	(void) data, (void) size;
1326 	dump_zap_stats(os, object);
1327 	/* contents are printed elsewhere, properly decoded */
1328 }
1329 
1330 static void
1331 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1332 {
1333 	(void) data, (void) size;
1334 	zap_cursor_t zc;
1335 	zap_attribute_t attr;
1336 
1337 	dump_zap_stats(os, object);
1338 	(void) printf("\n");
1339 
1340 	for (zap_cursor_init(&zc, os, object);
1341 	    zap_cursor_retrieve(&zc, &attr) == 0;
1342 	    zap_cursor_advance(&zc)) {
1343 		(void) printf("\t\t%s = ", attr.za_name);
1344 		if (attr.za_num_integers == 0) {
1345 			(void) printf("\n");
1346 			continue;
1347 		}
1348 		(void) printf(" %llx : [%d:%d:%d]\n",
1349 		    (u_longlong_t)attr.za_first_integer,
1350 		    (int)ATTR_LENGTH(attr.za_first_integer),
1351 		    (int)ATTR_BSWAP(attr.za_first_integer),
1352 		    (int)ATTR_NUM(attr.za_first_integer));
1353 	}
1354 	zap_cursor_fini(&zc);
1355 }
1356 
1357 static void
1358 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1359 {
1360 	(void) data, (void) size;
1361 	zap_cursor_t zc;
1362 	zap_attribute_t attr;
1363 	uint16_t *layout_attrs;
1364 	unsigned i;
1365 
1366 	dump_zap_stats(os, object);
1367 	(void) printf("\n");
1368 
1369 	for (zap_cursor_init(&zc, os, object);
1370 	    zap_cursor_retrieve(&zc, &attr) == 0;
1371 	    zap_cursor_advance(&zc)) {
1372 		(void) printf("\t\t%s = [", attr.za_name);
1373 		if (attr.za_num_integers == 0) {
1374 			(void) printf("\n");
1375 			continue;
1376 		}
1377 
1378 		VERIFY(attr.za_integer_length == 2);
1379 		layout_attrs = umem_zalloc(attr.za_num_integers *
1380 		    attr.za_integer_length, UMEM_NOFAIL);
1381 
1382 		VERIFY(zap_lookup(os, object, attr.za_name,
1383 		    attr.za_integer_length,
1384 		    attr.za_num_integers, layout_attrs) == 0);
1385 
1386 		for (i = 0; i != attr.za_num_integers; i++)
1387 			(void) printf(" %d ", (int)layout_attrs[i]);
1388 		(void) printf("]\n");
1389 		umem_free(layout_attrs,
1390 		    attr.za_num_integers * attr.za_integer_length);
1391 	}
1392 	zap_cursor_fini(&zc);
1393 }
1394 
1395 static void
1396 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1397 {
1398 	(void) data, (void) size;
1399 	zap_cursor_t zc;
1400 	zap_attribute_t attr;
1401 	const char *typenames[] = {
1402 		/* 0 */ "not specified",
1403 		/* 1 */ "FIFO",
1404 		/* 2 */ "Character Device",
1405 		/* 3 */ "3 (invalid)",
1406 		/* 4 */ "Directory",
1407 		/* 5 */ "5 (invalid)",
1408 		/* 6 */ "Block Device",
1409 		/* 7 */ "7 (invalid)",
1410 		/* 8 */ "Regular File",
1411 		/* 9 */ "9 (invalid)",
1412 		/* 10 */ "Symbolic Link",
1413 		/* 11 */ "11 (invalid)",
1414 		/* 12 */ "Socket",
1415 		/* 13 */ "Door",
1416 		/* 14 */ "Event Port",
1417 		/* 15 */ "15 (invalid)",
1418 	};
1419 
1420 	dump_zap_stats(os, object);
1421 	(void) printf("\n");
1422 
1423 	for (zap_cursor_init(&zc, os, object);
1424 	    zap_cursor_retrieve(&zc, &attr) == 0;
1425 	    zap_cursor_advance(&zc)) {
1426 		(void) printf("\t\t%s = %lld (type: %s)\n",
1427 		    attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1428 		    typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1429 	}
1430 	zap_cursor_fini(&zc);
1431 }
1432 
1433 static int
1434 get_dtl_refcount(vdev_t *vd)
1435 {
1436 	int refcount = 0;
1437 
1438 	if (vd->vdev_ops->vdev_op_leaf) {
1439 		space_map_t *sm = vd->vdev_dtl_sm;
1440 
1441 		if (sm != NULL &&
1442 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1443 			return (1);
1444 		return (0);
1445 	}
1446 
1447 	for (unsigned c = 0; c < vd->vdev_children; c++)
1448 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1449 	return (refcount);
1450 }
1451 
1452 static int
1453 get_metaslab_refcount(vdev_t *vd)
1454 {
1455 	int refcount = 0;
1456 
1457 	if (vd->vdev_top == vd) {
1458 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1459 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1460 
1461 			if (sm != NULL &&
1462 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1463 				refcount++;
1464 		}
1465 	}
1466 	for (unsigned c = 0; c < vd->vdev_children; c++)
1467 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1468 
1469 	return (refcount);
1470 }
1471 
1472 static int
1473 get_obsolete_refcount(vdev_t *vd)
1474 {
1475 	uint64_t obsolete_sm_object;
1476 	int refcount = 0;
1477 
1478 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1479 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1480 		dmu_object_info_t doi;
1481 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1482 		    obsolete_sm_object, &doi));
1483 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1484 			refcount++;
1485 		}
1486 	} else {
1487 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1488 		ASSERT3U(obsolete_sm_object, ==, 0);
1489 	}
1490 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1491 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1492 	}
1493 
1494 	return (refcount);
1495 }
1496 
1497 static int
1498 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1499 {
1500 	uint64_t prev_obj =
1501 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1502 	if (prev_obj != 0) {
1503 		dmu_object_info_t doi;
1504 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1505 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1506 			return (1);
1507 		}
1508 	}
1509 	return (0);
1510 }
1511 
1512 static int
1513 get_checkpoint_refcount(vdev_t *vd)
1514 {
1515 	int refcount = 0;
1516 
1517 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1518 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1519 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1520 		refcount++;
1521 
1522 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1523 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1524 
1525 	return (refcount);
1526 }
1527 
1528 static int
1529 get_log_spacemap_refcount(spa_t *spa)
1530 {
1531 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1532 }
1533 
1534 static int
1535 verify_spacemap_refcounts(spa_t *spa)
1536 {
1537 	uint64_t expected_refcount = 0;
1538 	uint64_t actual_refcount;
1539 
1540 	(void) feature_get_refcount(spa,
1541 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1542 	    &expected_refcount);
1543 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1544 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1545 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1546 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1547 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1548 	actual_refcount += get_log_spacemap_refcount(spa);
1549 
1550 	if (expected_refcount != actual_refcount) {
1551 		(void) printf("space map refcount mismatch: expected %lld != "
1552 		    "actual %lld\n",
1553 		    (longlong_t)expected_refcount,
1554 		    (longlong_t)actual_refcount);
1555 		return (2);
1556 	}
1557 	return (0);
1558 }
1559 
1560 static void
1561 dump_spacemap(objset_t *os, space_map_t *sm)
1562 {
1563 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1564 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1565 
1566 	if (sm == NULL)
1567 		return;
1568 
1569 	(void) printf("space map object %llu:\n",
1570 	    (longlong_t)sm->sm_object);
1571 	(void) printf("  smp_length = 0x%llx\n",
1572 	    (longlong_t)sm->sm_phys->smp_length);
1573 	(void) printf("  smp_alloc = 0x%llx\n",
1574 	    (longlong_t)sm->sm_phys->smp_alloc);
1575 
1576 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1577 		return;
1578 
1579 	/*
1580 	 * Print out the freelist entries in both encoded and decoded form.
1581 	 */
1582 	uint8_t mapshift = sm->sm_shift;
1583 	int64_t alloc = 0;
1584 	uint64_t word, entry_id = 0;
1585 	for (uint64_t offset = 0; offset < space_map_length(sm);
1586 	    offset += sizeof (word)) {
1587 
1588 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1589 		    sizeof (word), &word, DMU_READ_PREFETCH));
1590 
1591 		if (sm_entry_is_debug(word)) {
1592 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1593 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1594 			if (de_txg == 0) {
1595 				(void) printf(
1596 				    "\t    [%6llu] PADDING\n",
1597 				    (u_longlong_t)entry_id);
1598 			} else {
1599 				(void) printf(
1600 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1601 				    (u_longlong_t)entry_id,
1602 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1603 				    (u_longlong_t)de_txg,
1604 				    (u_longlong_t)de_sync_pass);
1605 			}
1606 			entry_id++;
1607 			continue;
1608 		}
1609 
1610 		uint8_t words;
1611 		char entry_type;
1612 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1613 
1614 		if (sm_entry_is_single_word(word)) {
1615 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1616 			    'A' : 'F';
1617 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1618 			    sm->sm_start;
1619 			entry_run = SM_RUN_DECODE(word) << mapshift;
1620 			words = 1;
1621 		} else {
1622 			/* it is a two-word entry so we read another word */
1623 			ASSERT(sm_entry_is_double_word(word));
1624 
1625 			uint64_t extra_word;
1626 			offset += sizeof (extra_word);
1627 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1628 			    sizeof (extra_word), &extra_word,
1629 			    DMU_READ_PREFETCH));
1630 
1631 			ASSERT3U(offset, <=, space_map_length(sm));
1632 
1633 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1634 			entry_vdev = SM2_VDEV_DECODE(word);
1635 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1636 			    'A' : 'F';
1637 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1638 			    mapshift) + sm->sm_start;
1639 			words = 2;
1640 		}
1641 
1642 		(void) printf("\t    [%6llu]    %c  range:"
1643 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1644 		    (u_longlong_t)entry_id,
1645 		    entry_type, (u_longlong_t)entry_off,
1646 		    (u_longlong_t)(entry_off + entry_run),
1647 		    (u_longlong_t)entry_run,
1648 		    (u_longlong_t)entry_vdev, words);
1649 
1650 		if (entry_type == 'A')
1651 			alloc += entry_run;
1652 		else
1653 			alloc -= entry_run;
1654 		entry_id++;
1655 	}
1656 	if (alloc != space_map_allocated(sm)) {
1657 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1658 		    "with space map summary (%lld)\n",
1659 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1660 	}
1661 }
1662 
1663 static void
1664 dump_metaslab_stats(metaslab_t *msp)
1665 {
1666 	char maxbuf[32];
1667 	range_tree_t *rt = msp->ms_allocatable;
1668 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1669 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1670 
1671 	/* max sure nicenum has enough space */
1672 	_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1673 
1674 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1675 
1676 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1677 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1678 	    "freepct", free_pct);
1679 	(void) printf("\tIn-memory histogram:\n");
1680 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1681 }
1682 
1683 static void
1684 dump_metaslab(metaslab_t *msp)
1685 {
1686 	vdev_t *vd = msp->ms_group->mg_vd;
1687 	spa_t *spa = vd->vdev_spa;
1688 	space_map_t *sm = msp->ms_sm;
1689 	char freebuf[32];
1690 
1691 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1692 	    sizeof (freebuf));
1693 
1694 	(void) printf(
1695 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1696 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1697 	    (u_longlong_t)space_map_object(sm), freebuf);
1698 
1699 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1700 		mutex_enter(&msp->ms_lock);
1701 		VERIFY0(metaslab_load(msp));
1702 		range_tree_stat_verify(msp->ms_allocatable);
1703 		dump_metaslab_stats(msp);
1704 		metaslab_unload(msp);
1705 		mutex_exit(&msp->ms_lock);
1706 	}
1707 
1708 	if (dump_opt['m'] > 1 && sm != NULL &&
1709 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1710 		/*
1711 		 * The space map histogram represents free space in chunks
1712 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1713 		 */
1714 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1715 		    (u_longlong_t)msp->ms_fragmentation);
1716 		dump_histogram(sm->sm_phys->smp_histogram,
1717 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1718 	}
1719 
1720 	if (vd->vdev_ops == &vdev_draid_ops)
1721 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1722 	else
1723 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1724 
1725 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1726 
1727 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1728 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1729 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1730 	}
1731 }
1732 
1733 static void
1734 print_vdev_metaslab_header(vdev_t *vd)
1735 {
1736 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1737 	const char *bias_str = "";
1738 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1739 		bias_str = VDEV_ALLOC_BIAS_LOG;
1740 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1741 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1742 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1743 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1744 	}
1745 
1746 	uint64_t ms_flush_data_obj = 0;
1747 	if (vd->vdev_top_zap != 0) {
1748 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1749 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1750 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1751 		if (error != ENOENT) {
1752 			ASSERT0(error);
1753 		}
1754 	}
1755 
1756 	(void) printf("\tvdev %10llu   %s",
1757 	    (u_longlong_t)vd->vdev_id, bias_str);
1758 
1759 	if (ms_flush_data_obj != 0) {
1760 		(void) printf("   ms_unflushed_phys object %llu",
1761 		    (u_longlong_t)ms_flush_data_obj);
1762 	}
1763 
1764 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1765 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1766 	    "offset", "spacemap", "free");
1767 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1768 	    "---------------", "-------------------",
1769 	    "---------------", "------------");
1770 }
1771 
1772 static void
1773 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1774 {
1775 	vdev_t *rvd = spa->spa_root_vdev;
1776 	metaslab_class_t *mc = spa_normal_class(spa);
1777 	metaslab_class_t *smc = spa_special_class(spa);
1778 	uint64_t fragmentation;
1779 
1780 	metaslab_class_histogram_verify(mc);
1781 
1782 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1783 		vdev_t *tvd = rvd->vdev_child[c];
1784 		metaslab_group_t *mg = tvd->vdev_mg;
1785 
1786 		if (mg == NULL || (mg->mg_class != mc &&
1787 		    (!show_special || mg->mg_class != smc)))
1788 			continue;
1789 
1790 		metaslab_group_histogram_verify(mg);
1791 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1792 
1793 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1794 		    "fragmentation",
1795 		    (u_longlong_t)tvd->vdev_id,
1796 		    (u_longlong_t)tvd->vdev_ms_count);
1797 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1798 			(void) printf("%3s\n", "-");
1799 		} else {
1800 			(void) printf("%3llu%%\n",
1801 			    (u_longlong_t)mg->mg_fragmentation);
1802 		}
1803 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1804 	}
1805 
1806 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1807 	fragmentation = metaslab_class_fragmentation(mc);
1808 	if (fragmentation == ZFS_FRAG_INVALID)
1809 		(void) printf("\t%3s\n", "-");
1810 	else
1811 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1812 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1813 }
1814 
1815 static void
1816 print_vdev_indirect(vdev_t *vd)
1817 {
1818 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1819 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1820 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1821 
1822 	if (vim == NULL) {
1823 		ASSERT3P(vib, ==, NULL);
1824 		return;
1825 	}
1826 
1827 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1828 	    vic->vic_mapping_object);
1829 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1830 	    vic->vic_births_object);
1831 
1832 	(void) printf("indirect births obj %llu:\n",
1833 	    (longlong_t)vic->vic_births_object);
1834 	(void) printf("    vib_count = %llu\n",
1835 	    (longlong_t)vdev_indirect_births_count(vib));
1836 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1837 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1838 		    &vib->vib_entries[i];
1839 		(void) printf("\toffset %llx -> txg %llu\n",
1840 		    (longlong_t)cur_vibe->vibe_offset,
1841 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1842 	}
1843 	(void) printf("\n");
1844 
1845 	(void) printf("indirect mapping obj %llu:\n",
1846 	    (longlong_t)vic->vic_mapping_object);
1847 	(void) printf("    vim_max_offset = 0x%llx\n",
1848 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1849 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1850 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1851 	(void) printf("    vim_count = %llu\n",
1852 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1853 
1854 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1855 		return;
1856 
1857 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1858 
1859 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1860 		vdev_indirect_mapping_entry_phys_t *vimep =
1861 		    &vim->vim_entries[i];
1862 		(void) printf("\t<%llx:%llx:%llx> -> "
1863 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1864 		    (longlong_t)vd->vdev_id,
1865 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1866 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1867 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1868 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1869 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1870 		    counts[i]);
1871 	}
1872 	(void) printf("\n");
1873 
1874 	uint64_t obsolete_sm_object;
1875 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1876 	if (obsolete_sm_object != 0) {
1877 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1878 		(void) printf("obsolete space map object %llu:\n",
1879 		    (u_longlong_t)obsolete_sm_object);
1880 		ASSERT(vd->vdev_obsolete_sm != NULL);
1881 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1882 		    obsolete_sm_object);
1883 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1884 		(void) printf("\n");
1885 	}
1886 }
1887 
1888 static void
1889 dump_metaslabs(spa_t *spa)
1890 {
1891 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1892 	uint64_t m, c = 0, children = rvd->vdev_children;
1893 
1894 	(void) printf("\nMetaslabs:\n");
1895 
1896 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1897 		c = zopt_metaslab[0];
1898 
1899 		if (c >= children)
1900 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1901 
1902 		if (zopt_metaslab_args > 1) {
1903 			vd = rvd->vdev_child[c];
1904 			print_vdev_metaslab_header(vd);
1905 
1906 			for (m = 1; m < zopt_metaslab_args; m++) {
1907 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1908 					dump_metaslab(
1909 					    vd->vdev_ms[zopt_metaslab[m]]);
1910 				else
1911 					(void) fprintf(stderr, "bad metaslab "
1912 					    "number %llu\n",
1913 					    (u_longlong_t)zopt_metaslab[m]);
1914 			}
1915 			(void) printf("\n");
1916 			return;
1917 		}
1918 		children = c + 1;
1919 	}
1920 	for (; c < children; c++) {
1921 		vd = rvd->vdev_child[c];
1922 		print_vdev_metaslab_header(vd);
1923 
1924 		print_vdev_indirect(vd);
1925 
1926 		for (m = 0; m < vd->vdev_ms_count; m++)
1927 			dump_metaslab(vd->vdev_ms[m]);
1928 		(void) printf("\n");
1929 	}
1930 }
1931 
1932 static void
1933 dump_log_spacemaps(spa_t *spa)
1934 {
1935 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1936 		return;
1937 
1938 	(void) printf("\nLog Space Maps in Pool:\n");
1939 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1940 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1941 		space_map_t *sm = NULL;
1942 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1943 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1944 
1945 		(void) printf("Log Spacemap object %llu txg %llu\n",
1946 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1947 		dump_spacemap(spa->spa_meta_objset, sm);
1948 		space_map_close(sm);
1949 	}
1950 	(void) printf("\n");
1951 }
1952 
1953 static void
1954 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1955 {
1956 	const ddt_phys_t *ddp = dde->dde_phys;
1957 	const ddt_key_t *ddk = &dde->dde_key;
1958 	const char *types[4] = { "ditto", "single", "double", "triple" };
1959 	char blkbuf[BP_SPRINTF_LEN];
1960 	blkptr_t blk;
1961 	int p;
1962 
1963 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1964 		if (ddp->ddp_phys_birth == 0)
1965 			continue;
1966 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1967 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1968 		(void) printf("index %llx refcnt %llu %s %s\n",
1969 		    (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1970 		    types[p], blkbuf);
1971 	}
1972 }
1973 
1974 static void
1975 dump_dedup_ratio(const ddt_stat_t *dds)
1976 {
1977 	double rL, rP, rD, D, dedup, compress, copies;
1978 
1979 	if (dds->dds_blocks == 0)
1980 		return;
1981 
1982 	rL = (double)dds->dds_ref_lsize;
1983 	rP = (double)dds->dds_ref_psize;
1984 	rD = (double)dds->dds_ref_dsize;
1985 	D = (double)dds->dds_dsize;
1986 
1987 	dedup = rD / D;
1988 	compress = rL / rP;
1989 	copies = rD / rP;
1990 
1991 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1992 	    "dedup * compress / copies = %.2f\n\n",
1993 	    dedup, compress, copies, dedup * compress / copies);
1994 }
1995 
1996 static void
1997 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
1998 {
1999 	char name[DDT_NAMELEN];
2000 	ddt_entry_t dde;
2001 	uint64_t walk = 0;
2002 	dmu_object_info_t doi;
2003 	uint64_t count, dspace, mspace;
2004 	int error;
2005 
2006 	error = ddt_object_info(ddt, type, class, &doi);
2007 
2008 	if (error == ENOENT)
2009 		return;
2010 	ASSERT(error == 0);
2011 
2012 	error = ddt_object_count(ddt, type, class, &count);
2013 	ASSERT(error == 0);
2014 	if (count == 0)
2015 		return;
2016 
2017 	dspace = doi.doi_physical_blocks_512 << 9;
2018 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
2019 
2020 	ddt_object_name(ddt, type, class, name);
2021 
2022 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2023 	    name,
2024 	    (u_longlong_t)count,
2025 	    (u_longlong_t)(dspace / count),
2026 	    (u_longlong_t)(mspace / count));
2027 
2028 	if (dump_opt['D'] < 3)
2029 		return;
2030 
2031 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2032 
2033 	if (dump_opt['D'] < 4)
2034 		return;
2035 
2036 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2037 		return;
2038 
2039 	(void) printf("%s contents:\n\n", name);
2040 
2041 	while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2042 		dump_dde(ddt, &dde, walk);
2043 
2044 	ASSERT3U(error, ==, ENOENT);
2045 
2046 	(void) printf("\n");
2047 }
2048 
2049 static void
2050 dump_all_ddts(spa_t *spa)
2051 {
2052 	ddt_histogram_t ddh_total = {{{0}}};
2053 	ddt_stat_t dds_total = {0};
2054 
2055 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2056 		ddt_t *ddt = spa->spa_ddt[c];
2057 		for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2058 			for (enum ddt_class class = 0; class < DDT_CLASSES;
2059 			    class++) {
2060 				dump_ddt(ddt, type, class);
2061 			}
2062 		}
2063 	}
2064 
2065 	ddt_get_dedup_stats(spa, &dds_total);
2066 
2067 	if (dds_total.dds_blocks == 0) {
2068 		(void) printf("All DDTs are empty\n");
2069 		return;
2070 	}
2071 
2072 	(void) printf("\n");
2073 
2074 	if (dump_opt['D'] > 1) {
2075 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 		ddt_get_dedup_histogram(spa, &ddh_total);
2077 		zpool_dump_ddt(&dds_total, &ddh_total);
2078 	}
2079 
2080 	dump_dedup_ratio(&dds_total);
2081 }
2082 
2083 static void
2084 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2085 {
2086 	char *prefix = arg;
2087 
2088 	(void) printf("%s [%llu,%llu) length %llu\n",
2089 	    prefix,
2090 	    (u_longlong_t)start,
2091 	    (u_longlong_t)(start + size),
2092 	    (u_longlong_t)(size));
2093 }
2094 
2095 static void
2096 dump_dtl(vdev_t *vd, int indent)
2097 {
2098 	spa_t *spa = vd->vdev_spa;
2099 	boolean_t required;
2100 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2101 		"outage" };
2102 	char prefix[256];
2103 
2104 	spa_vdev_state_enter(spa, SCL_NONE);
2105 	required = vdev_dtl_required(vd);
2106 	(void) spa_vdev_state_exit(spa, NULL, 0);
2107 
2108 	if (indent == 0)
2109 		(void) printf("\nDirty time logs:\n\n");
2110 
2111 	(void) printf("\t%*s%s [%s]\n", indent, "",
2112 	    vd->vdev_path ? vd->vdev_path :
2113 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2114 	    required ? "DTL-required" : "DTL-expendable");
2115 
2116 	for (int t = 0; t < DTL_TYPES; t++) {
2117 		range_tree_t *rt = vd->vdev_dtl[t];
2118 		if (range_tree_space(rt) == 0)
2119 			continue;
2120 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2121 		    indent + 2, "", name[t]);
2122 		range_tree_walk(rt, dump_dtl_seg, prefix);
2123 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2124 			dump_spacemap(spa->spa_meta_objset,
2125 			    vd->vdev_dtl_sm);
2126 	}
2127 
2128 	for (unsigned c = 0; c < vd->vdev_children; c++)
2129 		dump_dtl(vd->vdev_child[c], indent + 4);
2130 }
2131 
2132 static void
2133 dump_history(spa_t *spa)
2134 {
2135 	nvlist_t **events = NULL;
2136 	char *buf;
2137 	uint64_t resid, len, off = 0;
2138 	uint_t num = 0;
2139 	int error;
2140 	char tbuf[30];
2141 
2142 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2143 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2144 		    __func__);
2145 		return;
2146 	}
2147 
2148 	do {
2149 		len = SPA_OLD_MAXBLOCKSIZE;
2150 
2151 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2152 			(void) fprintf(stderr, "Unable to read history: "
2153 			    "error %d\n", error);
2154 			free(buf);
2155 			return;
2156 		}
2157 
2158 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2159 			break;
2160 
2161 		off -= resid;
2162 	} while (len != 0);
2163 
2164 	(void) printf("\nHistory:\n");
2165 	for (unsigned i = 0; i < num; i++) {
2166 		boolean_t printed = B_FALSE;
2167 
2168 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2169 			time_t tsec;
2170 			struct tm t;
2171 
2172 			tsec = fnvlist_lookup_uint64(events[i],
2173 			    ZPOOL_HIST_TIME);
2174 			(void) localtime_r(&tsec, &t);
2175 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2176 		} else {
2177 			tbuf[0] = '\0';
2178 		}
2179 
2180 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2181 			(void) printf("%s %s\n", tbuf,
2182 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2183 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2184 			uint64_t ievent;
2185 
2186 			ievent = fnvlist_lookup_uint64(events[i],
2187 			    ZPOOL_HIST_INT_EVENT);
2188 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2189 				goto next;
2190 
2191 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2192 			    tbuf,
2193 			    zfs_history_event_names[ievent],
2194 			    fnvlist_lookup_uint64(events[i],
2195 			    ZPOOL_HIST_TXG),
2196 			    fnvlist_lookup_string(events[i],
2197 			    ZPOOL_HIST_INT_STR));
2198 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2199 			(void) printf("%s [txg:%ju] %s", tbuf,
2200 			    fnvlist_lookup_uint64(events[i],
2201 			    ZPOOL_HIST_TXG),
2202 			    fnvlist_lookup_string(events[i],
2203 			    ZPOOL_HIST_INT_NAME));
2204 
2205 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2206 				(void) printf(" %s (%llu)",
2207 				    fnvlist_lookup_string(events[i],
2208 				    ZPOOL_HIST_DSNAME),
2209 				    (u_longlong_t)fnvlist_lookup_uint64(
2210 				    events[i],
2211 				    ZPOOL_HIST_DSID));
2212 			}
2213 
2214 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2215 			    ZPOOL_HIST_INT_STR));
2216 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2217 			(void) printf("%s ioctl %s\n", tbuf,
2218 			    fnvlist_lookup_string(events[i],
2219 			    ZPOOL_HIST_IOCTL));
2220 
2221 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2222 				(void) printf("    input:\n");
2223 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2224 				    ZPOOL_HIST_INPUT_NVL), 8);
2225 			}
2226 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2227 				(void) printf("    output:\n");
2228 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2229 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2230 			}
2231 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2232 				(void) printf("    errno: %lld\n",
2233 				    (longlong_t)fnvlist_lookup_int64(events[i],
2234 				    ZPOOL_HIST_ERRNO));
2235 			}
2236 		} else {
2237 			goto next;
2238 		}
2239 
2240 		printed = B_TRUE;
2241 next:
2242 		if (dump_opt['h'] > 1) {
2243 			if (!printed)
2244 				(void) printf("unrecognized record:\n");
2245 			dump_nvlist(events[i], 2);
2246 		}
2247 	}
2248 	free(buf);
2249 }
2250 
2251 static void
2252 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2253 {
2254 	(void) os, (void) object, (void) data, (void) size;
2255 }
2256 
2257 static uint64_t
2258 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2259     const zbookmark_phys_t *zb)
2260 {
2261 	if (dnp == NULL) {
2262 		ASSERT(zb->zb_level < 0);
2263 		if (zb->zb_object == 0)
2264 			return (zb->zb_blkid);
2265 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2266 	}
2267 
2268 	ASSERT(zb->zb_level >= 0);
2269 
2270 	return ((zb->zb_blkid <<
2271 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2272 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2273 }
2274 
2275 static void
2276 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2277     const blkptr_t *bp)
2278 {
2279 	abd_t *pabd;
2280 	void *buf;
2281 	zio_t *zio;
2282 	zfs_zstdhdr_t zstd_hdr;
2283 	int error;
2284 
2285 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2286 		return;
2287 
2288 	if (BP_IS_HOLE(bp))
2289 		return;
2290 
2291 	if (BP_IS_EMBEDDED(bp)) {
2292 		buf = malloc(SPA_MAXBLOCKSIZE);
2293 		if (buf == NULL) {
2294 			(void) fprintf(stderr, "out of memory\n");
2295 			exit(1);
2296 		}
2297 		decode_embedded_bp_compressed(bp, buf);
2298 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2299 		free(buf);
2300 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2301 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2302 		(void) snprintf(blkbuf + strlen(blkbuf),
2303 		    buflen - strlen(blkbuf),
2304 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2305 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2306 		    zfs_get_hdrlevel(&zstd_hdr));
2307 		return;
2308 	}
2309 
2310 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2311 	zio = zio_root(spa, NULL, NULL, 0);
2312 
2313 	/* Decrypt but don't decompress so we can read the compression header */
2314 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2315 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2316 	    NULL));
