1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 */ 35 36 #include <stdio.h> 37 #include <unistd.h> 38 #include <stdlib.h> 39 #include <ctype.h> 40 #include <sys/zfs_context.h> 41 #include <sys/spa.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dmu.h> 44 #include <sys/zap.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/zfs_sa.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/vdev.h> 51 #include <sys/vdev_impl.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_dataset.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_bookmark.h> 58 #include <sys/dbuf.h> 59 #include <sys/zil.h> 60 #include <sys/zil_impl.h> 61 #include <sys/stat.h> 62 #include <sys/resource.h> 63 #include <sys/dmu_send.h> 64 #include <sys/dmu_traverse.h> 65 #include <sys/zio_checksum.h> 66 #include <sys/zio_compress.h> 67 #include <sys/zfs_fuid.h> 68 #include <sys/arc.h> 69 #include <sys/arc_impl.h> 70 #include <sys/ddt.h> 71 #include <sys/zfeature.h> 72 #include <sys/abd.h> 73 #include <sys/blkptr.h> 74 #include <sys/dsl_crypt.h> 75 #include <sys/dsl_scan.h> 76 #include <sys/btree.h> 77 #include <zfs_comutil.h> 78 #include <sys/zstd/zstd.h> 79 80 #include <libnvpair.h> 81 #include <libzutil.h> 82 83 #include "zdb.h" 84 85 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 86 zio_compress_table[(idx)].ci_name : "UNKNOWN") 87 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 88 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 89 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 90 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 91 DMU_OT_ZAP_OTHER : \ 92 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 93 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 94 95 static char * 96 zdb_ot_name(dmu_object_type_t type) 97 { 98 if (type < DMU_OT_NUMTYPES) 99 return (dmu_ot[type].ot_name); 100 else if ((type & DMU_OT_NEWTYPE) && 101 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 102 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 103 else 104 return ("UNKNOWN"); 105 } 106 107 extern int reference_tracking_enable; 108 extern int zfs_recover; 109 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit; 110 extern int zfs_vdev_async_read_max_active; 111 extern boolean_t spa_load_verify_dryrun; 112 extern int zfs_reconstruct_indirect_combinations_max; 113 extern int zfs_btree_verify_intensity; 114 115 static const char cmdname[] = "zdb"; 116 uint8_t dump_opt[256]; 117 118 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 119 120 uint64_t *zopt_metaslab = NULL; 121 static unsigned zopt_metaslab_args = 0; 122 123 typedef struct zopt_object_range { 124 uint64_t zor_obj_start; 125 uint64_t zor_obj_end; 126 uint64_t zor_flags; 127 } zopt_object_range_t; 128 zopt_object_range_t *zopt_object_ranges = NULL; 129 static unsigned zopt_object_args = 0; 130 131 static int flagbits[256]; 132 133 #define ZOR_FLAG_PLAIN_FILE 0x0001 134 #define ZOR_FLAG_DIRECTORY 0x0002 135 #define ZOR_FLAG_SPACE_MAP 0x0004 136 #define ZOR_FLAG_ZAP 0x0008 137 #define ZOR_FLAG_ALL_TYPES -1 138 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 139 ZOR_FLAG_DIRECTORY | \ 140 ZOR_FLAG_SPACE_MAP | \ 141 ZOR_FLAG_ZAP) 142 143 #define ZDB_FLAG_CHECKSUM 0x0001 144 #define ZDB_FLAG_DECOMPRESS 0x0002 145 #define ZDB_FLAG_BSWAP 0x0004 146 #define ZDB_FLAG_GBH 0x0008 147 #define ZDB_FLAG_INDIRECT 0x0010 148 #define ZDB_FLAG_RAW 0x0020 149 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 150 #define ZDB_FLAG_VERBOSE 0x0080 151 152 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 153 static int leaked_objects = 0; 154 static range_tree_t *mos_refd_objs; 155 156 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 157 boolean_t); 158 static void mos_obj_refd(uint64_t); 159 static void mos_obj_refd_multiple(uint64_t); 160 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 161 dmu_tx_t *tx); 162 163 typedef struct sublivelist_verify { 164 /* all ALLOC'd blkptr_t in one sub-livelist */ 165 zfs_btree_t sv_all_allocs; 166 167 /* all FREE'd blkptr_t in one sub-livelist */ 168 zfs_btree_t sv_all_frees; 169 170 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 171 zfs_btree_t sv_pair; 172 173 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 174 zfs_btree_t sv_leftover; 175 } sublivelist_verify_t; 176 177 static int 178 livelist_compare(const void *larg, const void *rarg) 179 { 180 const blkptr_t *l = larg; 181 const blkptr_t *r = rarg; 182 183 /* Sort them according to dva[0] */ 184 uint64_t l_dva0_vdev, r_dva0_vdev; 185 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 186 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 187 if (l_dva0_vdev < r_dva0_vdev) 188 return (-1); 189 else if (l_dva0_vdev > r_dva0_vdev) 190 return (+1); 191 192 /* if vdevs are equal, sort by offsets. */ 193 uint64_t l_dva0_offset; 194 uint64_t r_dva0_offset; 195 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 196 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 197 if (l_dva0_offset < r_dva0_offset) { 198 return (-1); 199 } else if (l_dva0_offset > r_dva0_offset) { 200 return (+1); 201 } 202 203 /* 204 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 205 * it's possible the offsets are equal. In that case, sort by txg 206 */ 207 if (l->blk_birth < r->blk_birth) { 208 return (-1); 209 } else if (l->blk_birth > r->blk_birth) { 210 return (+1); 211 } 212 return (0); 213 } 214 215 typedef struct sublivelist_verify_block { 216 dva_t svb_dva; 217 218 /* 219 * We need this to check if the block marked as allocated 220 * in the livelist was freed (and potentially reallocated) 221 * in the metaslab spacemaps at a later TXG. 222 */ 223 uint64_t svb_allocated_txg; 224 } sublivelist_verify_block_t; 225 226 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 227 228 static int 229 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 230 dmu_tx_t *tx) 231 { 232 ASSERT3P(tx, ==, NULL); 233 struct sublivelist_verify *sv = arg; 234 char blkbuf[BP_SPRINTF_LEN]; 235 zfs_btree_index_t where; 236 if (free) { 237 zfs_btree_add(&sv->sv_pair, bp); 238 /* Check if the FREE is a duplicate */ 239 if (zfs_btree_find(&sv->sv_all_frees, bp, &where) != NULL) { 240 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 241 free); 242 (void) printf("\tERROR: Duplicate FREE: %s\n", blkbuf); 243 } else { 244 zfs_btree_add_idx(&sv->sv_all_frees, bp, &where); 245 } 246 } else { 247 /* Check if the ALLOC has been freed */ 248 if (zfs_btree_find(&sv->sv_pair, bp, &where) != NULL) { 249 zfs_btree_remove_idx(&sv->sv_pair, &where); 250 } else { 251 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 252 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 253 break; 254 sublivelist_verify_block_t svb = { 255 .svb_dva = bp->blk_dva[i], 256 .svb_allocated_txg = bp->blk_birth 257 }; 258 259 if (zfs_btree_find(&sv->sv_leftover, &svb, 260 &where) == NULL) { 261 zfs_btree_add_idx(&sv->sv_leftover, 262 &svb, &where); 263 } 264 } 265 } 266 /* Check if the ALLOC is a duplicate */ 267 if (zfs_btree_find(&sv->sv_all_allocs, bp, &where) != NULL) { 268 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 269 free); 270 (void) printf("\tERROR: Duplicate ALLOC: %s\n", blkbuf); 271 } else { 272 zfs_btree_add_idx(&sv->sv_all_allocs, bp, &where); 273 } 274 } 275 return (0); 276 } 277 278 static int 279 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 280 { 281 int err; 282 char blkbuf[BP_SPRINTF_LEN]; 283 struct sublivelist_verify *sv = args; 284 285 zfs_btree_create(&sv->sv_all_allocs, livelist_compare, 286 sizeof (blkptr_t)); 287 288 zfs_btree_create(&sv->sv_all_frees, livelist_compare, 289 sizeof (blkptr_t)); 290 291 zfs_btree_create(&sv->sv_pair, livelist_compare, 292 sizeof (blkptr_t)); 293 294 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 295 sv, NULL); 296 297 zfs_btree_clear(&sv->sv_all_allocs); 298 zfs_btree_destroy(&sv->sv_all_allocs); 299 300 zfs_btree_clear(&sv->sv_all_frees); 301 zfs_btree_destroy(&sv->sv_all_frees); 302 303 blkptr_t *e; 304 zfs_btree_index_t *cookie = NULL; 305 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 306 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), e, B_TRUE); 307 (void) printf("\tERROR: Unmatched FREE: %s\n", blkbuf); 308 } 309 zfs_btree_destroy(&sv->sv_pair); 310 311 return (err); 312 } 313 314 static int 315 livelist_block_compare(const void *larg, const void *rarg) 316 { 317 const sublivelist_verify_block_t *l = larg; 318 const sublivelist_verify_block_t *r = rarg; 319 320 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 321 return (-1); 322 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 323 return (+1); 324 325 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 326 return (-1); 327 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 328 return (+1); 329 330 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 331 return (-1); 332 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 333 return (+1); 334 335 return (0); 336 } 337 338 /* 339 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 340 * sublivelist_verify_t: sv->sv_leftover 341 */ 342 static void 343 livelist_verify(dsl_deadlist_t *dl, void *arg) 344 { 345 sublivelist_verify_t *sv = arg; 346 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 347 } 348 349 /* 350 * Check for errors in the livelist entry and discard the intermediary 351 * data structures 352 */ 353 /* ARGSUSED */ 354 static int 355 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 356 { 357 sublivelist_verify_t sv; 358 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 359 sizeof (sublivelist_verify_block_t)); 360 int err = sublivelist_verify_func(&sv, dle); 361 zfs_btree_clear(&sv.sv_leftover); 362 zfs_btree_destroy(&sv.sv_leftover); 363 return (err); 364 } 365 366 typedef struct metaslab_verify { 367 /* 368 * Tree containing all the leftover ALLOCs from the livelists 369 * that are part of this metaslab. 370 */ 371 zfs_btree_t mv_livelist_allocs; 372 373 /* 374 * Metaslab information. 375 */ 376 uint64_t mv_vdid; 377 uint64_t mv_msid; 378 uint64_t mv_start; 379 uint64_t mv_end; 380 381 /* 382 * What's currently allocated for this metaslab. 383 */ 384 range_tree_t *mv_allocated; 385 } metaslab_verify_t; 386 387 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 388 389 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 390 void *arg); 391 392 typedef struct unflushed_iter_cb_arg { 393 spa_t *uic_spa; 394 uint64_t uic_txg; 395 void *uic_arg; 396 zdb_log_sm_cb_t uic_cb; 397 } unflushed_iter_cb_arg_t; 398 399 static int 400 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 401 { 402 unflushed_iter_cb_arg_t *uic = arg; 403 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 404 } 405 406 static void 407 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 408 { 409 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 410 return; 411 412 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 413 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 414 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 415 space_map_t *sm = NULL; 416 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 417 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 418 419 unflushed_iter_cb_arg_t uic = { 420 .uic_spa = spa, 421 .uic_txg = sls->sls_txg, 422 .uic_arg = arg, 423 .uic_cb = cb 424 }; 425 VERIFY0(space_map_iterate(sm, space_map_length(sm), 426 iterate_through_spacemap_logs_cb, &uic)); 427 space_map_close(sm); 428 } 429 spa_config_exit(spa, SCL_CONFIG, FTAG); 430 } 431 432 static void 433 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 434 uint64_t offset, uint64_t size) 435 { 436 sublivelist_verify_block_t svb; 437 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 438 DVA_SET_OFFSET(&svb.svb_dva, offset); 439 DVA_SET_ASIZE(&svb.svb_dva, size); 440 zfs_btree_index_t where; 441 uint64_t end_offset = offset + size; 442 443 /* 444 * Look for an exact match for spacemap entry in the livelist entries. 445 * Then, look for other livelist entries that fall within the range 446 * of the spacemap entry as it may have been condensed 447 */ 448 sublivelist_verify_block_t *found = 449 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 450 if (found == NULL) { 451 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 452 } 453 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 454 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 455 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 456 if (found->svb_allocated_txg <= txg) { 457 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 458 "from TXG %llx FREED at TXG %llx\n", 459 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 460 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 461 (u_longlong_t)found->svb_allocated_txg, 462 (u_longlong_t)txg); 463 } 464 } 465 } 466 467 static int 468 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 469 { 470 metaslab_verify_t *mv = arg; 471 uint64_t offset = sme->sme_offset; 472 uint64_t size = sme->sme_run; 473 uint64_t txg = sme->sme_txg; 474 475 if (sme->sme_type == SM_ALLOC) { 476 if (range_tree_contains(mv->mv_allocated, 477 offset, size)) { 478 (void) printf("ERROR: DOUBLE ALLOC: " 479 "%llu [%llx:%llx] " 480 "%llu:%llu LOG_SM\n", 481 (u_longlong_t)txg, (u_longlong_t)offset, 482 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 483 (u_longlong_t)mv->mv_msid); 484 } else { 485 range_tree_add(mv->mv_allocated, 486 offset, size); 487 } 488 } else { 489 if (!range_tree_contains(mv->mv_allocated, 490 offset, size)) { 491 (void) printf("ERROR: DOUBLE FREE: " 492 "%llu [%llx:%llx] " 493 "%llu:%llu LOG_SM\n", 494 (u_longlong_t)txg, (u_longlong_t)offset, 495 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 496 (u_longlong_t)mv->mv_msid); 497 } else { 498 range_tree_remove(mv->mv_allocated, 499 offset, size); 500 } 501 } 502 503 if (sme->sme_type != SM_ALLOC) { 504 /* 505 * If something is freed in the spacemap, verify that 506 * it is not listed as allocated in the livelist. 507 */ 508 verify_livelist_allocs(mv, txg, offset, size); 509 } 510 return (0); 511 } 512 513 static int 514 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 515 uint64_t txg, void *arg) 516 { 517 metaslab_verify_t *mv = arg; 518 uint64_t offset = sme->sme_offset; 519 uint64_t vdev_id = sme->sme_vdev; 520 521 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 522 523 /* skip indirect vdevs */ 524 if (!vdev_is_concrete(vd)) 525 return (0); 526 527 if (vdev_id != mv->mv_vdid) 528 return (0); 529 530 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 531 if (ms->ms_id != mv->mv_msid) 532 return (0); 533 534 if (txg < metaslab_unflushed_txg(ms)) 535 return (0); 536 537 538 ASSERT3U(txg, ==, sme->sme_txg); 539 return (metaslab_spacemap_validation_cb(sme, mv)); 540 } 541 542 static void 543 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 544 { 545 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 546 } 547 548 static void 549 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 550 { 551 if (sm == NULL) 552 return; 553 554 VERIFY0(space_map_iterate(sm, space_map_length(sm), 555 metaslab_spacemap_validation_cb, mv)); 556 } 557 558 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 559 560 /* 561 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 562 * they are part of that metaslab (mv_msid). 563 */ 564 static void 565 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 566 { 567 zfs_btree_index_t where; 568 sublivelist_verify_block_t *svb; 569 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 570 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 571 svb != NULL; 572 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 573 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 574 continue; 575 576 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 577 (DVA_GET_OFFSET(&svb->svb_dva) + 578 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 579 (void) printf("ERROR: Found block that crosses " 580 "metaslab boundary: <%llu:%llx:%llx>\n", 581 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 582 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 583 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 584 continue; 585 } 586 587 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 588 continue; 589 590 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 591 continue; 592 593 if ((DVA_GET_OFFSET(&svb->svb_dva) + 594 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 595 (void) printf("ERROR: Found block that crosses " 596 "metaslab boundary: <%llu:%llx:%llx>\n", 597 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 598 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 599 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 600 continue; 601 } 602 603 zfs_btree_add(&mv->mv_livelist_allocs, svb); 604 } 605 606 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 607 svb != NULL; 608 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 609 zfs_btree_remove(&sv->sv_leftover, svb); 610 } 611 } 612 613 /* 614 * [Livelist Check] 615 * Iterate through all the sublivelists and: 616 * - report leftover frees 617 * - report double ALLOCs/FREEs 618 * - record leftover ALLOCs together with their TXG [see Cross Check] 619 * 620 * [Spacemap Check] 621 * for each metaslab: 622 * - iterate over spacemap and then the metaslab's entries in the 623 * spacemap log, then report any double FREEs and ALLOCs (do not 624 * blow up). 625 * 626 * [Cross Check] 627 * After finishing the Livelist Check phase and while being in the 628 * Spacemap Check phase, we find all the recorded leftover ALLOCs 629 * of the livelist check that are part of the metaslab that we are 630 * currently looking at in the Spacemap Check. We report any entries 631 * that are marked as ALLOCs in the livelists but have been actually 632 * freed (and potentially allocated again) after their TXG stamp in 633 * the spacemaps. Also report any ALLOCs from the livelists that 634 * belong to indirect vdevs (e.g. their vdev completed removal). 635 * 636 * Note that this will miss Log Spacemap entries that cancelled each other 637 * out before being flushed to the metaslab, so we are not guaranteed 638 * to match all erroneous ALLOCs. 639 */ 640 static void 641 livelist_metaslab_validate(spa_t *spa) 642 { 643 (void) printf("Verifying deleted livelist entries\n"); 644 645 sublivelist_verify_t sv; 646 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 647 sizeof (sublivelist_verify_block_t)); 648 iterate_deleted_livelists(spa, livelist_verify, &sv); 649 650 (void) printf("Verifying metaslab entries\n"); 651 vdev_t *rvd = spa->spa_root_vdev; 652 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 653 vdev_t *vd = rvd->vdev_child[c]; 654 655 if (!vdev_is_concrete(vd)) 656 continue; 657 658 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 659 metaslab_t *m = vd->vdev_ms[mid]; 660 661 (void) fprintf(stderr, 662 "\rverifying concrete vdev %llu, " 663 "metaslab %llu of %llu ...", 664 (longlong_t)vd->vdev_id, 665 (longlong_t)mid, 666 (longlong_t)vd->vdev_ms_count); 667 668 uint64_t shift, start; 669 range_seg_type_t type = 670 metaslab_calculate_range_tree_type(vd, m, 671 &start, &shift); 672 metaslab_verify_t mv; 673 mv.mv_allocated = range_tree_create(NULL, 674 type, NULL, start, shift); 675 mv.mv_vdid = vd->vdev_id; 676 mv.mv_msid = m->ms_id; 677 mv.mv_start = m->ms_start; 678 mv.mv_end = m->ms_start + m->ms_size; 679 zfs_btree_create(&mv.mv_livelist_allocs, 680 livelist_block_compare, 681 sizeof (sublivelist_verify_block_t)); 682 683 mv_populate_livelist_allocs(&mv, &sv); 684 685 spacemap_check_ms_sm(m->ms_sm, &mv); 686 spacemap_check_sm_log(spa, &mv); 687 688 range_tree_vacate(mv.mv_allocated, NULL, NULL); 689 range_tree_destroy(mv.mv_allocated); 690 zfs_btree_clear(&mv.mv_livelist_allocs); 691 zfs_btree_destroy(&mv.mv_livelist_allocs); 692 } 693 } 694 (void) fprintf(stderr, "\n"); 695 696 /* 697 * If there are any segments in the leftover tree after we walked 698 * through all the metaslabs in the concrete vdevs then this means 699 * that we have segments in the livelists that belong to indirect 700 * vdevs and are marked as allocated. 701 */ 702 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 703 zfs_btree_destroy(&sv.sv_leftover); 704 return; 705 } 706 (void) printf("ERROR: Found livelist blocks marked as allocated " 707 "for indirect vdevs:\n"); 708 709 zfs_btree_index_t *where = NULL; 710 sublivelist_verify_block_t *svb; 711 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 712 NULL) { 713 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 714 ASSERT3U(vdev_id, <, rvd->vdev_children); 715 vdev_t *vd = rvd->vdev_child[vdev_id]; 716 ASSERT(!vdev_is_concrete(vd)); 717 (void) printf("<%d:%llx:%llx> TXG %llx\n", 718 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 719 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 720 (u_longlong_t)svb->svb_allocated_txg); 721 } 722 (void) printf("\n"); 723 zfs_btree_destroy(&sv.sv_leftover); 724 } 725 726 /* 727 * These libumem hooks provide a reasonable set of defaults for the allocator's 728 * debugging facilities. 729 */ 730 const char * 731 _umem_debug_init(void) 732 { 733 return ("default,verbose"); /* $UMEM_DEBUG setting */ 734 } 735 736 const char * 737 _umem_logging_init(void) 738 { 739 return ("fail,contents"); /* $UMEM_LOGGING setting */ 740 } 741 742 static void 743 usage(void) 744 { 745 (void) fprintf(stderr, 746 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 747 "[-I <inflight I/Os>]\n" 748 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 749 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 750 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 751 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 752 "\t%s [-v] <bookmark>\n" 753 "\t%s -C [-A] [-U <cache>]\n" 754 "\t%s -l [-Aqu] <device>\n" 755 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 756 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 757 "\t%s -O <dataset> <path>\n" 758 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 759 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 760 "\t%s -E [-A] word0:word1:...:word15\n" 761 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 762 "<poolname>\n\n", 763 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 764 cmdname, cmdname, cmdname); 765 766 (void) fprintf(stderr, " Dataset name must include at least one " 767 "separator character '/' or '@'\n"); 768 (void) fprintf(stderr, " If dataset name is specified, only that " 769 "dataset is dumped\n"); 770 (void) fprintf(stderr, " If object numbers or object number " 771 "ranges are specified, only those\n" 772 " objects or ranges are dumped.\n\n"); 773 (void) fprintf(stderr, 774 " Object ranges take the form <start>:<end>[:<flags>]\n" 775 " start Starting object number\n" 776 " end Ending object number, or -1 for no upper bound\n" 777 " flags Optional flags to select object types:\n" 778 " A All objects (this is the default)\n" 779 " d ZFS directories\n" 780 " f ZFS files \n" 781 " m SPA space maps\n" 782 " z ZAPs\n" 783 " - Negate effect of next flag\n\n"); 784 (void) fprintf(stderr, " Options to control amount of output:\n"); 785 (void) fprintf(stderr, " -b block statistics\n"); 786 (void) fprintf(stderr, " -c checksum all metadata (twice for " 787 "all data) blocks\n"); 788 (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); 789 (void) fprintf(stderr, " -d dataset(s)\n"); 790 (void) fprintf(stderr, " -D dedup statistics\n"); 791 (void) fprintf(stderr, " -E decode and display block from an " 792 "embedded block pointer\n"); 793 (void) fprintf(stderr, " -h pool history\n"); 794 (void) fprintf(stderr, " -i intent logs\n"); 795 (void) fprintf(stderr, " -l read label contents\n"); 796 (void) fprintf(stderr, " -k examine the checkpointed state " 797 "of the pool\n"); 798 (void) fprintf(stderr, " -L disable leak tracking (do not " 799 "load spacemaps)\n"); 800 (void) fprintf(stderr, " -m metaslabs\n"); 801 (void) fprintf(stderr, " -M metaslab groups\n"); 802 (void) fprintf(stderr, " -O perform object lookups by path\n"); 803 (void) fprintf(stderr, " -R read and display block from a " 804 "device\n"); 805 (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); 806 (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); 807 (void) fprintf(stderr, " -v verbose (applies to all " 808 "others)\n"); 809 (void) fprintf(stderr, " -y perform livelist and metaslab " 810 "validation on any livelists being deleted\n\n"); 811 (void) fprintf(stderr, " Below options are intended for use " 812 "with other options:\n"); 813 (void) fprintf(stderr, " -A ignore assertions (-A), enable " 814 "panic recovery (-AA) or both (-AAA)\n"); 815 (void) fprintf(stderr, " -e pool is exported/destroyed/" 816 "has altroot/not in a cachefile\n"); 817 (void) fprintf(stderr, " -F attempt automatic rewind within " 818 "safe range of transaction groups\n"); 819 (void) fprintf(stderr, " -G dump zfs_dbgmsg buffer before " 820 "exiting\n"); 821 (void) fprintf(stderr, " -I <number of inflight I/Os> -- " 822 "specify the maximum number of\n " 823 "checksumming I/Os [default is 200]\n"); 824 (void) fprintf(stderr, " -o <variable>=<value> set global " 825 "variable to an unsigned 32-bit integer\n"); 826 (void) fprintf(stderr, " -p <path> -- use one or more with " 827 "-e to specify path to vdev dir\n"); 828 (void) fprintf(stderr, " -P print numbers in parseable form\n"); 829 (void) fprintf(stderr, " -q don't print label contents\n"); 830 (void) fprintf(stderr, " -t <txg> -- highest txg to use when " 831 "searching for uberblocks\n"); 832 (void) fprintf(stderr, " -u uberblock\n"); 833 (void) fprintf(stderr, " -U <cachefile_path> -- use alternate " 834 "cachefile\n"); 835 (void) fprintf(stderr, " -V do verbatim import\n"); 836 (void) fprintf(stderr, " -x <dumpdir> -- " 837 "dump all read blocks into specified directory\n"); 838 (void) fprintf(stderr, " -X attempt extreme rewind (does not " 839 "work with dataset)\n"); 840 (void) fprintf(stderr, " -Y attempt all reconstruction " 841 "combinations for split blocks\n"); 842 (void) fprintf(stderr, " -Z show ZSTD headers \n"); 843 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 844 "to make only that option verbose\n"); 845 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 846 exit(1); 847 } 848 849 static void 850 dump_debug_buffer(void) 851 { 852 if (dump_opt['G']) { 853 (void) printf("\n"); 854 (void) fflush(stdout); 855 zfs_dbgmsg_print("zdb"); 856 } 857 } 858 859 /* 860 * Called for usage errors that are discovered after a call to spa_open(), 861 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 862 */ 863 864 static void 865 fatal(const char *fmt, ...) 866 { 867 va_list ap; 868 869 va_start(ap, fmt); 870 (void) fprintf(stderr, "%s: ", cmdname); 871 (void) vfprintf(stderr, fmt, ap); 872 va_end(ap); 873 (void) fprintf(stderr, "\n"); 874 875 dump_debug_buffer(); 876 877 exit(1); 878 } 879 880 /* ARGSUSED */ 881 static void 882 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 883 { 884 nvlist_t *nv; 885 size_t nvsize = *(uint64_t *)data; 886 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 887 888 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 889 890 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 891 892 umem_free(packed, nvsize); 893 894 dump_nvlist(nv, 8); 895 896 nvlist_free(nv); 897 } 898 899 /* ARGSUSED */ 900 static void 901 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 902 { 903 spa_history_phys_t *shp = data; 904 905 if (shp == NULL) 906 return; 907 908 (void) printf("\t\tpool_create_len = %llu\n", 909 (u_longlong_t)shp->sh_pool_create_len); 910 (void) printf("\t\tphys_max_off = %llu\n", 911 (u_longlong_t)shp->sh_phys_max_off); 912 (void) printf("\t\tbof = %llu\n", 913 (u_longlong_t)shp->sh_bof); 914 (void) printf("\t\teof = %llu\n", 915 (u_longlong_t)shp->sh_eof); 916 (void) printf("\t\trecords_lost = %llu\n", 917 (u_longlong_t)shp->sh_records_lost); 918 } 919 920 static void 921 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 922 { 923 if (dump_opt['P']) 924 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 925 else 926 nicenum(num, buf, sizeof (buf)); 927 } 928 929 static const char histo_stars[] = "****************************************"; 930 static const uint64_t histo_width = sizeof (histo_stars) - 1; 931 932 static void 933 dump_histogram(const uint64_t *histo, int size, int offset) 934 { 935 int i; 936 int minidx = size - 1; 937 int maxidx = 0; 938 uint64_t max = 0; 939 940 for (i = 0; i < size; i++) { 941 if (histo[i] > max) 942 max = histo[i]; 943 if (histo[i] > 0 && i > maxidx) 944 maxidx = i; 945 if (histo[i] > 0 && i < minidx) 946 minidx = i; 947 } 948 949 if (max < histo_width) 950 max = histo_width; 951 952 for (i = minidx; i <= maxidx; i++) { 953 (void) printf("\t\t\t%3u: %6llu %s\n", 954 i + offset, (u_longlong_t)histo[i], 955 &histo_stars[(max - histo[i]) * histo_width / max]); 956 } 957 } 958 959 static void 960 dump_zap_stats(objset_t *os, uint64_t object) 961 { 962 int error; 963 zap_stats_t zs; 964 965 error = zap_get_stats(os, object, &zs); 966 if (error) 967 return; 968 969 if (zs.zs_ptrtbl_len == 0) { 970 ASSERT(zs.zs_num_blocks == 1); 971 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 972 (u_longlong_t)zs.zs_blocksize, 973 (u_longlong_t)zs.zs_num_entries); 974 return; 975 } 976 977 (void) printf("\tFat ZAP stats:\n"); 978 979 (void) printf("\t\tPointer table:\n"); 980 (void) printf("\t\t\t%llu elements\n", 981 (u_longlong_t)zs.zs_ptrtbl_len); 982 (void) printf("\t\t\tzt_blk: %llu\n", 983 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 984 (void) printf("\t\t\tzt_numblks: %llu\n", 985 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 986 (void) printf("\t\t\tzt_shift: %llu\n", 987 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 988 (void) printf("\t\t\tzt_blks_copied: %llu\n", 989 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 990 (void) printf("\t\t\tzt_nextblk: %llu\n", 991 (u_longlong_t)zs.zs_ptrtbl_nextblk); 992 993 (void) printf("\t\tZAP entries: %llu\n", 994 (u_longlong_t)zs.zs_num_entries); 995 (void) printf("\t\tLeaf blocks: %llu\n", 996 (u_longlong_t)zs.zs_num_leafs); 997 (void) printf("\t\tTotal blocks: %llu\n", 998 (u_longlong_t)zs.zs_num_blocks); 999 (void) printf("\t\tzap_block_type: 0x%llx\n", 1000 (u_longlong_t)zs.zs_block_type); 1001 (void) printf("\t\tzap_magic: 0x%llx\n", 1002 (u_longlong_t)zs.zs_magic); 1003 (void) printf("\t\tzap_salt: 0x%llx\n", 1004 (u_longlong_t)zs.zs_salt); 1005 1006 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1007 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1008 1009 (void) printf("\t\tBlocks with n*5 entries:\n"); 1010 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1011 1012 (void) printf("\t\tBlocks n/10 full:\n"); 1013 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1014 1015 (void) printf("\t\tEntries with n chunks:\n"); 1016 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1017 1018 (void) printf("\t\tBuckets with n entries:\n"); 1019 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1020 } 1021 1022 /*ARGSUSED*/ 1023 static void 1024 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1025 { 1026 } 1027 1028 /*ARGSUSED*/ 1029 static void 1030 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1031 { 1032 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1033 } 1034 1035 /*ARGSUSED*/ 1036 static void 1037 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1038 { 1039 } 1040 1041 /*ARGSUSED*/ 1042 static void 1043 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1044 { 1045 uint64_t *arr; 1046 uint64_t oursize; 1047 if (dump_opt['d'] < 6) 1048 return; 1049 1050 if (data == NULL) { 1051 dmu_object_info_t doi; 1052 1053 VERIFY0(dmu_object_info(os, object, &doi)); 1054 size = doi.doi_max_offset; 1055 /* 1056 * We cap the size at 1 mebibyte here to prevent 1057 * allocation failures and nigh-infinite printing if the 1058 * object is extremely large. 1059 */ 1060 oursize = MIN(size, 1 << 20); 1061 arr = kmem_alloc(oursize, KM_SLEEP); 1062 1063 int err = dmu_read(os, object, 0, oursize, arr, 0); 1064 if (err != 0) { 1065 (void) printf("got error %u from dmu_read\n", err); 1066 kmem_free(arr, oursize); 1067 return; 1068 } 1069 } else { 1070 /* 1071 * Even though the allocation is already done in this code path, 1072 * we still cap the size to prevent excessive printing. 