1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 */ 37 38 #include <stdio.h> 39 #include <unistd.h> 40 #include <stdlib.h> 41 #include <ctype.h> 42 #include <getopt.h> 43 #include <sys/zfs_context.h> 44 #include <sys/spa.h> 45 #include <sys/spa_impl.h> 46 #include <sys/dmu.h> 47 #include <sys/zap.h> 48 #include <sys/fs/zfs.h> 49 #include <sys/zfs_znode.h> 50 #include <sys/zfs_sa.h> 51 #include <sys/sa.h> 52 #include <sys/sa_impl.h> 53 #include <sys/vdev.h> 54 #include <sys/vdev_impl.h> 55 #include <sys/metaslab_impl.h> 56 #include <sys/dmu_objset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_dataset.h> 59 #include <sys/dsl_pool.h> 60 #include <sys/dsl_bookmark.h> 61 #include <sys/dbuf.h> 62 #include <sys/zil.h> 63 #include <sys/zil_impl.h> 64 #include <sys/stat.h> 65 #include <sys/resource.h> 66 #include <sys/dmu_send.h> 67 #include <sys/dmu_traverse.h> 68 #include <sys/zio_checksum.h> 69 #include <sys/zio_compress.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/arc.h> 72 #include <sys/arc_impl.h> 73 #include <sys/ddt.h> 74 #include <sys/zfeature.h> 75 #include <sys/abd.h> 76 #include <sys/blkptr.h> 77 #include <sys/dsl_crypt.h> 78 #include <sys/dsl_scan.h> 79 #include <sys/btree.h> 80 #include <zfs_comutil.h> 81 #include <sys/zstd/zstd.h> 82 83 #include <libnvpair.h> 84 #include <libzutil.h> 85 86 #include "zdb.h" 87 88 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 89 zio_compress_table[(idx)].ci_name : "UNKNOWN") 90 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 91 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 92 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 93 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 94 DMU_OT_ZAP_OTHER : \ 95 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 96 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 97 98 /* Some platforms require part of inode IDs to be remapped */ 99 #ifdef __APPLE__ 100 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2) 101 #else 102 #define ZDB_MAP_OBJECT_ID(obj) (obj) 103 #endif 104 105 static const char * 106 zdb_ot_name(dmu_object_type_t type) 107 { 108 if (type < DMU_OT_NUMTYPES) 109 return (dmu_ot[type].ot_name); 110 else if ((type & DMU_OT_NEWTYPE) && 111 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 112 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 113 else 114 return ("UNKNOWN"); 115 } 116 117 extern int reference_tracking_enable; 118 extern int zfs_recover; 119 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit; 120 extern int zfs_vdev_async_read_max_active; 121 extern boolean_t spa_load_verify_dryrun; 122 extern boolean_t spa_mode_readable_spacemaps; 123 extern int zfs_reconstruct_indirect_combinations_max; 124 extern uint_t zfs_btree_verify_intensity; 125 126 static const char cmdname[] = "zdb"; 127 uint8_t dump_opt[256]; 128 129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 130 131 uint64_t *zopt_metaslab = NULL; 132 static unsigned zopt_metaslab_args = 0; 133 134 typedef struct zopt_object_range { 135 uint64_t zor_obj_start; 136 uint64_t zor_obj_end; 137 uint64_t zor_flags; 138 } zopt_object_range_t; 139 zopt_object_range_t *zopt_object_ranges = NULL; 140 static unsigned zopt_object_args = 0; 141 142 static int flagbits[256]; 143 144 #define ZOR_FLAG_PLAIN_FILE 0x0001 145 #define ZOR_FLAG_DIRECTORY 0x0002 146 #define ZOR_FLAG_SPACE_MAP 0x0004 147 #define ZOR_FLAG_ZAP 0x0008 148 #define ZOR_FLAG_ALL_TYPES -1 149 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 150 ZOR_FLAG_DIRECTORY | \ 151 ZOR_FLAG_SPACE_MAP | \ 152 ZOR_FLAG_ZAP) 153 154 #define ZDB_FLAG_CHECKSUM 0x0001 155 #define ZDB_FLAG_DECOMPRESS 0x0002 156 #define ZDB_FLAG_BSWAP 0x0004 157 #define ZDB_FLAG_GBH 0x0008 158 #define ZDB_FLAG_INDIRECT 0x0010 159 #define ZDB_FLAG_RAW 0x0020 160 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 161 #define ZDB_FLAG_VERBOSE 0x0080 162 163 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 164 static int leaked_objects = 0; 165 static range_tree_t *mos_refd_objs; 166 167 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 168 boolean_t); 169 static void mos_obj_refd(uint64_t); 170 static void mos_obj_refd_multiple(uint64_t); 171 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 172 dmu_tx_t *tx); 173 174 typedef struct sublivelist_verify { 175 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 176 zfs_btree_t sv_pair; 177 178 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 179 zfs_btree_t sv_leftover; 180 } sublivelist_verify_t; 181 182 static int 183 livelist_compare(const void *larg, const void *rarg) 184 { 185 const blkptr_t *l = larg; 186 const blkptr_t *r = rarg; 187 188 /* Sort them according to dva[0] */ 189 uint64_t l_dva0_vdev, r_dva0_vdev; 190 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 191 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 192 if (l_dva0_vdev < r_dva0_vdev) 193 return (-1); 194 else if (l_dva0_vdev > r_dva0_vdev) 195 return (+1); 196 197 /* if vdevs are equal, sort by offsets. */ 198 uint64_t l_dva0_offset; 199 uint64_t r_dva0_offset; 200 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 201 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 202 if (l_dva0_offset < r_dva0_offset) { 203 return (-1); 204 } else if (l_dva0_offset > r_dva0_offset) { 205 return (+1); 206 } 207 208 /* 209 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 210 * it's possible the offsets are equal. In that case, sort by txg 211 */ 212 if (l->blk_birth < r->blk_birth) { 213 return (-1); 214 } else if (l->blk_birth > r->blk_birth) { 215 return (+1); 216 } 217 return (0); 218 } 219 220 typedef struct sublivelist_verify_block { 221 dva_t svb_dva; 222 223 /* 224 * We need this to check if the block marked as allocated 225 * in the livelist was freed (and potentially reallocated) 226 * in the metaslab spacemaps at a later TXG. 227 */ 228 uint64_t svb_allocated_txg; 229 } sublivelist_verify_block_t; 230 231 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 232 233 typedef struct sublivelist_verify_block_refcnt { 234 /* block pointer entry in livelist being verified */ 235 blkptr_t svbr_blk; 236 237 /* 238 * Refcount gets incremented to 1 when we encounter the first 239 * FREE entry for the svfbr block pointer and a node for it 240 * is created in our ZDB verification/tracking metadata. 241 * 242 * As we encounter more FREE entries we increment this counter 243 * and similarly decrement it whenever we find the respective 244 * ALLOC entries for this block. 245 * 246 * When the refcount gets to 0 it means that all the FREE and 247 * ALLOC entries of this block have paired up and we no longer 248 * need to track it in our verification logic (e.g. the node 249 * containing this struct in our verification data structure 250 * should be freed). 251 * 252 * [refer to sublivelist_verify_blkptr() for the actual code] 253 */ 254 uint32_t svbr_refcnt; 255 } sublivelist_verify_block_refcnt_t; 256 257 static int 258 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 259 { 260 const sublivelist_verify_block_refcnt_t *l = larg; 261 const sublivelist_verify_block_refcnt_t *r = rarg; 262 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 263 } 264 265 static int 266 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 267 dmu_tx_t *tx) 268 { 269 ASSERT3P(tx, ==, NULL); 270 struct sublivelist_verify *sv = arg; 271 sublivelist_verify_block_refcnt_t current = { 272 .svbr_blk = *bp, 273 274 /* 275 * Start with 1 in case this is the first free entry. 276 * This field is not used for our B-Tree comparisons 277 * anyway. 278 */ 279 .svbr_refcnt = 1, 280 }; 281 282 zfs_btree_index_t where; 283 sublivelist_verify_block_refcnt_t *pair = 284 zfs_btree_find(&sv->sv_pair, ¤t, &where); 285 if (free) { 286 if (pair == NULL) { 287 /* first free entry for this block pointer */ 288 zfs_btree_add(&sv->sv_pair, ¤t); 289 } else { 290 pair->svbr_refcnt++; 291 } 292 } else { 293 if (pair == NULL) { 294 /* block that is currently marked as allocated */ 295 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 296 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 297 break; 298 sublivelist_verify_block_t svb = { 299 .svb_dva = bp->blk_dva[i], 300 .svb_allocated_txg = bp->blk_birth 301 }; 302 303 if (zfs_btree_find(&sv->sv_leftover, &svb, 304 &where) == NULL) { 305 zfs_btree_add_idx(&sv->sv_leftover, 306 &svb, &where); 307 } 308 } 309 } else { 310 /* alloc matches a free entry */ 311 pair->svbr_refcnt--; 312 if (pair->svbr_refcnt == 0) { 313 /* all allocs and frees have been matched */ 314 zfs_btree_remove_idx(&sv->sv_pair, &where); 315 } 316 } 317 } 318 319 return (0); 320 } 321 322 static int 323 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 324 { 325 int err; 326 struct sublivelist_verify *sv = args; 327 328 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, 329 sizeof (sublivelist_verify_block_refcnt_t)); 330 331 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 332 sv, NULL); 333 334 sublivelist_verify_block_refcnt_t *e; 335 zfs_btree_index_t *cookie = NULL; 336 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 337 char blkbuf[BP_SPRINTF_LEN]; 338 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 339 &e->svbr_blk, B_TRUE); 340 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 341 e->svbr_refcnt, blkbuf); 342 } 343 zfs_btree_destroy(&sv->sv_pair); 344 345 return (err); 346 } 347 348 static int 349 livelist_block_compare(const void *larg, const void *rarg) 350 { 351 const sublivelist_verify_block_t *l = larg; 352 const sublivelist_verify_block_t *r = rarg; 353 354 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 355 return (-1); 356 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 357 return (+1); 358 359 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 360 return (-1); 361 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 362 return (+1); 363 364 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 365 return (-1); 366 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 367 return (+1); 368 369 return (0); 370 } 371 372 /* 373 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 374 * sublivelist_verify_t: sv->sv_leftover 375 */ 376 static void 377 livelist_verify(dsl_deadlist_t *dl, void *arg) 378 { 379 sublivelist_verify_t *sv = arg; 380 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 381 } 382 383 /* 384 * Check for errors in the livelist entry and discard the intermediary 385 * data structures 386 */ 387 static int 388 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 389 { 390 (void) args; 391 sublivelist_verify_t sv; 392 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 393 sizeof (sublivelist_verify_block_t)); 394 int err = sublivelist_verify_func(&sv, dle); 395 zfs_btree_clear(&sv.sv_leftover); 396 zfs_btree_destroy(&sv.sv_leftover); 397 return (err); 398 } 399 400 typedef struct metaslab_verify { 401 /* 402 * Tree containing all the leftover ALLOCs from the livelists 403 * that are part of this metaslab. 404 */ 405 zfs_btree_t mv_livelist_allocs; 406 407 /* 408 * Metaslab information. 409 */ 410 uint64_t mv_vdid; 411 uint64_t mv_msid; 412 uint64_t mv_start; 413 uint64_t mv_end; 414 415 /* 416 * What's currently allocated for this metaslab. 417 */ 418 range_tree_t *mv_allocated; 419 } metaslab_verify_t; 420 421 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 422 423 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 424 void *arg); 425 426 typedef struct unflushed_iter_cb_arg { 427 spa_t *uic_spa; 428 uint64_t uic_txg; 429 void *uic_arg; 430 zdb_log_sm_cb_t uic_cb; 431 } unflushed_iter_cb_arg_t; 432 433 static int 434 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 435 { 436 unflushed_iter_cb_arg_t *uic = arg; 437 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 438 } 439 440 static void 441 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 442 { 443 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 444 return; 445 446 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 447 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 448 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 449 space_map_t *sm = NULL; 450 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 451 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 452 453 unflushed_iter_cb_arg_t uic = { 454 .uic_spa = spa, 455 .uic_txg = sls->sls_txg, 456 .uic_arg = arg, 457 .uic_cb = cb 458 }; 459 VERIFY0(space_map_iterate(sm, space_map_length(sm), 460 iterate_through_spacemap_logs_cb, &uic)); 461 space_map_close(sm); 462 } 463 spa_config_exit(spa, SCL_CONFIG, FTAG); 464 } 465 466 static void 467 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 468 uint64_t offset, uint64_t size) 469 { 470 sublivelist_verify_block_t svb; 471 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 472 DVA_SET_OFFSET(&svb.svb_dva, offset); 473 DVA_SET_ASIZE(&svb.svb_dva, size); 474 zfs_btree_index_t where; 475 uint64_t end_offset = offset + size; 476 477 /* 478 * Look for an exact match for spacemap entry in the livelist entries. 479 * Then, look for other livelist entries that fall within the range 480 * of the spacemap entry as it may have been condensed 481 */ 482 sublivelist_verify_block_t *found = 483 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 484 if (found == NULL) { 485 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 486 } 487 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 488 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 489 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 490 if (found->svb_allocated_txg <= txg) { 491 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 492 "from TXG %llx FREED at TXG %llx\n", 493 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 494 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 495 (u_longlong_t)found->svb_allocated_txg, 496 (u_longlong_t)txg); 497 } 498 } 499 } 500 501 static int 502 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 503 { 504 metaslab_verify_t *mv = arg; 505 uint64_t offset = sme->sme_offset; 506 uint64_t size = sme->sme_run; 507 uint64_t txg = sme->sme_txg; 508 509 if (sme->sme_type == SM_ALLOC) { 510 if (range_tree_contains(mv->mv_allocated, 511 offset, size)) { 512 (void) printf("ERROR: DOUBLE ALLOC: " 513 "%llu [%llx:%llx] " 514 "%llu:%llu LOG_SM\n", 515 (u_longlong_t)txg, (u_longlong_t)offset, 516 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 517 (u_longlong_t)mv->mv_msid); 518 } else { 519 range_tree_add(mv->mv_allocated, 520 offset, size); 521 } 522 } else { 523 if (!range_tree_contains(mv->mv_allocated, 524 offset, size)) { 525 (void) printf("ERROR: DOUBLE FREE: " 526 "%llu [%llx:%llx] " 527 "%llu:%llu LOG_SM\n", 528 (u_longlong_t)txg, (u_longlong_t)offset, 529 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 530 (u_longlong_t)mv->mv_msid); 531 } else { 532 range_tree_remove(mv->mv_allocated, 533 offset, size); 534 } 535 } 536 537 if (sme->sme_type != SM_ALLOC) { 538 /* 539 * If something is freed in the spacemap, verify that 540 * it is not listed as allocated in the livelist. 541 */ 542 verify_livelist_allocs(mv, txg, offset, size); 543 } 544 return (0); 545 } 546 547 static int 548 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 549 uint64_t txg, void *arg) 550 { 551 metaslab_verify_t *mv = arg; 552 uint64_t offset = sme->sme_offset; 553 uint64_t vdev_id = sme->sme_vdev; 554 555 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 556 557 /* skip indirect vdevs */ 558 if (!vdev_is_concrete(vd)) 559 return (0); 560 561 if (vdev_id != mv->mv_vdid) 562 return (0); 563 564 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 565 if (ms->ms_id != mv->mv_msid) 566 return (0); 567 568 if (txg < metaslab_unflushed_txg(ms)) 569 return (0); 570 571 572 ASSERT3U(txg, ==, sme->sme_txg); 573 return (metaslab_spacemap_validation_cb(sme, mv)); 574 } 575 576 static void 577 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 578 { 579 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 580 } 581 582 static void 583 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 584 { 585 if (sm == NULL) 586 return; 587 588 VERIFY0(space_map_iterate(sm, space_map_length(sm), 589 metaslab_spacemap_validation_cb, mv)); 590 } 591 592 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 593 594 /* 595 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 596 * they are part of that metaslab (mv_msid). 597 */ 598 static void 599 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 600 { 601 zfs_btree_index_t where; 602 sublivelist_verify_block_t *svb; 603 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 604 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 605 svb != NULL; 606 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 607 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 608 continue; 609 610 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 611 (DVA_GET_OFFSET(&svb->svb_dva) + 612 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 613 (void) printf("ERROR: Found block that crosses " 614 "metaslab boundary: <%llu:%llx:%llx>\n", 615 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 616 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 617 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 618 continue; 619 } 620 621 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 622 continue; 623 624 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 625 continue; 626 627 if ((DVA_GET_OFFSET(&svb->svb_dva) + 628 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 629 (void) printf("ERROR: Found block that crosses " 630 "metaslab boundary: <%llu:%llx:%llx>\n", 631 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 632 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 633 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 634 continue; 635 } 636 637 zfs_btree_add(&mv->mv_livelist_allocs, svb); 638 } 639 640 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 641 svb != NULL; 642 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 643 zfs_btree_remove(&sv->sv_leftover, svb); 644 } 645 } 646 647 /* 648 * [Livelist Check] 649 * Iterate through all the sublivelists and: 650 * - report leftover frees (**) 651 * - record leftover ALLOCs together with their TXG [see Cross Check] 652 * 653 * (**) Note: Double ALLOCs are valid in datasets that have dedup 654 * enabled. Similarly double FREEs are allowed as well but 655 * only if they pair up with a corresponding ALLOC entry once 656 * we our done with our sublivelist iteration. 657 * 658 * [Spacemap Check] 659 * for each metaslab: 660 * - iterate over spacemap and then the metaslab's entries in the 661 * spacemap log, then report any double FREEs and ALLOCs (do not 662 * blow up). 663 * 664 * [Cross Check] 665 * After finishing the Livelist Check phase and while being in the 666 * Spacemap Check phase, we find all the recorded leftover ALLOCs 667 * of the livelist check that are part of the metaslab that we are 668 * currently looking at in the Spacemap Check. We report any entries 669 * that are marked as ALLOCs in the livelists but have been actually 670 * freed (and potentially allocated again) after their TXG stamp in 671 * the spacemaps. Also report any ALLOCs from the livelists that 672 * belong to indirect vdevs (e.g. their vdev completed removal). 673 * 674 * Note that this will miss Log Spacemap entries that cancelled each other 675 * out before being flushed to the metaslab, so we are not guaranteed 676 * to match all erroneous ALLOCs. 677 */ 678 static void 679 livelist_metaslab_validate(spa_t *spa) 680 { 681 (void) printf("Verifying deleted livelist entries\n"); 682 683 sublivelist_verify_t sv; 684 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 685 sizeof (sublivelist_verify_block_t)); 686 iterate_deleted_livelists(spa, livelist_verify, &sv); 687 688 (void) printf("Verifying metaslab entries\n"); 689 vdev_t *rvd = spa->spa_root_vdev; 690 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 691 vdev_t *vd = rvd->vdev_child[c]; 692 693 if (!vdev_is_concrete(vd)) 694 continue; 695 696 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 697 metaslab_t *m = vd->vdev_ms[mid]; 698 699 (void) fprintf(stderr, 700 "\rverifying concrete vdev %llu, " 701 "metaslab %llu of %llu ...", 702 (longlong_t)vd->vdev_id, 703 (longlong_t)mid, 704 (longlong_t)vd->vdev_ms_count); 705 706 uint64_t shift, start; 707 range_seg_type_t type = 708 metaslab_calculate_range_tree_type(vd, m, 709 &start, &shift); 710 metaslab_verify_t mv; 711 mv.mv_allocated = range_tree_create(NULL, 712 type, NULL, start, shift); 713 mv.mv_vdid = vd->vdev_id; 714 mv.mv_msid = m->ms_id; 715 mv.mv_start = m->ms_start; 716 mv.mv_end = m->ms_start + m->ms_size; 717 zfs_btree_create(&mv.mv_livelist_allocs, 718 livelist_block_compare, 719 sizeof (sublivelist_verify_block_t)); 720 721 mv_populate_livelist_allocs(&mv, &sv); 722 723 spacemap_check_ms_sm(m->ms_sm, &mv); 724 spacemap_check_sm_log(spa, &mv); 725 726 range_tree_vacate(mv.mv_allocated, NULL, NULL); 727 range_tree_destroy(mv.mv_allocated); 728 zfs_btree_clear(&mv.mv_livelist_allocs); 729 zfs_btree_destroy(&mv.mv_livelist_allocs); 730 } 731 } 732 (void) fprintf(stderr, "\n"); 733 734 /* 735 * If there are any segments in the leftover tree after we walked 736 * through all the metaslabs in the concrete vdevs then this means 737 * that we have segments in the livelists that belong to indirect 738 * vdevs and are marked as allocated. 739 */ 740 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 741 zfs_btree_destroy(&sv.sv_leftover); 742 return; 743 } 744 (void) printf("ERROR: Found livelist blocks marked as allocated " 745 "for indirect vdevs:\n"); 746 747 zfs_btree_index_t *where = NULL; 748 sublivelist_verify_block_t *svb; 749 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 750 NULL) { 751 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 752 ASSERT3U(vdev_id, <, rvd->vdev_children); 753 vdev_t *vd = rvd->vdev_child[vdev_id]; 754 ASSERT(!vdev_is_concrete(vd)); 755 (void) printf("<%d:%llx:%llx> TXG %llx\n", 756 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 757 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 758 (u_longlong_t)svb->svb_allocated_txg); 759 } 760 (void) printf("\n"); 761 zfs_btree_destroy(&sv.sv_leftover); 762 } 763 764 /* 765 * These libumem hooks provide a reasonable set of defaults for the allocator's 766 * debugging facilities. 767 */ 768 const char * 769 _umem_debug_init(void) 770 { 771 return ("default,verbose"); /* $UMEM_DEBUG setting */ 772 } 773 774 const char * 775 _umem_logging_init(void) 776 { 777 return ("fail,contents"); /* $UMEM_LOGGING setting */ 778 } 779 780 static void 781 usage(void) 782 { 783 (void) fprintf(stderr, 784 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 785 "[-I <inflight I/Os>]\n" 786 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 787 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 788 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 789 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 790 "\t%s [-v] <bookmark>\n" 791 "\t%s -C [-A] [-U <cache>]\n" 792 "\t%s -l [-Aqu] <device>\n" 793 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 794 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 795 "\t%s -O <dataset> <path>\n" 796 "\t%s -r <dataset> <path> <destination>\n" 797 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 798 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 799 "\t%s -E [-A] word0:word1:...:word15\n" 800 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 801 "<poolname>\n\n", 802 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 803 cmdname, cmdname, cmdname, cmdname); 804 805 (void) fprintf(stderr, " Dataset name must include at least one " 806 "separator character '/' or '@'\n"); 807 (void) fprintf(stderr, " If dataset name is specified, only that " 808 "dataset is dumped\n"); 809 (void) fprintf(stderr, " If object numbers or object number " 810 "ranges are specified, only those\n" 811 " objects or ranges are dumped.\n\n"); 812 (void) fprintf(stderr, 813 " Object ranges take the form <start>:<end>[:<flags>]\n" 814 " start Starting object number\n" 815 " end Ending object number, or -1 for no upper bound\n" 816 " flags Optional flags to select object types:\n" 817 " A All objects (this is the default)\n" 818 " d ZFS directories\n" 819 " f ZFS files \n" 820 " m SPA space maps\n" 821 " z ZAPs\n" 822 " - Negate effect of next flag\n\n"); 823 (void) fprintf(stderr, " Options to control amount of output:\n"); 824 (void) fprintf(stderr, " -b --block-stats " 825 "block statistics\n"); 826 (void) fprintf(stderr, " -c --checksum " 827 "checksum all metadata (twice for all data) blocks\n"); 828 (void) fprintf(stderr, " -C --config " 829 "config (or cachefile if alone)\n"); 830 (void) fprintf(stderr, " -d --datasets " 831 "dataset(s)\n"); 832 (void) fprintf(stderr, " -D --dedup-stats " 833 "dedup statistics\n"); 834 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 835 " decode and display block " 836 "from an embedded block pointer\n"); 837 (void) fprintf(stderr, " -h --history " 838 "pool history\n"); 839 (void) fprintf(stderr, " -i --intent-logs " 840 "intent logs\n"); 841 (void) fprintf(stderr, " -l --label " 842 "read label contents\n"); 843 (void) fprintf(stderr, " -k --checkpointed-state " 844 "examine the checkpointed state of the pool\n"); 845 (void) fprintf(stderr, " -L --disable-leak-tracking " 846 "disable leak tracking (do not load spacemaps)\n"); 847 (void) fprintf(stderr, " -m --metaslabs " 848 "metaslabs\n"); 849 (void) fprintf(stderr, " -M --metaslab-groups " 850 "metaslab groups\n"); 851 (void) fprintf(stderr, " -O --object-lookups " 852 "perform object lookups by path\n"); 853 (void) fprintf(stderr, " -r --copy-object " 854 "copy an object by path to file\n"); 855 (void) fprintf(stderr, " -R --read-block " 856 "read and display block from a device\n"); 857 (void) fprintf(stderr, " -s --io-stats " 858 "report stats on zdb's I/O\n"); 859 (void) fprintf(stderr, " -S --simulate-dedup " 860 "simulate dedup to measure effect\n"); 861 (void) fprintf(stderr, " -v --verbose " 862 "verbose (applies to all others)\n"); 863 (void) fprintf(stderr, " -y --livelist " 864 "perform livelist and metaslab validation on any livelists being " 865 "deleted\n\n"); 866 (void) fprintf(stderr, " Below options are intended for use " 867 "with other options:\n"); 868 (void) fprintf(stderr, " -A --ignore-assertions " 869 "ignore assertions (-A), enable panic recovery (-AA) or both " 870 "(-AAA)\n"); 871 (void) fprintf(stderr, " -e --exported " 872 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 873 (void) fprintf(stderr, " -F --automatic-rewind " 874 "attempt automatic rewind within safe range of transaction " 875 "groups\n"); 876 (void) fprintf(stderr, " -G --dump-debug-msg " 877 "dump zfs_dbgmsg buffer before exiting\n"); 878 (void) fprintf(stderr, " -I --inflight=INTEGER " 879 "specify the maximum number of checksumming I/Os " 880 "[default is 200]\n"); 881 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 882 "set global variable to an unsigned 32-bit integer\n"); 883 (void) fprintf(stderr, " -p --path==PATH " 884 "use one or more with -e to specify path to vdev dir\n"); 885 (void) fprintf(stderr, " -P --parseable " 886 "print numbers in parseable form\n"); 887 (void) fprintf(stderr, " -q --skip-label " 888 "don't print label contents\n"); 889 (void) fprintf(stderr, " -t --txg=INTEGER " 890 "highest txg to use when searching for uberblocks\n"); 891 (void) fprintf(stderr, " -u --uberblock " 892 "uberblock\n"); 893 (void) fprintf(stderr, " -U --cachefile=PATH " 894 "use alternate cachefile\n"); 895 (void) fprintf(stderr, " -V --verbatim " 896 "do verbatim import\n"); 897 (void) fprintf(stderr, " -x --dump-blocks=PATH " 898 "dump all read blocks into specified directory\n"); 899 (void) fprintf(stderr, " -X --extreme-rewind " 900 "attempt extreme rewind (does not work with dataset)\n"); 901 (void) fprintf(stderr, " -Y --all-reconstruction " 902 "attempt all reconstruction combinations for split blocks\n"); 903 (void) fprintf(stderr, " -Z --zstd-headers " 904 "show ZSTD headers \n"); 905 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 906 "to make only that option verbose\n"); 907 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 908 exit(1); 909 } 910 911 static void 912 dump_debug_buffer(void) 913 { 914 if (dump_opt['G']) { 915 (void) printf("\n"); 916 (void) fflush(stdout); 917 zfs_dbgmsg_print("zdb"); 918 } 919 } 920 921 /* 922 * Called for usage errors that are discovered after a call to spa_open(), 923 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 924 */ 925 926 static void 927 fatal(const char *fmt, ...) 