2317 	error = zio_wait(zio);
2318 	if (error) {
2319 		(void) fprintf(stderr, "read failed: %d\n", error);
2320 		return;
2321 	}
2322 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2323 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2324 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2325 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2326 
2327 	(void) snprintf(blkbuf + strlen(blkbuf),
2328 	    buflen - strlen(blkbuf),
2329 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2330 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2331 	    zfs_get_hdrlevel(&zstd_hdr));
2332 
2333 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2334 }
2335 
2336 static void
2337 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2338     boolean_t bp_freed)
2339 {
2340 	const dva_t *dva = bp->blk_dva;
2341 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2342 	int i;
2343 
2344 	if (dump_opt['b'] >= 6) {
2345 		snprintf_blkptr(blkbuf, buflen, bp);
2346 		if (bp_freed) {
2347 			(void) snprintf(blkbuf + strlen(blkbuf),
2348 			    buflen - strlen(blkbuf), " %s", "FREE");
2349 		}
2350 		return;
2351 	}
2352 
2353 	if (BP_IS_EMBEDDED(bp)) {
2354 		(void) sprintf(blkbuf,
2355 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2356 		    (int)BPE_GET_ETYPE(bp),
2357 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2358 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2359 		    (u_longlong_t)bp->blk_birth);
2360 		return;
2361 	}
2362 
2363 	blkbuf[0] = '\0';
2364 
2365 	for (i = 0; i < ndvas; i++)
2366 		(void) snprintf(blkbuf + strlen(blkbuf),
2367 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2368 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2369 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2370 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2371 
2372 	if (BP_IS_HOLE(bp)) {
2373 		(void) snprintf(blkbuf + strlen(blkbuf),
2374 		    buflen - strlen(blkbuf),
2375 		    "%llxL B=%llu",
2376 		    (u_longlong_t)BP_GET_LSIZE(bp),
2377 		    (u_longlong_t)bp->blk_birth);
2378 	} else {
2379 		(void) snprintf(blkbuf + strlen(blkbuf),
2380 		    buflen - strlen(blkbuf),
2381 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2382 		    (u_longlong_t)BP_GET_LSIZE(bp),
2383 		    (u_longlong_t)BP_GET_PSIZE(bp),
2384 		    (u_longlong_t)BP_GET_FILL(bp),
2385 		    (u_longlong_t)bp->blk_birth,
2386 		    (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2387 		if (bp_freed)
2388 			(void) snprintf(blkbuf + strlen(blkbuf),
2389 			    buflen - strlen(blkbuf), " %s", "FREE");
2390 		(void) snprintf(blkbuf + strlen(blkbuf),
2391 		    buflen - strlen(blkbuf),
2392 		    " cksum=%016llx:%016llx:%016llx:%016llx",
2393 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2394 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2395 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2396 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2397 	}
2398 }
2399 
2400 static void
2401 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2402     const dnode_phys_t *dnp)
2403 {
2404 	char blkbuf[BP_SPRINTF_LEN];
2405 	int l;
2406 
2407 	if (!BP_IS_EMBEDDED(bp)) {
2408 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2409 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2410 	}
2411 
2412 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2413 
2414 	ASSERT(zb->zb_level >= 0);
2415 
2416 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2417 		if (l == zb->zb_level) {
2418 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2419 		} else {
2420 			(void) printf(" ");
2421 		}
2422 	}
2423 
2424 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2425 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2426 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2427 	(void) printf("%s\n", blkbuf);
2428 }
2429 
2430 static int
2431 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2432     blkptr_t *bp, const zbookmark_phys_t *zb)
2433 {
2434 	int err = 0;
2435 
2436 	if (bp->blk_birth == 0)
2437 		return (0);
2438 
2439 	print_indirect(spa, bp, zb, dnp);
2440 
2441 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2442 		arc_flags_t flags = ARC_FLAG_WAIT;
2443 		int i;
2444 		blkptr_t *cbp;
2445 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2446 		arc_buf_t *buf;
2447 		uint64_t fill = 0;
2448 		ASSERT(!BP_IS_REDACTED(bp));
2449 
2450 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2451 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2452 		if (err)
2453 			return (err);
2454 		ASSERT(buf->b_data);
2455 
2456 		/* recursively visit blocks below this */
2457 		cbp = buf->b_data;
2458 		for (i = 0; i < epb; i++, cbp++) {
2459 			zbookmark_phys_t czb;
2460 
2461 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2462 			    zb->zb_level - 1,
2463 			    zb->zb_blkid * epb + i);
2464 			err = visit_indirect(spa, dnp, cbp, &czb);
2465 			if (err)
2466 				break;
2467 			fill += BP_GET_FILL(cbp);
2468 		}
2469 		if (!err)
2470 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2471 		arc_buf_destroy(buf, &buf);
2472 	}
2473 
2474 	return (err);
2475 }
2476 
2477 static void
2478 dump_indirect(dnode_t *dn)
2479 {
2480 	dnode_phys_t *dnp = dn->dn_phys;
2481 	zbookmark_phys_t czb;
2482 
2483 	(void) printf("Indirect blocks:\n");
2484 
2485 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2486 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2487 	for (int j = 0; j < dnp->dn_nblkptr; j++) {
2488 		czb.zb_blkid = j;
2489 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2490 		    &dnp->dn_blkptr[j], &czb);
2491 	}
2492 
2493 	(void) printf("\n");
2494 }
2495 
2496 static void
2497 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2498 {
2499 	(void) os, (void) object;
2500 	dsl_dir_phys_t *dd = data;
2501 	time_t crtime;
2502 	char nice[32];
2503 
2504 	/* make sure nicenum has enough space */
2505 	_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2506 
2507 	if (dd == NULL)
2508 		return;
2509 
2510 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2511 
2512 	crtime = dd->dd_creation_time;
2513 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2514 	(void) printf("\t\thead_dataset_obj = %llu\n",
2515 	    (u_longlong_t)dd->dd_head_dataset_obj);
2516 	(void) printf("\t\tparent_dir_obj = %llu\n",
2517 	    (u_longlong_t)dd->dd_parent_obj);
2518 	(void) printf("\t\torigin_obj = %llu\n",
2519 	    (u_longlong_t)dd->dd_origin_obj);
2520 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2521 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2522 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2523 	(void) printf("\t\tused_bytes = %s\n", nice);
2524 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2525 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2526 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2527 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2528 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2529 	(void) printf("\t\tquota = %s\n", nice);
2530 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2531 	(void) printf("\t\treserved = %s\n", nice);
2532 	(void) printf("\t\tprops_zapobj = %llu\n",
2533 	    (u_longlong_t)dd->dd_props_zapobj);
2534 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2535 	    (u_longlong_t)dd->dd_deleg_zapobj);
2536 	(void) printf("\t\tflags = %llx\n",
2537 	    (u_longlong_t)dd->dd_flags);
2538 
2539 #define	DO(which) \
2540 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2541 	    sizeof (nice)); \
2542 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2543 	DO(HEAD);
2544 	DO(SNAP);
2545 	DO(CHILD);
2546 	DO(CHILD_RSRV);
2547 	DO(REFRSRV);
2548 #undef DO
2549 	(void) printf("\t\tclones = %llu\n",
2550 	    (u_longlong_t)dd->dd_clones);
2551 }
2552 
2553 static void
2554 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2555 {
2556 	(void) os, (void) object;
2557 	dsl_dataset_phys_t *ds = data;
2558 	time_t crtime;
2559 	char used[32], compressed[32], uncompressed[32], unique[32];
2560 	char blkbuf[BP_SPRINTF_LEN];
2561 
2562 	/* make sure nicenum has enough space */
2563 	_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2564 	_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2565 	    "compressed truncated");
2566 	_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2567 	    "uncompressed truncated");
2568 	_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2569 
2570 	if (ds == NULL)
2571 		return;
2572 
2573 	ASSERT(size == sizeof (*ds));
2574 	crtime = ds->ds_creation_time;
2575 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2576 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2577 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2578 	    sizeof (uncompressed));
2579 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2580 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2581 
2582 	(void) printf("\t\tdir_obj = %llu\n",
2583 	    (u_longlong_t)ds->ds_dir_obj);
2584 	(void) printf("\t\tprev_snap_obj = %llu\n",
2585 	    (u_longlong_t)ds->ds_prev_snap_obj);
2586 	(void) printf("\t\tprev_snap_txg = %llu\n",
2587 	    (u_longlong_t)ds->ds_prev_snap_txg);
2588 	(void) printf("\t\tnext_snap_obj = %llu\n",
2589 	    (u_longlong_t)ds->ds_next_snap_obj);
2590 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2591 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2592 	(void) printf("\t\tnum_children = %llu\n",
2593 	    (u_longlong_t)ds->ds_num_children);
2594 	(void) printf("\t\tuserrefs_obj = %llu\n",
2595 	    (u_longlong_t)ds->ds_userrefs_obj);
2596 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2597 	(void) printf("\t\tcreation_txg = %llu\n",
2598 	    (u_longlong_t)ds->ds_creation_txg);
2599 	(void) printf("\t\tdeadlist_obj = %llu\n",
2600 	    (u_longlong_t)ds->ds_deadlist_obj);
2601 	(void) printf("\t\tused_bytes = %s\n", used);
2602 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2603 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2604 	(void) printf("\t\tunique = %s\n", unique);
2605 	(void) printf("\t\tfsid_guid = %llu\n",
2606 	    (u_longlong_t)ds->ds_fsid_guid);
2607 	(void) printf("\t\tguid = %llu\n",
2608 	    (u_longlong_t)ds->ds_guid);
2609 	(void) printf("\t\tflags = %llx\n",
2610 	    (u_longlong_t)ds->ds_flags);
2611 	(void) printf("\t\tnext_clones_obj = %llu\n",
2612 	    (u_longlong_t)ds->ds_next_clones_obj);
2613 	(void) printf("\t\tprops_obj = %llu\n",
2614 	    (u_longlong_t)ds->ds_props_obj);
2615 	(void) printf("\t\tbp = %s\n", blkbuf);
2616 }
2617 
2618 static int
2619 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2620 {
2621 	(void) arg, (void) tx;
2622 	char blkbuf[BP_SPRINTF_LEN];
2623 
2624 	if (bp->blk_birth != 0) {
2625 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2626 		(void) printf("\t%s\n", blkbuf);
2627 	}
2628 	return (0);
2629 }
2630 
2631 static void
2632 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2633 {
2634 	char bytes[32];
2635 	bptree_phys_t *bt;
2636 	dmu_buf_t *db;
2637 
2638 	/* make sure nicenum has enough space */
2639 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2640 
2641 	if (dump_opt['d'] < 3)
2642 		return;
2643 
2644 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2645 	bt = db->db_data;
2646 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2647 	(void) printf("\n    %s: %llu datasets, %s\n",
2648 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2649 	dmu_buf_rele(db, FTAG);
2650 
2651 	if (dump_opt['d'] < 5)
2652 		return;
2653 
2654 	(void) printf("\n");
2655 
2656 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2657 }
2658 
2659 static int
2660 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2661 {
2662 	(void) arg, (void) tx;
2663 	char blkbuf[BP_SPRINTF_LEN];
2664 
2665 	ASSERT(bp->blk_birth != 0);
2666 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2667 	(void) printf("\t%s\n", blkbuf);
2668 	return (0);
2669 }
2670 
2671 static void
2672 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2673 {
2674 	char bytes[32];
2675 	char comp[32];
2676 	char uncomp[32];
2677 	uint64_t i;
2678 
2679 	/* make sure nicenum has enough space */
2680 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2681 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2682 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2683 
2684 	if (dump_opt['d'] < 3)
2685 		return;
2686 
2687 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2688 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2689 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2690 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2691 		if (bpo->bpo_havefreed) {
2692 			(void) printf("    %*s: object %llu, %llu local "
2693 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2694 			    "%s (%s/%s comp)\n",
2695 			    indent * 8, name,
2696 			    (u_longlong_t)bpo->bpo_object,
2697 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2698 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2699 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2700 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2701 			    bytes, comp, uncomp);
2702 		} else {
2703 			(void) printf("    %*s: object %llu, %llu local "
2704 			    "blkptrs, %llu subobjs in object %llu, "
2705 			    "%s (%s/%s comp)\n",
2706 			    indent * 8, name,
2707 			    (u_longlong_t)bpo->bpo_object,
2708 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2709 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2710 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2711 			    bytes, comp, uncomp);
2712 		}
2713 
2714 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2715 			uint64_t subobj;
2716 			bpobj_t subbpo;
2717 			int error;
2718 			VERIFY0(dmu_read(bpo->bpo_os,
2719 			    bpo->bpo_phys->bpo_subobjs,
2720 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2721 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2722 			if (error != 0) {
2723 				(void) printf("ERROR %u while trying to open "
2724 				    "subobj id %llu\n",
2725 				    error, (u_longlong_t)subobj);
2726 				continue;
2727 			}
2728 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2729 			bpobj_close(&subbpo);
2730 		}
2731 	} else {
2732 		if (bpo->bpo_havefreed) {
2733 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2734 			    "%llu freed, %s\n",
2735 			    indent * 8, name,
2736 			    (u_longlong_t)bpo->bpo_object,
2737 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2738 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2739 			    bytes);
2740 		} else {
2741 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2742 			    "%s\n",
2743 			    indent * 8, name,
2744 			    (u_longlong_t)bpo->bpo_object,
2745 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2746 			    bytes);
2747 		}
2748 	}
2749 
2750 	if (dump_opt['d'] < 5)
2751 		return;
2752 
2753 
2754 	if (indent == 0) {
2755 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2756 		(void) printf("\n");
2757 	}
2758 }
2759 
2760 static int
2761 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2762     boolean_t print_list)
2763 {
2764 	int err = 0;
2765 	zfs_bookmark_phys_t prop;
2766 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2767 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2768 
2769 	if (err != 0) {
2770 		return (err);
2771 	}
2772 
2773 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2774 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2775 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2776 	    (u_longlong_t)prop.zbm_creation_txg,
2777 	    (u_longlong_t)prop.zbm_creation_time,
2778 	    (u_longlong_t)prop.zbm_redaction_obj);
2779 
2780 	IMPLY(print_list, print_redact);
2781 	if (!print_redact || prop.zbm_redaction_obj == 0)
2782 		return (0);
2783 
2784 	redaction_list_t *rl;
2785 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2786 	    prop.zbm_redaction_obj, FTAG, &rl));
2787 
2788 	redaction_list_phys_t *rlp = rl->rl_phys;
2789 	(void) printf("\tRedacted:\n\t\tProgress: ");
2790 	if (rlp->rlp_last_object != UINT64_MAX ||
2791 	    rlp->rlp_last_blkid != UINT64_MAX) {
2792 		(void) printf("%llu %llu (incomplete)\n",
2793 		    (u_longlong_t)rlp->rlp_last_object,
2794 		    (u_longlong_t)rlp->rlp_last_blkid);
2795 	} else {
2796 		(void) printf("complete\n");
2797 	}
2798 	(void) printf("\t\tSnapshots: [");
2799 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2800 		if (i > 0)
2801 			(void) printf(", ");
2802 		(void) printf("%0llu",
2803 		    (u_longlong_t)rlp->rlp_snaps[i]);
2804 	}
2805 	(void) printf("]\n\t\tLength: %llu\n",
2806 	    (u_longlong_t)rlp->rlp_num_entries);
2807 
2808 	if (!print_list) {
2809 		dsl_redaction_list_rele(rl, FTAG);
2810 		return (0);
2811 	}
2812 
2813 	if (rlp->rlp_num_entries == 0) {
2814 		dsl_redaction_list_rele(rl, FTAG);
2815 		(void) printf("\t\tRedaction List: []\n\n");
2816 		return (0);
2817 	}
2818 
2819 	redact_block_phys_t *rbp_buf;
2820 	uint64_t size;
2821 	dmu_object_info_t doi;
2822 
2823 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2824 	size = doi.doi_max_offset;
2825 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2826 
2827 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2828 	    rbp_buf, 0);
2829 	if (err != 0) {
2830 		dsl_redaction_list_rele(rl, FTAG);
2831 		kmem_free(rbp_buf, size);
2832 		return (err);
2833 	}
2834 
2835 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2836 	    "%llx, blksz: %x, count: %llx}",
2837 	    (u_longlong_t)rbp_buf[0].rbp_object,
2838 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2839 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2840 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2841 
2842 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2843 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2844 		    "blksz: %x, count: %llx}",
2845 		    (u_longlong_t)rbp_buf[i].rbp_object,
2846 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2847 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2848 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2849 	}
2850 	dsl_redaction_list_rele(rl, FTAG);
2851 	kmem_free(rbp_buf, size);
2852 	(void) printf("]\n\n");
2853 	return (0);
2854 }
2855 
2856 static void
2857 dump_bookmarks(objset_t *os, int verbosity)
2858 {
2859 	zap_cursor_t zc;
2860 	zap_attribute_t attr;
2861 	dsl_dataset_t *ds = dmu_objset_ds(os);
2862 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2863 	objset_t *mos = os->os_spa->spa_meta_objset;
2864 	if (verbosity < 4)
2865 		return;
2866 	dsl_pool_config_enter(dp, FTAG);
2867 
2868 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2869 	    zap_cursor_retrieve(&zc, &attr) == 0;
2870 	    zap_cursor_advance(&zc)) {
2871 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2872 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2873 		int len;
2874 		dmu_objset_name(os, osname);
2875 		len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2876 		    attr.za_name);
2877 		VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2878 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2879 	}
2880 	zap_cursor_fini(&zc);
2881 	dsl_pool_config_exit(dp, FTAG);
2882 }
2883 
2884 static void
2885 bpobj_count_refd(bpobj_t *bpo)
2886 {
2887 	mos_obj_refd(bpo->bpo_object);
2888 
2889 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2890 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2891 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2892 			uint64_t subobj;
2893 			bpobj_t subbpo;
2894 			int error;
2895 			VERIFY0(dmu_read(bpo->bpo_os,
2896 			    bpo->bpo_phys->bpo_subobjs,
2897 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2898 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2899 			if (error != 0) {
2900 				(void) printf("ERROR %u while trying to open "
2901 				    "subobj id %llu\n",
2902 				    error, (u_longlong_t)subobj);
2903 				continue;
2904 			}
2905 			bpobj_count_refd(&subbpo);
2906 			bpobj_close(&subbpo);
2907 		}
2908 	}
2909 }
2910 
2911 static int
2912 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2913 {
2914 	spa_t *spa = arg;
2915 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2916 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
2917 		bpobj_count_refd(&dle->dle_bpobj);
2918 	return (0);
2919 }
2920 
2921 static int
2922 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
2923 {
2924 	ASSERT(arg == NULL);
2925 	if (dump_opt['d'] >= 5) {
2926 		char buf[128];
2927 		(void) snprintf(buf, sizeof (buf),
2928 		    "mintxg %llu -> obj %llu",
2929 		    (longlong_t)dle->dle_mintxg,
2930 		    (longlong_t)dle->dle_bpobj.bpo_object);
2931 
2932 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
2933 	} else {
2934 		(void) printf("mintxg %llu -> obj %llu\n",
2935 		    (longlong_t)dle->dle_mintxg,
2936 		    (longlong_t)dle->dle_bpobj.bpo_object);
2937 	}
2938 	return (0);
2939 }
2940 
2941 static void
2942 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
2943 {
2944 	char bytes[32];
2945 	char comp[32];
2946 	char uncomp[32];
2947 	char entries[32];
2948 	spa_t *spa = dmu_objset_spa(dl->dl_os);
2949 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2950 
2951 	if (dl->dl_oldfmt) {
2952 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
2953 			bpobj_count_refd(&dl->dl_bpobj);
2954 	} else {
2955 		mos_obj_refd(dl->dl_object);
2956 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
2957 	}
2958 
2959 	/* make sure nicenum has enough space */
2960 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2961 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2962 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2963 	_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
2964 
2965 	if (dump_opt['d'] < 3)
2966 		return;
2967 
2968 	if (dl->dl_oldfmt) {
2969 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
2970 		return;
2971 	}
2972 
2973 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
2974 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
2975 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
2976 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
2977 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
2978 	    name, bytes, comp, uncomp, entries);
2979 
2980 	if (dump_opt['d'] < 4)
2981 		return;
2982 
2983 	(void) putchar('\n');
2984 
2985 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
2986 }
2987 
2988 static int
2989 verify_dd_livelist(objset_t *os)
2990 {
2991 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
2992 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2993 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
2994 
2995 	ASSERT(!dmu_objset_is_snapshot(os));
2996 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2997 		return (0);
2998 
2999 	/* Iterate through the livelist to check for duplicates */
3000 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3001 	    NULL);
3002 
3003 	dsl_pool_config_enter(dp, FTAG);
3004 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3005 	    &ll_comp, &ll_uncomp);
3006 
3007 	dsl_dataset_t *origin_ds;
3008 	ASSERT(dsl_pool_config_held(dp));
3009 	VERIFY0(dsl_dataset_hold_obj(dp,
3010 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3011 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3012 	    &used, &comp, &uncomp));
3013 	dsl_dataset_rele(origin_ds, FTAG);
3014 	dsl_pool_config_exit(dp, FTAG);
3015 	/*
3016 	 *  It's possible that the dataset's uncomp space is larger than the
3017 	 *  livelist's because livelists do not track embedded block pointers
3018 	 */
3019 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3020 		char nice_used[32], nice_comp[32], nice_uncomp[32];
3021 		(void) printf("Discrepancy in space accounting:\n");
3022 		zdb_nicenum(used, nice_used, sizeof (nice_used));
3023 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3024 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3025 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
3026 		    nice_used, nice_comp, nice_uncomp);
3027 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3028 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3029 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3030 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3031 		    nice_used, nice_comp, nice_uncomp);
3032 		return (1);
3033 	}
3034 	return (0);
3035 }
3036 
3037 static char *key_material = NULL;
3038 
3039 static boolean_t
3040 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3041 {
3042 	uint64_t keyformat, salt, iters;
3043 	int i;
3044 	unsigned char c;
3045 
3046 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3047 	    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3048 	    1, &keyformat));
3049 
3050 	switch (keyformat) {
3051 	case ZFS_KEYFORMAT_HEX:
3052 		for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3053 			if (!isxdigit(key_material[i]) ||
3054 			    !isxdigit(key_material[i+1]))
3055 				return (B_FALSE);
3056 			if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3057 				return (B_FALSE);
3058 			key_out[i / 2] = c;
3059 		}
3060 		break;
3061 
3062 	case ZFS_KEYFORMAT_PASSPHRASE:
3063 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3064 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3065 		    sizeof (uint64_t), 1, &salt));
3066 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3067 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3068 		    sizeof (uint64_t), 1, &iters));
3069 
3070 		if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3071 		    ((uint8_t *)&salt), sizeof (uint64_t), iters,
3072 		    WRAPPING_KEY_LEN, key_out) != 1)
3073 			return (B_FALSE);
3074 
3075 		break;
3076 
3077 	default:
3078 		fatal("no support for key format %u\n",
3079 		    (unsigned int) keyformat);
3080 	}
3081 
3082 	return (B_TRUE);
3083 }
3084 
3085 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3086 static boolean_t key_loaded = B_FALSE;
3087 
3088 static void
3089 zdb_load_key(objset_t *os)
3090 {
3091 	dsl_pool_t *dp;
3092 	dsl_dir_t *dd, *rdd;
3093 	uint8_t key[WRAPPING_KEY_LEN];
3094 	uint64_t rddobj;
3095 	int err;
3096 
3097 	dp = spa_get_dsl(os->os_spa);
3098 	dd = os->os_dsl_dataset->ds_dir;
3099 
3100 	dsl_pool_config_enter(dp, FTAG);
3101 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3102 	    DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3103 	VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3104 	dsl_dir_name(rdd, encroot);
3105 	dsl_dir_rele(rdd, FTAG);
3106 
3107 	if (!zdb_derive_key(dd, key))
3108 		fatal("couldn't derive encryption key");
3109 
3110 	dsl_pool_config_exit(dp, FTAG);
3111 
3112 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3113 
3114 	dsl_crypto_params_t *dcp;
3115 	nvlist_t *crypto_args;
3116 
3117 	crypto_args = fnvlist_alloc();
3118 	fnvlist_add_uint8_array(crypto_args, "wkeydata",
3119 	    (uint8_t *)key, WRAPPING_KEY_LEN);
3120 	VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3121 	    NULL, crypto_args, &dcp));
3122 	err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3123 
3124 	dsl_crypto_params_free(dcp, (err != 0));
3125 	fnvlist_free(crypto_args);
3126 
3127 	if (err != 0)
3128 		fatal(
3129 		    "couldn't load encryption key for %s: %s",
3130 		    encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3131 		    "crypto params not supported" : strerror(err));
3132 
3133 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3134 
3135 	printf("Unlocked encryption root: %s\n", encroot);
3136 	key_loaded = B_TRUE;
3137 }
3138 
3139 static void
3140 zdb_unload_key(void)
3141 {
3142 	if (!key_loaded)
3143 		return;
3144 
3145 	VERIFY0(spa_keystore_unload_wkey(encroot));
3146 	key_loaded = B_FALSE;
3147 }
3148 
3149 static avl_tree_t idx_tree;
3150 static avl_tree_t domain_tree;
3151 static boolean_t fuid_table_loaded;
3152 static objset_t *sa_os = NULL;
3153 static sa_attr_type_t *sa_attr_table = NULL;
3154 
3155 static int
3156 open_objset(const char *path, const void *tag, objset_t **osp)
3157 {
3158 	int err;
3159 	uint64_t sa_attrs = 0;
3160 	uint64_t version = 0;
3161 
3162 	VERIFY3P(sa_os, ==, NULL);
3163 
3164 	/*
3165 	 * We can't own an objset if it's redacted.  Therefore, we do this
3166 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3167 	 * release the pool (which is held as part of holding the objset).
3168 	 */
3169 
3170 	if (dump_opt['K']) {
3171 		/* decryption requested, try to load keys */
3172 		err = dmu_objset_hold(path, tag, osp);
3173 		if (err != 0) {
3174 			(void) fprintf(stderr, "failed to hold dataset "
3175 			    "'%s': %s\n",
3176 			    path, strerror(err));
3177 			return (err);
3178 		}
3179 		dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3180 		dsl_pool_rele(dmu_objset_pool(*osp), tag);
3181 
3182 		/* succeeds or dies */
3183 		zdb_load_key(*osp);
3184 
3185 		/* release it all */
3186 		dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3187 		dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3188 	}
3189 
3190 	int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3191 
3192 	err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3193 	if (err != 0) {
3194 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3195 		    path, strerror(err));
3196 		return (err);
3197 	}
3198 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3199 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3200 
3201 	if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3202 	    (key_loaded || !(*osp)->os_encrypted)) {
3203 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3204 		    8, 1, &version);
3205 		if (version >= ZPL_VERSION_SA) {
3206 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3207 			    8, 1, &sa_attrs);
3208 		}
3209 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3210 		    &sa_attr_table);
3211 		if (err != 0) {
3212 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3213 			    strerror(err));
3214 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3215 			dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3216 			    ds_hold_flags, tag);
3217 			*osp = NULL;
3218 		}
3219 	}
3220 	sa_os = *osp;
3221 
3222 	return (err);
3223 }
3224 
3225 static void
3226 close_objset(objset_t *os, const void *tag)
3227 {
3228 	VERIFY3P(os, ==, sa_os);
3229 	if (os->os_sa != NULL)
3230 		sa_tear_down(os);
3231 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3232 	dsl_dataset_rele_flags(dmu_objset_ds(os),
3233 	    key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3234 	sa_attr_table = NULL;
3235 	sa_os = NULL;
3236 
3237 	zdb_unload_key();
3238 }
3239 
3240 static void
3241 fuid_table_destroy(void)
3242 {
3243 	if (fuid_table_loaded) {
3244 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3245 		fuid_table_loaded = B_FALSE;
3246 	}
3247 }
3248 
3249 /*
3250  * print uid or gid information.
3251  * For normal POSIX id just the id is printed in decimal format.
3252  * For CIFS files with FUID the fuid is printed in hex followed by
3253  * the domain-rid string.