1073 */ 1074 oursize = MIN(size, 1 << 20); 1075 arr = data; 1076 } 1077 1078 if (size == 0) { 1079 (void) printf("\t\t[]\n"); 1080 return; 1081 } 1082 1083 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1084 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1085 if (i % 4 != 0) 1086 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1087 else 1088 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1089 } 1090 if (oursize != size) 1091 (void) printf(", ... "); 1092 (void) printf("]\n"); 1093 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 } 1097 1098 /*ARGSUSED*/ 1099 static void 1100 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1101 { 1102 zap_cursor_t zc; 1103 zap_attribute_t attr; 1104 void *prop; 1105 unsigned i; 1106 1107 dump_zap_stats(os, object); 1108 (void) printf("\n"); 1109 1110 for (zap_cursor_init(&zc, os, object); 1111 zap_cursor_retrieve(&zc, &attr) == 0; 1112 zap_cursor_advance(&zc)) { 1113 (void) printf("\t\t%s = ", attr.za_name); 1114 if (attr.za_num_integers == 0) { 1115 (void) printf("\n"); 1116 continue; 1117 } 1118 prop = umem_zalloc(attr.za_num_integers * 1119 attr.za_integer_length, UMEM_NOFAIL); 1120 (void) zap_lookup(os, object, attr.za_name, 1121 attr.za_integer_length, attr.za_num_integers, prop); 1122 if (attr.za_integer_length == 1) { 1123 if (strcmp(attr.za_name, 1124 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1125 strcmp(attr.za_name, 1126 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1127 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1128 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1129 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1130 uint8_t *u8 = prop; 1131 1132 for (i = 0; i < attr.za_num_integers; i++) { 1133 (void) printf("%02x", u8[i]); 1134 } 1135 } else { 1136 (void) printf("%s", (char *)prop); 1137 } 1138 } else { 1139 for (i = 0; i < attr.za_num_integers; i++) { 1140 switch (attr.za_integer_length) { 1141 case 2: 1142 (void) printf("%u ", 1143 ((uint16_t *)prop)[i]); 1144 break; 1145 case 4: 1146 (void) printf("%u ", 1147 ((uint32_t *)prop)[i]); 1148 break; 1149 case 8: 1150 (void) printf("%lld ", 1151 (u_longlong_t)((int64_t *)prop)[i]); 1152 break; 1153 } 1154 } 1155 } 1156 (void) printf("\n"); 1157 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1158 } 1159 zap_cursor_fini(&zc); 1160 } 1161 1162 static void 1163 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1164 { 1165 bpobj_phys_t *bpop = data; 1166 uint64_t i; 1167 char bytes[32], comp[32], uncomp[32]; 1168 1169 /* make sure the output won't get truncated */ 1170 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 1171 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 1172 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 1173 1174 if (bpop == NULL) 1175 return; 1176 1177 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1178 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1179 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1180 1181 (void) printf("\t\tnum_blkptrs = %llu\n", 1182 (u_longlong_t)bpop->bpo_num_blkptrs); 1183 (void) printf("\t\tbytes = %s\n", bytes); 1184 if (size >= BPOBJ_SIZE_V1) { 1185 (void) printf("\t\tcomp = %s\n", comp); 1186 (void) printf("\t\tuncomp = %s\n", uncomp); 1187 } 1188 if (size >= BPOBJ_SIZE_V2) { 1189 (void) printf("\t\tsubobjs = %llu\n", 1190 (u_longlong_t)bpop->bpo_subobjs); 1191 (void) printf("\t\tnum_subobjs = %llu\n", 1192 (u_longlong_t)bpop->bpo_num_subobjs); 1193 } 1194 if (size >= sizeof (*bpop)) { 1195 (void) printf("\t\tnum_freed = %llu\n", 1196 (u_longlong_t)bpop->bpo_num_freed); 1197 } 1198 1199 if (dump_opt['d'] < 5) 1200 return; 1201 1202 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1203 char blkbuf[BP_SPRINTF_LEN]; 1204 blkptr_t bp; 1205 1206 int err = dmu_read(os, object, 1207 i * sizeof (bp), sizeof (bp), &bp, 0); 1208 if (err != 0) { 1209 (void) printf("got error %u from dmu_read\n", err); 1210 break; 1211 } 1212 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1213 BP_GET_FREE(&bp)); 1214 (void) printf("\t%s\n", blkbuf); 1215 } 1216 } 1217 1218 /* ARGSUSED */ 1219 static void 1220 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1221 { 1222 dmu_object_info_t doi; 1223 int64_t i; 1224 1225 VERIFY0(dmu_object_info(os, object, &doi)); 1226 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1227 1228 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1229 if (err != 0) { 1230 (void) printf("got error %u from dmu_read\n", err); 1231 kmem_free(subobjs, doi.doi_max_offset); 1232 return; 1233 } 1234 1235 int64_t last_nonzero = -1; 1236 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1237 if (subobjs[i] != 0) 1238 last_nonzero = i; 1239 } 1240 1241 for (i = 0; i <= last_nonzero; i++) { 1242 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1243 } 1244 kmem_free(subobjs, doi.doi_max_offset); 1245 } 1246 1247 /*ARGSUSED*/ 1248 static void 1249 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1250 { 1251 dump_zap_stats(os, object); 1252 /* contents are printed elsewhere, properly decoded */ 1253 } 1254 1255 /*ARGSUSED*/ 1256 static void 1257 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1258 { 1259 zap_cursor_t zc; 1260 zap_attribute_t attr; 1261 1262 dump_zap_stats(os, object); 1263 (void) printf("\n"); 1264 1265 for (zap_cursor_init(&zc, os, object); 1266 zap_cursor_retrieve(&zc, &attr) == 0; 1267 zap_cursor_advance(&zc)) { 1268 (void) printf("\t\t%s = ", attr.za_name); 1269 if (attr.za_num_integers == 0) { 1270 (void) printf("\n"); 1271 continue; 1272 } 1273 (void) printf(" %llx : [%d:%d:%d]\n", 1274 (u_longlong_t)attr.za_first_integer, 1275 (int)ATTR_LENGTH(attr.za_first_integer), 1276 (int)ATTR_BSWAP(attr.za_first_integer), 1277 (int)ATTR_NUM(attr.za_first_integer)); 1278 } 1279 zap_cursor_fini(&zc); 1280 } 1281 1282 /*ARGSUSED*/ 1283 static void 1284 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1285 { 1286 zap_cursor_t zc; 1287 zap_attribute_t attr; 1288 uint16_t *layout_attrs; 1289 unsigned i; 1290 1291 dump_zap_stats(os, object); 1292 (void) printf("\n"); 1293 1294 for (zap_cursor_init(&zc, os, object); 1295 zap_cursor_retrieve(&zc, &attr) == 0; 1296 zap_cursor_advance(&zc)) { 1297 (void) printf("\t\t%s = [", attr.za_name); 1298 if (attr.za_num_integers == 0) { 1299 (void) printf("\n"); 1300 continue; 1301 } 1302 1303 VERIFY(attr.za_integer_length == 2); 1304 layout_attrs = umem_zalloc(attr.za_num_integers * 1305 attr.za_integer_length, UMEM_NOFAIL); 1306 1307 VERIFY(zap_lookup(os, object, attr.za_name, 1308 attr.za_integer_length, 1309 attr.za_num_integers, layout_attrs) == 0); 1310 1311 for (i = 0; i != attr.za_num_integers; i++) 1312 (void) printf(" %d ", (int)layout_attrs[i]); 1313 (void) printf("]\n"); 1314 umem_free(layout_attrs, 1315 attr.za_num_integers * attr.za_integer_length); 1316 } 1317 zap_cursor_fini(&zc); 1318 } 1319 1320 /*ARGSUSED*/ 1321 static void 1322 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1323 { 1324 zap_cursor_t zc; 1325 zap_attribute_t attr; 1326 const char *typenames[] = { 1327 /* 0 */ "not specified", 1328 /* 1 */ "FIFO", 1329 /* 2 */ "Character Device", 1330 /* 3 */ "3 (invalid)", 1331 /* 4 */ "Directory", 1332 /* 5 */ "5 (invalid)", 1333 /* 6 */ "Block Device", 1334 /* 7 */ "7 (invalid)", 1335 /* 8 */ "Regular File", 1336 /* 9 */ "9 (invalid)", 1337 /* 10 */ "Symbolic Link", 1338 /* 11 */ "11 (invalid)", 1339 /* 12 */ "Socket", 1340 /* 13 */ "Door", 1341 /* 14 */ "Event Port", 1342 /* 15 */ "15 (invalid)", 1343 }; 1344 1345 dump_zap_stats(os, object); 1346 (void) printf("\n"); 1347 1348 for (zap_cursor_init(&zc, os, object); 1349 zap_cursor_retrieve(&zc, &attr) == 0; 1350 zap_cursor_advance(&zc)) { 1351 (void) printf("\t\t%s = %lld (type: %s)\n", 1352 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1353 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1354 } 1355 zap_cursor_fini(&zc); 1356 } 1357 1358 static int 1359 get_dtl_refcount(vdev_t *vd) 1360 { 1361 int refcount = 0; 1362 1363 if (vd->vdev_ops->vdev_op_leaf) { 1364 space_map_t *sm = vd->vdev_dtl_sm; 1365 1366 if (sm != NULL && 1367 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1368 return (1); 1369 return (0); 1370 } 1371 1372 for (unsigned c = 0; c < vd->vdev_children; c++) 1373 refcount += get_dtl_refcount(vd->vdev_child[c]); 1374 return (refcount); 1375 } 1376 1377 static int 1378 get_metaslab_refcount(vdev_t *vd) 1379 { 1380 int refcount = 0; 1381 1382 if (vd->vdev_top == vd) { 1383 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1384 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1385 1386 if (sm != NULL && 1387 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1388 refcount++; 1389 } 1390 } 1391 for (unsigned c = 0; c < vd->vdev_children; c++) 1392 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1393 1394 return (refcount); 1395 } 1396 1397 static int 1398 get_obsolete_refcount(vdev_t *vd) 1399 { 1400 uint64_t obsolete_sm_object; 1401 int refcount = 0; 1402 1403 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1404 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1405 dmu_object_info_t doi; 1406 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1407 obsolete_sm_object, &doi)); 1408 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1409 refcount++; 1410 } 1411 } else { 1412 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1413 ASSERT3U(obsolete_sm_object, ==, 0); 1414 } 1415 for (unsigned c = 0; c < vd->vdev_children; c++) { 1416 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1417 } 1418 1419 return (refcount); 1420 } 1421 1422 static int 1423 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1424 { 1425 uint64_t prev_obj = 1426 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1427 if (prev_obj != 0) { 1428 dmu_object_info_t doi; 1429 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1430 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1431 return (1); 1432 } 1433 } 1434 return (0); 1435 } 1436 1437 static int 1438 get_checkpoint_refcount(vdev_t *vd) 1439 { 1440 int refcount = 0; 1441 1442 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1443 zap_contains(spa_meta_objset(vd->vdev_spa), 1444 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1445 refcount++; 1446 1447 for (uint64_t c = 0; c < vd->vdev_children; c++) 1448 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1449 1450 return (refcount); 1451 } 1452 1453 static int 1454 get_log_spacemap_refcount(spa_t *spa) 1455 { 1456 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1457 } 1458 1459 static int 1460 verify_spacemap_refcounts(spa_t *spa) 1461 { 1462 uint64_t expected_refcount = 0; 1463 uint64_t actual_refcount; 1464 1465 (void) feature_get_refcount(spa, 1466 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1467 &expected_refcount); 1468 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1469 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1470 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1471 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1472 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1473 actual_refcount += get_log_spacemap_refcount(spa); 1474 1475 if (expected_refcount != actual_refcount) { 1476 (void) printf("space map refcount mismatch: expected %lld != " 1477 "actual %lld\n", 1478 (longlong_t)expected_refcount, 1479 (longlong_t)actual_refcount); 1480 return (2); 1481 } 1482 return (0); 1483 } 1484 1485 static void 1486 dump_spacemap(objset_t *os, space_map_t *sm) 1487 { 1488 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1489 "INVALID", "INVALID", "INVALID", "INVALID" }; 1490 1491 if (sm == NULL) 1492 return; 1493 1494 (void) printf("space map object %llu:\n", 1495 (longlong_t)sm->sm_object); 1496 (void) printf(" smp_length = 0x%llx\n", 1497 (longlong_t)sm->sm_phys->smp_length); 1498 (void) printf(" smp_alloc = 0x%llx\n", 1499 (longlong_t)sm->sm_phys->smp_alloc); 1500 1501 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1502 return; 1503 1504 /* 1505 * Print out the freelist entries in both encoded and decoded form. 1506 */ 1507 uint8_t mapshift = sm->sm_shift; 1508 int64_t alloc = 0; 1509 uint64_t word, entry_id = 0; 1510 for (uint64_t offset = 0; offset < space_map_length(sm); 1511 offset += sizeof (word)) { 1512 1513 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1514 sizeof (word), &word, DMU_READ_PREFETCH)); 1515 1516 if (sm_entry_is_debug(word)) { 1517 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1518 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1519 if (de_txg == 0) { 1520 (void) printf( 1521 "\t [%6llu] PADDING\n", 1522 (u_longlong_t)entry_id); 1523 } else { 1524 (void) printf( 1525 "\t [%6llu] %s: txg %llu pass %llu\n", 1526 (u_longlong_t)entry_id, 1527 ddata[SM_DEBUG_ACTION_DECODE(word)], 1528 (u_longlong_t)de_txg, 1529 (u_longlong_t)de_sync_pass); 1530 } 1531 entry_id++; 1532 continue; 1533 } 1534 1535 uint8_t words; 1536 char entry_type; 1537 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1538 1539 if (sm_entry_is_single_word(word)) { 1540 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1541 'A' : 'F'; 1542 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1543 sm->sm_start; 1544 entry_run = SM_RUN_DECODE(word) << mapshift; 1545 words = 1; 1546 } else { 1547 /* it is a two-word entry so we read another word */ 1548 ASSERT(sm_entry_is_double_word(word)); 1549 1550 uint64_t extra_word; 1551 offset += sizeof (extra_word); 1552 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1553 sizeof (extra_word), &extra_word, 1554 DMU_READ_PREFETCH)); 1555 1556 ASSERT3U(offset, <=, space_map_length(sm)); 1557 1558 entry_run = SM2_RUN_DECODE(word) << mapshift; 1559 entry_vdev = SM2_VDEV_DECODE(word); 1560 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1561 'A' : 'F'; 1562 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1563 mapshift) + sm->sm_start; 1564 words = 2; 1565 } 1566 1567 (void) printf("\t [%6llu] %c range:" 1568 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1569 (u_longlong_t)entry_id, 1570 entry_type, (u_longlong_t)entry_off, 1571 (u_longlong_t)(entry_off + entry_run), 1572 (u_longlong_t)entry_run, 1573 (u_longlong_t)entry_vdev, words); 1574 1575 if (entry_type == 'A') 1576 alloc += entry_run; 1577 else 1578 alloc -= entry_run; 1579 entry_id++; 1580 } 1581 if (alloc != space_map_allocated(sm)) { 1582 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1583 "with space map summary (%lld)\n", 1584 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1585 } 1586 } 1587 1588 static void 1589 dump_metaslab_stats(metaslab_t *msp) 1590 { 1591 char maxbuf[32]; 1592 range_tree_t *rt = msp->ms_allocatable; 1593 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1594 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1595 1596 /* max sure nicenum has enough space */ 1597 CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ); 1598 1599 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1600 1601 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1602 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1603 "freepct", free_pct); 1604 (void) printf("\tIn-memory histogram:\n"); 1605 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1606 } 1607 1608 static void 1609 dump_metaslab(metaslab_t *msp) 1610 { 1611 vdev_t *vd = msp->ms_group->mg_vd; 1612 spa_t *spa = vd->vdev_spa; 1613 space_map_t *sm = msp->ms_sm; 1614 char freebuf[32]; 1615 1616 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1617 sizeof (freebuf)); 1618 1619 (void) printf( 1620 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1621 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1622 (u_longlong_t)space_map_object(sm), freebuf); 1623 1624 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1625 mutex_enter(&msp->ms_lock); 1626 VERIFY0(metaslab_load(msp)); 1627 range_tree_stat_verify(msp->ms_allocatable); 1628 dump_metaslab_stats(msp); 1629 metaslab_unload(msp); 1630 mutex_exit(&msp->ms_lock); 1631 } 1632 1633 if (dump_opt['m'] > 1 && sm != NULL && 1634 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1635 /* 1636 * The space map histogram represents free space in chunks 1637 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1638 */ 1639 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1640 (u_longlong_t)msp->ms_fragmentation); 1641 dump_histogram(sm->sm_phys->smp_histogram, 1642 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1643 } 1644 1645 if (vd->vdev_ops == &vdev_draid_ops) 1646 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1647 else 1648 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1649 1650 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1651 1652 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1653 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1654 (u_longlong_t)metaslab_unflushed_txg(msp)); 1655 } 1656 } 1657 1658 static void 1659 print_vdev_metaslab_header(vdev_t *vd) 1660 { 1661 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1662 const char *bias_str = ""; 1663 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1664 bias_str = VDEV_ALLOC_BIAS_LOG; 1665 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1666 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1667 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1668 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1669 } 1670 1671 uint64_t ms_flush_data_obj = 0; 1672 if (vd->vdev_top_zap != 0) { 1673 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1674 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1675 sizeof (uint64_t), 1, &ms_flush_data_obj); 1676 if (error != ENOENT) { 1677 ASSERT0(error); 1678 } 1679 } 1680 1681 (void) printf("\tvdev %10llu %s", 1682 (u_longlong_t)vd->vdev_id, bias_str); 1683 1684 if (ms_flush_data_obj != 0) { 1685 (void) printf(" ms_unflushed_phys object %llu", 1686 (u_longlong_t)ms_flush_data_obj); 1687 } 1688 1689 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1690 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1691 "offset", "spacemap", "free"); 1692 (void) printf("\t%15s %19s %15s %12s\n", 1693 "---------------", "-------------------", 1694 "---------------", "------------"); 1695 } 1696 1697 static void 1698 dump_metaslab_groups(spa_t *spa) 1699 { 1700 vdev_t *rvd = spa->spa_root_vdev; 1701 metaslab_class_t *mc = spa_normal_class(spa); 1702 uint64_t fragmentation; 1703 1704 metaslab_class_histogram_verify(mc); 1705 1706 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1707 vdev_t *tvd = rvd->vdev_child[c]; 1708 metaslab_group_t *mg = tvd->vdev_mg; 1709 1710 if (mg == NULL || mg->mg_class != mc) 1711 continue; 1712 1713 metaslab_group_histogram_verify(mg); 1714 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1715 1716 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1717 "fragmentation", 1718 (u_longlong_t)tvd->vdev_id, 1719 (u_longlong_t)tvd->vdev_ms_count); 1720 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1721 (void) printf("%3s\n", "-"); 1722 } else { 1723 (void) printf("%3llu%%\n", 1724 (u_longlong_t)mg->mg_fragmentation); 1725 } 1726 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1727 } 1728 1729 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1730 fragmentation = metaslab_class_fragmentation(mc); 1731 if (fragmentation == ZFS_FRAG_INVALID) 1732 (void) printf("\t%3s\n", "-"); 1733 else 1734 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1735 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1736 } 1737 1738 static void 1739 print_vdev_indirect(vdev_t *vd) 1740 { 1741 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1742 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1743 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1744 1745 if (vim == NULL) { 1746 ASSERT3P(vib, ==, NULL); 1747 return; 1748 } 1749 1750 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1751 vic->vic_mapping_object); 1752 ASSERT3U(vdev_indirect_births_object(vib), ==, 1753 vic->vic_births_object); 1754 1755 (void) printf("indirect births obj %llu:\n", 1756 (longlong_t)vic->vic_births_object); 1757 (void) printf(" vib_count = %llu\n", 1758 (longlong_t)vdev_indirect_births_count(vib)); 1759 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1760 vdev_indirect_birth_entry_phys_t *cur_vibe = 1761 &vib->vib_entries[i]; 1762 (void) printf("\toffset %llx -> txg %llu\n", 1763 (longlong_t)cur_vibe->vibe_offset, 1764 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1765 } 1766 (void) printf("\n"); 1767 1768 (void) printf("indirect mapping obj %llu:\n", 1769 (longlong_t)vic->vic_mapping_object); 1770 (void) printf(" vim_max_offset = 0x%llx\n", 1771 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1772 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1773 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1774 (void) printf(" vim_count = %llu\n", 1775 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1776 1777 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1778 return; 1779 1780 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1781 1782 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1783 vdev_indirect_mapping_entry_phys_t *vimep = 1784 &vim->vim_entries[i]; 1785 (void) printf("\t<%llx:%llx:%llx> -> " 1786 "<%llx:%llx:%llx> (%x obsolete)\n", 1787 (longlong_t)vd->vdev_id, 1788 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1789 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1790 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1791 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1792 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1793 counts[i]); 1794 } 1795 (void) printf("\n"); 1796 1797 uint64_t obsolete_sm_object; 1798 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1799 if (obsolete_sm_object != 0) { 1800 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1801 (void) printf("obsolete space map object %llu:\n", 1802 (u_longlong_t)obsolete_sm_object); 1803 ASSERT(vd->vdev_obsolete_sm != NULL); 1804 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1805 obsolete_sm_object); 1806 dump_spacemap(mos, vd->vdev_obsolete_sm); 1807 (void) printf("\n"); 1808 } 1809 } 1810 1811 static void 1812 dump_metaslabs(spa_t *spa) 1813 { 1814 vdev_t *vd, *rvd = spa->spa_root_vdev; 1815 uint64_t m, c = 0, children = rvd->vdev_children; 1816 1817 (void) printf("\nMetaslabs:\n"); 1818 1819 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1820 c = zopt_metaslab[0]; 1821 1822 if (c >= children) 1823 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1824 1825 if (zopt_metaslab_args > 1) { 1826 vd = rvd->vdev_child[c]; 1827 print_vdev_metaslab_header(vd); 1828 1829 for (m = 1; m < zopt_metaslab_args; m++) { 1830 if (zopt_metaslab[m] < vd->vdev_ms_count) 1831 dump_metaslab( 1832 vd->vdev_ms[zopt_metaslab[m]]); 1833 else 1834 (void) fprintf(stderr, "bad metaslab " 1835 "number %llu\n", 1836 (u_longlong_t)zopt_metaslab[m]); 1837 } 1838 (void) printf("\n"); 1839 return; 1840 } 1841 children = c + 1; 1842 } 1843 for (; c < children; c++) { 1844 vd = rvd->vdev_child[c]; 1845 print_vdev_metaslab_header(vd); 1846 1847 print_vdev_indirect(vd); 1848 1849 for (m = 0; m < vd->vdev_ms_count; m++) 1850 dump_metaslab(vd->vdev_ms[m]); 1851 (void) printf("\n"); 1852 } 1853 } 1854 1855 static void 1856 dump_log_spacemaps(spa_t *spa) 1857 { 1858 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1859 return; 1860 1861 (void) printf("\nLog Space Maps in Pool:\n"); 1862 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1863 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1864 space_map_t *sm = NULL; 1865 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1866 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1867 1868 (void) printf("Log Spacemap object %llu txg %llu\n", 1869 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1870 dump_spacemap(spa->spa_meta_objset, sm); 1871 space_map_close(sm); 1872 } 1873 (void) printf("\n"); 1874 } 1875 1876 static void 1877 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1878 { 1879 const ddt_phys_t *ddp = dde->dde_phys; 1880 const ddt_key_t *ddk = &dde->dde_key; 1881 const char *types[4] = { "ditto", "single", "double", "triple" }; 1882 char blkbuf[BP_SPRINTF_LEN]; 1883 blkptr_t blk; 1884 int p; 1885 1886 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1887 if (ddp->ddp_phys_birth == 0) 1888 continue; 1889 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1890 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1891 (void) printf("index %llx refcnt %llu %s %s\n", 1892 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1893 types[p], blkbuf); 1894 } 1895 } 1896 1897 static void 1898 dump_dedup_ratio(const ddt_stat_t *dds) 1899 { 1900 double rL, rP, rD, D, dedup, compress, copies; 1901 1902 if (dds->dds_blocks == 0) 1903 return; 1904 1905 rL = (double)dds->dds_ref_lsize; 1906 rP = (double)dds->dds_ref_psize; 1907 rD = (double)dds->dds_ref_dsize; 1908 D = (double)dds->dds_dsize; 1909 1910 dedup = rD / D; 1911 compress = rL / rP; 1912 copies = rD / rP; 1913 1914 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1915 "dedup * compress / copies = %.2f\n\n", 1916 dedup, compress, copies, dedup * compress / copies); 1917 } 1918 1919 static void 1920 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1921 { 1922 char name[DDT_NAMELEN]; 1923 ddt_entry_t dde; 1924 uint64_t walk = 0; 1925 dmu_object_info_t doi; 1926 uint64_t count, dspace, mspace; 1927 int error; 1928 1929 error = ddt_object_info(ddt, type, class, &doi); 1930 1931 if (error == ENOENT) 1932 return; 1933 ASSERT(error == 0); 1934 1935 error = ddt_object_count(ddt, type, class, &count); 1936 ASSERT(error == 0); 1937 if (count == 0) 1938 return; 1939 1940 dspace = doi.doi_physical_blocks_512 << 9; 1941 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1942 1943 ddt_object_name(ddt, type, class, name); 1944 1945 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1946 name, 1947 (u_longlong_t)count, 1948 (u_longlong_t)(dspace / count), 1949 (u_longlong_t)(mspace / count)); 1950 1951 if (dump_opt['D'] < 3) 1952 return; 1953 1954 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1955 1956 if (dump_opt['D'] < 4) 1957 return; 1958 1959 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 1960 return; 1961 1962 (void) printf("%s contents:\n\n", name); 1963 1964 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 1965 dump_dde(ddt, &dde, walk); 1966 1967 ASSERT3U(error, ==, ENOENT); 1968 1969 (void) printf("\n"); 1970 } 1971 1972 static void 1973 dump_all_ddts(spa_t *spa) 1974 { 1975 ddt_histogram_t ddh_total; 1976 ddt_stat_t dds_total; 1977 1978 bzero(&ddh_total, sizeof (ddh_total)); 1979 bzero(&dds_total, sizeof (dds_total)); 1980 1981 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1982 ddt_t *ddt = spa->spa_ddt[c]; 1983 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 1984 for (enum ddt_class class = 0; class < DDT_CLASSES; 1985 class++) { 1986 dump_ddt(ddt, type, class); 1987 } 1988 } 1989 } 1990 1991 ddt_get_dedup_stats(spa, &dds_total); 1992 1993 if (dds_total.dds_blocks == 0) { 1994 (void) printf("All DDTs are empty\n"); 1995 return; 1996 } 1997 1998 (void) printf("\n"); 1999 2000 if (dump_opt['D'] > 1) { 2001 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2002 ddt_get_dedup_histogram(spa, &ddh_total); 2003 zpool_dump_ddt(&dds_total, &ddh_total); 2004 } 2005 2006 dump_dedup_ratio(&dds_total); 2007 } 2008 2009 static void 2010 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2011 { 2012 char *prefix = arg; 2013 2014 (void) printf("%s [%llu,%llu) length %llu\n", 2015 prefix, 2016 (u_longlong_t)start, 2017 (u_longlong_t)(start + size), 2018 (u_longlong_t)(size)); 2019 } 2020 2021 static void 2022 dump_dtl(vdev_t *vd, int indent) 2023 { 2024 spa_t *spa = vd->vdev_spa; 2025 boolean_t required; 2026 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2027 "outage" }; 2028 char prefix[256]; 2029 2030 spa_vdev_state_enter(spa, SCL_NONE); 2031 required = vdev_dtl_required(vd); 2032 (void) spa_vdev_state_exit(spa, NULL, 0); 2033 2034 if (indent == 0) 2035 (void) printf("\nDirty time logs:\n\n"); 2036 2037 (void) printf("\t%*s%s [%s]\n", indent, "", 2038 vd->vdev_path ? vd->vdev_path : 2039 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2040 required ? "DTL-required" : "DTL-expendable"); 2041 2042 for (int t = 0; t < DTL_TYPES; t++) { 2043 range_tree_t *rt = vd->vdev_dtl[t]; 2044 if (range_tree_space(rt) == 0) 2045 continue; 2046 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2047 indent + 2, "", name[t]); 2048 range_tree_walk(rt, dump_dtl_seg, prefix); 2049 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2050 dump_spacemap(spa->spa_meta_objset, 2051 vd->vdev_dtl_sm); 2052 } 2053 2054 for (unsigned c = 0; c < vd->vdev_children; c++) 2055 dump_dtl(vd->vdev_child[c], indent + 4); 2056 } 2057 2058 static void 2059 dump_history(spa_t *spa) 2060 { 2061 nvlist_t **events = NULL; 2062 char *buf; 2063 uint64_t resid, len, off = 0; 2064 uint_t num = 0; 2065 int error; 2066 time_t tsec; 2067 struct tm t; 2068 char tbuf[30]; 2069 char internalstr[MAXPATHLEN]; 2070 2071 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2072 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2073 __func__); 2074 return; 2075 } 2076 2077 do { 2078 len = SPA_OLD_MAXBLOCKSIZE; 2079 2080 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2081 (void) fprintf(stderr, "Unable to read history: " 2082 "error %d\n", error); 2083 free(buf); 2084 return; 2085 } 2086 2087 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2088 break; 2089 2090 off -= resid; 2091 } while (len != 0); 2092 2093 (void) printf("\nHistory:\n"); 2094 for (unsigned i = 0; i < num; i++) { 2095 uint64_t time, txg, ievent; 2096 char *cmd, *intstr; 2097 boolean_t printed = B_FALSE; 2098 2099 if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, 2100 &time) != 0) 2101 goto next; 2102 if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, 2103 &cmd) != 0) { 2104 if (nvlist_lookup_uint64(events[i], 2105 ZPOOL_HIST_INT_EVENT, &ievent) != 0) 2106 goto next; 2107 verify(nvlist_lookup_uint64(events[i], 2108 ZPOOL_HIST_TXG, &txg) == 0); 2109 verify(nvlist_lookup_string(events[i], 2110 ZPOOL_HIST_INT_STR, &intstr) == 0); 2111 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2112 goto next; 2113 2114 (void) snprintf(internalstr, 2115 sizeof (internalstr), 2116 "[internal %s txg:%lld] %s", 2117 zfs_history_event_names[ievent], 2118 (longlong_t)txg, intstr); 2119 cmd = internalstr; 2120 } 2121 tsec = time; 2122 (void) localtime_r(&tsec, &t); 2123 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2124 (void) printf("%s %s\n", tbuf, cmd); 2125 printed = B_TRUE; 2126 2127 next: 2128 if (dump_opt['h'] > 1) { 2129 if (!printed) 2130 (void) printf("unrecognized record:\n"); 2131 dump_nvlist(events[i], 2); 2132 } 2133 } 2134 free(buf); 2135 } 2136 2137 /*ARGSUSED*/ 2138 static void 2139 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2140 { 2141 } 2142 2143 static uint64_t 2144 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2145 const zbookmark_phys_t *zb) 2146 { 2147 if (dnp == NULL) { 2148 ASSERT(zb->zb_level < 0); 2149 if (zb->zb_object == 0) 2150 return (zb->zb_blkid); 2151 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2152 } 2153 2154 ASSERT(zb->zb_level >= 0); 2155 2156 return ((zb->zb_blkid << 2157 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2158 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2159 } 2160 2161 static void 2162 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2163 const blkptr_t *bp) 2164 { 2165 abd_t *pabd; 2166 void *buf; 2167 zio_t *zio; 2168 zfs_zstdhdr_t zstd_hdr; 2169 int error; 2170 2171 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2172 return; 2173 2174 if (BP_IS_HOLE(bp)) 2175 return; 2176 2177 if (BP_IS_EMBEDDED(bp)) { 2178 buf = malloc(SPA_MAXBLOCKSIZE); 2179 if (buf == NULL) { 2180 (void) fprintf(stderr, "out of memory\n"); 2181 exit(1); 2182 } 2183 decode_embedded_bp_compressed(bp, buf); 2184 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2185 free(buf); 2186 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2187 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2188 (void) snprintf(blkbuf + strlen(blkbuf), 2189 buflen - strlen(blkbuf), 2190 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2191 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2192 return; 2193 } 2194 2195 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2196 zio = zio_root(spa, NULL, NULL, 0); 2197 2198 /* Decrypt but don't decompress so we can read the compression header */ 2199 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2200 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2201 NULL)); 2202 error = zio_wait(zio); 2203 if (error) { 2204 (void) fprintf(stderr, "read failed: %d\n", error); 2205 return; 2206 } 2207 