1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 */ 36 37 #include <stdio.h> 38 #include <unistd.h> 39 #include <stdlib.h> 40 #include <ctype.h> 41 #include <sys/zfs_context.h> 42 #include <sys/spa.h> 43 #include <sys/spa_impl.h> 44 #include <sys/dmu.h> 45 #include <sys/zap.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/zfs_znode.h> 48 #include <sys/zfs_sa.h> 49 #include <sys/sa.h> 50 #include <sys/sa_impl.h> 51 #include <sys/vdev.h> 52 #include <sys/vdev_impl.h> 53 #include <sys/metaslab_impl.h> 54 #include <sys/dmu_objset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_pool.h> 58 #include <sys/dsl_bookmark.h> 59 #include <sys/dbuf.h> 60 #include <sys/zil.h> 61 #include <sys/zil_impl.h> 62 #include <sys/stat.h> 63 #include <sys/resource.h> 64 #include <sys/dmu_send.h> 65 #include <sys/dmu_traverse.h> 66 #include <sys/zio_checksum.h> 67 #include <sys/zio_compress.h> 68 #include <sys/zfs_fuid.h> 69 #include <sys/arc.h> 70 #include <sys/arc_impl.h> 71 #include <sys/ddt.h> 72 #include <sys/zfeature.h> 73 #include <sys/abd.h> 74 #include <sys/blkptr.h> 75 #include <sys/dsl_crypt.h> 76 #include <sys/dsl_scan.h> 77 #include <sys/btree.h> 78 #include <zfs_comutil.h> 79 #include <sys/zstd/zstd.h> 80 81 #include <libnvpair.h> 82 #include <libzutil.h> 83 84 #include "zdb.h" 85 86 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 87 zio_compress_table[(idx)].ci_name : "UNKNOWN") 88 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 89 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 90 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 91 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 92 DMU_OT_ZAP_OTHER : \ 93 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 94 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 95 96 static char * 97 zdb_ot_name(dmu_object_type_t type) 98 { 99 if (type < DMU_OT_NUMTYPES) 100 return (dmu_ot[type].ot_name); 101 else if ((type & DMU_OT_NEWTYPE) && 102 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 103 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 104 else 105 return ("UNKNOWN"); 106 } 107 108 extern int reference_tracking_enable; 109 extern int zfs_recover; 110 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit; 111 extern int zfs_vdev_async_read_max_active; 112 extern boolean_t spa_load_verify_dryrun; 113 extern int zfs_reconstruct_indirect_combinations_max; 114 extern int zfs_btree_verify_intensity; 115 116 static const char cmdname[] = "zdb"; 117 uint8_t dump_opt[256]; 118 119 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 120 121 uint64_t *zopt_metaslab = NULL; 122 static unsigned zopt_metaslab_args = 0; 123 124 typedef struct zopt_object_range { 125 uint64_t zor_obj_start; 126 uint64_t zor_obj_end; 127 uint64_t zor_flags; 128 } zopt_object_range_t; 129 zopt_object_range_t *zopt_object_ranges = NULL; 130 static unsigned zopt_object_args = 0; 131 132 static int flagbits[256]; 133 134 #define ZOR_FLAG_PLAIN_FILE 0x0001 135 #define ZOR_FLAG_DIRECTORY 0x0002 136 #define ZOR_FLAG_SPACE_MAP 0x0004 137 #define ZOR_FLAG_ZAP 0x0008 138 #define ZOR_FLAG_ALL_TYPES -1 139 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 140 ZOR_FLAG_DIRECTORY | \ 141 ZOR_FLAG_SPACE_MAP | \ 142 ZOR_FLAG_ZAP) 143 144 #define ZDB_FLAG_CHECKSUM 0x0001 145 #define ZDB_FLAG_DECOMPRESS 0x0002 146 #define ZDB_FLAG_BSWAP 0x0004 147 #define ZDB_FLAG_GBH 0x0008 148 #define ZDB_FLAG_INDIRECT 0x0010 149 #define ZDB_FLAG_RAW 0x0020 150 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 151 #define ZDB_FLAG_VERBOSE 0x0080 152 153 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 154 static int leaked_objects = 0; 155 static range_tree_t *mos_refd_objs; 156 157 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 158 boolean_t); 159 static void mos_obj_refd(uint64_t); 160 static void mos_obj_refd_multiple(uint64_t); 161 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 162 dmu_tx_t *tx); 163 164 typedef struct sublivelist_verify { 165 /* all ALLOC'd blkptr_t in one sub-livelist */ 166 zfs_btree_t sv_all_allocs; 167 168 /* all FREE'd blkptr_t in one sub-livelist */ 169 zfs_btree_t sv_all_frees; 170 171 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 172 zfs_btree_t sv_pair; 173 174 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 175 zfs_btree_t sv_leftover; 176 } sublivelist_verify_t; 177 178 static int 179 livelist_compare(const void *larg, const void *rarg) 180 { 181 const blkptr_t *l = larg; 182 const blkptr_t *r = rarg; 183 184 /* Sort them according to dva[0] */ 185 uint64_t l_dva0_vdev, r_dva0_vdev; 186 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 187 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 188 if (l_dva0_vdev < r_dva0_vdev) 189 return (-1); 190 else if (l_dva0_vdev > r_dva0_vdev) 191 return (+1); 192 193 /* if vdevs are equal, sort by offsets. */ 194 uint64_t l_dva0_offset; 195 uint64_t r_dva0_offset; 196 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 197 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 198 if (l_dva0_offset < r_dva0_offset) { 199 return (-1); 200 } else if (l_dva0_offset > r_dva0_offset) { 201 return (+1); 202 } 203 204 /* 205 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 206 * it's possible the offsets are equal. In that case, sort by txg 207 */ 208 if (l->blk_birth < r->blk_birth) { 209 return (-1); 210 } else if (l->blk_birth > r->blk_birth) { 211 return (+1); 212 } 213 return (0); 214 } 215 216 typedef struct sublivelist_verify_block { 217 dva_t svb_dva; 218 219 /* 220 * We need this to check if the block marked as allocated 221 * in the livelist was freed (and potentially reallocated) 222 * in the metaslab spacemaps at a later TXG. 223 */ 224 uint64_t svb_allocated_txg; 225 } sublivelist_verify_block_t; 226 227 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 228 229 static int 230 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 231 dmu_tx_t *tx) 232 { 233 ASSERT3P(tx, ==, NULL); 234 struct sublivelist_verify *sv = arg; 235 char blkbuf[BP_SPRINTF_LEN]; 236 zfs_btree_index_t where; 237 if (free) { 238 zfs_btree_add(&sv->sv_pair, bp); 239 /* Check if the FREE is a duplicate */ 240 if (zfs_btree_find(&sv->sv_all_frees, bp, &where) != NULL) { 241 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 242 free); 243 (void) printf("\tERROR: Duplicate FREE: %s\n", blkbuf); 244 } else { 245 zfs_btree_add_idx(&sv->sv_all_frees, bp, &where); 246 } 247 } else { 248 /* Check if the ALLOC has been freed */ 249 if (zfs_btree_find(&sv->sv_pair, bp, &where) != NULL) { 250 zfs_btree_remove_idx(&sv->sv_pair, &where); 251 } else { 252 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 253 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 254 break; 255 sublivelist_verify_block_t svb = { 256 .svb_dva = bp->blk_dva[i], 257 .svb_allocated_txg = bp->blk_birth 258 }; 259 260 if (zfs_btree_find(&sv->sv_leftover, &svb, 261 &where) == NULL) { 262 zfs_btree_add_idx(&sv->sv_leftover, 263 &svb, &where); 264 } 265 } 266 } 267 /* Check if the ALLOC is a duplicate */ 268 if (zfs_btree_find(&sv->sv_all_allocs, bp, &where) != NULL) { 269 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 270 free); 271 (void) printf("\tERROR: Duplicate ALLOC: %s\n", blkbuf); 272 } else { 273 zfs_btree_add_idx(&sv->sv_all_allocs, bp, &where); 274 } 275 } 276 return (0); 277 } 278 279 static int 280 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 281 { 282 int err; 283 char blkbuf[BP_SPRINTF_LEN]; 284 struct sublivelist_verify *sv = args; 285 286 zfs_btree_create(&sv->sv_all_allocs, livelist_compare, 287 sizeof (blkptr_t)); 288 289 zfs_btree_create(&sv->sv_all_frees, livelist_compare, 290 sizeof (blkptr_t)); 291 292 zfs_btree_create(&sv->sv_pair, livelist_compare, 293 sizeof (blkptr_t)); 294 295 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 296 sv, NULL); 297 298 zfs_btree_clear(&sv->sv_all_allocs); 299 zfs_btree_destroy(&sv->sv_all_allocs); 300 301 zfs_btree_clear(&sv->sv_all_frees); 302 zfs_btree_destroy(&sv->sv_all_frees); 303 304 blkptr_t *e; 305 zfs_btree_index_t *cookie = NULL; 306 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 307 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), e, B_TRUE); 308 (void) printf("\tERROR: Unmatched FREE: %s\n", blkbuf); 309 } 310 zfs_btree_destroy(&sv->sv_pair); 311 312 return (err); 313 } 314 315 static int 316 livelist_block_compare(const void *larg, const void *rarg) 317 { 318 const sublivelist_verify_block_t *l = larg; 319 const sublivelist_verify_block_t *r = rarg; 320 321 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 322 return (-1); 323 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 324 return (+1); 325 326 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 327 return (-1); 328 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 329 return (+1); 330 331 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 332 return (-1); 333 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 334 return (+1); 335 336 return (0); 337 } 338 339 /* 340 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 341 * sublivelist_verify_t: sv->sv_leftover 342 */ 343 static void 344 livelist_verify(dsl_deadlist_t *dl, void *arg) 345 { 346 sublivelist_verify_t *sv = arg; 347 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 348 } 349 350 /* 351 * Check for errors in the livelist entry and discard the intermediary 352 * data structures 353 */ 354 /* ARGSUSED */ 355 static int 356 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 357 { 358 sublivelist_verify_t sv; 359 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 360 sizeof (sublivelist_verify_block_t)); 361 int err = sublivelist_verify_func(&sv, dle); 362 zfs_btree_clear(&sv.sv_leftover); 363 zfs_btree_destroy(&sv.sv_leftover); 364 return (err); 365 } 366 367 typedef struct metaslab_verify { 368 /* 369 * Tree containing all the leftover ALLOCs from the livelists 370 * that are part of this metaslab. 371 */ 372 zfs_btree_t mv_livelist_allocs; 373 374 /* 375 * Metaslab information. 376 */ 377 uint64_t mv_vdid; 378 uint64_t mv_msid; 379 uint64_t mv_start; 380 uint64_t mv_end; 381 382 /* 383 * What's currently allocated for this metaslab. 384 */ 385 range_tree_t *mv_allocated; 386 } metaslab_verify_t; 387 388 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 389 390 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 391 void *arg); 392 393 typedef struct unflushed_iter_cb_arg { 394 spa_t *uic_spa; 395 uint64_t uic_txg; 396 void *uic_arg; 397 zdb_log_sm_cb_t uic_cb; 398 } unflushed_iter_cb_arg_t; 399 400 static int 401 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 402 { 403 unflushed_iter_cb_arg_t *uic = arg; 404 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 405 } 406 407 static void 408 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 409 { 410 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 411 return; 412 413 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 414 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 415 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 416 space_map_t *sm = NULL; 417 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 418 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 419 420 unflushed_iter_cb_arg_t uic = { 421 .uic_spa = spa, 422 .uic_txg = sls->sls_txg, 423 .uic_arg = arg, 424 .uic_cb = cb 425 }; 426 VERIFY0(space_map_iterate(sm, space_map_length(sm), 427 iterate_through_spacemap_logs_cb, &uic)); 428 space_map_close(sm); 429 } 430 spa_config_exit(spa, SCL_CONFIG, FTAG); 431 } 432 433 static void 434 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 435 uint64_t offset, uint64_t size) 436 { 437 sublivelist_verify_block_t svb; 438 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 439 DVA_SET_OFFSET(&svb.svb_dva, offset); 440 DVA_SET_ASIZE(&svb.svb_dva, size); 441 zfs_btree_index_t where; 442 uint64_t end_offset = offset + size; 443 444 /* 445 * Look for an exact match for spacemap entry in the livelist entries. 446 * Then, look for other livelist entries that fall within the range 447 * of the spacemap entry as it may have been condensed 448 */ 449 sublivelist_verify_block_t *found = 450 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 451 if (found == NULL) { 452 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 453 } 454 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 455 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 456 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 457 if (found->svb_allocated_txg <= txg) { 458 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 459 "from TXG %llx FREED at TXG %llx\n", 460 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 461 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 462 (u_longlong_t)found->svb_allocated_txg, 463 (u_longlong_t)txg); 464 } 465 } 466 } 467 468 static int 469 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 470 { 471 metaslab_verify_t *mv = arg; 472 uint64_t offset = sme->sme_offset; 473 uint64_t size = sme->sme_run; 474 uint64_t txg = sme->sme_txg; 475 476 if (sme->sme_type == SM_ALLOC) { 477 if (range_tree_contains(mv->mv_allocated, 478 offset, size)) { 479 (void) printf("ERROR: DOUBLE ALLOC: " 480 "%llu [%llx:%llx] " 481 "%llu:%llu LOG_SM\n", 482 (u_longlong_t)txg, (u_longlong_t)offset, 483 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 484 (u_longlong_t)mv->mv_msid); 485 } else { 486 range_tree_add(mv->mv_allocated, 487 offset, size); 488 } 489 } else { 490 if (!range_tree_contains(mv->mv_allocated, 491 offset, size)) { 492 (void) printf("ERROR: DOUBLE FREE: " 493 "%llu [%llx:%llx] " 494 "%llu:%llu LOG_SM\n", 495 (u_longlong_t)txg, (u_longlong_t)offset, 496 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 497 (u_longlong_t)mv->mv_msid); 498 } else { 499 range_tree_remove(mv->mv_allocated, 500 offset, size); 501 } 502 } 503 504 if (sme->sme_type != SM_ALLOC) { 505 /* 506 * If something is freed in the spacemap, verify that 507 * it is not listed as allocated in the livelist. 508 */ 509 verify_livelist_allocs(mv, txg, offset, size); 510 } 511 return (0); 512 } 513 514 static int 515 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 516 uint64_t txg, void *arg) 517 { 518 metaslab_verify_t *mv = arg; 519 uint64_t offset = sme->sme_offset; 520 uint64_t vdev_id = sme->sme_vdev; 521 522 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 523 524 /* skip indirect vdevs */ 525 if (!vdev_is_concrete(vd)) 526 return (0); 527 528 if (vdev_id != mv->mv_vdid) 529 return (0); 530 531 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 532 if (ms->ms_id != mv->mv_msid) 533 return (0); 534 535 if (txg < metaslab_unflushed_txg(ms)) 536 return (0); 537 538 539 ASSERT3U(txg, ==, sme->sme_txg); 540 return (metaslab_spacemap_validation_cb(sme, mv)); 541 } 542 543 static void 544 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 545 { 546 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 547 } 548 549 static void 550 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 551 { 552 if (sm == NULL) 553 return; 554 555 VERIFY0(space_map_iterate(sm, space_map_length(sm), 556 metaslab_spacemap_validation_cb, mv)); 557 } 558 559 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 560 561 /* 562 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 563 * they are part of that metaslab (mv_msid). 564 */ 565 static void 566 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 567 { 568 zfs_btree_index_t where; 569 sublivelist_verify_block_t *svb; 570 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 571 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 572 svb != NULL; 573 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 574 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 575 continue; 576 577 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 578 (DVA_GET_OFFSET(&svb->svb_dva) + 579 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 580 (void) printf("ERROR: Found block that crosses " 581 "metaslab boundary: <%llu:%llx:%llx>\n", 582 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 583 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 584 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 585 continue; 586 } 587 588 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 589 continue; 590 591 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 592 continue; 593 594 if ((DVA_GET_OFFSET(&svb->svb_dva) + 595 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 596 (void) printf("ERROR: Found block that crosses " 597 "metaslab boundary: <%llu:%llx:%llx>\n", 598 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 599 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 600 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 601 continue; 602 } 603 604 zfs_btree_add(&mv->mv_livelist_allocs, svb); 605 } 606 607 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 608 svb != NULL; 609 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 610 zfs_btree_remove(&sv->sv_leftover, svb); 611 } 612 } 613 614 /* 615 * [Livelist Check] 616 * Iterate through all the sublivelists and: 617 * - report leftover frees 618 * - report double ALLOCs/FREEs 619 * - record leftover ALLOCs together with their TXG [see Cross Check] 620 * 621 * [Spacemap Check] 622 * for each metaslab: 623 * - iterate over spacemap and then the metaslab's entries in the 624 * spacemap log, then report any double FREEs and ALLOCs (do not 625 * blow up). 626 * 627 * [Cross Check] 628 * After finishing the Livelist Check phase and while being in the 629 * Spacemap Check phase, we find all the recorded leftover ALLOCs 630 * of the livelist check that are part of the metaslab that we are 631 * currently looking at in the Spacemap Check. We report any entries 632 * that are marked as ALLOCs in the livelists but have been actually 633 * freed (and potentially allocated again) after their TXG stamp in 634 * the spacemaps. Also report any ALLOCs from the livelists that 635 * belong to indirect vdevs (e.g. their vdev completed removal). 636 * 637 * Note that this will miss Log Spacemap entries that cancelled each other 638 * out before being flushed to the metaslab, so we are not guaranteed 639 * to match all erroneous ALLOCs. 640 */ 641 static void 642 livelist_metaslab_validate(spa_t *spa) 643 { 644 (void) printf("Verifying deleted livelist entries\n"); 645 646 sublivelist_verify_t sv; 647 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 648 sizeof (sublivelist_verify_block_t)); 649 iterate_deleted_livelists(spa, livelist_verify, &sv); 650 651 (void) printf("Verifying metaslab entries\n"); 652 vdev_t *rvd = spa->spa_root_vdev; 653 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 654 vdev_t *vd = rvd->vdev_child[c]; 655 656 if (!vdev_is_concrete(vd)) 657 continue; 658 659 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 660 metaslab_t *m = vd->vdev_ms[mid]; 661 662 (void) fprintf(stderr, 663 "\rverifying concrete vdev %llu, " 664 "metaslab %llu of %llu ...", 665 (longlong_t)vd->vdev_id, 666 (longlong_t)mid, 667 (longlong_t)vd->vdev_ms_count); 668 669 uint64_t shift, start; 670 range_seg_type_t type = 671 metaslab_calculate_range_tree_type(vd, m, 672 &start, &shift); 673 metaslab_verify_t mv; 674 mv.mv_allocated = range_tree_create(NULL, 675 type, NULL, start, shift); 676 mv.mv_vdid = vd->vdev_id; 677 mv.mv_msid = m->ms_id; 678 mv.mv_start = m->ms_start; 679 mv.mv_end = m->ms_start + m->ms_size; 680 zfs_btree_create(&mv.mv_livelist_allocs, 681 livelist_block_compare, 682 sizeof (sublivelist_verify_block_t)); 683 684 mv_populate_livelist_allocs(&mv, &sv); 685 686 spacemap_check_ms_sm(m->ms_sm, &mv); 687 spacemap_check_sm_log(spa, &mv); 688 689 range_tree_vacate(mv.mv_allocated, NULL, NULL); 690 range_tree_destroy(mv.mv_allocated); 691 zfs_btree_clear(&mv.mv_livelist_allocs); 692 zfs_btree_destroy(&mv.mv_livelist_allocs); 693 } 694 } 695 (void) fprintf(stderr, "\n"); 696 697 /* 698 * If there are any segments in the leftover tree after we walked 699 * through all the metaslabs in the concrete vdevs then this means 700 * that we have segments in the livelists that belong to indirect 701 * vdevs and are marked as allocated. 702 */ 703 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 704 zfs_btree_destroy(&sv.sv_leftover); 705 return; 706 } 707 (void) printf("ERROR: Found livelist blocks marked as allocated " 708 "for indirect vdevs:\n"); 709 710 zfs_btree_index_t *where = NULL; 711 sublivelist_verify_block_t *svb; 712 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 713 NULL) { 714 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 715 ASSERT3U(vdev_id, <, rvd->vdev_children); 716 vdev_t *vd = rvd->vdev_child[vdev_id]; 717 ASSERT(!vdev_is_concrete(vd)); 718 (void) printf("<%d:%llx:%llx> TXG %llx\n", 719 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 720 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 721 (u_longlong_t)svb->svb_allocated_txg); 722 } 723 (void) printf("\n"); 724 zfs_btree_destroy(&sv.sv_leftover); 725 } 726 727 /* 728 * These libumem hooks provide a reasonable set of defaults for the allocator's 729 * debugging facilities. 730 */ 731 const char * 732 _umem_debug_init(void) 733 { 734 return ("default,verbose"); /* $UMEM_DEBUG setting */ 735 } 736 737 const char * 738 _umem_logging_init(void) 739 { 740 return ("fail,contents"); /* $UMEM_LOGGING setting */ 741 } 742 743 static void 744 usage(void) 745 { 746 (void) fprintf(stderr, 747 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 748 "[-I <inflight I/Os>]\n" 749 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 750 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 751 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 752 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 753 "\t%s [-v] <bookmark>\n" 754 "\t%s -C [-A] [-U <cache>]\n" 755 "\t%s -l [-Aqu] <device>\n" 756 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 757 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 758 "\t%s -O <dataset> <path>\n" 759 "\t%s -r <dataset> <path> <destination>\n" 760 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 761 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 762 "\t%s -E [-A] word0:word1:...:word15\n" 763 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 764 "<poolname>\n\n", 765 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 766 cmdname, cmdname, cmdname, cmdname); 767 768 (void) fprintf(stderr, " Dataset name must include at least one " 769 "separator character '/' or '@'\n"); 770 (void) fprintf(stderr, " If dataset name is specified, only that " 771 "dataset is dumped\n"); 772 (void) fprintf(stderr, " If object numbers or object number " 773 "ranges are specified, only those\n" 774 " objects or ranges are dumped.\n\n"); 775 (void) fprintf(stderr, 776 " Object ranges take the form <start>:<end>[:<flags>]\n" 777 " start Starting object number\n" 778 " end Ending object number, or -1 for no upper bound\n" 779 " flags Optional flags to select object types:\n" 780 " A All objects (this is the default)\n" 781 " d ZFS directories\n" 782 " f ZFS files \n" 783 " m SPA space maps\n" 784 " z ZAPs\n" 785 " - Negate effect of next flag\n\n"); 786 (void) fprintf(stderr, " Options to control amount of output:\n"); 787 (void) fprintf(stderr, " -b block statistics\n"); 788 (void) fprintf(stderr, " -c checksum all metadata (twice for " 789 "all data) blocks\n"); 790 (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); 791 (void) fprintf(stderr, " -d dataset(s)\n"); 792 (void) fprintf(stderr, " -D dedup statistics\n"); 793 (void) fprintf(stderr, " -E decode and display block from an " 794 "embedded block pointer\n"); 795 (void) fprintf(stderr, " -h pool history\n"); 796 (void) fprintf(stderr, " -i intent logs\n"); 797 (void) fprintf(stderr, " -l read label contents\n"); 798 (void) fprintf(stderr, " -k examine the checkpointed state " 799 "of the pool\n"); 800 (void) fprintf(stderr, " -L disable leak tracking (do not " 801 "load spacemaps)\n"); 802 (void) fprintf(stderr, " -m metaslabs\n"); 803 (void) fprintf(stderr, " -M metaslab groups\n"); 804 (void) fprintf(stderr, " -O perform object lookups by path\n"); 805 (void) fprintf(stderr, " -r copy an object by path to file\n"); 806 (void) fprintf(stderr, " -R read and display block from a " 807 "device\n"); 808 (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); 809 (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); 810 (void) fprintf(stderr, " -v verbose (applies to all " 811 "others)\n"); 812 (void) fprintf(stderr, " -y perform livelist and metaslab " 813 "validation on any livelists being deleted\n\n"); 814 (void) fprintf(stderr, " Below options are intended for use " 815 "with other options:\n"); 816 (void) fprintf(stderr, " -A ignore assertions (-A), enable " 817 "panic recovery (-AA) or both (-AAA)\n"); 818 (void) fprintf(stderr, " -e pool is exported/destroyed/" 819 "has altroot/not in a cachefile\n"); 820 (void) fprintf(stderr, " -F attempt automatic rewind within " 821 "safe range of transaction groups\n"); 822 (void) fprintf(stderr, " -G dump zfs_dbgmsg buffer before " 823 "exiting\n"); 824 (void) fprintf(stderr, " -I <number of inflight I/Os> -- " 825 "specify the maximum number of\n " 826 "checksumming I/Os [default is 200]\n"); 827 (void) fprintf(stderr, " -o <variable>=<value> set global " 828 "variable to an unsigned 32-bit integer\n"); 829 (void) fprintf(stderr, " -p <path> -- use one or more with " 830 "-e to specify path to vdev dir\n"); 831 (void) fprintf(stderr, " -P print numbers in parseable form\n"); 832 (void) fprintf(stderr, " -q don't print label contents\n"); 833 (void) fprintf(stderr, " -t <txg> -- highest txg to use when " 834 "searching for uberblocks\n"); 835 (void) fprintf(stderr, " -u uberblock\n"); 836 (void) fprintf(stderr, " -U <cachefile_path> -- use alternate " 837 "cachefile\n"); 838 (void) fprintf(stderr, " -V do verbatim import\n"); 839 (void) fprintf(stderr, " -x <dumpdir> -- " 840 "dump all read blocks into specified directory\n"); 841 (void) fprintf(stderr, " -X attempt extreme rewind (does not " 842 "work with dataset)\n"); 843 (void) fprintf(stderr, " -Y attempt all reconstruction " 844 "combinations for split blocks\n"); 845 (void) fprintf(stderr, " -Z show ZSTD headers \n"); 846 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 847 "to make only that option verbose\n"); 848 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 849 exit(1); 850 } 851 852 static void 853 dump_debug_buffer(void) 854 { 855 if (dump_opt['G']) { 856 (void) printf("\n"); 857 (void) fflush(stdout); 858 zfs_dbgmsg_print("zdb"); 859 } 860 } 861 862 /* 863 * Called for usage errors that are discovered after a call to spa_open(), 864 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 865 */ 866 867 static void 868 fatal(const char *fmt, ...) 869 { 870 va_list ap; 871 872 va_start(ap, fmt); 873 (void) fprintf(stderr, "%s: ", cmdname); 874 (void) vfprintf(stderr, fmt, ap); 875 va_end(ap); 876 (void) fprintf(stderr, "\n"); 877 878 dump_debug_buffer(); 879 880 exit(1); 881 } 882 883 /* ARGSUSED */ 884 static void 885 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 886 { 887 nvlist_t *nv; 888 size_t nvsize = *(uint64_t *)data; 889 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 890 891 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 892 893 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 894 895 umem_free(packed, nvsize); 896 897 dump_nvlist(nv, 8); 898 899 nvlist_free(nv); 900 } 901 902 /* ARGSUSED */ 903 static void 904 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 905 { 906 spa_history_phys_t *shp = data; 907 908 if (shp == NULL) 909 return; 910 911 (void) printf("\t\tpool_create_len = %llu\n", 912 (u_longlong_t)shp->sh_pool_create_len); 913 (void) printf("\t\tphys_max_off = %llu\n", 914 (u_longlong_t)shp->sh_phys_max_off); 915 (void) printf("\t\tbof = %llu\n", 916 (u_longlong_t)shp->sh_bof); 917 (void) printf("\t\teof = %llu\n", 918 (u_longlong_t)shp->sh_eof); 919 (void) printf("\t\trecords_lost = %llu\n", 920 (u_longlong_t)shp->sh_records_lost); 921 } 922 923 static void 924 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 925 { 926 if (dump_opt['P']) 927 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 928 else 929 nicenum(num, buf, sizeof (buf)); 930 } 931 932 static const char histo_stars[] = "****************************************"; 933 static const uint64_t histo_width = sizeof (histo_stars) - 1; 934 935 static void 936 dump_histogram(const uint64_t *histo, int size, int offset) 937 { 938 int i; 939 int minidx = size - 1; 940 int maxidx = 0; 941 uint64_t max = 0; 942 943 for (i = 0; i < size; i++) { 944 if (histo[i] > max) 945 max = histo[i]; 946 if (histo[i] > 0 && i > maxidx) 947 maxidx = i; 948 if (histo[i] > 0 && i < minidx) 949 minidx = i; 950 } 951 952 if (max < histo_width) 953 max = histo_width; 954 955 for (i = minidx; i <= maxidx; i++) { 956 (void) printf("\t\t\t%3u: %6llu %s\n", 957 i + offset, (u_longlong_t)histo[i], 958 &histo_stars[(max - histo[i]) * histo_width / max]); 959 } 960 } 961 962 static void 963 dump_zap_stats(objset_t *os, uint64_t object) 964 { 965 int error; 966 zap_stats_t zs; 967 968 error = zap_get_stats(os, object, &zs); 969 if (error) 970 return; 971 972 if (zs.zs_ptrtbl_len == 0) { 973 ASSERT(zs.zs_num_blocks == 1); 974 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 975 (u_longlong_t)zs.zs_blocksize, 976 (u_longlong_t)zs.zs_num_entries); 977 return; 978 } 979 980 (void) printf("\tFat ZAP stats:\n"); 981 982 (void) printf("\t\tPointer table:\n"); 983 (void) printf("\t\t\t%llu elements\n", 984 (u_longlong_t)zs.zs_ptrtbl_len); 985 (void) printf("\t\t\tzt_blk: %llu\n", 986 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 987 (void) printf("\t\t\tzt_numblks: %llu\n", 988 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 989 (void) printf("\t\t\tzt_shift: %llu\n", 990 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 991 (void) printf("\t\t\tzt_blks_copied: %llu\n", 992 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 993 (void) printf("\t\t\tzt_nextblk: %llu\n", 994 (u_longlong_t)zs.zs_ptrtbl_nextblk); 995 996 (void) printf("\t\tZAP entries: %llu\n", 997 (u_longlong_t)zs.zs_num_entries); 998 (void) printf("\t\tLeaf blocks: %llu\n", 999 (u_longlong_t)zs.zs_num_leafs); 1000 (void) printf("\t\tTotal blocks: %llu\n", 1001 (u_longlong_t)zs.zs_num_blocks); 1002 (void) printf("\t\tzap_block_type: 0x%llx\n", 1003 (u_longlong_t)zs.zs_block_type); 1004 (void) printf("\t\tzap_magic: 0x%llx\n", 1005 (u_longlong_t)zs.zs_magic); 1006 (void) printf("\t\tzap_salt: 0x%llx\n", 1007 (u_longlong_t)zs.zs_salt); 1008 1009 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1010 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1011 1012 (void) printf("\t\tBlocks with n*5 entries:\n"); 1013 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1014 1015 (void) printf("\t\tBlocks n/10 full:\n"); 1016 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1017 1018 (void) printf("\t\tEntries with n chunks:\n"); 1019 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1020 1021 (void) printf("\t\tBuckets with n entries:\n"); 1022 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1023 } 1024 1025 /*ARGSUSED*/ 1026 static void 1027 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1028 { 1029 } 1030 1031 /*ARGSUSED*/ 1032 static void 1033 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1034 { 1035 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1036 } 1037 1038 /*ARGSUSED*/ 1039 static void 1040 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1041 { 1042 } 1043 1044 /*ARGSUSED*/ 1045 static void 1046 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1047 { 1048 uint64_t *arr; 1049 uint64_t oursize; 1050 if (dump_opt['d'] < 6) 1051 return; 1052 1053 if (data == NULL) { 1054 dmu_object_info_t doi; 1055 1056 VERIFY0(dmu_object_info(os, object, &doi)); 1057 size = doi.doi_max_offset; 1058 /* 1059 * We cap the size at 1 mebibyte here to prevent 1060 * allocation failures and nigh-infinite printing if the 1061 * object is extremely large. 1062 */ 1063 oursize = MIN(size, 1 << 20); 1064 arr = kmem_alloc(oursize, KM_SLEEP); 1065 1066 int err = dmu_read(os, object, 0, oursize, arr, 0); 1067 if (err != 0) { 1068 (void) printf("got error %u from dmu_read\n", err); 1069 kmem_free(arr, oursize); 1070 return; 1071 } 1072 } else { 1073 /* 1074 * Even though the allocation is already done in this code path, 1075 * we still cap the size to prevent excessive printing. 