3254  */
3255 static void
3256 print_idstr(uint64_t id, const char *id_type)
3257 {
3258 	if (FUID_INDEX(id)) {
3259 		const char *domain =
3260 		    zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3261 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3262 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3263 	} else {
3264 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3265 	}
3266 
3267 }
3268 
3269 static void
3270 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3271 {
3272 	uint32_t uid_idx, gid_idx;
3273 
3274 	uid_idx = FUID_INDEX(uid);
3275 	gid_idx = FUID_INDEX(gid);
3276 
3277 	/* Load domain table, if not already loaded */
3278 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3279 		uint64_t fuid_obj;
3280 
3281 		/* first find the fuid object.  It lives in the master node */
3282 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3283 		    8, 1, &fuid_obj) == 0);
3284 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3285 		(void) zfs_fuid_table_load(os, fuid_obj,
3286 		    &idx_tree, &domain_tree);
3287 		fuid_table_loaded = B_TRUE;
3288 	}
3289 
3290 	print_idstr(uid, "uid");
3291 	print_idstr(gid, "gid");
3292 }
3293 
3294 static void
3295 dump_znode_sa_xattr(sa_handle_t *hdl)
3296 {
3297 	nvlist_t *sa_xattr;
3298 	nvpair_t *elem = NULL;
3299 	int sa_xattr_size = 0;
3300 	int sa_xattr_entries = 0;
3301 	int error;
3302 	char *sa_xattr_packed;
3303 
3304 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3305 	if (error || sa_xattr_size == 0)
3306 		return;
3307 
3308 	sa_xattr_packed = malloc(sa_xattr_size);
3309 	if (sa_xattr_packed == NULL)
3310 		return;
3311 
3312 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3313 	    sa_xattr_packed, sa_xattr_size);
3314 	if (error) {
3315 		free(sa_xattr_packed);
3316 		return;
3317 	}
3318 
3319 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3320 	if (error) {
3321 		free(sa_xattr_packed);
3322 		return;
3323 	}
3324 
3325 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3326 		sa_xattr_entries++;
3327 
3328 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3329 	    sa_xattr_size, sa_xattr_entries);
3330 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3331 		boolean_t can_print = !dump_opt['P'];
3332 		uchar_t *value;
3333 		uint_t cnt, idx;
3334 
3335 		(void) printf("\t\t%s = ", nvpair_name(elem));
3336 		nvpair_value_byte_array(elem, &value, &cnt);
3337 
3338 		for (idx = 0; idx < cnt; ++idx) {
3339 			if (!isprint(value[idx])) {
3340 				can_print = B_FALSE;
3341 				break;
3342 			}
3343 		}
3344 
3345 		for (idx = 0; idx < cnt; ++idx) {
3346 			if (can_print)
3347 				(void) putchar(value[idx]);
3348 			else
3349 				(void) printf("\\%3.3o", value[idx]);
3350 		}
3351 		(void) putchar('\n');
3352 	}
3353 
3354 	nvlist_free(sa_xattr);
3355 	free(sa_xattr_packed);
3356 }
3357 
3358 static void
3359 dump_znode_symlink(sa_handle_t *hdl)
3360 {
3361 	int sa_symlink_size = 0;
3362 	char linktarget[MAXPATHLEN];
3363 	int error;
3364 
3365 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3366 	if (error || sa_symlink_size == 0) {
3367 		return;
3368 	}
3369 	if (sa_symlink_size >= sizeof (linktarget)) {
3370 		(void) printf("symlink size %d is too large\n",
3371 		    sa_symlink_size);
3372 		return;
3373 	}
3374 	linktarget[sa_symlink_size] = '\0';
3375 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3376 	    &linktarget, sa_symlink_size) == 0)
3377 		(void) printf("\ttarget	%s\n", linktarget);
3378 }
3379 
3380 static void
3381 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3382 {
3383 	(void) data, (void) size;
3384 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3385 	sa_handle_t *hdl;
3386 	uint64_t xattr, rdev, gen;
3387 	uint64_t uid, gid, mode, fsize, parent, links;
3388 	uint64_t pflags;
3389 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3390 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3391 	sa_bulk_attr_t bulk[12];
3392 	int idx = 0;
3393 	int error;
3394 
3395 	VERIFY3P(os, ==, sa_os);
3396 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3397 		(void) printf("Failed to get handle for SA znode\n");
3398 		return;
3399 	}
3400 
3401 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3402 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3403 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3404 	    &links, 8);
3405 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3406 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3407 	    &mode, 8);
3408 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3409 	    NULL, &parent, 8);
3410 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3411 	    &fsize, 8);
3412 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3413 	    acctm, 16);
3414 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3415 	    modtm, 16);
3416 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3417 	    crtm, 16);
3418 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3419 	    chgtm, 16);
3420 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3421 	    &pflags, 8);
3422 
3423 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3424 		(void) sa_handle_destroy(hdl);
3425 		return;
3426 	}
3427 
3428 	z_crtime = (time_t)crtm[0];
3429 	z_atime = (time_t)acctm[0];
3430 	z_mtime = (time_t)modtm[0];
3431 	z_ctime = (time_t)chgtm[0];
3432 
3433 	if (dump_opt['d'] > 4) {
3434 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3435 		if (error == ESTALE) {
3436 			(void) snprintf(path, sizeof (path), "on delete queue");
3437 		} else if (error != 0) {
3438 			leaked_objects++;
3439 			(void) snprintf(path, sizeof (path),
3440 			    "path not found, possibly leaked");
3441 		}
3442 		(void) printf("\tpath	%s\n", path);
3443 	}
3444 
3445 	if (S_ISLNK(mode))
3446 		dump_znode_symlink(hdl);
3447 	dump_uidgid(os, uid, gid);
3448 	(void) printf("\tatime	%s", ctime(&z_atime));
3449 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3450 	(void) printf("\tctime	%s", ctime(&z_ctime));
3451 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3452 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3453 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3454 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3455 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3456 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3457 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3458 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3459 		uint64_t projid;
3460 
3461 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3462 		    sizeof (uint64_t)) == 0)
3463 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3464 	}
3465 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3466 	    sizeof (uint64_t)) == 0)
3467 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3468 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3469 	    sizeof (uint64_t)) == 0)
3470 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3471 	dump_znode_sa_xattr(hdl);
3472 	sa_handle_destroy(hdl);
3473 }
3474 
3475 static void
3476 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3477 {
3478 	(void) os, (void) object, (void) data, (void) size;
3479 }
3480 
3481 static void
3482 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3483 {
3484 	(void) os, (void) object, (void) data, (void) size;
3485 }
3486 
3487 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3488 	dump_none,		/* unallocated			*/
3489 	dump_zap,		/* object directory		*/
3490 	dump_uint64,		/* object array			*/
3491 	dump_none,		/* packed nvlist		*/
3492 	dump_packed_nvlist,	/* packed nvlist size		*/
3493 	dump_none,		/* bpobj			*/
3494 	dump_bpobj,		/* bpobj header			*/
3495 	dump_none,		/* SPA space map header		*/
3496 	dump_none,		/* SPA space map		*/
3497 	dump_none,		/* ZIL intent log		*/
3498 	dump_dnode,		/* DMU dnode			*/
3499 	dump_dmu_objset,	/* DMU objset			*/
3500 	dump_dsl_dir,		/* DSL directory		*/
3501 	dump_zap,		/* DSL directory child map	*/
3502 	dump_zap,		/* DSL dataset snap map		*/
3503 	dump_zap,		/* DSL props			*/
3504 	dump_dsl_dataset,	/* DSL dataset			*/
3505 	dump_znode,		/* ZFS znode			*/
3506 	dump_acl,		/* ZFS V0 ACL			*/
3507 	dump_uint8,		/* ZFS plain file		*/
3508 	dump_zpldir,		/* ZFS directory		*/
3509 	dump_zap,		/* ZFS master node		*/
3510 	dump_zap,		/* ZFS delete queue		*/
3511 	dump_uint8,		/* zvol object			*/
3512 	dump_zap,		/* zvol prop			*/
3513 	dump_uint8,		/* other uint8[]		*/
3514 	dump_uint64,		/* other uint64[]		*/
3515 	dump_zap,		/* other ZAP			*/
3516 	dump_zap,		/* persistent error log		*/
3517 	dump_uint8,		/* SPA history			*/
3518 	dump_history_offsets,	/* SPA history offsets		*/
3519 	dump_zap,		/* Pool properties		*/
3520 	dump_zap,		/* DSL permissions		*/
3521 	dump_acl,		/* ZFS ACL			*/
3522 	dump_uint8,		/* ZFS SYSACL			*/
3523 	dump_none,		/* FUID nvlist			*/
3524 	dump_packed_nvlist,	/* FUID nvlist size		*/
3525 	dump_zap,		/* DSL dataset next clones	*/
3526 	dump_zap,		/* DSL scrub queue		*/
3527 	dump_zap,		/* ZFS user/group/project used	*/
3528 	dump_zap,		/* ZFS user/group/project quota	*/
3529 	dump_zap,		/* snapshot refcount tags	*/
3530 	dump_ddt_zap,		/* DDT ZAP object		*/
3531 	dump_zap,		/* DDT statistics		*/
3532 	dump_znode,		/* SA object			*/
3533 	dump_zap,		/* SA Master Node		*/
3534 	dump_sa_attrs,		/* SA attribute registration	*/
3535 	dump_sa_layouts,	/* SA attribute layouts		*/
3536 	dump_zap,		/* DSL scrub translations	*/
3537 	dump_none,		/* fake dedup BP		*/
3538 	dump_zap,		/* deadlist			*/
3539 	dump_none,		/* deadlist hdr			*/
3540 	dump_zap,		/* dsl clones			*/
3541 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3542 	dump_unknown,		/* Unknown type, must be last	*/
3543 };
3544 
3545 static boolean_t
3546 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3547 {
3548 	boolean_t match = B_TRUE;
3549 
3550 	switch (obj_type) {
3551 	case DMU_OT_DIRECTORY_CONTENTS:
3552 		if (!(flags & ZOR_FLAG_DIRECTORY))
3553 			match = B_FALSE;
3554 		break;
3555 	case DMU_OT_PLAIN_FILE_CONTENTS:
3556 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3557 			match = B_FALSE;
3558 		break;
3559 	case DMU_OT_SPACE_MAP:
3560 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3561 			match = B_FALSE;
3562 		break;
3563 	default:
3564 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3565 			if (!(flags & ZOR_FLAG_ZAP))
3566 				match = B_FALSE;
3567 			break;
3568 		}
3569 
3570 		/*
3571 		 * If all bits except some of the supported flags are
3572 		 * set, the user combined the all-types flag (A) with
3573 		 * a negated flag to exclude some types (e.g. A-f to
3574 		 * show all object types except plain files).
3575 		 */
3576 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3577 			match = B_FALSE;
3578 
3579 		break;
3580 	}
3581 
3582 	return (match);
3583 }
3584 
3585 static void
3586 dump_object(objset_t *os, uint64_t object, int verbosity,
3587     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3588 {
3589 	dmu_buf_t *db = NULL;
3590 	dmu_object_info_t doi;
3591 	dnode_t *dn;
3592 	boolean_t dnode_held = B_FALSE;
3593 	void *bonus = NULL;
3594 	size_t bsize = 0;
3595 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3596 	char bonus_size[32];
3597 	char aux[50];
3598 	int error;
3599 
3600 	/* make sure nicenum has enough space */
3601 	_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3602 	_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3603 	_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3604 	_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3605 	_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3606 	    "bonus_size truncated");
3607 
3608 	if (*print_header) {
3609 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3610 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3611 		    "lsize", "%full", "type");
3612 		*print_header = 0;
3613 	}
3614 
3615 	if (object == 0) {
3616 		dn = DMU_META_DNODE(os);
3617 		dmu_object_info_from_dnode(dn, &doi);
3618 	} else {
3619 		/*
3620 		 * Encrypted datasets will have sensitive bonus buffers
3621 		 * encrypted. Therefore we cannot hold the bonus buffer and
3622 		 * must hold the dnode itself instead.
3623 		 */
3624 		error = dmu_object_info(os, object, &doi);
3625 		if (error)
3626 			fatal("dmu_object_info() failed, errno %u", error);
3627 
3628 		if (!key_loaded && os->os_encrypted &&
3629 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3630 			error = dnode_hold(os, object, FTAG, &dn);
3631 			if (error)
3632 				fatal("dnode_hold() failed, errno %u", error);
3633 			dnode_held = B_TRUE;
3634 		} else {
3635 			error = dmu_bonus_hold(os, object, FTAG, &db);
3636 			if (error)
3637 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3638 				    object, error);
3639 			bonus = db->db_data;
3640 			bsize = db->db_size;
3641 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3642 		}
3643 	}
3644 
3645 	/*
3646 	 * Default to showing all object types if no flags were specified.
3647 	 */
3648 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3649 	    !match_object_type(doi.doi_type, flags))
3650 		goto out;
3651 
3652 	if (dnode_slots_used)
3653 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3654 
3655 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3656 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3657 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3658 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3659 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3660 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3661 	(void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3662 	    doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3663 	    DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3664 
3665 	aux[0] = '\0';
3666 
3667 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3668 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3669 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3670 	}
3671 
3672 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3673 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3674 		const char *compname = NULL;
3675 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3676 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3677 		    &compname) == 0) {
3678 			(void) snprintf(aux + strlen(aux),
3679 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3680 			    compname);
3681 		} else {
3682 			(void) snprintf(aux + strlen(aux),
3683 			    sizeof (aux) - strlen(aux),
3684 			    " (Z=inherit=%s-unknown)",
3685 			    ZDB_COMPRESS_NAME(os->os_compress));
3686 		}
3687 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3688 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3689 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3690 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3691 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3692 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3693 	}
3694 
3695 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3696 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3697 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3698 
3699 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3700 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3701 		    "", "", "", "", "", "", bonus_size, "bonus",
3702 		    zdb_ot_name(doi.doi_bonus_type));
3703 	}
3704 
3705 	if (verbosity >= 4) {
3706 		(void) printf("\tdnode flags: %s%s%s%s\n",
3707 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3708 		    "USED_BYTES " : "",
3709 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3710 		    "USERUSED_ACCOUNTED " : "",
3711 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3712 		    "USEROBJUSED_ACCOUNTED " : "",
3713 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3714 		    "SPILL_BLKPTR" : "");
3715 		(void) printf("\tdnode maxblkid: %llu\n",
3716 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3717 
3718 		if (!dnode_held) {
3719 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3720 			    object, bonus, bsize);
3721 		} else {
3722 			(void) printf("\t\t(bonus encrypted)\n");
3723 		}
3724 
3725 		if (key_loaded ||
3726 		    (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3727 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3728 			    NULL, 0);
3729 		} else {
3730 			(void) printf("\t\t(object encrypted)\n");
3731 		}
3732 
3733 		*print_header = B_TRUE;
3734 	}
3735 
3736 	if (verbosity >= 5) {
3737 		if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3738 			char blkbuf[BP_SPRINTF_LEN];
3739 			snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3740 			    DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3741 			(void) printf("\nSpill block: %s\n", blkbuf);
3742 		}
3743 		dump_indirect(dn);
3744 	}
3745 
3746 	if (verbosity >= 5) {
3747 		/*
3748 		 * Report the list of segments that comprise the object.
3749 		 */
3750 		uint64_t start = 0;
3751 		uint64_t end;
3752 		uint64_t blkfill = 1;
3753 		int minlvl = 1;
3754 
3755 		if (dn->dn_type == DMU_OT_DNODE) {
3756 			minlvl = 0;
3757 			blkfill = DNODES_PER_BLOCK;
3758 		}
3759 
3760 		for (;;) {
3761 			char segsize[32];
3762 			/* make sure nicenum has enough space */
3763 			_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3764 			    "segsize truncated");
3765 			error = dnode_next_offset(dn,
3766 			    0, &start, minlvl, blkfill, 0);
3767 			if (error)
3768 				break;
3769 			end = start;
3770 			error = dnode_next_offset(dn,
3771 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3772 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3773 			(void) printf("\t\tsegment [%016llx, %016llx)"
3774 			    " size %5s\n", (u_longlong_t)start,
3775 			    (u_longlong_t)end, segsize);
3776 			if (error)
3777 				break;
3778 			start = end;
3779 		}
3780 	}
3781 
3782 out:
3783 	if (db != NULL)
3784 		dmu_buf_rele(db, FTAG);
3785 	if (dnode_held)
3786 		dnode_rele(dn, FTAG);
3787 }
3788 
3789 static void
3790 count_dir_mos_objects(dsl_dir_t *dd)
3791 {
3792 	mos_obj_refd(dd->dd_object);
3793 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3794 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3795 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3796 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3797 
3798 	/*
3799 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3800 	 * Ignore the references after the first one.
3801 	 */
3802 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3803 }
3804 
3805 static void
3806 count_ds_mos_objects(dsl_dataset_t *ds)
3807 {
3808 	mos_obj_refd(ds->ds_object);
3809 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3810 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3811 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3812 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3813 	mos_obj_refd(ds->ds_bookmarks_obj);
3814 
3815 	if (!dsl_dataset_is_snapshot(ds)) {
3816 		count_dir_mos_objects(ds->ds_dir);
3817 	}
3818 }
3819 
3820 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3821 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3822 
3823 /*
3824  * Parse a string denoting a range of object IDs of the form
3825  * <start>[:<end>[:flags]], and store the results in zor.
3826  * Return 0 on success. On error, return 1 and update the msg
3827  * pointer to point to a descriptive error message.
3828  */
3829 static int
3830 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3831 {
3832 	uint64_t flags = 0;
3833 	char *p, *s, *dup, *flagstr, *tmp = NULL;
3834 	size_t len;
3835 	int i;
3836 	int rc = 0;
3837 
3838 	if (strchr(range, ':') == NULL) {
3839 		zor->zor_obj_start = strtoull(range, &p, 0);
3840 		if (*p != '\0') {
3841 			*msg = "Invalid characters in object ID";
3842 			rc = 1;
3843 		}
3844 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3845 		zor->zor_obj_end = zor->zor_obj_start;
3846 		return (rc);
3847 	}
3848 
3849 	if (strchr(range, ':') == range) {
3850 		*msg = "Invalid leading colon";
3851 		rc = 1;
3852 		return (rc);
3853 	}
3854 
3855 	len = strlen(range);
3856 	if (range[len - 1] == ':') {
3857 		*msg = "Invalid trailing colon";
3858 		rc = 1;
3859 		return (rc);
3860 	}
3861 
3862 	dup = strdup(range);
3863 	s = strtok_r(dup, ":", &tmp);
3864 	zor->zor_obj_start = strtoull(s, &p, 0);
3865 
3866 	if (*p != '\0') {
3867 		*msg = "Invalid characters in start object ID";
3868 		rc = 1;
3869 		goto out;
3870 	}
3871 
3872 	s = strtok_r(NULL, ":", &tmp);
3873 	zor->zor_obj_end = strtoull(s, &p, 0);
3874 
3875 	if (*p != '\0') {
3876 		*msg = "Invalid characters in end object ID";
3877 		rc = 1;
3878 		goto out;
3879 	}
3880 
3881 	if (zor->zor_obj_start > zor->zor_obj_end) {
3882 		*msg = "Start object ID may not exceed end object ID";
3883 		rc = 1;
3884 		goto out;
3885 	}
3886 
3887 	s = strtok_r(NULL, ":", &tmp);
3888 	if (s == NULL) {
3889 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3890 		goto out;
3891 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
3892 		*msg = "Invalid colon-delimited field after flags";
3893 		rc = 1;
3894 		goto out;
3895 	}
3896 
3897 	flagstr = s;
3898 	for (i = 0; flagstr[i]; i++) {
3899 		int bit;
3900 		boolean_t negation = (flagstr[i] == '-');
3901 
3902 		if (negation) {
3903 			i++;
3904 			if (flagstr[i] == '\0') {
3905 				*msg = "Invalid trailing negation operator";
3906 				rc = 1;
3907 				goto out;
3908 			}
3909 		}
3910 		bit = flagbits[(uchar_t)flagstr[i]];
3911 		if (bit == 0) {
3912 			*msg = "Invalid flag";
3913 			rc = 1;
3914 			goto out;
3915 		}
3916 		if (negation)
3917 			flags &= ~bit;
3918 		else
3919 			flags |= bit;
3920 	}
3921 	zor->zor_flags = flags;
3922 
3923 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3924 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
3925 
3926 out:
3927 	free(dup);
3928 	return (rc);
3929 }
3930 
3931 static void
3932 dump_objset(objset_t *os)
3933 {
3934 	dmu_objset_stats_t dds = { 0 };
3935 	uint64_t object, object_count;
3936 	uint64_t refdbytes, usedobjs, scratch;
3937 	char numbuf[32];
3938 	char blkbuf[BP_SPRINTF_LEN + 20];
3939 	char osname[ZFS_MAX_DATASET_NAME_LEN];
3940 	const char *type = "UNKNOWN";
3941 	int verbosity = dump_opt['d'];
3942 	boolean_t print_header;
3943 	unsigned i;
3944 	int error;
3945 	uint64_t total_slots_used = 0;
3946 	uint64_t max_slot_used = 0;
3947 	uint64_t dnode_slots;
3948 	uint64_t obj_start;
3949 	uint64_t obj_end;
3950 	uint64_t flags;
3951 
3952 	/* make sure nicenum has enough space */
3953 	_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
3954 
3955 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
3956 	dmu_objset_fast_stat(os, &dds);
3957 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
3958 
3959 	print_header = B_TRUE;
3960 
3961 	if (dds.dds_type < DMU_OST_NUMTYPES)
3962 		type = objset_types[dds.dds_type];
3963 
3964 	if (dds.dds_type == DMU_OST_META) {
3965 		dds.dds_creation_txg = TXG_INITIAL;
3966 		usedobjs = BP_GET_FILL(os->os_rootbp);
3967 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
3968 		    dd_used_bytes;
3969 	} else {
3970 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
3971 	}
3972 
3973 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
3974 
3975 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
3976 
3977 	if (verbosity >= 4) {
3978 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
3979 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
3980 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
3981 	} else {
3982 		blkbuf[0] = '\0';
3983 	}
3984 
3985 	dmu_objset_name(os, osname);
3986 
3987 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
3988 	    "%s, %llu objects%s%s\n",
3989 	    osname, type, (u_longlong_t)dmu_objset_id(os),
3990 	    (u_longlong_t)dds.dds_creation_txg,
3991 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
3992 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
3993 
3994 	for (i = 0; i < zopt_object_args; i++) {
3995 		obj_start = zopt_object_ranges[i].zor_obj_start;
3996 		obj_end = zopt_object_ranges[i].zor_obj_end;
3997 		flags = zopt_object_ranges[i].zor_flags;
3998 
3999 		object = obj_start;
4000 		if (object == 0 || obj_start == obj_end)
4001 			dump_object(os, object, verbosity, &print_header, NULL,
4002 			    flags);
4003 		else
4004 			object--;
4005 
4006 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4007 		    object <= obj_end) {
4008 			dump_object(os, object, verbosity, &print_header, NULL,
4009 			    flags);
4010 		}
4011 	}
4012 
4013 	if (zopt_object_args > 0) {
4014 		(void) printf("\n");
4015 		return;
4016 	}
4017 
4018 	if (dump_opt['i'] != 0 || verbosity >= 2)
4019 		dump_intent_log(dmu_objset_zil(os));
4020 
4021 	if (dmu_objset_ds(os) != NULL) {
4022 		dsl_dataset_t *ds = dmu_objset_ds(os);
4023 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4024 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4025 		    !dmu_objset_is_snapshot(os)) {
4026 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4027 			if (verify_dd_livelist(os) != 0)
4028 				fatal("livelist is incorrect");
4029 		}
4030 
4031 		if (dsl_dataset_remap_deadlist_exists(ds)) {
4032 			(void) printf("ds_remap_deadlist:\n");
4033 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4034 		}
4035 		count_ds_mos_objects(ds);
4036 	}
4037 
4038 	if (dmu_objset_ds(os) != NULL)
4039 		dump_bookmarks(os, verbosity);
4040 
4041 	if (verbosity < 2)
4042 		return;
4043 
4044 	if (BP_IS_HOLE(os->os_rootbp))
4045 		return;
4046 
4047 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
4048 	object_count = 0;
4049 	if (DMU_USERUSED_DNODE(os) != NULL &&
4050 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
4051 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4052 		    NULL, 0);
4053 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4054 		    NULL, 0);
4055 	}
4056 
4057 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4058 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4059 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4060 		    &print_header, NULL, 0);
4061 
4062 	object = 0;
4063 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4064 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
4065 		    0);
4066 		object_count++;
4067 		total_slots_used += dnode_slots;
4068 		max_slot_used = object + dnode_slots - 1;
4069 	}
4070 
4071 	(void) printf("\n");
4072 
4073 	(void) printf("    Dnode slots:\n");
4074 	(void) printf("\tTotal used:    %10llu\n",
4075 	    (u_longlong_t)total_slots_used);
4076 	(void) printf("\tMax used:      %10llu\n",
4077 	    (u_longlong_t)max_slot_used);
4078 	(void) printf("\tPercent empty: %10lf\n",
4079 	    (double)(max_slot_used - total_slots_used)*100 /
4080 	    (double)max_slot_used);
4081 	(void) printf("\n");
4082 
4083 	if (error != ESRCH) {
4084 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4085 		abort();
4086 	}
4087 
4088 	ASSERT3U(object_count, ==, usedobjs);
4089 
4090 	if (leaked_objects != 0) {
4091 		(void) printf("%d potentially leaked objects detected\n",
4092 		    leaked_objects);
4093 		leaked_objects = 0;
4094 	}
4095 }
4096 
4097 static void
4098 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4099 {
4100 	time_t timestamp = ub->ub_timestamp;
4101 
4102 	(void) printf("%s", header ? header : "");
4103 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4104 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4105 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4106 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4107 	(void) printf("\ttimestamp = %llu UTC = %s",
4108 	    (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4109 
4110 	(void) printf("\tmmp_magic = %016llx\n",
4111 	    (u_longlong_t)ub->ub_mmp_magic);
4112 	if (MMP_VALID(ub)) {
4113 		(void) printf("\tmmp_delay = %0llu\n",
4114 		    (u_longlong_t)ub->ub_mmp_delay);
4115 		if (MMP_SEQ_VALID(ub))
4116 			(void) printf("\tmmp_seq = %u\n",
4117 			    (unsigned int) MMP_SEQ(ub));
4118 		if (MMP_FAIL_INT_VALID(ub))
4119 			(void) printf("\tmmp_fail = %u\n",
4120 			    (unsigned int) MMP_FAIL_INT(ub));
4121 		if (MMP_INTERVAL_VALID(ub))
4122 			(void) printf("\tmmp_write = %u\n",
4123 			    (unsigned int) MMP_INTERVAL(ub));
4124 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
4125 		(void) printf("\tmmp_valid = %x\n",
4126 		    (unsigned int) ub->ub_mmp_config & 0xFF);
4127 	}
4128 
4129 	if (dump_opt['u'] >= 4) {
4130 		char blkbuf[BP_SPRINTF_LEN];
4131 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4132 		(void) printf("\trootbp = %s\n", blkbuf);
4133 	}
4134 	(void) printf("\tcheckpoint_txg = %llu\n",
4135 	    (u_longlong_t)ub->ub_checkpoint_txg);
4136 	(void) printf("%s", footer ? footer : "");
4137 }
4138 
4139 static void
4140 dump_config(spa_t *spa)
4141 {
4142 	dmu_buf_t *db;
4143 	size_t nvsize = 0;
4144 	int error = 0;
4145 
4146 
4147 	error = dmu_bonus_hold(spa->spa_meta_objset,
4148 	    spa->spa_config_object, FTAG, &db);
4149 
4150 	if (error == 0) {
4151 		nvsize = *(uint64_t *)db->db_data;
4152 		dmu_buf_rele(db, FTAG);
4153 
4154 		(void) printf("\nMOS Configuration:\n");
4155 		dump_packed_nvlist(spa->spa_meta_objset,
4156 		    spa->spa_config_object, (void *)&nvsize, 1);
4157 	} else {
4158 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4159 		    (u_longlong_t)spa->spa_config_object, error);
4160 	}
4161 }
4162 
4163 static void
4164 dump_cachefile(const char *cachefile)
4165 {
4166 	int fd;
4167 	struct stat64 statbuf;
4168 	char *buf;
4169 	nvlist_t *config;
4170 
4171 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4172 		(void) printf("cannot open '%s': %s\n", cachefile,
4173 		    strerror(errno));
4174 		exit(1);
4175 	}
4176 
4177 	if (fstat64(fd, &statbuf) != 0) {
4178 		(void) printf("failed to stat '%s': %s\n", cachefile,
4179 		    strerror(errno));
4180 		exit(1);
4181 	}
4182 
4183 	if ((buf = malloc(statbuf.st_size)) == NULL) {
4184 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4185 		    (u_longlong_t)statbuf.st_size);
4186 		exit(1);
4187 	}
4188 
4189 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4190 		(void) fprintf(stderr, "failed to read %llu bytes\n",
4191 		    (u_longlong_t)statbuf.st_size);
4192 		exit(1);
4193 	}
4194 
4195 	(void) close(fd);
4196 
4197 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4198 		(void) fprintf(stderr, "failed to unpack nvlist\n");
4199 		exit(1);
4200 	}
4201 
4202 	free(buf);
4203 
4204 	dump_nvlist(config, 0);
4205 
4206 	nvlist_free(config);
4207 }
4208 
4209 /*
4210  * ZFS label nvlist stats
4211  */
4212 typedef struct zdb_nvl_stats {
4213 	int		zns_list_count;
4214 	int		zns_leaf_count;
4215 	size_t		zns_leaf_largest;
4216 	size_t		zns_leaf_total;
4217 	nvlist_t	*zns_string;
4218 	nvlist_t	*zns_uint64;
4219 	nvlist_t	*zns_boolean;
4220 } zdb_nvl_stats_t;
4221 
4222 static void
4223 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4224 {
4225 	nvlist_t *list, **array;
4226 	nvpair_t *nvp = NULL;
4227 	const char *name;
4228 	uint_t i, items;
4229 
4230 	stats->zns_list_count++;
4231 
4232 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4233 		name = nvpair_name(nvp);
4234 
4235 		switch (nvpair_type(nvp)) {
4236 		case DATA_TYPE_STRING:
4237 			fnvlist_add_string(stats->zns_string, name,
4238 			    fnvpair_value_string(nvp));
4239 			break;
4240 		case DATA_TYPE_UINT64:
4241 			fnvlist_add_uint64(stats->zns_uint64, name,
4242 			    fnvpair_value_uint64(nvp));
4243 			break;
4244 		case DATA_TYPE_BOOLEAN:
4245 			fnvlist_add_boolean(stats->zns_boolean, name);
4246 			break;
4247 		case DATA_TYPE_NVLIST:
4248 			if (nvpair_value_nvlist(nvp, &list) == 0)
4249 				collect_nvlist_stats(list, stats);
4250 			break;
4251 		case DATA_TYPE_NVLIST_ARRAY:
4252 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4253 				break;
4254 
4255 			for (i = 0; i < items; i++) {
4256 				collect_nvlist_stats(array[i], stats);
4257 
4258 				/* collect stats on leaf vdev */
4259 				if (strcmp(name, "children") == 0) {
4260 					size_t size;
4261 
4262 					(void) nvlist_size(array[i], &size,
4263 					    NV_ENCODE_XDR);
4264 					stats->zns_leaf_total += size;
4265 					if (size > stats->zns_leaf_largest)
4266 						stats->zns_leaf_largest = size;
4267 					stats->zns_leaf_count++;
4268 				}
4269 			}
4270 			break;
4271 		default:
4272 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4273 		}
4274 	}
4275 }
4276 
4277 static void
4278 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4279 {
4280 	zdb_nvl_stats_t stats = { 0 };
4281 	size_t size, sum = 0, total;
4282 	size_t noise;
4283 
4284 	/* requires nvlist with non-unique names for stat collection */
4285 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4286 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4287 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4288 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4289 
4290 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4291 
4292 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4293 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4294 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4295 
4296 	collect_nvlist_stats(nvl, &stats);
4297 
4298 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4299 	size -= noise;
4300 	sum += size;
4301 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4302 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4303 	    (int)size, 100.0 * size / total);
4304 
4305 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4306 	size -= noise;
4307 	sum += size;
4308 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4309 	    (int)fnvlist_num_pairs(stats.zns_string),
4310 	    (int)size, 100.0 * size / total);
4311 
4312 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4313 	size -= noise;
4314 	sum += size;
4315 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4316 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4317 	    (int)size, 100.0 * size / total);
4318 
4319 	size = total - sum;	/* treat remainder as nvlist overhead */
4320 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4321 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4322 
4323 	if (stats.zns_leaf_count > 0) {
4324 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4325 
4326 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4327 		    stats.zns_leaf_count, (int)average);
4328 		(void) printf("%24d bytes largest\n",
4329 		    (int)stats.zns_leaf_largest);
4330 
4331 		if (dump_opt['l'] >= 3 && average > 0)
4332 			(void) printf("  space for %d additional leaf vdevs\n",
4333 			    (int)((cap - total) / average));
4334 	}
4335 	(void) printf("\n");
4336 
4337 	nvlist_free(stats.zns_string);
4338 	nvlist_free(stats.zns_uint64);
4339 	nvlist_free(stats.zns_boolean);
4340 }
4341 
4342 typedef struct cksum_record {
4343 	zio_cksum_t cksum;
4344 	boolean_t labels[VDEV_LABELS];
4345 	avl_node_t link;
4346 } cksum_record_t;
4347 
4348 static int
4349 cksum_record_compare(const void *x1, const void *x2)
4350 {
4351 	const cksum_record_t *l = (cksum_record_t *)x1;
4352 	const cksum_record_t *r = (cksum_record_t *)x2;
4353 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4354 	int difference = 0;
4355 
4356 	for (int i = 0; i < arraysize; i++) {
4357 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4358 		if (difference)
4359 			break;
4360 	}
4361 
4362 	return (difference);
4363 }
4364 
4365 static cksum_record_t *
4366 cksum_record_alloc(zio_cksum_t *cksum, int l)
4367 {
4368 	cksum_record_t *rec;
4369 
4370 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4371 	rec->cksum = *cksum;
4372 	rec->labels[l] = B_TRUE;
4373 
4374 	return (rec);
4375 }
4376 
4377 static cksum_record_t *
4378 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4379 {
4380 	cksum_record_t lookup = { .cksum = *cksum };
4381 	avl_index_t where;
4382 
4383 	return (avl_find(tree, &lookup, &where));
4384 }
4385 
4386 static cksum_record_t *
4387 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4388 {
4389 	cksum_record_t *rec;
4390 
4391 	rec = cksum_record_lookup(tree, cksum);
4392 	if (rec) {
4393 		rec->labels[l] = B_TRUE;
4394 	} else {
4395 		rec = cksum_record_alloc(cksum, l);
4396 		avl_add(tree, rec);
4397 	}
4398 
4399 	return (rec);
4400 }
4401 
4402 static int
4403 first_label(cksum_record_t *rec)
4404 {
4405 	for (int i = 0; i < VDEV_LABELS; i++)
4406 		if (rec->labels[i])
4407 			return (i);
4408 
4409 	return (-1);
4410 }
4411 
4412 static void
4413 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4414 {
4415 	fputs(prefix, stdout);
4416 	for (int i = 0; i < VDEV_LABELS; i++)
4417 		if (rec->labels[i] == B_TRUE)
4418 			printf("%d ", i);
4419 	putchar('\n');
4420 }
4421 
4422 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4423 
4424 typedef struct zdb_label {
4425 	vdev_label_t label;
4426 	uint64_t label_offset;
4427 	nvlist_t *config_nv;
4428 	cksum_record_t *config;
4429 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4430 	boolean_t header_printed;
4431 	boolean_t read_failed;
4432 	boolean_t cksum_valid;
4433 } zdb_label_t;
4434 
4435 static void
4436 print_label_header(zdb_label_t *label, int l)
4437 {
4438 
4439 	if (dump_opt['q'])
4440 		return;
4441 
4442 	if (label->header_printed == B_TRUE)
4443 		return;
4444 
4445 	(void) printf("------------------------------------\n");
4446 	(void) printf("LABEL %d %s\n", l,
4447 	    label->cksum_valid ? "" : "(Bad label cksum)");
4448 	(void) printf("------------------------------------\n");
4449 
4450 	label->header_printed = B_TRUE;
4451 }
4452 
4453 static void
4454 print_l2arc_header(void)
4455 {
4456 	(void) printf("------------------------------------\n");
4457 	(void) printf("L2ARC device header\n");
4458 	(void) printf("------------------------------------\n");
4459 }
4460 
4461 static void
4462 print_l2arc_log_blocks(void)
4463 {
4464 	(void) printf("------------------------------------\n");
4465 	(void) printf("L2ARC device log blocks\n");
4466 	(void) printf("------------------------------------\n");
4467 }
4468 
4469 static void
4470 dump_l2arc_log_entries(uint64_t log_entries,
4471     l2arc_log_ent_phys_t *le, uint64_t i)
4472 {
4473 	for (int j = 0; j < log_entries; j++) {
4474 		dva_t dva = le[j].le_dva;
4475 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4476 		    "vdev: %llu, offset: %llu\n",
4477 		    (u_longlong_t)i, j + 1,
4478 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4479 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4480 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4481 		(void) printf("|\t\t\t\tbirth: %llu\n",
4482 		    (u_longlong_t)le[j].le_birth);
4483 		(void) printf("|\t\t\t\tlsize: %llu\n",
4484 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4485 		(void) printf("|\t\t\t\tpsize: %llu\n",
4486 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4487 		(void) printf("|\t\t\t\tcompr: %llu\n",
4488 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4489 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4490 		    (u_longlong_t)(&le[j])->le_complevel);
4491 		(void) printf("|\t\t\t\ttype: %llu\n",
4492 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4493 		(void) printf("|\t\t\t\tprotected: %llu\n",
4494 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4495 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4496 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4497 		(void) printf("|\t\t\t\taddress: %llu\n",
4498 		    (u_longlong_t)le[j].le_daddr);
4499 		(void) printf("|\t\t\t\tARC state: %llu\n",
4500 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4501 		(void) printf("|\n");
4502 	}
4503 	(void) printf("\n");
4504 }
4505 
4506 static void
4507 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4508 {
4509 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4510 	(void) printf("|\t\tpayload_asize: %llu\n",
4511 	    (u_longlong_t)lbps->lbp_payload_asize);
4512 	(void) printf("|\t\tpayload_start: %llu\n",
4513 	    (u_longlong_t)lbps->lbp_payload_start);
4514 	(void) printf("|\t\tlsize: %llu\n",
4515 	    (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4516 	(void) printf("|\t\tasize: %llu\n",
4517 	    (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4518 	(void) printf("|\t\tcompralgo: %llu\n",
4519 	    (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4520 	(void) printf("|\t\tcksumalgo: %llu\n",
4521 	    (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4522 	(void) printf("|\n\n");
4523 }
4524 
4525 static void
4526 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4527     l2arc_dev_hdr_phys_t *rebuild)
4528 {
4529 	l2arc_log_blk_phys_t this_lb;
4530 	uint64_t asize;
4531 	l2arc_log_blkptr_t lbps[2];
4532 	abd_t *abd;
4533 	zio_cksum_t cksum;
4534 	int failed = 0;
4535 	l2arc_dev_t dev;
4536 
4537 	if (!dump_opt['q'])
4538 		print_l2arc_log_blocks();
4539 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4540 
4541 	dev.l2ad_evict = l2dhdr->dh_evict;
4542 	dev.l2ad_start = l2dhdr->dh_start;
4543 	dev.l2ad_end = l2dhdr->dh_end;
4544 
4545 	if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4546 		/* no log blocks to read */
4547 		if (!dump_opt['q']) {
4548 			(void) printf("No log blocks to read\n");
4549 			(void) printf("\n");
4550 		}
4551 		return;
4552 	} else {
4553 		dev.l2ad_hand = lbps[0].lbp_daddr +
4554 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4555 	}
4556 
4557 	dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4558 
4559 	for (;;) {
4560 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4561 			break;
4562 
4563 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4564 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4565 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4566 			if (!dump_opt['q']) {
4567 				(void) printf("Error while reading next log "
4568 				    "block\n\n");
4569 			}
4570 			break;
4571 		}
4572 
4573 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4574 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4575 			failed++;
4576 			if (!dump_opt['q']) {
4577 				(void) printf("Invalid cksum\n");
4578 				dump_l2arc_log_blkptr(&lbps[0]);
4579 			}
4580 			break;
4581 		}
4582 
4583 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4584 		case ZIO_COMPRESS_OFF:
4585 			break;
4586 		default:
4587 			abd = abd_alloc_for_io(asize, B_TRUE);
4588 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4589 			if (zio_decompress_data(L2BLK_GET_COMPRESS(
4590 			    (&lbps[0])->lbp_prop), abd, &this_lb,
4591 			    asize, sizeof (this_lb), NULL) != 0) {
4592 				(void) printf("L2ARC block decompression "
4593 				    "failed\n");
4594 				abd_free(abd);
4595 				goto out;
4596 			}
4597 			abd_free(abd);
4598 			break;
4599 		}
4600 
4601 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4602 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4603 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4604 			if (!dump_opt['q'])
4605 				(void) printf("Invalid log block magic\n\n");
4606 			break;
4607 		}
4608 
4609 		rebuild->dh_lb_count++;
4610 		rebuild->dh_lb_asize += asize;
4611 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4612 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4613 			    (u_longlong_t)rebuild->dh_lb_count,
4614 			    (u_longlong_t)this_lb.lb_magic);
4615 			dump_l2arc_log_blkptr(&lbps[0]);
4616 		}
4617 
4618 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4619 			dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4620 			    this_lb.lb_entries,
4621 			    rebuild->dh_lb_count);
4622 
4623 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4624 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4625 		    !dev.l2ad_first)
4626 			break;
4627 
4628 		lbps[0] = lbps[1];
4629 		lbps[1] = this_lb.lb_prev_lbp;
4630 	}
4631 out:
4632 	if (!dump_opt['q']) {
4633 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4634 		    (u_longlong_t)rebuild->dh_lb_count);
4635 		(void) printf("\t\t %d with invalid cksum\n", failed);
4636 		(void) printf("log_blk_asize:\t %llu\n\n",
4637 		    (u_longlong_t)rebuild->dh_lb_asize);
4638 	}
4639 }
4640 
4641 static int
4642 dump_l2arc_header(int fd)
4643 {
4644 	l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4645 	int error = B_FALSE;
4646 
4647 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4648 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4649 		error = B_TRUE;
4650 	} else {
4651 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4652 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4653 
4654 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4655 			error = B_TRUE;
4656 	}
4657 
4658 	if (error) {
4659 		(void) printf("L2ARC device header not found\n\n");
4660 		/* Do not return an error here for backward compatibility */
4661 		return (0);
4662 	} else if (!dump_opt['q']) {
4663 		print_l2arc_header();
4664 
4665 		(void) printf("    magic: %llu\n",
4666 		    (u_longlong_t)l2dhdr.dh_magic);
4667 		(void) printf("    version: %llu\n",
4668 		    (u_longlong_t)l2dhdr.dh_version);
4669 		(void) printf("    pool_guid: %llu\n",
4670 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4671 		(void) printf("    flags: %llu\n",
4672 		    (u_longlong_t)l2dhdr.dh_flags);
4673 		(void) printf("    start_lbps[0]: %llu\n",
4674 		    (u_longlong_t)
4675 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4676 		(void) printf("    start_lbps[1]: %llu\n",
4677 		    (u_longlong_t)
4678 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4679 		(void) printf("    log_blk_ent: %llu\n",
4680 		    (u_longlong_t)l2dhdr.dh_log_entries);
4681 		(void) printf("    start: %llu\n",
4682 		    (u_longlong_t)l2dhdr.dh_start);
4683 		(void) printf("    end: %llu\n",
4684 		    (u_longlong_t)l2dhdr.dh_end);
4685 		(void) printf("    evict: %llu\n",
4686 		    (u_longlong_t)l2dhdr.dh_evict);
4687 		(void) printf("    lb_asize_refcount: %llu\n",
4688 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4689 		(void) printf("    lb_count_refcount: %llu\n",
4690 		    (u_longlong_t)l2dhdr.dh_lb_count);
4691 		(void) printf("    trim_action_time: %llu\n",
4692 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4693 		(void) printf("    trim_state: %llu\n\n",
4694 		    (u_longlong_t)l2dhdr.dh_trim_state);
4695 	}
4696 
4697 	dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4698 	/*
4699 	 * The total aligned size of log blocks and the number of log blocks
4700 	 * reported in the header of the device may be less than what zdb
4701 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4702 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4703 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4704 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4705 	 * and dh_lb_count will be lower to begin with than what exists on the
4706 	 * device. This is normal and zdb should not exit with an error. The
4707 	 * opposite case should never happen though, the values reported in the
4708 	 * header should never be higher than what dump_l2arc_log_blocks() and
4709 	 * l2arc_rebuild() report. If this happens there is a leak in the
4710 	 * accounting of log blocks.