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2208 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2209 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2210 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2211 2212 (void) snprintf(blkbuf + strlen(blkbuf), 2213 buflen - strlen(blkbuf), 2214 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2215 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2216 2217 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2218 } 2219 2220 static void 2221 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2222 boolean_t bp_freed) 2223 { 2224 const dva_t *dva = bp->blk_dva; 2225 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2226 int i; 2227 2228 if (dump_opt['b'] >= 6) { 2229 snprintf_blkptr(blkbuf, buflen, bp); 2230 if (bp_freed) { 2231 (void) snprintf(blkbuf + strlen(blkbuf), 2232 buflen - strlen(blkbuf), " %s", "FREE"); 2233 } 2234 return; 2235 } 2236 2237 if (BP_IS_EMBEDDED(bp)) { 2238 (void) sprintf(blkbuf, 2239 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2240 (int)BPE_GET_ETYPE(bp), 2241 (u_longlong_t)BPE_GET_LSIZE(bp), 2242 (u_longlong_t)BPE_GET_PSIZE(bp), 2243 (u_longlong_t)bp->blk_birth); 2244 return; 2245 } 2246 2247 blkbuf[0] = '\0'; 2248 2249 for (i = 0; i < ndvas; i++) 2250 (void) snprintf(blkbuf + strlen(blkbuf), 2251 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2252 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2253 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2254 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2255 2256 if (BP_IS_HOLE(bp)) { 2257 (void) snprintf(blkbuf + strlen(blkbuf), 2258 buflen - strlen(blkbuf), 2259 "%llxL B=%llu", 2260 (u_longlong_t)BP_GET_LSIZE(bp), 2261 (u_longlong_t)bp->blk_birth); 2262 } else { 2263 (void) snprintf(blkbuf + strlen(blkbuf), 2264 buflen - strlen(blkbuf), 2265 "%llxL/%llxP F=%llu B=%llu/%llu", 2266 (u_longlong_t)BP_GET_LSIZE(bp), 2267 (u_longlong_t)BP_GET_PSIZE(bp), 2268 (u_longlong_t)BP_GET_FILL(bp), 2269 (u_longlong_t)bp->blk_birth, 2270 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2271 if (bp_freed) 2272 (void) snprintf(blkbuf + strlen(blkbuf), 2273 buflen - strlen(blkbuf), " %s", "FREE"); 2274 (void) snprintf(blkbuf + strlen(blkbuf), 2275 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx", 2276 (u_longlong_t)bp->blk_cksum.zc_word[0], 2277 (u_longlong_t)bp->blk_cksum.zc_word[1], 2278 (u_longlong_t)bp->blk_cksum.zc_word[2], 2279 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2280 } 2281 } 2282 2283 static void 2284 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2285 const dnode_phys_t *dnp) 2286 { 2287 char blkbuf[BP_SPRINTF_LEN]; 2288 int l; 2289 2290 if (!BP_IS_EMBEDDED(bp)) { 2291 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2292 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2293 } 2294 2295 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2296 2297 ASSERT(zb->zb_level >= 0); 2298 2299 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2300 if (l == zb->zb_level) { 2301 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2302 } else { 2303 (void) printf(" "); 2304 } 2305 } 2306 2307 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2308 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2309 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2310 (void) printf("%s\n", blkbuf); 2311 } 2312 2313 static int 2314 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2315 blkptr_t *bp, const zbookmark_phys_t *zb) 2316 { 2317 int err = 0; 2318 2319 if (bp->blk_birth == 0) 2320 return (0); 2321 2322 print_indirect(spa, bp, zb, dnp); 2323 2324 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2325 arc_flags_t flags = ARC_FLAG_WAIT; 2326 int i; 2327 blkptr_t *cbp; 2328 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2329 arc_buf_t *buf; 2330 uint64_t fill = 0; 2331 ASSERT(!BP_IS_REDACTED(bp)); 2332 2333 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2334 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2335 if (err) 2336 return (err); 2337 ASSERT(buf->b_data); 2338 2339 /* recursively visit blocks below this */ 2340 cbp = buf->b_data; 2341 for (i = 0; i < epb; i++, cbp++) { 2342 zbookmark_phys_t czb; 2343 2344 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2345 zb->zb_level - 1, 2346 zb->zb_blkid * epb + i); 2347 err = visit_indirect(spa, dnp, cbp, &czb); 2348 if (err) 2349 break; 2350 fill += BP_GET_FILL(cbp); 2351 } 2352 if (!err) 2353 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2354 arc_buf_destroy(buf, &buf); 2355 } 2356 2357 return (err); 2358 } 2359 2360 /*ARGSUSED*/ 2361 static void 2362 dump_indirect(dnode_t *dn) 2363 { 2364 dnode_phys_t *dnp = dn->dn_phys; 2365 int j; 2366 zbookmark_phys_t czb; 2367 2368 (void) printf("Indirect blocks:\n"); 2369 2370 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2371 dn->dn_object, dnp->dn_nlevels - 1, 0); 2372 for (j = 0; j < dnp->dn_nblkptr; j++) { 2373 czb.zb_blkid = j; 2374 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2375 &dnp->dn_blkptr[j], &czb); 2376 } 2377 2378 (void) printf("\n"); 2379 } 2380 2381 /*ARGSUSED*/ 2382 static void 2383 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2384 { 2385 dsl_dir_phys_t *dd = data; 2386 time_t crtime; 2387 char nice[32]; 2388 2389 /* make sure nicenum has enough space */ 2390 CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ); 2391 2392 if (dd == NULL) 2393 return; 2394 2395 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2396 2397 crtime = dd->dd_creation_time; 2398 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2399 (void) printf("\t\thead_dataset_obj = %llu\n", 2400 (u_longlong_t)dd->dd_head_dataset_obj); 2401 (void) printf("\t\tparent_dir_obj = %llu\n", 2402 (u_longlong_t)dd->dd_parent_obj); 2403 (void) printf("\t\torigin_obj = %llu\n", 2404 (u_longlong_t)dd->dd_origin_obj); 2405 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2406 (u_longlong_t)dd->dd_child_dir_zapobj); 2407 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2408 (void) printf("\t\tused_bytes = %s\n", nice); 2409 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2410 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2411 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2412 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2413 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2414 (void) printf("\t\tquota = %s\n", nice); 2415 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2416 (void) printf("\t\treserved = %s\n", nice); 2417 (void) printf("\t\tprops_zapobj = %llu\n", 2418 (u_longlong_t)dd->dd_props_zapobj); 2419 (void) printf("\t\tdeleg_zapobj = %llu\n", 2420 (u_longlong_t)dd->dd_deleg_zapobj); 2421 (void) printf("\t\tflags = %llx\n", 2422 (u_longlong_t)dd->dd_flags); 2423 2424 #define DO(which) \ 2425 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2426 sizeof (nice)); \ 2427 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2428 DO(HEAD); 2429 DO(SNAP); 2430 DO(CHILD); 2431 DO(CHILD_RSRV); 2432 DO(REFRSRV); 2433 #undef DO 2434 (void) printf("\t\tclones = %llu\n", 2435 (u_longlong_t)dd->dd_clones); 2436 } 2437 2438 /*ARGSUSED*/ 2439 static void 2440 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2441 { 2442 dsl_dataset_phys_t *ds = data; 2443 time_t crtime; 2444 char used[32], compressed[32], uncompressed[32], unique[32]; 2445 char blkbuf[BP_SPRINTF_LEN]; 2446 2447 /* make sure nicenum has enough space */ 2448 CTASSERT(sizeof (used) >= NN_NUMBUF_SZ); 2449 CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ); 2450 CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ); 2451 CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ); 2452 2453 if (ds == NULL) 2454 return; 2455 2456 ASSERT(size == sizeof (*ds)); 2457 crtime = ds->ds_creation_time; 2458 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2459 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2460 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2461 sizeof (uncompressed)); 2462 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2463 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2464 2465 (void) printf("\t\tdir_obj = %llu\n", 2466 (u_longlong_t)ds->ds_dir_obj); 2467 (void) printf("\t\tprev_snap_obj = %llu\n", 2468 (u_longlong_t)ds->ds_prev_snap_obj); 2469 (void) printf("\t\tprev_snap_txg = %llu\n", 2470 (u_longlong_t)ds->ds_prev_snap_txg); 2471 (void) printf("\t\tnext_snap_obj = %llu\n", 2472 (u_longlong_t)ds->ds_next_snap_obj); 2473 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2474 (u_longlong_t)ds->ds_snapnames_zapobj); 2475 (void) printf("\t\tnum_children = %llu\n", 2476 (u_longlong_t)ds->ds_num_children); 2477 (void) printf("\t\tuserrefs_obj = %llu\n", 2478 (u_longlong_t)ds->ds_userrefs_obj); 2479 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2480 (void) printf("\t\tcreation_txg = %llu\n", 2481 (u_longlong_t)ds->ds_creation_txg); 2482 (void) printf("\t\tdeadlist_obj = %llu\n", 2483 (u_longlong_t)ds->ds_deadlist_obj); 2484 (void) printf("\t\tused_bytes = %s\n", used); 2485 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2486 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2487 (void) printf("\t\tunique = %s\n", unique); 2488 (void) printf("\t\tfsid_guid = %llu\n", 2489 (u_longlong_t)ds->ds_fsid_guid); 2490 (void) printf("\t\tguid = %llu\n", 2491 (u_longlong_t)ds->ds_guid); 2492 (void) printf("\t\tflags = %llx\n", 2493 (u_longlong_t)ds->ds_flags); 2494 (void) printf("\t\tnext_clones_obj = %llu\n", 2495 (u_longlong_t)ds->ds_next_clones_obj); 2496 (void) printf("\t\tprops_obj = %llu\n", 2497 (u_longlong_t)ds->ds_props_obj); 2498 (void) printf("\t\tbp = %s\n", blkbuf); 2499 } 2500 2501 /* ARGSUSED */ 2502 static int 2503 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2504 { 2505 char blkbuf[BP_SPRINTF_LEN]; 2506 2507 if (bp->blk_birth != 0) { 2508 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2509 (void) printf("\t%s\n", blkbuf); 2510 } 2511 return (0); 2512 } 2513 2514 static void 2515 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2516 { 2517 char bytes[32]; 2518 bptree_phys_t *bt; 2519 dmu_buf_t *db; 2520 2521 /* make sure nicenum has enough space */ 2522 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2523 2524 if (dump_opt['d'] < 3) 2525 return; 2526 2527 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2528 bt = db->db_data; 2529 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2530 (void) printf("\n %s: %llu datasets, %s\n", 2531 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2532 dmu_buf_rele(db, FTAG); 2533 2534 if (dump_opt['d'] < 5) 2535 return; 2536 2537 (void) printf("\n"); 2538 2539 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2540 } 2541 2542 /* ARGSUSED */ 2543 static int 2544 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2545 { 2546 char blkbuf[BP_SPRINTF_LEN]; 2547 2548 ASSERT(bp->blk_birth != 0); 2549 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2550 (void) printf("\t%s\n", blkbuf); 2551 return (0); 2552 } 2553 2554 static void 2555 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2556 { 2557 char bytes[32]; 2558 char comp[32]; 2559 char uncomp[32]; 2560 uint64_t i; 2561 2562 /* make sure nicenum has enough space */ 2563 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2564 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2565 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2566 2567 if (dump_opt['d'] < 3) 2568 return; 2569 2570 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2571 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2572 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2573 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2574 if (bpo->bpo_havefreed) { 2575 (void) printf(" %*s: object %llu, %llu local " 2576 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2577 "%s (%s/%s comp)\n", 2578 indent * 8, name, 2579 (u_longlong_t)bpo->bpo_object, 2580 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2581 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2582 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2583 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2584 bytes, comp, uncomp); 2585 } else { 2586 (void) printf(" %*s: object %llu, %llu local " 2587 "blkptrs, %llu subobjs in object %llu, " 2588 "%s (%s/%s comp)\n", 2589 indent * 8, name, 2590 (u_longlong_t)bpo->bpo_object, 2591 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2592 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2593 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2594 bytes, comp, uncomp); 2595 } 2596 2597 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2598 uint64_t subobj; 2599 bpobj_t subbpo; 2600 int error; 2601 VERIFY0(dmu_read(bpo->bpo_os, 2602 bpo->bpo_phys->bpo_subobjs, 2603 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2604 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2605 if (error != 0) { 2606 (void) printf("ERROR %u while trying to open " 2607 "subobj id %llu\n", 2608 error, (u_longlong_t)subobj); 2609 continue; 2610 } 2611 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2612 bpobj_close(&subbpo); 2613 } 2614 } else { 2615 if (bpo->bpo_havefreed) { 2616 (void) printf(" %*s: object %llu, %llu blkptrs, " 2617 "%llu freed, %s\n", 2618 indent * 8, name, 2619 (u_longlong_t)bpo->bpo_object, 2620 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2621 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2622 bytes); 2623 } else { 2624 (void) printf(" %*s: object %llu, %llu blkptrs, " 2625 "%s\n", 2626 indent * 8, name, 2627 (u_longlong_t)bpo->bpo_object, 2628 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2629 bytes); 2630 } 2631 } 2632 2633 if (dump_opt['d'] < 5) 2634 return; 2635 2636 2637 if (indent == 0) { 2638 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2639 (void) printf("\n"); 2640 } 2641 } 2642 2643 static int 2644 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2645 boolean_t print_list) 2646 { 2647 int err = 0; 2648 zfs_bookmark_phys_t prop; 2649 objset_t *mos = dp->dp_spa->spa_meta_objset; 2650 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2651 2652 if (err != 0) { 2653 return (err); 2654 } 2655 2656 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2657 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2658 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2659 (u_longlong_t)prop.zbm_creation_txg, 2660 (u_longlong_t)prop.zbm_creation_time, 2661 (u_longlong_t)prop.zbm_redaction_obj); 2662 2663 IMPLY(print_list, print_redact); 2664 if (!print_redact || prop.zbm_redaction_obj == 0) 2665 return (0); 2666 2667 redaction_list_t *rl; 2668 VERIFY0(dsl_redaction_list_hold_obj(dp, 2669 prop.zbm_redaction_obj, FTAG, &rl)); 2670 2671 redaction_list_phys_t *rlp = rl->rl_phys; 2672 (void) printf("\tRedacted:\n\t\tProgress: "); 2673 if (rlp->rlp_last_object != UINT64_MAX || 2674 rlp->rlp_last_blkid != UINT64_MAX) { 2675 (void) printf("%llu %llu (incomplete)\n", 2676 (u_longlong_t)rlp->rlp_last_object, 2677 (u_longlong_t)rlp->rlp_last_blkid); 2678 } else { 2679 (void) printf("complete\n"); 2680 } 2681 (void) printf("\t\tSnapshots: ["); 2682 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2683 if (i > 0) 2684 (void) printf(", "); 2685 (void) printf("%0llu", 2686 (u_longlong_t)rlp->rlp_snaps[i]); 2687 } 2688 (void) printf("]\n\t\tLength: %llu\n", 2689 (u_longlong_t)rlp->rlp_num_entries); 2690 2691 if (!print_list) { 2692 dsl_redaction_list_rele(rl, FTAG); 2693 return (0); 2694 } 2695 2696 if (rlp->rlp_num_entries == 0) { 2697 dsl_redaction_list_rele(rl, FTAG); 2698 (void) printf("\t\tRedaction List: []\n\n"); 2699 return (0); 2700 } 2701 2702 redact_block_phys_t *rbp_buf; 2703 uint64_t size; 2704 dmu_object_info_t doi; 2705 2706 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2707 size = doi.doi_max_offset; 2708 rbp_buf = kmem_alloc(size, KM_SLEEP); 2709 2710 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2711 rbp_buf, 0); 2712 if (err != 0) { 2713 dsl_redaction_list_rele(rl, FTAG); 2714 kmem_free(rbp_buf, size); 2715 return (err); 2716 } 2717 2718 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2719 "%llx, blksz: %x, count: %llx}", 2720 (u_longlong_t)rbp_buf[0].rbp_object, 2721 (u_longlong_t)rbp_buf[0].rbp_blkid, 2722 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2723 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2724 2725 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2726 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2727 "blksz: %x, count: %llx}", 2728 (u_longlong_t)rbp_buf[i].rbp_object, 2729 (u_longlong_t)rbp_buf[i].rbp_blkid, 2730 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2731 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2732 } 2733 dsl_redaction_list_rele(rl, FTAG); 2734 kmem_free(rbp_buf, size); 2735 (void) printf("]\n\n"); 2736 return (0); 2737 } 2738 2739 static void 2740 dump_bookmarks(objset_t *os, int verbosity) 2741 { 2742 zap_cursor_t zc; 2743 zap_attribute_t attr; 2744 dsl_dataset_t *ds = dmu_objset_ds(os); 2745 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2746 objset_t *mos = os->os_spa->spa_meta_objset; 2747 if (verbosity < 4) 2748 return; 2749 dsl_pool_config_enter(dp, FTAG); 2750 2751 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2752 zap_cursor_retrieve(&zc, &attr) == 0; 2753 zap_cursor_advance(&zc)) { 2754 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2755 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2756 dmu_objset_name(os, osname); 2757 VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname, 2758 attr.za_name)); 2759 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2760 } 2761 zap_cursor_fini(&zc); 2762 dsl_pool_config_exit(dp, FTAG); 2763 } 2764 2765 static void 2766 bpobj_count_refd(bpobj_t *bpo) 2767 { 2768 mos_obj_refd(bpo->bpo_object); 2769 2770 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2771 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2772 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2773 uint64_t subobj; 2774 bpobj_t subbpo; 2775 int error; 2776 VERIFY0(dmu_read(bpo->bpo_os, 2777 bpo->bpo_phys->bpo_subobjs, 2778 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2779 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2780 if (error != 0) { 2781 (void) printf("ERROR %u while trying to open " 2782 "subobj id %llu\n", 2783 error, (u_longlong_t)subobj); 2784 continue; 2785 } 2786 bpobj_count_refd(&subbpo); 2787 bpobj_close(&subbpo); 2788 } 2789 } 2790 } 2791 2792 static int 2793 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2794 { 2795 spa_t *spa = arg; 2796 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2797 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2798 bpobj_count_refd(&dle->dle_bpobj); 2799 return (0); 2800 } 2801 2802 static int 2803 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2804 { 2805 ASSERT(arg == NULL); 2806 if (dump_opt['d'] >= 5) { 2807 char buf[128]; 2808 (void) snprintf(buf, sizeof (buf), 2809 "mintxg %llu -> obj %llu", 2810 (longlong_t)dle->dle_mintxg, 2811 (longlong_t)dle->dle_bpobj.bpo_object); 2812 2813 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2814 } else { 2815 (void) printf("mintxg %llu -> obj %llu\n", 2816 (longlong_t)dle->dle_mintxg, 2817 (longlong_t)dle->dle_bpobj.bpo_object); 2818 } 2819 return (0); 2820 } 2821 2822 static void 2823 dump_blkptr_list(dsl_deadlist_t *dl, char *name) 2824 { 2825 char bytes[32]; 2826 char comp[32]; 2827 char uncomp[32]; 2828 char entries[32]; 2829 spa_t *spa = dmu_objset_spa(dl->dl_os); 2830 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2831 2832 if (dl->dl_oldfmt) { 2833 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2834 bpobj_count_refd(&dl->dl_bpobj); 2835 } else { 2836 mos_obj_refd(dl->dl_object); 2837 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2838 } 2839 2840 /* make sure nicenum has enough space */ 2841 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2842 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2843 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2844 CTASSERT(sizeof (entries) >= NN_NUMBUF_SZ); 2845 2846 if (dump_opt['d'] < 3) 2847 return; 2848 2849 if (dl->dl_oldfmt) { 2850 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2851 return; 2852 } 2853 2854 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2855 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2856 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2857 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2858 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2859 name, bytes, comp, uncomp, entries); 2860 2861 if (dump_opt['d'] < 4) 2862 return; 2863 2864 (void) printf("\n"); 2865 2866 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2867 } 2868 2869 static int 2870 verify_dd_livelist(objset_t *os) 2871 { 2872 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2873 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2874 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2875 2876 ASSERT(!dmu_objset_is_snapshot(os)); 2877 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2878 return (0); 2879 2880 /* Iterate through the livelist to check for duplicates */ 2881 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2882 NULL); 2883 2884 dsl_pool_config_enter(dp, FTAG); 2885 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2886 &ll_comp, &ll_uncomp); 2887 2888 dsl_dataset_t *origin_ds; 2889 ASSERT(dsl_pool_config_held(dp)); 2890 VERIFY0(dsl_dataset_hold_obj(dp, 2891 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2892 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2893 &used, &comp, &uncomp)); 2894 dsl_dataset_rele(origin_ds, FTAG); 2895 dsl_pool_config_exit(dp, FTAG); 2896 /* 2897 * It's possible that the dataset's uncomp space is larger than the 2898 * livelist's because livelists do not track embedded block pointers 2899 */ 2900 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 2901 char nice_used[32], nice_comp[32], nice_uncomp[32]; 2902 (void) printf("Discrepancy in space accounting:\n"); 2903 zdb_nicenum(used, nice_used, sizeof (nice_used)); 2904 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 2905 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 2906 (void) printf("dir: used %s, comp %s, uncomp %s\n", 2907 nice_used, nice_comp, nice_uncomp); 2908 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 2909 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 2910 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 2911 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 2912 nice_used, nice_comp, nice_uncomp); 2913 return (1); 2914 } 2915 return (0); 2916 } 2917 2918 static avl_tree_t idx_tree; 2919 static avl_tree_t domain_tree; 2920 static boolean_t fuid_table_loaded; 2921 static objset_t *sa_os = NULL; 2922 static sa_attr_type_t *sa_attr_table = NULL; 2923 2924 static int 2925 open_objset(const char *path, void *tag, objset_t **osp) 2926 { 2927 int err; 2928 uint64_t sa_attrs = 0; 2929 uint64_t version = 0; 2930 2931 VERIFY3P(sa_os, ==, NULL); 2932 /* 2933 * We can't own an objset if it's redacted. Therefore, we do this 2934 * dance: hold the objset, then acquire a long hold on its dataset, then 2935 * release the pool (which is held as part of holding the objset). 2936 */ 2937 err = dmu_objset_hold(path, tag, osp); 2938 if (err != 0) { 2939 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 2940 path, strerror(err)); 2941 return (err); 2942 } 2943 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 2944 dsl_pool_rele(dmu_objset_pool(*osp), tag); 2945 2946 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) { 2947 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2948 8, 1, &version); 2949 if (version >= ZPL_VERSION_SA) { 2950 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 2951 8, 1, &sa_attrs); 2952 } 2953 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 2954 &sa_attr_table); 2955 if (err != 0) { 2956 (void) fprintf(stderr, "sa_setup failed: %s\n", 2957 strerror(err)); 2958 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 2959 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 2960 *osp = NULL; 2961 } 2962 } 2963 sa_os = *osp; 2964 2965 return (0); 2966 } 2967 2968 static void 2969 close_objset(objset_t *os, void *tag) 2970 { 2971 VERIFY3P(os, ==, sa_os); 2972 if (os->os_sa != NULL) 2973 sa_tear_down(os); 2974 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 2975 dsl_dataset_rele(dmu_objset_ds(os), tag); 2976 sa_attr_table = NULL; 2977 sa_os = NULL; 2978 } 2979 2980 static void 2981 fuid_table_destroy(void) 2982 { 2983 if (fuid_table_loaded) { 2984 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 2985 fuid_table_loaded = B_FALSE; 2986 } 2987 } 2988 2989 /* 2990 * print uid or gid information. 2991 * For normal POSIX id just the id is printed in decimal format. 2992 * For CIFS files with FUID the fuid is printed in hex followed by 2993 * the domain-rid string. 2994 */ 2995 static void 2996 print_idstr(uint64_t id, const char *id_type) 2997 { 2998 if (FUID_INDEX(id)) { 2999 char *domain; 3000 3001 domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3002 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3003 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3004 } else { 3005 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3006 } 3007 3008 } 3009 3010 static void 3011 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3012 { 3013 uint32_t uid_idx, gid_idx; 3014 3015 uid_idx = FUID_INDEX(uid); 3016 gid_idx = FUID_INDEX(gid); 3017 3018 /* Load domain table, if not already loaded */ 3019 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3020 uint64_t fuid_obj; 3021 3022 /* first find the fuid object. It lives in the master node */ 3023 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3024 8, 1, &fuid_obj) == 0); 3025 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3026 (void) zfs_fuid_table_load(os, fuid_obj, 3027 &idx_tree, &domain_tree); 3028 fuid_table_loaded = B_TRUE; 3029 } 3030 3031 print_idstr(uid, "uid"); 3032 print_idstr(gid, "gid"); 3033 } 3034 3035 static void 3036 dump_znode_sa_xattr(sa_handle_t *hdl) 3037 { 3038 nvlist_t *sa_xattr; 3039 nvpair_t *elem = NULL; 3040 int sa_xattr_size = 0; 3041 int sa_xattr_entries = 0; 3042 int error; 3043 char *sa_xattr_packed; 3044 3045 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3046 if (error || sa_xattr_size == 0) 3047 return; 3048 3049 sa_xattr_packed = malloc(sa_xattr_size); 3050 if (sa_xattr_packed == NULL) 3051 return; 3052 3053 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3054 sa_xattr_packed, sa_xattr_size); 3055 if (error) { 3056 free(sa_xattr_packed); 3057 return; 3058 } 3059 3060 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3061 if (error) { 3062 free(sa_xattr_packed); 3063 return; 3064 } 3065 3066 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3067 sa_xattr_entries++; 3068 3069 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3070 sa_xattr_size, sa_xattr_entries); 3071 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3072 uchar_t *value; 3073 uint_t cnt, idx; 3074 3075 (void) printf("\t\t%s = ", nvpair_name(elem)); 3076 nvpair_value_byte_array(elem, &value, &cnt); 3077 for (idx = 0; idx < cnt; ++idx) { 3078 if (isprint(value[idx])) 3079 (void) putchar(value[idx]); 3080 else 3081 (void) printf("\\%3.3o", value[idx]); 3082 } 3083 (void) putchar('\n'); 3084 } 3085 3086 nvlist_free(sa_xattr); 3087 free(sa_xattr_packed); 3088 } 3089 3090 static void 3091 dump_znode_symlink(sa_handle_t *hdl) 3092 { 3093 int sa_symlink_size = 0; 3094 char linktarget[MAXPATHLEN]; 3095 linktarget[0] = '\0'; 3096 int error; 3097 3098 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3099 if (error || sa_symlink_size == 0) { 3100 return; 3101 } 3102 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3103 &linktarget, sa_symlink_size) == 0) 3104 (void) printf("\ttarget %s\n", linktarget); 3105 } 3106 3107 /*ARGSUSED*/ 3108 static void 3109 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3110 { 3111 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3112 sa_handle_t *hdl; 3113 uint64_t xattr, rdev, gen; 3114 uint64_t uid, gid, mode, fsize, parent, links; 3115 uint64_t pflags; 3116 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3117 time_t z_crtime, z_atime, z_mtime, z_ctime; 3118 sa_bulk_attr_t bulk[12]; 3119 int idx = 0; 3120 int error; 3121 3122 VERIFY3P(os, ==, sa_os); 3123 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3124 (void) printf("Failed to get handle for SA znode\n"); 3125 return; 3126 } 3127 3128 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3129 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3130 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3131 &links, 8); 3132 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3133 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3134 &mode, 8); 3135 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3136 NULL, &parent, 8); 3137 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3138 &fsize, 8); 3139 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3140 acctm, 16); 3141 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3142 modtm, 16); 3143 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3144 crtm, 16); 3145 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3146 chgtm, 16); 3147 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3148 &pflags, 8); 3149 3150 if (sa_bulk_lookup(hdl, bulk, idx)) { 3151 (void) sa_handle_destroy(hdl); 3152 return; 3153 } 3154 3155 z_crtime = (time_t)crtm[0]; 3156 z_atime = (time_t)acctm[0]; 3157 z_mtime = (time_t)modtm[0]; 3158 z_ctime = (time_t)chgtm[0]; 3159 3160 if (dump_opt['d'] > 4) { 3161 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3162 if (error == ESTALE) { 3163 (void) snprintf(path, sizeof (path), "on delete queue"); 3164 } else if (error != 0) { 3165 leaked_objects++; 3166 (void) snprintf(path, sizeof (path), 3167 "path not found, possibly leaked"); 3168 } 3169 (void) printf("\tpath %s\n", path); 3170 } 3171 3172 if (S_ISLNK(mode)) 3173 dump_znode_symlink(hdl); 3174 dump_uidgid(os, uid, gid); 3175 (void) printf("\tatime %s", ctime(&z_atime)); 3176 (void) printf("\tmtime %s", ctime(&z_mtime)); 3177 (void) printf("\tctime %s", ctime(&z_ctime)); 3178 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3179 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3180 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3181 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3182 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3183 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3184 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3185 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3186 uint64_t projid; 3187 3188 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3189 sizeof (uint64_t)) == 0) 3190 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3191 } 3192 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3193 sizeof (uint64_t)) == 0) 3194 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3195 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3196 sizeof (uint64_t)) == 0) 3197 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3198 dump_znode_sa_xattr(hdl); 3199 sa_handle_destroy(hdl); 3200 } 3201 3202 /*ARGSUSED*/ 3203 static void 3204 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3205 { 3206 } 3207 3208 /*ARGSUSED*/ 3209 static void 3210 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3211 { 3212 } 3213 3214 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3215 dump_none, /* unallocated */ 3216 dump_zap, /* object directory */ 3217 dump_uint64, /* object array */ 3218 dump_none, /* packed nvlist */ 3219 dump_packed_nvlist, /* packed nvlist size */ 3220 dump_none, /* bpobj */ 3221 dump_bpobj, /* bpobj header */ 3222 dump_none, /* SPA space map header */ 3223 dump_none, /* SPA space map */ 3224 dump_none, /* ZIL intent log */ 3225 dump_dnode, /* DMU dnode */ 3226 dump_dmu_objset, /* DMU objset */ 3227 dump_dsl_dir, /* DSL directory */ 3228 dump_zap, /* DSL directory child map */ 3229 dump_zap, /* DSL dataset snap map */ 3230 dump_zap, /* DSL props */ 3231 dump_dsl_dataset, /* DSL dataset */ 3232 dump_znode, /* ZFS znode */ 3233 dump_acl, /* ZFS V0 ACL */ 3234 dump_uint8, /* ZFS plain file */ 3235 dump_zpldir, /* ZFS directory */ 3236 dump_zap, /* ZFS master node */ 3237 dump_zap, /* ZFS delete queue */ 3238 dump_uint8, /* zvol object */ 3239 dump_zap, /* zvol prop */ 3240 dump_uint8, /* other uint8[] */ 3241 dump_uint64, /* other uint64[] */ 3242 dump_zap, /* other ZAP */ 3243 dump_zap, /* persistent error log */ 3244 dump_uint8, /* SPA history */ 3245 dump_history_offsets, /* SPA history offsets */ 3246 dump_zap, /* Pool properties */ 3247 dump_zap, /* DSL permissions */ 3248 dump_acl, /* ZFS ACL */ 3249 dump_uint8, /* ZFS SYSACL */ 3250 dump_none, /* FUID nvlist */ 3251 dump_packed_nvlist, /* FUID nvlist size */ 3252 dump_zap, /* DSL dataset next clones */ 3253 dump_zap, /* DSL scrub queue */ 3254 dump_zap, /* ZFS user/group/project used */ 3255 dump_zap, /* ZFS user/group/project quota */ 3256 dump_zap, /* snapshot refcount tags */ 3257 dump_ddt_zap, /* DDT ZAP object */ 3258 dump_zap, /* DDT statistics */ 3259 dump_znode, /* SA object */ 3260 dump_zap, /* SA Master Node */ 3261 dump_sa_attrs, /* SA attribute registration */ 3262 dump_sa_layouts, /* SA attribute layouts */ 3263 dump_zap, /* DSL scrub translations */ 3264 dump_none, /* fake dedup BP */ 3265 dump_zap, /* deadlist */ 3266 dump_none, /* deadlist hdr */ 3267 dump_zap, /* dsl clones */ 3268 dump_bpobj_subobjs, /* bpobj subobjs */ 3269 dump_unknown, /* Unknown type, must be last */ 3270 }; 3271 3272 static boolean_t 3273 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3274 { 3275 boolean_t match = B_TRUE; 3276 3277 switch (obj_type) { 3278 case DMU_OT_DIRECTORY_CONTENTS: 3279 if (!