928 { 929 va_list ap; 930 931 va_start(ap, fmt); 932 (void) fprintf(stderr, "%s: ", cmdname); 933 (void) vfprintf(stderr, fmt, ap); 934 va_end(ap); 935 (void) fprintf(stderr, "\n"); 936 937 dump_debug_buffer(); 938 939 exit(1); 940 } 941 942 static void 943 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 944 { 945 (void) size; 946 nvlist_t *nv; 947 size_t nvsize = *(uint64_t *)data; 948 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 949 950 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 951 952 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 953 954 umem_free(packed, nvsize); 955 956 dump_nvlist(nv, 8); 957 958 nvlist_free(nv); 959 } 960 961 static void 962 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 963 { 964 (void) os, (void) object, (void) size; 965 spa_history_phys_t *shp = data; 966 967 if (shp == NULL) 968 return; 969 970 (void) printf("\t\tpool_create_len = %llu\n", 971 (u_longlong_t)shp->sh_pool_create_len); 972 (void) printf("\t\tphys_max_off = %llu\n", 973 (u_longlong_t)shp->sh_phys_max_off); 974 (void) printf("\t\tbof = %llu\n", 975 (u_longlong_t)shp->sh_bof); 976 (void) printf("\t\teof = %llu\n", 977 (u_longlong_t)shp->sh_eof); 978 (void) printf("\t\trecords_lost = %llu\n", 979 (u_longlong_t)shp->sh_records_lost); 980 } 981 982 static void 983 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 984 { 985 if (dump_opt['P']) 986 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 987 else 988 nicenum(num, buf, sizeof (buf)); 989 } 990 991 static const char histo_stars[] = "****************************************"; 992 static const uint64_t histo_width = sizeof (histo_stars) - 1; 993 994 static void 995 dump_histogram(const uint64_t *histo, int size, int offset) 996 { 997 int i; 998 int minidx = size - 1; 999 int maxidx = 0; 1000 uint64_t max = 0; 1001 1002 for (i = 0; i < size; i++) { 1003 if (histo[i] > max) 1004 max = histo[i]; 1005 if (histo[i] > 0 && i > maxidx) 1006 maxidx = i; 1007 if (histo[i] > 0 && i < minidx) 1008 minidx = i; 1009 } 1010 1011 if (max < histo_width) 1012 max = histo_width; 1013 1014 for (i = minidx; i <= maxidx; i++) { 1015 (void) printf("\t\t\t%3u: %6llu %s\n", 1016 i + offset, (u_longlong_t)histo[i], 1017 &histo_stars[(max - histo[i]) * histo_width / max]); 1018 } 1019 } 1020 1021 static void 1022 dump_zap_stats(objset_t *os, uint64_t object) 1023 { 1024 int error; 1025 zap_stats_t zs; 1026 1027 error = zap_get_stats(os, object, &zs); 1028 if (error) 1029 return; 1030 1031 if (zs.zs_ptrtbl_len == 0) { 1032 ASSERT(zs.zs_num_blocks == 1); 1033 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 1034 (u_longlong_t)zs.zs_blocksize, 1035 (u_longlong_t)zs.zs_num_entries); 1036 return; 1037 } 1038 1039 (void) printf("\tFat ZAP stats:\n"); 1040 1041 (void) printf("\t\tPointer table:\n"); 1042 (void) printf("\t\t\t%llu elements\n", 1043 (u_longlong_t)zs.zs_ptrtbl_len); 1044 (void) printf("\t\t\tzt_blk: %llu\n", 1045 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1046 (void) printf("\t\t\tzt_numblks: %llu\n", 1047 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1048 (void) printf("\t\t\tzt_shift: %llu\n", 1049 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1050 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1051 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1052 (void) printf("\t\t\tzt_nextblk: %llu\n", 1053 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1054 1055 (void) printf("\t\tZAP entries: %llu\n", 1056 (u_longlong_t)zs.zs_num_entries); 1057 (void) printf("\t\tLeaf blocks: %llu\n", 1058 (u_longlong_t)zs.zs_num_leafs); 1059 (void) printf("\t\tTotal blocks: %llu\n", 1060 (u_longlong_t)zs.zs_num_blocks); 1061 (void) printf("\t\tzap_block_type: 0x%llx\n", 1062 (u_longlong_t)zs.zs_block_type); 1063 (void) printf("\t\tzap_magic: 0x%llx\n", 1064 (u_longlong_t)zs.zs_magic); 1065 (void) printf("\t\tzap_salt: 0x%llx\n", 1066 (u_longlong_t)zs.zs_salt); 1067 1068 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1069 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1070 1071 (void) printf("\t\tBlocks with n*5 entries:\n"); 1072 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1073 1074 (void) printf("\t\tBlocks n/10 full:\n"); 1075 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1076 1077 (void) printf("\t\tEntries with n chunks:\n"); 1078 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1079 1080 (void) printf("\t\tBuckets with n entries:\n"); 1081 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1082 } 1083 1084 static void 1085 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1086 { 1087 (void) os, (void) object, (void) data, (void) size; 1088 } 1089 1090 static void 1091 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1092 { 1093 (void) os, (void) object, (void) data, (void) size; 1094 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1095 } 1096 1097 static void 1098 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1099 { 1100 (void) os, (void) object, (void) data, (void) size; 1101 } 1102 1103 static void 1104 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1105 { 1106 uint64_t *arr; 1107 uint64_t oursize; 1108 if (dump_opt['d'] < 6) 1109 return; 1110 1111 if (data == NULL) { 1112 dmu_object_info_t doi; 1113 1114 VERIFY0(dmu_object_info(os, object, &doi)); 1115 size = doi.doi_max_offset; 1116 /* 1117 * We cap the size at 1 mebibyte here to prevent 1118 * allocation failures and nigh-infinite printing if the 1119 * object is extremely large. 1120 */ 1121 oursize = MIN(size, 1 << 20); 1122 arr = kmem_alloc(oursize, KM_SLEEP); 1123 1124 int err = dmu_read(os, object, 0, oursize, arr, 0); 1125 if (err != 0) { 1126 (void) printf("got error %u from dmu_read\n", err); 1127 kmem_free(arr, oursize); 1128 return; 1129 } 1130 } else { 1131 /* 1132 * Even though the allocation is already done in this code path, 1133 * we still cap the size to prevent excessive printing. 1134 */ 1135 oursize = MIN(size, 1 << 20); 1136 arr = data; 1137 } 1138 1139 if (size == 0) { 1140 (void) printf("\t\t[]\n"); 1141 return; 1142 } 1143 1144 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1145 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1146 if (i % 4 != 0) 1147 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1148 else 1149 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1150 } 1151 if (oursize != size) 1152 (void) printf(", ... "); 1153 (void) printf("]\n"); 1154 1155 if (data == NULL) 1156 kmem_free(arr, oursize); 1157 } 1158 1159 static void 1160 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1161 { 1162 (void) data, (void) size; 1163 zap_cursor_t zc; 1164 zap_attribute_t attr; 1165 void *prop; 1166 unsigned i; 1167 1168 dump_zap_stats(os, object); 1169 (void) printf("\n"); 1170 1171 for (zap_cursor_init(&zc, os, object); 1172 zap_cursor_retrieve(&zc, &attr) == 0; 1173 zap_cursor_advance(&zc)) { 1174 (void) printf("\t\t%s = ", attr.za_name); 1175 if (attr.za_num_integers == 0) { 1176 (void) printf("\n"); 1177 continue; 1178 } 1179 prop = umem_zalloc(attr.za_num_integers * 1180 attr.za_integer_length, UMEM_NOFAIL); 1181 (void) zap_lookup(os, object, attr.za_name, 1182 attr.za_integer_length, attr.za_num_integers, prop); 1183 if (attr.za_integer_length == 1) { 1184 if (strcmp(attr.za_name, 1185 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1186 strcmp(attr.za_name, 1187 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1188 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1189 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1190 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1191 uint8_t *u8 = prop; 1192 1193 for (i = 0; i < attr.za_num_integers; i++) { 1194 (void) printf("%02x", u8[i]); 1195 } 1196 } else { 1197 (void) printf("%s", (char *)prop); 1198 } 1199 } else { 1200 for (i = 0; i < attr.za_num_integers; i++) { 1201 switch (attr.za_integer_length) { 1202 case 2: 1203 (void) printf("%u ", 1204 ((uint16_t *)prop)[i]); 1205 break; 1206 case 4: 1207 (void) printf("%u ", 1208 ((uint32_t *)prop)[i]); 1209 break; 1210 case 8: 1211 (void) printf("%lld ", 1212 (u_longlong_t)((int64_t *)prop)[i]); 1213 break; 1214 } 1215 } 1216 } 1217 (void) printf("\n"); 1218 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1219 } 1220 zap_cursor_fini(&zc); 1221 } 1222 1223 static void 1224 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1225 { 1226 bpobj_phys_t *bpop = data; 1227 uint64_t i; 1228 char bytes[32], comp[32], uncomp[32]; 1229 1230 /* make sure the output won't get truncated */ 1231 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1232 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1233 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1234 1235 if (bpop == NULL) 1236 return; 1237 1238 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1239 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1240 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1241 1242 (void) printf("\t\tnum_blkptrs = %llu\n", 1243 (u_longlong_t)bpop->bpo_num_blkptrs); 1244 (void) printf("\t\tbytes = %s\n", bytes); 1245 if (size >= BPOBJ_SIZE_V1) { 1246 (void) printf("\t\tcomp = %s\n", comp); 1247 (void) printf("\t\tuncomp = %s\n", uncomp); 1248 } 1249 if (size >= BPOBJ_SIZE_V2) { 1250 (void) printf("\t\tsubobjs = %llu\n", 1251 (u_longlong_t)bpop->bpo_subobjs); 1252 (void) printf("\t\tnum_subobjs = %llu\n", 1253 (u_longlong_t)bpop->bpo_num_subobjs); 1254 } 1255 if (size >= sizeof (*bpop)) { 1256 (void) printf("\t\tnum_freed = %llu\n", 1257 (u_longlong_t)bpop->bpo_num_freed); 1258 } 1259 1260 if (dump_opt['d'] < 5) 1261 return; 1262 1263 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1264 char blkbuf[BP_SPRINTF_LEN]; 1265 blkptr_t bp; 1266 1267 int err = dmu_read(os, object, 1268 i * sizeof (bp), sizeof (bp), &bp, 0); 1269 if (err != 0) { 1270 (void) printf("got error %u from dmu_read\n", err); 1271 break; 1272 } 1273 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1274 BP_GET_FREE(&bp)); 1275 (void) printf("\t%s\n", blkbuf); 1276 } 1277 } 1278 1279 static void 1280 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1281 { 1282 (void) data, (void) size; 1283 dmu_object_info_t doi; 1284 int64_t i; 1285 1286 VERIFY0(dmu_object_info(os, object, &doi)); 1287 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1288 1289 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1290 if (err != 0) { 1291 (void) printf("got error %u from dmu_read\n", err); 1292 kmem_free(subobjs, doi.doi_max_offset); 1293 return; 1294 } 1295 1296 int64_t last_nonzero = -1; 1297 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1298 if (subobjs[i] != 0) 1299 last_nonzero = i; 1300 } 1301 1302 for (i = 0; i <= last_nonzero; i++) { 1303 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1304 } 1305 kmem_free(subobjs, doi.doi_max_offset); 1306 } 1307 1308 static void 1309 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1310 { 1311 (void) data, (void) size; 1312 dump_zap_stats(os, object); 1313 /* contents are printed elsewhere, properly decoded */ 1314 } 1315 1316 static void 1317 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1318 { 1319 (void) data, (void) size; 1320 zap_cursor_t zc; 1321 zap_attribute_t attr; 1322 1323 dump_zap_stats(os, object); 1324 (void) printf("\n"); 1325 1326 for (zap_cursor_init(&zc, os, object); 1327 zap_cursor_retrieve(&zc, &attr) == 0; 1328 zap_cursor_advance(&zc)) { 1329 (void) printf("\t\t%s = ", attr.za_name); 1330 if (attr.za_num_integers == 0) { 1331 (void) printf("\n"); 1332 continue; 1333 } 1334 (void) printf(" %llx : [%d:%d:%d]\n", 1335 (u_longlong_t)attr.za_first_integer, 1336 (int)ATTR_LENGTH(attr.za_first_integer), 1337 (int)ATTR_BSWAP(attr.za_first_integer), 1338 (int)ATTR_NUM(attr.za_first_integer)); 1339 } 1340 zap_cursor_fini(&zc); 1341 } 1342 1343 static void 1344 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1345 { 1346 (void) data, (void) size; 1347 zap_cursor_t zc; 1348 zap_attribute_t attr; 1349 uint16_t *layout_attrs; 1350 unsigned i; 1351 1352 dump_zap_stats(os, object); 1353 (void) printf("\n"); 1354 1355 for (zap_cursor_init(&zc, os, object); 1356 zap_cursor_retrieve(&zc, &attr) == 0; 1357 zap_cursor_advance(&zc)) { 1358 (void) printf("\t\t%s = [", attr.za_name); 1359 if (attr.za_num_integers == 0) { 1360 (void) printf("\n"); 1361 continue; 1362 } 1363 1364 VERIFY(attr.za_integer_length == 2); 1365 layout_attrs = umem_zalloc(attr.za_num_integers * 1366 attr.za_integer_length, UMEM_NOFAIL); 1367 1368 VERIFY(zap_lookup(os, object, attr.za_name, 1369 attr.za_integer_length, 1370 attr.za_num_integers, layout_attrs) == 0); 1371 1372 for (i = 0; i != attr.za_num_integers; i++) 1373 (void) printf(" %d ", (int)layout_attrs[i]); 1374 (void) printf("]\n"); 1375 umem_free(layout_attrs, 1376 attr.za_num_integers * attr.za_integer_length); 1377 } 1378 zap_cursor_fini(&zc); 1379 } 1380 1381 static void 1382 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1383 { 1384 (void) data, (void) size; 1385 zap_cursor_t zc; 1386 zap_attribute_t attr; 1387 const char *typenames[] = { 1388 /* 0 */ "not specified", 1389 /* 1 */ "FIFO", 1390 /* 2 */ "Character Device", 1391 /* 3 */ "3 (invalid)", 1392 /* 4 */ "Directory", 1393 /* 5 */ "5 (invalid)", 1394 /* 6 */ "Block Device", 1395 /* 7 */ "7 (invalid)", 1396 /* 8 */ "Regular File", 1397 /* 9 */ "9 (invalid)", 1398 /* 10 */ "Symbolic Link", 1399 /* 11 */ "11 (invalid)", 1400 /* 12 */ "Socket", 1401 /* 13 */ "Door", 1402 /* 14 */ "Event Port", 1403 /* 15 */ "15 (invalid)", 1404 }; 1405 1406 dump_zap_stats(os, object); 1407 (void) printf("\n"); 1408 1409 for (zap_cursor_init(&zc, os, object); 1410 zap_cursor_retrieve(&zc, &attr) == 0; 1411 zap_cursor_advance(&zc)) { 1412 (void) printf("\t\t%s = %lld (type: %s)\n", 1413 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1414 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1415 } 1416 zap_cursor_fini(&zc); 1417 } 1418 1419 static int 1420 get_dtl_refcount(vdev_t *vd) 1421 { 1422 int refcount = 0; 1423 1424 if (vd->vdev_ops->vdev_op_leaf) { 1425 space_map_t *sm = vd->vdev_dtl_sm; 1426 1427 if (sm != NULL && 1428 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1429 return (1); 1430 return (0); 1431 } 1432 1433 for (unsigned c = 0; c < vd->vdev_children; c++) 1434 refcount += get_dtl_refcount(vd->vdev_child[c]); 1435 return (refcount); 1436 } 1437 1438 static int 1439 get_metaslab_refcount(vdev_t *vd) 1440 { 1441 int refcount = 0; 1442 1443 if (vd->vdev_top == vd) { 1444 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1445 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1446 1447 if (sm != NULL && 1448 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1449 refcount++; 1450 } 1451 } 1452 for (unsigned c = 0; c < vd->vdev_children; c++) 1453 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1454 1455 return (refcount); 1456 } 1457 1458 static int 1459 get_obsolete_refcount(vdev_t *vd) 1460 { 1461 uint64_t obsolete_sm_object; 1462 int refcount = 0; 1463 1464 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1465 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1466 dmu_object_info_t doi; 1467 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1468 obsolete_sm_object, &doi)); 1469 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1470 refcount++; 1471 } 1472 } else { 1473 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1474 ASSERT3U(obsolete_sm_object, ==, 0); 1475 } 1476 for (unsigned c = 0; c < vd->vdev_children; c++) { 1477 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1478 } 1479 1480 return (refcount); 1481 } 1482 1483 static int 1484 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1485 { 1486 uint64_t prev_obj = 1487 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1488 if (prev_obj != 0) { 1489 dmu_object_info_t doi; 1490 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1491 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1492 return (1); 1493 } 1494 } 1495 return (0); 1496 } 1497 1498 static int 1499 get_checkpoint_refcount(vdev_t *vd) 1500 { 1501 int refcount = 0; 1502 1503 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1504 zap_contains(spa_meta_objset(vd->vdev_spa), 1505 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1506 refcount++; 1507 1508 for (uint64_t c = 0; c < vd->vdev_children; c++) 1509 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1510 1511 return (refcount); 1512 } 1513 1514 static int 1515 get_log_spacemap_refcount(spa_t *spa) 1516 { 1517 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1518 } 1519 1520 static int 1521 verify_spacemap_refcounts(spa_t *spa) 1522 { 1523 uint64_t expected_refcount = 0; 1524 uint64_t actual_refcount; 1525 1526 (void) feature_get_refcount(spa, 1527 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1528 &expected_refcount); 1529 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1530 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1531 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1532 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1533 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1534 actual_refcount += get_log_spacemap_refcount(spa); 1535 1536 if (expected_refcount != actual_refcount) { 1537 (void) printf("space map refcount mismatch: expected %lld != " 1538 "actual %lld\n", 1539 (longlong_t)expected_refcount, 1540 (longlong_t)actual_refcount); 1541 return (2); 1542 } 1543 return (0); 1544 } 1545 1546 static void 1547 dump_spacemap(objset_t *os, space_map_t *sm) 1548 { 1549 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1550 "INVALID", "INVALID", "INVALID", "INVALID" }; 1551 1552 if (sm == NULL) 1553 return; 1554 1555 (void) printf("space map object %llu:\n", 1556 (longlong_t)sm->sm_object); 1557 (void) printf(" smp_length = 0x%llx\n", 1558 (longlong_t)sm->sm_phys->smp_length); 1559 (void) printf(" smp_alloc = 0x%llx\n", 1560 (longlong_t)sm->sm_phys->smp_alloc); 1561 1562 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1563 return; 1564 1565 /* 1566 * Print out the freelist entries in both encoded and decoded form. 1567 */ 1568 uint8_t mapshift = sm->sm_shift; 1569 int64_t alloc = 0; 1570 uint64_t word, entry_id = 0; 1571 for (uint64_t offset = 0; offset < space_map_length(sm); 1572 offset += sizeof (word)) { 1573 1574 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1575 sizeof (word), &word, DMU_READ_PREFETCH)); 1576 1577 if (sm_entry_is_debug(word)) { 1578 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1579 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1580 if (de_txg == 0) { 1581 (void) printf( 1582 "\t [%6llu] PADDING\n", 1583 (u_longlong_t)entry_id); 1584 } else { 1585 (void) printf( 1586 "\t [%6llu] %s: txg %llu pass %llu\n", 1587 (u_longlong_t)entry_id, 1588 ddata[SM_DEBUG_ACTION_DECODE(word)], 1589 (u_longlong_t)de_txg, 1590 (u_longlong_t)de_sync_pass); 1591 } 1592 entry_id++; 1593 continue; 1594 } 1595 1596 uint8_t words; 1597 char entry_type; 1598 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1599 1600 if (sm_entry_is_single_word(word)) { 1601 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1602 'A' : 'F'; 1603 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1604 sm->sm_start; 1605 entry_run = SM_RUN_DECODE(word) << mapshift; 1606 words = 1; 1607 } else { 1608 /* it is a two-word entry so we read another word */ 1609 ASSERT(sm_entry_is_double_word(word)); 1610 1611 uint64_t extra_word; 1612 offset += sizeof (extra_word); 1613 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1614 sizeof (extra_word), &extra_word, 1615 DMU_READ_PREFETCH)); 1616 1617 ASSERT3U(offset, <=, space_map_length(sm)); 1618 1619 entry_run = SM2_RUN_DECODE(word) << mapshift; 1620 entry_vdev = SM2_VDEV_DECODE(word); 1621 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1622 'A' : 'F'; 1623 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1624 mapshift) + sm->sm_start; 1625 words = 2; 1626 } 1627 1628 (void) printf("\t [%6llu] %c range:" 1629 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1630 (u_longlong_t)entry_id, 1631 entry_type, (u_longlong_t)entry_off, 1632 (u_longlong_t)(entry_off + entry_run), 1633 (u_longlong_t)entry_run, 1634 (u_longlong_t)entry_vdev, words); 1635 1636 if (entry_type == 'A') 1637 alloc += entry_run; 1638 else 1639 alloc -= entry_run; 1640 entry_id++; 1641 } 1642 if (alloc != space_map_allocated(sm)) { 1643 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1644 "with space map summary (%lld)\n", 1645 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1646 } 1647 } 1648 1649 static void 1650 dump_metaslab_stats(metaslab_t *msp) 1651 { 1652 char maxbuf[32]; 1653 range_tree_t *rt = msp->ms_allocatable; 1654 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1655 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1656 1657 /* max sure nicenum has enough space */ 1658 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1659 1660 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1661 1662 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1663 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1664 "freepct", free_pct); 1665 (void) printf("\tIn-memory histogram:\n"); 1666 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1667 } 1668 1669 static void 1670 dump_metaslab(metaslab_t *msp) 1671 { 1672 vdev_t *vd = msp->ms_group->mg_vd; 1673 spa_t *spa = vd->vdev_spa; 1674 space_map_t *sm = msp->ms_sm; 1675 char freebuf[32]; 1676 1677 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1678 sizeof (freebuf)); 1679 1680 (void) printf( 1681 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1682 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1683 (u_longlong_t)space_map_object(sm), freebuf); 1684 1685 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1686 mutex_enter(&msp->ms_lock); 1687 VERIFY0(metaslab_load(msp)); 1688 range_tree_stat_verify(msp->ms_allocatable); 1689 dump_metaslab_stats(msp); 1690 metaslab_unload(msp); 1691 mutex_exit(&msp->ms_lock); 1692 } 1693 1694 if (dump_opt['m'] > 1 && sm != NULL && 1695 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1696 /* 1697 * The space map histogram represents free space in chunks 1698 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1699 */ 1700 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1701 (u_longlong_t)msp->ms_fragmentation); 1702 dump_histogram(sm->sm_phys->smp_histogram, 1703 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1704 } 1705 1706 if (vd->vdev_ops == &vdev_draid_ops) 1707 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1708 else 1709 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1710 1711 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1712 1713 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1714 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1715 (u_longlong_t)metaslab_unflushed_txg(msp)); 1716 } 1717 } 1718 1719 static void 1720 print_vdev_metaslab_header(vdev_t *vd) 1721 { 1722 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1723 const char *bias_str = ""; 1724 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1725 bias_str = VDEV_ALLOC_BIAS_LOG; 1726 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1727 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1728 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1729 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1730 } 1731 1732 uint64_t ms_flush_data_obj = 0; 1733 if (vd->vdev_top_zap != 0) { 1734 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1735 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1736 sizeof (uint64_t), 1, &ms_flush_data_obj); 1737 if (error != ENOENT) { 1738 ASSERT0(error); 1739 } 1740 } 1741 1742 (void) printf("\tvdev %10llu %s", 1743 (u_longlong_t)vd->vdev_id, bias_str); 1744 1745 if (ms_flush_data_obj != 0) { 1746 (void) printf(" ms_unflushed_phys object %llu", 1747 (u_longlong_t)ms_flush_data_obj); 1748 } 1749 1750 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1751 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1752 "offset", "spacemap", "free"); 1753 (void) printf("\t%15s %19s %15s %12s\n", 1754 "---------------", "-------------------", 1755 "---------------", "------------"); 1756 } 1757 1758 static void 1759 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1760 { 1761 vdev_t *rvd = spa->spa_root_vdev; 1762 metaslab_class_t *mc = spa_normal_class(spa); 1763 metaslab_class_t *smc = spa_special_class(spa); 1764 uint64_t fragmentation; 1765 1766 metaslab_class_histogram_verify(mc); 1767 1768 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1769 vdev_t *tvd = rvd->vdev_child[c]; 1770 metaslab_group_t *mg = tvd->vdev_mg; 1771 1772 if (mg == NULL || (mg->mg_class != mc && 1773 (!show_special || mg->mg_class != smc))) 1774 continue; 1775 1776 metaslab_group_histogram_verify(mg); 1777 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1778 1779 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1780 "fragmentation", 1781 (u_longlong_t)tvd->vdev_id, 1782 (u_longlong_t)tvd->vdev_ms_count); 1783 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1784 (void) printf("%3s\n", "-"); 1785 } else { 1786 (void) printf("%3llu%%\n", 1787 (u_longlong_t)mg->mg_fragmentation); 1788 } 1789 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1790 } 1791 1792 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1793 fragmentation = metaslab_class_fragmentation(mc); 1794 if (fragmentation == ZFS_FRAG_INVALID) 1795 (void) printf("\t%3s\n", "-"); 1796 else 1797 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1798 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1799 } 1800 1801 static void 1802 print_vdev_indirect(vdev_t *vd) 1803 { 1804 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1805 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1806 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1807 1808 if (vim == NULL) { 1809 ASSERT3P(vib, ==, NULL); 1810 return; 1811 } 1812 1813 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1814 vic->vic_mapping_object); 1815 ASSERT3U(vdev_indirect_births_object(vib), ==, 1816 vic->vic_births_object); 1817 1818 (void) printf("indirect births obj %llu:\n", 1819 (longlong_t)vic->vic_births_object); 1820 (void) printf(" vib_count = %llu\n", 1821 (longlong_t)vdev_indirect_births_count(vib)); 1822 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1823 vdev_indirect_birth_entry_phys_t *cur_vibe = 1824 &vib->vib_entries[i]; 1825 (void) printf("\toffset %llx -> txg %llu\n", 1826 (longlong_t)cur_vibe->vibe_offset, 1827 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1828 } 1829 (void) printf("\n"); 1830 1831 (void) printf("indirect mapping obj %llu:\n", 1832 (longlong_t)vic->vic_mapping_object); 1833 (void) printf(" vim_max_offset = 0x%llx\n", 1834 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1835 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1836 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1837 (void) printf(" vim_count = %llu\n", 1838 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1839 1840 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1841 return; 1842 1843 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1844 1845 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1846 vdev_indirect_mapping_entry_phys_t *vimep = 1847 &vim->vim_entries[i]; 1848 (void) printf("\t<%llx:%llx:%llx> -> " 1849 "<%llx:%llx:%llx> (%x obsolete)\n", 1850 (longlong_t)vd->vdev_id, 1851 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1852 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1853 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1854 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1855 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1856 counts[i]); 1857 } 1858 (void) printf("\n"); 1859 1860 uint64_t obsolete_sm_object; 1861 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1862 if (obsolete_sm_object != 0) { 1863 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1864 (void) printf("obsolete space map object %llu:\n", 1865 (u_longlong_t)obsolete_sm_object); 1866 ASSERT(vd->vdev_obsolete_sm != NULL); 1867 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1868 obsolete_sm_object); 1869 dump_spacemap(mos, vd->vdev_obsolete_sm); 1870 (void) printf("\n"); 1871 } 1872 } 1873 1874 static void 1875 dump_metaslabs(spa_t *spa) 1876 { 1877 vdev_t *vd, *rvd = spa->spa_root_vdev; 1878 uint64_t m, c = 0, children = rvd->vdev_children; 1879 1880 (void) printf("\nMetaslabs:\n"); 1881 1882 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1883 c = zopt_metaslab[0]; 1884 1885 if (c >= children) 1886 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1887 1888 if (zopt_metaslab_args > 1) { 1889 vd = rvd->vdev_child[c]; 1890 print_vdev_metaslab_header(vd); 1891 1892 for (m = 1; m < zopt_metaslab_args; m++) { 1893 if (zopt_metaslab[m] < vd->vdev_ms_count) 1894 dump_metaslab( 1895 vd->vdev_ms[zopt_metaslab[m]]); 1896 else 1897 (void) fprintf(stderr, "bad metaslab " 1898 "number %llu\n", 1899 (u_longlong_t)zopt_metaslab[m]); 1900 } 1901 (void) printf("\n"); 1902 return; 1903 } 1904 children = c + 1; 1905 } 1906 for (; c < children; c++) { 1907 vd = rvd->vdev_child[c]; 1908 print_vdev_metaslab_header(vd); 1909 1910 print_vdev_indirect(vd); 1911 1912 for (m = 0; m < vd->vdev_ms_count; m++) 1913 dump_metaslab(vd->vdev_ms[m]); 1914 (void) printf("\n"); 1915 } 1916 } 1917 1918 static void 1919 dump_log_spacemaps(spa_t *spa) 1920 { 1921 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1922 return; 1923 1924 (void) printf("\nLog Space Maps in Pool:\n"); 1925 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1926 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1927 space_map_t *sm = NULL; 1928 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1929 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1930 1931 (void) printf("Log Spacemap object %llu txg %llu\n", 1932 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1933 dump_spacemap(spa->spa_meta_objset, sm); 1934 space_map_close(sm); 1935 } 1936 (void) printf("\n"); 1937 } 1938 1939 static void 1940 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1941 { 1942 const ddt_phys_t *ddp = dde->dde_phys; 1943 const ddt_key_t *ddk = &dde->dde_key; 1944 const char *types[4] = { "ditto", "single", "double", "triple" }; 1945 char blkbuf[BP_SPRINTF_LEN]; 1946 blkptr_t blk; 1947 int p; 1948 1949 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1950 if (ddp->ddp_phys_birth == 0) 1951 continue; 1952 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1953 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1954 (void) printf("index %llx refcnt %llu %s %s\n", 1955 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1956 types[p], blkbuf); 1957 } 1958 } 1959 1960 static void 1961 dump_dedup_ratio(const ddt_stat_t *dds) 1962 { 1963 double rL, rP, rD, D, dedup, compress, copies; 1964 1965 if (dds->dds_blocks == 0) 1966 return; 1967 1968 rL = (double)dds->dds_ref_lsize; 1969 rP = (double)dds->dds_ref_psize; 1970 rD = (double)dds->dds_ref_dsize; 1971 D = (double)dds->dds_dsize; 1972 1973 dedup = rD / D; 1974 compress = rL / rP; 1975 copies = rD / rP; 1976 1977 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1978 "dedup * compress / copies = %.2f\n\n", 1979 dedup, compress, copies, dedup * compress / copies); 1980 } 1981 1982 static void 1983 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1984 { 1985 char name[DDT_NAMELEN]; 1986 ddt_entry_t dde; 1987 uint64_t walk = 0; 1988 dmu_object_info_t doi; 1989 uint64_t count, dspace, mspace; 1990 int error; 1991 1992 error = ddt_object_info(ddt, type, class, &doi); 1993 1994 if (error == ENOENT) 1995 return; 1996 ASSERT(error == 0); 1997 1998 error = ddt_object_count(ddt, type, class, &count); 1999 ASSERT(error == 0); 2000 if (count == 0) 2001 return; 2002 2003 dspace = doi.doi_physical_blocks_512 << 9; 2004 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2005 2006 ddt_object_name(ddt, type, class, name); 2007 2008 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2009 name, 2010 (u_longlong_t)count, 2011 (u_longlong_t)(dspace / count), 2012 (u_longlong_t)(mspace / count)); 2013 2014 if (dump_opt['D'] < 3) 2015 return; 2016 2017 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2018 2019 if (dump_opt['D'] < 4) 2020 return; 2021 2022 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2023 return; 2024 2025 (void) printf("%s contents:\n\n", name); 2026 2027 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2028 dump_dde(ddt, &dde, walk); 2029 2030 ASSERT3U(error, ==, ENOENT); 2031 2032 (void) printf("\n"); 2033 } 2034 2035 static void 2036 dump_all_ddts(spa_t *spa) 2037 { 2038 ddt_histogram_t ddh_total = {{{0}}}; 2039 ddt_stat_t dds_total = {0}; 2040 2041 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2042 ddt_t *ddt = spa->spa_ddt[c]; 2043 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 2044 for (enum ddt_class class = 0; class < DDT_CLASSES; 2045 class++) { 2046 dump_ddt(ddt, type, class); 2047 } 2048 } 2049 } 2050 2051 ddt_get_dedup_stats(spa, &dds_total); 2052 2053 if (dds_total.dds_blocks == 0) { 2054 (void) printf("All DDTs are empty\n"); 2055 return; 2056 } 2057 2058 (void) printf("\n"); 2059 2060 if (dump_opt['D'] > 1) { 2061 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2062 ddt_get_dedup_histogram(spa, &ddh_total); 2063 zpool_dump_ddt(&dds_total, &ddh_total); 2064 } 2065 2066 dump_dedup_ratio(&dds_total); 2067 } 2068 2069 static void 2070 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2071 { 2072 char *prefix = arg; 2073 2074 (void) printf("%s [%llu,%llu) length %llu\n", 2075 prefix, 2076 (u_longlong_t)start, 2077 (u_longlong_t)(start + size), 2078 (u_longlong_t)(size)); 2079 } 2080 2081 static void 2082 dump_dtl(vdev_t *vd, int indent) 2083 { 2084 spa_t *spa = vd->vdev_spa; 2085 boolean_t required; 2086 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2087 "outage" }; 2088 char prefix[256]; 2089 2090 spa_vdev_state_enter(spa, SCL_NONE); 2091 required = vdev_dtl_required(vd); 2092 (void) spa_vdev_state_exit(spa, NULL, 0); 2093 2094 if (indent == 0) 2095 (void) printf("\nDirty time logs:\n\n"); 2096 2097 (void) printf("\t%*s%s [%s]\n", indent, "", 2098 vd->vdev_path ? vd->vdev_path : 2099 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2100 required ? "DTL-required" : "DTL-expendable"); 2101 2102 for (int t = 0; t < DTL_TYPES; t++) { 2103 range_tree_t *rt = vd->vdev_dtl[t]; 2104 if (range_tree_space(rt) == 0) 2105 continue; 2106 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2107 indent + 2, "", name[t]); 2108 range_tree_walk(rt, dump_dtl_seg, prefix); 2109 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2110 dump_spacemap(spa->spa_meta_objset, 2111 vd->vdev_dtl_sm); 2112 } 2113 2114 for (unsigned c = 0; c < vd->vdev_children; c++) 2115 dump_dtl(vd->vdev_child[c], indent + 4); 2116 } 2117 2118 static void 2119 dump_history(spa_t *spa) 2120 { 2121 nvlist_t **events = NULL; 2122 char *buf; 2123 uint64_t resid, len, off = 0; 2124 uint_t num = 0; 2125 int error; 2126 char tbuf[30]; 2127 2128 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2129 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2130 __func__); 2131 return; 2132 } 2133 2134 do { 2135 len = SPA_OLD_MAXBLOCKSIZE; 2136 2137 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2138 (void) fprintf(stderr, "Unable to read history: " 2139 "error %d\n", error); 2140 free(buf); 2141 return; 2142 } 2143 2144 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2145 break; 2146 2147 off -= resid; 2148 } while (len != 0); 2149 2150 (void) printf("\nHistory:\n"); 2151 for (unsigned i = 0; i < num; i++) { 2152 boolean_t printed = B_FALSE; 2153 2154 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2155 time_t tsec; 2156 struct tm t; 2157 2158 tsec = fnvlist_lookup_uint64(events[i], 2159 ZPOOL_HIST_TIME); 2160 (void) localtime_r(&tsec, &t); 2161 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2162 } else { 2163 tbuf[0] = '\0'; 2164 } 2165 2166 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2167 (void) printf("%s %s\n", tbuf, 2168 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2169 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2170 uint64_t ievent; 2171 2172 ievent = fnvlist_lookup_uint64(events[i], 2173 ZPOOL_HIST_INT_EVENT); 2174 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2175 goto next; 2176 2177 (void) printf(" %s [internal %s txg:%ju] %s\n", 2178 tbuf, 2179 zfs_history_event_names[ievent], 2180 fnvlist_lookup_uint64(events[i], 2181 ZPOOL_HIST_TXG), 2182 fnvlist_lookup_string(events[i], 2183 ZPOOL_HIST_INT_STR)); 2184 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2185 (void) printf("%s [txg:%ju] %s", tbuf, 2186 fnvlist_lookup_uint64(events[i], 2187 ZPOOL_HIST_TXG), 2188 fnvlist_lookup_string(events[i], 2189 ZPOOL_HIST_INT_NAME)); 2190 2191 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2192 (void) printf(" %s (%llu)", 2193 fnvlist_lookup_string(events[i], 2194 ZPOOL_HIST_DSNAME), 2195 (u_longlong_t)fnvlist_lookup_uint64( 2196 events[i], 2197 ZPOOL_HIST_DSID)); 2198 } 2199 2200 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2201 ZPOOL_HIST_INT_STR)); 2202 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2203 (void) printf("%s ioctl %s\n", tbuf, 2204 fnvlist_lookup_string(events[i], 2205 ZPOOL_HIST_IOCTL)); 2206 2207 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2208 (void) printf(" input:\n"); 2209 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2210 ZPOOL_HIST_INPUT_NVL), 8); 2211 } 2212 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2213 (void) printf(" output:\n"); 2214 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2215 ZPOOL_HIST_OUTPUT_NVL), 8); 2216 } 2217 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2218 (void) printf(" errno: %lld\n", 2219 (longlong_t)fnvlist_lookup_int64(events[i], 2220 ZPOOL_HIST_ERRNO)); 2221 } 2222 } else { 2223 goto next; 2224 } 2225 2226 printed = B_TRUE; 2227 next: 2228 if (dump_opt['h'] > 1) { 2229 if (!printed) 2230 (void) printf("unrecognized record:\n"); 2231 dump_nvlist(events[i], 2); 2232 } 2233 } 2234 free(buf); 2235 } 2236 2237 static void 2238 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2239 { 2240 (void) os, (void) object, (void) data, (void) size; 2241 } 2242 2243 static uint64_t 2244 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2245 const zbookmark_phys_t *zb) 2246 { 2247 if (dnp == NULL) { 2248 ASSERT(zb->zb_level < 0); 2249 if (zb->zb_object == 0) 2250 return (zb->zb_blkid); 2251 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2252 } 2253 2254 ASSERT(zb->zb_level >= 0); 2255 2256 return ((zb->zb_blkid << 2257 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2258 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2259 } 2260 2261 static void 2262 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2263 const blkptr_t *bp) 2264 { 2265 abd_t *pabd; 2266 void *buf; 2267 zio_t *zio; 2268 zfs_zstdhdr_t zstd_hdr; 2269 int error; 2270 2271 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2272 return; 2273 2274 if (BP_IS_HOLE(bp)) 2275 return; 2276 2277 if (BP_IS_EMBEDDED(bp)) { 2278 buf = malloc(SPA_MAXBLOCKSIZE); 2279 if (buf == NULL) { 2280 (void) fprintf(stderr, "out of memory\n"); 2281 exit(1); 2282 } 2283 decode_embedded_bp_compressed(bp, buf); 2284 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2285 free(buf); 2286 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2287 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2288 (void) snprintf(blkbuf + strlen(blkbuf), 2289 buflen - strlen(blkbuf), 2290 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2291 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2292 zfs_get_hdrlevel(&zstd_hdr)); 2293 return; 2294 } 2295 2296 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2297 zio = zio_root(spa, NULL, NULL, 0); 2298 2299 /* Decrypt but don't decompress so we can read the compression header */ 2300 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2301 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2302 NULL)); 2303 error = zio_wait(zio); 2304 if (error) { 2305 (void) fprintf(stderr, "read failed: %d\n", error); 2306 return; 2307 } 2308 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2309 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2310 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2311 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2312 2313 (void) snprintf(blkbuf + strlen(blkbuf), 2314 buflen - strlen(blkbuf), 2315 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2316 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2317 zfs_get_hdrlevel(&zstd_hdr)); 2318 2319 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2320 } 2321 2322 static void 2323 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2324 boolean_t bp_freed) 2325 { 2326 const dva_t *dva = bp->blk_dva; 2327 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2328 int i; 2329 2330 if (dump_opt['b'] >= 6) { 2331 snprintf_blkptr(blkbuf, buflen, bp); 2332 if (bp_freed) { 2333 (void) snprintf(blkbuf + strlen(blkbuf), 2334 buflen - strlen(blkbuf), " %s", "FREE"); 2335 } 2336 return; 2337 } 2338 2339 if (BP_IS_EMBEDDED(bp)) { 2340 (void) sprintf(blkbuf, 2341 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2342 (int)BPE_GET_ETYPE(bp), 2343 (u_longlong_t)BPE_GET_LSIZE(bp), 2344 (u_longlong_t)BPE_GET_PSIZE(bp), 2345 (u_longlong_t)bp->blk_birth); 2346 return; 2347 } 2348 2349 blkbuf[0] = '\0'; 2350 2351 for (i = 0; i < ndvas; i++) 2352 (void) snprintf(blkbuf + strlen(blkbuf), 2353 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2354 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2355 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2356 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2357 2358 if (BP_IS_HOLE(bp)) { 2359 (void) snprintf(blkbuf + strlen(blkbuf), 2360 buflen - strlen(blkbuf), 2361 "%llxL B=%llu", 2362 (u_longlong_t)BP_GET_LSIZE(bp), 2363 (u_longlong_t)bp->blk_birth); 2364 } else { 2365 (void) snprintf(blkbuf + strlen(blkbuf), 2366 buflen - strlen(blkbuf), 2367 "%llxL/%llxP F=%llu B=%llu/%llu", 2368 (u_longlong_t)BP_GET_LSIZE(bp), 2369 (u_longlong_t)BP_GET_PSIZE(bp), 2370 (u_longlong_t)BP_GET_FILL(bp), 2371 (u_longlong_t)bp->blk_birth, 2372 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2373 if (bp_freed) 2374 (void) snprintf(blkbuf + strlen(blkbuf), 2375 buflen - strlen(blkbuf), " %s", "FREE"); 2376 (void) snprintf(blkbuf + strlen(blkbuf), 2377 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx", 2378 (u_longlong_t)bp->blk_cksum.zc_word[0], 2379 (u_longlong_t)bp->blk_cksum.zc_word[1], 2380 (u_longlong_t)bp->blk_cksum.zc_word[2], 2381 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2382 } 2383 } 2384 2385 static void 2386 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2387 const dnode_phys_t *dnp) 2388 { 2389 char blkbuf[BP_SPRINTF_LEN]; 2390 int l; 2391 2392 if (!BP_IS_EMBEDDED(bp)) { 2393 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2394 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2395 } 2396 2397 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2398 2399 ASSERT(zb->zb_level >= 0); 2400 2401 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2402 if (l == zb->zb_level) { 2403 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2404 } else { 2405 (void) printf(" "); 2406 } 2407 } 2408 2409 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2410 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2411 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2412 (void) printf("%s\n", blkbuf); 2413 } 2414 2415 static int 2416 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2417 blkptr_t *bp, const zbookmark_phys_t *zb) 2418 { 2419 int err = 0; 2420 2421 if (bp->blk_birth == 0) 2422 return (0); 2423 2424 print_indirect(spa, bp, zb, dnp); 2425 2426 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2427 arc_flags_t flags = ARC_FLAG_WAIT; 2428 int i; 2429 blkptr_t *cbp; 2430 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2431 arc_buf_t *buf; 2432 uint64_t fill = 0; 2433 ASSERT(!BP_IS_REDACTED(bp)); 2434 2435 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2436 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2437 if (err) 2438 return (err); 2439 ASSERT(buf->b_data); 2440 2441 /* recursively visit blocks below this */ 2442 cbp = buf->b_data; 2443 for (i = 0; i < epb; i++, cbp++) { 2444 zbookmark_phys_t czb; 2445 2446 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2447 zb->zb_level - 1, 2448 zb->zb_blkid * epb + i); 2449 err = visit_indirect(spa, dnp, cbp, &czb); 2450 if (err) 2451 break; 2452 fill += BP_GET_FILL(cbp); 2453 } 2454 if (!err) 2455 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2456 arc_buf_destroy(buf, &buf); 2457 } 2458 2459 return (err); 2460 } 2461 2462 static void 2463 dump_indirect(dnode_t *dn) 2464 { 2465 dnode_phys_t *dnp = dn->dn_phys; 2466 zbookmark_phys_t czb; 2467 2468 (void) printf("Indirect blocks:\n"); 2469 2470 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2471 dn->dn_object, dnp->dn_nlevels - 1, 0); 2472 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2473 czb.zb_blkid = j; 2474 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2475 &dnp->dn_blkptr[j], &czb); 2476 } 2477 2478 (void) printf("\n"); 2479 } 2480 2481 static void 2482 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2483 { 2484 (void) os, (void) object; 2485 dsl_dir_phys_t *dd = data; 2486 time_t crtime; 2487 char nice[32]; 2488 2489 /* make sure nicenum has enough space */ 2490 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2491 2492 if (dd == NULL) 2493 return; 2494 2495 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2496 2497 crtime = dd->dd_creation_time; 2498 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2499 (void) printf("\t\thead_dataset_obj = %llu\n", 2500 (u_longlong_t)dd->dd_head_dataset_obj); 2501 (void) printf("\t\tparent_dir_obj = %llu\n", 2502 (u_longlong_t)dd->dd_parent_obj); 2503 (void) printf("\t\torigin_obj = %llu\n", 2504 (u_longlong_t)dd->dd_origin_obj); 2505 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2506 (u_longlong_t)dd->dd_child_dir_zapobj); 2507 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2508 (void) printf("\t\tused_bytes = %s\n", nice); 2509 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2510 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2511 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2512 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2513 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2514 (void) printf("\t\tquota = %s\n", nice); 2515 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2516 (void) printf("\t\treserved = %s\n", nice); 2517 (void) printf("\t\tprops_zapobj = %llu\n", 2518 (u_longlong_t)dd->dd_props_zapobj); 2519 (void) printf("\t\tdeleg_zapobj = %llu\n", 2520 (u_longlong_t)dd->dd_deleg_zapobj); 2521 (void) printf("\t\tflags = %llx\n", 2522 (u_longlong_t)dd->dd_flags); 2523 2524 #define DO(which) \ 2525 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2526 sizeof (nice)); \ 2527 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2528 DO(HEAD); 2529 DO(SNAP); 2530 DO(CHILD); 2531 DO(CHILD_RSRV); 2532 DO(REFRSRV); 2533 #undef DO 2534 (void) printf("\t\tclones = %llu\n", 2535 (u_longlong_t)dd->dd_clones); 2536 } 2537 2538 static void 2539 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2540 { 2541 (void) os, (void) object; 2542 dsl_dataset_phys_t *ds = data; 2543 time_t crtime; 2544 char used[32], compressed[32], uncompressed[32], unique[32]; 2545 char blkbuf[BP_SPRINTF_LEN]; 2546 2547 /* make sure nicenum has enough space */ 2548 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2549 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2550 "compressed truncated"); 2551 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2552 "uncompressed truncated"); 2553 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2554 2555 if (ds == NULL) 2556 return; 2557 2558 ASSERT(size == sizeof (*ds)); 2559 crtime = ds->ds_creation_time; 2560 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2561 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2562 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2563 sizeof (uncompressed)); 2564 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2565 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2566 2567 (void) printf("\t\tdir_obj = %llu\n", 2568 (u_longlong_t)ds->ds_dir_obj); 2569 (void) printf("\t\tprev_snap_obj = %llu\n", 2570 (u_longlong_t)ds->ds_prev_snap_obj); 2571 (void) printf("\t\tprev_snap_txg = %llu\n", 2572 (u_longlong_t)ds->ds_prev_snap_txg); 2573 (void) printf("\t\tnext_snap_obj = %llu\n", 2574 (u_longlong_t)ds->ds_next_snap_obj); 2575 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2576 (u_longlong_t)ds->ds_snapnames_zapobj); 2577 (void) printf("\t\tnum_children = %llu\n", 2578 (u_longlong_t)ds->ds_num_children); 2579 (void) printf("\t\tuserrefs_obj = %llu\n", 2580 (u_longlong_t)ds->ds_userrefs_obj); 2581 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2582 (void) printf("\t\tcreation_txg = %llu\n", 2583 (u_longlong_t)ds->ds_creation_txg); 2584 (void) printf("\t\tdeadlist_obj = %llu\n", 2585 (u_longlong_t)ds->ds_deadlist_obj); 2586 (void) printf("\t\tused_bytes = %s\n", used); 2587 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2588 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2589 (void) printf("\t\tunique = %s\n", unique); 2590 (void) printf("\t\tfsid_guid = %llu\n", 2591 (u_longlong_t)ds->ds_fsid_guid); 2592 (void) printf("\t\tguid = %llu\n", 2593 (u_longlong_t)ds->ds_guid); 2594 (void) printf("\t\tflags = %llx\n", 2595 (u_longlong_t)ds->ds_flags); 2596 (void) printf("\t\tnext_clones_obj = %llu\n", 2597 (u_longlong_t)ds->ds_next_clones_obj); 2598 (void) printf("\t\tprops_obj = %llu\n", 2599 (u_longlong_t)ds->ds_props_obj); 2600 (void) printf("\t\tbp = %s\n", blkbuf); 2601 } 2602 2603 static int 2604 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2605 { 2606 (void) arg, (void) tx; 2607 char blkbuf[BP_SPRINTF_LEN]; 2608 2609 if (bp->blk_birth != 0) { 2610 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2611 (void) printf("\t%s\n", blkbuf); 2612 } 2613 return (0); 2614 } 2615 2616 static void 2617 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2618 { 2619 char bytes[32]; 2620 bptree_phys_t *bt; 2621 dmu_buf_t *db; 2622 2623 /* make sure nicenum has enough space */ 2624 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2625 2626 if (dump_opt['d'] < 3) 2627 return; 2628 2629 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2630 bt = db->db_data; 2631 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2632 (void) printf("\n %s: %llu datasets, %s\n", 2633 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2634 dmu_buf_rele(db, FTAG); 2635 2636 if (dump_opt['d'] < 5) 2637 return; 2638 2639 (void) printf("\n"); 2640 2641 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2642 } 2643 2644 static int 2645 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2646 { 2647 (void) arg, (void) tx; 2648 char blkbuf[BP_SPRINTF_LEN]; 2649 2650 ASSERT(bp->blk_birth != 0); 2651 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2652 (void) printf("\t%s\n", blkbuf); 2653 return (0); 2654 } 2655 2656 static void 2657 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2658 { 2659 char bytes[32]; 2660 char comp[32]; 2661 char uncomp[32]; 2662 uint64_t i; 2663 2664 /* make sure nicenum has enough space */ 2665 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2666 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2667 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2668 2669 if (dump_opt['d'] < 3) 2670 return; 2671 2672 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2673 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2674 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2675 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2676 if (bpo->bpo_havefreed) { 2677 (void) printf(" %*s: object %llu, %llu local " 2678 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2679 "%s (%s/%s comp)\n", 2680 indent * 8, name, 2681 (u_longlong_t)bpo->bpo_object, 2682 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2683 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2684 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2685 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2686 bytes, comp, uncomp); 2687 } else { 2688 (void) printf(" %*s: object %llu, %llu local " 2689 "blkptrs, %llu subobjs in object %llu, " 2690 "%s (%s/%s comp)\n", 2691 indent * 8, name, 2692 (u_longlong_t)bpo->bpo_object, 2693 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2694 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2695 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2696 bytes, comp, uncomp); 2697 } 2698 2699 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2700 uint64_t subobj; 2701 bpobj_t subbpo; 2702 int error; 2703 VERIFY0(dmu_read(bpo->bpo_os, 2704 bpo->bpo_phys->bpo_subobjs, 2705 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2706 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2707 if (error != 0) { 2708 (void) printf("ERROR %u while trying to open " 2709 "subobj id %llu\n", 2710 error, (u_longlong_t)subobj); 2711 continue; 2712 } 2713 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2714 bpobj_close(&subbpo); 2715 } 2716 } else { 2717 if (bpo->bpo_havefreed) { 2718 (void) printf(" %*s: object %llu, %llu blkptrs, " 2719 "%llu freed, %s\n", 2720 indent * 8, name, 2721 (u_longlong_t)bpo->bpo_object, 2722 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2723 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2724 bytes); 2725 } else { 2726 (void) printf(" %*s: object %llu, %llu blkptrs, " 2727 "%s\n", 2728 indent * 8, name, 2729 (u_longlong_t)bpo->bpo_object, 2730 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2731 bytes); 2732 } 2733 } 2734 2735 if (dump_opt['d'] < 5) 2736 return; 2737 2738 2739 if (indent == 0) { 2740 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2741 (void) printf("\n"); 2742 } 2743 } 2744 2745 static int 2746 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2747 boolean_t print_list) 2748 { 2749 int err = 0; 2750 zfs_bookmark_phys_t prop; 2751 objset_t *mos = dp->dp_spa->spa_meta_objset; 2752 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2753 2754 if (err != 0) { 2755 return (err); 2756 } 2757 2758 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2759 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2760 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2761 (u_longlong_t)prop.zbm_creation_txg, 2762 (u_longlong_t)prop.zbm_creation_time, 2763 (u_longlong_t)prop.zbm_redaction_obj); 2764 2765 IMPLY(print_list, print_redact); 2766 if (!print_redact || prop.zbm_redaction_obj == 0) 2767 return (0); 2768 2769 redaction_list_t *rl; 2770 VERIFY0(dsl_redaction_list_hold_obj(dp, 2771 prop.zbm_redaction_obj, FTAG, &rl)); 2772 2773 redaction_list_phys_t *rlp = rl->rl_phys; 2774 (void) printf("\tRedacted:\n\t\tProgress: "); 2775 if (rlp->rlp_last_object != UINT64_MAX || 2776 rlp->rlp_last_blkid != UINT64_MAX) { 2777 (void) printf("%llu %llu (incomplete)\n", 2778 (u_longlong_t)rlp->rlp_last_object, 2779 (u_longlong_t)rlp->rlp_last_blkid); 2780 } else { 2781 (void) printf("complete\n"); 2782 } 2783 (void) printf("\t\tSnapshots: ["); 2784 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2785 if (i > 0) 2786 (void) printf(", "); 2787 (void) printf("%0llu", 2788 (u_longlong_t)rlp->rlp_snaps[i]); 2789 } 2790 (void) printf("]\n\t\tLength: %llu\n", 2791 (u_longlong_t)rlp->rlp_num_entries); 2792 2793 if (!print_list) { 2794 dsl_redaction_list_rele(rl, FTAG); 2795 return (0); 2796 } 2797 2798 if (rlp->rlp_num_entries == 0) { 2799 dsl_redaction_list_rele(rl, FTAG); 2800 (void) printf("\t\tRedaction List: []\n\n"); 2801 return (0); 2802 } 2803 2804 redact_block_phys_t *rbp_buf; 2805 uint64_t size; 2806 dmu_object_info_t doi; 2807 2808 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2809 size = doi.doi_max_offset; 2810 rbp_buf = kmem_alloc(size, KM_SLEEP); 2811 2812 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2813 rbp_buf, 0); 2814 if (err != 0) { 2815 dsl_redaction_list_rele(rl, FTAG); 2816 kmem_free(rbp_buf, size); 2817 return (err); 2818 } 2819 2820 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2821 "%llx, blksz: %x, count: %llx}", 2822 (u_longlong_t)rbp_buf[0].rbp_object, 2823 (u_longlong_t)rbp_buf[0].rbp_blkid, 2824 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2825 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2826 2827 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2828 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2829 "blksz: %x, count: %llx}", 2830 (u_longlong_t)rbp_buf[i].rbp_object, 2831 (u_longlong_t)rbp_buf[i].rbp_blkid, 2832 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2833 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2834 } 2835 dsl_redaction_list_rele(rl, FTAG); 2836 kmem_free(rbp_buf, size); 2837 (void) printf("]\n\n"); 2838 return (0); 2839 } 2840 2841 static void 2842 dump_bookmarks(objset_t *os, int verbosity) 2843 { 2844 zap_cursor_t zc; 2845 zap_attribute_t attr; 2846 dsl_dataset_t *ds = dmu_objset_ds(os); 2847 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2848 objset_t *mos = os->os_spa->spa_meta_objset; 2849 if (verbosity < 4) 2850 return; 2851 dsl_pool_config_enter(dp, FTAG); 2852 2853 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2854 zap_cursor_retrieve(&zc, &attr) == 0; 2855 zap_cursor_advance(&zc)) { 2856 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2857 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2858 dmu_objset_name(os, osname); 2859 VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname, 2860 attr.za_name)); 2861 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2862 } 2863 zap_cursor_fini(&zc); 2864 dsl_pool_config_exit(dp, FTAG); 2865 } 2866 2867 static void 2868 bpobj_count_refd(bpobj_t *bpo) 2869 { 2870 mos_obj_refd(bpo->bpo_object); 2871 2872 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2873 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2874 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2875 uint64_t subobj; 2876 bpobj_t subbpo; 2877 int error; 2878 VERIFY0(dmu_read(bpo->bpo_os, 2879 bpo->bpo_phys->bpo_subobjs, 2880 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2881 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2882 if (error != 0) { 2883 (void) printf("ERROR %u while trying to open " 2884 "subobj id %llu\n", 2885 error, (u_longlong_t)subobj); 2886 continue; 2887 } 2888 bpobj_count_refd(&subbpo); 2889 bpobj_close(&subbpo); 2890 } 2891 } 2892 } 2893 2894 static int 2895 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2896 { 2897 spa_t *spa = arg; 2898 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2899 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2900 bpobj_count_refd(&dle->dle_bpobj); 2901 return (0); 2902 } 2903 2904 static int 2905 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2906 { 2907 ASSERT(arg == NULL); 2908 if (dump_opt['d'] >= 5) { 2909 char buf[128]; 2910 (void) snprintf(buf, sizeof (buf), 2911 "mintxg %llu -> obj %llu", 2912 (longlong_t)dle->dle_mintxg, 2913 (longlong_t)dle->dle_bpobj.bpo_object); 2914 2915 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2916 } else { 2917 (void) printf("mintxg %llu -> obj %llu\n", 2918 (longlong_t)dle->dle_mintxg, 2919 (longlong_t)dle->dle_bpobj.bpo_object); 2920 } 2921 return (0); 2922 } 2923 2924 static void 2925 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2926 { 2927 char bytes[32]; 2928 char comp[32]; 2929 char uncomp[32]; 2930 char entries[32]; 2931 spa_t *spa = dmu_objset_spa(dl->dl_os); 2932 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2933 2934 if (dl->dl_oldfmt) { 2935 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2936 bpobj_count_refd(&dl->dl_bpobj); 2937 } else { 2938 mos_obj_refd(dl->dl_object); 2939 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2940 } 2941 2942 /* make sure nicenum has enough space */ 2943 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2944 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2945 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2946 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 2947 2948 if (dump_opt['d'] < 3) 2949 return; 2950 2951 if (dl->dl_oldfmt) { 2952 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2953 return; 2954 } 2955 2956 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2957 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2958 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2959 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2960 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2961 name, bytes, comp, uncomp, entries); 2962 2963 if (dump_opt['d'] < 4) 2964 return; 2965 2966 (void) putchar('\n'); 2967 2968 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2969 } 2970 2971 static int 2972 verify_dd_livelist(objset_t *os) 2973 { 2974 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2975 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2976 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2977 2978 ASSERT(!dmu_objset_is_snapshot(os)); 2979 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2980 return (0); 2981 2982 /* Iterate through the livelist to check for duplicates */ 2983 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2984 NULL); 2985 2986 dsl_pool_config_enter(dp, FTAG); 2987 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2988 &ll_comp, &ll_uncomp); 2989 2990 dsl_dataset_t *origin_ds; 2991 ASSERT(dsl_pool_config_held(dp)); 2992 VERIFY0(dsl_dataset_hold_obj(dp, 2993 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2994 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2995 &used, &comp, &uncomp)); 2996 dsl_dataset_rele(origin_ds, FTAG); 2997 dsl_pool_config_exit(dp, FTAG); 2998 /* 2999 * It's possible that the dataset's uncomp space is larger than the 3000 * livelist's because livelists do not track embedded block pointers 3001 */ 3002 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3003 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3004 (void) printf("Discrepancy in space accounting:\n"); 3005 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3006 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3007 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3008 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3009 nice_used, nice_comp, nice_uncomp); 3010 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3011 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3012 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3013 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3014 nice_used, nice_comp, nice_uncomp); 3015 return (1); 3016 } 3017 return (0); 3018 } 3019 3020 static avl_tree_t idx_tree; 3021 static avl_tree_t domain_tree; 3022 static boolean_t fuid_table_loaded; 3023 static objset_t *sa_os = NULL; 3024 static sa_attr_type_t *sa_attr_table = NULL; 3025 3026 static int 3027 open_objset(const char *path, const void *tag, objset_t **osp) 3028 { 3029 int err; 3030 uint64_t sa_attrs = 0; 3031 uint64_t version = 0; 3032 3033 VERIFY3P(sa_os, ==, NULL); 3034 /* 3035 * We can't own an objset if it's redacted. Therefore, we do this 3036 * dance: hold the objset, then acquire a long hold on its dataset, then 3037 * release the pool (which is held as part of holding the objset). 3038 */ 3039 err = dmu_objset_hold(path, tag, osp); 3040 if (err != 0) { 3041 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3042 path, strerror(err)); 3043 return (err); 3044 } 3045 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3046 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3047 3048 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) { 3049 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3050 8, 1, &version); 3051 if (version >= ZPL_VERSION_SA) { 3052 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3053 8, 1, &sa_attrs); 3054 } 3055 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3056 &sa_attr_table); 3057 if (err != 0) { 3058 (void) fprintf(stderr, "sa_setup failed: %s\n", 3059 strerror(err)); 3060 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3061 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3062 *osp = NULL; 3063 } 3064 } 3065 sa_os = *osp; 3066 3067 return (0); 3068 } 3069 3070 static void 3071 close_objset(objset_t *os, const void *tag) 3072 { 3073 VERIFY3P(os, ==, sa_os); 3074 if (os->os_sa != NULL) 3075 sa_tear_down(os); 3076 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3077 dsl_dataset_rele(dmu_objset_ds(os), tag); 3078 sa_attr_table = NULL; 3079 sa_os = NULL; 3080 } 3081 3082 static void 3083 fuid_table_destroy(void) 3084 { 3085 if (fuid_table_loaded) { 3086 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3087 fuid_table_loaded = B_FALSE; 3088 } 3089 } 3090 3091 /* 3092 * print uid or gid information. 3093 * For normal POSIX id just the id is printed in decimal format. 3094 * For CIFS files with FUID the fuid is printed in hex followed by 3095 * the domain-rid string. 3096 */ 3097 static void 3098 print_idstr(uint64_t id, const char *id_type) 3099 { 3100 if (FUID_INDEX(id)) { 3101 const char *domain = 3102 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3103 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3104 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3105 } else { 3106 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3107 } 3108 3109 } 3110 3111 static void 3112 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3113 { 3114 uint32_t uid_idx, gid_idx; 3115 3116 uid_idx = FUID_INDEX(uid); 3117 gid_idx = FUID_INDEX(gid); 3118 3119 /* Load domain table, if not already loaded */ 3120 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3121 uint64_t fuid_obj; 3122 3123 /* first find the fuid object. It lives in the master node */ 3124 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3125 8, 1, &fuid_obj) == 0); 3126 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3127 (void) zfs_fuid_table_load(os, fuid_obj, 3128 &idx_tree, &domain_tree); 3129 fuid_table_loaded = B_TRUE; 3130 } 3131 3132 print_idstr(uid, "uid"); 3133 print_idstr(gid, "gid"); 3134 } 3135 3136 static void 3137 dump_znode_sa_xattr(sa_handle_t *hdl) 3138 { 3139 nvlist_t *sa_xattr; 3140 nvpair_t *elem = NULL; 3141 int sa_xattr_size = 0; 3142 int sa_xattr_entries = 0; 3143 int error; 3144 char *sa_xattr_packed; 3145 3146 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3147 if (error || sa_xattr_size == 0) 3148 return; 3149 3150 sa_xattr_packed = malloc(sa_xattr_size); 3151 if (sa_xattr_packed == NULL) 3152 return; 3153 3154 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3155 sa_xattr_packed, sa_xattr_size); 3156 if (error) { 3157 free(sa_xattr_packed); 3158 return; 3159 } 3160 3161 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3162 if (error) { 3163 free(sa_xattr_packed); 3164 return; 3165 } 3166 3167 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3168 sa_xattr_entries++; 3169 3170 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3171 sa_xattr_size, sa_xattr_entries); 3172 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3173 uchar_t *value; 3174 uint_t cnt, idx; 3175 3176 (void) printf("\t\t%s = ", nvpair_name(elem)); 3177 nvpair_value_byte_array(elem, &value, &cnt); 3178 for (idx = 0; idx < cnt; ++idx) { 3179 if (isprint(value[idx])) 3180 (void) putchar(value[idx]); 3181 else 3182 (void) printf("\\%3.3o", value[idx]); 3183 } 3184 (void) putchar('\n'); 3185 } 3186 3187 nvlist_free(sa_xattr); 3188 free(sa_xattr_packed); 3189 } 3190 3191 static void 3192 dump_znode_symlink(sa_handle_t *hdl) 3193 { 3194 int sa_symlink_size = 0; 3195 char linktarget[MAXPATHLEN]; 3196 int error; 3197 3198 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3199 if (error || sa_symlink_size == 0) { 3200 return; 3201 } 3202 if (sa_symlink_size >= sizeof (linktarget)) { 3203 (void) printf("symlink size %d is too large\n", 3204 sa_symlink_size); 3205 return; 3206 } 3207 linktarget[sa_symlink_size] = '\0'; 3208 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3209 &linktarget, sa_symlink_size) == 0) 3210 (void) printf("\ttarget %s\n", linktarget); 3211 } 3212 3213 static void 3214 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3215 { 3216 (void) data, (void) size; 3217 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3218 sa_handle_t *hdl; 3219 uint64_t xattr, rdev, gen; 3220 uint64_t uid, gid, mode, fsize, parent, links; 3221 uint64_t pflags; 3222 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3223 time_t z_crtime, z_atime, z_mtime, z_ctime; 3224 sa_bulk_attr_t bulk[12]; 3225 int idx = 0; 3226 int error; 3227 3228 VERIFY3P(os, ==, sa_os); 3229 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3230 (void) printf("Failed to get handle for SA znode\n"); 3231 return; 3232 } 3233 3234 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3235 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3236 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3237 &links, 8); 3238 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3239 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3240 &mode, 8); 3241 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3242 NULL, &parent, 8); 3243 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3244 &fsize, 8); 3245 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3246 acctm, 16); 3247 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3248 modtm, 16); 3249 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3250 crtm, 16); 3251 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3252 chgtm, 16); 3253 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3254 &pflags, 8); 3255 3256 if (sa_bulk_lookup(hdl, bulk, idx)) { 3257 (void) sa_handle_destroy(hdl); 3258 return; 3259 } 3260 3261 z_crtime = (time_t)crtm[0]; 3262 z_atime = (time_t)acctm[0]; 3263 z_mtime = (time_t)modtm[0]; 3264 z_ctime = (time_t)chgtm[0]; 3265 3266 if (dump_opt['d'] > 4) { 3267 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3268 if (error == ESTALE) { 3269 (void) snprintf(path, sizeof (path), "on delete queue"); 3270 } else if (error != 0) { 3271 leaked_objects++; 3272 (void) snprintf(path, sizeof (path), 3273 "path not found, possibly leaked"); 3274 } 3275 (void) printf("\tpath %s\n", path); 3276 } 3277 3278 if (S_ISLNK(mode)) 3279 dump_znode_symlink(hdl); 3280 dump_uidgid(os, uid, gid); 3281 (void) printf("\tatime %s", ctime(&z_atime)); 3282 (void) printf("\tmtime %s", ctime(&z_mtime)); 3283 (void) printf("\tctime %s", ctime(&z_ctime)); 3284 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3285 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3286 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3287 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3288 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3289 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3290 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3291 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3292 uint64_t projid; 3293 3294 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3295 sizeof (uint64_t)) == 0) 3296 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3297 } 3298 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3299 sizeof (uint64_t)) == 0) 3300 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3301 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3302 sizeof (uint64_t)) == 0) 3303 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3304 dump_znode_sa_xattr(hdl); 3305 sa_handle_destroy(hdl); 3306 } 3307 3308 static void 3309 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3310 { 3311 (void) os, (void) object, (void) data, (void) size; 3312 } 3313 3314 static void 3315 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3316 { 3317 (void) os, (void) object, (void) data, (void) size; 3318 } 3319 3320 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3321 dump_none, /* unallocated */ 3322 dump_zap, /* object directory */ 3323 dump_uint64, /* object array */ 3324 dump_none, /* packed nvlist */ 3325 dump_packed_nvlist, /* packed nvlist size */ 3326 dump_none, /* bpobj */ 3327 dump_bpobj, /* bpobj header */ 3328 dump_none, /* SPA space map header */ 3329 dump_none, /* SPA space map */ 3330 dump_none, /* ZIL intent log */ 3331 dump_dnode, /* DMU dnode */ 3332 dump_dmu_objset, /* DMU objset */ 3333 dump_dsl_dir, /* DSL directory */ 3334 dump_zap, /* DSL directory child map */ 3335 dump_zap, /* DSL dataset snap map */ 3336 dump_zap, /* DSL props */ 3337 dump_dsl_dataset, /* DSL dataset */ 3338 dump_znode, /* ZFS znode */ 3339 dump_acl, /* ZFS V0 ACL */ 3340 dump_uint8, /* ZFS plain file */ 3341 dump_zpldir, /* ZFS directory */ 3342 dump_zap, /* ZFS master node */ 3343 dump_zap, /* ZFS delete queue */ 3344 dump_uint8, /* zvol object */ 3345 dump_zap, /* zvol prop */ 3346 dump_uint8, /* other uint8[] */ 3347 dump_uint64, /* other uint64[] */ 3348 dump_zap, /* other ZAP */ 3349 dump_zap, /* persistent error log */ 3350 dump_uint8, /* SPA history */ 3351 dump_history_offsets, /* SPA history offsets */ 3352 dump_zap, /* Pool properties */ 3353 dump_zap, /* DSL permissions */ 3354 dump_acl, /* ZFS ACL */ 3355 dump_uint8, /* ZFS SYSACL */ 3356 dump_none, /* FUID nvlist */ 3357 dump_packed_nvlist, /* FUID nvlist size */ 3358 dump_zap, /* DSL dataset next clones */ 3359 dump_zap, /* DSL scrub queue */ 3360 dump_zap, /* ZFS user/group/project used */ 3361 dump_zap, /* ZFS user/group/project quota */ 3362 dump_zap, /* snapshot refcount tags */ 3363 dump_ddt_zap, /* DDT ZAP object */ 3364 dump_zap, /* DDT statistics */ 3365 dump_znode, /* SA object */ 3366 dump_zap, /* SA Master Node */ 3367 dump_sa_attrs, /* SA attribute registration */ 3368 dump_sa_layouts, /* SA attribute layouts */ 3369 dump_zap, /* DSL scrub translations */ 3370 dump_none, /* fake dedup BP */ 3371 dump_zap, /* deadlist */ 3372 dump_none, /* deadlist hdr */ 3373 dump_zap, /* dsl clones */ 3374 dump_bpobj_subobjs, /* bpobj subobjs */ 3375 dump_unknown, /* Unknown type, must be last */ 3376 }; 3377 3378 static boolean_t 3379 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3380 { 3381 boolean_t match = B_TRUE; 3382 3383 switch (obj_type) { 3384 case DMU_OT_DIRECTORY_CONTENTS: 3385 if (!(flags & ZOR_FLAG_DIRECTORY)) 3386 match = B_FALSE; 3387 break; 3388 case DMU_OT_PLAIN_FILE_CONTENTS: 3389 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3390 match = B_FALSE; 3391 break; 3392 case DMU_OT_SPACE_MAP: 3393 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3394 match = B_FALSE; 3395 break; 3396 default: 3397 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3398 if (!(flags & ZOR_FLAG_ZAP)) 3399 match = B_FALSE; 3400 break; 3401 } 3402 3403 /* 3404 * If all bits except some of the supported flags are 3405 * set, the user combined the all-types flag (A) with 3406 * a negated flag to exclude some types (e.g. A-f to 3407 * show all object types except plain files). 3408 */ 3409 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3410 match = B_FALSE; 3411 3412 break; 3413 } 3414 3415 return (match); 3416 } 3417 3418 static void 3419 dump_object(objset_t *os, uint64_t object, int verbosity, 3420 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3421 { 3422 dmu_buf_t *db = NULL; 3423 dmu_object_info_t doi; 3424 dnode_t *dn; 3425 boolean_t dnode_held = B_FALSE; 3426 void *bonus = NULL; 3427 size_t bsize = 0; 3428 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3429 char bonus_size[32]; 3430 char aux[50]; 3431 int error; 3432 3433 /* make sure nicenum has enough space */ 3434 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3435 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3436 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3437 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3438 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3439 "bonus_size truncated"); 3440 3441 if (*print_header) { 3442 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3443 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3444 "lsize", "%full", "type"); 3445 *print_header = 0; 3446 } 3447 3448 if (object == 0) { 3449 dn = DMU_META_DNODE(os); 3450 dmu_object_info_from_dnode(dn, &doi); 3451 } else { 3452 /* 3453 * Encrypted datasets will have sensitive bonus buffers 3454 * encrypted. Therefore we cannot hold the bonus buffer and 3455 * must hold the dnode itself instead. 3456 */ 3457 error = dmu_object_info(os, object, &doi); 3458 if (error) 3459 fatal("dmu_object_info() failed, errno %u", error); 3460 3461 if (os->os_encrypted && 3462 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3463 error = dnode_hold(os, object, FTAG, &dn); 3464 if (error) 3465 fatal("dnode_hold() failed, errno %u", error); 3466 dnode_held = B_TRUE; 3467 } else { 3468 error = dmu_bonus_hold(os, object, FTAG, &db); 3469 if (error) 3470 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3471 object, error); 3472 bonus = db->db_data; 3473 bsize = db->db_size; 3474 dn = DB_DNODE((dmu_buf_impl_t *)db); 3475 } 3476 } 3477 3478 /* 3479 * Default to showing all object types if no flags were specified. 3480 */ 3481 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3482 !match_object_type(doi.doi_type, flags)) 3483 goto out; 3484 3485 if (dnode_slots_used) 3486 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3487 3488 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3489 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3490 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3491 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3492 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3493 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3494 (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * 3495 doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / 3496 doi.doi_max_offset); 3497 3498 aux[0] = '\0'; 3499 3500 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3501 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3502 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3503 } 3504 3505 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3506 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3507 const char *compname = NULL; 3508 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3509 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3510 &compname) == 0) { 3511 (void) snprintf(aux + strlen(aux), 3512 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3513 compname); 3514 } else { 3515 (void) snprintf(aux + strlen(aux), 3516 sizeof (aux) - strlen(aux), 3517 " (Z=inherit=%s-unknown)", 3518 ZDB_COMPRESS_NAME(os->os_compress)); 3519 } 3520 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3521 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3522 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3523 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3524 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3525 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3526 } 3527 3528 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3529 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3530 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3531 3532 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3533 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3534 "", "", "", "", "", "", bonus_size, "bonus", 3535 zdb_ot_name(doi.doi_bonus_type)); 3536 } 3537 3538 if (verbosity >= 4) { 3539 (void) printf("\tdnode flags: %s%s%s%s\n", 3540 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3541 "USED_BYTES " : "", 3542 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3543 "USERUSED_ACCOUNTED " : "", 3544 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3545 "USEROBJUSED_ACCOUNTED " : "", 3546 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3547 "SPILL_BLKPTR" : ""); 3548 (void) printf("\tdnode maxblkid: %llu\n", 3549 (longlong_t)dn->dn_phys->dn_maxblkid); 3550 3551 if (!dnode_held) { 3552 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3553 object, bonus, bsize); 3554 } else { 3555 (void) printf("\t\t(bonus encrypted)\n"); 3556 } 3557 3558 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) { 3559 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3560 NULL, 0); 3561 } else { 3562 (void) printf("\t\t(object encrypted)\n"); 3563 } 3564 3565 *print_header = B_TRUE; 3566 } 3567 3568 if (verbosity >= 5) { 3569 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3570 char blkbuf[BP_SPRINTF_LEN]; 3571 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3572 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3573 (void) printf("\nSpill block: %s\n", blkbuf); 3574 } 3575 dump_indirect(dn); 3576 } 3577 3578 if (verbosity >= 5) { 3579 /* 3580 * Report the list of segments that comprise the object. 3581 */ 3582 uint64_t start = 0; 3583 uint64_t end; 3584 uint64_t blkfill = 1; 3585 int minlvl = 1; 3586 3587 if (dn->dn_type == DMU_OT_DNODE) { 3588 minlvl = 0; 3589 blkfill = DNODES_PER_BLOCK; 3590 } 3591 3592 for (;;) { 3593 char segsize[32]; 3594 /* make sure nicenum has enough space */ 3595 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3596 "segsize truncated"); 3597 error = dnode_next_offset(dn, 3598 0, &start, minlvl, blkfill, 0); 3599 if (error) 3600 break; 3601 end = start; 3602 error = dnode_next_offset(dn, 3603 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3604 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3605 (void) printf("\t\tsegment [%016llx, %016llx)" 3606 " size %5s\n", (u_longlong_t)start, 3607 (u_longlong_t)end, segsize); 3608 if (error) 3609 break; 3610 start = end; 3611 } 3612 } 3613 3614 out: 3615 if (db != NULL) 3616 dmu_buf_rele(db, FTAG); 3617 if (dnode_held) 3618 dnode_rele(dn, FTAG); 3619 } 3620 3621 static void 3622 count_dir_mos_objects(dsl_dir_t *dd) 3623 { 3624 mos_obj_refd(dd->dd_object); 3625 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3626 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3627 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3628 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3629 3630 /* 3631 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3632 * Ignore the references after the first one. 3633 */ 3634 mos_obj_refd_multiple(dd->dd_crypto_obj); 3635 } 3636 3637 static void 3638 count_ds_mos_objects(dsl_dataset_t *ds) 3639 { 3640 mos_obj_refd(ds->ds_object); 3641 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3642 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3643 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3644 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3645 mos_obj_refd(ds->ds_bookmarks_obj); 3646 3647 if (!dsl_dataset_is_snapshot(ds)) { 3648 count_dir_mos_objects(ds->ds_dir); 3649 } 3650 } 3651 3652 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3653 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3654 3655 /* 3656 * Parse a string denoting a range of object IDs of the form 3657 * <start>[:<end>[:flags]], and store the results in zor. 3658 * Return 0 on success. On error, return 1 and update the msg 3659 * pointer to point to a descriptive error message. 