1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, 2024, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, attrp) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010" PRIu64 "x = ", 1135 *(uint64_t *)attrp->za_name); 1136 else 1137 (void) printf("\t\t%s = ", attrp->za_name); 1138 1139 if (attrp->za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attrp->za_num_integers * 1144 attrp->za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attrp->za_name, 1, 1149 attrp->za_integer_length, attrp->za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attrp->za_name, 1153 attrp->za_integer_length, attrp->za_num_integers, 1154 prop); 1155 1156 if (attrp->za_integer_length == 1 && !key64) { 1157 if (strcmp(attrp->za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attrp->za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attrp->za_name, 1164 DMU_POOL_CHECKSUM_SALT) == 0) { 1165 uint8_t *u8 = prop; 1166 1167 for (i = 0; i < attrp->za_num_integers; i++) { 1168 (void) printf("%02x", u8[i]); 1169 } 1170 } else { 1171 (void) printf("%s", (char *)prop); 1172 } 1173 } else { 1174 for (i = 0; i < attrp->za_num_integers; i++) { 1175 switch (attrp->za_integer_length) { 1176 case 1: 1177 (void) printf("%u ", 1178 ((uint8_t *)prop)[i]); 1179 break; 1180 case 2: 1181 (void) printf("%u ", 1182 ((uint16_t *)prop)[i]); 1183 break; 1184 case 4: 1185 (void) printf("%u ", 1186 ((uint32_t *)prop)[i]); 1187 break; 1188 case 8: 1189 (void) printf("%lld ", 1190 (u_longlong_t)((int64_t *)prop)[i]); 1191 break; 1192 } 1193 } 1194 } 1195 (void) printf("\n"); 1196 umem_free(prop, 1197 attrp->za_num_integers * attrp->za_integer_length); 1198 } 1199 zap_cursor_fini(&zc); 1200 zap_attribute_free(attrp); 1201 } 1202 1203 static void 1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1205 { 1206 bpobj_phys_t *bpop = data; 1207 uint64_t i; 1208 char bytes[32], comp[32], uncomp[32]; 1209 1210 /* make sure the output won't get truncated */ 1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1214 1215 if (bpop == NULL) 1216 return; 1217 1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1221 1222 (void) printf("\t\tnum_blkptrs = %llu\n", 1223 (u_longlong_t)bpop->bpo_num_blkptrs); 1224 (void) printf("\t\tbytes = %s\n", bytes); 1225 if (size >= BPOBJ_SIZE_V1) { 1226 (void) printf("\t\tcomp = %s\n", comp); 1227 (void) printf("\t\tuncomp = %s\n", uncomp); 1228 } 1229 if (size >= BPOBJ_SIZE_V2) { 1230 (void) printf("\t\tsubobjs = %llu\n", 1231 (u_longlong_t)bpop->bpo_subobjs); 1232 (void) printf("\t\tnum_subobjs = %llu\n", 1233 (u_longlong_t)bpop->bpo_num_subobjs); 1234 } 1235 if (size >= sizeof (*bpop)) { 1236 (void) printf("\t\tnum_freed = %llu\n", 1237 (u_longlong_t)bpop->bpo_num_freed); 1238 } 1239 1240 if (dump_opt['d'] < 5) 1241 return; 1242 1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1244 char blkbuf[BP_SPRINTF_LEN]; 1245 blkptr_t bp; 1246 1247 int err = dmu_read(os, object, 1248 i * sizeof (bp), sizeof (bp), &bp, 0); 1249 if (err != 0) { 1250 (void) printf("got error %u from dmu_read\n", err); 1251 break; 1252 } 1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1254 BP_GET_FREE(&bp)); 1255 (void) printf("\t%s\n", blkbuf); 1256 } 1257 } 1258 1259 static void 1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1261 { 1262 (void) data, (void) size; 1263 dmu_object_info_t doi; 1264 int64_t i; 1265 1266 VERIFY0(dmu_object_info(os, object, &doi)); 1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1268 1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1270 if (err != 0) { 1271 (void) printf("got error %u from dmu_read\n", err); 1272 kmem_free(subobjs, doi.doi_max_offset); 1273 return; 1274 } 1275 1276 int64_t last_nonzero = -1; 1277 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1278 if (subobjs[i] != 0) 1279 last_nonzero = i; 1280 } 1281 1282 for (i = 0; i <= last_nonzero; i++) { 1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1284 } 1285 kmem_free(subobjs, doi.doi_max_offset); 1286 } 1287 1288 static void 1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1290 { 1291 (void) data, (void) size; 1292 dump_zap_stats(os, object); 1293 /* contents are printed elsewhere, properly decoded */ 1294 } 1295 1296 static void 1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1298 { 1299 (void) data, (void) size; 1300 zap_cursor_t zc; 1301 zap_attribute_t *attrp = zap_attribute_alloc(); 1302 1303 dump_zap_stats(os, object); 1304 (void) printf("\n"); 1305 1306 for (zap_cursor_init(&zc, os, object); 1307 zap_cursor_retrieve(&zc, attrp) == 0; 1308 zap_cursor_advance(&zc)) { 1309 (void) printf("\t\t%s = ", attrp->za_name); 1310 if (attrp->za_num_integers == 0) { 1311 (void) printf("\n"); 1312 continue; 1313 } 1314 (void) printf(" %llx : [%d:%d:%d]\n", 1315 (u_longlong_t)attrp->za_first_integer, 1316 (int)ATTR_LENGTH(attrp->za_first_integer), 1317 (int)ATTR_BSWAP(attrp->za_first_integer), 1318 (int)ATTR_NUM(attrp->za_first_integer)); 1319 } 1320 zap_cursor_fini(&zc); 1321 zap_attribute_free(attrp); 1322 } 1323 1324 static void 1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1326 { 1327 (void) data, (void) size; 1328 zap_cursor_t zc; 1329 zap_attribute_t *attrp = zap_attribute_alloc(); 1330 uint16_t *layout_attrs; 1331 unsigned i; 1332 1333 dump_zap_stats(os, object); 1334 (void) printf("\n"); 1335 1336 for (zap_cursor_init(&zc, os, object); 1337 zap_cursor_retrieve(&zc, attrp) == 0; 1338 zap_cursor_advance(&zc)) { 1339 (void) printf("\t\t%s = [", attrp->za_name); 1340 if (attrp->za_num_integers == 0) { 1341 (void) printf("\n"); 1342 continue; 1343 } 1344 1345 VERIFY(attrp->za_integer_length == 2); 1346 layout_attrs = umem_zalloc(attrp->za_num_integers * 1347 attrp->za_integer_length, UMEM_NOFAIL); 1348 1349 VERIFY(zap_lookup(os, object, attrp->za_name, 1350 attrp->za_integer_length, 1351 attrp->za_num_integers, layout_attrs) == 0); 1352 1353 for (i = 0; i != attrp->za_num_integers; i++) 1354 (void) printf(" %d ", (int)layout_attrs[i]); 1355 (void) printf("]\n"); 1356 umem_free(layout_attrs, 1357 attrp->za_num_integers * attrp->za_integer_length); 1358 } 1359 zap_cursor_fini(&zc); 1360 zap_attribute_free(attrp); 1361 } 1362 1363 static void 1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1365 { 1366 (void) data, (void) size; 1367 zap_cursor_t zc; 1368 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1369 const char *typenames[] = { 1370 /* 0 */ "not specified", 1371 /* 1 */ "FIFO", 1372 /* 2 */ "Character Device", 1373 /* 3 */ "3 (invalid)", 1374 /* 4 */ "Directory", 1375 /* 5 */ "5 (invalid)", 1376 /* 6 */ "Block Device", 1377 /* 7 */ "7 (invalid)", 1378 /* 8 */ "Regular File", 1379 /* 9 */ "9 (invalid)", 1380 /* 10 */ "Symbolic Link", 1381 /* 11 */ "11 (invalid)", 1382 /* 12 */ "Socket", 1383 /* 13 */ "Door", 1384 /* 14 */ "Event Port", 1385 /* 15 */ "15 (invalid)", 1386 }; 1387 1388 dump_zap_stats(os, object); 1389 (void) printf("\n"); 1390 1391 for (zap_cursor_init(&zc, os, object); 1392 zap_cursor_retrieve(&zc, attrp) == 0; 1393 zap_cursor_advance(&zc)) { 1394 (void) printf("\t\t%s = %lld (type: %s)\n", 1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1397 } 1398 zap_cursor_fini(&zc); 1399 zap_attribute_free(attrp); 1400 } 1401 1402 static int 1403 get_dtl_refcount(vdev_t *vd) 1404 { 1405 int refcount = 0; 1406 1407 if (vd->vdev_ops->vdev_op_leaf) { 1408 space_map_t *sm = vd->vdev_dtl_sm; 1409 1410 if (sm != NULL && 1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1412 return (1); 1413 return (0); 1414 } 1415 1416 for (unsigned c = 0; c < vd->vdev_children; c++) 1417 refcount += get_dtl_refcount(vd->vdev_child[c]); 1418 return (refcount); 1419 } 1420 1421 static int 1422 get_metaslab_refcount(vdev_t *vd) 1423 { 1424 int refcount = 0; 1425 1426 if (vd->vdev_top == vd) { 1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1429 1430 if (sm != NULL && 1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1432 refcount++; 1433 } 1434 } 1435 for (unsigned c = 0; c < vd->vdev_children; c++) 1436 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1437 1438 return (refcount); 1439 } 1440 1441 static int 1442 get_obsolete_refcount(vdev_t *vd) 1443 { 1444 uint64_t obsolete_sm_object; 1445 int refcount = 0; 1446 1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1449 dmu_object_info_t doi; 1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1451 obsolete_sm_object, &doi)); 1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1453 refcount++; 1454 } 1455 } else { 1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1457 ASSERT3U(obsolete_sm_object, ==, 0); 1458 } 1459 for (unsigned c = 0; c < vd->vdev_children; c++) { 1460 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1461 } 1462 1463 return (refcount); 1464 } 1465 1466 static int 1467 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1468 { 1469 uint64_t prev_obj = 1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1471 if (prev_obj != 0) { 1472 dmu_object_info_t doi; 1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1475 return (1); 1476 } 1477 } 1478 return (0); 1479 } 1480 1481 static int 1482 get_checkpoint_refcount(vdev_t *vd) 1483 { 1484 int refcount = 0; 1485 1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1487 zap_contains(spa_meta_objset(vd->vdev_spa), 1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1489 refcount++; 1490 1491 for (uint64_t c = 0; c < vd->vdev_children; c++) 1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1493 1494 return (refcount); 1495 } 1496 1497 static int 1498 get_log_spacemap_refcount(spa_t *spa) 1499 { 1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1501 } 1502 1503 static int 1504 verify_spacemap_refcounts(spa_t *spa) 1505 { 1506 uint64_t expected_refcount = 0; 1507 uint64_t actual_refcount; 1508 1509 (void) feature_get_refcount(spa, 1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1511 &expected_refcount); 1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1517 actual_refcount += get_log_spacemap_refcount(spa); 1518 1519 if (expected_refcount != actual_refcount) { 1520 (void) printf("space map refcount mismatch: expected %lld != " 1521 "actual %lld\n", 1522 (longlong_t)expected_refcount, 1523 (longlong_t)actual_refcount); 1524 return (2); 1525 } 1526 return (0); 1527 } 1528 1529 static void 1530 dump_spacemap(objset_t *os, space_map_t *sm) 1531 { 1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1533 "INVALID", "INVALID", "INVALID", "INVALID" }; 1534 1535 if (sm == NULL) 1536 return; 1537 1538 (void) printf("space map object %llu:\n", 1539 (longlong_t)sm->sm_object); 1540 (void) printf(" smp_length = 0x%llx\n", 1541 (longlong_t)sm->sm_phys->smp_length); 1542 (void) printf(" smp_alloc = 0x%llx\n", 1543 (longlong_t)sm->sm_phys->smp_alloc); 1544 1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1546 return; 1547 1548 /* 1549 * Print out the freelist entries in both encoded and decoded form. 1550 */ 1551 uint8_t mapshift = sm->sm_shift; 1552 int64_t alloc = 0; 1553 uint64_t word, entry_id = 0; 1554 for (uint64_t offset = 0; offset < space_map_length(sm); 1555 offset += sizeof (word)) { 1556 1557 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1558 sizeof (word), &word, DMU_READ_PREFETCH)); 1559 1560 if (sm_entry_is_debug(word)) { 1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1563 if (de_txg == 0) { 1564 (void) printf( 1565 "\t [%6llu] PADDING\n", 1566 (u_longlong_t)entry_id); 1567 } else { 1568 (void) printf( 1569 "\t [%6llu] %s: txg %llu pass %llu\n", 1570 (u_longlong_t)entry_id, 1571 ddata[SM_DEBUG_ACTION_DECODE(word)], 1572 (u_longlong_t)de_txg, 1573 (u_longlong_t)de_sync_pass); 1574 } 1575 entry_id++; 1576 continue; 1577 } 1578 1579 uint8_t words; 1580 char entry_type; 1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1582 1583 if (sm_entry_is_single_word(word)) { 1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1585 'A' : 'F'; 1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1587 sm->sm_start; 1588 entry_run = SM_RUN_DECODE(word) << mapshift; 1589 words = 1; 1590 } else { 1591 /* it is a two-word entry so we read another word */ 1592 ASSERT(sm_entry_is_double_word(word)); 1593 1594 uint64_t extra_word; 1595 offset += sizeof (extra_word); 1596 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1597 sizeof (extra_word), &extra_word, 1598 DMU_READ_PREFETCH)); 1599 1600 ASSERT3U(offset, <=, space_map_length(sm)); 1601 1602 entry_run = SM2_RUN_DECODE(word) << mapshift; 1603 entry_vdev = SM2_VDEV_DECODE(word); 1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1605 'A' : 'F'; 1606 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1607 mapshift) + sm->sm_start; 1608 words = 2; 1609 } 1610 1611 (void) printf("\t [%6llu] %c range:" 1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1613 (u_longlong_t)entry_id, 1614 entry_type, (u_longlong_t)entry_off, 1615 (u_longlong_t)(entry_off + entry_run), 1616 (u_longlong_t)entry_run, 1617 (u_longlong_t)entry_vdev, words); 1618 1619 if (entry_type == 'A') 1620 alloc += entry_run; 1621 else 1622 alloc -= entry_run; 1623 entry_id++; 1624 } 1625 if (alloc != space_map_allocated(sm)) { 1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1627 "with space map summary (%lld)\n", 1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1629 } 1630 } 1631 1632 static void 1633 dump_metaslab_stats(metaslab_t *msp) 1634 { 1635 char maxbuf[32]; 1636 range_tree_t *rt = msp->ms_allocatable; 1637 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1638 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1639 1640 /* max sure nicenum has enough space */ 1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1642 1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1644 1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1647 "freepct", free_pct); 1648 (void) printf("\tIn-memory histogram:\n"); 1649 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1650 } 1651 1652 static void 1653 dump_metaslab(metaslab_t *msp) 1654 { 1655 vdev_t *vd = msp->ms_group->mg_vd; 1656 spa_t *spa = vd->vdev_spa; 1657 space_map_t *sm = msp->ms_sm; 1658 char freebuf[32]; 1659 1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1661 sizeof (freebuf)); 1662 1663 (void) printf( 1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1666 (u_longlong_t)space_map_object(sm), freebuf); 1667 1668 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1669 mutex_enter(&msp->ms_lock); 1670 VERIFY0(metaslab_load(msp)); 1671 range_tree_stat_verify(msp->ms_allocatable); 1672 dump_metaslab_stats(msp); 1673 metaslab_unload(msp); 1674 mutex_exit(&msp->ms_lock); 1675 } 1676 1677 if (dump_opt['m'] > 1 && sm != NULL && 1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1679 /* 1680 * The space map histogram represents free space in chunks 1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1682 */ 1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1684 (u_longlong_t)msp->ms_fragmentation); 1685 dump_histogram(sm->sm_phys->smp_histogram, 1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1687 } 1688 1689 if (vd->vdev_ops == &vdev_draid_ops) 1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1691 else 1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1693 1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1695 1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1698 (u_longlong_t)metaslab_unflushed_txg(msp)); 1699 } 1700 } 1701 1702 static void 1703 print_vdev_metaslab_header(vdev_t *vd) 1704 { 1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1706 const char *bias_str = ""; 1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1708 bias_str = VDEV_ALLOC_BIAS_LOG; 1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1712 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1713 } 1714 1715 uint64_t ms_flush_data_obj = 0; 1716 if (vd->vdev_top_zap != 0) { 1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1719 sizeof (uint64_t), 1, &ms_flush_data_obj); 1720 if (error != ENOENT) { 1721 ASSERT0(error); 1722 } 1723 } 1724 1725 (void) printf("\tvdev %10llu %s", 1726 (u_longlong_t)vd->vdev_id, bias_str); 1727 1728 if (ms_flush_data_obj != 0) { 1729 (void) printf(" ms_unflushed_phys object %llu", 1730 (u_longlong_t)ms_flush_data_obj); 1731 } 1732 1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1735 "offset", "spacemap", "free"); 1736 (void) printf("\t%15s %19s %15s %12s\n", 1737 "---------------", "-------------------", 1738 "---------------", "------------"); 1739 } 1740 1741 static void 1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1743 { 1744 vdev_t *rvd = spa->spa_root_vdev; 1745 metaslab_class_t *mc = spa_normal_class(spa); 1746 metaslab_class_t *smc = spa_special_class(spa); 1747 uint64_t fragmentation; 1748 1749 metaslab_class_histogram_verify(mc); 1750 1751 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1752 vdev_t *tvd = rvd->vdev_child[c]; 1753 metaslab_group_t *mg = tvd->vdev_mg; 1754 1755 if (mg == NULL || (mg->mg_class != mc && 1756 (!show_special || mg->mg_class != smc))) 1757 continue; 1758 1759 metaslab_group_histogram_verify(mg); 1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1761 1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1763 "fragmentation", 1764 (u_longlong_t)tvd->vdev_id, 1765 (u_longlong_t)tvd->vdev_ms_count); 1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1767 (void) printf("%3s\n", "-"); 1768 } else { 1769 (void) printf("%3llu%%\n", 1770 (u_longlong_t)mg->mg_fragmentation); 1771 } 1772 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1773 } 1774 1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1776 fragmentation = metaslab_class_fragmentation(mc); 1777 if (fragmentation == ZFS_FRAG_INVALID) 1778 (void) printf("\t%3s\n", "-"); 1779 else 1780 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1781 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1782 } 1783 1784 static void 1785 print_vdev_indirect(vdev_t *vd) 1786 { 1787 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1788 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1789 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1790 1791 if (vim == NULL) { 1792 ASSERT3P(vib, ==, NULL); 1793 return; 1794 } 1795 1796 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1797 vic->vic_mapping_object); 1798 ASSERT3U(vdev_indirect_births_object(vib), ==, 1799 vic->vic_births_object); 1800 1801 (void) printf("indirect births obj %llu:\n", 1802 (longlong_t)vic->vic_births_object); 1803 (void) printf(" vib_count = %llu\n", 1804 (longlong_t)vdev_indirect_births_count(vib)); 1805 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1806 vdev_indirect_birth_entry_phys_t *cur_vibe = 1807 &vib->vib_entries[i]; 1808 (void) printf("\toffset %llx -> txg %llu\n", 1809 (longlong_t)cur_vibe->vibe_offset, 1810 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1811 } 1812 (void) printf("\n"); 1813 1814 (void) printf("indirect mapping obj %llu:\n", 1815 (longlong_t)vic->vic_mapping_object); 1816 (void) printf(" vim_max_offset = 0x%llx\n", 1817 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1818 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1819 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1820 (void) printf(" vim_count = %llu\n", 1821 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1822 1823 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1824 return; 1825 1826 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1827 1828 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1829 vdev_indirect_mapping_entry_phys_t *vimep = 1830 &vim->vim_entries[i]; 1831 (void) printf("\t<%llx:%llx:%llx> -> " 1832 "<%llx:%llx:%llx> (%x obsolete)\n", 1833 (longlong_t)vd->vdev_id, 1834 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1835 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1836 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1837 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1838 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1839 counts[i]); 1840 } 1841 (void) printf("\n"); 1842 1843 uint64_t obsolete_sm_object; 1844 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1845 if (obsolete_sm_object != 0) { 1846 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1847 (void) printf("obsolete space map object %llu:\n", 1848 (u_longlong_t)obsolete_sm_object); 1849 ASSERT(vd->vdev_obsolete_sm != NULL); 1850 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1851 obsolete_sm_object); 1852 dump_spacemap(mos, vd->vdev_obsolete_sm); 1853 (void) printf("\n"); 1854 } 1855 } 1856 1857 static void 1858 dump_metaslabs(spa_t *spa) 1859 { 1860 vdev_t *vd, *rvd = spa->spa_root_vdev; 1861 uint64_t m, c = 0, children = rvd->vdev_children; 1862 1863 (void) printf("\nMetaslabs:\n"); 1864 1865 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1866 c = zopt_metaslab[0]; 1867 1868 if (c >= children) 1869 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1870 1871 if (zopt_metaslab_args > 1) { 1872 vd = rvd->vdev_child[c]; 1873 print_vdev_metaslab_header(vd); 1874 1875 for (m = 1; m < zopt_metaslab_args; m++) { 1876 if (zopt_metaslab[m] < vd->vdev_ms_count) 1877 dump_metaslab( 1878 vd->vdev_ms[zopt_metaslab[m]]); 1879 else 1880 (void) fprintf(stderr, "bad metaslab " 1881 "number %llu\n", 1882 (u_longlong_t)zopt_metaslab[m]); 1883 } 1884 (void) printf("\n"); 1885 return; 1886 } 1887 children = c + 1; 1888 } 1889 for (; c < children; c++) { 1890 vd = rvd->vdev_child[c]; 1891 print_vdev_metaslab_header(vd); 1892 1893 print_vdev_indirect(vd); 1894 1895 for (m = 0; m < vd->vdev_ms_count; m++) 1896 dump_metaslab(vd->vdev_ms[m]); 1897 (void) printf("\n"); 1898 } 1899 } 1900 1901 static void 1902 dump_log_spacemaps(spa_t *spa) 1903 { 1904 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1905 return; 1906 1907 (void) printf("\nLog Space Maps in Pool:\n"); 1908 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1909 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1910 space_map_t *sm = NULL; 1911 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1912 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1913 1914 (void) printf("Log Spacemap object %llu txg %llu\n", 1915 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1916 dump_spacemap(spa->spa_meta_objset, sm); 1917 space_map_close(sm); 1918 } 1919 (void) printf("\n"); 1920 } 1921 1922 static void 1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1924 uint64_t index) 1925 { 1926 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1927 char blkbuf[BP_SPRINTF_LEN]; 1928 blkptr_t blk; 1929 int p; 1930 1931 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1932 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1933 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1934 1935 if (ddt_phys_birth(ddp, v) == 0) 1936 continue; 1937 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1938 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1939 (void) printf("index %llx refcnt %llu phys %d %s\n", 1940 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1941 p, blkbuf); 1942 } 1943 } 1944 1945 static void 1946 dump_dedup_ratio(const ddt_stat_t *dds) 1947 { 1948 double rL, rP, rD, D, dedup, compress, copies; 1949 1950 if (dds->dds_blocks == 0) 1951 return; 1952 1953 rL = (double)dds->dds_ref_lsize; 1954 rP = (double)dds->dds_ref_psize; 1955 rD = (double)dds->dds_ref_dsize; 1956 D = (double)dds->dds_dsize; 1957 1958 dedup = rD / D; 1959 compress = rL / rP; 1960 copies = rD / rP; 1961 1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1963 "dedup * compress / copies = %.2f\n\n", 1964 dedup, compress, copies, dedup * compress / copies); 1965 } 1966 1967 static void 1968 dump_ddt_log(ddt_t *ddt) 1969 { 1970 if (ddt->ddt_version != DDT_VERSION_FDT || 1971 !(ddt->ddt_flags & DDT_FLAG_LOG)) 1972 return; 1973 1974 for (int n = 0; n < 2; n++) { 1975 ddt_log_t *ddl = &ddt->ddt_log[n]; 1976 1977 char flagstr[64] = {0}; 1978 if (ddl->ddl_flags > 0) { 1979 flagstr[0] = ' '; 1980 int c = 1; 1981 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 1982 c += strlcpy(&flagstr[c], " FLUSHING", 1983 sizeof (flagstr) - c); 1984 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) 1985 c += strlcpy(&flagstr[c], " CHECKPOINT", 1986 sizeof (flagstr) - c); 1987 if (ddl->ddl_flags & 1988 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT)) 1989 c += strlcpy(&flagstr[c], " UNKNOWN", 1990 sizeof (flagstr) - c); 1991 flagstr[1] = '['; 1992 flagstr[c++] = ']'; 1993 } 1994 1995 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1996 1997 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; " 1998 "len=%llu; txg=%llu; entries=%llu\n", 1999 zio_checksum_table[ddt->ddt_checksum].ci_name, n, 2000 ddl->ddl_flags, flagstr, 2001 (u_longlong_t)ddl->ddl_object, 2002 (u_longlong_t)ddl->ddl_length, 2003 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count); 2004 2005 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) { 2006 const ddt_key_t *ddk = &ddl->ddl_checkpoint; 2007 printf(" checkpoint: " 2008 "%016llx:%016llx:%016llx:%016llx:%016llx\n", 2009 (u_longlong_t)ddk->ddk_cksum.zc_word[0], 2010 (u_longlong_t)ddk->ddk_cksum.zc_word[1], 2011 (u_longlong_t)ddk->ddk_cksum.zc_word[2], 2012 (u_longlong_t)ddk->ddk_cksum.zc_word[3], 2013 (u_longlong_t)ddk->ddk_prop); 2014 } 2015 2016 if (count == 0 || dump_opt['D'] < 4) 2017 continue; 2018 2019 ddt_lightweight_entry_t ddlwe; 2020 uint64_t index = 0; 2021 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 2022 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 2023 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 2024 dump_ddt_entry(ddt, &ddlwe, index++); 2025 } 2026 } 2027 } 2028 2029 static void 2030 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 2031 { 2032 char name[DDT_NAMELEN]; 2033 ddt_lightweight_entry_t ddlwe; 2034 uint64_t walk = 0; 2035 dmu_object_info_t doi; 2036 uint64_t count, dspace, mspace; 2037 int error; 2038 2039 error = ddt_object_info(ddt, type, class, &doi); 2040 2041 if (error == ENOENT) 2042 return; 2043 ASSERT(error == 0); 2044 2045 error = ddt_object_count(ddt, type, class, &count); 2046 ASSERT(error == 0); 2047 if (count == 0) 2048 return; 2049 2050 dspace = doi.doi_physical_blocks_512 << 9; 2051 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2052 2053 ddt_object_name(ddt, type, class, name); 2054 2055 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name, 2056 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count); 2057 2058 if (dump_opt['D'] < 3) 2059 return; 2060 2061 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2062 2063 if (dump_opt['D'] < 4) 2064 return; 2065 2066 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2067 return; 2068 2069 (void) printf("%s contents:\n\n", name); 2070 2071 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2072 dump_ddt_entry(ddt, &ddlwe, walk); 2073 2074 ASSERT3U(error, ==, ENOENT); 2075 2076 (void) printf("\n"); 2077 } 2078 2079 static void 2080 dump_ddt(ddt_t *ddt) 2081 { 2082 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2083 return; 2084 2085 char flagstr[64] = {0}; 2086 if (ddt->ddt_flags > 0) { 2087 flagstr[0] = ' '; 2088 int c = 1; 2089 if (ddt->ddt_flags & DDT_FLAG_FLAT) 2090 c += strlcpy(&flagstr[c], " FLAT", 2091 sizeof (flagstr) - c); 2092 if (ddt->ddt_flags & DDT_FLAG_LOG) 2093 c += strlcpy(&flagstr[c], " LOG", 2094 sizeof (flagstr) - c); 2095 if (ddt->ddt_flags & ~DDT_FLAG_MASK) 2096 c += strlcpy(&flagstr[c], " UNKNOWN", 2097 sizeof (flagstr) - c); 2098 flagstr[1] = '['; 2099 flagstr[c] = ']'; 2100 } 2101 2102 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n", 2103 zio_checksum_table[ddt->ddt_checksum].ci_name, 2104 (u_longlong_t)ddt->ddt_version, 2105 (ddt->ddt_version == 0) ? "LEGACY" : 2106 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN", 2107 (u_longlong_t)ddt->ddt_flags, flagstr, 2108 (u_longlong_t)ddt->ddt_dir_object); 2109 2110 for (ddt_type_t type = 0; type < DDT_TYPES; type++) 2111 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) 2112 dump_ddt_object(ddt, type, class); 2113 2114 dump_ddt_log(ddt); 2115 } 2116 2117 static void 2118 dump_all_ddts(spa_t *spa) 2119 { 2120 ddt_histogram_t ddh_total = {{{0}}}; 2121 ddt_stat_t dds_total = {0}; 2122 2123 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) 2124 dump_ddt(spa->spa_ddt[c]); 2125 2126 ddt_get_dedup_stats(spa, &dds_total); 2127 2128 if (dds_total.dds_blocks == 0) { 2129 (void) printf("All DDTs are empty\n"); 2130 return; 2131 } 2132 2133 (void) printf("\n"); 2134 2135 if (dump_opt['D'] > 1) { 2136 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2137 ddt_get_dedup_histogram(spa, &ddh_total); 2138 zpool_dump_ddt(&dds_total, &ddh_total); 2139 } 2140 2141 dump_dedup_ratio(&dds_total); 2142 2143 /* 2144 * Dump a histogram of unique class entry age 2145 */ 2146 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2147 ddt_age_histo_t histogram; 2148 2149 (void) printf("DDT walk unique, building age histogram...