(flags & ZOR_FLAG_DIRECTORY)) 3280 match = B_FALSE; 3281 break; 3282 case DMU_OT_PLAIN_FILE_CONTENTS: 3283 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3284 match = B_FALSE; 3285 break; 3286 case DMU_OT_SPACE_MAP: 3287 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3288 match = B_FALSE; 3289 break; 3290 default: 3291 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3292 if (!(flags & ZOR_FLAG_ZAP)) 3293 match = B_FALSE; 3294 break; 3295 } 3296 3297 /* 3298 * If all bits except some of the supported flags are 3299 * set, the user combined the all-types flag (A) with 3300 * a negated flag to exclude some types (e.g. A-f to 3301 * show all object types except plain files). 3302 */ 3303 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3304 match = B_FALSE; 3305 3306 break; 3307 } 3308 3309 return (match); 3310 } 3311 3312 static void 3313 dump_object(objset_t *os, uint64_t object, int verbosity, 3314 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3315 { 3316 dmu_buf_t *db = NULL; 3317 dmu_object_info_t doi; 3318 dnode_t *dn; 3319 boolean_t dnode_held = B_FALSE; 3320 void *bonus = NULL; 3321 size_t bsize = 0; 3322 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3323 char bonus_size[32]; 3324 char aux[50]; 3325 int error; 3326 3327 /* make sure nicenum has enough space */ 3328 CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ); 3329 CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ); 3330 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 3331 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 3332 CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ); 3333 3334 if (*print_header) { 3335 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3336 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3337 "lsize", "%full", "type"); 3338 *print_header = 0; 3339 } 3340 3341 if (object == 0) { 3342 dn = DMU_META_DNODE(os); 3343 dmu_object_info_from_dnode(dn, &doi); 3344 } else { 3345 /* 3346 * Encrypted datasets will have sensitive bonus buffers 3347 * encrypted. Therefore we cannot hold the bonus buffer and 3348 * must hold the dnode itself instead. 3349 */ 3350 error = dmu_object_info(os, object, &doi); 3351 if (error) 3352 fatal("dmu_object_info() failed, errno %u", error); 3353 3354 if (os->os_encrypted && 3355 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3356 error = dnode_hold(os, object, FTAG, &dn); 3357 if (error) 3358 fatal("dnode_hold() failed, errno %u", error); 3359 dnode_held = B_TRUE; 3360 } else { 3361 error = dmu_bonus_hold(os, object, FTAG, &db); 3362 if (error) 3363 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3364 object, error); 3365 bonus = db->db_data; 3366 bsize = db->db_size; 3367 dn = DB_DNODE((dmu_buf_impl_t *)db); 3368 } 3369 } 3370 3371 /* 3372 * Default to showing all object types if no flags were specified. 3373 */ 3374 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3375 !match_object_type(doi.doi_type, flags)) 3376 goto out; 3377 3378 if (dnode_slots_used) 3379 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3380 3381 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3382 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3383 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3384 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3385 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3386 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3387 (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * 3388 doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / 3389 doi.doi_max_offset); 3390 3391 aux[0] = '\0'; 3392 3393 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3394 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3395 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3396 } 3397 3398 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3399 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3400 const char *compname = NULL; 3401 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3402 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3403 &compname) == 0) { 3404 (void) snprintf(aux + strlen(aux), 3405 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3406 compname); 3407 } else { 3408 (void) snprintf(aux + strlen(aux), 3409 sizeof (aux) - strlen(aux), 3410 " (Z=inherit=%s-unknown)", 3411 ZDB_COMPRESS_NAME(os->os_compress)); 3412 } 3413 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3414 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3415 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3416 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3417 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3418 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3419 } 3420 3421 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3422 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3423 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3424 3425 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3426 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3427 "", "", "", "", "", "", bonus_size, "bonus", 3428 zdb_ot_name(doi.doi_bonus_type)); 3429 } 3430 3431 if (verbosity >= 4) { 3432 (void) printf("\tdnode flags: %s%s%s%s\n", 3433 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3434 "USED_BYTES " : "", 3435 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3436 "USERUSED_ACCOUNTED " : "", 3437 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3438 "USEROBJUSED_ACCOUNTED " : "", 3439 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3440 "SPILL_BLKPTR" : ""); 3441 (void) printf("\tdnode maxblkid: %llu\n", 3442 (longlong_t)dn->dn_phys->dn_maxblkid); 3443 3444 if (!dnode_held) { 3445 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3446 object, bonus, bsize); 3447 } else { 3448 (void) printf("\t\t(bonus encrypted)\n"); 3449 } 3450 3451 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) { 3452 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3453 NULL, 0); 3454 } else { 3455 (void) printf("\t\t(object encrypted)\n"); 3456 } 3457 3458 *print_header = B_TRUE; 3459 } 3460 3461 if (verbosity >= 5) 3462 dump_indirect(dn); 3463 3464 if (verbosity >= 5) { 3465 /* 3466 * Report the list of segments that comprise the object. 3467 */ 3468 uint64_t start = 0; 3469 uint64_t end; 3470 uint64_t blkfill = 1; 3471 int minlvl = 1; 3472 3473 if (dn->dn_type == DMU_OT_DNODE) { 3474 minlvl = 0; 3475 blkfill = DNODES_PER_BLOCK; 3476 } 3477 3478 for (;;) { 3479 char segsize[32]; 3480 /* make sure nicenum has enough space */ 3481 CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ); 3482 error = dnode_next_offset(dn, 3483 0, &start, minlvl, blkfill, 0); 3484 if (error) 3485 break; 3486 end = start; 3487 error = dnode_next_offset(dn, 3488 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3489 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3490 (void) printf("\t\tsegment [%016llx, %016llx)" 3491 " size %5s\n", (u_longlong_t)start, 3492 (u_longlong_t)end, segsize); 3493 if (error) 3494 break; 3495 start = end; 3496 } 3497 } 3498 3499 out: 3500 if (db != NULL) 3501 dmu_buf_rele(db, FTAG); 3502 if (dnode_held) 3503 dnode_rele(dn, FTAG); 3504 } 3505 3506 static void 3507 count_dir_mos_objects(dsl_dir_t *dd) 3508 { 3509 mos_obj_refd(dd->dd_object); 3510 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3511 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3512 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3513 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3514 3515 /* 3516 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3517 * Ignore the references after the first one. 3518 */ 3519 mos_obj_refd_multiple(dd->dd_crypto_obj); 3520 } 3521 3522 static void 3523 count_ds_mos_objects(dsl_dataset_t *ds) 3524 { 3525 mos_obj_refd(ds->ds_object); 3526 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3527 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3528 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3529 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3530 mos_obj_refd(ds->ds_bookmarks_obj); 3531 3532 if (!dsl_dataset_is_snapshot(ds)) { 3533 count_dir_mos_objects(ds->ds_dir); 3534 } 3535 } 3536 3537 static const char *objset_types[DMU_OST_NUMTYPES] = { 3538 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3539 3540 /* 3541 * Parse a string denoting a range of object IDs of the form 3542 * <start>[:<end>[:flags]], and store the results in zor. 3543 * Return 0 on success. On error, return 1 and update the msg 3544 * pointer to point to a descriptive error message. 3545 */ 3546 static int 3547 parse_object_range(char *range, zopt_object_range_t *zor, char **msg) 3548 { 3549 uint64_t flags = 0; 3550 char *p, *s, *dup, *flagstr; 3551 size_t len; 3552 int i; 3553 int rc = 0; 3554 3555 if (strchr(range, ':') == NULL) { 3556 zor->zor_obj_start = strtoull(range, &p, 0); 3557 if (*p != '\0') { 3558 *msg = "Invalid characters in object ID"; 3559 rc = 1; 3560 } 3561 zor->zor_obj_end = zor->zor_obj_start; 3562 return (rc); 3563 } 3564 3565 if (strchr(range, ':') == range) { 3566 *msg = "Invalid leading colon"; 3567 rc = 1; 3568 return (rc); 3569 } 3570 3571 len = strlen(range); 3572 if (range[len - 1] == ':') { 3573 *msg = "Invalid trailing colon"; 3574 rc = 1; 3575 return (rc); 3576 } 3577 3578 dup = strdup(range); 3579 s = strtok(dup, ":"); 3580 zor->zor_obj_start = strtoull(s, &p, 0); 3581 3582 if (*p != '\0') { 3583 *msg = "Invalid characters in start object ID"; 3584 rc = 1; 3585 goto out; 3586 } 3587 3588 s = strtok(NULL, ":"); 3589 zor->zor_obj_end = strtoull(s, &p, 0); 3590 3591 if (*p != '\0') { 3592 *msg = "Invalid characters in end object ID"; 3593 rc = 1; 3594 goto out; 3595 } 3596 3597 if (zor->zor_obj_start > zor->zor_obj_end) { 3598 *msg = "Start object ID may not exceed end object ID"; 3599 rc = 1; 3600 goto out; 3601 } 3602 3603 s = strtok(NULL, ":"); 3604 if (s == NULL) { 3605 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3606 goto out; 3607 } else if (strtok(NULL, ":") != NULL) { 3608 *msg = "Invalid colon-delimited field after flags"; 3609 rc = 1; 3610 goto out; 3611 } 3612 3613 flagstr = s; 3614 for (i = 0; flagstr[i]; i++) { 3615 int bit; 3616 boolean_t negation = (flagstr[i] == '-'); 3617 3618 if (negation) { 3619 i++; 3620 if (flagstr[i] == '\0') { 3621 *msg = "Invalid trailing negation operator"; 3622 rc = 1; 3623 goto out; 3624 } 3625 } 3626 bit = flagbits[(uchar_t)flagstr[i]]; 3627 if (bit == 0) { 3628 *msg = "Invalid flag"; 3629 rc = 1; 3630 goto out; 3631 } 3632 if (negation) 3633 flags &= ~bit; 3634 else 3635 flags |= bit; 3636 } 3637 zor->zor_flags = flags; 3638 3639 out: 3640 free(dup); 3641 return (rc); 3642 } 3643 3644 static void 3645 dump_objset(objset_t *os) 3646 { 3647 dmu_objset_stats_t dds = { 0 }; 3648 uint64_t object, object_count; 3649 uint64_t refdbytes, usedobjs, scratch; 3650 char numbuf[32]; 3651 char blkbuf[BP_SPRINTF_LEN + 20]; 3652 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3653 const char *type = "UNKNOWN"; 3654 int verbosity = dump_opt['d']; 3655 boolean_t print_header; 3656 unsigned i; 3657 int error; 3658 uint64_t total_slots_used = 0; 3659 uint64_t max_slot_used = 0; 3660 uint64_t dnode_slots; 3661 uint64_t obj_start; 3662 uint64_t obj_end; 3663 uint64_t flags; 3664 3665 /* make sure nicenum has enough space */ 3666 CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ); 3667 3668 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3669 dmu_objset_fast_stat(os, &dds); 3670 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3671 3672 print_header = B_TRUE; 3673 3674 if (dds.dds_type < DMU_OST_NUMTYPES) 3675 type = objset_types[dds.dds_type]; 3676 3677 if (dds.dds_type == DMU_OST_META) { 3678 dds.dds_creation_txg = TXG_INITIAL; 3679 usedobjs = BP_GET_FILL(os->os_rootbp); 3680 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3681 dd_used_bytes; 3682 } else { 3683 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3684 } 3685 3686 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3687 3688 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3689 3690 if (verbosity >= 4) { 3691 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3692 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3693 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3694 } else { 3695 blkbuf[0] = '\0'; 3696 } 3697 3698 dmu_objset_name(os, osname); 3699 3700 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3701 "%s, %llu objects%s%s\n", 3702 osname, type, (u_longlong_t)dmu_objset_id(os), 3703 (u_longlong_t)dds.dds_creation_txg, 3704 numbuf, (u_longlong_t)usedobjs, blkbuf, 3705 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3706 3707 for (i = 0; i < zopt_object_args; i++) { 3708 obj_start = zopt_object_ranges[i].zor_obj_start; 3709 obj_end = zopt_object_ranges[i].zor_obj_end; 3710 flags = zopt_object_ranges[i].zor_flags; 3711 3712 object = obj_start; 3713 if (object == 0 || obj_start == obj_end) 3714 dump_object(os, object, verbosity, &print_header, NULL, 3715 flags); 3716 else 3717 object--; 3718 3719 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3720 object <= obj_end) { 3721 dump_object(os, object, verbosity, &print_header, NULL, 3722 flags); 3723 } 3724 } 3725 3726 if (zopt_object_args > 0) { 3727 (void) printf("\n"); 3728 return; 3729 } 3730 3731 if (dump_opt['i'] != 0 || verbosity >= 2) 3732 dump_intent_log(dmu_objset_zil(os)); 3733 3734 if (dmu_objset_ds(os) != NULL) { 3735 dsl_dataset_t *ds = dmu_objset_ds(os); 3736 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 3737 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 3738 !dmu_objset_is_snapshot(os)) { 3739 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 3740 if (verify_dd_livelist(os) != 0) 3741 fatal("livelist is incorrect"); 3742 } 3743 3744 if (dsl_dataset_remap_deadlist_exists(ds)) { 3745 (void) printf("ds_remap_deadlist:\n"); 3746 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 3747 } 3748 count_ds_mos_objects(ds); 3749 } 3750 3751 if (dmu_objset_ds(os) != NULL) 3752 dump_bookmarks(os, verbosity); 3753 3754 if (verbosity < 2) 3755 return; 3756 3757 if (BP_IS_HOLE(os->os_rootbp)) 3758 return; 3759 3760 dump_object(os, 0, verbosity, &print_header, NULL, 0); 3761 object_count = 0; 3762 if (DMU_USERUSED_DNODE(os) != NULL && 3763 DMU_USERUSED_DNODE(os)->dn_type != 0) { 3764 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 3765 NULL, 0); 3766 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 3767 NULL, 0); 3768 } 3769 3770 if (DMU_PROJECTUSED_DNODE(os) != NULL && 3771 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 3772 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 3773 &print_header, NULL, 0); 3774 3775 object = 0; 3776 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 3777 dump_object(os, object, verbosity, &print_header, &dnode_slots, 3778 0); 3779 object_count++; 3780 total_slots_used += dnode_slots; 3781 max_slot_used = object + dnode_slots - 1; 3782 } 3783 3784 (void) printf("\n"); 3785 3786 (void) printf(" Dnode slots:\n"); 3787 (void) printf("\tTotal used: %10llu\n", 3788 (u_longlong_t)total_slots_used); 3789 (void) printf("\tMax used: %10llu\n", 3790 (u_longlong_t)max_slot_used); 3791 (void) printf("\tPercent empty: %10lf\n", 3792 (double)(max_slot_used - total_slots_used)*100 / 3793 (double)max_slot_used); 3794 (void) printf("\n"); 3795 3796 if (error != ESRCH) { 3797 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 3798 abort(); 3799 } 3800 3801 ASSERT3U(object_count, ==, usedobjs); 3802 3803 if (leaked_objects != 0) { 3804 (void) printf("%d potentially leaked objects detected\n", 3805 leaked_objects); 3806 leaked_objects = 0; 3807 } 3808 } 3809 3810 static void 3811 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 3812 { 3813 time_t timestamp = ub->ub_timestamp; 3814 3815 (void) printf("%s", header ? header : ""); 3816 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 3817 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 3818 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 3819 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 3820 (void) printf("\ttimestamp = %llu UTC = %s", 3821 (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); 3822 3823 (void) printf("\tmmp_magic = %016llx\n", 3824 (u_longlong_t)ub->ub_mmp_magic); 3825 if (MMP_VALID(ub)) { 3826 (void) printf("\tmmp_delay = %0llu\n", 3827 (u_longlong_t)ub->ub_mmp_delay); 3828 if (MMP_SEQ_VALID(ub)) 3829 (void) printf("\tmmp_seq = %u\n", 3830 (unsigned int) MMP_SEQ(ub)); 3831 if (MMP_FAIL_INT_VALID(ub)) 3832 (void) printf("\tmmp_fail = %u\n", 3833 (unsigned int) MMP_FAIL_INT(ub)); 3834 if (MMP_INTERVAL_VALID(ub)) 3835 (void) printf("\tmmp_write = %u\n", 3836 (unsigned int) MMP_INTERVAL(ub)); 3837 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 3838 (void) printf("\tmmp_valid = %x\n", 3839 (unsigned int) ub->ub_mmp_config & 0xFF); 3840 } 3841 3842 if (dump_opt['u'] >= 4) { 3843 char blkbuf[BP_SPRINTF_LEN]; 3844 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 3845 (void) printf("\trootbp = %s\n", blkbuf); 3846 } 3847 (void) printf("\tcheckpoint_txg = %llu\n", 3848 (u_longlong_t)ub->ub_checkpoint_txg); 3849 (void) printf("%s", footer ? footer : ""); 3850 } 3851 3852 static void 3853 dump_config(spa_t *spa) 3854 { 3855 dmu_buf_t *db; 3856 size_t nvsize = 0; 3857 int error = 0; 3858 3859 3860 error = dmu_bonus_hold(spa->spa_meta_objset, 3861 spa->spa_config_object, FTAG, &db); 3862 3863 if (error == 0) { 3864 nvsize = *(uint64_t *)db->db_data; 3865 dmu_buf_rele(db, FTAG); 3866 3867 (void) printf("\nMOS Configuration:\n"); 3868 dump_packed_nvlist(spa->spa_meta_objset, 3869 spa->spa_config_object, (void *)&nvsize, 1); 3870 } else { 3871 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 3872 (u_longlong_t)spa->spa_config_object, error); 3873 } 3874 } 3875 3876 static void 3877 dump_cachefile(const char *cachefile) 3878 { 3879 int fd; 3880 struct stat64 statbuf; 3881 char *buf; 3882 nvlist_t *config; 3883 3884 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 3885 (void) printf("cannot open '%s': %s\n", cachefile, 3886 strerror(errno)); 3887 exit(1); 3888 } 3889 3890 if (fstat64(fd, &statbuf) != 0) { 3891 (void) printf("failed to stat '%s': %s\n", cachefile, 3892 strerror(errno)); 3893 exit(1); 3894 } 3895 3896 if ((buf = malloc(statbuf.st_size)) == NULL) { 3897 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 3898 (u_longlong_t)statbuf.st_size); 3899 exit(1); 3900 } 3901 3902 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 3903 (void) fprintf(stderr, "failed to read %llu bytes\n", 3904 (u_longlong_t)statbuf.st_size); 3905 exit(1); 3906 } 3907 3908 (void) close(fd); 3909 3910 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 3911 (void) fprintf(stderr, "failed to unpack nvlist\n"); 3912 exit(1); 3913 } 3914 3915 free(buf); 3916 3917 dump_nvlist(config, 0); 3918 3919 nvlist_free(config); 3920 } 3921 3922 /* 3923 * ZFS label nvlist stats 3924 */ 3925 typedef struct zdb_nvl_stats { 3926 int zns_list_count; 3927 int zns_leaf_count; 3928 size_t zns_leaf_largest; 3929 size_t zns_leaf_total; 3930 nvlist_t *zns_string; 3931 nvlist_t *zns_uint64; 3932 nvlist_t *zns_boolean; 3933 } zdb_nvl_stats_t; 3934 3935 static void 3936 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 3937 { 3938 nvlist_t *list, **array; 3939 nvpair_t *nvp = NULL; 3940 char *name; 3941 uint_t i, items; 3942 3943 stats->zns_list_count++; 3944 3945 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3946 name = nvpair_name(nvp); 3947 3948 switch (nvpair_type(nvp)) { 3949 case DATA_TYPE_STRING: 3950 fnvlist_add_string(stats->zns_string, name, 3951 fnvpair_value_string(nvp)); 3952 break; 3953 case DATA_TYPE_UINT64: 3954 fnvlist_add_uint64(stats->zns_uint64, name, 3955 fnvpair_value_uint64(nvp)); 3956 break; 3957 case DATA_TYPE_BOOLEAN: 3958 fnvlist_add_boolean(stats->zns_boolean, name); 3959 break; 3960 case DATA_TYPE_NVLIST: 3961 if (nvpair_value_nvlist(nvp, &list) == 0) 3962 collect_nvlist_stats(list, stats); 3963 break; 3964 case DATA_TYPE_NVLIST_ARRAY: 3965 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 3966 break; 3967 3968 for (i = 0; i < items; i++) { 3969 collect_nvlist_stats(array[i], stats); 3970 3971 /* collect stats on leaf vdev */ 3972 if (strcmp(name, "children") == 0) { 3973 size_t size; 3974 3975 (void) nvlist_size(array[i], &size, 3976 NV_ENCODE_XDR); 3977 stats->zns_leaf_total += size; 3978 if (size > stats->zns_leaf_largest) 3979 stats->zns_leaf_largest = size; 3980 stats->zns_leaf_count++; 3981 } 3982 } 3983 break; 3984 default: 3985 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 3986 } 3987 } 3988 } 3989 3990 static void 3991 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 3992 { 3993 zdb_nvl_stats_t stats = { 0 }; 3994 size_t size, sum = 0, total; 3995 size_t noise; 3996 3997 /* requires nvlist with non-unique names for stat collection */ 3998 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 3999 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4000 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4001 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4002 4003 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4004 4005 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4006 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4007 (int)total, (int)(cap - total), 100.0 * total / cap); 4008 4009 collect_nvlist_stats(nvl, &stats); 4010 4011 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4012 size -= noise; 4013 sum += size; 4014 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4015 (int)fnvlist_num_pairs(stats.zns_uint64), 4016 (int)size, 100.0 * size / total); 4017 4018 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4019 size -= noise; 4020 sum += size; 4021 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4022 (int)fnvlist_num_pairs(stats.zns_string), 4023 (int)size, 100.0 * size / total); 4024 4025 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4026 size -= noise; 4027 sum += size; 4028 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4029 (int)fnvlist_num_pairs(stats.zns_boolean), 4030 (int)size, 100.0 * size / total); 4031 4032 size = total - sum; /* treat remainder as nvlist overhead */ 4033 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4034 stats.zns_list_count, (int)size, 100.0 * size / total); 4035 4036 if (stats.zns_leaf_count > 0) { 4037 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4038 4039 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4040 stats.zns_leaf_count, (int)average); 4041 (void) printf("%24d bytes largest\n", 4042 (int)stats.zns_leaf_largest); 4043 4044 if (dump_opt['l'] >= 3 && average > 0) 4045 (void) printf(" space for %d additional leaf vdevs\n", 4046 (int)((cap - total) / average)); 4047 } 4048 (void) printf("\n"); 4049 4050 nvlist_free(stats.zns_string); 4051 nvlist_free(stats.zns_uint64); 4052 nvlist_free(stats.zns_boolean); 4053 } 4054 4055 typedef struct cksum_record { 4056 zio_cksum_t cksum; 4057 boolean_t labels[VDEV_LABELS]; 4058 avl_node_t link; 4059 } cksum_record_t; 4060 4061 static int 4062 cksum_record_compare(const void *x1, const void *x2) 4063 { 4064 const cksum_record_t *l = (cksum_record_t *)x1; 4065 const cksum_record_t *r = (cksum_record_t *)x2; 4066 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4067 int difference; 4068 4069 for (int i = 0; i < arraysize; i++) { 4070 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4071 if (difference) 4072 break; 4073 } 4074 4075 return (difference); 4076 } 4077 4078 static cksum_record_t * 4079 cksum_record_alloc(zio_cksum_t *cksum, int l) 4080 { 4081 cksum_record_t *rec; 4082 4083 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4084 rec->cksum = *cksum; 4085 rec->labels[l] = B_TRUE; 4086 4087 return (rec); 4088 } 4089 4090 static cksum_record_t * 4091 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4092 { 4093 cksum_record_t lookup = { .cksum = *cksum }; 4094 avl_index_t where; 4095 4096 return (avl_find(tree, &lookup, &where)); 4097 } 4098 4099 static cksum_record_t * 4100 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4101 { 4102 cksum_record_t *rec; 4103 4104 rec = cksum_record_lookup(tree, cksum); 4105 if (rec) { 4106 rec->labels[l] = B_TRUE; 4107 } else { 4108 rec = cksum_record_alloc(cksum, l); 4109 avl_add(tree, rec); 4110 } 4111 4112 return (rec); 4113 } 4114 4115 static int 4116 first_label(cksum_record_t *rec) 4117 { 4118 for (int i = 0; i < VDEV_LABELS; i++) 4119 if (rec->labels[i]) 4120 return (i); 4121 4122 return (-1); 4123 } 4124 4125 static void 4126 print_label_numbers(char *prefix, cksum_record_t *rec) 4127 { 4128 printf("%s", prefix); 4129 for (int i = 0; i < VDEV_LABELS; i++) 4130 if (rec->labels[i] == B_TRUE) 4131 printf("%d ", i); 4132 printf("\n"); 4133 } 4134 4135 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4136 4137 typedef struct zdb_label { 4138 vdev_label_t label; 4139 nvlist_t *config_nv; 4140 cksum_record_t *config; 4141 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4142 boolean_t header_printed; 4143 boolean_t read_failed; 4144 } zdb_label_t; 4145 4146 static void 4147 print_label_header(zdb_label_t *label, int l) 4148 { 4149 4150 if (dump_opt['q']) 4151 return; 4152 4153 if (label->header_printed == B_TRUE) 4154 return; 4155 4156 (void) printf("------------------------------------\n"); 4157 (void) printf("LABEL %d\n", l); 4158 (void) printf("------------------------------------\n"); 4159 4160 label->header_printed = B_TRUE; 4161 } 4162 4163 static void 4164 print_l2arc_header(void) 4165 { 4166 (void) printf("------------------------------------\n"); 4167 (void) printf("L2ARC device header\n"); 4168 (void) printf("------------------------------------\n"); 4169 } 4170 4171 static void 4172 print_l2arc_log_blocks(void) 4173 { 4174 (void) printf("------------------------------------\n"); 4175 (void) printf("L2ARC device log blocks\n"); 4176 (void) printf("------------------------------------\n"); 4177 } 4178 4179 static void 4180 dump_l2arc_log_entries(uint64_t log_entries, 4181 l2arc_log_ent_phys_t *le, uint64_t i) 4182 { 4183 for (int j = 0; j < log_entries; j++) { 4184 dva_t dva = le[j].le_dva; 4185 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4186 "vdev: %llu, offset: %llu\n", 4187 (u_longlong_t)i, j + 1, 4188 (u_longlong_t)DVA_GET_ASIZE(&dva), 4189 (u_longlong_t)DVA_GET_VDEV(&dva), 4190 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4191 (void) printf("|\t\t\t\tbirth: %llu\n", 4192 (u_longlong_t)le[j].le_birth); 4193 (void) printf("|\t\t\t\tlsize: %llu\n", 4194 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4195 (void) printf("|\t\t\t\tpsize: %llu\n", 4196 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4197 (void) printf("|\t\t\t\tcompr: %llu\n", 4198 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4199 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4200 (u_longlong_t)(&le[j])->le_complevel); 4201 (void) printf("|\t\t\t\ttype: %llu\n", 4202 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4203 (void) printf("|\t\t\t\tprotected: %llu\n", 4204 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4205 (void) printf("|\t\t\t\tprefetch: %llu\n", 4206 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4207 (void) printf("|\t\t\t\taddress: %llu\n", 4208 (u_longlong_t)le[j].le_daddr); 4209 (void) printf("|\t\t\t\tARC state: %llu\n", 4210 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4211 (void) printf("|\n"); 4212 } 4213 (void) printf("\n"); 4214 } 4215 4216 static void 4217 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps) 4218 { 4219 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr); 4220 (void) printf("|\t\tpayload_asize: %llu\n", 4221 (u_longlong_t)lbps.lbp_payload_asize); 4222 (void) printf("|\t\tpayload_start: %llu\n", 4223 (u_longlong_t)lbps.lbp_payload_start); 4224 (void) printf("|\t\tlsize: %llu\n", 4225 (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop)); 4226 (void) printf("|\t\tasize: %llu\n", 4227 (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop)); 4228 (void) printf("|\t\tcompralgo: %llu\n", 4229 (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop)); 4230 (void) printf("|\t\tcksumalgo: %llu\n", 4231 (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop)); 4232 (void) printf("|\n\n"); 4233 } 4234 4235 static void 4236 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr, 4237 l2arc_dev_hdr_phys_t *rebuild) 4238 { 4239 l2arc_log_blk_phys_t this_lb; 4240 uint64_t asize; 4241 l2arc_log_blkptr_t lbps[2]; 4242 abd_t *abd; 4243 zio_cksum_t cksum; 4244 int failed = 0; 4245 l2arc_dev_t dev; 4246 4247 if (!dump_opt['q']) 4248 print_l2arc_log_blocks(); 4249 bcopy((&l2dhdr)->dh_start_lbps, lbps, sizeof (lbps)); 4250 4251 dev.l2ad_evict = l2dhdr.dh_evict; 4252 dev.l2ad_start = l2dhdr.dh_start; 4253 dev.l2ad_end = l2dhdr.dh_end; 4254 4255 if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) { 4256 /* no log blocks to read */ 4257 if (!dump_opt['q']) { 4258 (void) printf("No log blocks to read\n"); 4259 (void) printf("\n"); 4260 } 4261 return; 4262 } else { 4263 dev.l2ad_hand = lbps[0].lbp_daddr + 4264 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4265 } 4266 4267 dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4268 4269 for (;;) { 4270 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4271 break; 4272 4273 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4274 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4275 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4276 if (!dump_opt['q']) { 4277 (void) printf("Error while reading next log " 4278 "block\n\n"); 4279 } 4280 break; 4281 } 4282 4283 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4284 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4285 failed++; 4286 if (!dump_opt['q']) { 4287 (void) printf("Invalid cksum\n"); 4288 dump_l2arc_log_blkptr(lbps[0]); 4289 } 4290 break; 4291 } 4292 4293 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4294 case ZIO_COMPRESS_OFF: 4295 break; 4296 default: 4297 abd = abd_alloc_for_io(asize, B_TRUE); 4298 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4299 zio_decompress_data(L2BLK_GET_COMPRESS( 4300 (&lbps[0])->lbp_prop), abd, &this_lb, 4301 asize, sizeof (this_lb), NULL); 4302 abd_free(abd); 4303 break; 4304 } 4305 4306 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4307 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4308 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4309 if (!dump_opt['q']) 4310 (void) printf("Invalid log block magic\n\n"); 4311 break; 4312 } 4313 4314 rebuild->dh_lb_count++; 4315 rebuild->dh_lb_asize += asize; 4316 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4317 (void) printf("lb[%4llu]\tmagic: %llu\n", 4318 (u_longlong_t)rebuild->dh_lb_count, 4319 (u_longlong_t)this_lb.lb_magic); 4320 dump_l2arc_log_blkptr(lbps[0]); 4321 } 4322 4323 if (dump_opt['l'] > 2 && !dump_opt['q']) 4324 dump_l2arc_log_entries(l2dhdr.dh_log_entries, 4325 this_lb.lb_entries, 4326 rebuild->dh_lb_count); 4327 4328 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4329 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4330 !dev.l2ad_first) 4331 break; 4332 4333 lbps[0] = lbps[1]; 4334 lbps[1] = this_lb.lb_prev_lbp; 4335 } 4336 4337 if (!dump_opt['q']) { 4338 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4339 (u_longlong_t)rebuild->dh_lb_count); 4340 (void) printf("\t\t %d with invalid cksum\n", failed); 4341 (void) printf("log_blk_asize:\t %llu\n\n", 4342 (u_longlong_t)rebuild->dh_lb_asize); 4343 } 4344 } 4345 4346 static int 4347 dump_l2arc_header(int fd) 4348 { 4349 l2arc_dev_hdr_phys_t l2dhdr, rebuild; 4350 int error = B_FALSE; 4351 4352 bzero(&l2dhdr, sizeof (l2dhdr)); 4353 bzero(&rebuild, sizeof (rebuild)); 4354 4355 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4356 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4357 error = B_TRUE; 4358 } else { 4359 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4360 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4361 4362 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4363 error = B_TRUE; 4364 } 4365 4366 if (error) { 4367 (void) printf("L2ARC device header not found\n\n"); 4368 /* Do not return an error here for backward compatibility */ 4369 return (0); 4370 } else if (!dump_opt['q']) { 4371 print_l2arc_header(); 4372 4373 (void) printf(" magic: %llu\n", 4374 (u_longlong_t)l2dhdr.dh_magic); 4375 (void) printf(" version: %llu\n", 4376 (u_longlong_t)l2dhdr.dh_version); 4377 (void) printf(" pool_guid: %llu\n", 4378 (u_longlong_t)l2dhdr.dh_spa_guid); 4379 (void) printf(" flags: %llu\n", 4380 (u_longlong_t)l2dhdr.dh_flags); 4381 (void) printf(" start_lbps[0]: %llu\n", 4382 (u_longlong_t) 4383 l2dhdr.dh_start_lbps[0].lbp_daddr); 4384 (void) printf(" start_lbps[1]: %llu\n", 4385 (u_longlong_t) 4386 l2dhdr.dh_start_lbps[1].lbp_daddr); 4387 (void) printf(" log_blk_ent: %llu\n", 4388 (u_longlong_t)l2dhdr.dh_log_entries); 4389 (void) printf(" start: %llu\n", 4390 (u_longlong_t)l2dhdr.dh_start); 4391 (void) printf(" end: %llu\n", 4392 (u_longlong_t)l2dhdr.dh_end); 4393 (void) printf(" evict: %llu\n", 4394 (u_longlong_t)l2dhdr.dh_evict); 4395 (void) printf(" lb_asize_refcount: %llu\n", 4396 (u_longlong_t)l2dhdr.dh_lb_asize); 4397 (void) printf(" lb_count_refcount: %llu\n", 4398 (u_longlong_t)l2dhdr.dh_lb_count); 4399 (void) printf(" trim_action_time: %llu\n", 4400 (u_longlong_t)l2dhdr.dh_trim_action_time); 4401 (void) printf(" trim_state: %llu\n\n", 4402 (u_longlong_t)l2dhdr.dh_trim_state); 4403 } 4404 4405 dump_l2arc_log_blocks(fd, l2dhdr, &rebuild); 4406 /* 4407 * The total aligned size of log blocks and the number of log blocks 4408 * reported in the header of the device may be less than what zdb 4409 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4410 * This happens because dump_l2arc_log_blocks() lacks the memory 4411 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4412 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4413 * and dh_lb_count will be lower to begin with than what exists on the 4414 * device. This is normal and zdb should not exit with an error. The 4415 * opposite case should never happen though, the values reported in the 4416 * header should never be higher than what dump_l2arc_log_blocks() and 4417 * l2arc_rebuild() report. If this happens there is a leak in the 4418 * accounting of log blocks. 