1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, 2024, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t attr; 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, &attr) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010llx = ", 1135 (u_longlong_t)*(uint64_t *)attr.za_name); 1136 else 1137 (void) printf("\t\t%s = ", attr.za_name); 1138 1139 if (attr.za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attr.za_num_integers * 1144 attr.za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attr.za_name, 1, 1149 attr.za_integer_length, attr.za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attr.za_name, 1153 attr.za_integer_length, attr.za_num_integers, 1154 prop); 1155 1156 if (attr.za_integer_length == 1 && !key64) { 1157 if (strcmp(attr.za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attr.za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1164 uint8_t *u8 = prop; 1165 1166 for (i = 0; i < attr.za_num_integers; i++) { 1167 (void) printf("%02x", u8[i]); 1168 } 1169 } else { 1170 (void) printf("%s", (char *)prop); 1171 } 1172 } else { 1173 for (i = 0; i < attr.za_num_integers; i++) { 1174 switch (attr.za_integer_length) { 1175 case 1: 1176 (void) printf("%u ", 1177 ((uint8_t *)prop)[i]); 1178 break; 1179 case 2: 1180 (void) printf("%u ", 1181 ((uint16_t *)prop)[i]); 1182 break; 1183 case 4: 1184 (void) printf("%u ", 1185 ((uint32_t *)prop)[i]); 1186 break; 1187 case 8: 1188 (void) printf("%lld ", 1189 (u_longlong_t)((int64_t *)prop)[i]); 1190 break; 1191 } 1192 } 1193 } 1194 (void) printf("\n"); 1195 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1196 } 1197 zap_cursor_fini(&zc); 1198 } 1199 1200 static void 1201 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1202 { 1203 bpobj_phys_t *bpop = data; 1204 uint64_t i; 1205 char bytes[32], comp[32], uncomp[32]; 1206 1207 /* make sure the output won't get truncated */ 1208 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1209 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1210 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1211 1212 if (bpop == NULL) 1213 return; 1214 1215 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1216 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1217 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1218 1219 (void) printf("\t\tnum_blkptrs = %llu\n", 1220 (u_longlong_t)bpop->bpo_num_blkptrs); 1221 (void) printf("\t\tbytes = %s\n", bytes); 1222 if (size >= BPOBJ_SIZE_V1) { 1223 (void) printf("\t\tcomp = %s\n", comp); 1224 (void) printf("\t\tuncomp = %s\n", uncomp); 1225 } 1226 if (size >= BPOBJ_SIZE_V2) { 1227 (void) printf("\t\tsubobjs = %llu\n", 1228 (u_longlong_t)bpop->bpo_subobjs); 1229 (void) printf("\t\tnum_subobjs = %llu\n", 1230 (u_longlong_t)bpop->bpo_num_subobjs); 1231 } 1232 if (size >= sizeof (*bpop)) { 1233 (void) printf("\t\tnum_freed = %llu\n", 1234 (u_longlong_t)bpop->bpo_num_freed); 1235 } 1236 1237 if (dump_opt['d'] < 5) 1238 return; 1239 1240 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1241 char blkbuf[BP_SPRINTF_LEN]; 1242 blkptr_t bp; 1243 1244 int err = dmu_read(os, object, 1245 i * sizeof (bp), sizeof (bp), &bp, 0); 1246 if (err != 0) { 1247 (void) printf("got error %u from dmu_read\n", err); 1248 break; 1249 } 1250 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1251 BP_GET_FREE(&bp)); 1252 (void) printf("\t%s\n", blkbuf); 1253 } 1254 } 1255 1256 static void 1257 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1258 { 1259 (void) data, (void) size; 1260 dmu_object_info_t doi; 1261 int64_t i; 1262 1263 VERIFY0(dmu_object_info(os, object, &doi)); 1264 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1265 1266 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1267 if (err != 0) { 1268 (void) printf("got error %u from dmu_read\n", err); 1269 kmem_free(subobjs, doi.doi_max_offset); 1270 return; 1271 } 1272 1273 int64_t last_nonzero = -1; 1274 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1275 if (subobjs[i] != 0) 1276 last_nonzero = i; 1277 } 1278 1279 for (i = 0; i <= last_nonzero; i++) { 1280 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1281 } 1282 kmem_free(subobjs, doi.doi_max_offset); 1283 } 1284 1285 static void 1286 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1287 { 1288 (void) data, (void) size; 1289 dump_zap_stats(os, object); 1290 /* contents are printed elsewhere, properly decoded */ 1291 } 1292 1293 static void 1294 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1295 { 1296 (void) data, (void) size; 1297 zap_cursor_t zc; 1298 zap_attribute_t attr; 1299 1300 dump_zap_stats(os, object); 1301 (void) printf("\n"); 1302 1303 for (zap_cursor_init(&zc, os, object); 1304 zap_cursor_retrieve(&zc, &attr) == 0; 1305 zap_cursor_advance(&zc)) { 1306 (void) printf("\t\t%s = ", attr.za_name); 1307 if (attr.za_num_integers == 0) { 1308 (void) printf("\n"); 1309 continue; 1310 } 1311 (void) printf(" %llx : [%d:%d:%d]\n", 1312 (u_longlong_t)attr.za_first_integer, 1313 (int)ATTR_LENGTH(attr.za_first_integer), 1314 (int)ATTR_BSWAP(attr.za_first_integer), 1315 (int)ATTR_NUM(attr.za_first_integer)); 1316 } 1317 zap_cursor_fini(&zc); 1318 } 1319 1320 static void 1321 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1322 { 1323 (void) data, (void) size; 1324 zap_cursor_t zc; 1325 zap_attribute_t attr; 1326 uint16_t *layout_attrs; 1327 unsigned i; 1328 1329 dump_zap_stats(os, object); 1330 (void) printf("\n"); 1331 1332 for (zap_cursor_init(&zc, os, object); 1333 zap_cursor_retrieve(&zc, &attr) == 0; 1334 zap_cursor_advance(&zc)) { 1335 (void) printf("\t\t%s = [", attr.za_name); 1336 if (attr.za_num_integers == 0) { 1337 (void) printf("\n"); 1338 continue; 1339 } 1340 1341 VERIFY(attr.za_integer_length == 2); 1342 layout_attrs = umem_zalloc(attr.za_num_integers * 1343 attr.za_integer_length, UMEM_NOFAIL); 1344 1345 VERIFY(zap_lookup(os, object, attr.za_name, 1346 attr.za_integer_length, 1347 attr.za_num_integers, layout_attrs) == 0); 1348 1349 for (i = 0; i != attr.za_num_integers; i++) 1350 (void) printf(" %d ", (int)layout_attrs[i]); 1351 (void) printf("]\n"); 1352 umem_free(layout_attrs, 1353 attr.za_num_integers * attr.za_integer_length); 1354 } 1355 zap_cursor_fini(&zc); 1356 } 1357 1358 static void 1359 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1360 { 1361 (void) data, (void) size; 1362 zap_cursor_t zc; 1363 zap_attribute_t attr; 1364 const char *typenames[] = { 1365 /* 0 */ "not specified", 1366 /* 1 */ "FIFO", 1367 /* 2 */ "Character Device", 1368 /* 3 */ "3 (invalid)", 1369 /* 4 */ "Directory", 1370 /* 5 */ "5 (invalid)", 1371 /* 6 */ "Block Device", 1372 /* 7 */ "7 (invalid)", 1373 /* 8 */ "Regular File", 1374 /* 9 */ "9 (invalid)", 1375 /* 10 */ "Symbolic Link", 1376 /* 11 */ "11 (invalid)", 1377 /* 12 */ "Socket", 1378 /* 13 */ "Door", 1379 /* 14 */ "Event Port", 1380 /* 15 */ "15 (invalid)", 1381 }; 1382 1383 dump_zap_stats(os, object); 1384 (void) printf("\n"); 1385 1386 for (zap_cursor_init(&zc, os, object); 1387 zap_cursor_retrieve(&zc, &attr) == 0; 1388 zap_cursor_advance(&zc)) { 1389 (void) printf("\t\t%s = %lld (type: %s)\n", 1390 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1391 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1392 } 1393 zap_cursor_fini(&zc); 1394 } 1395 1396 static int 1397 get_dtl_refcount(vdev_t *vd) 1398 { 1399 int refcount = 0; 1400 1401 if (vd->vdev_ops->vdev_op_leaf) { 1402 space_map_t *sm = vd->vdev_dtl_sm; 1403 1404 if (sm != NULL && 1405 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1406 return (1); 1407 return (0); 1408 } 1409 1410 for (unsigned c = 0; c < vd->vdev_children; c++) 1411 refcount += get_dtl_refcount(vd->vdev_child[c]); 1412 return (refcount); 1413 } 1414 1415 static int 1416 get_metaslab_refcount(vdev_t *vd) 1417 { 1418 int refcount = 0; 1419 1420 if (vd->vdev_top == vd) { 1421 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1422 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1423 1424 if (sm != NULL && 1425 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1426 refcount++; 1427 } 1428 } 1429 for (unsigned c = 0; c < vd->vdev_children; c++) 1430 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1431 1432 return (refcount); 1433 } 1434 1435 static int 1436 get_obsolete_refcount(vdev_t *vd) 1437 { 1438 uint64_t obsolete_sm_object; 1439 int refcount = 0; 1440 1441 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1442 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1443 dmu_object_info_t doi; 1444 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1445 obsolete_sm_object, &doi)); 1446 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1447 refcount++; 1448 } 1449 } else { 1450 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1451 ASSERT3U(obsolete_sm_object, ==, 0); 1452 } 1453 for (unsigned c = 0; c < vd->vdev_children; c++) { 1454 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1455 } 1456 1457 return (refcount); 1458 } 1459 1460 static int 1461 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1462 { 1463 uint64_t prev_obj = 1464 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1465 if (prev_obj != 0) { 1466 dmu_object_info_t doi; 1467 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1468 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1469 return (1); 1470 } 1471 } 1472 return (0); 1473 } 1474 1475 static int 1476 get_checkpoint_refcount(vdev_t *vd) 1477 { 1478 int refcount = 0; 1479 1480 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1481 zap_contains(spa_meta_objset(vd->vdev_spa), 1482 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1483 refcount++; 1484 1485 for (uint64_t c = 0; c < vd->vdev_children; c++) 1486 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1487 1488 return (refcount); 1489 } 1490 1491 static int 1492 get_log_spacemap_refcount(spa_t *spa) 1493 { 1494 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1495 } 1496 1497 static int 1498 verify_spacemap_refcounts(spa_t *spa) 1499 { 1500 uint64_t expected_refcount = 0; 1501 uint64_t actual_refcount; 1502 1503 (void) feature_get_refcount(spa, 1504 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1505 &expected_refcount); 1506 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1507 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1508 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1509 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1510 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1511 actual_refcount += get_log_spacemap_refcount(spa); 1512 1513 if (expected_refcount != actual_refcount) { 1514 (void) printf("space map refcount mismatch: expected %lld != " 1515 "actual %lld\n", 1516 (longlong_t)expected_refcount, 1517 (longlong_t)actual_refcount); 1518 return (2); 1519 } 1520 return (0); 1521 } 1522 1523 static void 1524 dump_spacemap(objset_t *os, space_map_t *sm) 1525 { 1526 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1527 "INVALID", "INVALID", "INVALID", "INVALID" }; 1528 1529 if (sm == NULL) 1530 return; 1531 1532 (void) printf("space map object %llu:\n", 1533 (longlong_t)sm->sm_object); 1534 (void) printf(" smp_length = 0x%llx\n", 1535 (longlong_t)sm->sm_phys->smp_length); 1536 (void) printf(" smp_alloc = 0x%llx\n", 1537 (longlong_t)sm->sm_phys->smp_alloc); 1538 1539 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1540 return; 1541 1542 /* 1543 * Print out the freelist entries in both encoded and decoded form. 1544 */ 1545 uint8_t mapshift = sm->sm_shift; 1546 int64_t alloc = 0; 1547 uint64_t word, entry_id = 0; 1548 for (uint64_t offset = 0; offset < space_map_length(sm); 1549 offset += sizeof (word)) { 1550 1551 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1552 sizeof (word), &word, DMU_READ_PREFETCH)); 1553 1554 if (sm_entry_is_debug(word)) { 1555 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1556 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1557 if (de_txg == 0) { 1558 (void) printf( 1559 "\t [%6llu] PADDING\n", 1560 (u_longlong_t)entry_id); 1561 } else { 1562 (void) printf( 1563 "\t [%6llu] %s: txg %llu pass %llu\n", 1564 (u_longlong_t)entry_id, 1565 ddata[SM_DEBUG_ACTION_DECODE(word)], 1566 (u_longlong_t)de_txg, 1567 (u_longlong_t)de_sync_pass); 1568 } 1569 entry_id++; 1570 continue; 1571 } 1572 1573 uint8_t words; 1574 char entry_type; 1575 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1576 1577 if (sm_entry_is_single_word(word)) { 1578 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1579 'A' : 'F'; 1580 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1581 sm->sm_start; 1582 entry_run = SM_RUN_DECODE(word) << mapshift; 1583 words = 1; 1584 } else { 1585 /* it is a two-word entry so we read another word */ 1586 ASSERT(sm_entry_is_double_word(word)); 1587 1588 uint64_t extra_word; 1589 offset += sizeof (extra_word); 1590 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1591 sizeof (extra_word), &extra_word, 1592 DMU_READ_PREFETCH)); 1593 1594 ASSERT3U(offset, <=, space_map_length(sm)); 1595 1596 entry_run = SM2_RUN_DECODE(word) << mapshift; 1597 entry_vdev = SM2_VDEV_DECODE(word); 1598 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1599 'A' : 'F'; 1600 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1601 mapshift) + sm->sm_start; 1602 words = 2; 1603 } 1604 1605 (void) printf("\t [%6llu] %c range:" 1606 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1607 (u_longlong_t)entry_id, 1608 entry_type, (u_longlong_t)entry_off, 1609 (u_longlong_t)(entry_off + entry_run), 1610 (u_longlong_t)entry_run, 1611 (u_longlong_t)entry_vdev, words); 1612 1613 if (entry_type == 'A') 1614 alloc += entry_run; 1615 else 1616 alloc -= entry_run; 1617 entry_id++; 1618 } 1619 if (alloc != space_map_allocated(sm)) { 1620 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1621 "with space map summary (%lld)\n", 1622 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1623 } 1624 } 1625 1626 static void 1627 dump_metaslab_stats(metaslab_t *msp) 1628 { 1629 char maxbuf[32]; 1630 range_tree_t *rt = msp->ms_allocatable; 1631 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1632 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1633 1634 /* max sure nicenum has enough space */ 1635 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1636 1637 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1638 1639 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1640 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1641 "freepct", free_pct); 1642 (void) printf("\tIn-memory histogram:\n"); 1643 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1644 } 1645 1646 static void 1647 dump_metaslab(metaslab_t *msp) 1648 { 1649 vdev_t *vd = msp->ms_group->mg_vd; 1650 spa_t *spa = vd->vdev_spa; 1651 space_map_t *sm = msp->ms_sm; 1652 char freebuf[32]; 1653 1654 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1655 sizeof (freebuf)); 1656 1657 (void) printf( 1658 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1659 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1660 (u_longlong_t)space_map_object(sm), freebuf); 1661 1662 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1663 mutex_enter(&msp->ms_lock); 1664 VERIFY0(metaslab_load(msp)); 1665 range_tree_stat_verify(msp->ms_allocatable); 1666 dump_metaslab_stats(msp); 1667 metaslab_unload(msp); 1668 mutex_exit(&msp->ms_lock); 1669 } 1670 1671 if (dump_opt['m'] > 1 && sm != NULL && 1672 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1673 /* 1674 * The space map histogram represents free space in chunks 1675 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1676 */ 1677 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1678 (u_longlong_t)msp->ms_fragmentation); 1679 dump_histogram(sm->sm_phys->smp_histogram, 1680 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1681 } 1682 1683 if (vd->vdev_ops == &vdev_draid_ops) 1684 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1685 else 1686 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1687 1688 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1689 1690 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1691 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1692 (u_longlong_t)metaslab_unflushed_txg(msp)); 1693 } 1694 } 1695 1696 static void 1697 print_vdev_metaslab_header(vdev_t *vd) 1698 { 1699 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1700 const char *bias_str = ""; 1701 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1702 bias_str = VDEV_ALLOC_BIAS_LOG; 1703 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1704 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1705 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1706 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1707 } 1708 1709 uint64_t ms_flush_data_obj = 0; 1710 if (vd->vdev_top_zap != 0) { 1711 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1712 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1713 sizeof (uint64_t), 1, &ms_flush_data_obj); 1714 if (error != ENOENT) { 1715 ASSERT0(error); 1716 } 1717 } 1718 1719 (void) printf("\tvdev %10llu %s", 1720 (u_longlong_t)vd->vdev_id, bias_str); 1721 1722 if (ms_flush_data_obj != 0) { 1723 (void) printf(" ms_unflushed_phys object %llu", 1724 (u_longlong_t)ms_flush_data_obj); 1725 } 1726 1727 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1728 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1729 "offset", "spacemap", "free"); 1730 (void) printf("\t%15s %19s %15s %12s\n", 1731 "---------------", "-------------------", 1732 "---------------", "------------"); 1733 } 1734 1735 static void 1736 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1737 { 1738 vdev_t *rvd = spa->spa_root_vdev; 1739 metaslab_class_t *mc = spa_normal_class(spa); 1740 metaslab_class_t *smc = spa_special_class(spa); 1741 uint64_t fragmentation; 1742 1743 metaslab_class_histogram_verify(mc); 1744 1745 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1746 vdev_t *tvd = rvd->vdev_child[c]; 1747 metaslab_group_t *mg = tvd->vdev_mg; 1748 1749 if (mg == NULL || (mg->mg_class != mc && 1750 (!show_special || mg->mg_class != smc))) 1751 continue; 1752 1753 metaslab_group_histogram_verify(mg); 1754 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1755 1756 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1757 "fragmentation", 1758 (u_longlong_t)tvd->vdev_id, 1759 (u_longlong_t)tvd->vdev_ms_count); 1760 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1761 (void) printf("%3s\n", "-"); 1762 } else { 1763 (void) printf("%3llu%%\n", 1764 (u_longlong_t)mg->mg_fragmentation); 1765 } 1766 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1767 } 1768 1769 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1770 fragmentation = metaslab_class_fragmentation(mc); 1771 if (fragmentation == ZFS_FRAG_INVALID) 1772 (void) printf("\t%3s\n", "-"); 1773 else 1774 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1775 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1776 } 1777 1778 static void 1779 print_vdev_indirect(vdev_t *vd) 1780 { 1781 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1782 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1783 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1784 1785 if (vim == NULL) { 1786 ASSERT3P(vib, ==, NULL); 1787 return; 1788 } 1789 1790 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1791 vic->vic_mapping_object); 1792 ASSERT3U(vdev_indirect_births_object(vib), ==, 1793 vic->vic_births_object); 1794 1795 (void) printf("indirect births obj %llu:\n", 1796 (longlong_t)vic->vic_births_object); 1797 (void) printf(" vib_count = %llu\n", 1798 (longlong_t)vdev_indirect_births_count(vib)); 1799 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1800 vdev_indirect_birth_entry_phys_t *cur_vibe = 1801 &vib->vib_entries[i]; 1802 (void) printf("\toffset %llx -> txg %llu\n", 1803 (longlong_t)cur_vibe->vibe_offset, 1804 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1805 } 1806 (void) printf("\n"); 1807 1808 (void) printf("indirect mapping obj %llu:\n", 1809 (longlong_t)vic->vic_mapping_object); 1810 (void) printf(" vim_max_offset = 0x%llx\n", 1811 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1812 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1813 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1814 (void) printf(" vim_count = %llu\n", 1815 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1816 1817 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1818 return; 1819 1820 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1821 1822 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1823 vdev_indirect_mapping_entry_phys_t *vimep = 1824 &vim->vim_entries[i]; 1825 (void) printf("\t<%llx:%llx:%llx> -> " 1826 "<%llx:%llx:%llx> (%x obsolete)\n", 1827 (longlong_t)vd->vdev_id, 1828 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1829 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1830 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1831 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1832 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1833 counts[i]); 1834 } 1835 (void) printf("\n"); 1836 1837 uint64_t obsolete_sm_object; 1838 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1839 if (obsolete_sm_object != 0) { 1840 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1841 (void) printf("obsolete space map object %llu:\n", 1842 (u_longlong_t)obsolete_sm_object); 1843 ASSERT(vd->vdev_obsolete_sm != NULL); 1844 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1845 obsolete_sm_object); 1846 dump_spacemap(mos, vd->vdev_obsolete_sm); 1847 (void) printf("\n"); 1848 } 1849 } 1850 1851 static void 1852 dump_metaslabs(spa_t *spa) 1853 { 1854 vdev_t *vd, *rvd = spa->spa_root_vdev; 1855 uint64_t m, c = 0, children = rvd->vdev_children; 1856 1857 (void) printf("\nMetaslabs:\n"); 1858 1859 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1860 c = zopt_metaslab[0]; 1861 1862 if (c >= children) 1863 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1864 1865 if (zopt_metaslab_args > 1) { 1866 vd = rvd->vdev_child[c]; 1867 print_vdev_metaslab_header(vd); 1868 1869 for (m = 1; m < zopt_metaslab_args; m++) { 1870 if (zopt_metaslab[m] < vd->vdev_ms_count) 1871 dump_metaslab( 1872 vd->vdev_ms[zopt_metaslab[m]]); 1873 else 1874 (void) fprintf(stderr, "bad metaslab " 1875 "number %llu\n", 1876 (u_longlong_t)zopt_metaslab[m]); 1877 } 1878 (void) printf("\n"); 1879 return; 1880 } 1881 children = c + 1; 1882 } 1883 for (; c < children; c++) { 1884 vd = rvd->vdev_child[c]; 1885 print_vdev_metaslab_header(vd); 1886 1887 print_vdev_indirect(vd); 1888 1889 for (m = 0; m < vd->vdev_ms_count; m++) 1890 dump_metaslab(vd->vdev_ms[m]); 1891 (void) printf("\n"); 1892 } 1893 } 1894 1895 static void 1896 dump_log_spacemaps(spa_t *spa) 1897 { 1898 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1899 return; 1900 1901 (void) printf("\nLog Space Maps in Pool:\n"); 1902 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1903 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1904 space_map_t *sm = NULL; 1905 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1906 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1907 1908 (void) printf("Log Spacemap object %llu txg %llu\n", 1909 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1910 dump_spacemap(spa->spa_meta_objset, sm); 1911 space_map_close(sm); 1912 } 1913 (void) printf("\n"); 1914 } 1915 1916 static void 1917 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1918 uint64_t index) 1919 { 1920 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1921 char blkbuf[BP_SPRINTF_LEN]; 1922 blkptr_t blk; 1923 int p; 1924 1925 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1926 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1927 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1928 1929 if (ddt_phys_birth(ddp, v) == 0) 1930 continue; 1931 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1932 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1933 (void) printf("index %llx refcnt %llu phys %d %s\n", 1934 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1935 p, blkbuf); 1936 } 1937 } 1938 1939 static void 1940 dump_dedup_ratio(const ddt_stat_t *dds) 1941 { 1942 double rL, rP, rD, D, dedup, compress, copies; 1943 1944 if (dds->dds_blocks == 0) 1945 return; 1946 1947 rL = (double)dds->dds_ref_lsize; 1948 rP = (double)dds->dds_ref_psize; 1949 rD = (double)dds->dds_ref_dsize; 1950 D = (double)dds->dds_dsize; 1951 1952 dedup = rD / D; 1953 compress = rL / rP; 1954 copies = rD / rP; 1955 1956 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1957 "dedup * compress / copies = %.2f\n\n", 1958 dedup, compress, copies, dedup * compress / copies); 1959 } 1960 1961 static void 1962 dump_ddt_log(ddt_t *ddt) 1963 { 1964 for (int n = 0; n < 2; n++) { 1965 ddt_log_t *ddl = &ddt->ddt_log[n]; 1966 1967 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1968 if (count == 0) 1969 continue; 1970 1971 printf(DMU_POOL_DDT_LOG ": %" PRIu64 " log entries\n", 1972 zio_checksum_table[ddt->ddt_checksum].ci_name, n, count); 1973 1974 if (dump_opt['D'] < 4) 1975 continue; 1976 1977 ddt_lightweight_entry_t ddlwe; 1978 uint64_t index = 0; 1979 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 1980 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 1981 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 1982 dump_ddt_entry(ddt, &ddlwe, index++); 1983 } 1984 } 1985 } 1986 1987 static void 1988 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1989 { 1990 char name[DDT_NAMELEN]; 1991 ddt_lightweight_entry_t ddlwe; 1992 uint64_t walk = 0; 1993 dmu_object_info_t doi; 1994 uint64_t count, dspace, mspace; 1995 int error; 1996 1997 error = ddt_object_info(ddt, type, class, &doi); 1998 1999 if (error == ENOENT) 2000 return; 2001 ASSERT(error == 0); 2002 2003 error = ddt_object_count(ddt, type, class, &count); 2004 ASSERT(error == 0); 2005 if (count == 0) 2006 return; 2007 2008 dspace = doi.doi_physical_blocks_512 << 9; 2009 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2010 2011 ddt_object_name(ddt, type, class, name); 2012 2013 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2014 name, 2015 (u_longlong_t)count, 2016 (u_longlong_t)dspace, 2017 (u_longlong_t)mspace); 2018 2019 if (dump_opt['D'] < 3) 2020 return; 2021 2022 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2023 2024 if (dump_opt['D'] < 4) 2025 return; 2026 2027 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2028 return; 2029 2030 (void) printf("%s contents:\n\n", name); 2031 2032 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2033 dump_ddt_entry(ddt, &ddlwe, walk); 2034 2035 ASSERT3U(error, ==, ENOENT); 2036 2037 (void) printf("\n"); 2038 } 2039 2040 static void 2041 dump_all_ddts(spa_t *spa) 2042 { 2043 ddt_histogram_t ddh_total = {{{0}}}; 2044 ddt_stat_t dds_total = {0}; 2045 2046 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2047 ddt_t *ddt = spa->spa_ddt[c]; 2048 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2049 continue; 2050 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2051 for (ddt_class_t class = 0; class < DDT_CLASSES; 2052 class++) { 2053 dump_ddt(ddt, type, class); 2054 } 2055 } 2056 dump_ddt_log(ddt); 2057 } 2058 2059 ddt_get_dedup_stats(spa, &dds_total); 2060 2061 if (dds_total.dds_blocks == 0) { 2062 (void) printf("All DDTs are empty\n"); 2063 return; 2064 } 2065 2066 (void) printf("\n"); 2067 2068 if (dump_opt['D'] > 1) { 2069 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2070 ddt_get_dedup_histogram(spa, &ddh_total); 2071 zpool_dump_ddt(&dds_total, &ddh_total); 2072 } 2073 2074 dump_dedup_ratio(&dds_total); 2075 2076 /* 2077 * Dump a histogram of unique class entry age 2078 */ 2079 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2080 ddt_age_histo_t histogram; 2081 2082 (void) printf("DDT walk unique, building age histogram...\n"); 2083 ddt_prune_walk(spa, 0, &histogram); 2084 2085 /* 2086 * print out histogram for unique entry class birth 2087 */ 2088 if (histogram.dah_entries > 0) { 2089 (void) printf("%5s %9s %4s\n", 2090 "age", "blocks", "amnt"); 2091 (void) printf("%5s %9s %4s\n", 2092 "-----", "---------", "----"); 2093 for (int i = 0; i < HIST_BINS; i++) { 2094 (void) printf("%5d %9d %4d%%\n", 1 << i, 2095 (int)histogram.dah_age_histo[i], 2096 (int)((histogram.dah_age_histo[i] * 100) / 2097 histogram.dah_entries)); 2098 } 2099 } 2100 } 2101 } 2102 2103 static void 2104 dump_brt(spa_t *spa) 2105 { 2106 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2107 printf("BRT: unsupported on this pool\n"); 2108 return; 2109 } 2110 2111 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2112 printf("BRT: empty\n"); 2113 return; 2114 } 2115 2116 brt_t *brt = spa->spa_brt; 2117 VERIFY(brt); 2118 2119 char count[32], used[32], saved[32]; 2120 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2121 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2122 uint64_t ratio = brt_get_ratio(spa); 2123 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2124 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2125 2126 if (dump_opt['T'] < 2) 2127 return; 2128 2129 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2130 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2131 if (brtvd == NULL) 2132 continue; 2133 2134 if (!brtvd->bv_initiated) { 2135 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2136 continue; 2137 } 2138 2139 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2140 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2141 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2142 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2143 vdevid, count, used, saved); 2144 } 2145 2146 if (dump_opt['T'] < 3) 2147 return; 2148 2149 char dva[64]; 2150 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2151 2152 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2153 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2154 if (brtvd == NULL || !brtvd->bv_initiated) 2155 continue; 2156 2157 zap_cursor_t zc; 2158 zap_attribute_t za; 2159 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2160 zap_cursor_retrieve(&zc, &za) == 0; 2161 zap_cursor_advance(&zc)) { 2162 uint64_t refcnt; 2163 VERIFY0(zap_lookup_uint64(brt->brt_mos, 2164 brtvd->bv_mos_entries, 2165 (const uint64_t *)za.za_name, 1, 2166 za.za_integer_length, za.za_num_integers, &refcnt)); 2167 2168 uint64_t offset = *(const uint64_t *)za.za_name; 2169 2170 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2171 (u_longlong_t)offset); 2172 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2173 } 2174 zap_cursor_fini(&zc); 2175 } 2176 } 2177 2178 static void 2179 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2180 { 2181 char *prefix = arg; 2182 2183 (void) printf("%s [%llu,%llu) length %llu\n", 2184 prefix, 2185 (u_longlong_t)start, 2186 (u_longlong_t)(start + size), 2187 (u_longlong_t)(size)); 2188 } 2189 2190 static void 2191 dump_dtl(vdev_t *vd, int indent) 2192 { 2193 spa_t *spa = vd->vdev_spa; 2194 boolean_t required; 2195 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2196 "outage" }; 2197 char prefix[256]; 2198 2199 spa_vdev_state_enter(spa, SCL_NONE); 2200 required = vdev_dtl_required(vd); 2201 (void) spa_vdev_state_exit(spa, NULL, 0); 2202 2203 if (indent == 0) 2204 (void) printf("\nDirty time logs:\n\n"); 2205 2206 (void) printf("\t%*s%s [%s]\n", indent, "", 2207 vd->vdev_path ? vd->vdev_path : 2208 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2209 required ? "DTL-required" : "DTL-expendable"); 2210 2211 for (int t = 0; t < DTL_TYPES; t++) { 2212 range_tree_t *rt = vd->vdev_dtl[t]; 2213 if (range_tree_space(rt) == 0) 2214 continue; 2215 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2216 indent + 2, "", name[t]); 2217 range_tree_walk(rt, dump_dtl_seg, prefix); 2218 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2219 dump_spacemap(spa->spa_meta_objset, 2220 vd->vdev_dtl_sm); 2221 } 2222 2223 for (unsigned c = 0; c < vd->vdev_children; c++) 2224 dump_dtl(vd->vdev_child[c], indent + 4); 2225 } 2226 2227 static void 2228 dump_history(spa_t *spa) 2229 { 2230 nvlist_t **events = NULL; 2231 char *buf; 2232 uint64_t resid, len, off = 0; 2233 uint_t num = 0; 2234 int error; 2235 char tbuf[30]; 2236 2237 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2238 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2239 __func__); 2240 return; 2241 } 2242 2243 do { 2244 len = SPA_OLD_MAXBLOCKSIZE; 2245 2246 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2247 (void) fprintf(stderr, "Unable to read history: " 2248 "error %d\n", error); 2249 free(buf); 2250 return; 2251 } 2252 2253 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2254 break; 2255 2256 off -= resid; 2257 } while (len != 0); 2258 2259 (void) printf("\nHistory:\n"); 2260 for (unsigned i = 0; i < num; i++) { 2261 boolean_t printed = B_FALSE; 2262 2263 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2264 time_t tsec; 2265 struct tm t; 2266 2267 tsec = fnvlist_lookup_uint64(events[i], 2268 ZPOOL_HIST_TIME); 2269 (void) localtime_r(&tsec, &t); 2270 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2271 } else { 2272 tbuf[0] = '\0'; 2273 } 2274 2275 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2276 (void) printf("%s %s\n", tbuf, 2277 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2278 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2279 uint64_t ievent; 2280 2281 ievent = fnvlist_lookup_uint64(events[i], 2282 ZPOOL_HIST_INT_EVENT); 2283 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2284 goto next; 2285 2286 (void) printf(" %s [internal %s txg:%ju] %s\n", 2287 tbuf, 2288 zfs_history_event_names[ievent], 2289 fnvlist_lookup_uint64(events[i], 2290 ZPOOL_HIST_TXG), 2291 fnvlist_lookup_string(events[i], 2292 ZPOOL_HIST_INT_STR)); 2293 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2294 (void) printf("%s [txg:%ju] %s", tbuf, 2295 fnvlist_lookup_uint64(events[i], 2296 ZPOOL_HIST_TXG), 2297 fnvlist_lookup_string(events[i], 2298 ZPOOL_HIST_INT_NAME)); 2299 2300 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2301 (void) printf(" %s (%llu)", 2302 fnvlist_lookup_string(events[i], 2303 ZPOOL_HIST_DSNAME), 2304 (u_longlong_t)fnvlist_lookup_uint64( 2305 events[i], 2306 ZPOOL_HIST_DSID)); 2307 } 2308 2309 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2310 ZPOOL_HIST_INT_STR)); 2311 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2312 (void) printf("%s ioctl %s\n", tbuf, 2313 fnvlist_lookup_string(events[i], 2314 ZPOOL_HIST_IOCTL)); 2315 2316 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2317 (void) printf(" input:\n"); 2318 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2319 ZPOOL_HIST_INPUT_NVL), 8); 2320 } 2321 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2322 (void) printf(" output:\n"); 2323 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2324 ZPOOL_HIST_OUTPUT_NVL), 8); 2325 } 2326 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2327 (void) printf(" errno: %lld\n", 2328 (longlong_t)fnvlist_lookup_int64(events[i], 2329 ZPOOL_HIST_ERRNO)); 2330 } 2331 } else { 2332 goto next; 2333 } 2334 2335 printed = B_TRUE; 2336 next: 2337 if (dump_opt['h'] > 1) { 2338 if (!printed) 2339 (void) printf("unrecognized record:\n"); 2340 dump_nvlist(events[i], 2); 2341 } 2342 } 2343 free(buf); 2344 } 2345 2346 static void 2347 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2348 { 2349 (void) os, (void) object, (void) data, (void) size; 2350 } 2351 2352 static uint64_t 2353 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2354 const zbookmark_phys_t *zb) 2355 { 2356 if (dnp == NULL) { 2357 ASSERT(zb->zb_level < 0); 2358 if (zb->zb_object == 0) 2359 return (zb->zb_blkid); 2360 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2361 } 2362 2363 ASSERT(zb->zb_level >= 0); 2364 2365 return ((zb->zb_blkid << 2366 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2367 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2368 } 2369 2370 static void 2371 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2372 const blkptr_t *bp) 2373 { 2374 static abd_t *pabd = NULL; 2375 void *buf; 2376 zio_t *zio; 2377 zfs_zstdhdr_t zstd_hdr; 2378 int error; 2379 2380 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2381 return; 2382 2383 if (BP_IS_HOLE(bp)) 2384 return; 2385 2386 if (BP_IS_EMBEDDED(bp)) { 2387 buf = malloc(SPA_MAXBLOCKSIZE); 2388 if (buf == NULL) { 2389 (void) fprintf(stderr, "out of memory\n"); 2390 zdb_exit(1); 2391 } 2392 decode_embedded_bp_compressed(bp, buf); 2393 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2394 free(buf); 2395 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2396 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2397 (void) snprintf(blkbuf + strlen(blkbuf), 2398 buflen - strlen(blkbuf), 2399 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2400 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2401 zfs_get_hdrlevel(&zstd_hdr)); 2402 return; 2403 } 2404 2405 if (!pabd) 2406 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2407 zio = zio_root(spa, NULL, NULL, 0); 2408 2409 /* Decrypt but don't decompress so we can read the compression header */ 2410 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2411 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2412 NULL)); 2413 error = zio_wait(zio); 2414 if (error) { 2415 (void) fprintf(stderr, "read failed: %d\n", error); 2416 return; 2417 } 2418 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2419 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2420 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2421 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2422 2423 (void) snprintf(blkbuf + strlen(blkbuf), 2424 buflen - strlen(blkbuf), 2425 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2426 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2427 zfs_get_hdrlevel(&zstd_hdr)); 2428 2429 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2430 } 2431 2432 static void 2433 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2434 boolean_t bp_freed) 2435 { 2436 const dva_t *dva = bp->blk_dva; 2437 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2438 int i; 2439 2440 if (dump_opt['b'] >= 6) { 2441 snprintf_blkptr(blkbuf, buflen, bp); 2442 if (bp_freed) { 2443 (void) snprintf(blkbuf + strlen(blkbuf), 2444 buflen - strlen(blkbuf), " %s", "FREE"); 2445 } 2446 return; 2447 } 2448 2449 if (BP_IS_EMBEDDED(bp)) { 2450 (void) sprintf(blkbuf, 2451 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2452 (int)BPE_GET_ETYPE(bp), 2453 (u_longlong_t)BPE_GET_LSIZE(bp), 2454 (u_longlong_t)BPE_GET_PSIZE(bp), 2455 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2456 return; 2457 } 2458 2459 blkbuf[0] = '\0'; 2460 2461 for (i = 0; i < ndvas; i++) 2462 (void) snprintf(blkbuf + strlen(blkbuf), 2463 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2464 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2465 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2466 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2467 2468 if (BP_IS_HOLE(bp)) { 2469 (void) snprintf(blkbuf + strlen(blkbuf), 2470 buflen - strlen(blkbuf), 2471 "%llxL B=%llu", 2472 (u_longlong_t)BP_GET_LSIZE(bp), 2473 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2474 } else { 2475 (void) snprintf(blkbuf + strlen(blkbuf), 2476 buflen - strlen(blkbuf), 2477 "%llxL/%llxP F=%llu B=%llu/%llu", 2478 (u_longlong_t)BP_GET_LSIZE(bp), 2479 (u_longlong_t)BP_GET_PSIZE(bp), 2480 (u_longlong_t)BP_GET_FILL(bp), 2481 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2482 (u_longlong_t)BP_GET_BIRTH(bp)); 2483 if (bp_freed) 2484 (void) snprintf(blkbuf + strlen(blkbuf), 2485 buflen - strlen(blkbuf), " %s", "FREE"); 2486 (void) snprintf(blkbuf + strlen(blkbuf), 2487 buflen - strlen(blkbuf), 2488 " cksum=%016llx:%016llx:%016llx:%016llx", 2489 (u_longlong_t)bp->blk_cksum.zc_word[0], 2490 (u_longlong_t)bp->blk_cksum.zc_word[1], 2491 (u_longlong_t)bp->blk_cksum.zc_word[2], 2492 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2493 } 2494 } 2495 2496 static void 2497 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2498 const dnode_phys_t *dnp) 2499 { 2500 char blkbuf[BP_SPRINTF_LEN]; 2501 int l; 2502 2503 if (!BP_IS_EMBEDDED(bp)) { 2504 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2505 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2506 } 2507 2508 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2509 2510 ASSERT(zb->zb_level >= 0); 2511 2512 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2513 if (l == zb->zb_level) { 2514 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2515 } else { 2516 (void) printf(" "); 2517 } 2518 } 2519 2520 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2521 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2522 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2523 (void) printf("%s\n", blkbuf); 2524 } 2525 2526 static int 2527 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2528 blkptr_t *bp, const zbookmark_phys_t *zb) 2529 { 2530 int err = 0; 2531 2532 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2533 return (0); 2534 2535 print_indirect(spa, bp, zb, dnp); 2536 2537 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2538 arc_flags_t flags = ARC_FLAG_WAIT; 2539 int i; 2540 blkptr_t *cbp; 2541 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2542 arc_buf_t *buf; 2543 uint64_t fill = 0; 2544 ASSERT(!BP_IS_REDACTED(bp)); 2545 2546 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2547 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2548 if (err) 2549 return (err); 2550 ASSERT(buf->b_data); 2551 2552 /* recursively visit blocks below this */ 2553 cbp = buf->b_data; 2554 for (i = 0; i < epb; i++, cbp++) { 2555 zbookmark_phys_t czb; 2556 2557 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2558 zb->zb_level - 1, 2559 zb->zb_blkid * epb + i); 2560 err = visit_indirect(spa, dnp, cbp, &czb); 2561 if (err) 2562 break; 2563 fill += BP_GET_FILL(cbp); 2564 } 2565 if (!err) 2566 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2567 arc_buf_destroy(buf, &buf); 2568 } 2569 2570 return (err); 2571 } 2572 2573 static void 2574 dump_indirect(dnode_t *dn) 2575 { 2576 dnode_phys_t *dnp = dn->dn_phys; 2577 zbookmark_phys_t czb; 2578 2579 (void) printf("Indirect blocks:\n"); 2580 2581 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2582 dn->dn_object, dnp->dn_nlevels - 1, 0); 2583 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2584 czb.zb_blkid = j; 2585 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2586 &dnp->dn_blkptr[j], &czb); 2587 } 2588 2589 (void) printf("\n"); 2590 } 2591 2592 static void 2593 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2594 { 2595 (void) os, (void) object; 2596 dsl_dir_phys_t *dd = data; 2597 time_t crtime; 2598 char nice[32]; 2599 2600 /* make sure nicenum has enough space */ 2601 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2602 2603 if (dd == NULL) 2604 return; 2605 2606 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2607 2608 crtime = dd->dd_creation_time; 2609 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2610 (void) printf("\t\thead_dataset_obj = %llu\n", 2611 (u_longlong_t)dd->dd_head_dataset_obj); 2612 (void) printf("\t\tparent_dir_obj = %llu\n", 2613 (u_longlong_t)dd->dd_parent_obj); 2614 (void) printf("\t\torigin_obj = %llu\n", 2615 (u_longlong_t)dd->dd_origin_obj); 2616 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2617 (u_longlong_t)dd->dd_child_dir_zapobj); 2618 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2619 (void) printf("\t\tused_bytes = %s\n", nice); 2620 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2621 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2622 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2623 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2624 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2625 (void) printf("\t\tquota = %s\n", nice); 2626 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2627 (void) printf("\t\treserved = %s\n", nice); 2628 (void) printf("\t\tprops_zapobj = %llu\n", 2629 (u_longlong_t)dd->dd_props_zapobj); 2630 (void) printf("\t\tdeleg_zapobj = %llu\n", 2631 (u_longlong_t)dd->dd_deleg_zapobj); 2632 (void) printf("\t\tflags = %llx\n", 2633 (u_longlong_t)dd->dd_flags); 2634 2635 #define DO(which) \ 2636 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2637 sizeof (nice)); \ 2638 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2639 DO(HEAD); 2640 DO(SNAP); 2641 DO(CHILD); 2642 DO(CHILD_RSRV); 2643 DO(REFRSRV); 2644 #undef DO 2645 (void) printf("\t\tclones = %llu\n", 2646 (u_longlong_t)dd->dd_clones); 2647 } 2648 2649 static void 2650 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2651 { 2652 (void) os, (void) object; 2653 dsl_dataset_phys_t *ds = data; 2654 time_t crtime; 2655 char used[32], compressed[32], uncompressed[32], unique[32]; 2656 char blkbuf[BP_SPRINTF_LEN]; 2657 2658 /* make sure nicenum has enough space */ 2659 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2660 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2661 "compressed truncated"); 2662 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2663 "uncompressed truncated"); 2664 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2665 2666 if (ds == NULL) 2667 return; 2668 2669 ASSERT(size == sizeof (*ds)); 2670 crtime = ds->ds_creation_time; 2671 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2672 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2673 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2674 sizeof (uncompressed)); 2675 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2676 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2677 2678 (void) printf("\t\tdir_obj = %llu\n", 2679 (u_longlong_t)ds->ds_dir_obj); 2680 (void) printf("\t\tprev_snap_obj = %llu\n", 2681 (u_longlong_t)ds->ds_prev_snap_obj); 2682 (void) printf("\t\tprev_snap_txg = %llu\n", 2683 (u_longlong_t)ds->ds_prev_snap_txg); 2684 (void) printf("\t\tnext_snap_obj = %llu\n", 2685 (u_longlong_t)ds->ds_next_snap_obj); 2686 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2687 (u_longlong_t)ds->ds_snapnames_zapobj); 2688 (void) printf("\t\tnum_children = %llu\n", 2689 (u_longlong_t)ds->ds_num_children); 2690 (void) printf("\t\tuserrefs_obj = %llu\n", 2691 (u_longlong_t)ds->ds_userrefs_obj); 2692 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2693 (void) printf("\t\tcreation_txg = %llu\n", 2694 (u_longlong_t)ds->ds_creation_txg); 2695 (void) printf("\t\tdeadlist_obj = %llu\n", 2696 (u_longlong_t)ds->ds_deadlist_obj); 2697 (void) printf("\t\tused_bytes = %s\n", used); 2698 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2699 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2700 (void) printf("\t\tunique = %s\n", unique); 2701 (void) printf("\t\tfsid_guid = %llu\n", 2702 (u_longlong_t)ds->ds_fsid_guid); 2703 (void) printf("\t\tguid = %llu\n", 2704 (u_longlong_t)ds->ds_guid); 2705 (void) printf("\t\tflags = %llx\n", 2706 (u_longlong_t)ds->ds_flags); 2707 (void) printf("\t\tnext_clones_obj = %llu\n", 2708 (u_longlong_t)ds->ds_next_clones_obj); 2709 (void) printf("\t\tprops_obj = %llu\n", 2710 (u_longlong_t)ds->ds_props_obj); 2711 (void) printf("\t\tbp = %s\n", blkbuf); 2712 } 2713 2714 static int 2715 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2716 { 2717 (void) arg, (void) tx; 2718 char blkbuf[BP_SPRINTF_LEN]; 2719 2720 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2721 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2722 (void) printf("\t%s\n", blkbuf); 2723 } 2724 return (0); 2725 } 2726 2727 static void 2728 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2729 { 2730 char bytes[32]; 2731 bptree_phys_t *bt; 2732 dmu_buf_t *db; 2733 2734 /* make sure nicenum has enough space */ 2735 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2736 2737 if (dump_opt['d'] < 3) 2738 return; 2739 2740 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2741 bt = db->db_data; 2742 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2743 (void) printf("\n %s: %llu datasets, %s\n", 2744 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2745 dmu_buf_rele(db, FTAG); 2746 2747 if (dump_opt['d'] < 5) 2748 return; 2749 2750 (void) printf("\n"); 2751 2752 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2753 } 2754 2755 static int 2756 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2757 { 2758 (void) arg, (void) tx; 2759 char blkbuf[BP_SPRINTF_LEN]; 2760 2761 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2762 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2763 (void) printf("\t%s\n", blkbuf); 2764 return (0); 2765 } 2766 2767 static void 2768 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2769 { 2770 char bytes[32]; 2771 char comp[32]; 2772 char uncomp[32]; 2773 uint64_t i; 2774 2775 /* make sure nicenum has enough space */ 2776 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2777 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2778 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2779 2780 if (dump_opt['d'] < 3) 2781 return; 2782 2783 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2784 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2785 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2786 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2787 if (bpo->bpo_havefreed) { 2788 (void) printf(" %*s: object %llu, %llu local " 2789 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2790 "%s (%s/%s comp)\n", 2791 indent * 8, name, 2792 (u_longlong_t)bpo->bpo_object, 2793 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2794 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2795 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2796 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2797 bytes, comp, uncomp); 2798 } else { 2799 (void) printf(" %*s: object %llu, %llu local " 2800 "blkptrs, %llu subobjs in object %llu, " 2801 "%s (%s/%s comp)\n", 2802 indent * 8, name, 2803 (u_longlong_t)bpo->bpo_object, 2804 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2805 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2806 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2807 bytes, comp, uncomp); 2808 } 2809 2810 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2811 uint64_t subobj; 2812 bpobj_t subbpo; 2813 int error; 2814 VERIFY0(dmu_read(bpo->bpo_os, 2815 bpo->bpo_phys->bpo_subobjs, 2816 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2817 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2818 if (error != 0) { 2819 (void) printf("ERROR %u while trying to open " 2820 "subobj id %llu\n", 2821 error, (u_longlong_t)subobj); 2822 continue; 2823 } 2824 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2825 bpobj_close(&subbpo); 2826 } 2827 } else { 2828 if (bpo->bpo_havefreed) { 2829 (void) printf(" %*s: object %llu, %llu blkptrs, " 2830 "%llu freed, %s\n", 2831 indent * 8, name, 2832 (u_longlong_t)bpo->bpo_object, 2833 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2834 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2835 bytes); 2836 } else { 2837 (void) printf(" %*s: object %llu, %llu blkptrs, " 2838 "%s\n", 2839 indent * 8, name, 2840 (u_longlong_t)bpo->bpo_object, 2841 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2842 bytes); 2843 } 2844 } 2845 2846 if (dump_opt['d'] < 5) 2847 return; 2848 2849 2850 if (indent == 0) { 2851 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2852 (void) printf("\n"); 2853 } 2854 } 2855 2856 static int 2857 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2858 boolean_t print_list) 2859 { 2860 int err = 0; 2861 zfs_bookmark_phys_t prop; 2862 objset_t *mos = dp->dp_spa->spa_meta_objset; 2863 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2864 2865 if (err != 0) { 2866 return (err); 2867 } 2868 2869 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2870 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2871 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2872 (u_longlong_t)prop.zbm_creation_txg, 2873 (u_longlong_t)prop.zbm_creation_time, 2874 (u_longlong_t)prop.zbm_redaction_obj); 2875 2876 IMPLY(print_list, print_redact); 2877 if (!print_redact || prop.zbm_redaction_obj == 0) 2878 return (0); 2879 2880 redaction_list_t *rl; 2881 VERIFY0(dsl_redaction_list_hold_obj(dp, 2882 prop.zbm_redaction_obj, FTAG, &rl)); 2883 2884 redaction_list_phys_t *rlp = rl->rl_phys; 2885 (void) printf("\tRedacted:\n\t\tProgress: "); 2886 if (rlp->rlp_last_object != UINT64_MAX || 2887 rlp->rlp_last_blkid != UINT64_MAX) { 2888 (void) printf("%llu %llu (incomplete)\n", 2889 (u_longlong_t)rlp->rlp_last_object, 2890 (u_longlong_t)rlp->rlp_last_blkid); 2891 } else { 2892 (void) printf("complete\n"); 2893 } 2894 (void) printf("\t\tSnapshots: ["); 2895 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2896 if (i > 0) 2897 (void) printf(", "); 2898 (void) printf("%0llu", 2899 (u_longlong_t)rlp->rlp_snaps[i]); 2900 } 2901 (void) printf("]\n\t\tLength: %llu\n", 2902 (u_longlong_t)rlp->rlp_num_entries); 2903 2904 if (!print_list) { 2905 dsl_redaction_list_rele(rl, FTAG); 2906 return (0); 2907 } 2908 2909 if (rlp->rlp_num_entries == 0) { 2910 dsl_redaction_list_rele(rl, FTAG); 2911 (void) printf("\t\tRedaction List: []\n\n"); 2912 return (0); 2913 } 2914 2915 redact_block_phys_t *rbp_buf; 2916 uint64_t size; 2917 dmu_object_info_t doi; 2918 2919 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2920 size = doi.doi_max_offset; 2921 rbp_buf = kmem_alloc(size, KM_SLEEP); 2922 2923 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2924 rbp_buf, 0); 2925 if (err != 0) { 2926 dsl_redaction_list_rele(rl, FTAG); 2927 kmem_free(rbp_buf, size); 2928 return (err); 2929 } 2930 2931 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2932 "%llx, blksz: %x, count: %llx}", 2933 (u_longlong_t)rbp_buf[0].rbp_object, 2934 (u_longlong_t)rbp_buf[0].rbp_blkid, 2935 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2936 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2937 2938 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2939 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2940 "blksz: %x, count: %llx}", 2941 (u_longlong_t)rbp_buf[i].rbp_object, 2942 (u_longlong_t)rbp_buf[i].rbp_blkid, 2943 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2944 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2945 } 2946 dsl_redaction_list_rele(rl, FTAG); 2947 kmem_free(rbp_buf, size); 2948 (void) printf("]\n\n"); 2949 return (0); 2950 } 2951 2952 static void 2953 dump_bookmarks(objset_t *os, int verbosity) 2954 { 2955 zap_cursor_t zc; 2956 zap_attribute_t attr; 2957 dsl_dataset_t *ds = dmu_objset_ds(os); 2958 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2959 objset_t *mos = os->os_spa->spa_meta_objset; 2960 if (verbosity < 4) 2961 return; 2962 dsl_pool_config_enter(dp, FTAG); 2963 2964 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2965 zap_cursor_retrieve(&zc, &attr) == 0; 2966 zap_cursor_advance(&zc)) { 2967 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2968 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2969 int len; 2970 dmu_objset_name(os, osname); 2971 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2972 attr.za_name); 2973 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2974 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2975 } 2976 zap_cursor_fini(&zc); 2977 dsl_pool_config_exit(dp, FTAG); 2978 } 2979 2980 static void 2981 bpobj_count_refd(bpobj_t *bpo) 2982 { 2983 mos_obj_refd(bpo->bpo_object); 2984 2985 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2986 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2987 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2988 uint64_t subobj; 2989 bpobj_t subbpo; 2990 int error; 2991 VERIFY0(dmu_read(bpo->bpo_os, 2992 bpo->bpo_phys->bpo_subobjs, 2993 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2994 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2995 if (error != 0) { 2996 (void) printf("ERROR %u while trying to open " 2997 "subobj id %llu\n", 2998 error, (u_longlong_t)subobj); 2999 continue; 3000 } 3001 bpobj_count_refd(&subbpo); 3002 bpobj_close(&subbpo); 3003 } 3004 } 3005 } 3006 3007 static int 3008 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3009 { 3010 spa_t *spa = arg; 3011 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3012 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3013 bpobj_count_refd(&dle->dle_bpobj); 3014 return (0); 3015 } 3016 3017 static int 3018 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3019 { 3020 ASSERT(arg == NULL); 3021 if (dump_opt['d'] >= 5) { 3022 char buf[128]; 3023 (void) snprintf(buf, sizeof (buf), 3024 "mintxg %llu -> obj %llu", 3025 (longlong_t)dle->dle_mintxg, 3026 (longlong_t)dle->dle_bpobj.bpo_object); 3027 3028 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3029 } else { 3030 (void) printf("mintxg %llu -> obj %llu\n", 3031 (longlong_t)dle->dle_mintxg, 3032 (longlong_t)dle->dle_bpobj.bpo_object); 3033 } 3034 return (0); 3035 } 3036 3037 static void 3038 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3039 { 3040 char bytes[32]; 3041 char comp[32]; 3042 char uncomp[32]; 3043 char entries[32]; 3044 spa_t *spa = dmu_objset_spa(dl->dl_os); 3045 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3046 3047 if (dl->dl_oldfmt) { 3048 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3049 bpobj_count_refd(&dl->dl_bpobj); 3050 } else { 3051 mos_obj_refd(dl->dl_object); 3052 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3053 } 3054 3055 /* make sure nicenum has enough space */ 3056 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3057 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3058 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3059 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3060 3061 if (dump_opt['d'] < 3) 3062 return; 3063 3064 if (dl->dl_oldfmt) { 3065 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3066 return; 3067 } 3068 3069 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3070 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3071 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3072 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3073 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3074 name, bytes, comp, uncomp, entries); 3075 3076 if (dump_opt['d'] < 4) 3077 return; 3078 3079 (void) putchar('\n'); 3080 3081 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3082 } 3083 3084 static int 3085 verify_dd_livelist(objset_t *os) 3086 { 3087 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3088 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3089 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3090 3091 ASSERT(!dmu_objset_is_snapshot(os)); 3092 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3093 return (0); 3094 3095 /* Iterate through the livelist to check for duplicates */ 3096 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3097 NULL); 3098 3099 dsl_pool_config_enter(dp, FTAG); 3100 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3101 &ll_comp, &ll_uncomp); 3102 3103 dsl_dataset_t *origin_ds; 3104 ASSERT(dsl_pool_config_held(dp)); 3105 VERIFY0(dsl_dataset_hold_obj(dp, 3106 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3107 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3108 &used, &comp, &uncomp)); 3109 dsl_dataset_rele(origin_ds, FTAG); 3110 dsl_pool_config_exit(dp, FTAG); 3111 /* 3112 * It's possible that the dataset's uncomp space is larger than the 3113 * livelist's because livelists do not track embedded block pointers 3114 */ 3115 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3116 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3117 (void) printf("Discrepancy in space accounting:\n"); 3118 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3119 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3120 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3121 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3122 nice_used, nice_comp, nice_uncomp); 3123 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3124 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3125 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3126 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3127 nice_used, nice_comp, nice_uncomp); 3128 return (1); 3129 } 3130 return (0); 3131 } 3132 3133 static char *key_material = NULL; 3134 3135 static boolean_t 3136 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3137 { 3138 uint64_t keyformat, salt, iters; 3139 int i; 3140 unsigned char c; 3141 3142 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3143 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3144 1, &keyformat)); 3145 3146 switch (keyformat) { 3147 case ZFS_KEYFORMAT_HEX: 3148 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3149 if (!isxdigit(key_material[i]) || 3150 !isxdigit(key_material[i+1])) 3151 return (B_FALSE); 3152 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3153 return (B_FALSE); 3154 key_out[i / 2] = c; 3155 } 3156 break; 3157 3158 case ZFS_KEYFORMAT_PASSPHRASE: 3159 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3160 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3161 sizeof (uint64_t), 1, &salt)); 3162 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3163 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3164 sizeof (uint64_t), 1, &iters)); 3165 3166 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3167 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3168 WRAPPING_KEY_LEN, key_out) != 1) 3169 return (B_FALSE); 3170 3171 break; 3172 3173 default: 3174 fatal("no support for key format %u\n", 3175 (unsigned int) keyformat); 3176 } 3177 3178 return (B_TRUE); 3179 } 3180 3181 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3182 static boolean_t key_loaded = B_FALSE; 3183 3184 static void 3185 zdb_load_key(objset_t *os) 3186 { 3187 dsl_pool_t *dp; 3188 dsl_dir_t *dd, *rdd; 3189 uint8_t key[WRAPPING_KEY_LEN]; 3190 uint64_t rddobj; 3191 int err; 3192 3193 dp = spa_get_dsl(os->os_spa); 3194 dd = os->os_dsl_dataset->ds_dir; 3195 3196 dsl_pool_config_enter(dp, FTAG); 3197 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3198 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3199 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3200 dsl_dir_name(rdd, encroot); 3201 dsl_dir_rele(rdd, FTAG); 3202 3203 if (!zdb_derive_key(dd, key)) 3204 fatal("couldn't derive encryption key"); 3205 3206 dsl_pool_config_exit(dp, FTAG); 3207 3208 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3209 3210 dsl_crypto_params_t *dcp; 3211 nvlist_t *crypto_args; 3212 3213 crypto_args = fnvlist_alloc(); 3214 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3215 (uint8_t *)key, WRAPPING_KEY_LEN); 3216 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3217 NULL, crypto_args, &dcp)); 3218 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3219 3220 dsl_crypto_params_free(dcp, (err != 0)); 3221 fnvlist_free(crypto_args); 3222 3223 if (err != 0) 3224 fatal( 3225 "couldn't load encryption key for %s: %s", 3226 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3227 "crypto params not supported" : strerror(err)); 3228 3229 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3230 3231 printf("Unlocked encryption root: %s\n", encroot); 3232 key_loaded = B_TRUE; 3233 } 3234 3235 static void 3236 zdb_unload_key(void) 3237 { 3238 if (!key_loaded) 3239 return; 3240 3241 VERIFY0(spa_keystore_unload_wkey(encroot)); 3242 key_loaded = B_FALSE; 3243 } 3244 3245 static avl_tree_t idx_tree; 3246 static avl_tree_t domain_tree; 3247 static boolean_t fuid_table_loaded; 3248 static objset_t *sa_os = NULL; 3249 static sa_attr_type_t *sa_attr_table = NULL; 3250 3251 static int 3252 open_objset(const char *path, const void *tag, objset_t **osp) 3253 { 3254 int err; 3255 uint64_t sa_attrs = 0; 3256 uint64_t version = 0; 3257 3258 VERIFY3P(sa_os, ==, NULL); 3259 3260 /* 3261 * We can't own an objset if it's redacted. Therefore, we do this 3262 * dance: hold the objset, then acquire a long hold on its dataset, then 3263 * release the pool (which is held as part of holding the objset). 3264 */ 3265 3266 if (dump_opt['K']) { 3267 /* decryption requested, try to load keys */ 3268 err = dmu_objset_hold(path, tag, osp); 3269 if (err != 0) { 3270 (void) fprintf(stderr, "failed to hold dataset " 3271 "'%s': %s\n", 3272 path, strerror(err)); 3273 return (err); 3274 } 3275 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3276 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3277 3278 /* succeeds or dies */ 3279 zdb_load_key(*osp); 3280 3281 /* release it all */ 3282 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3283 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3284 } 3285 3286 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3287 3288 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3289 if (err != 0) { 3290 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3291 path, strerror(err)); 3292 return (err); 3293 } 3294 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3295 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3296 3297 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3298 (key_loaded || !