1076 */ 1077 oursize = MIN(size, 1 << 20); 1078 arr = data; 1079 } 1080 1081 if (size == 0) { 1082 (void) printf("\t\t[]\n"); 1083 return; 1084 } 1085 1086 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1087 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1088 if (i % 4 != 0) 1089 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1090 else 1091 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1092 } 1093 if (oursize != size) 1094 (void) printf(", ... "); 1095 (void) printf("]\n"); 1096 1097 if (data == NULL) 1098 kmem_free(arr, oursize); 1099 } 1100 1101 /*ARGSUSED*/ 1102 static void 1103 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1104 { 1105 zap_cursor_t zc; 1106 zap_attribute_t attr; 1107 void *prop; 1108 unsigned i; 1109 1110 dump_zap_stats(os, object); 1111 (void) printf("\n"); 1112 1113 for (zap_cursor_init(&zc, os, object); 1114 zap_cursor_retrieve(&zc, &attr) == 0; 1115 zap_cursor_advance(&zc)) { 1116 (void) printf("\t\t%s = ", attr.za_name); 1117 if (attr.za_num_integers == 0) { 1118 (void) printf("\n"); 1119 continue; 1120 } 1121 prop = umem_zalloc(attr.za_num_integers * 1122 attr.za_integer_length, UMEM_NOFAIL); 1123 (void) zap_lookup(os, object, attr.za_name, 1124 attr.za_integer_length, attr.za_num_integers, prop); 1125 if (attr.za_integer_length == 1) { 1126 if (strcmp(attr.za_name, 1127 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1128 strcmp(attr.za_name, 1129 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1130 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1131 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1132 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1133 uint8_t *u8 = prop; 1134 1135 for (i = 0; i < attr.za_num_integers; i++) { 1136 (void) printf("%02x", u8[i]); 1137 } 1138 } else { 1139 (void) printf("%s", (char *)prop); 1140 } 1141 } else { 1142 for (i = 0; i < attr.za_num_integers; i++) { 1143 switch (attr.za_integer_length) { 1144 case 2: 1145 (void) printf("%u ", 1146 ((uint16_t *)prop)[i]); 1147 break; 1148 case 4: 1149 (void) printf("%u ", 1150 ((uint32_t *)prop)[i]); 1151 break; 1152 case 8: 1153 (void) printf("%lld ", 1154 (u_longlong_t)((int64_t *)prop)[i]); 1155 break; 1156 } 1157 } 1158 } 1159 (void) printf("\n"); 1160 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1161 } 1162 zap_cursor_fini(&zc); 1163 } 1164 1165 static void 1166 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1167 { 1168 bpobj_phys_t *bpop = data; 1169 uint64_t i; 1170 char bytes[32], comp[32], uncomp[32]; 1171 1172 /* make sure the output won't get truncated */ 1173 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 1174 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 1175 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 1176 1177 if (bpop == NULL) 1178 return; 1179 1180 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1181 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1182 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1183 1184 (void) printf("\t\tnum_blkptrs = %llu\n", 1185 (u_longlong_t)bpop->bpo_num_blkptrs); 1186 (void) printf("\t\tbytes = %s\n", bytes); 1187 if (size >= BPOBJ_SIZE_V1) { 1188 (void) printf("\t\tcomp = %s\n", comp); 1189 (void) printf("\t\tuncomp = %s\n", uncomp); 1190 } 1191 if (size >= BPOBJ_SIZE_V2) { 1192 (void) printf("\t\tsubobjs = %llu\n", 1193 (u_longlong_t)bpop->bpo_subobjs); 1194 (void) printf("\t\tnum_subobjs = %llu\n", 1195 (u_longlong_t)bpop->bpo_num_subobjs); 1196 } 1197 if (size >= sizeof (*bpop)) { 1198 (void) printf("\t\tnum_freed = %llu\n", 1199 (u_longlong_t)bpop->bpo_num_freed); 1200 } 1201 1202 if (dump_opt['d'] < 5) 1203 return; 1204 1205 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1206 char blkbuf[BP_SPRINTF_LEN]; 1207 blkptr_t bp; 1208 1209 int err = dmu_read(os, object, 1210 i * sizeof (bp), sizeof (bp), &bp, 0); 1211 if (err != 0) { 1212 (void) printf("got error %u from dmu_read\n", err); 1213 break; 1214 } 1215 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1216 BP_GET_FREE(&bp)); 1217 (void) printf("\t%s\n", blkbuf); 1218 } 1219 } 1220 1221 /* ARGSUSED */ 1222 static void 1223 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1224 { 1225 dmu_object_info_t doi; 1226 int64_t i; 1227 1228 VERIFY0(dmu_object_info(os, object, &doi)); 1229 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1230 1231 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1232 if (err != 0) { 1233 (void) printf("got error %u from dmu_read\n", err); 1234 kmem_free(subobjs, doi.doi_max_offset); 1235 return; 1236 } 1237 1238 int64_t last_nonzero = -1; 1239 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1240 if (subobjs[i] != 0) 1241 last_nonzero = i; 1242 } 1243 1244 for (i = 0; i <= last_nonzero; i++) { 1245 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1246 } 1247 kmem_free(subobjs, doi.doi_max_offset); 1248 } 1249 1250 /*ARGSUSED*/ 1251 static void 1252 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1253 { 1254 dump_zap_stats(os, object); 1255 /* contents are printed elsewhere, properly decoded */ 1256 } 1257 1258 /*ARGSUSED*/ 1259 static void 1260 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1261 { 1262 zap_cursor_t zc; 1263 zap_attribute_t attr; 1264 1265 dump_zap_stats(os, object); 1266 (void) printf("\n"); 1267 1268 for (zap_cursor_init(&zc, os, object); 1269 zap_cursor_retrieve(&zc, &attr) == 0; 1270 zap_cursor_advance(&zc)) { 1271 (void) printf("\t\t%s = ", attr.za_name); 1272 if (attr.za_num_integers == 0) { 1273 (void) printf("\n"); 1274 continue; 1275 } 1276 (void) printf(" %llx : [%d:%d:%d]\n", 1277 (u_longlong_t)attr.za_first_integer, 1278 (int)ATTR_LENGTH(attr.za_first_integer), 1279 (int)ATTR_BSWAP(attr.za_first_integer), 1280 (int)ATTR_NUM(attr.za_first_integer)); 1281 } 1282 zap_cursor_fini(&zc); 1283 } 1284 1285 /*ARGSUSED*/ 1286 static void 1287 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1288 { 1289 zap_cursor_t zc; 1290 zap_attribute_t attr; 1291 uint16_t *layout_attrs; 1292 unsigned i; 1293 1294 dump_zap_stats(os, object); 1295 (void) printf("\n"); 1296 1297 for (zap_cursor_init(&zc, os, object); 1298 zap_cursor_retrieve(&zc, &attr) == 0; 1299 zap_cursor_advance(&zc)) { 1300 (void) printf("\t\t%s = [", attr.za_name); 1301 if (attr.za_num_integers == 0) { 1302 (void) printf("\n"); 1303 continue; 1304 } 1305 1306 VERIFY(attr.za_integer_length == 2); 1307 layout_attrs = umem_zalloc(attr.za_num_integers * 1308 attr.za_integer_length, UMEM_NOFAIL); 1309 1310 VERIFY(zap_lookup(os, object, attr.za_name, 1311 attr.za_integer_length, 1312 attr.za_num_integers, layout_attrs) == 0); 1313 1314 for (i = 0; i != attr.za_num_integers; i++) 1315 (void) printf(" %d ", (int)layout_attrs[i]); 1316 (void) printf("]\n"); 1317 umem_free(layout_attrs, 1318 attr.za_num_integers * attr.za_integer_length); 1319 } 1320 zap_cursor_fini(&zc); 1321 } 1322 1323 /*ARGSUSED*/ 1324 static void 1325 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1326 { 1327 zap_cursor_t zc; 1328 zap_attribute_t attr; 1329 const char *typenames[] = { 1330 /* 0 */ "not specified", 1331 /* 1 */ "FIFO", 1332 /* 2 */ "Character Device", 1333 /* 3 */ "3 (invalid)", 1334 /* 4 */ "Directory", 1335 /* 5 */ "5 (invalid)", 1336 /* 6 */ "Block Device", 1337 /* 7 */ "7 (invalid)", 1338 /* 8 */ "Regular File", 1339 /* 9 */ "9 (invalid)", 1340 /* 10 */ "Symbolic Link", 1341 /* 11 */ "11 (invalid)", 1342 /* 12 */ "Socket", 1343 /* 13 */ "Door", 1344 /* 14 */ "Event Port", 1345 /* 15 */ "15 (invalid)", 1346 }; 1347 1348 dump_zap_stats(os, object); 1349 (void) printf("\n"); 1350 1351 for (zap_cursor_init(&zc, os, object); 1352 zap_cursor_retrieve(&zc, &attr) == 0; 1353 zap_cursor_advance(&zc)) { 1354 (void) printf("\t\t%s = %lld (type: %s)\n", 1355 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1356 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1357 } 1358 zap_cursor_fini(&zc); 1359 } 1360 1361 static int 1362 get_dtl_refcount(vdev_t *vd) 1363 { 1364 int refcount = 0; 1365 1366 if (vd->vdev_ops->vdev_op_leaf) { 1367 space_map_t *sm = vd->vdev_dtl_sm; 1368 1369 if (sm != NULL && 1370 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1371 return (1); 1372 return (0); 1373 } 1374 1375 for (unsigned c = 0; c < vd->vdev_children; c++) 1376 refcount += get_dtl_refcount(vd->vdev_child[c]); 1377 return (refcount); 1378 } 1379 1380 static int 1381 get_metaslab_refcount(vdev_t *vd) 1382 { 1383 int refcount = 0; 1384 1385 if (vd->vdev_top == vd) { 1386 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1387 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1388 1389 if (sm != NULL && 1390 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1391 refcount++; 1392 } 1393 } 1394 for (unsigned c = 0; c < vd->vdev_children; c++) 1395 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1396 1397 return (refcount); 1398 } 1399 1400 static int 1401 get_obsolete_refcount(vdev_t *vd) 1402 { 1403 uint64_t obsolete_sm_object; 1404 int refcount = 0; 1405 1406 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1407 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1408 dmu_object_info_t doi; 1409 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1410 obsolete_sm_object, &doi)); 1411 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1412 refcount++; 1413 } 1414 } else { 1415 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1416 ASSERT3U(obsolete_sm_object, ==, 0); 1417 } 1418 for (unsigned c = 0; c < vd->vdev_children; c++) { 1419 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1420 } 1421 1422 return (refcount); 1423 } 1424 1425 static int 1426 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1427 { 1428 uint64_t prev_obj = 1429 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1430 if (prev_obj != 0) { 1431 dmu_object_info_t doi; 1432 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1433 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1434 return (1); 1435 } 1436 } 1437 return (0); 1438 } 1439 1440 static int 1441 get_checkpoint_refcount(vdev_t *vd) 1442 { 1443 int refcount = 0; 1444 1445 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1446 zap_contains(spa_meta_objset(vd->vdev_spa), 1447 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1448 refcount++; 1449 1450 for (uint64_t c = 0; c < vd->vdev_children; c++) 1451 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1452 1453 return (refcount); 1454 } 1455 1456 static int 1457 get_log_spacemap_refcount(spa_t *spa) 1458 { 1459 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1460 } 1461 1462 static int 1463 verify_spacemap_refcounts(spa_t *spa) 1464 { 1465 uint64_t expected_refcount = 0; 1466 uint64_t actual_refcount; 1467 1468 (void) feature_get_refcount(spa, 1469 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1470 &expected_refcount); 1471 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1472 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1473 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1474 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1475 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1476 actual_refcount += get_log_spacemap_refcount(spa); 1477 1478 if (expected_refcount != actual_refcount) { 1479 (void) printf("space map refcount mismatch: expected %lld != " 1480 "actual %lld\n", 1481 (longlong_t)expected_refcount, 1482 (longlong_t)actual_refcount); 1483 return (2); 1484 } 1485 return (0); 1486 } 1487 1488 static void 1489 dump_spacemap(objset_t *os, space_map_t *sm) 1490 { 1491 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1492 "INVALID", "INVALID", "INVALID", "INVALID" }; 1493 1494 if (sm == NULL) 1495 return; 1496 1497 (void) printf("space map object %llu:\n", 1498 (longlong_t)sm->sm_object); 1499 (void) printf(" smp_length = 0x%llx\n", 1500 (longlong_t)sm->sm_phys->smp_length); 1501 (void) printf(" smp_alloc = 0x%llx\n", 1502 (longlong_t)sm->sm_phys->smp_alloc); 1503 1504 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1505 return; 1506 1507 /* 1508 * Print out the freelist entries in both encoded and decoded form. 1509 */ 1510 uint8_t mapshift = sm->sm_shift; 1511 int64_t alloc = 0; 1512 uint64_t word, entry_id = 0; 1513 for (uint64_t offset = 0; offset < space_map_length(sm); 1514 offset += sizeof (word)) { 1515 1516 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1517 sizeof (word), &word, DMU_READ_PREFETCH)); 1518 1519 if (sm_entry_is_debug(word)) { 1520 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1521 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1522 if (de_txg == 0) { 1523 (void) printf( 1524 "\t [%6llu] PADDING\n", 1525 (u_longlong_t)entry_id); 1526 } else { 1527 (void) printf( 1528 "\t [%6llu] %s: txg %llu pass %llu\n", 1529 (u_longlong_t)entry_id, 1530 ddata[SM_DEBUG_ACTION_DECODE(word)], 1531 (u_longlong_t)de_txg, 1532 (u_longlong_t)de_sync_pass); 1533 } 1534 entry_id++; 1535 continue; 1536 } 1537 1538 uint8_t words; 1539 char entry_type; 1540 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1541 1542 if (sm_entry_is_single_word(word)) { 1543 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1544 'A' : 'F'; 1545 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1546 sm->sm_start; 1547 entry_run = SM_RUN_DECODE(word) << mapshift; 1548 words = 1; 1549 } else { 1550 /* it is a two-word entry so we read another word */ 1551 ASSERT(sm_entry_is_double_word(word)); 1552 1553 uint64_t extra_word; 1554 offset += sizeof (extra_word); 1555 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1556 sizeof (extra_word), &extra_word, 1557 DMU_READ_PREFETCH)); 1558 1559 ASSERT3U(offset, <=, space_map_length(sm)); 1560 1561 entry_run = SM2_RUN_DECODE(word) << mapshift; 1562 entry_vdev = SM2_VDEV_DECODE(word); 1563 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1564 'A' : 'F'; 1565 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1566 mapshift) + sm->sm_start; 1567 words = 2; 1568 } 1569 1570 (void) printf("\t [%6llu] %c range:" 1571 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1572 (u_longlong_t)entry_id, 1573 entry_type, (u_longlong_t)entry_off, 1574 (u_longlong_t)(entry_off + entry_run), 1575 (u_longlong_t)entry_run, 1576 (u_longlong_t)entry_vdev, words); 1577 1578 if (entry_type == 'A') 1579 alloc += entry_run; 1580 else 1581 alloc -= entry_run; 1582 entry_id++; 1583 } 1584 if (alloc != space_map_allocated(sm)) { 1585 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1586 "with space map summary (%lld)\n", 1587 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1588 } 1589 } 1590 1591 static void 1592 dump_metaslab_stats(metaslab_t *msp) 1593 { 1594 char maxbuf[32]; 1595 range_tree_t *rt = msp->ms_allocatable; 1596 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1597 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1598 1599 /* max sure nicenum has enough space */ 1600 CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ); 1601 1602 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1603 1604 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1605 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1606 "freepct", free_pct); 1607 (void) printf("\tIn-memory histogram:\n"); 1608 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1609 } 1610 1611 static void 1612 dump_metaslab(metaslab_t *msp) 1613 { 1614 vdev_t *vd = msp->ms_group->mg_vd; 1615 spa_t *spa = vd->vdev_spa; 1616 space_map_t *sm = msp->ms_sm; 1617 char freebuf[32]; 1618 1619 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1620 sizeof (freebuf)); 1621 1622 (void) printf( 1623 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1624 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1625 (u_longlong_t)space_map_object(sm), freebuf); 1626 1627 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1628 mutex_enter(&msp->ms_lock); 1629 VERIFY0(metaslab_load(msp)); 1630 range_tree_stat_verify(msp->ms_allocatable); 1631 dump_metaslab_stats(msp); 1632 metaslab_unload(msp); 1633 mutex_exit(&msp->ms_lock); 1634 } 1635 1636 if (dump_opt['m'] > 1 && sm != NULL && 1637 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1638 /* 1639 * The space map histogram represents free space in chunks 1640 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1641 */ 1642 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1643 (u_longlong_t)msp->ms_fragmentation); 1644 dump_histogram(sm->sm_phys->smp_histogram, 1645 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1646 } 1647 1648 if (vd->vdev_ops == &vdev_draid_ops) 1649 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1650 else 1651 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1652 1653 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1654 1655 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1656 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1657 (u_longlong_t)metaslab_unflushed_txg(msp)); 1658 } 1659 } 1660 1661 static void 1662 print_vdev_metaslab_header(vdev_t *vd) 1663 { 1664 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1665 const char *bias_str = ""; 1666 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1667 bias_str = VDEV_ALLOC_BIAS_LOG; 1668 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1669 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1670 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1671 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1672 } 1673 1674 uint64_t ms_flush_data_obj = 0; 1675 if (vd->vdev_top_zap != 0) { 1676 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1677 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1678 sizeof (uint64_t), 1, &ms_flush_data_obj); 1679 if (error != ENOENT) { 1680 ASSERT0(error); 1681 } 1682 } 1683 1684 (void) printf("\tvdev %10llu %s", 1685 (u_longlong_t)vd->vdev_id, bias_str); 1686 1687 if (ms_flush_data_obj != 0) { 1688 (void) printf(" ms_unflushed_phys object %llu", 1689 (u_longlong_t)ms_flush_data_obj); 1690 } 1691 1692 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1693 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1694 "offset", "spacemap", "free"); 1695 (void) printf("\t%15s %19s %15s %12s\n", 1696 "---------------", "-------------------", 1697 "---------------", "------------"); 1698 } 1699 1700 static void 1701 dump_metaslab_groups(spa_t *spa) 1702 { 1703 vdev_t *rvd = spa->spa_root_vdev; 1704 metaslab_class_t *mc = spa_normal_class(spa); 1705 uint64_t fragmentation; 1706 1707 metaslab_class_histogram_verify(mc); 1708 1709 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1710 vdev_t *tvd = rvd->vdev_child[c]; 1711 metaslab_group_t *mg = tvd->vdev_mg; 1712 1713 if (mg == NULL || mg->mg_class != mc) 1714 continue; 1715 1716 metaslab_group_histogram_verify(mg); 1717 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1718 1719 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1720 "fragmentation", 1721 (u_longlong_t)tvd->vdev_id, 1722 (u_longlong_t)tvd->vdev_ms_count); 1723 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1724 (void) printf("%3s\n", "-"); 1725 } else { 1726 (void) printf("%3llu%%\n", 1727 (u_longlong_t)mg->mg_fragmentation); 1728 } 1729 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1730 } 1731 1732 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1733 fragmentation = metaslab_class_fragmentation(mc); 1734 if (fragmentation == ZFS_FRAG_INVALID) 1735 (void) printf("\t%3s\n", "-"); 1736 else 1737 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1738 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1739 } 1740 1741 static void 1742 print_vdev_indirect(vdev_t *vd) 1743 { 1744 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1745 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1746 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1747 1748 if (vim == NULL) { 1749 ASSERT3P(vib, ==, NULL); 1750 return; 1751 } 1752 1753 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1754 vic->vic_mapping_object); 1755 ASSERT3U(vdev_indirect_births_object(vib), ==, 1756 vic->vic_births_object); 1757 1758 (void) printf("indirect births obj %llu:\n", 1759 (longlong_t)vic->vic_births_object); 1760 (void) printf(" vib_count = %llu\n", 1761 (longlong_t)vdev_indirect_births_count(vib)); 1762 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1763 vdev_indirect_birth_entry_phys_t *cur_vibe = 1764 &vib->vib_entries[i]; 1765 (void) printf("\toffset %llx -> txg %llu\n", 1766 (longlong_t)cur_vibe->vibe_offset, 1767 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1768 } 1769 (void) printf("\n"); 1770 1771 (void) printf("indirect mapping obj %llu:\n", 1772 (longlong_t)vic->vic_mapping_object); 1773 (void) printf(" vim_max_offset = 0x%llx\n", 1774 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1775 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1776 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1777 (void) printf(" vim_count = %llu\n", 1778 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1779 1780 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1781 return; 1782 1783 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1784 1785 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1786 vdev_indirect_mapping_entry_phys_t *vimep = 1787 &vim->vim_entries[i]; 1788 (void) printf("\t<%llx:%llx:%llx> -> " 1789 "<%llx:%llx:%llx> (%x obsolete)\n", 1790 (longlong_t)vd->vdev_id, 1791 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1792 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1793 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1794 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1795 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1796 counts[i]); 1797 } 1798 (void) printf("\n"); 1799 1800 uint64_t obsolete_sm_object; 1801 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1802 if (obsolete_sm_object != 0) { 1803 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1804 (void) printf("obsolete space map object %llu:\n", 1805 (u_longlong_t)obsolete_sm_object); 1806 ASSERT(vd->vdev_obsolete_sm != NULL); 1807 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1808 obsolete_sm_object); 1809 dump_spacemap(mos, vd->vdev_obsolete_sm); 1810 (void) printf("\n"); 1811 } 1812 } 1813 1814 static void 1815 dump_metaslabs(spa_t *spa) 1816 { 1817 vdev_t *vd, *rvd = spa->spa_root_vdev; 1818 uint64_t m, c = 0, children = rvd->vdev_children; 1819 1820 (void) printf("\nMetaslabs:\n"); 1821 1822 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1823 c = zopt_metaslab[0]; 1824 1825 if (c >= children) 1826 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1827 1828 if (zopt_metaslab_args > 1) { 1829 vd = rvd->vdev_child[c]; 1830 print_vdev_metaslab_header(vd); 1831 1832 for (m = 1; m < zopt_metaslab_args; m++) { 1833 if (zopt_metaslab[m] < vd->vdev_ms_count) 1834 dump_metaslab( 1835 vd->vdev_ms[zopt_metaslab[m]]); 1836 else 1837 (void) fprintf(stderr, "bad metaslab " 1838 "number %llu\n", 1839 (u_longlong_t)zopt_metaslab[m]); 1840 } 1841 (void) printf("\n"); 1842 return; 1843 } 1844 children = c + 1; 1845 } 1846 for (; c < children; c++) { 1847 vd = rvd->vdev_child[c]; 1848 print_vdev_metaslab_header(vd); 1849 1850 print_vdev_indirect(vd); 1851 1852 for (m = 0; m < vd->vdev_ms_count; m++) 1853 dump_metaslab(vd->vdev_ms[m]); 1854 (void) printf("\n"); 1855 } 1856 } 1857 1858 static void 1859 dump_log_spacemaps(spa_t *spa) 1860 { 1861 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1862 return; 1863 1864 (void) printf("\nLog Space Maps in Pool:\n"); 1865 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1866 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1867 space_map_t *sm = NULL; 1868 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1869 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1870 1871 (void) printf("Log Spacemap object %llu txg %llu\n", 1872 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1873 dump_spacemap(spa->spa_meta_objset, sm); 1874 space_map_close(sm); 1875 } 1876 (void) printf("\n"); 1877 } 1878 1879 static void 1880 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1881 { 1882 const ddt_phys_t *ddp = dde->dde_phys; 1883 const ddt_key_t *ddk = &dde->dde_key; 1884 const char *types[4] = { "ditto", "single", "double", "triple" }; 1885 char blkbuf[BP_SPRINTF_LEN]; 1886 blkptr_t blk; 1887 int p; 1888 1889 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1890 if (ddp->ddp_phys_birth == 0) 1891 continue; 1892 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1893 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1894 (void) printf("index %llx refcnt %llu %s %s\n", 1895 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1896 types[p], blkbuf); 1897 } 1898 } 1899 1900 static void 1901 dump_dedup_ratio(const ddt_stat_t *dds) 1902 { 1903 double rL, rP, rD, D, dedup, compress, copies; 1904 1905 if (dds->dds_blocks == 0) 1906 return; 1907 1908 rL = (double)dds->dds_ref_lsize; 1909 rP = (double)dds->dds_ref_psize; 1910 rD = (double)dds->dds_ref_dsize; 1911 D = (double)dds->dds_dsize; 1912 1913 dedup = rD / D; 1914 compress = rL / rP; 1915 copies = rD / rP; 1916 1917 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1918 "dedup * compress / copies = %.2f\n\n", 1919 dedup, compress, copies, dedup * compress / copies); 1920 } 1921 1922 static void 1923 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1924 { 1925 char name[DDT_NAMELEN]; 1926 ddt_entry_t dde; 1927 uint64_t walk = 0; 1928 dmu_object_info_t doi; 1929 uint64_t count, dspace, mspace; 1930 int error; 1931 1932 error = ddt_object_info(ddt, type, class, &doi); 1933 1934 if (error == ENOENT) 1935 return; 1936 ASSERT(error == 0); 1937 1938 error = ddt_object_count(ddt, type, class, &count); 1939 ASSERT(error == 0); 1940 if (count == 0) 1941 return; 1942 1943 dspace = doi.doi_physical_blocks_512 << 9; 1944 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1945 1946 ddt_object_name(ddt, type, class, name); 1947 1948 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1949 name, 1950 (u_longlong_t)count, 1951 (u_longlong_t)(dspace / count), 1952 (u_longlong_t)(mspace / count)); 1953 1954 if (dump_opt['D'] < 3) 1955 return; 1956 1957 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1958 1959 if (dump_opt['D'] < 4) 1960 return; 1961 1962 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 1963 return; 1964 1965 (void) printf("%s contents:\n\n", name); 1966 1967 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 1968 dump_dde(ddt, &dde, walk); 1969 1970 ASSERT3U(error, ==, ENOENT); 1971 1972 (void) printf("\n"); 1973 } 1974 1975 static void 1976 dump_all_ddts(spa_t *spa) 1977 { 1978 ddt_histogram_t ddh_total; 1979 ddt_stat_t dds_total; 1980 1981 bzero(&ddh_total, sizeof (ddh_total)); 1982 bzero(&dds_total, sizeof (dds_total)); 1983 1984 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1985 ddt_t *ddt = spa->spa_ddt[c]; 1986 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 1987 for (enum ddt_class class = 0; class < DDT_CLASSES; 1988 class++) { 1989 dump_ddt(ddt, type, class); 1990 } 1991 } 1992 } 1993 1994 ddt_get_dedup_stats(spa, &dds_total); 1995 1996 if (dds_total.dds_blocks == 0) { 1997 (void) printf("All DDTs are empty\n"); 1998 return; 1999 } 2000 2001 (void) printf("\n"); 2002 2003 if (dump_opt['D'] > 1) { 2004 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2005 ddt_get_dedup_histogram(spa, &ddh_total); 2006 zpool_dump_ddt(&dds_total, &ddh_total); 2007 } 2008 2009 dump_dedup_ratio(&dds_total); 2010 } 2011 2012 static void 2013 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2014 { 2015 char *prefix = arg; 2016 2017 (void) printf("%s [%llu,%llu) length %llu\n", 2018 prefix, 2019 (u_longlong_t)start, 2020 (u_longlong_t)(start + size), 2021 (u_longlong_t)(size)); 2022 } 2023 2024 static void 2025 dump_dtl(vdev_t *vd, int indent) 2026 { 2027 spa_t *spa = vd->vdev_spa; 2028 boolean_t required; 2029 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2030 "outage" }; 2031 char prefix[256]; 2032 2033 spa_vdev_state_enter(spa, SCL_NONE); 2034 required = vdev_dtl_required(vd); 2035 (void) spa_vdev_state_exit(spa, NULL, 0); 2036 2037 if (indent == 0) 2038 (void) printf("\nDirty time logs:\n\n"); 2039 2040 (void) printf("\t%*s%s [%s]\n", indent, "", 2041 vd->vdev_path ? vd->vdev_path : 2042 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2043 required ? "DTL-required" : "DTL-expendable"); 2044 2045 for (int t = 0; t < DTL_TYPES; t++) { 2046 range_tree_t *rt = vd->vdev_dtl[t]; 2047 if (range_tree_space(rt) == 0) 2048 continue; 2049 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2050 indent + 2, "", name[t]); 2051 range_tree_walk(rt, dump_dtl_seg, prefix); 2052 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2053 dump_spacemap(spa->spa_meta_objset, 2054 vd->vdev_dtl_sm); 2055 } 2056 2057 for (unsigned c = 0; c < vd->vdev_children; c++) 2058 dump_dtl(vd->vdev_child[c], indent + 4); 2059 } 2060 2061 static void 2062 dump_history(spa_t *spa) 2063 { 2064 nvlist_t **events = NULL; 2065 char *buf; 2066 uint64_t resid, len, off = 0; 2067 uint_t num = 0; 2068 int error; 2069 time_t tsec; 2070 struct tm t; 2071 char tbuf[30]; 2072 char internalstr[MAXPATHLEN]; 2073 2074 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2075 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2076 __func__); 2077 return; 2078 } 2079 2080 do { 2081 len = SPA_OLD_MAXBLOCKSIZE; 2082 2083 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2084 (void) fprintf(stderr, "Unable to read history: " 2085 "error %d\n", error); 2086 free(buf); 2087 return; 2088 } 2089 2090 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2091 break; 2092 2093 off -= resid; 2094 } while (len != 0); 2095 2096 (void) printf("\nHistory:\n"); 2097 for (unsigned i = 0; i < num; i++) { 2098 uint64_t time, txg, ievent; 2099 char *cmd, *intstr; 2100 boolean_t printed = B_FALSE; 2101 2102 if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, 2103 &time) != 0) 2104 goto next; 2105 if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, 2106 &cmd) != 0) { 2107 if (nvlist_lookup_uint64(events[i], 2108 ZPOOL_HIST_INT_EVENT, &ievent) != 0) 2109 goto next; 2110 verify(nvlist_lookup_uint64(events[i], 2111 ZPOOL_HIST_TXG, &txg) == 0); 2112 verify(nvlist_lookup_string(events[i], 2113 ZPOOL_HIST_INT_STR, &intstr) == 0); 2114 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2115 goto next; 2116 2117 (void) snprintf(internalstr, 2118 sizeof (internalstr), 2119 "[internal %s txg:%lld] %s", 2120 zfs_history_event_names[ievent], 2121 (longlong_t)txg, intstr); 2122 cmd = internalstr; 2123 } 2124 tsec = time; 2125 (void) localtime_r(&tsec, &t); 2126 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2127 (void) printf("%s %s\n", tbuf, cmd); 2128 printed = B_TRUE; 2129 2130 next: 2131 if (dump_opt['h'] > 1) { 2132 if (!printed) 2133 (void) printf("unrecognized record:\n"); 2134 dump_nvlist(events[i], 2); 2135 } 2136 } 2137 free(buf); 2138 } 2139 2140 /*ARGSUSED*/ 2141 static void 2142 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2143 { 2144 } 2145 2146 static uint64_t 2147 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2148 const zbookmark_phys_t *zb) 2149 { 2150 if (dnp == NULL) { 2151 ASSERT(zb->zb_level < 0); 2152 if (zb->zb_object == 0) 2153 return (zb->zb_blkid); 2154 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2155 } 2156 2157 ASSERT(zb->zb_level >= 0); 2158 2159 return ((zb->zb_blkid << 2160 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2161 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2162 } 2163 2164 static void 2165 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2166 const blkptr_t *bp) 2167 { 2168 abd_t *pabd; 2169 void *buf; 2170 zio_t *zio; 2171 zfs_zstdhdr_t zstd_hdr; 2172 int error; 2173 2174 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2175 return; 2176 2177 if (BP_IS_HOLE(bp)) 2178 return; 2179 2180 if (BP_IS_EMBEDDED(bp)) { 2181 buf = malloc(SPA_MAXBLOCKSIZE); 2182 if (buf == NULL) { 2183 (void) fprintf(stderr, "out of memory\n"); 2184 exit(1); 2185 } 2186 decode_embedded_bp_compressed(bp, buf); 2187 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2188 free(buf); 2189 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2190 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2191 (void) snprintf(blkbuf + strlen(blkbuf), 2192 buflen - strlen(blkbuf), 2193 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2194 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2195 return; 2196 } 2197 2198 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2199 zio = zio_root(spa, NULL, NULL, 0); 2200 2201 /* Decrypt but don't decompress so we can read the compression header */ 2202 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2203 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2204 NULL)); 2205 error = zio_wait(zio); 2206 if (error) { 2207 (void) fprintf(stderr, "read failed: %d\n", error); 2208 return; 2209 } 2210 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2211 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2212 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2213 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2214 2215 (void) snprintf(blkbuf + strlen(blkbuf), 2216 buflen - strlen(blkbuf), 2217 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2218 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2219 2220 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2221 } 2222 2223 static void 2224 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2225 boolean_t bp_freed) 2226 { 2227 const dva_t *dva = bp->blk_dva; 2228 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2229 int i; 2230 2231 if (dump_opt['b'] >= 6) { 2232 snprintf_blkptr(blkbuf, buflen, bp); 2233 if (bp_freed) { 2234 (void) snprintf(blkbuf + strlen(blkbuf), 2235 buflen - strlen(blkbuf), " %s", "FREE"); 2236 } 2237 return; 2238 } 2239 2240 if (BP_IS_EMBEDDED(bp)) { 2241 (void) sprintf(blkbuf, 2242 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2243 (int)BPE_GET_ETYPE(bp), 2244 (u_longlong_t)BPE_GET_LSIZE(bp), 2245 (u_longlong_t)BPE_GET_PSIZE(bp), 2246 (u_longlong_t)bp->blk_birth); 2247 return; 2248 } 2249 2250 blkbuf[0] = '\0'; 2251 2252 for (i = 0; i < ndvas; i++) 2253 (void) snprintf(blkbuf + strlen(blkbuf), 2254 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2255 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2256 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2257 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2258 2259 if (BP_IS_HOLE(bp)) { 2260 (void) snprintf(blkbuf + strlen(blkbuf), 2261 buflen - strlen(blkbuf), 2262 "%llxL B=%llu", 2263 (u_longlong_t)BP_GET_LSIZE(bp), 2264 (u_longlong_t)bp->blk_birth); 2265 } else { 2266 (void) snprintf(blkbuf + strlen(blkbuf), 2267 buflen - strlen(blkbuf), 2268 "%llxL/%llxP F=%llu B=%llu/%llu", 2269 (u_longlong_t)BP_GET_LSIZE(bp), 2270 (u_longlong_t)BP_GET_PSIZE(bp), 2271 (u_longlong_t)BP_GET_FILL(bp), 2272 (u_longlong_t)bp->blk_birth, 2273 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2274 if (bp_freed) 2275 (void) snprintf(blkbuf + strlen(blkbuf), 2276 buflen - strlen(blkbuf), " %s", "FREE"); 2277 (void) snprintf(blkbuf + strlen(blkbuf), 2278 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx", 2279 (u_longlong_t)bp->blk_cksum.zc_word[0], 2280 (u_longlong_t)bp->blk_cksum.zc_word[1], 2281 (u_longlong_t)bp->blk_cksum.zc_word[2], 2282 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2283 } 2284 } 2285 2286 static void 2287 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2288 const dnode_phys_t *dnp) 2289 { 2290 char blkbuf[BP_SPRINTF_LEN]; 2291 int l; 2292 2293 if (!BP_IS_EMBEDDED(bp)) { 2294 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2295 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2296 } 2297 2298 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2299 2300 ASSERT(zb->zb_level >= 0); 2301 2302 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2303 if (l == zb->zb_level) { 2304 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2305 } else { 2306 (void) printf(" "); 2307 } 2308 } 2309 2310 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2311 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2312 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2313 (void) printf("%s\n", blkbuf); 2314 } 2315 2316 static int 2317 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2318 blkptr_t *bp, const zbookmark_phys_t *zb) 2319 { 2320 int err = 0; 2321 2322 if (bp->blk_birth == 0) 2323 return (0); 2324 2325 print_indirect(spa, bp, zb, dnp); 2326 2327 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2328 arc_flags_t flags = ARC_FLAG_WAIT; 2329 int i; 2330 blkptr_t *cbp; 2331 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2332 arc_buf_t *buf; 2333 uint64_t fill = 0; 2334 ASSERT(!BP_IS_REDACTED(bp)); 2335 2336 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2337 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2338 if (err) 2339 return (err); 2340 ASSERT(buf->b_data); 2341 2342 /* recursively visit blocks below this */ 2343 cbp = buf->b_data; 2344 for (i = 0; i < epb; i++, cbp++) { 2345 zbookmark_phys_t czb; 2346 2347 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2348 zb->zb_level - 1, 2349 zb->zb_blkid * epb + i); 2350 err = visit_indirect(spa, dnp, cbp, &czb); 2351 if (err) 2352 break; 2353 fill += BP_GET_FILL(cbp); 2354 } 2355 if (!err) 2356 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2357 arc_buf_destroy(buf, &buf); 2358 } 2359 2360 return (err); 2361 } 2362 2363 /*ARGSUSED*/ 2364 static void 2365 dump_indirect(dnode_t *dn) 2366 { 2367 dnode_phys_t *dnp = dn->dn_phys; 2368 int j; 2369 zbookmark_phys_t czb; 2370 2371 (void) printf("Indirect blocks:\n"); 2372 2373 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2374 dn->dn_object, dnp->dn_nlevels - 1, 0); 2375 for (j = 0; j < dnp->dn_nblkptr; j++) { 2376 czb.zb_blkid = j; 2377 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2378 &dnp->dn_blkptr[j], &czb); 2379 } 2380 2381 (void) printf("\n"); 2382 } 2383 2384 /*ARGSUSED*/ 2385 static void 2386 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2387 { 2388 dsl_dir_phys_t *dd = data; 2389 time_t crtime; 2390 char nice[32]; 2391 2392 /* make sure nicenum has enough space */ 2393 CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ); 2394 2395 if (dd == NULL) 2396 return; 2397 2398 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2399 2400 crtime = dd->dd_creation_time; 2401 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2402 (void) printf("\t\thead_dataset_obj = %llu\n", 2403 (u_longlong_t)dd->dd_head_dataset_obj); 2404 (void) printf("\t\tparent_dir_obj = %llu\n", 2405 (u_longlong_t)dd->dd_parent_obj); 2406 (void) printf("\t\torigin_obj = %llu\n", 2407 (u_longlong_t)dd->dd_origin_obj); 2408 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2409 (u_longlong_t)dd->dd_child_dir_zapobj); 2410 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2411 (void) printf("\t\tused_bytes = %s\n", nice); 2412 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2413 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2414 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2415 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2416 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2417 (void) printf("\t\tquota = %s\n", nice); 2418 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2419 (void) printf("\t\treserved = %s\n", nice); 2420 (void) printf("\t\tprops_zapobj = %llu\n", 2421 (u_longlong_t)dd->dd_props_zapobj); 2422 (void) printf("\t\tdeleg_zapobj = %llu\n", 2423 (u_longlong_t)dd->dd_deleg_zapobj); 2424 (void) printf("\t\tflags = %llx\n", 2425 (u_longlong_t)dd->dd_flags); 2426 2427 #define DO(which) \ 2428 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2429 sizeof (nice)); \ 2430 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2431 DO(HEAD); 2432 DO(SNAP); 2433 DO(CHILD); 2434 DO(CHILD_RSRV); 2435 DO(REFRSRV); 2436 #undef DO 2437 (void) printf("\t\tclones = %llu\n", 2438 (u_longlong_t)dd->dd_clones); 2439 } 2440 2441 /*ARGSUSED*/ 2442 static void 2443 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2444 { 2445 dsl_dataset_phys_t *ds = data; 2446 time_t crtime; 2447 char used[32], compressed[32], uncompressed[32], unique[32]; 2448 char blkbuf[BP_SPRINTF_LEN]; 2449 2450 /* make sure nicenum has enough space */ 2451 CTASSERT(sizeof (used) >= NN_NUMBUF_SZ); 2452 CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ); 2453 CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ); 2454 CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ); 2455 2456 if (ds == NULL) 2457 return; 2458 2459 ASSERT(size == sizeof (*ds)); 2460 crtime = ds->ds_creation_time; 2461 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2462 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2463 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2464 sizeof (uncompressed)); 2465 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2466 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2467 2468 (void) printf("\t\tdir_obj = %llu\n", 2469 (u_longlong_t)ds->ds_dir_obj); 2470 (void) printf("\t\tprev_snap_obj = %llu\n", 2471 (u_longlong_t)ds->ds_prev_snap_obj); 2472 (void) printf("\t\tprev_snap_txg = %llu\n", 2473 (u_longlong_t)ds->ds_prev_snap_txg); 2474 (void) printf("\t\tnext_snap_obj = %llu\n", 2475 (u_longlong_t)ds->ds_next_snap_obj); 2476 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2477 (u_longlong_t)ds->ds_snapnames_zapobj); 2478 (void) printf("\t\tnum_children = %llu\n", 2479 (u_longlong_t)ds->ds_num_children); 2480 (void) printf("\t\tuserrefs_obj = %llu\n", 2481 (u_longlong_t)ds->ds_userrefs_obj); 2482 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2483 (void) printf("\t\tcreation_txg = %llu\n", 2484 (u_longlong_t)ds->ds_creation_txg); 2485 (void) printf("\t\tdeadlist_obj = %llu\n", 2486 (u_longlong_t)ds->ds_deadlist_obj); 2487 (void) printf("\t\tused_bytes = %s\n", used); 2488 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2489 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2490 (void) printf("\t\tunique = %s\n", unique); 2491 (void) printf("\t\tfsid_guid = %llu\n", 2492 (u_longlong_t)ds->ds_fsid_guid); 2493 (void) printf("\t\tguid = %llu\n", 2494 (u_longlong_t)ds->ds_guid); 2495 (void) printf("\t\tflags = %llx\n", 2496 (u_longlong_t)ds->ds_flags); 2497 (void) printf("\t\tnext_clones_obj = %llu\n", 2498 (u_longlong_t)ds->ds_next_clones_obj); 2499 (void) printf("\t\tprops_obj = %llu\n", 2500 (u_longlong_t)ds->ds_props_obj); 2501 (void) printf("\t\tbp = %s\n", blkbuf); 2502 } 2503 2504 /* ARGSUSED */ 2505 static int 2506 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2507 { 2508 char blkbuf[BP_SPRINTF_LEN]; 2509 2510 if (bp->blk_birth != 0) { 2511 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2512 (void) printf("\t%s\n", blkbuf); 2513 } 2514 return (0); 2515 } 2516 2517 static void 2518 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2519 { 2520 char bytes[32]; 2521 bptree_phys_t *bt; 2522 dmu_buf_t *db; 2523 2524 /* make sure nicenum has enough space */ 2525 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2526 2527 if (dump_opt['d'] < 3) 2528 return; 2529 2530 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2531 bt = db->db_data; 2532 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2533 (void) printf("\n %s: %llu datasets, %s\n", 2534 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2535 dmu_buf_rele(db, FTAG); 2536 2537 if (dump_opt['d'] < 5) 2538 return; 2539 2540 (void) printf("\n"); 2541 2542 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2543 } 2544 2545 /* ARGSUSED */ 2546 static int 2547 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2548 { 2549 char blkbuf[BP_SPRINTF_LEN]; 2550 2551 ASSERT(bp->blk_birth != 0); 2552 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2553 (void) printf("\t%s\n", blkbuf); 2554 return (0); 2555 } 2556 2557 static void 2558 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2559 { 2560 char bytes[32]; 2561 char comp[32]; 2562 char uncomp[32]; 2563 uint64_t i; 2564 2565 /* make sure nicenum has enough space */ 2566 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2567 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2568 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2569 2570 if (dump_opt['d'] < 3) 2571 return; 2572 2573 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2574 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2575 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2576 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2577 if (bpo->bpo_havefreed) { 2578 (void) printf(" %*s: object %llu, %llu local " 2579 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2580 "%s (%s/%s comp)\n", 2581 indent * 8, name, 2582 (u_longlong_t)bpo->bpo_object, 2583 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2584 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2585 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2586 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2587 bytes, comp, uncomp); 2588 } else { 2589 (void) printf(" %*s: object %llu, %llu local " 2590 "blkptrs, %llu subobjs in object %llu, " 2591 "%s (%s/%s comp)\n", 2592 indent * 8, name, 2593 (u_longlong_t)bpo->bpo_object, 2594 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2595 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2596 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2597 bytes, comp, uncomp); 2598 } 2599 2600 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2601 uint64_t subobj; 2602 bpobj_t subbpo; 2603 int error; 2604 VERIFY0(dmu_read(bpo->bpo_os, 2605 bpo->bpo_phys->bpo_subobjs, 2606 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2607 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2608 if (error != 0) { 2609 (void) printf("ERROR %u while trying to open " 2610 "subobj id %llu\n", 2611 error, (u_longlong_t)subobj); 2612 continue; 2613 } 2614 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2615 bpobj_close(&subbpo); 2616 } 2617 } else { 2618 if (bpo->bpo_havefreed) { 2619 (void) printf(" %*s: object %llu, %llu blkptrs, " 2620 "%llu freed, %s\n", 2621 indent * 8, name, 2622 (u_longlong_t)bpo->bpo_object, 2623 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2624 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2625 bytes); 2626 } else { 2627 (void) printf(" %*s: object %llu, %llu blkptrs, " 2628 "%s\n", 2629 indent * 8, name, 2630 (u_longlong_t)bpo->bpo_object, 2631 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2632 bytes); 2633 } 2634 } 2635 2636 if (dump_opt['d'] < 5) 2637 return; 2638 2639 2640 if (indent == 0) { 2641 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2642 (void) printf("\n"); 2643 } 2644 } 2645 2646 static int 2647 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2648 boolean_t print_list) 2649 { 2650 int err = 0; 2651 zfs_bookmark_phys_t prop; 2652 objset_t *mos = dp->dp_spa->spa_meta_objset; 2653 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2654 2655 if (err != 0) { 2656 return (err); 2657 } 2658 2659 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2660 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2661 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2662 (u_longlong_t)prop.zbm_creation_txg, 2663 (u_longlong_t)prop.zbm_creation_time, 2664 (u_longlong_t)prop.zbm_redaction_obj); 2665 2666 IMPLY(print_list, print_redact); 2667 if (!print_redact || prop.zbm_redaction_obj == 0) 2668 return (0); 2669 2670 redaction_list_t *rl; 2671 VERIFY0(dsl_redaction_list_hold_obj(dp, 2672 prop.zbm_redaction_obj, FTAG, &rl)); 2673 2674 redaction_list_phys_t *rlp = rl->rl_phys; 2675 (void) printf("\tRedacted:\n\t\tProgress: "); 2676 if (rlp->rlp_last_object != UINT64_MAX || 2677 rlp->rlp_last_blkid != UINT64_MAX) { 2678 (void) printf("%llu %llu (incomplete)\n", 2679 (u_longlong_t)rlp->rlp_last_object, 2680 (u_longlong_t)rlp->rlp_last_blkid); 2681 } else { 2682 (void) printf("complete\n"); 2683 } 2684 (void) printf("\t\tSnapshots: ["); 2685 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2686 if (i > 0) 2687 (void) printf(", "); 2688 (void) printf("%0llu", 2689 (u_longlong_t)rlp->rlp_snaps[i]); 2690 } 2691 (void) printf("]\n\t\tLength: %llu\n", 2692 (u_longlong_t)rlp->rlp_num_entries); 2693 2694 if (!print_list) { 2695 dsl_redaction_list_rele(rl, FTAG); 2696 return (0); 2697 } 2698 2699 if (rlp->rlp_num_entries == 0) { 2700 dsl_redaction_list_rele(rl, FTAG); 2701 (void) printf("\t\tRedaction List: []\n\n"); 2702 return (0); 2703 } 2704 2705 redact_block_phys_t *rbp_buf; 2706 uint64_t size; 2707 dmu_object_info_t doi; 2708 2709 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2710 size = doi.doi_max_offset; 2711 rbp_buf = kmem_alloc(size, KM_SLEEP); 2712 2713 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2714 rbp_buf, 0); 2715 if (err != 0) { 2716 dsl_redaction_list_rele(rl, FTAG); 2717 kmem_free(rbp_buf, size); 2718 return (err); 2719 } 2720 2721 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2722 "%llx, blksz: %x, count: %llx}", 2723 (u_longlong_t)rbp_buf[0].rbp_object, 2724 (u_longlong_t)rbp_buf[0].rbp_blkid, 2725 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2726 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2727 2728 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2729 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2730 "blksz: %x, count: %llx}", 2731 (u_longlong_t)rbp_buf[i].rbp_object, 2732 (u_longlong_t)rbp_buf[i].rbp_blkid, 2733 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2734 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2735 } 2736 dsl_redaction_list_rele(rl, FTAG); 2737 kmem_free(rbp_buf, size); 2738 (void) printf("]\n\n"); 2739 return (0); 2740 } 2741 2742 static void 2743 dump_bookmarks(objset_t *os, int verbosity) 2744 { 2745 zap_cursor_t zc; 2746 zap_attribute_t attr; 2747 dsl_dataset_t *ds = dmu_objset_ds(os); 2748 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2749 objset_t *mos = os->os_spa->spa_meta_objset; 2750 if (verbosity < 4) 2751 return; 2752 dsl_pool_config_enter(dp, FTAG); 2753 2754 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2755 zap_cursor_retrieve(&zc, &attr) == 0; 2756 zap_cursor_advance(&zc)) { 2757 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2758 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2759 dmu_objset_name(os, osname); 2760 VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname, 2761 attr.za_name)); 2762 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2763 } 2764 zap_cursor_fini(&zc); 2765 dsl_pool_config_exit(dp, FTAG); 2766 } 2767 2768 static void 2769 bpobj_count_refd(bpobj_t *bpo) 2770 { 2771 mos_obj_refd(bpo->bpo_object); 2772 2773 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2774 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2775 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2776 uint64_t subobj; 2777 bpobj_t subbpo; 2778 int error; 2779 VERIFY0(dmu_read(bpo->bpo_os, 2780 bpo->bpo_phys->bpo_subobjs, 2781 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2782 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2783 if (error != 0) { 2784 (void) printf("ERROR %u while trying to open " 2785 "subobj id %llu\n", 2786 error, (u_longlong_t)subobj); 2787 continue; 2788 } 2789 bpobj_count_refd(&subbpo); 2790 bpobj_close(&subbpo); 2791 } 2792 } 2793 } 2794 2795 static int 2796 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2797 { 2798 spa_t *spa = arg; 2799 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2800 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2801 bpobj_count_refd(&dle->dle_bpobj); 2802 return (0); 2803 } 2804 2805 static int 2806 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2807 { 2808 ASSERT(arg == NULL); 2809 if (dump_opt['d'] >= 5) { 2810 char buf[128]; 2811 (void) snprintf(buf, sizeof (buf), 2812 "mintxg %llu -> obj %llu", 2813 (longlong_t)dle->dle_mintxg, 2814 (longlong_t)dle->dle_bpobj.bpo_object); 2815 2816 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2817 } else { 2818 (void) printf("mintxg %llu -> obj %llu\n", 2819 (longlong_t)dle->dle_mintxg, 2820 (longlong_t)dle->dle_bpobj.bpo_object); 2821 } 2822 return (0); 2823 } 2824 2825 static void 2826 dump_blkptr_list(dsl_deadlist_t *dl, char *name) 2827 { 2828 char bytes[32]; 2829 char comp[32]; 2830 char uncomp[32]; 2831 char entries[32]; 2832 spa_t *spa = dmu_objset_spa(dl->dl_os); 2833 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2834 2835 if (dl->dl_oldfmt) { 2836 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2837 bpobj_count_refd(&dl->dl_bpobj); 2838 } else { 2839 mos_obj_refd(dl->dl_object); 2840 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2841 } 2842 2843 /* make sure nicenum has enough space */ 2844 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2845 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2846 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2847 CTASSERT(sizeof (entries) >= NN_NUMBUF_SZ); 2848 2849 if (dump_opt['d'] < 3) 2850 return; 2851 2852 if (dl->dl_oldfmt) { 2853 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2854 return; 2855 } 2856 2857 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2858 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2859 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2860 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2861 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2862 name, bytes, comp, uncomp, entries); 2863 2864 if (dump_opt['d'] < 4) 2865 return; 2866 2867 (void) printf("\n"); 2868 2869 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2870 } 2871 2872 static int 2873 verify_dd_livelist(objset_t *os) 2874 { 2875 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2876 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2877 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2878 2879 ASSERT(!dmu_objset_is_snapshot(os)); 2880 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2881 return (0); 2882 2883 /* Iterate through the livelist to check for duplicates */ 2884 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2885 NULL); 2886 2887 dsl_pool_config_enter(dp, FTAG); 2888 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2889 &ll_comp, &ll_uncomp); 2890 2891 dsl_dataset_t *origin_ds; 2892 ASSERT(dsl_pool_config_held(dp)); 2893 VERIFY0(dsl_dataset_hold_obj(dp, 2894 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2895 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2896 &used, &comp, &uncomp)); 2897 dsl_dataset_rele(origin_ds, FTAG); 2898 dsl_pool_config_exit(dp, FTAG); 2899 /* 2900 * It's possible that the dataset's uncomp space is larger than the 2901 * livelist's because livelists do not track embedded block pointers 2902 */ 2903 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 2904 char nice_used[32], nice_comp[32], nice_uncomp[32]; 2905 (void) printf("Discrepancy in space accounting:\n"); 2906 zdb_nicenum(used, nice_used, sizeof (nice_used)); 2907 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 2908 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 2909 (void) printf("dir: used %s, comp %s, uncomp %s\n", 2910 nice_used, nice_comp, nice_uncomp); 2911 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 2912 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 2913 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 2914 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 2915 nice_used, nice_comp, nice_uncomp); 2916 return (1); 2917 } 2918 return (0); 2919 } 2920 2921 static avl_tree_t idx_tree; 2922 static avl_tree_t domain_tree; 2923 static boolean_t fuid_table_loaded; 2924 static objset_t *sa_os = NULL; 2925 static sa_attr_type_t *sa_attr_table = NULL; 2926 2927 static int 2928 open_objset(const char *path, void *tag, objset_t **osp) 2929 { 2930 int err; 2931 uint64_t sa_attrs = 0; 2932 uint64_t version = 0; 2933 2934 VERIFY3P(sa_os, ==, NULL); 2935 /* 2936 * We can't own an objset if it's redacted. Therefore, we do this 2937 * dance: hold the objset, then acquire a long hold on its dataset, then 2938 * release the pool (which is held as part of holding the objset). 2939 */ 2940 err = dmu_objset_hold(path, tag, osp); 2941 if (err != 0) { 2942 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 2943 path, strerror(err)); 2944 return (err); 2945 } 2946 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 2947 dsl_pool_rele(dmu_objset_pool(*osp), tag); 2948 2949 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) { 2950 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2951 8, 1, &version); 2952 if (version >= ZPL_VERSION_SA) { 2953 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 2954 8, 1, &sa_attrs); 2955 } 2956 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 2957 &sa_attr_table); 2958 if (err != 0) { 2959 (void) fprintf(stderr, "sa_setup failed: %s\n", 2960 strerror(err)); 2961 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 2962 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 2963 *osp = NULL; 2964 } 2965 } 2966 sa_os = *osp; 2967 2968 return (0); 2969 } 2970 2971 static void 2972 close_objset(objset_t *os, void *tag) 2973 { 2974 VERIFY3P(os, ==, sa_os); 2975 if (os->os_sa != NULL) 2976 sa_tear_down(os); 2977 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 2978 dsl_dataset_rele(dmu_objset_ds(os), tag); 2979 sa_attr_table = NULL; 2980 sa_os = NULL; 2981 } 2982 2983 static void 2984 fuid_table_destroy(void) 2985 { 2986 if (fuid_table_loaded) { 2987 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 2988 fuid_table_loaded = B_FALSE; 2989 } 2990 } 2991 2992 /* 2993 * print uid or gid information. 2994 * For normal POSIX id just the id is printed in decimal format. 2995 * For CIFS files with FUID the fuid is printed in hex followed by 2996 * the domain-rid string. 2997 */ 2998 static void 2999 print_idstr(uint64_t id, const char *id_type) 3000 { 3001 if (FUID_INDEX(id)) { 3002 char *domain; 3003 3004 domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3005 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3006 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3007 } else { 3008 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3009 } 3010 3011 } 3012 3013 static void 3014 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3015 { 3016 uint32_t uid_idx, gid_idx; 3017 3018 uid_idx = FUID_INDEX(uid); 3019 gid_idx = FUID_INDEX(gid); 3020 3021 /* Load domain table, if not already loaded */ 3022 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3023 uint64_t fuid_obj; 3024 3025 /* first find the fuid object. It lives in the master node */ 3026 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3027 8, 1, &fuid_obj) == 0); 3028 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3029 (void) zfs_fuid_table_load(os, fuid_obj, 3030 &idx_tree, &domain_tree); 3031 fuid_table_loaded = B_TRUE; 3032 } 3033 3034 print_idstr(uid, "uid"); 3035 print_idstr(gid, "gid"); 3036 } 3037 3038 static void 3039 dump_znode_sa_xattr(sa_handle_t *hdl) 3040 { 3041 nvlist_t *sa_xattr; 3042 nvpair_t *elem = NULL; 3043 int sa_xattr_size = 0; 3044 int sa_xattr_entries = 0; 3045 int error; 3046 char *sa_xattr_packed; 3047 3048 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3049 if (error || sa_xattr_size == 0) 3050 return; 3051 3052 sa_xattr_packed = malloc(sa_xattr_size); 3053 if (sa_xattr_packed == NULL) 3054 return; 3055 3056 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3057 sa_xattr_packed, sa_xattr_size); 3058 if (error) { 3059 free(sa_xattr_packed); 3060 return; 3061 } 3062 3063 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3064 if (error) { 3065 free(sa_xattr_packed); 3066 return; 3067 } 3068 3069 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3070 sa_xattr_entries++; 3071 3072 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3073 sa_xattr_size, sa_xattr_entries); 3074 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3075 uchar_t *value; 3076 uint_t cnt, idx; 3077 3078 (void) printf("\t\t%s = ", nvpair_name(elem)); 3079 nvpair_value_byte_array(elem, &value, &cnt); 3080 for (idx = 0; idx < cnt; ++idx) { 3081 if (isprint(value[idx])) 3082 (void) putchar(value[idx]); 3083 else 3084 (void) printf("\\%3.3o", value[idx]); 3085 } 3086 (void) putchar('\n'); 3087 } 3088 3089 nvlist_free(sa_xattr); 3090 free(sa_xattr_packed); 3091 } 3092 3093 static void 3094 dump_znode_symlink(sa_handle_t *hdl) 3095 { 3096 int sa_symlink_size = 0; 3097 char linktarget[MAXPATHLEN]; 3098 linktarget[0] = '\0'; 3099 int error; 3100 3101 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3102 if (error || sa_symlink_size == 0) { 3103 return; 3104 } 3105 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3106 &linktarget, sa_symlink_size) == 0) 3107 (void) printf("\ttarget %s\n", linktarget); 3108 } 3109 3110 /*ARGSUSED*/ 3111 static void 3112 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3113 { 3114 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3115 sa_handle_t *hdl; 3116 uint64_t xattr, rdev, gen; 3117 uint64_t uid, gid, mode, fsize, parent, links; 3118 uint64_t pflags; 3119 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3120 time_t z_crtime, z_atime, z_mtime, z_ctime; 3121 sa_bulk_attr_t bulk[12]; 3122 int idx = 0; 3123 int error; 3124 3125 VERIFY3P(os, ==, sa_os); 3126 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3127 (void) printf("Failed to get handle for SA znode\n"); 3128 return; 3129 } 3130 3131 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3132 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3133 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3134 &links, 8); 3135 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3136 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3137 &mode, 8); 3138 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3139 NULL, &parent, 8); 3140 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3141 &fsize, 8); 3142 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3143 acctm, 16); 3144 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3145 modtm, 16); 3146 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3147 crtm, 16); 3148 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3149 chgtm, 16); 3150 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3151 &pflags, 8); 3152 3153 if (sa_bulk_lookup(hdl, bulk, idx)) { 3154 (void) sa_handle_destroy(hdl); 3155 return; 3156 } 3157 3158 z_crtime = (time_t)crtm[0]; 3159 z_atime = (time_t)acctm[0]; 3160 z_mtime = (time_t)modtm[0]; 3161 z_ctime = (time_t)chgtm[0]; 3162 3163 if (dump_opt['d'] > 4) { 3164 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3165 if (error == ESTALE) { 3166 (void) snprintf(path, sizeof (path), "on delete queue"); 3167 } else if (error != 0) { 3168 leaked_objects++; 3169 (void) snprintf(path, sizeof (path), 3170 "path not found, possibly leaked"); 3171 } 3172 (void) printf("\tpath %s\n", path); 3173 } 3174 3175 if (S_ISLNK(mode)) 3176 dump_znode_symlink(hdl); 3177 dump_uidgid(os, uid, gid); 3178 (void) printf("\tatime %s", ctime(&z_atime)); 3179 (void) printf("\tmtime %s", ctime(&z_mtime)); 3180 (void) printf("\tctime %s", ctime(&z_ctime)); 3181 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3182 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3183 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3184 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3185 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3186 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3187 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3188 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3189 uint64_t projid; 3190 3191 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3192 sizeof (uint64_t)) == 0) 3193 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3194 } 3195 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3196 sizeof (uint64_t)) == 0) 3197 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3198 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3199 sizeof (uint64_t)) == 0) 3200 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3201 dump_znode_sa_xattr(hdl); 3202 sa_handle_destroy(hdl); 3203 } 3204 3205 /*ARGSUSED*/ 3206 static void 3207 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3208 { 3209 } 3210 3211 /*ARGSUSED*/ 3212 static void 3213 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3214 { 3215 } 3216 3217 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3218 dump_none, /* unallocated */ 3219 dump_zap, /* object directory */ 3220 dump_uint64, /* object array */ 3221 dump_none, /* packed nvlist */ 3222 dump_packed_nvlist, /* packed nvlist size */ 3223 dump_none, /* bpobj */ 3224 dump_bpobj, /* bpobj header */ 3225 dump_none, /* SPA space map header */ 3226 dump_none, /* SPA space map */ 3227 dump_none, /* ZIL intent log */ 3228 dump_dnode, /* DMU dnode */ 3229 dump_dmu_objset, /* DMU objset */ 3230 dump_dsl_dir, /* DSL directory */ 3231 dump_zap, /* DSL directory child map */ 3232 dump_zap, /* DSL dataset snap map */ 3233 dump_zap, /* DSL props */ 3234 dump_dsl_dataset, /* DSL dataset */ 3235 dump_znode, /* ZFS znode */ 3236 dump_acl, /* ZFS V0 ACL */ 3237 dump_uint8, /* ZFS plain file */ 3238 dump_zpldir, /* ZFS directory */ 3239 dump_zap, /* ZFS master node */ 3240 dump_zap, /* ZFS delete queue */ 3241 dump_uint8, /* zvol object */ 3242 dump_zap, /* zvol prop */ 3243 dump_uint8, /* other uint8[] */ 3244 dump_uint64, /* other uint64[] */ 3245 dump_zap, /* other ZAP */ 3246 dump_zap, /* persistent error log */ 3247 dump_uint8, /* SPA history */ 3248 dump_history_offsets, /* SPA history offsets */ 3249 dump_zap, /* Pool properties */ 3250 dump_zap, /* DSL permissions */ 3251 dump_acl, /* ZFS ACL */ 3252 dump_uint8, /* ZFS SYSACL */ 3253 dump_none, /* FUID nvlist */ 3254 dump_packed_nvlist, /* FUID nvlist size */ 3255 dump_zap, /* DSL dataset next clones */ 3256 dump_zap, /* DSL scrub queue */ 3257 dump_zap, /* ZFS user/group/project used */ 3258 dump_zap, /* ZFS user/group/project quota */ 3259 dump_zap, /* snapshot refcount tags */ 3260 dump_ddt_zap, /* DDT ZAP object */ 3261 dump_zap, /* DDT statistics */ 3262 dump_znode, /* SA object */ 3263 dump_zap, /* SA Master Node */ 3264 dump_sa_attrs, /* SA attribute registration */ 3265 dump_sa_layouts, /* SA attribute layouts */ 3266 dump_zap, /* DSL scrub translations */ 3267 dump_none, /* fake dedup BP */ 3268 dump_zap, /* deadlist */ 3269 dump_none, /* deadlist hdr */ 3270 dump_zap, /* dsl clones */ 3271 dump_bpobj_subobjs, /* bpobj subobjs */ 3272 dump_unknown, /* Unknown type, must be last */ 3273 }; 3274 3275 static boolean_t 3276 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3277 { 3278 boolean_t match = B_TRUE; 3279 3280 switch (obj_type) { 3281 case DMU_OT_DIRECTORY_CONTENTS: 3282 if (!