3660 */ 3661 static int 3662 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3663 { 3664 uint64_t flags = 0; 3665 char *p, *s, *dup, *flagstr, *tmp = NULL; 3666 size_t len; 3667 int i; 3668 int rc = 0; 3669 3670 if (strchr(range, ':') == NULL) { 3671 zor->zor_obj_start = strtoull(range, &p, 0); 3672 if (*p != '\0') { 3673 *msg = "Invalid characters in object ID"; 3674 rc = 1; 3675 } 3676 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3677 zor->zor_obj_end = zor->zor_obj_start; 3678 return (rc); 3679 } 3680 3681 if (strchr(range, ':') == range) { 3682 *msg = "Invalid leading colon"; 3683 rc = 1; 3684 return (rc); 3685 } 3686 3687 len = strlen(range); 3688 if (range[len - 1] == ':') { 3689 *msg = "Invalid trailing colon"; 3690 rc = 1; 3691 return (rc); 3692 } 3693 3694 dup = strdup(range); 3695 s = strtok_r(dup, ":", &tmp); 3696 zor->zor_obj_start = strtoull(s, &p, 0); 3697 3698 if (*p != '\0') { 3699 *msg = "Invalid characters in start object ID"; 3700 rc = 1; 3701 goto out; 3702 } 3703 3704 s = strtok_r(NULL, ":", &tmp); 3705 zor->zor_obj_end = strtoull(s, &p, 0); 3706 3707 if (*p != '\0') { 3708 *msg = "Invalid characters in end object ID"; 3709 rc = 1; 3710 goto out; 3711 } 3712 3713 if (zor->zor_obj_start > zor->zor_obj_end) { 3714 *msg = "Start object ID may not exceed end object ID"; 3715 rc = 1; 3716 goto out; 3717 } 3718 3719 s = strtok_r(NULL, ":", &tmp); 3720 if (s == NULL) { 3721 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3722 goto out; 3723 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3724 *msg = "Invalid colon-delimited field after flags"; 3725 rc = 1; 3726 goto out; 3727 } 3728 3729 flagstr = s; 3730 for (i = 0; flagstr[i]; i++) { 3731 int bit; 3732 boolean_t negation = (flagstr[i] == '-'); 3733 3734 if (negation) { 3735 i++; 3736 if (flagstr[i] == '\0') { 3737 *msg = "Invalid trailing negation operator"; 3738 rc = 1; 3739 goto out; 3740 } 3741 } 3742 bit = flagbits[(uchar_t)flagstr[i]]; 3743 if (bit == 0) { 3744 *msg = "Invalid flag"; 3745 rc = 1; 3746 goto out; 3747 } 3748 if (negation) 3749 flags &= ~bit; 3750 else 3751 flags |= bit; 3752 } 3753 zor->zor_flags = flags; 3754 3755 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3756 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3757 3758 out: 3759 free(dup); 3760 return (rc); 3761 } 3762 3763 static void 3764 dump_objset(objset_t *os) 3765 { 3766 dmu_objset_stats_t dds = { 0 }; 3767 uint64_t object, object_count; 3768 uint64_t refdbytes, usedobjs, scratch; 3769 char numbuf[32]; 3770 char blkbuf[BP_SPRINTF_LEN + 20]; 3771 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3772 const char *type = "UNKNOWN"; 3773 int verbosity = dump_opt['d']; 3774 boolean_t print_header; 3775 unsigned i; 3776 int error; 3777 uint64_t total_slots_used = 0; 3778 uint64_t max_slot_used = 0; 3779 uint64_t dnode_slots; 3780 uint64_t obj_start; 3781 uint64_t obj_end; 3782 uint64_t flags; 3783 3784 /* make sure nicenum has enough space */ 3785 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 3786 3787 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3788 dmu_objset_fast_stat(os, &dds); 3789 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3790 3791 print_header = B_TRUE; 3792 3793 if (dds.dds_type < DMU_OST_NUMTYPES) 3794 type = objset_types[dds.dds_type]; 3795 3796 if (dds.dds_type == DMU_OST_META) { 3797 dds.dds_creation_txg = TXG_INITIAL; 3798 usedobjs = BP_GET_FILL(os->os_rootbp); 3799 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3800 dd_used_bytes; 3801 } else { 3802 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3803 } 3804 3805 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3806 3807 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3808 3809 if (verbosity >= 4) { 3810 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3811 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3812 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3813 } else { 3814 blkbuf[0] = '\0'; 3815 } 3816 3817 dmu_objset_name(os, osname); 3818 3819 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3820 "%s, %llu objects%s%s\n", 3821 osname, type, (u_longlong_t)dmu_objset_id(os), 3822 (u_longlong_t)dds.dds_creation_txg, 3823 numbuf, (u_longlong_t)usedobjs, blkbuf, 3824 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3825 3826 for (i = 0; i < zopt_object_args; i++) { 3827 obj_start = zopt_object_ranges[i].zor_obj_start; 3828 obj_end = zopt_object_ranges[i].zor_obj_end; 3829 flags = zopt_object_ranges[i].zor_flags; 3830 3831 object = obj_start; 3832 if (object == 0 || obj_start == obj_end) 3833 dump_object(os, object, verbosity, &print_header, NULL, 3834 flags); 3835 else 3836 object--; 3837 3838 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3839 object <= obj_end) { 3840 dump_object(os, object, verbosity, &print_header, NULL, 3841 flags); 3842 } 3843 } 3844 3845 if (zopt_object_args > 0) { 3846 (void) printf("\n"); 3847 return; 3848 } 3849 3850 if (dump_opt['i'] != 0 || verbosity >= 2) 3851 dump_intent_log(dmu_objset_zil(os)); 3852 3853 if (dmu_objset_ds(os) != NULL) { 3854 dsl_dataset_t *ds = dmu_objset_ds(os); 3855 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 3856 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 3857 !dmu_objset_is_snapshot(os)) { 3858 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 3859 if (verify_dd_livelist(os) != 0) 3860 fatal("livelist is incorrect"); 3861 } 3862 3863 if (dsl_dataset_remap_deadlist_exists(ds)) { 3864 (void) printf("ds_remap_deadlist:\n"); 3865 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 3866 } 3867 count_ds_mos_objects(ds); 3868 } 3869 3870 if (dmu_objset_ds(os) != NULL) 3871 dump_bookmarks(os, verbosity); 3872 3873 if (verbosity < 2) 3874 return; 3875 3876 if (BP_IS_HOLE(os->os_rootbp)) 3877 return; 3878 3879 dump_object(os, 0, verbosity, &print_header, NULL, 0); 3880 object_count = 0; 3881 if (DMU_USERUSED_DNODE(os) != NULL && 3882 DMU_USERUSED_DNODE(os)->dn_type != 0) { 3883 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 3884 NULL, 0); 3885 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 3886 NULL, 0); 3887 } 3888 3889 if (DMU_PROJECTUSED_DNODE(os) != NULL && 3890 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 3891 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 3892 &print_header, NULL, 0); 3893 3894 object = 0; 3895 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 3896 dump_object(os, object, verbosity, &print_header, &dnode_slots, 3897 0); 3898 object_count++; 3899 total_slots_used += dnode_slots; 3900 max_slot_used = object + dnode_slots - 1; 3901 } 3902 3903 (void) printf("\n"); 3904 3905 (void) printf(" Dnode slots:\n"); 3906 (void) printf("\tTotal used: %10llu\n", 3907 (u_longlong_t)total_slots_used); 3908 (void) printf("\tMax used: %10llu\n", 3909 (u_longlong_t)max_slot_used); 3910 (void) printf("\tPercent empty: %10lf\n", 3911 (double)(max_slot_used - total_slots_used)*100 / 3912 (double)max_slot_used); 3913 (void) printf("\n"); 3914 3915 if (error != ESRCH) { 3916 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 3917 abort(); 3918 } 3919 3920 ASSERT3U(object_count, ==, usedobjs); 3921 3922 if (leaked_objects != 0) { 3923 (void) printf("%d potentially leaked objects detected\n", 3924 leaked_objects); 3925 leaked_objects = 0; 3926 } 3927 } 3928 3929 static void 3930 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 3931 { 3932 time_t timestamp = ub->ub_timestamp; 3933 3934 (void) printf("%s", header ? header : ""); 3935 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 3936 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 3937 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 3938 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 3939 (void) printf("\ttimestamp = %llu UTC = %s", 3940 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 3941 3942 (void) printf("\tmmp_magic = %016llx\n", 3943 (u_longlong_t)ub->ub_mmp_magic); 3944 if (MMP_VALID(ub)) { 3945 (void) printf("\tmmp_delay = %0llu\n", 3946 (u_longlong_t)ub->ub_mmp_delay); 3947 if (MMP_SEQ_VALID(ub)) 3948 (void) printf("\tmmp_seq = %u\n", 3949 (unsigned int) MMP_SEQ(ub)); 3950 if (MMP_FAIL_INT_VALID(ub)) 3951 (void) printf("\tmmp_fail = %u\n", 3952 (unsigned int) MMP_FAIL_INT(ub)); 3953 if (MMP_INTERVAL_VALID(ub)) 3954 (void) printf("\tmmp_write = %u\n", 3955 (unsigned int) MMP_INTERVAL(ub)); 3956 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 3957 (void) printf("\tmmp_valid = %x\n", 3958 (unsigned int) ub->ub_mmp_config & 0xFF); 3959 } 3960 3961 if (dump_opt['u'] >= 4) { 3962 char blkbuf[BP_SPRINTF_LEN]; 3963 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 3964 (void) printf("\trootbp = %s\n", blkbuf); 3965 } 3966 (void) printf("\tcheckpoint_txg = %llu\n", 3967 (u_longlong_t)ub->ub_checkpoint_txg); 3968 (void) printf("%s", footer ? footer : ""); 3969 } 3970 3971 static void 3972 dump_config(spa_t *spa) 3973 { 3974 dmu_buf_t *db; 3975 size_t nvsize = 0; 3976 int error = 0; 3977 3978 3979 error = dmu_bonus_hold(spa->spa_meta_objset, 3980 spa->spa_config_object, FTAG, &db); 3981 3982 if (error == 0) { 3983 nvsize = *(uint64_t *)db->db_data; 3984 dmu_buf_rele(db, FTAG); 3985 3986 (void) printf("\nMOS Configuration:\n"); 3987 dump_packed_nvlist(spa->spa_meta_objset, 3988 spa->spa_config_object, (void *)&nvsize, 1); 3989 } else { 3990 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 3991 (u_longlong_t)spa->spa_config_object, error); 3992 } 3993 } 3994 3995 static void 3996 dump_cachefile(const char *cachefile) 3997 { 3998 int fd; 3999 struct stat64 statbuf; 4000 char *buf; 4001 nvlist_t *config; 4002 4003 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4004 (void) printf("cannot open '%s': %s\n", cachefile, 4005 strerror(errno)); 4006 exit(1); 4007 } 4008 4009 if (fstat64(fd, &statbuf) != 0) { 4010 (void) printf("failed to stat '%s': %s\n", cachefile, 4011 strerror(errno)); 4012 exit(1); 4013 } 4014 4015 if ((buf = malloc(statbuf.st_size)) == NULL) { 4016 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4017 (u_longlong_t)statbuf.st_size); 4018 exit(1); 4019 } 4020 4021 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4022 (void) fprintf(stderr, "failed to read %llu bytes\n", 4023 (u_longlong_t)statbuf.st_size); 4024 exit(1); 4025 } 4026 4027 (void) close(fd); 4028 4029 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4030 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4031 exit(1); 4032 } 4033 4034 free(buf); 4035 4036 dump_nvlist(config, 0); 4037 4038 nvlist_free(config); 4039 } 4040 4041 /* 4042 * ZFS label nvlist stats 4043 */ 4044 typedef struct zdb_nvl_stats { 4045 int zns_list_count; 4046 int zns_leaf_count; 4047 size_t zns_leaf_largest; 4048 size_t zns_leaf_total; 4049 nvlist_t *zns_string; 4050 nvlist_t *zns_uint64; 4051 nvlist_t *zns_boolean; 4052 } zdb_nvl_stats_t; 4053 4054 static void 4055 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4056 { 4057 nvlist_t *list, **array; 4058 nvpair_t *nvp = NULL; 4059 char *name; 4060 uint_t i, items; 4061 4062 stats->zns_list_count++; 4063 4064 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4065 name = nvpair_name(nvp); 4066 4067 switch (nvpair_type(nvp)) { 4068 case DATA_TYPE_STRING: 4069 fnvlist_add_string(stats->zns_string, name, 4070 fnvpair_value_string(nvp)); 4071 break; 4072 case DATA_TYPE_UINT64: 4073 fnvlist_add_uint64(stats->zns_uint64, name, 4074 fnvpair_value_uint64(nvp)); 4075 break; 4076 case DATA_TYPE_BOOLEAN: 4077 fnvlist_add_boolean(stats->zns_boolean, name); 4078 break; 4079 case DATA_TYPE_NVLIST: 4080 if (nvpair_value_nvlist(nvp, &list) == 0) 4081 collect_nvlist_stats(list, stats); 4082 break; 4083 case DATA_TYPE_NVLIST_ARRAY: 4084 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4085 break; 4086 4087 for (i = 0; i < items; i++) { 4088 collect_nvlist_stats(array[i], stats); 4089 4090 /* collect stats on leaf vdev */ 4091 if (strcmp(name, "children") == 0) { 4092 size_t size; 4093 4094 (void) nvlist_size(array[i], &size, 4095 NV_ENCODE_XDR); 4096 stats->zns_leaf_total += size; 4097 if (size > stats->zns_leaf_largest) 4098 stats->zns_leaf_largest = size; 4099 stats->zns_leaf_count++; 4100 } 4101 } 4102 break; 4103 default: 4104 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4105 } 4106 } 4107 } 4108 4109 static void 4110 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4111 { 4112 zdb_nvl_stats_t stats = { 0 }; 4113 size_t size, sum = 0, total; 4114 size_t noise; 4115 4116 /* requires nvlist with non-unique names for stat collection */ 4117 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4118 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4119 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4120 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4121 4122 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4123 4124 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4125 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4126 (int)total, (int)(cap - total), 100.0 * total / cap); 4127 4128 collect_nvlist_stats(nvl, &stats); 4129 4130 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4131 size -= noise; 4132 sum += size; 4133 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4134 (int)fnvlist_num_pairs(stats.zns_uint64), 4135 (int)size, 100.0 * size / total); 4136 4137 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4138 size -= noise; 4139 sum += size; 4140 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4141 (int)fnvlist_num_pairs(stats.zns_string), 4142 (int)size, 100.0 * size / total); 4143 4144 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4145 size -= noise; 4146 sum += size; 4147 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4148 (int)fnvlist_num_pairs(stats.zns_boolean), 4149 (int)size, 100.0 * size / total); 4150 4151 size = total - sum; /* treat remainder as nvlist overhead */ 4152 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4153 stats.zns_list_count, (int)size, 100.0 * size / total); 4154 4155 if (stats.zns_leaf_count > 0) { 4156 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4157 4158 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4159 stats.zns_leaf_count, (int)average); 4160 (void) printf("%24d bytes largest\n", 4161 (int)stats.zns_leaf_largest); 4162 4163 if (dump_opt['l'] >= 3 && average > 0) 4164 (void) printf(" space for %d additional leaf vdevs\n", 4165 (int)((cap - total) / average)); 4166 } 4167 (void) printf("\n"); 4168 4169 nvlist_free(stats.zns_string); 4170 nvlist_free(stats.zns_uint64); 4171 nvlist_free(stats.zns_boolean); 4172 } 4173 4174 typedef struct cksum_record { 4175 zio_cksum_t cksum; 4176 boolean_t labels[VDEV_LABELS]; 4177 avl_node_t link; 4178 } cksum_record_t; 4179 4180 static int 4181 cksum_record_compare(const void *x1, const void *x2) 4182 { 4183 const cksum_record_t *l = (cksum_record_t *)x1; 4184 const cksum_record_t *r = (cksum_record_t *)x2; 4185 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4186 int difference = 0; 4187 4188 for (int i = 0; i < arraysize; i++) { 4189 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4190 if (difference) 4191 break; 4192 } 4193 4194 return (difference); 4195 } 4196 4197 static cksum_record_t * 4198 cksum_record_alloc(zio_cksum_t *cksum, int l) 4199 { 4200 cksum_record_t *rec; 4201 4202 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4203 rec->cksum = *cksum; 4204 rec->labels[l] = B_TRUE; 4205 4206 return (rec); 4207 } 4208 4209 static cksum_record_t * 4210 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4211 { 4212 cksum_record_t lookup = { .cksum = *cksum }; 4213 avl_index_t where; 4214 4215 return (avl_find(tree, &lookup, &where)); 4216 } 4217 4218 static cksum_record_t * 4219 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4220 { 4221 cksum_record_t *rec; 4222 4223 rec = cksum_record_lookup(tree, cksum); 4224 if (rec) { 4225 rec->labels[l] = B_TRUE; 4226 } else { 4227 rec = cksum_record_alloc(cksum, l); 4228 avl_add(tree, rec); 4229 } 4230 4231 return (rec); 4232 } 4233 4234 static int 4235 first_label(cksum_record_t *rec) 4236 { 4237 for (int i = 0; i < VDEV_LABELS; i++) 4238 if (rec->labels[i]) 4239 return (i); 4240 4241 return (-1); 4242 } 4243 4244 static void 4245 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4246 { 4247 fputs(prefix, stdout); 4248 for (int i = 0; i < VDEV_LABELS; i++) 4249 if (rec->labels[i] == B_TRUE) 4250 printf("%d ", i); 4251 putchar('\n'); 4252 } 4253 4254 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4255 4256 typedef struct zdb_label { 4257 vdev_label_t label; 4258 uint64_t label_offset; 4259 nvlist_t *config_nv; 4260 cksum_record_t *config; 4261 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4262 boolean_t header_printed; 4263 boolean_t read_failed; 4264 boolean_t cksum_valid; 4265 } zdb_label_t; 4266 4267 static void 4268 print_label_header(zdb_label_t *label, int l) 4269 { 4270 4271 if (dump_opt['q']) 4272 return; 4273 4274 if (label->header_printed == B_TRUE) 4275 return; 4276 4277 (void) printf("------------------------------------\n"); 4278 (void) printf("LABEL %d %s\n", l, 4279 label->cksum_valid ? "" : "(Bad label cksum)"); 4280 (void) printf("------------------------------------\n"); 4281 4282 label->header_printed = B_TRUE; 4283 } 4284 4285 static void 4286 print_l2arc_header(void) 4287 { 4288 (void) printf("------------------------------------\n"); 4289 (void) printf("L2ARC device header\n"); 4290 (void) printf("------------------------------------\n"); 4291 } 4292 4293 static void 4294 print_l2arc_log_blocks(void) 4295 { 4296 (void) printf("------------------------------------\n"); 4297 (void) printf("L2ARC device log blocks\n"); 4298 (void) printf("------------------------------------\n"); 4299 } 4300 4301 static void 4302 dump_l2arc_log_entries(uint64_t log_entries, 4303 l2arc_log_ent_phys_t *le, uint64_t i) 4304 { 4305 for (int j = 0; j < log_entries; j++) { 4306 dva_t dva = le[j].le_dva; 4307 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4308 "vdev: %llu, offset: %llu\n", 4309 (u_longlong_t)i, j + 1, 4310 (u_longlong_t)DVA_GET_ASIZE(&dva), 4311 (u_longlong_t)DVA_GET_VDEV(&dva), 4312 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4313 (void) printf("|\t\t\t\tbirth: %llu\n", 4314 (u_longlong_t)le[j].le_birth); 4315 (void) printf("|\t\t\t\tlsize: %llu\n", 4316 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4317 (void) printf("|\t\t\t\tpsize: %llu\n", 4318 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4319 (void) printf("|\t\t\t\tcompr: %llu\n", 4320 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4321 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4322 (u_longlong_t)(&le[j])->le_complevel); 4323 (void) printf("|\t\t\t\ttype: %llu\n", 4324 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4325 (void) printf("|\t\t\t\tprotected: %llu\n", 4326 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4327 (void) printf("|\t\t\t\tprefetch: %llu\n", 4328 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4329 (void) printf("|\t\t\t\taddress: %llu\n", 4330 (u_longlong_t)le[j].le_daddr); 4331 (void) printf("|\t\t\t\tARC state: %llu\n", 4332 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4333 (void) printf("|\n"); 4334 } 4335 (void) printf("\n"); 4336 } 4337 4338 static void 4339 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps) 4340 { 4341 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr); 4342 (void) printf("|\t\tpayload_asize: %llu\n", 4343 (u_longlong_t)lbps.lbp_payload_asize); 4344 (void) printf("|\t\tpayload_start: %llu\n", 4345 (u_longlong_t)lbps.lbp_payload_start); 4346 (void) printf("|\t\tlsize: %llu\n", 4347 (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop)); 4348 (void) printf("|\t\tasize: %llu\n", 4349 (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop)); 4350 (void) printf("|\t\tcompralgo: %llu\n", 4351 (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop)); 4352 (void) printf("|\t\tcksumalgo: %llu\n", 4353 (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop)); 4354 (void) printf("|\n\n"); 4355 } 4356 4357 static void 4358 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr, 4359 l2arc_dev_hdr_phys_t *rebuild) 4360 { 4361 l2arc_log_blk_phys_t this_lb; 4362 uint64_t asize; 4363 l2arc_log_blkptr_t lbps[2]; 4364 abd_t *abd; 4365 zio_cksum_t cksum; 4366 int failed = 0; 4367 l2arc_dev_t dev; 4368 4369 if (!dump_opt['q']) 4370 print_l2arc_log_blocks(); 4371 memcpy(lbps, l2dhdr.dh_start_lbps, sizeof (lbps)); 4372 4373 dev.l2ad_evict = l2dhdr.dh_evict; 4374 dev.l2ad_start = l2dhdr.dh_start; 4375 dev.l2ad_end = l2dhdr.dh_end; 4376 4377 if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) { 4378 /* no log blocks to read */ 4379 if (!dump_opt['q']) { 4380 (void) printf("No log blocks to read\n"); 4381 (void) printf("\n"); 4382 } 4383 return; 4384 } else { 4385 dev.l2ad_hand = lbps[0].lbp_daddr + 4386 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4387 } 4388 4389 dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4390 4391 for (;;) { 4392 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4393 break; 4394 4395 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4396 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4397 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4398 if (!dump_opt['q']) { 4399 (void) printf("Error while reading next log " 4400 "block\n\n"); 4401 } 4402 break; 4403 } 4404 4405 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4406 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4407 failed++; 4408 if (!dump_opt['q']) { 4409 (void) printf("Invalid cksum\n"); 4410 dump_l2arc_log_blkptr(lbps[0]); 4411 } 4412 break; 4413 } 4414 4415 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4416 case ZIO_COMPRESS_OFF: 4417 break; 4418 default: 4419 abd = abd_alloc_for_io(asize, B_TRUE); 4420 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4421 zio_decompress_data(L2BLK_GET_COMPRESS( 4422 (&lbps[0])->lbp_prop), abd, &this_lb, 4423 asize, sizeof (this_lb), NULL); 4424 abd_free(abd); 4425 break; 4426 } 4427 4428 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4429 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4430 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4431 if (!dump_opt['q']) 4432 (void) printf("Invalid log block magic\n\n"); 4433 break; 4434 } 4435 4436 rebuild->dh_lb_count++; 4437 rebuild->dh_lb_asize += asize; 4438 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4439 (void) printf("lb[%4llu]\tmagic: %llu\n", 4440 (u_longlong_t)rebuild->dh_lb_count, 4441 (u_longlong_t)this_lb.lb_magic); 4442 dump_l2arc_log_blkptr(lbps[0]); 4443 } 4444 4445 if (dump_opt['l'] > 2 && !dump_opt['q']) 4446 dump_l2arc_log_entries(l2dhdr.dh_log_entries, 4447 this_lb.lb_entries, 4448 rebuild->dh_lb_count); 4449 4450 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4451 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4452 !dev.l2ad_first) 4453 break; 4454 4455 lbps[0] = lbps[1]; 4456 lbps[1] = this_lb.lb_prev_lbp; 4457 } 4458 4459 if (!dump_opt['q']) { 4460 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4461 (u_longlong_t)rebuild->dh_lb_count); 4462 (void) printf("\t\t %d with invalid cksum\n", failed); 4463 (void) printf("log_blk_asize:\t %llu\n\n", 4464 (u_longlong_t)rebuild->dh_lb_asize); 4465 } 4466 } 4467 4468 static int 4469 dump_l2arc_header(int fd) 4470 { 4471 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4472 int error = B_FALSE; 4473 4474 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4475 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4476 error = B_TRUE; 4477 } else { 4478 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4479 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4480 4481 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4482 error = B_TRUE; 4483 } 4484 4485 if (error) { 4486 (void) printf("L2ARC device header not found\n\n"); 4487 /* Do not return an error here for backward compatibility */ 4488 return (0); 4489 } else if (!dump_opt['q']) { 4490 print_l2arc_header(); 4491 4492 (void) printf(" magic: %llu\n", 4493 (u_longlong_t)l2dhdr.dh_magic); 4494 (void) printf(" version: %llu\n", 4495 (u_longlong_t)l2dhdr.dh_version); 4496 (void) printf(" pool_guid: %llu\n", 4497 (u_longlong_t)l2dhdr.dh_spa_guid); 4498 (void) printf(" flags: %llu\n", 4499 (u_longlong_t)l2dhdr.dh_flags); 4500 (void) printf(" start_lbps[0]: %llu\n", 4501 (u_longlong_t) 4502 l2dhdr.dh_start_lbps[0].lbp_daddr); 4503 (void) printf(" start_lbps[1]: %llu\n", 4504 (u_longlong_t) 4505 l2dhdr.dh_start_lbps[1].lbp_daddr); 4506 (void) printf(" log_blk_ent: %llu\n", 4507 (u_longlong_t)l2dhdr.dh_log_entries); 4508 (void) printf(" start: %llu\n", 4509 (u_longlong_t)l2dhdr.dh_start); 4510 (void) printf(" end: %llu\n", 4511 (u_longlong_t)l2dhdr.dh_end); 4512 (void) printf(" evict: %llu\n", 4513 (u_longlong_t)l2dhdr.dh_evict); 4514 (void) printf(" lb_asize_refcount: %llu\n", 4515 (u_longlong_t)l2dhdr.dh_lb_asize); 4516 (void) printf(" lb_count_refcount: %llu\n", 4517 (u_longlong_t)l2dhdr.dh_lb_count); 4518 (void) printf(" trim_action_time: %llu\n", 4519 (u_longlong_t)l2dhdr.dh_trim_action_time); 4520 (void) printf(" trim_state: %llu\n\n", 4521 (u_longlong_t)l2dhdr.dh_trim_state); 4522 } 4523 4524 dump_l2arc_log_blocks(fd, l2dhdr, &rebuild); 4525 /* 4526 * The total aligned size of log blocks and the number of log blocks 4527 * reported in the header of the device may be less than what zdb 4528 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4529 * This happens because dump_l2arc_log_blocks() lacks the memory 4530 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4531 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4532 * and dh_lb_count will be lower to begin with than what exists on the 4533 * device. This is normal and zdb should not exit with an error. The 4534 * opposite case should never happen though, the values reported in the 4535 * header should never be higher than what dump_l2arc_log_blocks() and 4536 * l2arc_rebuild() report. If this happens there is a leak in the 4537 * accounting of log blocks. 4538 */ 4539 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4540 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4541 return (1); 4542 4543 return (0); 4544 } 4545 4546 static void 4547 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4548 { 4549 if (dump_opt['q']) 4550 return; 4551 4552 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4553 return; 4554 4555 print_label_header(label, l); 4556 dump_nvlist(label->config_nv, 4); 4557 print_label_numbers(" labels = ", label->config); 4558 4559 if (dump_opt['l'] >= 2) 4560 dump_nvlist_stats(label->config_nv, buflen); 4561 } 4562 4563 #define ZDB_MAX_UB_HEADER_SIZE 32 4564 4565 static void 4566 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4567 { 4568 4569 vdev_t vd; 4570 char header[ZDB_MAX_UB_HEADER_SIZE]; 4571 4572 vd.vdev_ashift = ashift; 4573 vd.vdev_top = &vd; 4574 4575 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4576 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4577 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4578 cksum_record_t *rec = label->uberblocks[i]; 4579 4580 if (rec == NULL) { 4581 if (dump_opt['u'] >= 2) { 4582 print_label_header(label, label_num); 4583 (void) printf(" Uberblock[%d] invalid\n", i); 4584 } 4585 continue; 4586 } 4587 4588 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4589 continue; 4590 4591 if ((dump_opt['u'] < 4) && 4592 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4593 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4594 continue; 4595 4596 print_label_header(label, label_num); 4597 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4598 " Uberblock[%d]\n", i); 4599 dump_uberblock(ub, header, ""); 4600 print_label_numbers(" labels = ", rec); 4601 } 4602 } 4603 4604 static char curpath[PATH_MAX]; 4605 4606 /* 4607 * Iterate through the path components, recursively passing 4608 * current one's obj and remaining path until we find the obj 4609 * for the last one. 4610 */ 4611 static int 4612 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4613 { 4614 int err; 4615 boolean_t header = B_TRUE; 4616 uint64_t child_obj; 4617 char *s; 4618 dmu_buf_t *db; 4619 dmu_object_info_t doi; 4620 4621 if ((s = strchr(name, '/')) != NULL) 4622 *s = '\0'; 4623 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4624 4625 (void) strlcat(curpath, name, sizeof (curpath)); 4626 4627 if (err != 0) { 4628 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4629 curpath, strerror(err)); 4630 return (err); 4631 } 4632 4633 child_obj = ZFS_DIRENT_OBJ(child_obj); 4634 err = sa_buf_hold(os, child_obj, FTAG, &db); 4635 if (err != 0) { 4636 (void) fprintf(stderr, 4637 "failed to get SA dbuf for obj %llu: %s\n", 4638 (u_longlong_t)child_obj, strerror(err)); 4639 return (EINVAL); 4640 } 4641 dmu_object_info_from_db(db, &doi); 4642 sa_buf_rele(db, FTAG); 4643 4644 if (doi.doi_bonus_type != DMU_OT_SA && 4645 doi.doi_bonus_type != DMU_OT_ZNODE) { 4646 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4647 doi.doi_bonus_type, (u_longlong_t)child_obj); 4648 return (EINVAL); 4649 } 4650 4651 if (dump_opt['v'] > 6) { 4652 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4653 (u_longlong_t)child_obj, curpath, doi.doi_type, 4654 doi.doi_bonus_type); 4655 } 4656 4657 (void) strlcat(curpath, "/", sizeof (curpath)); 4658 4659 switch (doi.doi_type) { 4660 case DMU_OT_DIRECTORY_CONTENTS: 4661 if (s != NULL && *(s + 1) != '\0') 4662 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4663 zfs_fallthrough; 4664 case DMU_OT_PLAIN_FILE_CONTENTS: 4665 if (retobj != NULL) { 4666 *retobj = child_obj; 4667 } else { 4668 dump_object(os, child_obj, dump_opt['v'], &header, 4669 NULL, 0); 4670 } 4671 return (0); 4672 default: 4673 (void) fprintf(stderr, "object %llu has non-file/directory " 4674 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4675 break; 4676 } 4677 4678 return (EINVAL); 4679 } 4680 4681 /* 4682 * Dump the blocks for the object specified by path inside the dataset. 