(*osp)->os_encrypted)) { 3299 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3300 8, 1, &version); 3301 if (version >= ZPL_VERSION_SA) { 3302 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3303 8, 1, &sa_attrs); 3304 } 3305 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3306 &sa_attr_table); 3307 if (err != 0) { 3308 (void) fprintf(stderr, "sa_setup failed: %s\n", 3309 strerror(err)); 3310 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3311 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3312 ds_hold_flags, tag); 3313 *osp = NULL; 3314 } 3315 } 3316 sa_os = *osp; 3317 3318 return (err); 3319 } 3320 3321 static void 3322 close_objset(objset_t *os, const void *tag) 3323 { 3324 VERIFY3P(os, ==, sa_os); 3325 if (os->os_sa != NULL) 3326 sa_tear_down(os); 3327 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3328 dsl_dataset_rele_flags(dmu_objset_ds(os), 3329 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3330 sa_attr_table = NULL; 3331 sa_os = NULL; 3332 3333 zdb_unload_key(); 3334 } 3335 3336 static void 3337 fuid_table_destroy(void) 3338 { 3339 if (fuid_table_loaded) { 3340 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3341 fuid_table_loaded = B_FALSE; 3342 } 3343 } 3344 3345 /* 3346 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3347 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3348 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3349 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3350 * 3351 * Note that this is not a particularly efficient way to do this, but 3352 * ddt_remove() is the only public method that can do the work we need, and it 3353 * requires the right locks and etc to do the job. This is only ever called 3354 * during zdb shutdown so efficiency is not especially important. 3355 */ 3356 static void 3357 zdb_ddt_cleanup(spa_t *spa) 3358 { 3359 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3360 ddt_t *ddt = spa->spa_ddt[c]; 3361 if (!ddt) 3362 continue; 3363 3364 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3365 ddt_enter(ddt); 3366 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3367 while (dde) { 3368 next = AVL_NEXT(&ddt->ddt_tree, dde); 3369 dde->dde_io = NULL; 3370 ddt_remove(ddt, dde); 3371 dde = next; 3372 } 3373 ddt_exit(ddt); 3374 spa_config_exit(spa, SCL_CONFIG, FTAG); 3375 } 3376 } 3377 3378 static void 3379 zdb_exit(int reason) 3380 { 3381 if (spa != NULL) 3382 zdb_ddt_cleanup(spa); 3383 3384 if (os != NULL) { 3385 close_objset(os, FTAG); 3386 } else if (spa != NULL) { 3387 spa_close(spa, FTAG); 3388 } 3389 3390 fuid_table_destroy(); 3391 3392 if (kernel_init_done) 3393 kernel_fini(); 3394 3395 exit(reason); 3396 } 3397 3398 /* 3399 * print uid or gid information. 3400 * For normal POSIX id just the id is printed in decimal format. 3401 * For CIFS files with FUID the fuid is printed in hex followed by 3402 * the domain-rid string. 3403 */ 3404 static void 3405 print_idstr(uint64_t id, const char *id_type) 3406 { 3407 if (FUID_INDEX(id)) { 3408 const char *domain = 3409 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3410 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3411 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3412 } else { 3413 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3414 } 3415 3416 } 3417 3418 static void 3419 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3420 { 3421 uint32_t uid_idx, gid_idx; 3422 3423 uid_idx = FUID_INDEX(uid); 3424 gid_idx = FUID_INDEX(gid); 3425 3426 /* Load domain table, if not already loaded */ 3427 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3428 uint64_t fuid_obj; 3429 3430 /* first find the fuid object. It lives in the master node */ 3431 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3432 8, 1, &fuid_obj) == 0); 3433 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3434 (void) zfs_fuid_table_load(os, fuid_obj, 3435 &idx_tree, &domain_tree); 3436 fuid_table_loaded = B_TRUE; 3437 } 3438 3439 print_idstr(uid, "uid"); 3440 print_idstr(gid, "gid"); 3441 } 3442 3443 static void 3444 dump_znode_sa_xattr(sa_handle_t *hdl) 3445 { 3446 nvlist_t *sa_xattr; 3447 nvpair_t *elem = NULL; 3448 int sa_xattr_size = 0; 3449 int sa_xattr_entries = 0; 3450 int error; 3451 char *sa_xattr_packed; 3452 3453 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3454 if (error || sa_xattr_size == 0) 3455 return; 3456 3457 sa_xattr_packed = malloc(sa_xattr_size); 3458 if (sa_xattr_packed == NULL) 3459 return; 3460 3461 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3462 sa_xattr_packed, sa_xattr_size); 3463 if (error) { 3464 free(sa_xattr_packed); 3465 return; 3466 } 3467 3468 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3469 if (error) { 3470 free(sa_xattr_packed); 3471 return; 3472 } 3473 3474 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3475 sa_xattr_entries++; 3476 3477 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3478 sa_xattr_size, sa_xattr_entries); 3479 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3480 boolean_t can_print = !dump_opt['P']; 3481 uchar_t *value; 3482 uint_t cnt, idx; 3483 3484 (void) printf("\t\t%s = ", nvpair_name(elem)); 3485 nvpair_value_byte_array(elem, &value, &cnt); 3486 3487 for (idx = 0; idx < cnt; ++idx) { 3488 if (!isprint(value[idx])) { 3489 can_print = B_FALSE; 3490 break; 3491 } 3492 } 3493 3494 for (idx = 0; idx < cnt; ++idx) { 3495 if (can_print) 3496 (void) putchar(value[idx]); 3497 else 3498 (void) printf("\\%3.3o", value[idx]); 3499 } 3500 (void) putchar('\n'); 3501 } 3502 3503 nvlist_free(sa_xattr); 3504 free(sa_xattr_packed); 3505 } 3506 3507 static void 3508 dump_znode_symlink(sa_handle_t *hdl) 3509 { 3510 int sa_symlink_size = 0; 3511 char linktarget[MAXPATHLEN]; 3512 int error; 3513 3514 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3515 if (error || sa_symlink_size == 0) { 3516 return; 3517 } 3518 if (sa_symlink_size >= sizeof (linktarget)) { 3519 (void) printf("symlink size %d is too large\n", 3520 sa_symlink_size); 3521 return; 3522 } 3523 linktarget[sa_symlink_size] = '\0'; 3524 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3525 &linktarget, sa_symlink_size) == 0) 3526 (void) printf("\ttarget %s\n", linktarget); 3527 } 3528 3529 static void 3530 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3531 { 3532 (void) data, (void) size; 3533 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3534 sa_handle_t *hdl; 3535 uint64_t xattr, rdev, gen; 3536 uint64_t uid, gid, mode, fsize, parent, links; 3537 uint64_t pflags; 3538 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3539 time_t z_crtime, z_atime, z_mtime, z_ctime; 3540 sa_bulk_attr_t bulk[12]; 3541 int idx = 0; 3542 int error; 3543 3544 VERIFY3P(os, ==, sa_os); 3545 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3546 (void) printf("Failed to get handle for SA znode\n"); 3547 return; 3548 } 3549 3550 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3551 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3552 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3553 &links, 8); 3554 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3555 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3556 &mode, 8); 3557 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3558 NULL, &parent, 8); 3559 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3560 &fsize, 8); 3561 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3562 acctm, 16); 3563 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3564 modtm, 16); 3565 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3566 crtm, 16); 3567 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3568 chgtm, 16); 3569 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3570 &pflags, 8); 3571 3572 if (sa_bulk_lookup(hdl, bulk, idx)) { 3573 (void) sa_handle_destroy(hdl); 3574 return; 3575 } 3576 3577 z_crtime = (time_t)crtm[0]; 3578 z_atime = (time_t)acctm[0]; 3579 z_mtime = (time_t)modtm[0]; 3580 z_ctime = (time_t)chgtm[0]; 3581 3582 if (dump_opt['d'] > 4) { 3583 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3584 if (error == ESTALE) { 3585 (void) snprintf(path, sizeof (path), "on delete queue"); 3586 } else if (error != 0) { 3587 leaked_objects++; 3588 (void) snprintf(path, sizeof (path), 3589 "path not found, possibly leaked"); 3590 } 3591 (void) printf("\tpath %s\n", path); 3592 } 3593 3594 if (S_ISLNK(mode)) 3595 dump_znode_symlink(hdl); 3596 dump_uidgid(os, uid, gid); 3597 (void) printf("\tatime %s", ctime(&z_atime)); 3598 (void) printf("\tmtime %s", ctime(&z_mtime)); 3599 (void) printf("\tctime %s", ctime(&z_ctime)); 3600 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3601 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3602 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3603 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3604 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3605 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3606 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3607 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3608 uint64_t projid; 3609 3610 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3611 sizeof (uint64_t)) == 0) 3612 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3613 } 3614 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3615 sizeof (uint64_t)) == 0) 3616 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3617 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3618 sizeof (uint64_t)) == 0) 3619 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3620 dump_znode_sa_xattr(hdl); 3621 sa_handle_destroy(hdl); 3622 } 3623 3624 static void 3625 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3626 { 3627 (void) os, (void) object, (void) data, (void) size; 3628 } 3629 3630 static void 3631 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3632 { 3633 (void) os, (void) object, (void) data, (void) size; 3634 } 3635 3636 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3637 dump_none, /* unallocated */ 3638 dump_zap, /* object directory */ 3639 dump_uint64, /* object array */ 3640 dump_none, /* packed nvlist */ 3641 dump_packed_nvlist, /* packed nvlist size */ 3642 dump_none, /* bpobj */ 3643 dump_bpobj, /* bpobj header */ 3644 dump_none, /* SPA space map header */ 3645 dump_none, /* SPA space map */ 3646 dump_none, /* ZIL intent log */ 3647 dump_dnode, /* DMU dnode */ 3648 dump_dmu_objset, /* DMU objset */ 3649 dump_dsl_dir, /* DSL directory */ 3650 dump_zap, /* DSL directory child map */ 3651 dump_zap, /* DSL dataset snap map */ 3652 dump_zap, /* DSL props */ 3653 dump_dsl_dataset, /* DSL dataset */ 3654 dump_znode, /* ZFS znode */ 3655 dump_acl, /* ZFS V0 ACL */ 3656 dump_uint8, /* ZFS plain file */ 3657 dump_zpldir, /* ZFS directory */ 3658 dump_zap, /* ZFS master node */ 3659 dump_zap, /* ZFS delete queue */ 3660 dump_uint8, /* zvol object */ 3661 dump_zap, /* zvol prop */ 3662 dump_uint8, /* other uint8[] */ 3663 dump_uint64, /* other uint64[] */ 3664 dump_zap, /* other ZAP */ 3665 dump_zap, /* persistent error log */ 3666 dump_uint8, /* SPA history */ 3667 dump_history_offsets, /* SPA history offsets */ 3668 dump_zap, /* Pool properties */ 3669 dump_zap, /* DSL permissions */ 3670 dump_acl, /* ZFS ACL */ 3671 dump_uint8, /* ZFS SYSACL */ 3672 dump_none, /* FUID nvlist */ 3673 dump_packed_nvlist, /* FUID nvlist size */ 3674 dump_zap, /* DSL dataset next clones */ 3675 dump_zap, /* DSL scrub queue */ 3676 dump_zap, /* ZFS user/group/project used */ 3677 dump_zap, /* ZFS user/group/project quota */ 3678 dump_zap, /* snapshot refcount tags */ 3679 dump_ddt_zap, /* DDT ZAP object */ 3680 dump_zap, /* DDT statistics */ 3681 dump_znode, /* SA object */ 3682 dump_zap, /* SA Master Node */ 3683 dump_sa_attrs, /* SA attribute registration */ 3684 dump_sa_layouts, /* SA attribute layouts */ 3685 dump_zap, /* DSL scrub translations */ 3686 dump_none, /* fake dedup BP */ 3687 dump_zap, /* deadlist */ 3688 dump_none, /* deadlist hdr */ 3689 dump_zap, /* dsl clones */ 3690 dump_bpobj_subobjs, /* bpobj subobjs */ 3691 dump_unknown, /* Unknown type, must be last */ 3692 }; 3693 3694 static boolean_t 3695 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3696 { 3697 boolean_t match = B_TRUE; 3698 3699 switch (obj_type) { 3700 case DMU_OT_DIRECTORY_CONTENTS: 3701 if (!(flags & ZOR_FLAG_DIRECTORY)) 3702 match = B_FALSE; 3703 break; 3704 case DMU_OT_PLAIN_FILE_CONTENTS: 3705 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3706 match = B_FALSE; 3707 break; 3708 case DMU_OT_SPACE_MAP: 3709 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3710 match = B_FALSE; 3711 break; 3712 default: 3713 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3714 if (!(flags & ZOR_FLAG_ZAP)) 3715 match = B_FALSE; 3716 break; 3717 } 3718 3719 /* 3720 * If all bits except some of the supported flags are 3721 * set, the user combined the all-types flag (A) with 3722 * a negated flag to exclude some types (e.g. A-f to 3723 * show all object types except plain files). 3724 */ 3725 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3726 match = B_FALSE; 3727 3728 break; 3729 } 3730 3731 return (match); 3732 } 3733 3734 static void 3735 dump_object(objset_t *os, uint64_t object, int verbosity, 3736 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3737 { 3738 dmu_buf_t *db = NULL; 3739 dmu_object_info_t doi; 3740 dnode_t *dn; 3741 boolean_t dnode_held = B_FALSE; 3742 void *bonus = NULL; 3743 size_t bsize = 0; 3744 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3745 char bonus_size[32]; 3746 char aux[50]; 3747 int error; 3748 3749 /* make sure nicenum has enough space */ 3750 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3751 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3752 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3753 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3754 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3755 "bonus_size truncated"); 3756 3757 if (*print_header) { 3758 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3759 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3760 "lsize", "%full", "type"); 3761 *print_header = 0; 3762 } 3763 3764 if (object == 0) { 3765 dn = DMU_META_DNODE(os); 3766 dmu_object_info_from_dnode(dn, &doi); 3767 } else { 3768 /* 3769 * Encrypted datasets will have sensitive bonus buffers 3770 * encrypted. Therefore we cannot hold the bonus buffer and 3771 * must hold the dnode itself instead. 3772 */ 3773 error = dmu_object_info(os, object, &doi); 3774 if (error) 3775 fatal("dmu_object_info() failed, errno %u", error); 3776 3777 if (!key_loaded && os->os_encrypted && 3778 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3779 error = dnode_hold(os, object, FTAG, &dn); 3780 if (error) 3781 fatal("dnode_hold() failed, errno %u", error); 3782 dnode_held = B_TRUE; 3783 } else { 3784 error = dmu_bonus_hold(os, object, FTAG, &db); 3785 if (error) 3786 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3787 object, error); 3788 bonus = db->db_data; 3789 bsize = db->db_size; 3790 dn = DB_DNODE((dmu_buf_impl_t *)db); 3791 } 3792 } 3793 3794 /* 3795 * Default to showing all object types if no flags were specified. 3796 */ 3797 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3798 !match_object_type(doi.doi_type, flags)) 3799 goto out; 3800 3801 if (dnode_slots_used) 3802 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3803 3804 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3805 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3806 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3807 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3808 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3809 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3810 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3811 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3812 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3813 3814 aux[0] = '\0'; 3815 3816 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3817 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3818 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3819 } 3820 3821 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3822 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3823 const char *compname = NULL; 3824 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3825 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3826 &compname) == 0) { 3827 (void) snprintf(aux + strlen(aux), 3828 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3829 compname); 3830 } else { 3831 (void) snprintf(aux + strlen(aux), 3832 sizeof (aux) - strlen(aux), 3833 " (Z=inherit=%s-unknown)", 3834 ZDB_COMPRESS_NAME(os->os_compress)); 3835 } 3836 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3837 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3838 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3839 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3840 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3841 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3842 } 3843 3844 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3845 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3846 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3847 3848 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3849 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3850 "", "", "", "", "", "", bonus_size, "bonus", 3851 zdb_ot_name(doi.doi_bonus_type)); 3852 } 3853 3854 if (verbosity >= 4) { 3855 (void) printf("\tdnode flags: %s%s%s%s\n", 3856 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3857 "USED_BYTES " : "", 3858 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3859 "USERUSED_ACCOUNTED " : "", 3860 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3861 "USEROBJUSED_ACCOUNTED " : "", 3862 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3863 "SPILL_BLKPTR" : ""); 3864 (void) printf("\tdnode maxblkid: %llu\n", 3865 (longlong_t)dn->dn_phys->dn_maxblkid); 3866 3867 if (!dnode_held) { 3868 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3869 object, bonus, bsize); 3870 } else { 3871 (void) printf("\t\t(bonus encrypted)\n"); 3872 } 3873 3874 if (key_loaded || 3875 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3876 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3877 NULL, 0); 3878 } else { 3879 (void) printf("\t\t(object encrypted)\n"); 3880 } 3881 3882 *print_header = B_TRUE; 3883 } 3884 3885 if (verbosity >= 5) { 3886 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3887 char blkbuf[BP_SPRINTF_LEN]; 3888 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3889 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3890 (void) printf("\nSpill block: %s\n", blkbuf); 3891 } 3892 dump_indirect(dn); 3893 } 3894 3895 if (verbosity >= 5) { 3896 /* 3897 * Report the list of segments that comprise the object. 3898 */ 3899 uint64_t start = 0; 3900 uint64_t end; 3901 uint64_t blkfill = 1; 3902 int minlvl = 1; 3903 3904 if (dn->dn_type == DMU_OT_DNODE) { 3905 minlvl = 0; 3906 blkfill = DNODES_PER_BLOCK; 3907 } 3908 3909 for (;;) { 3910 char segsize[32]; 3911 /* make sure nicenum has enough space */ 3912 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3913 "segsize truncated"); 3914 error = dnode_next_offset(dn, 3915 0, &start, minlvl, blkfill, 0); 3916 if (error) 3917 break; 3918 end = start; 3919 error = dnode_next_offset(dn, 3920 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3921 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3922 (void) printf("\t\tsegment [%016llx, %016llx)" 3923 " size %5s\n", (u_longlong_t)start, 3924 (u_longlong_t)end, segsize); 3925 if (error) 3926 break; 3927 start = end; 3928 } 3929 } 3930 3931 out: 3932 if (db != NULL) 3933 dmu_buf_rele(db, FTAG); 3934 if (dnode_held) 3935 dnode_rele(dn, FTAG); 3936 } 3937 3938 static void 3939 count_dir_mos_objects(dsl_dir_t *dd) 3940 { 3941 mos_obj_refd(dd->dd_object); 3942 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3943 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3944 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3945 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3946 3947 /* 3948 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3949 * Ignore the references after the first one. 3950 */ 3951 mos_obj_refd_multiple(dd->dd_crypto_obj); 3952 } 3953 3954 static void 3955 count_ds_mos_objects(dsl_dataset_t *ds) 3956 { 3957 mos_obj_refd(ds->ds_object); 3958 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3959 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3960 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3961 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3962 mos_obj_refd(ds->ds_bookmarks_obj); 3963 3964 if (!dsl_dataset_is_snapshot(ds)) { 3965 count_dir_mos_objects(ds->ds_dir); 3966 } 3967 } 3968 3969 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3970 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3971 3972 /* 3973 * Parse a string denoting a range of object IDs of the form 3974 * <start>[:<end>[:flags]], and store the results in zor. 3975 * Return 0 on success. On error, return 1 and update the msg 3976 * pointer to point to a descriptive error message. 3977 */ 3978 static int 3979 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3980 { 3981 uint64_t flags = 0; 3982 char *p, *s, *dup, *flagstr, *tmp = NULL; 3983 size_t len; 3984 int i; 3985 int rc = 0; 3986 3987 if (strchr(range, ':') == NULL) { 3988 zor->zor_obj_start = strtoull(range, &p, 0); 3989 if (*p != '\0') { 3990 *msg = "Invalid characters in object ID"; 3991 rc = 1; 3992 } 3993 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3994 zor->zor_obj_end = zor->zor_obj_start; 3995 return (rc); 3996 } 3997 3998 if (strchr(range, ':') == range) { 3999 *msg = "Invalid leading colon"; 4000 rc = 1; 4001 return (rc); 4002 } 4003 4004 len = strlen(range); 4005 if (range[len - 1] == ':') { 4006 *msg = "Invalid trailing colon"; 4007 rc = 1; 4008 return (rc); 4009 } 4010 4011 dup = strdup(range); 4012 s = strtok_r(dup, ":", &tmp); 4013 zor->zor_obj_start = strtoull(s, &p, 0); 4014 4015 if (*p != '\0') { 4016 *msg = "Invalid characters in start object ID"; 4017 rc = 1; 4018 goto out; 4019 } 4020 4021 s = strtok_r(NULL, ":", &tmp); 4022 zor->zor_obj_end = strtoull(s, &p, 0); 4023 4024 if (*p != '\0') { 4025 *msg = "Invalid characters in end object ID"; 4026 rc = 1; 4027 goto out; 4028 } 4029 4030 if (zor->zor_obj_start > zor->zor_obj_end) { 4031 *msg = "Start object ID may not exceed end object ID"; 4032 rc = 1; 4033 goto out; 4034 } 4035 4036 s = strtok_r(NULL, ":", &tmp); 4037 if (s == NULL) { 4038 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4039 goto out; 4040 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4041 *msg = "Invalid colon-delimited field after flags"; 4042 rc = 1; 4043 goto out; 4044 } 4045 4046 flagstr = s; 4047 for (i = 0; flagstr[i]; i++) { 4048 int bit; 4049 boolean_t negation = (flagstr[i] == '-'); 4050 4051 if (negation) { 4052 i++; 4053 if (flagstr[i] == '\0') { 4054 *msg = "Invalid trailing negation operator"; 4055 rc = 1; 4056 goto out; 4057 } 4058 } 4059 bit = flagbits[(uchar_t)flagstr[i]]; 4060 if (bit == 0) { 4061 *msg = "Invalid flag"; 4062 rc = 1; 4063 goto out; 4064 } 4065 if (negation) 4066 flags &= ~bit; 4067 else 4068 flags |= bit; 4069 } 4070 zor->zor_flags = flags; 4071 4072 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4073 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4074 4075 out: 4076 free(dup); 4077 return (rc); 4078 } 4079 4080 static void 4081 dump_objset(objset_t *os) 4082 { 4083 dmu_objset_stats_t dds = { 0 }; 4084 uint64_t object, object_count; 4085 uint64_t refdbytes, usedobjs, scratch; 4086 char numbuf[32]; 4087 char blkbuf[BP_SPRINTF_LEN + 20]; 4088 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4089 const char *type = "UNKNOWN"; 4090 int verbosity = dump_opt['d']; 4091 boolean_t print_header; 4092 unsigned i; 4093 int error; 4094 uint64_t total_slots_used = 0; 4095 uint64_t max_slot_used = 0; 4096 uint64_t dnode_slots; 4097 uint64_t obj_start; 4098 uint64_t obj_end; 4099 uint64_t flags; 4100 4101 /* make sure nicenum has enough space */ 4102 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4103 4104 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4105 dmu_objset_fast_stat(os, &dds); 4106 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4107 4108 print_header = B_TRUE; 4109 4110 if (dds.dds_type < DMU_OST_NUMTYPES) 4111 type = objset_types[dds.dds_type]; 4112 4113 if (dds.dds_type == DMU_OST_META) { 4114 dds.dds_creation_txg = TXG_INITIAL; 4115 usedobjs = BP_GET_FILL(os->os_rootbp); 4116 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4117 dd_used_bytes; 4118 } else { 4119 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4120 } 4121 4122 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4123 4124 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4125 4126 if (verbosity >= 4) { 4127 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4128 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4129 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4130 } else { 4131 blkbuf[0] = '\0'; 4132 } 4133 4134 dmu_objset_name(os, osname); 4135 4136 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4137 "%s, %llu objects%s%s\n", 4138 osname, type, (u_longlong_t)dmu_objset_id(os), 4139 (u_longlong_t)dds.dds_creation_txg, 4140 numbuf, (u_longlong_t)usedobjs, blkbuf, 4141 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4142 4143 for (i = 0; i < zopt_object_args; i++) { 4144 obj_start = zopt_object_ranges[i].zor_obj_start; 4145 obj_end = zopt_object_ranges[i].zor_obj_end; 4146 flags = zopt_object_ranges[i].zor_flags; 4147 4148 object = obj_start; 4149 if (object == 0 || obj_start == obj_end) 4150 dump_object(os, object, verbosity, &print_header, NULL, 4151 flags); 4152 else 4153 object--; 4154 4155 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4156 object <= obj_end) { 4157 dump_object(os, object, verbosity, &print_header, NULL, 4158 flags); 4159 } 4160 } 4161 4162 if (zopt_object_args > 0) { 4163 (void) printf("\n"); 4164 return; 4165 } 4166 4167 if (dump_opt['i'] != 0 || verbosity >= 2) 4168 dump_intent_log(dmu_objset_zil(os)); 4169 4170 if (dmu_objset_ds(os) != NULL) { 4171 dsl_dataset_t *ds = dmu_objset_ds(os); 4172 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4173 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4174 !dmu_objset_is_snapshot(os)) { 4175 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4176 if (verify_dd_livelist(os) != 0) 4177 fatal("livelist is incorrect"); 4178 } 4179 4180 if (dsl_dataset_remap_deadlist_exists(ds)) { 4181 (void) printf("ds_remap_deadlist:\n"); 4182 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4183 } 4184 count_ds_mos_objects(ds); 4185 } 4186 4187 if (dmu_objset_ds(os) != NULL) 4188 dump_bookmarks(os, verbosity); 4189 4190 if (verbosity < 2) 4191 return; 4192 4193 if (BP_IS_HOLE(os->os_rootbp)) 4194 return; 4195 4196 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4197 object_count = 0; 4198 if (DMU_USERUSED_DNODE(os) != NULL && 4199 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4200 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4201 NULL, 0); 4202 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4203 NULL, 0); 4204 } 4205 4206 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4207 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4208 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4209 &print_header, NULL, 0); 4210 4211 object = 0; 4212 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4213 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4214 0); 4215 object_count++; 4216 total_slots_used += dnode_slots; 4217 max_slot_used = object + dnode_slots - 1; 4218 } 4219 4220 (void) printf("\n"); 4221 4222 (void) printf(" Dnode slots:\n"); 4223 (void) printf("\tTotal used: %10llu\n", 4224 (u_longlong_t)total_slots_used); 4225 (void) printf("\tMax used: %10llu\n", 4226 (u_longlong_t)max_slot_used); 4227 (void) printf("\tPercent empty: %10lf\n", 4228 (double)(max_slot_used - total_slots_used)*100 / 4229 (double)max_slot_used); 4230 (void) printf("\n"); 4231 4232 if (error != ESRCH) { 4233 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4234 abort(); 4235 } 4236 4237 ASSERT3U(object_count, ==, usedobjs); 4238 4239 if (leaked_objects != 0) { 4240 (void) printf("%d potentially leaked objects detected\n", 4241 leaked_objects); 4242 leaked_objects = 0; 4243 } 4244 } 4245 4246 static void 4247 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4248 { 4249 time_t timestamp = ub->ub_timestamp; 4250 4251 (void) printf("%s", header ? header : ""); 4252 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4253 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4254 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4255 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4256 (void) printf("\ttimestamp = %llu UTC = %s", 4257 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4258 4259 (void) printf("\tmmp_magic = %016llx\n", 4260 (u_longlong_t)ub->ub_mmp_magic); 4261 if (MMP_VALID(ub)) { 4262 (void) printf("\tmmp_delay = %0llu\n", 4263 (u_longlong_t)ub->ub_mmp_delay); 4264 if (MMP_SEQ_VALID(ub)) 4265 (void) printf("\tmmp_seq = %u\n", 4266 (unsigned int) MMP_SEQ(ub)); 4267 if (MMP_FAIL_INT_VALID(ub)) 4268 (void) printf("\tmmp_fail = %u\n", 4269 (unsigned int) MMP_FAIL_INT(ub)); 4270 if (MMP_INTERVAL_VALID(ub)) 4271 (void) printf("\tmmp_write = %u\n", 4272 (unsigned int) MMP_INTERVAL(ub)); 4273 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4274 (void) printf("\tmmp_valid = %x\n", 4275 (unsigned int) ub->ub_mmp_config & 0xFF); 4276 } 4277 4278 if (dump_opt['u'] >= 4) { 4279 char blkbuf[BP_SPRINTF_LEN]; 4280 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4281 (void) printf("\trootbp = %s\n", blkbuf); 4282 } 4283 (void) printf("\tcheckpoint_txg = %llu\n", 4284 (u_longlong_t)ub->ub_checkpoint_txg); 4285 4286 (void) printf("\traidz_reflow state=%u off=%llu\n", 4287 (int)RRSS_GET_STATE(ub), 4288 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4289 4290 (void) printf("%s", footer ? footer : ""); 4291 } 4292 4293 static void 4294 dump_config(spa_t *spa) 4295 { 4296 dmu_buf_t *db; 4297 size_t nvsize = 0; 4298 int error = 0; 4299 4300 4301 error = dmu_bonus_hold(spa->spa_meta_objset, 4302 spa->spa_config_object, FTAG, &db); 4303 4304 if (error == 0) { 4305 nvsize = *(uint64_t *)db->db_data; 4306 dmu_buf_rele(db, FTAG); 4307 4308 (void) printf("\nMOS Configuration:\n"); 4309 dump_packed_nvlist(spa->spa_meta_objset, 4310 spa->spa_config_object, (void *)&nvsize, 1); 4311 } else { 4312 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4313 (u_longlong_t)spa->spa_config_object, error); 4314 } 4315 } 4316 4317 static void 4318 dump_cachefile(const char *cachefile) 4319 { 4320 int fd; 4321 struct stat64 statbuf; 4322 char *buf; 4323 nvlist_t *config; 4324 4325 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4326 (void) printf("cannot open '%s': %s\n", cachefile, 4327 strerror(errno)); 4328 zdb_exit(1); 4329 } 4330 4331 if (fstat64(fd, &statbuf) != 0) { 4332 (void) printf("failed to stat '%s': %s\n", cachefile, 4333 strerror(errno)); 4334 zdb_exit(1); 4335 } 4336 4337 if ((buf = malloc(statbuf.st_size)) == NULL) { 4338 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4339 (u_longlong_t)statbuf.st_size); 4340 zdb_exit(1); 4341 } 4342 4343 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4344 (void) fprintf(stderr, "failed to read %llu bytes\n", 4345 (u_longlong_t)statbuf.st_size); 4346 zdb_exit(1); 4347 } 4348 4349 (void) close(fd); 4350 4351 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4352 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4353 zdb_exit(1); 4354 } 4355 4356 free(buf); 4357 4358 dump_nvlist(config, 0); 4359 4360 nvlist_free(config); 4361 } 4362 4363 /* 4364 * ZFS label nvlist stats 4365 */ 4366 typedef struct zdb_nvl_stats { 4367 int zns_list_count; 4368 int zns_leaf_count; 4369 size_t zns_leaf_largest; 4370 size_t zns_leaf_total; 4371 nvlist_t *zns_string; 4372 nvlist_t *zns_uint64; 4373 nvlist_t *zns_boolean; 4374 } zdb_nvl_stats_t; 4375 4376 static void 4377 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4378 { 4379 nvlist_t *list, **array; 4380 nvpair_t *nvp = NULL; 4381 const char *name; 4382 uint_t i, items; 4383 4384 stats->zns_list_count++; 4385 4386 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4387 name = nvpair_name(nvp); 4388 4389 switch (nvpair_type(nvp)) { 4390 case DATA_TYPE_STRING: 4391 fnvlist_add_string(stats->zns_string, name, 4392 fnvpair_value_string(nvp)); 4393 break; 4394 case DATA_TYPE_UINT64: 4395 fnvlist_add_uint64(stats->zns_uint64, name, 4396 fnvpair_value_uint64(nvp)); 4397 break; 4398 case DATA_TYPE_BOOLEAN: 4399 fnvlist_add_boolean(stats->zns_boolean, name); 4400 break; 4401 case DATA_TYPE_NVLIST: 4402 if (nvpair_value_nvlist(nvp, &list) == 0) 4403 collect_nvlist_stats(list, stats); 4404 break; 4405 case DATA_TYPE_NVLIST_ARRAY: 4406 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4407 break; 4408 4409 for (i = 0; i < items; i++) { 4410 collect_nvlist_stats(array[i], stats); 4411 4412 /* collect stats on leaf vdev */ 