(flags & ZOR_FLAG_DIRECTORY)) 3283 match = B_FALSE; 3284 break; 3285 case DMU_OT_PLAIN_FILE_CONTENTS: 3286 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3287 match = B_FALSE; 3288 break; 3289 case DMU_OT_SPACE_MAP: 3290 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3291 match = B_FALSE; 3292 break; 3293 default: 3294 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3295 if (!(flags & ZOR_FLAG_ZAP)) 3296 match = B_FALSE; 3297 break; 3298 } 3299 3300 /* 3301 * If all bits except some of the supported flags are 3302 * set, the user combined the all-types flag (A) with 3303 * a negated flag to exclude some types (e.g. A-f to 3304 * show all object types except plain files). 3305 */ 3306 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3307 match = B_FALSE; 3308 3309 break; 3310 } 3311 3312 return (match); 3313 } 3314 3315 static void 3316 dump_object(objset_t *os, uint64_t object, int verbosity, 3317 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3318 { 3319 dmu_buf_t *db = NULL; 3320 dmu_object_info_t doi; 3321 dnode_t *dn; 3322 boolean_t dnode_held = B_FALSE; 3323 void *bonus = NULL; 3324 size_t bsize = 0; 3325 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3326 char bonus_size[32]; 3327 char aux[50]; 3328 int error; 3329 3330 /* make sure nicenum has enough space */ 3331 CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ); 3332 CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ); 3333 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 3334 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 3335 CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ); 3336 3337 if (*print_header) { 3338 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3339 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3340 "lsize", "%full", "type"); 3341 *print_header = 0; 3342 } 3343 3344 if (object == 0) { 3345 dn = DMU_META_DNODE(os); 3346 dmu_object_info_from_dnode(dn, &doi); 3347 } else { 3348 /* 3349 * Encrypted datasets will have sensitive bonus buffers 3350 * encrypted. Therefore we cannot hold the bonus buffer and 3351 * must hold the dnode itself instead. 3352 */ 3353 error = dmu_object_info(os, object, &doi); 3354 if (error) 3355 fatal("dmu_object_info() failed, errno %u", error); 3356 3357 if (os->os_encrypted && 3358 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3359 error = dnode_hold(os, object, FTAG, &dn); 3360 if (error) 3361 fatal("dnode_hold() failed, errno %u", error); 3362 dnode_held = B_TRUE; 3363 } else { 3364 error = dmu_bonus_hold(os, object, FTAG, &db); 3365 if (error) 3366 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3367 object, error); 3368 bonus = db->db_data; 3369 bsize = db->db_size; 3370 dn = DB_DNODE((dmu_buf_impl_t *)db); 3371 } 3372 } 3373 3374 /* 3375 * Default to showing all object types if no flags were specified. 3376 */ 3377 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3378 !match_object_type(doi.doi_type, flags)) 3379 goto out; 3380 3381 if (dnode_slots_used) 3382 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3383 3384 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3385 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3386 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3387 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3388 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3389 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3390 (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * 3391 doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / 3392 doi.doi_max_offset); 3393 3394 aux[0] = '\0'; 3395 3396 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3397 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3398 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3399 } 3400 3401 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3402 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3403 const char *compname = NULL; 3404 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3405 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3406 &compname) == 0) { 3407 (void) snprintf(aux + strlen(aux), 3408 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3409 compname); 3410 } else { 3411 (void) snprintf(aux + strlen(aux), 3412 sizeof (aux) - strlen(aux), 3413 " (Z=inherit=%s-unknown)", 3414 ZDB_COMPRESS_NAME(os->os_compress)); 3415 } 3416 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3417 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3418 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3419 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3420 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3421 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3422 } 3423 3424 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3425 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3426 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3427 3428 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3429 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3430 "", "", "", "", "", "", bonus_size, "bonus", 3431 zdb_ot_name(doi.doi_bonus_type)); 3432 } 3433 3434 if (verbosity >= 4) { 3435 (void) printf("\tdnode flags: %s%s%s%s\n", 3436 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3437 "USED_BYTES " : "", 3438 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3439 "USERUSED_ACCOUNTED " : "", 3440 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3441 "USEROBJUSED_ACCOUNTED " : "", 3442 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3443 "SPILL_BLKPTR" : ""); 3444 (void) printf("\tdnode maxblkid: %llu\n", 3445 (longlong_t)dn->dn_phys->dn_maxblkid); 3446 3447 if (!dnode_held) { 3448 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3449 object, bonus, bsize); 3450 } else { 3451 (void) printf("\t\t(bonus encrypted)\n"); 3452 } 3453 3454 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) { 3455 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3456 NULL, 0); 3457 } else { 3458 (void) printf("\t\t(object encrypted)\n"); 3459 } 3460 3461 *print_header = B_TRUE; 3462 } 3463 3464 if (verbosity >= 5) 3465 dump_indirect(dn); 3466 3467 if (verbosity >= 5) { 3468 /* 3469 * Report the list of segments that comprise the object. 3470 */ 3471 uint64_t start = 0; 3472 uint64_t end; 3473 uint64_t blkfill = 1; 3474 int minlvl = 1; 3475 3476 if (dn->dn_type == DMU_OT_DNODE) { 3477 minlvl = 0; 3478 blkfill = DNODES_PER_BLOCK; 3479 } 3480 3481 for (;;) { 3482 char segsize[32]; 3483 /* make sure nicenum has enough space */ 3484 CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ); 3485 error = dnode_next_offset(dn, 3486 0, &start, minlvl, blkfill, 0); 3487 if (error) 3488 break; 3489 end = start; 3490 error = dnode_next_offset(dn, 3491 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3492 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3493 (void) printf("\t\tsegment [%016llx, %016llx)" 3494 " size %5s\n", (u_longlong_t)start, 3495 (u_longlong_t)end, segsize); 3496 if (error) 3497 break; 3498 start = end; 3499 } 3500 } 3501 3502 out: 3503 if (db != NULL) 3504 dmu_buf_rele(db, FTAG); 3505 if (dnode_held) 3506 dnode_rele(dn, FTAG); 3507 } 3508 3509 static void 3510 count_dir_mos_objects(dsl_dir_t *dd) 3511 { 3512 mos_obj_refd(dd->dd_object); 3513 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3514 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3515 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3516 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3517 3518 /* 3519 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3520 * Ignore the references after the first one. 3521 */ 3522 mos_obj_refd_multiple(dd->dd_crypto_obj); 3523 } 3524 3525 static void 3526 count_ds_mos_objects(dsl_dataset_t *ds) 3527 { 3528 mos_obj_refd(ds->ds_object); 3529 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3530 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3531 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3532 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3533 mos_obj_refd(ds->ds_bookmarks_obj); 3534 3535 if (!dsl_dataset_is_snapshot(ds)) { 3536 count_dir_mos_objects(ds->ds_dir); 3537 } 3538 } 3539 3540 static const char *objset_types[DMU_OST_NUMTYPES] = { 3541 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3542 3543 /* 3544 * Parse a string denoting a range of object IDs of the form 3545 * <start>[:<end>[:flags]], and store the results in zor. 3546 * Return 0 on success. On error, return 1 and update the msg 3547 * pointer to point to a descriptive error message. 3548 */ 3549 static int 3550 parse_object_range(char *range, zopt_object_range_t *zor, char **msg) 3551 { 3552 uint64_t flags = 0; 3553 char *p, *s, *dup, *flagstr; 3554 size_t len; 3555 int i; 3556 int rc = 0; 3557 3558 if (strchr(range, ':') == NULL) { 3559 zor->zor_obj_start = strtoull(range, &p, 0); 3560 if (*p != '\0') { 3561 *msg = "Invalid characters in object ID"; 3562 rc = 1; 3563 } 3564 zor->zor_obj_end = zor->zor_obj_start; 3565 return (rc); 3566 } 3567 3568 if (strchr(range, ':') == range) { 3569 *msg = "Invalid leading colon"; 3570 rc = 1; 3571 return (rc); 3572 } 3573 3574 len = strlen(range); 3575 if (range[len - 1] == ':') { 3576 *msg = "Invalid trailing colon"; 3577 rc = 1; 3578 return (rc); 3579 } 3580 3581 dup = strdup(range); 3582 s = strtok(dup, ":"); 3583 zor->zor_obj_start = strtoull(s, &p, 0); 3584 3585 if (*p != '\0') { 3586 *msg = "Invalid characters in start object ID"; 3587 rc = 1; 3588 goto out; 3589 } 3590 3591 s = strtok(NULL, ":"); 3592 zor->zor_obj_end = strtoull(s, &p, 0); 3593 3594 if (*p != '\0') { 3595 *msg = "Invalid characters in end object ID"; 3596 rc = 1; 3597 goto out; 3598 } 3599 3600 if (zor->zor_obj_start > zor->zor_obj_end) { 3601 *msg = "Start object ID may not exceed end object ID"; 3602 rc = 1; 3603 goto out; 3604 } 3605 3606 s = strtok(NULL, ":"); 3607 if (s == NULL) { 3608 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3609 goto out; 3610 } else if (strtok(NULL, ":") != NULL) { 3611 *msg = "Invalid colon-delimited field after flags"; 3612 rc = 1; 3613 goto out; 3614 } 3615 3616 flagstr = s; 3617 for (i = 0; flagstr[i]; i++) { 3618 int bit; 3619 boolean_t negation = (flagstr[i] == '-'); 3620 3621 if (negation) { 3622 i++; 3623 if (flagstr[i] == '\0') { 3624 *msg = "Invalid trailing negation operator"; 3625 rc = 1; 3626 goto out; 3627 } 3628 } 3629 bit = flagbits[(uchar_t)flagstr[i]]; 3630 if (bit == 0) { 3631 *msg = "Invalid flag"; 3632 rc = 1; 3633 goto out; 3634 } 3635 if (negation) 3636 flags &= ~bit; 3637 else 3638 flags |= bit; 3639 } 3640 zor->zor_flags = flags; 3641 3642 out: 3643 free(dup); 3644 return (rc); 3645 } 3646 3647 static void 3648 dump_objset(objset_t *os) 3649 { 3650 dmu_objset_stats_t dds = { 0 }; 3651 uint64_t object, object_count; 3652 uint64_t refdbytes, usedobjs, scratch; 3653 char numbuf[32]; 3654 char blkbuf[BP_SPRINTF_LEN + 20]; 3655 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3656 const char *type = "UNKNOWN"; 3657 int verbosity = dump_opt['d']; 3658 boolean_t print_header; 3659 unsigned i; 3660 int error; 3661 uint64_t total_slots_used = 0; 3662 uint64_t max_slot_used = 0; 3663 uint64_t dnode_slots; 3664 uint64_t obj_start; 3665 uint64_t obj_end; 3666 uint64_t flags; 3667 3668 /* make sure nicenum has enough space */ 3669 CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ); 3670 3671 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3672 dmu_objset_fast_stat(os, &dds); 3673 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3674 3675 print_header = B_TRUE; 3676 3677 if (dds.dds_type < DMU_OST_NUMTYPES) 3678 type = objset_types[dds.dds_type]; 3679 3680 if (dds.dds_type == DMU_OST_META) { 3681 dds.dds_creation_txg = TXG_INITIAL; 3682 usedobjs = BP_GET_FILL(os->os_rootbp); 3683 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3684 dd_used_bytes; 3685 } else { 3686 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3687 } 3688 3689 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3690 3691 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3692 3693 if (verbosity >= 4) { 3694 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3695 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3696 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3697 } else { 3698 blkbuf[0] = '\0'; 3699 } 3700 3701 dmu_objset_name(os, osname); 3702 3703 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3704 "%s, %llu objects%s%s\n", 3705 osname, type, (u_longlong_t)dmu_objset_id(os), 3706 (u_longlong_t)dds.dds_creation_txg, 3707 numbuf, (u_longlong_t)usedobjs, blkbuf, 3708 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3709 3710 for (i = 0; i < zopt_object_args; i++) { 3711 obj_start = zopt_object_ranges[i].zor_obj_start; 3712 obj_end = zopt_object_ranges[i].zor_obj_end; 3713 flags = zopt_object_ranges[i].zor_flags; 3714 3715 object = obj_start; 3716 if (object == 0 || obj_start == obj_end) 3717 dump_object(os, object, verbosity, &print_header, NULL, 3718 flags); 3719 else 3720 object--; 3721 3722 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3723 object <= obj_end) { 3724 dump_object(os, object, verbosity, &print_header, NULL, 3725 flags); 3726 } 3727 } 3728 3729 if (zopt_object_args > 0) { 3730 (void) printf("\n"); 3731 return; 3732 } 3733 3734 if (dump_opt['i'] != 0 || verbosity >= 2) 3735 dump_intent_log(dmu_objset_zil(os)); 3736 3737 if (dmu_objset_ds(os) != NULL) { 3738 dsl_dataset_t *ds = dmu_objset_ds(os); 3739 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 3740 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 3741 !dmu_objset_is_snapshot(os)) { 3742 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 3743 if (verify_dd_livelist(os) != 0) 3744 fatal("livelist is incorrect"); 3745 } 3746 3747 if (dsl_dataset_remap_deadlist_exists(ds)) { 3748 (void) printf("ds_remap_deadlist:\n"); 3749 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 3750 } 3751 count_ds_mos_objects(ds); 3752 } 3753 3754 if (dmu_objset_ds(os) != NULL) 3755 dump_bookmarks(os, verbosity); 3756 3757 if (verbosity < 2) 3758 return; 3759 3760 if (BP_IS_HOLE(os->os_rootbp)) 3761 return; 3762 3763 dump_object(os, 0, verbosity, &print_header, NULL, 0); 3764 object_count = 0; 3765 if (DMU_USERUSED_DNODE(os) != NULL && 3766 DMU_USERUSED_DNODE(os)->dn_type != 0) { 3767 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 3768 NULL, 0); 3769 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 3770 NULL, 0); 3771 } 3772 3773 if (DMU_PROJECTUSED_DNODE(os) != NULL && 3774 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 3775 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 3776 &print_header, NULL, 0); 3777 3778 object = 0; 3779 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 3780 dump_object(os, object, verbosity, &print_header, &dnode_slots, 3781 0); 3782 object_count++; 3783 total_slots_used += dnode_slots; 3784 max_slot_used = object + dnode_slots - 1; 3785 } 3786 3787 (void) printf("\n"); 3788 3789 (void) printf(" Dnode slots:\n"); 3790 (void) printf("\tTotal used: %10llu\n", 3791 (u_longlong_t)total_slots_used); 3792 (void) printf("\tMax used: %10llu\n", 3793 (u_longlong_t)max_slot_used); 3794 (void) printf("\tPercent empty: %10lf\n", 3795 (double)(max_slot_used - total_slots_used)*100 / 3796 (double)max_slot_used); 3797 (void) printf("\n"); 3798 3799 if (error != ESRCH) { 3800 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 3801 abort(); 3802 } 3803 3804 ASSERT3U(object_count, ==, usedobjs); 3805 3806 if (leaked_objects != 0) { 3807 (void) printf("%d potentially leaked objects detected\n", 3808 leaked_objects); 3809 leaked_objects = 0; 3810 } 3811 } 3812 3813 static void 3814 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 3815 { 3816 time_t timestamp = ub->ub_timestamp; 3817 3818 (void) printf("%s", header ? header : ""); 3819 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 3820 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 3821 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 3822 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 3823 (void) printf("\ttimestamp = %llu UTC = %s", 3824 (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); 3825 3826 (void) printf("\tmmp_magic = %016llx\n", 3827 (u_longlong_t)ub->ub_mmp_magic); 3828 if (MMP_VALID(ub)) { 3829 (void) printf("\tmmp_delay = %0llu\n", 3830 (u_longlong_t)ub->ub_mmp_delay); 3831 if (MMP_SEQ_VALID(ub)) 3832 (void) printf("\tmmp_seq = %u\n", 3833 (unsigned int) MMP_SEQ(ub)); 3834 if (MMP_FAIL_INT_VALID(ub)) 3835 (void) printf("\tmmp_fail = %u\n", 3836 (unsigned int) MMP_FAIL_INT(ub)); 3837 if (MMP_INTERVAL_VALID(ub)) 3838 (void) printf("\tmmp_write = %u\n", 3839 (unsigned int) MMP_INTERVAL(ub)); 3840 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 3841 (void) printf("\tmmp_valid = %x\n", 3842 (unsigned int) ub->ub_mmp_config & 0xFF); 3843 } 3844 3845 if (dump_opt['u'] >= 4) { 3846 char blkbuf[BP_SPRINTF_LEN]; 3847 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 3848 (void) printf("\trootbp = %s\n", blkbuf); 3849 } 3850 (void) printf("\tcheckpoint_txg = %llu\n", 3851 (u_longlong_t)ub->ub_checkpoint_txg); 3852 (void) printf("%s", footer ? footer : ""); 3853 } 3854 3855 static void 3856 dump_config(spa_t *spa) 3857 { 3858 dmu_buf_t *db; 3859 size_t nvsize = 0; 3860 int error = 0; 3861 3862 3863 error = dmu_bonus_hold(spa->spa_meta_objset, 3864 spa->spa_config_object, FTAG, &db); 3865 3866 if (error == 0) { 3867 nvsize = *(uint64_t *)db->db_data; 3868 dmu_buf_rele(db, FTAG); 3869 3870 (void) printf("\nMOS Configuration:\n"); 3871 dump_packed_nvlist(spa->spa_meta_objset, 3872 spa->spa_config_object, (void *)&nvsize, 1); 3873 } else { 3874 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 3875 (u_longlong_t)spa->spa_config_object, error); 3876 } 3877 } 3878 3879 static void 3880 dump_cachefile(const char *cachefile) 3881 { 3882 int fd; 3883 struct stat64 statbuf; 3884 char *buf; 3885 nvlist_t *config; 3886 3887 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 3888 (void) printf("cannot open '%s': %s\n", cachefile, 3889 strerror(errno)); 3890 exit(1); 3891 } 3892 3893 if (fstat64(fd, &statbuf) != 0) { 3894 (void) printf("failed to stat '%s': %s\n", cachefile, 3895 strerror(errno)); 3896 exit(1); 3897 } 3898 3899 if ((buf = malloc(statbuf.st_size)) == NULL) { 3900 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 3901 (u_longlong_t)statbuf.st_size); 3902 exit(1); 3903 } 3904 3905 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 3906 (void) fprintf(stderr, "failed to read %llu bytes\n", 3907 (u_longlong_t)statbuf.st_size); 3908 exit(1); 3909 } 3910 3911 (void) close(fd); 3912 3913 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 3914 (void) fprintf(stderr, "failed to unpack nvlist\n"); 3915 exit(1); 3916 } 3917 3918 free(buf); 3919 3920 dump_nvlist(config, 0); 3921 3922 nvlist_free(config); 3923 } 3924 3925 /* 3926 * ZFS label nvlist stats 3927 */ 3928 typedef struct zdb_nvl_stats { 3929 int zns_list_count; 3930 int zns_leaf_count; 3931 size_t zns_leaf_largest; 3932 size_t zns_leaf_total; 3933 nvlist_t *zns_string; 3934 nvlist_t *zns_uint64; 3935 nvlist_t *zns_boolean; 3936 } zdb_nvl_stats_t; 3937 3938 static void 3939 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 3940 { 3941 nvlist_t *list, **array; 3942 nvpair_t *nvp = NULL; 3943 char *name; 3944 uint_t i, items; 3945 3946 stats->zns_list_count++; 3947 3948 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3949 name = nvpair_name(nvp); 3950 3951 switch (nvpair_type(nvp)) { 3952 case DATA_TYPE_STRING: 3953 fnvlist_add_string(stats->zns_string, name, 3954 fnvpair_value_string(nvp)); 3955 break; 3956 case DATA_TYPE_UINT64: 3957 fnvlist_add_uint64(stats->zns_uint64, name, 3958 fnvpair_value_uint64(nvp)); 3959 break; 3960 case DATA_TYPE_BOOLEAN: 3961 fnvlist_add_boolean(stats->zns_boolean, name); 3962 break; 3963 case DATA_TYPE_NVLIST: 3964 if (nvpair_value_nvlist(nvp, &list) == 0) 3965 collect_nvlist_stats(list, stats); 3966 break; 3967 case DATA_TYPE_NVLIST_ARRAY: 3968 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 3969 break; 3970 3971 for (i = 0; i < items; i++) { 3972 collect_nvlist_stats(array[i], stats); 3973 3974 /* collect stats on leaf vdev */ 3975 if (strcmp(name, "children") == 0) { 3976 size_t size; 3977 3978 (void) nvlist_size(array[i], &size, 3979 NV_ENCODE_XDR); 3980 stats->zns_leaf_total += size; 3981 if (size > stats->zns_leaf_largest) 3982 stats->zns_leaf_largest = size; 3983 stats->zns_leaf_count++; 3984 } 3985 } 3986 break; 3987 default: 3988 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 3989 } 3990 } 3991 } 3992 3993 static void 3994 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 3995 { 3996 zdb_nvl_stats_t stats = { 0 }; 3997 size_t size, sum = 0, total; 3998 size_t noise; 3999 4000 /* requires nvlist with non-unique names for stat collection */ 4001 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4002 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4003 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4004 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4005 4006 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4007 4008 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4009 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4010 (int)total, (int)(cap - total), 100.0 * total / cap); 4011 4012 collect_nvlist_stats(nvl, &stats); 4013 4014 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4015 size -= noise; 4016 sum += size; 4017 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4018 (int)fnvlist_num_pairs(stats.zns_uint64), 4019 (int)size, 100.0 * size / total); 4020 4021 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4022 size -= noise; 4023 sum += size; 4024 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4025 (int)fnvlist_num_pairs(stats.zns_string), 4026 (int)size, 100.0 * size / total); 4027 4028 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4029 size -= noise; 4030 sum += size; 4031 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4032 (int)fnvlist_num_pairs(stats.zns_boolean), 4033 (int)size, 100.0 * size / total); 4034 4035 size = total - sum; /* treat remainder as nvlist overhead */ 4036 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4037 stats.zns_list_count, (int)size, 100.0 * size / total); 4038 4039 if (stats.zns_leaf_count > 0) { 4040 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4041 4042 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4043 stats.zns_leaf_count, (int)average); 4044 (void) printf("%24d bytes largest\n", 4045 (int)stats.zns_leaf_largest); 4046 4047 if (dump_opt['l'] >= 3 && average > 0) 4048 (void) printf(" space for %d additional leaf vdevs\n", 4049 (int)((cap - total) / average)); 4050 } 4051 (void) printf("\n"); 4052 4053 nvlist_free(stats.zns_string); 4054 nvlist_free(stats.zns_uint64); 4055 nvlist_free(stats.zns_boolean); 4056 } 4057 4058 typedef struct cksum_record { 4059 zio_cksum_t cksum; 4060 boolean_t labels[VDEV_LABELS]; 4061 avl_node_t link; 4062 } cksum_record_t; 4063 4064 static int 4065 cksum_record_compare(const void *x1, const void *x2) 4066 { 4067 const cksum_record_t *l = (cksum_record_t *)x1; 4068 const cksum_record_t *r = (cksum_record_t *)x2; 4069 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4070 int difference; 4071 4072 for (int i = 0; i < arraysize; i++) { 4073 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4074 if (difference) 4075 break; 4076 } 4077 4078 return (difference); 4079 } 4080 4081 static cksum_record_t * 4082 cksum_record_alloc(zio_cksum_t *cksum, int l) 4083 { 4084 cksum_record_t *rec; 4085 4086 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4087 rec->cksum = *cksum; 4088 rec->labels[l] = B_TRUE; 4089 4090 return (rec); 4091 } 4092 4093 static cksum_record_t * 4094 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4095 { 4096 cksum_record_t lookup = { .cksum = *cksum }; 4097 avl_index_t where; 4098 4099 return (avl_find(tree, &lookup, &where)); 4100 } 4101 4102 static cksum_record_t * 4103 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4104 { 4105 cksum_record_t *rec; 4106 4107 rec = cksum_record_lookup(tree, cksum); 4108 if (rec) { 4109 rec->labels[l] = B_TRUE; 4110 } else { 4111 rec = cksum_record_alloc(cksum, l); 4112 avl_add(tree, rec); 4113 } 4114 4115 return (rec); 4116 } 4117 4118 static int 4119 first_label(cksum_record_t *rec) 4120 { 4121 for (int i = 0; i < VDEV_LABELS; i++) 4122 if (rec->labels[i]) 4123 return (i); 4124 4125 return (-1); 4126 } 4127 4128 static void 4129 print_label_numbers(char *prefix, cksum_record_t *rec) 4130 { 4131 printf("%s", prefix); 4132 for (int i = 0; i < VDEV_LABELS; i++) 4133 if (rec->labels[i] == B_TRUE) 4134 printf("%d ", i); 4135 printf("\n"); 4136 } 4137 4138 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4139 4140 typedef struct zdb_label { 4141 vdev_label_t label; 4142 nvlist_t *config_nv; 4143 cksum_record_t *config; 4144 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4145 boolean_t header_printed; 4146 boolean_t read_failed; 4147 } zdb_label_t; 4148 4149 static void 4150 print_label_header(zdb_label_t *label, int l) 4151 { 4152 4153 if (dump_opt['q']) 4154 return; 4155 4156 if (label->header_printed == B_TRUE) 4157 return; 4158 4159 (void) printf("------------------------------------\n"); 4160 (void) printf("LABEL %d\n", l); 4161 (void) printf("------------------------------------\n"); 4162 4163 label->header_printed = B_TRUE; 4164 } 4165 4166 static void 4167 print_l2arc_header(void) 4168 { 4169 (void) printf("------------------------------------\n"); 4170 (void) printf("L2ARC device header\n"); 4171 (void) printf("------------------------------------\n"); 4172 } 4173 4174 static void 4175 print_l2arc_log_blocks(void) 4176 { 4177 (void) printf("------------------------------------\n"); 4178 (void) printf("L2ARC device log blocks\n"); 4179 (void) printf("------------------------------------\n"); 4180 } 4181 4182 static void 4183 dump_l2arc_log_entries(uint64_t log_entries, 4184 l2arc_log_ent_phys_t *le, uint64_t i) 4185 { 4186 for (int j = 0; j < log_entries; j++) { 4187 dva_t dva = le[j].le_dva; 4188 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4189 "vdev: %llu, offset: %llu\n", 4190 (u_longlong_t)i, j + 1, 4191 (u_longlong_t)DVA_GET_ASIZE(&dva), 4192 (u_longlong_t)DVA_GET_VDEV(&dva), 4193 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4194 (void) printf("|\t\t\t\tbirth: %llu\n", 4195 (u_longlong_t)le[j].le_birth); 4196 (void) printf("|\t\t\t\tlsize: %llu\n", 4197 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4198 (void) printf("|\t\t\t\tpsize: %llu\n", 4199 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4200 (void) printf("|\t\t\t\tcompr: %llu\n", 4201 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4202 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4203 (u_longlong_t)(&le[j])->le_complevel); 4204 (void) printf("|\t\t\t\ttype: %llu\n", 4205 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4206 (void) printf("|\t\t\t\tprotected: %llu\n", 4207 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4208 (void) printf("|\t\t\t\tprefetch: %llu\n", 4209 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4210 (void) printf("|\t\t\t\taddress: %llu\n", 4211 (u_longlong_t)le[j].le_daddr); 4212 (void) printf("|\t\t\t\tARC state: %llu\n", 4213 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4214 (void) printf("|\n"); 4215 } 4216 (void) printf("\n"); 4217 } 4218 4219 static void 4220 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps) 4221 { 4222 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr); 4223 (void) printf("|\t\tpayload_asize: %llu\n", 4224 (u_longlong_t)lbps.lbp_payload_asize); 4225 (void) printf("|\t\tpayload_start: %llu\n", 4226 (u_longlong_t)lbps.lbp_payload_start); 4227 (void) printf("|\t\tlsize: %llu\n", 4228 (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop)); 4229 (void) printf("|\t\tasize: %llu\n", 4230 (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop)); 4231 (void) printf("|\t\tcompralgo: %llu\n", 4232 (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop)); 4233 (void) printf("|\t\tcksumalgo: %llu\n", 4234 (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop)); 4235 (void) printf("|\n\n"); 4236 } 4237 4238 static void 4239 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr, 4240 l2arc_dev_hdr_phys_t *rebuild) 4241 { 4242 l2arc_log_blk_phys_t this_lb; 4243 uint64_t asize; 4244 l2arc_log_blkptr_t lbps[2]; 4245 abd_t *abd; 4246 zio_cksum_t cksum; 4247 int failed = 0; 4248 l2arc_dev_t dev; 4249 4250 if (!dump_opt['q']) 4251 print_l2arc_log_blocks(); 4252 bcopy((&l2dhdr)->dh_start_lbps, lbps, sizeof (lbps)); 4253 4254 dev.l2ad_evict = l2dhdr.dh_evict; 4255 dev.l2ad_start = l2dhdr.dh_start; 4256 dev.l2ad_end = l2dhdr.dh_end; 4257 4258 if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) { 4259 /* no log blocks to read */ 4260 if (!dump_opt['q']) { 4261 (void) printf("No log blocks to read\n"); 4262 (void) printf("\n"); 4263 } 4264 return; 4265 } else { 4266 dev.l2ad_hand = lbps[0].lbp_daddr + 4267 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4268 } 4269 4270 dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4271 4272 for (;;) { 4273 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4274 break; 4275 4276 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4277 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4278 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4279 if (!dump_opt['q']) { 4280 (void) printf("Error while reading next log " 4281 "block\n\n"); 4282 } 4283 break; 4284 } 4285 4286 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4287 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4288 failed++; 4289 if (!dump_opt['q']) { 4290 (void) printf("Invalid cksum\n"); 4291 dump_l2arc_log_blkptr(lbps[0]); 4292 } 4293 break; 4294 } 4295 4296 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4297 case ZIO_COMPRESS_OFF: 4298 break; 4299 default: 4300 abd = abd_alloc_for_io(asize, B_TRUE); 4301 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4302 zio_decompress_data(L2BLK_GET_COMPRESS( 4303 (&lbps[0])->lbp_prop), abd, &this_lb, 4304 asize, sizeof (this_lb), NULL); 4305 abd_free(abd); 4306 break; 4307 } 4308 4309 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4310 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4311 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4312 if (!dump_opt['q']) 4313 (void) printf("Invalid log block magic\n\n"); 4314 break; 4315 } 4316 4317 rebuild->dh_lb_count++; 4318 rebuild->dh_lb_asize += asize; 4319 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4320 (void) printf("lb[%4llu]\tmagic: %llu\n", 4321 (u_longlong_t)rebuild->dh_lb_count, 4322 (u_longlong_t)this_lb.lb_magic); 4323 dump_l2arc_log_blkptr(lbps[0]); 4324 } 4325 4326 if (dump_opt['l'] > 2 && !dump_opt['q']) 4327 dump_l2arc_log_entries(l2dhdr.dh_log_entries, 4328 this_lb.lb_entries, 4329 rebuild->dh_lb_count); 4330 4331 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4332 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4333 !dev.l2ad_first) 4334 break; 4335 4336 lbps[0] = lbps[1]; 4337 lbps[1] = this_lb.lb_prev_lbp; 4338 } 4339 4340 if (!dump_opt['q']) { 4341 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4342 (u_longlong_t)rebuild->dh_lb_count); 4343 (void) printf("\t\t %d with invalid cksum\n", failed); 4344 (void) printf("log_blk_asize:\t %llu\n\n", 4345 (u_longlong_t)rebuild->dh_lb_asize); 4346 } 4347 } 4348 4349 static int 4350 dump_l2arc_header(int fd) 4351 { 4352 l2arc_dev_hdr_phys_t l2dhdr, rebuild; 4353 int error = B_FALSE; 4354 4355 bzero(&l2dhdr, sizeof (l2dhdr)); 4356 bzero(&rebuild, sizeof (rebuild)); 4357 4358 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4359 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4360 error = B_TRUE; 4361 } else { 4362 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4363 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4364 4365 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4366 error = B_TRUE; 4367 } 4368 4369 if (error) { 4370 (void) printf("L2ARC device header not found\n\n"); 4371 /* Do not return an error here for backward compatibility */ 4372 return (0); 4373 } else if (!dump_opt['q']) { 4374 print_l2arc_header(); 4375 4376 (void) printf(" magic: %llu\n", 4377 (u_longlong_t)l2dhdr.dh_magic); 4378 (void) printf(" version: %llu\n", 4379 (u_longlong_t)l2dhdr.dh_version); 4380 (void) printf(" pool_guid: %llu\n", 4381 (u_longlong_t)l2dhdr.dh_spa_guid); 4382 (void) printf(" flags: %llu\n", 4383 (u_longlong_t)l2dhdr.dh_flags); 4384 (void) printf(" start_lbps[0]: %llu\n", 4385 (u_longlong_t) 4386 l2dhdr.dh_start_lbps[0].lbp_daddr); 4387 (void) printf(" start_lbps[1]: %llu\n", 4388 (u_longlong_t) 4389 l2dhdr.dh_start_lbps[1].lbp_daddr); 4390 (void) printf(" log_blk_ent: %llu\n", 4391 (u_longlong_t)l2dhdr.dh_log_entries); 4392 (void) printf(" start: %llu\n", 4393 (u_longlong_t)l2dhdr.dh_start); 4394 (void) printf(" end: %llu\n", 4395 (u_longlong_t)l2dhdr.dh_end); 4396 (void) printf(" evict: %llu\n", 4397 (u_longlong_t)l2dhdr.dh_evict); 4398 (void) printf(" lb_asize_refcount: %llu\n", 4399 (u_longlong_t)l2dhdr.dh_lb_asize); 4400 (void) printf(" lb_count_refcount: %llu\n", 4401 (u_longlong_t)l2dhdr.dh_lb_count); 4402 (void) printf(" trim_action_time: %llu\n", 4403 (u_longlong_t)l2dhdr.dh_trim_action_time); 4404 (void) printf(" trim_state: %llu\n\n", 4405 (u_longlong_t)l2dhdr.dh_trim_state); 4406 } 4407 4408 dump_l2arc_log_blocks(fd, l2dhdr, &rebuild); 4409 /* 4410 * The total aligned size of log blocks and the number of log blocks 4411 * reported in the header of the device may be less than what zdb 4412 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4413 * This happens because dump_l2arc_log_blocks() lacks the memory 4414 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4415 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4416 * and dh_lb_count will be lower to begin with than what exists on the 4417 * device. This is normal and zdb should not exit with an error. The 4418 * opposite case should never happen though, the values reported in the 4419 * header should never be higher than what dump_l2arc_log_blocks() and 4420 * l2arc_rebuild() report. If this happens there is a leak in the 4421 * accounting of log blocks. 