4711 	 */
4712 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4713 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4714 		return (1);
4715 
4716 	return (0);
4717 }
4718 
4719 static void
4720 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4721 {
4722 	if (dump_opt['q'])
4723 		return;
4724 
4725 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4726 		return;
4727 
4728 	print_label_header(label, l);
4729 	dump_nvlist(label->config_nv, 4);
4730 	print_label_numbers("    labels = ", label->config);
4731 
4732 	if (dump_opt['l'] >= 2)
4733 		dump_nvlist_stats(label->config_nv, buflen);
4734 }
4735 
4736 #define	ZDB_MAX_UB_HEADER_SIZE 32
4737 
4738 static void
4739 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4740 {
4741 
4742 	vdev_t vd;
4743 	char header[ZDB_MAX_UB_HEADER_SIZE];
4744 
4745 	vd.vdev_ashift = ashift;
4746 	vd.vdev_top = &vd;
4747 
4748 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4749 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4750 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4751 		cksum_record_t *rec = label->uberblocks[i];
4752 
4753 		if (rec == NULL) {
4754 			if (dump_opt['u'] >= 2) {
4755 				print_label_header(label, label_num);
4756 				(void) printf("    Uberblock[%d] invalid\n", i);
4757 			}
4758 			continue;
4759 		}
4760 
4761 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4762 			continue;
4763 
4764 		if ((dump_opt['u'] < 4) &&
4765 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4766 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4767 			continue;
4768 
4769 		print_label_header(label, label_num);
4770 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4771 		    "    Uberblock[%d]\n", i);
4772 		dump_uberblock(ub, header, "");
4773 		print_label_numbers("        labels = ", rec);
4774 	}
4775 }
4776 
4777 static char curpath[PATH_MAX];
4778 
4779 /*
4780  * Iterate through the path components, recursively passing
4781  * current one's obj and remaining path until we find the obj
4782  * for the last one.
4783  */
4784 static int
4785 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4786 {
4787 	int err;
4788 	boolean_t header = B_TRUE;
4789 	uint64_t child_obj;
4790 	char *s;
4791 	dmu_buf_t *db;
4792 	dmu_object_info_t doi;
4793 
4794 	if ((s = strchr(name, '/')) != NULL)
4795 		*s = '\0';
4796 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4797 
4798 	(void) strlcat(curpath, name, sizeof (curpath));
4799 
4800 	if (err != 0) {
4801 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4802 		    curpath, strerror(err));
4803 		return (err);
4804 	}
4805 
4806 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4807 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4808 	if (err != 0) {
4809 		(void) fprintf(stderr,
4810 		    "failed to get SA dbuf for obj %llu: %s\n",
4811 		    (u_longlong_t)child_obj, strerror(err));
4812 		return (EINVAL);
4813 	}
4814 	dmu_object_info_from_db(db, &doi);
4815 	sa_buf_rele(db, FTAG);
4816 
4817 	if (doi.doi_bonus_type != DMU_OT_SA &&
4818 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
4819 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4820 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
4821 		return (EINVAL);
4822 	}
4823 
4824 	if (dump_opt['v'] > 6) {
4825 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
4826 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
4827 		    doi.doi_bonus_type);
4828 	}
4829 
4830 	(void) strlcat(curpath, "/", sizeof (curpath));
4831 
4832 	switch (doi.doi_type) {
4833 	case DMU_OT_DIRECTORY_CONTENTS:
4834 		if (s != NULL && *(s + 1) != '\0')
4835 			return (dump_path_impl(os, child_obj, s + 1, retobj));
4836 		zfs_fallthrough;
4837 	case DMU_OT_PLAIN_FILE_CONTENTS:
4838 		if (retobj != NULL) {
4839 			*retobj = child_obj;
4840 		} else {
4841 			dump_object(os, child_obj, dump_opt['v'], &header,
4842 			    NULL, 0);
4843 		}
4844 		return (0);
4845 	default:
4846 		(void) fprintf(stderr, "object %llu has non-file/directory "
4847 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
4848 		break;
4849 	}
4850 
4851 	return (EINVAL);
4852 }
4853 
4854 /*
4855  * Dump the blocks for the object specified by path inside the dataset.
4856  */
4857 static int
4858 dump_path(char *ds, char *path, uint64_t *retobj)
4859 {
4860 	int err;
4861 	objset_t *os;
4862 	uint64_t root_obj;
4863 
4864 	err = open_objset(ds, FTAG, &os);
4865 	if (err != 0)
4866 		return (err);
4867 
4868 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4869 	if (err != 0) {
4870 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
4871 		    strerror(err));
4872 		close_objset(os, FTAG);
4873 		return (EINVAL);
4874 	}
4875 
4876 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4877 
4878 	err = dump_path_impl(os, root_obj, path, retobj);
4879 
4880 	close_objset(os, FTAG);
4881 	return (err);
4882 }
4883 
4884 static int
4885 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
4886 {
4887 	const char *p = (const char *)buf;
4888 	ssize_t nwritten;
4889 
4890 	(void) os;
4891 	(void) arg;
4892 
4893 	/* Write the data out, handling short writes and signals. */
4894 	while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
4895 		if (nwritten < 0) {
4896 			if (errno == EINTR)
4897 				continue;
4898 			return (errno);
4899 		}
4900 		p += nwritten;
4901 		len -= nwritten;
4902 	}
4903 
4904 	return (0);
4905 }
4906 
4907 static void
4908 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
4909 {
4910 	boolean_t embed = B_FALSE;
4911 	boolean_t large_block = B_FALSE;
4912 	boolean_t compress = B_FALSE;
4913 	boolean_t raw = B_FALSE;
4914 
4915 	const char *c;
4916 	for (c = flagstr; c != NULL && *c != '\0'; c++) {
4917 		switch (*c) {
4918 			case 'e':
4919 				embed = B_TRUE;
4920 				break;
4921 			case 'L':
4922 				large_block = B_TRUE;
4923 				break;
4924 			case 'c':
4925 				compress = B_TRUE;
4926 				break;
4927 			case 'w':
4928 				raw = B_TRUE;
4929 				break;
4930 			default:
4931 				fprintf(stderr, "dump_backup: invalid flag "
4932 				    "'%c'\n", *c);
4933 				return;
4934 		}
4935 	}
4936 
4937 	if (isatty(STDOUT_FILENO)) {
4938 		fprintf(stderr, "dump_backup: stream cannot be written "
4939 		    "to a terminal\n");
4940 		return;
4941 	}
4942 
4943 	offset_t off = 0;
4944 	dmu_send_outparams_t out = {
4945 	    .dso_outfunc = dump_backup_bytes,
4946 	    .dso_dryrun  = B_FALSE,
4947 	};
4948 
4949 	int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
4950 	    large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
4951 	    &off, &out);
4952 	if (err != 0) {
4953 		fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
4954 		    strerror(err));
4955 		return;
4956 	}
4957 }
4958 
4959 static int
4960 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
4961 {
4962 	int err = 0;
4963 	uint64_t size, readsize, oursize, offset;
4964 	ssize_t writesize;
4965 	sa_handle_t *hdl;
4966 
4967 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
4968 	    destfile);
4969 
4970 	VERIFY3P(os, ==, sa_os);
4971 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
4972 		(void) printf("Failed to get handle for SA znode\n");
4973 		return (err);
4974 	}
4975 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
4976 		(void) sa_handle_destroy(hdl);
4977 		return (err);
4978 	}
4979 	(void) sa_handle_destroy(hdl);
4980 
4981 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
4982 	    size);
4983 	if (size == 0) {
4984 		return (EINVAL);
4985 	}
4986 
4987 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
4988 	if (fd == -1)
4989 		return (errno);
4990 	/*
4991 	 * We cap the size at 1 mebibyte here to prevent
4992 	 * allocation failures and nigh-infinite printing if the
4993 	 * object is extremely large.
4994 	 */
4995 	oursize = MIN(size, 1 << 20);
4996 	offset = 0;
4997 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
4998 	if (buf == NULL) {
4999 		(void) close(fd);
5000 		return (ENOMEM);
5001 	}
5002 
5003 	while (offset < size) {
5004 		readsize = MIN(size - offset, 1 << 20);
5005 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5006 		if (err != 0) {
5007 			(void) printf("got error %u from dmu_read\n", err);
5008 			kmem_free(buf, oursize);
5009 			(void) close(fd);
5010 			return (err);
5011 		}
5012 		if (dump_opt['v'] > 3) {
5013 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5014 			    " error=%d\n", offset, readsize, err);
5015 		}
5016 
5017 		writesize = write(fd, buf, readsize);
5018 		if (writesize < 0) {
5019 			err = errno;
5020 			break;
5021 		} else if (writesize != readsize) {
5022 			/* Incomplete write */
5023 			(void) fprintf(stderr, "Short write, only wrote %llu of"
5024 			    " %" PRIu64 " bytes, exiting...\n",
5025 			    (u_longlong_t)writesize, readsize);
5026 			break;
5027 		}
5028 
5029 		offset += readsize;
5030 	}
5031 
5032 	(void) close(fd);
5033 
5034 	if (buf != NULL)
5035 		kmem_free(buf, oursize);
5036 
5037 	return (err);
5038 }
5039 
5040 static boolean_t
5041 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5042 {
5043 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5044 	zio_cksum_t expected_cksum;
5045 	zio_cksum_t actual_cksum;
5046 	zio_cksum_t verifier;
5047 	zio_eck_t *eck;
5048 	int byteswap;
5049 
5050 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5051 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5052 
5053 	offset += offsetof(vdev_label_t, vl_vdev_phys);
5054 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5055 
5056 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5057 	if (byteswap)
5058 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5059 
5060 	expected_cksum = eck->zec_cksum;
5061 	eck->zec_cksum = verifier;
5062 
5063 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5064 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5065 	abd_free(abd);
5066 
5067 	if (byteswap)
5068 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5069 
5070 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5071 		return (B_TRUE);
5072 
5073 	return (B_FALSE);
5074 }
5075 
5076 static int
5077 dump_label(const char *dev)
5078 {
5079 	char path[MAXPATHLEN];
5080 	zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5081 	uint64_t psize, ashift, l2cache;
5082 	struct stat64 statbuf;
5083 	boolean_t config_found = B_FALSE;
5084 	boolean_t error = B_FALSE;
5085 	boolean_t read_l2arc_header = B_FALSE;
5086 	avl_tree_t config_tree;
5087 	avl_tree_t uberblock_tree;
5088 	void *node, *cookie;
5089 	int fd;
5090 
5091 	/*
5092 	 * Check if we were given absolute path and use it as is.
5093 	 * Otherwise if the provided vdev name doesn't point to a file,
5094 	 * try prepending expected disk paths and partition numbers.
5095 	 */
5096 	(void) strlcpy(path, dev, sizeof (path));
5097 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5098 		int error;
5099 
5100 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5101 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
5102 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
5103 				error = ENOENT;
5104 		}
5105 
5106 		if (error || (stat64(path, &statbuf) != 0)) {
5107 			(void) printf("failed to find device %s, try "
5108 			    "specifying absolute path instead\n", dev);
5109 			return (1);
5110 		}
5111 	}
5112 
5113 	if ((fd = open64(path, O_RDONLY)) < 0) {
5114 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
5115 		exit(1);
5116 	}
5117 
5118 	if (fstat64_blk(fd, &statbuf) != 0) {
5119 		(void) printf("failed to stat '%s': %s\n", path,
5120 		    strerror(errno));
5121 		(void) close(fd);
5122 		exit(1);
5123 	}
5124 
5125 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5126 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
5127 		    strerror(errno));
5128 
5129 	avl_create(&config_tree, cksum_record_compare,
5130 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5131 	avl_create(&uberblock_tree, cksum_record_compare,
5132 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5133 
5134 	psize = statbuf.st_size;
5135 	psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
5136 	ashift = SPA_MINBLOCKSHIFT;
5137 
5138 	/*
5139 	 * 1. Read the label from disk
5140 	 * 2. Verify label cksum
5141 	 * 3. Unpack the configuration and insert in config tree.
5142 	 * 4. Traverse all uberblocks and insert in uberblock tree.
5143 	 */
5144 	for (int l = 0; l < VDEV_LABELS; l++) {
5145 		zdb_label_t *label = &labels[l];
5146 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
5147 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5148 		nvlist_t *config;
5149 		cksum_record_t *rec;
5150 		zio_cksum_t cksum;
5151 		vdev_t vd;
5152 
5153 		label->label_offset = vdev_label_offset(psize, l, 0);
5154 
5155 		if (pread64(fd, &label->label, sizeof (label->label),
5156 		    label->label_offset) != sizeof (label->label)) {
5157 			if (!dump_opt['q'])
5158 				(void) printf("failed to read label %d\n", l);
5159 			label->read_failed = B_TRUE;
5160 			error = B_TRUE;
5161 			continue;
5162 		}
5163 
5164 		label->read_failed = B_FALSE;
5165 		label->cksum_valid = label_cksum_valid(&label->label,
5166 		    label->label_offset);
5167 
5168 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5169 			nvlist_t *vdev_tree = NULL;
5170 			size_t size;
5171 
5172 			if ((nvlist_lookup_nvlist(config,
5173 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5174 			    (nvlist_lookup_uint64(vdev_tree,
5175 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5176 				ashift = SPA_MINBLOCKSHIFT;
5177 
5178 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5179 				size = buflen;
5180 
5181 			/* If the device is a cache device clear the header. */
5182 			if (!read_l2arc_header) {
5183 				if (nvlist_lookup_uint64(config,
5184 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5185 				    l2cache == POOL_STATE_L2CACHE) {
5186 					read_l2arc_header = B_TRUE;
5187 				}
5188 			}
5189 
5190 			fletcher_4_native_varsize(buf, size, &cksum);
5191 			rec = cksum_record_insert(&config_tree, &cksum, l);
5192 
5193 			label->config = rec;
5194 			label->config_nv = config;
5195 			config_found = B_TRUE;
5196 		} else {
5197 			error = B_TRUE;
5198 		}
5199 
5200 		vd.vdev_ashift = ashift;
5201 		vd.vdev_top = &vd;
5202 
5203 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5204 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5205 			uberblock_t *ub = (void *)((char *)label + uoff);
5206 
5207 			if (uberblock_verify(ub))
5208 				continue;
5209 
5210 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5211 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5212 
5213 			label->uberblocks[i] = rec;
5214 		}
5215 	}
5216 
5217 	/*
5218 	 * Dump the label and uberblocks.
5219 	 */
5220 	for (int l = 0; l < VDEV_LABELS; l++) {
5221 		zdb_label_t *label = &labels[l];
5222 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5223 
5224 		if (label->read_failed == B_TRUE)
5225 			continue;
5226 
5227 		if (label->config_nv) {
5228 			dump_config_from_label(label, buflen, l);
5229 		} else {
5230 			if (!dump_opt['q'])
5231 				(void) printf("failed to unpack label %d\n", l);
5232 		}
5233 
5234 		if (dump_opt['u'])
5235 			dump_label_uberblocks(label, ashift, l);
5236 
5237 		nvlist_free(label->config_nv);
5238 	}
5239 
5240 	/*
5241 	 * Dump the L2ARC header, if existent.
5242 	 */
5243 	if (read_l2arc_header)
5244 		error |= dump_l2arc_header(fd);
5245 
5246 	cookie = NULL;
5247 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5248 		umem_free(node, sizeof (cksum_record_t));
5249 
5250 	cookie = NULL;
5251 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5252 		umem_free(node, sizeof (cksum_record_t));
5253 
5254 	avl_destroy(&config_tree);
5255 	avl_destroy(&uberblock_tree);
5256 
5257 	(void) close(fd);
5258 
5259 	return (config_found == B_FALSE ? 2 :
5260 	    (error == B_TRUE ? 1 : 0));
5261 }
5262 
5263 static uint64_t dataset_feature_count[SPA_FEATURES];
5264 static uint64_t global_feature_count[SPA_FEATURES];
5265 static uint64_t remap_deadlist_count = 0;
5266 
5267 static int
5268 dump_one_objset(const char *dsname, void *arg)
5269 {
5270 	(void) arg;
5271 	int error;
5272 	objset_t *os;
5273 	spa_feature_t f;
5274 
5275 	error = open_objset(dsname, FTAG, &os);
5276 	if (error != 0)
5277 		return (0);
5278 
5279 	for (f = 0; f < SPA_FEATURES; f++) {
5280 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5281 			continue;
5282 		ASSERT(spa_feature_table[f].fi_flags &
5283 		    ZFEATURE_FLAG_PER_DATASET);
5284 		dataset_feature_count[f]++;
5285 	}
5286 
5287 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5288 		remap_deadlist_count++;
5289 	}
5290 
5291 	for (dsl_bookmark_node_t *dbn =
5292 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5293 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5294 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5295 		if (dbn->dbn_phys.zbm_redaction_obj != 0)
5296 			global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
5297 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5298 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5299 	}
5300 
5301 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5302 	    !dmu_objset_is_snapshot(os)) {
5303 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5304 	}
5305 
5306 	dump_objset(os);
5307 	close_objset(os, FTAG);
5308 	fuid_table_destroy();
5309 	return (0);
5310 }
5311 
5312 /*
5313  * Block statistics.
5314  */
5315 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5316 typedef struct zdb_blkstats {
5317 	uint64_t zb_asize;
5318 	uint64_t zb_lsize;
5319 	uint64_t zb_psize;
5320 	uint64_t zb_count;
5321 	uint64_t zb_gangs;
5322 	uint64_t zb_ditto_samevdev;
5323 	uint64_t zb_ditto_same_ms;
5324 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5325 } zdb_blkstats_t;
5326 
5327 /*
5328  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5329  */
5330 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5331 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5332 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5333 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5334 
5335 static const char *zdb_ot_extname[] = {
5336 	"deferred free",
5337 	"dedup ditto",
5338 	"other",
5339 	"Total",
5340 };
5341 
5342 #define	ZB_TOTAL	DN_MAX_LEVELS
5343 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5344 
5345 typedef struct zdb_cb {
5346 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5347 	uint64_t	zcb_removing_size;
5348 	uint64_t	zcb_checkpoint_size;
5349 	uint64_t	zcb_dedup_asize;
5350 	uint64_t	zcb_dedup_blocks;
5351 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5352 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5353 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5354 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5355 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5356 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5357 	uint64_t	zcb_psize_total;
5358 	uint64_t	zcb_lsize_total;
5359 	uint64_t	zcb_asize_total;
5360 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5361 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5362 	    [BPE_PAYLOAD_SIZE + 1];
5363 	uint64_t	zcb_start;
5364 	hrtime_t	zcb_lastprint;
5365 	uint64_t	zcb_totalasize;
5366 	uint64_t	zcb_errors[256];
5367 	int		zcb_readfails;
5368 	int		zcb_haderrors;
5369 	spa_t		*zcb_spa;
5370 	uint32_t	**zcb_vd_obsolete_counts;
5371 } zdb_cb_t;
5372 
5373 /* test if two DVA offsets from same vdev are within the same metaslab */
5374 static boolean_t
5375 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5376 {
5377 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5378 	uint64_t ms_shift = vd->vdev_ms_shift;
5379 
5380 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5381 }
5382 
5383 /*
5384  * Used to simplify reporting of the histogram data.
5385  */
5386 typedef struct one_histo {
5387 	const char *name;
5388 	uint64_t *count;
5389 	uint64_t *len;
5390 	uint64_t cumulative;
5391 } one_histo_t;
5392 
5393 /*
5394  * The number of separate histograms processed for psize, lsize and asize.
5395  */
5396 #define	NUM_HISTO 3
5397 
5398 /*
5399  * This routine will create a fixed column size output of three different
5400  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5401  * the count, length and cumulative length of the psize, lsize and
5402  * asize blocks.
5403  *
5404  * All three types of blocks are listed on a single line
5405  *
5406  * By default the table is printed in nicenumber format (e.g. 123K) but
5407  * if the '-P' parameter is specified then the full raw number (parseable)
5408  * is printed out.
5409  */
5410 static void
5411 dump_size_histograms(zdb_cb_t *zcb)
5412 {
5413 	/*
5414 	 * A temporary buffer that allows us to convert a number into
5415 	 * a string using zdb_nicenumber to allow either raw or human
5416 	 * readable numbers to be output.
5417 	 */
5418 	char numbuf[32];
5419 
5420 	/*
5421 	 * Define titles which are used in the headers of the tables
5422 	 * printed by this routine.
5423 	 */
5424 	const char blocksize_title1[] = "block";
5425 	const char blocksize_title2[] = "size";
5426 	const char count_title[] = "Count";
5427 	const char length_title[] = "Size";
5428 	const char cumulative_title[] = "Cum.";
5429 
5430 	/*
5431 	 * Setup the histogram arrays (psize, lsize, and asize).