4683 */ 4684 static int 4685 dump_path(char *ds, char *path, uint64_t *retobj) 4686 { 4687 int err; 4688 objset_t *os; 4689 uint64_t root_obj; 4690 4691 err = open_objset(ds, FTAG, &os); 4692 if (err != 0) 4693 return (err); 4694 4695 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4696 if (err != 0) { 4697 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4698 strerror(err)); 4699 close_objset(os, FTAG); 4700 return (EINVAL); 4701 } 4702 4703 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4704 4705 err = dump_path_impl(os, root_obj, path, retobj); 4706 4707 close_objset(os, FTAG); 4708 return (err); 4709 } 4710 4711 static int 4712 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4713 { 4714 int err = 0; 4715 uint64_t size, readsize, oursize, offset; 4716 ssize_t writesize; 4717 sa_handle_t *hdl; 4718 4719 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4720 destfile); 4721 4722 VERIFY3P(os, ==, sa_os); 4723 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4724 (void) printf("Failed to get handle for SA znode\n"); 4725 return (err); 4726 } 4727 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4728 (void) sa_handle_destroy(hdl); 4729 return (err); 4730 } 4731 (void) sa_handle_destroy(hdl); 4732 4733 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4734 size); 4735 if (size == 0) { 4736 return (EINVAL); 4737 } 4738 4739 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4740 if (fd == -1) 4741 return (errno); 4742 /* 4743 * We cap the size at 1 mebibyte here to prevent 4744 * allocation failures and nigh-infinite printing if the 4745 * object is extremely large. 4746 */ 4747 oursize = MIN(size, 1 << 20); 4748 offset = 0; 4749 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4750 if (buf == NULL) { 4751 (void) close(fd); 4752 return (ENOMEM); 4753 } 4754 4755 while (offset < size) { 4756 readsize = MIN(size - offset, 1 << 20); 4757 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 4758 if (err != 0) { 4759 (void) printf("got error %u from dmu_read\n", err); 4760 kmem_free(buf, oursize); 4761 (void) close(fd); 4762 return (err); 4763 } 4764 if (dump_opt['v'] > 3) { 4765 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 4766 " error=%d\n", offset, readsize, err); 4767 } 4768 4769 writesize = write(fd, buf, readsize); 4770 if (writesize < 0) { 4771 err = errno; 4772 break; 4773 } else if (writesize != readsize) { 4774 /* Incomplete write */ 4775 (void) fprintf(stderr, "Short write, only wrote %llu of" 4776 " %" PRIu64 " bytes, exiting...\n", 4777 (u_longlong_t)writesize, readsize); 4778 break; 4779 } 4780 4781 offset += readsize; 4782 } 4783 4784 (void) close(fd); 4785 4786 if (buf != NULL) 4787 kmem_free(buf, oursize); 4788 4789 return (err); 4790 } 4791 4792 static boolean_t 4793 label_cksum_valid(vdev_label_t *label, uint64_t offset) 4794 { 4795 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 4796 zio_cksum_t expected_cksum; 4797 zio_cksum_t actual_cksum; 4798 zio_cksum_t verifier; 4799 zio_eck_t *eck; 4800 int byteswap; 4801 4802 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 4803 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 4804 4805 offset += offsetof(vdev_label_t, vl_vdev_phys); 4806 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 4807 4808 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 4809 if (byteswap) 4810 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 4811 4812 expected_cksum = eck->zec_cksum; 4813 eck->zec_cksum = verifier; 4814 4815 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 4816 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 4817 abd_free(abd); 4818 4819 if (byteswap) 4820 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 4821 4822 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 4823 return (B_TRUE); 4824 4825 return (B_FALSE); 4826 } 4827 4828 static int 4829 dump_label(const char *dev) 4830 { 4831 char path[MAXPATHLEN]; 4832 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 4833 uint64_t psize, ashift, l2cache; 4834 struct stat64 statbuf; 4835 boolean_t config_found = B_FALSE; 4836 boolean_t error = B_FALSE; 4837 boolean_t read_l2arc_header = B_FALSE; 4838 avl_tree_t config_tree; 4839 avl_tree_t uberblock_tree; 4840 void *node, *cookie; 4841 int fd; 4842 4843 /* 4844 * Check if we were given absolute path and use it as is. 4845 * Otherwise if the provided vdev name doesn't point to a file, 4846 * try prepending expected disk paths and partition numbers. 4847 */ 4848 (void) strlcpy(path, dev, sizeof (path)); 4849 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 4850 int error; 4851 4852 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 4853 if (error == 0 && zfs_dev_is_whole_disk(path)) { 4854 if (zfs_append_partition(path, MAXPATHLEN) == -1) 4855 error = ENOENT; 4856 } 4857 4858 if (error || (stat64(path, &statbuf) != 0)) { 4859 (void) printf("failed to find device %s, try " 4860 "specifying absolute path instead\n", dev); 4861 return (1); 4862 } 4863 } 4864 4865 if ((fd = open64(path, O_RDONLY)) < 0) { 4866 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 4867 exit(1); 4868 } 4869 4870 if (fstat64_blk(fd, &statbuf) != 0) { 4871 (void) printf("failed to stat '%s': %s\n", path, 4872 strerror(errno)); 4873 (void) close(fd); 4874 exit(1); 4875 } 4876 4877 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 4878 (void) printf("failed to invalidate cache '%s' : %s\n", path, 4879 strerror(errno)); 4880 4881 avl_create(&config_tree, cksum_record_compare, 4882 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4883 avl_create(&uberblock_tree, cksum_record_compare, 4884 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4885 4886 psize = statbuf.st_size; 4887 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 4888 ashift = SPA_MINBLOCKSHIFT; 4889 4890 /* 4891 * 1. Read the label from disk 4892 * 2. Verify label cksum 4893 * 3. Unpack the configuration and insert in config tree. 4894 * 4. Traverse all uberblocks and insert in uberblock tree. 4895 */ 4896 for (int l = 0; l < VDEV_LABELS; l++) { 4897 zdb_label_t *label = &labels[l]; 4898 char *buf = label->label.vl_vdev_phys.vp_nvlist; 4899 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4900 nvlist_t *config; 4901 cksum_record_t *rec; 4902 zio_cksum_t cksum; 4903 vdev_t vd; 4904 4905 label->label_offset = vdev_label_offset(psize, l, 0); 4906 4907 if (pread64(fd, &label->label, sizeof (label->label), 4908 label->label_offset) != sizeof (label->label)) { 4909 if (!dump_opt['q']) 4910 (void) printf("failed to read label %d\n", l); 4911 label->read_failed = B_TRUE; 4912 error = B_TRUE; 4913 continue; 4914 } 4915 4916 label->read_failed = B_FALSE; 4917 label->cksum_valid = label_cksum_valid(&label->label, 4918 label->label_offset); 4919 4920 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 4921 nvlist_t *vdev_tree = NULL; 4922 size_t size; 4923 4924 if ((nvlist_lookup_nvlist(config, 4925 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 4926 (nvlist_lookup_uint64(vdev_tree, 4927 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 4928 ashift = SPA_MINBLOCKSHIFT; 4929 4930 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 4931 size = buflen; 4932 4933 /* If the device is a cache device clear the header. */ 4934 if (!read_l2arc_header) { 4935 if (nvlist_lookup_uint64(config, 4936 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 4937 l2cache == POOL_STATE_L2CACHE) { 4938 read_l2arc_header = B_TRUE; 4939 } 4940 } 4941 4942 fletcher_4_native_varsize(buf, size, &cksum); 4943 rec = cksum_record_insert(&config_tree, &cksum, l); 4944 4945 label->config = rec; 4946 label->config_nv = config; 4947 config_found = B_TRUE; 4948 } else { 4949 error = B_TRUE; 4950 } 4951 4952 vd.vdev_ashift = ashift; 4953 vd.vdev_top = &vd; 4954 4955 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4956 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4957 uberblock_t *ub = (void *)((char *)label + uoff); 4958 4959 if (uberblock_verify(ub)) 4960 continue; 4961 4962 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 4963 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 4964 4965 label->uberblocks[i] = rec; 4966 } 4967 } 4968 4969 /* 4970 * Dump the label and uberblocks. 4971 */ 4972 for (int l = 0; l < VDEV_LABELS; l++) { 4973 zdb_label_t *label = &labels[l]; 4974 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4975 4976 if (label->read_failed == B_TRUE) 4977 continue; 4978 4979 if (label->config_nv) { 4980 dump_config_from_label(label, buflen, l); 4981 } else { 4982 if (!dump_opt['q']) 4983 (void) printf("failed to unpack label %d\n", l); 4984 } 4985 4986 if (dump_opt['u']) 4987 dump_label_uberblocks(label, ashift, l); 4988 4989 nvlist_free(label->config_nv); 4990 } 4991 4992 /* 4993 * Dump the L2ARC header, if existent. 4994 */ 4995 if (read_l2arc_header) 4996 error |= dump_l2arc_header(fd); 4997 4998 cookie = NULL; 4999 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5000 umem_free(node, sizeof (cksum_record_t)); 5001 5002 cookie = NULL; 5003 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5004 umem_free(node, sizeof (cksum_record_t)); 5005 5006 avl_destroy(&config_tree); 5007 avl_destroy(&uberblock_tree); 5008 5009 (void) close(fd); 5010 5011 return (config_found == B_FALSE ? 2 : 5012 (error == B_TRUE ? 1 : 0)); 5013 } 5014 5015 static uint64_t dataset_feature_count[SPA_FEATURES]; 5016 static uint64_t global_feature_count[SPA_FEATURES]; 5017 static uint64_t remap_deadlist_count = 0; 5018 5019 static int 5020 dump_one_objset(const char *dsname, void *arg) 5021 { 5022 (void) arg; 5023 int error; 5024 objset_t *os; 5025 spa_feature_t f; 5026 5027 error = open_objset(dsname, FTAG, &os); 5028 if (error != 0) 5029 return (0); 5030 5031 for (f = 0; f < SPA_FEATURES; f++) { 5032 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5033 continue; 5034 ASSERT(spa_feature_table[f].fi_flags & 5035 ZFEATURE_FLAG_PER_DATASET); 5036 dataset_feature_count[f]++; 5037 } 5038 5039 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5040 remap_deadlist_count++; 5041 } 5042 5043 for (dsl_bookmark_node_t *dbn = 5044 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5045 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5046 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5047 if (dbn->dbn_phys.zbm_redaction_obj != 0) 5048 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; 5049 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5050 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5051 } 5052 5053 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5054 !dmu_objset_is_snapshot(os)) { 5055 global_feature_count[SPA_FEATURE_LIVELIST]++; 5056 } 5057 5058 dump_objset(os); 5059 close_objset(os, FTAG); 5060 fuid_table_destroy(); 5061 return (0); 5062 } 5063 5064 /* 5065 * Block statistics. 5066 */ 5067 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5068 typedef struct zdb_blkstats { 5069 uint64_t zb_asize; 5070 uint64_t zb_lsize; 5071 uint64_t zb_psize; 5072 uint64_t zb_count; 5073 uint64_t zb_gangs; 5074 uint64_t zb_ditto_samevdev; 5075 uint64_t zb_ditto_same_ms; 5076 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5077 } zdb_blkstats_t; 5078 5079 /* 5080 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5081 */ 5082 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5083 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5084 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5085 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5086 5087 static const char *zdb_ot_extname[] = { 5088 "deferred free", 5089 "dedup ditto", 5090 "other", 5091 "Total", 5092 }; 5093 5094 #define ZB_TOTAL DN_MAX_LEVELS 5095 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5096 5097 typedef struct zdb_cb { 5098 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5099 uint64_t zcb_removing_size; 5100 uint64_t zcb_checkpoint_size; 5101 uint64_t zcb_dedup_asize; 5102 uint64_t zcb_dedup_blocks; 5103 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5104 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5105 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5106 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5107 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5108 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5109 uint64_t zcb_psize_total; 5110 uint64_t zcb_lsize_total; 5111 uint64_t zcb_asize_total; 5112 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5113 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5114 [BPE_PAYLOAD_SIZE + 1]; 5115 uint64_t zcb_start; 5116 hrtime_t zcb_lastprint; 5117 uint64_t zcb_totalasize; 5118 uint64_t zcb_errors[256]; 5119 int zcb_readfails; 5120 int zcb_haderrors; 5121 spa_t *zcb_spa; 5122 uint32_t **zcb_vd_obsolete_counts; 5123 } zdb_cb_t; 5124 5125 /* test if two DVA offsets from same vdev are within the same metaslab */ 5126 static boolean_t 5127 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5128 { 5129 vdev_t *vd = vdev_lookup_top(spa, vdev); 5130 uint64_t ms_shift = vd->vdev_ms_shift; 5131 5132 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5133 } 5134 5135 /* 5136 * Used to simplify reporting of the histogram data. 5137 */ 5138 typedef struct one_histo { 5139 const char *name; 5140 uint64_t *count; 5141 uint64_t *len; 5142 uint64_t cumulative; 5143 } one_histo_t; 5144 5145 /* 5146 * The number of separate histograms processed for psize, lsize and asize. 5147 */ 5148 #define NUM_HISTO 3 5149 5150 /* 5151 * This routine will create a fixed column size output of three different 5152 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5153 * the count, length and cumulative length of the psize, lsize and 5154 * asize blocks. 5155 * 5156 * All three types of blocks are listed on a single line 5157 * 5158 * By default the table is printed in nicenumber format (e.g. 123K) but 5159 * if the '-P' parameter is specified then the full raw number (parseable) 5160 * is printed out. 5161 */ 5162 static void 5163 dump_size_histograms(zdb_cb_t *zcb) 5164 { 5165 /* 5166 * A temporary buffer that allows us to convert a number into 5167 * a string using zdb_nicenumber to allow either raw or human 5168 * readable numbers to be output. 5169 */ 5170 char numbuf[32]; 5171 5172 /* 5173 * Define titles which are used in the headers of the tables 5174 * printed by this routine. 5175 */ 5176 const char blocksize_title1[] = "block"; 5177 const char blocksize_title2[] = "size"; 5178 const char count_title[] = "Count"; 5179 const char length_title[] = "Size"; 5180 const char cumulative_title[] = "Cum."; 5181 5182 /* 5183 * Setup the histogram arrays (psize, lsize, and asize). 5184 */ 5185 one_histo_t parm_histo[NUM_HISTO]; 5186 5187 parm_histo[0].name = "psize"; 5188 parm_histo[0].count = zcb->zcb_psize_count; 5189 parm_histo[0].len = zcb->zcb_psize_len; 5190 parm_histo[0].cumulative = 0; 5191 5192 parm_histo[1].name = "lsize"; 5193 parm_histo[1].count = zcb->zcb_lsize_count; 5194 parm_histo[1].len = zcb->zcb_lsize_len; 5195 parm_histo[1].cumulative = 0; 5196 5197 parm_histo[2].name = "asize"; 5198 parm_histo[2].count = zcb->zcb_asize_count; 5199 parm_histo[2].len = zcb->zcb_asize_len; 5200 parm_histo[2].cumulative = 0; 5201 5202 5203 (void) printf("\nBlock Size Histogram\n"); 5204 /* 5205 * Print the first line titles 5206 */ 5207 if (dump_opt['P']) 5208 (void) printf("\n%s\t", blocksize_title1); 5209 else 5210 (void) printf("\n%7s ", blocksize_title1); 5211 5212 for (int j = 0; j < NUM_HISTO; j++) { 5213 if (dump_opt['P']) { 5214 if (j < NUM_HISTO - 1) { 5215 (void) printf("%s\t\t\t", parm_histo[j].name); 5216 } else { 5217 /* Don't print trailing spaces */ 5218 (void) printf(" %s", parm_histo[j].name); 5219 } 5220 } else { 5221 if (j < NUM_HISTO - 1) { 5222 /* Left aligned strings in the output */ 5223 (void) printf("%-7s ", 5224 parm_histo[j].name); 5225 } else { 5226 /* Don't print trailing spaces */ 5227 (void) printf("%s", parm_histo[j].name); 5228 } 5229 } 5230 } 5231 (void) printf("\n"); 5232 5233 /* 5234 * Print the second line titles 5235 */ 5236 if (dump_opt['P']) { 5237 (void) printf("%s\t", blocksize_title2); 5238 } else { 5239 (void) printf("%7s ", blocksize_title2); 5240 } 5241 5242 for (int i = 0; i < NUM_HISTO; i++) { 5243 if (dump_opt['P']) { 5244 (void) printf("%s\t%s\t%s\t", 5245 count_title, length_title, cumulative_title); 5246 } else { 5247 (void) printf("%7s%7s%7s", 5248 count_title, length_title, cumulative_title); 5249 } 5250 } 5251 (void) printf("\n"); 5252 5253 /* 5254 * Print the rows 5255 */ 5256 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5257 5258 /* 5259 * Print the first column showing the blocksize 5260 */ 5261 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5262 5263 if (dump_opt['P']) { 5264 printf("%s", numbuf); 5265 } else { 5266 printf("%7s:", numbuf); 5267 } 5268 5269 /* 5270 * Print the remaining set of 3 columns per size: 5271 * for psize, lsize and asize 5272 */ 5273 for (int j = 0; j < NUM_HISTO; j++) { 5274 parm_histo[j].cumulative += parm_histo[j].len[i]; 5275 5276 zdb_nicenum(parm_histo[j].count[i], 5277 numbuf, sizeof (numbuf)); 5278 if (dump_opt['P']) 5279 (void) printf("\t%s", numbuf); 5280 else 5281 (void) printf("%7s", numbuf); 5282 5283 zdb_nicenum(parm_histo[j].len[i], 5284 numbuf, sizeof (numbuf)); 5285 if (dump_opt['P']) 5286 (void) printf("\t%s", numbuf); 5287 else 5288 (void) printf("%7s", numbuf); 5289 5290 zdb_nicenum(parm_histo[j].cumulative, 5291 numbuf, sizeof (numbuf)); 5292 if (dump_opt['P']) 5293 (void) printf("\t%s", numbuf); 5294 else 5295 (void) printf("%7s", numbuf); 5296 } 5297 (void) printf("\n"); 5298 } 5299 } 5300 5301 static void 5302 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5303 dmu_object_type_t type) 5304 { 5305 uint64_t refcnt = 0; 5306 int i; 5307 5308 ASSERT(type < ZDB_OT_TOTAL); 5309 5310 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5311 return; 5312 5313 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5314 5315 for (i = 0; i < 4; i++) { 5316 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5317 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5318 int equal; 5319 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5320 5321 zb->zb_asize += BP_GET_ASIZE(bp); 5322 zb->zb_lsize += BP_GET_LSIZE(bp); 5323 zb->zb_psize += BP_GET_PSIZE(bp); 5324 zb->zb_count++; 5325 5326 /* 5327 * The histogram is only big enough to record blocks up to 5328 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5329 * "other", bucket. 5330 */ 5331 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5332 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5333 zb->zb_psize_histogram[idx]++; 5334 5335 zb->zb_gangs += BP_COUNT_GANG(bp); 5336 5337 switch (BP_GET_NDVAS(bp)) { 5338 case 2: 5339 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5340 DVA_GET_VDEV(&bp->blk_dva[1])) { 5341 zb->zb_ditto_samevdev++; 5342 5343 if (same_metaslab(zcb->zcb_spa, 5344 DVA_GET_VDEV(&bp->blk_dva[0]), 5345 DVA_GET_OFFSET(&bp->blk_dva[0]), 5346 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5347 zb->zb_ditto_same_ms++; 5348 } 5349 break; 5350 case 3: 5351 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5352 DVA_GET_VDEV(&bp->blk_dva[1])) + 5353 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5354 DVA_GET_VDEV(&bp->blk_dva[2])) + 5355 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5356 DVA_GET_VDEV(&bp->blk_dva[2])); 5357 if (equal != 0) { 5358 zb->zb_ditto_samevdev++; 5359 5360 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5361 DVA_GET_VDEV(&bp->blk_dva[1]) && 5362 same_metaslab(zcb->zcb_spa, 5363 DVA_GET_VDEV(&bp->blk_dva[0]), 5364 DVA_GET_OFFSET(&bp->blk_dva[0]), 5365 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5366 zb->zb_ditto_same_ms++; 5367 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5368 DVA_GET_VDEV(&bp->blk_dva[2]) && 5369 same_metaslab(zcb->zcb_spa, 5370 DVA_GET_VDEV(&bp->blk_dva[0]), 5371 DVA_GET_OFFSET(&bp->blk_dva[0]), 5372 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5373 zb->zb_ditto_same_ms++; 5374 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5375 DVA_GET_VDEV(&bp->blk_dva[2]) && 5376 same_metaslab(zcb->zcb_spa, 5377 DVA_GET_VDEV(&bp->blk_dva[1]), 5378 DVA_GET_OFFSET(&bp->blk_dva[1]), 5379 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5380 zb->zb_ditto_same_ms++; 5381 } 5382 break; 5383 } 5384 } 5385 5386 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5387 5388 if (BP_IS_EMBEDDED(bp)) { 5389 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5390 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5391 [BPE_GET_PSIZE(bp)]++; 5392 return; 5393 } 5394 /* 5395 * The binning histogram bins by powers of two up to 5396 * SPA_MAXBLOCKSIZE rather than creating bins for 5397 * every possible blocksize found in the pool. 5398 */ 5399 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5400 5401 zcb->zcb_psize_count[bin]++; 5402 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5403 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5404 5405 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5406 5407 zcb->zcb_lsize_count[bin]++; 5408 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5409 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5410 5411 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5412 5413 zcb->zcb_asize_count[bin]++; 5414 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5415 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5416 5417 if (dump_opt['L']) 5418 return; 5419 5420 if (BP_GET_DEDUP(bp)) { 5421 ddt_t *ddt; 5422 ddt_entry_t *dde; 5423 5424 ddt = ddt_select(zcb->zcb_spa, bp); 5425 ddt_enter(ddt); 5426 dde = ddt_lookup(ddt, bp, B_FALSE); 5427 5428 if (dde == NULL) { 5429 refcnt = 0; 5430 } else { 5431 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5432 ddt_phys_decref(ddp); 5433 refcnt = ddp->ddp_refcnt; 5434 if (ddt_phys_total_refcnt(dde) == 0) 5435 ddt_remove(ddt, dde); 5436 } 5437 ddt_exit(ddt); 5438 } 5439 5440 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5441 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5442 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5443 } 5444 5445 static void 5446 zdb_blkptr_done(zio_t *zio) 5447 { 5448 spa_t *spa = zio->io_spa; 5449 blkptr_t *bp = zio->io_bp; 5450 int ioerr = zio->io_error; 5451 zdb_cb_t *zcb = zio->io_private; 5452 zbookmark_phys_t *zb = &zio->io_bookmark; 5453 5454 mutex_enter(&spa->spa_scrub_lock); 5455 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5456 cv_broadcast(&spa->spa_scrub_io_cv); 5457 5458 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5459 char blkbuf[BP_SPRINTF_LEN]; 5460 5461 zcb->zcb_haderrors = 1; 5462 zcb->zcb_errors[ioerr]++; 5463 5464 if (dump_opt['b'] >= 2) 5465 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5466 else 5467 blkbuf[0] = '\0'; 5468 5469 (void) printf("zdb_blkptr_cb: " 5470 "Got error %d reading " 5471 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5472 ioerr, 5473 (u_longlong_t)zb->zb_objset, 5474 (u_longlong_t)zb->zb_object, 5475 (u_longlong_t)zb->zb_level, 5476 (u_longlong_t)zb->zb_blkid, 5477 blkbuf); 5478 } 5479 mutex_exit(&spa->spa_scrub_lock); 5480 5481 abd_free(zio->io_abd); 5482 } 5483 5484 static int 5485 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5486 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5487 { 5488 zdb_cb_t *zcb = arg; 5489 dmu_object_type_t type; 5490 boolean_t is_metadata; 5491 5492 if (zb->zb_level == ZB_DNODE_LEVEL) 5493 return (0); 5494 5495 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5496 char blkbuf[BP_SPRINTF_LEN]; 5497 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5498 (void) printf("objset %llu object %llu " 5499 "level %lld offset 0x%llx %s\n", 5500 (u_longlong_t)zb->zb_objset, 5501 (u_longlong_t)zb->zb_object, 5502 (longlong_t)zb->zb_level, 5503 (u_longlong_t)blkid2offset(dnp, bp, zb), 5504 blkbuf); 5505 } 5506 5507 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5508 return (0); 5509 5510 type = BP_GET_TYPE(bp); 5511 5512 zdb_count_block(zcb, zilog, bp, 5513 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5514 5515 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5516 5517 if (!BP_IS_EMBEDDED(bp) && 5518 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5519 size_t size = BP_GET_PSIZE(bp); 5520 abd_t *abd = abd_alloc(size, B_FALSE); 5521 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5522 5523 /* If it's an intent log block, failure is expected. */ 5524 if (zb->zb_level == ZB_ZIL_LEVEL) 5525 flags |= ZIO_FLAG_SPECULATIVE; 5526 5527 mutex_enter(&spa->spa_scrub_lock); 5528 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5529 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5530 spa->spa_load_verify_bytes += size; 5531 mutex_exit(&spa->spa_scrub_lock); 5532 5533 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5534 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5535 } 5536 5537 zcb->zcb_readfails = 0; 5538 5539 /* only call gethrtime() every 100 blocks */ 5540 static int iters; 5541 if (++iters > 100) 5542 iters = 0; 5543 else 5544 return (0); 5545 5546 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5547 uint64_t now = gethrtime(); 5548 char buf[10]; 5549 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5550 uint64_t kb_per_sec = 5551 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5552 uint64_t sec_remaining = 5553 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5554 5555 /* make sure nicenum has enough space */ 5556 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5557 5558 zfs_nicebytes(bytes, buf, sizeof (buf)); 5559 (void) fprintf(stderr, 5560 "\r%5s completed (%4"PRIu64"MB/s) " 5561 "estimated time remaining: " 5562 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5563 buf, kb_per_sec / 1024, 5564 sec_remaining / 60 / 60, 5565 sec_remaining / 60 % 60, 5566 sec_remaining % 60); 5567 5568 zcb->zcb_lastprint = now; 5569 } 5570 5571 return (0); 5572 } 5573 5574 static void 5575 zdb_leak(void *arg, uint64_t start, uint64_t size) 5576 { 5577 vdev_t *vd = arg; 5578 5579 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5580 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5581 } 5582 5583 static metaslab_ops_t zdb_metaslab_ops = { 5584 NULL /* alloc */ 5585 }; 5586 5587 static int 5588 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5589 uint64_t txg, void *arg) 5590 { 5591 spa_vdev_removal_t *svr = arg; 5592 5593 uint64_t offset = sme->sme_offset; 5594 uint64_t size = sme->sme_run; 5595 5596 /* skip vdevs we don't care about */ 5597 if (sme->sme_vdev != svr->svr_vdev_id) 5598 return (0); 5599 5600 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5601 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5602 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5603 5604 if (txg < metaslab_unflushed_txg(ms)) 5605 return (0); 5606 5607 if (sme->sme_type == SM_ALLOC) 5608 range_tree_add(svr->svr_allocd_segs, offset, size); 5609 else 5610 range_tree_remove(svr->svr_allocd_segs, offset, size); 5611 5612 return (0); 5613 } 5614 5615 static void 5616 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5617 uint64_t size, void *arg) 5618 { 5619 (void) inner_offset, (void) arg; 5620 5621 /* 5622 * This callback was called through a remap from 5623 * a device being removed. Therefore, the vdev that 5624 * this callback is applied to is a concrete 5625 * vdev. 5626 */ 5627 ASSERT(vdev_is_concrete(vd)); 5628 5629 VERIFY0(metaslab_claim_impl(vd, offset, size, 5630 spa_min_claim_txg(vd->vdev_spa))); 5631 } 5632 5633 static void 5634 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5635 { 5636 vdev_t *vd = arg; 5637 5638 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5639 claim_segment_impl_cb, NULL); 5640 } 5641 5642 /* 5643 * After accounting for all allocated blocks that are directly referenced, 5644 * we might have missed a reference to a block from a partially complete 5645 * (and thus unused) indirect mapping object. We perform a secondary pass 5646 * through the metaslabs we have already mapped and claim the destination 5647 * blocks. 