4413 if (strcmp(name, "children") == 0) { 4414 size_t size; 4415 4416 (void) nvlist_size(array[i], &size, 4417 NV_ENCODE_XDR); 4418 stats->zns_leaf_total += size; 4419 if (size > stats->zns_leaf_largest) 4420 stats->zns_leaf_largest = size; 4421 stats->zns_leaf_count++; 4422 } 4423 } 4424 break; 4425 default: 4426 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4427 } 4428 } 4429 } 4430 4431 static void 4432 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4433 { 4434 zdb_nvl_stats_t stats = { 0 }; 4435 size_t size, sum = 0, total; 4436 size_t noise; 4437 4438 /* requires nvlist with non-unique names for stat collection */ 4439 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4440 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4441 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4442 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4443 4444 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4445 4446 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4447 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4448 (int)total, (int)(cap - total), 100.0 * total / cap); 4449 4450 collect_nvlist_stats(nvl, &stats); 4451 4452 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4453 size -= noise; 4454 sum += size; 4455 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4456 (int)fnvlist_num_pairs(stats.zns_uint64), 4457 (int)size, 100.0 * size / total); 4458 4459 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4460 size -= noise; 4461 sum += size; 4462 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4463 (int)fnvlist_num_pairs(stats.zns_string), 4464 (int)size, 100.0 * size / total); 4465 4466 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4467 size -= noise; 4468 sum += size; 4469 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4470 (int)fnvlist_num_pairs(stats.zns_boolean), 4471 (int)size, 100.0 * size / total); 4472 4473 size = total - sum; /* treat remainder as nvlist overhead */ 4474 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4475 stats.zns_list_count, (int)size, 100.0 * size / total); 4476 4477 if (stats.zns_leaf_count > 0) { 4478 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4479 4480 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4481 stats.zns_leaf_count, (int)average); 4482 (void) printf("%24d bytes largest\n", 4483 (int)stats.zns_leaf_largest); 4484 4485 if (dump_opt['l'] >= 3 && average > 0) 4486 (void) printf(" space for %d additional leaf vdevs\n", 4487 (int)((cap - total) / average)); 4488 } 4489 (void) printf("\n"); 4490 4491 nvlist_free(stats.zns_string); 4492 nvlist_free(stats.zns_uint64); 4493 nvlist_free(stats.zns_boolean); 4494 } 4495 4496 typedef struct cksum_record { 4497 zio_cksum_t cksum; 4498 boolean_t labels[VDEV_LABELS]; 4499 avl_node_t link; 4500 } cksum_record_t; 4501 4502 static int 4503 cksum_record_compare(const void *x1, const void *x2) 4504 { 4505 const cksum_record_t *l = (cksum_record_t *)x1; 4506 const cksum_record_t *r = (cksum_record_t *)x2; 4507 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4508 int difference = 0; 4509 4510 for (int i = 0; i < arraysize; i++) { 4511 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4512 if (difference) 4513 break; 4514 } 4515 4516 return (difference); 4517 } 4518 4519 static cksum_record_t * 4520 cksum_record_alloc(zio_cksum_t *cksum, int l) 4521 { 4522 cksum_record_t *rec; 4523 4524 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4525 rec->cksum = *cksum; 4526 rec->labels[l] = B_TRUE; 4527 4528 return (rec); 4529 } 4530 4531 static cksum_record_t * 4532 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4533 { 4534 cksum_record_t lookup = { .cksum = *cksum }; 4535 avl_index_t where; 4536 4537 return (avl_find(tree, &lookup, &where)); 4538 } 4539 4540 static cksum_record_t * 4541 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4542 { 4543 cksum_record_t *rec; 4544 4545 rec = cksum_record_lookup(tree, cksum); 4546 if (rec) { 4547 rec->labels[l] = B_TRUE; 4548 } else { 4549 rec = cksum_record_alloc(cksum, l); 4550 avl_add(tree, rec); 4551 } 4552 4553 return (rec); 4554 } 4555 4556 static int 4557 first_label(cksum_record_t *rec) 4558 { 4559 for (int i = 0; i < VDEV_LABELS; i++) 4560 if (rec->labels[i]) 4561 return (i); 4562 4563 return (-1); 4564 } 4565 4566 static void 4567 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4568 { 4569 fputs(prefix, stdout); 4570 for (int i = 0; i < VDEV_LABELS; i++) 4571 if (rec->labels[i] == B_TRUE) 4572 printf("%d ", i); 4573 putchar('\n'); 4574 } 4575 4576 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4577 4578 typedef struct zdb_label { 4579 vdev_label_t label; 4580 uint64_t label_offset; 4581 nvlist_t *config_nv; 4582 cksum_record_t *config; 4583 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4584 boolean_t header_printed; 4585 boolean_t read_failed; 4586 boolean_t cksum_valid; 4587 } zdb_label_t; 4588 4589 static void 4590 print_label_header(zdb_label_t *label, int l) 4591 { 4592 4593 if (dump_opt['q']) 4594 return; 4595 4596 if (label->header_printed == B_TRUE) 4597 return; 4598 4599 (void) printf("------------------------------------\n"); 4600 (void) printf("LABEL %d %s\n", l, 4601 label->cksum_valid ? "" : "(Bad label cksum)"); 4602 (void) printf("------------------------------------\n"); 4603 4604 label->header_printed = B_TRUE; 4605 } 4606 4607 static void 4608 print_l2arc_header(void) 4609 { 4610 (void) printf("------------------------------------\n"); 4611 (void) printf("L2ARC device header\n"); 4612 (void) printf("------------------------------------\n"); 4613 } 4614 4615 static void 4616 print_l2arc_log_blocks(void) 4617 { 4618 (void) printf("------------------------------------\n"); 4619 (void) printf("L2ARC device log blocks\n"); 4620 (void) printf("------------------------------------\n"); 4621 } 4622 4623 static void 4624 dump_l2arc_log_entries(uint64_t log_entries, 4625 l2arc_log_ent_phys_t *le, uint64_t i) 4626 { 4627 for (int j = 0; j < log_entries; j++) { 4628 dva_t dva = le[j].le_dva; 4629 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4630 "vdev: %llu, offset: %llu\n", 4631 (u_longlong_t)i, j + 1, 4632 (u_longlong_t)DVA_GET_ASIZE(&dva), 4633 (u_longlong_t)DVA_GET_VDEV(&dva), 4634 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4635 (void) printf("|\t\t\t\tbirth: %llu\n", 4636 (u_longlong_t)le[j].le_birth); 4637 (void) printf("|\t\t\t\tlsize: %llu\n", 4638 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4639 (void) printf("|\t\t\t\tpsize: %llu\n", 4640 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4641 (void) printf("|\t\t\t\tcompr: %llu\n", 4642 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4643 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4644 (u_longlong_t)(&le[j])->le_complevel); 4645 (void) printf("|\t\t\t\ttype: %llu\n", 4646 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4647 (void) printf("|\t\t\t\tprotected: %llu\n", 4648 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4649 (void) printf("|\t\t\t\tprefetch: %llu\n", 4650 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4651 (void) printf("|\t\t\t\taddress: %llu\n", 4652 (u_longlong_t)le[j].le_daddr); 4653 (void) printf("|\t\t\t\tARC state: %llu\n", 4654 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4655 (void) printf("|\n"); 4656 } 4657 (void) printf("\n"); 4658 } 4659 4660 static void 4661 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4662 { 4663 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4664 (void) printf("|\t\tpayload_asize: %llu\n", 4665 (u_longlong_t)lbps->lbp_payload_asize); 4666 (void) printf("|\t\tpayload_start: %llu\n", 4667 (u_longlong_t)lbps->lbp_payload_start); 4668 (void) printf("|\t\tlsize: %llu\n", 4669 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4670 (void) printf("|\t\tasize: %llu\n", 4671 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4672 (void) printf("|\t\tcompralgo: %llu\n", 4673 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4674 (void) printf("|\t\tcksumalgo: %llu\n", 4675 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4676 (void) printf("|\n\n"); 4677 } 4678 4679 static void 4680 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4681 l2arc_dev_hdr_phys_t *rebuild) 4682 { 4683 l2arc_log_blk_phys_t this_lb; 4684 uint64_t asize; 4685 l2arc_log_blkptr_t lbps[2]; 4686 zio_cksum_t cksum; 4687 int failed = 0; 4688 l2arc_dev_t dev; 4689 4690 if (!dump_opt['q']) 4691 print_l2arc_log_blocks(); 4692 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4693 4694 dev.l2ad_evict = l2dhdr->dh_evict; 4695 dev.l2ad_start = l2dhdr->dh_start; 4696 dev.l2ad_end = l2dhdr->dh_end; 4697 4698 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4699 /* no log blocks to read */ 4700 if (!dump_opt['q']) { 4701 (void) printf("No log blocks to read\n"); 4702 (void) printf("\n"); 4703 } 4704 return; 4705 } else { 4706 dev.l2ad_hand = lbps[0].lbp_daddr + 4707 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4708 } 4709 4710 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4711 4712 for (;;) { 4713 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4714 break; 4715 4716 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4717 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4718 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4719 if (!dump_opt['q']) { 4720 (void) printf("Error while reading next log " 4721 "block\n\n"); 4722 } 4723 break; 4724 } 4725 4726 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4727 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4728 failed++; 4729 if (!dump_opt['q']) { 4730 (void) printf("Invalid cksum\n"); 4731 dump_l2arc_log_blkptr(&lbps[0]); 4732 } 4733 break; 4734 } 4735 4736 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4737 case ZIO_COMPRESS_OFF: 4738 break; 4739 default: { 4740 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4741 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4742 abd_t dabd; 4743 abd_get_from_buf_struct(&dabd, &this_lb, 4744 sizeof (this_lb)); 4745 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4746 (&lbps[0])->lbp_prop), abd, &dabd, 4747 asize, sizeof (this_lb), NULL); 4748 abd_free(&dabd); 4749 abd_free(abd); 4750 if (err != 0) { 4751 (void) printf("L2ARC block decompression " 4752 "failed\n"); 4753 goto out; 4754 } 4755 break; 4756 } 4757 } 4758 4759 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4760 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4761 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4762 if (!dump_opt['q']) 4763 (void) printf("Invalid log block magic\n\n"); 4764 break; 4765 } 4766 4767 rebuild->dh_lb_count++; 4768 rebuild->dh_lb_asize += asize; 4769 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4770 (void) printf("lb[%4llu]\tmagic: %llu\n", 4771 (u_longlong_t)rebuild->dh_lb_count, 4772 (u_longlong_t)this_lb.lb_magic); 4773 dump_l2arc_log_blkptr(&lbps[0]); 4774 } 4775 4776 if (dump_opt['l'] > 2 && !dump_opt['q']) 4777 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4778 this_lb.lb_entries, 4779 rebuild->dh_lb_count); 4780 4781 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4782 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4783 !dev.l2ad_first) 4784 break; 4785 4786 lbps[0] = lbps[1]; 4787 lbps[1] = this_lb.lb_prev_lbp; 4788 } 4789 out: 4790 if (!dump_opt['q']) { 4791 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4792 (u_longlong_t)rebuild->dh_lb_count); 4793 (void) printf("\t\t %d with invalid cksum\n", failed); 4794 (void) printf("log_blk_asize:\t %llu\n\n", 4795 (u_longlong_t)rebuild->dh_lb_asize); 4796 } 4797 } 4798 4799 static int 4800 dump_l2arc_header(int fd) 4801 { 4802 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4803 int error = B_FALSE; 4804 4805 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4806 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4807 error = B_TRUE; 4808 } else { 4809 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4810 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4811 4812 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4813 error = B_TRUE; 4814 } 4815 4816 if (error) { 4817 (void) printf("L2ARC device header not found\n\n"); 4818 /* Do not return an error here for backward compatibility */ 4819 return (0); 4820 } else if (!dump_opt['q']) { 4821 print_l2arc_header(); 4822 4823 (void) printf(" magic: %llu\n", 4824 (u_longlong_t)l2dhdr.dh_magic); 4825 (void) printf(" version: %llu\n", 4826 (u_longlong_t)l2dhdr.dh_version); 4827 (void) printf(" pool_guid: %llu\n", 4828 (u_longlong_t)l2dhdr.dh_spa_guid); 4829 (void) printf(" flags: %llu\n", 4830 (u_longlong_t)l2dhdr.dh_flags); 4831 (void) printf(" start_lbps[0]: %llu\n", 4832 (u_longlong_t) 4833 l2dhdr.dh_start_lbps[0].lbp_daddr); 4834 (void) printf(" start_lbps[1]: %llu\n", 4835 (u_longlong_t) 4836 l2dhdr.dh_start_lbps[1].lbp_daddr); 4837 (void) printf(" log_blk_ent: %llu\n", 4838 (u_longlong_t)l2dhdr.dh_log_entries); 4839 (void) printf(" start: %llu\n", 4840 (u_longlong_t)l2dhdr.dh_start); 4841 (void) printf(" end: %llu\n", 4842 (u_longlong_t)l2dhdr.dh_end); 4843 (void) printf(" evict: %llu\n", 4844 (u_longlong_t)l2dhdr.dh_evict); 4845 (void) printf(" lb_asize_refcount: %llu\n", 4846 (u_longlong_t)l2dhdr.dh_lb_asize); 4847 (void) printf(" lb_count_refcount: %llu\n", 4848 (u_longlong_t)l2dhdr.dh_lb_count); 4849 (void) printf(" trim_action_time: %llu\n", 4850 (u_longlong_t)l2dhdr.dh_trim_action_time); 4851 (void) printf(" trim_state: %llu\n\n", 4852 (u_longlong_t)l2dhdr.dh_trim_state); 4853 } 4854 4855 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4856 /* 4857 * The total aligned size of log blocks and the number of log blocks 4858 * reported in the header of the device may be less than what zdb 4859 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4860 * This happens because dump_l2arc_log_blocks() lacks the memory 4861 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4862 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4863 * and dh_lb_count will be lower to begin with than what exists on the 4864 * device. This is normal and zdb should not exit with an error. The 4865 * opposite case should never happen though, the values reported in the 4866 * header should never be higher than what dump_l2arc_log_blocks() and 4867 * l2arc_rebuild() report. If this happens there is a leak in the 4868 * accounting of log blocks. 4869 */ 4870 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4871 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4872 return (1); 4873 4874 return (0); 4875 } 4876 4877 static void 4878 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4879 { 4880 if (dump_opt['q']) 4881 return; 4882 4883 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4884 return; 4885 4886 print_label_header(label, l); 4887 dump_nvlist(label->config_nv, 4); 4888 print_label_numbers(" labels = ", label->config); 4889 4890 if (dump_opt['l'] >= 2) 4891 dump_nvlist_stats(label->config_nv, buflen); 4892 } 4893 4894 #define ZDB_MAX_UB_HEADER_SIZE 32 4895 4896 static void 4897 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4898 { 4899 4900 vdev_t vd; 4901 char header[ZDB_MAX_UB_HEADER_SIZE]; 4902 4903 vd.vdev_ashift = ashift; 4904 vd.vdev_top = &vd; 4905 4906 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4907 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4908 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4909 cksum_record_t *rec = label->uberblocks[i]; 4910 4911 if (rec == NULL) { 4912 if (dump_opt['u'] >= 2) { 4913 print_label_header(label, label_num); 4914 (void) printf(" Uberblock[%d] invalid\n", i); 4915 } 4916 continue; 4917 } 4918 4919 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4920 continue; 4921 4922 if ((dump_opt['u'] < 4) && 4923 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4924 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4925 continue; 4926 4927 print_label_header(label, label_num); 4928 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4929 " Uberblock[%d]\n", i); 4930 dump_uberblock(ub, header, ""); 4931 print_label_numbers(" labels = ", rec); 4932 } 4933 } 4934 4935 static char curpath[PATH_MAX]; 4936 4937 /* 4938 * Iterate through the path components, recursively passing 4939 * current one's obj and remaining path until we find the obj 4940 * for the last one. 4941 */ 4942 static int 4943 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4944 { 4945 int err; 4946 boolean_t header = B_TRUE; 4947 uint64_t child_obj; 4948 char *s; 4949 dmu_buf_t *db; 4950 dmu_object_info_t doi; 4951 4952 if ((s = strchr(name, '/')) != NULL) 4953 *s = '\0'; 4954 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4955 4956 (void) strlcat(curpath, name, sizeof (curpath)); 4957 4958 if (err != 0) { 4959 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4960 curpath, strerror(err)); 4961 return (err); 4962 } 4963 4964 child_obj = ZFS_DIRENT_OBJ(child_obj); 4965 err = sa_buf_hold(os, child_obj, FTAG, &db); 4966 if (err != 0) { 4967 (void) fprintf(stderr, 4968 "failed to get SA dbuf for obj %llu: %s\n", 4969 (u_longlong_t)child_obj, strerror(err)); 4970 return (EINVAL); 4971 } 4972 dmu_object_info_from_db(db, &doi); 4973 sa_buf_rele(db, FTAG); 4974 4975 if (doi.doi_bonus_type != DMU_OT_SA && 4976 doi.doi_bonus_type != DMU_OT_ZNODE) { 4977 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4978 doi.doi_bonus_type, (u_longlong_t)child_obj); 4979 return (EINVAL); 4980 } 4981 4982 if (dump_opt['v'] > 6) { 4983 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4984 (u_longlong_t)child_obj, curpath, doi.doi_type, 4985 doi.doi_bonus_type); 4986 } 4987 4988 (void) strlcat(curpath, "/", sizeof (curpath)); 4989 4990 switch (doi.doi_type) { 4991 case DMU_OT_DIRECTORY_CONTENTS: 4992 if (s != NULL && *(s + 1) != '\0') 4993 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4994 zfs_fallthrough; 4995 case DMU_OT_PLAIN_FILE_CONTENTS: 4996 if (retobj != NULL) { 4997 *retobj = child_obj; 4998 } else { 4999 dump_object(os, child_obj, dump_opt['v'], &header, 5000 NULL, 0); 5001 } 5002 return (0); 5003 default: 5004 (void) fprintf(stderr, "object %llu has non-file/directory " 5005 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5006 break; 5007 } 5008 5009 return (EINVAL); 5010 } 5011 5012 /* 5013 * Dump the blocks for the object specified by path inside the dataset. 5014 */ 5015 static int 5016 dump_path(char *ds, char *path, uint64_t *retobj) 5017 { 5018 int err; 5019 objset_t *os; 5020 uint64_t root_obj; 5021 5022 err = open_objset(ds, FTAG, &os); 5023 if (err != 0) 5024 return (err); 5025 5026 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5027 if (err != 0) { 5028 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5029 strerror(err)); 5030 close_objset(os, FTAG); 5031 return (EINVAL); 5032 } 5033 5034 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5035 5036 err = dump_path_impl(os, root_obj, path, retobj); 5037 5038 close_objset(os, FTAG); 5039 return (err); 5040 } 5041 5042 static int 5043 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5044 { 5045 const char *p = (const char *)buf; 5046 ssize_t nwritten; 5047 5048 (void) os; 5049 (void) arg; 5050 5051 /* Write the data out, handling short writes and signals. */ 5052 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5053 if (nwritten < 0) { 5054 if (errno == EINTR) 5055 continue; 5056 return (errno); 5057 } 5058 p += nwritten; 5059 len -= nwritten; 5060 } 5061 5062 return (0); 5063 } 5064 5065 static void 5066 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5067 { 5068 boolean_t embed = B_FALSE; 5069 boolean_t large_block = B_FALSE; 5070 boolean_t compress = B_FALSE; 5071 boolean_t raw = B_FALSE; 5072 5073 const char *c; 5074 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5075 switch (*c) { 5076 case 'e': 5077 embed = B_TRUE; 5078 break; 5079 case 'L': 5080 large_block = B_TRUE; 5081 break; 5082 case 'c': 5083 compress = B_TRUE; 5084 break; 5085 case 'w': 5086 raw = B_TRUE; 5087 break; 5088 default: 5089 fprintf(stderr, "dump_backup: invalid flag " 5090 "'%c'\n", *c); 5091 return; 5092 } 5093 } 5094 5095 if (isatty(STDOUT_FILENO)) { 5096 fprintf(stderr, "dump_backup: stream cannot be written " 5097 "to a terminal\n"); 5098 return; 5099 } 5100 5101 offset_t off = 0; 5102 dmu_send_outparams_t out = { 5103 .dso_outfunc = dump_backup_bytes, 5104 .dso_dryrun = B_FALSE, 5105 }; 5106 5107 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5108 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5109 &off, &out); 5110 if (err != 0) { 5111 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5112 strerror(err)); 5113 return; 5114 } 5115 } 5116 5117 static int 5118 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5119 { 5120 int err = 0; 5121 uint64_t size, readsize, oursize, offset; 5122 ssize_t writesize; 5123 sa_handle_t *hdl; 5124 5125 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5126 destfile); 5127 5128 VERIFY3P(os, ==, sa_os); 5129 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5130 (void) printf("Failed to get handle for SA znode\n"); 5131 return (err); 5132 } 5133 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5134 (void) sa_handle_destroy(hdl); 5135 return (err); 5136 } 5137 (void) sa_handle_destroy(hdl); 5138 5139 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5140 size); 5141 if (size == 0) { 5142 return (EINVAL); 5143 } 5144 5145 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5146 if (fd == -1) 5147 return (errno); 5148 /* 5149 * We cap the size at 1 mebibyte here to prevent 5150 * allocation failures and nigh-infinite printing if the 5151 * object is extremely large. 5152 */ 5153 oursize = MIN(size, 1 << 20); 5154 offset = 0; 5155 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5156 if (buf == NULL) { 5157 (void) close(fd); 5158 return (ENOMEM); 5159 } 5160 5161 while (offset < size) { 5162 readsize = MIN(size - offset, 1 << 20); 5163 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5164 if (err != 0) { 5165 (void) printf("got error %u from dmu_read\n", err); 5166 kmem_free(buf, oursize); 5167 (void) close(fd); 5168 return (err); 5169 } 5170 if (dump_opt['v'] > 3) { 5171 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5172 " error=%d\n", offset, readsize, err); 5173 } 5174 5175 writesize = write(fd, buf, readsize); 5176 if (writesize < 0) { 5177 err = errno; 5178 break; 5179 } else if (writesize != readsize) { 5180 /* Incomplete write */ 5181 (void) fprintf(stderr, "Short write, only wrote %llu of" 5182 " %" PRIu64 " bytes, exiting...\n", 5183 (u_longlong_t)writesize, readsize); 5184 break; 5185 } 5186 5187 offset += readsize; 5188 } 5189 5190 (void) close(fd); 5191 5192 if (buf != NULL) 5193 kmem_free(buf, oursize); 5194 5195 return (err); 5196 } 5197 5198 static boolean_t 5199 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5200 { 5201 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5202 zio_cksum_t expected_cksum; 5203 zio_cksum_t actual_cksum; 5204 zio_cksum_t verifier; 5205 zio_eck_t *eck; 5206 int byteswap; 5207 5208 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5209 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5210 5211 offset += offsetof(vdev_label_t, vl_vdev_phys); 5212 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5213 5214 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5215 if (byteswap) 5216 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5217 5218 expected_cksum = eck->zec_cksum; 5219 eck->zec_cksum = verifier; 5220 5221 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5222 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5223 abd_free(abd); 5224 5225 if (byteswap) 5226 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5227 5228 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5229 return (B_TRUE); 5230 5231 return (B_FALSE); 5232 } 5233 5234 static int 5235 dump_label(const char *dev) 5236 { 5237 char path[MAXPATHLEN]; 5238 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5239 uint64_t psize, ashift, l2cache; 5240 struct stat64 statbuf; 5241 boolean_t config_found = B_FALSE; 5242 boolean_t error = B_FALSE; 5243 boolean_t read_l2arc_header = B_FALSE; 5244 avl_tree_t config_tree; 5245 avl_tree_t uberblock_tree; 5246 void *node, *cookie; 5247 int fd; 5248 5249 /* 5250 * Check if we were given absolute path and use it as is. 5251 * Otherwise if the provided vdev name doesn't point to a file, 5252 * try prepending expected disk paths and partition numbers. 5253 */ 5254 (void) strlcpy(path, dev, sizeof (path)); 5255 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5256 int error; 5257 5258 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5259 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5260 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5261 error = ENOENT; 5262 } 5263 5264 if (error || (stat64(path, &statbuf) != 0)) { 5265 (void) printf("failed to find device %s, try " 5266 "specifying absolute path instead\n", dev); 5267 return (1); 5268 } 5269 } 5270 5271 if ((fd = open64(path, O_RDONLY)) < 0) { 5272 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5273 zdb_exit(1); 5274 } 5275 5276 if (fstat64_blk(fd, &statbuf) != 0) { 5277 (void) printf("failed to stat '%s': %s\n", path, 5278 strerror(errno)); 5279 (void) close(fd); 5280 zdb_exit(1); 5281 } 5282 5283 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5284 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5285 strerror(errno)); 5286 5287 avl_create(&config_tree, cksum_record_compare, 5288 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5289 avl_create(&uberblock_tree, cksum_record_compare, 5290 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5291 5292 psize = statbuf.st_size; 5293 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5294 ashift = SPA_MINBLOCKSHIFT; 5295 5296 /* 5297 * 1. Read the label from disk 5298 * 2. Verify label cksum 5299 * 3. Unpack the configuration and insert in config tree. 5300 * 4. Traverse all uberblocks and insert in uberblock tree. 5301 */ 5302 for (int l = 0; l < VDEV_LABELS; l++) { 5303 zdb_label_t *label = &labels[l]; 5304 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5305 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5306 nvlist_t *config; 5307 cksum_record_t *rec; 5308 zio_cksum_t cksum; 5309 vdev_t vd; 5310 5311 label->label_offset = vdev_label_offset(psize, l, 0); 5312 5313 if (pread64(fd, &label->label, sizeof (label->label), 5314 label->label_offset) != sizeof (label->label)) { 5315 if (!dump_opt['q']) 5316 (void) printf("failed to read label %d\n", l); 5317 label->read_failed = B_TRUE; 5318 error = B_TRUE; 5319 continue; 5320 } 5321 5322 label->read_failed = B_FALSE; 5323 label->cksum_valid = label_cksum_valid(&label->label, 5324 label->label_offset); 5325 5326 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5327 nvlist_t *vdev_tree = NULL; 5328 size_t size; 5329 5330 if ((nvlist_lookup_nvlist(config, 5331 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5332 (nvlist_lookup_uint64(vdev_tree, 5333 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5334 ashift = SPA_MINBLOCKSHIFT; 5335 5336 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5337 size = buflen; 5338 5339 /* If the device is a cache device read the header. */ 5340 if (!read_l2arc_header) { 5341 if (nvlist_lookup_uint64(config, 5342 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5343 l2cache == POOL_STATE_L2CACHE) { 5344 read_l2arc_header = B_TRUE; 5345 } 5346 } 5347 5348 fletcher_4_native_varsize(buf, size, &cksum); 5349 rec = cksum_record_insert(&config_tree, &cksum, l); 5350 5351 label->config = rec; 5352 label->config_nv = config; 5353 config_found = B_TRUE; 5354 } else { 5355 error = B_TRUE; 5356 } 5357 5358 vd.vdev_ashift = ashift; 5359 vd.vdev_top = &vd; 5360 5361 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5362 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5363 uberblock_t *ub = (void *)((char *)label + uoff); 5364 5365 if (uberblock_verify(ub)) 5366 continue; 5367 5368 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5369 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5370 5371 label->uberblocks[i] = rec; 5372 } 5373 } 5374 5375 /* 5376 * Dump the label and uberblocks. 5377 */ 5378 for (int l = 0; l < VDEV_LABELS; l++) { 5379 zdb_label_t *label = &labels[l]; 5380 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5381 5382 if (label->read_failed == B_TRUE) 5383 continue; 5384 5385 if (label->config_nv) { 5386 dump_config_from_label(label, buflen, l); 5387 } else { 5388 if (!dump_opt['q']) 5389 (void) printf("failed to unpack label %d\n", l); 5390 } 5391 5392 if (dump_opt['u']) 5393 dump_label_uberblocks(label, ashift, l); 5394 5395 nvlist_free(label->config_nv); 5396 } 5397 5398 /* 5399 * Dump the L2ARC header, if existent. 5400 */ 5401 if (read_l2arc_header) 5402 error |= dump_l2arc_header(fd); 5403 5404 cookie = NULL; 5405 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5406 umem_free(node, sizeof (cksum_record_t)); 5407 5408 cookie = NULL; 5409 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5410 umem_free(node, sizeof (cksum_record_t)); 5411 5412 avl_destroy(&config_tree); 5413 avl_destroy(&uberblock_tree); 5414 5415 (void) close(fd); 5416 5417 return (config_found == B_FALSE ? 2 : 5418 (error == B_TRUE ? 1 : 0)); 5419 } 5420 5421 static uint64_t dataset_feature_count[SPA_FEATURES]; 5422 static uint64_t global_feature_count[SPA_FEATURES]; 5423 static uint64_t remap_deadlist_count = 0; 5424 5425 static int 5426 dump_one_objset(const char *dsname, void *arg) 5427 { 5428 (void) arg; 5429 int error; 5430 objset_t *os; 5431 spa_feature_t f; 5432 5433 error = open_objset(dsname, FTAG, &os); 5434 if (error != 0) 5435 return (0); 5436 5437 for (f = 0; f < SPA_FEATURES; f++) { 5438 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5439 continue; 5440 ASSERT(spa_feature_table[f].fi_flags & 5441 ZFEATURE_FLAG_PER_DATASET); 5442 dataset_feature_count[f]++; 5443 } 5444 5445 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5446 remap_deadlist_count++; 5447 } 5448 5449 for (dsl_bookmark_node_t *dbn = 5450 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5451 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5452 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5453 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5454 global_feature_count[ 5455 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5456 objset_t *mos = os->os_spa->spa_meta_objset; 5457 dnode_t *rl; 5458 VERIFY0(dnode_hold(mos, 5459 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5460 if (rl->dn_have_spill) { 5461 global_feature_count[ 5462 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5463 } 5464 } 5465 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5466 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5467 } 5468 5469 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5470 !dmu_objset_is_snapshot(os)) { 5471 global_feature_count[SPA_FEATURE_LIVELIST]++; 5472 } 5473 5474 dump_objset(os); 5475 close_objset(os, FTAG); 5476 fuid_table_destroy(); 5477 return (0); 5478 } 5479 5480 /* 5481 * Block statistics. 5482 */ 5483 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5484 typedef struct zdb_blkstats { 5485 uint64_t zb_asize; 5486 uint64_t zb_lsize; 5487 uint64_t zb_psize; 5488 uint64_t zb_count; 5489 uint64_t zb_gangs; 5490 uint64_t zb_ditto_samevdev; 5491 uint64_t zb_ditto_same_ms; 5492 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5493 } zdb_blkstats_t; 5494 5495 /* 5496 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5497 */ 5498 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5499 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5500 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5501 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5502 5503 static const char *zdb_ot_extname[] = { 5504 "deferred free", 5505 "dedup ditto", 5506 "other", 5507 "Total", 5508 }; 5509 5510 #define ZB_TOTAL DN_MAX_LEVELS 5511 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5512 5513 typedef struct zdb_brt_entry { 5514 dva_t zbre_dva; 5515 uint64_t zbre_refcount; 5516 avl_node_t zbre_node; 5517 } zdb_brt_entry_t; 5518 5519 typedef struct zdb_cb { 5520 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5521 uint64_t zcb_removing_size; 5522 uint64_t zcb_checkpoint_size; 5523 uint64_t zcb_dedup_asize; 5524 uint64_t zcb_dedup_blocks; 5525 uint64_t zcb_clone_asize; 5526 uint64_t zcb_clone_blocks; 5527 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5528 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5529 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5530 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5531 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5532 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5533 uint64_t zcb_psize_total; 5534 uint64_t zcb_lsize_total; 5535 uint64_t zcb_asize_total; 5536 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5537 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5538 [BPE_PAYLOAD_SIZE + 1]; 5539 uint64_t zcb_start; 5540 hrtime_t zcb_lastprint; 5541 uint64_t zcb_totalasize; 5542 uint64_t zcb_errors[256]; 5543 int zcb_readfails; 5544 int zcb_haderrors; 5545 spa_t *zcb_spa; 5546 uint32_t **zcb_vd_obsolete_counts; 5547 avl_tree_t zcb_brt; 5548 boolean_t zcb_brt_is_active; 5549 } zdb_cb_t; 5550 5551 /* test if two DVA offsets from same vdev are within the same metaslab */ 5552 static boolean_t 5553 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5554 { 5555 vdev_t *vd = vdev_lookup_top(spa, vdev); 5556 uint64_t ms_shift = vd->vdev_ms_shift; 5557 5558 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5559 } 5560 5561 /* 5562 * Used to simplify reporting of the histogram data. 5563 */ 5564 typedef struct one_histo { 5565 const char *name; 5566 uint64_t *count; 5567 uint64_t *len; 5568 uint64_t cumulative; 5569 } one_histo_t; 5570 5571 /* 5572 * The number of separate histograms processed for psize, lsize and asize. 