\n"); 2150 ddt_prune_walk(spa, 0, &histogram); 2151 2152 /* 2153 * print out histogram for unique entry class birth 2154 */ 2155 if (histogram.dah_entries > 0) { 2156 (void) printf("%5s %9s %4s\n", 2157 "age", "blocks", "amnt"); 2158 (void) printf("%5s %9s %4s\n", 2159 "-----", "---------", "----"); 2160 for (int i = 0; i < HIST_BINS; i++) { 2161 (void) printf("%5d %9d %4d%%\n", 1 << i, 2162 (int)histogram.dah_age_histo[i], 2163 (int)((histogram.dah_age_histo[i] * 100) / 2164 histogram.dah_entries)); 2165 } 2166 } 2167 } 2168 } 2169 2170 static void 2171 dump_brt(spa_t *spa) 2172 { 2173 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2174 printf("BRT: unsupported on this pool\n"); 2175 return; 2176 } 2177 2178 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2179 printf("BRT: empty\n"); 2180 return; 2181 } 2182 2183 char count[32], used[32], saved[32]; 2184 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2185 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2186 uint64_t ratio = brt_get_ratio(spa); 2187 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2188 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2189 2190 if (dump_opt['T'] < 2) 2191 return; 2192 2193 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2194 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2195 if (!brtvd->bv_initiated) { 2196 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2197 continue; 2198 } 2199 2200 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2201 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2202 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2203 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2204 vdevid, count, used, saved); 2205 } 2206 2207 if (dump_opt['T'] < 3) 2208 return; 2209 2210 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2211 boolean_t do_histo = dump_opt['T'] == 3; 2212 2213 char dva[64]; 2214 2215 if (!do_histo) 2216 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2217 2218 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2219 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2220 if (!brtvd->bv_initiated) 2221 continue; 2222 2223 uint64_t counts[64] = {}; 2224 2225 zap_cursor_t zc; 2226 zap_attribute_t *za = zap_attribute_alloc(); 2227 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2228 brtvd->bv_mos_entries); 2229 zap_cursor_retrieve(&zc, za) == 0; 2230 zap_cursor_advance(&zc)) { 2231 uint64_t refcnt; 2232 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset, 2233 brtvd->bv_mos_entries, 2234 (const uint64_t *)za->za_name, 1, 2235 za->za_integer_length, za->za_num_integers, 2236 &refcnt)); 2237 2238 if (do_histo) 2239 counts[highbit64(refcnt)]++; 2240 else { 2241 uint64_t offset = 2242 *(const uint64_t *)za->za_name; 2243 2244 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2245 vdevid, (u_longlong_t)offset); 2246 printf("%-16s %-10llu\n", dva, 2247 (u_longlong_t)refcnt); 2248 } 2249 } 2250 zap_cursor_fini(&zc); 2251 zap_attribute_free(za); 2252 2253 if (do_histo) { 2254 printf("\nBRT: vdev %" PRIu64 2255 ": DVAs with 2^n refcnts:\n", vdevid); 2256 dump_histogram(counts, 64, 0); 2257 } 2258 } 2259 } 2260 2261 static void 2262 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2263 { 2264 char *prefix = arg; 2265 2266 (void) printf("%s [%llu,%llu) length %llu\n", 2267 prefix, 2268 (u_longlong_t)start, 2269 (u_longlong_t)(start + size), 2270 (u_longlong_t)(size)); 2271 } 2272 2273 static void 2274 dump_dtl(vdev_t *vd, int indent) 2275 { 2276 spa_t *spa = vd->vdev_spa; 2277 boolean_t required; 2278 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2279 "outage" }; 2280 char prefix[256]; 2281 2282 spa_vdev_state_enter(spa, SCL_NONE); 2283 required = vdev_dtl_required(vd); 2284 (void) spa_vdev_state_exit(spa, NULL, 0); 2285 2286 if (indent == 0) 2287 (void) printf("\nDirty time logs:\n\n"); 2288 2289 (void) printf("\t%*s%s [%s]\n", indent, "", 2290 vd->vdev_path ? vd->vdev_path : 2291 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2292 required ? "DTL-required" : "DTL-expendable"); 2293 2294 for (int t = 0; t < DTL_TYPES; t++) { 2295 range_tree_t *rt = vd->vdev_dtl[t]; 2296 if (range_tree_space(rt) == 0) 2297 continue; 2298 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2299 indent + 2, "", name[t]); 2300 range_tree_walk(rt, dump_dtl_seg, prefix); 2301 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2302 dump_spacemap(spa->spa_meta_objset, 2303 vd->vdev_dtl_sm); 2304 } 2305 2306 for (unsigned c = 0; c < vd->vdev_children; c++) 2307 dump_dtl(vd->vdev_child[c], indent + 4); 2308 } 2309 2310 static void 2311 dump_history(spa_t *spa) 2312 { 2313 nvlist_t **events = NULL; 2314 char *buf; 2315 uint64_t resid, len, off = 0; 2316 uint_t num = 0; 2317 int error; 2318 char tbuf[30]; 2319 2320 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2321 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2322 __func__); 2323 return; 2324 } 2325 2326 do { 2327 len = SPA_OLD_MAXBLOCKSIZE; 2328 2329 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2330 (void) fprintf(stderr, "Unable to read history: " 2331 "error %d\n", error); 2332 free(buf); 2333 return; 2334 } 2335 2336 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2337 break; 2338 2339 off -= resid; 2340 } while (len != 0); 2341 2342 (void) printf("\nHistory:\n"); 2343 for (unsigned i = 0; i < num; i++) { 2344 boolean_t printed = B_FALSE; 2345 2346 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2347 time_t tsec; 2348 struct tm t; 2349 2350 tsec = fnvlist_lookup_uint64(events[i], 2351 ZPOOL_HIST_TIME); 2352 (void) localtime_r(&tsec, &t); 2353 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2354 } else { 2355 tbuf[0] = '\0'; 2356 } 2357 2358 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2359 (void) printf("%s %s\n", tbuf, 2360 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2361 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2362 uint64_t ievent; 2363 2364 ievent = fnvlist_lookup_uint64(events[i], 2365 ZPOOL_HIST_INT_EVENT); 2366 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2367 goto next; 2368 2369 (void) printf(" %s [internal %s txg:%ju] %s\n", 2370 tbuf, 2371 zfs_history_event_names[ievent], 2372 fnvlist_lookup_uint64(events[i], 2373 ZPOOL_HIST_TXG), 2374 fnvlist_lookup_string(events[i], 2375 ZPOOL_HIST_INT_STR)); 2376 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2377 (void) printf("%s [txg:%ju] %s", tbuf, 2378 fnvlist_lookup_uint64(events[i], 2379 ZPOOL_HIST_TXG), 2380 fnvlist_lookup_string(events[i], 2381 ZPOOL_HIST_INT_NAME)); 2382 2383 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2384 (void) printf(" %s (%llu)", 2385 fnvlist_lookup_string(events[i], 2386 ZPOOL_HIST_DSNAME), 2387 (u_longlong_t)fnvlist_lookup_uint64( 2388 events[i], 2389 ZPOOL_HIST_DSID)); 2390 } 2391 2392 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2393 ZPOOL_HIST_INT_STR)); 2394 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2395 (void) printf("%s ioctl %s\n", tbuf, 2396 fnvlist_lookup_string(events[i], 2397 ZPOOL_HIST_IOCTL)); 2398 2399 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2400 (void) printf(" input:\n"); 2401 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2402 ZPOOL_HIST_INPUT_NVL), 8); 2403 } 2404 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2405 (void) printf(" output:\n"); 2406 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2407 ZPOOL_HIST_OUTPUT_NVL), 8); 2408 } 2409 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2410 (void) printf(" errno: %lld\n", 2411 (longlong_t)fnvlist_lookup_int64(events[i], 2412 ZPOOL_HIST_ERRNO)); 2413 } 2414 } else { 2415 goto next; 2416 } 2417 2418 printed = B_TRUE; 2419 next: 2420 if (dump_opt['h'] > 1) { 2421 if (!printed) 2422 (void) printf("unrecognized record:\n"); 2423 dump_nvlist(events[i], 2); 2424 } 2425 } 2426 free(buf); 2427 } 2428 2429 static void 2430 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2431 { 2432 (void) os, (void) object, (void) data, (void) size; 2433 } 2434 2435 static uint64_t 2436 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2437 const zbookmark_phys_t *zb) 2438 { 2439 if (dnp == NULL) { 2440 ASSERT(zb->zb_level < 0); 2441 if (zb->zb_object == 0) 2442 return (zb->zb_blkid); 2443 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2444 } 2445 2446 ASSERT(zb->zb_level >= 0); 2447 2448 return ((zb->zb_blkid << 2449 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2450 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2451 } 2452 2453 static void 2454 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2455 const blkptr_t *bp) 2456 { 2457 static abd_t *pabd = NULL; 2458 void *buf; 2459 zio_t *zio; 2460 zfs_zstdhdr_t zstd_hdr; 2461 int error; 2462 2463 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2464 return; 2465 2466 if (BP_IS_HOLE(bp)) 2467 return; 2468 2469 if (BP_IS_EMBEDDED(bp)) { 2470 buf = malloc(SPA_MAXBLOCKSIZE); 2471 if (buf == NULL) { 2472 (void) fprintf(stderr, "out of memory\n"); 2473 zdb_exit(1); 2474 } 2475 decode_embedded_bp_compressed(bp, buf); 2476 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2477 free(buf); 2478 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2479 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2480 (void) snprintf(blkbuf + strlen(blkbuf), 2481 buflen - strlen(blkbuf), 2482 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2483 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2484 zfs_get_hdrlevel(&zstd_hdr)); 2485 return; 2486 } 2487 2488 if (!pabd) 2489 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2490 zio = zio_root(spa, NULL, NULL, 0); 2491 2492 /* Decrypt but don't decompress so we can read the compression header */ 2493 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2494 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2495 NULL)); 2496 error = zio_wait(zio); 2497 if (error) { 2498 (void) fprintf(stderr, "read failed: %d\n", error); 2499 return; 2500 } 2501 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2502 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2503 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2504 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2505 2506 (void) snprintf(blkbuf + strlen(blkbuf), 2507 buflen - strlen(blkbuf), 2508 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2509 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2510 zfs_get_hdrlevel(&zstd_hdr)); 2511 2512 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2513 } 2514 2515 static void 2516 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2517 boolean_t bp_freed) 2518 { 2519 const dva_t *dva = bp->blk_dva; 2520 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2521 int i; 2522 2523 if (dump_opt['b'] >= 6) { 2524 snprintf_blkptr(blkbuf, buflen, bp); 2525 if (bp_freed) { 2526 (void) snprintf(blkbuf + strlen(blkbuf), 2527 buflen - strlen(blkbuf), " %s", "FREE"); 2528 } 2529 return; 2530 } 2531 2532 if (BP_IS_EMBEDDED(bp)) { 2533 (void) sprintf(blkbuf, 2534 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2535 (int)BPE_GET_ETYPE(bp), 2536 (u_longlong_t)BPE_GET_LSIZE(bp), 2537 (u_longlong_t)BPE_GET_PSIZE(bp), 2538 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2539 return; 2540 } 2541 2542 blkbuf[0] = '\0'; 2543 2544 for (i = 0; i < ndvas; i++) 2545 (void) snprintf(blkbuf + strlen(blkbuf), 2546 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2547 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2548 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2549 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2550 2551 if (BP_IS_HOLE(bp)) { 2552 (void) snprintf(blkbuf + strlen(blkbuf), 2553 buflen - strlen(blkbuf), 2554 "%llxL B=%llu", 2555 (u_longlong_t)BP_GET_LSIZE(bp), 2556 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2557 } else { 2558 (void) snprintf(blkbuf + strlen(blkbuf), 2559 buflen - strlen(blkbuf), 2560 "%llxL/%llxP F=%llu B=%llu/%llu", 2561 (u_longlong_t)BP_GET_LSIZE(bp), 2562 (u_longlong_t)BP_GET_PSIZE(bp), 2563 (u_longlong_t)BP_GET_FILL(bp), 2564 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2565 (u_longlong_t)BP_GET_BIRTH(bp)); 2566 if (bp_freed) 2567 (void) snprintf(blkbuf + strlen(blkbuf), 2568 buflen - strlen(blkbuf), " %s", "FREE"); 2569 (void) snprintf(blkbuf + strlen(blkbuf), 2570 buflen - strlen(blkbuf), 2571 " cksum=%016llx:%016llx:%016llx:%016llx", 2572 (u_longlong_t)bp->blk_cksum.zc_word[0], 2573 (u_longlong_t)bp->blk_cksum.zc_word[1], 2574 (u_longlong_t)bp->blk_cksum.zc_word[2], 2575 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2576 } 2577 } 2578 2579 static void 2580 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2581 const dnode_phys_t *dnp) 2582 { 2583 char blkbuf[BP_SPRINTF_LEN]; 2584 int l; 2585 2586 if (!BP_IS_EMBEDDED(bp)) { 2587 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2588 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2589 } 2590 2591 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2592 2593 ASSERT(zb->zb_level >= 0); 2594 2595 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2596 if (l == zb->zb_level) { 2597 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2598 } else { 2599 (void) printf(" "); 2600 } 2601 } 2602 2603 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2604 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2605 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2606 (void) printf("%s\n", blkbuf); 2607 } 2608 2609 static int 2610 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2611 blkptr_t *bp, const zbookmark_phys_t *zb) 2612 { 2613 int err = 0; 2614 2615 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2616 return (0); 2617 2618 print_indirect(spa, bp, zb, dnp); 2619 2620 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2621 arc_flags_t flags = ARC_FLAG_WAIT; 2622 int i; 2623 blkptr_t *cbp; 2624 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2625 arc_buf_t *buf; 2626 uint64_t fill = 0; 2627 ASSERT(!BP_IS_REDACTED(bp)); 2628 2629 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2630 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2631 if (err) 2632 return (err); 2633 ASSERT(buf->b_data); 2634 2635 /* recursively visit blocks below this */ 2636 cbp = buf->b_data; 2637 for (i = 0; i < epb; i++, cbp++) { 2638 zbookmark_phys_t czb; 2639 2640 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2641 zb->zb_level - 1, 2642 zb->zb_blkid * epb + i); 2643 err = visit_indirect(spa, dnp, cbp, &czb); 2644 if (err) 2645 break; 2646 fill += BP_GET_FILL(cbp); 2647 } 2648 if (!err) 2649 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2650 arc_buf_destroy(buf, &buf); 2651 } 2652 2653 return (err); 2654 } 2655 2656 static void 2657 dump_indirect(dnode_t *dn) 2658 { 2659 dnode_phys_t *dnp = dn->dn_phys; 2660 zbookmark_phys_t czb; 2661 2662 (void) printf("Indirect blocks:\n"); 2663 2664 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2665 dn->dn_object, dnp->dn_nlevels - 1, 0); 2666 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2667 czb.zb_blkid = j; 2668 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2669 &dnp->dn_blkptr[j], &czb); 2670 } 2671 2672 (void) printf("\n"); 2673 } 2674 2675 static void 2676 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2677 { 2678 (void) os, (void) object; 2679 dsl_dir_phys_t *dd = data; 2680 time_t crtime; 2681 char nice[32]; 2682 2683 /* make sure nicenum has enough space */ 2684 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2685 2686 if (dd == NULL) 2687 return; 2688 2689 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2690 2691 crtime = dd->dd_creation_time; 2692 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2693 (void) printf("\t\thead_dataset_obj = %llu\n", 2694 (u_longlong_t)dd->dd_head_dataset_obj); 2695 (void) printf("\t\tparent_dir_obj = %llu\n", 2696 (u_longlong_t)dd->dd_parent_obj); 2697 (void) printf("\t\torigin_obj = %llu\n", 2698 (u_longlong_t)dd->dd_origin_obj); 2699 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2700 (u_longlong_t)dd->dd_child_dir_zapobj); 2701 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2702 (void) printf("\t\tused_bytes = %s\n", nice); 2703 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2704 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2705 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2706 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2707 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2708 (void) printf("\t\tquota = %s\n", nice); 2709 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2710 (void) printf("\t\treserved = %s\n", nice); 2711 (void) printf("\t\tprops_zapobj = %llu\n", 2712 (u_longlong_t)dd->dd_props_zapobj); 2713 (void) printf("\t\tdeleg_zapobj = %llu\n", 2714 (u_longlong_t)dd->dd_deleg_zapobj); 2715 (void) printf("\t\tflags = %llx\n", 2716 (u_longlong_t)dd->dd_flags); 2717 2718 #define DO(which) \ 2719 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2720 sizeof (nice)); \ 2721 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2722 DO(HEAD); 2723 DO(SNAP); 2724 DO(CHILD); 2725 DO(CHILD_RSRV); 2726 DO(REFRSRV); 2727 #undef DO 2728 (void) printf("\t\tclones = %llu\n", 2729 (u_longlong_t)dd->dd_clones); 2730 } 2731 2732 static void 2733 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2734 { 2735 (void) os, (void) object; 2736 dsl_dataset_phys_t *ds = data; 2737 time_t crtime; 2738 char used[32], compressed[32], uncompressed[32], unique[32]; 2739 char blkbuf[BP_SPRINTF_LEN]; 2740 2741 /* make sure nicenum has enough space */ 2742 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2743 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2744 "compressed truncated"); 2745 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2746 "uncompressed truncated"); 2747 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2748 2749 if (ds == NULL) 2750 return; 2751 2752 ASSERT(size == sizeof (*ds)); 2753 crtime = ds->ds_creation_time; 2754 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2755 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2756 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2757 sizeof (uncompressed)); 2758 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2759 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2760 2761 (void) printf("\t\tdir_obj = %llu\n", 2762 (u_longlong_t)ds->ds_dir_obj); 2763 (void) printf("\t\tprev_snap_obj = %llu\n", 2764 (u_longlong_t)ds->ds_prev_snap_obj); 2765 (void) printf("\t\tprev_snap_txg = %llu\n", 2766 (u_longlong_t)ds->ds_prev_snap_txg); 2767 (void) printf("\t\tnext_snap_obj = %llu\n", 2768 (u_longlong_t)ds->ds_next_snap_obj); 2769 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2770 (u_longlong_t)ds->ds_snapnames_zapobj); 2771 (void) printf("\t\tnum_children = %llu\n", 2772 (u_longlong_t)ds->ds_num_children); 2773 (void) printf("\t\tuserrefs_obj = %llu\n", 2774 (u_longlong_t)ds->ds_userrefs_obj); 2775 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2776 (void) printf("\t\tcreation_txg = %llu\n", 2777 (u_longlong_t)ds->ds_creation_txg); 2778 (void) printf("\t\tdeadlist_obj = %llu\n", 2779 (u_longlong_t)ds->ds_deadlist_obj); 2780 (void) printf("\t\tused_bytes = %s\n", used); 2781 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2782 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2783 (void) printf("\t\tunique = %s\n", unique); 2784 (void) printf("\t\tfsid_guid = %llu\n", 2785 (u_longlong_t)ds->ds_fsid_guid); 2786 (void) printf("\t\tguid = %llu\n", 2787 (u_longlong_t)ds->ds_guid); 2788 (void) printf("\t\tflags = %llx\n", 2789 (u_longlong_t)ds->ds_flags); 2790 (void) printf("\t\tnext_clones_obj = %llu\n", 2791 (u_longlong_t)ds->ds_next_clones_obj); 2792 (void) printf("\t\tprops_obj = %llu\n", 2793 (u_longlong_t)ds->ds_props_obj); 2794 (void) printf("\t\tbp = %s\n", blkbuf); 2795 } 2796 2797 static int 2798 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2799 { 2800 (void) arg, (void) tx; 2801 char blkbuf[BP_SPRINTF_LEN]; 2802 2803 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2804 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2805 (void) printf("\t%s\n", blkbuf); 2806 } 2807 return (0); 2808 } 2809 2810 static void 2811 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2812 { 2813 char bytes[32]; 2814 bptree_phys_t *bt; 2815 dmu_buf_t *db; 2816 2817 /* make sure nicenum has enough space */ 2818 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2819 2820 if (dump_opt['d'] < 3) 2821 return; 2822 2823 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2824 bt = db->db_data; 2825 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2826 (void) printf("\n %s: %llu datasets, %s\n", 2827 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2828 dmu_buf_rele(db, FTAG); 2829 2830 if (dump_opt['d'] < 5) 2831 return; 2832 2833 (void) printf("\n"); 2834 2835 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2836 } 2837 2838 static int 2839 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2840 { 2841 (void) arg, (void) tx; 2842 char blkbuf[BP_SPRINTF_LEN]; 2843 2844 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2845 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2846 (void) printf("\t%s\n", blkbuf); 2847 return (0); 2848 } 2849 2850 static void 2851 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2852 { 2853 char bytes[32]; 2854 char comp[32]; 2855 char uncomp[32]; 2856 uint64_t i; 2857 2858 /* make sure nicenum has enough space */ 2859 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2860 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2861 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2862 2863 if (dump_opt['d'] < 3) 2864 return; 2865 2866 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2867 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2868 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2869 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2870 if (bpo->bpo_havefreed) { 2871 (void) printf(" %*s: object %llu, %llu local " 2872 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2873 "%s (%s/%s comp)\n", 2874 indent * 8, name, 2875 (u_longlong_t)bpo->bpo_object, 2876 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2877 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2878 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2879 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2880 bytes, comp, uncomp); 2881 } else { 2882 (void) printf(" %*s: object %llu, %llu local " 2883 "blkptrs, %llu subobjs in object %llu, " 2884 "%s (%s/%s comp)\n", 2885 indent * 8, name, 2886 (u_longlong_t)bpo->bpo_object, 2887 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2888 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2889 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2890 bytes, comp, uncomp); 2891 } 2892 2893 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2894 uint64_t subobj; 2895 bpobj_t subbpo; 2896 int error; 2897 VERIFY0(dmu_read(bpo->bpo_os, 2898 bpo->bpo_phys->bpo_subobjs, 2899 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2900 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2901 if (error != 0) { 2902 (void) printf("ERROR %u while trying to open " 2903 "subobj id %llu\n", 2904 error, (u_longlong_t)subobj); 2905 continue; 2906 } 2907 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2908 bpobj_close(&subbpo); 2909 } 2910 } else { 2911 if (bpo->bpo_havefreed) { 2912 (void) printf(" %*s: object %llu, %llu blkptrs, " 2913 "%llu freed, %s\n", 2914 indent * 8, name, 2915 (u_longlong_t)bpo->bpo_object, 2916 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2917 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2918 bytes); 2919 } else { 2920 (void) printf(" %*s: object %llu, %llu blkptrs, " 2921 "%s\n", 2922 indent * 8, name, 2923 (u_longlong_t)bpo->bpo_object, 2924 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2925 bytes); 2926 } 2927 } 2928 2929 if (dump_opt['d'] < 5) 2930 return; 2931 2932 2933 if (indent == 0) { 2934 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2935 (void) printf("\n"); 2936 } 2937 } 2938 2939 static int 2940 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2941 boolean_t print_list) 2942 { 2943 int err = 0; 2944 zfs_bookmark_phys_t prop; 2945 objset_t *mos = dp->dp_spa->spa_meta_objset; 2946 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2947 2948 if (err != 0) { 2949 return (err); 2950 } 2951 2952 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2953 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2954 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2955 (u_longlong_t)prop.zbm_creation_txg, 2956 (u_longlong_t)prop.zbm_creation_time, 2957 (u_longlong_t)prop.zbm_redaction_obj); 2958 2959 IMPLY(print_list, print_redact); 2960 if (!print_redact || prop.zbm_redaction_obj == 0) 2961 return (0); 2962 2963 redaction_list_t *rl; 2964 VERIFY0(dsl_redaction_list_hold_obj(dp, 2965 prop.zbm_redaction_obj, FTAG, &rl)); 2966 2967 redaction_list_phys_t *rlp = rl->rl_phys; 2968 (void) printf("\tRedacted:\n\t\tProgress: "); 2969 if (rlp->rlp_last_object != UINT64_MAX || 2970 rlp->rlp_last_blkid != UINT64_MAX) { 2971 (void) printf("%llu %llu (incomplete)\n", 2972 (u_longlong_t)rlp->rlp_last_object, 2973 (u_longlong_t)rlp->rlp_last_blkid); 2974 } else { 2975 (void) printf("complete\n"); 2976 } 2977 (void) printf("\t\tSnapshots: ["); 2978 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2979 if (i > 0) 2980 (void) printf(", "); 2981 (void) printf("%0llu", 2982 (u_longlong_t)rlp->rlp_snaps[i]); 2983 } 2984 (void) printf("]\n\t\tLength: %llu\n", 2985 (u_longlong_t)rlp->rlp_num_entries); 2986 2987 if (!print_list) { 2988 dsl_redaction_list_rele(rl, FTAG); 2989 return (0); 2990 } 2991 2992 if (rlp->rlp_num_entries == 0) { 2993 dsl_redaction_list_rele(rl, FTAG); 2994 (void) printf("\t\tRedaction List: []\n\n"); 2995 return (0); 2996 } 2997 2998 redact_block_phys_t *rbp_buf; 2999 uint64_t size; 3000 dmu_object_info_t doi; 3001 3002 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 3003 size = doi.doi_max_offset; 3004 rbp_buf = kmem_alloc(size, KM_SLEEP); 3005 3006 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 3007 rbp_buf, 0); 3008 if (err != 0) { 3009 dsl_redaction_list_rele(rl, FTAG); 3010 kmem_free(rbp_buf, size); 3011 return (err); 3012 } 3013 3014 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 3015 "%llx, blksz: %x, count: %llx}", 3016 (u_longlong_t)rbp_buf[0].rbp_object, 3017 (u_longlong_t)rbp_buf[0].rbp_blkid, 3018 (uint_t)(redact_block_get_size(&rbp_buf[0])), 3019 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 3020 3021 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 3022 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 3023 "blksz: %x, count: %llx}", 3024 (u_longlong_t)rbp_buf[i].rbp_object, 3025 (u_longlong_t)rbp_buf[i].rbp_blkid, 3026 (uint_t)(redact_block_get_size(&rbp_buf[i])), 3027 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 3028 } 3029 dsl_redaction_list_rele(rl, FTAG); 3030 kmem_free(rbp_buf, size); 3031 (void) printf("]\n\n"); 3032 return (0); 3033 } 3034 3035 static void 3036 dump_bookmarks(objset_t *os, int verbosity) 3037 { 3038 zap_cursor_t zc; 3039 zap_attribute_t *attrp; 3040 dsl_dataset_t *ds = dmu_objset_ds(os); 3041 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3042 objset_t *mos = os->os_spa->spa_meta_objset; 3043 if (verbosity < 4) 3044 return; 3045 attrp = zap_attribute_alloc(); 3046 dsl_pool_config_enter(dp, FTAG); 3047 3048 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 3049 zap_cursor_retrieve(&zc, attrp) == 0; 3050 zap_cursor_advance(&zc)) { 3051 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3052 char buf[ZFS_MAX_DATASET_NAME_LEN]; 3053 int len; 3054 dmu_objset_name(os, osname); 3055 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 3056 attrp->za_name); 3057 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 3058 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 3059 } 3060 zap_cursor_fini(&zc); 3061 dsl_pool_config_exit(dp, FTAG); 3062 zap_attribute_free(attrp); 3063 } 3064 3065 static void 3066 bpobj_count_refd(bpobj_t *bpo) 3067 { 3068 mos_obj_refd(bpo->bpo_object); 3069 3070 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3071 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3072 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3073 uint64_t subobj; 3074 bpobj_t subbpo; 3075 int error; 3076 VERIFY0(dmu_read(bpo->bpo_os, 3077 bpo->bpo_phys->bpo_subobjs, 3078 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3079 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3080 if (error != 0) { 3081 (void) printf("ERROR %u while trying to open " 3082 "subobj id %llu\n", 3083 error, (u_longlong_t)subobj); 3084 continue; 3085 } 3086 bpobj_count_refd(&subbpo); 3087 bpobj_close(&subbpo); 3088 } 3089 } 3090 } 3091 3092 static int 3093 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3094 { 3095 spa_t *spa = arg; 3096 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3097 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3098 bpobj_count_refd(&dle->dle_bpobj); 3099 return (0); 3100 } 3101 3102 static int 3103 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3104 { 3105 ASSERT(arg == NULL); 3106 if (dump_opt['d'] >= 5) { 3107 char buf[128]; 3108 (void) snprintf(buf, sizeof (buf), 3109 "mintxg %llu -> obj %llu", 3110 (longlong_t)dle->dle_mintxg, 3111 (longlong_t)dle->dle_bpobj.bpo_object); 3112 3113 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3114 } else { 3115 (void) printf("mintxg %llu -> obj %llu\n", 3116 (longlong_t)dle->dle_mintxg, 3117 (longlong_t)dle->dle_bpobj.bpo_object); 3118 } 3119 return (0); 3120 } 3121 3122 static void 3123 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3124 { 3125 char bytes[32]; 3126 char comp[32]; 3127 char uncomp[32]; 3128 char entries[32]; 3129 spa_t *spa = dmu_objset_spa(dl->dl_os); 3130 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3131 3132 if (dl->dl_oldfmt) { 3133 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3134 bpobj_count_refd(&dl->dl_bpobj); 3135 } else { 3136 mos_obj_refd(dl->dl_object); 3137 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3138 } 3139 3140 /* make sure nicenum has enough space */ 3141 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3142 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3143 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3144 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3145 3146 if (dump_opt['d'] < 3) 3147 return; 3148 3149 if (dl->dl_oldfmt) { 3150 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3151 return; 3152 } 3153 3154 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3155 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3156 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3157 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3158 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3159 name, bytes, comp, uncomp, entries); 3160 3161 if (dump_opt['d'] < 4) 3162 return; 3163 3164 (void) putchar('\n'); 3165 3166 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3167 } 3168 3169 static int 3170 verify_dd_livelist(objset_t *os) 3171 { 3172 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3173 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3174 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3175 3176 ASSERT(!dmu_objset_is_snapshot(os)); 3177 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3178 return (0); 3179 3180 /* Iterate through the livelist to check for duplicates */ 3181 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3182 NULL); 3183 3184 dsl_pool_config_enter(dp, FTAG); 3185 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3186 &ll_comp, &ll_uncomp); 3187 3188 dsl_dataset_t *origin_ds; 3189 ASSERT(dsl_pool_config_held(dp)); 3190 VERIFY0(dsl_dataset_hold_obj(dp, 3191 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3192 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3193 &used, &comp, &uncomp)); 3194 dsl_dataset_rele(origin_ds, FTAG); 3195 dsl_pool_config_exit(dp, FTAG); 3196 /* 3197 * It's possible that the dataset's uncomp space is larger than the 3198 * livelist's because livelists do not track embedded block pointers 3199 */ 3200 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3201 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3202 (void) printf("Discrepancy in space accounting:\n"); 3203 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3204 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3205 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3206 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3207 nice_used, nice_comp, nice_uncomp); 3208 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3209 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3210 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3211 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3212 nice_used, nice_comp, nice_uncomp); 3213 return (1); 3214 } 3215 return (0); 3216 } 3217 3218 static char *key_material = NULL; 3219 3220 static boolean_t 3221 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3222 { 3223 uint64_t keyformat, salt, iters; 3224 int i; 3225 unsigned char c; 3226 3227 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3228 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3229 1, &keyformat)); 3230 3231 switch (keyformat) { 3232 case ZFS_KEYFORMAT_HEX: 3233 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3234 if (!isxdigit(key_material[i]) || 3235 !isxdigit(key_material[i+1])) 3236 return (B_FALSE); 3237 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3238 return (B_FALSE); 3239 key_out[i / 2] = c; 3240 } 3241 break; 3242 3243 case ZFS_KEYFORMAT_PASSPHRASE: 3244 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3245 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3246 sizeof (uint64_t), 1, &salt)); 3247 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3248 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3249 sizeof (uint64_t), 1, &iters)); 3250 3251 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3252 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3253 WRAPPING_KEY_LEN, key_out) != 1) 3254 return (B_FALSE); 3255 3256 break; 3257 3258 default: 3259 fatal("no support for key format %u\n", 3260 (unsigned int) keyformat); 3261 } 3262 3263 return (B_TRUE); 3264 } 3265 3266 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3267 static boolean_t key_loaded = B_FALSE; 3268 3269 static void 3270 zdb_load_key(objset_t *os) 3271 { 3272 dsl_pool_t *dp; 3273 dsl_dir_t *dd, *rdd; 3274 uint8_t key[WRAPPING_KEY_LEN]; 3275 uint64_t rddobj; 3276 int err; 3277 3278 dp = spa_get_dsl(os->os_spa); 3279 dd = os->os_dsl_dataset->ds_dir; 3280 3281 dsl_pool_config_enter(dp, FTAG); 3282 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3283 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3284 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3285 dsl_dir_name(rdd, encroot); 3286 dsl_dir_rele(rdd, FTAG); 3287 3288 if (!zdb_derive_key(dd, key)) 3289 fatal("couldn't derive encryption key"); 3290 3291 dsl_pool_config_exit(dp, FTAG); 3292 3293 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3294 3295 dsl_crypto_params_t *dcp; 3296 nvlist_t *crypto_args; 3297 3298 crypto_args = fnvlist_alloc(); 3299 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3300 (uint8_t *)key, WRAPPING_KEY_LEN); 3301 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3302 NULL, crypto_args, &dcp)); 3303 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3304 3305 dsl_crypto_params_free(dcp, (err != 0)); 3306 fnvlist_free(crypto_args); 3307 3308 if (err != 0) 3309 fatal( 3310 "couldn't load encryption key for %s: %s", 3311 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3312 "crypto params not supported" : strerror(err)); 3313 3314 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3315 3316 printf("Unlocked encryption root: %s\n", encroot); 3317 key_loaded = B_TRUE; 3318 } 3319 3320 static void 3321 zdb_unload_key(void) 3322 { 3323 if (!key_loaded) 3324 return; 3325 3326 VERIFY0(spa_keystore_unload_wkey(encroot)); 3327 key_loaded = B_FALSE; 3328 } 3329 3330 static avl_tree_t idx_tree; 3331 static avl_tree_t domain_tree; 3332 static boolean_t fuid_table_loaded; 3333 static objset_t *sa_os = NULL; 3334 static sa_attr_type_t *sa_attr_table = NULL; 3335 3336 static int 3337 open_objset(const char *path, const void *tag, objset_t **osp) 3338 { 3339 int err; 3340 uint64_t sa_attrs = 0; 3341 uint64_t version = 0; 3342 3343 VERIFY3P(sa_os, ==, NULL); 3344 3345 /* 3346 * We can't own an objset if it's redacted. Therefore, we do this 3347 * dance: hold the objset, then acquire a long hold on its dataset, then 3348 * release the pool (which is held as part of holding the objset). 