5432 	 */
5433 	one_histo_t parm_histo[NUM_HISTO];
5434 
5435 	parm_histo[0].name = "psize";
5436 	parm_histo[0].count = zcb->zcb_psize_count;
5437 	parm_histo[0].len = zcb->zcb_psize_len;
5438 	parm_histo[0].cumulative = 0;
5439 
5440 	parm_histo[1].name = "lsize";
5441 	parm_histo[1].count = zcb->zcb_lsize_count;
5442 	parm_histo[1].len = zcb->zcb_lsize_len;
5443 	parm_histo[1].cumulative = 0;
5444 
5445 	parm_histo[2].name = "asize";
5446 	parm_histo[2].count = zcb->zcb_asize_count;
5447 	parm_histo[2].len = zcb->zcb_asize_len;
5448 	parm_histo[2].cumulative = 0;
5449 
5450 
5451 	(void) printf("\nBlock Size Histogram\n");
5452 	/*
5453 	 * Print the first line titles
5454 	 */
5455 	if (dump_opt['P'])
5456 		(void) printf("\n%s\t", blocksize_title1);
5457 	else
5458 		(void) printf("\n%7s   ", blocksize_title1);
5459 
5460 	for (int j = 0; j < NUM_HISTO; j++) {
5461 		if (dump_opt['P']) {
5462 			if (j < NUM_HISTO - 1) {
5463 				(void) printf("%s\t\t\t", parm_histo[j].name);
5464 			} else {
5465 				/* Don't print trailing spaces */
5466 				(void) printf("  %s", parm_histo[j].name);
5467 			}
5468 		} else {
5469 			if (j < NUM_HISTO - 1) {
5470 				/* Left aligned strings in the output */
5471 				(void) printf("%-7s              ",
5472 				    parm_histo[j].name);
5473 			} else {
5474 				/* Don't print trailing spaces */
5475 				(void) printf("%s", parm_histo[j].name);
5476 			}
5477 		}
5478 	}
5479 	(void) printf("\n");
5480 
5481 	/*
5482 	 * Print the second line titles
5483 	 */
5484 	if (dump_opt['P']) {
5485 		(void) printf("%s\t", blocksize_title2);
5486 	} else {
5487 		(void) printf("%7s ", blocksize_title2);
5488 	}
5489 
5490 	for (int i = 0; i < NUM_HISTO; i++) {
5491 		if (dump_opt['P']) {
5492 			(void) printf("%s\t%s\t%s\t",
5493 			    count_title, length_title, cumulative_title);
5494 		} else {
5495 			(void) printf("%7s%7s%7s",
5496 			    count_title, length_title, cumulative_title);
5497 		}
5498 	}
5499 	(void) printf("\n");
5500 
5501 	/*
5502 	 * Print the rows
5503 	 */
5504 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5505 
5506 		/*
5507 		 * Print the first column showing the blocksize
5508 		 */
5509 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5510 
5511 		if (dump_opt['P']) {
5512 			printf("%s", numbuf);
5513 		} else {
5514 			printf("%7s:", numbuf);
5515 		}
5516 
5517 		/*
5518 		 * Print the remaining set of 3 columns per size:
5519 		 * for psize, lsize and asize
5520 		 */
5521 		for (int j = 0; j < NUM_HISTO; j++) {
5522 			parm_histo[j].cumulative += parm_histo[j].len[i];
5523 
5524 			zdb_nicenum(parm_histo[j].count[i],
5525 			    numbuf, sizeof (numbuf));
5526 			if (dump_opt['P'])
5527 				(void) printf("\t%s", numbuf);
5528 			else
5529 				(void) printf("%7s", numbuf);
5530 
5531 			zdb_nicenum(parm_histo[j].len[i],
5532 			    numbuf, sizeof (numbuf));
5533 			if (dump_opt['P'])
5534 				(void) printf("\t%s", numbuf);
5535 			else
5536 				(void) printf("%7s", numbuf);
5537 
5538 			zdb_nicenum(parm_histo[j].cumulative,
5539 			    numbuf, sizeof (numbuf));
5540 			if (dump_opt['P'])
5541 				(void) printf("\t%s", numbuf);
5542 			else
5543 				(void) printf("%7s", numbuf);
5544 		}
5545 		(void) printf("\n");
5546 	}
5547 }
5548 
5549 static void
5550 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5551     dmu_object_type_t type)
5552 {
5553 	uint64_t refcnt = 0;
5554 	int i;
5555 
5556 	ASSERT(type < ZDB_OT_TOTAL);
5557 
5558 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5559 		return;
5560 
5561 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5562 
5563 	for (i = 0; i < 4; i++) {
5564 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5565 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5566 		int equal;
5567 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5568 
5569 		zb->zb_asize += BP_GET_ASIZE(bp);
5570 		zb->zb_lsize += BP_GET_LSIZE(bp);
5571 		zb->zb_psize += BP_GET_PSIZE(bp);
5572 		zb->zb_count++;
5573 
5574 		/*
5575 		 * The histogram is only big enough to record blocks up to
5576 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5577 		 * "other", bucket.
5578 		 */
5579 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5580 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5581 		zb->zb_psize_histogram[idx]++;
5582 
5583 		zb->zb_gangs += BP_COUNT_GANG(bp);
5584 
5585 		switch (BP_GET_NDVAS(bp)) {
5586 		case 2:
5587 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5588 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5589 				zb->zb_ditto_samevdev++;
5590 
5591 				if (same_metaslab(zcb->zcb_spa,
5592 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5593 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5594 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5595 					zb->zb_ditto_same_ms++;
5596 			}
5597 			break;
5598 		case 3:
5599 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5600 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5601 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5602 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5603 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5604 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5605 			if (equal != 0) {
5606 				zb->zb_ditto_samevdev++;
5607 
5608 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5609 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5610 				    same_metaslab(zcb->zcb_spa,
5611 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5612 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5613 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5614 					zb->zb_ditto_same_ms++;
5615 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5616 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5617 				    same_metaslab(zcb->zcb_spa,
5618 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5619 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5620 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5621 					zb->zb_ditto_same_ms++;
5622 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5623 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5624 				    same_metaslab(zcb->zcb_spa,
5625 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5626 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5627 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5628 					zb->zb_ditto_same_ms++;
5629 			}
5630 			break;
5631 		}
5632 	}
5633 
5634 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5635 
5636 	if (BP_IS_EMBEDDED(bp)) {
5637 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5638 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5639 		    [BPE_GET_PSIZE(bp)]++;
5640 		return;
5641 	}
5642 	/*
5643 	 * The binning histogram bins by powers of two up to
5644 	 * SPA_MAXBLOCKSIZE rather than creating bins for
5645 	 * every possible blocksize found in the pool.
5646 	 */
5647 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5648 
5649 	zcb->zcb_psize_count[bin]++;
5650 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5651 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5652 
5653 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5654 
5655 	zcb->zcb_lsize_count[bin]++;
5656 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5657 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5658 
5659 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5660 
5661 	zcb->zcb_asize_count[bin]++;
5662 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5663 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5664 
5665 	if (dump_opt['L'])
5666 		return;
5667 
5668 	if (BP_GET_DEDUP(bp)) {
5669 		ddt_t *ddt;
5670 		ddt_entry_t *dde;
5671 
5672 		ddt = ddt_select(zcb->zcb_spa, bp);
5673 		ddt_enter(ddt);
5674 		dde = ddt_lookup(ddt, bp, B_FALSE);
5675 
5676 		if (dde == NULL) {
5677 			refcnt = 0;
5678 		} else {
5679 			ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5680 			ddt_phys_decref(ddp);
5681 			refcnt = ddp->ddp_refcnt;
5682 			if (ddt_phys_total_refcnt(dde) == 0)
5683 				ddt_remove(ddt, dde);
5684 		}
5685 		ddt_exit(ddt);
5686 	}
5687 
5688 	VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5689 	    refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5690 	    bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5691 }
5692 
5693 static void
5694 zdb_blkptr_done(zio_t *zio)
5695 {
5696 	spa_t *spa = zio->io_spa;
5697 	blkptr_t *bp = zio->io_bp;
5698 	int ioerr = zio->io_error;
5699 	zdb_cb_t *zcb = zio->io_private;
5700 	zbookmark_phys_t *zb = &zio->io_bookmark;
5701 
5702 	mutex_enter(&spa->spa_scrub_lock);
5703 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5704 	cv_broadcast(&spa->spa_scrub_io_cv);
5705 
5706 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5707 		char blkbuf[BP_SPRINTF_LEN];
5708 
5709 		zcb->zcb_haderrors = 1;
5710 		zcb->zcb_errors[ioerr]++;
5711 
5712 		if (dump_opt['b'] >= 2)
5713 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5714 		else
5715 			blkbuf[0] = '\0';
5716 
5717 		(void) printf("zdb_blkptr_cb: "
5718 		    "Got error %d reading "
5719 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5720 		    ioerr,
5721 		    (u_longlong_t)zb->zb_objset,
5722 		    (u_longlong_t)zb->zb_object,
5723 		    (u_longlong_t)zb->zb_level,
5724 		    (u_longlong_t)zb->zb_blkid,
5725 		    blkbuf);
5726 	}
5727 	mutex_exit(&spa->spa_scrub_lock);
5728 
5729 	abd_free(zio->io_abd);
5730 }
5731 
5732 static int
5733 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5734     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5735 {
5736 	zdb_cb_t *zcb = arg;
5737 	dmu_object_type_t type;
5738 	boolean_t is_metadata;
5739 
5740 	if (zb->zb_level == ZB_DNODE_LEVEL)
5741 		return (0);
5742 
5743 	if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5744 		char blkbuf[BP_SPRINTF_LEN];
5745 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5746 		(void) printf("objset %llu object %llu "
5747 		    "level %lld offset 0x%llx %s\n",
5748 		    (u_longlong_t)zb->zb_objset,
5749 		    (u_longlong_t)zb->zb_object,
5750 		    (longlong_t)zb->zb_level,
5751 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
5752 		    blkbuf);
5753 	}
5754 
5755 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5756 		return (0);
5757 
5758 	type = BP_GET_TYPE(bp);
5759 
5760 	zdb_count_block(zcb, zilog, bp,
5761 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5762 
5763 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5764 
5765 	if (!BP_IS_EMBEDDED(bp) &&
5766 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5767 		size_t size = BP_GET_PSIZE(bp);
5768 		abd_t *abd = abd_alloc(size, B_FALSE);
5769 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5770 
5771 		/* If it's an intent log block, failure is expected. */
5772 		if (zb->zb_level == ZB_ZIL_LEVEL)
5773 			flags |= ZIO_FLAG_SPECULATIVE;
5774 
5775 		mutex_enter(&spa->spa_scrub_lock);
5776 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
5777 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5778 		spa->spa_load_verify_bytes += size;
5779 		mutex_exit(&spa->spa_scrub_lock);
5780 
5781 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
5782 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5783 	}
5784 
5785 	zcb->zcb_readfails = 0;
5786 
5787 	/* only call gethrtime() every 100 blocks */
5788 	static int iters;
5789 	if (++iters > 100)
5790 		iters = 0;
5791 	else
5792 		return (0);
5793 
5794 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5795 		uint64_t now = gethrtime();
5796 		char buf[10];
5797 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5798 		uint64_t kb_per_sec =
5799 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5800 		uint64_t sec_remaining =
5801 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5802 
5803 		/* make sure nicenum has enough space */
5804 		_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5805 
5806 		zfs_nicebytes(bytes, buf, sizeof (buf));
5807 		(void) fprintf(stderr,
5808 		    "\r%5s completed (%4"PRIu64"MB/s) "
5809 		    "estimated time remaining: "
5810 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
5811 		    buf, kb_per_sec / 1024,
5812 		    sec_remaining / 60 / 60,
5813 		    sec_remaining / 60 % 60,
5814 		    sec_remaining % 60);
5815 
5816 		zcb->zcb_lastprint = now;
5817 	}
5818 
5819 	return (0);
5820 }
5821 
5822 static void
5823 zdb_leak(void *arg, uint64_t start, uint64_t size)
5824 {
5825 	vdev_t *vd = arg;
5826 
5827 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5828 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5829 }
5830 
5831 static metaslab_ops_t zdb_metaslab_ops = {
5832 	NULL	/* alloc */
5833 };
5834 
5835 static int
5836 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5837     uint64_t txg, void *arg)
5838 {
5839 	spa_vdev_removal_t *svr = arg;
5840 
5841 	uint64_t offset = sme->sme_offset;
5842 	uint64_t size = sme->sme_run;
5843 
5844 	/* skip vdevs we don't care about */
5845 	if (sme->sme_vdev != svr->svr_vdev_id)
5846 		return (0);
5847 
5848 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5849 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5850 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5851 
5852 	if (txg < metaslab_unflushed_txg(ms))
5853 		return (0);
5854 
5855 	if (sme->sme_type == SM_ALLOC)
5856 		range_tree_add(svr->svr_allocd_segs, offset, size);
5857 	else
5858 		range_tree_remove(svr->svr_allocd_segs, offset, size);
5859 
5860 	return (0);
5861 }
5862 
5863 static void
5864 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5865     uint64_t size, void *arg)
5866 {
5867 	(void) inner_offset, (void) arg;
5868 
5869 	/*
5870 	 * This callback was called through a remap from
5871 	 * a device being removed. Therefore, the vdev that
5872 	 * this callback is applied to is a concrete
5873 	 * vdev.
5874 	 */
5875 	ASSERT(vdev_is_concrete(vd));
5876 
5877 	VERIFY0(metaslab_claim_impl(vd, offset, size,
5878 	    spa_min_claim_txg(vd->vdev_spa)));
5879 }
5880 
5881 static void
5882 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
5883 {
5884 	vdev_t *vd = arg;
5885 
5886 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
5887 	    claim_segment_impl_cb, NULL);
5888 }
5889 
5890 /*
5891  * After accounting for all allocated blocks that are directly referenced,
5892  * we might have missed a reference to a block from a partially complete
5893  * (and thus unused) indirect mapping object. We perform a secondary pass
5894  * through the metaslabs we have already mapped and claim the destination
5895  * blocks.
5896  */
5897 static void
5898 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
5899 {
5900 	if (dump_opt['L'])
5901 		return;
5902 
5903 	if (spa->spa_vdev_removal == NULL)
5904 		return;
5905 
5906 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5907 
5908 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
5909 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
5910 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5911 
5912 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
5913 
5914 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
5915 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
5916 		metaslab_t *msp = vd->vdev_ms[msi];
5917 
5918 		ASSERT0(range_tree_space(allocs));
5919 		if (msp->ms_sm != NULL)
5920 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
5921 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
5922 	}
5923 	range_tree_destroy(allocs);
5924 
5925 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
5926 
5927 	/*
5928 	 * Clear everything past what has been synced,
5929 	 * because we have not allocated mappings for
5930 	 * it yet.
5931 	 */
5932 	range_tree_clear(svr->svr_allocd_segs,
5933 	    vdev_indirect_mapping_max_offset(vim),
5934 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
5935 
5936 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
5937 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
5938 
5939 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5940 }
5941 
5942 static int
5943 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
5944     dmu_tx_t *tx)
5945 {
5946 	(void) tx;
5947 	zdb_cb_t *zcb = arg;
5948 	spa_t *spa = zcb->zcb_spa;
5949 	vdev_t *vd;
5950 	const dva_t *dva = &bp->blk_dva[0];
5951 
5952 	ASSERT(!bp_freed);
5953 	ASSERT(!dump_opt['L']);
5954 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
5955 
5956 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5957 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
5958 	ASSERT3P(vd, !=, NULL);
5959 	spa_config_exit(spa, SCL_VDEV, FTAG);
5960 
5961 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
5962 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
5963 
5964 	vdev_indirect_mapping_increment_obsolete_count(
5965 	    vd->vdev_indirect_mapping,
5966 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
5967 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
5968 
5969 	return (0);
5970 }
5971 
5972 static uint32_t *
5973 zdb_load_obsolete_counts(vdev_t *vd)
5974 {
5975 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5976 	spa_t *spa = vd->vdev_spa;
5977 	spa_condensing_indirect_phys_t *scip =
5978 	    &spa->spa_condensing_indirect_phys;
5979 	uint64_t obsolete_sm_object;
5980 	uint32_t *counts;
5981 
5982 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
5983 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
5984 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
5985 	if (vd->vdev_obsolete_sm != NULL) {
5986 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5987 		    vd->vdev_obsolete_sm);
5988 	}
5989 	if (scip->scip_vdev == vd->vdev_id &&
5990 	    scip->scip_prev_obsolete_sm_object != 0) {
5991 		space_map_t *prev_obsolete_sm = NULL;
5992 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
5993 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
5994 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5995 		    prev_obsolete_sm);
5996 		space_map_close(prev_obsolete_sm);
5997 	}
5998 	return (counts);
5999 }
6000 
6001 static void
6002 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
6003 {
6004 	ddt_bookmark_t ddb = {0};
6005 	ddt_entry_t dde;
6006 	int error;
6007 	int p;
6008 
6009 	ASSERT(!dump_opt['L']);
6010 
6011 	while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
6012 		blkptr_t blk;
6013 		ddt_phys_t *ddp = dde.dde_phys;
6014 
6015 		if (ddb.ddb_class == DDT_CLASS_UNIQUE)
6016 			return;
6017 
6018 		ASSERT(ddt_phys_total_refcnt(&dde) > 1);
6019 
6020 		for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
6021 			if (ddp->ddp_phys_birth == 0)
6022 				continue;
6023 			ddt_bp_create(ddb.ddb_checksum,
6024 			    &dde.dde_key, ddp, &blk);
6025 			if (p == DDT_PHYS_DITTO) {
6026 				zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
6027 			} else {
6028 				zcb->zcb_dedup_asize +=
6029 				    BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
6030 				zcb->zcb_dedup_blocks++;
6031 			}
6032 		}
6033 		ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
6034 		ddt_enter(ddt);
6035 		VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
6036 		ddt_exit(ddt);
6037 	}
6038 
6039 	ASSERT(error == ENOENT);
6040 }
6041 
6042 typedef struct checkpoint_sm_exclude_entry_arg {
6043 	vdev_t *cseea_vd;
6044 	uint64_t cseea_checkpoint_size;
6045 } checkpoint_sm_exclude_entry_arg_t;
6046 
6047 static int
6048 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6049 {
6050 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6051 	vdev_t *vd = cseea->cseea_vd;
6052 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6053 	uint64_t end = sme->sme_offset + sme->sme_run;
6054 
6055 	ASSERT(sme->sme_type == SM_FREE);
6056 
6057 	/*
6058 	 * Since the vdev_checkpoint_sm exists in the vdev level
6059 	 * and the ms_sm space maps exist in the metaslab level,
6060 	 * an entry in the checkpoint space map could theoretically
6061 	 * cross the boundaries of the metaslab that it belongs.
6062 	 *
6063 	 * In reality, because of the way that we populate and
6064 	 * manipulate the checkpoint's space maps currently,
6065 	 * there shouldn't be any entries that cross metaslabs.
6066 	 * Hence the assertion below.
6067 	 *
6068 	 * That said, there is no fundamental requirement that
6069 	 * the checkpoint's space map entries should not cross
6070 	 * metaslab boundaries. So if needed we could add code
6071 	 * that handles metaslab-crossing segments in the future.
6072 	 */
6073 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6074 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6075 
6076 	/*
6077 	 * By removing the entry from the allocated segments we
6078 	 * also verify that the entry is there to begin with.
6079 	 */
6080 	mutex_enter(&ms->ms_lock);
6081 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6082 	mutex_exit(&ms->ms_lock);
6083 
6084 	cseea->cseea_checkpoint_size += sme->sme_run;
6085 	return (0);
6086 }
6087 
6088 static void
6089 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6090 {
6091 	spa_t *spa = vd->vdev_spa;
6092 	space_map_t *checkpoint_sm = NULL;
6093 	uint64_t checkpoint_sm_obj;
6094 
6095 	/*
6096 	 * If there is no vdev_top_zap, we are in a pool whose
6097 	 * version predates the pool checkpoint feature.
6098 	 */
6099 	if (vd->vdev_top_zap == 0)
6100 		return;
6101 
6102 	/*
6103 	 * If there is no reference of the vdev_checkpoint_sm in
6104 	 * the vdev_top_zap, then one of the following scenarios
6105 	 * is true:
6106 	 *
6107 	 * 1] There is no checkpoint
6108 	 * 2] There is a checkpoint, but no checkpointed blocks
6109 	 *    have been freed yet
6110 	 * 3] The current vdev is indirect
6111 	 *
6112 	 * In these cases we return immediately.
6113 	 */
6114 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6115 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6116 		return;
6117 
6118 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6119 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6120 	    &checkpoint_sm_obj));
6121 
6122 	checkpoint_sm_exclude_entry_arg_t cseea;
6123 	cseea.cseea_vd = vd;
6124 	cseea.cseea_checkpoint_size = 0;
6125 
6126 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6127 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6128 
6129 	VERIFY0(space_map_iterate(checkpoint_sm,
6130 	    space_map_length(checkpoint_sm),
6131 	    checkpoint_sm_exclude_entry_cb, &cseea));
6132 	space_map_close(checkpoint_sm);
6133 
6134 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6135 }
6136 
6137 static void
6138 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6139 {
6140 	ASSERT(!dump_opt['L']);
6141 
6142 	vdev_t *rvd = spa->spa_root_vdev;
6143 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6144 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6145 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6146 	}
6147 }
6148 
6149 static int
6150 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6151     uint64_t txg, void *arg)
6152 {
6153 	int64_t *ualloc_space = arg;
6154 
6155 	uint64_t offset = sme->sme_offset;
6156 	uint64_t vdev_id = sme->sme_vdev;
6157 
6158 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6159 	if (!vdev_is_concrete(vd))
6160 		return (0);
6161 
6162 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6163 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6164 
6165 	if (txg < metaslab_unflushed_txg(ms))
6166 		return (0);
6167 
6168 	if (sme->sme_type == SM_ALLOC)
6169 		*ualloc_space += sme->sme_run;
6170 	else
6171 		*ualloc_space -= sme->sme_run;
6172 
6173 	return (0);
6174 }
6175 
6176 static int64_t
6177 get_unflushed_alloc_space(spa_t *spa)
6178 {
6179 	if (dump_opt['L'])
6180 		return (0);
6181 
6182 	int64_t ualloc_space = 0;
6183 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6184 	    &ualloc_space);
6185 	return (ualloc_space);
6186 }
6187 
6188 static int
6189 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6190 {
6191 	maptype_t *uic_maptype = arg;
6192 
6193 	uint64_t offset = sme->sme_offset;
6194 	uint64_t size = sme->sme_run;
6195 	uint64_t vdev_id = sme->sme_vdev;
6196 
6197 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6198 
6199 	/* skip indirect vdevs */
6200 	if (!vdev_is_concrete(vd))
6201 		return (0);
6202 
6203 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6204 
6205 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6206 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6207 
6208 	if (txg < metaslab_unflushed_txg(ms))
6209 		return (0);
6210 
6211 	if (*uic_maptype == sme->sme_type)
6212 		range_tree_add(ms->ms_allocatable, offset, size);
6213 	else
6214 		range_tree_remove(ms->ms_allocatable, offset, size);
6215 
6216 	return (0);
6217 }
6218 
6219 static void
6220 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6221 {
6222 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6223 }
6224 
6225 static void
6226 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6227 {
6228 	vdev_t *rvd = spa->spa_root_vdev;
6229 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6230 		vdev_t *vd = rvd->vdev_child[i];
6231 
6232 		ASSERT3U(i, ==, vd->vdev_id);
6233 
6234 		if (vd->vdev_ops == &vdev_indirect_ops)
6235 			continue;
6236 
6237 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6238 			metaslab_t *msp = vd->vdev_ms[m];
6239 
6240 			(void) fprintf(stderr,
6241 			    "\rloading concrete vdev %llu, "
6242 			    "metaslab %llu of %llu ...",
6243 			    (longlong_t)vd->vdev_id,
6244 			    (longlong_t)msp->ms_id,
6245 			    (longlong_t)vd->vdev_ms_count);
6246 
6247 			mutex_enter(&msp->ms_lock);
6248 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6249 
6250 			/*
6251 			 * We don't want to spend the CPU manipulating the
6252 			 * size-ordered tree, so clear the range_tree ops.
6253 			 */
6254 			msp->ms_allocatable->rt_ops = NULL;
6255 
6256 			if (msp->ms_sm != NULL) {
6257 				VERIFY0(space_map_load(msp->ms_sm,
6258 				    msp->ms_allocatable, maptype));
6259 			}
6260 			if (!msp->ms_loaded)
6261 				msp->ms_loaded = B_TRUE;
6262 			mutex_exit(&msp->ms_lock);
6263 		}
6264 	}
6265 
6266 	load_unflushed_to_ms_allocatables(spa, maptype);
6267 }
6268 
6269 /*
6270  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6271  * index in vim_entries that has the first entry in this metaslab.
6272  * On return, it will be set to the first entry after this metaslab.
6273  */
6274 static void
6275 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6276     uint64_t *vim_idxp)
6277 {
6278 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6279 
6280 	mutex_enter(&msp->ms_lock);
6281 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6282 
6283 	/*
6284 	 * We don't want to spend the CPU manipulating the
6285 	 * size-ordered tree, so clear the range_tree ops.
6286 	 */
6287 	msp->ms_allocatable->rt_ops = NULL;
6288 
6289 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6290 	    (*vim_idxp)++) {
6291 		vdev_indirect_mapping_entry_phys_t *vimep =
6292 		    &vim->vim_entries[*vim_idxp];
6293 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6294 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6295 		ASSERT3U(ent_offset, >=, msp->ms_start);
6296 		if (ent_offset >= msp->ms_start + msp->ms_size)
6297 			break;
6298 
6299 		/*
6300 		 * Mappings do not cross metaslab boundaries,
6301 		 * because we create them by walking the metaslabs.
6302 		 */
6303 		ASSERT3U(ent_offset + ent_len, <=,
6304 		    msp->ms_start + msp->ms_size);
6305 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6306 	}
6307 
6308 	if (!msp->ms_loaded)
6309 		msp->ms_loaded = B_TRUE;
6310 	mutex_exit(&msp->ms_lock);
6311 }
6312 
6313 static void
6314 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6315 {
6316 	ASSERT(!dump_opt['L']);
6317 
6318 	vdev_t *rvd = spa->spa_root_vdev;
6319 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6320 		vdev_t *vd = rvd->vdev_child[c];
6321 
6322 		ASSERT3U(c, ==, vd->vdev_id);
6323 
6324 		if (vd->vdev_ops != &vdev_indirect_ops)
6325 			continue;
6326 
6327 		/*
6328 		 * Note: we don't check for mapping leaks on
6329 		 * removing vdevs because their ms_allocatable's
6330 		 * are used to look for leaks in allocated space.
6331 		 */
6332 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6333 
6334 		/*
6335 		 * Normally, indirect vdevs don't have any
6336 		 * metaslabs.  We want to set them up for
6337 		 * zio_claim().
6338 		 */
6339 		vdev_metaslab_group_create(vd);
6340 		VERIFY0(vdev_metaslab_init(vd, 0));
6341 
6342 		vdev_indirect_mapping_t *vim __maybe_unused =
6343 		    vd->vdev_indirect_mapping;
6344 		uint64_t vim_idx = 0;
6345 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6346 
6347 			(void) fprintf(stderr,
6348 			    "\rloading indirect vdev %llu, "
6349 			    "metaslab %llu of %llu ...",
6350 			    (longlong_t)vd->vdev_id,
6351 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6352 			    (longlong_t)vd->vdev_ms_count);
6353 
6354 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6355 			    &vim_idx);
6356 		}
6357 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6358 	}
6359 }
6360 
6361 static void
6362 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6363 {
6364 	zcb->zcb_spa = spa;
6365 
6366 	if (dump_opt['L'])
6367 		return;
6368 
6369 	dsl_pool_t *dp = spa->spa_dsl_pool;
6370 	vdev_t *rvd = spa->spa_root_vdev;
6371 
6372 	/*
6373 	 * We are going to be changing the meaning of the metaslab's
6374 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6375 	 * use the tree.
6376 	 */
6377 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6378 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6379 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6380 
6381 	zcb->zcb_vd_obsolete_counts =
6382 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6383 	    UMEM_NOFAIL);
6384 
6385 	/*
6386 	 * For leak detection, we overload the ms_allocatable trees
6387 	 * to contain allocated segments instead of free segments.
6388 	 * As a result, we can't use the normal metaslab_load/unload
6389 	 * interfaces.
6390 	 */
6391 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6392 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6393 
6394 	/*
6395 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6396 	 * allocated entries from the ms_sm to the ms_allocatable for
6397 	 * each metaslab. If the pool has a checkpoint or is in the
6398 	 * middle of discarding a checkpoint, some of these blocks
6399 	 * may have been freed but their ms_sm may not have been
6400 	 * updated because they are referenced by the checkpoint. In
6401 	 * order to avoid false-positives during leak-detection, we
6402 	 * go through the vdev's checkpoint space map and exclude all
6403 	 * its entries from their relevant ms_allocatable.
6404 	 *
6405 	 * We also aggregate the space held by the checkpoint and add
6406 	 * it to zcb_checkpoint_size.
6407 	 *
6408 	 * Note that at this point we are also verifying that all the
6409 	 * entries on the checkpoint_sm are marked as allocated in
6410 	 * the ms_sm of their relevant metaslab.
6411 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6412 	 */
6413 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6414 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6415 
6416 	/* for cleaner progress output */
6417 	(void) fprintf(stderr, "\n");
6418 
6419 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6420 		ASSERT(spa_feature_is_enabled(spa,
6421 		    SPA_FEATURE_DEVICE_REMOVAL));
6422 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6423 		    increment_indirect_mapping_cb, zcb, NULL);
6424 	}
6425 
6426 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6427 	zdb_ddt_leak_init(spa, zcb);
6428 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6429 }
6430 
6431 static boolean_t
6432 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6433 {
6434 	boolean_t leaks = B_FALSE;
6435 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6436 	uint64_t total_leaked = 0;
6437 	boolean_t are_precise = B_FALSE;
6438 
6439 	ASSERT(vim != NULL);
6440 
6441 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6442 		vdev_indirect_mapping_entry_phys_t *vimep =
6443 		    &vim->vim_entries[i];
6444 		uint64_t obsolete_bytes = 0;
6445 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6446 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6447 
6448 		/*
6449 		 * This is not very efficient but it's easy to
6450 		 * verify correctness.
6451 		 */
6452 		for (uint64_t inner_offset = 0;
6453 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6454 		    inner_offset += 1ULL << vd->vdev_ashift) {
6455 			if (range_tree_contains(msp->ms_allocatable,
6456 			    offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6457 				obsolete_bytes += 1ULL << vd->vdev_ashift;
6458 			}
6459 		}
6460 
6461 		int64_t bytes_leaked = obsolete_bytes -
6462 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6463 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6464 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6465 
6466 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6467 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6468 			(void) printf("obsolete indirect mapping count "
6469 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6470 			    (u_longlong_t)vd->vdev_id,
6471 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6472 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6473 			    (u_longlong_t)bytes_leaked);
6474 		}
6475 		total_leaked += ABS(bytes_leaked);
6476 	}
6477 
6478 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6479 	if (!are_precise && total_leaked > 0) {
6480 		int pct_leaked = total_leaked * 100 /
6481 		    vdev_indirect_mapping_bytes_mapped(vim);
6482 		(void) printf("cannot verify obsolete indirect mapping "
6483 		    "counts of vdev %llu because precise feature was not "
6484 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6485 		    "unreferenced\n",
6486 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6487 		    (u_longlong_t)total_leaked);
6488 	} else if (total_leaked > 0) {
6489 		(void) printf("obsolete indirect mapping count mismatch "
6490 		    "for vdev %llu -- %llx total bytes mismatched\n",
6491 		    (u_longlong_t)vd->vdev_id,
6492 		    (u_longlong_t)total_leaked);
6493 		leaks |= B_TRUE;
6494 	}
6495 
6496 	vdev_indirect_mapping_free_obsolete_counts(vim,
6497 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6498 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6499 
6500 	return (leaks);
6501 }
6502 
6503 static boolean_t
6504 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6505 {
6506 	if (dump_opt['L'])
6507 		return (B_FALSE);
6508 
6509 	boolean_t leaks = B_FALSE;
6510 	vdev_t *rvd = spa->spa_root_vdev;
6511 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6512 		vdev_t *vd = rvd->vdev_child[c];
6513 
6514 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6515 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6516 		}
6517 
6518 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6519 			metaslab_t *msp = vd->vdev_ms[m];
6520 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6521 			    spa_embedded_log_class(spa)) ?
6522 			    vd->vdev_log_mg : vd->vdev_mg);
6523 
6524 			/*
6525 			 * ms_allocatable has been overloaded
6526 			 * to contain allocated segments. Now that
6527 			 * we finished traversing all blocks, any
6528 			 * block that remains in the ms_allocatable
6529 			 * represents an allocated block that we
6530 			 * did not claim during the traversal.