5573 */ 5574 #define NUM_HISTO 3 5575 5576 /* 5577 * This routine will create a fixed column size output of three different 5578 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5579 * the count, length and cumulative length of the psize, lsize and 5580 * asize blocks. 5581 * 5582 * All three types of blocks are listed on a single line 5583 * 5584 * By default the table is printed in nicenumber format (e.g. 123K) but 5585 * if the '-P' parameter is specified then the full raw number (parseable) 5586 * is printed out. 5587 */ 5588 static void 5589 dump_size_histograms(zdb_cb_t *zcb) 5590 { 5591 /* 5592 * A temporary buffer that allows us to convert a number into 5593 * a string using zdb_nicenumber to allow either raw or human 5594 * readable numbers to be output. 5595 */ 5596 char numbuf[32]; 5597 5598 /* 5599 * Define titles which are used in the headers of the tables 5600 * printed by this routine. 5601 */ 5602 const char blocksize_title1[] = "block"; 5603 const char blocksize_title2[] = "size"; 5604 const char count_title[] = "Count"; 5605 const char length_title[] = "Size"; 5606 const char cumulative_title[] = "Cum."; 5607 5608 /* 5609 * Setup the histogram arrays (psize, lsize, and asize). 5610 */ 5611 one_histo_t parm_histo[NUM_HISTO]; 5612 5613 parm_histo[0].name = "psize"; 5614 parm_histo[0].count = zcb->zcb_psize_count; 5615 parm_histo[0].len = zcb->zcb_psize_len; 5616 parm_histo[0].cumulative = 0; 5617 5618 parm_histo[1].name = "lsize"; 5619 parm_histo[1].count = zcb->zcb_lsize_count; 5620 parm_histo[1].len = zcb->zcb_lsize_len; 5621 parm_histo[1].cumulative = 0; 5622 5623 parm_histo[2].name = "asize"; 5624 parm_histo[2].count = zcb->zcb_asize_count; 5625 parm_histo[2].len = zcb->zcb_asize_len; 5626 parm_histo[2].cumulative = 0; 5627 5628 5629 (void) printf("\nBlock Size Histogram\n"); 5630 /* 5631 * Print the first line titles 5632 */ 5633 if (dump_opt['P']) 5634 (void) printf("\n%s\t", blocksize_title1); 5635 else 5636 (void) printf("\n%7s ", blocksize_title1); 5637 5638 for (int j = 0; j < NUM_HISTO; j++) { 5639 if (dump_opt['P']) { 5640 if (j < NUM_HISTO - 1) { 5641 (void) printf("%s\t\t\t", parm_histo[j].name); 5642 } else { 5643 /* Don't print trailing spaces */ 5644 (void) printf(" %s", parm_histo[j].name); 5645 } 5646 } else { 5647 if (j < NUM_HISTO - 1) { 5648 /* Left aligned strings in the output */ 5649 (void) printf("%-7s ", 5650 parm_histo[j].name); 5651 } else { 5652 /* Don't print trailing spaces */ 5653 (void) printf("%s", parm_histo[j].name); 5654 } 5655 } 5656 } 5657 (void) printf("\n"); 5658 5659 /* 5660 * Print the second line titles 5661 */ 5662 if (dump_opt['P']) { 5663 (void) printf("%s\t", blocksize_title2); 5664 } else { 5665 (void) printf("%7s ", blocksize_title2); 5666 } 5667 5668 for (int i = 0; i < NUM_HISTO; i++) { 5669 if (dump_opt['P']) { 5670 (void) printf("%s\t%s\t%s\t", 5671 count_title, length_title, cumulative_title); 5672 } else { 5673 (void) printf("%7s%7s%7s", 5674 count_title, length_title, cumulative_title); 5675 } 5676 } 5677 (void) printf("\n"); 5678 5679 /* 5680 * Print the rows 5681 */ 5682 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5683 5684 /* 5685 * Print the first column showing the blocksize 5686 */ 5687 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5688 5689 if (dump_opt['P']) { 5690 printf("%s", numbuf); 5691 } else { 5692 printf("%7s:", numbuf); 5693 } 5694 5695 /* 5696 * Print the remaining set of 3 columns per size: 5697 * for psize, lsize and asize 5698 */ 5699 for (int j = 0; j < NUM_HISTO; j++) { 5700 parm_histo[j].cumulative += parm_histo[j].len[i]; 5701 5702 zdb_nicenum(parm_histo[j].count[i], 5703 numbuf, sizeof (numbuf)); 5704 if (dump_opt['P']) 5705 (void) printf("\t%s", numbuf); 5706 else 5707 (void) printf("%7s", numbuf); 5708 5709 zdb_nicenum(parm_histo[j].len[i], 5710 numbuf, sizeof (numbuf)); 5711 if (dump_opt['P']) 5712 (void) printf("\t%s", numbuf); 5713 else 5714 (void) printf("%7s", numbuf); 5715 5716 zdb_nicenum(parm_histo[j].cumulative, 5717 numbuf, sizeof (numbuf)); 5718 if (dump_opt['P']) 5719 (void) printf("\t%s", numbuf); 5720 else 5721 (void) printf("%7s", numbuf); 5722 } 5723 (void) printf("\n"); 5724 } 5725 } 5726 5727 static void 5728 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5729 dmu_object_type_t type) 5730 { 5731 int i; 5732 5733 ASSERT(type < ZDB_OT_TOTAL); 5734 5735 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5736 return; 5737 5738 /* 5739 * This flag controls if we will issue a claim for the block while 5740 * counting it, to ensure that all blocks are referenced in space maps. 5741 * We don't issue claims if we're not doing leak tracking, because it's 5742 * expensive if the user isn't interested. We also don't claim the 5743 * second or later occurences of cloned or dedup'd blocks, because we 5744 * already claimed them the first time. 5745 */ 5746 boolean_t do_claim = !dump_opt['L']; 5747 5748 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5749 5750 blkptr_t tempbp; 5751 if (BP_GET_DEDUP(bp)) { 5752 /* 5753 * Dedup'd blocks are special. We need to count them, so we can 5754 * later uncount them when reporting leaked space, and we must 5755 * only claim them once. 5756 * 5757 * We use the existing dedup system to track what we've seen. 5758 * The first time we see a block, we do a ddt_lookup() to see 5759 * if it exists in the DDT. If we're doing leak tracking, we 5760 * claim the block at this time. 5761 * 5762 * Each time we see a block, we reduce the refcount in the 5763 * entry by one, and add to the size and count of dedup'd 5764 * blocks to report at the end. 5765 */ 5766 5767 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5768 5769 ddt_enter(ddt); 5770 5771 /* 5772 * Find the block. This will create the entry in memory, but 5773 * we'll know if that happened by its refcount. 5774 */ 5775 ddt_entry_t *dde = ddt_lookup(ddt, bp); 5776 5777 /* 5778 * ddt_lookup() can return NULL if this block didn't exist 5779 * in the DDT and creating it would take the DDT over its 5780 * quota. Since we got the block from disk, it must exist in 5781 * the DDT, so this can't happen. However, when unique entries 5782 * are pruned, the dedup bit can be set with no corresponding 5783 * entry in the DDT. 5784 */ 5785 if (dde == NULL) { 5786 ddt_exit(ddt); 5787 goto skipped; 5788 } 5789 5790 /* Get the phys for this variant */ 5791 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5792 5793 /* 5794 * This entry may have multiple sets of DVAs. We must claim 5795 * each set the first time we see them in a real block on disk, 5796 * or count them on subsequent occurences. We don't have a 5797 * convenient way to track the first time we see each variant, 5798 * so we repurpose dde_io as a set of "seen" flag bits. We can 5799 * do this safely in zdb because it never writes, so it will 5800 * never have a writing zio for this block in that pointer. 5801 */ 5802 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5803 if (!seen) 5804 dde->dde_io = 5805 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5806 5807 /* Consume a reference for this block. */ 5808 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5809 ddt_phys_decref(dde->dde_phys, v); 5810 5811 /* 5812 * If this entry has a single flat phys, it may have been 5813 * extended with additional DVAs at some time in its life. 5814 * This block might be from before it was fully extended, and 5815 * so have fewer DVAs. 5816 * 5817 * If this is the first time we've seen this block, and we 5818 * claimed it as-is, then we would miss the claim on some 5819 * number of DVAs, which would then be seen as leaked. 5820 * 5821 * In all cases, if we've had fewer DVAs, then the asize would 5822 * be too small, and would lead to the pool apparently using 5823 * more space than allocated. 5824 * 5825 * To handle this, we copy the canonical set of DVAs from the 5826 * entry back to the block pointer before we claim it. 5827 */ 5828 if (v == DDT_PHYS_FLAT) { 5829 ASSERT3U(BP_GET_BIRTH(bp), ==, 5830 ddt_phys_birth(dde->dde_phys, v)); 5831 tempbp = *bp; 5832 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5833 BP_GET_BIRTH(bp)); 5834 bp = &tempbp; 5835 } 5836 5837 if (seen) { 5838 /* 5839 * The second or later time we see this block, 5840 * it's a duplicate and we count it. 5841 */ 5842 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5843 zcb->zcb_dedup_blocks++; 5844 5845 /* Already claimed, don't do it again. */ 5846 do_claim = B_FALSE; 5847 } 5848 5849 ddt_exit(ddt); 5850 } else if (zcb->zcb_brt_is_active && 5851 brt_maybe_exists(zcb->zcb_spa, bp)) { 5852 /* 5853 * Cloned blocks are special. We need to count them, so we can 5854 * later uncount them when reporting leaked space, and we must 5855 * only claim them once. 5856 * 5857 * To do this, we keep our own in-memory BRT. For each block 5858 * we haven't seen before, we look it up in the real BRT and 5859 * if its there, we note it and its refcount then proceed as 5860 * normal. If we see the block again, we count it as a clone 5861 * and then give it no further consideration. 5862 */ 5863 zdb_brt_entry_t zbre_search, *zbre; 5864 avl_index_t where; 5865 5866 zbre_search.zbre_dva = bp->blk_dva[0]; 5867 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5868 if (zbre == NULL) { 5869 /* Not seen before; track it */ 5870 uint64_t refcnt = 5871 brt_entry_get_refcount(zcb->zcb_spa, bp); 5872 if (refcnt > 0) { 5873 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5874 UMEM_NOFAIL); 5875 zbre->zbre_dva = bp->blk_dva[0]; 5876 zbre->zbre_refcount = refcnt; 5877 avl_insert(&zcb->zcb_brt, zbre, where); 5878 } 5879 } else { 5880 /* 5881 * Second or later occurrence, count it and take a 5882 * refcount. 5883 */ 5884 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5885 zcb->zcb_clone_blocks++; 5886 5887 zbre->zbre_refcount--; 5888 if (zbre->zbre_refcount == 0) { 5889 avl_remove(&zcb->zcb_brt, zbre); 5890 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5891 } 5892 5893 /* Already claimed, don't do it again. */ 5894 do_claim = B_FALSE; 5895 } 5896 } 5897 5898 skipped: 5899 for (i = 0; i < 4; i++) { 5900 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5901 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5902 int equal; 5903 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5904 5905 zb->zb_asize += BP_GET_ASIZE(bp); 5906 zb->zb_lsize += BP_GET_LSIZE(bp); 5907 zb->zb_psize += BP_GET_PSIZE(bp); 5908 zb->zb_count++; 5909 5910 /* 5911 * The histogram is only big enough to record blocks up to 5912 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5913 * "other", bucket. 5914 */ 5915 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5916 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5917 zb->zb_psize_histogram[idx]++; 5918 5919 zb->zb_gangs += BP_COUNT_GANG(bp); 5920 5921 switch (BP_GET_NDVAS(bp)) { 5922 case 2: 5923 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5924 DVA_GET_VDEV(&bp->blk_dva[1])) { 5925 zb->zb_ditto_samevdev++; 5926 5927 if (same_metaslab(zcb->zcb_spa, 5928 DVA_GET_VDEV(&bp->blk_dva[0]), 5929 DVA_GET_OFFSET(&bp->blk_dva[0]), 5930 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5931 zb->zb_ditto_same_ms++; 5932 } 5933 break; 5934 case 3: 5935 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5936 DVA_GET_VDEV(&bp->blk_dva[1])) + 5937 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5938 DVA_GET_VDEV(&bp->blk_dva[2])) + 5939 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5940 DVA_GET_VDEV(&bp->blk_dva[2])); 5941 if (equal != 0) { 5942 zb->zb_ditto_samevdev++; 5943 5944 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5945 DVA_GET_VDEV(&bp->blk_dva[1]) && 5946 same_metaslab(zcb->zcb_spa, 5947 DVA_GET_VDEV(&bp->blk_dva[0]), 5948 DVA_GET_OFFSET(&bp->blk_dva[0]), 5949 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5950 zb->zb_ditto_same_ms++; 5951 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5952 DVA_GET_VDEV(&bp->blk_dva[2]) && 5953 same_metaslab(zcb->zcb_spa, 5954 DVA_GET_VDEV(&bp->blk_dva[0]), 5955 DVA_GET_OFFSET(&bp->blk_dva[0]), 5956 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5957 zb->zb_ditto_same_ms++; 5958 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5959 DVA_GET_VDEV(&bp->blk_dva[2]) && 5960 same_metaslab(zcb->zcb_spa, 5961 DVA_GET_VDEV(&bp->blk_dva[1]), 5962 DVA_GET_OFFSET(&bp->blk_dva[1]), 5963 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5964 zb->zb_ditto_same_ms++; 5965 } 5966 break; 5967 } 5968 } 5969 5970 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5971 5972 if (BP_IS_EMBEDDED(bp)) { 5973 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5974 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5975 [BPE_GET_PSIZE(bp)]++; 5976 return; 5977 } 5978 /* 5979 * The binning histogram bins by powers of two up to 5980 * SPA_MAXBLOCKSIZE rather than creating bins for 5981 * every possible blocksize found in the pool. 5982 */ 5983 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5984 5985 zcb->zcb_psize_count[bin]++; 5986 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5987 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5988 5989 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5990 5991 zcb->zcb_lsize_count[bin]++; 5992 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5993 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5994 5995 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5996 5997 zcb->zcb_asize_count[bin]++; 5998 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5999 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6000 6001 if (!do_claim) 6002 return; 6003 6004 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6005 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6006 ZIO_FLAG_CANFAIL))); 6007 } 6008 6009 static void 6010 zdb_blkptr_done(zio_t *zio) 6011 { 6012 spa_t *spa = zio->io_spa; 6013 blkptr_t *bp = zio->io_bp; 6014 int ioerr = zio->io_error; 6015 zdb_cb_t *zcb = zio->io_private; 6016 zbookmark_phys_t *zb = &zio->io_bookmark; 6017 6018 mutex_enter(&spa->spa_scrub_lock); 6019 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6020 cv_broadcast(&spa->spa_scrub_io_cv); 6021 6022 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6023 char blkbuf[BP_SPRINTF_LEN]; 6024 6025 zcb->zcb_haderrors = 1; 6026 zcb->zcb_errors[ioerr]++; 6027 6028 if (dump_opt['b'] >= 2) 6029 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6030 else 6031 blkbuf[0] = '\0'; 6032 6033 (void) printf("zdb_blkptr_cb: " 6034 "Got error %d reading " 6035 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6036 ioerr, 6037 (u_longlong_t)zb->zb_objset, 6038 (u_longlong_t)zb->zb_object, 6039 (u_longlong_t)zb->zb_level, 6040 (u_longlong_t)zb->zb_blkid, 6041 blkbuf); 6042 } 6043 mutex_exit(&spa->spa_scrub_lock); 6044 6045 abd_free(zio->io_abd); 6046 } 6047 6048 static int 6049 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6050 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6051 { 6052 zdb_cb_t *zcb = arg; 6053 dmu_object_type_t type; 6054 boolean_t is_metadata; 6055 6056 if (zb->zb_level == ZB_DNODE_LEVEL) 6057 return (0); 6058 6059 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6060 char blkbuf[BP_SPRINTF_LEN]; 6061 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6062 (void) printf("objset %llu object %llu " 6063 "level %lld offset 0x%llx %s\n", 6064 (u_longlong_t)zb->zb_objset, 6065 (u_longlong_t)zb->zb_object, 6066 (longlong_t)zb->zb_level, 6067 (u_longlong_t)blkid2offset(dnp, bp, zb), 6068 blkbuf); 6069 } 6070 6071 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6072 return (0); 6073 6074 type = BP_GET_TYPE(bp); 6075 6076 zdb_count_block(zcb, zilog, bp, 6077 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6078 6079 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6080 6081 if (!BP_IS_EMBEDDED(bp) && 6082 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6083 size_t size = BP_GET_PSIZE(bp); 6084 abd_t *abd = abd_alloc(size, B_FALSE); 6085 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6086 6087 /* If it's an intent log block, failure is expected. */ 6088 if (zb->zb_level == ZB_ZIL_LEVEL) 6089 flags |= ZIO_FLAG_SPECULATIVE; 6090 6091 mutex_enter(&spa->spa_scrub_lock); 6092 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6093 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6094 spa->spa_load_verify_bytes += size; 6095 mutex_exit(&spa->spa_scrub_lock); 6096 6097 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6098 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6099 } 6100 6101 zcb->zcb_readfails = 0; 6102 6103 /* only call gethrtime() every 100 blocks */ 6104 static int iters; 6105 if (++iters > 100) 6106 iters = 0; 6107 else 6108 return (0); 6109 6110 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6111 uint64_t now = gethrtime(); 6112 char buf[10]; 6113 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6114 uint64_t kb_per_sec = 6115 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6116 uint64_t sec_remaining = 6117 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6118 6119 /* make sure nicenum has enough space */ 6120 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6121 6122 zfs_nicebytes(bytes, buf, sizeof (buf)); 6123 (void) fprintf(stderr, 6124 "\r%5s completed (%4"PRIu64"MB/s) " 6125 "estimated time remaining: " 6126 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6127 buf, kb_per_sec / 1024, 6128 sec_remaining / 60 / 60, 6129 sec_remaining / 60 % 60, 6130 sec_remaining % 60); 6131 6132 zcb->zcb_lastprint = now; 6133 } 6134 6135 return (0); 6136 } 6137 6138 static void 6139 zdb_leak(void *arg, uint64_t start, uint64_t size) 6140 { 6141 vdev_t *vd = arg; 6142 6143 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6144 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6145 } 6146 6147 static metaslab_ops_t zdb_metaslab_ops = { 6148 NULL /* alloc */ 6149 }; 6150 6151 static int 6152 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6153 uint64_t txg, void *arg) 6154 { 6155 spa_vdev_removal_t *svr = arg; 6156 6157 uint64_t offset = sme->sme_offset; 6158 uint64_t size = sme->sme_run; 6159 6160 /* skip vdevs we don't care about */ 6161 if (sme->sme_vdev != svr->svr_vdev_id) 6162 return (0); 6163 6164 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6165 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6166 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6167 6168 if (txg < metaslab_unflushed_txg(ms)) 6169 return (0); 6170 6171 if (sme->sme_type == SM_ALLOC) 6172 range_tree_add(svr->svr_allocd_segs, offset, size); 6173 else 6174 range_tree_remove(svr->svr_allocd_segs, offset, size); 6175 6176 return (0); 6177 } 6178 6179 static void 6180 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6181 uint64_t size, void *arg) 6182 { 6183 (void) inner_offset, (void) arg; 6184 6185 /* 6186 * This callback was called through a remap from 6187 * a device being removed. Therefore, the vdev that 6188 * this callback is applied to is a concrete 6189 * vdev. 6190 */ 6191 ASSERT(vdev_is_concrete(vd)); 6192 6193 VERIFY0(metaslab_claim_impl(vd, offset, size, 6194 spa_min_claim_txg(vd->vdev_spa))); 6195 } 6196 6197 static void 6198 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6199 { 6200 vdev_t *vd = arg; 6201 6202 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6203 claim_segment_impl_cb, NULL); 6204 } 6205 6206 /* 6207 * After accounting for all allocated blocks that are directly referenced, 6208 * we might have missed a reference to a block from a partially complete 6209 * (and thus unused) indirect mapping object. We perform a secondary pass 6210 * through the metaslabs we have already mapped and claim the destination 6211 * blocks. 6212 */ 6213 static void 6214 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6215 { 6216 if (dump_opt['L']) 6217 return; 6218 6219 if (spa->spa_vdev_removal == NULL) 6220 return; 6221 6222 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6223 6224 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6225 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6226 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6227 6228 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6229 6230 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6231 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6232 metaslab_t *msp = vd->vdev_ms[msi]; 6233 6234 ASSERT0(range_tree_space(allocs)); 6235 if (msp->ms_sm != NULL) 6236 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6237 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6238 } 6239 range_tree_destroy(allocs); 6240 6241 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6242 6243 /* 6244 * Clear everything past what has been synced, 6245 * because we have not allocated mappings for 6246 * it yet. 6247 */ 6248 range_tree_clear(svr->svr_allocd_segs, 6249 vdev_indirect_mapping_max_offset(vim), 6250 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6251 6252 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6253 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6254 6255 spa_config_exit(spa, SCL_CONFIG, FTAG); 6256 } 6257 6258 static int 6259 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6260 dmu_tx_t *tx) 6261 { 6262 (void) tx; 6263 zdb_cb_t *zcb = arg; 6264 spa_t *spa = zcb->zcb_spa; 6265 vdev_t *vd; 6266 const dva_t *dva = &bp->blk_dva[0]; 6267 6268 ASSERT(!bp_freed); 6269 ASSERT(!dump_opt['L']); 6270 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6271 6272 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6273 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6274 ASSERT3P(vd, !=, NULL); 6275 spa_config_exit(spa, SCL_VDEV, FTAG); 6276 6277 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6278 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6279 6280 vdev_indirect_mapping_increment_obsolete_count( 6281 vd->vdev_indirect_mapping, 6282 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6283 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6284 6285 return (0); 6286 } 6287 6288 static uint32_t * 6289 zdb_load_obsolete_counts(vdev_t *vd) 6290 { 6291 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6292 spa_t *spa = vd->vdev_spa; 6293 spa_condensing_indirect_phys_t *scip = 6294 &spa->spa_condensing_indirect_phys; 6295 uint64_t obsolete_sm_object; 6296 uint32_t *counts; 6297 6298 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6299 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6300 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6301 if (vd->vdev_obsolete_sm != NULL) { 6302 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6303 vd->vdev_obsolete_sm); 6304 } 6305 if (scip->scip_vdev == vd->vdev_id && 6306 scip->scip_prev_obsolete_sm_object != 0) { 6307 space_map_t *prev_obsolete_sm = NULL; 6308 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6309 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6310 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6311 prev_obsolete_sm); 6312 space_map_close(prev_obsolete_sm); 6313 } 6314 return (counts); 6315 } 6316 6317 typedef struct checkpoint_sm_exclude_entry_arg { 6318 vdev_t *cseea_vd; 6319 uint64_t cseea_checkpoint_size; 6320 } checkpoint_sm_exclude_entry_arg_t; 6321 6322 static int 6323 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6324 { 6325 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6326 vdev_t *vd = cseea->cseea_vd; 6327 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6328 uint64_t end = sme->sme_offset + sme->sme_run; 6329 6330 ASSERT(sme->sme_type == SM_FREE); 6331 6332 /* 6333 * Since the vdev_checkpoint_sm exists in the vdev level 6334 * and the ms_sm space maps exist in the metaslab level, 6335 * an entry in the checkpoint space map could theoretically 6336 * cross the boundaries of the metaslab that it belongs. 6337 * 6338 * In reality, because of the way that we populate and 6339 * manipulate the checkpoint's space maps currently, 6340 * there shouldn't be any entries that cross metaslabs. 6341 * Hence the assertion below. 6342 * 6343 * That said, there is no fundamental requirement that 6344 * the checkpoint's space map entries should not cross 6345 * metaslab boundaries. So if needed we could add code 6346 * that handles metaslab-crossing segments in the future. 6347 */ 6348 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6349 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6350 6351 /* 6352 * By removing the entry from the allocated segments we 6353 * also verify that the entry is there to begin with. 6354 */ 6355 mutex_enter(&ms->ms_lock); 6356 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6357 mutex_exit(&ms->ms_lock); 6358 6359 cseea->cseea_checkpoint_size += sme->sme_run; 6360 return (0); 6361 } 6362 6363 static void 6364 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6365 { 6366 spa_t *spa = vd->vdev_spa; 6367 space_map_t *checkpoint_sm = NULL; 6368 uint64_t checkpoint_sm_obj; 6369 6370 /* 6371 * If there is no vdev_top_zap, we are in a pool whose 6372 * version predates the pool checkpoint feature. 6373 */ 6374 if (vd->vdev_top_zap == 0) 6375 return; 6376 6377 /* 6378 * If there is no reference of the vdev_checkpoint_sm in 6379 * the vdev_top_zap, then one of the following scenarios 6380 * is true: 6381 * 6382 * 1] There is no checkpoint 6383 * 2] There is a checkpoint, but no checkpointed blocks 6384 * have been freed yet 6385 * 3] The current vdev is indirect 6386 * 6387 * In these cases we return immediately. 6388 */ 6389 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6390 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6391 return; 6392 6393 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6394 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6395 &checkpoint_sm_obj)); 6396 6397 checkpoint_sm_exclude_entry_arg_t cseea; 6398 cseea.cseea_vd = vd; 6399 cseea.cseea_checkpoint_size = 0; 6400 6401 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6402 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6403 6404 VERIFY0(space_map_iterate(checkpoint_sm, 6405 space_map_length(checkpoint_sm), 6406 checkpoint_sm_exclude_entry_cb, &cseea)); 6407 space_map_close(checkpoint_sm); 6408 6409 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6410 } 6411 6412 static void 6413 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6414 { 6415 ASSERT(!dump_opt['L']); 6416 6417 vdev_t *rvd = spa->spa_root_vdev; 6418 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6419 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6420 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6421 } 6422 } 6423 6424 static int 6425 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6426 uint64_t txg, void *arg) 6427 { 6428 int64_t *ualloc_space = arg; 6429 6430 uint64_t offset = sme->sme_offset; 6431 uint64_t vdev_id = sme->sme_vdev; 6432 6433 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6434 if (!vdev_is_concrete(vd)) 6435 return (0); 6436 6437 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6438 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6439 6440 if (txg < metaslab_unflushed_txg(ms)) 6441 return (0); 6442 6443 if (sme->sme_type == SM_ALLOC) 6444 *ualloc_space += sme->sme_run; 6445 else 6446 *ualloc_space -= sme->sme_run; 6447 6448 return (0); 6449 } 6450 6451 static int64_t 6452 get_unflushed_alloc_space(spa_t *spa) 6453 { 6454 if (dump_opt['L']) 6455 return (0); 6456 6457 int64_t ualloc_space = 0; 6458 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6459 &ualloc_space); 6460 return (ualloc_space); 6461 } 6462 6463 static int 6464 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6465 { 6466 maptype_t *uic_maptype = arg; 6467 6468 uint64_t offset = sme->sme_offset; 6469 uint64_t size = sme->sme_run; 6470 uint64_t vdev_id = sme->sme_vdev; 6471 6472 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6473 6474 /* skip indirect vdevs */ 6475 if (!vdev_is_concrete(vd)) 6476 return (0); 6477 6478 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6479 6480 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6481 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6482 6483 if (txg < metaslab_unflushed_txg(ms)) 6484 return (0); 6485 6486 if (*uic_maptype == sme->sme_type) 6487 range_tree_add(ms->ms_allocatable, offset, size); 6488 else 6489 range_tree_remove(ms->ms_allocatable, offset, size); 6490 6491 return (0); 6492 } 6493 6494 static void 6495 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6496 { 6497 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6498 } 6499 6500 static void 6501 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6502 { 6503 vdev_t *rvd = spa->spa_root_vdev; 6504 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6505 vdev_t *vd = rvd->vdev_child[i]; 6506 6507 ASSERT3U(i, ==, vd->vdev_id); 6508 6509 if (vd->vdev_ops == &vdev_indirect_ops) 6510 continue; 6511 6512 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6513 metaslab_t *msp = vd->vdev_ms[m]; 6514 6515 (void) fprintf(stderr, 6516 "\rloading concrete vdev %llu, " 6517 "metaslab %llu of %llu ...", 6518 (longlong_t)vd->vdev_id, 6519 (longlong_t)msp->ms_id, 6520 (longlong_t)vd->vdev_ms_count); 6521 6522 mutex_enter(&msp->ms_lock); 6523 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6524 6525 /* 6526 * We don't want to spend the CPU manipulating the 6527 * size-ordered tree, so clear the range_tree ops. 6528 */ 6529 msp->ms_allocatable->rt_ops = NULL; 6530 6531 if (msp->ms_sm != NULL) { 6532 VERIFY0(space_map_load(msp->ms_sm, 6533 msp->ms_allocatable, maptype)); 6534 } 6535 if (!msp->ms_loaded) 6536 msp->ms_loaded = B_TRUE; 6537 mutex_exit(&msp->ms_lock); 6538 } 6539 } 6540 6541 load_unflushed_to_ms_allocatables(spa, maptype); 6542 } 6543 6544 /* 6545 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6546 * index in vim_entries that has the first entry in this metaslab. 6547 * On return, it will be set to the first entry after this metaslab. 6548 */ 6549 static void 6550 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6551 uint64_t *vim_idxp) 6552 { 6553 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6554 6555 mutex_enter(&msp->ms_lock); 6556 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6557 6558 /* 6559 * We don't want to spend the CPU manipulating the 6560 * size-ordered tree, so clear the range_tree ops. 6561 */ 6562 msp->ms_allocatable->rt_ops = NULL; 6563 6564 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6565 (*vim_idxp)++) { 6566 vdev_indirect_mapping_entry_phys_t *vimep = 6567 &vim->vim_entries[*vim_idxp]; 6568 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6569 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6570 ASSERT3U(ent_offset, >=, msp->ms_start); 6571 if (ent_offset >= msp->ms_start + msp->ms_size) 6572 break; 6573 6574 /* 6575 * Mappings do not cross metaslab boundaries, 6576 * because we create them by walking the metaslabs. 6577 */ 6578 ASSERT3U(ent_offset + ent_len, <=, 6579 msp->ms_start + msp->ms_size); 6580 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6581 } 6582 6583 if (!msp->ms_loaded) 6584 msp->ms_loaded = B_TRUE; 6585 mutex_exit(&msp->ms_lock); 6586 } 6587 6588 static void 6589 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6590 { 6591 ASSERT(!dump_opt['L']); 6592 6593 vdev_t *rvd = spa->spa_root_vdev; 6594 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6595 vdev_t *vd = rvd->vdev_child[c]; 6596 6597 ASSERT3U(c, ==, vd->vdev_id); 6598 6599 if (vd->vdev_ops != &vdev_indirect_ops) 6600 continue; 6601 6602 /* 6603 * Note: we don't check for mapping leaks on 6604 * removing vdevs because their ms_allocatable's 6605 * are used to look for leaks in allocated space. 