3349 */ 3350 3351 if (dump_opt['K']) { 3352 /* decryption requested, try to load keys */ 3353 err = dmu_objset_hold(path, tag, osp); 3354 if (err != 0) { 3355 (void) fprintf(stderr, "failed to hold dataset " 3356 "'%s': %s\n", 3357 path, strerror(err)); 3358 return (err); 3359 } 3360 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3361 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3362 3363 /* succeeds or dies */ 3364 zdb_load_key(*osp); 3365 3366 /* release it all */ 3367 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3368 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3369 } 3370 3371 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3372 3373 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3374 if (err != 0) { 3375 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3376 path, strerror(err)); 3377 return (err); 3378 } 3379 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3380 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3381 3382 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3383 (key_loaded || !(*osp)->os_encrypted)) { 3384 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3385 8, 1, &version); 3386 if (version >= ZPL_VERSION_SA) { 3387 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3388 8, 1, &sa_attrs); 3389 } 3390 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3391 &sa_attr_table); 3392 if (err != 0) { 3393 (void) fprintf(stderr, "sa_setup failed: %s\n", 3394 strerror(err)); 3395 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3396 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3397 ds_hold_flags, tag); 3398 *osp = NULL; 3399 } 3400 } 3401 sa_os = *osp; 3402 3403 return (err); 3404 } 3405 3406 static void 3407 close_objset(objset_t *os, const void *tag) 3408 { 3409 VERIFY3P(os, ==, sa_os); 3410 if (os->os_sa != NULL) 3411 sa_tear_down(os); 3412 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3413 dsl_dataset_rele_flags(dmu_objset_ds(os), 3414 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3415 sa_attr_table = NULL; 3416 sa_os = NULL; 3417 3418 zdb_unload_key(); 3419 } 3420 3421 static void 3422 fuid_table_destroy(void) 3423 { 3424 if (fuid_table_loaded) { 3425 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3426 fuid_table_loaded = B_FALSE; 3427 } 3428 } 3429 3430 /* 3431 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3432 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3433 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3434 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3435 * 3436 * Note that this is not a particularly efficient way to do this, but 3437 * ddt_remove() is the only public method that can do the work we need, and it 3438 * requires the right locks and etc to do the job. This is only ever called 3439 * during zdb shutdown so efficiency is not especially important. 3440 */ 3441 static void 3442 zdb_ddt_cleanup(spa_t *spa) 3443 { 3444 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3445 ddt_t *ddt = spa->spa_ddt[c]; 3446 if (!ddt) 3447 continue; 3448 3449 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3450 ddt_enter(ddt); 3451 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3452 while (dde) { 3453 next = AVL_NEXT(&ddt->ddt_tree, dde); 3454 dde->dde_io = NULL; 3455 ddt_remove(ddt, dde); 3456 dde = next; 3457 } 3458 ddt_exit(ddt); 3459 spa_config_exit(spa, SCL_CONFIG, FTAG); 3460 } 3461 } 3462 3463 static void 3464 zdb_exit(int reason) 3465 { 3466 if (spa != NULL) 3467 zdb_ddt_cleanup(spa); 3468 3469 if (os != NULL) { 3470 close_objset(os, FTAG); 3471 } else if (spa != NULL) { 3472 spa_close(spa, FTAG); 3473 } 3474 3475 fuid_table_destroy(); 3476 3477 if (kernel_init_done) 3478 kernel_fini(); 3479 3480 exit(reason); 3481 } 3482 3483 /* 3484 * print uid or gid information. 3485 * For normal POSIX id just the id is printed in decimal format. 3486 * For CIFS files with FUID the fuid is printed in hex followed by 3487 * the domain-rid string. 3488 */ 3489 static void 3490 print_idstr(uint64_t id, const char *id_type) 3491 { 3492 if (FUID_INDEX(id)) { 3493 const char *domain = 3494 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3495 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3496 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3497 } else { 3498 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3499 } 3500 3501 } 3502 3503 static void 3504 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3505 { 3506 uint32_t uid_idx, gid_idx; 3507 3508 uid_idx = FUID_INDEX(uid); 3509 gid_idx = FUID_INDEX(gid); 3510 3511 /* Load domain table, if not already loaded */ 3512 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3513 uint64_t fuid_obj; 3514 3515 /* first find the fuid object. It lives in the master node */ 3516 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3517 8, 1, &fuid_obj) == 0); 3518 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3519 (void) zfs_fuid_table_load(os, fuid_obj, 3520 &idx_tree, &domain_tree); 3521 fuid_table_loaded = B_TRUE; 3522 } 3523 3524 print_idstr(uid, "uid"); 3525 print_idstr(gid, "gid"); 3526 } 3527 3528 static void 3529 dump_znode_sa_xattr(sa_handle_t *hdl) 3530 { 3531 nvlist_t *sa_xattr; 3532 nvpair_t *elem = NULL; 3533 int sa_xattr_size = 0; 3534 int sa_xattr_entries = 0; 3535 int error; 3536 char *sa_xattr_packed; 3537 3538 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3539 if (error || sa_xattr_size == 0) 3540 return; 3541 3542 sa_xattr_packed = malloc(sa_xattr_size); 3543 if (sa_xattr_packed == NULL) 3544 return; 3545 3546 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3547 sa_xattr_packed, sa_xattr_size); 3548 if (error) { 3549 free(sa_xattr_packed); 3550 return; 3551 } 3552 3553 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3554 if (error) { 3555 free(sa_xattr_packed); 3556 return; 3557 } 3558 3559 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3560 sa_xattr_entries++; 3561 3562 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3563 sa_xattr_size, sa_xattr_entries); 3564 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3565 boolean_t can_print = !dump_opt['P']; 3566 uchar_t *value; 3567 uint_t cnt, idx; 3568 3569 (void) printf("\t\t%s = ", nvpair_name(elem)); 3570 nvpair_value_byte_array(elem, &value, &cnt); 3571 3572 for (idx = 0; idx < cnt; ++idx) { 3573 if (!isprint(value[idx])) { 3574 can_print = B_FALSE; 3575 break; 3576 } 3577 } 3578 3579 for (idx = 0; idx < cnt; ++idx) { 3580 if (can_print) 3581 (void) putchar(value[idx]); 3582 else 3583 (void) printf("\\%3.3o", value[idx]); 3584 } 3585 (void) putchar('\n'); 3586 } 3587 3588 nvlist_free(sa_xattr); 3589 free(sa_xattr_packed); 3590 } 3591 3592 static void 3593 dump_znode_symlink(sa_handle_t *hdl) 3594 { 3595 int sa_symlink_size = 0; 3596 char linktarget[MAXPATHLEN]; 3597 int error; 3598 3599 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3600 if (error || sa_symlink_size == 0) { 3601 return; 3602 } 3603 if (sa_symlink_size >= sizeof (linktarget)) { 3604 (void) printf("symlink size %d is too large\n", 3605 sa_symlink_size); 3606 return; 3607 } 3608 linktarget[sa_symlink_size] = '\0'; 3609 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3610 &linktarget, sa_symlink_size) == 0) 3611 (void) printf("\ttarget %s\n", linktarget); 3612 } 3613 3614 static void 3615 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3616 { 3617 (void) data, (void) size; 3618 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3619 sa_handle_t *hdl; 3620 uint64_t xattr, rdev, gen; 3621 uint64_t uid, gid, mode, fsize, parent, links; 3622 uint64_t pflags; 3623 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3624 time_t z_crtime, z_atime, z_mtime, z_ctime; 3625 sa_bulk_attr_t bulk[12]; 3626 int idx = 0; 3627 int error; 3628 3629 VERIFY3P(os, ==, sa_os); 3630 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3631 (void) printf("Failed to get handle for SA znode\n"); 3632 return; 3633 } 3634 3635 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3636 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3637 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3638 &links, 8); 3639 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3640 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3641 &mode, 8); 3642 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3643 NULL, &parent, 8); 3644 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3645 &fsize, 8); 3646 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3647 acctm, 16); 3648 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3649 modtm, 16); 3650 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3651 crtm, 16); 3652 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3653 chgtm, 16); 3654 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3655 &pflags, 8); 3656 3657 if (sa_bulk_lookup(hdl, bulk, idx)) { 3658 (void) sa_handle_destroy(hdl); 3659 return; 3660 } 3661 3662 z_crtime = (time_t)crtm[0]; 3663 z_atime = (time_t)acctm[0]; 3664 z_mtime = (time_t)modtm[0]; 3665 z_ctime = (time_t)chgtm[0]; 3666 3667 if (dump_opt['d'] > 4) { 3668 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3669 if (error == ESTALE) { 3670 (void) snprintf(path, sizeof (path), "on delete queue"); 3671 } else if (error != 0) { 3672 leaked_objects++; 3673 (void) snprintf(path, sizeof (path), 3674 "path not found, possibly leaked"); 3675 } 3676 (void) printf("\tpath %s\n", path); 3677 } 3678 3679 if (S_ISLNK(mode)) 3680 dump_znode_symlink(hdl); 3681 dump_uidgid(os, uid, gid); 3682 (void) printf("\tatime %s", ctime(&z_atime)); 3683 (void) printf("\tmtime %s", ctime(&z_mtime)); 3684 (void) printf("\tctime %s", ctime(&z_ctime)); 3685 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3686 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3687 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3688 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3689 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3690 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3691 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3692 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3693 uint64_t projid; 3694 3695 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3696 sizeof (uint64_t)) == 0) 3697 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3698 } 3699 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3700 sizeof (uint64_t)) == 0) 3701 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3702 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3703 sizeof (uint64_t)) == 0) 3704 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3705 dump_znode_sa_xattr(hdl); 3706 sa_handle_destroy(hdl); 3707 } 3708 3709 static void 3710 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3711 { 3712 (void) os, (void) object, (void) data, (void) size; 3713 } 3714 3715 static void 3716 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3717 { 3718 (void) os, (void) object, (void) data, (void) size; 3719 } 3720 3721 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3722 dump_none, /* unallocated */ 3723 dump_zap, /* object directory */ 3724 dump_uint64, /* object array */ 3725 dump_none, /* packed nvlist */ 3726 dump_packed_nvlist, /* packed nvlist size */ 3727 dump_none, /* bpobj */ 3728 dump_bpobj, /* bpobj header */ 3729 dump_none, /* SPA space map header */ 3730 dump_none, /* SPA space map */ 3731 dump_none, /* ZIL intent log */ 3732 dump_dnode, /* DMU dnode */ 3733 dump_dmu_objset, /* DMU objset */ 3734 dump_dsl_dir, /* DSL directory */ 3735 dump_zap, /* DSL directory child map */ 3736 dump_zap, /* DSL dataset snap map */ 3737 dump_zap, /* DSL props */ 3738 dump_dsl_dataset, /* DSL dataset */ 3739 dump_znode, /* ZFS znode */ 3740 dump_acl, /* ZFS V0 ACL */ 3741 dump_uint8, /* ZFS plain file */ 3742 dump_zpldir, /* ZFS directory */ 3743 dump_zap, /* ZFS master node */ 3744 dump_zap, /* ZFS delete queue */ 3745 dump_uint8, /* zvol object */ 3746 dump_zap, /* zvol prop */ 3747 dump_uint8, /* other uint8[] */ 3748 dump_uint64, /* other uint64[] */ 3749 dump_zap, /* other ZAP */ 3750 dump_zap, /* persistent error log */ 3751 dump_uint8, /* SPA history */ 3752 dump_history_offsets, /* SPA history offsets */ 3753 dump_zap, /* Pool properties */ 3754 dump_zap, /* DSL permissions */ 3755 dump_acl, /* ZFS ACL */ 3756 dump_uint8, /* ZFS SYSACL */ 3757 dump_none, /* FUID nvlist */ 3758 dump_packed_nvlist, /* FUID nvlist size */ 3759 dump_zap, /* DSL dataset next clones */ 3760 dump_zap, /* DSL scrub queue */ 3761 dump_zap, /* ZFS user/group/project used */ 3762 dump_zap, /* ZFS user/group/project quota */ 3763 dump_zap, /* snapshot refcount tags */ 3764 dump_ddt_zap, /* DDT ZAP object */ 3765 dump_zap, /* DDT statistics */ 3766 dump_znode, /* SA object */ 3767 dump_zap, /* SA Master Node */ 3768 dump_sa_attrs, /* SA attribute registration */ 3769 dump_sa_layouts, /* SA attribute layouts */ 3770 dump_zap, /* DSL scrub translations */ 3771 dump_none, /* fake dedup BP */ 3772 dump_zap, /* deadlist */ 3773 dump_none, /* deadlist hdr */ 3774 dump_zap, /* dsl clones */ 3775 dump_bpobj_subobjs, /* bpobj subobjs */ 3776 dump_unknown, /* Unknown type, must be last */ 3777 }; 3778 3779 static boolean_t 3780 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3781 { 3782 boolean_t match = B_TRUE; 3783 3784 switch (obj_type) { 3785 case DMU_OT_DIRECTORY_CONTENTS: 3786 if (!(flags & ZOR_FLAG_DIRECTORY)) 3787 match = B_FALSE; 3788 break; 3789 case DMU_OT_PLAIN_FILE_CONTENTS: 3790 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3791 match = B_FALSE; 3792 break; 3793 case DMU_OT_SPACE_MAP: 3794 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3795 match = B_FALSE; 3796 break; 3797 default: 3798 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3799 if (!(flags & ZOR_FLAG_ZAP)) 3800 match = B_FALSE; 3801 break; 3802 } 3803 3804 /* 3805 * If all bits except some of the supported flags are 3806 * set, the user combined the all-types flag (A) with 3807 * a negated flag to exclude some types (e.g. A-f to 3808 * show all object types except plain files). 3809 */ 3810 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3811 match = B_FALSE; 3812 3813 break; 3814 } 3815 3816 return (match); 3817 } 3818 3819 static void 3820 dump_object(objset_t *os, uint64_t object, int verbosity, 3821 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3822 { 3823 dmu_buf_t *db = NULL; 3824 dmu_object_info_t doi; 3825 dnode_t *dn; 3826 boolean_t dnode_held = B_FALSE; 3827 void *bonus = NULL; 3828 size_t bsize = 0; 3829 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3830 char bonus_size[32]; 3831 char aux[50]; 3832 int error; 3833 3834 /* make sure nicenum has enough space */ 3835 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3836 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3837 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3838 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3839 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3840 "bonus_size truncated"); 3841 3842 if (*print_header) { 3843 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3844 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3845 "lsize", "%full", "type"); 3846 *print_header = 0; 3847 } 3848 3849 if (object == 0) { 3850 dn = DMU_META_DNODE(os); 3851 dmu_object_info_from_dnode(dn, &doi); 3852 } else { 3853 /* 3854 * Encrypted datasets will have sensitive bonus buffers 3855 * encrypted. Therefore we cannot hold the bonus buffer and 3856 * must hold the dnode itself instead. 3857 */ 3858 error = dmu_object_info(os, object, &doi); 3859 if (error) 3860 fatal("dmu_object_info() failed, errno %u", error); 3861 3862 if (!key_loaded && os->os_encrypted && 3863 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3864 error = dnode_hold(os, object, FTAG, &dn); 3865 if (error) 3866 fatal("dnode_hold() failed, errno %u", error); 3867 dnode_held = B_TRUE; 3868 } else { 3869 error = dmu_bonus_hold(os, object, FTAG, &db); 3870 if (error) 3871 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3872 object, error); 3873 bonus = db->db_data; 3874 bsize = db->db_size; 3875 dn = DB_DNODE((dmu_buf_impl_t *)db); 3876 } 3877 } 3878 3879 /* 3880 * Default to showing all object types if no flags were specified. 3881 */ 3882 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3883 !match_object_type(doi.doi_type, flags)) 3884 goto out; 3885 3886 if (dnode_slots_used) 3887 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3888 3889 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3890 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3891 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3892 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3893 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3894 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3895 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3896 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3897 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3898 3899 aux[0] = '\0'; 3900 3901 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3902 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3903 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3904 } 3905 3906 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3907 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3908 const char *compname = NULL; 3909 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3910 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3911 &compname) == 0) { 3912 (void) snprintf(aux + strlen(aux), 3913 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3914 compname); 3915 } else { 3916 (void) snprintf(aux + strlen(aux), 3917 sizeof (aux) - strlen(aux), 3918 " (Z=inherit=%s-unknown)", 3919 ZDB_COMPRESS_NAME(os->os_compress)); 3920 } 3921 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3922 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3923 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3924 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3925 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3926 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3927 } 3928 3929 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3930 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3931 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3932 3933 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3934 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3935 "", "", "", "", "", "", bonus_size, "bonus", 3936 zdb_ot_name(doi.doi_bonus_type)); 3937 } 3938 3939 if (verbosity >= 4) { 3940 (void) printf("\tdnode flags: %s%s%s%s\n", 3941 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3942 "USED_BYTES " : "", 3943 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3944 "USERUSED_ACCOUNTED " : "", 3945 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3946 "USEROBJUSED_ACCOUNTED " : "", 3947 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3948 "SPILL_BLKPTR" : ""); 3949 (void) printf("\tdnode maxblkid: %llu\n", 3950 (longlong_t)dn->dn_phys->dn_maxblkid); 3951 3952 if (!dnode_held) { 3953 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3954 object, bonus, bsize); 3955 } else { 3956 (void) printf("\t\t(bonus encrypted)\n"); 3957 } 3958 3959 if (key_loaded || 3960 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3961 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3962 NULL, 0); 3963 } else { 3964 (void) printf("\t\t(object encrypted)\n"); 3965 } 3966 3967 *print_header = B_TRUE; 3968 } 3969 3970 if (verbosity >= 5) { 3971 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3972 char blkbuf[BP_SPRINTF_LEN]; 3973 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3974 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3975 (void) printf("\nSpill block: %s\n", blkbuf); 3976 } 3977 dump_indirect(dn); 3978 } 3979 3980 if (verbosity >= 5) { 3981 /* 3982 * Report the list of segments that comprise the object. 3983 */ 3984 uint64_t start = 0; 3985 uint64_t end; 3986 uint64_t blkfill = 1; 3987 int minlvl = 1; 3988 3989 if (dn->dn_type == DMU_OT_DNODE) { 3990 minlvl = 0; 3991 blkfill = DNODES_PER_BLOCK; 3992 } 3993 3994 for (;;) { 3995 char segsize[32]; 3996 /* make sure nicenum has enough space */ 3997 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3998 "segsize truncated"); 3999 error = dnode_next_offset(dn, 4000 0, &start, minlvl, blkfill, 0); 4001 if (error) 4002 break; 4003 end = start; 4004 error = dnode_next_offset(dn, 4005 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 4006 zdb_nicenum(end - start, segsize, sizeof (segsize)); 4007 (void) printf("\t\tsegment [%016llx, %016llx)" 4008 " size %5s\n", (u_longlong_t)start, 4009 (u_longlong_t)end, segsize); 4010 if (error) 4011 break; 4012 start = end; 4013 } 4014 } 4015 4016 out: 4017 if (db != NULL) 4018 dmu_buf_rele(db, FTAG); 4019 if (dnode_held) 4020 dnode_rele(dn, FTAG); 4021 } 4022 4023 static void 4024 count_dir_mos_objects(dsl_dir_t *dd) 4025 { 4026 mos_obj_refd(dd->dd_object); 4027 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 4028 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 4029 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 4030 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 4031 4032 /* 4033 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 4034 * Ignore the references after the first one. 4035 */ 4036 mos_obj_refd_multiple(dd->dd_crypto_obj); 4037 } 4038 4039 static void 4040 count_ds_mos_objects(dsl_dataset_t *ds) 4041 { 4042 mos_obj_refd(ds->ds_object); 4043 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 4044 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 4045 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 4046 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 4047 mos_obj_refd(ds->ds_bookmarks_obj); 4048 4049 if (!dsl_dataset_is_snapshot(ds)) { 4050 count_dir_mos_objects(ds->ds_dir); 4051 } 4052 } 4053 4054 static const char *const objset_types[DMU_OST_NUMTYPES] = { 4055 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 4056 4057 /* 4058 * Parse a string denoting a range of object IDs of the form 4059 * <start>[:<end>[:flags]], and store the results in zor. 4060 * Return 0 on success. On error, return 1 and update the msg 4061 * pointer to point to a descriptive error message. 4062 */ 4063 static int 4064 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4065 { 4066 uint64_t flags = 0; 4067 char *p, *s, *dup, *flagstr, *tmp = NULL; 4068 size_t len; 4069 int i; 4070 int rc = 0; 4071 4072 if (strchr(range, ':') == NULL) { 4073 zor->zor_obj_start = strtoull(range, &p, 0); 4074 if (*p != '\0') { 4075 *msg = "Invalid characters in object ID"; 4076 rc = 1; 4077 } 4078 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4079 zor->zor_obj_end = zor->zor_obj_start; 4080 return (rc); 4081 } 4082 4083 if (strchr(range, ':') == range) { 4084 *msg = "Invalid leading colon"; 4085 rc = 1; 4086 return (rc); 4087 } 4088 4089 len = strlen(range); 4090 if (range[len - 1] == ':') { 4091 *msg = "Invalid trailing colon"; 4092 rc = 1; 4093 return (rc); 4094 } 4095 4096 dup = strdup(range); 4097 s = strtok_r(dup, ":", &tmp); 4098 zor->zor_obj_start = strtoull(s, &p, 0); 4099 4100 if (*p != '\0') { 4101 *msg = "Invalid characters in start object ID"; 4102 rc = 1; 4103 goto out; 4104 } 4105 4106 s = strtok_r(NULL, ":", &tmp); 4107 zor->zor_obj_end = strtoull(s, &p, 0); 4108 4109 if (*p != '\0') { 4110 *msg = "Invalid characters in end object ID"; 4111 rc = 1; 4112 goto out; 4113 } 4114 4115 if (zor->zor_obj_start > zor->zor_obj_end) { 4116 *msg = "Start object ID may not exceed end object ID"; 4117 rc = 1; 4118 goto out; 4119 } 4120 4121 s = strtok_r(NULL, ":", &tmp); 4122 if (s == NULL) { 4123 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4124 goto out; 4125 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4126 *msg = "Invalid colon-delimited field after flags"; 4127 rc = 1; 4128 goto out; 4129 } 4130 4131 flagstr = s; 4132 for (i = 0; flagstr[i]; i++) { 4133 int bit; 4134 boolean_t negation = (flagstr[i] == '-'); 4135 4136 if (negation) { 4137 i++; 4138 if (flagstr[i] == '\0') { 4139 *msg = "Invalid trailing negation operator"; 4140 rc = 1; 4141 goto out; 4142 } 4143 } 4144 bit = flagbits[(uchar_t)flagstr[i]]; 4145 if (bit == 0) { 4146 *msg = "Invalid flag"; 4147 rc = 1; 4148 goto out; 4149 } 4150 if (negation) 4151 flags &= ~bit; 4152 else 4153 flags |= bit; 4154 } 4155 zor->zor_flags = flags; 4156 4157 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4158 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4159 4160 out: 4161 free(dup); 4162 return (rc); 4163 } 4164 4165 static void 4166 dump_objset(objset_t *os) 4167 { 4168 dmu_objset_stats_t dds = { 0 }; 4169 uint64_t object, object_count; 4170 uint64_t refdbytes, usedobjs, scratch; 4171 char numbuf[32]; 4172 char blkbuf[BP_SPRINTF_LEN + 20]; 4173 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4174 const char *type = "UNKNOWN"; 4175 int verbosity = dump_opt['d']; 4176 boolean_t print_header; 4177 unsigned i; 4178 int error; 4179 uint64_t total_slots_used = 0; 4180 uint64_t max_slot_used = 0; 4181 uint64_t dnode_slots; 4182 uint64_t obj_start; 4183 uint64_t obj_end; 4184 uint64_t flags; 4185 4186 /* make sure nicenum has enough space */ 4187 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4188 4189 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4190 dmu_objset_fast_stat(os, &dds); 4191 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4192 4193 print_header = B_TRUE; 4194 4195 if (dds.dds_type < DMU_OST_NUMTYPES) 4196 type = objset_types[dds.dds_type]; 4197 4198 if (dds.dds_type == DMU_OST_META) { 4199 dds.dds_creation_txg = TXG_INITIAL; 4200 usedobjs = BP_GET_FILL(os->os_rootbp); 4201 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4202 dd_used_bytes; 4203 } else { 4204 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4205 } 4206 4207 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4208 4209 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4210 4211 if (verbosity >= 4) { 4212 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4213 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4214 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4215 } else { 4216 blkbuf[0] = '\0'; 4217 } 4218 4219 dmu_objset_name(os, osname); 4220 4221 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4222 "%s, %llu objects%s%s\n", 4223 osname, type, (u_longlong_t)dmu_objset_id(os), 4224 (u_longlong_t)dds.dds_creation_txg, 4225 numbuf, (u_longlong_t)usedobjs, blkbuf, 4226 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4227 4228 for (i = 0; i < zopt_object_args; i++) { 4229 obj_start = zopt_object_ranges[i].zor_obj_start; 4230 obj_end = zopt_object_ranges[i].zor_obj_end; 4231 flags = zopt_object_ranges[i].zor_flags; 4232 4233 object = obj_start; 4234 if (object == 0 || obj_start == obj_end) 4235 dump_object(os, object, verbosity, &print_header, NULL, 4236 flags); 4237 else 4238 object--; 4239 4240 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4241 object <= obj_end) { 4242 dump_object(os, object, verbosity, &print_header, NULL, 4243 flags); 4244 } 4245 } 4246 4247 if (zopt_object_args > 0) { 4248 (void) printf("\n"); 4249 return; 4250 } 4251 4252 if (dump_opt['i'] != 0 || verbosity >= 2) 4253 dump_intent_log(dmu_objset_zil(os)); 4254 4255 if (dmu_objset_ds(os) != NULL) { 4256 dsl_dataset_t *ds = dmu_objset_ds(os); 4257 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4258 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4259 !dmu_objset_is_snapshot(os)) { 4260 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4261 if (verify_dd_livelist(os) != 0) 4262 fatal("livelist is incorrect"); 4263 } 4264 4265 if (dsl_dataset_remap_deadlist_exists(ds)) { 4266 (void) printf("ds_remap_deadlist:\n"); 4267 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4268 } 4269 count_ds_mos_objects(ds); 4270 } 4271 4272 if (dmu_objset_ds(os) != NULL) 4273 dump_bookmarks(os, verbosity); 4274 4275 if (verbosity < 2) 4276 return; 4277 4278 if (BP_IS_HOLE(os->os_rootbp)) 4279 return; 4280 4281 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4282 object_count = 0; 4283 if (DMU_USERUSED_DNODE(os) != NULL && 4284 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4285 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4286 NULL, 0); 4287 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4288 NULL, 0); 4289 } 4290 4291 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4292 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4293 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4294 &print_header, NULL, 0); 4295 4296 object = 0; 4297 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4298 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4299 0); 4300 object_count++; 4301 total_slots_used += dnode_slots; 4302 max_slot_used = object + dnode_slots - 1; 4303 } 4304 4305 (void) printf("\n"); 4306 4307 (void) printf(" Dnode slots:\n"); 4308 (void) printf("\tTotal used: %10llu\n", 4309 (u_longlong_t)total_slots_used); 4310 (void) printf("\tMax used: %10llu\n", 4311 (u_longlong_t)max_slot_used); 4312 (void) printf("\tPercent empty: %10lf\n", 4313 (double)(max_slot_used - total_slots_used)*100 / 4314 (double)max_slot_used); 4315 (void) printf("\n"); 4316 4317 if (error != ESRCH) { 4318 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4319 abort(); 4320 } 4321 4322 ASSERT3U(object_count, ==, usedobjs); 4323 4324 if (leaked_objects != 0) { 4325 (void) printf("%d potentially leaked objects detected\n", 4326 leaked_objects); 4327 leaked_objects = 0; 4328 } 4329 } 4330 4331 static void 4332 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4333 { 4334 time_t timestamp = ub->ub_timestamp; 4335 4336 (void) printf("%s", header ? header : ""); 4337 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4338 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4339 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4340 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4341 (void) printf("\ttimestamp = %llu UTC = %s", 4342 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4343 4344 char blkbuf[BP_SPRINTF_LEN]; 4345 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4346 (void) printf("\tbp = %s\n", blkbuf); 4347 4348 (void) printf("\tmmp_magic = %016llx\n", 4349 (u_longlong_t)ub->ub_mmp_magic); 4350 if (MMP_VALID(ub)) { 4351 (void) printf("\tmmp_delay = %0llu\n", 4352 (u_longlong_t)ub->ub_mmp_delay); 4353 if (MMP_SEQ_VALID(ub)) 4354 (void) printf("\tmmp_seq = %u\n", 4355 (unsigned int) MMP_SEQ(ub)); 4356 if (MMP_FAIL_INT_VALID(ub)) 4357 (void) printf("\tmmp_fail = %u\n", 4358 (unsigned int) MMP_FAIL_INT(ub)); 4359 if (MMP_INTERVAL_VALID(ub)) 4360 (void) printf("\tmmp_write = %u\n", 4361 (unsigned int) MMP_INTERVAL(ub)); 4362 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4363 (void) printf("\tmmp_valid = %x\n", 4364 (unsigned int) ub->ub_mmp_config & 0xFF); 4365 } 4366 4367 if (dump_opt['u'] >= 4) { 4368 char blkbuf[BP_SPRINTF_LEN]; 4369 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4370 (void) printf("\trootbp = %s\n", blkbuf); 4371 } 4372 (void) printf("\tcheckpoint_txg = %llu\n", 4373 (u_longlong_t)ub->ub_checkpoint_txg); 4374 4375 (void) printf("\traidz_reflow state=%u off=%llu\n", 4376 (int)RRSS_GET_STATE(ub), 4377 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4378 4379 (void) printf("%s", footer ? footer : ""); 4380 } 4381 4382 static void 4383 dump_config(spa_t *spa) 4384 { 4385 dmu_buf_t *db; 4386 size_t nvsize = 0; 4387 int error = 0; 4388 4389 4390 error = dmu_bonus_hold(spa->spa_meta_objset, 4391 spa->spa_config_object, FTAG, &db); 4392 4393 if (error == 0) { 4394 nvsize = *(uint64_t *)db->db_data; 4395 dmu_buf_rele(db, FTAG); 4396 4397 (void) printf("\nMOS Configuration:\n"); 4398 dump_packed_nvlist(spa->spa_meta_objset, 4399 spa->spa_config_object, (void *)&nvsize, 1); 4400 } else { 4401 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4402 (u_longlong_t)spa->spa_config_object, error); 4403 } 4404 } 4405 4406 static void 4407 dump_cachefile(const char *cachefile) 4408 { 4409 int fd; 4410 struct stat64 statbuf; 4411 char *buf; 4412 nvlist_t *config; 4413 4414 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4415 (void) printf("cannot open '%s': %s\n", cachefile, 4416 strerror(errno)); 4417 zdb_exit(1); 4418 } 4419 4420 if (fstat64(fd, &statbuf) != 0) { 4421 (void) printf("failed to stat '%s': %s\n", cachefile, 4422 strerror(errno)); 4423 zdb_exit(1); 4424 } 4425 4426 if ((buf = malloc(statbuf.st_size)) == NULL) { 4427 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4428 (u_longlong_t)statbuf.st_size); 4429 zdb_exit(1); 4430 } 4431 4432 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4433 (void) fprintf(stderr, "failed to read %llu bytes\n", 4434 (u_longlong_t)statbuf.st_size); 4435 zdb_exit(1); 4436 } 4437 4438 (void) close(fd); 4439 4440 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4441 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4442 zdb_exit(1); 4443 } 4444 4445 free(buf); 4446 4447 dump_nvlist(config, 0); 4448 4449 nvlist_free(config); 4450 } 4451 4452 /* 4453 * ZFS label nvlist stats 4454 */ 4455 typedef struct zdb_nvl_stats { 4456 int zns_list_count; 4457 int zns_leaf_count; 4458 size_t zns_leaf_largest; 4459 size_t zns_leaf_total; 4460 nvlist_t *zns_string; 4461 nvlist_t *zns_uint64; 4462 nvlist_t *zns_boolean; 4463 } zdb_nvl_stats_t; 4464 4465 static void 4466 