6531 			 * Claimed blocks would have been removed
6532 			 * from the ms_allocatable.  For indirect
6533 			 * vdevs, space remaining in the tree
6534 			 * represents parts of the mapping that are
6535 			 * not referenced, which is not a bug.
6536 			 */
6537 			if (vd->vdev_ops == &vdev_indirect_ops) {
6538 				range_tree_vacate(msp->ms_allocatable,
6539 				    NULL, NULL);
6540 			} else {
6541 				range_tree_vacate(msp->ms_allocatable,
6542 				    zdb_leak, vd);
6543 			}
6544 			if (msp->ms_loaded) {
6545 				msp->ms_loaded = B_FALSE;
6546 			}
6547 		}
6548 	}
6549 
6550 	umem_free(zcb->zcb_vd_obsolete_counts,
6551 	    rvd->vdev_children * sizeof (uint32_t *));
6552 	zcb->zcb_vd_obsolete_counts = NULL;
6553 
6554 	return (leaks);
6555 }
6556 
6557 static int
6558 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6559 {
6560 	(void) tx;
6561 	zdb_cb_t *zcb = arg;
6562 
6563 	if (dump_opt['b'] >= 5) {
6564 		char blkbuf[BP_SPRINTF_LEN];
6565 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6566 		(void) printf("[%s] %s\n",
6567 		    "deferred free", blkbuf);
6568 	}
6569 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6570 	return (0);
6571 }
6572 
6573 /*
6574  * Iterate over livelists which have been destroyed by the user but
6575  * are still present in the MOS, waiting to be freed
6576  */
6577 static void
6578 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6579 {
6580 	objset_t *mos = spa->spa_meta_objset;
6581 	uint64_t zap_obj;
6582 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6583 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6584 	if (err == ENOENT)
6585 		return;
6586 	ASSERT0(err);
6587 
6588 	zap_cursor_t zc;
6589 	zap_attribute_t attr;
6590 	dsl_deadlist_t ll;
6591 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6592 	ll.dl_os = NULL;
6593 	for (zap_cursor_init(&zc, mos, zap_obj);
6594 	    zap_cursor_retrieve(&zc, &attr) == 0;
6595 	    (void) zap_cursor_advance(&zc)) {
6596 		dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6597 		func(&ll, arg);
6598 		dsl_deadlist_close(&ll);
6599 	}
6600 	zap_cursor_fini(&zc);
6601 }
6602 
6603 static int
6604 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6605     dmu_tx_t *tx)
6606 {
6607 	ASSERT(!bp_freed);
6608 	return (count_block_cb(arg, bp, tx));
6609 }
6610 
6611 static int
6612 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6613 {
6614 	zdb_cb_t *zbc = args;
6615 	bplist_t blks;
6616 	bplist_create(&blks);
6617 	/* determine which blocks have been alloc'd but not freed */
6618 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6619 	/* count those blocks */
6620 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6621 	bplist_destroy(&blks);
6622 	return (0);
6623 }
6624 
6625 static void
6626 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6627 {
6628 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6629 }
6630 
6631 /*
6632  * Count the blocks in the livelists that have been destroyed by the user
6633  * but haven't yet been freed.
6634  */
6635 static void
6636 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6637 {
6638 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6639 }
6640 
6641 static void
6642 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6643 {
6644 	ASSERT3P(arg, ==, NULL);
6645 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6646 	dump_blkptr_list(ll, "Deleted Livelist");
6647 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6648 }
6649 
6650 /*
6651  * Print out, register object references to, and increment feature counts for
6652  * livelists that have been destroyed by the user but haven't yet been freed.
6653  */
6654 static void
6655 deleted_livelists_dump_mos(spa_t *spa)
6656 {
6657 	uint64_t zap_obj;
6658 	objset_t *mos = spa->spa_meta_objset;
6659 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6660 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6661 	if (err == ENOENT)
6662 		return;
6663 	mos_obj_refd(zap_obj);
6664 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6665 }
6666 
6667 static int
6668 dump_block_stats(spa_t *spa)
6669 {
6670 	zdb_cb_t *zcb;
6671 	zdb_blkstats_t *zb, *tzb;
6672 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6673 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6674 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6675 	boolean_t leaks = B_FALSE;
6676 	int e, c, err;
6677 	bp_embedded_type_t i;
6678 
6679 	zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6680 
6681 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6682 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6683 	    (dump_opt['c'] == 1) ? "metadata " : "",
6684 	    dump_opt['c'] ? "checksums " : "",
6685 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6686 	    !dump_opt['L'] ? "nothing leaked " : "");
6687 
6688 	/*
6689 	 * When leak detection is enabled we load all space maps as SM_ALLOC
6690 	 * maps, then traverse the pool claiming each block we discover. If
6691 	 * the pool is perfectly consistent, the segment trees will be empty
6692 	 * when we're done. Anything left over is a leak; any block we can't
6693 	 * claim (because it's not part of any space map) is a double
6694 	 * allocation, reference to a freed block, or an unclaimed log block.
6695 	 *
6696 	 * When leak detection is disabled (-L option) we still traverse the
6697 	 * pool claiming each block we discover, but we skip opening any space
6698 	 * maps.
6699 	 */
6700 	zdb_leak_init(spa, zcb);
6701 
6702 	/*
6703 	 * If there's a deferred-free bplist, process that first.
6704 	 */
6705 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6706 	    bpobj_count_block_cb, zcb, NULL);
6707 
6708 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6709 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6710 		    bpobj_count_block_cb, zcb, NULL);
6711 	}
6712 
6713 	zdb_claim_removing(spa, zcb);
6714 
6715 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6716 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6717 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6718 		    zcb, NULL));
6719 	}
6720 
6721 	deleted_livelists_count_blocks(spa, zcb);
6722 
6723 	if (dump_opt['c'] > 1)
6724 		flags |= TRAVERSE_PREFETCH_DATA;
6725 
6726 	zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6727 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6728 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6729 	zcb->zcb_totalasize +=
6730 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
6731 	zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6732 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6733 
6734 	/*
6735 	 * If we've traversed the data blocks then we need to wait for those
6736 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
6737 	 * all async I/Os to complete.
6738 	 */
6739 	if (dump_opt['c']) {
6740 		for (c = 0; c < max_ncpus; c++) {
6741 			(void) zio_wait(spa->spa_async_zio_root[c]);
6742 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6743 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6744 			    ZIO_FLAG_GODFATHER);
6745 		}
6746 	}
6747 	ASSERT0(spa->spa_load_verify_bytes);
6748 
6749 	/*
6750 	 * Done after zio_wait() since zcb_haderrors is modified in
6751 	 * zdb_blkptr_done()
6752 	 */
6753 	zcb->zcb_haderrors |= err;
6754 
6755 	if (zcb->zcb_haderrors) {
6756 		(void) printf("\nError counts:\n\n");
6757 		(void) printf("\t%5s  %s\n", "errno", "count");
6758 		for (e = 0; e < 256; e++) {
6759 			if (zcb->zcb_errors[e] != 0) {
6760 				(void) printf("\t%5d  %llu\n",
6761 				    e, (u_longlong_t)zcb->zcb_errors[e]);
6762 			}
6763 		}
6764 	}
6765 
6766 	/*
6767 	 * Report any leaked segments.
6768 	 */
6769 	leaks |= zdb_leak_fini(spa, zcb);
6770 
6771 	tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6772 
6773 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6774 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
6775 
6776 	total_alloc = norm_alloc +
6777 	    metaslab_class_get_alloc(spa_log_class(spa)) +
6778 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6779 	    metaslab_class_get_alloc(spa_special_class(spa)) +
6780 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
6781 	    get_unflushed_alloc_space(spa);
6782 	total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
6783 	    zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6784 
6785 	if (total_found == total_alloc && !dump_opt['L']) {
6786 		(void) printf("\n\tNo leaks (block sum matches space"
6787 		    " maps exactly)\n");
6788 	} else if (!dump_opt['L']) {
6789 		(void) printf("block traversal size %llu != alloc %llu "
6790 		    "(%s %lld)\n",
6791 		    (u_longlong_t)total_found,
6792 		    (u_longlong_t)total_alloc,
6793 		    (dump_opt['L']) ? "unreachable" : "leaked",
6794 		    (longlong_t)(total_alloc - total_found));
6795 		leaks = B_TRUE;
6796 	}
6797 
6798 	if (tzb->zb_count == 0) {
6799 		umem_free(zcb, sizeof (zdb_cb_t));
6800 		return (2);
6801 	}
6802 
6803 	(void) printf("\n");
6804 	(void) printf("\t%-16s %14llu\n", "bp count:",
6805 	    (u_longlong_t)tzb->zb_count);
6806 	(void) printf("\t%-16s %14llu\n", "ganged count:",
6807 	    (longlong_t)tzb->zb_gangs);
6808 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
6809 	    (u_longlong_t)tzb->zb_lsize,
6810 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6811 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6812 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
6813 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6814 	    (double)tzb->zb_lsize / tzb->zb_psize);
6815 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6816 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
6817 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6818 	    (double)tzb->zb_lsize / tzb->zb_asize);
6819 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
6820 	    "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6821 	    (u_longlong_t)zcb->zcb_dedup_blocks,
6822 	    (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6823 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
6824 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6825 
6826 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6827 		uint64_t alloc = metaslab_class_get_alloc(
6828 		    spa_special_class(spa));
6829 		uint64_t space = metaslab_class_get_space(
6830 		    spa_special_class(spa));
6831 
6832 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6833 		    "Special class", (u_longlong_t)alloc,
6834 		    100.0 * alloc / space);
6835 	}
6836 
6837 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6838 		uint64_t alloc = metaslab_class_get_alloc(
6839 		    spa_dedup_class(spa));
6840 		uint64_t space = metaslab_class_get_space(
6841 		    spa_dedup_class(spa));
6842 
6843 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6844 		    "Dedup class", (u_longlong_t)alloc,
6845 		    100.0 * alloc / space);
6846 	}
6847 
6848 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6849 		uint64_t alloc = metaslab_class_get_alloc(
6850 		    spa_embedded_log_class(spa));
6851 		uint64_t space = metaslab_class_get_space(
6852 		    spa_embedded_log_class(spa));
6853 
6854 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6855 		    "Embedded log class", (u_longlong_t)alloc,
6856 		    100.0 * alloc / space);
6857 	}
6858 
6859 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
6860 		if (zcb->zcb_embedded_blocks[i] == 0)
6861 			continue;
6862 		(void) printf("\n");
6863 		(void) printf("\tadditional, non-pointer bps of type %u: "
6864 		    "%10llu\n",
6865 		    i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
6866 
6867 		if (dump_opt['b'] >= 3) {
6868 			(void) printf("\t number of (compressed) bytes:  "
6869 			    "number of bps\n");
6870 			dump_histogram(zcb->zcb_embedded_histogram[i],
6871 			    sizeof (zcb->zcb_embedded_histogram[i]) /
6872 			    sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
6873 		}
6874 	}
6875 
6876 	if (tzb->zb_ditto_samevdev != 0) {
6877 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
6878 		    (longlong_t)tzb->zb_ditto_samevdev);
6879 	}
6880 	if (tzb->zb_ditto_same_ms != 0) {
6881 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
6882 		    (longlong_t)tzb->zb_ditto_same_ms);
6883 	}
6884 
6885 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
6886 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
6887 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6888 
6889 		if (vim == NULL) {
6890 			continue;
6891 		}
6892 
6893 		char mem[32];
6894 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
6895 		    mem, vdev_indirect_mapping_size(vim));
6896 
6897 		(void) printf("\tindirect vdev id %llu has %llu segments "
6898 		    "(%s in memory)\n",
6899 		    (longlong_t)vd->vdev_id,
6900 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
6901 	}
6902 
6903 	if (dump_opt['b'] >= 2) {
6904 		int l, t, level;
6905 		char csize[32], lsize[32], psize[32], asize[32];
6906 		char avg[32], gang[32];
6907 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
6908 		    "\t  avg\t comp\t%%Total\tType\n");
6909 
6910 		zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
6911 		    UMEM_NOFAIL);
6912 
6913 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
6914 			const char *typename;
6915 
6916 			/* make sure nicenum has enough space */
6917 			_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
6918 			    "csize truncated");
6919 			_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
6920 			    "lsize truncated");
6921 			_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
6922 			    "psize truncated");
6923 			_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
6924 			    "asize truncated");
6925 			_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
6926 			    "avg truncated");
6927 			_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
6928 			    "gang truncated");
6929 
6930 			if (t < DMU_OT_NUMTYPES)
6931 				typename = dmu_ot[t].ot_name;
6932 			else
6933 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
6934 
6935 			if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
6936 				(void) printf("%6s\t%5s\t%5s\t%5s"
6937 				    "\t%5s\t%5s\t%6s\t%s\n",
6938 				    "-",
6939 				    "-",
6940 				    "-",
6941 				    "-",
6942 				    "-",
6943 				    "-",
6944 				    "-",
6945 				    typename);
6946 				continue;
6947 			}
6948 
6949 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
6950 				level = (l == -1 ? ZB_TOTAL : l);
6951 				zb = &zcb->zcb_type[level][t];
6952 
6953 				if (zb->zb_asize == 0)
6954 					continue;
6955 
6956 				if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
6957 				    (level > 0 || DMU_OT_IS_METADATA(t))) {
6958 					mdstats->zb_count += zb->zb_count;
6959 					mdstats->zb_lsize += zb->zb_lsize;
6960 					mdstats->zb_psize += zb->zb_psize;
6961 					mdstats->zb_asize += zb->zb_asize;
6962 					mdstats->zb_gangs += zb->zb_gangs;
6963 				}
6964 
6965 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
6966 					continue;
6967 
6968 				if (level == 0 && zb->zb_asize ==
6969 				    zcb->zcb_type[ZB_TOTAL][t].zb_asize)
6970 					continue;
6971 
6972 				zdb_nicenum(zb->zb_count, csize,
6973 				    sizeof (csize));
6974 				zdb_nicenum(zb->zb_lsize, lsize,
6975 				    sizeof (lsize));
6976 				zdb_nicenum(zb->zb_psize, psize,
6977 				    sizeof (psize));
6978 				zdb_nicenum(zb->zb_asize, asize,
6979 				    sizeof (asize));
6980 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
6981 				    sizeof (avg));
6982 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
6983 
6984 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6985 				    "\t%5.2f\t%6.2f\t",
6986 				    csize, lsize, psize, asize, avg,
6987 				    (double)zb->zb_lsize / zb->zb_psize,
6988 				    100.0 * zb->zb_asize / tzb->zb_asize);
6989 
6990 				if (level == ZB_TOTAL)
6991 					(void) printf("%s\n", typename);
6992 				else
6993 					(void) printf("    L%d %s\n",
6994 					    level, typename);
6995 
6996 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
6997 					(void) printf("\t number of ganged "
6998 					    "blocks: %s\n", gang);
6999 				}
7000 
7001 				if (dump_opt['b'] >= 4) {
7002 					(void) printf("psize "
7003 					    "(in 512-byte sectors): "
7004 					    "number of blocks\n");
7005 					dump_histogram(zb->zb_psize_histogram,
7006 					    PSIZE_HISTO_SIZE, 0);
7007 				}
7008 			}
7009 		}
7010 		zdb_nicenum(mdstats->zb_count, csize,
7011 		    sizeof (csize));
7012 		zdb_nicenum(mdstats->zb_lsize, lsize,
7013 		    sizeof (lsize));
7014 		zdb_nicenum(mdstats->zb_psize, psize,
7015 		    sizeof (psize));
7016 		zdb_nicenum(mdstats->zb_asize, asize,
7017 		    sizeof (asize));
7018 		zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7019 		    sizeof (avg));
7020 		zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7021 
7022 		(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7023 		    "\t%5.2f\t%6.2f\t",
7024 		    csize, lsize, psize, asize, avg,
7025 		    (double)mdstats->zb_lsize / mdstats->zb_psize,
7026 		    100.0 * mdstats->zb_asize / tzb->zb_asize);
7027 		(void) printf("%s\n", "Metadata Total");
7028 
7029 		/* Output a table summarizing block sizes in the pool */
7030 		if (dump_opt['b'] >= 2) {
7031 			dump_size_histograms(zcb);
7032 		}
7033 
7034 		umem_free(mdstats, sizeof (zfs_blkstat_t));
7035 	}
7036 
7037 	(void) printf("\n");
7038 
7039 	if (leaks) {
7040 		umem_free(zcb, sizeof (zdb_cb_t));
7041 		return (2);
7042 	}
7043 
7044 	if (zcb->zcb_haderrors) {
7045 		umem_free(zcb, sizeof (zdb_cb_t));
7046 		return (3);
7047 	}
7048 
7049 	umem_free(zcb, sizeof (zdb_cb_t));
7050 	return (0);
7051 }
7052 
7053 typedef struct zdb_ddt_entry {
7054 	ddt_key_t	zdde_key;
7055 	uint64_t	zdde_ref_blocks;
7056 	uint64_t	zdde_ref_lsize;
7057 	uint64_t	zdde_ref_psize;
7058 	uint64_t	zdde_ref_dsize;
7059 	avl_node_t	zdde_node;
7060 } zdb_ddt_entry_t;
7061 
7062 static int
7063 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7064     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7065 {
7066 	(void) zilog, (void) dnp;
7067 	avl_tree_t *t = arg;
7068 	avl_index_t where;
7069 	zdb_ddt_entry_t *zdde, zdde_search;
7070 
7071 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7072 	    BP_IS_EMBEDDED(bp))
7073 		return (0);
7074 
7075 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7076 		(void) printf("traversing objset %llu, %llu objects, "
7077 		    "%lu blocks so far\n",
7078 		    (u_longlong_t)zb->zb_objset,
7079 		    (u_longlong_t)BP_GET_FILL(bp),
7080 		    avl_numnodes(t));
7081 	}
7082 
7083 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7084 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7085 		return (0);
7086 
7087 	ddt_key_fill(&zdde_search.zdde_key, bp);
7088 
7089 	zdde = avl_find(t, &zdde_search, &where);
7090 
7091 	if (zdde == NULL) {
7092 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7093 		zdde->zdde_key = zdde_search.zdde_key;
7094 		avl_insert(t, zdde, where);
7095 	}
7096 
7097 	zdde->zdde_ref_blocks += 1;
7098 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7099 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7100 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7101 
7102 	return (0);
7103 }
7104 
7105 static void
7106 dump_simulated_ddt(spa_t *spa)
7107 {
7108 	avl_tree_t t;
7109 	void *cookie = NULL;
7110 	zdb_ddt_entry_t *zdde;
7111 	ddt_histogram_t ddh_total = {{{0}}};
7112 	ddt_stat_t dds_total = {0};
7113 
7114 	avl_create(&t, ddt_entry_compare,
7115 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7116 
7117 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7118 
7119 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7120 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7121 
7122 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7123 
7124 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7125 		ddt_stat_t dds;
7126 		uint64_t refcnt = zdde->zdde_ref_blocks;
7127 		ASSERT(refcnt != 0);
7128 
7129 		dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
7130 		dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
7131 		dds.dds_psize = zdde->zdde_ref_psize / refcnt;
7132 		dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
7133 
7134 		dds.dds_ref_blocks = zdde->zdde_ref_blocks;
7135 		dds.dds_ref_lsize = zdde->zdde_ref_lsize;
7136 		dds.dds_ref_psize = zdde->zdde_ref_psize;
7137 		dds.dds_ref_dsize = zdde->zdde_ref_dsize;
7138 
7139 		ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
7140 		    &dds, 0);
7141 
7142 		umem_free(zdde, sizeof (*zdde));
7143 	}
7144 
7145 	avl_destroy(&t);
7146 
7147 	ddt_histogram_stat(&dds_total, &ddh_total);
7148 
7149 	(void) printf("Simulated DDT histogram:\n");
7150 
7151 	zpool_dump_ddt(&dds_total, &ddh_total);
7152 
7153 	dump_dedup_ratio(&dds_total);
7154 }
7155 
7156 static int
7157 verify_device_removal_feature_counts(spa_t *spa)
7158 {
7159 	uint64_t dr_feature_refcount = 0;
7160 	uint64_t oc_feature_refcount = 0;
7161 	uint64_t indirect_vdev_count = 0;
7162 	uint64_t precise_vdev_count = 0;
7163 	uint64_t obsolete_counts_object_count = 0;
7164 	uint64_t obsolete_sm_count = 0;
7165 	uint64_t obsolete_counts_count = 0;
7166 	uint64_t scip_count = 0;
7167 	uint64_t obsolete_bpobj_count = 0;
7168 	int ret = 0;
7169 
7170 	spa_condensing_indirect_phys_t *scip =
7171 	    &spa->spa_condensing_indirect_phys;
7172 	if (scip->scip_next_mapping_object != 0) {
7173 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7174 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7175 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7176 
7177 		(void) printf("Condensing indirect vdev %llu: new mapping "
7178 		    "object %llu, prev obsolete sm %llu\n",
7179 		    (u_longlong_t)scip->scip_vdev,
7180 		    (u_longlong_t)scip->scip_next_mapping_object,
7181 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7182 		if (scip->scip_prev_obsolete_sm_object != 0) {
7183 			space_map_t *prev_obsolete_sm = NULL;
7184 			VERIFY0(space_map_open(&prev_obsolete_sm,
7185 			    spa->spa_meta_objset,
7186 			    scip->scip_prev_obsolete_sm_object,
7187 			    0, vd->vdev_asize, 0));
7188 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7189 			(void) printf("\n");
7190 			space_map_close(prev_obsolete_sm);
7191 		}
7192 
7193 		scip_count += 2;
7194 	}
7195 
7196 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7197 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7198 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7199 
7200 		if (vic->vic_mapping_object != 0) {
7201 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7202 			    vd->vdev_removing);
7203 			indirect_vdev_count++;
7204 
7205 			if (vd->vdev_indirect_mapping->vim_havecounts) {
7206 				obsolete_counts_count++;
7207 			}
7208 		}
7209 
7210 		boolean_t are_precise;
7211 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7212 		if (are_precise) {
7213 			ASSERT(vic->vic_mapping_object != 0);
7214 			precise_vdev_count++;
7215 		}
7216 
7217 		uint64_t obsolete_sm_object;
7218 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7219 		if (obsolete_sm_object != 0) {
7220 			ASSERT(vic->vic_mapping_object != 0);
7221 			obsolete_sm_count++;
7222 		}
7223 	}
7224 
7225 	(void) feature_get_refcount(spa,
7226 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7227 	    &dr_feature_refcount);
7228 	(void) feature_get_refcount(spa,
7229 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7230 	    &oc_feature_refcount);
7231 
7232 	if (dr_feature_refcount != indirect_vdev_count) {
7233 		ret = 1;
7234 		(void) printf("Number of indirect vdevs (%llu) " \
7235 		    "does not match feature count (%llu)\n",
7236 		    (u_longlong_t)indirect_vdev_count,
7237 		    (u_longlong_t)dr_feature_refcount);
7238 	} else {
7239 		(void) printf("Verified device_removal feature refcount " \
7240 		    "of %llu is correct\n",
7241 		    (u_longlong_t)dr_feature_refcount);
7242 	}
7243 
7244 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7245 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7246 		obsolete_bpobj_count++;
7247 	}
7248 
7249 
7250 	obsolete_counts_object_count = precise_vdev_count;
7251 	obsolete_counts_object_count += obsolete_sm_count;
7252 	obsolete_counts_object_count += obsolete_counts_count;
7253 	obsolete_counts_object_count += scip_count;
7254 	obsolete_counts_object_count += obsolete_bpobj_count;
7255 	obsolete_counts_object_count += remap_deadlist_count;
7256 
7257 	if (oc_feature_refcount != obsolete_counts_object_count) {
7258 		ret = 1;
7259 		(void) printf("Number of obsolete counts objects (%llu) " \
7260 		    "does not match feature count (%llu)\n",
7261 		    (u_longlong_t)obsolete_counts_object_count,
7262 		    (u_longlong_t)oc_feature_refcount);
7263 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7264 		    "ob:%llu rd:%llu\n",
7265 		    (u_longlong_t)precise_vdev_count,
7266 		    (u_longlong_t)obsolete_sm_count,
7267 		    (u_longlong_t)obsolete_counts_count,
7268 		    (u_longlong_t)scip_count,
7269 		    (u_longlong_t)obsolete_bpobj_count,
7270 		    (u_longlong_t)remap_deadlist_count);
7271 	} else {
7272 		(void) printf("Verified indirect_refcount feature refcount " \
7273 		    "of %llu is correct\n",
7274 		    (u_longlong_t)oc_feature_refcount);
7275 	}
7276 	return (ret);
7277 }
7278 
7279 static void
7280 zdb_set_skip_mmp(char *target)
7281 {
7282 	spa_t *spa;
7283 
7284 	/*
7285 	 * Disable the activity check to allow examination of
7286 	 * active pools.
7287 	 */
7288 	mutex_enter(&spa_namespace_lock);
7289 	if ((spa = spa_lookup(target)) != NULL) {
7290 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7291 	}
7292 	mutex_exit(&spa_namespace_lock);
7293 }
7294 
7295 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7296 /*
7297  * Import the checkpointed state of the pool specified by the target
7298  * parameter as readonly. The function also accepts a pool config
7299  * as an optional parameter, else it attempts to infer the config by
7300  * the name of the target pool.
7301  *
7302  * Note that the checkpointed state's pool name will be the name of
7303  * the original pool with the above suffix appended to it. In addition,
7304  * if the target is not a pool name (e.g. a path to a dataset) then
7305  * the new_path parameter is populated with the updated path to
7306  * reflect the fact that we are looking into the checkpointed state.
7307  *
7308  * The function returns a newly-allocated copy of the name of the
7309  * pool containing the checkpointed state. When this copy is no
7310  * longer needed it should be freed with free(3C). Same thing
7311  * applies to the new_path parameter if allocated.
7312  */
7313 static char *
7314 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7315 {
7316 	int error = 0;
7317 	char *poolname, *bogus_name = NULL;
7318 	boolean_t freecfg = B_FALSE;
7319 
7320 	/* If the target is not a pool, the extract the pool name */
7321 	char *path_start = strchr(target, '/');
7322 	if (path_start != NULL) {
7323 		size_t poolname_len = path_start - target;
7324 		poolname = strndup(target, poolname_len);
7325 	} else {
7326 		poolname = target;
7327 	}
7328 
7329 	if (cfg == NULL) {
7330 		zdb_set_skip_mmp(poolname);
7331 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7332 		if (error != 0) {
7333 			fatal("Tried to read config of pool \"%s\" but "
7334 			    "spa_get_stats() failed with error %d\n",
7335 			    poolname, error);
7336 		}
7337 		freecfg = B_TRUE;
7338 	}
7339 
7340 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7341 		if (target != poolname)
7342 			free(poolname);
7343 		return (NULL);
7344 	}
7345 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7346 
7347 	error = spa_import(bogus_name, cfg, NULL,
7348 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7349 	    ZFS_IMPORT_SKIP_MMP);
7350 	if (freecfg)
7351 		nvlist_free(cfg);
7352 	if (error != 0) {
7353 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7354 		    "with error %d\n", bogus_name, error);
7355 	}
7356 
7357 	if (new_path != NULL && path_start != NULL) {
7358 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7359 			free(bogus_name);
7360 			if (path_start != NULL)
7361 				free(poolname);
7362 			return (NULL);
7363 		}
7364 	}
7365 
7366 	if (target != poolname)
7367 		free(poolname);
7368 
7369 	return (bogus_name);
7370 }
7371 
7372 typedef struct verify_checkpoint_sm_entry_cb_arg {
7373 	vdev_t *vcsec_vd;
7374 
7375 	/* the following fields are only used for printing progress */
7376 	uint64_t vcsec_entryid;
7377 	uint64_t vcsec_num_entries;
7378 } verify_checkpoint_sm_entry_cb_arg_t;
7379 
7380 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7381 
7382 static int
7383 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7384 {
7385 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7386 	vdev_t *vd = vcsec->vcsec_vd;
7387 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7388 	uint64_t end = sme->sme_offset + sme->sme_run;
7389 
7390 	ASSERT(sme->sme_type == SM_FREE);
7391 
7392 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7393 		(void) fprintf(stderr,
7394 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7395 		    (longlong_t)vd->vdev_id,
7396 		    (longlong_t)vcsec->vcsec_entryid,
7397 		    (longlong_t)vcsec->vcsec_num_entries);
7398 	}
7399 	vcsec->vcsec_entryid++;
7400 
7401 	/*
7402 	 * See comment in checkpoint_sm_exclude_entry_cb()
7403 	 */
7404 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7405 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7406 
7407 	/*
7408 	 * The entries in the vdev_checkpoint_sm should be marked as
7409 	 * allocated in the checkpointed state of the pool, therefore
7410 	 * their respective ms_allocateable trees should not contain them.
7411 	 */
7412 	mutex_enter(&ms->ms_lock);
7413 	range_tree_verify_not_present(ms->ms_allocatable,
7414 	    sme->sme_offset, sme->sme_run);
7415 	mutex_exit(&ms->ms_lock);
7416 
7417 	return (0);
7418 }
7419 
7420 /*
7421  * Verify that all segments in the vdev_checkpoint_sm are allocated
7422  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7423  * ms_allocatable).
7424  *
7425  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7426  * each vdev in the current state of the pool to the metaslab space maps
7427  * (ms_sm) of the checkpointed state of the pool.
7428  *
7429  * Note that the function changes the state of the ms_allocatable
7430  * trees of the current spa_t. The entries of these ms_allocatable
7431  * trees are cleared out and then repopulated from with the free
7432  * entries of their respective ms_sm space maps.
7433  */
7434 static void
7435 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7436 {
7437 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7438 	vdev_t *current_rvd = current->spa_root_vdev;
7439 
7440 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7441 
7442 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7443 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7444 		vdev_t *current_vd = current_rvd->vdev_child[c];
7445 
7446 		space_map_t *checkpoint_sm = NULL;
7447 		uint64_t checkpoint_sm_obj;
7448 
7449 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7450 			/*
7451 			 * Since we don't allow device removal in a pool
7452 			 * that has a checkpoint, we expect that all removed
7453 			 * vdevs were removed from the pool before the
7454 			 * checkpoint.
7455 			 */
7456 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7457 			continue;
7458 		}
7459 
7460 		/*
7461 		 * If the checkpoint space map doesn't exist, then nothing
7462 		 * here is checkpointed so there's nothing to verify.
7463 		 */
7464 		if (current_vd->vdev_top_zap == 0 ||
7465 		    zap_contains(spa_meta_objset(current),
7466 		    current_vd->vdev_top_zap,
7467 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7468 			continue;
7469 
7470 		VERIFY0(zap_lookup(spa_meta_objset(current),
7471 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7472 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7473 
7474 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7475 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7476 		    current_vd->vdev_ashift));
7477 
7478 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7479 		vcsec.vcsec_vd = ckpoint_vd;
7480 		vcsec.vcsec_entryid = 0;
7481 		vcsec.vcsec_num_entries =
7482 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7483 		VERIFY0(space_map_iterate(checkpoint_sm,
7484 		    space_map_length(checkpoint_sm),
7485 		    verify_checkpoint_sm_entry_cb, &vcsec));
7486 		if (dump_opt['m'] > 3)
7487 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7488 		space_map_close(checkpoint_sm);
7489 	}
7490 
7491 	/*
7492 	 * If we've added vdevs since we took the checkpoint, ensure
7493 	 * that their checkpoint space maps are empty.