6606 */ 6607 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6608 6609 /* 6610 * Normally, indirect vdevs don't have any 6611 * metaslabs. We want to set them up for 6612 * zio_claim(). 6613 */ 6614 vdev_metaslab_group_create(vd); 6615 VERIFY0(vdev_metaslab_init(vd, 0)); 6616 6617 vdev_indirect_mapping_t *vim __maybe_unused = 6618 vd->vdev_indirect_mapping; 6619 uint64_t vim_idx = 0; 6620 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6621 6622 (void) fprintf(stderr, 6623 "\rloading indirect vdev %llu, " 6624 "metaslab %llu of %llu ...", 6625 (longlong_t)vd->vdev_id, 6626 (longlong_t)vd->vdev_ms[m]->ms_id, 6627 (longlong_t)vd->vdev_ms_count); 6628 6629 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6630 &vim_idx); 6631 } 6632 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6633 } 6634 } 6635 6636 static void 6637 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6638 { 6639 zcb->zcb_spa = spa; 6640 6641 if (dump_opt['L']) 6642 return; 6643 6644 dsl_pool_t *dp = spa->spa_dsl_pool; 6645 vdev_t *rvd = spa->spa_root_vdev; 6646 6647 /* 6648 * We are going to be changing the meaning of the metaslab's 6649 * ms_allocatable. Ensure that the allocator doesn't try to 6650 * use the tree. 6651 */ 6652 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6653 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6654 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6655 6656 zcb->zcb_vd_obsolete_counts = 6657 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6658 UMEM_NOFAIL); 6659 6660 /* 6661 * For leak detection, we overload the ms_allocatable trees 6662 * to contain allocated segments instead of free segments. 6663 * As a result, we can't use the normal metaslab_load/unload 6664 * interfaces. 6665 */ 6666 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6667 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6668 6669 /* 6670 * On load_concrete_ms_allocatable_trees() we loaded all the 6671 * allocated entries from the ms_sm to the ms_allocatable for 6672 * each metaslab. If the pool has a checkpoint or is in the 6673 * middle of discarding a checkpoint, some of these blocks 6674 * may have been freed but their ms_sm may not have been 6675 * updated because they are referenced by the checkpoint. In 6676 * order to avoid false-positives during leak-detection, we 6677 * go through the vdev's checkpoint space map and exclude all 6678 * its entries from their relevant ms_allocatable. 6679 * 6680 * We also aggregate the space held by the checkpoint and add 6681 * it to zcb_checkpoint_size. 6682 * 6683 * Note that at this point we are also verifying that all the 6684 * entries on the checkpoint_sm are marked as allocated in 6685 * the ms_sm of their relevant metaslab. 6686 * [see comment in checkpoint_sm_exclude_entry_cb()] 6687 */ 6688 zdb_leak_init_exclude_checkpoint(spa, zcb); 6689 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6690 6691 /* for cleaner progress output */ 6692 (void) fprintf(stderr, "\n"); 6693 6694 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6695 ASSERT(spa_feature_is_enabled(spa, 6696 SPA_FEATURE_DEVICE_REMOVAL)); 6697 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6698 increment_indirect_mapping_cb, zcb, NULL); 6699 } 6700 } 6701 6702 static boolean_t 6703 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6704 { 6705 boolean_t leaks = B_FALSE; 6706 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6707 uint64_t total_leaked = 0; 6708 boolean_t are_precise = B_FALSE; 6709 6710 ASSERT(vim != NULL); 6711 6712 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6713 vdev_indirect_mapping_entry_phys_t *vimep = 6714 &vim->vim_entries[i]; 6715 uint64_t obsolete_bytes = 0; 6716 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6717 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6718 6719 /* 6720 * This is not very efficient but it's easy to 6721 * verify correctness. 6722 */ 6723 for (uint64_t inner_offset = 0; 6724 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6725 inner_offset += 1ULL << vd->vdev_ashift) { 6726 if (range_tree_contains(msp->ms_allocatable, 6727 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6728 obsolete_bytes += 1ULL << vd->vdev_ashift; 6729 } 6730 } 6731 6732 int64_t bytes_leaked = obsolete_bytes - 6733 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6734 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6735 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6736 6737 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6738 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6739 (void) printf("obsolete indirect mapping count " 6740 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6741 (u_longlong_t)vd->vdev_id, 6742 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6743 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6744 (u_longlong_t)bytes_leaked); 6745 } 6746 total_leaked += ABS(bytes_leaked); 6747 } 6748 6749 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6750 if (!are_precise && total_leaked > 0) { 6751 int pct_leaked = total_leaked * 100 / 6752 vdev_indirect_mapping_bytes_mapped(vim); 6753 (void) printf("cannot verify obsolete indirect mapping " 6754 "counts of vdev %llu because precise feature was not " 6755 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6756 "unreferenced\n", 6757 (u_longlong_t)vd->vdev_id, pct_leaked, 6758 (u_longlong_t)total_leaked); 6759 } else if (total_leaked > 0) { 6760 (void) printf("obsolete indirect mapping count mismatch " 6761 "for vdev %llu -- %llx total bytes mismatched\n", 6762 (u_longlong_t)vd->vdev_id, 6763 (u_longlong_t)total_leaked); 6764 leaks |= B_TRUE; 6765 } 6766 6767 vdev_indirect_mapping_free_obsolete_counts(vim, 6768 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6769 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6770 6771 return (leaks); 6772 } 6773 6774 static boolean_t 6775 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6776 { 6777 if (dump_opt['L']) 6778 return (B_FALSE); 6779 6780 boolean_t leaks = B_FALSE; 6781 vdev_t *rvd = spa->spa_root_vdev; 6782 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6783 vdev_t *vd = rvd->vdev_child[c]; 6784 6785 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6786 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6787 } 6788 6789 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6790 metaslab_t *msp = vd->vdev_ms[m]; 6791 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6792 spa_embedded_log_class(spa)) ? 6793 vd->vdev_log_mg : vd->vdev_mg); 6794 6795 /* 6796 * ms_allocatable has been overloaded 6797 * to contain allocated segments. Now that 6798 * we finished traversing all blocks, any 6799 * block that remains in the ms_allocatable 6800 * represents an allocated block that we 6801 * did not claim during the traversal. 6802 * Claimed blocks would have been removed 6803 * from the ms_allocatable. For indirect 6804 * vdevs, space remaining in the tree 6805 * represents parts of the mapping that are 6806 * not referenced, which is not a bug. 6807 */ 6808 if (vd->vdev_ops == &vdev_indirect_ops) { 6809 range_tree_vacate(msp->ms_allocatable, 6810 NULL, NULL); 6811 } else { 6812 range_tree_vacate(msp->ms_allocatable, 6813 zdb_leak, vd); 6814 } 6815 if (msp->ms_loaded) { 6816 msp->ms_loaded = B_FALSE; 6817 } 6818 } 6819 } 6820 6821 umem_free(zcb->zcb_vd_obsolete_counts, 6822 rvd->vdev_children * sizeof (uint32_t *)); 6823 zcb->zcb_vd_obsolete_counts = NULL; 6824 6825 return (leaks); 6826 } 6827 6828 static int 6829 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6830 { 6831 (void) tx; 6832 zdb_cb_t *zcb = arg; 6833 6834 if (dump_opt['b'] >= 5) { 6835 char blkbuf[BP_SPRINTF_LEN]; 6836 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6837 (void) printf("[%s] %s\n", 6838 "deferred free", blkbuf); 6839 } 6840 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6841 return (0); 6842 } 6843 6844 /* 6845 * Iterate over livelists which have been destroyed by the user but 6846 * are still present in the MOS, waiting to be freed 6847 */ 6848 static void 6849 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6850 { 6851 objset_t *mos = spa->spa_meta_objset; 6852 uint64_t zap_obj; 6853 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6854 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6855 if (err == ENOENT) 6856 return; 6857 ASSERT0(err); 6858 6859 zap_cursor_t zc; 6860 zap_attribute_t attr; 6861 dsl_deadlist_t ll; 6862 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6863 ll.dl_os = NULL; 6864 for (zap_cursor_init(&zc, mos, zap_obj); 6865 zap_cursor_retrieve(&zc, &attr) == 0; 6866 (void) zap_cursor_advance(&zc)) { 6867 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6868 func(&ll, arg); 6869 dsl_deadlist_close(&ll); 6870 } 6871 zap_cursor_fini(&zc); 6872 } 6873 6874 static int 6875 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6876 dmu_tx_t *tx) 6877 { 6878 ASSERT(!bp_freed); 6879 return (count_block_cb(arg, bp, tx)); 6880 } 6881 6882 static int 6883 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6884 { 6885 zdb_cb_t *zbc = args; 6886 bplist_t blks; 6887 bplist_create(&blks); 6888 /* determine which blocks have been alloc'd but not freed */ 6889 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6890 /* count those blocks */ 6891 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6892 bplist_destroy(&blks); 6893 return (0); 6894 } 6895 6896 static void 6897 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6898 { 6899 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6900 } 6901 6902 /* 6903 * Count the blocks in the livelists that have been destroyed by the user 6904 * but haven't yet been freed. 6905 */ 6906 static void 6907 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6908 { 6909 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6910 } 6911 6912 static void 6913 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6914 { 6915 ASSERT3P(arg, ==, NULL); 6916 global_feature_count[SPA_FEATURE_LIVELIST]++; 6917 dump_blkptr_list(ll, "Deleted Livelist"); 6918 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6919 } 6920 6921 /* 6922 * Print out, register object references to, and increment feature counts for 6923 * livelists that have been destroyed by the user but haven't yet been freed. 6924 */ 6925 static void 6926 deleted_livelists_dump_mos(spa_t *spa) 6927 { 6928 uint64_t zap_obj; 6929 objset_t *mos = spa->spa_meta_objset; 6930 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6931 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6932 if (err == ENOENT) 6933 return; 6934 mos_obj_refd(zap_obj); 6935 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6936 } 6937 6938 static int 6939 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6940 { 6941 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6942 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6943 int cmp; 6944 6945 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6946 if (cmp == 0) 6947 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6948 6949 return (cmp); 6950 } 6951 6952 static int 6953 dump_block_stats(spa_t *spa) 6954 { 6955 zdb_cb_t *zcb; 6956 zdb_blkstats_t *zb, *tzb; 6957 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6958 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6959 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6960 boolean_t leaks = B_FALSE; 6961 int e, c, err; 6962 bp_embedded_type_t i; 6963 6964 ddt_prefetch_all(spa); 6965 6966 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6967 6968 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6969 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6970 sizeof (zdb_brt_entry_t), 6971 offsetof(zdb_brt_entry_t, zbre_node)); 6972 zcb->zcb_brt_is_active = B_TRUE; 6973 } 6974 6975 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6976 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6977 (dump_opt['c'] == 1) ? "metadata " : "", 6978 dump_opt['c'] ? "checksums " : "", 6979 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6980 !dump_opt['L'] ? "nothing leaked " : ""); 6981 6982 /* 6983 * When leak detection is enabled we load all space maps as SM_ALLOC 6984 * maps, then traverse the pool claiming each block we discover. If 6985 * the pool is perfectly consistent, the segment trees will be empty 6986 * when we're done. Anything left over is a leak; any block we can't 6987 * claim (because it's not part of any space map) is a double 6988 * allocation, reference to a freed block, or an unclaimed log block. 6989 * 6990 * When leak detection is disabled (-L option) we still traverse the 6991 * pool claiming each block we discover, but we skip opening any space 6992 * maps. 6993 */ 6994 zdb_leak_init(spa, zcb); 6995 6996 /* 6997 * If there's a deferred-free bplist, process that first. 6998 */ 6999 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7000 bpobj_count_block_cb, zcb, NULL); 7001 7002 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7003 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7004 bpobj_count_block_cb, zcb, NULL); 7005 } 7006 7007 zdb_claim_removing(spa, zcb); 7008 7009 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7010 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7011 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7012 zcb, NULL)); 7013 } 7014 7015 deleted_livelists_count_blocks(spa, zcb); 7016 7017 if (dump_opt['c'] > 1) 7018 flags |= TRAVERSE_PREFETCH_DATA; 7019 7020 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7021 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7022 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7023 zcb->zcb_totalasize += 7024 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7025 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7026 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7027 7028 /* 7029 * If we've traversed the data blocks then we need to wait for those 7030 * I/Os to complete. We leverage "The Godfather" zio to wait on 7031 * all async I/Os to complete. 7032 */ 7033 if (dump_opt['c']) { 7034 for (c = 0; c < max_ncpus; c++) { 7035 (void) zio_wait(spa->spa_async_zio_root[c]); 7036 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7037 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7038 ZIO_FLAG_GODFATHER); 7039 } 7040 } 7041 ASSERT0(spa->spa_load_verify_bytes); 7042 7043 /* 7044 * Done after zio_wait() since zcb_haderrors is modified in 7045 * zdb_blkptr_done() 7046 */ 7047 zcb->zcb_haderrors |= err; 7048 7049 if (zcb->zcb_haderrors) { 7050 (void) printf("\nError counts:\n\n"); 7051 (void) printf("\t%5s %s\n", "errno", "count"); 7052 for (e = 0; e < 256; e++) { 7053 if (zcb->zcb_errors[e] != 0) { 7054 (void) printf("\t%5d %llu\n", 7055 e, (u_longlong_t)zcb->zcb_errors[e]); 7056 } 7057 } 7058 } 7059 7060 /* 7061 * Report any leaked segments. 7062 */ 7063 leaks |= zdb_leak_fini(spa, zcb); 7064 7065 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7066 7067 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7068 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7069 7070 total_alloc = norm_alloc + 7071 metaslab_class_get_alloc(spa_log_class(spa)) + 7072 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7073 metaslab_class_get_alloc(spa_special_class(spa)) + 7074 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7075 get_unflushed_alloc_space(spa); 7076 total_found = 7077 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7078 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7079 7080 if (total_found == total_alloc && !dump_opt['L']) { 7081 (void) printf("\n\tNo leaks (block sum matches space" 7082 " maps exactly)\n"); 7083 } else if (!dump_opt['L']) { 7084 (void) printf("block traversal size %llu != alloc %llu " 7085 "(%s %lld)\n", 7086 (u_longlong_t)total_found, 7087 (u_longlong_t)total_alloc, 7088 (dump_opt['L']) ? "unreachable" : "leaked", 7089 (longlong_t)(total_alloc - total_found)); 7090 } 7091 7092 if (tzb->zb_count == 0) { 7093 umem_free(zcb, sizeof (zdb_cb_t)); 7094 return (2); 7095 } 7096 7097 (void) printf("\n"); 7098 (void) printf("\t%-16s %14llu\n", "bp count:", 7099 (u_longlong_t)tzb->zb_count); 7100 (void) printf("\t%-16s %14llu\n", "ganged count:", 7101 (longlong_t)tzb->zb_gangs); 7102 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7103 (u_longlong_t)tzb->zb_lsize, 7104 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7105 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7106 "bp physical:", (u_longlong_t)tzb->zb_psize, 7107 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7108 (double)tzb->zb_lsize / tzb->zb_psize); 7109 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7110 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7111 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7112 (double)tzb->zb_lsize / tzb->zb_asize); 7113 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7114 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7115 (u_longlong_t)zcb->zcb_dedup_blocks, 7116 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7117 (void) printf("\t%-16s %14llu count: %6llu\n", 7118 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7119 (u_longlong_t)zcb->zcb_clone_blocks); 7120 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7121 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7122 7123 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7124 uint64_t alloc = metaslab_class_get_alloc( 7125 spa_special_class(spa)); 7126 uint64_t space = metaslab_class_get_space( 7127 spa_special_class(spa)); 7128 7129 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7130 "Special class", (u_longlong_t)alloc, 7131 100.0 * alloc / space); 7132 } 7133 7134 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7135 uint64_t alloc = metaslab_class_get_alloc( 7136 spa_dedup_class(spa)); 7137 uint64_t space = metaslab_class_get_space( 7138 spa_dedup_class(spa)); 7139 7140 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7141 "Dedup class", (u_longlong_t)alloc, 7142 100.0 * alloc / space); 7143 } 7144 7145 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7146 uint64_t alloc = metaslab_class_get_alloc( 7147 spa_embedded_log_class(spa)); 7148 uint64_t space = metaslab_class_get_space( 7149 spa_embedded_log_class(spa)); 7150 7151 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7152 "Embedded log class", (u_longlong_t)alloc, 7153 100.0 * alloc / space); 7154 } 7155 7156 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7157 if (zcb->zcb_embedded_blocks[i] == 0) 7158 continue; 7159 (void) printf("\n"); 7160 (void) printf("\tadditional, non-pointer bps of type %u: " 7161 "%10llu\n", 7162 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7163 7164 if (dump_opt['b'] >= 3) { 7165 (void) printf("\t number of (compressed) bytes: " 7166 "number of bps\n"); 7167 dump_histogram(zcb->zcb_embedded_histogram[i], 7168 sizeof (zcb->zcb_embedded_histogram[i]) / 7169 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7170 } 7171 } 7172 7173 if (tzb->zb_ditto_samevdev != 0) { 7174 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7175 (longlong_t)tzb->zb_ditto_samevdev); 7176 } 7177 if (tzb->zb_ditto_same_ms != 0) { 7178 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7179 (longlong_t)tzb->zb_ditto_same_ms); 7180 } 7181 7182 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7183 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7184 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7185 7186 if (vim == NULL) { 7187 continue; 7188 } 7189 7190 char mem[32]; 7191 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7192 mem, vdev_indirect_mapping_size(vim)); 7193 7194 (void) printf("\tindirect vdev id %llu has %llu segments " 7195 "(%s in memory)\n", 7196 (longlong_t)vd->vdev_id, 7197 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7198 } 7199 7200 if (dump_opt['b'] >= 2) { 7201 int l, t, level; 7202 char csize[32], lsize[32], psize[32], asize[32]; 7203 char avg[32], gang[32]; 7204 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7205 "\t avg\t comp\t%%Total\tType\n"); 7206 7207 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7208 UMEM_NOFAIL); 7209 7210 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7211 const char *typename; 7212 7213 /* make sure nicenum has enough space */ 7214 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7215 "csize truncated"); 7216 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7217 "lsize truncated"); 7218 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7219 "psize truncated"); 7220 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7221 "asize truncated"); 7222 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7223 "avg truncated"); 7224 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7225 "gang truncated"); 7226 7227 if (t < DMU_OT_NUMTYPES) 7228 typename = dmu_ot[t].ot_name; 7229 else 7230 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7231 7232 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7233 (void) printf("%6s\t%5s\t%5s\t%5s" 7234 "\t%5s\t%5s\t%6s\t%s\n", 7235 "-", 7236 "-", 7237 "-", 7238 "-", 7239 "-", 7240 "-", 7241 "-", 7242 typename); 7243 continue; 7244 } 7245 7246 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7247 level = (l == -1 ? ZB_TOTAL : l); 7248 zb = &zcb->zcb_type[level][t]; 7249 7250 if (zb->zb_asize == 0) 7251 continue; 7252 7253 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7254 (level > 0 || DMU_OT_IS_METADATA(t))) { 7255 mdstats->zb_count += zb->zb_count; 7256 mdstats->zb_lsize += zb->zb_lsize; 7257 mdstats->zb_psize += zb->zb_psize; 7258 mdstats->zb_asize += zb->zb_asize; 7259 mdstats->zb_gangs += zb->zb_gangs; 7260 } 7261 7262 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7263 continue; 7264 7265 if (level == 0 && zb->zb_asize == 7266 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7267 continue; 7268 7269 zdb_nicenum(zb->zb_count, csize, 7270 sizeof (csize)); 7271 zdb_nicenum(zb->zb_lsize, lsize, 7272 sizeof (lsize)); 7273 zdb_nicenum(zb->zb_psize, psize, 7274 sizeof (psize)); 7275 zdb_nicenum(zb->zb_asize, asize, 7276 sizeof (asize)); 7277 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7278 sizeof (avg)); 7279 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7280 7281 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7282 "\t%5.2f\t%6.2f\t", 7283 csize, lsize, psize, asize, avg, 7284 (double)zb->zb_lsize / zb->zb_psize, 7285 100.0 * zb->zb_asize / tzb->zb_asize); 7286 7287 if (level == ZB_TOTAL) 7288 (void) printf("%s\n", typename); 7289 else 7290 (void) printf(" L%d %s\n", 7291 level, typename); 7292 7293 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7294 (void) printf("\t number of ganged " 7295 "blocks: %s\n", gang); 7296 } 7297 7298 if (dump_opt['b'] >= 4) { 7299 (void) printf("psize " 7300 "(in 512-byte sectors): " 7301 "number of blocks\n"); 7302 dump_histogram(zb->zb_psize_histogram, 7303 PSIZE_HISTO_SIZE, 0); 7304 } 7305 } 7306 } 7307 zdb_nicenum(mdstats->zb_count, csize, 7308 sizeof (csize)); 7309 zdb_nicenum(mdstats->zb_lsize, lsize, 7310 sizeof (lsize)); 7311 zdb_nicenum(mdstats->zb_psize, psize, 7312 sizeof (psize)); 7313 zdb_nicenum(mdstats->zb_asize, asize, 7314 sizeof (asize)); 7315 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7316 sizeof (avg)); 7317 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7318 7319 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7320 "\t%5.2f\t%6.2f\t", 7321 csize, lsize, psize, asize, avg, 7322 (double)mdstats->zb_lsize / mdstats->zb_psize, 7323 100.0 * mdstats->zb_asize / tzb->zb_asize); 7324 (void) printf("%s\n", "Metadata Total"); 7325 7326 /* Output a table summarizing block sizes in the pool */ 7327 if (dump_opt['b'] >= 2) { 7328 dump_size_histograms(zcb); 7329 } 7330 7331 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7332 } 7333 7334 (void) printf("\n"); 7335 7336 if (leaks) { 7337 umem_free(zcb, sizeof (zdb_cb_t)); 7338 return (2); 7339 } 7340 7341 if (zcb->zcb_haderrors) { 7342 umem_free(zcb, sizeof (zdb_cb_t)); 7343 return (3); 7344 } 7345 7346 umem_free(zcb, sizeof (zdb_cb_t)); 7347 return (0); 7348 } 7349 7350 typedef struct zdb_ddt_entry { 7351 /* key must be first for ddt_key_compare */ 7352 ddt_key_t zdde_key; 7353 uint64_t zdde_ref_blocks; 7354 uint64_t zdde_ref_lsize; 7355 uint64_t zdde_ref_psize; 7356 uint64_t zdde_ref_dsize; 7357 avl_node_t zdde_node; 7358 } zdb_ddt_entry_t; 7359 7360 static int 7361 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7362 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7363 { 7364 (void) zilog, (void) dnp; 7365 avl_tree_t *t = arg; 7366 avl_index_t where; 7367 zdb_ddt_entry_t *zdde, zdde_search; 7368 7369 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7370 BP_IS_EMBEDDED(bp)) 7371 return (0); 7372 7373 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7374 (void) printf("traversing objset %llu, %llu objects, " 7375 "%lu blocks so far\n", 7376 (u_longlong_t)zb->zb_objset, 7377 (u_longlong_t)BP_GET_FILL(bp), 7378 avl_numnodes(t)); 7379 } 7380 7381 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7382 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7383 return (0); 7384 7385 ddt_key_fill(&zdde_search.zdde_key, bp); 7386 7387 zdde = avl_find(t, &zdde_search, &where); 7388 7389 if (zdde == NULL) { 7390 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7391 zdde->zdde_key = zdde_search.zdde_key; 7392 avl_insert(t, zdde, where); 7393 } 7394 7395 zdde->zdde_ref_blocks += 1; 7396 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7397 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7398 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7399 7400 return (0); 7401 } 7402 7403 static void 7404 dump_simulated_ddt(spa_t *spa) 7405 { 7406 avl_tree_t t; 7407 void *cookie = NULL; 7408 zdb_ddt_entry_t *zdde; 7409 ddt_histogram_t ddh_total = {{{0}}}; 7410 ddt_stat_t dds_total = {0}; 7411 7412 avl_create(&t, ddt_key_compare, 7413 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7414 7415 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7416 7417 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7418 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7419 7420 spa_config_exit(spa, SCL_CONFIG, FTAG); 7421 7422 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7423 uint64_t refcnt = zdde->zdde_ref_blocks; 7424 ASSERT(refcnt != 0); 7425 7426 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7427 7428 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7429 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7430 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7431 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7432 7433 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7434 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7435 dds->dds_ref_psize += zdde->zdde_ref_psize; 7436 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7437 7438 umem_free(zdde, sizeof (*zdde)); 7439 } 7440 7441 avl_destroy(&t); 7442 7443 ddt_histogram_total(&dds_total, &ddh_total); 7444 7445 (void) printf("Simulated DDT histogram:\n"); 7446 7447 zpool_dump_ddt(&dds_total, &ddh_total); 7448 7449 dump_dedup_ratio(&dds_total); 7450 } 7451 7452 static int 7453 verify_device_removal_feature_counts(spa_t *spa) 7454 { 7455 uint64_t dr_feature_refcount = 0; 7456 uint64_t oc_feature_refcount = 0; 7457 uint64_t indirect_vdev_count = 0; 7458 uint64_t precise_vdev_count = 0; 7459 uint64_t obsolete_counts_object_count = 0; 7460 uint64_t obsolete_sm_count = 0; 7461 uint64_t obsolete_counts_count = 0; 7462 uint64_t scip_count = 0; 7463 uint64_t obsolete_bpobj_count = 0; 7464 int ret = 0; 7465 7466 spa_condensing_indirect_phys_t *scip = 7467 &spa->spa_condensing_indirect_phys; 7468 if (scip->scip_next_mapping_object != 0) { 7469 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7470 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7471 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7472 7473 (void) printf("Condensing indirect vdev %llu: new mapping " 7474 "object %llu, prev obsolete sm %llu\n", 7475 (u_longlong_t)scip->scip_vdev, 7476 (u_longlong_t)scip->scip_next_mapping_object, 7477 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7478 if (scip->scip_prev_obsolete_sm_object != 0) { 7479 space_map_t *prev_obsolete_sm = NULL; 7480 VERIFY0(space_map_open(&prev_obsolete_sm, 7481 spa->spa_meta_objset, 7482 scip->scip_prev_obsolete_sm_object, 7483 0, vd->vdev_asize, 0)); 7484 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7485 (void) printf("\n"); 7486 space_map_close(prev_obsolete_sm); 7487 } 7488 7489 scip_count += 2; 7490 } 7491 7492 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7493 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7494 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7495 7496 if (vic->vic_mapping_object != 0) { 7497 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7498 vd->vdev_removing); 7499 indirect_vdev_count++; 7500 7501 if (vd->vdev_indirect_mapping->vim_havecounts) { 7502 obsolete_counts_count++; 7503 } 7504 } 7505 7506 boolean_t are_precise; 7507 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7508 if (are_precise) { 7509 ASSERT(vic->vic_mapping_object != 0); 7510 precise_vdev_count++; 7511 } 7512 7513 uint64_t obsolete_sm_object; 7514 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7515 if (obsolete_sm_object != 0) { 7516 ASSERT(vic->vic_mapping_object != 0); 7517 obsolete_sm_count++; 7518 } 7519 } 7520 7521 (void) feature_get_refcount(spa, 7522 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7523 &dr_feature_refcount); 7524 (void) feature_get_refcount(spa, 7525 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7526 &oc_feature_refcount); 7527 7528 if (dr_feature_refcount != indirect_vdev_count) { 7529 ret = 1; 7530 (void) printf("Number of indirect vdevs (%llu) " \ 7531 "does not match feature count (%llu)\n", 7532 (u_longlong_t)indirect_vdev_count, 7533 (u_longlong_t)dr_feature_refcount); 7534 } else { 7535 (void) printf("Verified device_removal feature refcount " \ 7536 "of %llu is correct\n", 7537 (u_longlong_t)dr_feature_refcount); 7538 } 7539 7540 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7541 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7542 obsolete_bpobj_count++; 7543 } 7544 7545 7546 obsolete_counts_object_count = precise_vdev_count; 7547 obsolete_counts_object_count += obsolete_sm_count; 7548 obsolete_counts_object_count += obsolete_counts_count; 7549 obsolete_counts_object_count += scip_count; 7550 obsolete_counts_object_count += obsolete_bpobj_count; 7551 obsolete_counts_object_count += remap_deadlist_count; 7552 7553 if (oc_feature_refcount != obsolete_counts_object_count) { 7554 ret = 1; 7555 (void) printf("Number of obsolete counts objects (%llu) " \ 7556 "does not match feature count (%llu)\n", 7557 (u_longlong_t)obsolete_counts_object_count, 7558 (u_longlong_t)oc_feature_refcount); 7559 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7560 "ob:%llu rd:%llu\n", 7561 (u_longlong_t)precise_vdev_count, 7562 (u_longlong_t)obsolete_sm_count, 7563 (u_longlong_t)obsolete_counts_count, 7564 (u_longlong_t)scip_count, 7565 (u_longlong_t)obsolete_bpobj_count, 7566 (u_longlong_t)remap_deadlist_count); 7567 } else { 7568 (void) printf("Verified indirect_refcount feature refcount " \ 7569 "of %llu is correct\n", 7570 (u_longlong_t)oc_feature_refcount); 7571 } 7572 return (ret); 7573 } 7574 7575 static void 7576 zdb_set_skip_mmp(char *target) 7577 { 7578 spa_t *spa; 7579 7580 /* 7581 * Disable the activity check to allow examination of 7582 * active pools. 7583 */ 7584 mutex_enter(&spa_namespace_lock); 7585 if ((spa = spa_lookup(target)) != NULL) { 7586 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7587 } 7588 mutex_exit(&spa_namespace_lock); 7589 } 7590 7591 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7592 /* 7593 * Import the checkpointed state of the pool specified by the target 7594 * parameter as readonly. The function also accepts a pool config 7595 * as an optional parameter, else it attempts to infer the config by 7596 * the name of the target pool. 7597 * 7598 * Note that the checkpointed state's pool name will be the name of 7599 * the original pool with the above suffix appended to it. In addition, 7600 * if the target is not a pool name (e.g. a path to a dataset) then 7601 * the new_path parameter is populated with the updated path to 7602 * reflect the fact that we are looking into the checkpointed state. 7603 * 7604 * The function returns a newly-allocated copy of the name of the 7605 * pool containing the checkpointed state. When this copy is no 7606 * longer needed it should be freed with free(3C). Same thing 7607 * applies to the new_path parameter if allocated. 