4419 */ 4420 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4421 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4422 return (1); 4423 4424 return (0); 4425 } 4426 4427 static void 4428 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4429 { 4430 if (dump_opt['q']) 4431 return; 4432 4433 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4434 return; 4435 4436 print_label_header(label, l); 4437 dump_nvlist(label->config_nv, 4); 4438 print_label_numbers(" labels = ", label->config); 4439 4440 if (dump_opt['l'] >= 2) 4441 dump_nvlist_stats(label->config_nv, buflen); 4442 } 4443 4444 #define ZDB_MAX_UB_HEADER_SIZE 32 4445 4446 static void 4447 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4448 { 4449 4450 vdev_t vd; 4451 char header[ZDB_MAX_UB_HEADER_SIZE]; 4452 4453 vd.vdev_ashift = ashift; 4454 vd.vdev_top = &vd; 4455 4456 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4457 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4458 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4459 cksum_record_t *rec = label->uberblocks[i]; 4460 4461 if (rec == NULL) { 4462 if (dump_opt['u'] >= 2) { 4463 print_label_header(label, label_num); 4464 (void) printf(" Uberblock[%d] invalid\n", i); 4465 } 4466 continue; 4467 } 4468 4469 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4470 continue; 4471 4472 if ((dump_opt['u'] < 4) && 4473 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4474 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4475 continue; 4476 4477 print_label_header(label, label_num); 4478 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4479 " Uberblock[%d]\n", i); 4480 dump_uberblock(ub, header, ""); 4481 print_label_numbers(" labels = ", rec); 4482 } 4483 } 4484 4485 static char curpath[PATH_MAX]; 4486 4487 /* 4488 * Iterate through the path components, recursively passing 4489 * current one's obj and remaining path until we find the obj 4490 * for the last one. 4491 */ 4492 static int 4493 dump_path_impl(objset_t *os, uint64_t obj, char *name) 4494 { 4495 int err; 4496 boolean_t header = B_TRUE; 4497 uint64_t child_obj; 4498 char *s; 4499 dmu_buf_t *db; 4500 dmu_object_info_t doi; 4501 4502 if ((s = strchr(name, '/')) != NULL) 4503 *s = '\0'; 4504 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4505 4506 (void) strlcat(curpath, name, sizeof (curpath)); 4507 4508 if (err != 0) { 4509 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4510 curpath, strerror(err)); 4511 return (err); 4512 } 4513 4514 child_obj = ZFS_DIRENT_OBJ(child_obj); 4515 err = sa_buf_hold(os, child_obj, FTAG, &db); 4516 if (err != 0) { 4517 (void) fprintf(stderr, 4518 "failed to get SA dbuf for obj %llu: %s\n", 4519 (u_longlong_t)child_obj, strerror(err)); 4520 return (EINVAL); 4521 } 4522 dmu_object_info_from_db(db, &doi); 4523 sa_buf_rele(db, FTAG); 4524 4525 if (doi.doi_bonus_type != DMU_OT_SA && 4526 doi.doi_bonus_type != DMU_OT_ZNODE) { 4527 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4528 doi.doi_bonus_type, (u_longlong_t)child_obj); 4529 return (EINVAL); 4530 } 4531 4532 if (dump_opt['v'] > 6) { 4533 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4534 (u_longlong_t)child_obj, curpath, doi.doi_type, 4535 doi.doi_bonus_type); 4536 } 4537 4538 (void) strlcat(curpath, "/", sizeof (curpath)); 4539 4540 switch (doi.doi_type) { 4541 case DMU_OT_DIRECTORY_CONTENTS: 4542 if (s != NULL && *(s + 1) != '\0') 4543 return (dump_path_impl(os, child_obj, s + 1)); 4544 /*FALLTHROUGH*/ 4545 case DMU_OT_PLAIN_FILE_CONTENTS: 4546 dump_object(os, child_obj, dump_opt['v'], &header, NULL, 0); 4547 return (0); 4548 default: 4549 (void) fprintf(stderr, "object %llu has non-file/directory " 4550 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4551 break; 4552 } 4553 4554 return (EINVAL); 4555 } 4556 4557 /* 4558 * Dump the blocks for the object specified by path inside the dataset. 4559 */ 4560 static int 4561 dump_path(char *ds, char *path) 4562 { 4563 int err; 4564 objset_t *os; 4565 uint64_t root_obj; 4566 4567 err = open_objset(ds, FTAG, &os); 4568 if (err != 0) 4569 return (err); 4570 4571 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4572 if (err != 0) { 4573 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4574 strerror(err)); 4575 close_objset(os, FTAG); 4576 return (EINVAL); 4577 } 4578 4579 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4580 4581 err = dump_path_impl(os, root_obj, path); 4582 4583 close_objset(os, FTAG); 4584 return (err); 4585 } 4586 4587 static int 4588 dump_label(const char *dev) 4589 { 4590 char path[MAXPATHLEN]; 4591 zdb_label_t labels[VDEV_LABELS]; 4592 uint64_t psize, ashift, l2cache; 4593 struct stat64 statbuf; 4594 boolean_t config_found = B_FALSE; 4595 boolean_t error = B_FALSE; 4596 boolean_t read_l2arc_header = B_FALSE; 4597 avl_tree_t config_tree; 4598 avl_tree_t uberblock_tree; 4599 void *node, *cookie; 4600 int fd; 4601 4602 bzero(labels, sizeof (labels)); 4603 4604 /* 4605 * Check if we were given absolute path and use it as is. 4606 * Otherwise if the provided vdev name doesn't point to a file, 4607 * try prepending expected disk paths and partition numbers. 4608 */ 4609 (void) strlcpy(path, dev, sizeof (path)); 4610 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 4611 int error; 4612 4613 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 4614 if (error == 0 && zfs_dev_is_whole_disk(path)) { 4615 if (zfs_append_partition(path, MAXPATHLEN) == -1) 4616 error = ENOENT; 4617 } 4618 4619 if (error || (stat64(path, &statbuf) != 0)) { 4620 (void) printf("failed to find device %s, try " 4621 "specifying absolute path instead\n", dev); 4622 return (1); 4623 } 4624 } 4625 4626 if ((fd = open64(path, O_RDONLY)) < 0) { 4627 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 4628 exit(1); 4629 } 4630 4631 if (fstat64_blk(fd, &statbuf) != 0) { 4632 (void) printf("failed to stat '%s': %s\n", path, 4633 strerror(errno)); 4634 (void) close(fd); 4635 exit(1); 4636 } 4637 4638 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 4639 (void) printf("failed to invalidate cache '%s' : %s\n", path, 4640 strerror(errno)); 4641 4642 avl_create(&config_tree, cksum_record_compare, 4643 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4644 avl_create(&uberblock_tree, cksum_record_compare, 4645 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4646 4647 psize = statbuf.st_size; 4648 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 4649 ashift = SPA_MINBLOCKSHIFT; 4650 4651 /* 4652 * 1. Read the label from disk 4653 * 2. Unpack the configuration and insert in config tree. 4654 * 3. Traverse all uberblocks and insert in uberblock tree. 4655 */ 4656 for (int l = 0; l < VDEV_LABELS; l++) { 4657 zdb_label_t *label = &labels[l]; 4658 char *buf = label->label.vl_vdev_phys.vp_nvlist; 4659 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4660 nvlist_t *config; 4661 cksum_record_t *rec; 4662 zio_cksum_t cksum; 4663 vdev_t vd; 4664 4665 if (pread64(fd, &label->label, sizeof (label->label), 4666 vdev_label_offset(psize, l, 0)) != sizeof (label->label)) { 4667 if (!dump_opt['q']) 4668 (void) printf("failed to read label %d\n", l); 4669 label->read_failed = B_TRUE; 4670 error = B_TRUE; 4671 continue; 4672 } 4673 4674 label->read_failed = B_FALSE; 4675 4676 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 4677 nvlist_t *vdev_tree = NULL; 4678 size_t size; 4679 4680 if ((nvlist_lookup_nvlist(config, 4681 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 4682 (nvlist_lookup_uint64(vdev_tree, 4683 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 4684 ashift = SPA_MINBLOCKSHIFT; 4685 4686 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 4687 size = buflen; 4688 4689 /* If the device is a cache device clear the header. */ 4690 if (!read_l2arc_header) { 4691 if (nvlist_lookup_uint64(config, 4692 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 4693 l2cache == POOL_STATE_L2CACHE) { 4694 read_l2arc_header = B_TRUE; 4695 } 4696 } 4697 4698 fletcher_4_native_varsize(buf, size, &cksum); 4699 rec = cksum_record_insert(&config_tree, &cksum, l); 4700 4701 label->config = rec; 4702 label->config_nv = config; 4703 config_found = B_TRUE; 4704 } else { 4705 error = B_TRUE; 4706 } 4707 4708 vd.vdev_ashift = ashift; 4709 vd.vdev_top = &vd; 4710 4711 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4712 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4713 uberblock_t *ub = (void *)((char *)label + uoff); 4714 4715 if (uberblock_verify(ub)) 4716 continue; 4717 4718 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 4719 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 4720 4721 label->uberblocks[i] = rec; 4722 } 4723 } 4724 4725 /* 4726 * Dump the label and uberblocks. 4727 */ 4728 for (int l = 0; l < VDEV_LABELS; l++) { 4729 zdb_label_t *label = &labels[l]; 4730 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4731 4732 if (label->read_failed == B_TRUE) 4733 continue; 4734 4735 if (label->config_nv) { 4736 dump_config_from_label(label, buflen, l); 4737 } else { 4738 if (!dump_opt['q']) 4739 (void) printf("failed to unpack label %d\n", l); 4740 } 4741 4742 if (dump_opt['u']) 4743 dump_label_uberblocks(label, ashift, l); 4744 4745 nvlist_free(label->config_nv); 4746 } 4747 4748 /* 4749 * Dump the L2ARC header, if existent. 4750 */ 4751 if (read_l2arc_header) 4752 error |= dump_l2arc_header(fd); 4753 4754 cookie = NULL; 4755 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 4756 umem_free(node, sizeof (cksum_record_t)); 4757 4758 cookie = NULL; 4759 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 4760 umem_free(node, sizeof (cksum_record_t)); 4761 4762 avl_destroy(&config_tree); 4763 avl_destroy(&uberblock_tree); 4764 4765 (void) close(fd); 4766 4767 return (config_found == B_FALSE ? 2 : 4768 (error == B_TRUE ? 1 : 0)); 4769 } 4770 4771 static uint64_t dataset_feature_count[SPA_FEATURES]; 4772 static uint64_t global_feature_count[SPA_FEATURES]; 4773 static uint64_t remap_deadlist_count = 0; 4774 4775 /*ARGSUSED*/ 4776 static int 4777 dump_one_objset(const char *dsname, void *arg) 4778 { 4779 int error; 4780 objset_t *os; 4781 spa_feature_t f; 4782 4783 error = open_objset(dsname, FTAG, &os); 4784 if (error != 0) 4785 return (0); 4786 4787 for (f = 0; f < SPA_FEATURES; f++) { 4788 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 4789 continue; 4790 ASSERT(spa_feature_table[f].fi_flags & 4791 ZFEATURE_FLAG_PER_DATASET); 4792 dataset_feature_count[f]++; 4793 } 4794 4795 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 4796 remap_deadlist_count++; 4797 } 4798 4799 for (dsl_bookmark_node_t *dbn = 4800 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 4801 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 4802 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 4803 if (dbn->dbn_phys.zbm_redaction_obj != 0) 4804 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; 4805 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 4806 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 4807 } 4808 4809 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 4810 !dmu_objset_is_snapshot(os)) { 4811 global_feature_count[SPA_FEATURE_LIVELIST]++; 4812 } 4813 4814 dump_objset(os); 4815 close_objset(os, FTAG); 4816 fuid_table_destroy(); 4817 return (0); 4818 } 4819 4820 /* 4821 * Block statistics. 4822 */ 4823 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 4824 typedef struct zdb_blkstats { 4825 uint64_t zb_asize; 4826 uint64_t zb_lsize; 4827 uint64_t zb_psize; 4828 uint64_t zb_count; 4829 uint64_t zb_gangs; 4830 uint64_t zb_ditto_samevdev; 4831 uint64_t zb_ditto_same_ms; 4832 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 4833 } zdb_blkstats_t; 4834 4835 /* 4836 * Extended object types to report deferred frees and dedup auto-ditto blocks. 4837 */ 4838 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 4839 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 4840 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 4841 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 4842 4843 static const char *zdb_ot_extname[] = { 4844 "deferred free", 4845 "dedup ditto", 4846 "other", 4847 "Total", 4848 }; 4849 4850 #define ZB_TOTAL DN_MAX_LEVELS 4851 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 4852 4853 typedef struct zdb_cb { 4854 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 4855 uint64_t zcb_removing_size; 4856 uint64_t zcb_checkpoint_size; 4857 uint64_t zcb_dedup_asize; 4858 uint64_t zcb_dedup_blocks; 4859 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 4860 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 4861 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 4862 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 4863 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 4864 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 4865 uint64_t zcb_psize_total; 4866 uint64_t zcb_lsize_total; 4867 uint64_t zcb_asize_total; 4868 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 4869 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 4870 [BPE_PAYLOAD_SIZE + 1]; 4871 uint64_t zcb_start; 4872 hrtime_t zcb_lastprint; 4873 uint64_t zcb_totalasize; 4874 uint64_t zcb_errors[256]; 4875 int zcb_readfails; 4876 int zcb_haderrors; 4877 spa_t *zcb_spa; 4878 uint32_t **zcb_vd_obsolete_counts; 4879 } zdb_cb_t; 4880 4881 /* test if two DVA offsets from same vdev are within the same metaslab */ 4882 static boolean_t 4883 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 4884 { 4885 vdev_t *vd = vdev_lookup_top(spa, vdev); 4886 uint64_t ms_shift = vd->vdev_ms_shift; 4887 4888 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 4889 } 4890 4891 /* 4892 * Used to simplify reporting of the histogram data. 4893 */ 4894 typedef struct one_histo { 4895 char *name; 4896 uint64_t *count; 4897 uint64_t *len; 4898 uint64_t cumulative; 4899 } one_histo_t; 4900 4901 /* 4902 * The number of separate histograms processed for psize, lsize and asize. 4903 */ 4904 #define NUM_HISTO 3 4905 4906 /* 4907 * This routine will create a fixed column size output of three different 4908 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 4909 * the count, length and cumulative length of the psize, lsize and 4910 * asize blocks. 4911 * 4912 * All three types of blocks are listed on a single line 4913 * 4914 * By default the table is printed in nicenumber format (e.g. 123K) but 4915 * if the '-P' parameter is specified then the full raw number (parseable) 4916 * is printed out. 4917 */ 4918 static void 4919 dump_size_histograms(zdb_cb_t *zcb) 4920 { 4921 /* 4922 * A temporary buffer that allows us to convert a number into 4923 * a string using zdb_nicenumber to allow either raw or human 4924 * readable numbers to be output. 4925 */ 4926 char numbuf[32]; 4927 4928 /* 4929 * Define titles which are used in the headers of the tables 4930 * printed by this routine. 4931 */ 4932 const char blocksize_title1[] = "block"; 4933 const char blocksize_title2[] = "size"; 4934 const char count_title[] = "Count"; 4935 const char length_title[] = "Size"; 4936 const char cumulative_title[] = "Cum."; 4937 4938 /* 4939 * Setup the histogram arrays (psize, lsize, and asize). 4940 */ 4941 one_histo_t parm_histo[NUM_HISTO]; 4942 4943 parm_histo[0].name = "psize"; 4944 parm_histo[0].count = zcb->zcb_psize_count; 4945 parm_histo[0].len = zcb->zcb_psize_len; 4946 parm_histo[0].cumulative = 0; 4947 4948 parm_histo[1].name = "lsize"; 4949 parm_histo[1].count = zcb->zcb_lsize_count; 4950 parm_histo[1].len = zcb->zcb_lsize_len; 4951 parm_histo[1].cumulative = 0; 4952 4953 parm_histo[2].name = "asize"; 4954 parm_histo[2].count = zcb->zcb_asize_count; 4955 parm_histo[2].len = zcb->zcb_asize_len; 4956 parm_histo[2].cumulative = 0; 4957 4958 4959 (void) printf("\nBlock Size Histogram\n"); 4960 /* 4961 * Print the first line titles 4962 */ 4963 if (dump_opt['P']) 4964 (void) printf("\n%s\t", blocksize_title1); 4965 else 4966 (void) printf("\n%7s ", blocksize_title1); 4967 4968 for (int j = 0; j < NUM_HISTO; j++) { 4969 if (dump_opt['P']) { 4970 if (j < NUM_HISTO - 1) { 4971 (void) printf("%s\t\t\t", parm_histo[j].name); 4972 } else { 4973 /* Don't print trailing spaces */ 4974 (void) printf(" %s", parm_histo[j].name); 4975 } 4976 } else { 4977 if (j < NUM_HISTO - 1) { 4978 /* Left aligned strings in the output */ 4979 (void) printf("%-7s ", 4980 parm_histo[j].name); 4981 } else { 4982 /* Don't print trailing spaces */ 4983 (void) printf("%s", parm_histo[j].name); 4984 } 4985 } 4986 } 4987 (void) printf("\n"); 4988 4989 /* 4990 * Print the second line titles 4991 */ 4992 if (dump_opt['P']) { 4993 (void) printf("%s\t", blocksize_title2); 4994 } else { 4995 (void) printf("%7s ", blocksize_title2); 4996 } 4997 4998 for (int i = 0; i < NUM_HISTO; i++) { 4999 if (dump_opt['P']) { 5000 (void) printf("%s\t%s\t%s\t", 5001 count_title, length_title, cumulative_title); 5002 } else { 5003 (void) printf("%7s%7s%7s", 5004 count_title, length_title, cumulative_title); 5005 } 5006 } 5007 (void) printf("\n"); 5008 5009 /* 5010 * Print the rows 5011 */ 5012 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5013 5014 /* 5015 * Print the first column showing the blocksize 5016 */ 5017 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5018 5019 if (dump_opt['P']) { 5020 printf("%s", numbuf); 5021 } else { 5022 printf("%7s:", numbuf); 5023 } 5024 5025 /* 5026 * Print the remaining set of 3 columns per size: 5027 * for psize, lsize and asize 5028 */ 5029 for (int j = 0; j < NUM_HISTO; j++) { 5030 parm_histo[j].cumulative += parm_histo[j].len[i]; 5031 5032 zdb_nicenum(parm_histo[j].count[i], 5033 numbuf, sizeof (numbuf)); 5034 if (dump_opt['P']) 5035 (void) printf("\t%s", numbuf); 5036 else 5037 (void) printf("%7s", numbuf); 5038 5039 zdb_nicenum(parm_histo[j].len[i], 5040 numbuf, sizeof (numbuf)); 5041 if (dump_opt['P']) 5042 (void) printf("\t%s", numbuf); 5043 else 5044 (void) printf("%7s", numbuf); 5045 5046 zdb_nicenum(parm_histo[j].cumulative, 5047 numbuf, sizeof (numbuf)); 5048 if (dump_opt['P']) 5049 (void) printf("\t%s", numbuf); 5050 else 5051 (void) printf("%7s", numbuf); 5052 } 5053 (void) printf("\n"); 5054 } 5055 } 5056 5057 static void 5058 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5059 dmu_object_type_t type) 5060 { 5061 uint64_t refcnt = 0; 5062 int i; 5063 5064 ASSERT(type < ZDB_OT_TOTAL); 5065 5066 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5067 return; 5068 5069 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5070 5071 for (i = 0; i < 4; i++) { 5072 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5073 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5074 int equal; 5075 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5076 5077 zb->zb_asize += BP_GET_ASIZE(bp); 5078 zb->zb_lsize += BP_GET_LSIZE(bp); 5079 zb->zb_psize += BP_GET_PSIZE(bp); 5080 zb->zb_count++; 5081 5082 /* 5083 * The histogram is only big enough to record blocks up to 5084 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5085 * "other", bucket. 5086 */ 5087 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5088 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5089 zb->zb_psize_histogram[idx]++; 5090 5091 zb->zb_gangs += BP_COUNT_GANG(bp); 5092 5093 switch (BP_GET_NDVAS(bp)) { 5094 case 2: 5095 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5096 DVA_GET_VDEV(&bp->blk_dva[1])) { 5097 zb->zb_ditto_samevdev++; 5098 5099 if (same_metaslab(zcb->zcb_spa, 5100 DVA_GET_VDEV(&bp->blk_dva[0]), 5101 DVA_GET_OFFSET(&bp->blk_dva[0]), 5102 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5103 zb->zb_ditto_same_ms++; 5104 } 5105 break; 5106 case 3: 5107 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5108 DVA_GET_VDEV(&bp->blk_dva[1])) + 5109 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5110 DVA_GET_VDEV(&bp->blk_dva[2])) + 5111 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5112 DVA_GET_VDEV(&bp->blk_dva[2])); 5113 if (equal != 0) { 5114 zb->zb_ditto_samevdev++; 5115 5116 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5117 DVA_GET_VDEV(&bp->blk_dva[1]) && 5118 same_metaslab(zcb->zcb_spa, 5119 DVA_GET_VDEV(&bp->blk_dva[0]), 5120 DVA_GET_OFFSET(&bp->blk_dva[0]), 5121 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5122 zb->zb_ditto_same_ms++; 5123 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5124 DVA_GET_VDEV(&bp->blk_dva[2]) && 5125 same_metaslab(zcb->zcb_spa, 5126 DVA_GET_VDEV(&bp->blk_dva[0]), 5127 DVA_GET_OFFSET(&bp->blk_dva[0]), 5128 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5129 zb->zb_ditto_same_ms++; 5130 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5131 DVA_GET_VDEV(&bp->blk_dva[2]) && 5132 same_metaslab(zcb->zcb_spa, 5133 DVA_GET_VDEV(&bp->blk_dva[1]), 5134 DVA_GET_OFFSET(&bp->blk_dva[1]), 5135 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5136 zb->zb_ditto_same_ms++; 5137 } 5138 break; 5139 } 5140 } 5141 5142 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5143 5144 if (BP_IS_EMBEDDED(bp)) { 5145 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5146 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5147 [BPE_GET_PSIZE(bp)]++; 5148 return; 5149 } 5150 /* 5151 * The binning histogram bins by powers of two up to 5152 * SPA_MAXBLOCKSIZE rather than creating bins for 5153 * every possible blocksize found in the pool. 5154 */ 5155 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5156 5157 zcb->zcb_psize_count[bin]++; 5158 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5159 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5160 5161 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5162 5163 zcb->zcb_lsize_count[bin]++; 5164 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5165 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5166 5167 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5168 5169 zcb->zcb_asize_count[bin]++; 5170 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5171 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5172 5173 if (dump_opt['L']) 5174 return; 5175 5176 if (BP_GET_DEDUP(bp)) { 5177 ddt_t *ddt; 5178 ddt_entry_t *dde; 5179 5180 ddt = ddt_select(zcb->zcb_spa, bp); 5181 ddt_enter(ddt); 5182 dde = ddt_lookup(ddt, bp, B_FALSE); 5183 5184 if (dde == NULL) { 5185 refcnt = 0; 5186 } else { 5187 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5188 ddt_phys_decref(ddp); 5189 refcnt = ddp->ddp_refcnt; 5190 if (ddt_phys_total_refcnt(dde) == 0) 5191 ddt_remove(ddt, dde); 5192 } 5193 ddt_exit(ddt); 5194 } 5195 5196 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5197 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5198 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5199 } 5200 5201 static void 5202 zdb_blkptr_done(zio_t *zio) 5203 { 5204 spa_t *spa = zio->io_spa; 5205 blkptr_t *bp = zio->io_bp; 5206 int ioerr = zio->io_error; 5207 zdb_cb_t *zcb = zio->io_private; 5208 zbookmark_phys_t *zb = &zio->io_bookmark; 5209 5210 mutex_enter(&spa->spa_scrub_lock); 5211 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5212 cv_broadcast(&spa->spa_scrub_io_cv); 5213 5214 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5215 char blkbuf[BP_SPRINTF_LEN]; 5216 5217 zcb->zcb_haderrors = 1; 5218 zcb->zcb_errors[ioerr]++; 5219 5220 if (dump_opt['b'] >= 2) 5221 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5222 else 5223 blkbuf[0] = '\0'; 5224 5225 (void) printf("zdb_blkptr_cb: " 5226 "Got error %d reading " 5227 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5228 ioerr, 5229 (u_longlong_t)zb->zb_objset, 5230 (u_longlong_t)zb->zb_object, 5231 (u_longlong_t)zb->zb_level, 5232 (u_longlong_t)zb->zb_blkid, 5233 blkbuf); 5234 } 5235 mutex_exit(&spa->spa_scrub_lock); 5236 5237 abd_free(zio->io_abd); 5238 } 5239 5240 static int 5241 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5242 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5243 { 5244 zdb_cb_t *zcb = arg; 5245 dmu_object_type_t type; 5246 boolean_t is_metadata; 5247 5248 if (zb->zb_level == ZB_DNODE_LEVEL) 5249 return (0); 5250 5251 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5252 char blkbuf[BP_SPRINTF_LEN]; 5253 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5254 (void) printf("objset %llu object %llu " 5255 "level %lld offset 0x%llx %s\n", 5256 (u_longlong_t)zb->zb_objset, 5257 (u_longlong_t)zb->zb_object, 5258 (longlong_t)zb->zb_level, 5259 (u_longlong_t)blkid2offset(dnp, bp, zb), 5260 blkbuf); 5261 } 5262 5263 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5264 return (0); 5265 5266 type = BP_GET_TYPE(bp); 5267 5268 zdb_count_block(zcb, zilog, bp, 5269 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5270 5271 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5272 5273 if (!BP_IS_EMBEDDED(bp) && 5274 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5275 size_t size = BP_GET_PSIZE(bp); 5276 abd_t *abd = abd_alloc(size, B_FALSE); 5277 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5278 5279 /* If it's an intent log block, failure is expected. */ 5280 if (zb->zb_level == ZB_ZIL_LEVEL) 5281 flags |= ZIO_FLAG_SPECULATIVE; 5282 5283 mutex_enter(&spa->spa_scrub_lock); 5284 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5285 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5286 spa->spa_load_verify_bytes += size; 5287 mutex_exit(&spa->spa_scrub_lock); 5288 5289 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5290 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5291 } 5292 5293 zcb->zcb_readfails = 0; 5294 5295 /* only call gethrtime() every 100 blocks */ 5296 static int iters; 5297 if (++iters > 100) 5298 iters = 0; 5299 else 5300 return (0); 5301 5302 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5303 uint64_t now = gethrtime(); 5304 char buf[10]; 5305 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5306 int kb_per_sec = 5307 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5308 int sec_remaining = 5309 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5310 5311 /* make sure nicenum has enough space */ 5312 CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ); 5313 5314 zfs_nicebytes(bytes, buf, sizeof (buf)); 5315 (void) fprintf(stderr, 5316 "\r%5s completed (%4dMB/s) " 5317 "estimated time remaining: %uhr %02umin %02usec ", 5318 buf, kb_per_sec / 1024, 5319 sec_remaining / 60 / 60, 5320 sec_remaining / 60 % 60, 5321 sec_remaining % 60); 5322 5323 zcb->zcb_lastprint = now; 5324 } 5325 5326 return (0); 5327 } 5328 5329 static void 5330 zdb_leak(void *arg, uint64_t start, uint64_t size) 5331 { 5332 vdev_t *vd = arg; 5333 5334 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5335 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5336 } 5337 5338 static metaslab_ops_t zdb_metaslab_ops = { 5339 NULL /* alloc */ 5340 }; 5341 5342 /* ARGSUSED */ 5343 static int 5344 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5345 uint64_t txg, void *arg) 5346 { 5347 spa_vdev_removal_t *svr = arg; 5348 5349 uint64_t offset = sme->sme_offset; 5350 uint64_t size = sme->sme_run; 5351 5352 /* skip vdevs we don't care about */ 5353 if (sme->sme_vdev != svr->svr_vdev_id) 5354 return (0); 5355 5356 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5357 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5358 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5359 5360 if (txg < metaslab_unflushed_txg(ms)) 5361 return (0); 5362 5363 if (sme->sme_type == SM_ALLOC) 5364 range_tree_add(svr->svr_allocd_segs, offset, size); 5365 else 5366 range_tree_remove(svr->svr_allocd_segs, offset, size); 5367 5368 return (0); 5369 } 5370 5371 /* ARGSUSED */ 5372 static void 5373 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5374 uint64_t size, void *arg) 5375 { 5376 /* 5377 * This callback was called through a remap from 5378 * a device being removed. Therefore, the vdev that 5379 * this callback is applied to is a concrete 5380 * vdev. 5381 */ 5382 ASSERT(vdev_is_concrete(vd)); 5383 5384 VERIFY0(metaslab_claim_impl(vd, offset, size, 5385 spa_min_claim_txg(vd->vdev_spa))); 5386 } 5387 5388 static void 5389 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5390 { 5391 vdev_t *vd = arg; 5392 5393 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5394 claim_segment_impl_cb, NULL); 5395 } 5396 5397 /* 5398 * After accounting for all allocated blocks that are directly referenced, 5399 * we might have missed a reference to a block from a partially complete 5400 * (and thus unused) indirect mapping object. We perform a secondary pass 5401 * through the metaslabs we have already mapped and claim the destination 5402 * blocks. 5403 */ 5404 static void 5405 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5406 { 5407 if (dump_opt['L']) 5408 return; 5409 5410 if (spa->spa_vdev_removal == NULL) 5411 return; 5412 5413 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5414 5415 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5416 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5417 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5418 5419 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5420 5421 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5422 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5423 metaslab_t *msp = vd->vdev_ms[msi]; 5424 5425 ASSERT0(range_tree_space(allocs)); 5426 if (msp->ms_sm != NULL) 5427 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5428 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5429 } 5430 range_tree_destroy(allocs); 5431 5432 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5433 5434 /* 5435 * Clear everything past what has been synced, 5436 * because we have not allocated mappings for 5437 * it yet. 5438 */ 5439 range_tree_clear(svr->svr_allocd_segs, 5440 vdev_indirect_mapping_max_offset(vim), 5441 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5442 5443 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5444 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5445 5446 spa_config_exit(spa, SCL_CONFIG, FTAG); 5447 } 5448 5449 /* ARGSUSED */ 5450 static int 5451 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5452 dmu_tx_t *tx) 5453 { 5454 zdb_cb_t *zcb = arg; 5455 spa_t *spa = zcb->zcb_spa; 5456 vdev_t *vd; 5457 const dva_t *dva = &bp->blk_dva[0]; 5458 5459 ASSERT(!bp_freed); 5460 ASSERT(!dump_opt['L']); 5461 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 5462 5463 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5464 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 5465 ASSERT3P(vd, !