5648 */ 5649 static void 5650 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5651 { 5652 if (dump_opt['L']) 5653 return; 5654 5655 if (spa->spa_vdev_removal == NULL) 5656 return; 5657 5658 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5659 5660 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5661 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5662 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5663 5664 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5665 5666 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5667 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5668 metaslab_t *msp = vd->vdev_ms[msi]; 5669 5670 ASSERT0(range_tree_space(allocs)); 5671 if (msp->ms_sm != NULL) 5672 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5673 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5674 } 5675 range_tree_destroy(allocs); 5676 5677 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5678 5679 /* 5680 * Clear everything past what has been synced, 5681 * because we have not allocated mappings for 5682 * it yet. 5683 */ 5684 range_tree_clear(svr->svr_allocd_segs, 5685 vdev_indirect_mapping_max_offset(vim), 5686 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5687 5688 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5689 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5690 5691 spa_config_exit(spa, SCL_CONFIG, FTAG); 5692 } 5693 5694 static int 5695 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5696 dmu_tx_t *tx) 5697 { 5698 (void) tx; 5699 zdb_cb_t *zcb = arg; 5700 spa_t *spa = zcb->zcb_spa; 5701 vdev_t *vd; 5702 const dva_t *dva = &bp->blk_dva[0]; 5703 5704 ASSERT(!bp_freed); 5705 ASSERT(!dump_opt['L']); 5706 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 5707 5708 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5709 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 5710 ASSERT3P(vd, !=, NULL); 5711 spa_config_exit(spa, SCL_VDEV, FTAG); 5712 5713 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 5714 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 5715 5716 vdev_indirect_mapping_increment_obsolete_count( 5717 vd->vdev_indirect_mapping, 5718 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 5719 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5720 5721 return (0); 5722 } 5723 5724 static uint32_t * 5725 zdb_load_obsolete_counts(vdev_t *vd) 5726 { 5727 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5728 spa_t *spa = vd->vdev_spa; 5729 spa_condensing_indirect_phys_t *scip = 5730 &spa->spa_condensing_indirect_phys; 5731 uint64_t obsolete_sm_object; 5732 uint32_t *counts; 5733 5734 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 5735 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 5736 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 5737 if (vd->vdev_obsolete_sm != NULL) { 5738 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5739 vd->vdev_obsolete_sm); 5740 } 5741 if (scip->scip_vdev == vd->vdev_id && 5742 scip->scip_prev_obsolete_sm_object != 0) { 5743 space_map_t *prev_obsolete_sm = NULL; 5744 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 5745 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 5746 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5747 prev_obsolete_sm); 5748 space_map_close(prev_obsolete_sm); 5749 } 5750 return (counts); 5751 } 5752 5753 static void 5754 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 5755 { 5756 ddt_bookmark_t ddb = {0}; 5757 ddt_entry_t dde; 5758 int error; 5759 int p; 5760 5761 ASSERT(!dump_opt['L']); 5762 5763 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 5764 blkptr_t blk; 5765 ddt_phys_t *ddp = dde.dde_phys; 5766 5767 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 5768 return; 5769 5770 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 5771 5772 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 5773 if (ddp->ddp_phys_birth == 0) 5774 continue; 5775 ddt_bp_create(ddb.ddb_checksum, 5776 &dde.dde_key, ddp, &blk); 5777 if (p == DDT_PHYS_DITTO) { 5778 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 5779 } else { 5780 zcb->zcb_dedup_asize += 5781 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 5782 zcb->zcb_dedup_blocks++; 5783 } 5784 } 5785 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 5786 ddt_enter(ddt); 5787 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 5788 ddt_exit(ddt); 5789 } 5790 5791 ASSERT(error == ENOENT); 5792 } 5793 5794 typedef struct checkpoint_sm_exclude_entry_arg { 5795 vdev_t *cseea_vd; 5796 uint64_t cseea_checkpoint_size; 5797 } checkpoint_sm_exclude_entry_arg_t; 5798 5799 static int 5800 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 5801 { 5802 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 5803 vdev_t *vd = cseea->cseea_vd; 5804 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 5805 uint64_t end = sme->sme_offset + sme->sme_run; 5806 5807 ASSERT(sme->sme_type == SM_FREE); 5808 5809 /* 5810 * Since the vdev_checkpoint_sm exists in the vdev level 5811 * and the ms_sm space maps exist in the metaslab level, 5812 * an entry in the checkpoint space map could theoretically 5813 * cross the boundaries of the metaslab that it belongs. 5814 * 5815 * In reality, because of the way that we populate and 5816 * manipulate the checkpoint's space maps currently, 5817 * there shouldn't be any entries that cross metaslabs. 5818 * Hence the assertion below. 5819 * 5820 * That said, there is no fundamental requirement that 5821 * the checkpoint's space map entries should not cross 5822 * metaslab boundaries. So if needed we could add code 5823 * that handles metaslab-crossing segments in the future. 5824 */ 5825 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 5826 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 5827 5828 /* 5829 * By removing the entry from the allocated segments we 5830 * also verify that the entry is there to begin with. 5831 */ 5832 mutex_enter(&ms->ms_lock); 5833 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 5834 mutex_exit(&ms->ms_lock); 5835 5836 cseea->cseea_checkpoint_size += sme->sme_run; 5837 return (0); 5838 } 5839 5840 static void 5841 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 5842 { 5843 spa_t *spa = vd->vdev_spa; 5844 space_map_t *checkpoint_sm = NULL; 5845 uint64_t checkpoint_sm_obj; 5846 5847 /* 5848 * If there is no vdev_top_zap, we are in a pool whose 5849 * version predates the pool checkpoint feature. 5850 */ 5851 if (vd->vdev_top_zap == 0) 5852 return; 5853 5854 /* 5855 * If there is no reference of the vdev_checkpoint_sm in 5856 * the vdev_top_zap, then one of the following scenarios 5857 * is true: 5858 * 5859 * 1] There is no checkpoint 5860 * 2] There is a checkpoint, but no checkpointed blocks 5861 * have been freed yet 5862 * 3] The current vdev is indirect 5863 * 5864 * In these cases we return immediately. 5865 */ 5866 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 5867 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 5868 return; 5869 5870 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 5871 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 5872 &checkpoint_sm_obj)); 5873 5874 checkpoint_sm_exclude_entry_arg_t cseea; 5875 cseea.cseea_vd = vd; 5876 cseea.cseea_checkpoint_size = 0; 5877 5878 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 5879 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 5880 5881 VERIFY0(space_map_iterate(checkpoint_sm, 5882 space_map_length(checkpoint_sm), 5883 checkpoint_sm_exclude_entry_cb, &cseea)); 5884 space_map_close(checkpoint_sm); 5885 5886 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 5887 } 5888 5889 static void 5890 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 5891 { 5892 ASSERT(!dump_opt['L']); 5893 5894 vdev_t *rvd = spa->spa_root_vdev; 5895 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5896 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 5897 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 5898 } 5899 } 5900 5901 static int 5902 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 5903 uint64_t txg, void *arg) 5904 { 5905 int64_t *ualloc_space = arg; 5906 5907 uint64_t offset = sme->sme_offset; 5908 uint64_t vdev_id = sme->sme_vdev; 5909 5910 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5911 if (!vdev_is_concrete(vd)) 5912 return (0); 5913 5914 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5915 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5916 5917 if (txg < metaslab_unflushed_txg(ms)) 5918 return (0); 5919 5920 if (sme->sme_type == SM_ALLOC) 5921 *ualloc_space += sme->sme_run; 5922 else 5923 *ualloc_space -= sme->sme_run; 5924 5925 return (0); 5926 } 5927 5928 static int64_t 5929 get_unflushed_alloc_space(spa_t *spa) 5930 { 5931 if (dump_opt['L']) 5932 return (0); 5933 5934 int64_t ualloc_space = 0; 5935 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 5936 &ualloc_space); 5937 return (ualloc_space); 5938 } 5939 5940 static int 5941 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 5942 { 5943 maptype_t *uic_maptype = arg; 5944 5945 uint64_t offset = sme->sme_offset; 5946 uint64_t size = sme->sme_run; 5947 uint64_t vdev_id = sme->sme_vdev; 5948 5949 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5950 5951 /* skip indirect vdevs */ 5952 if (!vdev_is_concrete(vd)) 5953 return (0); 5954 5955 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5956 5957 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5958 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 5959 5960 if (txg < metaslab_unflushed_txg(ms)) 5961 return (0); 5962 5963 if (*uic_maptype == sme->sme_type) 5964 range_tree_add(ms->ms_allocatable, offset, size); 5965 else 5966 range_tree_remove(ms->ms_allocatable, offset, size); 5967 5968 return (0); 5969 } 5970 5971 static void 5972 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 5973 { 5974 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 5975 } 5976 5977 static void 5978 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 5979 { 5980 vdev_t *rvd = spa->spa_root_vdev; 5981 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5982 vdev_t *vd = rvd->vdev_child[i]; 5983 5984 ASSERT3U(i, ==, vd->vdev_id); 5985 5986 if (vd->vdev_ops == &vdev_indirect_ops) 5987 continue; 5988 5989 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5990 metaslab_t *msp = vd->vdev_ms[m]; 5991 5992 (void) fprintf(stderr, 5993 "\rloading concrete vdev %llu, " 5994 "metaslab %llu of %llu ...", 5995 (longlong_t)vd->vdev_id, 5996 (longlong_t)msp->ms_id, 5997 (longlong_t)vd->vdev_ms_count); 5998 5999 mutex_enter(&msp->ms_lock); 6000 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6001 6002 /* 6003 * We don't want to spend the CPU manipulating the 6004 * size-ordered tree, so clear the range_tree ops. 6005 */ 6006 msp->ms_allocatable->rt_ops = NULL; 6007 6008 if (msp->ms_sm != NULL) { 6009 VERIFY0(space_map_load(msp->ms_sm, 6010 msp->ms_allocatable, maptype)); 6011 } 6012 if (!msp->ms_loaded) 6013 msp->ms_loaded = B_TRUE; 6014 mutex_exit(&msp->ms_lock); 6015 } 6016 } 6017 6018 load_unflushed_to_ms_allocatables(spa, maptype); 6019 } 6020 6021 /* 6022 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6023 * index in vim_entries that has the first entry in this metaslab. 6024 * On return, it will be set to the first entry after this metaslab. 6025 */ 6026 static void 6027 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6028 uint64_t *vim_idxp) 6029 { 6030 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6031 6032 mutex_enter(&msp->ms_lock); 6033 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6034 6035 /* 6036 * We don't want to spend the CPU manipulating the 6037 * size-ordered tree, so clear the range_tree ops. 6038 */ 6039 msp->ms_allocatable->rt_ops = NULL; 6040 6041 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6042 (*vim_idxp)++) { 6043 vdev_indirect_mapping_entry_phys_t *vimep = 6044 &vim->vim_entries[*vim_idxp]; 6045 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6046 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6047 ASSERT3U(ent_offset, >=, msp->ms_start); 6048 if (ent_offset >= msp->ms_start + msp->ms_size) 6049 break; 6050 6051 /* 6052 * Mappings do not cross metaslab boundaries, 6053 * because we create them by walking the metaslabs. 6054 */ 6055 ASSERT3U(ent_offset + ent_len, <=, 6056 msp->ms_start + msp->ms_size); 6057 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6058 } 6059 6060 if (!msp->ms_loaded) 6061 msp->ms_loaded = B_TRUE; 6062 mutex_exit(&msp->ms_lock); 6063 } 6064 6065 static void 6066 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6067 { 6068 ASSERT(!dump_opt['L']); 6069 6070 vdev_t *rvd = spa->spa_root_vdev; 6071 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6072 vdev_t *vd = rvd->vdev_child[c]; 6073 6074 ASSERT3U(c, ==, vd->vdev_id); 6075 6076 if (vd->vdev_ops != &vdev_indirect_ops) 6077 continue; 6078 6079 /* 6080 * Note: we don't check for mapping leaks on 6081 * removing vdevs because their ms_allocatable's 6082 * are used to look for leaks in allocated space. 6083 */ 6084 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6085 6086 /* 6087 * Normally, indirect vdevs don't have any 6088 * metaslabs. We want to set them up for 6089 * zio_claim(). 6090 */ 6091 vdev_metaslab_group_create(vd); 6092 VERIFY0(vdev_metaslab_init(vd, 0)); 6093 6094 vdev_indirect_mapping_t *vim __maybe_unused = 6095 vd->vdev_indirect_mapping; 6096 uint64_t vim_idx = 0; 6097 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6098 6099 (void) fprintf(stderr, 6100 "\rloading indirect vdev %llu, " 6101 "metaslab %llu of %llu ...", 6102 (longlong_t)vd->vdev_id, 6103 (longlong_t)vd->vdev_ms[m]->ms_id, 6104 (longlong_t)vd->vdev_ms_count); 6105 6106 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6107 &vim_idx); 6108 } 6109 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6110 } 6111 } 6112 6113 static void 6114 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6115 { 6116 zcb->zcb_spa = spa; 6117 6118 if (dump_opt['L']) 6119 return; 6120 6121 dsl_pool_t *dp = spa->spa_dsl_pool; 6122 vdev_t *rvd = spa->spa_root_vdev; 6123 6124 /* 6125 * We are going to be changing the meaning of the metaslab's 6126 * ms_allocatable. Ensure that the allocator doesn't try to 6127 * use the tree. 6128 */ 6129 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6130 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6131 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6132 6133 zcb->zcb_vd_obsolete_counts = 6134 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6135 UMEM_NOFAIL); 6136 6137 /* 6138 * For leak detection, we overload the ms_allocatable trees 6139 * to contain allocated segments instead of free segments. 6140 * As a result, we can't use the normal metaslab_load/unload 6141 * interfaces. 6142 */ 6143 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6144 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6145 6146 /* 6147 * On load_concrete_ms_allocatable_trees() we loaded all the 6148 * allocated entries from the ms_sm to the ms_allocatable for 6149 * each metaslab. If the pool has a checkpoint or is in the 6150 * middle of discarding a checkpoint, some of these blocks 6151 * may have been freed but their ms_sm may not have been 6152 * updated because they are referenced by the checkpoint. In 6153 * order to avoid false-positives during leak-detection, we 6154 * go through the vdev's checkpoint space map and exclude all 6155 * its entries from their relevant ms_allocatable. 6156 * 6157 * We also aggregate the space held by the checkpoint and add 6158 * it to zcb_checkpoint_size. 6159 * 6160 * Note that at this point we are also verifying that all the 6161 * entries on the checkpoint_sm are marked as allocated in 6162 * the ms_sm of their relevant metaslab. 6163 * [see comment in checkpoint_sm_exclude_entry_cb()] 6164 */ 6165 zdb_leak_init_exclude_checkpoint(spa, zcb); 6166 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6167 6168 /* for cleaner progress output */ 6169 (void) fprintf(stderr, "\n"); 6170 6171 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6172 ASSERT(spa_feature_is_enabled(spa, 6173 SPA_FEATURE_DEVICE_REMOVAL)); 6174 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6175 increment_indirect_mapping_cb, zcb, NULL); 6176 } 6177 6178 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6179 zdb_ddt_leak_init(spa, zcb); 6180 spa_config_exit(spa, SCL_CONFIG, FTAG); 6181 } 6182 6183 static boolean_t 6184 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6185 { 6186 boolean_t leaks = B_FALSE; 6187 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6188 uint64_t total_leaked = 0; 6189 boolean_t are_precise = B_FALSE; 6190 6191 ASSERT(vim != NULL); 6192 6193 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6194 vdev_indirect_mapping_entry_phys_t *vimep = 6195 &vim->vim_entries[i]; 6196 uint64_t obsolete_bytes = 0; 6197 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6198 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6199 6200 /* 6201 * This is not very efficient but it's easy to 6202 * verify correctness. 6203 */ 6204 for (uint64_t inner_offset = 0; 6205 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6206 inner_offset += 1 << vd->vdev_ashift) { 6207 if (range_tree_contains(msp->ms_allocatable, 6208 offset + inner_offset, 1 << vd->vdev_ashift)) { 6209 obsolete_bytes += 1 << vd->vdev_ashift; 6210 } 6211 } 6212 6213 int64_t bytes_leaked = obsolete_bytes - 6214 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6215 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6216 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6217 6218 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6219 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6220 (void) printf("obsolete indirect mapping count " 6221 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6222 (u_longlong_t)vd->vdev_id, 6223 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6224 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6225 (u_longlong_t)bytes_leaked); 6226 } 6227 total_leaked += ABS(bytes_leaked); 6228 } 6229 6230 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6231 if (!are_precise && total_leaked > 0) { 6232 int pct_leaked = total_leaked * 100 / 6233 vdev_indirect_mapping_bytes_mapped(vim); 6234 (void) printf("cannot verify obsolete indirect mapping " 6235 "counts of vdev %llu because precise feature was not " 6236 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6237 "unreferenced\n", 6238 (u_longlong_t)vd->vdev_id, pct_leaked, 6239 (u_longlong_t)total_leaked); 6240 } else if (total_leaked > 0) { 6241 (void) printf("obsolete indirect mapping count mismatch " 6242 "for vdev %llu -- %llx total bytes mismatched\n", 6243 (u_longlong_t)vd->vdev_id, 6244 (u_longlong_t)total_leaked); 6245 leaks |= B_TRUE; 6246 } 6247 6248 vdev_indirect_mapping_free_obsolete_counts(vim, 6249 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6250 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6251 6252 return (leaks); 6253 } 6254 6255 static boolean_t 6256 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6257 { 6258 if (dump_opt['L']) 6259 return (B_FALSE); 6260 6261 boolean_t leaks = B_FALSE; 6262 vdev_t *rvd = spa->spa_root_vdev; 6263 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6264 vdev_t *vd = rvd->vdev_child[c]; 6265 6266 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6267 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6268 } 6269 6270 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6271 metaslab_t *msp = vd->vdev_ms[m]; 6272 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6273 spa_embedded_log_class(spa)) ? 6274 vd->vdev_log_mg : vd->vdev_mg); 6275 6276 /* 6277 * ms_allocatable has been overloaded 6278 * to contain allocated segments. Now that 6279 * we finished traversing all blocks, any 6280 * block that remains in the ms_allocatable 6281 * represents an allocated block that we 6282 * did not claim during the traversal. 6283 * Claimed blocks would have been removed 6284 * from the ms_allocatable. For indirect 6285 * vdevs, space remaining in the tree 6286 * represents parts of the mapping that are 6287 * not referenced, which is not a bug. 6288 */ 6289 if (vd->vdev_ops == &vdev_indirect_ops) { 6290 range_tree_vacate(msp->ms_allocatable, 6291 NULL, NULL); 6292 } else { 6293 range_tree_vacate(msp->ms_allocatable, 6294 zdb_leak, vd); 6295 } 6296 if (msp->ms_loaded) { 6297 msp->ms_loaded = B_FALSE; 6298 } 6299 } 6300 } 6301 6302 umem_free(zcb->zcb_vd_obsolete_counts, 6303 rvd->vdev_children * sizeof (uint32_t *)); 6304 zcb->zcb_vd_obsolete_counts = NULL; 6305 6306 return (leaks); 6307 } 6308 6309 static int 6310 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6311 { 6312 (void) tx; 6313 zdb_cb_t *zcb = arg; 6314 6315 if (dump_opt['b'] >= 5) { 6316 char blkbuf[BP_SPRINTF_LEN]; 6317 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6318 (void) printf("[%s] %s\n", 6319 "deferred free", blkbuf); 6320 } 6321 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6322 return (0); 6323 } 6324 6325 /* 6326 * Iterate over livelists which have been destroyed by the user but 6327 * are still present in the MOS, waiting to be freed 6328 */ 6329 static void 6330 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6331 { 6332 objset_t *mos = spa->spa_meta_objset; 6333 uint64_t zap_obj; 6334 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6335 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6336 if (err == ENOENT) 6337 return; 6338 ASSERT0(err); 6339 6340 zap_cursor_t zc; 6341 zap_attribute_t attr; 6342 dsl_deadlist_t ll; 6343 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6344 ll.dl_os = NULL; 6345 for (zap_cursor_init(&zc, mos, zap_obj); 6346 zap_cursor_retrieve(&zc, &attr) == 0; 6347 (void) zap_cursor_advance(&zc)) { 6348 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6349 func(&ll, arg); 6350 dsl_deadlist_close(&ll); 6351 } 6352 zap_cursor_fini(&zc); 6353 } 6354 6355 static int 6356 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6357 dmu_tx_t *tx) 6358 { 6359 ASSERT(!bp_freed); 6360 return (count_block_cb(arg, bp, tx)); 6361 } 6362 6363 static int 6364 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6365 { 6366 zdb_cb_t *zbc = args; 6367 bplist_t blks; 6368 bplist_create(&blks); 6369 /* determine which blocks have been alloc'd but not freed */ 6370 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6371 /* count those blocks */ 6372 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6373 bplist_destroy(&blks); 6374 return (0); 6375 } 6376 6377 static void 6378 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6379 { 6380 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6381 } 6382 6383 /* 6384 * Count the blocks in the livelists that have been destroyed by the user 6385 * but haven't yet been freed. 6386 */ 6387 static void 6388 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6389 { 6390 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6391 } 6392 6393 static void 6394 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6395 { 6396 ASSERT3P(arg, ==, NULL); 6397 global_feature_count[SPA_FEATURE_LIVELIST]++; 6398 dump_blkptr_list(ll, "Deleted Livelist"); 6399 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6400 } 6401 6402 /* 6403 * Print out, register object references to, and increment feature counts for 6404 * livelists that have been destroyed by the user but haven't yet been freed. 6405 */ 6406 static void 6407 deleted_livelists_dump_mos(spa_t *spa) 6408 { 6409 uint64_t zap_obj; 6410 objset_t *mos = spa->spa_meta_objset; 6411 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6412 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6413 if (err == ENOENT) 6414 return; 6415 mos_obj_refd(zap_obj); 6416 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6417 } 6418 6419 static int 6420 dump_block_stats(spa_t *spa) 6421 { 6422 zdb_cb_t *zcb; 6423 zdb_blkstats_t *zb, *tzb; 6424 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6425 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6426 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6427 boolean_t leaks = B_FALSE; 6428 int e, c, err; 6429 bp_embedded_type_t i; 6430 6431 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6432 6433 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6434 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6435 (dump_opt['c'] == 1) ? "metadata " : "", 6436 dump_opt['c'] ? "checksums " : "", 6437 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6438 !dump_opt['L'] ? "nothing leaked " : ""); 6439 6440 /* 6441 * When leak detection is enabled we load all space maps as SM_ALLOC 6442 * maps, then traverse the pool claiming each block we discover. If 6443 * the pool is perfectly consistent, the segment trees will be empty 6444 * when we're done. Anything left over is a leak; any block we can't 6445 * claim (because it's not part of any space map) is a double 6446 * allocation, reference to a freed block, or an unclaimed log block. 6447 * 6448 * When leak detection is disabled (-L option) we still traverse the 6449 * pool claiming each block we discover, but we skip opening any space 6450 * maps. 6451 */ 6452 zdb_leak_init(spa, zcb); 6453 6454 /* 6455 * If there's a deferred-free bplist, process that first. 6456 */ 6457 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6458 bpobj_count_block_cb, zcb, NULL); 6459 6460 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6461 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6462 bpobj_count_block_cb, zcb, NULL); 6463 } 6464 6465 zdb_claim_removing(spa, zcb); 6466 6467 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6468 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6469 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6470 zcb, NULL)); 6471 } 6472 6473 deleted_livelists_count_blocks(spa, zcb); 6474 6475 if (dump_opt['c'] > 1) 6476 flags |= TRAVERSE_PREFETCH_DATA; 6477 6478 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6479 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6480 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6481 zcb->zcb_totalasize += 6482 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6483 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6484 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6485 6486 /* 6487 * If we've traversed the data blocks then we need to wait for those 6488 * I/Os to complete. We leverage "The Godfather" zio to wait on 6489 * all async I/Os to complete. 6490 */ 6491 if (dump_opt['c']) { 6492 for (c = 0; c < max_ncpus; c++) { 6493 (void) zio_wait(spa->spa_async_zio_root[c]); 6494 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6495 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6496 ZIO_FLAG_GODFATHER); 6497 } 6498 } 6499 ASSERT0(spa->spa_load_verify_bytes); 6500 6501 /* 6502 * Done after zio_wait() since zcb_haderrors is modified in 6503 * zdb_blkptr_done() 6504 */ 6505 zcb->zcb_haderrors |= err; 6506 6507 if (zcb->zcb_haderrors) { 6508 (void) printf("\nError counts:\n\n"); 6509 (void) printf("\t%5s %s\n", "errno", "count"); 6510 for (e = 0; e < 256; e++) { 6511 if (zcb->zcb_errors[e] != 0) { 6512 (void) printf("\t%5d %llu\n", 6513 e, (u_longlong_t)zcb->zcb_errors[e]); 6514 } 6515 } 6516 } 6517 6518 /* 6519 * Report any leaked segments. 