4422 */ 4423 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4424 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4425 return (1); 4426 4427 return (0); 4428 } 4429 4430 static void 4431 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4432 { 4433 if (dump_opt['q']) 4434 return; 4435 4436 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4437 return; 4438 4439 print_label_header(label, l); 4440 dump_nvlist(label->config_nv, 4); 4441 print_label_numbers(" labels = ", label->config); 4442 4443 if (dump_opt['l'] >= 2) 4444 dump_nvlist_stats(label->config_nv, buflen); 4445 } 4446 4447 #define ZDB_MAX_UB_HEADER_SIZE 32 4448 4449 static void 4450 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4451 { 4452 4453 vdev_t vd; 4454 char header[ZDB_MAX_UB_HEADER_SIZE]; 4455 4456 vd.vdev_ashift = ashift; 4457 vd.vdev_top = &vd; 4458 4459 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4460 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4461 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4462 cksum_record_t *rec = label->uberblocks[i]; 4463 4464 if (rec == NULL) { 4465 if (dump_opt['u'] >= 2) { 4466 print_label_header(label, label_num); 4467 (void) printf(" Uberblock[%d] invalid\n", i); 4468 } 4469 continue; 4470 } 4471 4472 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4473 continue; 4474 4475 if ((dump_opt['u'] < 4) && 4476 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4477 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4478 continue; 4479 4480 print_label_header(label, label_num); 4481 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4482 " Uberblock[%d]\n", i); 4483 dump_uberblock(ub, header, ""); 4484 print_label_numbers(" labels = ", rec); 4485 } 4486 } 4487 4488 static char curpath[PATH_MAX]; 4489 4490 /* 4491 * Iterate through the path components, recursively passing 4492 * current one's obj and remaining path until we find the obj 4493 * for the last one. 4494 */ 4495 static int 4496 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4497 { 4498 int err; 4499 boolean_t header = B_TRUE; 4500 uint64_t child_obj; 4501 char *s; 4502 dmu_buf_t *db; 4503 dmu_object_info_t doi; 4504 4505 if ((s = strchr(name, '/')) != NULL) 4506 *s = '\0'; 4507 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4508 4509 (void) strlcat(curpath, name, sizeof (curpath)); 4510 4511 if (err != 0) { 4512 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4513 curpath, strerror(err)); 4514 return (err); 4515 } 4516 4517 child_obj = ZFS_DIRENT_OBJ(child_obj); 4518 err = sa_buf_hold(os, child_obj, FTAG, &db); 4519 if (err != 0) { 4520 (void) fprintf(stderr, 4521 "failed to get SA dbuf for obj %llu: %s\n", 4522 (u_longlong_t)child_obj, strerror(err)); 4523 return (EINVAL); 4524 } 4525 dmu_object_info_from_db(db, &doi); 4526 sa_buf_rele(db, FTAG); 4527 4528 if (doi.doi_bonus_type != DMU_OT_SA && 4529 doi.doi_bonus_type != DMU_OT_ZNODE) { 4530 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4531 doi.doi_bonus_type, (u_longlong_t)child_obj); 4532 return (EINVAL); 4533 } 4534 4535 if (dump_opt['v'] > 6) { 4536 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4537 (u_longlong_t)child_obj, curpath, doi.doi_type, 4538 doi.doi_bonus_type); 4539 } 4540 4541 (void) strlcat(curpath, "/", sizeof (curpath)); 4542 4543 switch (doi.doi_type) { 4544 case DMU_OT_DIRECTORY_CONTENTS: 4545 if (s != NULL && *(s + 1) != '\0') 4546 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4547 /*FALLTHROUGH*/ 4548 case DMU_OT_PLAIN_FILE_CONTENTS: 4549 if (retobj != NULL) { 4550 *retobj = child_obj; 4551 } else { 4552 dump_object(os, child_obj, dump_opt['v'], &header, 4553 NULL, 0); 4554 } 4555 return (0); 4556 default: 4557 (void) fprintf(stderr, "object %llu has non-file/directory " 4558 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4559 break; 4560 } 4561 4562 return (EINVAL); 4563 } 4564 4565 /* 4566 * Dump the blocks for the object specified by path inside the dataset. 4567 */ 4568 static int 4569 dump_path(char *ds, char *path, uint64_t *retobj) 4570 { 4571 int err; 4572 objset_t *os; 4573 uint64_t root_obj; 4574 4575 err = open_objset(ds, FTAG, &os); 4576 if (err != 0) 4577 return (err); 4578 4579 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4580 if (err != 0) { 4581 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4582 strerror(err)); 4583 close_objset(os, FTAG); 4584 return (EINVAL); 4585 } 4586 4587 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4588 4589 err = dump_path_impl(os, root_obj, path, retobj); 4590 4591 close_objset(os, FTAG); 4592 return (err); 4593 } 4594 4595 static int 4596 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4597 { 4598 int err = 0; 4599 uint64_t size, readsize, oursize, offset; 4600 ssize_t writesize; 4601 sa_handle_t *hdl; 4602 4603 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4604 destfile); 4605 4606 VERIFY3P(os, ==, sa_os); 4607 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4608 (void) printf("Failed to get handle for SA znode\n"); 4609 return (err); 4610 } 4611 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4612 (void) sa_handle_destroy(hdl); 4613 return (err); 4614 } 4615 (void) sa_handle_destroy(hdl); 4616 4617 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4618 size); 4619 if (size == 0) { 4620 return (EINVAL); 4621 } 4622 4623 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4624 /* 4625 * We cap the size at 1 mebibyte here to prevent 4626 * allocation failures and nigh-infinite printing if the 4627 * object is extremely large. 4628 */ 4629 oursize = MIN(size, 1 << 20); 4630 offset = 0; 4631 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4632 if (buf == NULL) { 4633 return (ENOMEM); 4634 } 4635 4636 while (offset < size) { 4637 readsize = MIN(size - offset, 1 << 20); 4638 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 4639 if (err != 0) { 4640 (void) printf("got error %u from dmu_read\n", err); 4641 kmem_free(buf, oursize); 4642 return (err); 4643 } 4644 if (dump_opt['v'] > 3) { 4645 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 4646 " error=%d\n", offset, readsize, err); 4647 } 4648 4649 writesize = write(fd, buf, readsize); 4650 if (writesize < 0) { 4651 err = errno; 4652 break; 4653 } else if (writesize != readsize) { 4654 /* Incomplete write */ 4655 (void) fprintf(stderr, "Short write, only wrote %llu of" 4656 " %" PRIu64 " bytes, exiting...\n", 4657 (u_longlong_t)writesize, readsize); 4658 break; 4659 } 4660 4661 offset += readsize; 4662 } 4663 4664 (void) close(fd); 4665 4666 if (buf != NULL) 4667 kmem_free(buf, oursize); 4668 4669 return (err); 4670 } 4671 4672 static int 4673 dump_label(const char *dev) 4674 { 4675 char path[MAXPATHLEN]; 4676 zdb_label_t labels[VDEV_LABELS]; 4677 uint64_t psize, ashift, l2cache; 4678 struct stat64 statbuf; 4679 boolean_t config_found = B_FALSE; 4680 boolean_t error = B_FALSE; 4681 boolean_t read_l2arc_header = B_FALSE; 4682 avl_tree_t config_tree; 4683 avl_tree_t uberblock_tree; 4684 void *node, *cookie; 4685 int fd; 4686 4687 bzero(labels, sizeof (labels)); 4688 4689 /* 4690 * Check if we were given absolute path and use it as is. 4691 * Otherwise if the provided vdev name doesn't point to a file, 4692 * try prepending expected disk paths and partition numbers. 4693 */ 4694 (void) strlcpy(path, dev, sizeof (path)); 4695 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 4696 int error; 4697 4698 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 4699 if (error == 0 && zfs_dev_is_whole_disk(path)) { 4700 if (zfs_append_partition(path, MAXPATHLEN) == -1) 4701 error = ENOENT; 4702 } 4703 4704 if (error || (stat64(path, &statbuf) != 0)) { 4705 (void) printf("failed to find device %s, try " 4706 "specifying absolute path instead\n", dev); 4707 return (1); 4708 } 4709 } 4710 4711 if ((fd = open64(path, O_RDONLY)) < 0) { 4712 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 4713 exit(1); 4714 } 4715 4716 if (fstat64_blk(fd, &statbuf) != 0) { 4717 (void) printf("failed to stat '%s': %s\n", path, 4718 strerror(errno)); 4719 (void) close(fd); 4720 exit(1); 4721 } 4722 4723 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 4724 (void) printf("failed to invalidate cache '%s' : %s\n", path, 4725 strerror(errno)); 4726 4727 avl_create(&config_tree, cksum_record_compare, 4728 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4729 avl_create(&uberblock_tree, cksum_record_compare, 4730 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4731 4732 psize = statbuf.st_size; 4733 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 4734 ashift = SPA_MINBLOCKSHIFT; 4735 4736 /* 4737 * 1. Read the label from disk 4738 * 2. Unpack the configuration and insert in config tree. 4739 * 3. Traverse all uberblocks and insert in uberblock tree. 4740 */ 4741 for (int l = 0; l < VDEV_LABELS; l++) { 4742 zdb_label_t *label = &labels[l]; 4743 char *buf = label->label.vl_vdev_phys.vp_nvlist; 4744 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4745 nvlist_t *config; 4746 cksum_record_t *rec; 4747 zio_cksum_t cksum; 4748 vdev_t vd; 4749 4750 if (pread64(fd, &label->label, sizeof (label->label), 4751 vdev_label_offset(psize, l, 0)) != sizeof (label->label)) { 4752 if (!dump_opt['q']) 4753 (void) printf("failed to read label %d\n", l); 4754 label->read_failed = B_TRUE; 4755 error = B_TRUE; 4756 continue; 4757 } 4758 4759 label->read_failed = B_FALSE; 4760 4761 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 4762 nvlist_t *vdev_tree = NULL; 4763 size_t size; 4764 4765 if ((nvlist_lookup_nvlist(config, 4766 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 4767 (nvlist_lookup_uint64(vdev_tree, 4768 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 4769 ashift = SPA_MINBLOCKSHIFT; 4770 4771 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 4772 size = buflen; 4773 4774 /* If the device is a cache device clear the header. */ 4775 if (!read_l2arc_header) { 4776 if (nvlist_lookup_uint64(config, 4777 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 4778 l2cache == POOL_STATE_L2CACHE) { 4779 read_l2arc_header = B_TRUE; 4780 } 4781 } 4782 4783 fletcher_4_native_varsize(buf, size, &cksum); 4784 rec = cksum_record_insert(&config_tree, &cksum, l); 4785 4786 label->config = rec; 4787 label->config_nv = config; 4788 config_found = B_TRUE; 4789 } else { 4790 error = B_TRUE; 4791 } 4792 4793 vd.vdev_ashift = ashift; 4794 vd.vdev_top = &vd; 4795 4796 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4797 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4798 uberblock_t *ub = (void *)((char *)label + uoff); 4799 4800 if (uberblock_verify(ub)) 4801 continue; 4802 4803 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 4804 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 4805 4806 label->uberblocks[i] = rec; 4807 } 4808 } 4809 4810 /* 4811 * Dump the label and uberblocks. 4812 */ 4813 for (int l = 0; l < VDEV_LABELS; l++) { 4814 zdb_label_t *label = &labels[l]; 4815 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4816 4817 if (label->read_failed == B_TRUE) 4818 continue; 4819 4820 if (label->config_nv) { 4821 dump_config_from_label(label, buflen, l); 4822 } else { 4823 if (!dump_opt['q']) 4824 (void) printf("failed to unpack label %d\n", l); 4825 } 4826 4827 if (dump_opt['u']) 4828 dump_label_uberblocks(label, ashift, l); 4829 4830 nvlist_free(label->config_nv); 4831 } 4832 4833 /* 4834 * Dump the L2ARC header, if existent. 4835 */ 4836 if (read_l2arc_header) 4837 error |= dump_l2arc_header(fd); 4838 4839 cookie = NULL; 4840 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 4841 umem_free(node, sizeof (cksum_record_t)); 4842 4843 cookie = NULL; 4844 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 4845 umem_free(node, sizeof (cksum_record_t)); 4846 4847 avl_destroy(&config_tree); 4848 avl_destroy(&uberblock_tree); 4849 4850 (void) close(fd); 4851 4852 return (config_found == B_FALSE ? 2 : 4853 (error == B_TRUE ? 1 : 0)); 4854 } 4855 4856 static uint64_t dataset_feature_count[SPA_FEATURES]; 4857 static uint64_t global_feature_count[SPA_FEATURES]; 4858 static uint64_t remap_deadlist_count = 0; 4859 4860 /*ARGSUSED*/ 4861 static int 4862 dump_one_objset(const char *dsname, void *arg) 4863 { 4864 int error; 4865 objset_t *os; 4866 spa_feature_t f; 4867 4868 error = open_objset(dsname, FTAG, &os); 4869 if (error != 0) 4870 return (0); 4871 4872 for (f = 0; f < SPA_FEATURES; f++) { 4873 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 4874 continue; 4875 ASSERT(spa_feature_table[f].fi_flags & 4876 ZFEATURE_FLAG_PER_DATASET); 4877 dataset_feature_count[f]++; 4878 } 4879 4880 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 4881 remap_deadlist_count++; 4882 } 4883 4884 for (dsl_bookmark_node_t *dbn = 4885 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 4886 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 4887 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 4888 if (dbn->dbn_phys.zbm_redaction_obj != 0) 4889 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; 4890 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 4891 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 4892 } 4893 4894 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 4895 !dmu_objset_is_snapshot(os)) { 4896 global_feature_count[SPA_FEATURE_LIVELIST]++; 4897 } 4898 4899 dump_objset(os); 4900 close_objset(os, FTAG); 4901 fuid_table_destroy(); 4902 return (0); 4903 } 4904 4905 /* 4906 * Block statistics. 4907 */ 4908 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 4909 typedef struct zdb_blkstats { 4910 uint64_t zb_asize; 4911 uint64_t zb_lsize; 4912 uint64_t zb_psize; 4913 uint64_t zb_count; 4914 uint64_t zb_gangs; 4915 uint64_t zb_ditto_samevdev; 4916 uint64_t zb_ditto_same_ms; 4917 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 4918 } zdb_blkstats_t; 4919 4920 /* 4921 * Extended object types to report deferred frees and dedup auto-ditto blocks. 4922 */ 4923 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 4924 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 4925 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 4926 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 4927 4928 static const char *zdb_ot_extname[] = { 4929 "deferred free", 4930 "dedup ditto", 4931 "other", 4932 "Total", 4933 }; 4934 4935 #define ZB_TOTAL DN_MAX_LEVELS 4936 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 4937 4938 typedef struct zdb_cb { 4939 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 4940 uint64_t zcb_removing_size; 4941 uint64_t zcb_checkpoint_size; 4942 uint64_t zcb_dedup_asize; 4943 uint64_t zcb_dedup_blocks; 4944 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 4945 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 4946 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 4947 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 4948 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 4949 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 4950 uint64_t zcb_psize_total; 4951 uint64_t zcb_lsize_total; 4952 uint64_t zcb_asize_total; 4953 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 4954 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 4955 [BPE_PAYLOAD_SIZE + 1]; 4956 uint64_t zcb_start; 4957 hrtime_t zcb_lastprint; 4958 uint64_t zcb_totalasize; 4959 uint64_t zcb_errors[256]; 4960 int zcb_readfails; 4961 int zcb_haderrors; 4962 spa_t *zcb_spa; 4963 uint32_t **zcb_vd_obsolete_counts; 4964 } zdb_cb_t; 4965 4966 /* test if two DVA offsets from same vdev are within the same metaslab */ 4967 static boolean_t 4968 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 4969 { 4970 vdev_t *vd = vdev_lookup_top(spa, vdev); 4971 uint64_t ms_shift = vd->vdev_ms_shift; 4972 4973 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 4974 } 4975 4976 /* 4977 * Used to simplify reporting of the histogram data. 4978 */ 4979 typedef struct one_histo { 4980 char *name; 4981 uint64_t *count; 4982 uint64_t *len; 4983 uint64_t cumulative; 4984 } one_histo_t; 4985 4986 /* 4987 * The number of separate histograms processed for psize, lsize and asize. 4988 */ 4989 #define NUM_HISTO 3 4990 4991 /* 4992 * This routine will create a fixed column size output of three different 4993 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 4994 * the count, length and cumulative length of the psize, lsize and 4995 * asize blocks. 4996 * 4997 * All three types of blocks are listed on a single line 4998 * 4999 * By default the table is printed in nicenumber format (e.g. 123K) but 5000 * if the '-P' parameter is specified then the full raw number (parseable) 5001 * is printed out. 5002 */ 5003 static void 5004 dump_size_histograms(zdb_cb_t *zcb) 5005 { 5006 /* 5007 * A temporary buffer that allows us to convert a number into 5008 * a string using zdb_nicenumber to allow either raw or human 5009 * readable numbers to be output. 5010 */ 5011 char numbuf[32]; 5012 5013 /* 5014 * Define titles which are used in the headers of the tables 5015 * printed by this routine. 5016 */ 5017 const char blocksize_title1[] = "block"; 5018 const char blocksize_title2[] = "size"; 5019 const char count_title[] = "Count"; 5020 const char length_title[] = "Size"; 5021 const char cumulative_title[] = "Cum."; 5022 5023 /* 5024 * Setup the histogram arrays (psize, lsize, and asize). 5025 */ 5026 one_histo_t parm_histo[NUM_HISTO]; 5027 5028 parm_histo[0].name = "psize"; 5029 parm_histo[0].count = zcb->zcb_psize_count; 5030 parm_histo[0].len = zcb->zcb_psize_len; 5031 parm_histo[0].cumulative = 0; 5032 5033 parm_histo[1].name = "lsize"; 5034 parm_histo[1].count = zcb->zcb_lsize_count; 5035 parm_histo[1].len = zcb->zcb_lsize_len; 5036 parm_histo[1].cumulative = 0; 5037 5038 parm_histo[2].name = "asize"; 5039 parm_histo[2].count = zcb->zcb_asize_count; 5040 parm_histo[2].len = zcb->zcb_asize_len; 5041 parm_histo[2].cumulative = 0; 5042 5043 5044 (void) printf("\nBlock Size Histogram\n"); 5045 /* 5046 * Print the first line titles 5047 */ 5048 if (dump_opt['P']) 5049 (void) printf("\n%s\t", blocksize_title1); 5050 else 5051 (void) printf("\n%7s ", blocksize_title1); 5052 5053 for (int j = 0; j < NUM_HISTO; j++) { 5054 if (dump_opt['P']) { 5055 if (j < NUM_HISTO - 1) { 5056 (void) printf("%s\t\t\t", parm_histo[j].name); 5057 } else { 5058 /* Don't print trailing spaces */ 5059 (void) printf(" %s", parm_histo[j].name); 5060 } 5061 } else { 5062 if (j < NUM_HISTO - 1) { 5063 /* Left aligned strings in the output */ 5064 (void) printf("%-7s ", 5065 parm_histo[j].name); 5066 } else { 5067 /* Don't print trailing spaces */ 5068 (void) printf("%s", parm_histo[j].name); 5069 } 5070 } 5071 } 5072 (void) printf("\n"); 5073 5074 /* 5075 * Print the second line titles 5076 */ 5077 if (dump_opt['P']) { 5078 (void) printf("%s\t", blocksize_title2); 5079 } else { 5080 (void) printf("%7s ", blocksize_title2); 5081 } 5082 5083 for (int i = 0; i < NUM_HISTO; i++) { 5084 if (dump_opt['P']) { 5085 (void) printf("%s\t%s\t%s\t", 5086 count_title, length_title, cumulative_title); 5087 } else { 5088 (void) printf("%7s%7s%7s", 5089 count_title, length_title, cumulative_title); 5090 } 5091 } 5092 (void) printf("\n"); 5093 5094 /* 5095 * Print the rows 5096 */ 5097 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5098 5099 /* 5100 * Print the first column showing the blocksize 5101 */ 5102 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5103 5104 if (dump_opt['P']) { 5105 printf("%s", numbuf); 5106 } else { 5107 printf("%7s:", numbuf); 5108 } 5109 5110 /* 5111 * Print the remaining set of 3 columns per size: 5112 * for psize, lsize and asize 5113 */ 5114 for (int j = 0; j < NUM_HISTO; j++) { 5115 parm_histo[j].cumulative += parm_histo[j].len[i]; 5116 5117 zdb_nicenum(parm_histo[j].count[i], 5118 numbuf, sizeof (numbuf)); 5119 if (dump_opt['P']) 5120 (void) printf("\t%s", numbuf); 5121 else 5122 (void) printf("%7s", numbuf); 5123 5124 zdb_nicenum(parm_histo[j].len[i], 5125 numbuf, sizeof (numbuf)); 5126 if (dump_opt['P']) 5127 (void) printf("\t%s", numbuf); 5128 else 5129 (void) printf("%7s", numbuf); 5130 5131 zdb_nicenum(parm_histo[j].cumulative, 5132 numbuf, sizeof (numbuf)); 5133 if (dump_opt['P']) 5134 (void) printf("\t%s", numbuf); 5135 else 5136 (void) printf("%7s", numbuf); 5137 } 5138 (void) printf("\n"); 5139 } 5140 } 5141 5142 static void 5143 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5144 dmu_object_type_t type) 5145 { 5146 uint64_t refcnt = 0; 5147 int i; 5148 5149 ASSERT(type < ZDB_OT_TOTAL); 5150 5151 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5152 return; 5153 5154 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5155 5156 for (i = 0; i < 4; i++) { 5157 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5158 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5159 int equal; 5160 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5161 5162 zb->zb_asize += BP_GET_ASIZE(bp); 5163 zb->zb_lsize += BP_GET_LSIZE(bp); 5164 zb->zb_psize += BP_GET_PSIZE(bp); 5165 zb->zb_count++; 5166 5167 /* 5168 * The histogram is only big enough to record blocks up to 5169 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5170 * "other", bucket. 5171 */ 5172 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5173 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5174 zb->zb_psize_histogram[idx]++; 5175 5176 zb->zb_gangs += BP_COUNT_GANG(bp); 5177 5178 switch (BP_GET_NDVAS(bp)) { 5179 case 2: 5180 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5181 DVA_GET_VDEV(&bp->blk_dva[1])) { 5182 zb->zb_ditto_samevdev++; 5183 5184 if (same_metaslab(zcb->zcb_spa, 5185 DVA_GET_VDEV(&bp->blk_dva[0]), 5186 DVA_GET_OFFSET(&bp->blk_dva[0]), 5187 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5188 zb->zb_ditto_same_ms++; 5189 } 5190 break; 5191 case 3: 5192 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5193 DVA_GET_VDEV(&bp->blk_dva[1])) + 5194 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5195 DVA_GET_VDEV(&bp->blk_dva[2])) + 5196 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5197 DVA_GET_VDEV(&bp->blk_dva[2])); 5198 if (equal != 0) { 5199 zb->zb_ditto_samevdev++; 5200 5201 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5202 DVA_GET_VDEV(&bp->blk_dva[1]) && 5203 same_metaslab(zcb->zcb_spa, 5204 DVA_GET_VDEV(&bp->blk_dva[0]), 5205 DVA_GET_OFFSET(&bp->blk_dva[0]), 5206 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5207 zb->zb_ditto_same_ms++; 5208 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5209 DVA_GET_VDEV(&bp->blk_dva[2]) && 5210 same_metaslab(zcb->zcb_spa, 5211 DVA_GET_VDEV(&bp->blk_dva[0]), 5212 DVA_GET_OFFSET(&bp->blk_dva[0]), 5213 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5214 zb->zb_ditto_same_ms++; 5215 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5216 DVA_GET_VDEV(&bp->blk_dva[2]) && 5217 same_metaslab(zcb->zcb_spa, 5218 DVA_GET_VDEV(&bp->blk_dva[1]), 5219 DVA_GET_OFFSET(&bp->blk_dva[1]), 5220 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5221 zb->zb_ditto_same_ms++; 5222 } 5223 break; 5224 } 5225 } 5226 5227 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5228 5229 if (BP_IS_EMBEDDED(bp)) { 5230 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5231 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5232 [BPE_GET_PSIZE(bp)]++; 5233 return; 5234 } 5235 /* 5236 * The binning histogram bins by powers of two up to 5237 * SPA_MAXBLOCKSIZE rather than creating bins for 5238 * every possible blocksize found in the pool. 5239 */ 5240 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5241 5242 zcb->zcb_psize_count[bin]++; 5243 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5244 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5245 5246 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5247 5248 zcb->zcb_lsize_count[bin]++; 5249 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5250 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5251 5252 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5253 5254 zcb->zcb_asize_count[bin]++; 5255 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5256 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5257 5258 if (dump_opt['L']) 5259 return; 5260 5261 if (BP_GET_DEDUP(bp)) { 5262 ddt_t *ddt; 5263 ddt_entry_t *dde; 5264 5265 ddt = ddt_select(zcb->zcb_spa, bp); 5266 ddt_enter(ddt); 5267 dde = ddt_lookup(ddt, bp, B_FALSE); 5268 5269 if (dde == NULL) { 5270 refcnt = 0; 5271 } else { 5272 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5273 ddt_phys_decref(ddp); 5274 refcnt = ddp->ddp_refcnt; 5275 if (ddt_phys_total_refcnt(dde) == 0) 5276 ddt_remove(ddt, dde); 5277 } 5278 ddt_exit(ddt); 5279 } 5280 5281 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5282 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5283 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5284 } 5285 5286 static void 5287 zdb_blkptr_done(zio_t *zio) 5288 { 5289 spa_t *spa = zio->io_spa; 5290 blkptr_t *bp = zio->io_bp; 5291 int ioerr = zio->io_error; 5292 zdb_cb_t *zcb = zio->io_private; 5293 zbookmark_phys_t *zb = &zio->io_bookmark; 5294 5295 mutex_enter(&spa->spa_scrub_lock); 5296 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5297 cv_broadcast(&spa->spa_scrub_io_cv); 5298 5299 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5300 char blkbuf[BP_SPRINTF_LEN]; 5301 5302 zcb->zcb_haderrors = 1; 5303 zcb->zcb_errors[ioerr]++; 5304 5305 if (dump_opt['b'] >= 2) 5306 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5307 else 5308 blkbuf[0] = '\0'; 5309 5310 (void) printf("zdb_blkptr_cb: " 5311 "Got error %d reading " 5312 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5313 ioerr, 5314 (u_longlong_t)zb->zb_objset, 5315 (u_longlong_t)zb->zb_object, 5316 (u_longlong_t)zb->zb_level, 5317 (u_longlong_t)zb->zb_blkid, 5318 blkbuf); 5319 } 5320 mutex_exit(&spa->spa_scrub_lock); 5321 5322 abd_free(zio->io_abd); 5323 } 5324 5325 static int 5326 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5327 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5328 { 5329 zdb_cb_t *zcb = arg; 5330 dmu_object_type_t type; 5331 boolean_t is_metadata; 5332 5333 if (zb->zb_level == ZB_DNODE_LEVEL) 5334 return (0); 5335 5336 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5337 char blkbuf[BP_SPRINTF_LEN]; 5338 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5339 (void) printf("objset %llu object %llu " 5340 "level %lld offset 0x%llx %s\n", 5341 (u_longlong_t)zb->zb_objset, 5342 (u_longlong_t)zb->zb_object, 5343 (longlong_t)zb->zb_level, 5344 (u_longlong_t)blkid2offset(dnp, bp, zb), 5345 blkbuf); 5346 } 5347 5348 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5349 return (0); 5350 5351 type = BP_GET_TYPE(bp); 5352 5353 zdb_count_block(zcb, zilog, bp, 5354 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5355 5356 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5357 5358 if (!BP_IS_EMBEDDED(bp) && 5359 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5360 size_t size = BP_GET_PSIZE(bp); 5361 abd_t *abd = abd_alloc(size, B_FALSE); 5362 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5363 5364 /* If it's an intent log block, failure is expected. */ 5365 if (zb->zb_level == ZB_ZIL_LEVEL) 5366 flags |= ZIO_FLAG_SPECULATIVE; 5367 5368 mutex_enter(&spa->spa_scrub_lock); 5369 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5370 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5371 spa->spa_load_verify_bytes += size; 5372 mutex_exit(&spa->spa_scrub_lock); 5373 5374 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5375 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5376 } 5377 5378 zcb->zcb_readfails = 0; 5379 5380 /* only call gethrtime() every 100 blocks */ 5381 static int iters; 5382 if (++iters > 100) 5383 iters = 0; 5384 else 5385 return (0); 5386 5387 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5388 uint64_t now = gethrtime(); 5389 char buf[10]; 5390 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5391 int kb_per_sec = 5392 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5393 int sec_remaining = 5394 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5395 5396 /* make sure nicenum has enough space */ 5397 CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ); 5398 5399 zfs_nicebytes(bytes, buf, sizeof (buf)); 5400 (void) fprintf(stderr, 5401 "\r%5s completed (%4dMB/s) " 5402 "estimated time remaining: %uhr %02umin %02usec ", 5403 buf, kb_per_sec / 1024, 5404 sec_remaining / 60 / 60, 5405 sec_remaining / 60 % 60, 5406 sec_remaining % 60); 5407 5408 zcb->zcb_lastprint = now; 5409 } 5410 5411 return (0); 5412 } 5413 5414 static void 5415 zdb_leak(void *arg, uint64_t start, uint64_t size) 5416 { 5417 vdev_t *vd = arg; 5418 5419 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5420 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5421 } 5422 5423 static metaslab_ops_t zdb_metaslab_ops = { 5424 NULL /* alloc */ 5425 }; 5426 5427 /* ARGSUSED */ 5428 static int 5429 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5430 uint64_t txg, void *arg) 5431 { 5432 spa_vdev_removal_t *svr = arg; 5433 5434 uint64_t offset = sme->sme_offset; 5435 uint64_t size = sme->sme_run; 5436 5437 /* skip vdevs we don't care about */ 5438 if (sme->sme_vdev != svr->svr_vdev_id) 5439 return (0); 5440 5441 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5442 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5443 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5444 5445 if (txg < metaslab_unflushed_txg(ms)) 5446 return (0); 5447 5448 if (sme->sme_type == SM_ALLOC) 5449 range_tree_add(svr->svr_allocd_segs, offset, size); 5450 else 5451 range_tree_remove(svr->svr_allocd_segs, offset, size); 5452 5453 return (0); 5454 } 5455 5456 /* ARGSUSED */ 5457 static void 5458 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5459 uint64_t size, void *arg) 5460 { 5461 /* 5462 * This callback was called through a remap from 5463 * a device being removed. Therefore, the vdev that 5464 * this callback is applied to is a concrete 5465 * vdev. 5466 */ 5467 ASSERT(vdev_is_concrete(vd)); 5468 5469 VERIFY0(metaslab_claim_impl(vd, offset, size, 5470 spa_min_claim_txg(vd->vdev_spa))); 5471 } 5472 5473 static void 5474 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5475 { 5476 vdev_t *vd = arg; 5477 5478 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5479 claim_segment_impl_cb, NULL); 5480 } 5481 5482 /* 5483 * After accounting for all allocated blocks that are directly referenced, 5484 * we might have missed a reference to a block from a partially complete 5485 * (and thus unused) indirect mapping object. We perform a secondary pass 5486 * through the metaslabs we have already mapped and claim the destination 5487 * blocks. 