=, NULL); 5466 spa_config_exit(spa, SCL_VDEV, FTAG); 5467 5468 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 5469 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 5470 5471 vdev_indirect_mapping_increment_obsolete_count( 5472 vd->vdev_indirect_mapping, 5473 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 5474 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5475 5476 return (0); 5477 } 5478 5479 static uint32_t * 5480 zdb_load_obsolete_counts(vdev_t *vd) 5481 { 5482 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5483 spa_t *spa = vd->vdev_spa; 5484 spa_condensing_indirect_phys_t *scip = 5485 &spa->spa_condensing_indirect_phys; 5486 uint64_t obsolete_sm_object; 5487 uint32_t *counts; 5488 5489 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 5490 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 5491 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 5492 if (vd->vdev_obsolete_sm != NULL) { 5493 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5494 vd->vdev_obsolete_sm); 5495 } 5496 if (scip->scip_vdev == vd->vdev_id && 5497 scip->scip_prev_obsolete_sm_object != 0) { 5498 space_map_t *prev_obsolete_sm = NULL; 5499 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 5500 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 5501 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5502 prev_obsolete_sm); 5503 space_map_close(prev_obsolete_sm); 5504 } 5505 return (counts); 5506 } 5507 5508 static void 5509 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 5510 { 5511 ddt_bookmark_t ddb; 5512 ddt_entry_t dde; 5513 int error; 5514 int p; 5515 5516 ASSERT(!dump_opt['L']); 5517 5518 bzero(&ddb, sizeof (ddb)); 5519 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 5520 blkptr_t blk; 5521 ddt_phys_t *ddp = dde.dde_phys; 5522 5523 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 5524 return; 5525 5526 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 5527 5528 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 5529 if (ddp->ddp_phys_birth == 0) 5530 continue; 5531 ddt_bp_create(ddb.ddb_checksum, 5532 &dde.dde_key, ddp, &blk); 5533 if (p == DDT_PHYS_DITTO) { 5534 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 5535 } else { 5536 zcb->zcb_dedup_asize += 5537 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 5538 zcb->zcb_dedup_blocks++; 5539 } 5540 } 5541 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 5542 ddt_enter(ddt); 5543 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 5544 ddt_exit(ddt); 5545 } 5546 5547 ASSERT(error == ENOENT); 5548 } 5549 5550 typedef struct checkpoint_sm_exclude_entry_arg { 5551 vdev_t *cseea_vd; 5552 uint64_t cseea_checkpoint_size; 5553 } checkpoint_sm_exclude_entry_arg_t; 5554 5555 static int 5556 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 5557 { 5558 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 5559 vdev_t *vd = cseea->cseea_vd; 5560 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 5561 uint64_t end = sme->sme_offset + sme->sme_run; 5562 5563 ASSERT(sme->sme_type == SM_FREE); 5564 5565 /* 5566 * Since the vdev_checkpoint_sm exists in the vdev level 5567 * and the ms_sm space maps exist in the metaslab level, 5568 * an entry in the checkpoint space map could theoretically 5569 * cross the boundaries of the metaslab that it belongs. 5570 * 5571 * In reality, because of the way that we populate and 5572 * manipulate the checkpoint's space maps currently, 5573 * there shouldn't be any entries that cross metaslabs. 5574 * Hence the assertion below. 5575 * 5576 * That said, there is no fundamental requirement that 5577 * the checkpoint's space map entries should not cross 5578 * metaslab boundaries. So if needed we could add code 5579 * that handles metaslab-crossing segments in the future. 5580 */ 5581 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 5582 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 5583 5584 /* 5585 * By removing the entry from the allocated segments we 5586 * also verify that the entry is there to begin with. 5587 */ 5588 mutex_enter(&ms->ms_lock); 5589 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 5590 mutex_exit(&ms->ms_lock); 5591 5592 cseea->cseea_checkpoint_size += sme->sme_run; 5593 return (0); 5594 } 5595 5596 static void 5597 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 5598 { 5599 spa_t *spa = vd->vdev_spa; 5600 space_map_t *checkpoint_sm = NULL; 5601 uint64_t checkpoint_sm_obj; 5602 5603 /* 5604 * If there is no vdev_top_zap, we are in a pool whose 5605 * version predates the pool checkpoint feature. 5606 */ 5607 if (vd->vdev_top_zap == 0) 5608 return; 5609 5610 /* 5611 * If there is no reference of the vdev_checkpoint_sm in 5612 * the vdev_top_zap, then one of the following scenarios 5613 * is true: 5614 * 5615 * 1] There is no checkpoint 5616 * 2] There is a checkpoint, but no checkpointed blocks 5617 * have been freed yet 5618 * 3] The current vdev is indirect 5619 * 5620 * In these cases we return immediately. 5621 */ 5622 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 5623 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 5624 return; 5625 5626 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 5627 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 5628 &checkpoint_sm_obj)); 5629 5630 checkpoint_sm_exclude_entry_arg_t cseea; 5631 cseea.cseea_vd = vd; 5632 cseea.cseea_checkpoint_size = 0; 5633 5634 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 5635 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 5636 5637 VERIFY0(space_map_iterate(checkpoint_sm, 5638 space_map_length(checkpoint_sm), 5639 checkpoint_sm_exclude_entry_cb, &cseea)); 5640 space_map_close(checkpoint_sm); 5641 5642 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 5643 } 5644 5645 static void 5646 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 5647 { 5648 ASSERT(!dump_opt['L']); 5649 5650 vdev_t *rvd = spa->spa_root_vdev; 5651 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5652 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 5653 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 5654 } 5655 } 5656 5657 static int 5658 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 5659 uint64_t txg, void *arg) 5660 { 5661 int64_t *ualloc_space = arg; 5662 5663 uint64_t offset = sme->sme_offset; 5664 uint64_t vdev_id = sme->sme_vdev; 5665 5666 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5667 if (!vdev_is_concrete(vd)) 5668 return (0); 5669 5670 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5671 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5672 5673 if (txg < metaslab_unflushed_txg(ms)) 5674 return (0); 5675 5676 if (sme->sme_type == SM_ALLOC) 5677 *ualloc_space += sme->sme_run; 5678 else 5679 *ualloc_space -= sme->sme_run; 5680 5681 return (0); 5682 } 5683 5684 static int64_t 5685 get_unflushed_alloc_space(spa_t *spa) 5686 { 5687 if (dump_opt['L']) 5688 return (0); 5689 5690 int64_t ualloc_space = 0; 5691 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 5692 &ualloc_space); 5693 return (ualloc_space); 5694 } 5695 5696 static int 5697 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 5698 { 5699 maptype_t *uic_maptype = arg; 5700 5701 uint64_t offset = sme->sme_offset; 5702 uint64_t size = sme->sme_run; 5703 uint64_t vdev_id = sme->sme_vdev; 5704 5705 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5706 5707 /* skip indirect vdevs */ 5708 if (!vdev_is_concrete(vd)) 5709 return (0); 5710 5711 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5712 5713 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5714 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 5715 5716 if (txg < metaslab_unflushed_txg(ms)) 5717 return (0); 5718 5719 if (*uic_maptype == sme->sme_type) 5720 range_tree_add(ms->ms_allocatable, offset, size); 5721 else 5722 range_tree_remove(ms->ms_allocatable, offset, size); 5723 5724 return (0); 5725 } 5726 5727 static void 5728 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 5729 { 5730 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 5731 } 5732 5733 static void 5734 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 5735 { 5736 vdev_t *rvd = spa->spa_root_vdev; 5737 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5738 vdev_t *vd = rvd->vdev_child[i]; 5739 5740 ASSERT3U(i, ==, vd->vdev_id); 5741 5742 if (vd->vdev_ops == &vdev_indirect_ops) 5743 continue; 5744 5745 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5746 metaslab_t *msp = vd->vdev_ms[m]; 5747 5748 (void) fprintf(stderr, 5749 "\rloading concrete vdev %llu, " 5750 "metaslab %llu of %llu ...", 5751 (longlong_t)vd->vdev_id, 5752 (longlong_t)msp->ms_id, 5753 (longlong_t)vd->vdev_ms_count); 5754 5755 mutex_enter(&msp->ms_lock); 5756 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5757 5758 /* 5759 * We don't want to spend the CPU manipulating the 5760 * size-ordered tree, so clear the range_tree ops. 5761 */ 5762 msp->ms_allocatable->rt_ops = NULL; 5763 5764 if (msp->ms_sm != NULL) { 5765 VERIFY0(space_map_load(msp->ms_sm, 5766 msp->ms_allocatable, maptype)); 5767 } 5768 if (!msp->ms_loaded) 5769 msp->ms_loaded = B_TRUE; 5770 mutex_exit(&msp->ms_lock); 5771 } 5772 } 5773 5774 load_unflushed_to_ms_allocatables(spa, maptype); 5775 } 5776 5777 /* 5778 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 5779 * index in vim_entries that has the first entry in this metaslab. 5780 * On return, it will be set to the first entry after this metaslab. 5781 */ 5782 static void 5783 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 5784 uint64_t *vim_idxp) 5785 { 5786 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5787 5788 mutex_enter(&msp->ms_lock); 5789 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5790 5791 /* 5792 * We don't want to spend the CPU manipulating the 5793 * size-ordered tree, so clear the range_tree ops. 5794 */ 5795 msp->ms_allocatable->rt_ops = NULL; 5796 5797 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 5798 (*vim_idxp)++) { 5799 vdev_indirect_mapping_entry_phys_t *vimep = 5800 &vim->vim_entries[*vim_idxp]; 5801 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 5802 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 5803 ASSERT3U(ent_offset, >=, msp->ms_start); 5804 if (ent_offset >= msp->ms_start + msp->ms_size) 5805 break; 5806 5807 /* 5808 * Mappings do not cross metaslab boundaries, 5809 * because we create them by walking the metaslabs. 5810 */ 5811 ASSERT3U(ent_offset + ent_len, <=, 5812 msp->ms_start + msp->ms_size); 5813 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 5814 } 5815 5816 if (!msp->ms_loaded) 5817 msp->ms_loaded = B_TRUE; 5818 mutex_exit(&msp->ms_lock); 5819 } 5820 5821 static void 5822 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 5823 { 5824 ASSERT(!dump_opt['L']); 5825 5826 vdev_t *rvd = spa->spa_root_vdev; 5827 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5828 vdev_t *vd = rvd->vdev_child[c]; 5829 5830 ASSERT3U(c, ==, vd->vdev_id); 5831 5832 if (vd->vdev_ops != &vdev_indirect_ops) 5833 continue; 5834 5835 /* 5836 * Note: we don't check for mapping leaks on 5837 * removing vdevs because their ms_allocatable's 5838 * are used to look for leaks in allocated space. 5839 */ 5840 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 5841 5842 /* 5843 * Normally, indirect vdevs don't have any 5844 * metaslabs. We want to set them up for 5845 * zio_claim(). 5846 */ 5847 VERIFY0(vdev_metaslab_init(vd, 0)); 5848 5849 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5850 uint64_t vim_idx = 0; 5851 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5852 5853 (void) fprintf(stderr, 5854 "\rloading indirect vdev %llu, " 5855 "metaslab %llu of %llu ...", 5856 (longlong_t)vd->vdev_id, 5857 (longlong_t)vd->vdev_ms[m]->ms_id, 5858 (longlong_t)vd->vdev_ms_count); 5859 5860 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 5861 &vim_idx); 5862 } 5863 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 5864 } 5865 } 5866 5867 static void 5868 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 5869 { 5870 zcb->zcb_spa = spa; 5871 5872 if (dump_opt['L']) 5873 return; 5874 5875 dsl_pool_t *dp = spa->spa_dsl_pool; 5876 vdev_t *rvd = spa->spa_root_vdev; 5877 5878 /* 5879 * We are going to be changing the meaning of the metaslab's 5880 * ms_allocatable. Ensure that the allocator doesn't try to 5881 * use the tree. 5882 */ 5883 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 5884 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 5885 5886 zcb->zcb_vd_obsolete_counts = 5887 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 5888 UMEM_NOFAIL); 5889 5890 /* 5891 * For leak detection, we overload the ms_allocatable trees 5892 * to contain allocated segments instead of free segments. 5893 * As a result, we can't use the normal metaslab_load/unload 5894 * interfaces. 5895 */ 5896 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 5897 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 5898 5899 /* 5900 * On load_concrete_ms_allocatable_trees() we loaded all the 5901 * allocated entries from the ms_sm to the ms_allocatable for 5902 * each metaslab. If the pool has a checkpoint or is in the 5903 * middle of discarding a checkpoint, some of these blocks 5904 * may have been freed but their ms_sm may not have been 5905 * updated because they are referenced by the checkpoint. In 5906 * order to avoid false-positives during leak-detection, we 5907 * go through the vdev's checkpoint space map and exclude all 5908 * its entries from their relevant ms_allocatable. 5909 * 5910 * We also aggregate the space held by the checkpoint and add 5911 * it to zcb_checkpoint_size. 5912 * 5913 * Note that at this point we are also verifying that all the 5914 * entries on the checkpoint_sm are marked as allocated in 5915 * the ms_sm of their relevant metaslab. 5916 * [see comment in checkpoint_sm_exclude_entry_cb()] 5917 */ 5918 zdb_leak_init_exclude_checkpoint(spa, zcb); 5919 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 5920 5921 /* for cleaner progress output */ 5922 (void) fprintf(stderr, "\n"); 5923 5924 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 5925 ASSERT(spa_feature_is_enabled(spa, 5926 SPA_FEATURE_DEVICE_REMOVAL)); 5927 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 5928 increment_indirect_mapping_cb, zcb, NULL); 5929 } 5930 5931 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5932 zdb_ddt_leak_init(spa, zcb); 5933 spa_config_exit(spa, SCL_CONFIG, FTAG); 5934 } 5935 5936 static boolean_t 5937 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 5938 { 5939 boolean_t leaks = B_FALSE; 5940 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5941 uint64_t total_leaked = 0; 5942 boolean_t are_precise = B_FALSE; 5943 5944 ASSERT(vim != NULL); 5945 5946 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 5947 vdev_indirect_mapping_entry_phys_t *vimep = 5948 &vim->vim_entries[i]; 5949 uint64_t obsolete_bytes = 0; 5950 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 5951 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5952 5953 /* 5954 * This is not very efficient but it's easy to 5955 * verify correctness. 5956 */ 5957 for (uint64_t inner_offset = 0; 5958 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 5959 inner_offset += 1 << vd->vdev_ashift) { 5960 if (range_tree_contains(msp->ms_allocatable, 5961 offset + inner_offset, 1 << vd->vdev_ashift)) { 5962 obsolete_bytes += 1 << vd->vdev_ashift; 5963 } 5964 } 5965 5966 int64_t bytes_leaked = obsolete_bytes - 5967 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 5968 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 5969 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 5970 5971 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 5972 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 5973 (void) printf("obsolete indirect mapping count " 5974 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 5975 (u_longlong_t)vd->vdev_id, 5976 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 5977 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 5978 (u_longlong_t)bytes_leaked); 5979 } 5980 total_leaked += ABS(bytes_leaked); 5981 } 5982 5983 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 5984 if (!are_precise && total_leaked > 0) { 5985 int pct_leaked = total_leaked * 100 / 5986 vdev_indirect_mapping_bytes_mapped(vim); 5987 (void) printf("cannot verify obsolete indirect mapping " 5988 "counts of vdev %llu because precise feature was not " 5989 "enabled when it was removed: %d%% (%llx bytes) of mapping" 5990 "unreferenced\n", 5991 (u_longlong_t)vd->vdev_id, pct_leaked, 5992 (u_longlong_t)total_leaked); 5993 } else if (total_leaked > 0) { 5994 (void) printf("obsolete indirect mapping count mismatch " 5995 "for vdev %llu -- %llx total bytes mismatched\n", 5996 (u_longlong_t)vd->vdev_id, 5997 (u_longlong_t)total_leaked); 5998 leaks |= B_TRUE; 5999 } 6000 6001 vdev_indirect_mapping_free_obsolete_counts(vim, 6002 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6003 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6004 6005 return (leaks); 6006 } 6007 6008 static boolean_t 6009 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6010 { 6011 if (dump_opt['L']) 6012 return (B_FALSE); 6013 6014 boolean_t leaks = B_FALSE; 6015 vdev_t *rvd = spa->spa_root_vdev; 6016 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6017 vdev_t *vd = rvd->vdev_child[c]; 6018 metaslab_group_t *mg __maybe_unused = vd->vdev_mg; 6019 6020 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6021 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6022 } 6023 6024 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6025 metaslab_t *msp = vd->vdev_ms[m]; 6026 ASSERT3P(mg, ==, msp->ms_group); 6027 6028 /* 6029 * ms_allocatable has been overloaded 6030 * to contain allocated segments. Now that 6031 * we finished traversing all blocks, any 6032 * block that remains in the ms_allocatable 6033 * represents an allocated block that we 6034 * did not claim during the traversal. 6035 * Claimed blocks would have been removed 6036 * from the ms_allocatable. For indirect 6037 * vdevs, space remaining in the tree 6038 * represents parts of the mapping that are 6039 * not referenced, which is not a bug. 6040 */ 6041 if (vd->vdev_ops == &vdev_indirect_ops) { 6042 range_tree_vacate(msp->ms_allocatable, 6043 NULL, NULL); 6044 } else { 6045 range_tree_vacate(msp->ms_allocatable, 6046 zdb_leak, vd); 6047 } 6048 if (msp->ms_loaded) { 6049 msp->ms_loaded = B_FALSE; 6050 } 6051 } 6052 } 6053 6054 umem_free(zcb->zcb_vd_obsolete_counts, 6055 rvd->vdev_children * sizeof (uint32_t *)); 6056 zcb->zcb_vd_obsolete_counts = NULL; 6057 6058 return (leaks); 6059 } 6060 6061 /* ARGSUSED */ 6062 static int 6063 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6064 { 6065 zdb_cb_t *zcb = arg; 6066 6067 if (dump_opt['b'] >= 5) { 6068 char blkbuf[BP_SPRINTF_LEN]; 6069 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6070 (void) printf("[%s] %s\n", 6071 "deferred free", blkbuf); 6072 } 6073 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6074 return (0); 6075 } 6076 6077 /* 6078 * Iterate over livelists which have been destroyed by the user but 6079 * are still present in the MOS, waiting to be freed 6080 */ 6081 static void 6082 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6083 { 6084 objset_t *mos = spa->spa_meta_objset; 6085 uint64_t zap_obj; 6086 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6087 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6088 if (err == ENOENT) 6089 return; 6090 ASSERT0(err); 6091 6092 zap_cursor_t zc; 6093 zap_attribute_t attr; 6094 dsl_deadlist_t ll; 6095 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6096 ll.dl_os = NULL; 6097 for (zap_cursor_init(&zc, mos, zap_obj); 6098 zap_cursor_retrieve(&zc, &attr) == 0; 6099 (void) zap_cursor_advance(&zc)) { 6100 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6101 func(&ll, arg); 6102 dsl_deadlist_close(&ll); 6103 } 6104 zap_cursor_fini(&zc); 6105 } 6106 6107 static int 6108 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6109 dmu_tx_t *tx) 6110 { 6111 ASSERT(!bp_freed); 6112 return (count_block_cb(arg, bp, tx)); 6113 } 6114 6115 static int 6116 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6117 { 6118 zdb_cb_t *zbc = args; 6119 bplist_t blks; 6120 bplist_create(&blks); 6121 /* determine which blocks have been alloc'd but not freed */ 6122 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6123 /* count those blocks */ 6124 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6125 bplist_destroy(&blks); 6126 return (0); 6127 } 6128 6129 static void 6130 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6131 { 6132 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6133 } 6134 6135 /* 6136 * Count the blocks in the livelists that have been destroyed by the user 6137 * but haven't yet been freed. 6138 */ 6139 static void 6140 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6141 { 6142 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6143 } 6144 6145 static void 6146 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6147 { 6148 ASSERT3P(arg, ==, NULL); 6149 global_feature_count[SPA_FEATURE_LIVELIST]++; 6150 dump_blkptr_list(ll, "Deleted Livelist"); 6151 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6152 } 6153 6154 /* 6155 * Print out, register object references to, and increment feature counts for 6156 * livelists that have been destroyed by the user but haven't yet been freed. 6157 */ 6158 static void 6159 deleted_livelists_dump_mos(spa_t *spa) 6160 { 6161 uint64_t zap_obj; 6162 objset_t *mos = spa->spa_meta_objset; 6163 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6164 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6165 if (err == ENOENT) 6166 return; 6167 mos_obj_refd(zap_obj); 6168 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6169 } 6170 6171 static int 6172 dump_block_stats(spa_t *spa) 6173 { 6174 zdb_cb_t zcb; 6175 zdb_blkstats_t *zb, *tzb; 6176 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6177 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6178 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6179 boolean_t leaks = B_FALSE; 6180 int e, c, err; 6181 bp_embedded_type_t i; 6182 6183 bzero(&zcb, sizeof (zcb)); 6184 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6185 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6186 (dump_opt['c'] == 1) ? "metadata " : "", 6187 dump_opt['c'] ? "checksums " : "", 6188 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6189 !dump_opt['L'] ? "nothing leaked " : ""); 6190 6191 /* 6192 * When leak detection is enabled we load all space maps as SM_ALLOC 6193 * maps, then traverse the pool claiming each block we discover. If 6194 * the pool is perfectly consistent, the segment trees will be empty 6195 * when we're done. Anything left over is a leak; any block we can't 6196 * claim (because it's not part of any space map) is a double 6197 * allocation, reference to a freed block, or an unclaimed log block. 6198 * 6199 * When leak detection is disabled (-L option) we still traverse the 6200 * pool claiming each block we discover, but we skip opening any space 6201 * maps. 6202 */ 6203 bzero(&zcb, sizeof (zdb_cb_t)); 6204 zdb_leak_init(spa, &zcb); 6205 6206 /* 6207 * If there's a deferred-free bplist, process that first. 6208 */ 6209 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6210 bpobj_count_block_cb, &zcb, NULL); 6211 6212 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6213 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6214 bpobj_count_block_cb, &zcb, NULL); 6215 } 6216 6217 zdb_claim_removing(spa, &zcb); 6218 6219 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6220 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6221 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6222 &zcb, NULL)); 6223 } 6224 6225 deleted_livelists_count_blocks(spa, &zcb); 6226 6227 if (dump_opt['c'] > 1) 6228 flags |= TRAVERSE_PREFETCH_DATA; 6229 6230 zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6231 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6232 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6233 zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); 6234 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); 6235 6236 /* 6237 * If we've traversed the data blocks then we need to wait for those 6238 * I/Os to complete. We leverage "The Godfather" zio to wait on 6239 * all async I/Os to complete. 6240 */ 6241 if (dump_opt['c']) { 6242 for (c = 0; c < max_ncpus; c++) { 6243 (void) zio_wait(spa->spa_async_zio_root[c]); 6244 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6245 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6246 ZIO_FLAG_GODFATHER); 6247 } 6248 } 6249 ASSERT0(spa->spa_load_verify_bytes); 6250 6251 /* 6252 * Done after zio_wait() since zcb_haderrors is modified in 6253 * zdb_blkptr_done() 6254 */ 6255 zcb.zcb_haderrors |= err; 6256 6257 if (zcb.zcb_haderrors) { 6258 (void) printf("\nError counts:\n\n"); 6259 (void) printf("\t%5s %s\n", "errno", "count"); 6260 for (e = 0; e < 256; e++) { 6261 if (zcb.zcb_errors[e] != 0) { 6262 (void) printf("\t%5d %llu\n", 6263 e, (u_longlong_t)zcb.zcb_errors[e]); 6264 } 6265 } 6266 } 6267 6268 /* 6269 * Report any leaked segments. 6270 */ 6271 leaks |= zdb_leak_fini(spa, &zcb); 6272 6273 tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6274 6275 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6276 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6277 6278 total_alloc = norm_alloc + 6279 metaslab_class_get_alloc(spa_log_class(spa)) + 6280 metaslab_class_get_alloc(spa_special_class(spa)) + 6281 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6282 get_unflushed_alloc_space(spa); 6283 total_found = tzb->zb_asize - zcb.zcb_dedup_asize + 6284 zcb.zcb_removing_size + zcb.zcb_checkpoint_size; 6285 6286 if (total_found == total_alloc && !dump_opt['L']) { 6287 (void) printf("\n\tNo leaks (block sum matches space" 6288 " maps exactly)\n"); 6289 } else if (!dump_opt['L']) { 6290 (void) printf("block traversal size %llu != alloc %llu " 6291 "(%s %lld)\n", 6292 (u_longlong_t)total_found, 6293 (u_longlong_t)total_alloc, 6294 (dump_opt['L']) ? "unreachable" : "leaked", 6295 (longlong_t)(total_alloc - total_found)); 6296 leaks = B_TRUE; 6297 } 6298 6299 if (tzb->zb_count == 0) 6300 return (2); 6301 6302 (void) printf("\n"); 6303 (void) printf("\t%-16s %14llu\n", "bp count:", 6304 (u_longlong_t)tzb->zb_count); 6305 (void) printf("\t%-16s %14llu\n", "ganged count:", 6306 (longlong_t)tzb->zb_gangs); 6307 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6308 (u_longlong_t)tzb->zb_lsize, 6309 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6310 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6311 "bp physical:", (u_longlong_t)tzb->zb_psize, 6312 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6313 (double)tzb->zb_lsize / tzb->zb_psize); 6314 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6315 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6316 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6317 (double)tzb->zb_lsize / tzb->zb_asize); 6318 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6319 "bp deduped:", (u_longlong_t)zcb.zcb_dedup_asize, 6320 (u_longlong_t)zcb.zcb_dedup_blocks, 6321 (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); 6322 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6323 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6324 6325 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6326 uint64_t alloc = metaslab_class_get_alloc( 6327 spa_special_class(spa)); 6328 uint64_t space = metaslab_class_get_space( 6329 spa_special_class(spa)); 6330 6331 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6332 "Special class", (u_longlong_t)alloc, 6333 100.0 * alloc / space); 6334 } 6335 6336 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6337 uint64_t alloc = metaslab_class_get_alloc( 6338 spa_dedup_class(spa)); 6339 uint64_t space = metaslab_class_get_space( 6340 spa_dedup_class(spa)); 6341 6342 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6343 "Dedup class", (u_longlong_t)alloc, 6344 100.0 * alloc / space); 6345 } 6346 6347 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6348 if (zcb.zcb_embedded_blocks[i] == 0) 6349 continue; 6350 (void) printf("\n"); 6351 (void) printf("\tadditional, non-pointer bps of type %u: " 6352 "%10llu\n", 6353 i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); 6354 6355 if (dump_opt['b'] >= 3) { 6356 (void) printf("\t number of (compressed) bytes: " 6357 "number of bps\n"); 6358 dump_histogram(zcb.zcb_embedded_histogram[i], 6359 sizeof (zcb.zcb_embedded_histogram[i]) / 6360 sizeof (zcb.zcb_embedded_histogram[i][0]), 0); 6361 } 6362 } 6363 6364 if (tzb->zb_ditto_samevdev != 0) { 6365 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6366 (longlong_t)tzb->zb_ditto_samevdev); 6367 } 6368 if (tzb->zb_ditto_same_ms != 0) { 6369 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6370 (longlong_t)tzb->zb_ditto_same_ms); 6371 } 6372 6373 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6374 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6375 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6376 6377 if (vim == NULL) { 6378 continue; 6379 } 6380 6381 char mem[32]; 6382 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6383 mem, vdev_indirect_mapping_size(vim)); 6384 6385 (void) printf("\tindirect vdev id %llu has %llu segments " 6386 "(%s in memory)\n", 6387 (longlong_t)vd->vdev_id, 6388 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6389 } 6390 6391 if (dump_opt['b'] >= 2) { 6392 int l, t, level; 6393 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6394 "\t avg\t comp\t%%Total\tType\n"); 6395 6396 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6397 char csize[32], lsize[32], psize[32], asize[32]; 6398 char avg[32], gang[32]; 6399 const char *typename; 6400 6401 /* make sure nicenum has enough space */ 6402 CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ); 6403 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 6404 CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ); 6405 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 6406 CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ); 6407 CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ); 6408 6409 if (t < DMU_OT_NUMTYPES) 6410 typename = dmu_ot[t].ot_name; 6411 else 6412 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 6413 6414 if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { 6415 (void) printf("%6s\t%5s\t%5s\t%5s" 6416 "\t%5s\t%5s\t%6s\t%s\n", 6417 "-", 6418 "-", 6419 "-", 6420 "-", 6421 "-", 6422 "-", 6423 "-", 6424 typename); 6425 continue; 6426 } 6427 6428 for (l = ZB_TOTAL - 1; l >= -1; l--) { 6429 level = (l == -1 ? ZB_TOTAL : l); 6430 zb = &zcb.zcb_type[level][t]; 6431 6432 if (zb->zb_asize == 0) 6433 continue; 6434 6435 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 6436 continue; 6437 6438 if (level == 0 && zb->zb_asize == 6439 zcb.zcb_type[ZB_TOTAL][t].zb_asize) 6440 continue; 6441 6442 zdb_nicenum(zb->zb_count, csize, 6443 sizeof (csize)); 6444 zdb_nicenum(zb->zb_lsize, lsize, 6445 sizeof (lsize)); 6446 zdb_nicenum(zb->zb_psize, psize, 6447 sizeof (psize)); 6448 zdb_nicenum(zb->zb_asize, asize, 6449 sizeof (asize)); 6450 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 6451 sizeof (avg)); 6452 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 6453 6454 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 6455 "\t%5.2f\t%6.2f\t", 6456 csize, lsize, psize, asize, avg, 