7608 */ 7609 static char * 7610 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7611 { 7612 int error = 0; 7613 char *poolname, *bogus_name = NULL; 7614 boolean_t freecfg = B_FALSE; 7615 7616 /* If the target is not a pool, the extract the pool name */ 7617 char *path_start = strchr(target, '/'); 7618 if (path_start != NULL) { 7619 size_t poolname_len = path_start - target; 7620 poolname = strndup(target, poolname_len); 7621 } else { 7622 poolname = target; 7623 } 7624 7625 if (cfg == NULL) { 7626 zdb_set_skip_mmp(poolname); 7627 error = spa_get_stats(poolname, &cfg, NULL, 0); 7628 if (error != 0) { 7629 fatal("Tried to read config of pool \"%s\" but " 7630 "spa_get_stats() failed with error %d\n", 7631 poolname, error); 7632 } 7633 freecfg = B_TRUE; 7634 } 7635 7636 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7637 if (target != poolname) 7638 free(poolname); 7639 return (NULL); 7640 } 7641 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7642 7643 error = spa_import(bogus_name, cfg, NULL, 7644 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7645 ZFS_IMPORT_SKIP_MMP); 7646 if (freecfg) 7647 nvlist_free(cfg); 7648 if (error != 0) { 7649 fatal("Tried to import pool \"%s\" but spa_import() failed " 7650 "with error %d\n", bogus_name, error); 7651 } 7652 7653 if (new_path != NULL && path_start != NULL) { 7654 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7655 free(bogus_name); 7656 if (path_start != NULL) 7657 free(poolname); 7658 return (NULL); 7659 } 7660 } 7661 7662 if (target != poolname) 7663 free(poolname); 7664 7665 return (bogus_name); 7666 } 7667 7668 typedef struct verify_checkpoint_sm_entry_cb_arg { 7669 vdev_t *vcsec_vd; 7670 7671 /* the following fields are only used for printing progress */ 7672 uint64_t vcsec_entryid; 7673 uint64_t vcsec_num_entries; 7674 } verify_checkpoint_sm_entry_cb_arg_t; 7675 7676 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7677 7678 static int 7679 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7680 { 7681 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7682 vdev_t *vd = vcsec->vcsec_vd; 7683 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7684 uint64_t end = sme->sme_offset + sme->sme_run; 7685 7686 ASSERT(sme->sme_type == SM_FREE); 7687 7688 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7689 (void) fprintf(stderr, 7690 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7691 (longlong_t)vd->vdev_id, 7692 (longlong_t)vcsec->vcsec_entryid, 7693 (longlong_t)vcsec->vcsec_num_entries); 7694 } 7695 vcsec->vcsec_entryid++; 7696 7697 /* 7698 * See comment in checkpoint_sm_exclude_entry_cb() 7699 */ 7700 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7701 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7702 7703 /* 7704 * The entries in the vdev_checkpoint_sm should be marked as 7705 * allocated in the checkpointed state of the pool, therefore 7706 * their respective ms_allocateable trees should not contain them. 7707 */ 7708 mutex_enter(&ms->ms_lock); 7709 range_tree_verify_not_present(ms->ms_allocatable, 7710 sme->sme_offset, sme->sme_run); 7711 mutex_exit(&ms->ms_lock); 7712 7713 return (0); 7714 } 7715 7716 /* 7717 * Verify that all segments in the vdev_checkpoint_sm are allocated 7718 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7719 * ms_allocatable). 7720 * 7721 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7722 * each vdev in the current state of the pool to the metaslab space maps 7723 * (ms_sm) of the checkpointed state of the pool. 7724 * 7725 * Note that the function changes the state of the ms_allocatable 7726 * trees of the current spa_t. The entries of these ms_allocatable 7727 * trees are cleared out and then repopulated from with the free 7728 * entries of their respective ms_sm space maps. 7729 */ 7730 static void 7731 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7732 { 7733 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7734 vdev_t *current_rvd = current->spa_root_vdev; 7735 7736 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7737 7738 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7739 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7740 vdev_t *current_vd = current_rvd->vdev_child[c]; 7741 7742 space_map_t *checkpoint_sm = NULL; 7743 uint64_t checkpoint_sm_obj; 7744 7745 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7746 /* 7747 * Since we don't allow device removal in a pool 7748 * that has a checkpoint, we expect that all removed 7749 * vdevs were removed from the pool before the 7750 * checkpoint. 7751 */ 7752 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7753 continue; 7754 } 7755 7756 /* 7757 * If the checkpoint space map doesn't exist, then nothing 7758 * here is checkpointed so there's nothing to verify. 7759 */ 7760 if (current_vd->vdev_top_zap == 0 || 7761 zap_contains(spa_meta_objset(current), 7762 current_vd->vdev_top_zap, 7763 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7764 continue; 7765 7766 VERIFY0(zap_lookup(spa_meta_objset(current), 7767 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7768 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7769 7770 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7771 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7772 current_vd->vdev_ashift)); 7773 7774 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7775 vcsec.vcsec_vd = ckpoint_vd; 7776 vcsec.vcsec_entryid = 0; 7777 vcsec.vcsec_num_entries = 7778 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7779 VERIFY0(space_map_iterate(checkpoint_sm, 7780 space_map_length(checkpoint_sm), 7781 verify_checkpoint_sm_entry_cb, &vcsec)); 7782 if (dump_opt['m'] > 3) 7783 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7784 space_map_close(checkpoint_sm); 7785 } 7786 7787 /* 7788 * If we've added vdevs since we took the checkpoint, ensure 7789 * that their checkpoint space maps are empty. 7790 */ 7791 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7792 for (uint64_t c = ckpoint_rvd->vdev_children; 7793 c < current_rvd->vdev_children; c++) { 7794 vdev_t *current_vd = current_rvd->vdev_child[c]; 7795 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7796 } 7797 } 7798 7799 /* for cleaner progress output */ 7800 (void) fprintf(stderr, "\n"); 7801 } 7802 7803 /* 7804 * Verifies that all space that's allocated in the checkpoint is 7805 * still allocated in the current version, by checking that everything 7806 * in checkpoint's ms_allocatable (which is actually allocated, not 7807 * allocatable/free) is not present in current's ms_allocatable. 7808 * 7809 * Note that the function changes the state of the ms_allocatable 7810 * trees of both spas when called. The entries of all ms_allocatable 7811 * trees are cleared out and then repopulated from their respective 7812 * ms_sm space maps. In the checkpointed state we load the allocated 7813 * entries, and in the current state we load the free entries. 7814 */ 7815 static void 7816 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7817 { 7818 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7819 vdev_t *current_rvd = current->spa_root_vdev; 7820 7821 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7822 load_concrete_ms_allocatable_trees(current, SM_FREE); 7823 7824 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7825 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7826 vdev_t *current_vd = current_rvd->vdev_child[i]; 7827 7828 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7829 /* 7830 * See comment in verify_checkpoint_vdev_spacemaps() 7831 */ 7832 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7833 continue; 7834 } 7835 7836 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7837 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7838 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7839 7840 (void) fprintf(stderr, 7841 "\rverifying vdev %llu of %llu, " 7842 "metaslab %llu of %llu ...", 7843 (longlong_t)current_vd->vdev_id, 7844 (longlong_t)current_rvd->vdev_children, 7845 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7846 (longlong_t)current_vd->vdev_ms_count); 7847 7848 /* 7849 * We walk through the ms_allocatable trees that 7850 * are loaded with the allocated blocks from the 7851 * ms_sm spacemaps of the checkpoint. For each 7852 * one of these ranges we ensure that none of them 7853 * exists in the ms_allocatable trees of the 7854 * current state which are loaded with the ranges 7855 * that are currently free. 7856 * 7857 * This way we ensure that none of the blocks that 7858 * are part of the checkpoint were freed by mistake. 7859 */ 7860 range_tree_walk(ckpoint_msp->ms_allocatable, 7861 (range_tree_func_t *)range_tree_verify_not_present, 7862 current_msp->ms_allocatable); 7863 } 7864 } 7865 7866 /* for cleaner progress output */ 7867 (void) fprintf(stderr, "\n"); 7868 } 7869 7870 static void 7871 verify_checkpoint_blocks(spa_t *spa) 7872 { 7873 ASSERT(!dump_opt['L']); 7874 7875 spa_t *checkpoint_spa; 7876 char *checkpoint_pool; 7877 int error = 0; 7878 7879 /* 7880 * We import the checkpointed state of the pool (under a different 7881 * name) so we can do verification on it against the current state 7882 * of the pool. 7883 */ 7884 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7885 NULL); 7886 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7887 7888 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7889 if (error != 0) { 7890 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7891 "error %d\n", checkpoint_pool, error); 7892 } 7893 7894 /* 7895 * Ensure that ranges in the checkpoint space maps of each vdev 7896 * are allocated according to the checkpointed state's metaslab 7897 * space maps. 7898 */ 7899 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7900 7901 /* 7902 * Ensure that allocated ranges in the checkpoint's metaslab 7903 * space maps remain allocated in the metaslab space maps of 7904 * the current state. 7905 */ 7906 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7907 7908 /* 7909 * Once we are done, we get rid of the checkpointed state. 7910 */ 7911 spa_close(checkpoint_spa, FTAG); 7912 free(checkpoint_pool); 7913 } 7914 7915 static void 7916 dump_leftover_checkpoint_blocks(spa_t *spa) 7917 { 7918 vdev_t *rvd = spa->spa_root_vdev; 7919 7920 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7921 vdev_t *vd = rvd->vdev_child[i]; 7922 7923 space_map_t *checkpoint_sm = NULL; 7924 uint64_t checkpoint_sm_obj; 7925 7926 if (vd->vdev_top_zap == 0) 7927 continue; 7928 7929 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7930 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7931 continue; 7932 7933 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7934 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7935 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7936 7937 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7938 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7939 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7940 space_map_close(checkpoint_sm); 7941 } 7942 } 7943 7944 static int 7945 verify_checkpoint(spa_t *spa) 7946 { 7947 uberblock_t checkpoint; 7948 int error; 7949 7950 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7951 return (0); 7952 7953 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7954 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7955 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7956 7957 if (error == ENOENT && !dump_opt['L']) { 7958 /* 7959 * If the feature is active but the uberblock is missing 7960 * then we must be in the middle of discarding the 7961 * checkpoint. 7962 */ 7963 (void) printf("\nPartially discarded checkpoint " 7964 "state found:\n"); 7965 if (dump_opt['m'] > 3) 7966 dump_leftover_checkpoint_blocks(spa); 7967 return (0); 7968 } else if (error != 0) { 7969 (void) printf("lookup error %d when looking for " 7970 "checkpointed uberblock in MOS\n", error); 7971 return (error); 7972 } 7973 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7974 7975 if (checkpoint.ub_checkpoint_txg == 0) { 7976 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7977 "uberblock\n"); 7978 error = 3; 7979 } 7980 7981 if (error == 0 && !dump_opt['L']) 7982 verify_checkpoint_blocks(spa); 7983 7984 return (error); 7985 } 7986 7987 static void 7988 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7989 { 7990 (void) arg; 7991 for (uint64_t i = start; i < size; i++) { 7992 (void) printf("MOS object %llu referenced but not allocated\n", 7993 (u_longlong_t)i); 7994 } 7995 } 7996 7997 static void 7998 mos_obj_refd(uint64_t obj) 7999 { 8000 if (obj != 0 && mos_refd_objs != NULL) 8001 range_tree_add(mos_refd_objs, obj, 1); 8002 } 8003 8004 /* 8005 * Call on a MOS object that may already have been referenced. 8006 */ 8007 static void 8008 mos_obj_refd_multiple(uint64_t obj) 8009 { 8010 if (obj != 0 && mos_refd_objs != NULL && 8011 !range_tree_contains(mos_refd_objs, obj, 1)) 8012 range_tree_add(mos_refd_objs, obj, 1); 8013 } 8014 8015 static void 8016 mos_leak_vdev_top_zap(vdev_t *vd) 8017 { 8018 uint64_t ms_flush_data_obj; 8019 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8020 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8021 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8022 if (error == ENOENT) 8023 return; 8024 ASSERT0(error); 8025 8026 mos_obj_refd(ms_flush_data_obj); 8027 } 8028 8029 static void 8030 mos_leak_vdev(vdev_t *vd) 8031 { 8032 mos_obj_refd(vd->vdev_dtl_object); 8033 mos_obj_refd(vd->vdev_ms_array); 8034 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8035 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8036 mos_obj_refd(vd->vdev_leaf_zap); 8037 if (vd->vdev_checkpoint_sm != NULL) 8038 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8039 if (vd->vdev_indirect_mapping != NULL) { 8040 mos_obj_refd(vd->vdev_indirect_mapping-> 8041 vim_phys->vimp_counts_object); 8042 } 8043 if (vd->vdev_obsolete_sm != NULL) 8044 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8045 8046 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8047 metaslab_t *ms = vd->vdev_ms[m]; 8048 mos_obj_refd(space_map_object(ms->ms_sm)); 8049 } 8050 8051 if (vd->vdev_root_zap != 0) 8052 mos_obj_refd(vd->vdev_root_zap); 8053 8054 if (vd->vdev_top_zap != 0) { 8055 mos_obj_refd(vd->vdev_top_zap); 8056 mos_leak_vdev_top_zap(vd); 8057 } 8058 8059 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8060 mos_leak_vdev(vd->vdev_child[c]); 8061 } 8062 } 8063 8064 static void 8065 mos_leak_log_spacemaps(spa_t *spa) 8066 { 8067 uint64_t spacemap_zap; 8068 int error = zap_lookup(spa_meta_objset(spa), 8069 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8070 sizeof (spacemap_zap), 1, &spacemap_zap); 8071 if (error == ENOENT) 8072 return; 8073 ASSERT0(error); 8074 8075 mos_obj_refd(spacemap_zap); 8076 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8077 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8078 mos_obj_refd(sls->sls_sm_obj); 8079 } 8080 8081 static void 8082 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8083 { 8084 zap_cursor_t zc; 8085 zap_attribute_t za; 8086 for (zap_cursor_init(&zc, mos, errlog); 8087 zap_cursor_retrieve(&zc, &za) == 0; 8088 zap_cursor_advance(&zc)) { 8089 mos_obj_refd(za.za_first_integer); 8090 } 8091 zap_cursor_fini(&zc); 8092 } 8093 8094 static int 8095 dump_mos_leaks(spa_t *spa) 8096 { 8097 int rv = 0; 8098 objset_t *mos = spa->spa_meta_objset; 8099 dsl_pool_t *dp = spa->spa_dsl_pool; 8100 8101 /* Visit and mark all referenced objects in the MOS */ 8102 8103 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8104 mos_obj_refd(spa->spa_pool_props_object); 8105 mos_obj_refd(spa->spa_config_object); 8106 mos_obj_refd(spa->spa_ddt_stat_object); 8107 mos_obj_refd(spa->spa_feat_desc_obj); 8108 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8109 mos_obj_refd(spa->spa_feat_for_read_obj); 8110 mos_obj_refd(spa->spa_feat_for_write_obj); 8111 mos_obj_refd(spa->spa_history); 8112 mos_obj_refd(spa->spa_errlog_last); 8113 mos_obj_refd(spa->spa_errlog_scrub); 8114 8115 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8116 errorlog_count_refd(mos, spa->spa_errlog_last); 8117 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8118 } 8119 8120 mos_obj_refd(spa->spa_all_vdev_zaps); 8121 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8122 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8123 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8124 bpobj_count_refd(&spa->spa_deferred_bpobj); 8125 mos_obj_refd(dp->dp_empty_bpobj); 8126 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8127 bpobj_count_refd(&dp->dp_free_bpobj); 8128 mos_obj_refd(spa->spa_l2cache.sav_object); 8129 mos_obj_refd(spa->spa_spares.sav_object); 8130 8131 if (spa->spa_syncing_log_sm != NULL) 8132 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8133 mos_leak_log_spacemaps(spa); 8134 8135 mos_obj_refd(spa->spa_condensing_indirect_phys. 8136 scip_next_mapping_object); 8137 mos_obj_refd(spa->spa_condensing_indirect_phys. 8138 scip_prev_obsolete_sm_object); 8139 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8140 vdev_indirect_mapping_t *vim = 8141 vdev_indirect_mapping_open(mos, 8142 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8143 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8144 vdev_indirect_mapping_close(vim); 8145 } 8146 deleted_livelists_dump_mos(spa); 8147 8148 if (dp->dp_origin_snap != NULL) { 8149 dsl_dataset_t *ds; 8150 8151 dsl_pool_config_enter(dp, FTAG); 8152 VERIFY0(dsl_dataset_hold_obj(dp, 8153 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8154 FTAG, &ds)); 8155 count_ds_mos_objects(ds); 8156 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8157 dsl_dataset_rele(ds, FTAG); 8158 dsl_pool_config_exit(dp, FTAG); 8159 8160 count_ds_mos_objects(dp->dp_origin_snap); 8161 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8162 } 8163 count_dir_mos_objects(dp->dp_mos_dir); 8164 if (dp->dp_free_dir != NULL) 8165 count_dir_mos_objects(dp->dp_free_dir); 8166 if (dp->dp_leak_dir != NULL) 8167 count_dir_mos_objects(dp->dp_leak_dir); 8168 8169 mos_leak_vdev(spa->spa_root_vdev); 8170 8171 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8172 ddt_t *ddt = spa->spa_ddt[c]; 8173 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8174 continue; 8175 8176 /* DDT store objects */ 8177 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8178 for (ddt_class_t class = 0; class < DDT_CLASSES; 8179 class++) { 8180 mos_obj_refd(ddt->ddt_object[type][class]); 8181 } 8182 } 8183 8184 /* FDT container */ 8185 if (ddt->ddt_version == DDT_VERSION_FDT) 8186 mos_obj_refd(ddt->ddt_dir_object); 8187 8188 /* FDT log objects */ 8189 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8190 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8191 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8192 } 8193 } 8194 8195 if (spa->spa_brt != NULL) { 8196 brt_t *brt = spa->spa_brt; 8197 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 8198 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 8199 if (brtvd != NULL && brtvd->bv_initiated) { 8200 mos_obj_refd(brtvd->bv_mos_brtvdev); 8201 mos_obj_refd(brtvd->bv_mos_entries); 8202 } 8203 } 8204 } 8205 8206 /* 8207 * Visit all allocated objects and make sure they are referenced. 8208 */ 8209 uint64_t object = 0; 8210 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8211 if (range_tree_contains(mos_refd_objs, object, 1)) { 8212 range_tree_remove(mos_refd_objs, object, 1); 8213 } else { 8214 dmu_object_info_t doi; 8215 const char *name; 8216 VERIFY0(dmu_object_info(mos, object, &doi)); 8217 if (doi.doi_type & DMU_OT_NEWTYPE) { 8218 dmu_object_byteswap_t bswap = 8219 DMU_OT_BYTESWAP(doi.doi_type); 8220 name = dmu_ot_byteswap[bswap].ob_name; 8221 } else { 8222 name = dmu_ot[doi.doi_type].ot_name; 8223 } 8224 8225 (void) printf("MOS object %llu (%s) leaked\n", 8226 (u_longlong_t)object, name); 8227 rv = 2; 8228 } 8229 } 8230 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8231 if (!range_tree_is_empty(mos_refd_objs)) 8232 rv = 2; 8233 range_tree_vacate(mos_refd_objs, NULL, NULL); 8234 range_tree_destroy(mos_refd_objs); 8235 return (rv); 8236 } 8237 8238 typedef struct log_sm_obsolete_stats_arg { 8239 uint64_t lsos_current_txg; 8240 8241 uint64_t lsos_total_entries; 8242 uint64_t lsos_valid_entries; 8243 8244 uint64_t lsos_sm_entries; 8245 uint64_t lsos_valid_sm_entries; 8246 } log_sm_obsolete_stats_arg_t; 8247 8248 static int 8249 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8250 uint64_t txg, void *arg) 8251 { 8252 log_sm_obsolete_stats_arg_t *lsos = arg; 8253 8254 uint64_t offset = sme->sme_offset; 8255 uint64_t vdev_id = sme->sme_vdev; 8256 8257 if (lsos->lsos_current_txg == 0) { 8258 /* this is the first log */ 8259 lsos->lsos_current_txg = txg; 8260 } else if (lsos->lsos_current_txg < txg) { 8261 /* we just changed log - print stats and reset */ 8262 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8263 (u_longlong_t)lsos->lsos_valid_sm_entries, 8264 (u_longlong_t)lsos->lsos_sm_entries, 8265 (u_longlong_t)lsos->lsos_current_txg); 8266 lsos->lsos_valid_sm_entries = 0; 8267 lsos->lsos_sm_entries = 0; 8268 lsos->lsos_current_txg = txg; 8269 } 8270 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8271 8272 lsos->lsos_sm_entries++; 8273 lsos->lsos_total_entries++; 8274 8275 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8276 if (!vdev_is_concrete(vd)) 8277 return (0); 8278 8279 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8280 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8281 8282 if (txg < metaslab_unflushed_txg(ms)) 8283 return (0); 8284 lsos->lsos_valid_sm_entries++; 8285 lsos->lsos_valid_entries++; 8286 return (0); 8287 } 8288 8289 static void 8290 dump_log_spacemap_obsolete_stats(spa_t *spa) 8291 { 8292 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8293 return; 8294 8295 log_sm_obsolete_stats_arg_t lsos = {0}; 8296 8297 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8298 8299 iterate_through_spacemap_logs(spa, 8300 log_spacemap_obsolete_stats_cb, &lsos); 8301 8302 /* print stats for latest log */ 8303 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8304 (u_longlong_t)lsos.lsos_valid_sm_entries, 8305 (u_longlong_t)lsos.lsos_sm_entries, 8306 (u_longlong_t)lsos.lsos_current_txg); 8307 8308 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8309 (u_longlong_t)lsos.lsos_valid_entries, 8310 (u_longlong_t)lsos.lsos_total_entries); 8311 } 8312 8313 static void 8314 dump_zpool(spa_t *spa) 8315 { 8316 dsl_pool_t *dp = spa_get_dsl(spa); 8317 int rc = 0; 8318 8319 if (dump_opt['y']) { 8320 livelist_metaslab_validate(spa); 8321 } 8322 8323 if (dump_opt['S']) { 8324 dump_simulated_ddt(spa); 8325 return; 8326 } 8327 8328 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8329 (void) printf("\nCached configuration:\n"); 8330 dump_nvlist(spa->spa_config, 8); 8331 } 8332 8333 if (dump_opt['C']) 8334 dump_config(spa); 8335 8336 if (dump_opt['u']) 8337 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8338 8339 if (dump_opt['D']) 8340 dump_all_ddts(spa); 8341 8342 if (dump_opt['T']) 8343 dump_brt(spa); 8344 8345 if (dump_opt['d'] > 2 || dump_opt['m']) 8346 dump_metaslabs(spa); 8347 if (dump_opt['M']) 8348 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8349 if (dump_opt['d'] > 2 || dump_opt['m']) { 8350 dump_log_spacemaps(spa); 8351 dump_log_spacemap_obsolete_stats(spa); 8352 } 8353 8354 if (dump_opt['d'] || dump_opt['i']) { 8355 spa_feature_t f; 8356 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8357 0); 8358 dump_objset(dp->dp_meta_objset); 8359 8360 if (dump_opt['d'] >= 3) { 8361 dsl_pool_t *dp = spa->spa_dsl_pool; 8362 dump_full_bpobj(&spa->spa_deferred_bpobj, 8363 "Deferred frees", 0); 8364 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8365 dump_full_bpobj(&dp->dp_free_bpobj, 8366 "Pool snapshot frees", 0); 8367 } 8368 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8369 ASSERT(spa_feature_is_enabled(spa, 8370 SPA_FEATURE_DEVICE_REMOVAL)); 8371 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8372 "Pool obsolete blocks", 0); 8373 } 8374 8375 if (spa_feature_is_active(spa, 8376 SPA_FEATURE_ASYNC_DESTROY)) { 8377 dump_bptree(spa->spa_meta_objset, 8378 dp->dp_bptree_obj, 8379 "Pool dataset frees"); 8380 } 8381 dump_dtl(spa->spa_root_vdev, 0); 8382 } 8383 8384 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8385 global_feature_count[f] = UINT64_MAX; 8386 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8387 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8388 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8389 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8390 8391 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8392 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8393 8394 if (rc == 0 && !dump_opt['L']) 8395 rc = dump_mos_leaks(spa); 8396 8397 for (f = 0; f < SPA_FEATURES; f++) { 8398 uint64_t refcount; 8399 8400 uint64_t *arr; 8401 if (!(spa_feature_table[f].fi_flags & 8402 ZFEATURE_FLAG_PER_DATASET)) { 8403 if (global_feature_count[f] == UINT64_MAX) 8404 continue; 8405 if (!spa_feature_is_enabled(spa, f)) { 8406 ASSERT0(global_feature_count[f]); 8407 continue; 8408 } 8409 arr = global_feature_count; 8410 } else { 8411 if (!spa_feature_is_enabled(spa, f)) { 8412 ASSERT0(dataset_feature_count[f]); 8413 continue; 8414 } 8415 arr = dataset_feature_count; 8416 } 8417 if (feature_get_refcount(spa, &spa_feature_table[f], 8418 &refcount) == ENOTSUP) 8419 continue; 8420 if (arr[f] != refcount) { 8421 (void) printf("%s feature refcount mismatch: " 8422 "%lld consumers != %lld refcount\n", 8423 spa_feature_table[f].fi_uname, 8424 (longlong_t)arr[f], (longlong_t)refcount); 8425 rc = 2; 8426 } else { 8427 (void) printf("Verified %s feature refcount " 8428 "of %llu is correct\n", 8429 spa_feature_table[f].fi_uname, 8430 (longlong_t)refcount); 8431 } 8432 } 8433 8434 if (rc == 0) 8435 rc = verify_device_removal_feature_counts(spa); 8436 } 8437 8438 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8439 rc = dump_block_stats(spa); 8440 8441 if (rc == 0) 8442 rc = verify_spacemap_refcounts(spa); 8443 8444 if (dump_opt['s']) 8445 show_pool_stats(spa); 8446 8447 if (dump_opt['h']) 8448 dump_history(spa); 8449 8450 if (rc == 0) 8451 rc = verify_checkpoint(spa); 8452 8453 if (rc != 0) { 8454 dump_debug_buffer(); 8455 zdb_exit(rc); 8456 } 8457 } 8458 8459 #define ZDB_FLAG_CHECKSUM 0x0001 8460 #define ZDB_FLAG_DECOMPRESS 0x0002 8461 #define ZDB_FLAG_BSWAP 0x0004 8462 #define ZDB_FLAG_GBH 0x0008 8463 #define ZDB_FLAG_INDIRECT 0x0010 8464 #define ZDB_FLAG_RAW 0x0020 8465 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8466 #define ZDB_FLAG_VERBOSE 0x0080 8467 8468 static int flagbits[256]; 8469 static char flagbitstr[16]; 8470 8471 static void 8472 zdb_print_blkptr(const blkptr_t *bp, int flags) 8473 { 8474 char blkbuf[BP_SPRINTF_LEN]; 8475 8476 if (flags & ZDB_FLAG_BSWAP) 8477 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8478 8479 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8480 (void) printf("%s\n", blkbuf); 8481 } 8482 8483 static void 8484 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8485 { 8486 int i; 8487 8488 for (i = 0; i < nbps; i++) 8489 zdb_print_blkptr(&bp[i], flags); 8490 } 8491 8492 static void 8493 zdb_dump_gbh(void *buf, int flags) 8494 { 8495 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8496 } 8497 8498 static void 8499 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8500 { 8501 if (flags & ZDB_FLAG_BSWAP) 8502 byteswap_uint64_array(buf, size); 8503 VERIFY(write(fileno(stdout), buf, size) == size); 8504 } 8505 8506 static void 8507 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8508 { 8509 uint64_t *d = (uint64_t *)buf; 8510 unsigned nwords = size / sizeof (uint64_t); 8511 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8512 unsigned i, j; 8513 const char *hdr; 8514 char *c; 8515 8516 8517 if (do_bswap) 8518 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8519 else 8520 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8521 8522 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8523 8524 #ifdef _ZFS_LITTLE_ENDIAN 8525 /* correct the endianness */ 8526 do_bswap = !do_bswap; 8527 #endif 8528 for (i = 0; i < nwords; i += 2) { 8529 (void) printf("%06llx: %016llx %016llx ", 8530 (u_longlong_t)(i * sizeof (uint64_t)), 8531 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8532 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8533 8534 c = (char *)&d[i]; 8535 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8536 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8537 (void) printf("\n"); 8538 } 8539 } 8540 8541 /* 8542 * There are two acceptable formats: 8543 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8544 * child[.child]* - For example: 0.1.1 8545 * 8546 * The second form can be used to specify arbitrary vdevs anywhere 8547 * in the hierarchy. For example, in a pool with a mirror of 8548 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8549 */ 8550 static vdev_t * 8551 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8552 { 8553 char *s, *p, *q; 8554 unsigned i; 8555 8556 if (vdev == NULL) 8557 return (NULL); 8558 8559 /* First, assume the x.x.x.x format */ 8560 i = strtoul(path, &s, 10); 8561 if (s == path || (s && *s != '.' && *s != '\0')) 8562 goto name; 8563 if (i >= vdev->vdev_children) 8564 return (NULL); 8565 8566 vdev = vdev->vdev_child[i]; 8567 if (s && *s == '\0') 8568 return (vdev); 8569 return (zdb_vdev_lookup(vdev, s+1)); 8570 8571 name: 8572 for (i = 0; i < vdev->vdev_children; i++) { 8573 vdev_t *vc = vdev->vdev_child[i]; 8574 8575 if (vc->vdev_path == NULL) { 8576 vc = zdb_vdev_lookup(vc, path); 8577 if (vc == NULL) 8578 continue; 8579 else 8580 return (vc); 8581 } 8582 8583 p = strrchr(vc->vdev_path, '/'); 8584 p = p ? p + 1 : vc->vdev_path; 8585 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8586 8587 if (strcmp(vc->vdev_path, path) == 0) 8588 return (vc); 8589 if (strcmp(p, path) == 0) 8590 return (vc); 8591 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8592 return (vc); 8593 } 8594 8595 return (NULL); 8596 } 8597 8598 static int 8599 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8600 { 8601 dsl_dataset_t *ds; 8602 8603 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8604 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8605 NULL, &ds); 8606 if (error != 0) { 8607 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8608 (u_longlong_t)objset_id, strerror(error)); 8609 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8610 return (error); 8611 } 8612 dsl_dataset_name(ds, outstr); 8613 dsl_dataset_rele(ds, NULL); 8614 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8615 return (0); 8616 } 8617 8618 static boolean_t 8619 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8620 { 8621 char *s0, *s1, *tmp = NULL; 8622 8623 if (sizes == NULL) 8624 return (B_FALSE); 8625 8626 s0 = strtok_r(sizes, "/", &tmp); 8627 if (s0 == NULL) 8628 return (B_FALSE); 8629 s1 = strtok_r(NULL, "/", &tmp); 8630 *lsize = strtoull(s0, NULL, 16); 8631 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8632 return (*lsize >= *psize && *psize > 0); 8633 } 8634 8635 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8636 8637 static boolean_t 8638 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8639 int flags, int cfunc, void *lbuf, void *lbuf2) 8640 { 8641 if (flags & ZDB_FLAG_VERBOSE) { 8642 (void) fprintf(stderr, 8643 "Trying %05llx -> %05llx (%s)\n", 8644 (u_longlong_t)psize, 8645 (u_longlong_t)lsize, 8646 zio_compress_table[cfunc].ci_name); 8647 } 8648 8649 /* 8650 * We set lbuf to all zeros and lbuf2 to all 8651 * ones, then decompress to both buffers and 8652 * compare their contents. This way we can 8653 * know if decompression filled exactly to 8654 * lsize or if it left some bytes unwritten. 8655 */ 8656 8657 memset(lbuf, 0x00, lsize); 8658 memset(lbuf2, 0xff, lsize); 8659 8660 abd_t labd, labd2; 8661 abd_get_from_buf_struct(&labd, lbuf, lsize); 8662 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8663 8664 boolean_t ret = B_FALSE; 8665 if (zio_decompress_data(cfunc, pabd, 8666 &labd, psize, lsize, NULL) == 0 && 8667 zio_decompress_data(cfunc, pabd, 8668 &labd2, psize, lsize, NULL) == 0 && 8669 memcmp(lbuf, lbuf2, lsize) == 0) 8670 ret = B_TRUE; 8671 8672 abd_free(&labd2); 8673 abd_free(&labd); 8674 8675 return (ret); 8676 } 8677 8678 static uint64_t 8679 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8680 uint64_t psize, int flags) 8681 { 8682 (void) buf; 8683 uint64_t orig_lsize = lsize; 8684 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8685 boolean_t found = B_FALSE; 8686 /* 8687 * We don't know how the data was compressed, so just try 8688 * every decompress function at every inflated blocksize. 