5488 */ 5489 static void 5490 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5491 { 5492 if (dump_opt['L']) 5493 return; 5494 5495 if (spa->spa_vdev_removal == NULL) 5496 return; 5497 5498 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5499 5500 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5501 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5502 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5503 5504 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5505 5506 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5507 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5508 metaslab_t *msp = vd->vdev_ms[msi]; 5509 5510 ASSERT0(range_tree_space(allocs)); 5511 if (msp->ms_sm != NULL) 5512 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5513 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5514 } 5515 range_tree_destroy(allocs); 5516 5517 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5518 5519 /* 5520 * Clear everything past what has been synced, 5521 * because we have not allocated mappings for 5522 * it yet. 5523 */ 5524 range_tree_clear(svr->svr_allocd_segs, 5525 vdev_indirect_mapping_max_offset(vim), 5526 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5527 5528 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5529 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5530 5531 spa_config_exit(spa, SCL_CONFIG, FTAG); 5532 } 5533 5534 /* ARGSUSED */ 5535 static int 5536 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5537 dmu_tx_t *tx) 5538 { 5539 zdb_cb_t *zcb = arg; 5540 spa_t *spa = zcb->zcb_spa; 5541 vdev_t *vd; 5542 const dva_t *dva = &bp->blk_dva[0]; 5543 5544 ASSERT(!bp_freed); 5545 ASSERT(!dump_opt['L']); 5546 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 5547 5548 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5549 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 5550 ASSERT3P(vd, !=, NULL); 5551 spa_config_exit(spa, SCL_VDEV, FTAG); 5552 5553 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 5554 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 5555 5556 vdev_indirect_mapping_increment_obsolete_count( 5557 vd->vdev_indirect_mapping, 5558 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 5559 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5560 5561 return (0); 5562 } 5563 5564 static uint32_t * 5565 zdb_load_obsolete_counts(vdev_t *vd) 5566 { 5567 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5568 spa_t *spa = vd->vdev_spa; 5569 spa_condensing_indirect_phys_t *scip = 5570 &spa->spa_condensing_indirect_phys; 5571 uint64_t obsolete_sm_object; 5572 uint32_t *counts; 5573 5574 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 5575 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 5576 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 5577 if (vd->vdev_obsolete_sm != NULL) { 5578 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5579 vd->vdev_obsolete_sm); 5580 } 5581 if (scip->scip_vdev == vd->vdev_id && 5582 scip->scip_prev_obsolete_sm_object != 0) { 5583 space_map_t *prev_obsolete_sm = NULL; 5584 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 5585 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 5586 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5587 prev_obsolete_sm); 5588 space_map_close(prev_obsolete_sm); 5589 } 5590 return (counts); 5591 } 5592 5593 static void 5594 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 5595 { 5596 ddt_bookmark_t ddb; 5597 ddt_entry_t dde; 5598 int error; 5599 int p; 5600 5601 ASSERT(!dump_opt['L']); 5602 5603 bzero(&ddb, sizeof (ddb)); 5604 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 5605 blkptr_t blk; 5606 ddt_phys_t *ddp = dde.dde_phys; 5607 5608 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 5609 return; 5610 5611 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 5612 5613 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 5614 if (ddp->ddp_phys_birth == 0) 5615 continue; 5616 ddt_bp_create(ddb.ddb_checksum, 5617 &dde.dde_key, ddp, &blk); 5618 if (p == DDT_PHYS_DITTO) { 5619 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 5620 } else { 5621 zcb->zcb_dedup_asize += 5622 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 5623 zcb->zcb_dedup_blocks++; 5624 } 5625 } 5626 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 5627 ddt_enter(ddt); 5628 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 5629 ddt_exit(ddt); 5630 } 5631 5632 ASSERT(error == ENOENT); 5633 } 5634 5635 typedef struct checkpoint_sm_exclude_entry_arg { 5636 vdev_t *cseea_vd; 5637 uint64_t cseea_checkpoint_size; 5638 } checkpoint_sm_exclude_entry_arg_t; 5639 5640 static int 5641 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 5642 { 5643 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 5644 vdev_t *vd = cseea->cseea_vd; 5645 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 5646 uint64_t end = sme->sme_offset + sme->sme_run; 5647 5648 ASSERT(sme->sme_type == SM_FREE); 5649 5650 /* 5651 * Since the vdev_checkpoint_sm exists in the vdev level 5652 * and the ms_sm space maps exist in the metaslab level, 5653 * an entry in the checkpoint space map could theoretically 5654 * cross the boundaries of the metaslab that it belongs. 5655 * 5656 * In reality, because of the way that we populate and 5657 * manipulate the checkpoint's space maps currently, 5658 * there shouldn't be any entries that cross metaslabs. 5659 * Hence the assertion below. 5660 * 5661 * That said, there is no fundamental requirement that 5662 * the checkpoint's space map entries should not cross 5663 * metaslab boundaries. So if needed we could add code 5664 * that handles metaslab-crossing segments in the future. 5665 */ 5666 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 5667 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 5668 5669 /* 5670 * By removing the entry from the allocated segments we 5671 * also verify that the entry is there to begin with. 5672 */ 5673 mutex_enter(&ms->ms_lock); 5674 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 5675 mutex_exit(&ms->ms_lock); 5676 5677 cseea->cseea_checkpoint_size += sme->sme_run; 5678 return (0); 5679 } 5680 5681 static void 5682 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 5683 { 5684 spa_t *spa = vd->vdev_spa; 5685 space_map_t *checkpoint_sm = NULL; 5686 uint64_t checkpoint_sm_obj; 5687 5688 /* 5689 * If there is no vdev_top_zap, we are in a pool whose 5690 * version predates the pool checkpoint feature. 5691 */ 5692 if (vd->vdev_top_zap == 0) 5693 return; 5694 5695 /* 5696 * If there is no reference of the vdev_checkpoint_sm in 5697 * the vdev_top_zap, then one of the following scenarios 5698 * is true: 5699 * 5700 * 1] There is no checkpoint 5701 * 2] There is a checkpoint, but no checkpointed blocks 5702 * have been freed yet 5703 * 3] The current vdev is indirect 5704 * 5705 * In these cases we return immediately. 5706 */ 5707 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 5708 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 5709 return; 5710 5711 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 5712 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 5713 &checkpoint_sm_obj)); 5714 5715 checkpoint_sm_exclude_entry_arg_t cseea; 5716 cseea.cseea_vd = vd; 5717 cseea.cseea_checkpoint_size = 0; 5718 5719 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 5720 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 5721 5722 VERIFY0(space_map_iterate(checkpoint_sm, 5723 space_map_length(checkpoint_sm), 5724 checkpoint_sm_exclude_entry_cb, &cseea)); 5725 space_map_close(checkpoint_sm); 5726 5727 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 5728 } 5729 5730 static void 5731 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 5732 { 5733 ASSERT(!dump_opt['L']); 5734 5735 vdev_t *rvd = spa->spa_root_vdev; 5736 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5737 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 5738 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 5739 } 5740 } 5741 5742 static int 5743 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 5744 uint64_t txg, void *arg) 5745 { 5746 int64_t *ualloc_space = arg; 5747 5748 uint64_t offset = sme->sme_offset; 5749 uint64_t vdev_id = sme->sme_vdev; 5750 5751 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5752 if (!vdev_is_concrete(vd)) 5753 return (0); 5754 5755 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5756 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5757 5758 if (txg < metaslab_unflushed_txg(ms)) 5759 return (0); 5760 5761 if (sme->sme_type == SM_ALLOC) 5762 *ualloc_space += sme->sme_run; 5763 else 5764 *ualloc_space -= sme->sme_run; 5765 5766 return (0); 5767 } 5768 5769 static int64_t 5770 get_unflushed_alloc_space(spa_t *spa) 5771 { 5772 if (dump_opt['L']) 5773 return (0); 5774 5775 int64_t ualloc_space = 0; 5776 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 5777 &ualloc_space); 5778 return (ualloc_space); 5779 } 5780 5781 static int 5782 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 5783 { 5784 maptype_t *uic_maptype = arg; 5785 5786 uint64_t offset = sme->sme_offset; 5787 uint64_t size = sme->sme_run; 5788 uint64_t vdev_id = sme->sme_vdev; 5789 5790 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5791 5792 /* skip indirect vdevs */ 5793 if (!vdev_is_concrete(vd)) 5794 return (0); 5795 5796 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5797 5798 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5799 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 5800 5801 if (txg < metaslab_unflushed_txg(ms)) 5802 return (0); 5803 5804 if (*uic_maptype == sme->sme_type) 5805 range_tree_add(ms->ms_allocatable, offset, size); 5806 else 5807 range_tree_remove(ms->ms_allocatable, offset, size); 5808 5809 return (0); 5810 } 5811 5812 static void 5813 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 5814 { 5815 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 5816 } 5817 5818 static void 5819 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 5820 { 5821 vdev_t *rvd = spa->spa_root_vdev; 5822 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5823 vdev_t *vd = rvd->vdev_child[i]; 5824 5825 ASSERT3U(i, ==, vd->vdev_id); 5826 5827 if (vd->vdev_ops == &vdev_indirect_ops) 5828 continue; 5829 5830 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5831 metaslab_t *msp = vd->vdev_ms[m]; 5832 5833 (void) fprintf(stderr, 5834 "\rloading concrete vdev %llu, " 5835 "metaslab %llu of %llu ...", 5836 (longlong_t)vd->vdev_id, 5837 (longlong_t)msp->ms_id, 5838 (longlong_t)vd->vdev_ms_count); 5839 5840 mutex_enter(&msp->ms_lock); 5841 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5842 5843 /* 5844 * We don't want to spend the CPU manipulating the 5845 * size-ordered tree, so clear the range_tree ops. 5846 */ 5847 msp->ms_allocatable->rt_ops = NULL; 5848 5849 if (msp->ms_sm != NULL) { 5850 VERIFY0(space_map_load(msp->ms_sm, 5851 msp->ms_allocatable, maptype)); 5852 } 5853 if (!msp->ms_loaded) 5854 msp->ms_loaded = B_TRUE; 5855 mutex_exit(&msp->ms_lock); 5856 } 5857 } 5858 5859 load_unflushed_to_ms_allocatables(spa, maptype); 5860 } 5861 5862 /* 5863 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 5864 * index in vim_entries that has the first entry in this metaslab. 5865 * On return, it will be set to the first entry after this metaslab. 5866 */ 5867 static void 5868 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 5869 uint64_t *vim_idxp) 5870 { 5871 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5872 5873 mutex_enter(&msp->ms_lock); 5874 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5875 5876 /* 5877 * We don't want to spend the CPU manipulating the 5878 * size-ordered tree, so clear the range_tree ops. 5879 */ 5880 msp->ms_allocatable->rt_ops = NULL; 5881 5882 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 5883 (*vim_idxp)++) { 5884 vdev_indirect_mapping_entry_phys_t *vimep = 5885 &vim->vim_entries[*vim_idxp]; 5886 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 5887 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 5888 ASSERT3U(ent_offset, >=, msp->ms_start); 5889 if (ent_offset >= msp->ms_start + msp->ms_size) 5890 break; 5891 5892 /* 5893 * Mappings do not cross metaslab boundaries, 5894 * because we create them by walking the metaslabs. 5895 */ 5896 ASSERT3U(ent_offset + ent_len, <=, 5897 msp->ms_start + msp->ms_size); 5898 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 5899 } 5900 5901 if (!msp->ms_loaded) 5902 msp->ms_loaded = B_TRUE; 5903 mutex_exit(&msp->ms_lock); 5904 } 5905 5906 static void 5907 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 5908 { 5909 ASSERT(!dump_opt['L']); 5910 5911 vdev_t *rvd = spa->spa_root_vdev; 5912 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5913 vdev_t *vd = rvd->vdev_child[c]; 5914 5915 ASSERT3U(c, ==, vd->vdev_id); 5916 5917 if (vd->vdev_ops != &vdev_indirect_ops) 5918 continue; 5919 5920 /* 5921 * Note: we don't check for mapping leaks on 5922 * removing vdevs because their ms_allocatable's 5923 * are used to look for leaks in allocated space. 5924 */ 5925 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 5926 5927 /* 5928 * Normally, indirect vdevs don't have any 5929 * metaslabs. We want to set them up for 5930 * zio_claim(). 5931 */ 5932 vdev_metaslab_group_create(vd); 5933 VERIFY0(vdev_metaslab_init(vd, 0)); 5934 5935 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5936 uint64_t vim_idx = 0; 5937 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5938 5939 (void) fprintf(stderr, 5940 "\rloading indirect vdev %llu, " 5941 "metaslab %llu of %llu ...", 5942 (longlong_t)vd->vdev_id, 5943 (longlong_t)vd->vdev_ms[m]->ms_id, 5944 (longlong_t)vd->vdev_ms_count); 5945 5946 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 5947 &vim_idx); 5948 } 5949 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 5950 } 5951 } 5952 5953 static void 5954 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 5955 { 5956 zcb->zcb_spa = spa; 5957 5958 if (dump_opt['L']) 5959 return; 5960 5961 dsl_pool_t *dp = spa->spa_dsl_pool; 5962 vdev_t *rvd = spa->spa_root_vdev; 5963 5964 /* 5965 * We are going to be changing the meaning of the metaslab's 5966 * ms_allocatable. Ensure that the allocator doesn't try to 5967 * use the tree. 5968 */ 5969 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 5970 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 5971 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 5972 5973 zcb->zcb_vd_obsolete_counts = 5974 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 5975 UMEM_NOFAIL); 5976 5977 /* 5978 * For leak detection, we overload the ms_allocatable trees 5979 * to contain allocated segments instead of free segments. 5980 * As a result, we can't use the normal metaslab_load/unload 5981 * interfaces. 5982 */ 5983 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 5984 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 5985 5986 /* 5987 * On load_concrete_ms_allocatable_trees() we loaded all the 5988 * allocated entries from the ms_sm to the ms_allocatable for 5989 * each metaslab. If the pool has a checkpoint or is in the 5990 * middle of discarding a checkpoint, some of these blocks 5991 * may have been freed but their ms_sm may not have been 5992 * updated because they are referenced by the checkpoint. In 5993 * order to avoid false-positives during leak-detection, we 5994 * go through the vdev's checkpoint space map and exclude all 5995 * its entries from their relevant ms_allocatable. 5996 * 5997 * We also aggregate the space held by the checkpoint and add 5998 * it to zcb_checkpoint_size. 5999 * 6000 * Note that at this point we are also verifying that all the 6001 * entries on the checkpoint_sm are marked as allocated in 6002 * the ms_sm of their relevant metaslab. 6003 * [see comment in checkpoint_sm_exclude_entry_cb()] 6004 */ 6005 zdb_leak_init_exclude_checkpoint(spa, zcb); 6006 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6007 6008 /* for cleaner progress output */ 6009 (void) fprintf(stderr, "\n"); 6010 6011 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6012 ASSERT(spa_feature_is_enabled(spa, 6013 SPA_FEATURE_DEVICE_REMOVAL)); 6014 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6015 increment_indirect_mapping_cb, zcb, NULL); 6016 } 6017 6018 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6019 zdb_ddt_leak_init(spa, zcb); 6020 spa_config_exit(spa, SCL_CONFIG, FTAG); 6021 } 6022 6023 static boolean_t 6024 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6025 { 6026 boolean_t leaks = B_FALSE; 6027 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6028 uint64_t total_leaked = 0; 6029 boolean_t are_precise = B_FALSE; 6030 6031 ASSERT(vim != NULL); 6032 6033 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6034 vdev_indirect_mapping_entry_phys_t *vimep = 6035 &vim->vim_entries[i]; 6036 uint64_t obsolete_bytes = 0; 6037 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6038 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6039 6040 /* 6041 * This is not very efficient but it's easy to 6042 * verify correctness. 6043 */ 6044 for (uint64_t inner_offset = 0; 6045 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6046 inner_offset += 1 << vd->vdev_ashift) { 6047 if (range_tree_contains(msp->ms_allocatable, 6048 offset + inner_offset, 1 << vd->vdev_ashift)) { 6049 obsolete_bytes += 1 << vd->vdev_ashift; 6050 } 6051 } 6052 6053 int64_t bytes_leaked = obsolete_bytes - 6054 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6055 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6056 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6057 6058 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6059 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6060 (void) printf("obsolete indirect mapping count " 6061 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6062 (u_longlong_t)vd->vdev_id, 6063 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6064 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6065 (u_longlong_t)bytes_leaked); 6066 } 6067 total_leaked += ABS(bytes_leaked); 6068 } 6069 6070 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6071 if (!are_precise && total_leaked > 0) { 6072 int pct_leaked = total_leaked * 100 / 6073 vdev_indirect_mapping_bytes_mapped(vim); 6074 (void) printf("cannot verify obsolete indirect mapping " 6075 "counts of vdev %llu because precise feature was not " 6076 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6077 "unreferenced\n", 6078 (u_longlong_t)vd->vdev_id, pct_leaked, 6079 (u_longlong_t)total_leaked); 6080 } else if (total_leaked > 0) { 6081 (void) printf("obsolete indirect mapping count mismatch " 6082 "for vdev %llu -- %llx total bytes mismatched\n", 6083 (u_longlong_t)vd->vdev_id, 6084 (u_longlong_t)total_leaked); 6085 leaks |= B_TRUE; 6086 } 6087 6088 vdev_indirect_mapping_free_obsolete_counts(vim, 6089 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6090 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6091 6092 return (leaks); 6093 } 6094 6095 static boolean_t 6096 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6097 { 6098 if (dump_opt['L']) 6099 return (B_FALSE); 6100 6101 boolean_t leaks = B_FALSE; 6102 vdev_t *rvd = spa->spa_root_vdev; 6103 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6104 vdev_t *vd = rvd->vdev_child[c]; 6105 6106 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6107 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6108 } 6109 6110 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6111 metaslab_t *msp = vd->vdev_ms[m]; 6112 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6113 spa_embedded_log_class(spa)) ? 6114 vd->vdev_log_mg : vd->vdev_mg); 6115 6116 /* 6117 * ms_allocatable has been overloaded 6118 * to contain allocated segments. Now that 6119 * we finished traversing all blocks, any 6120 * block that remains in the ms_allocatable 6121 * represents an allocated block that we 6122 * did not claim during the traversal. 6123 * Claimed blocks would have been removed 6124 * from the ms_allocatable. For indirect 6125 * vdevs, space remaining in the tree 6126 * represents parts of the mapping that are 6127 * not referenced, which is not a bug. 6128 */ 6129 if (vd->vdev_ops == &vdev_indirect_ops) { 6130 range_tree_vacate(msp->ms_allocatable, 6131 NULL, NULL); 6132 } else { 6133 range_tree_vacate(msp->ms_allocatable, 6134 zdb_leak, vd); 6135 } 6136 if (msp->ms_loaded) { 6137 msp->ms_loaded = B_FALSE; 6138 } 6139 } 6140 } 6141 6142 umem_free(zcb->zcb_vd_obsolete_counts, 6143 rvd->vdev_children * sizeof (uint32_t *)); 6144 zcb->zcb_vd_obsolete_counts = NULL; 6145 6146 return (leaks); 6147 } 6148 6149 /* ARGSUSED */ 6150 static int 6151 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6152 { 6153 zdb_cb_t *zcb = arg; 6154 6155 if (dump_opt['b'] >= 5) { 6156 char blkbuf[BP_SPRINTF_LEN]; 6157 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6158 (void) printf("[%s] %s\n", 6159 "deferred free", blkbuf); 6160 } 6161 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6162 return (0); 6163 } 6164 6165 /* 6166 * Iterate over livelists which have been destroyed by the user but 6167 * are still present in the MOS, waiting to be freed 6168 */ 6169 static void 6170 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6171 { 6172 objset_t *mos = spa->spa_meta_objset; 6173 uint64_t zap_obj; 6174 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6175 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6176 if (err == ENOENT) 6177 return; 6178 ASSERT0(err); 6179 6180 zap_cursor_t zc; 6181 zap_attribute_t attr; 6182 dsl_deadlist_t ll; 6183 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6184 ll.dl_os = NULL; 6185 for (zap_cursor_init(&zc, mos, zap_obj); 6186 zap_cursor_retrieve(&zc, &attr) == 0; 6187 (void) zap_cursor_advance(&zc)) { 6188 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6189 func(&ll, arg); 6190 dsl_deadlist_close(&ll); 6191 } 6192 zap_cursor_fini(&zc); 6193 } 6194 6195 static int 6196 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6197 dmu_tx_t *tx) 6198 { 6199 ASSERT(!bp_freed); 6200 return (count_block_cb(arg, bp, tx)); 6201 } 6202 6203 static int 6204 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6205 { 6206 zdb_cb_t *zbc = args; 6207 bplist_t blks; 6208 bplist_create(&blks); 6209 /* determine which blocks have been alloc'd but not freed */ 6210 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6211 /* count those blocks */ 6212 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6213 bplist_destroy(&blks); 6214 return (0); 6215 } 6216 6217 static void 6218 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6219 { 6220 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6221 } 6222 6223 /* 6224 * Count the blocks in the livelists that have been destroyed by the user 6225 * but haven't yet been freed. 6226 */ 6227 static void 6228 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6229 { 6230 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6231 } 6232 6233 static void 6234 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6235 { 6236 ASSERT3P(arg, ==, NULL); 6237 global_feature_count[SPA_FEATURE_LIVELIST]++; 6238 dump_blkptr_list(ll, "Deleted Livelist"); 6239 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6240 } 6241 6242 /* 6243 * Print out, register object references to, and increment feature counts for 6244 * livelists that have been destroyed by the user but haven't yet been freed. 6245 */ 6246 static void 6247 deleted_livelists_dump_mos(spa_t *spa) 6248 { 6249 uint64_t zap_obj; 6250 objset_t *mos = spa->spa_meta_objset; 6251 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6252 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6253 if (err == ENOENT) 6254 return; 6255 mos_obj_refd(zap_obj); 6256 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6257 } 6258 6259 static int 6260 dump_block_stats(spa_t *spa) 6261 { 6262 zdb_cb_t zcb; 6263 zdb_blkstats_t *zb, *tzb; 6264 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6265 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6266 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6267 boolean_t leaks = B_FALSE; 6268 int e, c, err; 6269 bp_embedded_type_t i; 6270 6271 bzero(&zcb, sizeof (zcb)); 6272 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6273 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6274 (dump_opt['c'] == 1) ? "metadata " : "", 6275 dump_opt['c'] ? "checksums " : "", 6276 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6277 !dump_opt['L'] ? "nothing leaked " : ""); 6278 6279 /* 6280 * When leak detection is enabled we load all space maps as SM_ALLOC 6281 * maps, then traverse the pool claiming each block we discover. If 6282 * the pool is perfectly consistent, the segment trees will be empty 6283 * when we're done. Anything left over is a leak; any block we can't 6284 * claim (because it's not part of any space map) is a double 6285 * allocation, reference to a freed block, or an unclaimed log block. 6286 * 6287 * When leak detection is disabled (-L option) we still traverse the 6288 * pool claiming each block we discover, but we skip opening any space 6289 * maps. 6290 */ 6291 bzero(&zcb, sizeof (zdb_cb_t)); 6292 zdb_leak_init(spa, &zcb); 6293 6294 /* 6295 * If there's a deferred-free bplist, process that first. 6296 */ 6297 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6298 bpobj_count_block_cb, &zcb, NULL); 6299 6300 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6301 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6302 bpobj_count_block_cb, &zcb, NULL); 6303 } 6304 6305 zdb_claim_removing(spa, &zcb); 6306 6307 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6308 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6309 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6310 &zcb, NULL)); 6311 } 6312 6313 deleted_livelists_count_blocks(spa, &zcb); 6314 6315 if (dump_opt['c'] > 1) 6316 flags |= TRAVERSE_PREFETCH_DATA; 6317 6318 zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6319 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6320 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6321 zcb.zcb_totalasize += 6322 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6323 zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); 6324 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); 6325 6326 /* 6327 * If we've traversed the data blocks then we need to wait for those 6328 * I/Os to complete. We leverage "The Godfather" zio to wait on 6329 * all async I/Os to complete. 6330 */ 6331 if (dump_opt['c']) { 6332 for (c = 0; c < max_ncpus; c++) { 6333 (void) zio_wait(spa->spa_async_zio_root[c]); 6334 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6335 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6336 ZIO_FLAG_GODFATHER); 6337 } 6338 } 6339 ASSERT0(spa->spa_load_verify_bytes); 6340 6341 /* 6342 * Done after zio_wait() since zcb_haderrors is modified in 6343 * zdb_blkptr_done() 6344 */ 6345 zcb.zcb_haderrors |= err; 6346 6347 if (zcb.zcb_haderrors) { 6348 (void) printf("\nError counts:\n\n"); 6349 (void) printf("\t%5s %s\n", "errno", "count"); 6350 for (e = 0; e < 256; e++) { 6351 if (zcb.zcb_errors[e] != 0) { 6352 (void) printf("\t%5d %llu\n", 6353 e, (u_longlong_t)zcb.zcb_errors[e]); 6354 } 6355 } 6356 } 6357 6358 /* 6359 * Report any leaked segments. 6360 */ 6361 leaks |= zdb_leak_fini(spa, &zcb); 6362 6363 tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6364 6365 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6366 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6367 6368 total_alloc = norm_alloc + 6369 metaslab_class_get_alloc(spa_log_class(spa)) + 6370 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6371 metaslab_class_get_alloc(spa_special_class(spa)) + 6372 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6373 get_unflushed_alloc_space(spa); 6374 total_found = tzb->zb_asize - zcb.zcb_dedup_asize + 6375 zcb.zcb_removing_size + zcb.zcb_checkpoint_size; 6376 6377 if (total_found == total_alloc && !dump_opt['L']) { 6378 (void) printf("\n\tNo leaks (block sum matches space" 6379 " maps exactly)\n"); 6380 } else if (!dump_opt['L']) { 6381 (void) printf("block traversal size %llu != alloc %llu " 6382 "(%s %lld)\n", 6383 (u_longlong_t)total_found, 6384 (u_longlong_t)total_alloc, 6385 (dump_opt['L']) ? "unreachable" : "leaked", 6386 (longlong_t)(total_alloc - total_found)); 6387 leaks = B_TRUE; 6388 } 6389 6390 if (tzb->zb_count == 0) 6391 return (2); 6392 6393 (void) printf("\n"); 6394 (void) printf("\t%-16s %14llu\n", "bp count:", 6395 (u_longlong_t)tzb->zb_count); 6396 (void) printf("\t%-16s %14llu\n", "ganged count:", 6397 (longlong_t)tzb->zb_gangs); 6398 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6399 (u_longlong_t)tzb->zb_lsize, 6400 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6401 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6402 "bp physical:", (u_longlong_t)tzb->zb_psize, 6403 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6404 (double)tzb->zb_lsize / tzb->zb_psize); 6405 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6406 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6407 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6408 (double)tzb->zb_lsize / tzb->zb_asize); 6409 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6410 "bp deduped:", (u_longlong_t)zcb.zcb_dedup_asize, 6411 (u_longlong_t)zcb.zcb_dedup_blocks, 6412 (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); 6413 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6414 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6415 6416 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6417 uint64_t alloc = metaslab_class_get_alloc( 6418 spa_special_class(spa)); 6419 uint64_t space = metaslab_class_get_space( 6420 spa_special_class(spa)); 6421 6422 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6423 "Special class", (u_longlong_t)alloc, 6424 100.0 * alloc / space); 6425 } 6426 6427 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6428 uint64_t alloc = metaslab_class_get_alloc( 6429 spa_dedup_class(spa)); 6430 uint64_t space = metaslab_class_get_space( 6431 spa_dedup_class(spa)); 6432 6433 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6434 "Dedup class", (u_longlong_t)alloc, 6435 100.0 * alloc / space); 6436 } 6437 6438 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6439 uint64_t alloc = metaslab_class_get_alloc( 6440 spa_embedded_log_class(spa)); 6441 uint64_t space = metaslab_class_get_space( 6442 spa_embedded_log_class(spa)); 6443 6444 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6445 "Embedded log class", (u_longlong_t)alloc, 6446 100.0 * alloc / space); 6447 } 6448 6449 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6450 if (zcb.zcb_embedded_blocks[i] == 0) 6451 continue; 6452 (void) printf("\n"); 6453 (void) printf("\tadditional, non-pointer bps of type %u: " 6454 "%10llu\n", 6455 i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); 6456 6457 if (dump_opt['b'] >= 3) { 6458 (void) printf("\t number of (compressed) bytes: " 6459 "number of bps\n"); 6460 dump_histogram(zcb.zcb_embedded_histogram[i], 6461 sizeof (zcb.zcb_embedded_histogram[i]) / 6462 sizeof (zcb.zcb_embedded_histogram[i][0]), 0); 6463 } 6464 } 6465 6466 if (tzb->zb_ditto_samevdev != 0) { 6467 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6468 (longlong_t)tzb->zb_ditto_samevdev); 6469 } 6470 if (tzb->zb_ditto_same_ms != 0) { 6471 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6472 (longlong_t)tzb->zb_ditto_same_ms); 6473 } 6474 6475 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6476 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6477 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6478 6479 if (vim == NULL) { 6480 continue; 6481 } 6482 6483 char mem[32]; 6484 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6485 mem, vdev_indirect_mapping_size(vim)); 6486 6487 (void) printf("\tindirect vdev id %llu has %llu segments " 6488 "(%s in memory)\n", 6489 (longlong_t)vd->vdev_id, 6490 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6491 } 6492 6493 if (dump_opt['b'] >= 2) { 6494 int l, t, level; 6495 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6496 "\t avg\t comp\t%%Total\tType\n"); 6497 6498 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6499 char csize[32], lsize[32], psize[32], asize[32]; 6500 char avg[32], gang[32]; 6501 const char *typename; 6502 6503 /* make sure nicenum has enough space */ 6504 CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ); 6505 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 6506 CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ); 6507 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 6508 CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ); 6509 CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ); 6510 6511 if (t < DMU_OT_NUMTYPES) 6512 typename = dmu_ot[t].ot_name; 6513 else 6514 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 6515 6516 if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { 6517 (void) printf("%6s\t%5s\t%5s\t%5s" 6518 "\t%5s\t%5s\t%6s\t%s\n", 6519 "-", 6520 "-", 6521 "-", 6522 "-", 6523 "-", 6524 "-", 6525 "-", 6526 typename); 6527 continue; 6528 } 6529 6530 for (l = ZB_TOTAL - 1; l >= -1; l--) { 6531 level = (l == -1 ? ZB_TOTAL : l); 6532 zb = &zcb.zcb_type[level][t]; 6533 6534 if (zb->zb_asize == 0) 6535 continue; 6536 6537 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 6538 continue; 6539 6540 if (level == 0 && zb->zb_asize == 6541 zcb.zcb_type[ZB_TOTAL][t].zb_asize) 6542 continue; 6543 