6457 (double)zb->zb_lsize / zb->zb_psize, 6458 100.0 * zb->zb_asize / tzb->zb_asize); 6459 6460 if (level == ZB_TOTAL) 6461 (void) printf("%s\n", typename); 6462 else 6463 (void) printf(" L%d %s\n", 6464 level, typename); 6465 6466 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 6467 (void) printf("\t number of ganged " 6468 "blocks: %s\n", gang); 6469 } 6470 6471 if (dump_opt['b'] >= 4) { 6472 (void) printf("psize " 6473 "(in 512-byte sectors): " 6474 "number of blocks\n"); 6475 dump_histogram(zb->zb_psize_histogram, 6476 PSIZE_HISTO_SIZE, 0); 6477 } 6478 } 6479 } 6480 6481 /* Output a table summarizing block sizes in the pool */ 6482 if (dump_opt['b'] >= 2) { 6483 dump_size_histograms(&zcb); 6484 } 6485 } 6486 6487 (void) printf("\n"); 6488 6489 if (leaks) 6490 return (2); 6491 6492 if (zcb.zcb_haderrors) 6493 return (3); 6494 6495 return (0); 6496 } 6497 6498 typedef struct zdb_ddt_entry { 6499 ddt_key_t zdde_key; 6500 uint64_t zdde_ref_blocks; 6501 uint64_t zdde_ref_lsize; 6502 uint64_t zdde_ref_psize; 6503 uint64_t zdde_ref_dsize; 6504 avl_node_t zdde_node; 6505 } zdb_ddt_entry_t; 6506 6507 /* ARGSUSED */ 6508 static int 6509 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6510 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6511 { 6512 avl_tree_t *t = arg; 6513 avl_index_t where; 6514 zdb_ddt_entry_t *zdde, zdde_search; 6515 6516 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 6517 BP_IS_EMBEDDED(bp)) 6518 return (0); 6519 6520 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 6521 (void) printf("traversing objset %llu, %llu objects, " 6522 "%lu blocks so far\n", 6523 (u_longlong_t)zb->zb_objset, 6524 (u_longlong_t)BP_GET_FILL(bp), 6525 avl_numnodes(t)); 6526 } 6527 6528 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 6529 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 6530 return (0); 6531 6532 ddt_key_fill(&zdde_search.zdde_key, bp); 6533 6534 zdde = avl_find(t, &zdde_search, &where); 6535 6536 if (zdde == NULL) { 6537 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 6538 zdde->zdde_key = zdde_search.zdde_key; 6539 avl_insert(t, zdde, where); 6540 } 6541 6542 zdde->zdde_ref_blocks += 1; 6543 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 6544 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 6545 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 6546 6547 return (0); 6548 } 6549 6550 static void 6551 dump_simulated_ddt(spa_t *spa) 6552 { 6553 avl_tree_t t; 6554 void *cookie = NULL; 6555 zdb_ddt_entry_t *zdde; 6556 ddt_histogram_t ddh_total; 6557 ddt_stat_t dds_total; 6558 6559 bzero(&ddh_total, sizeof (ddh_total)); 6560 bzero(&dds_total, sizeof (dds_total)); 6561 avl_create(&t, ddt_entry_compare, 6562 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 6563 6564 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6565 6566 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6567 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 6568 6569 spa_config_exit(spa, SCL_CONFIG, FTAG); 6570 6571 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 6572 ddt_stat_t dds; 6573 uint64_t refcnt = zdde->zdde_ref_blocks; 6574 ASSERT(refcnt != 0); 6575 6576 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 6577 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 6578 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 6579 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 6580 6581 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 6582 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 6583 dds.dds_ref_psize = zdde->zdde_ref_psize; 6584 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 6585 6586 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 6587 &dds, 0); 6588 6589 umem_free(zdde, sizeof (*zdde)); 6590 } 6591 6592 avl_destroy(&t); 6593 6594 ddt_histogram_stat(&dds_total, &ddh_total); 6595 6596 (void) printf("Simulated DDT histogram:\n"); 6597 6598 zpool_dump_ddt(&dds_total, &ddh_total); 6599 6600 dump_dedup_ratio(&dds_total); 6601 } 6602 6603 static int 6604 verify_device_removal_feature_counts(spa_t *spa) 6605 { 6606 uint64_t dr_feature_refcount = 0; 6607 uint64_t oc_feature_refcount = 0; 6608 uint64_t indirect_vdev_count = 0; 6609 uint64_t precise_vdev_count = 0; 6610 uint64_t obsolete_counts_object_count = 0; 6611 uint64_t obsolete_sm_count = 0; 6612 uint64_t obsolete_counts_count = 0; 6613 uint64_t scip_count = 0; 6614 uint64_t obsolete_bpobj_count = 0; 6615 int ret = 0; 6616 6617 spa_condensing_indirect_phys_t *scip = 6618 &spa->spa_condensing_indirect_phys; 6619 if (scip->scip_next_mapping_object != 0) { 6620 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 6621 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 6622 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 6623 6624 (void) printf("Condensing indirect vdev %llu: new mapping " 6625 "object %llu, prev obsolete sm %llu\n", 6626 (u_longlong_t)scip->scip_vdev, 6627 (u_longlong_t)scip->scip_next_mapping_object, 6628 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 6629 if (scip->scip_prev_obsolete_sm_object != 0) { 6630 space_map_t *prev_obsolete_sm = NULL; 6631 VERIFY0(space_map_open(&prev_obsolete_sm, 6632 spa->spa_meta_objset, 6633 scip->scip_prev_obsolete_sm_object, 6634 0, vd->vdev_asize, 0)); 6635 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 6636 (void) printf("\n"); 6637 space_map_close(prev_obsolete_sm); 6638 } 6639 6640 scip_count += 2; 6641 } 6642 6643 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 6644 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 6645 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 6646 6647 if (vic->vic_mapping_object != 0) { 6648 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 6649 vd->vdev_removing); 6650 indirect_vdev_count++; 6651 6652 if (vd->vdev_indirect_mapping->vim_havecounts) { 6653 obsolete_counts_count++; 6654 } 6655 } 6656 6657 boolean_t are_precise; 6658 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6659 if (are_precise) { 6660 ASSERT(vic->vic_mapping_object != 0); 6661 precise_vdev_count++; 6662 } 6663 6664 uint64_t obsolete_sm_object; 6665 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6666 if (obsolete_sm_object != 0) { 6667 ASSERT(vic->vic_mapping_object != 0); 6668 obsolete_sm_count++; 6669 } 6670 } 6671 6672 (void) feature_get_refcount(spa, 6673 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 6674 &dr_feature_refcount); 6675 (void) feature_get_refcount(spa, 6676 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 6677 &oc_feature_refcount); 6678 6679 if (dr_feature_refcount != indirect_vdev_count) { 6680 ret = 1; 6681 (void) printf("Number of indirect vdevs (%llu) " \ 6682 "does not match feature count (%llu)\n", 6683 (u_longlong_t)indirect_vdev_count, 6684 (u_longlong_t)dr_feature_refcount); 6685 } else { 6686 (void) printf("Verified device_removal feature refcount " \ 6687 "of %llu is correct\n", 6688 (u_longlong_t)dr_feature_refcount); 6689 } 6690 6691 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 6692 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 6693 obsolete_bpobj_count++; 6694 } 6695 6696 6697 obsolete_counts_object_count = precise_vdev_count; 6698 obsolete_counts_object_count += obsolete_sm_count; 6699 obsolete_counts_object_count += obsolete_counts_count; 6700 obsolete_counts_object_count += scip_count; 6701 obsolete_counts_object_count += obsolete_bpobj_count; 6702 obsolete_counts_object_count += remap_deadlist_count; 6703 6704 if (oc_feature_refcount != obsolete_counts_object_count) { 6705 ret = 1; 6706 (void) printf("Number of obsolete counts objects (%llu) " \ 6707 "does not match feature count (%llu)\n", 6708 (u_longlong_t)obsolete_counts_object_count, 6709 (u_longlong_t)oc_feature_refcount); 6710 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 6711 "ob:%llu rd:%llu\n", 6712 (u_longlong_t)precise_vdev_count, 6713 (u_longlong_t)obsolete_sm_count, 6714 (u_longlong_t)obsolete_counts_count, 6715 (u_longlong_t)scip_count, 6716 (u_longlong_t)obsolete_bpobj_count, 6717 (u_longlong_t)remap_deadlist_count); 6718 } else { 6719 (void) printf("Verified indirect_refcount feature refcount " \ 6720 "of %llu is correct\n", 6721 (u_longlong_t)oc_feature_refcount); 6722 } 6723 return (ret); 6724 } 6725 6726 static void 6727 zdb_set_skip_mmp(char *target) 6728 { 6729 spa_t *spa; 6730 6731 /* 6732 * Disable the activity check to allow examination of 6733 * active pools. 6734 */ 6735 mutex_enter(&spa_namespace_lock); 6736 if ((spa = spa_lookup(target)) != NULL) { 6737 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 6738 } 6739 mutex_exit(&spa_namespace_lock); 6740 } 6741 6742 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 6743 /* 6744 * Import the checkpointed state of the pool specified by the target 6745 * parameter as readonly. The function also accepts a pool config 6746 * as an optional parameter, else it attempts to infer the config by 6747 * the name of the target pool. 6748 * 6749 * Note that the checkpointed state's pool name will be the name of 6750 * the original pool with the above suffix appended to it. In addition, 6751 * if the target is not a pool name (e.g. a path to a dataset) then 6752 * the new_path parameter is populated with the updated path to 6753 * reflect the fact that we are looking into the checkpointed state. 6754 * 6755 * The function returns a newly-allocated copy of the name of the 6756 * pool containing the checkpointed state. When this copy is no 6757 * longer needed it should be freed with free(3C). Same thing 6758 * applies to the new_path parameter if allocated. 6759 */ 6760 static char * 6761 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 6762 { 6763 int error = 0; 6764 char *poolname, *bogus_name = NULL; 6765 boolean_t freecfg = B_FALSE; 6766 6767 /* If the target is not a pool, the extract the pool name */ 6768 char *path_start = strchr(target, '/'); 6769 if (path_start != NULL) { 6770 size_t poolname_len = path_start - target; 6771 poolname = strndup(target, poolname_len); 6772 } else { 6773 poolname = target; 6774 } 6775 6776 if (cfg == NULL) { 6777 zdb_set_skip_mmp(poolname); 6778 error = spa_get_stats(poolname, &cfg, NULL, 0); 6779 if (error != 0) { 6780 fatal("Tried to read config of pool \"%s\" but " 6781 "spa_get_stats() failed with error %d\n", 6782 poolname, error); 6783 } 6784 freecfg = B_TRUE; 6785 } 6786 6787 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) 6788 return (NULL); 6789 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 6790 6791 error = spa_import(bogus_name, cfg, NULL, 6792 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 6793 ZFS_IMPORT_SKIP_MMP); 6794 if (freecfg) 6795 nvlist_free(cfg); 6796 if (error != 0) { 6797 fatal("Tried to import pool \"%s\" but spa_import() failed " 6798 "with error %d\n", bogus_name, error); 6799 } 6800 6801 if (new_path != NULL && path_start != NULL) { 6802 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 6803 if (path_start != NULL) 6804 free(poolname); 6805 return (NULL); 6806 } 6807 } 6808 6809 if (target != poolname) 6810 free(poolname); 6811 6812 return (bogus_name); 6813 } 6814 6815 typedef struct verify_checkpoint_sm_entry_cb_arg { 6816 vdev_t *vcsec_vd; 6817 6818 /* the following fields are only used for printing progress */ 6819 uint64_t vcsec_entryid; 6820 uint64_t vcsec_num_entries; 6821 } verify_checkpoint_sm_entry_cb_arg_t; 6822 6823 #define ENTRIES_PER_PROGRESS_UPDATE 10000 6824 6825 static int 6826 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 6827 { 6828 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 6829 vdev_t *vd = vcsec->vcsec_vd; 6830 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6831 uint64_t end = sme->sme_offset + sme->sme_run; 6832 6833 ASSERT(sme->sme_type == SM_FREE); 6834 6835 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 6836 (void) fprintf(stderr, 6837 "\rverifying vdev %llu, space map entry %llu of %llu ...", 6838 (longlong_t)vd->vdev_id, 6839 (longlong_t)vcsec->vcsec_entryid, 6840 (longlong_t)vcsec->vcsec_num_entries); 6841 } 6842 vcsec->vcsec_entryid++; 6843 6844 /* 6845 * See comment in checkpoint_sm_exclude_entry_cb() 6846 */ 6847 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6848 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6849 6850 /* 6851 * The entries in the vdev_checkpoint_sm should be marked as 6852 * allocated in the checkpointed state of the pool, therefore 6853 * their respective ms_allocateable trees should not contain them. 6854 */ 6855 mutex_enter(&ms->ms_lock); 6856 range_tree_verify_not_present(ms->ms_allocatable, 6857 sme->sme_offset, sme->sme_run); 6858 mutex_exit(&ms->ms_lock); 6859 6860 return (0); 6861 } 6862 6863 /* 6864 * Verify that all segments in the vdev_checkpoint_sm are allocated 6865 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 6866 * ms_allocatable). 6867 * 6868 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 6869 * each vdev in the current state of the pool to the metaslab space maps 6870 * (ms_sm) of the checkpointed state of the pool. 6871 * 6872 * Note that the function changes the state of the ms_allocatable 6873 * trees of the current spa_t. The entries of these ms_allocatable 6874 * trees are cleared out and then repopulated from with the free 6875 * entries of their respective ms_sm space maps. 6876 */ 6877 static void 6878 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 6879 { 6880 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 6881 vdev_t *current_rvd = current->spa_root_vdev; 6882 6883 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 6884 6885 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 6886 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 6887 vdev_t *current_vd = current_rvd->vdev_child[c]; 6888 6889 space_map_t *checkpoint_sm = NULL; 6890 uint64_t checkpoint_sm_obj; 6891 6892 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 6893 /* 6894 * Since we don't allow device removal in a pool 6895 * that has a checkpoint, we expect that all removed 6896 * vdevs were removed from the pool before the 6897 * checkpoint. 6898 */ 6899 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 6900 continue; 6901 } 6902 6903 /* 6904 * If the checkpoint space map doesn't exist, then nothing 6905 * here is checkpointed so there's nothing to verify. 6906 */ 6907 if (current_vd->vdev_top_zap == 0 || 6908 zap_contains(spa_meta_objset(current), 6909 current_vd->vdev_top_zap, 6910 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6911 continue; 6912 6913 VERIFY0(zap_lookup(spa_meta_objset(current), 6914 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 6915 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 6916 6917 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 6918 checkpoint_sm_obj, 0, current_vd->vdev_asize, 6919 current_vd->vdev_ashift)); 6920 6921 verify_checkpoint_sm_entry_cb_arg_t vcsec; 6922 vcsec.vcsec_vd = ckpoint_vd; 6923 vcsec.vcsec_entryid = 0; 6924 vcsec.vcsec_num_entries = 6925 space_map_length(checkpoint_sm) / sizeof (uint64_t); 6926 VERIFY0(space_map_iterate(checkpoint_sm, 6927 space_map_length(checkpoint_sm), 6928 verify_checkpoint_sm_entry_cb, &vcsec)); 6929 if (dump_opt['m'] > 3) 6930 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 6931 space_map_close(checkpoint_sm); 6932 } 6933 6934 /* 6935 * If we've added vdevs since we took the checkpoint, ensure 6936 * that their checkpoint space maps are empty. 6937 */ 6938 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 6939 for (uint64_t c = ckpoint_rvd->vdev_children; 6940 c < current_rvd->vdev_children; c++) { 6941 vdev_t *current_vd = current_rvd->vdev_child[c]; 6942 ASSERT3P(current_vd->vdev_checkpoint_sm, ==, NULL); 6943 } 6944 } 6945 6946 /* for cleaner progress output */ 6947 (void) fprintf(stderr, "\n"); 6948 } 6949 6950 /* 6951 * Verifies that all space that's allocated in the checkpoint is 6952 * still allocated in the current version, by checking that everything 6953 * in checkpoint's ms_allocatable (which is actually allocated, not 6954 * allocatable/free) is not present in current's ms_allocatable. 6955 * 6956 * Note that the function changes the state of the ms_allocatable 6957 * trees of both spas when called. The entries of all ms_allocatable 6958 * trees are cleared out and then repopulated from their respective 6959 * ms_sm space maps. In the checkpointed state we load the allocated 6960 * entries, and in the current state we load the free entries. 6961 */ 6962 static void 6963 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 6964 { 6965 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 6966 vdev_t *current_rvd = current->spa_root_vdev; 6967 6968 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 6969 load_concrete_ms_allocatable_trees(current, SM_FREE); 6970 6971 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 6972 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 6973 vdev_t *current_vd = current_rvd->vdev_child[i]; 6974 6975 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 6976 /* 6977 * See comment in verify_checkpoint_vdev_spacemaps() 6978 */ 6979 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 6980 continue; 6981 } 6982 6983 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 6984 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 6985 metaslab_t *current_msp = current_vd->vdev_ms[m]; 6986 6987 (void) fprintf(stderr, 6988 "\rverifying vdev %llu of %llu, " 6989 "metaslab %llu of %llu ...", 6990 (longlong_t)current_vd->vdev_id, 6991 (longlong_t)current_rvd->vdev_children, 6992 (longlong_t)current_vd->vdev_ms[m]->ms_id, 6993 (longlong_t)current_vd->vdev_ms_count); 6994 6995 /* 6996 * We walk through the ms_allocatable trees that 6997 * are loaded with the allocated blocks from the 6998 * ms_sm spacemaps of the checkpoint. For each 6999 * one of these ranges we ensure that none of them 7000 * exists in the ms_allocatable trees of the 7001 * current state which are loaded with the ranges 7002 * that are currently free. 7003 * 7004 * This way we ensure that none of the blocks that 7005 * are part of the checkpoint were freed by mistake. 7006 */ 7007 range_tree_walk(ckpoint_msp->ms_allocatable, 7008 (range_tree_func_t *)range_tree_verify_not_present, 7009 current_msp->ms_allocatable); 7010 } 7011 } 7012 7013 /* for cleaner progress output */ 7014 (void) fprintf(stderr, "\n"); 7015 } 7016 7017 static void 7018 verify_checkpoint_blocks(spa_t *spa) 7019 { 7020 ASSERT(!dump_opt['L']); 7021 7022 spa_t *checkpoint_spa; 7023 char *checkpoint_pool; 7024 int error = 0; 7025 7026 /* 7027 * We import the checkpointed state of the pool (under a different 7028 * name) so we can do verification on it against the current state 7029 * of the pool. 7030 */ 7031 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7032 NULL); 7033 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7034 7035 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7036 if (error != 0) { 7037 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7038 "error %d\n", checkpoint_pool, error); 7039 } 7040 7041 /* 7042 * Ensure that ranges in the checkpoint space maps of each vdev 7043 * are allocated according to the checkpointed state's metaslab 7044 * space maps. 7045 */ 7046 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7047 7048 /* 7049 * Ensure that allocated ranges in the checkpoint's metaslab 7050 * space maps remain allocated in the metaslab space maps of 7051 * the current state. 7052 */ 7053 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7054 7055 /* 7056 * Once we are done, we get rid of the checkpointed state. 7057 */ 7058 spa_close(checkpoint_spa, FTAG); 7059 free(checkpoint_pool); 7060 } 7061 7062 static void 7063 dump_leftover_checkpoint_blocks(spa_t *spa) 7064 { 7065 vdev_t *rvd = spa->spa_root_vdev; 7066 7067 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7068 vdev_t *vd = rvd->vdev_child[i]; 7069 7070 space_map_t *checkpoint_sm = NULL; 7071 uint64_t checkpoint_sm_obj; 7072 7073 if (vd->vdev_top_zap == 0) 7074 continue; 7075 7076 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7077 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7078 continue; 7079 7080 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7081 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7082 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7083 7084 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7085 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7086 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7087 space_map_close(checkpoint_sm); 7088 } 7089 } 7090 7091 static int 7092 verify_checkpoint(spa_t *spa) 7093 { 7094 uberblock_t checkpoint; 7095 int error; 7096 7097 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7098 return (0); 7099 7100 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7101 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7102 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7103 7104 if (error == ENOENT && !dump_opt['L']) { 7105 /* 7106 * If the feature is active but the uberblock is missing 7107 * then we must be in the middle of discarding the 7108 * checkpoint. 7109 */ 7110 (void) printf("\nPartially discarded checkpoint " 7111 "state found:\n"); 7112 if (dump_opt['m'] > 3) 7113 dump_leftover_checkpoint_blocks(spa); 7114 return (0); 7115 } else if (error != 0) { 7116 (void) printf("lookup error %d when looking for " 7117 "checkpointed uberblock in MOS\n", error); 7118 return (error); 7119 } 7120 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7121 7122 if (checkpoint.ub_checkpoint_txg == 0) { 7123 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7124 "uberblock\n"); 7125 error = 3; 7126 } 7127 7128 if (error == 0 && !dump_opt['L']) 7129 verify_checkpoint_blocks(spa); 7130 7131 return (error); 7132 } 7133 7134 /* ARGSUSED */ 7135 static void 7136 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7137 { 7138 for (uint64_t i = start; i < size; i++) { 7139 (void) printf("MOS object %llu referenced but not allocated\n", 7140 (u_longlong_t)i); 7141 } 7142 } 7143 7144 static void 7145 mos_obj_refd(uint64_t obj) 7146 { 7147 if (obj != 0 && mos_refd_objs != NULL) 7148 range_tree_add(mos_refd_objs, obj, 1); 7149 } 7150 7151 /* 7152 * Call on a MOS object that may already have been referenced. 7153 */ 7154 static void 7155 mos_obj_refd_multiple(uint64_t obj) 7156 { 7157 if (obj != 0 && mos_refd_objs != NULL && 7158 !range_tree_contains(mos_refd_objs, obj, 1)) 7159 range_tree_add(mos_refd_objs, obj, 1); 7160 } 7161 7162 static void 7163 mos_leak_vdev_top_zap(vdev_t *vd) 7164 { 7165 uint64_t ms_flush_data_obj; 7166 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7167 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7168 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7169 if (error == ENOENT) 7170 return; 7171 ASSERT0(error); 7172 7173 mos_obj_refd(ms_flush_data_obj); 7174 } 7175 7176 static void 7177 mos_leak_vdev(vdev_t *vd) 7178 { 7179 mos_obj_refd(vd->vdev_dtl_object); 7180 mos_obj_refd(vd->vdev_ms_array); 7181 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7182 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7183 mos_obj_refd(vd->vdev_leaf_zap); 7184 if (vd->vdev_checkpoint_sm != NULL) 7185 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7186 if (vd->vdev_indirect_mapping != NULL) { 7187 mos_obj_refd(vd->vdev_indirect_mapping-> 7188 vim_phys->vimp_counts_object); 7189 } 7190 if (vd->vdev_obsolete_sm != NULL) 7191 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7192 7193 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7194 metaslab_t *ms = vd->vdev_ms[m]; 7195 mos_obj_refd(space_map_object(ms->ms_sm)); 7196 } 7197 7198 if (vd->vdev_top_zap != 0) { 7199 mos_obj_refd(vd->vdev_top_zap); 7200 mos_leak_vdev_top_zap(vd); 7201 } 7202 7203 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7204 mos_leak_vdev(vd->vdev_child[c]); 7205 } 7206 } 7207 7208 static void 7209 mos_leak_log_spacemaps(spa_t *spa) 7210 { 7211 uint64_t spacemap_zap; 7212 int error = zap_lookup(spa_meta_objset(spa), 7213 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7214 sizeof (spacemap_zap), 1, &spacemap_zap); 7215 if (error == ENOENT) 7216 return; 7217 ASSERT0(error); 7218 7219 mos_obj_refd(spacemap_zap); 7220 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7221 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7222 mos_obj_refd(sls->sls_sm_obj); 7223 } 7224 7225 static int 7226 dump_mos_leaks(spa_t *spa) 7227 { 7228 int rv = 0; 7229 objset_t *mos = spa->spa_meta_objset; 7230 dsl_pool_t *dp = spa->spa_dsl_pool; 7231 7232 /* Visit and mark all referenced objects in the MOS */ 7233 7234 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7235 mos_obj_refd(spa->spa_pool_props_object); 7236 mos_obj_refd(spa->spa_config_object); 7237 mos_obj_refd(spa->spa_ddt_stat_object); 7238 mos_obj_refd(spa->spa_feat_desc_obj); 7239 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7240 mos_obj_refd(spa->spa_feat_for_read_obj); 7241 mos_obj_refd(spa->spa_feat_for_write_obj); 7242 mos_obj_refd(spa->spa_history); 7243 mos_obj_refd(spa->spa_errlog_last); 7244 mos_obj_refd(spa->spa_errlog_scrub); 7245 mos_obj_refd(spa->spa_all_vdev_zaps); 7246 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7247 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7248 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7249 bpobj_count_refd(&spa->spa_deferred_bpobj); 7250 mos_obj_refd(dp->dp_empty_bpobj); 7251 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7252 bpobj_count_refd(&dp->dp_free_bpobj); 7253 mos_obj_refd(spa->spa_l2cache.sav_object); 7254 mos_obj_refd(spa->spa_spares.sav_object); 7255 7256 if (spa->spa_syncing_log_sm != NULL) 7257 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7258 mos_leak_log_spacemaps(spa); 7259 7260 mos_obj_refd(spa->spa_condensing_indirect_phys. 7261 scip_next_mapping_object); 7262 mos_obj_refd(spa->spa_condensing_indirect_phys. 7263 scip_prev_obsolete_sm_object); 7264 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7265 vdev_indirect_mapping_t *vim = 7266 vdev_indirect_mapping_open(mos, 7267 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7268 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7269 vdev_indirect_mapping_close(vim); 7270 } 7271 deleted_livelists_dump_mos(spa); 7272 7273 if (dp->dp_origin_snap != NULL) { 7274 dsl_dataset_t *ds; 7275 7276 dsl_pool_config_enter(dp, FTAG); 7277 VERIFY0(dsl_dataset_hold_obj(dp, 7278 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7279 FTAG, &ds)); 7280 count_ds_mos_objects(ds); 7281 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7282 dsl_dataset_rele(ds, FTAG); 7283 dsl_pool_config_exit(dp, FTAG); 7284 7285 count_ds_mos_objects(dp->dp_origin_snap); 7286 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7287 } 7288 count_dir_mos_objects(dp->dp_mos_dir); 7289 if (dp->dp_free_dir != NULL) 7290 count_dir_mos_objects(dp->dp_free_dir); 7291 if (dp->dp_leak_dir != NULL) 7292 count_dir_mos_objects(dp->dp_leak_dir); 7293 7294 mos_leak_vdev(spa->spa_root_vdev); 7295 7296 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7297 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7298 for (uint64_t cksum = 0; 7299 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7300 ddt_t *ddt = spa->spa_ddt[cksum]; 7301 mos_obj_refd(ddt->ddt_object[type][class]); 7302 } 7303 } 7304 } 7305 7306 /* 7307 * Visit all allocated objects and make sure they are referenced. 7308 */ 7309 uint64_t object = 0; 7310 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7311 if (range_tree_contains(mos_refd_objs, object, 1)) { 7312 range_tree_remove(mos_refd_objs, object, 1); 7313 } else { 7314 dmu_object_info_t doi; 7315 const char *name; 7316 dmu_object_info(mos, object, &doi); 7317 if (doi.doi_type & DMU_OT_NEWTYPE) { 7318 dmu_object_byteswap_t bswap = 7319 DMU_OT_BYTESWAP(doi.doi_type); 7320 name = dmu_ot_byteswap[bswap].ob_name; 7321 } else { 7322 name = dmu_ot[doi.doi_type].ot_name; 7323 } 7324 7325 (void) printf("MOS object %llu (%s) leaked\n", 7326 (u_longlong_t)object, name); 7327 rv = 2; 7328 } 7329 } 7330 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7331 if (!range_tree_is_empty(mos_refd_objs)) 7332 rv = 2; 7333 range_tree_vacate(mos_refd_objs, NULL, NULL); 7334 range_tree_destroy(mos_refd_objs); 7335 return (rv); 7336 } 7337 7338 typedef struct log_sm_obsolete_stats_arg { 7339 uint64_t lsos_current_txg; 7340 7341 uint64_t lsos_total_entries; 7342 uint64_t lsos_valid_entries; 7343 7344 uint64_t lsos_sm_entries; 7345 uint64_t lsos_valid_sm_entries; 7346 } log_sm_obsolete_stats_arg_t; 7347 7348 static int 7349 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 7350 uint64_t txg, void *arg) 7351 { 7352 log_sm_obsolete_stats_arg_t *lsos = arg; 7353 7354 uint64_t offset = sme->sme_offset; 7355 uint64_t vdev_id = sme->sme_vdev; 7356 7357 if (lsos->lsos_current_txg == 0) { 7358 /* this is the first log */ 7359 lsos->lsos_current_txg = txg; 7360 } else if (lsos->lsos_current_txg < txg) { 7361 /* we just changed log - print stats and reset */ 7362 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7363 (u_longlong_t)lsos->lsos_valid_sm_entries, 7364 (u_longlong_t)lsos->lsos_sm_entries, 7365 (u_longlong_t)lsos->lsos_current_txg); 7366 lsos->lsos_valid_sm_entries = 0; 7367 lsos->lsos_sm_entries = 0; 7368 lsos->lsos_current_txg = txg; 7369 } 7370 ASSERT3U(lsos->lsos_current_txg, ==, txg); 7371 7372 lsos->lsos_sm_entries++; 7373 lsos->lsos_total_entries++; 7374 7375 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 7376 if (!vdev_is_concrete(vd)) 7377 return (0); 7378 7379 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 7380 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 7381 7382 if (txg < metaslab_unflushed_txg(ms)) 7383 return (0); 7384 lsos->lsos_valid_sm_entries++; 7385 lsos->lsos_valid_entries++; 7386 return (0); 7387 } 7388 7389 static void 7390 dump_log_spacemap_obsolete_stats(spa_t *spa) 7391 { 7392 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 7393 return; 7394 7395 log_sm_obsolete_stats_arg_t lsos; 7396 bzero(&lsos, sizeof (lsos)); 7397 7398 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 7399 7400 iterate_through_spacemap_logs(spa, 7401 log_spacemap_obsolete_stats_cb, &lsos); 7402 7403 /* print stats for latest log */ 7404 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7405 (u_longlong_t)lsos.lsos_valid_sm_entries, 7406 (u_longlong_t)lsos.lsos_sm_entries, 7407 (u_longlong_t)lsos.lsos_current_txg); 7408 7409 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 7410 (u_longlong_t)lsos.lsos_valid_entries, 7411 (u_longlong_t)lsos.lsos_total_entries); 7412 } 7413 7414 static void 7415 dump_zpool(spa_t *spa) 7416 { 7417 dsl_pool_t *dp = spa_get_dsl(spa); 7418 int rc = 0; 7419 7420 if (dump_opt['y']) { 7421 livelist_metaslab_validate(spa); 7422 } 7423 7424 if (dump_opt['S']) { 7425 dump_simulated_ddt(spa); 7426 return; 7427 } 7428 7429 if (!dump_opt['e'] && dump_opt['C'] > 1) { 7430 (void) printf("\nCached configuration:\n"); 7431 dump_nvlist(spa->spa_config, 8); 7432 } 7433 7434 if (dump_opt['C']) 7435 dump_config(spa); 7436 7437 if (dump_opt['u']) 7438 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 7439 7440 if (dump_opt['D']) 7441 dump_all_ddts(spa); 7442 7443 if (dump_opt['d'] > 2 || dump_opt['m']) 7444 dump_metaslabs(spa); 7445 if (dump_opt['M']) 7446 dump_metaslab_groups(spa); 7447 if (dump_opt['d'] > 2 || dump_opt['m']) { 7448 dump_log_spacemaps(spa); 7449 dump_log_spacemap_obsolete_stats(spa); 7450 } 7451 7452 if (dump_opt['d'] || dump_opt['i']) { 7453 spa_feature_t f; 7454 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 7455 0); 7456 dump_objset(dp->dp_meta_objset); 7457 7458 if (dump_opt['d'] >= 3) { 7459 dsl_pool_t *dp = spa->spa_dsl_pool; 7460 dump_full_bpobj(&spa->spa_deferred_bpobj, 7461 "Deferred frees", 0); 7462 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7463 dump_full_bpobj(&dp->dp_free_bpobj, 7464 "Pool snapshot frees", 0); 7465 } 7466 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 7467 ASSERT(spa_feature_is_enabled(spa, 7468 SPA_FEATURE_DEVICE_REMOVAL)); 7469 dump_full_bpobj(&dp->dp_obsolete_bpobj, 7470 "Pool obsolete blocks", 0); 7471 } 7472 7473 if (spa_feature_is_active(spa, 7474 SPA_FEATURE_ASYNC_DESTROY)) { 7475 dump_bptree(spa->spa_meta_objset, 7476 dp->dp_bptree_obj, 7477 "Pool dataset frees"); 7478 } 7479 dump_dtl(spa->spa_root_vdev, 0); 7480 } 7481 7482 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 7483 global_feature_count[f] = UINT64_MAX; 7484 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 7485 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 7486 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 7487 7488 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 7489 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7490 7491 if (rc == 0 && !dump_opt['L']) 7492 rc = dump_mos_leaks(spa); 7493 7494 for (f = 0; f < SPA_FEATURES; f++) { 7495 uint64_t refcount; 7496 7497 uint64_t *arr; 7498 if (!