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4467 { 4468 nvlist_t *list, **array; 4469 nvpair_t *nvp = NULL; 4470 const char *name; 4471 uint_t i, items; 4472 4473 stats->zns_list_count++; 4474 4475 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4476 name = nvpair_name(nvp); 4477 4478 switch (nvpair_type(nvp)) { 4479 case DATA_TYPE_STRING: 4480 fnvlist_add_string(stats->zns_string, name, 4481 fnvpair_value_string(nvp)); 4482 break; 4483 case DATA_TYPE_UINT64: 4484 fnvlist_add_uint64(stats->zns_uint64, name, 4485 fnvpair_value_uint64(nvp)); 4486 break; 4487 case DATA_TYPE_BOOLEAN: 4488 fnvlist_add_boolean(stats->zns_boolean, name); 4489 break; 4490 case DATA_TYPE_NVLIST: 4491 if (nvpair_value_nvlist(nvp, &list) == 0) 4492 collect_nvlist_stats(list, stats); 4493 break; 4494 case DATA_TYPE_NVLIST_ARRAY: 4495 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4496 break; 4497 4498 for (i = 0; i < items; i++) { 4499 collect_nvlist_stats(array[i], stats); 4500 4501 /* collect stats on leaf vdev */ 4502 if (strcmp(name, "children") == 0) { 4503 size_t size; 4504 4505 (void) nvlist_size(array[i], &size, 4506 NV_ENCODE_XDR); 4507 stats->zns_leaf_total += size; 4508 if (size > stats->zns_leaf_largest) 4509 stats->zns_leaf_largest = size; 4510 stats->zns_leaf_count++; 4511 } 4512 } 4513 break; 4514 default: 4515 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4516 } 4517 } 4518 } 4519 4520 static void 4521 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4522 { 4523 zdb_nvl_stats_t stats = { 0 }; 4524 size_t size, sum = 0, total; 4525 size_t noise; 4526 4527 /* requires nvlist with non-unique names for stat collection */ 4528 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4529 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4530 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4531 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4532 4533 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4534 4535 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4536 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4537 (int)total, (int)(cap - total), 100.0 * total / cap); 4538 4539 collect_nvlist_stats(nvl, &stats); 4540 4541 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4542 size -= noise; 4543 sum += size; 4544 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4545 (int)fnvlist_num_pairs(stats.zns_uint64), 4546 (int)size, 100.0 * size / total); 4547 4548 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4549 size -= noise; 4550 sum += size; 4551 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4552 (int)fnvlist_num_pairs(stats.zns_string), 4553 (int)size, 100.0 * size / total); 4554 4555 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4556 size -= noise; 4557 sum += size; 4558 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4559 (int)fnvlist_num_pairs(stats.zns_boolean), 4560 (int)size, 100.0 * size / total); 4561 4562 size = total - sum; /* treat remainder as nvlist overhead */ 4563 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4564 stats.zns_list_count, (int)size, 100.0 * size / total); 4565 4566 if (stats.zns_leaf_count > 0) { 4567 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4568 4569 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4570 stats.zns_leaf_count, (int)average); 4571 (void) printf("%24d bytes largest\n", 4572 (int)stats.zns_leaf_largest); 4573 4574 if (dump_opt['l'] >= 3 && average > 0) 4575 (void) printf(" space for %d additional leaf vdevs\n", 4576 (int)((cap - total) / average)); 4577 } 4578 (void) printf("\n"); 4579 4580 nvlist_free(stats.zns_string); 4581 nvlist_free(stats.zns_uint64); 4582 nvlist_free(stats.zns_boolean); 4583 } 4584 4585 typedef struct cksum_record { 4586 zio_cksum_t cksum; 4587 boolean_t labels[VDEV_LABELS]; 4588 avl_node_t link; 4589 } cksum_record_t; 4590 4591 static int 4592 cksum_record_compare(const void *x1, const void *x2) 4593 { 4594 const cksum_record_t *l = (cksum_record_t *)x1; 4595 const cksum_record_t *r = (cksum_record_t *)x2; 4596 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4597 int difference = 0; 4598 4599 for (int i = 0; i < arraysize; i++) { 4600 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4601 if (difference) 4602 break; 4603 } 4604 4605 return (difference); 4606 } 4607 4608 static cksum_record_t * 4609 cksum_record_alloc(zio_cksum_t *cksum, int l) 4610 { 4611 cksum_record_t *rec; 4612 4613 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4614 rec->cksum = *cksum; 4615 rec->labels[l] = B_TRUE; 4616 4617 return (rec); 4618 } 4619 4620 static cksum_record_t * 4621 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4622 { 4623 cksum_record_t lookup = { .cksum = *cksum }; 4624 avl_index_t where; 4625 4626 return (avl_find(tree, &lookup, &where)); 4627 } 4628 4629 static cksum_record_t * 4630 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4631 { 4632 cksum_record_t *rec; 4633 4634 rec = cksum_record_lookup(tree, cksum); 4635 if (rec) { 4636 rec->labels[l] = B_TRUE; 4637 } else { 4638 rec = cksum_record_alloc(cksum, l); 4639 avl_add(tree, rec); 4640 } 4641 4642 return (rec); 4643 } 4644 4645 static int 4646 first_label(cksum_record_t *rec) 4647 { 4648 for (int i = 0; i < VDEV_LABELS; i++) 4649 if (rec->labels[i]) 4650 return (i); 4651 4652 return (-1); 4653 } 4654 4655 static void 4656 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4657 { 4658 fputs(prefix, stdout); 4659 for (int i = 0; i < VDEV_LABELS; i++) 4660 if (rec->labels[i] == B_TRUE) 4661 printf("%d ", i); 4662 putchar('\n'); 4663 } 4664 4665 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4666 4667 typedef struct zdb_label { 4668 vdev_label_t label; 4669 uint64_t label_offset; 4670 nvlist_t *config_nv; 4671 cksum_record_t *config; 4672 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4673 boolean_t header_printed; 4674 boolean_t read_failed; 4675 boolean_t cksum_valid; 4676 } zdb_label_t; 4677 4678 static void 4679 print_label_header(zdb_label_t *label, int l) 4680 { 4681 4682 if (dump_opt['q']) 4683 return; 4684 4685 if (label->header_printed == B_TRUE) 4686 return; 4687 4688 (void) printf("------------------------------------\n"); 4689 (void) printf("LABEL %d %s\n", l, 4690 label->cksum_valid ? "" : "(Bad label cksum)"); 4691 (void) printf("------------------------------------\n"); 4692 4693 label->header_printed = B_TRUE; 4694 } 4695 4696 static void 4697 print_l2arc_header(void) 4698 { 4699 (void) printf("------------------------------------\n"); 4700 (void) printf("L2ARC device header\n"); 4701 (void) printf("------------------------------------\n"); 4702 } 4703 4704 static void 4705 print_l2arc_log_blocks(void) 4706 { 4707 (void) printf("------------------------------------\n"); 4708 (void) printf("L2ARC device log blocks\n"); 4709 (void) printf("------------------------------------\n"); 4710 } 4711 4712 static void 4713 dump_l2arc_log_entries(uint64_t log_entries, 4714 l2arc_log_ent_phys_t *le, uint64_t i) 4715 { 4716 for (int j = 0; j < log_entries; j++) { 4717 dva_t dva = le[j].le_dva; 4718 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4719 "vdev: %llu, offset: %llu\n", 4720 (u_longlong_t)i, j + 1, 4721 (u_longlong_t)DVA_GET_ASIZE(&dva), 4722 (u_longlong_t)DVA_GET_VDEV(&dva), 4723 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4724 (void) printf("|\t\t\t\tbirth: %llu\n", 4725 (u_longlong_t)le[j].le_birth); 4726 (void) printf("|\t\t\t\tlsize: %llu\n", 4727 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4728 (void) printf("|\t\t\t\tpsize: %llu\n", 4729 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4730 (void) printf("|\t\t\t\tcompr: %llu\n", 4731 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4732 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4733 (u_longlong_t)(&le[j])->le_complevel); 4734 (void) printf("|\t\t\t\ttype: %llu\n", 4735 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4736 (void) printf("|\t\t\t\tprotected: %llu\n", 4737 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4738 (void) printf("|\t\t\t\tprefetch: %llu\n", 4739 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4740 (void) printf("|\t\t\t\taddress: %llu\n", 4741 (u_longlong_t)le[j].le_daddr); 4742 (void) printf("|\t\t\t\tARC state: %llu\n", 4743 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4744 (void) printf("|\n"); 4745 } 4746 (void) printf("\n"); 4747 } 4748 4749 static void 4750 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4751 { 4752 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4753 (void) printf("|\t\tpayload_asize: %llu\n", 4754 (u_longlong_t)lbps->lbp_payload_asize); 4755 (void) printf("|\t\tpayload_start: %llu\n", 4756 (u_longlong_t)lbps->lbp_payload_start); 4757 (void) printf("|\t\tlsize: %llu\n", 4758 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4759 (void) printf("|\t\tasize: %llu\n", 4760 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4761 (void) printf("|\t\tcompralgo: %llu\n", 4762 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4763 (void) printf("|\t\tcksumalgo: %llu\n", 4764 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4765 (void) printf("|\n\n"); 4766 } 4767 4768 static void 4769 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4770 l2arc_dev_hdr_phys_t *rebuild) 4771 { 4772 l2arc_log_blk_phys_t this_lb; 4773 uint64_t asize; 4774 l2arc_log_blkptr_t lbps[2]; 4775 zio_cksum_t cksum; 4776 int failed = 0; 4777 l2arc_dev_t dev; 4778 4779 if (!dump_opt['q']) 4780 print_l2arc_log_blocks(); 4781 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4782 4783 dev.l2ad_evict = l2dhdr->dh_evict; 4784 dev.l2ad_start = l2dhdr->dh_start; 4785 dev.l2ad_end = l2dhdr->dh_end; 4786 4787 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4788 /* no log blocks to read */ 4789 if (!dump_opt['q']) { 4790 (void) printf("No log blocks to read\n"); 4791 (void) printf("\n"); 4792 } 4793 return; 4794 } else { 4795 dev.l2ad_hand = lbps[0].lbp_daddr + 4796 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4797 } 4798 4799 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4800 4801 for (;;) { 4802 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4803 break; 4804 4805 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4806 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4807 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4808 if (!dump_opt['q']) { 4809 (void) printf("Error while reading next log " 4810 "block\n\n"); 4811 } 4812 break; 4813 } 4814 4815 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4816 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4817 failed++; 4818 if (!dump_opt['q']) { 4819 (void) printf("Invalid cksum\n"); 4820 dump_l2arc_log_blkptr(&lbps[0]); 4821 } 4822 break; 4823 } 4824 4825 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4826 case ZIO_COMPRESS_OFF: 4827 break; 4828 default: { 4829 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4830 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4831 abd_t dabd; 4832 abd_get_from_buf_struct(&dabd, &this_lb, 4833 sizeof (this_lb)); 4834 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4835 (&lbps[0])->lbp_prop), abd, &dabd, 4836 asize, sizeof (this_lb), NULL); 4837 abd_free(&dabd); 4838 abd_free(abd); 4839 if (err != 0) { 4840 (void) printf("L2ARC block decompression " 4841 "failed\n"); 4842 goto out; 4843 } 4844 break; 4845 } 4846 } 4847 4848 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4849 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4850 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4851 if (!dump_opt['q']) 4852 (void) printf("Invalid log block magic\n\n"); 4853 break; 4854 } 4855 4856 rebuild->dh_lb_count++; 4857 rebuild->dh_lb_asize += asize; 4858 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4859 (void) printf("lb[%4llu]\tmagic: %llu\n", 4860 (u_longlong_t)rebuild->dh_lb_count, 4861 (u_longlong_t)this_lb.lb_magic); 4862 dump_l2arc_log_blkptr(&lbps[0]); 4863 } 4864 4865 if (dump_opt['l'] > 2 && !dump_opt['q']) 4866 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4867 this_lb.lb_entries, 4868 rebuild->dh_lb_count); 4869 4870 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4871 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4872 !dev.l2ad_first) 4873 break; 4874 4875 lbps[0] = lbps[1]; 4876 lbps[1] = this_lb.lb_prev_lbp; 4877 } 4878 out: 4879 if (!dump_opt['q']) { 4880 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4881 (u_longlong_t)rebuild->dh_lb_count); 4882 (void) printf("\t\t %d with invalid cksum\n", failed); 4883 (void) printf("log_blk_asize:\t %llu\n\n", 4884 (u_longlong_t)rebuild->dh_lb_asize); 4885 } 4886 } 4887 4888 static int 4889 dump_l2arc_header(int fd) 4890 { 4891 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4892 int error = B_FALSE; 4893 4894 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4895 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4896 error = B_TRUE; 4897 } else { 4898 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4899 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4900 4901 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4902 error = B_TRUE; 4903 } 4904 4905 if (error) { 4906 (void) printf("L2ARC device header not found\n\n"); 4907 /* Do not return an error here for backward compatibility */ 4908 return (0); 4909 } else if (!dump_opt['q']) { 4910 print_l2arc_header(); 4911 4912 (void) printf(" magic: %llu\n", 4913 (u_longlong_t)l2dhdr.dh_magic); 4914 (void) printf(" version: %llu\n", 4915 (u_longlong_t)l2dhdr.dh_version); 4916 (void) printf(" pool_guid: %llu\n", 4917 (u_longlong_t)l2dhdr.dh_spa_guid); 4918 (void) printf(" flags: %llu\n", 4919 (u_longlong_t)l2dhdr.dh_flags); 4920 (void) printf(" start_lbps[0]: %llu\n", 4921 (u_longlong_t) 4922 l2dhdr.dh_start_lbps[0].lbp_daddr); 4923 (void) printf(" start_lbps[1]: %llu\n", 4924 (u_longlong_t) 4925 l2dhdr.dh_start_lbps[1].lbp_daddr); 4926 (void) printf(" log_blk_ent: %llu\n", 4927 (u_longlong_t)l2dhdr.dh_log_entries); 4928 (void) printf(" start: %llu\n", 4929 (u_longlong_t)l2dhdr.dh_start); 4930 (void) printf(" end: %llu\n", 4931 (u_longlong_t)l2dhdr.dh_end); 4932 (void) printf(" evict: %llu\n", 4933 (u_longlong_t)l2dhdr.dh_evict); 4934 (void) printf(" lb_asize_refcount: %llu\n", 4935 (u_longlong_t)l2dhdr.dh_lb_asize); 4936 (void) printf(" lb_count_refcount: %llu\n", 4937 (u_longlong_t)l2dhdr.dh_lb_count); 4938 (void) printf(" trim_action_time: %llu\n", 4939 (u_longlong_t)l2dhdr.dh_trim_action_time); 4940 (void) printf(" trim_state: %llu\n\n", 4941 (u_longlong_t)l2dhdr.dh_trim_state); 4942 } 4943 4944 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4945 /* 4946 * The total aligned size of log blocks and the number of log blocks 4947 * reported in the header of the device may be less than what zdb 4948 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4949 * This happens because dump_l2arc_log_blocks() lacks the memory 4950 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4951 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4952 * and dh_lb_count will be lower to begin with than what exists on the 4953 * device. This is normal and zdb should not exit with an error. The 4954 * opposite case should never happen though, the values reported in the 4955 * header should never be higher than what dump_l2arc_log_blocks() and 4956 * l2arc_rebuild() report. If this happens there is a leak in the 4957 * accounting of log blocks. 4958 */ 4959 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4960 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4961 return (1); 4962 4963 return (0); 4964 } 4965 4966 static void 4967 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4968 { 4969 if (dump_opt['q']) 4970 return; 4971 4972 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4973 return; 4974 4975 print_label_header(label, l); 4976 dump_nvlist(label->config_nv, 4); 4977 print_label_numbers(" labels = ", label->config); 4978 4979 if (dump_opt['l'] >= 2) 4980 dump_nvlist_stats(label->config_nv, buflen); 4981 } 4982 4983 #define ZDB_MAX_UB_HEADER_SIZE 32 4984 4985 static void 4986 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4987 { 4988 4989 vdev_t vd; 4990 char header[ZDB_MAX_UB_HEADER_SIZE]; 4991 4992 vd.vdev_ashift = ashift; 4993 vd.vdev_top = &vd; 4994 4995 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4996 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4997 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4998 cksum_record_t *rec = label->uberblocks[i]; 4999 5000 if (rec == NULL) { 5001 if (dump_opt['u'] >= 2) { 5002 print_label_header(label, label_num); 5003 (void) printf(" Uberblock[%d] invalid\n", i); 5004 } 5005 continue; 5006 } 5007 5008 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 5009 continue; 5010 5011 if ((dump_opt['u'] < 4) && 5012 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 5013 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 5014 continue; 5015 5016 print_label_header(label, label_num); 5017 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 5018 " Uberblock[%d]\n", i); 5019 dump_uberblock(ub, header, ""); 5020 print_label_numbers(" labels = ", rec); 5021 } 5022 } 5023 5024 static char curpath[PATH_MAX]; 5025 5026 /* 5027 * Iterate through the path components, recursively passing 5028 * current one's obj and remaining path until we find the obj 5029 * for the last one. 5030 */ 5031 static int 5032 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 5033 { 5034 int err; 5035 boolean_t header = B_TRUE; 5036 uint64_t child_obj; 5037 char *s; 5038 dmu_buf_t *db; 5039 dmu_object_info_t doi; 5040 5041 if ((s = strchr(name, '/')) != NULL) 5042 *s = '\0'; 5043 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 5044 5045 (void) strlcat(curpath, name, sizeof (curpath)); 5046 5047 if (err != 0) { 5048 (void) fprintf(stderr, "failed to lookup %s: %s\n", 5049 curpath, strerror(err)); 5050 return (err); 5051 } 5052 5053 child_obj = ZFS_DIRENT_OBJ(child_obj); 5054 err = sa_buf_hold(os, child_obj, FTAG, &db); 5055 if (err != 0) { 5056 (void) fprintf(stderr, 5057 "failed to get SA dbuf for obj %llu: %s\n", 5058 (u_longlong_t)child_obj, strerror(err)); 5059 return (EINVAL); 5060 } 5061 dmu_object_info_from_db(db, &doi); 5062 sa_buf_rele(db, FTAG); 5063 5064 if (doi.doi_bonus_type != DMU_OT_SA && 5065 doi.doi_bonus_type != DMU_OT_ZNODE) { 5066 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5067 doi.doi_bonus_type, (u_longlong_t)child_obj); 5068 return (EINVAL); 5069 } 5070 5071 if (dump_opt['v'] > 6) { 5072 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5073 (u_longlong_t)child_obj, curpath, doi.doi_type, 5074 doi.doi_bonus_type); 5075 } 5076 5077 (void) strlcat(curpath, "/", sizeof (curpath)); 5078 5079 switch (doi.doi_type) { 5080 case DMU_OT_DIRECTORY_CONTENTS: 5081 if (s != NULL && *(s + 1) != '\0') 5082 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5083 zfs_fallthrough; 5084 case DMU_OT_PLAIN_FILE_CONTENTS: 5085 if (retobj != NULL) { 5086 *retobj = child_obj; 5087 } else { 5088 dump_object(os, child_obj, dump_opt['v'], &header, 5089 NULL, 0); 5090 } 5091 return (0); 5092 default: 5093 (void) fprintf(stderr, "object %llu has non-file/directory " 5094 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5095 break; 5096 } 5097 5098 return (EINVAL); 5099 } 5100 5101 /* 5102 * Dump the blocks for the object specified by path inside the dataset. 5103 */ 5104 static int 5105 dump_path(char *ds, char *path, uint64_t *retobj) 5106 { 5107 int err; 5108 objset_t *os; 5109 uint64_t root_obj; 5110 5111 err = open_objset(ds, FTAG, &os); 5112 if (err != 0) 5113 return (err); 5114 5115 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5116 if (err != 0) { 5117 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5118 strerror(err)); 5119 close_objset(os, FTAG); 5120 return (EINVAL); 5121 } 5122 5123 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5124 5125 err = dump_path_impl(os, root_obj, path, retobj); 5126 5127 close_objset(os, FTAG); 5128 return (err); 5129 } 5130 5131 static int 5132 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5133 { 5134 const char *p = (const char *)buf; 5135 ssize_t nwritten; 5136 5137 (void) os; 5138 (void) arg; 5139 5140 /* Write the data out, handling short writes and signals. */ 5141 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5142 if (nwritten < 0) { 5143 if (errno == EINTR) 5144 continue; 5145 return (errno); 5146 } 5147 p += nwritten; 5148 len -= nwritten; 5149 } 5150 5151 return (0); 5152 } 5153 5154 static void 5155 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5156 { 5157 boolean_t embed = B_FALSE; 5158 boolean_t large_block = B_FALSE; 5159 boolean_t compress = B_FALSE; 5160 boolean_t raw = B_FALSE; 5161 5162 const char *c; 5163 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5164 switch (*c) { 5165 case 'e': 5166 embed = B_TRUE; 5167 break; 5168 case 'L': 5169 large_block = B_TRUE; 5170 break; 5171 case 'c': 5172 compress = B_TRUE; 5173 break; 5174 case 'w': 5175 raw = B_TRUE; 5176 break; 5177 default: 5178 fprintf(stderr, "dump_backup: invalid flag " 5179 "'%c'\n", *c); 5180 return; 5181 } 5182 } 5183 5184 if (isatty(STDOUT_FILENO)) { 5185 fprintf(stderr, "dump_backup: stream cannot be written " 5186 "to a terminal\n"); 5187 return; 5188 } 5189 5190 offset_t off = 0; 5191 dmu_send_outparams_t out = { 5192 .dso_outfunc = dump_backup_bytes, 5193 .dso_dryrun = B_FALSE, 5194 }; 5195 5196 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5197 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5198 &off, &out); 5199 if (err != 0) { 5200 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5201 strerror(err)); 5202 return; 5203 } 5204 } 5205 5206 static int 5207 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5208 { 5209 int err = 0; 5210 uint64_t size, readsize, oursize, offset; 5211 ssize_t writesize; 5212 sa_handle_t *hdl; 5213 5214 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5215 destfile); 5216 5217 VERIFY3P(os, ==, sa_os); 5218 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5219 (void) printf("Failed to get handle for SA znode\n"); 5220 return (err); 5221 } 5222 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5223 (void) sa_handle_destroy(hdl); 5224 return (err); 5225 } 5226 (void) sa_handle_destroy(hdl); 5227 5228 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5229 size); 5230 if (size == 0) { 5231 return (EINVAL); 5232 } 5233 5234 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5235 if (fd == -1) 5236 return (errno); 5237 /* 5238 * We cap the size at 1 mebibyte here to prevent 5239 * allocation failures and nigh-infinite printing if the 5240 * object is extremely large. 5241 */ 5242 oursize = MIN(size, 1 << 20); 5243 offset = 0; 5244 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5245 if (buf == NULL) { 5246 (void) close(fd); 5247 return (ENOMEM); 5248 } 5249 5250 while (offset < size) { 5251 readsize = MIN(size - offset, 1 << 20); 5252 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5253 if (err != 0) { 5254 (void) printf("got error %u from dmu_read\n", err); 5255 kmem_free(buf, oursize); 5256 (void) close(fd); 5257 return (err); 5258 } 5259 if (dump_opt['v'] > 3) { 5260 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5261 " error=%d\n", offset, readsize, err); 5262 } 5263 5264 writesize = write(fd, buf, readsize); 5265 if (writesize < 0) { 5266 err = errno; 5267 break; 5268 } else if (writesize != readsize) { 5269 /* Incomplete write */ 5270 (void) fprintf(stderr, "Short write, only wrote %llu of" 5271 " %" PRIu64 " bytes, exiting...\n", 5272 (u_longlong_t)writesize, readsize); 5273 break; 5274 } 5275 5276 offset += readsize; 5277 } 5278 5279 (void) close(fd); 5280 5281 if (buf != NULL) 5282 kmem_free(buf, oursize); 5283 5284 return (err); 5285 } 5286 5287 static boolean_t 5288 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5289 { 5290 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5291 zio_cksum_t expected_cksum; 5292 zio_cksum_t actual_cksum; 5293 zio_cksum_t verifier; 5294 zio_eck_t *eck; 5295 int byteswap; 5296 5297 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5298 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5299 5300 offset += offsetof(vdev_label_t, vl_vdev_phys); 5301 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5302 5303 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5304 if (byteswap) 5305 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5306 5307 expected_cksum = eck->zec_cksum; 5308 eck->zec_cksum = verifier; 5309 5310 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5311 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5312 abd_free(abd); 5313 5314 if (byteswap) 5315 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5316 5317 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5318 return (B_TRUE); 5319 5320 return (B_FALSE); 5321 } 5322 5323 static int 5324 dump_label(const char *dev) 5325 { 5326 char path[MAXPATHLEN]; 5327 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5328 uint64_t psize, ashift, l2cache; 5329 struct stat64 statbuf; 5330 boolean_t config_found = B_FALSE; 5331 boolean_t error = B_FALSE; 5332 boolean_t read_l2arc_header = B_FALSE; 5333 avl_tree_t config_tree; 5334 avl_tree_t uberblock_tree; 5335 void *node, *cookie; 5336 int fd; 5337 5338 /* 5339 * Check if we were given absolute path and use it as is. 5340 * Otherwise if the provided vdev name doesn't point to a file, 5341 * try prepending expected disk paths and partition numbers. 5342 */ 5343 (void) strlcpy(path, dev, sizeof (path)); 5344 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5345 int error; 5346 5347 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5348 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5349 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5350 error = ENOENT; 5351 } 5352 5353 if (error || (stat64(path, &statbuf) != 0)) { 5354 (void) printf("failed to find device %s, try " 5355 "specifying absolute path instead\n", dev); 5356 return (1); 5357 } 5358 } 5359 5360 if ((fd = open64(path, O_RDONLY)) < 0) { 5361 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5362 zdb_exit(1); 5363 } 5364 5365 if (fstat64_blk(fd, &statbuf) != 0) { 5366 (void) printf("failed to stat '%s': %s\n", path, 5367 strerror(errno)); 5368 (void) close(fd); 5369 zdb_exit(1); 5370 } 5371 5372 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5373 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5374 strerror(errno)); 5375 5376 avl_create(&config_tree, cksum_record_compare, 5377 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5378 avl_create(&uberblock_tree, cksum_record_compare, 5379 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5380 5381 psize = statbuf.st_size; 5382 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5383 ashift = SPA_MINBLOCKSHIFT; 5384 5385 /* 5386 * 1. Read the label from disk 5387 * 2. Verify label cksum 5388 * 3. Unpack the configuration and insert in config tree. 5389 * 4. Traverse all uberblocks and insert in uberblock tree. 5390 */ 5391 for (int l = 0; l < VDEV_LABELS; l++) { 5392 zdb_label_t *label = &labels[l]; 5393 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5394 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5395 nvlist_t *config; 5396 cksum_record_t *rec; 5397 zio_cksum_t cksum; 5398 vdev_t vd; 5399 5400 label->label_offset = vdev_label_offset(psize, l, 0); 5401 5402 if (pread64(fd, &label->label, sizeof (label->label), 5403 label->label_offset) != sizeof (label->label)) { 5404 if (!dump_opt['q']) 5405 (void) printf("failed to read label %d\n", l); 5406 label->read_failed = B_TRUE; 5407 error = B_TRUE; 5408 continue; 5409 } 5410 5411 label->read_failed = B_FALSE; 5412 label->cksum_valid = label_cksum_valid(&label->label, 5413 label->label_offset); 5414 5415 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5416 nvlist_t *vdev_tree = NULL; 5417 size_t size; 5418 5419 if ((nvlist_lookup_nvlist(config, 5420 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5421 (nvlist_lookup_uint64(vdev_tree, 5422 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5423 ashift = SPA_MINBLOCKSHIFT; 5424 5425 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5426 size = buflen; 5427 5428 /* If the device is a cache device read the header. */ 5429 if (!read_l2arc_header) { 5430 if (nvlist_lookup_uint64(config, 5431 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5432 l2cache == POOL_STATE_L2CACHE) { 5433 read_l2arc_header = B_TRUE; 5434 } 5435 } 5436 5437 fletcher_4_native_varsize(buf, size, &cksum); 5438 rec = cksum_record_insert(&config_tree, &cksum, l); 5439 5440 label->config = rec; 5441 label->config_nv = config; 5442 config_found = B_TRUE; 5443 } else { 5444 error = B_TRUE; 5445 } 5446 5447 vd.vdev_ashift = ashift; 5448 vd.vdev_top = &vd; 5449 5450 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5451 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5452 uberblock_t *ub = (void *)((char *)label + uoff); 5453 5454 if (uberblock_verify(ub)) 5455 continue; 5456 5457 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5458 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5459 5460 label->uberblocks[i] = rec; 5461 } 5462 } 5463 5464 /* 5465 * Dump the label and uberblocks. 5466 */ 5467 for (int l = 0; l < VDEV_LABELS; l++) { 5468 zdb_label_t *label = &labels[l]; 5469 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5470 5471 if (label->read_failed == B_TRUE) 5472 continue; 5473 5474 if (label->config_nv) { 5475 dump_config_from_label(label, buflen, l); 5476 } else { 5477 if (!dump_opt['q']) 5478 (void) printf("failed to unpack label %d\n", l); 5479 } 5480 5481 if (dump_opt['u']) 5482 dump_label_uberblocks(label, ashift, l); 5483 5484 nvlist_free(label->config_nv); 5485 } 5486 5487 /* 5488 * Dump the L2ARC header, if existent. 5489 */ 5490 if (read_l2arc_header) 5491 error |= dump_l2arc_header(fd); 5492 5493 cookie = NULL; 5494 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5495 umem_free(node, sizeof (cksum_record_t)); 5496 5497 cookie = NULL; 5498 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5499 umem_free(node, sizeof (cksum_record_t)); 5500 5501 avl_destroy(&config_tree); 5502 avl_destroy(&uberblock_tree); 5503 5504 (void) close(fd); 5505 5506 return (config_found == B_FALSE ? 2 : 5507 (error == B_TRUE ? 1 : 0)); 5508 } 5509 5510 static uint64_t dataset_feature_count[SPA_FEATURES]; 5511 static uint64_t global_feature_count[SPA_FEATURES]; 5512 static uint64_t remap_deadlist_count = 0; 5513 5514 static int 5515 dump_one_objset(const char *dsname, void *arg) 5516 { 5517 (void) arg; 5518 int error; 5519 objset_t *os; 5520 spa_feature_t f; 5521 5522 error = open_objset(dsname, FTAG, &os); 5523 if (error != 0) 5524 return (0); 5525 5526 for (f = 0; f < SPA_FEATURES; f++) { 5527 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5528 continue; 5529 ASSERT(spa_feature_table[f].fi_flags & 5530 ZFEATURE_FLAG_PER_DATASET); 5531 dataset_feature_count[f]++; 5532 } 5533 5534 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5535 remap_deadlist_count++; 5536 } 5537 5538 for (dsl_bookmark_node_t *dbn = 5539 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5540 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5541 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5542 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5543 global_feature_count[ 5544 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5545 objset_t *mos = os->os_spa->spa_meta_objset; 5546 dnode_t *rl; 5547 VERIFY0(dnode_hold(mos, 5548 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5549 if (rl->dn_have_spill) { 5550 global_feature_count[ 5551 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5552 } 5553 } 5554 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5555 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5556 } 5557 5558 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5559 !dmu_objset_is_snapshot(os)) { 5560 global_feature_count[SPA_FEATURE_LIVELIST]++; 5561 } 5562 5563 dump_objset(os); 5564 close_objset(os, FTAG); 5565 fuid_table_destroy(); 5566 return (0); 5567 } 5568 5569 /* 5570 * Block statistics. 