8689 */ 8690 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8691 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8692 int *cfuncp = cfuncs; 8693 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8694 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8695 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8696 ZIO_COMPRESS_MASK(ZLE); 8697 *cfuncp++ = ZIO_COMPRESS_LZ4; 8698 *cfuncp++ = ZIO_COMPRESS_LZJB; 8699 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8700 /* 8701 * Every gzip level has the same decompressor, no need to 8702 * run it 9 times per bruteforce attempt. 8703 */ 8704 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8705 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8706 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8707 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8708 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8709 if (((1ULL << c) & mask) == 0) 8710 *cfuncp++ = c; 8711 8712 /* 8713 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8714 * could take a while and we should let the user know 8715 * we are not stuck. On the other hand, printing progress 8716 * info gets old after a while. User can specify 'v' flag 8717 * to see the progression. 8718 */ 8719 if (lsize == psize) 8720 lsize += SPA_MINBLOCKSIZE; 8721 else 8722 maxlsize = lsize; 8723 8724 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8725 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8726 if (try_decompress_block(pabd, lsize, psize, flags, 8727 *cfuncp, lbuf, lbuf2)) { 8728 found = B_TRUE; 8729 break; 8730 } 8731 } 8732 if (*cfuncp != 0) 8733 break; 8734 } 8735 if (!found && tryzle) { 8736 for (lsize = orig_lsize; lsize <= maxlsize; 8737 lsize += SPA_MINBLOCKSIZE) { 8738 if (try_decompress_block(pabd, lsize, psize, flags, 8739 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8740 *cfuncp = ZIO_COMPRESS_ZLE; 8741 found = B_TRUE; 8742 break; 8743 } 8744 } 8745 } 8746 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8747 8748 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8749 printf("\nZLE decompression was selected. If you " 8750 "suspect the results are wrong,\ntry avoiding ZLE " 8751 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8752 } 8753 8754 return (lsize > maxlsize ? -1 : lsize); 8755 } 8756 8757 /* 8758 * Read a block from a pool and print it out. The syntax of the 8759 * block descriptor is: 8760 * 8761 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8762 * 8763 * pool - The name of the pool you wish to read from 8764 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8765 * offset - offset, in hex, in bytes 8766 * size - Amount of data to read, in hex, in bytes 8767 * flags - A string of characters specifying options 8768 * b: Decode a blkptr at given offset within block 8769 * c: Calculate and display checksums 8770 * d: Decompress data before dumping 8771 * e: Byteswap data before dumping 8772 * g: Display data as a gang block header 8773 * i: Display as an indirect block 8774 * r: Dump raw data to stdout 8775 * v: Verbose 8776 * 8777 */ 8778 static void 8779 zdb_read_block(char *thing, spa_t *spa) 8780 { 8781 blkptr_t blk, *bp = &blk; 8782 dva_t *dva = bp->blk_dva; 8783 int flags = 0; 8784 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8785 zio_t *zio; 8786 vdev_t *vd; 8787 abd_t *pabd; 8788 void *lbuf, *buf; 8789 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8790 const char *vdev, *errmsg = NULL; 8791 int i, error; 8792 boolean_t borrowed = B_FALSE, found = B_FALSE; 8793 8794 dup = strdup(thing); 8795 s = strtok_r(dup, ":", &tmp); 8796 vdev = s ?: ""; 8797 s = strtok_r(NULL, ":", &tmp); 8798 offset = strtoull(s ? s : "", NULL, 16); 8799 sizes = strtok_r(NULL, ":", &tmp); 8800 s = strtok_r(NULL, ":", &tmp); 8801 flagstr = strdup(s ?: ""); 8802 8803 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8804 errmsg = "invalid size(s)"; 8805 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8806 errmsg = "size must be a multiple of sector size"; 8807 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8808 errmsg = "offset must be a multiple of sector size"; 8809 if (errmsg) { 8810 (void) printf("Invalid block specifier: %s - %s\n", 8811 thing, errmsg); 8812 goto done; 8813 } 8814 8815 tmp = NULL; 8816 for (s = strtok_r(flagstr, ":", &tmp); 8817 s != NULL; 8818 s = strtok_r(NULL, ":", &tmp)) { 8819 for (i = 0; i < strlen(flagstr); i++) { 8820 int bit = flagbits[(uchar_t)flagstr[i]]; 8821 8822 if (bit == 0) { 8823 (void) printf("***Ignoring flag: %c\n", 8824 (uchar_t)flagstr[i]); 8825 continue; 8826 } 8827 found = B_TRUE; 8828 flags |= bit; 8829 8830 p = &flagstr[i + 1]; 8831 if (*p != ':' && *p != '\0') { 8832 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8833 char *end, offstr[8] = { 0 }; 8834 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8835 (nextbit == 0)) { 8836 /* look ahead to isolate the offset */ 8837 while (nextbit == 0 && 8838 strchr(flagbitstr, *p) == NULL) { 8839 offstr[j] = *p; 8840 j++; 8841 if (i + j > strlen(flagstr)) 8842 break; 8843 p++; 8844 nextbit = flagbits[(uchar_t)*p]; 8845 } 8846 blkptr_offset = strtoull(offstr, &end, 8847 16); 8848 i += j; 8849 } else if (nextbit == 0) { 8850 (void) printf("***Ignoring flag arg:" 8851 " '%c'\n", (uchar_t)*p); 8852 } 8853 } 8854 } 8855 } 8856 if (blkptr_offset % sizeof (blkptr_t)) { 8857 printf("Block pointer offset 0x%llx " 8858 "must be divisible by 0x%x\n", 8859 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8860 goto done; 8861 } 8862 if (found == B_FALSE && strlen(flagstr) > 0) { 8863 printf("Invalid flag arg: '%s'\n", flagstr); 8864 goto done; 8865 } 8866 8867 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8868 if (vd == NULL) { 8869 (void) printf("***Invalid vdev: %s\n", vdev); 8870 goto done; 8871 } else { 8872 if (vd->vdev_path) 8873 (void) fprintf(stderr, "Found vdev: %s\n", 8874 vd->vdev_path); 8875 else 8876 (void) fprintf(stderr, "Found vdev type: %s\n", 8877 vd->vdev_ops->vdev_op_type); 8878 } 8879 8880 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8881 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8882 8883 BP_ZERO(bp); 8884 8885 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8886 DVA_SET_OFFSET(&dva[0], offset); 8887 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8888 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8889 8890 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8891 8892 BP_SET_LSIZE(bp, lsize); 8893 BP_SET_PSIZE(bp, psize); 8894 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8895 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8896 BP_SET_TYPE(bp, DMU_OT_NONE); 8897 BP_SET_LEVEL(bp, 0); 8898 BP_SET_DEDUP(bp, 0); 8899 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8900 8901 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8902 zio = zio_root(spa, NULL, NULL, 0); 8903 8904 if (vd == vd->vdev_top) { 8905 /* 8906 * Treat this as a normal block read. 8907 */ 8908 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8909 ZIO_PRIORITY_SYNC_READ, 8910 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8911 } else { 8912 /* 8913 * Treat this as a vdev child I/O. 8914 */ 8915 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8916 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8917 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8918 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8919 NULL, NULL)); 8920 } 8921 8922 error = zio_wait(zio); 8923 spa_config_exit(spa, SCL_STATE, FTAG); 8924 8925 if (error) { 8926 (void) printf("Read of %s failed, error: %d\n", thing, error); 8927 goto out; 8928 } 8929 8930 uint64_t orig_lsize = lsize; 8931 buf = lbuf; 8932 if (flags & ZDB_FLAG_DECOMPRESS) { 8933 lsize = zdb_decompress_block(pabd, buf, lbuf, 8934 lsize, psize, flags); 8935 if (lsize == -1) { 8936 (void) printf("Decompress of %s failed\n", thing); 8937 goto out; 8938 } 8939 } else { 8940 buf = abd_borrow_buf_copy(pabd, lsize); 8941 borrowed = B_TRUE; 8942 } 8943 /* 8944 * Try to detect invalid block pointer. If invalid, try 8945 * decompressing. 8946 */ 8947 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8948 !(flags & ZDB_FLAG_DECOMPRESS)) { 8949 const blkptr_t *b = (const blkptr_t *)(void *) 8950 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8951 if (zfs_blkptr_verify(spa, b, 8952 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8953 abd_return_buf_copy(pabd, buf, lsize); 8954 borrowed = B_FALSE; 8955 buf = lbuf; 8956 lsize = zdb_decompress_block(pabd, buf, 8957 lbuf, lsize, psize, flags); 8958 b = (const blkptr_t *)(void *) 8959 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8960 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8961 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8962 printf("invalid block pointer at this DVA\n"); 8963 goto out; 8964 } 8965 } 8966 } 8967 8968 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8969 zdb_print_blkptr((blkptr_t *)(void *) 8970 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8971 else if (flags & ZDB_FLAG_RAW) 8972 zdb_dump_block_raw(buf, lsize, flags); 8973 else if (flags & ZDB_FLAG_INDIRECT) 8974 zdb_dump_indirect((blkptr_t *)buf, 8975 orig_lsize / sizeof (blkptr_t), flags); 8976 else if (flags & ZDB_FLAG_GBH) 8977 zdb_dump_gbh(buf, flags); 8978 else 8979 zdb_dump_block(thing, buf, lsize, flags); 8980 8981 /* 8982 * If :c was specified, iterate through the checksum table to 8983 * calculate and display each checksum for our specified 8984 * DVA and length. 8985 */ 8986 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8987 !(flags & ZDB_FLAG_GBH)) { 8988 zio_t *czio; 8989 (void) printf("\n"); 8990 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8991 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8992 8993 if ((zio_checksum_table[ck].ci_flags & 8994 ZCHECKSUM_FLAG_EMBEDDED) || 8995 ck == ZIO_CHECKSUM_NOPARITY) { 8996 continue; 8997 } 8998 BP_SET_CHECKSUM(bp, ck); 8999 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9000 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9001 if (vd == vd->vdev_top) { 9002 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9003 NULL, NULL, 9004 ZIO_PRIORITY_SYNC_READ, 9005 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9006 ZIO_FLAG_DONT_RETRY, NULL)); 9007 } else { 9008 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9009 offset, pabd, psize, ZIO_TYPE_READ, 9010 ZIO_PRIORITY_SYNC_READ, 9011 ZIO_FLAG_DONT_PROPAGATE | 9012 ZIO_FLAG_DONT_RETRY | 9013 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9014 ZIO_FLAG_SPECULATIVE | 9015 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9016 } 9017 error = zio_wait(czio); 9018 if (error == 0 || error == ECKSUM) { 9019 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9020 NULL, NULL, 0); 9021 ck_zio->io_offset = 9022 DVA_GET_OFFSET(&bp->blk_dva[0]); 9023 ck_zio->io_bp = bp; 9024 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9025 printf( 9026 "%12s\t" 9027 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9028 zio_checksum_table[ck].ci_name, 9029 (u_longlong_t)bp->blk_cksum.zc_word[0], 9030 (u_longlong_t)bp->blk_cksum.zc_word[1], 9031 (u_longlong_t)bp->blk_cksum.zc_word[2], 9032 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9033 zio_wait(ck_zio); 9034 } else { 9035 printf("error %d reading block\n", error); 9036 } 9037 spa_config_exit(spa, SCL_STATE, FTAG); 9038 } 9039 } 9040 9041 if (borrowed) 9042 abd_return_buf_copy(pabd, buf, lsize); 9043 9044 out: 9045 abd_free(pabd); 9046 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9047 done: 9048 free(flagstr); 9049 free(dup); 9050 } 9051 9052 static void 9053 zdb_embedded_block(char *thing) 9054 { 9055 blkptr_t bp = {{{{0}}}}; 9056 unsigned long long *words = (void *)&bp; 9057 char *buf; 9058 int err; 9059 9060 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9061 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9062 words + 0, words + 1, words + 2, words + 3, 9063 words + 4, words + 5, words + 6, words + 7, 9064 words + 8, words + 9, words + 10, words + 11, 9065 words + 12, words + 13, words + 14, words + 15); 9066 if (err != 16) { 9067 (void) fprintf(stderr, "invalid input format\n"); 9068 zdb_exit(1); 9069 } 9070 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9071 buf = malloc(SPA_MAXBLOCKSIZE); 9072 if (buf == NULL) { 9073 (void) fprintf(stderr, "out of memory\n"); 9074 zdb_exit(1); 9075 } 9076 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9077 if (err != 0) { 9078 (void) fprintf(stderr, "decode failed: %u\n", err); 9079 zdb_exit(1); 9080 } 9081 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9082 free(buf); 9083 } 9084 9085 /* check for valid hex or decimal numeric string */ 9086 static boolean_t 9087 zdb_numeric(char *str) 9088 { 9089 int i = 0; 9090 9091 if (strlen(str) == 0) 9092 return (B_FALSE); 9093 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9094 i = 2; 9095 for (; i < strlen(str); i++) { 9096 if (!isxdigit(str[i])) 9097 return (B_FALSE); 9098 } 9099 return (B_TRUE); 9100 } 9101 9102 static int 9103 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9104 zfs_file_info_t *zoi) 9105 { 9106 (void) data, (void) zoi; 9107 9108 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9109 return (ENOENT); 9110 9111 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9112 abort(); 9113 } 9114 9115 int 9116 main(int argc, char **argv) 9117 { 9118 int c; 9119 int dump_all = 1; 9120 int verbose = 0; 9121 int error = 0; 9122 char **searchdirs = NULL; 9123 int nsearch = 0; 9124 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9125 nvlist_t *policy = NULL; 9126 uint64_t max_txg = UINT64_MAX; 9127 int64_t objset_id = -1; 9128 uint64_t object; 9129 int flags = ZFS_IMPORT_MISSING_LOG; 9130 int rewind = ZPOOL_NEVER_REWIND; 9131 char *spa_config_path_env, *objset_str; 9132 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9133 nvlist_t *cfg = NULL; 9134 struct sigaction action; 9135 boolean_t force_import = B_FALSE; 9136 boolean_t config_path_console = B_FALSE; 9137 char pbuf[MAXPATHLEN]; 9138 9139 dprintf_setup(&argc, argv); 9140 9141 /* 9142 * Set up signal handlers, so if we crash due to bad on-disk data we 9143 * can get more info. Unlike ztest, we don't bail out if we can't set 9144 * up signal handlers, because zdb is very useful without them. 9145 */ 9146 action.sa_handler = sig_handler; 9147 sigemptyset(&action.sa_mask); 9148 action.sa_flags = 0; 9149 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9150 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9151 strerror(errno)); 9152 } 9153 if (sigaction(SIGABRT, &action, NULL) < 0) { 9154 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9155 strerror(errno)); 9156 } 9157 9158 /* 9159 * If there is an environment variable SPA_CONFIG_PATH it overrides 9160 * default spa_config_path setting. If -U flag is specified it will 9161 * override this environment variable settings once again. 9162 */ 9163 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9164 if (spa_config_path_env != NULL) 9165 spa_config_path = spa_config_path_env; 9166 9167 /* 9168 * For performance reasons, we set this tunable down. We do so before 9169 * the arg parsing section so that the user can override this value if 9170 * they choose. 9171 */ 9172 zfs_btree_verify_intensity = 3; 9173 9174 struct option long_options[] = { 9175 {"ignore-assertions", no_argument, NULL, 'A'}, 9176 {"block-stats", no_argument, NULL, 'b'}, 9177 {"backup", no_argument, NULL, 'B'}, 9178 {"checksum", no_argument, NULL, 'c'}, 9179 {"config", no_argument, NULL, 'C'}, 9180 {"datasets", no_argument, NULL, 'd'}, 9181 {"dedup-stats", no_argument, NULL, 'D'}, 9182 {"exported", no_argument, NULL, 'e'}, 9183 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9184 {"automatic-rewind", no_argument, NULL, 'F'}, 9185 {"dump-debug-msg", no_argument, NULL, 'G'}, 9186 {"history", no_argument, NULL, 'h'}, 9187 {"intent-logs", no_argument, NULL, 'i'}, 9188 {"inflight", required_argument, NULL, 'I'}, 9189 {"checkpointed-state", no_argument, NULL, 'k'}, 9190 {"key", required_argument, NULL, 'K'}, 9191 {"label", no_argument, NULL, 'l'}, 9192 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9193 {"metaslabs", no_argument, NULL, 'm'}, 9194 {"metaslab-groups", no_argument, NULL, 'M'}, 9195 {"numeric", no_argument, NULL, 'N'}, 9196 {"option", required_argument, NULL, 'o'}, 9197 {"object-lookups", no_argument, NULL, 'O'}, 9198 {"path", required_argument, NULL, 'p'}, 9199 {"parseable", no_argument, NULL, 'P'}, 9200 {"skip-label", no_argument, NULL, 'q'}, 9201 {"copy-object", no_argument, NULL, 'r'}, 9202 {"read-block", no_argument, NULL, 'R'}, 9203 {"io-stats", no_argument, NULL, 's'}, 9204 {"simulate-dedup", no_argument, NULL, 'S'}, 9205 {"txg", required_argument, NULL, 't'}, 9206 {"brt-stats", no_argument, NULL, 'T'}, 9207 {"uberblock", no_argument, NULL, 'u'}, 9208 {"cachefile", required_argument, NULL, 'U'}, 9209 {"verbose", no_argument, NULL, 'v'}, 9210 {"verbatim", no_argument, NULL, 'V'}, 9211 {"dump-blocks", required_argument, NULL, 'x'}, 9212 {"extreme-rewind", no_argument, NULL, 'X'}, 9213 {"all-reconstruction", no_argument, NULL, 'Y'}, 9214 {"livelist", no_argument, NULL, 'y'}, 9215 {"zstd-headers", no_argument, NULL, 'Z'}, 9216 {0, 0, 0, 0} 9217 }; 9218 9219 while ((c = getopt_long(argc, argv, 9220 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9221 long_options, NULL)) != -1) { 9222 switch (c) { 9223 case 'b': 9224 case 'B': 9225 case 'c': 9226 case 'C': 9227 case 'd': 9228 case 'D': 9229 case 'E': 9230 case 'G': 9231 case 'h': 9232 case 'i': 9233 case 'l': 9234 case 'm': 9235 case 'M': 9236 case 'N': 9237 case 'O': 9238 case 'r': 9239 case 'R': 9240 case 's': 9241 case 'S': 9242 case 'T': 9243 case 'u': 9244 case 'y': 9245 case 'Z': 9246 dump_opt[c]++; 9247 dump_all = 0; 9248 break; 9249 case 'A': 9250 case 'e': 9251 case 'F': 9252 case 'k': 9253 case 'L': 9254 case 'P': 9255 case 'q': 9256 case 'X': 9257 dump_opt[c]++; 9258 break; 9259 case 'Y': 9260 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9261 zfs_deadman_enabled = 0; 9262 break; 9263 /* NB: Sort single match options below. */ 9264 case 'I': 9265 max_inflight_bytes = strtoull(optarg, NULL, 0); 9266 if (max_inflight_bytes == 0) { 9267 (void) fprintf(stderr, "maximum number " 9268 "of inflight bytes must be greater " 9269 "than 0\n"); 9270 usage(); 9271 } 9272 break; 9273 case 'K': 9274 dump_opt[c]++; 9275 key_material = strdup(optarg); 9276 /* redact key material in process table */ 9277 while (*optarg != '\0') { *optarg++ = '*'; } 9278 break; 9279 case 'o': 9280 error = set_global_var(optarg); 9281 if (error != 0) 9282 usage(); 9283 break; 9284 case 'p': 9285 if (searchdirs == NULL) { 9286 searchdirs = umem_alloc(sizeof (char *), 9287 UMEM_NOFAIL); 9288 } else { 9289 char **tmp = umem_alloc((nsearch + 1) * 9290 sizeof (char *), UMEM_NOFAIL); 9291 memcpy(tmp, searchdirs, nsearch * 9292 sizeof (char *)); 9293 umem_free(searchdirs, 9294 nsearch * sizeof (char *)); 9295 searchdirs = tmp; 9296 } 9297 searchdirs[nsearch++] = optarg; 9298 break; 9299 case 't': 9300 max_txg = strtoull(optarg, NULL, 0); 9301 if (max_txg < TXG_INITIAL) { 9302 (void) fprintf(stderr, "incorrect txg " 9303 "specified: %s\n", optarg); 9304 usage(); 9305 } 9306 break; 9307 case 'U': 9308 config_path_console = B_TRUE; 9309 spa_config_path = optarg; 9310 if (spa_config_path[0] != '/') { 9311 (void) fprintf(stderr, 9312 "cachefile must be an absolute path " 9313 "(i.e. start with a slash)\n"); 9314 usage(); 9315 } 9316 break; 9317 case 'v': 9318 verbose++; 9319 break; 9320 case 'V': 9321 flags = ZFS_IMPORT_VERBATIM; 9322 break; 9323 case 'x': 9324 vn_dumpdir = optarg; 9325 break; 9326 default: 9327 usage(); 9328 break; 9329 } 9330 } 9331 9332 if (!dump_opt['e'] && searchdirs != NULL) { 9333 (void) fprintf(stderr, "-p option requires use of -e\n"); 9334 usage(); 9335 } 9336 #if defined(_LP64) 9337 /* 9338 * ZDB does not typically re-read blocks; therefore limit the ARC 9339 * to 256 MB, which can be used entirely for metadata. 9340 */ 9341 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9342 zfs_arc_max = 256 * 1024 * 1024; 9343 #endif 9344 9345 /* 9346 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9347 * "zdb -b" uses traversal prefetch which uses async reads. 9348 * For good performance, let several of them be active at once. 9349 */ 9350 zfs_vdev_async_read_max_active = 10; 9351 9352 /* 9353 * Disable reference tracking for better performance. 9354 */ 9355 reference_tracking_enable = B_FALSE; 9356 9357 /* 9358 * Do not fail spa_load when spa_load_verify fails. This is needed 9359 * to load non-idle pools. 9360 */ 9361 spa_load_verify_dryrun = B_TRUE; 9362 9363 /* 9364 * ZDB should have ability to read spacemaps. 9365 */ 9366 spa_mode_readable_spacemaps = B_TRUE; 9367 9368 if (dump_all) 9369 verbose = MAX(verbose, 1); 9370 9371 for (c = 0; c < 256; c++) { 9372 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9373 dump_opt[c] = 1; 9374 if (dump_opt[c]) 9375 dump_opt[c] += verbose; 9376 } 9377 9378 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9379 zfs_recover = (dump_opt['A'] > 1); 9380 9381 argc -= optind; 9382 argv += optind; 9383 if (argc < 2 && dump_opt['R']) 9384 usage(); 9385 9386 target = argv[0]; 9387 9388 /* 9389 * Automate cachefile 9390 */ 9391 if (!spa_config_path_env && !config_path_console && target && 9392 libzfs_core_init() == 0) { 9393 char *pname = strdup(target); 9394 const char *value; 9395 nvlist_t *pnvl = NULL; 9396 nvlist_t *vnvl = NULL; 9397 9398 if (strpbrk(pname, "/@") != NULL) 9399 *strpbrk(pname, "/@") = '\0'; 9400 9401 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9402 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9403 &vnvl) == 0) { 9404 value = fnvlist_lookup_string(vnvl, 9405 ZPROP_VALUE); 9406 } else { 9407 value = "-"; 9408 } 9409 strlcpy(pbuf, value, sizeof (pbuf)); 9410 if (pbuf[0] != '\0') { 9411 if (pbuf[0] == '/') { 9412 if (access(pbuf, F_OK) == 0) 9413 spa_config_path = pbuf; 9414 else 9415 force_import = B_TRUE; 9416 } else if ((strcmp(pbuf, "-") == 0 && 9417 access(ZPOOL_CACHE, F_OK) != 0) || 9418 strcmp(pbuf, "none") == 0) { 9419 force_import = B_TRUE; 9420 } 9421 } 9422 nvlist_free(vnvl); 9423 } 9424 9425 free(pname); 9426 nvlist_free(pnvl); 9427 libzfs_core_fini(); 9428 } 9429 9430 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9431 kernel_init(SPA_MODE_READ); 9432 kernel_init_done = B_TRUE; 9433 9434 if (dump_opt['E']) { 9435 if (argc != 1) 9436 usage(); 9437 zdb_embedded_block(argv[0]); 9438 error = 0; 9439 goto fini; 9440 } 9441 9442 if (argc < 1) { 9443 if (!dump_opt['e'] && dump_opt['C']) { 9444 dump_cachefile(spa_config_path); 9445 error = 0; 9446 goto fini; 9447 } 9448 usage(); 9449 } 9450 9451 if (dump_opt['l']) { 9452 error = dump_label(argv[0]); 9453 goto fini; 9454 } 9455 9456 if (dump_opt['X'] || dump_opt['F']) 9457 rewind = ZPOOL_DO_REWIND | 9458 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9459 9460 /* -N implies -d */ 9461 if (dump_opt['N'] && dump_opt['d'] == 0) 9462 dump_opt['d'] = dump_opt['N']; 9463 9464 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9465 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9466 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9467 fatal("internal error: %s", strerror(ENOMEM)); 9468 9469 error = 0; 9470 9471 if (strpbrk(target, "/@") != NULL) { 9472 size_t targetlen; 9473 9474 target_pool = strdup(target); 9475 *strpbrk(target_pool, "/@") = '\0'; 9476 9477 target_is_spa = B_FALSE; 9478 targetlen = strlen(target); 9479 if (targetlen && target[targetlen - 1] == '/') 9480 target[targetlen - 1] = '\0'; 9481 9482 /* 9483 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9484 * To disambiguate tank/100, consider the 100 as objsetID 9485 * if -N was given, otherwise 100 is an objsetID iff 9486 * tank/100 as a named dataset fails on lookup. 9487 */ 9488 objset_str = strchr(target, '/'); 9489 if (objset_str && strlen(objset_str) > 1 && 9490 zdb_numeric(objset_str + 1)) { 9491 char *endptr; 9492 errno = 0; 9493 objset_str++; 9494 objset_id = strtoull(objset_str, &endptr, 0); 9495 /* dataset 0 is the same as opening the pool */ 9496 if (errno == 0 && endptr != objset_str && 9497 objset_id != 0) { 9498 if (dump_opt['N']) 9499 dataset_lookup = B_TRUE; 9500 } 9501 /* normal dataset name not an objset ID */ 9502 if (endptr == objset_str) { 9503 objset_id = -1; 9504 } 9505 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9506 dump_opt['N']) { 9507 printf("Supply a numeric objset ID with -N\n"); 9508 error = 1; 9509 goto fini; 9510 } 9511 } else { 9512 target_pool = target; 9513 } 9514 9515 if (dump_opt['e'] || force_import) { 9516 importargs_t args = { 0 }; 9517 9518 /* 9519 * If path is not provided, search in /dev 9520 */ 9521 if (searchdirs == NULL) { 9522 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9523 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9524 } 9525 9526 args.paths = nsearch; 9527 args.path = searchdirs; 9528 args.can_be_active = B_TRUE; 9529 9530 libpc_handle_t lpch = { 9531 .lpc_lib_handle = NULL, 9532 .lpc_ops = &libzpool_config_ops, 9533 .lpc_printerr = B_TRUE 9534 }; 9535 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9536 9537 if (error == 0) { 9538 9539 if (nvlist_add_nvlist(cfg, 9540 ZPOOL_LOAD_POLICY, policy) != 0) { 9541 fatal("can't open '%s': %s", 9542 target, strerror(ENOMEM)); 9543 } 9544 9545 if (dump_opt['C'] > 1) { 9546 (void) printf("\nConfiguration for import:\n"); 9547 dump_nvlist(cfg, 8); 9548 } 9549 9550 /* 9551 * Disable the activity check to allow examination of 9552 * active pools. 9553 */ 9554 error = spa_import(target_pool, cfg, NULL, 9555 flags | ZFS_IMPORT_SKIP_MMP); 9556 } 9557 } 9558 9559 if (searchdirs != NULL) { 9560 umem_free(searchdirs, nsearch * sizeof (char *)); 9561 searchdirs = NULL; 9562 } 9563 9564 /* 9565 * We need to make sure to process -O option or call 9566 * dump_path after the -e option has been processed, 9567 * which imports the pool to the namespace if it's 9568 * not in the cachefile. 9569 */ 9570 if (dump_opt['O']) { 9571 if (argc != 2) 9572 usage(); 9573 dump_opt['v'] = verbose + 3; 9574 error = dump_path(argv[0], argv[1], NULL); 9575 goto fini; 9576 } 9577 9578 if (dump_opt['r']) { 9579 target_is_spa = B_FALSE; 9580 if (argc != 3) 9581 usage(); 9582 dump_opt['v'] = verbose; 9583 error = dump_path(argv[0], argv[1], &object); 9584 if (error != 0) 9585 fatal("internal error: %s", strerror(error)); 9586 } 9587 9588 /* 9589 * import_checkpointed_state makes the assumption that the 9590 * target pool that we pass it is already part of the spa 9591 * namespace. Because of that we need to make sure to call 9592 * it always after the -e option has been processed, which 9593 * imports the pool to the namespace if it's not in the 9594 * cachefile. 9595 */ 9596 char *checkpoint_pool = NULL; 9597 char *checkpoint_target = NULL; 9598 if (dump_opt['k']) { 9599 checkpoint_pool = import_checkpointed_state(target, cfg, 9600 &checkpoint_target); 9601 9602 if (checkpoint_target != NULL) 9603 target = checkpoint_target; 9604 } 9605 9606 if (cfg != NULL) { 9607 nvlist_free(cfg); 9608 cfg = NULL; 9609 } 9610 9611 if (target_pool != target) 9612 free(target_pool); 9613 9614 if (error == 0) { 9615 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9616 ASSERT(checkpoint_pool != NULL); 9617 ASSERT(checkpoint_target == NULL); 9618 9619 error = spa_open(checkpoint_pool, &spa, FTAG); 9620 if (error != 0) { 9621 fatal("Tried to open pool \"%s\" but " 9622 "spa_open() failed with error %d\n", 9623 checkpoint_pool, error); 9624 } 9625 9626 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9627 objset_id == 0) { 9628 zdb_set_skip_mmp(target); 9629 error = spa_open_rewind(target, &spa, FTAG, policy, 9630 NULL); 9631 if (error) { 9632 /* 9633 * If we're missing the log device then 9634 * try opening the pool after clearing the 9635 * log state. 9636 */ 9637 mutex_enter(&spa_namespace_lock); 9638 if ((spa = spa_lookup(target)) != NULL && 9639 spa->spa_log_state == SPA_LOG_MISSING) { 9640 spa->spa_log_state = SPA_LOG_CLEAR; 9641 error = 0; 9642 } 9643 mutex_exit(&spa_namespace_lock); 9644 9645 if (!error) { 9646 error = spa_open_rewind(target, &spa, 9647 FTAG, policy, NULL); 9648 } 9649 } 9650 } else if (strpbrk(target, "#") != NULL) { 9651 dsl_pool_t *dp; 9652 error = dsl_pool_hold(target, FTAG, &dp); 9653 if (error != 0) { 9654 fatal("can't dump '%s': %s", target, 9655 strerror(error)); 9656 } 9657 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9658 dsl_pool_rele(dp, FTAG); 9659 if (error != 0) { 9660 fatal("can't dump '%s': %s", target, 9661 strerror(error)); 9662 } 9663 goto fini; 9664 } else { 9665 target_pool = strdup(target); 9666 if (strpbrk(target, "/@") != NULL) 9667 *strpbrk(target_pool, "/@") = '\0'; 9668 9669 zdb_set_skip_mmp(target); 9670 /* 9671 * If -N was supplied, the user has indicated that 9672 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9673 * we first assume that the dataset string is the 9674 * dataset name. If dmu_objset_hold fails with the 9675 * dataset string, and we have an objset_id, retry the 9676 * lookup with the objsetID. 9677 */ 9678 boolean_t retry = B_TRUE; 9679 retry_lookup: 9680 if (dataset_lookup == B_TRUE) { 9681 /* 9682 * Use the supplied id to get the name 9683 * for open_objset. 9684 */ 9685 error = spa_open(target_pool, &spa, FTAG); 9686 if (error == 0) { 9687 error = name_from_objset_id(spa, 9688 objset_id, dsname); 9689 spa_close(spa, FTAG); 9690 if (error == 0) 9691 target = dsname; 9692 } 9693 } 9694 if (error == 0) { 9695 if (objset_id > 0 && retry) { 9696 int err = dmu_objset_hold(target, FTAG, 9697 &os); 9698 if (err) { 9699 dataset_lookup = B_TRUE; 9700 retry = B_FALSE; 9701 goto retry_lookup; 9702 } else { 9703 dmu_objset_rele(os, FTAG); 9704 } 9705 } 9706 error = open_objset(target, FTAG, &os); 9707 } 9708 if (error == 0) 9709 spa = dmu_objset_spa(os); 9710 free(target_pool); 9711 } 9712 } 9713 nvlist_free(policy); 9714 9715 if (error) 9716 fatal("can't open '%s': %s", target, strerror(error)); 9717 9718 /* 9719 * Set the pool failure mode to panic in order to prevent the pool 9720 * from suspending. A suspended I/O will have no way to resume and 9721 * can prevent the zdb(8) command from terminating as expected. 9722 */ 9723 if (spa != NULL) 9724 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9725 9726 argv++; 9727 argc--; 9728 if (dump_opt['r']) { 9729 error = zdb_copy_object(os, object, argv[1]); 9730 } else if (!dump_opt['R']) { 9731 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9732 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9733 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9734 flagbits['z'] = ZOR_FLAG_ZAP; 9735 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9736 9737 if (argc > 0 && dump_opt['d']) { 9738 zopt_object_args = argc; 9739 zopt_object_ranges = calloc(zopt_object_args, 9740 sizeof (zopt_object_range_t)); 9741 for (unsigned i = 0; i < zopt_object_args; i++) { 9742 int err; 9743 const char *msg = NULL; 9744 9745 err = parse_object_range(argv[i], 9746 &zopt_object_ranges[i], &msg); 9747 if (err != 0) 9748 fatal("Bad object or range: '%s': %s\n", 9749 argv[i], msg ?: ""); 9750 } 9751 } else if (argc > 0 && dump_opt['m']) { 9752 zopt_metaslab_args = argc; 9753 zopt_metaslab = calloc(zopt_metaslab_args, 9754 sizeof (uint64_t)); 9755 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9756 errno = 0; 9757 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9758 if (zopt_metaslab[i] == 0 && errno != 0) 9759 fatal("bad number %s: %s", argv[i], 9760 strerror(errno)); 9761 } 9762 } 9763 if (dump_opt['B']) { 9764 dump_backup(target, objset_id, 9765 argc > 0 ? argv[0] : NULL); 9766 } else if (os != NULL) { 9767 dump_objset(os); 9768 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9769 dump_objset(spa->spa_meta_objset); 9770 } else { 9771 dump_zpool(spa); 9772 } 9773 } else { 9774 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9775 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9776 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9777 flagbits['e'] = ZDB_FLAG_BSWAP; 9778 flagbits['g'] = ZDB_FLAG_GBH; 9779 flagbits['i'] = ZDB_FLAG_INDIRECT; 9780 flagbits['r'] = ZDB_FLAG_RAW; 9781 flagbits['v'] = ZDB_FLAG_VERBOSE; 9782 9783 for (int i = 0; i < argc; i++) 9784 zdb_read_block(argv[i], spa); 9785 } 9786 9787 if (dump_opt['k']) { 9788 free(checkpoint_pool); 9789 if (!target_is_spa) 9790 free(checkpoint_target); 9791 } 9792 9793 fini: 9794 if (spa != NULL) 9795 zdb_ddt_cleanup(spa); 9796 9797 if (os != NULL) { 9798 close_objset(os, FTAG); 9799 } else if (spa != NULL) { 9800 spa_close(spa, FTAG); 9801 } 9802 9803 fuid_table_destroy(); 9804 9805 dump_debug_buffer(); 9806 9807 if (kernel_init_done) 9808 kernel_fini(); 9809 9810 return (error); 9811 } 9812