(spa_feature_table[f].fi_flags & 7499 ZFEATURE_FLAG_PER_DATASET)) { 7500 if (global_feature_count[f] == UINT64_MAX) 7501 continue; 7502 if (!spa_feature_is_enabled(spa, f)) { 7503 ASSERT0(global_feature_count[f]); 7504 continue; 7505 } 7506 arr = global_feature_count; 7507 } else { 7508 if (!spa_feature_is_enabled(spa, f)) { 7509 ASSERT0(dataset_feature_count[f]); 7510 continue; 7511 } 7512 arr = dataset_feature_count; 7513 } 7514 if (feature_get_refcount(spa, &spa_feature_table[f], 7515 &refcount) == ENOTSUP) 7516 continue; 7517 if (arr[f] != refcount) { 7518 (void) printf("%s feature refcount mismatch: " 7519 "%lld consumers != %lld refcount\n", 7520 spa_feature_table[f].fi_uname, 7521 (longlong_t)arr[f], (longlong_t)refcount); 7522 rc = 2; 7523 } else { 7524 (void) printf("Verified %s feature refcount " 7525 "of %llu is correct\n", 7526 spa_feature_table[f].fi_uname, 7527 (longlong_t)refcount); 7528 } 7529 } 7530 7531 if (rc == 0) 7532 rc = verify_device_removal_feature_counts(spa); 7533 } 7534 7535 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 7536 rc = dump_block_stats(spa); 7537 7538 if (rc == 0) 7539 rc = verify_spacemap_refcounts(spa); 7540 7541 if (dump_opt['s']) 7542 show_pool_stats(spa); 7543 7544 if (dump_opt['h']) 7545 dump_history(spa); 7546 7547 if (rc == 0) 7548 rc = verify_checkpoint(spa); 7549 7550 if (rc != 0) { 7551 dump_debug_buffer(); 7552 exit(rc); 7553 } 7554 } 7555 7556 #define ZDB_FLAG_CHECKSUM 0x0001 7557 #define ZDB_FLAG_DECOMPRESS 0x0002 7558 #define ZDB_FLAG_BSWAP 0x0004 7559 #define ZDB_FLAG_GBH 0x0008 7560 #define ZDB_FLAG_INDIRECT 0x0010 7561 #define ZDB_FLAG_RAW 0x0020 7562 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 7563 #define ZDB_FLAG_VERBOSE 0x0080 7564 7565 static int flagbits[256]; 7566 static char flagbitstr[16]; 7567 7568 static void 7569 zdb_print_blkptr(const blkptr_t *bp, int flags) 7570 { 7571 char blkbuf[BP_SPRINTF_LEN]; 7572 7573 if (flags & ZDB_FLAG_BSWAP) 7574 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 7575 7576 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 7577 (void) printf("%s\n", blkbuf); 7578 } 7579 7580 static void 7581 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 7582 { 7583 int i; 7584 7585 for (i = 0; i < nbps; i++) 7586 zdb_print_blkptr(&bp[i], flags); 7587 } 7588 7589 static void 7590 zdb_dump_gbh(void *buf, int flags) 7591 { 7592 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 7593 } 7594 7595 static void 7596 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 7597 { 7598 if (flags & ZDB_FLAG_BSWAP) 7599 byteswap_uint64_array(buf, size); 7600 VERIFY(write(fileno(stdout), buf, size) == size); 7601 } 7602 7603 static void 7604 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 7605 { 7606 uint64_t *d = (uint64_t *)buf; 7607 unsigned nwords = size / sizeof (uint64_t); 7608 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 7609 unsigned i, j; 7610 const char *hdr; 7611 char *c; 7612 7613 7614 if (do_bswap) 7615 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 7616 else 7617 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 7618 7619 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 7620 7621 #ifdef _LITTLE_ENDIAN 7622 /* correct the endianness */ 7623 do_bswap = !do_bswap; 7624 #endif 7625 for (i = 0; i < nwords; i += 2) { 7626 (void) printf("%06llx: %016llx %016llx ", 7627 (u_longlong_t)(i * sizeof (uint64_t)), 7628 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 7629 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 7630 7631 c = (char *)&d[i]; 7632 for (j = 0; j < 2 * sizeof (uint64_t); j++) 7633 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 7634 (void) printf("\n"); 7635 } 7636 } 7637 7638 /* 7639 * There are two acceptable formats: 7640 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 7641 * child[.child]* - For example: 0.1.1 7642 * 7643 * The second form can be used to specify arbitrary vdevs anywhere 7644 * in the hierarchy. For example, in a pool with a mirror of 7645 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 7646 */ 7647 static vdev_t * 7648 zdb_vdev_lookup(vdev_t *vdev, const char *path) 7649 { 7650 char *s, *p, *q; 7651 unsigned i; 7652 7653 if (vdev == NULL) 7654 return (NULL); 7655 7656 /* First, assume the x.x.x.x format */ 7657 i = strtoul(path, &s, 10); 7658 if (s == path || (s && *s != '.' && *s != '\0')) 7659 goto name; 7660 if (i >= vdev->vdev_children) 7661 return (NULL); 7662 7663 vdev = vdev->vdev_child[i]; 7664 if (s && *s == '\0') 7665 return (vdev); 7666 return (zdb_vdev_lookup(vdev, s+1)); 7667 7668 name: 7669 for (i = 0; i < vdev->vdev_children; i++) { 7670 vdev_t *vc = vdev->vdev_child[i]; 7671 7672 if (vc->vdev_path == NULL) { 7673 vc = zdb_vdev_lookup(vc, path); 7674 if (vc == NULL) 7675 continue; 7676 else 7677 return (vc); 7678 } 7679 7680 p = strrchr(vc->vdev_path, '/'); 7681 p = p ? p + 1 : vc->vdev_path; 7682 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 7683 7684 if (strcmp(vc->vdev_path, path) == 0) 7685 return (vc); 7686 if (strcmp(p, path) == 0) 7687 return (vc); 7688 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 7689 return (vc); 7690 } 7691 7692 return (NULL); 7693 } 7694 7695 static int 7696 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 7697 { 7698 dsl_dataset_t *ds; 7699 7700 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 7701 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 7702 NULL, &ds); 7703 if (error != 0) { 7704 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 7705 (u_longlong_t)objset_id, strerror(error)); 7706 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7707 return (error); 7708 } 7709 dsl_dataset_name(ds, outstr); 7710 dsl_dataset_rele(ds, NULL); 7711 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7712 return (0); 7713 } 7714 7715 static boolean_t 7716 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 7717 { 7718 char *s0, *s1; 7719 7720 if (sizes == NULL) 7721 return (B_FALSE); 7722 7723 s0 = strtok(sizes, "/"); 7724 if (s0 == NULL) 7725 return (B_FALSE); 7726 s1 = strtok(NULL, "/"); 7727 *lsize = strtoull(s0, NULL, 16); 7728 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 7729 return (*lsize >= *psize && *psize > 0); 7730 } 7731 7732 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 7733 7734 static boolean_t 7735 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 7736 uint64_t psize, int flags) 7737 { 7738 boolean_t exceeded = B_FALSE; 7739 /* 7740 * We don't know how the data was compressed, so just try 7741 * every decompress function at every inflated blocksize. 7742 */ 7743 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 7744 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 7745 int *cfuncp = cfuncs; 7746 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 7747 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 7748 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 7749 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 7750 *cfuncp++ = ZIO_COMPRESS_LZ4; 7751 *cfuncp++ = ZIO_COMPRESS_LZJB; 7752 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 7753 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 7754 if (((1ULL << c) & mask) == 0) 7755 *cfuncp++ = c; 7756 7757 /* 7758 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 7759 * could take a while and we should let the user know 7760 * we are not stuck. On the other hand, printing progress 7761 * info gets old after a while. User can specify 'v' flag 7762 * to see the progression. 7763 */ 7764 if (lsize == psize) 7765 lsize += SPA_MINBLOCKSIZE; 7766 else 7767 maxlsize = lsize; 7768 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 7769 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 7770 if (flags & ZDB_FLAG_VERBOSE) { 7771 (void) fprintf(stderr, 7772 "Trying %05llx -> %05llx (%s)\n", 7773 (u_longlong_t)psize, 7774 (u_longlong_t)lsize, 7775 zio_compress_table[*cfuncp].\ 7776 ci_name); 7777 } 7778 7779 /* 7780 * We randomize lbuf2, and decompress to both 7781 * lbuf and lbuf2. This way, we will know if 7782 * decompression fill exactly to lsize. 7783 */ 7784 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 7785 7786 if (zio_decompress_data(*cfuncp, pabd, 7787 lbuf, psize, lsize, NULL) == 0 && 7788 zio_decompress_data(*cfuncp, pabd, 7789 lbuf2, psize, lsize, NULL) == 0 && 7790 bcmp(lbuf, lbuf2, lsize) == 0) 7791 break; 7792 } 7793 if (*cfuncp != 0) 7794 break; 7795 } 7796 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 7797 7798 if (lsize > maxlsize) { 7799 exceeded = B_TRUE; 7800 } 7801 buf = lbuf; 7802 if (*cfuncp == ZIO_COMPRESS_ZLE) { 7803 printf("\nZLE decompression was selected. If you " 7804 "suspect the results are wrong,\ntry avoiding ZLE " 7805 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 7806 } 7807 7808 return (exceeded); 7809 } 7810 7811 /* 7812 * Read a block from a pool and print it out. The syntax of the 7813 * block descriptor is: 7814 * 7815 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 7816 * 7817 * pool - The name of the pool you wish to read from 7818 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 7819 * offset - offset, in hex, in bytes 7820 * size - Amount of data to read, in hex, in bytes 7821 * flags - A string of characters specifying options 7822 * b: Decode a blkptr at given offset within block 7823 * c: Calculate and display checksums 7824 * d: Decompress data before dumping 7825 * e: Byteswap data before dumping 7826 * g: Display data as a gang block header 7827 * i: Display as an indirect block 7828 * r: Dump raw data to stdout 7829 * v: Verbose 7830 * 7831 */ 7832 static void 7833 zdb_read_block(char *thing, spa_t *spa) 7834 { 7835 blkptr_t blk, *bp = &blk; 7836 dva_t *dva = bp->blk_dva; 7837 int flags = 0; 7838 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 7839 zio_t *zio; 7840 vdev_t *vd; 7841 abd_t *pabd; 7842 void *lbuf, *buf; 7843 char *s, *p, *dup, *vdev, *flagstr, *sizes; 7844 int i, error; 7845 boolean_t borrowed = B_FALSE, found = B_FALSE; 7846 7847 dup = strdup(thing); 7848 s = strtok(dup, ":"); 7849 vdev = s ? s : ""; 7850 s = strtok(NULL, ":"); 7851 offset = strtoull(s ? s : "", NULL, 16); 7852 sizes = strtok(NULL, ":"); 7853 s = strtok(NULL, ":"); 7854 flagstr = strdup(s ? s : ""); 7855 7856 s = NULL; 7857 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 7858 s = "invalid size(s)"; 7859 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 7860 s = "size must be a multiple of sector size"; 7861 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 7862 s = "offset must be a multiple of sector size"; 7863 if (s) { 7864 (void) printf("Invalid block specifier: %s - %s\n", thing, s); 7865 goto done; 7866 } 7867 7868 for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { 7869 for (i = 0; i < strlen(flagstr); i++) { 7870 int bit = flagbits[(uchar_t)flagstr[i]]; 7871 7872 if (bit == 0) { 7873 (void) printf("***Ignoring flag: %c\n", 7874 (uchar_t)flagstr[i]); 7875 continue; 7876 } 7877 found = B_TRUE; 7878 flags |= bit; 7879 7880 p = &flagstr[i + 1]; 7881 if (*p != ':' && *p != '\0') { 7882 int j = 0, nextbit = flagbits[(uchar_t)*p]; 7883 char *end, offstr[8] = { 0 }; 7884 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 7885 (nextbit == 0)) { 7886 /* look ahead to isolate the offset */ 7887 while (nextbit == 0 && 7888 strchr(flagbitstr, *p) == NULL) { 7889 offstr[j] = *p; 7890 j++; 7891 if (i + j > strlen(flagstr)) 7892 break; 7893 p++; 7894 nextbit = flagbits[(uchar_t)*p]; 7895 } 7896 blkptr_offset = strtoull(offstr, &end, 7897 16); 7898 i += j; 7899 } else if (nextbit == 0) { 7900 (void) printf("***Ignoring flag arg:" 7901 " '%c'\n", (uchar_t)*p); 7902 } 7903 } 7904 } 7905 } 7906 if (blkptr_offset % sizeof (blkptr_t)) { 7907 printf("Block pointer offset 0x%llx " 7908 "must be divisible by 0x%x\n", 7909 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 7910 goto done; 7911 } 7912 if (found == B_FALSE && strlen(flagstr) > 0) { 7913 printf("Invalid flag arg: '%s'\n", flagstr); 7914 goto done; 7915 } 7916 7917 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 7918 if (vd == NULL) { 7919 (void) printf("***Invalid vdev: %s\n", vdev); 7920 free(dup); 7921 return; 7922 } else { 7923 if (vd->vdev_path) 7924 (void) fprintf(stderr, "Found vdev: %s\n", 7925 vd->vdev_path); 7926 else 7927 (void) fprintf(stderr, "Found vdev type: %s\n", 7928 vd->vdev_ops->vdev_op_type); 7929 } 7930 7931 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 7932 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 7933 7934 BP_ZERO(bp); 7935 7936 DVA_SET_VDEV(&dva[0], vd->vdev_id); 7937 DVA_SET_OFFSET(&dva[0], offset); 7938 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 7939 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 7940 7941 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 7942 7943 BP_SET_LSIZE(bp, lsize); 7944 BP_SET_PSIZE(bp, psize); 7945 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 7946 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 7947 BP_SET_TYPE(bp, DMU_OT_NONE); 7948 BP_SET_LEVEL(bp, 0); 7949 BP_SET_DEDUP(bp, 0); 7950 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 7951 7952 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7953 zio = zio_root(spa, NULL, NULL, 0); 7954 7955 if (vd == vd->vdev_top) { 7956 /* 7957 * Treat this as a normal block read. 7958 */ 7959 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 7960 ZIO_PRIORITY_SYNC_READ, 7961 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 7962 } else { 7963 /* 7964 * Treat this as a vdev child I/O. 7965 */ 7966 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 7967 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 7968 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | 7969 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 7970 ZIO_FLAG_OPTIONAL, NULL, NULL)); 7971 } 7972 7973 error = zio_wait(zio); 7974 spa_config_exit(spa, SCL_STATE, FTAG); 7975 7976 if (error) { 7977 (void) printf("Read of %s failed, error: %d\n", thing, error); 7978 goto out; 7979 } 7980 7981 uint64_t orig_lsize = lsize; 7982 buf = lbuf; 7983 if (flags & ZDB_FLAG_DECOMPRESS) { 7984 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 7985 lsize, psize, flags); 7986 if (failed) { 7987 (void) printf("Decompress of %s failed\n", thing); 7988 goto out; 7989 } 7990 } else { 7991 buf = abd_borrow_buf_copy(pabd, lsize); 7992 borrowed = B_TRUE; 7993 } 7994 /* 7995 * Try to detect invalid block pointer. If invalid, try 7996 * decompressing. 7997 */ 7998 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 7999 !(flags & ZDB_FLAG_DECOMPRESS)) { 8000 const blkptr_t *b = (const blkptr_t *)(void *) 8001 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8002 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) == 8003 B_FALSE) { 8004 abd_return_buf_copy(pabd, buf, lsize); 8005 borrowed = B_FALSE; 8006 buf = lbuf; 8007 boolean_t failed = zdb_decompress_block(pabd, buf, 8008 lbuf, lsize, psize, flags); 8009 b = (const blkptr_t *)(void *) 8010 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8011 if (failed || zfs_blkptr_verify(spa, b, B_FALSE, 8012 BLK_VERIFY_LOG) == B_FALSE) { 8013 printf("invalid block pointer at this DVA\n"); 8014 goto out; 8015 } 8016 } 8017 } 8018 8019 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8020 zdb_print_blkptr((blkptr_t *)(void *) 8021 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8022 else if (flags & ZDB_FLAG_RAW) 8023 zdb_dump_block_raw(buf, lsize, flags); 8024 else if (flags & ZDB_FLAG_INDIRECT) 8025 zdb_dump_indirect((blkptr_t *)buf, 8026 orig_lsize / sizeof (blkptr_t), flags); 8027 else if (flags & ZDB_FLAG_GBH) 8028 zdb_dump_gbh(buf, flags); 8029 else 8030 zdb_dump_block(thing, buf, lsize, flags); 8031 8032 /* 8033 * If :c was specified, iterate through the checksum table to 8034 * calculate and display each checksum for our specified 8035 * DVA and length. 8036 */ 8037 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8038 !(flags & ZDB_FLAG_GBH)) { 8039 zio_t *czio; 8040 (void) printf("\n"); 8041 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8042 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8043 8044 if ((zio_checksum_table[ck].ci_flags & 8045 ZCHECKSUM_FLAG_EMBEDDED) || 8046 ck == ZIO_CHECKSUM_NOPARITY) { 8047 continue; 8048 } 8049 BP_SET_CHECKSUM(bp, ck); 8050 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8051 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8052 czio->io_bp = bp; 8053 8054 if (vd == vd->vdev_top) { 8055 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8056 NULL, NULL, 8057 ZIO_PRIORITY_SYNC_READ, 8058 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8059 ZIO_FLAG_DONT_RETRY, NULL)); 8060 } else { 8061 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8062 offset, pabd, psize, ZIO_TYPE_READ, 8063 ZIO_PRIORITY_SYNC_READ, 8064 ZIO_FLAG_DONT_CACHE | 8065 ZIO_FLAG_DONT_PROPAGATE | 8066 ZIO_FLAG_DONT_RETRY | 8067 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8068 ZIO_FLAG_SPECULATIVE | 8069 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8070 } 8071 error = zio_wait(czio); 8072 if (error == 0 || error == ECKSUM) { 8073 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8074 ck_zio->io_offset = 8075 DVA_GET_OFFSET(&bp->blk_dva[0]); 8076 ck_zio->io_bp = bp; 8077 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8078 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n", 8079 zio_checksum_table[ck].ci_name, 8080 (u_longlong_t)bp->blk_cksum.zc_word[0], 8081 (u_longlong_t)bp->blk_cksum.zc_word[1], 8082 (u_longlong_t)bp->blk_cksum.zc_word[2], 8083 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8084 zio_wait(ck_zio); 8085 } else { 8086 printf("error %d reading block\n", error); 8087 } 8088 spa_config_exit(spa, SCL_STATE, FTAG); 8089 } 8090 } 8091 8092 if (borrowed) 8093 abd_return_buf_copy(pabd, buf, lsize); 8094 8095 out: 8096 abd_free(pabd); 8097 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8098 done: 8099 free(flagstr); 8100 free(dup); 8101 } 8102 8103 static void 8104 zdb_embedded_block(char *thing) 8105 { 8106 blkptr_t bp; 8107 unsigned long long *words = (void *)&bp; 8108 char *buf; 8109 int err; 8110 8111 bzero(&bp, sizeof (bp)); 8112 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8113 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8114 words + 0, words + 1, words + 2, words + 3, 8115 words + 4, words + 5, words + 6, words + 7, 8116 words + 8, words + 9, words + 10, words + 11, 8117 words + 12, words + 13, words + 14, words + 15); 8118 if (err != 16) { 8119 (void) fprintf(stderr, "invalid input format\n"); 8120 exit(1); 8121 } 8122 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8123 buf = malloc(SPA_MAXBLOCKSIZE); 8124 if (buf == NULL) { 8125 (void) fprintf(stderr, "out of memory\n"); 8126 exit(1); 8127 } 8128 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8129 if (err != 0) { 8130 (void) fprintf(stderr, "decode failed: %u\n", err); 8131 exit(1); 8132 } 8133 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8134 free(buf); 8135 } 8136 8137 int 8138 main(int argc, char **argv) 8139 { 8140 int c; 8141 struct rlimit rl = { 1024, 1024 }; 8142 spa_t *spa = NULL; 8143 objset_t *os = NULL; 8144 int dump_all = 1; 8145 int verbose = 0; 8146 int error = 0; 8147 char **searchdirs = NULL; 8148 int nsearch = 0; 8149 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8150 nvlist_t *policy = NULL; 8151 uint64_t max_txg = UINT64_MAX; 8152 int64_t objset_id = -1; 8153 int flags = ZFS_IMPORT_MISSING_LOG; 8154 int rewind = ZPOOL_NEVER_REWIND; 8155 char *spa_config_path_env, *objset_str; 8156 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8157 nvlist_t *cfg = NULL; 8158 8159 (void) setrlimit(RLIMIT_NOFILE, &rl); 8160 (void) enable_extended_FILE_stdio(-1, -1); 8161 8162 dprintf_setup(&argc, argv); 8163 8164 /* 8165 * If there is an environment variable SPA_CONFIG_PATH it overrides 8166 * default spa_config_path setting. If -U flag is specified it will 8167 * override this environment variable settings once again. 8168 */ 8169 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8170 if (spa_config_path_env != NULL) 8171 spa_config_path = spa_config_path_env; 8172 8173 /* 8174 * For performance reasons, we set this tunable down. We do so before 8175 * the arg parsing section so that the user can override this value if 8176 * they choose. 8177 */ 8178 zfs_btree_verify_intensity = 3; 8179 8180 while ((c = getopt(argc, argv, 8181 "AbcCdDeEFGhiI:klLmMo:Op:PqRsSt:uU:vVx:XYyZ")) != -1) { 8182 switch (c) { 8183 case 'b': 8184 case 'c': 8185 case 'C': 8186 case 'd': 8187 case 'D': 8188 case 'E': 8189 case 'G': 8190 case 'h': 8191 case 'i': 8192 case 'l': 8193 case 'm': 8194 case 'M': 8195 case 'O': 8196 case 'R': 8197 case 's': 8198 case 'S': 8199 case 'u': 8200 case 'y': 8201 case 'Z': 8202 dump_opt[c]++; 8203 dump_all = 0; 8204 break; 8205 case 'A': 8206 case 'e': 8207 case 'F': 8208 case 'k': 8209 case 'L': 8210 case 'P': 8211 case 'q': 8212 case 'X': 8213 dump_opt[c]++; 8214 break; 8215 case 'Y': 8216 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8217 zfs_deadman_enabled = 0; 8218 break; 8219 /* NB: Sort single match options below. */ 8220 case 'I': 8221 max_inflight_bytes = strtoull(optarg, NULL, 0); 8222 if (max_inflight_bytes == 0) { 8223 (void) fprintf(stderr, "maximum number " 8224 "of inflight bytes must be greater " 8225 "than 0\n"); 8226 usage(); 8227 } 8228 break; 8229 case 'o': 8230 error = set_global_var(optarg); 8231 if (error != 0) 8232 usage(); 8233 break; 8234 case 'p': 8235 if (searchdirs == NULL) { 8236 searchdirs = umem_alloc(sizeof (char *), 8237 UMEM_NOFAIL); 8238 } else { 8239 char **tmp = umem_alloc((nsearch + 1) * 8240 sizeof (char *), UMEM_NOFAIL); 8241 bcopy(searchdirs, tmp, nsearch * 8242 sizeof (char *)); 8243 umem_free(searchdirs, 8244 nsearch * sizeof (char *)); 8245 searchdirs = tmp; 8246 } 8247 searchdirs[nsearch++] = optarg; 8248 break; 8249 case 't': 8250 max_txg = strtoull(optarg, NULL, 0); 8251 if (max_txg < TXG_INITIAL) { 8252 (void) fprintf(stderr, "incorrect txg " 8253 "specified: %s\n", optarg); 8254 usage(); 8255 } 8256 break; 8257 case 'U': 8258 spa_config_path = optarg; 8259 if (spa_config_path[0] != '/') { 8260 (void) fprintf(stderr, 8261 "cachefile must be an absolute path " 8262 "(i.e. start with a slash)\n"); 8263 usage(); 8264 } 8265 break; 8266 case 'v': 8267 verbose++; 8268 break; 8269 case 'V': 8270 flags = ZFS_IMPORT_VERBATIM; 8271 break; 8272 case 'x': 8273 vn_dumpdir = optarg; 8274 break; 8275 default: 8276 usage(); 8277 break; 8278 } 8279 } 8280 8281 if (!dump_opt['e'] && searchdirs != NULL) { 8282 (void) fprintf(stderr, "-p option requires use of -e\n"); 8283 usage(); 8284 } 8285 if (dump_opt['d']) { 8286 /* <pool>[/<dataset | objset id> is accepted */ 8287 if (argv[2] && (objset_str = strchr(argv[2], '/')) != NULL && 8288 objset_str++ != NULL) { 8289 char *endptr; 8290 errno = 0; 8291 objset_id = strtoull(objset_str, &endptr, 0); 8292 /* dataset 0 is the same as opening the pool */ 8293 if (errno == 0 && endptr != objset_str && 8294 objset_id != 0) { 8295 target_is_spa = B_FALSE; 8296 dataset_lookup = B_TRUE; 8297 } else if (objset_id != 0) { 8298 printf("failed to open objset %s " 8299 "%llu %s", objset_str, 8300 (u_longlong_t)objset_id, 8301 strerror(errno)); 8302 exit(1); 8303 } 8304 /* normal dataset name not an objset ID */ 8305 if (endptr == objset_str) { 8306 objset_id = -1; 8307 } 8308 } 8309 } 8310 8311 #if defined(_LP64) 8312 /* 8313 * ZDB does not typically re-read blocks; therefore limit the ARC 8314 * to 256 MB, which can be used entirely for metadata. 8315 */ 8316 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT; 8317 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; 8318 #endif 8319 8320 /* 8321 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 8322 * "zdb -b" uses traversal prefetch which uses async reads. 8323 * For good performance, let several of them be active at once. 8324 */ 8325 zfs_vdev_async_read_max_active = 10; 8326 8327 /* 8328 * Disable reference tracking for better performance. 8329 */ 8330 reference_tracking_enable = B_FALSE; 8331 8332 /* 8333 * Do not fail spa_load when spa_load_verify fails. This is needed 8334 * to load non-idle pools. 8335 */ 8336 spa_load_verify_dryrun = B_TRUE; 8337 8338 kernel_init(SPA_MODE_READ); 8339 8340 if (dump_all) 8341 verbose = MAX(verbose, 1); 8342 8343 for (c = 0; c < 256; c++) { 8344 if (dump_all && strchr("AeEFklLOPRSXy", c) == NULL) 8345 dump_opt[c] = 1; 8346 if (dump_opt[c]) 8347 dump_opt[c] += verbose; 8348 } 8349 8350 aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); 8351 zfs_recover = (dump_opt['A'] > 1); 8352 8353 argc -= optind; 8354 argv += optind; 8355 if (argc < 2 && dump_opt['R']) 8356 usage(); 8357 8358 if (dump_opt['E']) { 8359 if (argc != 1) 8360 usage(); 8361 zdb_embedded_block(argv[0]); 8362 return (0); 8363 } 8364 8365 if (argc < 1) { 8366 if (!dump_opt['e'] && dump_opt['C']) { 8367 dump_cachefile(spa_config_path); 8368 return (0); 8369 } 8370 usage(); 8371 } 8372 8373 if (dump_opt['l']) 8374 return (dump_label(argv[0])); 8375 8376 if (dump_opt['O']) { 8377 if (argc != 2) 8378 usage(); 8379 dump_opt['v'] = verbose + 3; 8380 return (dump_path(argv[0], argv[1])); 8381 } 8382 8383 if (dump_opt['X'] || dump_opt['F']) 8384 rewind = ZPOOL_DO_REWIND | 8385 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 8386 8387 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 8388 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 8389 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 8390 fatal("internal error: %s", strerror(ENOMEM)); 8391 8392 error = 0; 8393 target = argv[0]; 8394 8395 if (strpbrk(target, "/@") != NULL) { 8396 size_t targetlen; 8397 8398 target_pool = strdup(target); 8399 *strpbrk(target_pool, "/@") = '\0'; 8400 8401 target_is_spa = B_FALSE; 8402 targetlen = strlen(target); 8403 if (targetlen && target[targetlen - 1] == '/') 8404 target[targetlen - 1] = '\0'; 8405 } else { 8406 target_pool = target; 8407 } 8408 8409 if (dump_opt['e']) { 8410 importargs_t args = { 0 }; 8411 8412 args.paths = nsearch; 8413 args.path = searchdirs; 8414 args.can_be_active = B_TRUE; 8415 8416 error = zpool_find_config(NULL, target_pool, &cfg, &args, 8417 &libzpool_config_ops); 8418 8419 if (error == 0) { 8420 8421 if (nvlist_add_nvlist(cfg, 8422 ZPOOL_LOAD_POLICY, policy) != 0) { 8423 fatal("can't open '%s': %s", 8424 target, strerror(ENOMEM)); 8425 } 8426 8427 if (dump_opt['C'] > 1) { 8428 (void) printf("\nConfiguration for import:\n"); 8429 dump_nvlist(cfg, 8); 8430 } 8431 8432 /* 8433 * Disable the activity check to allow examination of 8434 * active pools. 8435 */ 8436 error = spa_import(target_pool, cfg, NULL, 8437 flags | ZFS_IMPORT_SKIP_MMP); 8438 } 8439 } 8440 8441 if (searchdirs != NULL) { 8442 umem_free(searchdirs, nsearch * sizeof (char *)); 8443 searchdirs = NULL; 8444 } 8445 8446 /* 8447 * import_checkpointed_state makes the assumption that the 8448 * target pool that we pass it is already part of the spa 8449 * namespace. Because of that we need to make sure to call 8450 * it always after the -e option has been processed, which 8451 * imports the pool to the namespace if it's not in the 8452 * cachefile. 8453 */ 8454 char *checkpoint_pool = NULL; 8455 char *checkpoint_target = NULL; 8456 if (dump_opt['k']) { 8457 checkpoint_pool = import_checkpointed_state(target, cfg, 8458 &checkpoint_target); 8459 8460 if (checkpoint_target != NULL) 8461 target = checkpoint_target; 8462 } 8463 8464 if (cfg != NULL) { 8465 nvlist_free(cfg); 8466 cfg = NULL; 8467 } 8468 8469 if (target_pool != target) 8470 free(target_pool); 8471 8472 if (error == 0) { 8473 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 8474 ASSERT(checkpoint_pool != NULL); 8475 ASSERT(checkpoint_target == NULL); 8476 8477 error = spa_open(checkpoint_pool, &spa, FTAG); 8478 if (error != 0) { 8479 fatal("Tried to open pool \"%s\" but " 8480 "spa_open() failed with error %d\n", 8481 checkpoint_pool, error); 8482 } 8483 8484 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) { 8485 zdb_set_skip_mmp(target); 8486 error = spa_open_rewind(target, &spa, FTAG, policy, 8487 NULL); 8488 if (error) { 8489 /* 8490 * If we're missing the log device then 8491 * try opening the pool after clearing the 8492 * log state. 8493 */ 8494 mutex_enter(&spa_namespace_lock); 8495 if ((spa = spa_lookup(target)) != NULL && 8496 spa->spa_log_state == SPA_LOG_MISSING) { 8497 spa->spa_log_state = SPA_LOG_CLEAR; 8498 error = 0; 8499 } 8500 mutex_exit(&spa_namespace_lock); 8501 8502 if (!error) { 8503 error = spa_open_rewind(target, &spa, 8504 FTAG, policy, NULL); 8505 } 8506 } 8507 } else if (strpbrk(target, "#") != NULL) { 8508 dsl_pool_t *dp; 8509 error = dsl_pool_hold(target, FTAG, &dp); 8510 if (error != 0) { 8511 fatal("can't dump '%s': %s", target, 8512 strerror(error)); 8513 } 8514 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 8515 dsl_pool_rele(dp, FTAG); 8516 if (error != 0) { 8517 fatal("can't dump '%s': %s", target, 8518 strerror(error)); 8519 } 8520 return (error); 8521 } else { 8522 zdb_set_skip_mmp(target); 8523 if (dataset_lookup == B_TRUE) { 8524 /* 8525 * Use the supplied id to get the name 8526 * for open_objset. 8527 */ 8528 error = spa_open(target, &spa, FTAG); 8529 if (error == 0) { 8530 error = name_from_objset_id(spa, 8531 objset_id, dsname); 8532 spa_close(spa, FTAG); 8533 if (error == 0) 8534 target = dsname; 8535 } 8536 } 8537 if (error == 0) 8538 error = open_objset(target, FTAG, &os); 8539 if (error == 0) 8540 spa = dmu_objset_spa(os); 8541 } 8542 } 8543 nvlist_free(policy); 8544 8545 if (error) 8546 fatal("can't open '%s': %s", target, strerror(error)); 8547 8548 /* 8549 * Set the pool failure mode to panic in order to prevent the pool 8550 * from suspending. A suspended I/O will have no way to resume and 8551 * can prevent the zdb(8) command from terminating as expected. 8552 */ 8553 if (spa != NULL) 8554 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 8555 8556 argv++; 8557 argc--; 8558 if (!dump_opt['R']) { 8559 flagbits['d'] = ZOR_FLAG_DIRECTORY; 8560 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 8561 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 8562 flagbits['z'] = ZOR_FLAG_ZAP; 8563 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 8564 8565 if (argc > 0 && dump_opt['d']) { 8566 zopt_object_args = argc; 8567 zopt_object_ranges = calloc(zopt_object_args, 8568 sizeof (zopt_object_range_t)); 8569 for (unsigned i = 0; i < zopt_object_args; i++) { 8570 int err; 8571 char *msg = NULL; 8572 8573 err = parse_object_range(argv[i], 8574 &zopt_object_ranges[i], &msg); 8575 if (err != 0) 8576 fatal("Bad object or range: '%s': %s\n", 8577 argv[i], msg ? msg : ""); 8578 } 8579 } else if (argc > 0 && dump_opt['m']) { 8580 zopt_metaslab_args = argc; 8581 zopt_metaslab = calloc(zopt_metaslab_args, 8582 sizeof (uint64_t)); 8583 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 8584 errno = 0; 8585 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 8586 if (zopt_metaslab[i] == 0 && errno != 0) 8587 fatal("bad number %s: %s", argv[i], 8588 strerror(errno)); 8589 } 8590 } 8591 if (os != NULL) { 8592 dump_objset(os); 8593 } else if (zopt_object_args > 0 && !dump_opt['m']) { 8594 dump_objset(spa->spa_meta_objset); 8595 } else { 8596 dump_zpool(spa); 8597 } 8598 } else { 8599 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 8600 flagbits['c'] = ZDB_FLAG_CHECKSUM; 8601 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 8602 flagbits['e'] = ZDB_FLAG_BSWAP; 8603 flagbits['g'] = ZDB_FLAG_GBH; 8604 flagbits['i'] = ZDB_FLAG_INDIRECT; 8605 flagbits['r'] = ZDB_FLAG_RAW; 8606 flagbits['v'] = ZDB_FLAG_VERBOSE; 8607 8608 for (int i = 0; i < argc; i++) 8609 zdb_read_block(argv[i], spa); 8610 } 8611 8612 if (dump_opt['k']) { 8613 free(checkpoint_pool); 8614 if (!target_is_spa) 8615 free(checkpoint_target); 8616 } 8617 8618 if (os != NULL) { 8619 close_objset(os, FTAG); 8620 } else { 8621 spa_close(spa, FTAG); 8622 } 8623 8624 fuid_table_destroy(); 8625 8626 dump_debug_buffer(); 8627 8628 kernel_fini(); 8629 8630 return (error); 8631 } 8632