5571 */ 5572 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5573 typedef struct zdb_blkstats { 5574 uint64_t zb_asize; 5575 uint64_t zb_lsize; 5576 uint64_t zb_psize; 5577 uint64_t zb_count; 5578 uint64_t zb_gangs; 5579 uint64_t zb_ditto_samevdev; 5580 uint64_t zb_ditto_same_ms; 5581 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5582 } zdb_blkstats_t; 5583 5584 /* 5585 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5586 */ 5587 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5588 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5589 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5590 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5591 5592 static const char *zdb_ot_extname[] = { 5593 "deferred free", 5594 "dedup ditto", 5595 "other", 5596 "Total", 5597 }; 5598 5599 #define ZB_TOTAL DN_MAX_LEVELS 5600 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5601 5602 typedef struct zdb_brt_entry { 5603 dva_t zbre_dva; 5604 uint64_t zbre_refcount; 5605 avl_node_t zbre_node; 5606 } zdb_brt_entry_t; 5607 5608 typedef struct zdb_cb { 5609 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5610 uint64_t zcb_removing_size; 5611 uint64_t zcb_checkpoint_size; 5612 uint64_t zcb_dedup_asize; 5613 uint64_t zcb_dedup_blocks; 5614 uint64_t zcb_clone_asize; 5615 uint64_t zcb_clone_blocks; 5616 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5617 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5618 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5619 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5620 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5621 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5622 uint64_t zcb_psize_total; 5623 uint64_t zcb_lsize_total; 5624 uint64_t zcb_asize_total; 5625 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5626 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5627 [BPE_PAYLOAD_SIZE + 1]; 5628 uint64_t zcb_start; 5629 hrtime_t zcb_lastprint; 5630 uint64_t zcb_totalasize; 5631 uint64_t zcb_errors[256]; 5632 int zcb_readfails; 5633 int zcb_haderrors; 5634 spa_t *zcb_spa; 5635 uint32_t **zcb_vd_obsolete_counts; 5636 avl_tree_t zcb_brt; 5637 boolean_t zcb_brt_is_active; 5638 } zdb_cb_t; 5639 5640 /* test if two DVA offsets from same vdev are within the same metaslab */ 5641 static boolean_t 5642 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5643 { 5644 vdev_t *vd = vdev_lookup_top(spa, vdev); 5645 uint64_t ms_shift = vd->vdev_ms_shift; 5646 5647 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5648 } 5649 5650 /* 5651 * Used to simplify reporting of the histogram data. 5652 */ 5653 typedef struct one_histo { 5654 const char *name; 5655 uint64_t *count; 5656 uint64_t *len; 5657 uint64_t cumulative; 5658 } one_histo_t; 5659 5660 /* 5661 * The number of separate histograms processed for psize, lsize and asize. 5662 */ 5663 #define NUM_HISTO 3 5664 5665 /* 5666 * This routine will create a fixed column size output of three different 5667 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5668 * the count, length and cumulative length of the psize, lsize and 5669 * asize blocks. 5670 * 5671 * All three types of blocks are listed on a single line 5672 * 5673 * By default the table is printed in nicenumber format (e.g. 123K) but 5674 * if the '-P' parameter is specified then the full raw number (parseable) 5675 * is printed out. 5676 */ 5677 static void 5678 dump_size_histograms(zdb_cb_t *zcb) 5679 { 5680 /* 5681 * A temporary buffer that allows us to convert a number into 5682 * a string using zdb_nicenumber to allow either raw or human 5683 * readable numbers to be output. 5684 */ 5685 char numbuf[32]; 5686 5687 /* 5688 * Define titles which are used in the headers of the tables 5689 * printed by this routine. 5690 */ 5691 const char blocksize_title1[] = "block"; 5692 const char blocksize_title2[] = "size"; 5693 const char count_title[] = "Count"; 5694 const char length_title[] = "Size"; 5695 const char cumulative_title[] = "Cum."; 5696 5697 /* 5698 * Setup the histogram arrays (psize, lsize, and asize). 5699 */ 5700 one_histo_t parm_histo[NUM_HISTO]; 5701 5702 parm_histo[0].name = "psize"; 5703 parm_histo[0].count = zcb->zcb_psize_count; 5704 parm_histo[0].len = zcb->zcb_psize_len; 5705 parm_histo[0].cumulative = 0; 5706 5707 parm_histo[1].name = "lsize"; 5708 parm_histo[1].count = zcb->zcb_lsize_count; 5709 parm_histo[1].len = zcb->zcb_lsize_len; 5710 parm_histo[1].cumulative = 0; 5711 5712 parm_histo[2].name = "asize"; 5713 parm_histo[2].count = zcb->zcb_asize_count; 5714 parm_histo[2].len = zcb->zcb_asize_len; 5715 parm_histo[2].cumulative = 0; 5716 5717 5718 (void) printf("\nBlock Size Histogram\n"); 5719 /* 5720 * Print the first line titles 5721 */ 5722 if (dump_opt['P']) 5723 (void) printf("\n%s\t", blocksize_title1); 5724 else 5725 (void) printf("\n%7s ", blocksize_title1); 5726 5727 for (int j = 0; j < NUM_HISTO; j++) { 5728 if (dump_opt['P']) { 5729 if (j < NUM_HISTO - 1) { 5730 (void) printf("%s\t\t\t", parm_histo[j].name); 5731 } else { 5732 /* Don't print trailing spaces */ 5733 (void) printf(" %s", parm_histo[j].name); 5734 } 5735 } else { 5736 if (j < NUM_HISTO - 1) { 5737 /* Left aligned strings in the output */ 5738 (void) printf("%-7s ", 5739 parm_histo[j].name); 5740 } else { 5741 /* Don't print trailing spaces */ 5742 (void) printf("%s", parm_histo[j].name); 5743 } 5744 } 5745 } 5746 (void) printf("\n"); 5747 5748 /* 5749 * Print the second line titles 5750 */ 5751 if (dump_opt['P']) { 5752 (void) printf("%s\t", blocksize_title2); 5753 } else { 5754 (void) printf("%7s ", blocksize_title2); 5755 } 5756 5757 for (int i = 0; i < NUM_HISTO; i++) { 5758 if (dump_opt['P']) { 5759 (void) printf("%s\t%s\t%s\t", 5760 count_title, length_title, cumulative_title); 5761 } else { 5762 (void) printf("%7s%7s%7s", 5763 count_title, length_title, cumulative_title); 5764 } 5765 } 5766 (void) printf("\n"); 5767 5768 /* 5769 * Print the rows 5770 */ 5771 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5772 5773 /* 5774 * Print the first column showing the blocksize 5775 */ 5776 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5777 5778 if (dump_opt['P']) { 5779 printf("%s", numbuf); 5780 } else { 5781 printf("%7s:", numbuf); 5782 } 5783 5784 /* 5785 * Print the remaining set of 3 columns per size: 5786 * for psize, lsize and asize 5787 */ 5788 for (int j = 0; j < NUM_HISTO; j++) { 5789 parm_histo[j].cumulative += parm_histo[j].len[i]; 5790 5791 zdb_nicenum(parm_histo[j].count[i], 5792 numbuf, sizeof (numbuf)); 5793 if (dump_opt['P']) 5794 (void) printf("\t%s", numbuf); 5795 else 5796 (void) printf("%7s", numbuf); 5797 5798 zdb_nicenum(parm_histo[j].len[i], 5799 numbuf, sizeof (numbuf)); 5800 if (dump_opt['P']) 5801 (void) printf("\t%s", numbuf); 5802 else 5803 (void) printf("%7s", numbuf); 5804 5805 zdb_nicenum(parm_histo[j].cumulative, 5806 numbuf, sizeof (numbuf)); 5807 if (dump_opt['P']) 5808 (void) printf("\t%s", numbuf); 5809 else 5810 (void) printf("%7s", numbuf); 5811 } 5812 (void) printf("\n"); 5813 } 5814 } 5815 5816 static void 5817 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5818 dmu_object_type_t type) 5819 { 5820 int i; 5821 5822 ASSERT(type < ZDB_OT_TOTAL); 5823 5824 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5825 return; 5826 5827 /* 5828 * This flag controls if we will issue a claim for the block while 5829 * counting it, to ensure that all blocks are referenced in space maps. 5830 * We don't issue claims if we're not doing leak tracking, because it's 5831 * expensive if the user isn't interested. We also don't claim the 5832 * second or later occurences of cloned or dedup'd blocks, because we 5833 * already claimed them the first time. 5834 */ 5835 boolean_t do_claim = !dump_opt['L']; 5836 5837 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5838 5839 blkptr_t tempbp; 5840 if (BP_GET_DEDUP(bp)) { 5841 /* 5842 * Dedup'd blocks are special. We need to count them, so we can 5843 * later uncount them when reporting leaked space, and we must 5844 * only claim them once. 5845 * 5846 * We use the existing dedup system to track what we've seen. 5847 * The first time we see a block, we do a ddt_lookup() to see 5848 * if it exists in the DDT. If we're doing leak tracking, we 5849 * claim the block at this time. 5850 * 5851 * Each time we see a block, we reduce the refcount in the 5852 * entry by one, and add to the size and count of dedup'd 5853 * blocks to report at the end. 5854 */ 5855 5856 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5857 5858 ddt_enter(ddt); 5859 5860 /* 5861 * Find the block. This will create the entry in memory, but 5862 * we'll know if that happened by its refcount. 5863 */ 5864 ddt_entry_t *dde = ddt_lookup(ddt, bp); 5865 5866 /* 5867 * ddt_lookup() can return NULL if this block didn't exist 5868 * in the DDT and creating it would take the DDT over its 5869 * quota. Since we got the block from disk, it must exist in 5870 * the DDT, so this can't happen. However, when unique entries 5871 * are pruned, the dedup bit can be set with no corresponding 5872 * entry in the DDT. 5873 */ 5874 if (dde == NULL) { 5875 ddt_exit(ddt); 5876 goto skipped; 5877 } 5878 5879 /* Get the phys for this variant */ 5880 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5881 5882 /* 5883 * This entry may have multiple sets of DVAs. We must claim 5884 * each set the first time we see them in a real block on disk, 5885 * or count them on subsequent occurences. We don't have a 5886 * convenient way to track the first time we see each variant, 5887 * so we repurpose dde_io as a set of "seen" flag bits. We can 5888 * do this safely in zdb because it never writes, so it will 5889 * never have a writing zio for this block in that pointer. 5890 */ 5891 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5892 if (!seen) 5893 dde->dde_io = 5894 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5895 5896 /* Consume a reference for this block. */ 5897 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5898 ddt_phys_decref(dde->dde_phys, v); 5899 5900 /* 5901 * If this entry has a single flat phys, it may have been 5902 * extended with additional DVAs at some time in its life. 5903 * This block might be from before it was fully extended, and 5904 * so have fewer DVAs. 5905 * 5906 * If this is the first time we've seen this block, and we 5907 * claimed it as-is, then we would miss the claim on some 5908 * number of DVAs, which would then be seen as leaked. 5909 * 5910 * In all cases, if we've had fewer DVAs, then the asize would 5911 * be too small, and would lead to the pool apparently using 5912 * more space than allocated. 5913 * 5914 * To handle this, we copy the canonical set of DVAs from the 5915 * entry back to the block pointer before we claim it. 5916 */ 5917 if (v == DDT_PHYS_FLAT) { 5918 ASSERT3U(BP_GET_BIRTH(bp), ==, 5919 ddt_phys_birth(dde->dde_phys, v)); 5920 tempbp = *bp; 5921 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5922 BP_GET_BIRTH(bp)); 5923 bp = &tempbp; 5924 } 5925 5926 if (seen) { 5927 /* 5928 * The second or later time we see this block, 5929 * it's a duplicate and we count it. 5930 */ 5931 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5932 zcb->zcb_dedup_blocks++; 5933 5934 /* Already claimed, don't do it again. */ 5935 do_claim = B_FALSE; 5936 } 5937 5938 ddt_exit(ddt); 5939 } else if (zcb->zcb_brt_is_active && 5940 brt_maybe_exists(zcb->zcb_spa, bp)) { 5941 /* 5942 * Cloned blocks are special. We need to count them, so we can 5943 * later uncount them when reporting leaked space, and we must 5944 * only claim them once. 5945 * 5946 * To do this, we keep our own in-memory BRT. For each block 5947 * we haven't seen before, we look it up in the real BRT and 5948 * if its there, we note it and its refcount then proceed as 5949 * normal. If we see the block again, we count it as a clone 5950 * and then give it no further consideration. 5951 */ 5952 zdb_brt_entry_t zbre_search, *zbre; 5953 avl_index_t where; 5954 5955 zbre_search.zbre_dva = bp->blk_dva[0]; 5956 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5957 if (zbre == NULL) { 5958 /* Not seen before; track it */ 5959 uint64_t refcnt = 5960 brt_entry_get_refcount(zcb->zcb_spa, bp); 5961 if (refcnt > 0) { 5962 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5963 UMEM_NOFAIL); 5964 zbre->zbre_dva = bp->blk_dva[0]; 5965 zbre->zbre_refcount = refcnt; 5966 avl_insert(&zcb->zcb_brt, zbre, where); 5967 } 5968 } else { 5969 /* 5970 * Second or later occurrence, count it and take a 5971 * refcount. 5972 */ 5973 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5974 zcb->zcb_clone_blocks++; 5975 5976 zbre->zbre_refcount--; 5977 if (zbre->zbre_refcount == 0) { 5978 avl_remove(&zcb->zcb_brt, zbre); 5979 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5980 } 5981 5982 /* Already claimed, don't do it again. */ 5983 do_claim = B_FALSE; 5984 } 5985 } 5986 5987 skipped: 5988 for (i = 0; i < 4; i++) { 5989 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5990 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5991 int equal; 5992 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5993 5994 zb->zb_asize += BP_GET_ASIZE(bp); 5995 zb->zb_lsize += BP_GET_LSIZE(bp); 5996 zb->zb_psize += BP_GET_PSIZE(bp); 5997 zb->zb_count++; 5998 5999 /* 6000 * The histogram is only big enough to record blocks up to 6001 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 6002 * "other", bucket. 6003 */ 6004 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 6005 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 6006 zb->zb_psize_histogram[idx]++; 6007 6008 zb->zb_gangs += BP_COUNT_GANG(bp); 6009 6010 switch (BP_GET_NDVAS(bp)) { 6011 case 2: 6012 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6013 DVA_GET_VDEV(&bp->blk_dva[1])) { 6014 zb->zb_ditto_samevdev++; 6015 6016 if (same_metaslab(zcb->zcb_spa, 6017 DVA_GET_VDEV(&bp->blk_dva[0]), 6018 DVA_GET_OFFSET(&bp->blk_dva[0]), 6019 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6020 zb->zb_ditto_same_ms++; 6021 } 6022 break; 6023 case 3: 6024 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 6025 DVA_GET_VDEV(&bp->blk_dva[1])) + 6026 (DVA_GET_VDEV(&bp->blk_dva[0]) == 6027 DVA_GET_VDEV(&bp->blk_dva[2])) + 6028 (DVA_GET_VDEV(&bp->blk_dva[1]) == 6029 DVA_GET_VDEV(&bp->blk_dva[2])); 6030 if (equal != 0) { 6031 zb->zb_ditto_samevdev++; 6032 6033 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6034 DVA_GET_VDEV(&bp->blk_dva[1]) && 6035 same_metaslab(zcb->zcb_spa, 6036 DVA_GET_VDEV(&bp->blk_dva[0]), 6037 DVA_GET_OFFSET(&bp->blk_dva[0]), 6038 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6039 zb->zb_ditto_same_ms++; 6040 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6041 DVA_GET_VDEV(&bp->blk_dva[2]) && 6042 same_metaslab(zcb->zcb_spa, 6043 DVA_GET_VDEV(&bp->blk_dva[0]), 6044 DVA_GET_OFFSET(&bp->blk_dva[0]), 6045 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6046 zb->zb_ditto_same_ms++; 6047 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 6048 DVA_GET_VDEV(&bp->blk_dva[2]) && 6049 same_metaslab(zcb->zcb_spa, 6050 DVA_GET_VDEV(&bp->blk_dva[1]), 6051 DVA_GET_OFFSET(&bp->blk_dva[1]), 6052 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6053 zb->zb_ditto_same_ms++; 6054 } 6055 break; 6056 } 6057 } 6058 6059 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 6060 6061 if (BP_IS_EMBEDDED(bp)) { 6062 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6063 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6064 [BPE_GET_PSIZE(bp)]++; 6065 return; 6066 } 6067 /* 6068 * The binning histogram bins by powers of two up to 6069 * SPA_MAXBLOCKSIZE rather than creating bins for 6070 * every possible blocksize found in the pool. 6071 */ 6072 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6073 6074 zcb->zcb_psize_count[bin]++; 6075 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6076 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6077 6078 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6079 6080 zcb->zcb_lsize_count[bin]++; 6081 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6082 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6083 6084 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6085 6086 zcb->zcb_asize_count[bin]++; 6087 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6088 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6089 6090 if (!do_claim) 6091 return; 6092 6093 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6094 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6095 ZIO_FLAG_CANFAIL))); 6096 } 6097 6098 static void 6099 zdb_blkptr_done(zio_t *zio) 6100 { 6101 spa_t *spa = zio->io_spa; 6102 blkptr_t *bp = zio->io_bp; 6103 int ioerr = zio->io_error; 6104 zdb_cb_t *zcb = zio->io_private; 6105 zbookmark_phys_t *zb = &zio->io_bookmark; 6106 6107 mutex_enter(&spa->spa_scrub_lock); 6108 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6109 cv_broadcast(&spa->spa_scrub_io_cv); 6110 6111 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6112 char blkbuf[BP_SPRINTF_LEN]; 6113 6114 zcb->zcb_haderrors = 1; 6115 zcb->zcb_errors[ioerr]++; 6116 6117 if (dump_opt['b'] >= 2) 6118 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6119 else 6120 blkbuf[0] = '\0'; 6121 6122 (void) printf("zdb_blkptr_cb: " 6123 "Got error %d reading " 6124 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6125 ioerr, 6126 (u_longlong_t)zb->zb_objset, 6127 (u_longlong_t)zb->zb_object, 6128 (u_longlong_t)zb->zb_level, 6129 (u_longlong_t)zb->zb_blkid, 6130 blkbuf); 6131 } 6132 mutex_exit(&spa->spa_scrub_lock); 6133 6134 abd_free(zio->io_abd); 6135 } 6136 6137 static int 6138 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6139 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6140 { 6141 zdb_cb_t *zcb = arg; 6142 dmu_object_type_t type; 6143 boolean_t is_metadata; 6144 6145 if (zb->zb_level == ZB_DNODE_LEVEL) 6146 return (0); 6147 6148 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6149 char blkbuf[BP_SPRINTF_LEN]; 6150 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6151 (void) printf("objset %llu object %llu " 6152 "level %lld offset 0x%llx %s\n", 6153 (u_longlong_t)zb->zb_objset, 6154 (u_longlong_t)zb->zb_object, 6155 (longlong_t)zb->zb_level, 6156 (u_longlong_t)blkid2offset(dnp, bp, zb), 6157 blkbuf); 6158 } 6159 6160 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6161 return (0); 6162 6163 type = BP_GET_TYPE(bp); 6164 6165 zdb_count_block(zcb, zilog, bp, 6166 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6167 6168 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6169 6170 if (!BP_IS_EMBEDDED(bp) && 6171 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6172 size_t size = BP_GET_PSIZE(bp); 6173 abd_t *abd = abd_alloc(size, B_FALSE); 6174 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6175 6176 /* If it's an intent log block, failure is expected. */ 6177 if (zb->zb_level == ZB_ZIL_LEVEL) 6178 flags |= ZIO_FLAG_SPECULATIVE; 6179 6180 mutex_enter(&spa->spa_scrub_lock); 6181 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6182 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6183 spa->spa_load_verify_bytes += size; 6184 mutex_exit(&spa->spa_scrub_lock); 6185 6186 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6187 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6188 } 6189 6190 zcb->zcb_readfails = 0; 6191 6192 /* only call gethrtime() every 100 blocks */ 6193 static int iters; 6194 if (++iters > 100) 6195 iters = 0; 6196 else 6197 return (0); 6198 6199 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6200 uint64_t now = gethrtime(); 6201 char buf[10]; 6202 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6203 uint64_t kb_per_sec = 6204 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6205 uint64_t sec_remaining = 6206 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6207 6208 /* make sure nicenum has enough space */ 6209 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6210 6211 zfs_nicebytes(bytes, buf, sizeof (buf)); 6212 (void) fprintf(stderr, 6213 "\r%5s completed (%4"PRIu64"MB/s) " 6214 "estimated time remaining: " 6215 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6216 buf, kb_per_sec / 1024, 6217 sec_remaining / 60 / 60, 6218 sec_remaining / 60 % 60, 6219 sec_remaining % 60); 6220 6221 zcb->zcb_lastprint = now; 6222 } 6223 6224 return (0); 6225 } 6226 6227 static void 6228 zdb_leak(void *arg, uint64_t start, uint64_t size) 6229 { 6230 vdev_t *vd = arg; 6231 6232 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6233 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6234 } 6235 6236 static metaslab_ops_t zdb_metaslab_ops = { 6237 NULL /* alloc */ 6238 }; 6239 6240 static int 6241 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6242 uint64_t txg, void *arg) 6243 { 6244 spa_vdev_removal_t *svr = arg; 6245 6246 uint64_t offset = sme->sme_offset; 6247 uint64_t size = sme->sme_run; 6248 6249 /* skip vdevs we don't care about */ 6250 if (sme->sme_vdev != svr->svr_vdev_id) 6251 return (0); 6252 6253 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6254 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6255 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6256 6257 if (txg < metaslab_unflushed_txg(ms)) 6258 return (0); 6259 6260 if (sme->sme_type == SM_ALLOC) 6261 range_tree_add(svr->svr_allocd_segs, offset, size); 6262 else 6263 range_tree_remove(svr->svr_allocd_segs, offset, size); 6264 6265 return (0); 6266 } 6267 6268 static void 6269 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6270 uint64_t size, void *arg) 6271 { 6272 (void) inner_offset, (void) arg; 6273 6274 /* 6275 * This callback was called through a remap from 6276 * a device being removed. Therefore, the vdev that 6277 * this callback is applied to is a concrete 6278 * vdev. 6279 */ 6280 ASSERT(vdev_is_concrete(vd)); 6281 6282 VERIFY0(metaslab_claim_impl(vd, offset, size, 6283 spa_min_claim_txg(vd->vdev_spa))); 6284 } 6285 6286 static void 6287 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6288 { 6289 vdev_t *vd = arg; 6290 6291 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6292 claim_segment_impl_cb, NULL); 6293 } 6294 6295 /* 6296 * After accounting for all allocated blocks that are directly referenced, 6297 * we might have missed a reference to a block from a partially complete 6298 * (and thus unused) indirect mapping object. We perform a secondary pass 6299 * through the metaslabs we have already mapped and claim the destination 6300 * blocks. 6301 */ 6302 static void 6303 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6304 { 6305 if (dump_opt['L']) 6306 return; 6307 6308 if (spa->spa_vdev_removal == NULL) 6309 return; 6310 6311 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6312 6313 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6314 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6315 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6316 6317 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6318 6319 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6320 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6321 metaslab_t *msp = vd->vdev_ms[msi]; 6322 6323 ASSERT0(range_tree_space(allocs)); 6324 if (msp->ms_sm != NULL) 6325 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6326 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6327 } 6328 range_tree_destroy(allocs); 6329 6330 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6331 6332 /* 6333 * Clear everything past what has been synced, 6334 * because we have not allocated mappings for 6335 * it yet. 6336 */ 6337 range_tree_clear(svr->svr_allocd_segs, 6338 vdev_indirect_mapping_max_offset(vim), 6339 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6340 6341 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6342 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6343 6344 spa_config_exit(spa, SCL_CONFIG, FTAG); 6345 } 6346 6347 static int 6348 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6349 dmu_tx_t *tx) 6350 { 6351 (void) tx; 6352 zdb_cb_t *zcb = arg; 6353 spa_t *spa = zcb->zcb_spa; 6354 vdev_t *vd; 6355 const dva_t *dva = &bp->blk_dva[0]; 6356 6357 ASSERT(!bp_freed); 6358 ASSERT(!dump_opt['L']); 6359 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6360 6361 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6362 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6363 ASSERT3P(vd, !=, NULL); 6364 spa_config_exit(spa, SCL_VDEV, FTAG); 6365 6366 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6367 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6368 6369 vdev_indirect_mapping_increment_obsolete_count( 6370 vd->vdev_indirect_mapping, 6371 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6372 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6373 6374 return (0); 6375 } 6376 6377 static uint32_t * 6378 zdb_load_obsolete_counts(vdev_t *vd) 6379 { 6380 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6381 spa_t *spa = vd->vdev_spa; 6382 spa_condensing_indirect_phys_t *scip = 6383 &spa->spa_condensing_indirect_phys; 6384 uint64_t obsolete_sm_object; 6385 uint32_t *counts; 6386 6387 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6388 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6389 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6390 if (vd->vdev_obsolete_sm != NULL) { 6391 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6392 vd->vdev_obsolete_sm); 6393 } 6394 if (scip->scip_vdev == vd->vdev_id && 6395 scip->scip_prev_obsolete_sm_object != 0) { 6396 space_map_t *prev_obsolete_sm = NULL; 6397 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6398 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6399 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6400 prev_obsolete_sm); 6401 space_map_close(prev_obsolete_sm); 6402 } 6403 return (counts); 6404 } 6405 6406 typedef struct checkpoint_sm_exclude_entry_arg { 6407 vdev_t *cseea_vd; 6408 uint64_t cseea_checkpoint_size; 6409 } checkpoint_sm_exclude_entry_arg_t; 6410 6411 static int 6412 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6413 { 6414 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6415 vdev_t *vd = cseea->cseea_vd; 6416 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6417 uint64_t end = sme->sme_offset + sme->sme_run; 6418 6419 ASSERT(sme->sme_type == SM_FREE); 6420 6421 /* 6422 * Since the vdev_checkpoint_sm exists in the vdev level 6423 * and the ms_sm space maps exist in the metaslab level, 6424 * an entry in the checkpoint space map could theoretically 6425 * cross the boundaries of the metaslab that it belongs. 6426 * 6427 * In reality, because of the way that we populate and 6428 * manipulate the checkpoint's space maps currently, 6429 * there shouldn't be any entries that cross metaslabs. 6430 * Hence the assertion below. 6431 * 6432 * That said, there is no fundamental requirement that 6433 * the checkpoint's space map entries should not cross 6434 * metaslab boundaries. So if needed we could add code 6435 * that handles metaslab-crossing segments in the future. 6436 */ 6437 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6438 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6439 6440 /* 6441 * By removing the entry from the allocated segments we 6442 * also verify that the entry is there to begin with. 6443 */ 6444 mutex_enter(&ms->ms_lock); 6445 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6446 mutex_exit(&ms->ms_lock); 6447 6448 cseea->cseea_checkpoint_size += sme->sme_run; 6449 return (0); 6450 } 6451 6452 static void 6453 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6454 { 6455 spa_t *spa = vd->vdev_spa; 6456 space_map_t *checkpoint_sm = NULL; 6457 uint64_t checkpoint_sm_obj; 6458 6459 /* 6460 * If there is no vdev_top_zap, we are in a pool whose 6461 * version predates the pool checkpoint feature. 6462 */ 6463 if (vd->vdev_top_zap == 0) 6464 return; 6465 6466 /* 6467 * If there is no reference of the vdev_checkpoint_sm in 6468 * the vdev_top_zap, then one of the following scenarios 6469 * is true: 6470 * 6471 * 1] There is no checkpoint 6472 * 2] There is a checkpoint, but no checkpointed blocks 6473 * have been freed yet 6474 * 3] The current vdev is indirect 6475 * 6476 * In these cases we return immediately. 6477 */ 6478 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6479 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6480 return; 6481 6482 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6483 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6484 &checkpoint_sm_obj)); 6485 6486 checkpoint_sm_exclude_entry_arg_t cseea; 6487 cseea.cseea_vd = vd; 6488 cseea.cseea_checkpoint_size = 0; 6489 6490 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6491 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6492 6493 VERIFY0(space_map_iterate(checkpoint_sm, 6494 space_map_length(checkpoint_sm), 6495 checkpoint_sm_exclude_entry_cb, &cseea)); 6496 space_map_close(checkpoint_sm); 6497 6498 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6499 } 6500 6501 static void 6502 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6503 { 6504 ASSERT(!dump_opt['L']); 6505 6506 vdev_t *rvd = spa->spa_root_vdev; 6507 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6508 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6509 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6510 } 6511 } 6512 6513 static int 6514 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6515 uint64_t txg, void *arg) 6516 { 6517 int64_t *ualloc_space = arg; 6518 6519 uint64_t offset = sme->sme_offset; 6520 uint64_t vdev_id = sme->sme_vdev; 6521 6522 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6523 if (!vdev_is_concrete(vd)) 6524 return (0); 6525 6526 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6527 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6528 6529 if (txg < metaslab_unflushed_txg(ms)) 6530 return (0); 6531 6532 if (sme->sme_type == SM_ALLOC) 6533 *ualloc_space += sme->sme_run; 6534 else 6535 *ualloc_space -= sme->sme_run; 6536 6537 return (0); 6538 } 6539 6540 static int64_t 6541 get_unflushed_alloc_space(spa_t *spa) 6542 { 6543 if (dump_opt['L']) 6544 return (0); 6545 6546 int64_t ualloc_space = 0; 6547 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6548 &ualloc_space); 6549 return (ualloc_space); 6550 } 6551 6552 static int 6553 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6554 { 6555 maptype_t *uic_maptype = arg; 6556 6557 uint64_t offset = sme->sme_offset; 6558 uint64_t size = sme->sme_run; 6559 uint64_t vdev_id = sme->sme_vdev; 6560 6561 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6562 6563 /* skip indirect vdevs */ 6564 if (!vdev_is_concrete(vd)) 6565 return (0); 6566 6567 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6568 6569 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6570 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6571 6572 if (txg < metaslab_unflushed_txg(ms)) 6573 return (0); 6574 6575 if (*uic_maptype == sme->sme_type) 6576 range_tree_add(ms->ms_allocatable, offset, size); 6577 else 6578 range_tree_remove(ms->ms_allocatable, offset, size); 6579 6580 return (0); 6581 } 6582 6583 static void 6584 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6585 { 6586 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6587 } 6588 6589 static void 6590 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6591 { 6592 vdev_t *rvd = spa->spa_root_vdev; 6593 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6594 vdev_t *vd = rvd->vdev_child[i]; 6595 6596 ASSERT3U(i, ==, vd->vdev_id); 6597 6598 if (vd->vdev_ops == &vdev_indirect_ops) 6599 continue; 6600 6601 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6602 metaslab_t *msp = vd->vdev_ms[m]; 6603 6604 (void) fprintf(stderr, 6605 "\rloading concrete vdev %llu, " 6606 "metaslab %llu of %llu ...", 6607 (longlong_t)vd->vdev_id, 6608 (longlong_t)msp->ms_id, 6609 (longlong_t)vd->vdev_ms_count); 6610 6611 mutex_enter(&msp->ms_lock); 6612 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6613 6614 /* 6615 * We don't want to spend the CPU manipulating the 6616 * size-ordered tree, so clear the range_tree ops. 6617 */ 6618 msp->ms_allocatable->rt_ops = NULL; 6619 6620 if (msp->ms_sm != NULL) { 6621 VERIFY0(space_map_load(msp->ms_sm, 6622 msp->ms_allocatable, maptype)); 6623 } 6624 if (!msp->ms_loaded) 6625 msp->ms_loaded = B_TRUE; 6626 mutex_exit(&msp->ms_lock); 6627 } 6628 } 6629 6630 load_unflushed_to_ms_allocatables(spa, maptype); 6631 } 6632 6633 /* 6634 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6635 * index in vim_entries that has the first entry in this metaslab. 6636 * On return, it will be set to the first entry after this metaslab. 6637 */ 6638 static void 6639 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6640 uint64_t *vim_idxp) 6641 { 6642 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6643 6644 mutex_enter(&msp->ms_lock); 6645 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6646 6647 /* 6648 * We don't want to spend the CPU manipulating the 6649 * size-ordered tree, so clear the range_tree ops. 6650 */ 6651 msp->ms_allocatable->rt_ops = NULL; 6652 6653 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6654 (*vim_idxp)++) { 6655 vdev_indirect_mapping_entry_phys_t *vimep = 6656 &vim->vim_entries[*vim_idxp]; 6657 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6658 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6659 ASSERT3U(ent_offset, >=, msp->ms_start); 6660 if (ent_offset >= msp->ms_start + msp->ms_size) 6661 break; 6662 6663 /* 6664 * Mappings do not cross metaslab boundaries, 6665 * because we create them by walking the metaslabs. 