6544 zdb_nicenum(zb->zb_count, csize, 6545 sizeof (csize)); 6546 zdb_nicenum(zb->zb_lsize, lsize, 6547 sizeof (lsize)); 6548 zdb_nicenum(zb->zb_psize, psize, 6549 sizeof (psize)); 6550 zdb_nicenum(zb->zb_asize, asize, 6551 sizeof (asize)); 6552 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 6553 sizeof (avg)); 6554 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 6555 6556 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 6557 "\t%5.2f\t%6.2f\t", 6558 csize, lsize, psize, asize, avg, 6559 (double)zb->zb_lsize / zb->zb_psize, 6560 100.0 * zb->zb_asize / tzb->zb_asize); 6561 6562 if (level == ZB_TOTAL) 6563 (void) printf("%s\n", typename); 6564 else 6565 (void) printf(" L%d %s\n", 6566 level, typename); 6567 6568 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 6569 (void) printf("\t number of ganged " 6570 "blocks: %s\n", gang); 6571 } 6572 6573 if (dump_opt['b'] >= 4) { 6574 (void) printf("psize " 6575 "(in 512-byte sectors): " 6576 "number of blocks\n"); 6577 dump_histogram(zb->zb_psize_histogram, 6578 PSIZE_HISTO_SIZE, 0); 6579 } 6580 } 6581 } 6582 6583 /* Output a table summarizing block sizes in the pool */ 6584 if (dump_opt['b'] >= 2) { 6585 dump_size_histograms(&zcb); 6586 } 6587 } 6588 6589 (void) printf("\n"); 6590 6591 if (leaks) 6592 return (2); 6593 6594 if (zcb.zcb_haderrors) 6595 return (3); 6596 6597 return (0); 6598 } 6599 6600 typedef struct zdb_ddt_entry { 6601 ddt_key_t zdde_key; 6602 uint64_t zdde_ref_blocks; 6603 uint64_t zdde_ref_lsize; 6604 uint64_t zdde_ref_psize; 6605 uint64_t zdde_ref_dsize; 6606 avl_node_t zdde_node; 6607 } zdb_ddt_entry_t; 6608 6609 /* ARGSUSED */ 6610 static int 6611 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6612 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6613 { 6614 avl_tree_t *t = arg; 6615 avl_index_t where; 6616 zdb_ddt_entry_t *zdde, zdde_search; 6617 6618 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 6619 BP_IS_EMBEDDED(bp)) 6620 return (0); 6621 6622 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 6623 (void) printf("traversing objset %llu, %llu objects, " 6624 "%lu blocks so far\n", 6625 (u_longlong_t)zb->zb_objset, 6626 (u_longlong_t)BP_GET_FILL(bp), 6627 avl_numnodes(t)); 6628 } 6629 6630 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 6631 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 6632 return (0); 6633 6634 ddt_key_fill(&zdde_search.zdde_key, bp); 6635 6636 zdde = avl_find(t, &zdde_search, &where); 6637 6638 if (zdde == NULL) { 6639 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 6640 zdde->zdde_key = zdde_search.zdde_key; 6641 avl_insert(t, zdde, where); 6642 } 6643 6644 zdde->zdde_ref_blocks += 1; 6645 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 6646 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 6647 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 6648 6649 return (0); 6650 } 6651 6652 static void 6653 dump_simulated_ddt(spa_t *spa) 6654 { 6655 avl_tree_t t; 6656 void *cookie = NULL; 6657 zdb_ddt_entry_t *zdde; 6658 ddt_histogram_t ddh_total; 6659 ddt_stat_t dds_total; 6660 6661 bzero(&ddh_total, sizeof (ddh_total)); 6662 bzero(&dds_total, sizeof (dds_total)); 6663 avl_create(&t, ddt_entry_compare, 6664 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 6665 6666 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6667 6668 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6669 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 6670 6671 spa_config_exit(spa, SCL_CONFIG, FTAG); 6672 6673 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 6674 ddt_stat_t dds; 6675 uint64_t refcnt = zdde->zdde_ref_blocks; 6676 ASSERT(refcnt != 0); 6677 6678 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 6679 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 6680 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 6681 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 6682 6683 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 6684 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 6685 dds.dds_ref_psize = zdde->zdde_ref_psize; 6686 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 6687 6688 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 6689 &dds, 0); 6690 6691 umem_free(zdde, sizeof (*zdde)); 6692 } 6693 6694 avl_destroy(&t); 6695 6696 ddt_histogram_stat(&dds_total, &ddh_total); 6697 6698 (void) printf("Simulated DDT histogram:\n"); 6699 6700 zpool_dump_ddt(&dds_total, &ddh_total); 6701 6702 dump_dedup_ratio(&dds_total); 6703 } 6704 6705 static int 6706 verify_device_removal_feature_counts(spa_t *spa) 6707 { 6708 uint64_t dr_feature_refcount = 0; 6709 uint64_t oc_feature_refcount = 0; 6710 uint64_t indirect_vdev_count = 0; 6711 uint64_t precise_vdev_count = 0; 6712 uint64_t obsolete_counts_object_count = 0; 6713 uint64_t obsolete_sm_count = 0; 6714 uint64_t obsolete_counts_count = 0; 6715 uint64_t scip_count = 0; 6716 uint64_t obsolete_bpobj_count = 0; 6717 int ret = 0; 6718 6719 spa_condensing_indirect_phys_t *scip = 6720 &spa->spa_condensing_indirect_phys; 6721 if (scip->scip_next_mapping_object != 0) { 6722 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 6723 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 6724 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 6725 6726 (void) printf("Condensing indirect vdev %llu: new mapping " 6727 "object %llu, prev obsolete sm %llu\n", 6728 (u_longlong_t)scip->scip_vdev, 6729 (u_longlong_t)scip->scip_next_mapping_object, 6730 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 6731 if (scip->scip_prev_obsolete_sm_object != 0) { 6732 space_map_t *prev_obsolete_sm = NULL; 6733 VERIFY0(space_map_open(&prev_obsolete_sm, 6734 spa->spa_meta_objset, 6735 scip->scip_prev_obsolete_sm_object, 6736 0, vd->vdev_asize, 0)); 6737 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 6738 (void) printf("\n"); 6739 space_map_close(prev_obsolete_sm); 6740 } 6741 6742 scip_count += 2; 6743 } 6744 6745 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 6746 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 6747 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 6748 6749 if (vic->vic_mapping_object != 0) { 6750 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 6751 vd->vdev_removing); 6752 indirect_vdev_count++; 6753 6754 if (vd->vdev_indirect_mapping->vim_havecounts) { 6755 obsolete_counts_count++; 6756 } 6757 } 6758 6759 boolean_t are_precise; 6760 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6761 if (are_precise) { 6762 ASSERT(vic->vic_mapping_object != 0); 6763 precise_vdev_count++; 6764 } 6765 6766 uint64_t obsolete_sm_object; 6767 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6768 if (obsolete_sm_object != 0) { 6769 ASSERT(vic->vic_mapping_object != 0); 6770 obsolete_sm_count++; 6771 } 6772 } 6773 6774 (void) feature_get_refcount(spa, 6775 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 6776 &dr_feature_refcount); 6777 (void) feature_get_refcount(spa, 6778 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 6779 &oc_feature_refcount); 6780 6781 if (dr_feature_refcount != indirect_vdev_count) { 6782 ret = 1; 6783 (void) printf("Number of indirect vdevs (%llu) " \ 6784 "does not match feature count (%llu)\n", 6785 (u_longlong_t)indirect_vdev_count, 6786 (u_longlong_t)dr_feature_refcount); 6787 } else { 6788 (void) printf("Verified device_removal feature refcount " \ 6789 "of %llu is correct\n", 6790 (u_longlong_t)dr_feature_refcount); 6791 } 6792 6793 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 6794 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 6795 obsolete_bpobj_count++; 6796 } 6797 6798 6799 obsolete_counts_object_count = precise_vdev_count; 6800 obsolete_counts_object_count += obsolete_sm_count; 6801 obsolete_counts_object_count += obsolete_counts_count; 6802 obsolete_counts_object_count += scip_count; 6803 obsolete_counts_object_count += obsolete_bpobj_count; 6804 obsolete_counts_object_count += remap_deadlist_count; 6805 6806 if (oc_feature_refcount != obsolete_counts_object_count) { 6807 ret = 1; 6808 (void) printf("Number of obsolete counts objects (%llu) " \ 6809 "does not match feature count (%llu)\n", 6810 (u_longlong_t)obsolete_counts_object_count, 6811 (u_longlong_t)oc_feature_refcount); 6812 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 6813 "ob:%llu rd:%llu\n", 6814 (u_longlong_t)precise_vdev_count, 6815 (u_longlong_t)obsolete_sm_count, 6816 (u_longlong_t)obsolete_counts_count, 6817 (u_longlong_t)scip_count, 6818 (u_longlong_t)obsolete_bpobj_count, 6819 (u_longlong_t)remap_deadlist_count); 6820 } else { 6821 (void) printf("Verified indirect_refcount feature refcount " \ 6822 "of %llu is correct\n", 6823 (u_longlong_t)oc_feature_refcount); 6824 } 6825 return (ret); 6826 } 6827 6828 static void 6829 zdb_set_skip_mmp(char *target) 6830 { 6831 spa_t *spa; 6832 6833 /* 6834 * Disable the activity check to allow examination of 6835 * active pools. 6836 */ 6837 mutex_enter(&spa_namespace_lock); 6838 if ((spa = spa_lookup(target)) != NULL) { 6839 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 6840 } 6841 mutex_exit(&spa_namespace_lock); 6842 } 6843 6844 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 6845 /* 6846 * Import the checkpointed state of the pool specified by the target 6847 * parameter as readonly. The function also accepts a pool config 6848 * as an optional parameter, else it attempts to infer the config by 6849 * the name of the target pool. 6850 * 6851 * Note that the checkpointed state's pool name will be the name of 6852 * the original pool with the above suffix appended to it. In addition, 6853 * if the target is not a pool name (e.g. a path to a dataset) then 6854 * the new_path parameter is populated with the updated path to 6855 * reflect the fact that we are looking into the checkpointed state. 6856 * 6857 * The function returns a newly-allocated copy of the name of the 6858 * pool containing the checkpointed state. When this copy is no 6859 * longer needed it should be freed with free(3C). Same thing 6860 * applies to the new_path parameter if allocated. 6861 */ 6862 static char * 6863 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 6864 { 6865 int error = 0; 6866 char *poolname, *bogus_name = NULL; 6867 boolean_t freecfg = B_FALSE; 6868 6869 /* If the target is not a pool, the extract the pool name */ 6870 char *path_start = strchr(target, '/'); 6871 if (path_start != NULL) { 6872 size_t poolname_len = path_start - target; 6873 poolname = strndup(target, poolname_len); 6874 } else { 6875 poolname = target; 6876 } 6877 6878 if (cfg == NULL) { 6879 zdb_set_skip_mmp(poolname); 6880 error = spa_get_stats(poolname, &cfg, NULL, 0); 6881 if (error != 0) { 6882 fatal("Tried to read config of pool \"%s\" but " 6883 "spa_get_stats() failed with error %d\n", 6884 poolname, error); 6885 } 6886 freecfg = B_TRUE; 6887 } 6888 6889 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) 6890 return (NULL); 6891 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 6892 6893 error = spa_import(bogus_name, cfg, NULL, 6894 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 6895 ZFS_IMPORT_SKIP_MMP); 6896 if (freecfg) 6897 nvlist_free(cfg); 6898 if (error != 0) { 6899 fatal("Tried to import pool \"%s\" but spa_import() failed " 6900 "with error %d\n", bogus_name, error); 6901 } 6902 6903 if (new_path != NULL && path_start != NULL) { 6904 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 6905 if (path_start != NULL) 6906 free(poolname); 6907 return (NULL); 6908 } 6909 } 6910 6911 if (target != poolname) 6912 free(poolname); 6913 6914 return (bogus_name); 6915 } 6916 6917 typedef struct verify_checkpoint_sm_entry_cb_arg { 6918 vdev_t *vcsec_vd; 6919 6920 /* the following fields are only used for printing progress */ 6921 uint64_t vcsec_entryid; 6922 uint64_t vcsec_num_entries; 6923 } verify_checkpoint_sm_entry_cb_arg_t; 6924 6925 #define ENTRIES_PER_PROGRESS_UPDATE 10000 6926 6927 static int 6928 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 6929 { 6930 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 6931 vdev_t *vd = vcsec->vcsec_vd; 6932 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6933 uint64_t end = sme->sme_offset + sme->sme_run; 6934 6935 ASSERT(sme->sme_type == SM_FREE); 6936 6937 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 6938 (void) fprintf(stderr, 6939 "\rverifying vdev %llu, space map entry %llu of %llu ...", 6940 (longlong_t)vd->vdev_id, 6941 (longlong_t)vcsec->vcsec_entryid, 6942 (longlong_t)vcsec->vcsec_num_entries); 6943 } 6944 vcsec->vcsec_entryid++; 6945 6946 /* 6947 * See comment in checkpoint_sm_exclude_entry_cb() 6948 */ 6949 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6950 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6951 6952 /* 6953 * The entries in the vdev_checkpoint_sm should be marked as 6954 * allocated in the checkpointed state of the pool, therefore 6955 * their respective ms_allocateable trees should not contain them. 6956 */ 6957 mutex_enter(&ms->ms_lock); 6958 range_tree_verify_not_present(ms->ms_allocatable, 6959 sme->sme_offset, sme->sme_run); 6960 mutex_exit(&ms->ms_lock); 6961 6962 return (0); 6963 } 6964 6965 /* 6966 * Verify that all segments in the vdev_checkpoint_sm are allocated 6967 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 6968 * ms_allocatable). 6969 * 6970 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 6971 * each vdev in the current state of the pool to the metaslab space maps 6972 * (ms_sm) of the checkpointed state of the pool. 6973 * 6974 * Note that the function changes the state of the ms_allocatable 6975 * trees of the current spa_t. The entries of these ms_allocatable 6976 * trees are cleared out and then repopulated from with the free 6977 * entries of their respective ms_sm space maps. 6978 */ 6979 static void 6980 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 6981 { 6982 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 6983 vdev_t *current_rvd = current->spa_root_vdev; 6984 6985 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 6986 6987 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 6988 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 6989 vdev_t *current_vd = current_rvd->vdev_child[c]; 6990 6991 space_map_t *checkpoint_sm = NULL; 6992 uint64_t checkpoint_sm_obj; 6993 6994 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 6995 /* 6996 * Since we don't allow device removal in a pool 6997 * that has a checkpoint, we expect that all removed 6998 * vdevs were removed from the pool before the 6999 * checkpoint. 7000 */ 7001 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7002 continue; 7003 } 7004 7005 /* 7006 * If the checkpoint space map doesn't exist, then nothing 7007 * here is checkpointed so there's nothing to verify. 7008 */ 7009 if (current_vd->vdev_top_zap == 0 || 7010 zap_contains(spa_meta_objset(current), 7011 current_vd->vdev_top_zap, 7012 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7013 continue; 7014 7015 VERIFY0(zap_lookup(spa_meta_objset(current), 7016 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7017 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7018 7019 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7020 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7021 current_vd->vdev_ashift)); 7022 7023 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7024 vcsec.vcsec_vd = ckpoint_vd; 7025 vcsec.vcsec_entryid = 0; 7026 vcsec.vcsec_num_entries = 7027 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7028 VERIFY0(space_map_iterate(checkpoint_sm, 7029 space_map_length(checkpoint_sm), 7030 verify_checkpoint_sm_entry_cb, &vcsec)); 7031 if (dump_opt['m'] > 3) 7032 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7033 space_map_close(checkpoint_sm); 7034 } 7035 7036 /* 7037 * If we've added vdevs since we took the checkpoint, ensure 7038 * that their checkpoint space maps are empty. 7039 */ 7040 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7041 for (uint64_t c = ckpoint_rvd->vdev_children; 7042 c < current_rvd->vdev_children; c++) { 7043 vdev_t *current_vd = current_rvd->vdev_child[c]; 7044 ASSERT3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7045 } 7046 } 7047 7048 /* for cleaner progress output */ 7049 (void) fprintf(stderr, "\n"); 7050 } 7051 7052 /* 7053 * Verifies that all space that's allocated in the checkpoint is 7054 * still allocated in the current version, by checking that everything 7055 * in checkpoint's ms_allocatable (which is actually allocated, not 7056 * allocatable/free) is not present in current's ms_allocatable. 7057 * 7058 * Note that the function changes the state of the ms_allocatable 7059 * trees of both spas when called. The entries of all ms_allocatable 7060 * trees are cleared out and then repopulated from their respective 7061 * ms_sm space maps. In the checkpointed state we load the allocated 7062 * entries, and in the current state we load the free entries. 7063 */ 7064 static void 7065 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7066 { 7067 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7068 vdev_t *current_rvd = current->spa_root_vdev; 7069 7070 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7071 load_concrete_ms_allocatable_trees(current, SM_FREE); 7072 7073 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7074 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7075 vdev_t *current_vd = current_rvd->vdev_child[i]; 7076 7077 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7078 /* 7079 * See comment in verify_checkpoint_vdev_spacemaps() 7080 */ 7081 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7082 continue; 7083 } 7084 7085 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7086 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7087 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7088 7089 (void) fprintf(stderr, 7090 "\rverifying vdev %llu of %llu, " 7091 "metaslab %llu of %llu ...", 7092 (longlong_t)current_vd->vdev_id, 7093 (longlong_t)current_rvd->vdev_children, 7094 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7095 (longlong_t)current_vd->vdev_ms_count); 7096 7097 /* 7098 * We walk through the ms_allocatable trees that 7099 * are loaded with the allocated blocks from the 7100 * ms_sm spacemaps of the checkpoint. For each 7101 * one of these ranges we ensure that none of them 7102 * exists in the ms_allocatable trees of the 7103 * current state which are loaded with the ranges 7104 * that are currently free. 7105 * 7106 * This way we ensure that none of the blocks that 7107 * are part of the checkpoint were freed by mistake. 7108 */ 7109 range_tree_walk(ckpoint_msp->ms_allocatable, 7110 (range_tree_func_t *)range_tree_verify_not_present, 7111 current_msp->ms_allocatable); 7112 } 7113 } 7114 7115 /* for cleaner progress output */ 7116 (void) fprintf(stderr, "\n"); 7117 } 7118 7119 static void 7120 verify_checkpoint_blocks(spa_t *spa) 7121 { 7122 ASSERT(!dump_opt['L']); 7123 7124 spa_t *checkpoint_spa; 7125 char *checkpoint_pool; 7126 int error = 0; 7127 7128 /* 7129 * We import the checkpointed state of the pool (under a different 7130 * name) so we can do verification on it against the current state 7131 * of the pool. 7132 */ 7133 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7134 NULL); 7135 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7136 7137 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7138 if (error != 0) { 7139 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7140 "error %d\n", checkpoint_pool, error); 7141 } 7142 7143 /* 7144 * Ensure that ranges in the checkpoint space maps of each vdev 7145 * are allocated according to the checkpointed state's metaslab 7146 * space maps. 7147 */ 7148 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7149 7150 /* 7151 * Ensure that allocated ranges in the checkpoint's metaslab 7152 * space maps remain allocated in the metaslab space maps of 7153 * the current state. 7154 */ 7155 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7156 7157 /* 7158 * Once we are done, we get rid of the checkpointed state. 7159 */ 7160 spa_close(checkpoint_spa, FTAG); 7161 free(checkpoint_pool); 7162 } 7163 7164 static void 7165 dump_leftover_checkpoint_blocks(spa_t *spa) 7166 { 7167 vdev_t *rvd = spa->spa_root_vdev; 7168 7169 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7170 vdev_t *vd = rvd->vdev_child[i]; 7171 7172 space_map_t *checkpoint_sm = NULL; 7173 uint64_t checkpoint_sm_obj; 7174 7175 if (vd->vdev_top_zap == 0) 7176 continue; 7177 7178 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7179 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7180 continue; 7181 7182 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7183 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7184 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7185 7186 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7187 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7188 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7189 space_map_close(checkpoint_sm); 7190 } 7191 } 7192 7193 static int 7194 verify_checkpoint(spa_t *spa) 7195 { 7196 uberblock_t checkpoint; 7197 int error; 7198 7199 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7200 return (0); 7201 7202 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7203 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7204 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7205 7206 if (error == ENOENT && !dump_opt['L']) { 7207 /* 7208 * If the feature is active but the uberblock is missing 7209 * then we must be in the middle of discarding the 7210 * checkpoint. 7211 */ 7212 (void) printf("\nPartially discarded checkpoint " 7213 "state found:\n"); 7214 if (dump_opt['m'] > 3) 7215 dump_leftover_checkpoint_blocks(spa); 7216 return (0); 7217 } else if (error != 0) { 7218 (void) printf("lookup error %d when looking for " 7219 "checkpointed uberblock in MOS\n", error); 7220 return (error); 7221 } 7222 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7223 7224 if (checkpoint.ub_checkpoint_txg == 0) { 7225 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7226 "uberblock\n"); 7227 error = 3; 7228 } 7229 7230 if (error == 0 && !dump_opt['L']) 7231 verify_checkpoint_blocks(spa); 7232 7233 return (error); 7234 } 7235 7236 /* ARGSUSED */ 7237 static void 7238 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7239 { 7240 for (uint64_t i = start; i < size; i++) { 7241 (void) printf("MOS object %llu referenced but not allocated\n", 7242 (u_longlong_t)i); 7243 } 7244 } 7245 7246 static void 7247 mos_obj_refd(uint64_t obj) 7248 { 7249 if (obj != 0 && mos_refd_objs != NULL) 7250 range_tree_add(mos_refd_objs, obj, 1); 7251 } 7252 7253 /* 7254 * Call on a MOS object that may already have been referenced. 7255 */ 7256 static void 7257 mos_obj_refd_multiple(uint64_t obj) 7258 { 7259 if (obj != 0 && mos_refd_objs != NULL && 7260 !range_tree_contains(mos_refd_objs, obj, 1)) 7261 range_tree_add(mos_refd_objs, obj, 1); 7262 } 7263 7264 static void 7265 mos_leak_vdev_top_zap(vdev_t *vd) 7266 { 7267 uint64_t ms_flush_data_obj; 7268 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7269 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7270 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7271 if (error == ENOENT) 7272 return; 7273 ASSERT0(error); 7274 7275 mos_obj_refd(ms_flush_data_obj); 7276 } 7277 7278 static void 7279 mos_leak_vdev(vdev_t *vd) 7280 { 7281 mos_obj_refd(vd->vdev_dtl_object); 7282 mos_obj_refd(vd->vdev_ms_array); 7283 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7284 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7285 mos_obj_refd(vd->vdev_leaf_zap); 7286 if (vd->vdev_checkpoint_sm != NULL) 7287 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7288 if (vd->vdev_indirect_mapping != NULL) { 7289 mos_obj_refd(vd->vdev_indirect_mapping-> 7290 vim_phys->vimp_counts_object); 7291 } 7292 if (vd->vdev_obsolete_sm != NULL) 7293 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7294 7295 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7296 metaslab_t *ms = vd->vdev_ms[m]; 7297 mos_obj_refd(space_map_object(ms->ms_sm)); 7298 } 7299 7300 if (vd->vdev_top_zap != 0) { 7301 mos_obj_refd(vd->vdev_top_zap); 7302 mos_leak_vdev_top_zap(vd); 7303 } 7304 7305 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7306 mos_leak_vdev(vd->vdev_child[c]); 7307 } 7308 } 7309 7310 static void 7311 mos_leak_log_spacemaps(spa_t *spa) 7312 { 7313 uint64_t spacemap_zap; 7314 int error = zap_lookup(spa_meta_objset(spa), 7315 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7316 sizeof (spacemap_zap), 1, &spacemap_zap); 7317 if (error == ENOENT) 7318 return; 7319 ASSERT0(error); 7320 7321 mos_obj_refd(spacemap_zap); 7322 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7323 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7324 mos_obj_refd(sls->sls_sm_obj); 7325 } 7326 7327 static int 7328 dump_mos_leaks(spa_t *spa) 7329 { 7330 int rv = 0; 7331 objset_t *mos = spa->spa_meta_objset; 7332 dsl_pool_t *dp = spa->spa_dsl_pool; 7333 7334 /* Visit and mark all referenced objects in the MOS */ 7335 7336 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7337 mos_obj_refd(spa->spa_pool_props_object); 7338 mos_obj_refd(spa->spa_config_object); 7339 mos_obj_refd(spa->spa_ddt_stat_object); 7340 mos_obj_refd(spa->spa_feat_desc_obj); 7341 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7342 mos_obj_refd(spa->spa_feat_for_read_obj); 7343 mos_obj_refd(spa->spa_feat_for_write_obj); 7344 mos_obj_refd(spa->spa_history); 7345 mos_obj_refd(spa->spa_errlog_last); 7346 mos_obj_refd(spa->spa_errlog_scrub); 7347 mos_obj_refd(spa->spa_all_vdev_zaps); 7348 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7349 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7350 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7351 bpobj_count_refd(&spa->spa_deferred_bpobj); 7352 mos_obj_refd(dp->dp_empty_bpobj); 7353 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7354 bpobj_count_refd(&dp->dp_free_bpobj); 7355 mos_obj_refd(spa->spa_l2cache.sav_object); 7356 mos_obj_refd(spa->spa_spares.sav_object); 7357 7358 if (spa->spa_syncing_log_sm != NULL) 7359 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7360 mos_leak_log_spacemaps(spa); 7361 7362 mos_obj_refd(spa->spa_condensing_indirect_phys. 7363 scip_next_mapping_object); 7364 mos_obj_refd(spa->spa_condensing_indirect_phys. 7365 scip_prev_obsolete_sm_object); 7366 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7367 vdev_indirect_mapping_t *vim = 7368 vdev_indirect_mapping_open(mos, 7369 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7370 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7371 vdev_indirect_mapping_close(vim); 7372 } 7373 deleted_livelists_dump_mos(spa); 7374 7375 if (dp->dp_origin_snap != NULL) { 7376 dsl_dataset_t *ds; 7377 7378 dsl_pool_config_enter(dp, FTAG); 7379 VERIFY0(dsl_dataset_hold_obj(dp, 7380 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7381 FTAG, &ds)); 7382 count_ds_mos_objects(ds); 7383 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7384 dsl_dataset_rele(ds, FTAG); 7385 dsl_pool_config_exit(dp, FTAG); 7386 7387 count_ds_mos_objects(dp->dp_origin_snap); 7388 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7389 } 7390 count_dir_mos_objects(dp->dp_mos_dir); 7391 if (dp->dp_free_dir != NULL) 7392 count_dir_mos_objects(dp->dp_free_dir); 7393 if (dp->dp_leak_dir != NULL) 7394 count_dir_mos_objects(dp->dp_leak_dir); 7395 7396 mos_leak_vdev(spa->spa_root_vdev); 7397 7398 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7399 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7400 for (uint64_t cksum = 0; 7401 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7402 ddt_t *ddt = spa->spa_ddt[cksum]; 7403 mos_obj_refd(ddt->ddt_object[type][class]); 7404 } 7405 } 7406 } 7407 7408 /* 7409 * Visit all allocated objects and make sure they are referenced. 7410 */ 7411 uint64_t object = 0; 7412 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7413 if (range_tree_contains(mos_refd_objs, object, 1)) { 7414 range_tree_remove(mos_refd_objs, object, 1); 7415 } else { 7416 dmu_object_info_t doi; 7417 const char *name; 7418 dmu_object_info(mos, object, &doi); 7419 if (doi.doi_type & DMU_OT_NEWTYPE) { 7420 dmu_object_byteswap_t bswap = 7421 DMU_OT_BYTESWAP(doi.doi_type); 7422 name = dmu_ot_byteswap[bswap].ob_name; 7423 } else { 7424 name = dmu_ot[doi.doi_type].ot_name; 7425 } 7426 7427 (void) printf("MOS object %llu (%s) leaked\n", 7428 (u_longlong_t)object, name); 7429 rv = 2; 7430 } 7431 } 7432 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7433 if (!range_tree_is_empty(mos_refd_objs)) 7434 rv = 2; 7435 range_tree_vacate(mos_refd_objs, NULL, NULL); 7436 range_tree_destroy(mos_refd_objs); 7437 return (rv); 7438 } 7439 7440 typedef struct log_sm_obsolete_stats_arg { 7441 uint64_t lsos_current_txg; 7442 7443 uint64_t lsos_total_entries; 7444 uint64_t lsos_valid_entries; 7445 7446 uint64_t lsos_sm_entries; 7447 uint64_t lsos_valid_sm_entries; 7448 } log_sm_obsolete_stats_arg_t; 7449 7450 static int 7451 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 7452 uint64_t txg, void *arg) 7453 { 7454 log_sm_obsolete_stats_arg_t *lsos = arg; 7455 7456 uint64_t offset = sme->sme_offset; 7457 uint64_t vdev_id = sme->sme_vdev; 7458 7459 if (lsos->lsos_current_txg == 0) { 7460 /* this is the first log */ 7461 lsos->lsos_current_txg = txg; 7462 } else if (lsos->lsos_current_txg < txg) { 7463 /* we just changed log - print stats and reset */ 7464 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7465 (u_longlong_t)lsos->lsos_valid_sm_entries, 7466 (u_longlong_t)lsos->lsos_sm_entries, 7467 (u_longlong_t)lsos->lsos_current_txg); 7468 lsos->lsos_valid_sm_entries = 0; 7469 lsos->lsos_sm_entries = 0; 7470 lsos->lsos_current_txg = txg; 7471 } 7472 ASSERT3U(lsos->lsos_current_txg, ==, txg); 7473 7474 lsos->lsos_sm_entries++; 7475 lsos->lsos_total_entries++; 7476 7477 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 7478 if (!vdev_is_concrete(vd)) 7479 return (0); 7480 7481 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 7482 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 7483 7484 if (txg < metaslab_unflushed_txg(ms)) 7485 return (0); 7486 lsos->lsos_valid_sm_entries++; 7487 lsos->lsos_valid_entries++; 7488 return (0); 7489 } 7490 7491 static void 7492 dump_log_spacemap_obsolete_stats(spa_t *spa) 7493 { 7494 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 7495 return; 7496 7497 log_sm_obsolete_stats_arg_t lsos; 7498 bzero(&lsos, sizeof (lsos)); 7499 7500 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 7501 7502 iterate_through_spacemap_logs(spa, 7503 log_spacemap_obsolete_stats_cb, &lsos); 7504 7505 /* print stats for latest log */ 7506 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7507 (u_longlong_t)lsos.lsos_valid_sm_entries, 7508 (u_longlong_t)lsos.lsos_sm_entries, 7509 (u_longlong_t)lsos.lsos_current_txg); 7510 7511 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 7512 (u_longlong_t)lsos.lsos_valid_entries, 7513 (u_longlong_t)lsos.lsos_total_entries); 7514 } 7515 7516 static void 7517 dump_zpool(spa_t *spa) 7518 { 7519 dsl_pool_t *dp = spa_get_dsl(spa); 7520 int rc = 0; 7521 7522 if (dump_opt['y']) { 7523 livelist_metaslab_validate(spa); 7524 } 7525 7526 if (dump_opt['S']) { 7527 dump_simulated_ddt(spa); 7528 return; 7529 } 7530 7531 if (!dump_opt['e'] && dump_opt['C'] > 1) { 7532 (void) printf("\nCached configuration:\n"); 7533 dump_nvlist(spa->spa_config, 8); 7534 } 7535 7536 if (dump_opt['C']) 7537 dump_config(spa); 7538 7539 if (dump_opt['u']) 7540 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 7541 7542 if (dump_opt['D']) 7543 dump_all_ddts(spa); 7544 7545 if (dump_opt['d'] > 2 || dump_opt['m']) 7546 dump_metaslabs(spa); 7547 if (dump_opt['M']) 7548 dump_metaslab_groups(spa); 7549 if (dump_opt['d'] > 2 || dump_opt['m']) { 7550 dump_log_spacemaps(spa); 7551 dump_log_spacemap_obsolete_stats(spa); 7552 } 7553 7554 if (dump_opt['d'] || dump_opt['i']) { 7555 spa_feature_t f; 7556 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 7557 0); 7558 dump_objset(dp->dp_meta_objset); 7559 7560 if (dump_opt['d'] >= 3) { 7561 dsl_pool_t *dp = spa->spa_dsl_pool; 7562 dump_full_bpobj(&spa->spa_deferred_bpobj, 7563 "Deferred frees", 0); 7564 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7565 dump_full_bpobj(&dp->dp_free_bpobj, 7566 "Pool snapshot frees", 0); 7567 } 7568 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 7569 ASSERT(spa_feature_is_enabled(spa, 7570 SPA_FEATURE_DEVICE_REMOVAL)); 7571 dump_full_bpobj(&dp->dp_obsolete_bpobj, 7572 "Pool obsolete blocks", 0); 7573 } 7574 7575 if (spa_feature_is_active(spa, 7576 SPA_FEATURE_ASYNC_DESTROY)) { 7577 dump_bptree(spa->spa_meta_objset, 7578 dp->dp_bptree_obj, 7579 "Pool dataset frees"); 7580 } 7581 dump_dtl(spa->spa_root_vdev, 0); 7582 } 7583 7584 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 7585 global_feature_count[f] = UINT64_MAX; 7586 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 7587 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 7588 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 7589 7590 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 7591 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7592 7593 if (rc == 0 && !dump_opt['L']) 7594 rc = dump_mos_leaks(spa); 7595 7596 for (f = 0; f < SPA_FEATURES; f++) { 7597 uint64_t refcount; 7598 7599 uint64_t *arr; 7600 if (!