7494 	 */
7495 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7496 		for (uint64_t c = ckpoint_rvd->vdev_children;
7497 		    c < current_rvd->vdev_children; c++) {
7498 			vdev_t *current_vd = current_rvd->vdev_child[c];
7499 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7500 		}
7501 	}
7502 
7503 	/* for cleaner progress output */
7504 	(void) fprintf(stderr, "\n");
7505 }
7506 
7507 /*
7508  * Verifies that all space that's allocated in the checkpoint is
7509  * still allocated in the current version, by checking that everything
7510  * in checkpoint's ms_allocatable (which is actually allocated, not
7511  * allocatable/free) is not present in current's ms_allocatable.
7512  *
7513  * Note that the function changes the state of the ms_allocatable
7514  * trees of both spas when called. The entries of all ms_allocatable
7515  * trees are cleared out and then repopulated from their respective
7516  * ms_sm space maps. In the checkpointed state we load the allocated
7517  * entries, and in the current state we load the free entries.
7518  */
7519 static void
7520 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7521 {
7522 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7523 	vdev_t *current_rvd = current->spa_root_vdev;
7524 
7525 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7526 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7527 
7528 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7529 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7530 		vdev_t *current_vd = current_rvd->vdev_child[i];
7531 
7532 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7533 			/*
7534 			 * See comment in verify_checkpoint_vdev_spacemaps()
7535 			 */
7536 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7537 			continue;
7538 		}
7539 
7540 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7541 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7542 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7543 
7544 			(void) fprintf(stderr,
7545 			    "\rverifying vdev %llu of %llu, "
7546 			    "metaslab %llu of %llu ...",
7547 			    (longlong_t)current_vd->vdev_id,
7548 			    (longlong_t)current_rvd->vdev_children,
7549 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7550 			    (longlong_t)current_vd->vdev_ms_count);
7551 
7552 			/*
7553 			 * We walk through the ms_allocatable trees that
7554 			 * are loaded with the allocated blocks from the
7555 			 * ms_sm spacemaps of the checkpoint. For each
7556 			 * one of these ranges we ensure that none of them
7557 			 * exists in the ms_allocatable trees of the
7558 			 * current state which are loaded with the ranges
7559 			 * that are currently free.
7560 			 *
7561 			 * This way we ensure that none of the blocks that
7562 			 * are part of the checkpoint were freed by mistake.
7563 			 */
7564 			range_tree_walk(ckpoint_msp->ms_allocatable,
7565 			    (range_tree_func_t *)range_tree_verify_not_present,
7566 			    current_msp->ms_allocatable);
7567 		}
7568 	}
7569 
7570 	/* for cleaner progress output */
7571 	(void) fprintf(stderr, "\n");
7572 }
7573 
7574 static void
7575 verify_checkpoint_blocks(spa_t *spa)
7576 {
7577 	ASSERT(!dump_opt['L']);
7578 
7579 	spa_t *checkpoint_spa;
7580 	char *checkpoint_pool;
7581 	int error = 0;
7582 
7583 	/*
7584 	 * We import the checkpointed state of the pool (under a different
7585 	 * name) so we can do verification on it against the current state
7586 	 * of the pool.
7587 	 */
7588 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7589 	    NULL);
7590 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7591 
7592 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7593 	if (error != 0) {
7594 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7595 		    "error %d\n", checkpoint_pool, error);
7596 	}
7597 
7598 	/*
7599 	 * Ensure that ranges in the checkpoint space maps of each vdev
7600 	 * are allocated according to the checkpointed state's metaslab
7601 	 * space maps.
7602 	 */
7603 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7604 
7605 	/*
7606 	 * Ensure that allocated ranges in the checkpoint's metaslab
7607 	 * space maps remain allocated in the metaslab space maps of
7608 	 * the current state.
7609 	 */
7610 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7611 
7612 	/*
7613 	 * Once we are done, we get rid of the checkpointed state.
7614 	 */
7615 	spa_close(checkpoint_spa, FTAG);
7616 	free(checkpoint_pool);
7617 }
7618 
7619 static void
7620 dump_leftover_checkpoint_blocks(spa_t *spa)
7621 {
7622 	vdev_t *rvd = spa->spa_root_vdev;
7623 
7624 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7625 		vdev_t *vd = rvd->vdev_child[i];
7626 
7627 		space_map_t *checkpoint_sm = NULL;
7628 		uint64_t checkpoint_sm_obj;
7629 
7630 		if (vd->vdev_top_zap == 0)
7631 			continue;
7632 
7633 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7634 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7635 			continue;
7636 
7637 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7638 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7639 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7640 
7641 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7642 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7643 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7644 		space_map_close(checkpoint_sm);
7645 	}
7646 }
7647 
7648 static int
7649 verify_checkpoint(spa_t *spa)
7650 {
7651 	uberblock_t checkpoint;
7652 	int error;
7653 
7654 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7655 		return (0);
7656 
7657 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7658 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7659 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7660 
7661 	if (error == ENOENT && !dump_opt['L']) {
7662 		/*
7663 		 * If the feature is active but the uberblock is missing
7664 		 * then we must be in the middle of discarding the
7665 		 * checkpoint.
7666 		 */
7667 		(void) printf("\nPartially discarded checkpoint "
7668 		    "state found:\n");
7669 		if (dump_opt['m'] > 3)
7670 			dump_leftover_checkpoint_blocks(spa);
7671 		return (0);
7672 	} else if (error != 0) {
7673 		(void) printf("lookup error %d when looking for "
7674 		    "checkpointed uberblock in MOS\n", error);
7675 		return (error);
7676 	}
7677 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7678 
7679 	if (checkpoint.ub_checkpoint_txg == 0) {
7680 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
7681 		    "uberblock\n");
7682 		error = 3;
7683 	}
7684 
7685 	if (error == 0 && !dump_opt['L'])
7686 		verify_checkpoint_blocks(spa);
7687 
7688 	return (error);
7689 }
7690 
7691 static void
7692 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7693 {
7694 	(void) arg;
7695 	for (uint64_t i = start; i < size; i++) {
7696 		(void) printf("MOS object %llu referenced but not allocated\n",
7697 		    (u_longlong_t)i);
7698 	}
7699 }
7700 
7701 static void
7702 mos_obj_refd(uint64_t obj)
7703 {
7704 	if (obj != 0 && mos_refd_objs != NULL)
7705 		range_tree_add(mos_refd_objs, obj, 1);
7706 }
7707 
7708 /*
7709  * Call on a MOS object that may already have been referenced.
7710  */
7711 static void
7712 mos_obj_refd_multiple(uint64_t obj)
7713 {
7714 	if (obj != 0 && mos_refd_objs != NULL &&
7715 	    !range_tree_contains(mos_refd_objs, obj, 1))
7716 		range_tree_add(mos_refd_objs, obj, 1);
7717 }
7718 
7719 static void
7720 mos_leak_vdev_top_zap(vdev_t *vd)
7721 {
7722 	uint64_t ms_flush_data_obj;
7723 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7724 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7725 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7726 	if (error == ENOENT)
7727 		return;
7728 	ASSERT0(error);
7729 
7730 	mos_obj_refd(ms_flush_data_obj);
7731 }
7732 
7733 static void
7734 mos_leak_vdev(vdev_t *vd)
7735 {
7736 	mos_obj_refd(vd->vdev_dtl_object);
7737 	mos_obj_refd(vd->vdev_ms_array);
7738 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7739 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7740 	mos_obj_refd(vd->vdev_leaf_zap);
7741 	if (vd->vdev_checkpoint_sm != NULL)
7742 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7743 	if (vd->vdev_indirect_mapping != NULL) {
7744 		mos_obj_refd(vd->vdev_indirect_mapping->
7745 		    vim_phys->vimp_counts_object);
7746 	}
7747 	if (vd->vdev_obsolete_sm != NULL)
7748 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7749 
7750 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7751 		metaslab_t *ms = vd->vdev_ms[m];
7752 		mos_obj_refd(space_map_object(ms->ms_sm));
7753 	}
7754 
7755 	if (vd->vdev_root_zap != 0)
7756 		mos_obj_refd(vd->vdev_root_zap);
7757 
7758 	if (vd->vdev_top_zap != 0) {
7759 		mos_obj_refd(vd->vdev_top_zap);
7760 		mos_leak_vdev_top_zap(vd);
7761 	}
7762 
7763 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
7764 		mos_leak_vdev(vd->vdev_child[c]);
7765 	}
7766 }
7767 
7768 static void
7769 mos_leak_log_spacemaps(spa_t *spa)
7770 {
7771 	uint64_t spacemap_zap;
7772 	int error = zap_lookup(spa_meta_objset(spa),
7773 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7774 	    sizeof (spacemap_zap), 1, &spacemap_zap);
7775 	if (error == ENOENT)
7776 		return;
7777 	ASSERT0(error);
7778 
7779 	mos_obj_refd(spacemap_zap);
7780 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7781 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7782 		mos_obj_refd(sls->sls_sm_obj);
7783 }
7784 
7785 static void
7786 errorlog_count_refd(objset_t *mos, uint64_t errlog)
7787 {
7788 	zap_cursor_t zc;
7789 	zap_attribute_t za;
7790 	for (zap_cursor_init(&zc, mos, errlog);
7791 	    zap_cursor_retrieve(&zc, &za) == 0;
7792 	    zap_cursor_advance(&zc)) {
7793 		mos_obj_refd(za.za_first_integer);
7794 	}
7795 	zap_cursor_fini(&zc);
7796 }
7797 
7798 static int
7799 dump_mos_leaks(spa_t *spa)
7800 {
7801 	int rv = 0;
7802 	objset_t *mos = spa->spa_meta_objset;
7803 	dsl_pool_t *dp = spa->spa_dsl_pool;
7804 
7805 	/* Visit and mark all referenced objects in the MOS */
7806 
7807 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7808 	mos_obj_refd(spa->spa_pool_props_object);
7809 	mos_obj_refd(spa->spa_config_object);
7810 	mos_obj_refd(spa->spa_ddt_stat_object);
7811 	mos_obj_refd(spa->spa_feat_desc_obj);
7812 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7813 	mos_obj_refd(spa->spa_feat_for_read_obj);
7814 	mos_obj_refd(spa->spa_feat_for_write_obj);
7815 	mos_obj_refd(spa->spa_history);
7816 	mos_obj_refd(spa->spa_errlog_last);
7817 	mos_obj_refd(spa->spa_errlog_scrub);
7818 
7819 	if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
7820 		errorlog_count_refd(mos, spa->spa_errlog_last);
7821 		errorlog_count_refd(mos, spa->spa_errlog_scrub);
7822 	}
7823 
7824 	mos_obj_refd(spa->spa_all_vdev_zaps);
7825 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7826 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
7827 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
7828 	bpobj_count_refd(&spa->spa_deferred_bpobj);
7829 	mos_obj_refd(dp->dp_empty_bpobj);
7830 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
7831 	bpobj_count_refd(&dp->dp_free_bpobj);
7832 	mos_obj_refd(spa->spa_l2cache.sav_object);
7833 	mos_obj_refd(spa->spa_spares.sav_object);
7834 
7835 	if (spa->spa_syncing_log_sm != NULL)
7836 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
7837 	mos_leak_log_spacemaps(spa);
7838 
7839 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7840 	    scip_next_mapping_object);
7841 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7842 	    scip_prev_obsolete_sm_object);
7843 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
7844 		vdev_indirect_mapping_t *vim =
7845 		    vdev_indirect_mapping_open(mos,
7846 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
7847 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
7848 		vdev_indirect_mapping_close(vim);
7849 	}
7850 	deleted_livelists_dump_mos(spa);
7851 
7852 	if (dp->dp_origin_snap != NULL) {
7853 		dsl_dataset_t *ds;
7854 
7855 		dsl_pool_config_enter(dp, FTAG);
7856 		VERIFY0(dsl_dataset_hold_obj(dp,
7857 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
7858 		    FTAG, &ds));
7859 		count_ds_mos_objects(ds);
7860 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
7861 		dsl_dataset_rele(ds, FTAG);
7862 		dsl_pool_config_exit(dp, FTAG);
7863 
7864 		count_ds_mos_objects(dp->dp_origin_snap);
7865 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
7866 	}
7867 	count_dir_mos_objects(dp->dp_mos_dir);
7868 	if (dp->dp_free_dir != NULL)
7869 		count_dir_mos_objects(dp->dp_free_dir);
7870 	if (dp->dp_leak_dir != NULL)
7871 		count_dir_mos_objects(dp->dp_leak_dir);
7872 
7873 	mos_leak_vdev(spa->spa_root_vdev);
7874 
7875 	for (uint64_t class = 0; class < DDT_CLASSES; class++) {
7876 		for (uint64_t type = 0; type < DDT_TYPES; type++) {
7877 			for (uint64_t cksum = 0;
7878 			    cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
7879 				ddt_t *ddt = spa->spa_ddt[cksum];
7880 				mos_obj_refd(ddt->ddt_object[type][class]);
7881 			}
7882 		}
7883 	}
7884 
7885 	/*
7886 	 * Visit all allocated objects and make sure they are referenced.
7887 	 */
7888 	uint64_t object = 0;
7889 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
7890 		if (range_tree_contains(mos_refd_objs, object, 1)) {
7891 			range_tree_remove(mos_refd_objs, object, 1);
7892 		} else {
7893 			dmu_object_info_t doi;
7894 			const char *name;
7895 			VERIFY0(dmu_object_info(mos, object, &doi));
7896 			if (doi.doi_type & DMU_OT_NEWTYPE) {
7897 				dmu_object_byteswap_t bswap =
7898 				    DMU_OT_BYTESWAP(doi.doi_type);
7899 				name = dmu_ot_byteswap[bswap].ob_name;
7900 			} else {
7901 				name = dmu_ot[doi.doi_type].ot_name;
7902 			}
7903 
7904 			(void) printf("MOS object %llu (%s) leaked\n",
7905 			    (u_longlong_t)object, name);
7906 			rv = 2;
7907 		}
7908 	}
7909 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
7910 	if (!range_tree_is_empty(mos_refd_objs))
7911 		rv = 2;
7912 	range_tree_vacate(mos_refd_objs, NULL, NULL);
7913 	range_tree_destroy(mos_refd_objs);
7914 	return (rv);
7915 }
7916 
7917 typedef struct log_sm_obsolete_stats_arg {
7918 	uint64_t lsos_current_txg;
7919 
7920 	uint64_t lsos_total_entries;
7921 	uint64_t lsos_valid_entries;
7922 
7923 	uint64_t lsos_sm_entries;
7924 	uint64_t lsos_valid_sm_entries;
7925 } log_sm_obsolete_stats_arg_t;
7926 
7927 static int
7928 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
7929     uint64_t txg, void *arg)
7930 {
7931 	log_sm_obsolete_stats_arg_t *lsos = arg;
7932 
7933 	uint64_t offset = sme->sme_offset;
7934 	uint64_t vdev_id = sme->sme_vdev;
7935 
7936 	if (lsos->lsos_current_txg == 0) {
7937 		/* this is the first log */
7938 		lsos->lsos_current_txg = txg;
7939 	} else if (lsos->lsos_current_txg < txg) {
7940 		/* we just changed log - print stats and reset */
7941 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7942 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
7943 		    (u_longlong_t)lsos->lsos_sm_entries,
7944 		    (u_longlong_t)lsos->lsos_current_txg);
7945 		lsos->lsos_valid_sm_entries = 0;
7946 		lsos->lsos_sm_entries = 0;
7947 		lsos->lsos_current_txg = txg;
7948 	}
7949 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
7950 
7951 	lsos->lsos_sm_entries++;
7952 	lsos->lsos_total_entries++;
7953 
7954 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
7955 	if (!vdev_is_concrete(vd))
7956 		return (0);
7957 
7958 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7959 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
7960 
7961 	if (txg < metaslab_unflushed_txg(ms))
7962 		return (0);
7963 	lsos->lsos_valid_sm_entries++;
7964 	lsos->lsos_valid_entries++;
7965 	return (0);
7966 }
7967 
7968 static void
7969 dump_log_spacemap_obsolete_stats(spa_t *spa)
7970 {
7971 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
7972 		return;
7973 
7974 	log_sm_obsolete_stats_arg_t lsos = {0};
7975 
7976 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
7977 
7978 	iterate_through_spacemap_logs(spa,
7979 	    log_spacemap_obsolete_stats_cb, &lsos);
7980 
7981 	/* print stats for latest log */
7982 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7983 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
7984 	    (u_longlong_t)lsos.lsos_sm_entries,
7985 	    (u_longlong_t)lsos.lsos_current_txg);
7986 
7987 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
7988 	    (u_longlong_t)lsos.lsos_valid_entries,
7989 	    (u_longlong_t)lsos.lsos_total_entries);
7990 }
7991 
7992 static void
7993 dump_zpool(spa_t *spa)
7994 {
7995 	dsl_pool_t *dp = spa_get_dsl(spa);
7996 	int rc = 0;
7997 
7998 	if (dump_opt['y']) {
7999 		livelist_metaslab_validate(spa);
8000 	}
8001 
8002 	if (dump_opt['S']) {
8003 		dump_simulated_ddt(spa);
8004 		return;
8005 	}
8006 
8007 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
8008 		(void) printf("\nCached configuration:\n");
8009 		dump_nvlist(spa->spa_config, 8);
8010 	}
8011 
8012 	if (dump_opt['C'])
8013 		dump_config(spa);
8014 
8015 	if (dump_opt['u'])
8016 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8017 
8018 	if (dump_opt['D'])
8019 		dump_all_ddts(spa);
8020 
8021 	if (dump_opt['d'] > 2 || dump_opt['m'])
8022 		dump_metaslabs(spa);
8023 	if (dump_opt['M'])
8024 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
8025 	if (dump_opt['d'] > 2 || dump_opt['m']) {
8026 		dump_log_spacemaps(spa);
8027 		dump_log_spacemap_obsolete_stats(spa);
8028 	}
8029 
8030 	if (dump_opt['d'] || dump_opt['i']) {
8031 		spa_feature_t f;
8032 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8033 		    0);
8034 		dump_objset(dp->dp_meta_objset);
8035 
8036 		if (dump_opt['d'] >= 3) {
8037 			dsl_pool_t *dp = spa->spa_dsl_pool;
8038 			dump_full_bpobj(&spa->spa_deferred_bpobj,
8039 			    "Deferred frees", 0);
8040 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8041 				dump_full_bpobj(&dp->dp_free_bpobj,
8042 				    "Pool snapshot frees", 0);
8043 			}
8044 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8045 				ASSERT(spa_feature_is_enabled(spa,
8046 				    SPA_FEATURE_DEVICE_REMOVAL));
8047 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
8048 				    "Pool obsolete blocks", 0);
8049 			}
8050 
8051 			if (spa_feature_is_active(spa,
8052 			    SPA_FEATURE_ASYNC_DESTROY)) {
8053 				dump_bptree(spa->spa_meta_objset,
8054 				    dp->dp_bptree_obj,
8055 				    "Pool dataset frees");
8056 			}
8057 			dump_dtl(spa->spa_root_vdev, 0);
8058 		}
8059 
8060 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8061 			global_feature_count[f] = UINT64_MAX;
8062 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8063 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8064 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8065 
8066 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
8067 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8068 
8069 		if (rc == 0 && !dump_opt['L'])
8070 			rc = dump_mos_leaks(spa);
8071 
8072 		for (f = 0; f < SPA_FEATURES; f++) {
8073 			uint64_t refcount;
8074 
8075 			uint64_t *arr;
8076 			if (!(spa_feature_table[f].fi_flags &
8077 			    ZFEATURE_FLAG_PER_DATASET)) {
8078 				if (global_feature_count[f] == UINT64_MAX)
8079 					continue;
8080 				if (!spa_feature_is_enabled(spa, f)) {
8081 					ASSERT0(global_feature_count[f]);
8082 					continue;
8083 				}
8084 				arr = global_feature_count;
8085 			} else {
8086 				if (!spa_feature_is_enabled(spa, f)) {
8087 					ASSERT0(dataset_feature_count[f]);
8088 					continue;
8089 				}
8090 				arr = dataset_feature_count;
8091 			}
8092 			if (feature_get_refcount(spa, &spa_feature_table[f],
8093 			    &refcount) == ENOTSUP)
8094 				continue;
8095 			if (arr[f] != refcount) {
8096 				(void) printf("%s feature refcount mismatch: "
8097 				    "%lld consumers != %lld refcount\n",
8098 				    spa_feature_table[f].fi_uname,
8099 				    (longlong_t)arr[f], (longlong_t)refcount);
8100 				rc = 2;
8101 			} else {
8102 				(void) printf("Verified %s feature refcount "
8103 				    "of %llu is correct\n",
8104 				    spa_feature_table[f].fi_uname,
8105 				    (longlong_t)refcount);
8106 			}
8107 		}
8108 
8109 		if (rc == 0)
8110 			rc = verify_device_removal_feature_counts(spa);
8111 	}
8112 
8113 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8114 		rc = dump_block_stats(spa);
8115 
8116 	if (rc == 0)
8117 		rc = verify_spacemap_refcounts(spa);
8118 
8119 	if (dump_opt['s'])
8120 		show_pool_stats(spa);
8121 
8122 	if (dump_opt['h'])
8123 		dump_history(spa);
8124 
8125 	if (rc == 0)
8126 		rc = verify_checkpoint(spa);
8127 
8128 	if (rc != 0) {
8129 		dump_debug_buffer();
8130 		exit(rc);
8131 	}
8132 }
8133 
8134 #define	ZDB_FLAG_CHECKSUM	0x0001
8135 #define	ZDB_FLAG_DECOMPRESS	0x0002
8136 #define	ZDB_FLAG_BSWAP		0x0004
8137 #define	ZDB_FLAG_GBH		0x0008
8138 #define	ZDB_FLAG_INDIRECT	0x0010
8139 #define	ZDB_FLAG_RAW		0x0020
8140 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
8141 #define	ZDB_FLAG_VERBOSE	0x0080
8142 
8143 static int flagbits[256];
8144 static char flagbitstr[16];
8145 
8146 static void
8147 zdb_print_blkptr(const blkptr_t *bp, int flags)
8148 {
8149 	char blkbuf[BP_SPRINTF_LEN];
8150 
8151 	if (flags & ZDB_FLAG_BSWAP)
8152 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8153 
8154 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8155 	(void) printf("%s\n", blkbuf);
8156 }
8157 
8158 static void
8159 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8160 {
8161 	int i;
8162 
8163 	for (i = 0; i < nbps; i++)
8164 		zdb_print_blkptr(&bp[i], flags);
8165 }
8166 
8167 static void
8168 zdb_dump_gbh(void *buf, int flags)
8169 {
8170 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8171 }
8172 
8173 static void
8174 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8175 {
8176 	if (flags & ZDB_FLAG_BSWAP)
8177 		byteswap_uint64_array(buf, size);
8178 	VERIFY(write(fileno(stdout), buf, size) == size);
8179 }
8180 
8181 static void
8182 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8183 {
8184 	uint64_t *d = (uint64_t *)buf;
8185 	unsigned nwords = size / sizeof (uint64_t);
8186 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8187 	unsigned i, j;
8188 	const char *hdr;
8189 	char *c;
8190 
8191 
8192 	if (do_bswap)
8193 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
8194 	else
8195 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
8196 
8197 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
8198 
8199 #ifdef _LITTLE_ENDIAN
8200 	/* correct the endianness */
8201 	do_bswap = !do_bswap;
8202 #endif
8203 	for (i = 0; i < nwords; i += 2) {
8204 		(void) printf("%06llx:  %016llx  %016llx  ",
8205 		    (u_longlong_t)(i * sizeof (uint64_t)),
8206 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8207 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8208 
8209 		c = (char *)&d[i];
8210 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
8211 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
8212 		(void) printf("\n");
8213 	}
8214 }
8215 
8216 /*
8217  * There are two acceptable formats:
8218  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
8219  *	child[.child]*    - For example: 0.1.1
8220  *
8221  * The second form can be used to specify arbitrary vdevs anywhere
8222  * in the hierarchy.  For example, in a pool with a mirror of
8223  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8224  */
8225 static vdev_t *
8226 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8227 {
8228 	char *s, *p, *q;
8229 	unsigned i;
8230 
8231 	if (vdev == NULL)
8232 		return (NULL);
8233 
8234 	/* First, assume the x.x.x.x format */
8235 	i = strtoul(path, &s, 10);
8236 	if (s == path || (s && *s != '.' && *s != '\0'))
8237 		goto name;
8238 	if (i >= vdev->vdev_children)
8239 		return (NULL);
8240 
8241 	vdev = vdev->vdev_child[i];
8242 	if (s && *s == '\0')
8243 		return (vdev);
8244 	return (zdb_vdev_lookup(vdev, s+1));
8245 
8246 name:
8247 	for (i = 0; i < vdev->vdev_children; i++) {
8248 		vdev_t *vc = vdev->vdev_child[i];
8249 
8250 		if (vc->vdev_path == NULL) {
8251 			vc = zdb_vdev_lookup(vc, path);
8252 			if (vc == NULL)
8253 				continue;
8254 			else
8255 				return (vc);
8256 		}
8257 
8258 		p = strrchr(vc->vdev_path, '/');
8259 		p = p ? p + 1 : vc->vdev_path;
8260 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8261 
8262 		if (strcmp(vc->vdev_path, path) == 0)
8263 			return (vc);
8264 		if (strcmp(p, path) == 0)
8265 			return (vc);
8266 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8267 			return (vc);
8268 	}
8269 
8270 	return (NULL);
8271 }
8272 
8273 static int
8274 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8275 {
8276 	dsl_dataset_t *ds;
8277 
8278 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8279 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8280 	    NULL, &ds);
8281 	if (error != 0) {
8282 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8283 		    (u_longlong_t)objset_id, strerror(error));
8284 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8285 		return (error);
8286 	}
8287 	dsl_dataset_name(ds, outstr);
8288 	dsl_dataset_rele(ds, NULL);
8289 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8290 	return (0);
8291 }
8292 
8293 static boolean_t
8294 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8295 {
8296 	char *s0, *s1, *tmp = NULL;
8297 
8298 	if (sizes == NULL)
8299 		return (B_FALSE);
8300 
8301 	s0 = strtok_r(sizes, "/", &tmp);
8302 	if (s0 == NULL)
8303 		return (B_FALSE);
8304 	s1 = strtok_r(NULL, "/", &tmp);
8305 	*lsize = strtoull(s0, NULL, 16);
8306 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8307 	return (*lsize >= *psize && *psize > 0);
8308 }
8309 
8310 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
8311 
8312 static boolean_t
8313 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8314     uint64_t psize, int flags)
8315 {
8316 	(void) buf;
8317 	boolean_t exceeded = B_FALSE;
8318 	/*
8319 	 * We don't know how the data was compressed, so just try
8320 	 * every decompress function at every inflated blocksize.
8321 	 */
8322 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8323 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8324 	int *cfuncp = cfuncs;
8325 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8326 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8327 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8328 	    (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8329 	*cfuncp++ = ZIO_COMPRESS_LZ4;
8330 	*cfuncp++ = ZIO_COMPRESS_LZJB;
8331 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8332 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8333 		if (((1ULL << c) & mask) == 0)
8334 			*cfuncp++ = c;
8335 
8336 	/*
8337 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8338 	 * could take a while and we should let the user know
8339 	 * we are not stuck.  On the other hand, printing progress
8340 	 * info gets old after a while.  User can specify 'v' flag
8341 	 * to see the progression.
8342 	 */
8343 	if (lsize == psize)
8344 		lsize += SPA_MINBLOCKSIZE;
8345 	else
8346 		maxlsize = lsize;
8347 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8348 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8349 			if (flags & ZDB_FLAG_VERBOSE) {
8350 				(void) fprintf(stderr,
8351 				    "Trying %05llx -> %05llx (%s)\n",
8352 				    (u_longlong_t)psize,
8353 				    (u_longlong_t)lsize,
8354 				    zio_compress_table[*cfuncp].\
8355 				    ci_name);
8356 			}
8357 
8358 			/*
8359 			 * We randomize lbuf2, and decompress to both
8360 			 * lbuf and lbuf2. This way, we will know if
8361 			 * decompression fill exactly to lsize.