6666 */ 6667 ASSERT3U(ent_offset + ent_len, <=, 6668 msp->ms_start + msp->ms_size); 6669 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6670 } 6671 6672 if (!msp->ms_loaded) 6673 msp->ms_loaded = B_TRUE; 6674 mutex_exit(&msp->ms_lock); 6675 } 6676 6677 static void 6678 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6679 { 6680 ASSERT(!dump_opt['L']); 6681 6682 vdev_t *rvd = spa->spa_root_vdev; 6683 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6684 vdev_t *vd = rvd->vdev_child[c]; 6685 6686 ASSERT3U(c, ==, vd->vdev_id); 6687 6688 if (vd->vdev_ops != &vdev_indirect_ops) 6689 continue; 6690 6691 /* 6692 * Note: we don't check for mapping leaks on 6693 * removing vdevs because their ms_allocatable's 6694 * are used to look for leaks in allocated space. 6695 */ 6696 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6697 6698 /* 6699 * Normally, indirect vdevs don't have any 6700 * metaslabs. We want to set them up for 6701 * zio_claim(). 6702 */ 6703 vdev_metaslab_group_create(vd); 6704 VERIFY0(vdev_metaslab_init(vd, 0)); 6705 6706 vdev_indirect_mapping_t *vim __maybe_unused = 6707 vd->vdev_indirect_mapping; 6708 uint64_t vim_idx = 0; 6709 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6710 6711 (void) fprintf(stderr, 6712 "\rloading indirect vdev %llu, " 6713 "metaslab %llu of %llu ...", 6714 (longlong_t)vd->vdev_id, 6715 (longlong_t)vd->vdev_ms[m]->ms_id, 6716 (longlong_t)vd->vdev_ms_count); 6717 6718 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6719 &vim_idx); 6720 } 6721 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6722 } 6723 } 6724 6725 static void 6726 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6727 { 6728 zcb->zcb_spa = spa; 6729 6730 if (dump_opt['L']) 6731 return; 6732 6733 dsl_pool_t *dp = spa->spa_dsl_pool; 6734 vdev_t *rvd = spa->spa_root_vdev; 6735 6736 /* 6737 * We are going to be changing the meaning of the metaslab's 6738 * ms_allocatable. Ensure that the allocator doesn't try to 6739 * use the tree. 6740 */ 6741 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6742 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6743 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6744 6745 zcb->zcb_vd_obsolete_counts = 6746 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6747 UMEM_NOFAIL); 6748 6749 /* 6750 * For leak detection, we overload the ms_allocatable trees 6751 * to contain allocated segments instead of free segments. 6752 * As a result, we can't use the normal metaslab_load/unload 6753 * interfaces. 6754 */ 6755 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6756 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6757 6758 /* 6759 * On load_concrete_ms_allocatable_trees() we loaded all the 6760 * allocated entries from the ms_sm to the ms_allocatable for 6761 * each metaslab. If the pool has a checkpoint or is in the 6762 * middle of discarding a checkpoint, some of these blocks 6763 * may have been freed but their ms_sm may not have been 6764 * updated because they are referenced by the checkpoint. In 6765 * order to avoid false-positives during leak-detection, we 6766 * go through the vdev's checkpoint space map and exclude all 6767 * its entries from their relevant ms_allocatable. 6768 * 6769 * We also aggregate the space held by the checkpoint and add 6770 * it to zcb_checkpoint_size. 6771 * 6772 * Note that at this point we are also verifying that all the 6773 * entries on the checkpoint_sm are marked as allocated in 6774 * the ms_sm of their relevant metaslab. 6775 * [see comment in checkpoint_sm_exclude_entry_cb()] 6776 */ 6777 zdb_leak_init_exclude_checkpoint(spa, zcb); 6778 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6779 6780 /* for cleaner progress output */ 6781 (void) fprintf(stderr, "\n"); 6782 6783 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6784 ASSERT(spa_feature_is_enabled(spa, 6785 SPA_FEATURE_DEVICE_REMOVAL)); 6786 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6787 increment_indirect_mapping_cb, zcb, NULL); 6788 } 6789 } 6790 6791 static boolean_t 6792 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6793 { 6794 boolean_t leaks = B_FALSE; 6795 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6796 uint64_t total_leaked = 0; 6797 boolean_t are_precise = B_FALSE; 6798 6799 ASSERT(vim != NULL); 6800 6801 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6802 vdev_indirect_mapping_entry_phys_t *vimep = 6803 &vim->vim_entries[i]; 6804 uint64_t obsolete_bytes = 0; 6805 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6806 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6807 6808 /* 6809 * This is not very efficient but it's easy to 6810 * verify correctness. 6811 */ 6812 for (uint64_t inner_offset = 0; 6813 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6814 inner_offset += 1ULL << vd->vdev_ashift) { 6815 if (range_tree_contains(msp->ms_allocatable, 6816 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6817 obsolete_bytes += 1ULL << vd->vdev_ashift; 6818 } 6819 } 6820 6821 int64_t bytes_leaked = obsolete_bytes - 6822 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6823 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6824 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6825 6826 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6827 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6828 (void) printf("obsolete indirect mapping count " 6829 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6830 (u_longlong_t)vd->vdev_id, 6831 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6832 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6833 (u_longlong_t)bytes_leaked); 6834 } 6835 total_leaked += ABS(bytes_leaked); 6836 } 6837 6838 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6839 if (!are_precise && total_leaked > 0) { 6840 int pct_leaked = total_leaked * 100 / 6841 vdev_indirect_mapping_bytes_mapped(vim); 6842 (void) printf("cannot verify obsolete indirect mapping " 6843 "counts of vdev %llu because precise feature was not " 6844 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6845 "unreferenced\n", 6846 (u_longlong_t)vd->vdev_id, pct_leaked, 6847 (u_longlong_t)total_leaked); 6848 } else if (total_leaked > 0) { 6849 (void) printf("obsolete indirect mapping count mismatch " 6850 "for vdev %llu -- %llx total bytes mismatched\n", 6851 (u_longlong_t)vd->vdev_id, 6852 (u_longlong_t)total_leaked); 6853 leaks |= B_TRUE; 6854 } 6855 6856 vdev_indirect_mapping_free_obsolete_counts(vim, 6857 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6858 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6859 6860 return (leaks); 6861 } 6862 6863 static boolean_t 6864 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6865 { 6866 if (dump_opt['L']) 6867 return (B_FALSE); 6868 6869 boolean_t leaks = B_FALSE; 6870 vdev_t *rvd = spa->spa_root_vdev; 6871 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6872 vdev_t *vd = rvd->vdev_child[c]; 6873 6874 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6875 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6876 } 6877 6878 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6879 metaslab_t *msp = vd->vdev_ms[m]; 6880 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6881 spa_embedded_log_class(spa)) ? 6882 vd->vdev_log_mg : vd->vdev_mg); 6883 6884 /* 6885 * ms_allocatable has been overloaded 6886 * to contain allocated segments. Now that 6887 * we finished traversing all blocks, any 6888 * block that remains in the ms_allocatable 6889 * represents an allocated block that we 6890 * did not claim during the traversal. 6891 * Claimed blocks would have been removed 6892 * from the ms_allocatable. For indirect 6893 * vdevs, space remaining in the tree 6894 * represents parts of the mapping that are 6895 * not referenced, which is not a bug. 6896 */ 6897 if (vd->vdev_ops == &vdev_indirect_ops) { 6898 range_tree_vacate(msp->ms_allocatable, 6899 NULL, NULL); 6900 } else { 6901 range_tree_vacate(msp->ms_allocatable, 6902 zdb_leak, vd); 6903 } 6904 if (msp->ms_loaded) { 6905 msp->ms_loaded = B_FALSE; 6906 } 6907 } 6908 } 6909 6910 umem_free(zcb->zcb_vd_obsolete_counts, 6911 rvd->vdev_children * sizeof (uint32_t *)); 6912 zcb->zcb_vd_obsolete_counts = NULL; 6913 6914 return (leaks); 6915 } 6916 6917 static int 6918 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6919 { 6920 (void) tx; 6921 zdb_cb_t *zcb = arg; 6922 6923 if (dump_opt['b'] >= 5) { 6924 char blkbuf[BP_SPRINTF_LEN]; 6925 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6926 (void) printf("[%s] %s\n", 6927 "deferred free", blkbuf); 6928 } 6929 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6930 return (0); 6931 } 6932 6933 /* 6934 * Iterate over livelists which have been destroyed by the user but 6935 * are still present in the MOS, waiting to be freed 6936 */ 6937 static void 6938 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6939 { 6940 objset_t *mos = spa->spa_meta_objset; 6941 uint64_t zap_obj; 6942 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6943 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6944 if (err == ENOENT) 6945 return; 6946 ASSERT0(err); 6947 6948 zap_cursor_t zc; 6949 zap_attribute_t *attrp = zap_attribute_alloc(); 6950 dsl_deadlist_t ll; 6951 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6952 ll.dl_os = NULL; 6953 for (zap_cursor_init(&zc, mos, zap_obj); 6954 zap_cursor_retrieve(&zc, attrp) == 0; 6955 (void) zap_cursor_advance(&zc)) { 6956 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer)); 6957 func(&ll, arg); 6958 dsl_deadlist_close(&ll); 6959 } 6960 zap_cursor_fini(&zc); 6961 zap_attribute_free(attrp); 6962 } 6963 6964 static int 6965 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6966 dmu_tx_t *tx) 6967 { 6968 ASSERT(!bp_freed); 6969 return (count_block_cb(arg, bp, tx)); 6970 } 6971 6972 static int 6973 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6974 { 6975 zdb_cb_t *zbc = args; 6976 bplist_t blks; 6977 bplist_create(&blks); 6978 /* determine which blocks have been alloc'd but not freed */ 6979 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6980 /* count those blocks */ 6981 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6982 bplist_destroy(&blks); 6983 return (0); 6984 } 6985 6986 static void 6987 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6988 { 6989 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6990 } 6991 6992 /* 6993 * Count the blocks in the livelists that have been destroyed by the user 6994 * but haven't yet been freed. 6995 */ 6996 static void 6997 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6998 { 6999 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 7000 } 7001 7002 static void 7003 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 7004 { 7005 ASSERT3P(arg, ==, NULL); 7006 global_feature_count[SPA_FEATURE_LIVELIST]++; 7007 dump_blkptr_list(ll, "Deleted Livelist"); 7008 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 7009 } 7010 7011 /* 7012 * Print out, register object references to, and increment feature counts for 7013 * livelists that have been destroyed by the user but haven't yet been freed. 7014 */ 7015 static void 7016 deleted_livelists_dump_mos(spa_t *spa) 7017 { 7018 uint64_t zap_obj; 7019 objset_t *mos = spa->spa_meta_objset; 7020 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 7021 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 7022 if (err == ENOENT) 7023 return; 7024 mos_obj_refd(zap_obj); 7025 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 7026 } 7027 7028 static int 7029 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 7030 { 7031 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 7032 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 7033 int cmp; 7034 7035 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 7036 if (cmp == 0) 7037 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 7038 7039 return (cmp); 7040 } 7041 7042 static int 7043 dump_block_stats(spa_t *spa) 7044 { 7045 zdb_cb_t *zcb; 7046 zdb_blkstats_t *zb, *tzb; 7047 uint64_t norm_alloc, norm_space, total_alloc, total_found; 7048 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7049 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 7050 boolean_t leaks = B_FALSE; 7051 int e, c, err; 7052 bp_embedded_type_t i; 7053 7054 ddt_prefetch_all(spa); 7055 7056 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 7057 7058 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 7059 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 7060 sizeof (zdb_brt_entry_t), 7061 offsetof(zdb_brt_entry_t, zbre_node)); 7062 zcb->zcb_brt_is_active = B_TRUE; 7063 } 7064 7065 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7066 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7067 (dump_opt['c'] == 1) ? "metadata " : "", 7068 dump_opt['c'] ? "checksums " : "", 7069 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7070 !dump_opt['L'] ? "nothing leaked " : ""); 7071 7072 /* 7073 * When leak detection is enabled we load all space maps as SM_ALLOC 7074 * maps, then traverse the pool claiming each block we discover. If 7075 * the pool is perfectly consistent, the segment trees will be empty 7076 * when we're done. Anything left over is a leak; any block we can't 7077 * claim (because it's not part of any space map) is a double 7078 * allocation, reference to a freed block, or an unclaimed log block. 7079 * 7080 * When leak detection is disabled (-L option) we still traverse the 7081 * pool claiming each block we discover, but we skip opening any space 7082 * maps. 7083 */ 7084 zdb_leak_init(spa, zcb); 7085 7086 /* 7087 * If there's a deferred-free bplist, process that first. 7088 */ 7089 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7090 bpobj_count_block_cb, zcb, NULL); 7091 7092 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7093 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7094 bpobj_count_block_cb, zcb, NULL); 7095 } 7096 7097 zdb_claim_removing(spa, zcb); 7098 7099 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7100 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7101 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7102 zcb, NULL)); 7103 } 7104 7105 deleted_livelists_count_blocks(spa, zcb); 7106 7107 if (dump_opt['c'] > 1) 7108 flags |= TRAVERSE_PREFETCH_DATA; 7109 7110 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7111 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7112 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7113 zcb->zcb_totalasize += 7114 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7115 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7116 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7117 7118 /* 7119 * If we've traversed the data blocks then we need to wait for those 7120 * I/Os to complete. We leverage "The Godfather" zio to wait on 7121 * all async I/Os to complete. 7122 */ 7123 if (dump_opt['c']) { 7124 for (c = 0; c < max_ncpus; c++) { 7125 (void) zio_wait(spa->spa_async_zio_root[c]); 7126 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7127 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7128 ZIO_FLAG_GODFATHER); 7129 } 7130 } 7131 ASSERT0(spa->spa_load_verify_bytes); 7132 7133 /* 7134 * Done after zio_wait() since zcb_haderrors is modified in 7135 * zdb_blkptr_done() 7136 */ 7137 zcb->zcb_haderrors |= err; 7138 7139 if (zcb->zcb_haderrors) { 7140 (void) printf("\nError counts:\n\n"); 7141 (void) printf("\t%5s %s\n", "errno", "count"); 7142 for (e = 0; e < 256; e++) { 7143 if (zcb->zcb_errors[e] != 0) { 7144 (void) printf("\t%5d %llu\n", 7145 e, (u_longlong_t)zcb->zcb_errors[e]); 7146 } 7147 } 7148 } 7149 7150 /* 7151 * Report any leaked segments. 7152 */ 7153 leaks |= zdb_leak_fini(spa, zcb); 7154 7155 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7156 7157 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7158 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7159 7160 total_alloc = norm_alloc + 7161 metaslab_class_get_alloc(spa_log_class(spa)) + 7162 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7163 metaslab_class_get_alloc(spa_special_class(spa)) + 7164 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7165 get_unflushed_alloc_space(spa); 7166 total_found = 7167 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7168 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7169 7170 if (total_found == total_alloc && !dump_opt['L']) { 7171 (void) printf("\n\tNo leaks (block sum matches space" 7172 " maps exactly)\n"); 7173 } else if (!dump_opt['L']) { 7174 (void) printf("block traversal size %llu != alloc %llu " 7175 "(%s %lld)\n", 7176 (u_longlong_t)total_found, 7177 (u_longlong_t)total_alloc, 7178 (dump_opt['L']) ? "unreachable" : "leaked", 7179 (longlong_t)(total_alloc - total_found)); 7180 } 7181 7182 if (tzb->zb_count == 0) { 7183 umem_free(zcb, sizeof (zdb_cb_t)); 7184 return (2); 7185 } 7186 7187 (void) printf("\n"); 7188 (void) printf("\t%-16s %14llu\n", "bp count:", 7189 (u_longlong_t)tzb->zb_count); 7190 (void) printf("\t%-16s %14llu\n", "ganged count:", 7191 (longlong_t)tzb->zb_gangs); 7192 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7193 (u_longlong_t)tzb->zb_lsize, 7194 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7195 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7196 "bp physical:", (u_longlong_t)tzb->zb_psize, 7197 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7198 (double)tzb->zb_lsize / tzb->zb_psize); 7199 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7200 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7201 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7202 (double)tzb->zb_lsize / tzb->zb_asize); 7203 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7204 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7205 (u_longlong_t)zcb->zcb_dedup_blocks, 7206 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7207 (void) printf("\t%-16s %14llu count: %6llu\n", 7208 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7209 (u_longlong_t)zcb->zcb_clone_blocks); 7210 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7211 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7212 7213 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7214 uint64_t alloc = metaslab_class_get_alloc( 7215 spa_special_class(spa)); 7216 uint64_t space = metaslab_class_get_space( 7217 spa_special_class(spa)); 7218 7219 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7220 "Special class", (u_longlong_t)alloc, 7221 100.0 * alloc / space); 7222 } 7223 7224 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7225 uint64_t alloc = metaslab_class_get_alloc( 7226 spa_dedup_class(spa)); 7227 uint64_t space = metaslab_class_get_space( 7228 spa_dedup_class(spa)); 7229 7230 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7231 "Dedup class", (u_longlong_t)alloc, 7232 100.0 * alloc / space); 7233 } 7234 7235 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7236 uint64_t alloc = metaslab_class_get_alloc( 7237 spa_embedded_log_class(spa)); 7238 uint64_t space = metaslab_class_get_space( 7239 spa_embedded_log_class(spa)); 7240 7241 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7242 "Embedded log class", (u_longlong_t)alloc, 7243 100.0 * alloc / space); 7244 } 7245 7246 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7247 if (zcb->zcb_embedded_blocks[i] == 0) 7248 continue; 7249 (void) printf("\n"); 7250 (void) printf("\tadditional, non-pointer bps of type %u: " 7251 "%10llu\n", 7252 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7253 7254 if (dump_opt['b'] >= 3) { 7255 (void) printf("\t number of (compressed) bytes: " 7256 "number of bps\n"); 7257 dump_histogram(zcb->zcb_embedded_histogram[i], 7258 sizeof (zcb->zcb_embedded_histogram[i]) / 7259 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7260 } 7261 } 7262 7263 if (tzb->zb_ditto_samevdev != 0) { 7264 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7265 (longlong_t)tzb->zb_ditto_samevdev); 7266 } 7267 if (tzb->zb_ditto_same_ms != 0) { 7268 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7269 (longlong_t)tzb->zb_ditto_same_ms); 7270 } 7271 7272 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7273 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7274 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7275 7276 if (vim == NULL) { 7277 continue; 7278 } 7279 7280 char mem[32]; 7281 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7282 mem, vdev_indirect_mapping_size(vim)); 7283 7284 (void) printf("\tindirect vdev id %llu has %llu segments " 7285 "(%s in memory)\n", 7286 (longlong_t)vd->vdev_id, 7287 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7288 } 7289 7290 if (dump_opt['b'] >= 2) { 7291 int l, t, level; 7292 char csize[32], lsize[32], psize[32], asize[32]; 7293 char avg[32], gang[32]; 7294 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7295 "\t avg\t comp\t%%Total\tType\n"); 7296 7297 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7298 UMEM_NOFAIL); 7299 7300 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7301 const char *typename; 7302 7303 /* make sure nicenum has enough space */ 7304 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7305 "csize truncated"); 7306 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7307 "lsize truncated"); 7308 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7309 "psize truncated"); 7310 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7311 "asize truncated"); 7312 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7313 "avg truncated"); 7314 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7315 "gang truncated"); 7316 7317 if (t < DMU_OT_NUMTYPES) 7318 typename = dmu_ot[t].ot_name; 7319 else 7320 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7321 7322 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7323 (void) printf("%6s\t%5s\t%5s\t%5s" 7324 "\t%5s\t%5s\t%6s\t%s\n", 7325 "-", 7326 "-", 7327 "-", 7328 "-", 7329 "-", 7330 "-", 7331 "-", 7332 typename); 7333 continue; 7334 } 7335 7336 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7337 level = (l == -1 ? ZB_TOTAL : l); 7338 zb = &zcb->zcb_type[level][t]; 7339 7340 if (zb->zb_asize == 0) 7341 continue; 7342 7343 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7344 (level > 0 || DMU_OT_IS_METADATA(t))) { 7345 mdstats->zb_count += zb->zb_count; 7346 mdstats->zb_lsize += zb->zb_lsize; 7347 mdstats->zb_psize += zb->zb_psize; 7348 mdstats->zb_asize += zb->zb_asize; 7349 mdstats->zb_gangs += zb->zb_gangs; 7350 } 7351 7352 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7353 continue; 7354 7355 if (level == 0 && zb->zb_asize == 7356 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7357 continue; 7358 7359 zdb_nicenum(zb->zb_count, csize, 7360 sizeof (csize)); 7361 zdb_nicenum(zb->zb_lsize, lsize, 7362 sizeof (lsize)); 7363 zdb_nicenum(zb->zb_psize, psize, 7364 sizeof (psize)); 7365 zdb_nicenum(zb->zb_asize, asize, 7366 sizeof (asize)); 7367 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7368 sizeof (avg)); 7369 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7370 7371 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7372 "\t%5.2f\t%6.2f\t", 7373 csize, lsize, psize, asize, avg, 7374 (double)zb->zb_lsize / zb->zb_psize, 7375 100.0 * zb->zb_asize / tzb->zb_asize); 7376 7377 if (level == ZB_TOTAL) 7378 (void) printf("%s\n", typename); 7379 else 7380 (void) printf(" L%d %s\n", 7381 level, typename); 7382 7383 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7384 (void) printf("\t number of ganged " 7385 "blocks: %s\n", gang); 7386 } 7387 7388 if (dump_opt['b'] >= 4) { 7389 (void) printf("psize " 7390 "(in 512-byte sectors): " 7391 "number of blocks\n"); 7392 dump_histogram(zb->zb_psize_histogram, 7393 PSIZE_HISTO_SIZE, 0); 7394 } 7395 } 7396 } 7397 zdb_nicenum(mdstats->zb_count, csize, 7398 sizeof (csize)); 7399 zdb_nicenum(mdstats->zb_lsize, lsize, 7400 sizeof (lsize)); 7401 zdb_nicenum(mdstats->zb_psize, psize, 7402 sizeof (psize)); 7403 zdb_nicenum(mdstats->zb_asize, asize, 7404 sizeof (asize)); 7405 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7406 sizeof (avg)); 7407 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7408 7409 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7410 "\t%5.2f\t%6.2f\t", 7411 csize, lsize, psize, asize, avg, 7412 (double)mdstats->zb_lsize / mdstats->zb_psize, 7413 100.0 * mdstats->zb_asize / tzb->zb_asize); 7414 (void) printf("%s\n", "Metadata Total"); 7415 7416 /* Output a table summarizing block sizes in the pool */ 7417 if (dump_opt['b'] >= 2) { 7418 dump_size_histograms(zcb); 7419 } 7420 7421 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7422 } 7423 7424 (void) printf("\n"); 7425 7426 if (leaks) { 7427 umem_free(zcb, sizeof (zdb_cb_t)); 7428 return (2); 7429 } 7430 7431 if (zcb->zcb_haderrors) { 7432 umem_free(zcb, sizeof (zdb_cb_t)); 7433 return (3); 7434 } 7435 7436 umem_free(zcb, sizeof (zdb_cb_t)); 7437 return (0); 7438 } 7439 7440 typedef struct zdb_ddt_entry { 7441 /* key must be first for ddt_key_compare */ 7442 ddt_key_t zdde_key; 7443 uint64_t zdde_ref_blocks; 7444 uint64_t zdde_ref_lsize; 7445 uint64_t zdde_ref_psize; 7446 uint64_t zdde_ref_dsize; 7447 avl_node_t zdde_node; 7448 } zdb_ddt_entry_t; 7449 7450 static int 7451 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7452 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7453 { 7454 (void) zilog, (void) dnp; 7455 avl_tree_t *t = arg; 7456 avl_index_t where; 7457 zdb_ddt_entry_t *zdde, zdde_search; 7458 7459 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7460 BP_IS_EMBEDDED(bp)) 7461 return (0); 7462 7463 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7464 (void) printf("traversing objset %llu, %llu objects, " 7465 "%lu blocks so far\n", 7466 (u_longlong_t)zb->zb_objset, 7467 (u_longlong_t)BP_GET_FILL(bp), 7468 avl_numnodes(t)); 7469 } 7470 7471 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7472 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7473 return (0); 7474 7475 ddt_key_fill(&zdde_search.zdde_key, bp); 7476 7477 zdde = avl_find(t, &zdde_search, &where); 7478 7479 if (zdde == NULL) { 7480 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7481 zdde->zdde_key = zdde_search.zdde_key; 7482 avl_insert(t, zdde, where); 7483 } 7484 7485 zdde->zdde_ref_blocks += 1; 7486 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7487 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7488 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7489 7490 return (0); 7491 } 7492 7493 static void 7494 dump_simulated_ddt(spa_t *spa) 7495 { 7496 avl_tree_t t; 7497 void *cookie = NULL; 7498 zdb_ddt_entry_t *zdde; 7499 ddt_histogram_t ddh_total = {{{0}}}; 7500 ddt_stat_t dds_total = {0}; 7501 7502 avl_create(&t, ddt_key_compare, 7503 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7504 7505 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7506 7507 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7508 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7509 7510 spa_config_exit(spa, SCL_CONFIG, FTAG); 7511 7512 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7513 uint64_t refcnt = zdde->zdde_ref_blocks; 7514 ASSERT(refcnt != 0); 7515 7516 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7517 7518 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7519 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7520 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7521 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7522 7523 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7524 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7525 dds->dds_ref_psize += zdde->zdde_ref_psize; 7526 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7527 7528 umem_free(zdde, sizeof (*zdde)); 7529 } 7530 7531 avl_destroy(&t); 7532 7533 ddt_histogram_total(&dds_total, &ddh_total); 7534 7535 (void) printf("Simulated DDT histogram:\n"); 7536 7537 zpool_dump_ddt(&dds_total, &ddh_total); 7538 7539 dump_dedup_ratio(&dds_total); 7540 } 7541 7542 static int 7543 verify_device_removal_feature_counts(spa_t *spa) 7544 { 7545 uint64_t dr_feature_refcount = 0; 7546 uint64_t oc_feature_refcount = 0; 7547 uint64_t indirect_vdev_count = 0; 7548 uint64_t precise_vdev_count = 0; 7549 uint64_t obsolete_counts_object_count = 0; 7550 uint64_t obsolete_sm_count = 0; 7551 uint64_t obsolete_counts_count = 0; 7552 uint64_t scip_count = 0; 7553 uint64_t obsolete_bpobj_count = 0; 7554 int ret = 0; 7555 7556 spa_condensing_indirect_phys_t *scip = 7557 &spa->spa_condensing_indirect_phys; 7558 if (scip->scip_next_mapping_object != 0) { 7559 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7560 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7561 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7562 7563 (void) printf("Condensing indirect vdev %llu: new mapping " 7564 "object %llu, prev obsolete sm %llu\n", 7565 (u_longlong_t)scip->scip_vdev, 7566 (u_longlong_t)scip->scip_next_mapping_object, 7567 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7568 if (scip->scip_prev_obsolete_sm_object != 0) { 7569 space_map_t *prev_obsolete_sm = NULL; 7570 VERIFY0(space_map_open(&prev_obsolete_sm, 7571 spa->spa_meta_objset, 7572 scip->scip_prev_obsolete_sm_object, 7573 0, vd->vdev_asize, 0)); 7574 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7575 (void) printf("\n"); 7576 space_map_close(prev_obsolete_sm); 7577 } 7578 7579 scip_count += 2; 7580 } 7581 7582 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7583 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7584 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7585 7586 if (vic->vic_mapping_object != 0) { 7587 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7588 vd->vdev_removing); 7589 indirect_vdev_count++; 7590 7591 if (vd->vdev_indirect_mapping->vim_havecounts) { 7592 obsolete_counts_count++; 7593 } 7594 } 7595 7596 boolean_t are_precise; 7597 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7598 if (are_precise) { 7599 ASSERT(vic->vic_mapping_object != 0); 7600 precise_vdev_count++; 7601 } 7602 7603 uint64_t obsolete_sm_object; 7604 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7605 if (obsolete_sm_object != 0) { 7606 ASSERT(vic->vic_mapping_object != 0); 7607 obsolete_sm_count++; 7608 } 7609 } 7610 7611 (void) feature_get_refcount(spa, 7612 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7613 &dr_feature_refcount); 7614 (void) feature_get_refcount(spa, 7615 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7616 &oc_feature_refcount); 7617 7618 if (dr_feature_refcount != indirect_vdev_count) { 7619 ret = 1; 7620 (void) printf("Number of indirect vdevs (%llu) " \ 7621 "does not match feature count (%llu)\n", 7622 (u_longlong_t)indirect_vdev_count, 7623 (u_longlong_t)dr_feature_refcount); 7624 } else { 7625 (void) printf("Verified device_removal feature refcount " \ 7626 "of %llu is correct\n", 7627 (u_longlong_t)dr_feature_refcount); 7628 } 7629 7630 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7631 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7632 obsolete_bpobj_count++; 7633 } 7634 7635 7636 obsolete_counts_object_count = precise_vdev_count; 7637 obsolete_counts_object_count += obsolete_sm_count; 7638 obsolete_counts_object_count += obsolete_counts_count; 7639 obsolete_counts_object_count += scip_count; 7640 obsolete_counts_object_count += obsolete_bpobj_count; 7641 obsolete_counts_object_count += remap_deadlist_count; 7642 7643 if (oc_feature_refcount != obsolete_counts_object_count) { 7644 ret = 1; 7645 (void) printf("Number of obsolete counts objects (%llu) " \ 7646 "does not match feature count (%llu)\n", 7647 (u_longlong_t)obsolete_counts_object_count, 7648 (u_longlong_t)oc_feature_refcount); 7649 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7650 "ob:%llu rd:%llu\n", 7651 (u_longlong_t)precise_vdev_count, 7652 (u_longlong_t)obsolete_sm_count, 7653 (u_longlong_t)obsolete_counts_count, 7654 (u_longlong_t)scip_count, 7655 (u_longlong_t)obsolete_bpobj_count, 7656 (u_longlong_t)remap_deadlist_count); 7657 } else { 7658 (void) printf("Verified indirect_refcount feature refcount " \ 7659 "of %llu is correct\n", 7660 (u_longlong_t)oc_feature_refcount); 7661 } 7662 return (ret); 7663 } 7664 7665 static void 7666 zdb_set_skip_mmp(char *target) 7667 { 7668 spa_t *spa; 7669 7670 /* 7671 * Disable the activity check to allow examination of 7672 * active pools. 7673 */ 7674 mutex_enter(&spa_namespace_lock); 7675 if ((spa = spa_lookup(target)) != NULL) { 7676 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7677 } 7678 mutex_exit(&spa_namespace_lock); 7679 } 7680 7681 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7682 /* 7683 * Import the checkpointed state of the pool specified by the target 7684 * parameter as readonly. The function also accepts a pool config 7685 * as an optional parameter, else it attempts to infer the config by 7686 * the name of the target pool. 7687 * 7688 * Note that the checkpointed state's pool name will be the name of 7689 * the original pool with the above suffix appended to it. In addition, 7690 * if the target is not a pool name (e.g. a path to a dataset) then 7691 * the new_path parameter is populated with the updated path to 7692 * reflect the fact that we are looking into the checkpointed state. 