(spa_feature_table[f].fi_flags & 7601 ZFEATURE_FLAG_PER_DATASET)) { 7602 if (global_feature_count[f] == UINT64_MAX) 7603 continue; 7604 if (!spa_feature_is_enabled(spa, f)) { 7605 ASSERT0(global_feature_count[f]); 7606 continue; 7607 } 7608 arr = global_feature_count; 7609 } else { 7610 if (!spa_feature_is_enabled(spa, f)) { 7611 ASSERT0(dataset_feature_count[f]); 7612 continue; 7613 } 7614 arr = dataset_feature_count; 7615 } 7616 if (feature_get_refcount(spa, &spa_feature_table[f], 7617 &refcount) == ENOTSUP) 7618 continue; 7619 if (arr[f] != refcount) { 7620 (void) printf("%s feature refcount mismatch: " 7621 "%lld consumers != %lld refcount\n", 7622 spa_feature_table[f].fi_uname, 7623 (longlong_t)arr[f], (longlong_t)refcount); 7624 rc = 2; 7625 } else { 7626 (void) printf("Verified %s feature refcount " 7627 "of %llu is correct\n", 7628 spa_feature_table[f].fi_uname, 7629 (longlong_t)refcount); 7630 } 7631 } 7632 7633 if (rc == 0) 7634 rc = verify_device_removal_feature_counts(spa); 7635 } 7636 7637 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 7638 rc = dump_block_stats(spa); 7639 7640 if (rc == 0) 7641 rc = verify_spacemap_refcounts(spa); 7642 7643 if (dump_opt['s']) 7644 show_pool_stats(spa); 7645 7646 if (dump_opt['h']) 7647 dump_history(spa); 7648 7649 if (rc == 0) 7650 rc = verify_checkpoint(spa); 7651 7652 if (rc != 0) { 7653 dump_debug_buffer(); 7654 exit(rc); 7655 } 7656 } 7657 7658 #define ZDB_FLAG_CHECKSUM 0x0001 7659 #define ZDB_FLAG_DECOMPRESS 0x0002 7660 #define ZDB_FLAG_BSWAP 0x0004 7661 #define ZDB_FLAG_GBH 0x0008 7662 #define ZDB_FLAG_INDIRECT 0x0010 7663 #define ZDB_FLAG_RAW 0x0020 7664 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 7665 #define ZDB_FLAG_VERBOSE 0x0080 7666 7667 static int flagbits[256]; 7668 static char flagbitstr[16]; 7669 7670 static void 7671 zdb_print_blkptr(const blkptr_t *bp, int flags) 7672 { 7673 char blkbuf[BP_SPRINTF_LEN]; 7674 7675 if (flags & ZDB_FLAG_BSWAP) 7676 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 7677 7678 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 7679 (void) printf("%s\n", blkbuf); 7680 } 7681 7682 static void 7683 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 7684 { 7685 int i; 7686 7687 for (i = 0; i < nbps; i++) 7688 zdb_print_blkptr(&bp[i], flags); 7689 } 7690 7691 static void 7692 zdb_dump_gbh(void *buf, int flags) 7693 { 7694 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 7695 } 7696 7697 static void 7698 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 7699 { 7700 if (flags & ZDB_FLAG_BSWAP) 7701 byteswap_uint64_array(buf, size); 7702 VERIFY(write(fileno(stdout), buf, size) == size); 7703 } 7704 7705 static void 7706 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 7707 { 7708 uint64_t *d = (uint64_t *)buf; 7709 unsigned nwords = size / sizeof (uint64_t); 7710 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 7711 unsigned i, j; 7712 const char *hdr; 7713 char *c; 7714 7715 7716 if (do_bswap) 7717 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 7718 else 7719 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 7720 7721 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 7722 7723 #ifdef _LITTLE_ENDIAN 7724 /* correct the endianness */ 7725 do_bswap = !do_bswap; 7726 #endif 7727 for (i = 0; i < nwords; i += 2) { 7728 (void) printf("%06llx: %016llx %016llx ", 7729 (u_longlong_t)(i * sizeof (uint64_t)), 7730 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 7731 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 7732 7733 c = (char *)&d[i]; 7734 for (j = 0; j < 2 * sizeof (uint64_t); j++) 7735 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 7736 (void) printf("\n"); 7737 } 7738 } 7739 7740 /* 7741 * There are two acceptable formats: 7742 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 7743 * child[.child]* - For example: 0.1.1 7744 * 7745 * The second form can be used to specify arbitrary vdevs anywhere 7746 * in the hierarchy. For example, in a pool with a mirror of 7747 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 7748 */ 7749 static vdev_t * 7750 zdb_vdev_lookup(vdev_t *vdev, const char *path) 7751 { 7752 char *s, *p, *q; 7753 unsigned i; 7754 7755 if (vdev == NULL) 7756 return (NULL); 7757 7758 /* First, assume the x.x.x.x format */ 7759 i = strtoul(path, &s, 10); 7760 if (s == path || (s && *s != '.' && *s != '\0')) 7761 goto name; 7762 if (i >= vdev->vdev_children) 7763 return (NULL); 7764 7765 vdev = vdev->vdev_child[i]; 7766 if (s && *s == '\0') 7767 return (vdev); 7768 return (zdb_vdev_lookup(vdev, s+1)); 7769 7770 name: 7771 for (i = 0; i < vdev->vdev_children; i++) { 7772 vdev_t *vc = vdev->vdev_child[i]; 7773 7774 if (vc->vdev_path == NULL) { 7775 vc = zdb_vdev_lookup(vc, path); 7776 if (vc == NULL) 7777 continue; 7778 else 7779 return (vc); 7780 } 7781 7782 p = strrchr(vc->vdev_path, '/'); 7783 p = p ? p + 1 : vc->vdev_path; 7784 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 7785 7786 if (strcmp(vc->vdev_path, path) == 0) 7787 return (vc); 7788 if (strcmp(p, path) == 0) 7789 return (vc); 7790 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 7791 return (vc); 7792 } 7793 7794 return (NULL); 7795 } 7796 7797 static int 7798 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 7799 { 7800 dsl_dataset_t *ds; 7801 7802 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 7803 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 7804 NULL, &ds); 7805 if (error != 0) { 7806 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 7807 (u_longlong_t)objset_id, strerror(error)); 7808 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7809 return (error); 7810 } 7811 dsl_dataset_name(ds, outstr); 7812 dsl_dataset_rele(ds, NULL); 7813 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7814 return (0); 7815 } 7816 7817 static boolean_t 7818 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 7819 { 7820 char *s0, *s1; 7821 7822 if (sizes == NULL) 7823 return (B_FALSE); 7824 7825 s0 = strtok(sizes, "/"); 7826 if (s0 == NULL) 7827 return (B_FALSE); 7828 s1 = strtok(NULL, "/"); 7829 *lsize = strtoull(s0, NULL, 16); 7830 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 7831 return (*lsize >= *psize && *psize > 0); 7832 } 7833 7834 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 7835 7836 static boolean_t 7837 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 7838 uint64_t psize, int flags) 7839 { 7840 boolean_t exceeded = B_FALSE; 7841 /* 7842 * We don't know how the data was compressed, so just try 7843 * every decompress function at every inflated blocksize. 7844 */ 7845 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 7846 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 7847 int *cfuncp = cfuncs; 7848 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 7849 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 7850 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 7851 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 7852 *cfuncp++ = ZIO_COMPRESS_LZ4; 7853 *cfuncp++ = ZIO_COMPRESS_LZJB; 7854 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 7855 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 7856 if (((1ULL << c) & mask) == 0) 7857 *cfuncp++ = c; 7858 7859 /* 7860 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 7861 * could take a while and we should let the user know 7862 * we are not stuck. On the other hand, printing progress 7863 * info gets old after a while. User can specify 'v' flag 7864 * to see the progression. 7865 */ 7866 if (lsize == psize) 7867 lsize += SPA_MINBLOCKSIZE; 7868 else 7869 maxlsize = lsize; 7870 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 7871 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 7872 if (flags & ZDB_FLAG_VERBOSE) { 7873 (void) fprintf(stderr, 7874 "Trying %05llx -> %05llx (%s)\n", 7875 (u_longlong_t)psize, 7876 (u_longlong_t)lsize, 7877 zio_compress_table[*cfuncp].\ 7878 ci_name); 7879 } 7880 7881 /* 7882 * We randomize lbuf2, and decompress to both 7883 * lbuf and lbuf2. This way, we will know if 7884 * decompression fill exactly to lsize. 7885 */ 7886 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 7887 7888 if (zio_decompress_data(*cfuncp, pabd, 7889 lbuf, psize, lsize, NULL) == 0 && 7890 zio_decompress_data(*cfuncp, pabd, 7891 lbuf2, psize, lsize, NULL) == 0 && 7892 bcmp(lbuf, lbuf2, lsize) == 0) 7893 break; 7894 } 7895 if (*cfuncp != 0) 7896 break; 7897 } 7898 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 7899 7900 if (lsize > maxlsize) { 7901 exceeded = B_TRUE; 7902 } 7903 buf = lbuf; 7904 if (*cfuncp == ZIO_COMPRESS_ZLE) { 7905 printf("\nZLE decompression was selected. If you " 7906 "suspect the results are wrong,\ntry avoiding ZLE " 7907 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 7908 } 7909 7910 return (exceeded); 7911 } 7912 7913 /* 7914 * Read a block from a pool and print it out. The syntax of the 7915 * block descriptor is: 7916 * 7917 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 7918 * 7919 * pool - The name of the pool you wish to read from 7920 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 7921 * offset - offset, in hex, in bytes 7922 * size - Amount of data to read, in hex, in bytes 7923 * flags - A string of characters specifying options 7924 * b: Decode a blkptr at given offset within block 7925 * c: Calculate and display checksums 7926 * d: Decompress data before dumping 7927 * e: Byteswap data before dumping 7928 * g: Display data as a gang block header 7929 * i: Display as an indirect block 7930 * r: Dump raw data to stdout 7931 * v: Verbose 7932 * 7933 */ 7934 static void 7935 zdb_read_block(char *thing, spa_t *spa) 7936 { 7937 blkptr_t blk, *bp = &blk; 7938 dva_t *dva = bp->blk_dva; 7939 int flags = 0; 7940 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 7941 zio_t *zio; 7942 vdev_t *vd; 7943 abd_t *pabd; 7944 void *lbuf, *buf; 7945 char *s, *p, *dup, *vdev, *flagstr, *sizes; 7946 int i, error; 7947 boolean_t borrowed = B_FALSE, found = B_FALSE; 7948 7949 dup = strdup(thing); 7950 s = strtok(dup, ":"); 7951 vdev = s ? s : ""; 7952 s = strtok(NULL, ":"); 7953 offset = strtoull(s ? s : "", NULL, 16); 7954 sizes = strtok(NULL, ":"); 7955 s = strtok(NULL, ":"); 7956 flagstr = strdup(s ? s : ""); 7957 7958 s = NULL; 7959 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 7960 s = "invalid size(s)"; 7961 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 7962 s = "size must be a multiple of sector size"; 7963 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 7964 s = "offset must be a multiple of sector size"; 7965 if (s) { 7966 (void) printf("Invalid block specifier: %s - %s\n", thing, s); 7967 goto done; 7968 } 7969 7970 for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { 7971 for (i = 0; i < strlen(flagstr); i++) { 7972 int bit = flagbits[(uchar_t)flagstr[i]]; 7973 7974 if (bit == 0) { 7975 (void) printf("***Ignoring flag: %c\n", 7976 (uchar_t)flagstr[i]); 7977 continue; 7978 } 7979 found = B_TRUE; 7980 flags |= bit; 7981 7982 p = &flagstr[i + 1]; 7983 if (*p != ':' && *p != '\0') { 7984 int j = 0, nextbit = flagbits[(uchar_t)*p]; 7985 char *end, offstr[8] = { 0 }; 7986 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 7987 (nextbit == 0)) { 7988 /* look ahead to isolate the offset */ 7989 while (nextbit == 0 && 7990 strchr(flagbitstr, *p) == NULL) { 7991 offstr[j] = *p; 7992 j++; 7993 if (i + j > strlen(flagstr)) 7994 break; 7995 p++; 7996 nextbit = flagbits[(uchar_t)*p]; 7997 } 7998 blkptr_offset = strtoull(offstr, &end, 7999 16); 8000 i += j; 8001 } else if (nextbit == 0) { 8002 (void) printf("***Ignoring flag arg:" 8003 " '%c'\n", (uchar_t)*p); 8004 } 8005 } 8006 } 8007 } 8008 if (blkptr_offset % sizeof (blkptr_t)) { 8009 printf("Block pointer offset 0x%llx " 8010 "must be divisible by 0x%x\n", 8011 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8012 goto done; 8013 } 8014 if (found == B_FALSE && strlen(flagstr) > 0) { 8015 printf("Invalid flag arg: '%s'\n", flagstr); 8016 goto done; 8017 } 8018 8019 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8020 if (vd == NULL) { 8021 (void) printf("***Invalid vdev: %s\n", vdev); 8022 free(dup); 8023 return; 8024 } else { 8025 if (vd->vdev_path) 8026 (void) fprintf(stderr, "Found vdev: %s\n", 8027 vd->vdev_path); 8028 else 8029 (void) fprintf(stderr, "Found vdev type: %s\n", 8030 vd->vdev_ops->vdev_op_type); 8031 } 8032 8033 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8034 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8035 8036 BP_ZERO(bp); 8037 8038 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8039 DVA_SET_OFFSET(&dva[0], offset); 8040 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8041 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8042 8043 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8044 8045 BP_SET_LSIZE(bp, lsize); 8046 BP_SET_PSIZE(bp, psize); 8047 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8048 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8049 BP_SET_TYPE(bp, DMU_OT_NONE); 8050 BP_SET_LEVEL(bp, 0); 8051 BP_SET_DEDUP(bp, 0); 8052 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8053 8054 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8055 zio = zio_root(spa, NULL, NULL, 0); 8056 8057 if (vd == vd->vdev_top) { 8058 /* 8059 * Treat this as a normal block read. 8060 */ 8061 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8062 ZIO_PRIORITY_SYNC_READ, 8063 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8064 } else { 8065 /* 8066 * Treat this as a vdev child I/O. 8067 */ 8068 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8069 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8070 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | 8071 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8072 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8073 } 8074 8075 error = zio_wait(zio); 8076 spa_config_exit(spa, SCL_STATE, FTAG); 8077 8078 if (error) { 8079 (void) printf("Read of %s failed, error: %d\n", thing, error); 8080 goto out; 8081 } 8082 8083 uint64_t orig_lsize = lsize; 8084 buf = lbuf; 8085 if (flags & ZDB_FLAG_DECOMPRESS) { 8086 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 8087 lsize, psize, flags); 8088 if (failed) { 8089 (void) printf("Decompress of %s failed\n", thing); 8090 goto out; 8091 } 8092 } else { 8093 buf = abd_borrow_buf_copy(pabd, lsize); 8094 borrowed = B_TRUE; 8095 } 8096 /* 8097 * Try to detect invalid block pointer. If invalid, try 8098 * decompressing. 8099 */ 8100 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8101 !(flags & ZDB_FLAG_DECOMPRESS)) { 8102 const blkptr_t *b = (const blkptr_t *)(void *) 8103 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8104 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) == 8105 B_FALSE) { 8106 abd_return_buf_copy(pabd, buf, lsize); 8107 borrowed = B_FALSE; 8108 buf = lbuf; 8109 boolean_t failed = zdb_decompress_block(pabd, buf, 8110 lbuf, lsize, psize, flags); 8111 b = (const blkptr_t *)(void *) 8112 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8113 if (failed || zfs_blkptr_verify(spa, b, B_FALSE, 8114 BLK_VERIFY_LOG) == B_FALSE) { 8115 printf("invalid block pointer at this DVA\n"); 8116 goto out; 8117 } 8118 } 8119 } 8120 8121 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8122 zdb_print_blkptr((blkptr_t *)(void *) 8123 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8124 else if (flags & ZDB_FLAG_RAW) 8125 zdb_dump_block_raw(buf, lsize, flags); 8126 else if (flags & ZDB_FLAG_INDIRECT) 8127 zdb_dump_indirect((blkptr_t *)buf, 8128 orig_lsize / sizeof (blkptr_t), flags); 8129 else if (flags & ZDB_FLAG_GBH) 8130 zdb_dump_gbh(buf, flags); 8131 else 8132 zdb_dump_block(thing, buf, lsize, flags); 8133 8134 /* 8135 * If :c was specified, iterate through the checksum table to 8136 * calculate and display each checksum for our specified 8137 * DVA and length. 8138 */ 8139 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8140 !(flags & ZDB_FLAG_GBH)) { 8141 zio_t *czio; 8142 (void) printf("\n"); 8143 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8144 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8145 8146 if ((zio_checksum_table[ck].ci_flags & 8147 ZCHECKSUM_FLAG_EMBEDDED) || 8148 ck == ZIO_CHECKSUM_NOPARITY) { 8149 continue; 8150 } 8151 BP_SET_CHECKSUM(bp, ck); 8152 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8153 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8154 czio->io_bp = bp; 8155 8156 if (vd == vd->vdev_top) { 8157 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8158 NULL, NULL, 8159 ZIO_PRIORITY_SYNC_READ, 8160 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8161 ZIO_FLAG_DONT_RETRY, NULL)); 8162 } else { 8163 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8164 offset, pabd, psize, ZIO_TYPE_READ, 8165 ZIO_PRIORITY_SYNC_READ, 8166 ZIO_FLAG_DONT_CACHE | 8167 ZIO_FLAG_DONT_PROPAGATE | 8168 ZIO_FLAG_DONT_RETRY | 8169 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8170 ZIO_FLAG_SPECULATIVE | 8171 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8172 } 8173 error = zio_wait(czio); 8174 if (error == 0 || error == ECKSUM) { 8175 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8176 ck_zio->io_offset = 8177 DVA_GET_OFFSET(&bp->blk_dva[0]); 8178 ck_zio->io_bp = bp; 8179 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8180 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n", 8181 zio_checksum_table[ck].ci_name, 8182 (u_longlong_t)bp->blk_cksum.zc_word[0], 8183 (u_longlong_t)bp->blk_cksum.zc_word[1], 8184 (u_longlong_t)bp->blk_cksum.zc_word[2], 8185 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8186 zio_wait(ck_zio); 8187 } else { 8188 printf("error %d reading block\n", error); 8189 } 8190 spa_config_exit(spa, SCL_STATE, FTAG); 8191 } 8192 } 8193 8194 if (borrowed) 8195 abd_return_buf_copy(pabd, buf, lsize); 8196 8197 out: 8198 abd_free(pabd); 8199 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8200 done: 8201 free(flagstr); 8202 free(dup); 8203 } 8204 8205 static void 8206 zdb_embedded_block(char *thing) 8207 { 8208 blkptr_t bp; 8209 unsigned long long *words = (void *)&bp; 8210 char *buf; 8211 int err; 8212 8213 bzero(&bp, sizeof (bp)); 8214 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8215 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8216 words + 0, words + 1, words + 2, words + 3, 8217 words + 4, words + 5, words + 6, words + 7, 8218 words + 8, words + 9, words + 10, words + 11, 8219 words + 12, words + 13, words + 14, words + 15); 8220 if (err != 16) { 8221 (void) fprintf(stderr, "invalid input format\n"); 8222 exit(1); 8223 } 8224 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8225 buf = malloc(SPA_MAXBLOCKSIZE); 8226 if (buf == NULL) { 8227 (void) fprintf(stderr, "out of memory\n"); 8228 exit(1); 8229 } 8230 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8231 if (err != 0) { 8232 (void) fprintf(stderr, "decode failed: %u\n", err); 8233 exit(1); 8234 } 8235 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8236 free(buf); 8237 } 8238 8239 int 8240 main(int argc, char **argv) 8241 { 8242 int c; 8243 struct rlimit rl = { 1024, 1024 }; 8244 spa_t *spa = NULL; 8245 objset_t *os = NULL; 8246 int dump_all = 1; 8247 int verbose = 0; 8248 int error = 0; 8249 char **searchdirs = NULL; 8250 int nsearch = 0; 8251 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8252 nvlist_t *policy = NULL; 8253 uint64_t max_txg = UINT64_MAX; 8254 int64_t objset_id = -1; 8255 uint64_t object; 8256 int flags = ZFS_IMPORT_MISSING_LOG; 8257 int rewind = ZPOOL_NEVER_REWIND; 8258 char *spa_config_path_env, *objset_str; 8259 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8260 nvlist_t *cfg = NULL; 8261 8262 (void) setrlimit(RLIMIT_NOFILE, &rl); 8263 (void) enable_extended_FILE_stdio(-1, -1); 8264 8265 dprintf_setup(&argc, argv); 8266 8267 /* 8268 * If there is an environment variable SPA_CONFIG_PATH it overrides 8269 * default spa_config_path setting. If -U flag is specified it will 8270 * override this environment variable settings once again. 8271 */ 8272 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8273 if (spa_config_path_env != NULL) 8274 spa_config_path = spa_config_path_env; 8275 8276 /* 8277 * For performance reasons, we set this tunable down. We do so before 8278 * the arg parsing section so that the user can override this value if 8279 * they choose. 8280 */ 8281 zfs_btree_verify_intensity = 3; 8282 8283 while ((c = getopt(argc, argv, 8284 "AbcCdDeEFGhiI:klLmMo:Op:PqrRsSt:uU:vVx:XYyZ")) != -1) { 8285 switch (c) { 8286 case 'b': 8287 case 'c': 8288 case 'C': 8289 case 'd': 8290 case 'D': 8291 case 'E': 8292 case 'G': 8293 case 'h': 8294 case 'i': 8295 case 'l': 8296 case 'm': 8297 case 'M': 8298 case 'O': 8299 case 'r': 8300 case 'R': 8301 case 's': 8302 case 'S': 8303 case 'u': 8304 case 'y': 8305 case 'Z': 8306 dump_opt[c]++; 8307 dump_all = 0; 8308 break; 8309 case 'A': 8310 case 'e': 8311 case 'F': 8312 case 'k': 8313 case 'L': 8314 case 'P': 8315 case 'q': 8316 case 'X': 8317 dump_opt[c]++; 8318 break; 8319 case 'Y': 8320 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8321 zfs_deadman_enabled = 0; 8322 break; 8323 /* NB: Sort single match options below. */ 8324 case 'I': 8325 max_inflight_bytes = strtoull(optarg, NULL, 0); 8326 if (max_inflight_bytes == 0) { 8327 (void) fprintf(stderr, "maximum number " 8328 "of inflight bytes must be greater " 8329 "than 0\n"); 8330 usage(); 8331 } 8332 break; 8333 case 'o': 8334 error = set_global_var(optarg); 8335 if (error != 0) 8336 usage(); 8337 break; 8338 case 'p': 8339 if (searchdirs == NULL) { 8340 searchdirs = umem_alloc(sizeof (char *), 8341 UMEM_NOFAIL); 8342 } else { 8343 char **tmp = umem_alloc((nsearch + 1) * 8344 sizeof (char *), UMEM_NOFAIL); 8345 bcopy(searchdirs, tmp, nsearch * 8346 sizeof (char *)); 8347 umem_free(searchdirs, 8348 nsearch * sizeof (char *)); 8349 searchdirs = tmp; 8350 } 8351 searchdirs[nsearch++] = optarg; 8352 break; 8353 case 't': 8354 max_txg = strtoull(optarg, NULL, 0); 8355 if (max_txg < TXG_INITIAL) { 8356 (void) fprintf(stderr, "incorrect txg " 8357 "specified: %s\n", optarg); 8358 usage(); 8359 } 8360 break; 8361 case 'U': 8362 spa_config_path = optarg; 8363 if (spa_config_path[0] != '/') { 8364 (void) fprintf(stderr, 8365 "cachefile must be an absolute path " 8366 "(i.e. start with a slash)\n"); 8367 usage(); 8368 } 8369 break; 8370 case 'v': 8371 verbose++; 8372 break; 8373 case 'V': 8374 flags = ZFS_IMPORT_VERBATIM; 8375 break; 8376 case 'x': 8377 vn_dumpdir = optarg; 8378 break; 8379 default: 8380 usage(); 8381 break; 8382 } 8383 } 8384 8385 if (!dump_opt['e'] && searchdirs != NULL) { 8386 (void) fprintf(stderr, "-p option requires use of -e\n"); 8387 usage(); 8388 } 8389 if (dump_opt['d'] || dump_opt['r']) { 8390 /* <pool>[/<dataset | objset id> is accepted */ 8391 if (argv[2] && (objset_str = strchr(argv[2], '/')) != NULL && 8392 objset_str++ != NULL) { 8393 char *endptr; 8394 errno = 0; 8395 objset_id = strtoull(objset_str, &endptr, 0); 8396 /* dataset 0 is the same as opening the pool */ 8397 if (errno == 0 && endptr != objset_str && 8398 objset_id != 0) { 8399 target_is_spa = B_FALSE; 8400 dataset_lookup = B_TRUE; 8401 } else if (objset_id != 0) { 8402 printf("failed to open objset %s " 8403 "%llu %s", objset_str, 8404 (u_longlong_t)objset_id, 8405 strerror(errno)); 8406 exit(1); 8407 } 8408 /* normal dataset name not an objset ID */ 8409 if (endptr == objset_str) { 8410 objset_id = -1; 8411 } 8412 } 8413 } 8414 8415 #if defined(_LP64) 8416 /* 8417 * ZDB does not typically re-read blocks; therefore limit the ARC 8418 * to 256 MB, which can be used entirely for metadata. 8419 */ 8420 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT; 8421 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; 8422 #endif 8423 8424 /* 8425 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 8426 * "zdb -b" uses traversal prefetch which uses async reads. 8427 * For good performance, let several of them be active at once. 8428 */ 8429 zfs_vdev_async_read_max_active = 10; 8430 8431 /* 8432 * Disable reference tracking for better performance. 8433 */ 8434 reference_tracking_enable = B_FALSE; 8435 8436 /* 8437 * Do not fail spa_load when spa_load_verify fails. This is needed 8438 * to load non-idle pools. 8439 */ 8440 spa_load_verify_dryrun = B_TRUE; 8441 8442 kernel_init(SPA_MODE_READ); 8443 8444 if (dump_all) 8445 verbose = MAX(verbose, 1); 8446 8447 for (c = 0; c < 256; c++) { 8448 if (dump_all && strchr("AeEFklLOPrRSXy", c) == NULL) 8449 dump_opt[c] = 1; 8450 if (dump_opt[c]) 8451 dump_opt[c] += verbose; 8452 } 8453 8454 aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); 8455 zfs_recover = (dump_opt['A'] > 1); 8456 8457 argc -= optind; 8458 argv += optind; 8459 if (argc < 2 && dump_opt['R']) 8460 usage(); 8461 8462 if (dump_opt['E']) { 8463 if (argc != 1) 8464 usage(); 8465 zdb_embedded_block(argv[0]); 8466 return (0); 8467 } 8468 8469 if (argc < 1) { 8470 if (!dump_opt['e'] && dump_opt['C']) { 8471 dump_cachefile(spa_config_path); 8472 return (0); 8473 } 8474 usage(); 8475 } 8476 8477 if (dump_opt['l']) 8478 return (dump_label(argv[0])); 8479 8480 if (dump_opt['O']) { 8481 if (argc != 2) 8482 usage(); 8483 dump_opt['v'] = verbose + 3; 8484 return (dump_path(argv[0], argv[1], NULL)); 8485 } 8486 if (dump_opt['r']) { 8487 if (argc != 3) 8488 usage(); 8489 dump_opt['v'] = verbose; 8490 error = dump_path(argv[0], argv[1], &object); 8491 } 8492 8493 if (dump_opt['X'] || dump_opt['F']) 8494 rewind = ZPOOL_DO_REWIND | 8495 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 8496 8497 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 8498 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 8499 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 8500 fatal("internal error: %s", strerror(ENOMEM)); 8501 8502 error = 0; 8503 target = argv[0]; 8504 8505 if (strpbrk(target, "/@") != NULL) { 8506 size_t targetlen; 8507 8508 target_pool = strdup(target); 8509 *strpbrk(target_pool, "/@") = '\0'; 8510 8511 target_is_spa = B_FALSE; 8512 targetlen = strlen(target); 8513 if (targetlen && target[targetlen - 1] == '/') 8514 target[targetlen - 1] = '\0'; 8515 } else { 8516 target_pool = target; 8517 } 8518 8519 if (dump_opt['e']) { 8520 importargs_t args = { 0 }; 8521 8522 args.paths = nsearch; 8523 args.path = searchdirs; 8524 args.can_be_active = B_TRUE; 8525 8526 error = zpool_find_config(NULL, target_pool, &cfg, &args, 8527 &libzpool_config_ops); 8528 8529 if (error == 0) { 8530 8531 if (nvlist_add_nvlist(cfg, 8532 ZPOOL_LOAD_POLICY, policy) != 0) { 8533 fatal("can't open '%s': %s", 8534 target, strerror(ENOMEM)); 8535 } 8536 8537 if (dump_opt['C'] > 1) { 8538 (void) printf("\nConfiguration for import:\n"); 8539 dump_nvlist(cfg, 8); 8540 } 8541 8542 /* 8543 * Disable the activity check to allow examination of 8544 * active pools. 8545 */ 8546 error = spa_import(target_pool, cfg, NULL, 8547 flags | ZFS_IMPORT_SKIP_MMP); 8548 } 8549 } 8550 8551 if (searchdirs != NULL) { 8552 umem_free(searchdirs, nsearch * sizeof (char *)); 8553 searchdirs = NULL; 8554 } 8555 8556 /* 8557 * import_checkpointed_state makes the assumption that the 8558 * target pool that we pass it is already part of the spa 8559 * namespace. Because of that we need to make sure to call 8560 * it always after the -e option has been processed, which 8561 * imports the pool to the namespace if it's not in the 8562 * cachefile. 8563 */ 8564 char *checkpoint_pool = NULL; 8565 char *checkpoint_target = NULL; 8566 if (dump_opt['k']) { 8567 checkpoint_pool = import_checkpointed_state(target, cfg, 8568 &checkpoint_target); 8569 8570 if (checkpoint_target != NULL) 8571 target = checkpoint_target; 8572 } 8573 8574 if (cfg != NULL) { 8575 nvlist_free(cfg); 8576 cfg = NULL; 8577 } 8578 8579 if (target_pool != target) 8580 free(target_pool); 8581 8582 if (error == 0) { 8583 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 8584 ASSERT(checkpoint_pool != NULL); 8585 ASSERT(checkpoint_target == NULL); 8586 8587 error = spa_open(checkpoint_pool, &spa, FTAG); 8588 if (error != 0) { 8589 fatal("Tried to open pool \"%s\" but " 8590 "spa_open() failed with error %d\n", 8591 checkpoint_pool, error); 8592 } 8593 8594 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) { 8595 zdb_set_skip_mmp(target); 8596 error = spa_open_rewind(target, &spa, FTAG, policy, 8597 NULL); 8598 if (error) { 8599 /* 8600 * If we're missing the log device then 8601 * try opening the pool after clearing the 8602 * log state. 8603 */ 8604 mutex_enter(&spa_namespace_lock); 8605 if ((spa = spa_lookup(target)) != NULL && 8606 spa->spa_log_state == SPA_LOG_MISSING) { 8607 spa->spa_log_state = SPA_LOG_CLEAR; 8608 error = 0; 8609 } 8610 mutex_exit(&spa_namespace_lock); 8611 8612 if (!error) { 8613 error = spa_open_rewind(target, &spa, 8614 FTAG, policy, NULL); 8615 } 8616 } 8617 } else if (strpbrk(target, "#") != NULL) { 8618 dsl_pool_t *dp; 8619 error = dsl_pool_hold(target, FTAG, &dp); 8620 if (error != 0) { 8621 fatal("can't dump '%s': %s", target, 8622 strerror(error)); 8623 } 8624 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 8625 dsl_pool_rele(dp, FTAG); 8626 if (error != 0) { 8627 fatal("can't dump '%s': %s", target, 8628 strerror(error)); 8629 } 8630 return (error); 8631 } else { 8632 zdb_set_skip_mmp(target); 8633 if (dataset_lookup == B_TRUE) { 8634 /* 8635 * Use the supplied id to get the name 8636 * for open_objset. 8637 */ 8638 error = spa_open(target, &spa, FTAG); 8639 if (error == 0) { 8640 error = name_from_objset_id(spa, 8641 objset_id, dsname); 8642 spa_close(spa, FTAG); 8643 if (error == 0) 8644 target = dsname; 8645 } 8646 } 8647 if (error == 0) 8648 error = open_objset(target, FTAG, &os); 8649 if (error == 0) 8650 spa = dmu_objset_spa(os); 8651 } 8652 } 8653 nvlist_free(policy); 8654 8655 if (error) 8656 fatal("can't open '%s': %s", target, strerror(error)); 8657 8658 /* 8659 * Set the pool failure mode to panic in order to prevent the pool 8660 * from suspending. A suspended I/O will have no way to resume and 8661 * can prevent the zdb(8) command from terminating as expected. 8662 */ 8663 if (spa != NULL) 8664 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 8665 8666 argv++; 8667 argc--; 8668 if (dump_opt['r']) { 8669 error = zdb_copy_object(os, object, argv[1]); 8670 } else if (!dump_opt['R']) { 8671 flagbits['d'] = ZOR_FLAG_DIRECTORY; 8672 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 8673 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 8674 flagbits['z'] = ZOR_FLAG_ZAP; 8675 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 8676 8677 if (argc > 0 && dump_opt['d']) { 8678 zopt_object_args = argc; 8679 zopt_object_ranges = calloc(zopt_object_args, 8680 sizeof (zopt_object_range_t)); 8681 for (unsigned i = 0; i < zopt_object_args; i++) { 8682 int err; 8683 char *msg = NULL; 8684 8685 err = parse_object_range(argv[i], 8686 &zopt_object_ranges[i], &msg); 8687 if (err != 0) 8688 fatal("Bad object or range: '%s': %s\n", 8689 argv[i], msg ? msg : ""); 8690 } 8691 } else if (argc > 0 && dump_opt['m']) { 8692 zopt_metaslab_args = argc; 8693 zopt_metaslab = calloc(zopt_metaslab_args, 8694 sizeof (uint64_t)); 8695 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 8696 errno = 0; 8697 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 8698 if (zopt_metaslab[i] == 0 && errno != 0) 8699 fatal("bad number %s: %s", argv[i], 8700 strerror(errno)); 8701 } 8702 } 8703 if (os != NULL) { 8704 dump_objset(os); 8705 } else if (zopt_object_args > 0 && !dump_opt['m']) { 8706 dump_objset(spa->spa_meta_objset); 8707 } else { 8708 dump_zpool(spa); 8709 } 8710 } else { 8711 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 8712 flagbits['c'] = ZDB_FLAG_CHECKSUM; 8713 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 8714 flagbits['e'] = ZDB_FLAG_BSWAP; 8715 flagbits['g'] = ZDB_FLAG_GBH; 8716 flagbits['i'] = ZDB_FLAG_INDIRECT; 8717 flagbits['r'] = ZDB_FLAG_RAW; 8718 flagbits['v'] = ZDB_FLAG_VERBOSE; 8719 8720 for (int i = 0; i < argc; i++) 8721 zdb_read_block(argv[i], spa); 8722 } 8723 8724 if (dump_opt['k']) { 8725 free(checkpoint_pool); 8726 if (!target_is_spa) 8727 free(checkpoint_target); 8728 } 8729 8730 if (os != NULL) { 8731 close_objset(os, FTAG); 8732 } else { 8733 spa_close(spa, FTAG); 8734 } 8735 8736 fuid_table_destroy(); 8737 8738 dump_debug_buffer(); 8739 8740 kernel_fini(); 8741 8742 return (error); 8743 } 8744