8362 			 */
8363 			VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8364 
8365 			if (zio_decompress_data(*cfuncp, pabd,
8366 			    lbuf, psize, lsize, NULL) == 0 &&
8367 			    zio_decompress_data(*cfuncp, pabd,
8368 			    lbuf2, psize, lsize, NULL) == 0 &&
8369 			    memcmp(lbuf, lbuf2, lsize) == 0)
8370 				break;
8371 		}
8372 		if (*cfuncp != 0)
8373 			break;
8374 	}
8375 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8376 
8377 	if (lsize > maxlsize) {
8378 		exceeded = B_TRUE;
8379 	}
8380 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8381 		printf("\nZLE decompression was selected. If you "
8382 		    "suspect the results are wrong,\ntry avoiding ZLE "
8383 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8384 	}
8385 
8386 	return (exceeded);
8387 }
8388 
8389 /*
8390  * Read a block from a pool and print it out.  The syntax of the
8391  * block descriptor is:
8392  *
8393  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8394  *
8395  *	pool           - The name of the pool you wish to read from
8396  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8397  *	offset         - offset, in hex, in bytes
8398  *	size           - Amount of data to read, in hex, in bytes
8399  *	flags          - A string of characters specifying options
8400  *		 b: Decode a blkptr at given offset within block
8401  *		 c: Calculate and display checksums
8402  *		 d: Decompress data before dumping
8403  *		 e: Byteswap data before dumping
8404  *		 g: Display data as a gang block header
8405  *		 i: Display as an indirect block
8406  *		 r: Dump raw data to stdout
8407  *		 v: Verbose
8408  *
8409  */
8410 static void
8411 zdb_read_block(char *thing, spa_t *spa)
8412 {
8413 	blkptr_t blk, *bp = &blk;
8414 	dva_t *dva = bp->blk_dva;
8415 	int flags = 0;
8416 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8417 	zio_t *zio;
8418 	vdev_t *vd;
8419 	abd_t *pabd;
8420 	void *lbuf, *buf;
8421 	char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8422 	const char *vdev, *errmsg = NULL;
8423 	int i, error;
8424 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8425 
8426 	dup = strdup(thing);
8427 	s = strtok_r(dup, ":", &tmp);
8428 	vdev = s ?: "";
8429 	s = strtok_r(NULL, ":", &tmp);
8430 	offset = strtoull(s ? s : "", NULL, 16);
8431 	sizes = strtok_r(NULL, ":", &tmp);
8432 	s = strtok_r(NULL, ":", &tmp);
8433 	flagstr = strdup(s ?: "");
8434 
8435 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8436 		errmsg = "invalid size(s)";
8437 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8438 		errmsg = "size must be a multiple of sector size";
8439 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8440 		errmsg = "offset must be a multiple of sector size";
8441 	if (errmsg) {
8442 		(void) printf("Invalid block specifier: %s  - %s\n",
8443 		    thing, errmsg);
8444 		goto done;
8445 	}
8446 
8447 	tmp = NULL;
8448 	for (s = strtok_r(flagstr, ":", &tmp);
8449 	    s != NULL;
8450 	    s = strtok_r(NULL, ":", &tmp)) {
8451 		for (i = 0; i < strlen(flagstr); i++) {
8452 			int bit = flagbits[(uchar_t)flagstr[i]];
8453 
8454 			if (bit == 0) {
8455 				(void) printf("***Ignoring flag: %c\n",
8456 				    (uchar_t)flagstr[i]);
8457 				continue;
8458 			}
8459 			found = B_TRUE;
8460 			flags |= bit;
8461 
8462 			p = &flagstr[i + 1];
8463 			if (*p != ':' && *p != '\0') {
8464 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8465 				char *end, offstr[8] = { 0 };
8466 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8467 				    (nextbit == 0)) {
8468 					/* look ahead to isolate the offset */
8469 					while (nextbit == 0 &&
8470 					    strchr(flagbitstr, *p) == NULL) {
8471 						offstr[j] = *p;
8472 						j++;
8473 						if (i + j > strlen(flagstr))
8474 							break;
8475 						p++;
8476 						nextbit = flagbits[(uchar_t)*p];
8477 					}
8478 					blkptr_offset = strtoull(offstr, &end,
8479 					    16);
8480 					i += j;
8481 				} else if (nextbit == 0) {
8482 					(void) printf("***Ignoring flag arg:"
8483 					    " '%c'\n", (uchar_t)*p);
8484 				}
8485 			}
8486 		}
8487 	}
8488 	if (blkptr_offset % sizeof (blkptr_t)) {
8489 		printf("Block pointer offset 0x%llx "
8490 		    "must be divisible by 0x%x\n",
8491 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8492 		goto done;
8493 	}
8494 	if (found == B_FALSE && strlen(flagstr) > 0) {
8495 		printf("Invalid flag arg: '%s'\n", flagstr);
8496 		goto done;
8497 	}
8498 
8499 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8500 	if (vd == NULL) {
8501 		(void) printf("***Invalid vdev: %s\n", vdev);
8502 		goto done;
8503 	} else {
8504 		if (vd->vdev_path)
8505 			(void) fprintf(stderr, "Found vdev: %s\n",
8506 			    vd->vdev_path);
8507 		else
8508 			(void) fprintf(stderr, "Found vdev type: %s\n",
8509 			    vd->vdev_ops->vdev_op_type);
8510 	}
8511 
8512 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8513 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8514 
8515 	BP_ZERO(bp);
8516 
8517 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8518 	DVA_SET_OFFSET(&dva[0], offset);
8519 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8520 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8521 
8522 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8523 
8524 	BP_SET_LSIZE(bp, lsize);
8525 	BP_SET_PSIZE(bp, psize);
8526 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8527 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8528 	BP_SET_TYPE(bp, DMU_OT_NONE);
8529 	BP_SET_LEVEL(bp, 0);
8530 	BP_SET_DEDUP(bp, 0);
8531 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8532 
8533 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8534 	zio = zio_root(spa, NULL, NULL, 0);
8535 
8536 	if (vd == vd->vdev_top) {
8537 		/*
8538 		 * Treat this as a normal block read.
8539 		 */
8540 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8541 		    ZIO_PRIORITY_SYNC_READ,
8542 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8543 	} else {
8544 		/*
8545 		 * Treat this as a vdev child I/O.
8546 		 */
8547 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8548 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8549 		    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8550 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8551 		    NULL, NULL));
8552 	}
8553 
8554 	error = zio_wait(zio);
8555 	spa_config_exit(spa, SCL_STATE, FTAG);
8556 
8557 	if (error) {
8558 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8559 		goto out;
8560 	}
8561 
8562 	uint64_t orig_lsize = lsize;
8563 	buf = lbuf;
8564 	if (flags & ZDB_FLAG_DECOMPRESS) {
8565 		boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8566 		    lsize, psize, flags);
8567 		if (failed) {
8568 			(void) printf("Decompress of %s failed\n", thing);
8569 			goto out;
8570 		}
8571 	} else {
8572 		buf = abd_borrow_buf_copy(pabd, lsize);
8573 		borrowed = B_TRUE;
8574 	}
8575 	/*
8576 	 * Try to detect invalid block pointer.  If invalid, try
8577 	 * decompressing.
8578 	 */
8579 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8580 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8581 		const blkptr_t *b = (const blkptr_t *)(void *)
8582 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8583 		if (zfs_blkptr_verify(spa, b,
8584 		    BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8585 			abd_return_buf_copy(pabd, buf, lsize);
8586 			borrowed = B_FALSE;
8587 			buf = lbuf;
8588 			boolean_t failed = zdb_decompress_block(pabd, buf,
8589 			    lbuf, lsize, psize, flags);
8590 			b = (const blkptr_t *)(void *)
8591 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8592 			if (failed || zfs_blkptr_verify(spa, b,
8593 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8594 				printf("invalid block pointer at this DVA\n");
8595 				goto out;
8596 			}
8597 		}
8598 	}
8599 
8600 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
8601 		zdb_print_blkptr((blkptr_t *)(void *)
8602 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8603 	else if (flags & ZDB_FLAG_RAW)
8604 		zdb_dump_block_raw(buf, lsize, flags);
8605 	else if (flags & ZDB_FLAG_INDIRECT)
8606 		zdb_dump_indirect((blkptr_t *)buf,
8607 		    orig_lsize / sizeof (blkptr_t), flags);
8608 	else if (flags & ZDB_FLAG_GBH)
8609 		zdb_dump_gbh(buf, flags);
8610 	else
8611 		zdb_dump_block(thing, buf, lsize, flags);
8612 
8613 	/*
8614 	 * If :c was specified, iterate through the checksum table to
8615 	 * calculate and display each checksum for our specified
8616 	 * DVA and length.
8617 	 */
8618 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8619 	    !(flags & ZDB_FLAG_GBH)) {
8620 		zio_t *czio;
8621 		(void) printf("\n");
8622 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8623 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8624 
8625 			if ((zio_checksum_table[ck].ci_flags &
8626 			    ZCHECKSUM_FLAG_EMBEDDED) ||
8627 			    ck == ZIO_CHECKSUM_NOPARITY) {
8628 				continue;
8629 			}
8630 			BP_SET_CHECKSUM(bp, ck);
8631 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8632 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8633 			czio->io_bp = bp;
8634 
8635 			if (vd == vd->vdev_top) {
8636 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8637 				    NULL, NULL,
8638 				    ZIO_PRIORITY_SYNC_READ,
8639 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8640 				    ZIO_FLAG_DONT_RETRY, NULL));
8641 			} else {
8642 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
8643 				    offset, pabd, psize, ZIO_TYPE_READ,
8644 				    ZIO_PRIORITY_SYNC_READ,
8645 				    ZIO_FLAG_DONT_PROPAGATE |
8646 				    ZIO_FLAG_DONT_RETRY |
8647 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8648 				    ZIO_FLAG_SPECULATIVE |
8649 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
8650 			}
8651 			error = zio_wait(czio);
8652 			if (error == 0 || error == ECKSUM) {
8653 				zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
8654 				ck_zio->io_offset =
8655 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
8656 				ck_zio->io_bp = bp;
8657 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
8658 				printf(
8659 				    "%12s\t"
8660 				    "cksum=%016llx:%016llx:%016llx:%016llx\n",
8661 				    zio_checksum_table[ck].ci_name,
8662 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
8663 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
8664 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
8665 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
8666 				zio_wait(ck_zio);
8667 			} else {
8668 				printf("error %d reading block\n", error);
8669 			}
8670 			spa_config_exit(spa, SCL_STATE, FTAG);
8671 		}
8672 	}
8673 
8674 	if (borrowed)
8675 		abd_return_buf_copy(pabd, buf, lsize);
8676 
8677 out:
8678 	abd_free(pabd);
8679 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
8680 done:
8681 	free(flagstr);
8682 	free(dup);
8683 }
8684 
8685 static void
8686 zdb_embedded_block(char *thing)
8687 {
8688 	blkptr_t bp = {{{{0}}}};
8689 	unsigned long long *words = (void *)&bp;
8690 	char *buf;
8691 	int err;
8692 
8693 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8694 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8695 	    words + 0, words + 1, words + 2, words + 3,
8696 	    words + 4, words + 5, words + 6, words + 7,
8697 	    words + 8, words + 9, words + 10, words + 11,
8698 	    words + 12, words + 13, words + 14, words + 15);
8699 	if (err != 16) {
8700 		(void) fprintf(stderr, "invalid input format\n");
8701 		exit(1);
8702 	}
8703 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8704 	buf = malloc(SPA_MAXBLOCKSIZE);
8705 	if (buf == NULL) {
8706 		(void) fprintf(stderr, "out of memory\n");
8707 		exit(1);
8708 	}
8709 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8710 	if (err != 0) {
8711 		(void) fprintf(stderr, "decode failed: %u\n", err);
8712 		exit(1);
8713 	}
8714 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8715 	free(buf);
8716 }
8717 
8718 /* check for valid hex or decimal numeric string */
8719 static boolean_t
8720 zdb_numeric(char *str)
8721 {
8722 	int i = 0;
8723 
8724 	if (strlen(str) == 0)
8725 		return (B_FALSE);
8726 	if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8727 		i = 2;
8728 	for (; i < strlen(str); i++) {
8729 		if (!isxdigit(str[i]))
8730 			return (B_FALSE);
8731 	}
8732 	return (B_TRUE);
8733 }
8734 
8735 int
8736 main(int argc, char **argv)
8737 {
8738 	int c;
8739 	spa_t *spa = NULL;
8740 	objset_t *os = NULL;
8741 	int dump_all = 1;
8742 	int verbose = 0;
8743 	int error = 0;
8744 	char **searchdirs = NULL;
8745 	int nsearch = 0;
8746 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8747 	nvlist_t *policy = NULL;
8748 	uint64_t max_txg = UINT64_MAX;
8749 	int64_t objset_id = -1;
8750 	uint64_t object;
8751 	int flags = ZFS_IMPORT_MISSING_LOG;
8752 	int rewind = ZPOOL_NEVER_REWIND;
8753 	char *spa_config_path_env, *objset_str;
8754 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8755 	nvlist_t *cfg = NULL;
8756 
8757 	dprintf_setup(&argc, argv);
8758 
8759 	/*
8760 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
8761 	 * default spa_config_path setting. If -U flag is specified it will
8762 	 * override this environment variable settings once again.
8763 	 */
8764 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
8765 	if (spa_config_path_env != NULL)
8766 		spa_config_path = spa_config_path_env;
8767 
8768 	/*
8769 	 * For performance reasons, we set this tunable down. We do so before
8770 	 * the arg parsing section so that the user can override this value if
8771 	 * they choose.
8772 	 */
8773 	zfs_btree_verify_intensity = 3;
8774 
8775 	struct option long_options[] = {
8776 		{"ignore-assertions",	no_argument,		NULL, 'A'},
8777 		{"block-stats",		no_argument,		NULL, 'b'},
8778 		{"backup",		no_argument,		NULL, 'B'},
8779 		{"checksum",		no_argument,		NULL, 'c'},
8780 		{"config",		no_argument,		NULL, 'C'},
8781 		{"datasets",		no_argument,		NULL, 'd'},
8782 		{"dedup-stats",		no_argument,		NULL, 'D'},
8783 		{"exported",		no_argument,		NULL, 'e'},
8784 		{"embedded-block-pointer",	no_argument,	NULL, 'E'},
8785 		{"automatic-rewind",	no_argument,		NULL, 'F'},
8786 		{"dump-debug-msg",	no_argument,		NULL, 'G'},
8787 		{"history",		no_argument,		NULL, 'h'},
8788 		{"intent-logs",		no_argument,		NULL, 'i'},
8789 		{"inflight",		required_argument,	NULL, 'I'},
8790 		{"checkpointed-state",	no_argument,		NULL, 'k'},
8791 		{"key",			required_argument,	NULL, 'K'},
8792 		{"label",		no_argument,		NULL, 'l'},
8793 		{"disable-leak-tracking",	no_argument,	NULL, 'L'},
8794 		{"metaslabs",		no_argument,		NULL, 'm'},
8795 		{"metaslab-groups",	no_argument,		NULL, 'M'},
8796 		{"numeric",		no_argument,		NULL, 'N'},
8797 		{"option",		required_argument,	NULL, 'o'},
8798 		{"object-lookups",	no_argument,		NULL, 'O'},
8799 		{"path",		required_argument,	NULL, 'p'},
8800 		{"parseable",		no_argument,		NULL, 'P'},
8801 		{"skip-label",		no_argument,		NULL, 'q'},
8802 		{"copy-object",		no_argument,		NULL, 'r'},
8803 		{"read-block",		no_argument,		NULL, 'R'},
8804 		{"io-stats",		no_argument,		NULL, 's'},
8805 		{"simulate-dedup",	no_argument,		NULL, 'S'},
8806 		{"txg",			required_argument,	NULL, 't'},
8807 		{"uberblock",		no_argument,		NULL, 'u'},
8808 		{"cachefile",		required_argument,	NULL, 'U'},
8809 		{"verbose",		no_argument,		NULL, 'v'},
8810 		{"verbatim",		no_argument,		NULL, 'V'},
8811 		{"dump-blocks",		required_argument,	NULL, 'x'},
8812 		{"extreme-rewind",	no_argument,		NULL, 'X'},
8813 		{"all-reconstruction",	no_argument,		NULL, 'Y'},
8814 		{"livelist",		no_argument,		NULL, 'y'},
8815 		{"zstd-headers",	no_argument,		NULL, 'Z'},
8816 		{0, 0, 0, 0}
8817 	};
8818 
8819 	while ((c = getopt_long(argc, argv,
8820 	    "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
8821 	    long_options, NULL)) != -1) {
8822 		switch (c) {
8823 		case 'b':
8824 		case 'B':
8825 		case 'c':
8826 		case 'C':
8827 		case 'd':
8828 		case 'D':
8829 		case 'E':
8830 		case 'G':
8831 		case 'h':
8832 		case 'i':
8833 		case 'l':
8834 		case 'm':
8835 		case 'M':
8836 		case 'N':
8837 		case 'O':
8838 		case 'r':
8839 		case 'R':
8840 		case 's':
8841 		case 'S':
8842 		case 'u':
8843 		case 'y':
8844 		case 'Z':
8845 			dump_opt[c]++;
8846 			dump_all = 0;
8847 			break;
8848 		case 'A':
8849 		case 'e':
8850 		case 'F':
8851 		case 'k':
8852 		case 'L':
8853 		case 'P':
8854 		case 'q':
8855 		case 'X':
8856 			dump_opt[c]++;
8857 			break;
8858 		case 'Y':
8859 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
8860 			zfs_deadman_enabled = 0;
8861 			break;
8862 		/* NB: Sort single match options below. */
8863 		case 'I':
8864 			max_inflight_bytes = strtoull(optarg, NULL, 0);
8865 			if (max_inflight_bytes == 0) {
8866 				(void) fprintf(stderr, "maximum number "
8867 				    "of inflight bytes must be greater "
8868 				    "than 0\n");
8869 				usage();
8870 			}
8871 			break;
8872 		case 'K':
8873 			dump_opt[c]++;
8874 			key_material = strdup(optarg);
8875 			/* redact key material in process table */
8876 			while (*optarg != '\0') { *optarg++ = '*'; }
8877 			break;
8878 		case 'o':
8879 			error = set_global_var(optarg);
8880 			if (error != 0)
8881 				usage();
8882 			break;
8883 		case 'p':
8884 			if (searchdirs == NULL) {
8885 				searchdirs = umem_alloc(sizeof (char *),
8886 				    UMEM_NOFAIL);
8887 			} else {
8888 				char **tmp = umem_alloc((nsearch + 1) *
8889 				    sizeof (char *), UMEM_NOFAIL);
8890 				memcpy(tmp, searchdirs, nsearch *
8891 				    sizeof (char *));
8892 				umem_free(searchdirs,
8893 				    nsearch * sizeof (char *));
8894 				searchdirs = tmp;
8895 			}
8896 			searchdirs[nsearch++] = optarg;
8897 			break;
8898 		case 't':
8899 			max_txg = strtoull(optarg, NULL, 0);
8900 			if (max_txg < TXG_INITIAL) {
8901 				(void) fprintf(stderr, "incorrect txg "
8902 				    "specified: %s\n", optarg);
8903 				usage();
8904 			}
8905 			break;
8906 		case 'U':
8907 			spa_config_path = optarg;
8908 			if (spa_config_path[0] != '/') {
8909 				(void) fprintf(stderr,
8910 				    "cachefile must be an absolute path "
8911 				    "(i.e. start with a slash)\n");
8912 				usage();
8913 			}
8914 			break;
8915 		case 'v':
8916 			verbose++;
8917 			break;
8918 		case 'V':
8919 			flags = ZFS_IMPORT_VERBATIM;
8920 			break;
8921 		case 'x':
8922 			vn_dumpdir = optarg;
8923 			break;
8924 		default:
8925 			usage();
8926 			break;
8927 		}
8928 	}
8929 
8930 	if (!dump_opt['e'] && searchdirs != NULL) {
8931 		(void) fprintf(stderr, "-p option requires use of -e\n");
8932 		usage();
8933 	}
8934 #if defined(_LP64)
8935 	/*
8936 	 * ZDB does not typically re-read blocks; therefore limit the ARC
8937 	 * to 256 MB, which can be used entirely for metadata.
8938 	 */
8939 	zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
8940 	zfs_arc_max = 256 * 1024 * 1024;
8941 #endif
8942 
8943 	/*
8944 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
8945 	 * "zdb -b" uses traversal prefetch which uses async reads.
8946 	 * For good performance, let several of them be active at once.
8947 	 */
8948 	zfs_vdev_async_read_max_active = 10;
8949 
8950 	/*
8951 	 * Disable reference tracking for better performance.
8952 	 */
8953 	reference_tracking_enable = B_FALSE;
8954 
8955 	/*
8956 	 * Do not fail spa_load when spa_load_verify fails. This is needed
8957 	 * to load non-idle pools.
8958 	 */
8959 	spa_load_verify_dryrun = B_TRUE;
8960 
8961 	/*
8962 	 * ZDB should have ability to read spacemaps.
8963 	 */
8964 	spa_mode_readable_spacemaps = B_TRUE;
8965 
8966 	kernel_init(SPA_MODE_READ);
8967 
8968 	if (dump_all)
8969 		verbose = MAX(verbose, 1);
8970 
8971 	for (c = 0; c < 256; c++) {
8972 		if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
8973 			dump_opt[c] = 1;
8974 		if (dump_opt[c])
8975 			dump_opt[c] += verbose;
8976 	}
8977 
8978 	libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
8979 	zfs_recover = (dump_opt['A'] > 1);
8980 
8981 	argc -= optind;
8982 	argv += optind;
8983 	if (argc < 2 && dump_opt['R'])
8984 		usage();
8985 
8986 	if (dump_opt['E']) {
8987 		if (argc != 1)
8988 			usage();
8989 		zdb_embedded_block(argv[0]);
8990 		return (0);
8991 	}
8992 
8993 	if (argc < 1) {
8994 		if (!dump_opt['e'] && dump_opt['C']) {
8995 			dump_cachefile(spa_config_path);
8996 			return (0);
8997 		}
8998 		usage();
8999 	}
9000 
9001 	if (dump_opt['l'])
9002 		return (dump_label(argv[0]));
9003 
9004 	if (dump_opt['O']) {
9005 		if (argc != 2)
9006 			usage();
9007 		dump_opt['v'] = verbose + 3;
9008 		return (dump_path(argv[0], argv[1], NULL));
9009 	}
9010 	if (dump_opt['r']) {
9011 		target_is_spa = B_FALSE;
9012 		if (argc != 3)
9013 			usage();
9014 		dump_opt['v'] = verbose;
9015 		error = dump_path(argv[0], argv[1], &object);
9016 		if (error != 0)
9017 			fatal("internal error: %s", strerror(error));
9018 	}
9019 
9020 	if (dump_opt['X'] || dump_opt['F'])
9021 		rewind = ZPOOL_DO_REWIND |
9022 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9023 
9024 	/* -N implies -d */
9025 	if (dump_opt['N'] && dump_opt['d'] == 0)
9026 		dump_opt['d'] = dump_opt['N'];
9027 
9028 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9029 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9030 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9031 		fatal("internal error: %s", strerror(ENOMEM));
9032 
9033 	error = 0;
9034 	target = argv[0];
9035 
9036 	if (strpbrk(target, "/@") != NULL) {
9037 		size_t targetlen;
9038 
9039 		target_pool = strdup(target);
9040 		*strpbrk(target_pool, "/@") = '\0';
9041 
9042 		target_is_spa = B_FALSE;
9043 		targetlen = strlen(target);
9044 		if (targetlen && target[targetlen - 1] == '/')
9045 			target[targetlen - 1] = '\0';
9046 
9047 		/*
9048 		 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9049 		 * To disambiguate tank/100, consider the 100 as objsetID
9050 		 * if -N was given, otherwise 100 is an objsetID iff
9051 		 * tank/100 as a named dataset fails on lookup.
9052 		 */
9053 		objset_str = strchr(target, '/');
9054 		if (objset_str && strlen(objset_str) > 1 &&
9055 		    zdb_numeric(objset_str + 1)) {
9056 			char *endptr;
9057 			errno = 0;
9058 			objset_str++;
9059 			objset_id = strtoull(objset_str, &endptr, 0);
9060 			/* dataset 0 is the same as opening the pool */
9061 			if (errno == 0 && endptr != objset_str &&
9062 			    objset_id != 0) {
9063 				if (dump_opt['N'])
9064 					dataset_lookup = B_TRUE;
9065 			}
9066 			/* normal dataset name not an objset ID */
9067 			if (endptr == objset_str) {
9068 				objset_id = -1;
9069 			}
9070 		} else if (objset_str && !zdb_numeric(objset_str + 1) &&
9071 		    dump_opt['N']) {
9072 			printf("Supply a numeric objset ID with -N\n");
9073 			exit(1);
9074 		}
9075 	} else {
9076 		target_pool = target;
9077 	}
9078 
9079 	if (dump_opt['e']) {
9080 		importargs_t args = { 0 };
9081 
9082 		args.paths = nsearch;
9083 		args.path = searchdirs;
9084 		args.can_be_active = B_TRUE;
9085 
9086 		libpc_handle_t lpch = {
9087 			.lpc_lib_handle = NULL,
9088 			.lpc_ops = &libzpool_config_ops,
9089 			.lpc_printerr = B_TRUE
9090 		};
9091 		error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9092 
9093 		if (error == 0) {
9094 
9095 			if (nvlist_add_nvlist(cfg,
9096 			    ZPOOL_LOAD_POLICY, policy) != 0) {
9097 				fatal("can't open '%s': %s",
9098 				    target, strerror(ENOMEM));
9099 			}
9100 
9101 			if (dump_opt['C'] > 1) {
9102 				(void) printf("\nConfiguration for import:\n");
9103 				dump_nvlist(cfg, 8);
9104 			}
9105 
9106 			/*
9107 			 * Disable the activity check to allow examination of
9108 			 * active pools.
9109 			 */
9110 			error = spa_import(target_pool, cfg, NULL,
9111 			    flags | ZFS_IMPORT_SKIP_MMP);
9112 		}
9113 	}
9114 
9115 	if (searchdirs != NULL) {
9116 		umem_free(searchdirs, nsearch * sizeof (char *));
9117 		searchdirs = NULL;
9118 	}
9119 
9120 	/*
9121 	 * import_checkpointed_state makes the assumption that the
9122 	 * target pool that we pass it is already part of the spa
9123 	 * namespace. Because of that we need to make sure to call
9124 	 * it always after the -e option has been processed, which
9125 	 * imports the pool to the namespace if it's not in the
9126 	 * cachefile.
9127 	 */
9128 	char *checkpoint_pool = NULL;
9129 	char *checkpoint_target = NULL;
9130 	if (dump_opt['k']) {
9131 		checkpoint_pool = import_checkpointed_state(target, cfg,
9132 		    &checkpoint_target);
9133 
9134 		if (checkpoint_target != NULL)
9135 			target = checkpoint_target;
9136 	}
9137 
9138 	if (cfg != NULL) {
9139 		nvlist_free(cfg);
9140 		cfg = NULL;
9141 	}
9142 
9143 	if (target_pool != target)
9144 		free(target_pool);
9145 
9146 	if (error == 0) {
9147 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9148 			ASSERT(checkpoint_pool != NULL);
9149 			ASSERT(checkpoint_target == NULL);
9150 
9151 			error = spa_open(checkpoint_pool, &spa, FTAG);
9152 			if (error != 0) {
9153 				fatal("Tried to open pool \"%s\" but "
9154 				    "spa_open() failed with error %d\n",
9155 				    checkpoint_pool, error);
9156 			}
9157 
9158 		} else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9159 		    objset_id == 0) {
9160 			zdb_set_skip_mmp(target);
9161 			error = spa_open_rewind(target, &spa, FTAG, policy,
9162 			    NULL);
9163 			if (error) {
9164 				/*
9165 				 * If we're missing the log device then
9166 				 * try opening the pool after clearing the
9167 				 * log state.
9168 				 */
9169 				mutex_enter(&spa_namespace_lock);
9170 				if ((spa = spa_lookup(target)) != NULL &&
9171 				    spa->spa_log_state == SPA_LOG_MISSING) {
9172 					spa->spa_log_state = SPA_LOG_CLEAR;
9173 					error = 0;
9174 				}
9175 				mutex_exit(&spa_namespace_lock);
9176 
9177 				if (!error) {
9178 					error = spa_open_rewind(target, &spa,
9179 					    FTAG, policy, NULL);
9180 				}
9181 			}
9182 		} else if (strpbrk(target, "#") != NULL) {
9183 			dsl_pool_t *dp;
9184 			error = dsl_pool_hold(target, FTAG, &dp);
9185 			if (error != 0) {
9186 				fatal("can't dump '%s': %s", target,
9187 				    strerror(error));
9188 			}
9189 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9190 			dsl_pool_rele(dp, FTAG);
9191 			if (error != 0) {
9192 				fatal("can't dump '%s': %s", target,
9193 				    strerror(error));
9194 			}
9195 			return (error);
9196 		} else {
9197 			target_pool = strdup(target);
9198 			if (strpbrk(target, "/@") != NULL)
9199 				*strpbrk(target_pool, "/@") = '\0';
9200 
9201 			zdb_set_skip_mmp(target);
9202 			/*
9203 			 * If -N was supplied, the user has indicated that
9204 			 * zdb -d <pool>/<objsetID> is in effect.  Otherwise
9205 			 * we first assume that the dataset string is the
9206 			 * dataset name.  If dmu_objset_hold fails with the
9207 			 * dataset string, and we have an objset_id, retry the
9208 			 * lookup with the objsetID.
9209 			 */
9210 			boolean_t retry = B_TRUE;
9211 retry_lookup:
9212 			if (dataset_lookup == B_TRUE) {
9213 				/*
9214 				 * Use the supplied id to get the name
9215 				 * for open_objset.
9216 				 */
9217 				error = spa_open(target_pool, &spa, FTAG);
9218 				if (error == 0) {
9219 					error = name_from_objset_id(spa,
9220 					    objset_id, dsname);
9221 					spa_close(spa, FTAG);
9222 					if (error == 0)
9223 						target = dsname;
9224 				}
9225 			}
9226 			if (error == 0) {
9227 				if (objset_id > 0 && retry) {
9228 					int err = dmu_objset_hold(target, FTAG,
9229 					    &os);
9230 					if (err) {
9231 						dataset_lookup = B_TRUE;
9232 						retry = B_FALSE;
9233 						goto retry_lookup;
9234 					} else {
9235 						dmu_objset_rele(os, FTAG);
9236 					}
9237 				}
9238 				error = open_objset(target, FTAG, &os);
9239 			}
9240 			if (error == 0)
9241 				spa = dmu_objset_spa(os);
9242 			free(target_pool);
9243 		}
9244 	}
9245 	nvlist_free(policy);
9246 
9247 	if (error)
9248 		fatal("can't open '%s': %s", target, strerror(error));
9249 
9250 	/*
9251 	 * Set the pool failure mode to panic in order to prevent the pool
9252 	 * from suspending.  A suspended I/O will have no way to resume and
9253 	 * can prevent the zdb(8) command from terminating as expected.
9254 	 */
9255 	if (spa != NULL)
9256 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9257 
9258 	argv++;
9259 	argc--;
9260 	if (dump_opt['r']) {
9261 		error = zdb_copy_object(os, object, argv[1]);
9262 	} else if (!dump_opt['R']) {
9263 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
9264 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9265 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9266 		flagbits['z'] = ZOR_FLAG_ZAP;
9267 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9268 
9269 		if (argc > 0 && dump_opt['d']) {
9270 			zopt_object_args = argc;
9271 			zopt_object_ranges = calloc(zopt_object_args,
9272 			    sizeof (zopt_object_range_t));
9273 			for (unsigned i = 0; i < zopt_object_args; i++) {
9274 				int err;
9275 				const char *msg = NULL;
9276 
9277 				err = parse_object_range(argv[i],
9278 				    &zopt_object_ranges[i], &msg);
9279 				if (err != 0)
9280 					fatal("Bad object or range: '%s': %s\n",
9281 					    argv[i], msg ?: "");
9282 			}
9283 		} else if (argc > 0 && dump_opt['m']) {
9284 			zopt_metaslab_args = argc;
9285 			zopt_metaslab = calloc(zopt_metaslab_args,
9286 			    sizeof (uint64_t));
9287 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9288 				errno = 0;
9289 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9290 				if (zopt_metaslab[i] == 0 && errno != 0)
9291 					fatal("bad number %s: %s", argv[i],
9292 					    strerror(errno));
9293 			}
9294 		}
9295 		if (dump_opt['B']) {
9296 			dump_backup(target, objset_id,
9297 			    argc > 0 ? argv[0] : NULL);
9298 		} else if (os != NULL) {
9299 			dump_objset(os);
9300 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
9301 			dump_objset(spa->spa_meta_objset);
9302 		} else {
9303 			dump_zpool(spa);
9304 		}
9305 	} else {
9306 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9307 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
9308 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9309 		flagbits['e'] = ZDB_FLAG_BSWAP;
9310 		flagbits['g'] = ZDB_FLAG_GBH;
9311 		flagbits['i'] = ZDB_FLAG_INDIRECT;
9312 		flagbits['r'] = ZDB_FLAG_RAW;
9313 		flagbits['v'] = ZDB_FLAG_VERBOSE;
9314 
9315 		for (int i = 0; i < argc; i++)
9316 			zdb_read_block(argv[i], spa);
9317 	}
9318 
9319 	if (dump_opt['k']) {
9320 		free(checkpoint_pool);
9321 		if (!target_is_spa)
9322 			free(checkpoint_target);
9323 	}
9324 
9325 	if (os != NULL) {
9326 		close_objset(os, FTAG);
9327 	} else {
9328 		spa_close(spa, FTAG);
9329 	}
9330 
9331 	fuid_table_destroy();
9332 
9333 	dump_debug_buffer();
9334 
9335 	kernel_fini();
9336 
9337 	return (error);
9338 }
9339