7693 * 7694 * The function returns a newly-allocated copy of the name of the 7695 * pool containing the checkpointed state. When this copy is no 7696 * longer needed it should be freed with free(3C). Same thing 7697 * applies to the new_path parameter if allocated. 7698 */ 7699 static char * 7700 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7701 { 7702 int error = 0; 7703 char *poolname, *bogus_name = NULL; 7704 boolean_t freecfg = B_FALSE; 7705 7706 /* If the target is not a pool, the extract the pool name */ 7707 char *path_start = strchr(target, '/'); 7708 if (path_start != NULL) { 7709 size_t poolname_len = path_start - target; 7710 poolname = strndup(target, poolname_len); 7711 } else { 7712 poolname = target; 7713 } 7714 7715 if (cfg == NULL) { 7716 zdb_set_skip_mmp(poolname); 7717 error = spa_get_stats(poolname, &cfg, NULL, 0); 7718 if (error != 0) { 7719 fatal("Tried to read config of pool \"%s\" but " 7720 "spa_get_stats() failed with error %d\n", 7721 poolname, error); 7722 } 7723 freecfg = B_TRUE; 7724 } 7725 7726 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7727 if (target != poolname) 7728 free(poolname); 7729 return (NULL); 7730 } 7731 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7732 7733 error = spa_import(bogus_name, cfg, NULL, 7734 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7735 ZFS_IMPORT_SKIP_MMP); 7736 if (freecfg) 7737 nvlist_free(cfg); 7738 if (error != 0) { 7739 fatal("Tried to import pool \"%s\" but spa_import() failed " 7740 "with error %d\n", bogus_name, error); 7741 } 7742 7743 if (new_path != NULL && path_start != NULL) { 7744 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7745 free(bogus_name); 7746 if (path_start != NULL) 7747 free(poolname); 7748 return (NULL); 7749 } 7750 } 7751 7752 if (target != poolname) 7753 free(poolname); 7754 7755 return (bogus_name); 7756 } 7757 7758 typedef struct verify_checkpoint_sm_entry_cb_arg { 7759 vdev_t *vcsec_vd; 7760 7761 /* the following fields are only used for printing progress */ 7762 uint64_t vcsec_entryid; 7763 uint64_t vcsec_num_entries; 7764 } verify_checkpoint_sm_entry_cb_arg_t; 7765 7766 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7767 7768 static int 7769 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7770 { 7771 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7772 vdev_t *vd = vcsec->vcsec_vd; 7773 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7774 uint64_t end = sme->sme_offset + sme->sme_run; 7775 7776 ASSERT(sme->sme_type == SM_FREE); 7777 7778 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7779 (void) fprintf(stderr, 7780 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7781 (longlong_t)vd->vdev_id, 7782 (longlong_t)vcsec->vcsec_entryid, 7783 (longlong_t)vcsec->vcsec_num_entries); 7784 } 7785 vcsec->vcsec_entryid++; 7786 7787 /* 7788 * See comment in checkpoint_sm_exclude_entry_cb() 7789 */ 7790 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7791 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7792 7793 /* 7794 * The entries in the vdev_checkpoint_sm should be marked as 7795 * allocated in the checkpointed state of the pool, therefore 7796 * their respective ms_allocateable trees should not contain them. 7797 */ 7798 mutex_enter(&ms->ms_lock); 7799 range_tree_verify_not_present(ms->ms_allocatable, 7800 sme->sme_offset, sme->sme_run); 7801 mutex_exit(&ms->ms_lock); 7802 7803 return (0); 7804 } 7805 7806 /* 7807 * Verify that all segments in the vdev_checkpoint_sm are allocated 7808 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7809 * ms_allocatable). 7810 * 7811 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7812 * each vdev in the current state of the pool to the metaslab space maps 7813 * (ms_sm) of the checkpointed state of the pool. 7814 * 7815 * Note that the function changes the state of the ms_allocatable 7816 * trees of the current spa_t. The entries of these ms_allocatable 7817 * trees are cleared out and then repopulated from with the free 7818 * entries of their respective ms_sm space maps. 7819 */ 7820 static void 7821 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7822 { 7823 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7824 vdev_t *current_rvd = current->spa_root_vdev; 7825 7826 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7827 7828 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7829 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7830 vdev_t *current_vd = current_rvd->vdev_child[c]; 7831 7832 space_map_t *checkpoint_sm = NULL; 7833 uint64_t checkpoint_sm_obj; 7834 7835 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7836 /* 7837 * Since we don't allow device removal in a pool 7838 * that has a checkpoint, we expect that all removed 7839 * vdevs were removed from the pool before the 7840 * checkpoint. 7841 */ 7842 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7843 continue; 7844 } 7845 7846 /* 7847 * If the checkpoint space map doesn't exist, then nothing 7848 * here is checkpointed so there's nothing to verify. 7849 */ 7850 if (current_vd->vdev_top_zap == 0 || 7851 zap_contains(spa_meta_objset(current), 7852 current_vd->vdev_top_zap, 7853 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7854 continue; 7855 7856 VERIFY0(zap_lookup(spa_meta_objset(current), 7857 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7858 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7859 7860 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7861 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7862 current_vd->vdev_ashift)); 7863 7864 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7865 vcsec.vcsec_vd = ckpoint_vd; 7866 vcsec.vcsec_entryid = 0; 7867 vcsec.vcsec_num_entries = 7868 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7869 VERIFY0(space_map_iterate(checkpoint_sm, 7870 space_map_length(checkpoint_sm), 7871 verify_checkpoint_sm_entry_cb, &vcsec)); 7872 if (dump_opt['m'] > 3) 7873 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7874 space_map_close(checkpoint_sm); 7875 } 7876 7877 /* 7878 * If we've added vdevs since we took the checkpoint, ensure 7879 * that their checkpoint space maps are empty. 7880 */ 7881 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7882 for (uint64_t c = ckpoint_rvd->vdev_children; 7883 c < current_rvd->vdev_children; c++) { 7884 vdev_t *current_vd = current_rvd->vdev_child[c]; 7885 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7886 } 7887 } 7888 7889 /* for cleaner progress output */ 7890 (void) fprintf(stderr, "\n"); 7891 } 7892 7893 /* 7894 * Verifies that all space that's allocated in the checkpoint is 7895 * still allocated in the current version, by checking that everything 7896 * in checkpoint's ms_allocatable (which is actually allocated, not 7897 * allocatable/free) is not present in current's ms_allocatable. 7898 * 7899 * Note that the function changes the state of the ms_allocatable 7900 * trees of both spas when called. The entries of all ms_allocatable 7901 * trees are cleared out and then repopulated from their respective 7902 * ms_sm space maps. In the checkpointed state we load the allocated 7903 * entries, and in the current state we load the free entries. 7904 */ 7905 static void 7906 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7907 { 7908 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7909 vdev_t *current_rvd = current->spa_root_vdev; 7910 7911 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7912 load_concrete_ms_allocatable_trees(current, SM_FREE); 7913 7914 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7915 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7916 vdev_t *current_vd = current_rvd->vdev_child[i]; 7917 7918 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7919 /* 7920 * See comment in verify_checkpoint_vdev_spacemaps() 7921 */ 7922 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7923 continue; 7924 } 7925 7926 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7927 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7928 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7929 7930 (void) fprintf(stderr, 7931 "\rverifying vdev %llu of %llu, " 7932 "metaslab %llu of %llu ...", 7933 (longlong_t)current_vd->vdev_id, 7934 (longlong_t)current_rvd->vdev_children, 7935 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7936 (longlong_t)current_vd->vdev_ms_count); 7937 7938 /* 7939 * We walk through the ms_allocatable trees that 7940 * are loaded with the allocated blocks from the 7941 * ms_sm spacemaps of the checkpoint. For each 7942 * one of these ranges we ensure that none of them 7943 * exists in the ms_allocatable trees of the 7944 * current state which are loaded with the ranges 7945 * that are currently free. 7946 * 7947 * This way we ensure that none of the blocks that 7948 * are part of the checkpoint were freed by mistake. 7949 */ 7950 range_tree_walk(ckpoint_msp->ms_allocatable, 7951 (range_tree_func_t *)range_tree_verify_not_present, 7952 current_msp->ms_allocatable); 7953 } 7954 } 7955 7956 /* for cleaner progress output */ 7957 (void) fprintf(stderr, "\n"); 7958 } 7959 7960 static void 7961 verify_checkpoint_blocks(spa_t *spa) 7962 { 7963 ASSERT(!dump_opt['L']); 7964 7965 spa_t *checkpoint_spa; 7966 char *checkpoint_pool; 7967 int error = 0; 7968 7969 /* 7970 * We import the checkpointed state of the pool (under a different 7971 * name) so we can do verification on it against the current state 7972 * of the pool. 7973 */ 7974 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7975 NULL); 7976 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7977 7978 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7979 if (error != 0) { 7980 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7981 "error %d\n", checkpoint_pool, error); 7982 } 7983 7984 /* 7985 * Ensure that ranges in the checkpoint space maps of each vdev 7986 * are allocated according to the checkpointed state's metaslab 7987 * space maps. 7988 */ 7989 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7990 7991 /* 7992 * Ensure that allocated ranges in the checkpoint's metaslab 7993 * space maps remain allocated in the metaslab space maps of 7994 * the current state. 7995 */ 7996 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7997 7998 /* 7999 * Once we are done, we get rid of the checkpointed state. 8000 */ 8001 spa_close(checkpoint_spa, FTAG); 8002 free(checkpoint_pool); 8003 } 8004 8005 static void 8006 dump_leftover_checkpoint_blocks(spa_t *spa) 8007 { 8008 vdev_t *rvd = spa->spa_root_vdev; 8009 8010 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 8011 vdev_t *vd = rvd->vdev_child[i]; 8012 8013 space_map_t *checkpoint_sm = NULL; 8014 uint64_t checkpoint_sm_obj; 8015 8016 if (vd->vdev_top_zap == 0) 8017 continue; 8018 8019 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 8020 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 8021 continue; 8022 8023 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 8024 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 8025 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 8026 8027 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 8028 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 8029 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 8030 space_map_close(checkpoint_sm); 8031 } 8032 } 8033 8034 static int 8035 verify_checkpoint(spa_t *spa) 8036 { 8037 uberblock_t checkpoint; 8038 int error; 8039 8040 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 8041 return (0); 8042 8043 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8044 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 8045 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 8046 8047 if (error == ENOENT && !dump_opt['L']) { 8048 /* 8049 * If the feature is active but the uberblock is missing 8050 * then we must be in the middle of discarding the 8051 * checkpoint. 8052 */ 8053 (void) printf("\nPartially discarded checkpoint " 8054 "state found:\n"); 8055 if (dump_opt['m'] > 3) 8056 dump_leftover_checkpoint_blocks(spa); 8057 return (0); 8058 } else if (error != 0) { 8059 (void) printf("lookup error %d when looking for " 8060 "checkpointed uberblock in MOS\n", error); 8061 return (error); 8062 } 8063 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8064 8065 if (checkpoint.ub_checkpoint_txg == 0) { 8066 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8067 "uberblock\n"); 8068 error = 3; 8069 } 8070 8071 if (error == 0 && !dump_opt['L']) 8072 verify_checkpoint_blocks(spa); 8073 8074 return (error); 8075 } 8076 8077 static void 8078 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8079 { 8080 (void) arg; 8081 for (uint64_t i = start; i < size; i++) { 8082 (void) printf("MOS object %llu referenced but not allocated\n", 8083 (u_longlong_t)i); 8084 } 8085 } 8086 8087 static void 8088 mos_obj_refd(uint64_t obj) 8089 { 8090 if (obj != 0 && mos_refd_objs != NULL) 8091 range_tree_add(mos_refd_objs, obj, 1); 8092 } 8093 8094 /* 8095 * Call on a MOS object that may already have been referenced. 8096 */ 8097 static void 8098 mos_obj_refd_multiple(uint64_t obj) 8099 { 8100 if (obj != 0 && mos_refd_objs != NULL && 8101 !range_tree_contains(mos_refd_objs, obj, 1)) 8102 range_tree_add(mos_refd_objs, obj, 1); 8103 } 8104 8105 static void 8106 mos_leak_vdev_top_zap(vdev_t *vd) 8107 { 8108 uint64_t ms_flush_data_obj; 8109 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8110 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8111 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8112 if (error == ENOENT) 8113 return; 8114 ASSERT0(error); 8115 8116 mos_obj_refd(ms_flush_data_obj); 8117 } 8118 8119 static void 8120 mos_leak_vdev(vdev_t *vd) 8121 { 8122 mos_obj_refd(vd->vdev_dtl_object); 8123 mos_obj_refd(vd->vdev_ms_array); 8124 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8125 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8126 mos_obj_refd(vd->vdev_leaf_zap); 8127 if (vd->vdev_checkpoint_sm != NULL) 8128 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8129 if (vd->vdev_indirect_mapping != NULL) { 8130 mos_obj_refd(vd->vdev_indirect_mapping-> 8131 vim_phys->vimp_counts_object); 8132 } 8133 if (vd->vdev_obsolete_sm != NULL) 8134 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8135 8136 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8137 metaslab_t *ms = vd->vdev_ms[m]; 8138 mos_obj_refd(space_map_object(ms->ms_sm)); 8139 } 8140 8141 if (vd->vdev_root_zap != 0) 8142 mos_obj_refd(vd->vdev_root_zap); 8143 8144 if (vd->vdev_top_zap != 0) { 8145 mos_obj_refd(vd->vdev_top_zap); 8146 mos_leak_vdev_top_zap(vd); 8147 } 8148 8149 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8150 mos_leak_vdev(vd->vdev_child[c]); 8151 } 8152 } 8153 8154 static void 8155 mos_leak_log_spacemaps(spa_t *spa) 8156 { 8157 uint64_t spacemap_zap; 8158 int error = zap_lookup(spa_meta_objset(spa), 8159 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8160 sizeof (spacemap_zap), 1, &spacemap_zap); 8161 if (error == ENOENT) 8162 return; 8163 ASSERT0(error); 8164 8165 mos_obj_refd(spacemap_zap); 8166 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8167 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8168 mos_obj_refd(sls->sls_sm_obj); 8169 } 8170 8171 static void 8172 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8173 { 8174 zap_cursor_t zc; 8175 zap_attribute_t *za = zap_attribute_alloc(); 8176 for (zap_cursor_init(&zc, mos, errlog); 8177 zap_cursor_retrieve(&zc, za) == 0; 8178 zap_cursor_advance(&zc)) { 8179 mos_obj_refd(za->za_first_integer); 8180 } 8181 zap_cursor_fini(&zc); 8182 zap_attribute_free(za); 8183 } 8184 8185 static int 8186 dump_mos_leaks(spa_t *spa) 8187 { 8188 int rv = 0; 8189 objset_t *mos = spa->spa_meta_objset; 8190 dsl_pool_t *dp = spa->spa_dsl_pool; 8191 8192 /* Visit and mark all referenced objects in the MOS */ 8193 8194 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8195 mos_obj_refd(spa->spa_pool_props_object); 8196 mos_obj_refd(spa->spa_config_object); 8197 mos_obj_refd(spa->spa_ddt_stat_object); 8198 mos_obj_refd(spa->spa_feat_desc_obj); 8199 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8200 mos_obj_refd(spa->spa_feat_for_read_obj); 8201 mos_obj_refd(spa->spa_feat_for_write_obj); 8202 mos_obj_refd(spa->spa_history); 8203 mos_obj_refd(spa->spa_errlog_last); 8204 mos_obj_refd(spa->spa_errlog_scrub); 8205 8206 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8207 errorlog_count_refd(mos, spa->spa_errlog_last); 8208 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8209 } 8210 8211 mos_obj_refd(spa->spa_all_vdev_zaps); 8212 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8213 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8214 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8215 bpobj_count_refd(&spa->spa_deferred_bpobj); 8216 mos_obj_refd(dp->dp_empty_bpobj); 8217 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8218 bpobj_count_refd(&dp->dp_free_bpobj); 8219 mos_obj_refd(spa->spa_l2cache.sav_object); 8220 mos_obj_refd(spa->spa_spares.sav_object); 8221 8222 if (spa->spa_syncing_log_sm != NULL) 8223 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8224 mos_leak_log_spacemaps(spa); 8225 8226 mos_obj_refd(spa->spa_condensing_indirect_phys. 8227 scip_next_mapping_object); 8228 mos_obj_refd(spa->spa_condensing_indirect_phys. 8229 scip_prev_obsolete_sm_object); 8230 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8231 vdev_indirect_mapping_t *vim = 8232 vdev_indirect_mapping_open(mos, 8233 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8234 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8235 vdev_indirect_mapping_close(vim); 8236 } 8237 deleted_livelists_dump_mos(spa); 8238 8239 if (dp->dp_origin_snap != NULL) { 8240 dsl_dataset_t *ds; 8241 8242 dsl_pool_config_enter(dp, FTAG); 8243 VERIFY0(dsl_dataset_hold_obj(dp, 8244 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8245 FTAG, &ds)); 8246 count_ds_mos_objects(ds); 8247 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8248 dsl_dataset_rele(ds, FTAG); 8249 dsl_pool_config_exit(dp, FTAG); 8250 8251 count_ds_mos_objects(dp->dp_origin_snap); 8252 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8253 } 8254 count_dir_mos_objects(dp->dp_mos_dir); 8255 if (dp->dp_free_dir != NULL) 8256 count_dir_mos_objects(dp->dp_free_dir); 8257 if (dp->dp_leak_dir != NULL) 8258 count_dir_mos_objects(dp->dp_leak_dir); 8259 8260 mos_leak_vdev(spa->spa_root_vdev); 8261 8262 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8263 ddt_t *ddt = spa->spa_ddt[c]; 8264 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8265 continue; 8266 8267 /* DDT store objects */ 8268 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8269 for (ddt_class_t class = 0; class < DDT_CLASSES; 8270 class++) { 8271 mos_obj_refd(ddt->ddt_object[type][class]); 8272 } 8273 } 8274 8275 /* FDT container */ 8276 if (ddt->ddt_version == DDT_VERSION_FDT) 8277 mos_obj_refd(ddt->ddt_dir_object); 8278 8279 /* FDT log objects */ 8280 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8281 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8282 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8283 } 8284 } 8285 8286 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 8287 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 8288 if (brtvd->bv_initiated) { 8289 mos_obj_refd(brtvd->bv_mos_brtvdev); 8290 mos_obj_refd(brtvd->bv_mos_entries); 8291 } 8292 } 8293 8294 /* 8295 * Visit all allocated objects and make sure they are referenced. 8296 */ 8297 uint64_t object = 0; 8298 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8299 if (range_tree_contains(mos_refd_objs, object, 1)) { 8300 range_tree_remove(mos_refd_objs, object, 1); 8301 } else { 8302 dmu_object_info_t doi; 8303 const char *name; 8304 VERIFY0(dmu_object_info(mos, object, &doi)); 8305 if (doi.doi_type & DMU_OT_NEWTYPE) { 8306 dmu_object_byteswap_t bswap = 8307 DMU_OT_BYTESWAP(doi.doi_type); 8308 name = dmu_ot_byteswap[bswap].ob_name; 8309 } else { 8310 name = dmu_ot[doi.doi_type].ot_name; 8311 } 8312 8313 (void) printf("MOS object %llu (%s) leaked\n", 8314 (u_longlong_t)object, name); 8315 rv = 2; 8316 } 8317 } 8318 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8319 if (!range_tree_is_empty(mos_refd_objs)) 8320 rv = 2; 8321 range_tree_vacate(mos_refd_objs, NULL, NULL); 8322 range_tree_destroy(mos_refd_objs); 8323 return (rv); 8324 } 8325 8326 typedef struct log_sm_obsolete_stats_arg { 8327 uint64_t lsos_current_txg; 8328 8329 uint64_t lsos_total_entries; 8330 uint64_t lsos_valid_entries; 8331 8332 uint64_t lsos_sm_entries; 8333 uint64_t lsos_valid_sm_entries; 8334 } log_sm_obsolete_stats_arg_t; 8335 8336 static int 8337 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8338 uint64_t txg, void *arg) 8339 { 8340 log_sm_obsolete_stats_arg_t *lsos = arg; 8341 8342 uint64_t offset = sme->sme_offset; 8343 uint64_t vdev_id = sme->sme_vdev; 8344 8345 if (lsos->lsos_current_txg == 0) { 8346 /* this is the first log */ 8347 lsos->lsos_current_txg = txg; 8348 } else if (lsos->lsos_current_txg < txg) { 8349 /* we just changed log - print stats and reset */ 8350 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8351 (u_longlong_t)lsos->lsos_valid_sm_entries, 8352 (u_longlong_t)lsos->lsos_sm_entries, 8353 (u_longlong_t)lsos->lsos_current_txg); 8354 lsos->lsos_valid_sm_entries = 0; 8355 lsos->lsos_sm_entries = 0; 8356 lsos->lsos_current_txg = txg; 8357 } 8358 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8359 8360 lsos->lsos_sm_entries++; 8361 lsos->lsos_total_entries++; 8362 8363 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8364 if (!vdev_is_concrete(vd)) 8365 return (0); 8366 8367 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8368 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8369 8370 if (txg < metaslab_unflushed_txg(ms)) 8371 return (0); 8372 lsos->lsos_valid_sm_entries++; 8373 lsos->lsos_valid_entries++; 8374 return (0); 8375 } 8376 8377 static void 8378 dump_log_spacemap_obsolete_stats(spa_t *spa) 8379 { 8380 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8381 return; 8382 8383 log_sm_obsolete_stats_arg_t lsos = {0}; 8384 8385 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8386 8387 iterate_through_spacemap_logs(spa, 8388 log_spacemap_obsolete_stats_cb, &lsos); 8389 8390 /* print stats for latest log */ 8391 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8392 (u_longlong_t)lsos.lsos_valid_sm_entries, 8393 (u_longlong_t)lsos.lsos_sm_entries, 8394 (u_longlong_t)lsos.lsos_current_txg); 8395 8396 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8397 (u_longlong_t)lsos.lsos_valid_entries, 8398 (u_longlong_t)lsos.lsos_total_entries); 8399 } 8400 8401 static void 8402 dump_zpool(spa_t *spa) 8403 { 8404 dsl_pool_t *dp = spa_get_dsl(spa); 8405 int rc = 0; 8406 8407 if (dump_opt['y']) { 8408 livelist_metaslab_validate(spa); 8409 } 8410 8411 if (dump_opt['S']) { 8412 dump_simulated_ddt(spa); 8413 return; 8414 } 8415 8416 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8417 (void) printf("\nCached configuration:\n"); 8418 dump_nvlist(spa->spa_config, 8); 8419 } 8420 8421 if (dump_opt['C']) 8422 dump_config(spa); 8423 8424 if (dump_opt['u']) 8425 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8426 8427 if (dump_opt['D']) 8428 dump_all_ddts(spa); 8429 8430 if (dump_opt['T']) 8431 dump_brt(spa); 8432 8433 if (dump_opt['d'] > 2 || dump_opt['m']) 8434 dump_metaslabs(spa); 8435 if (dump_opt['M']) 8436 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8437 if (dump_opt['d'] > 2 || dump_opt['m']) { 8438 dump_log_spacemaps(spa); 8439 dump_log_spacemap_obsolete_stats(spa); 8440 } 8441 8442 if (dump_opt['d'] || dump_opt['i']) { 8443 spa_feature_t f; 8444 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8445 0); 8446 dump_objset(dp->dp_meta_objset); 8447 8448 if (dump_opt['d'] >= 3) { 8449 dsl_pool_t *dp = spa->spa_dsl_pool; 8450 dump_full_bpobj(&spa->spa_deferred_bpobj, 8451 "Deferred frees", 0); 8452 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8453 dump_full_bpobj(&dp->dp_free_bpobj, 8454 "Pool snapshot frees", 0); 8455 } 8456 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8457 ASSERT(spa_feature_is_enabled(spa, 8458 SPA_FEATURE_DEVICE_REMOVAL)); 8459 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8460 "Pool obsolete blocks", 0); 8461 } 8462 8463 if (spa_feature_is_active(spa, 8464 SPA_FEATURE_ASYNC_DESTROY)) { 8465 dump_bptree(spa->spa_meta_objset, 8466 dp->dp_bptree_obj, 8467 "Pool dataset frees"); 8468 } 8469 dump_dtl(spa->spa_root_vdev, 0); 8470 } 8471 8472 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8473 global_feature_count[f] = UINT64_MAX; 8474 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8475 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8476 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8477 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8478 8479 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8480 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8481 8482 if (rc == 0 && !dump_opt['L']) 8483 rc = dump_mos_leaks(spa); 8484 8485 for (f = 0; f < SPA_FEATURES; f++) { 8486 uint64_t refcount; 8487 8488 uint64_t *arr; 8489 if (!(spa_feature_table[f].fi_flags & 8490 ZFEATURE_FLAG_PER_DATASET)) { 8491 if (global_feature_count[f] == UINT64_MAX) 8492 continue; 8493 if (!spa_feature_is_enabled(spa, f)) { 8494 ASSERT0(global_feature_count[f]); 8495 continue; 8496 } 8497 arr = global_feature_count; 8498 } else { 8499 if (!spa_feature_is_enabled(spa, f)) { 8500 ASSERT0(dataset_feature_count[f]); 8501 continue; 8502 } 8503 arr = dataset_feature_count; 8504 } 8505 if (feature_get_refcount(spa, &spa_feature_table[f], 8506 &refcount) == ENOTSUP) 8507 continue; 8508 if (arr[f] != refcount) { 8509 (void) printf("%s feature refcount mismatch: " 8510 "%lld consumers != %lld refcount\n", 8511 spa_feature_table[f].fi_uname, 8512 (longlong_t)arr[f], (longlong_t)refcount); 8513 rc = 2; 8514 } else { 8515 (void) printf("Verified %s feature refcount " 8516 "of %llu is correct\n", 8517 spa_feature_table[f].fi_uname, 8518 (longlong_t)refcount); 8519 } 8520 } 8521 8522 if (rc == 0) 8523 rc = verify_device_removal_feature_counts(spa); 8524 } 8525 8526 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8527 rc = dump_block_stats(spa); 8528 8529 if (rc == 0) 8530 rc = verify_spacemap_refcounts(spa); 8531 8532 if (dump_opt['s']) 8533 show_pool_stats(spa); 8534 8535 if (dump_opt['h']) 8536 dump_history(spa); 8537 8538 if (rc == 0) 8539 rc = verify_checkpoint(spa); 8540 8541 if (rc != 0) { 8542 dump_debug_buffer(); 8543 zdb_exit(rc); 8544 } 8545 } 8546 8547 #define ZDB_FLAG_CHECKSUM 0x0001 8548 #define ZDB_FLAG_DECOMPRESS 0x0002 8549 #define ZDB_FLAG_BSWAP 0x0004 8550 #define ZDB_FLAG_GBH 0x0008 8551 #define ZDB_FLAG_INDIRECT 0x0010 8552 #define ZDB_FLAG_RAW 0x0020 8553 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8554 #define ZDB_FLAG_VERBOSE 0x0080 8555 8556 static int flagbits[256]; 8557 static char flagbitstr[16]; 8558 8559 static void 8560 zdb_print_blkptr(const blkptr_t *bp, int flags) 8561 { 8562 char blkbuf[BP_SPRINTF_LEN]; 8563 8564 if (flags & ZDB_FLAG_BSWAP) 8565 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8566 8567 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8568 (void) printf("%s\n", blkbuf); 8569 } 8570 8571 static void 8572 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8573 { 8574 int i; 8575 8576 for (i = 0; i < nbps; i++) 8577 zdb_print_blkptr(&bp[i], flags); 8578 } 8579 8580 static void 8581 zdb_dump_gbh(void *buf, int flags) 8582 { 8583 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8584 } 8585 8586 static void 8587 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8588 { 8589 if (flags & ZDB_FLAG_BSWAP) 8590 byteswap_uint64_array(buf, size); 8591 VERIFY(write(fileno(stdout), buf, size) == size); 8592 } 8593 8594 static void 8595 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8596 { 8597 uint64_t *d = (uint64_t *)buf; 8598 unsigned nwords = size / sizeof (uint64_t); 8599 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8600 unsigned i, j; 8601 const char *hdr; 8602 char *c; 8603 8604 8605 if (do_bswap) 8606 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8607 else 8608 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8609 8610 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8611 8612 #ifdef _ZFS_LITTLE_ENDIAN 8613 /* correct the endianness */ 8614 do_bswap = !do_bswap; 8615 #endif 8616 for (i = 0; i < nwords; i += 2) { 8617 (void) printf("%06llx: %016llx %016llx ", 8618 (u_longlong_t)(i * sizeof (uint64_t)), 8619 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8620 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8621 8622 c = (char *)&d[i]; 8623 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8624 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8625 (void) printf("\n"); 8626 } 8627 } 8628 8629 /* 8630 * There are two acceptable formats: 8631 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8632 * child[.child]* - For example: 0.1.1 8633 * 8634 * The second form can be used to specify arbitrary vdevs anywhere 8635 * in the hierarchy. For example, in a pool with a mirror of 8636 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8637 */ 8638 static vdev_t * 8639 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8640 { 8641 char *s, *p, *q; 8642 unsigned i; 8643 8644 if (vdev == NULL) 8645 return (NULL); 8646 8647 /* First, assume the x.x.x.x format */ 8648 i = strtoul(path, &s, 10); 8649 if (s == path || (s && *s != '.' && *s != '\0')) 8650 goto name; 8651 if (i >= vdev->vdev_children) 8652 return (NULL); 8653 8654 vdev = vdev->vdev_child[i]; 8655 if (s && *s == '\0') 8656 return (vdev); 8657 return (zdb_vdev_lookup(vdev, s+1)); 8658 8659 name: 8660 for (i = 0; i < vdev->vdev_children; i++) { 8661 vdev_t *vc = vdev->vdev_child[i]; 8662 8663 if (vc->vdev_path == NULL) { 8664 vc = zdb_vdev_lookup(vc, path); 8665 if (vc == NULL) 8666 continue; 8667 else 8668 return (vc); 8669 } 8670 8671 p = strrchr(vc->vdev_path, '/'); 8672 p = p ? p + 1 : vc->vdev_path; 8673 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8674 8675 if (strcmp(vc->vdev_path, path) == 0) 8676 return (vc); 8677 if (strcmp(p, path) == 0) 8678 return (vc); 8679 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8680 return (vc); 8681 } 8682 8683 return (NULL); 8684 } 8685 8686 static int 8687 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8688 { 8689 dsl_dataset_t *ds; 8690 8691 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8692 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8693 NULL, &ds); 8694 if (error != 0) { 8695 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8696 (u_longlong_t)objset_id, strerror(error)); 8697 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8698 return (error); 8699 } 8700 dsl_dataset_name(ds, outstr); 8701 dsl_dataset_rele(ds, NULL); 8702 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8703 return (0); 8704 } 8705 8706 static boolean_t 8707 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8708 { 8709 char *s0, *s1, *tmp = NULL; 8710 8711 if (sizes == NULL) 8712 return (B_FALSE); 8713 8714 s0 = strtok_r(sizes, "/", &tmp); 8715 if (s0 == NULL) 8716 return (B_FALSE); 8717 s1 = strtok_r(NULL, "/", &tmp); 8718 *lsize = strtoull(s0, NULL, 16); 8719 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8720 return (*lsize >= *psize && *psize > 0); 8721 } 8722 8723 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8724 8725 static boolean_t 8726 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8727 int flags, int cfunc, void *lbuf, void *lbuf2) 8728 { 8729 if (flags & ZDB_FLAG_VERBOSE) { 8730 (void) fprintf(stderr, 8731 "Trying %05llx -> %05llx (%s)\n", 8732 (u_longlong_t)psize, 8733 (u_longlong_t)lsize, 8734 zio_compress_table[cfunc].ci_name); 8735 } 8736 8737 /* 8738 * We set lbuf to all zeros and lbuf2 to all 8739 * ones, then decompress to both buffers and 8740 * compare their contents. This way we can 8741 * know if decompression filled exactly to 8742 * lsize or if it left some bytes unwritten. 8743 */ 8744 8745 memset(lbuf, 0x00, lsize); 8746 memset(lbuf2, 0xff, lsize); 8747 8748 abd_t labd, labd2; 8749 abd_get_from_buf_struct(&labd, lbuf, lsize); 8750 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8751 8752 boolean_t ret = B_FALSE; 8753 if (zio_decompress_data(cfunc, pabd, 8754 &labd, psize, lsize, NULL) == 0 && 8755 zio_decompress_data(cfunc, pabd, 8756 &labd2, psize, lsize, NULL) == 0 && 8757 memcmp(lbuf, lbuf2, lsize) == 0) 8758 ret = B_TRUE; 8759 8760 abd_free(&labd2); 8761 abd_free(&labd); 8762 8763 return (ret); 8764 } 8765 8766 static uint64_t 8767 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8768 uint64_t psize, int flags) 8769 { 8770 (void) buf; 8771 uint64_t orig_lsize = lsize; 8772 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8773 boolean_t found = B_FALSE; 8774 /* 8775 * We don't know how the data was compressed, so just try 8776 * every decompress function at every inflated blocksize. 8777 */ 8778 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8779 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8780 int *cfuncp = cfuncs; 8781 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8782 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8783 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8784 ZIO_COMPRESS_MASK(ZLE); 8785 *cfuncp++ = ZIO_COMPRESS_LZ4; 8786 *cfuncp++ = ZIO_COMPRESS_LZJB; 8787 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8788 /* 8789 * Every gzip level has the same decompressor, no need to 8790 * run it 9 times per bruteforce attempt. 8791 */ 8792 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8793 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8794 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8795 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8796 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8797 if (((1ULL << c) & mask) == 0) 8798 *cfuncp++ = c; 8799 8800 /* 8801 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8802 * could take a while and we should let the user know 8803 * we are not stuck. On the other hand, printing progress 8804 * info gets old after a while. User can specify 'v' flag 8805 * to see the progression. 8806 */ 8807 if (lsize == psize) 8808 lsize += SPA_MINBLOCKSIZE; 8809 else 8810 maxlsize = lsize; 8811 8812 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8813 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8814 if (try_decompress_block(pabd, lsize, psize, flags, 8815 *cfuncp, lbuf, lbuf2)) { 8816 found = B_TRUE; 8817 break; 8818 } 8819 } 8820 if (*cfuncp != 0) 8821 break; 8822 } 8823 if (!found && tryzle) { 8824 for (lsize = orig_lsize; lsize <= maxlsize; 8825 lsize += SPA_MINBLOCKSIZE) { 8826 if (try_decompress_block(pabd, lsize, psize, flags, 8827 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8828 *cfuncp = ZIO_COMPRESS_ZLE; 8829 found = B_TRUE; 8830 break; 8831 } 8832 } 8833 } 8834 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8835 8836 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8837 printf("\nZLE decompression was selected. If you " 8838 "suspect the results are wrong,\ntry avoiding ZLE " 8839 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8840 } 8841 8842 return (lsize > maxlsize ? -1 : lsize); 8843 } 8844 8845 /* 8846 * Read a block from a pool and print it out. The syntax of the 8847 * block descriptor is: 8848 * 8849 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8850 * 8851 * pool - The name of the pool you wish to read from 8852 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8853 * offset - offset, in hex, in bytes 8854 * size - Amount of data to read, in hex, in bytes 8855 * flags - A string of characters specifying options 8856 * b: Decode a blkptr at given offset within block 8857 * c: Calculate and display checksums 8858 * d: Decompress data before dumping 8859 * e: Byteswap data before dumping 8860 * g: Display data as a gang block header 8861 * i: Display as an indirect block 8862 * r: Dump raw data to stdout 8863 * v: Verbose 8864 * 8865 */ 8866 static void 8867 zdb_read_block(char *thing, spa_t *spa) 8868 { 8869 blkptr_t blk, *bp = &blk; 8870 dva_t *dva = bp->blk_dva; 8871 int flags = 0; 8872 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8873 zio_t *zio; 8874 vdev_t *vd; 8875 abd_t *pabd; 8876 void *lbuf, *buf; 8877 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8878 const char *vdev, *errmsg = NULL; 8879 int i, len, error; 8880 boolean_t borrowed = B_FALSE, found = B_FALSE; 8881 8882 dup = strdup(thing); 8883 s = strtok_r(dup, ":", &tmp); 8884 vdev = s ?: ""; 8885 s = strtok_r(NULL, ":", &tmp); 8886 offset = strtoull(s ? s : "", NULL, 16); 8887 sizes = strtok_r(NULL, ":", &tmp); 8888 s = strtok_r(NULL, ":", &tmp); 8889 flagstr = strdup(s ?: ""); 8890 8891 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8892 errmsg = "invalid size(s)"; 8893 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8894 errmsg = "size must be a multiple of sector size"; 8895 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8896 errmsg = "offset must be a multiple of sector size"; 8897 if (errmsg) { 8898 (void) printf("Invalid block specifier: %s - %s\n", 8899 thing, errmsg); 8900 goto done; 8901 } 8902 8903 tmp = NULL; 8904 for (s = strtok_r(flagstr, ":", &tmp); 8905 s != NULL; 8906 s = strtok_r(NULL, ":", &tmp)) { 8907 len = strlen(flagstr); 8908 for (i = 0; i < len; i++) { 8909 int bit = flagbits[(uchar_t)flagstr[i]]; 8910 8911 if (bit == 0) { 8912 (void) printf("***Ignoring flag: %c\n", 8913 (uchar_t)flagstr[i]); 8914 continue; 8915 } 8916 found = B_TRUE; 8917 flags |= bit; 8918 8919 p = &flagstr[i + 1]; 8920 if (*p != ':' && *p != '\0') { 8921 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8922 char *end, offstr[8] = { 0 }; 8923 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8924 (nextbit == 0)) { 8925 /* look ahead to isolate the offset */ 8926 while (nextbit == 0 && 8927 strchr(flagbitstr, *p) == NULL) { 8928 offstr[j] = *p; 8929 j++; 8930 if (i + j > strlen(flagstr)) 8931 break; 8932 p++; 8933 nextbit = flagbits[(uchar_t)*p]; 8934 } 8935 blkptr_offset = strtoull(offstr, &end, 8936 16); 8937 i += j; 8938 } else if (nextbit == 0) { 8939 (void) printf("***Ignoring flag arg:" 8940 " '%c'\n", (uchar_t)*p); 8941 } 8942 } 8943 } 8944 } 8945 if (blkptr_offset % sizeof (blkptr_t)) { 8946 printf("Block pointer offset 0x%llx " 8947 "must be divisible by 0x%x\n", 8948 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8949 goto done; 8950 } 8951 if (found == B_FALSE && strlen(flagstr) > 0) { 8952 printf("Invalid flag arg: '%s'\n", flagstr); 8953 goto done; 8954 } 8955 8956 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8957 if (vd == NULL) { 8958 (void) printf("***Invalid vdev: %s\n", vdev); 8959 goto done; 8960 } else { 8961 if (vd->vdev_path) 8962 (void) fprintf(stderr, "Found vdev: %s\n", 8963 vd->vdev_path); 8964 else 8965 (void) fprintf(stderr, "Found vdev type: %s\n", 8966 vd->vdev_ops->vdev_op_type); 8967 } 8968 8969 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8970 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8971 8972 BP_ZERO(bp); 8973 8974 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8975 DVA_SET_OFFSET(&dva[0], offset); 8976 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8977 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8978 8979 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8980 8981 BP_SET_LSIZE(bp, lsize); 8982 BP_SET_PSIZE(bp, psize); 8983 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8984 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8985 BP_SET_TYPE(bp, DMU_OT_NONE); 8986 BP_SET_LEVEL(bp, 0); 8987 BP_SET_DEDUP(bp, 0); 8988 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8989 8990 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8991 zio = zio_root(spa, NULL, NULL, 0); 8992 8993 if (vd == vd->vdev_top) { 8994 /* 8995 * Treat this as a normal block read. 8996 */ 8997 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8998 ZIO_PRIORITY_SYNC_READ, 8999 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 9000 } else { 9001 /* 9002 * Treat this as a vdev child I/O. 9003 */ 9004 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 9005 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 9006 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9007 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 9008 NULL, NULL)); 9009 } 9010 9011 error = zio_wait(zio); 9012 spa_config_exit(spa, SCL_STATE, FTAG); 9013 9014 if (error) { 9015 (void) printf("Read of %s failed, error: %d\n", thing, error); 9016 goto out; 9017 } 9018 9019 uint64_t orig_lsize = lsize; 9020 buf = lbuf; 9021 if (flags & ZDB_FLAG_DECOMPRESS) { 9022 lsize = zdb_decompress_block(pabd, buf, lbuf, 9023 lsize, psize, flags); 9024 if (lsize == -1) { 9025 (void) printf("Decompress of %s failed\n", thing); 9026 goto out; 9027 } 9028 } else { 9029 buf = abd_borrow_buf_copy(pabd, lsize); 9030 borrowed = B_TRUE; 9031 } 9032 /* 9033 * Try to detect invalid block pointer. If invalid, try 9034 * decompressing. 9035 */ 9036 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 9037 !(flags & ZDB_FLAG_DECOMPRESS)) { 9038 const blkptr_t *b = (const blkptr_t *)(void *) 9039 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9040 if (zfs_blkptr_verify(spa, b, 9041 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 9042 abd_return_buf_copy(pabd, buf, lsize); 9043 borrowed = B_FALSE; 9044 buf = lbuf; 9045 lsize = zdb_decompress_block(pabd, buf, 9046 lbuf, lsize, psize, flags); 9047 b = (const blkptr_t *)(void *) 9048 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9049 if (lsize == -1 || zfs_blkptr_verify(spa, b, 9050 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 9051 printf("invalid block pointer at this DVA\n"); 9052 goto out; 9053 } 9054 } 9055 } 9056 9057 if (flags & ZDB_FLAG_PRINT_BLKPTR) 9058 zdb_print_blkptr((blkptr_t *)(void *) 9059 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 9060 else if (flags & ZDB_FLAG_RAW) 9061 zdb_dump_block_raw(buf, lsize, flags); 9062 else if (flags & ZDB_FLAG_INDIRECT) 9063 zdb_dump_indirect((blkptr_t *)buf, 9064 orig_lsize / sizeof (blkptr_t), flags); 9065 else if (flags & ZDB_FLAG_GBH) 9066 zdb_dump_gbh(buf, flags); 9067 else 9068 zdb_dump_block(thing, buf, lsize, flags); 9069 9070 /* 9071 * If :c was specified, iterate through the checksum table to 9072 * calculate and display each checksum for our specified 9073 * DVA and length. 9074 */ 9075 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9076 !(flags & ZDB_FLAG_GBH)) { 9077 zio_t *czio; 9078 (void) printf("\n"); 9079 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9080 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9081 9082 if ((zio_checksum_table[ck].ci_flags & 9083 ZCHECKSUM_FLAG_EMBEDDED) || 9084 ck == ZIO_CHECKSUM_NOPARITY) { 9085 continue; 9086 } 9087 BP_SET_CHECKSUM(bp, ck); 9088 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9089 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9090 if (vd == vd->vdev_top) { 9091 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9092 NULL, NULL, 9093 ZIO_PRIORITY_SYNC_READ, 9094 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9095 ZIO_FLAG_DONT_RETRY, NULL)); 9096 } else { 9097 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9098 offset, pabd, psize, ZIO_TYPE_READ, 9099 ZIO_PRIORITY_SYNC_READ, 9100 ZIO_FLAG_DONT_PROPAGATE | 9101 ZIO_FLAG_DONT_RETRY | 9102 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9103 ZIO_FLAG_SPECULATIVE | 9104 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9105 } 9106 error = zio_wait(czio); 9107 if (error == 0 || error == ECKSUM) { 9108 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9109 NULL, NULL, 0); 9110 ck_zio->io_offset = 9111 DVA_GET_OFFSET(&bp->blk_dva[0]); 9112 ck_zio->io_bp = bp; 9113 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9114 printf( 9115 "%12s\t" 9116 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9117 zio_checksum_table[ck].ci_name, 9118 (u_longlong_t)bp->blk_cksum.zc_word[0], 9119 (u_longlong_t)bp->blk_cksum.zc_word[1], 9120 (u_longlong_t)bp->blk_cksum.zc_word[2], 9121 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9122 zio_wait(ck_zio); 9123 } else { 9124 printf("error %d reading block\n", error); 9125 } 9126 spa_config_exit(spa, SCL_STATE, FTAG); 9127 } 9128 } 9129 9130 if (borrowed) 9131 abd_return_buf_copy(pabd, buf, lsize); 9132 9133 out: 9134 abd_free(pabd); 9135 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9136 done: 9137 free(flagstr); 9138 free(dup); 9139 } 9140 9141 static void 9142 zdb_embedded_block(char *thing) 9143 { 9144 blkptr_t bp = {{{{0}}}}; 9145 unsigned long long *words = (void *)&bp; 9146 char *buf; 9147 int err; 9148 9149 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9150 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9151 words + 0, words + 1, words + 2, words + 3, 9152 words + 4, words + 5, words + 6, words + 7, 9153 words + 8, words + 9, words + 10, words + 11, 9154 words + 12, words + 13, words + 14, words + 15); 9155 if (err != 16) { 9156 (void) fprintf(stderr, "invalid input format\n"); 9157 zdb_exit(1); 9158 } 9159 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9160 buf = malloc(SPA_MAXBLOCKSIZE); 9161 if (buf == NULL) { 9162 (void) fprintf(stderr, "out of memory\n"); 9163 zdb_exit(1); 9164 } 9165 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9166 if (err != 0) { 9167 (void) fprintf(stderr, "decode failed: %u\n", err); 9168 zdb_exit(1); 9169 } 9170 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9171 free(buf); 9172 } 9173 9174 /* check for valid hex or decimal numeric string */ 9175 static boolean_t 9176 zdb_numeric(char *str) 9177 { 9178 int i = 0, len; 9179 9180 len = strlen(str); 9181 if (len == 0) 9182 return (B_FALSE); 9183 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9184 i = 2; 9185 for (; i < len; i++) { 9186 if (!isxdigit(str[i])) 9187 return (B_FALSE); 9188 } 9189 return (B_TRUE); 9190 } 9191 9192 static int 9193 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9194 zfs_file_info_t *zoi) 9195 { 9196 (void) data, (void) zoi; 9197 9198 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9199 return (ENOENT); 9200 9201 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9202 abort(); 9203 } 9204 9205 int 9206 main(int argc, char **argv) 9207 { 9208 int c; 9209 int dump_all = 1; 9210 int verbose = 0; 9211 int error = 0; 9212 char **searchdirs = NULL; 9213 int nsearch = 0; 9214 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9215 nvlist_t *policy = NULL; 9216 uint64_t max_txg = UINT64_MAX; 9217 int64_t objset_id = -1; 9218 uint64_t object; 9219 int flags = ZFS_IMPORT_MISSING_LOG; 9220 int rewind = ZPOOL_NEVER_REWIND; 9221 char *spa_config_path_env, *objset_str; 9222 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9223 nvlist_t *cfg = NULL; 9224 struct sigaction action; 9225 boolean_t force_import = B_FALSE; 9226 boolean_t config_path_console = B_FALSE; 9227 char pbuf[MAXPATHLEN]; 9228 9229 dprintf_setup(&argc, argv); 9230 9231 /* 9232 * Set up signal handlers, so if we crash due to bad on-disk data we 9233 * can get more info. Unlike ztest, we don't bail out if we can't set 9234 * up signal handlers, because zdb is very useful without them. 9235 */ 9236 action.sa_handler = sig_handler; 9237 sigemptyset(&action.sa_mask); 9238 action.sa_flags = 0; 9239 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9240 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9241 strerror(errno)); 9242 } 9243 if (sigaction(SIGABRT, &action, NULL) < 0) { 9244 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9245 strerror(errno)); 9246 } 9247 9248 /* 9249 * If there is an environment variable SPA_CONFIG_PATH it overrides 9250 * default spa_config_path setting. If -U flag is specified it will 9251 * override this environment variable settings once again. 9252 */ 9253 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9254 if (spa_config_path_env != NULL) 9255 spa_config_path = spa_config_path_env; 9256 9257 /* 9258 * For performance reasons, we set this tunable down. We do so before 9259 * the arg parsing section so that the user can override this value if 9260 * they choose. 9261 */ 9262 zfs_btree_verify_intensity = 3; 9263 9264 struct option long_options[] = { 9265 {"ignore-assertions", no_argument, NULL, 'A'}, 9266 {"block-stats", no_argument, NULL, 'b'}, 9267 {"backup", no_argument, NULL, 'B'}, 9268 {"checksum", no_argument, NULL, 'c'}, 9269 {"config", no_argument, NULL, 'C'}, 9270 {"datasets", no_argument, NULL, 'd'}, 9271 {"dedup-stats", no_argument, NULL, 'D'}, 9272 {"exported", no_argument, NULL, 'e'}, 9273 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9274 {"automatic-rewind", no_argument, NULL, 'F'}, 9275 {"dump-debug-msg", no_argument, NULL, 'G'}, 9276 {"history", no_argument, NULL, 'h'}, 9277 {"intent-logs", no_argument, NULL, 'i'}, 9278 {"inflight", required_argument, NULL, 'I'}, 9279 {"checkpointed-state", no_argument, NULL, 'k'}, 9280 {"key", required_argument, NULL, 'K'}, 9281 {"label", no_argument, NULL, 'l'}, 9282 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9283 {"metaslabs", no_argument, NULL, 'm'}, 9284 {"metaslab-groups", no_argument, NULL, 'M'}, 9285 {"numeric", no_argument, NULL, 'N'}, 9286 {"option", required_argument, NULL, 'o'}, 9287 {"object-lookups", no_argument, NULL, 'O'}, 9288 {"path", required_argument, NULL, 'p'}, 9289 {"parseable", no_argument, NULL, 'P'}, 9290 {"skip-label", no_argument, NULL, 'q'}, 9291 {"copy-object", no_argument, NULL, 'r'}, 9292 {"read-block", no_argument, NULL, 'R'}, 9293 {"io-stats", no_argument, NULL, 's'}, 9294 {"simulate-dedup", no_argument, NULL, 'S'}, 9295 {"txg", required_argument, NULL, 't'}, 9296 {"brt-stats", no_argument, NULL, 'T'}, 9297 {"uberblock", no_argument, NULL, 'u'}, 9298 {"cachefile", required_argument, NULL, 'U'}, 9299 {"verbose", no_argument, NULL, 'v'}, 9300 {"verbatim", no_argument, NULL, 'V'}, 9301 {"dump-blocks", required_argument, NULL, 'x'}, 9302 {"extreme-rewind", no_argument, NULL, 'X'}, 9303 {"all-reconstruction", no_argument, NULL, 'Y'}, 9304 {"livelist", no_argument, NULL, 'y'}, 9305 {"zstd-headers", no_argument, NULL, 'Z'}, 9306 {0, 0, 0, 0} 9307 }; 9308 9309 while ((c = getopt_long(argc, argv, 9310 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9311 long_options, NULL)) != -1) { 9312 switch (c) { 9313 case 'b': 9314 case 'B': 9315 case 'c': 9316 case 'C': 9317 case 'd': 9318 case 'D': 9319 case 'E': 9320 case 'G': 9321 case 'h': 9322 case 'i': 9323 case 'l': 9324 case 'm': 9325 case 'M': 9326 case 'N': 9327 case 'O': 9328 case 'r': 9329 case 'R': 9330 case 's': 9331 case 'S': 9332 case 'T': 9333 case 'u': 9334 case 'y': 9335 case 'Z': 9336 dump_opt[c]++; 9337 dump_all = 0; 9338 break; 9339 case 'A': 9340 case 'e': 9341 case 'F': 9342 case 'k': 9343 case 'L': 9344 case 'P': 9345 case 'q': 9346 case 'X': 9347 dump_opt[c]++; 9348 break; 9349 case 'Y': 9350 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9351 zfs_deadman_enabled = 0; 9352 break; 9353 /* NB: Sort single match options below. */ 9354 case 'I': 9355 max_inflight_bytes = strtoull(optarg, NULL, 0); 9356 if (max_inflight_bytes == 0) { 9357 (void) fprintf(stderr, "maximum number " 9358 "of inflight bytes must be greater " 9359 "than 0\n"); 9360 usage(); 9361 } 9362 break; 9363 case 'K': 9364 dump_opt[c]++; 9365 key_material = strdup(optarg); 9366 /* redact key material in process table */ 9367 while (*optarg != '\0') { *optarg++ = '*'; } 9368 break; 9369 case 'o': 9370 error = set_global_var(optarg); 9371 if (error != 0) 9372 usage(); 9373 break; 9374 case 'p': 9375 if (searchdirs == NULL) { 9376 searchdirs = umem_alloc(sizeof (char *), 9377 UMEM_NOFAIL); 9378 } else { 9379 char **tmp = umem_alloc((nsearch + 1) * 9380 sizeof (char *), UMEM_NOFAIL); 9381 memcpy(tmp, searchdirs, nsearch * 9382 sizeof (char *)); 9383 umem_free(searchdirs, 9384 nsearch * sizeof (char *)); 9385 searchdirs = tmp; 9386 } 9387 searchdirs[nsearch++] = optarg; 9388 break; 9389 case 't': 9390 max_txg = strtoull(optarg, NULL, 0); 9391 if (max_txg < TXG_INITIAL) { 9392 (void) fprintf(stderr, "incorrect txg " 9393 "specified: %s\n", optarg); 9394 usage(); 9395 } 9396 break; 9397 case 'U': 9398 config_path_console = B_TRUE; 9399 spa_config_path = optarg; 9400 if (spa_config_path[0] != '/') { 9401 (void) fprintf(stderr, 9402 "cachefile must be an absolute path " 9403 "(i.e. start with a slash)\n"); 9404 usage(); 9405 } 9406 break; 9407 case 'v': 9408 verbose++; 9409 break; 9410 case 'V': 9411 flags = ZFS_IMPORT_VERBATIM; 9412 break; 9413 case 'x': 9414 vn_dumpdir = optarg; 9415 break; 9416 default: 9417 usage(); 9418 break; 9419 } 9420 } 9421 9422 if (!dump_opt['e'] && searchdirs != NULL) { 9423 (void) fprintf(stderr, "-p option requires use of -e\n"); 9424 usage(); 9425 } 9426 #if defined(_LP64) 9427 /* 9428 * ZDB does not typically re-read blocks; therefore limit the ARC 9429 * to 256 MB, which can be used entirely for metadata. 9430 */ 9431 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9432 zfs_arc_max = 256 * 1024 * 1024; 9433 #endif 9434 9435 /* 9436 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9437 * "zdb -b" uses traversal prefetch which uses async reads. 9438 * For good performance, let several of them be active at once. 9439 */ 9440 zfs_vdev_async_read_max_active = 10; 9441 9442 /* 9443 * Disable reference tracking for better performance. 9444 */ 9445 reference_tracking_enable = B_FALSE; 9446 9447 /* 9448 * Do not fail spa_load when spa_load_verify fails. This is needed 9449 * to load non-idle pools. 9450 */ 9451 spa_load_verify_dryrun = B_TRUE; 9452 9453 /* 9454 * ZDB should have ability to read spacemaps. 9455 */ 9456 spa_mode_readable_spacemaps = B_TRUE; 9457 9458 if (dump_all) 9459 verbose = MAX(verbose, 1); 9460 9461 for (c = 0; c < 256; c++) { 9462 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9463 dump_opt[c] = 1; 9464 if (dump_opt[c]) 9465 dump_opt[c] += verbose; 9466 } 9467 9468 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9469 zfs_recover = (dump_opt['A'] > 1); 9470 9471 argc -= optind; 9472 argv += optind; 9473 if (argc < 2 && dump_opt['R']) 9474 usage(); 9475 9476 target = argv[0]; 9477 9478 /* 9479 * Automate cachefile 9480 */ 9481 if (!spa_config_path_env && !config_path_console && target && 9482 libzfs_core_init() == 0) { 9483 char *pname = strdup(target); 9484 const char *value; 9485 nvlist_t *pnvl = NULL; 9486 nvlist_t *vnvl = NULL; 9487 9488 if (strpbrk(pname, "/@") != NULL) 9489 *strpbrk(pname, "/@") = '\0'; 9490 9491 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9492 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9493 &vnvl) == 0) { 9494 value = fnvlist_lookup_string(vnvl, 9495 ZPROP_VALUE); 9496 } else { 9497 value = "-"; 9498 } 9499 strlcpy(pbuf, value, sizeof (pbuf)); 9500 if (pbuf[0] != '\0') { 9501 if (pbuf[0] == '/') { 9502 if (access(pbuf, F_OK) == 0) 9503 spa_config_path = pbuf; 9504 else 9505 force_import = B_TRUE; 9506 } else if ((strcmp(pbuf, "-") == 0 && 9507 access(ZPOOL_CACHE, F_OK) != 0) || 9508 strcmp(pbuf, "none") == 0) { 9509 force_import = B_TRUE; 9510 } 9511 } 9512 nvlist_free(vnvl); 9513 } 9514 9515 free(pname); 9516 nvlist_free(pnvl); 9517 libzfs_core_fini(); 9518 } 9519 9520 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9521 kernel_init(SPA_MODE_READ); 9522 kernel_init_done = B_TRUE; 9523 9524 if (dump_opt['E']) { 9525 if (argc != 1) 9526 usage(); 9527 zdb_embedded_block(argv[0]); 9528 error = 0; 9529 goto fini; 9530 } 9531 9532 if (argc < 1) { 9533 if (!dump_opt['e'] && dump_opt['C']) { 9534 dump_cachefile(spa_config_path); 9535 error = 0; 9536 goto fini; 9537 } 9538 usage(); 9539 } 9540 9541 if (dump_opt['l']) { 9542 error = dump_label(argv[0]); 9543 goto fini; 9544 } 9545 9546 if (dump_opt['X'] || dump_opt['F']) 9547 rewind = ZPOOL_DO_REWIND | 9548 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9549 9550 /* -N implies -d */ 9551 if (dump_opt['N'] && dump_opt['d'] == 0) 9552 dump_opt['d'] = dump_opt['N']; 9553 9554 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9555 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9556 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9557 fatal("internal error: %s", strerror(ENOMEM)); 9558 9559 error = 0; 9560 9561 if (strpbrk(target, "/@") != NULL) { 9562 size_t targetlen; 9563 9564 target_pool = strdup(target); 9565 *strpbrk(target_pool, "/@") = '\0'; 9566 9567 target_is_spa = B_FALSE; 9568 targetlen = strlen(target); 9569 if (targetlen && target[targetlen - 1] == '/') 9570 target[targetlen - 1] = '\0'; 9571 9572 /* 9573 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9574 * To disambiguate tank/100, consider the 100 as objsetID 9575 * if -N was given, otherwise 100 is an objsetID iff 9576 * tank/100 as a named dataset fails on lookup. 9577 */ 9578 objset_str = strchr(target, '/'); 9579 if (objset_str && strlen(objset_str) > 1 && 9580 zdb_numeric(objset_str + 1)) { 9581 char *endptr; 9582 errno = 0; 9583 objset_str++; 9584 objset_id = strtoull(objset_str, &endptr, 0); 9585 /* dataset 0 is the same as opening the pool */ 9586 if (errno == 0 && endptr != objset_str && 9587 objset_id != 0) { 9588 if (dump_opt['N']) 9589 dataset_lookup = B_TRUE; 9590 } 9591 /* normal dataset name not an objset ID */ 9592 if (endptr == objset_str) { 9593 objset_id = -1; 9594 } 9595 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9596 dump_opt['N']) { 9597 printf("Supply a numeric objset ID with -N\n"); 9598 error = 1; 9599 goto fini; 9600 } 9601 } else { 9602 target_pool = target; 9603 } 9604 9605 if (dump_opt['e'] || force_import) { 9606 importargs_t args = { 0 }; 9607 9608 /* 9609 * If path is not provided, search in /dev 9610 */ 9611 if (searchdirs == NULL) { 9612 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9613 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9614 } 9615 9616 args.paths = nsearch; 9617 args.path = searchdirs; 9618 args.can_be_active = B_TRUE; 9619 9620 libpc_handle_t lpch = { 9621 .lpc_lib_handle = NULL, 9622 .lpc_ops = &libzpool_config_ops, 9623 .lpc_printerr = B_TRUE 9624 }; 9625 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9626 9627 if (error == 0) { 9628 9629 if (nvlist_add_nvlist(cfg, 9630 ZPOOL_LOAD_POLICY, policy) != 0) { 9631 fatal("can't open '%s': %s", 9632 target, strerror(ENOMEM)); 9633 } 9634 9635 if (dump_opt['C'] > 1) { 9636 (void) printf("\nConfiguration for import:\n"); 9637 dump_nvlist(cfg, 8); 9638 } 9639 9640 /* 9641 * Disable the activity check to allow examination of 9642 * active pools. 9643 */ 9644 error = spa_import(target_pool, cfg, NULL, 9645 flags | ZFS_IMPORT_SKIP_MMP); 9646 } 9647 } 9648 9649 if (searchdirs != NULL) { 9650 umem_free(searchdirs, nsearch * sizeof (char *)); 9651 searchdirs = NULL; 9652 } 9653 9654 /* 9655 * We need to make sure to process -O option or call 9656 * dump_path after the -e option has been processed, 9657 * which imports the pool to the namespace if it's 9658 * not in the cachefile. 9659 */ 9660 if (dump_opt['O']) { 9661 if (argc != 2) 9662 usage(); 9663 dump_opt['v'] = verbose + 3; 9664 error = dump_path(argv[0], argv[1], NULL); 9665 goto fini; 9666 } 9667 9668 if (dump_opt['r']) { 9669 target_is_spa = B_FALSE; 9670 if (argc != 3) 9671 usage(); 9672 dump_opt['v'] = verbose; 9673 error = dump_path(argv[0], argv[1], &object); 9674 if (error != 0) 9675 fatal("internal error: %s", strerror(error)); 9676 } 9677 9678 /* 9679 * import_checkpointed_state makes the assumption that the 9680 * target pool that we pass it is already part of the spa 9681 * namespace. Because of that we need to make sure to call 9682 * it always after the -e option has been processed, which 9683 * imports the pool to the namespace if it's not in the 9684 * cachefile. 9685 */ 9686 char *checkpoint_pool = NULL; 9687 char *checkpoint_target = NULL; 9688 if (dump_opt['k']) { 9689 checkpoint_pool = import_checkpointed_state(target, cfg, 9690 &checkpoint_target); 9691 9692 if (checkpoint_target != NULL) 9693 target = checkpoint_target; 9694 } 9695 9696 if (cfg != NULL) { 9697 nvlist_free(cfg); 9698 cfg = NULL; 9699 } 9700 9701 if (target_pool != target) 9702 free(target_pool); 9703 9704 if (error == 0) { 9705 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9706 ASSERT(checkpoint_pool != NULL); 9707 ASSERT(checkpoint_target == NULL); 9708 9709 error = spa_open(checkpoint_pool, &spa, FTAG); 9710 if (error != 0) { 9711 fatal("Tried to open pool \"%s\" but " 9712 "spa_open() failed with error %d\n", 9713 checkpoint_pool, error); 9714 } 9715 9716 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9717 objset_id == 0) { 9718 zdb_set_skip_mmp(target); 9719 error = spa_open_rewind(target, &spa, FTAG, policy, 9720 NULL); 9721 if (error) { 9722 /* 9723 * If we're missing the log device then 9724 * try opening the pool after clearing the 9725 * log state. 9726 */ 9727 mutex_enter(&spa_namespace_lock); 9728 if ((spa = spa_lookup(target)) != NULL && 9729 spa->spa_log_state == SPA_LOG_MISSING) { 9730 spa->spa_log_state = SPA_LOG_CLEAR; 9731 error = 0; 9732 } 9733 mutex_exit(&spa_namespace_lock); 9734 9735 if (!error) { 9736 error = spa_open_rewind(target, &spa, 9737 FTAG, policy, NULL); 9738 } 9739 } 9740 } else if (strpbrk(target, "#") != NULL) { 9741 dsl_pool_t *dp; 9742 error = dsl_pool_hold(target, FTAG, &dp); 9743 if (error != 0) { 9744 fatal("can't dump '%s': %s", target, 9745 strerror(error)); 9746 } 9747 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9748 dsl_pool_rele(dp, FTAG); 9749 if (error != 0) { 9750 fatal("can't dump '%s': %s", target, 9751 strerror(error)); 9752 } 9753 goto fini; 9754 } else { 9755 target_pool = strdup(target); 9756 if (strpbrk(target, "/@") != NULL) 9757 *strpbrk(target_pool, "/@") = '\0'; 9758 9759 zdb_set_skip_mmp(target); 9760 /* 9761 * If -N was supplied, the user has indicated that 9762 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9763 * we first assume that the dataset string is the 9764 * dataset name. If dmu_objset_hold fails with the 9765 * dataset string, and we have an objset_id, retry the 9766 * lookup with the objsetID. 9767 */ 9768 boolean_t retry = B_TRUE; 9769 retry_lookup: 9770 if (dataset_lookup == B_TRUE) { 9771 /* 9772 * Use the supplied id to get the name 9773 * for open_objset. 9774 */ 9775 error = spa_open(target_pool, &spa, FTAG); 9776 if (error == 0) { 9777 error = name_from_objset_id(spa, 9778 objset_id, dsname); 9779 spa_close(spa, FTAG); 9780 if (error == 0) 9781 target = dsname; 9782 } 9783 } 9784 if (error == 0) { 9785 if (objset_id > 0 && retry) { 9786 int err = dmu_objset_hold(target, FTAG, 9787 &os); 9788 if (err) { 9789 dataset_lookup = B_TRUE; 9790 retry = B_FALSE; 9791 goto retry_lookup; 9792 } else { 9793 dmu_objset_rele(os, FTAG); 9794 } 9795 } 9796 error = open_objset(target, FTAG, &os); 9797 } 9798 if (error == 0) 9799 spa = dmu_objset_spa(os); 9800 free(target_pool); 9801 } 9802 } 9803 nvlist_free(policy); 9804 9805 if (error) 9806 fatal("can't open '%s': %s", target, strerror(error)); 9807 9808 /* 9809 * Set the pool failure mode to panic in order to prevent the pool 9810 * from suspending. A suspended I/O will have no way to resume and 9811 * can prevent the zdb(8) command from terminating as expected. 9812 */ 9813 if (spa != NULL) 9814 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9815 9816 argv++; 9817 argc--; 9818 if (dump_opt['r']) { 9819 error = zdb_copy_object(os, object, argv[1]); 9820 } else if (!dump_opt['R']) { 9821 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9822 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9823 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9824 flagbits['z'] = ZOR_FLAG_ZAP; 9825 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9826 9827 if (argc > 0 && dump_opt['d']) { 9828 zopt_object_args = argc; 9829 zopt_object_ranges = calloc(zopt_object_args, 9830 sizeof (zopt_object_range_t)); 9831 for (unsigned i = 0; i < zopt_object_args; i++) { 9832 int err; 9833 const char *msg = NULL; 9834 9835 err = parse_object_range(argv[i], 9836 &zopt_object_ranges[i], &msg); 9837 if (err != 0) 9838 fatal("Bad object or range: '%s': %s\n", 9839 argv[i], msg ?: ""); 9840 } 9841 } else if (argc > 0 && dump_opt['m']) { 9842 zopt_metaslab_args = argc; 9843 zopt_metaslab = calloc(zopt_metaslab_args, 9844 sizeof (uint64_t)); 9845 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9846 errno = 0; 9847 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9848 if (zopt_metaslab[i] == 0 && errno != 0) 9849 fatal("bad number %s: %s", argv[i], 9850 strerror(errno)); 9851 } 9852 } 9853 if (dump_opt['B']) { 9854 dump_backup(target, objset_id, 9855 argc > 0 ? argv[0] : NULL); 9856 } else if (os != NULL) { 9857 dump_objset(os); 9858 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9859 dump_objset(spa->spa_meta_objset); 9860 } else { 9861 dump_zpool(spa); 9862 } 9863 } else { 9864 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9865 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9866 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9867 flagbits['e'] = ZDB_FLAG_BSWAP; 9868 flagbits['g'] = ZDB_FLAG_GBH; 9869 flagbits['i'] = ZDB_FLAG_INDIRECT; 9870 flagbits['r'] = ZDB_FLAG_RAW; 9871 flagbits['v'] = ZDB_FLAG_VERBOSE; 9872 9873 for (int i = 0; i < argc; i++) 9874 zdb_read_block(argv[i], spa); 9875 } 9876 9877 if (dump_opt['k']) { 9878 free(checkpoint_pool); 9879 if (!target_is_spa) 9880 free(checkpoint_target); 9881 } 9882 9883 fini: 9884 if (spa != NULL) 9885 zdb_ddt_cleanup(spa); 9886 9887 if (os != NULL) { 9888 close_objset(os, FTAG); 9889 } else if (spa != NULL) { 9890 spa_close(spa, FTAG); 9891 } 9892 9893 fuid_table_destroy(); 9894 9895 dump_debug_buffer(); 9896 9897 if (kernel_init_done) 9898 kernel_fini(); 9899 9900 return (error); 9901 } 9902