6520 */ 6521 leaks |= zdb_leak_fini(spa, zcb); 6522 6523 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6524 6525 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6526 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6527 6528 total_alloc = norm_alloc + 6529 metaslab_class_get_alloc(spa_log_class(spa)) + 6530 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6531 metaslab_class_get_alloc(spa_special_class(spa)) + 6532 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6533 get_unflushed_alloc_space(spa); 6534 total_found = tzb->zb_asize - zcb->zcb_dedup_asize + 6535 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6536 6537 if (total_found == total_alloc && !dump_opt['L']) { 6538 (void) printf("\n\tNo leaks (block sum matches space" 6539 " maps exactly)\n"); 6540 } else if (!dump_opt['L']) { 6541 (void) printf("block traversal size %llu != alloc %llu " 6542 "(%s %lld)\n", 6543 (u_longlong_t)total_found, 6544 (u_longlong_t)total_alloc, 6545 (dump_opt['L']) ? "unreachable" : "leaked", 6546 (longlong_t)(total_alloc - total_found)); 6547 leaks = B_TRUE; 6548 } 6549 6550 if (tzb->zb_count == 0) { 6551 umem_free(zcb, sizeof (zdb_cb_t)); 6552 return (2); 6553 } 6554 6555 (void) printf("\n"); 6556 (void) printf("\t%-16s %14llu\n", "bp count:", 6557 (u_longlong_t)tzb->zb_count); 6558 (void) printf("\t%-16s %14llu\n", "ganged count:", 6559 (longlong_t)tzb->zb_gangs); 6560 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6561 (u_longlong_t)tzb->zb_lsize, 6562 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6563 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6564 "bp physical:", (u_longlong_t)tzb->zb_psize, 6565 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6566 (double)tzb->zb_lsize / tzb->zb_psize); 6567 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6568 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6569 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6570 (double)tzb->zb_lsize / tzb->zb_asize); 6571 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6572 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6573 (u_longlong_t)zcb->zcb_dedup_blocks, 6574 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6575 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6576 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6577 6578 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6579 uint64_t alloc = metaslab_class_get_alloc( 6580 spa_special_class(spa)); 6581 uint64_t space = metaslab_class_get_space( 6582 spa_special_class(spa)); 6583 6584 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6585 "Special class", (u_longlong_t)alloc, 6586 100.0 * alloc / space); 6587 } 6588 6589 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6590 uint64_t alloc = metaslab_class_get_alloc( 6591 spa_dedup_class(spa)); 6592 uint64_t space = metaslab_class_get_space( 6593 spa_dedup_class(spa)); 6594 6595 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6596 "Dedup class", (u_longlong_t)alloc, 6597 100.0 * alloc / space); 6598 } 6599 6600 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6601 uint64_t alloc = metaslab_class_get_alloc( 6602 spa_embedded_log_class(spa)); 6603 uint64_t space = metaslab_class_get_space( 6604 spa_embedded_log_class(spa)); 6605 6606 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6607 "Embedded log class", (u_longlong_t)alloc, 6608 100.0 * alloc / space); 6609 } 6610 6611 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6612 if (zcb->zcb_embedded_blocks[i] == 0) 6613 continue; 6614 (void) printf("\n"); 6615 (void) printf("\tadditional, non-pointer bps of type %u: " 6616 "%10llu\n", 6617 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 6618 6619 if (dump_opt['b'] >= 3) { 6620 (void) printf("\t number of (compressed) bytes: " 6621 "number of bps\n"); 6622 dump_histogram(zcb->zcb_embedded_histogram[i], 6623 sizeof (zcb->zcb_embedded_histogram[i]) / 6624 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 6625 } 6626 } 6627 6628 if (tzb->zb_ditto_samevdev != 0) { 6629 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6630 (longlong_t)tzb->zb_ditto_samevdev); 6631 } 6632 if (tzb->zb_ditto_same_ms != 0) { 6633 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6634 (longlong_t)tzb->zb_ditto_same_ms); 6635 } 6636 6637 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6638 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6639 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6640 6641 if (vim == NULL) { 6642 continue; 6643 } 6644 6645 char mem[32]; 6646 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6647 mem, vdev_indirect_mapping_size(vim)); 6648 6649 (void) printf("\tindirect vdev id %llu has %llu segments " 6650 "(%s in memory)\n", 6651 (longlong_t)vd->vdev_id, 6652 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6653 } 6654 6655 if (dump_opt['b'] >= 2) { 6656 int l, t, level; 6657 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6658 "\t avg\t comp\t%%Total\tType\n"); 6659 6660 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6661 char csize[32], lsize[32], psize[32], asize[32]; 6662 char avg[32], gang[32]; 6663 const char *typename; 6664 6665 /* make sure nicenum has enough space */ 6666 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 6667 "csize truncated"); 6668 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 6669 "lsize truncated"); 6670 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 6671 "psize truncated"); 6672 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 6673 "asize truncated"); 6674 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 6675 "avg truncated"); 6676 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 6677 "gang truncated"); 6678 6679 if (t < DMU_OT_NUMTYPES) 6680 typename = dmu_ot[t].ot_name; 6681 else 6682 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 6683 6684 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 6685 (void) printf("%6s\t%5s\t%5s\t%5s" 6686 "\t%5s\t%5s\t%6s\t%s\n", 6687 "-", 6688 "-", 6689 "-", 6690 "-", 6691 "-", 6692 "-", 6693 "-", 6694 typename); 6695 continue; 6696 } 6697 6698 for (l = ZB_TOTAL - 1; l >= -1; l--) { 6699 level = (l == -1 ? ZB_TOTAL : l); 6700 zb = &zcb->zcb_type[level][t]; 6701 6702 if (zb->zb_asize == 0) 6703 continue; 6704 6705 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 6706 continue; 6707 6708 if (level == 0 && zb->zb_asize == 6709 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 6710 continue; 6711 6712 zdb_nicenum(zb->zb_count, csize, 6713 sizeof (csize)); 6714 zdb_nicenum(zb->zb_lsize, lsize, 6715 sizeof (lsize)); 6716 zdb_nicenum(zb->zb_psize, psize, 6717 sizeof (psize)); 6718 zdb_nicenum(zb->zb_asize, asize, 6719 sizeof (asize)); 6720 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 6721 sizeof (avg)); 6722 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 6723 6724 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 6725 "\t%5.2f\t%6.2f\t", 6726 csize, lsize, psize, asize, avg, 6727 (double)zb->zb_lsize / zb->zb_psize, 6728 100.0 * zb->zb_asize / tzb->zb_asize); 6729 6730 if (level == ZB_TOTAL) 6731 (void) printf("%s\n", typename); 6732 else 6733 (void) printf(" L%d %s\n", 6734 level, typename); 6735 6736 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 6737 (void) printf("\t number of ganged " 6738 "blocks: %s\n", gang); 6739 } 6740 6741 if (dump_opt['b'] >= 4) { 6742 (void) printf("psize " 6743 "(in 512-byte sectors): " 6744 "number of blocks\n"); 6745 dump_histogram(zb->zb_psize_histogram, 6746 PSIZE_HISTO_SIZE, 0); 6747 } 6748 } 6749 } 6750 6751 /* Output a table summarizing block sizes in the pool */ 6752 if (dump_opt['b'] >= 2) { 6753 dump_size_histograms(zcb); 6754 } 6755 } 6756 6757 (void) printf("\n"); 6758 6759 if (leaks) { 6760 umem_free(zcb, sizeof (zdb_cb_t)); 6761 return (2); 6762 } 6763 6764 if (zcb->zcb_haderrors) { 6765 umem_free(zcb, sizeof (zdb_cb_t)); 6766 return (3); 6767 } 6768 6769 umem_free(zcb, sizeof (zdb_cb_t)); 6770 return (0); 6771 } 6772 6773 typedef struct zdb_ddt_entry { 6774 ddt_key_t zdde_key; 6775 uint64_t zdde_ref_blocks; 6776 uint64_t zdde_ref_lsize; 6777 uint64_t zdde_ref_psize; 6778 uint64_t zdde_ref_dsize; 6779 avl_node_t zdde_node; 6780 } zdb_ddt_entry_t; 6781 6782 static int 6783 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6784 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6785 { 6786 (void) zilog, (void) dnp; 6787 avl_tree_t *t = arg; 6788 avl_index_t where; 6789 zdb_ddt_entry_t *zdde, zdde_search; 6790 6791 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 6792 BP_IS_EMBEDDED(bp)) 6793 return (0); 6794 6795 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 6796 (void) printf("traversing objset %llu, %llu objects, " 6797 "%lu blocks so far\n", 6798 (u_longlong_t)zb->zb_objset, 6799 (u_longlong_t)BP_GET_FILL(bp), 6800 avl_numnodes(t)); 6801 } 6802 6803 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 6804 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 6805 return (0); 6806 6807 ddt_key_fill(&zdde_search.zdde_key, bp); 6808 6809 zdde = avl_find(t, &zdde_search, &where); 6810 6811 if (zdde == NULL) { 6812 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 6813 zdde->zdde_key = zdde_search.zdde_key; 6814 avl_insert(t, zdde, where); 6815 } 6816 6817 zdde->zdde_ref_blocks += 1; 6818 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 6819 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 6820 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 6821 6822 return (0); 6823 } 6824 6825 static void 6826 dump_simulated_ddt(spa_t *spa) 6827 { 6828 avl_tree_t t; 6829 void *cookie = NULL; 6830 zdb_ddt_entry_t *zdde; 6831 ddt_histogram_t ddh_total = {{{0}}}; 6832 ddt_stat_t dds_total = {0}; 6833 6834 avl_create(&t, ddt_entry_compare, 6835 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 6836 6837 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6838 6839 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6840 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 6841 6842 spa_config_exit(spa, SCL_CONFIG, FTAG); 6843 6844 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 6845 ddt_stat_t dds; 6846 uint64_t refcnt = zdde->zdde_ref_blocks; 6847 ASSERT(refcnt != 0); 6848 6849 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 6850 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 6851 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 6852 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 6853 6854 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 6855 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 6856 dds.dds_ref_psize = zdde->zdde_ref_psize; 6857 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 6858 6859 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 6860 &dds, 0); 6861 6862 umem_free(zdde, sizeof (*zdde)); 6863 } 6864 6865 avl_destroy(&t); 6866 6867 ddt_histogram_stat(&dds_total, &ddh_total); 6868 6869 (void) printf("Simulated DDT histogram:\n"); 6870 6871 zpool_dump_ddt(&dds_total, &ddh_total); 6872 6873 dump_dedup_ratio(&dds_total); 6874 } 6875 6876 static int 6877 verify_device_removal_feature_counts(spa_t *spa) 6878 { 6879 uint64_t dr_feature_refcount = 0; 6880 uint64_t oc_feature_refcount = 0; 6881 uint64_t indirect_vdev_count = 0; 6882 uint64_t precise_vdev_count = 0; 6883 uint64_t obsolete_counts_object_count = 0; 6884 uint64_t obsolete_sm_count = 0; 6885 uint64_t obsolete_counts_count = 0; 6886 uint64_t scip_count = 0; 6887 uint64_t obsolete_bpobj_count = 0; 6888 int ret = 0; 6889 6890 spa_condensing_indirect_phys_t *scip = 6891 &spa->spa_condensing_indirect_phys; 6892 if (scip->scip_next_mapping_object != 0) { 6893 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 6894 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 6895 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 6896 6897 (void) printf("Condensing indirect vdev %llu: new mapping " 6898 "object %llu, prev obsolete sm %llu\n", 6899 (u_longlong_t)scip->scip_vdev, 6900 (u_longlong_t)scip->scip_next_mapping_object, 6901 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 6902 if (scip->scip_prev_obsolete_sm_object != 0) { 6903 space_map_t *prev_obsolete_sm = NULL; 6904 VERIFY0(space_map_open(&prev_obsolete_sm, 6905 spa->spa_meta_objset, 6906 scip->scip_prev_obsolete_sm_object, 6907 0, vd->vdev_asize, 0)); 6908 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 6909 (void) printf("\n"); 6910 space_map_close(prev_obsolete_sm); 6911 } 6912 6913 scip_count += 2; 6914 } 6915 6916 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 6917 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 6918 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 6919 6920 if (vic->vic_mapping_object != 0) { 6921 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 6922 vd->vdev_removing); 6923 indirect_vdev_count++; 6924 6925 if (vd->vdev_indirect_mapping->vim_havecounts) { 6926 obsolete_counts_count++; 6927 } 6928 } 6929 6930 boolean_t are_precise; 6931 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6932 if (are_precise) { 6933 ASSERT(vic->vic_mapping_object != 0); 6934 precise_vdev_count++; 6935 } 6936 6937 uint64_t obsolete_sm_object; 6938 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6939 if (obsolete_sm_object != 0) { 6940 ASSERT(vic->vic_mapping_object != 0); 6941 obsolete_sm_count++; 6942 } 6943 } 6944 6945 (void) feature_get_refcount(spa, 6946 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 6947 &dr_feature_refcount); 6948 (void) feature_get_refcount(spa, 6949 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 6950 &oc_feature_refcount); 6951 6952 if (dr_feature_refcount != indirect_vdev_count) { 6953 ret = 1; 6954 (void) printf("Number of indirect vdevs (%llu) " \ 6955 "does not match feature count (%llu)\n", 6956 (u_longlong_t)indirect_vdev_count, 6957 (u_longlong_t)dr_feature_refcount); 6958 } else { 6959 (void) printf("Verified device_removal feature refcount " \ 6960 "of %llu is correct\n", 6961 (u_longlong_t)dr_feature_refcount); 6962 } 6963 6964 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 6965 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 6966 obsolete_bpobj_count++; 6967 } 6968 6969 6970 obsolete_counts_object_count = precise_vdev_count; 6971 obsolete_counts_object_count += obsolete_sm_count; 6972 obsolete_counts_object_count += obsolete_counts_count; 6973 obsolete_counts_object_count += scip_count; 6974 obsolete_counts_object_count += obsolete_bpobj_count; 6975 obsolete_counts_object_count += remap_deadlist_count; 6976 6977 if (oc_feature_refcount != obsolete_counts_object_count) { 6978 ret = 1; 6979 (void) printf("Number of obsolete counts objects (%llu) " \ 6980 "does not match feature count (%llu)\n", 6981 (u_longlong_t)obsolete_counts_object_count, 6982 (u_longlong_t)oc_feature_refcount); 6983 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 6984 "ob:%llu rd:%llu\n", 6985 (u_longlong_t)precise_vdev_count, 6986 (u_longlong_t)obsolete_sm_count, 6987 (u_longlong_t)obsolete_counts_count, 6988 (u_longlong_t)scip_count, 6989 (u_longlong_t)obsolete_bpobj_count, 6990 (u_longlong_t)remap_deadlist_count); 6991 } else { 6992 (void) printf("Verified indirect_refcount feature refcount " \ 6993 "of %llu is correct\n", 6994 (u_longlong_t)oc_feature_refcount); 6995 } 6996 return (ret); 6997 } 6998 6999 static void 7000 zdb_set_skip_mmp(char *target) 7001 { 7002 spa_t *spa; 7003 7004 /* 7005 * Disable the activity check to allow examination of 7006 * active pools. 7007 */ 7008 mutex_enter(&spa_namespace_lock); 7009 if ((spa = spa_lookup(target)) != NULL) { 7010 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7011 } 7012 mutex_exit(&spa_namespace_lock); 7013 } 7014 7015 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7016 /* 7017 * Import the checkpointed state of the pool specified by the target 7018 * parameter as readonly. The function also accepts a pool config 7019 * as an optional parameter, else it attempts to infer the config by 7020 * the name of the target pool. 7021 * 7022 * Note that the checkpointed state's pool name will be the name of 7023 * the original pool with the above suffix appended to it. In addition, 7024 * if the target is not a pool name (e.g. a path to a dataset) then 7025 * the new_path parameter is populated with the updated path to 7026 * reflect the fact that we are looking into the checkpointed state. 7027 * 7028 * The function returns a newly-allocated copy of the name of the 7029 * pool containing the checkpointed state. When this copy is no 7030 * longer needed it should be freed with free(3C). Same thing 7031 * applies to the new_path parameter if allocated. 7032 */ 7033 static char * 7034 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7035 { 7036 int error = 0; 7037 char *poolname, *bogus_name = NULL; 7038 boolean_t freecfg = B_FALSE; 7039 7040 /* If the target is not a pool, the extract the pool name */ 7041 char *path_start = strchr(target, '/'); 7042 if (path_start != NULL) { 7043 size_t poolname_len = path_start - target; 7044 poolname = strndup(target, poolname_len); 7045 } else { 7046 poolname = target; 7047 } 7048 7049 if (cfg == NULL) { 7050 zdb_set_skip_mmp(poolname); 7051 error = spa_get_stats(poolname, &cfg, NULL, 0); 7052 if (error != 0) { 7053 fatal("Tried to read config of pool \"%s\" but " 7054 "spa_get_stats() failed with error %d\n", 7055 poolname, error); 7056 } 7057 freecfg = B_TRUE; 7058 } 7059 7060 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) 7061 return (NULL); 7062 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7063 7064 error = spa_import(bogus_name, cfg, NULL, 7065 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7066 ZFS_IMPORT_SKIP_MMP); 7067 if (freecfg) 7068 nvlist_free(cfg); 7069 if (error != 0) { 7070 fatal("Tried to import pool \"%s\" but spa_import() failed " 7071 "with error %d\n", bogus_name, error); 7072 } 7073 7074 if (new_path != NULL && path_start != NULL) { 7075 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7076 if (path_start != NULL) 7077 free(poolname); 7078 return (NULL); 7079 } 7080 } 7081 7082 if (target != poolname) 7083 free(poolname); 7084 7085 return (bogus_name); 7086 } 7087 7088 typedef struct verify_checkpoint_sm_entry_cb_arg { 7089 vdev_t *vcsec_vd; 7090 7091 /* the following fields are only used for printing progress */ 7092 uint64_t vcsec_entryid; 7093 uint64_t vcsec_num_entries; 7094 } verify_checkpoint_sm_entry_cb_arg_t; 7095 7096 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7097 7098 static int 7099 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7100 { 7101 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7102 vdev_t *vd = vcsec->vcsec_vd; 7103 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7104 uint64_t end = sme->sme_offset + sme->sme_run; 7105 7106 ASSERT(sme->sme_type == SM_FREE); 7107 7108 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7109 (void) fprintf(stderr, 7110 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7111 (longlong_t)vd->vdev_id, 7112 (longlong_t)vcsec->vcsec_entryid, 7113 (longlong_t)vcsec->vcsec_num_entries); 7114 } 7115 vcsec->vcsec_entryid++; 7116 7117 /* 7118 * See comment in checkpoint_sm_exclude_entry_cb() 7119 */ 7120 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7121 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7122 7123 /* 7124 * The entries in the vdev_checkpoint_sm should be marked as 7125 * allocated in the checkpointed state of the pool, therefore 7126 * their respective ms_allocateable trees should not contain them. 7127 */ 7128 mutex_enter(&ms->ms_lock); 7129 range_tree_verify_not_present(ms->ms_allocatable, 7130 sme->sme_offset, sme->sme_run); 7131 mutex_exit(&ms->ms_lock); 7132 7133 return (0); 7134 } 7135 7136 /* 7137 * Verify that all segments in the vdev_checkpoint_sm are allocated 7138 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7139 * ms_allocatable). 7140 * 7141 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7142 * each vdev in the current state of the pool to the metaslab space maps 7143 * (ms_sm) of the checkpointed state of the pool. 7144 * 7145 * Note that the function changes the state of the ms_allocatable 7146 * trees of the current spa_t. The entries of these ms_allocatable 7147 * trees are cleared out and then repopulated from with the free 7148 * entries of their respective ms_sm space maps. 7149 */ 7150 static void 7151 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7152 { 7153 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7154 vdev_t *current_rvd = current->spa_root_vdev; 7155 7156 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7157 7158 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7159 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7160 vdev_t *current_vd = current_rvd->vdev_child[c]; 7161 7162 space_map_t *checkpoint_sm = NULL; 7163 uint64_t checkpoint_sm_obj; 7164 7165 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7166 /* 7167 * Since we don't allow device removal in a pool 7168 * that has a checkpoint, we expect that all removed 7169 * vdevs were removed from the pool before the 7170 * checkpoint. 7171 */ 7172 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7173 continue; 7174 } 7175 7176 /* 7177 * If the checkpoint space map doesn't exist, then nothing 7178 * here is checkpointed so there's nothing to verify. 7179 */ 7180 if (current_vd->vdev_top_zap == 0 || 7181 zap_contains(spa_meta_objset(current), 7182 current_vd->vdev_top_zap, 7183 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7184 continue; 7185 7186 VERIFY0(zap_lookup(spa_meta_objset(current), 7187 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7188 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7189 7190 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7191 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7192 current_vd->vdev_ashift)); 7193 7194 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7195 vcsec.vcsec_vd = ckpoint_vd; 7196 vcsec.vcsec_entryid = 0; 7197 vcsec.vcsec_num_entries = 7198 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7199 VERIFY0(space_map_iterate(checkpoint_sm, 7200 space_map_length(checkpoint_sm), 7201 verify_checkpoint_sm_entry_cb, &vcsec)); 7202 if (dump_opt['m'] > 3) 7203 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7204 space_map_close(checkpoint_sm); 7205 } 7206 7207 /* 7208 * If we've added vdevs since we took the checkpoint, ensure 7209 * that their checkpoint space maps are empty. 7210 */ 7211 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7212 for (uint64_t c = ckpoint_rvd->vdev_children; 7213 c < current_rvd->vdev_children; c++) { 7214 vdev_t *current_vd = current_rvd->vdev_child[c]; 7215 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7216 } 7217 } 7218 7219 /* for cleaner progress output */ 7220 (void) fprintf(stderr, "\n"); 7221 } 7222 7223 /* 7224 * Verifies that all space that's allocated in the checkpoint is 7225 * still allocated in the current version, by checking that everything 7226 * in checkpoint's ms_allocatable (which is actually allocated, not 7227 * allocatable/free) is not present in current's ms_allocatable. 7228 * 7229 * Note that the function changes the state of the ms_allocatable 7230 * trees of both spas when called. The entries of all ms_allocatable 7231 * trees are cleared out and then repopulated from their respective 7232 * ms_sm space maps. In the checkpointed state we load the allocated 7233 * entries, and in the current state we load the free entries. 7234 */ 7235 static void 7236 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7237 { 7238 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7239 vdev_t *current_rvd = current->spa_root_vdev; 7240 7241 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7242 load_concrete_ms_allocatable_trees(current, SM_FREE); 7243 7244 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7245 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7246 vdev_t *current_vd = current_rvd->vdev_child[i]; 7247 7248 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7249 /* 7250 * See comment in verify_checkpoint_vdev_spacemaps() 7251 */ 7252 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7253 continue; 7254 } 7255 7256 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7257 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7258 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7259 7260 (void) fprintf(stderr, 7261 "\rverifying vdev %llu of %llu, " 7262 "metaslab %llu of %llu ...", 7263 (longlong_t)current_vd->vdev_id, 7264 (longlong_t)current_rvd->vdev_children, 7265 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7266 (longlong_t)current_vd->vdev_ms_count); 7267 7268 /* 7269 * We walk through the ms_allocatable trees that 7270 * are loaded with the allocated blocks from the 7271 * ms_sm spacemaps of the checkpoint. For each 7272 * one of these ranges we ensure that none of them 7273 * exists in the ms_allocatable trees of the 7274 * current state which are loaded with the ranges 7275 * that are currently free. 7276 * 7277 * This way we ensure that none of the blocks that 7278 * are part of the checkpoint were freed by mistake. 7279 */ 7280 range_tree_walk(ckpoint_msp->ms_allocatable, 7281 (range_tree_func_t *)range_tree_verify_not_present, 7282 current_msp->ms_allocatable); 7283 } 7284 } 7285 7286 /* for cleaner progress output */ 7287 (void) fprintf(stderr, "\n"); 7288 } 7289 7290 static void 7291 verify_checkpoint_blocks(spa_t *spa) 7292 { 7293 ASSERT(!dump_opt['L']); 7294 7295 spa_t *checkpoint_spa; 7296 char *checkpoint_pool; 7297 int error = 0; 7298 7299 /* 7300 * We import the checkpointed state of the pool (under a different 7301 * name) so we can do verification on it against the current state 7302 * of the pool. 7303 */ 7304 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7305 NULL); 7306 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7307 7308 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7309 if (error != 0) { 7310 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7311 "error %d\n", checkpoint_pool, error); 7312 } 7313 7314 /* 7315 * Ensure that ranges in the checkpoint space maps of each vdev 7316 * are allocated according to the checkpointed state's metaslab 7317 * space maps. 7318 */ 7319 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7320 7321 /* 7322 * Ensure that allocated ranges in the checkpoint's metaslab 7323 * space maps remain allocated in the metaslab space maps of 7324 * the current state. 7325 */ 7326 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7327 7328 /* 7329 * Once we are done, we get rid of the checkpointed state. 7330 */ 7331 spa_close(checkpoint_spa, FTAG); 7332 free(checkpoint_pool); 7333 } 7334 7335 static void 7336 dump_leftover_checkpoint_blocks(spa_t *spa) 7337 { 7338 vdev_t *rvd = spa->spa_root_vdev; 7339 7340 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7341 vdev_t *vd = rvd->vdev_child[i]; 7342 7343 space_map_t *checkpoint_sm = NULL; 7344 uint64_t checkpoint_sm_obj; 7345 7346 if (vd->vdev_top_zap == 0) 7347 continue; 7348 7349 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7350 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7351 continue; 7352 7353 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7354 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7355 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7356 7357 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7358 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7359 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7360 space_map_close(checkpoint_sm); 7361 } 7362 } 7363 7364 static int 7365 verify_checkpoint(spa_t *spa) 7366 { 7367 uberblock_t checkpoint; 7368 int error; 7369 7370 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7371 return (0); 7372 7373 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7374 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7375 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7376 7377 if (error == ENOENT && !dump_opt['L']) { 7378 /* 7379 * If the feature is active but the uberblock is missing 7380 * then we must be in the middle of discarding the 7381 * checkpoint. 7382 */ 7383 (void) printf("\nPartially discarded checkpoint " 7384 "state found:\n"); 7385 if (dump_opt['m'] > 3) 7386 dump_leftover_checkpoint_blocks(spa); 7387 return (0); 7388 } else if (error != 0) { 7389 (void) printf("lookup error %d when looking for " 7390 "checkpointed uberblock in MOS\n", error); 7391 return (error); 7392 } 7393 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7394 7395 if (checkpoint.ub_checkpoint_txg == 0) { 7396 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7397 "uberblock\n"); 7398 error = 3; 7399 } 7400 7401 if (error == 0 && !dump_opt['L']) 7402 verify_checkpoint_blocks(spa); 7403 7404 return (error); 7405 } 7406 7407 static void 7408 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7409 { 7410 (void) arg; 7411 for (uint64_t i = start; i < size; i++) { 7412 (void) printf("MOS object %llu referenced but not allocated\n", 7413 (u_longlong_t)i); 7414 } 7415 } 7416 7417 static void 7418 mos_obj_refd(uint64_t obj) 7419 { 7420 if (obj != 0 && mos_refd_objs != NULL) 7421 range_tree_add(mos_refd_objs, obj, 1); 7422 } 7423 7424 /* 7425 * Call on a MOS object that may already have been referenced. 7426 */ 7427 static void 7428 mos_obj_refd_multiple(uint64_t obj) 7429 { 7430 if (obj != 0 && mos_refd_objs != NULL && 7431 !range_tree_contains(mos_refd_objs, obj, 1)) 7432 range_tree_add(mos_refd_objs, obj, 1); 7433 } 7434 7435 static void 7436 mos_leak_vdev_top_zap(vdev_t *vd) 7437 { 7438 uint64_t ms_flush_data_obj; 7439 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7440 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7441 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7442 if (error == ENOENT) 7443 return; 7444 ASSERT0(error); 7445 7446 mos_obj_refd(ms_flush_data_obj); 7447 } 7448 7449 static void 7450 mos_leak_vdev(vdev_t *vd) 7451 { 7452 mos_obj_refd(vd->vdev_dtl_object); 7453 mos_obj_refd(vd->vdev_ms_array); 7454 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7455 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7456 mos_obj_refd(vd->vdev_leaf_zap); 7457 if (vd->vdev_checkpoint_sm != NULL) 7458 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7459 if (vd->vdev_indirect_mapping != NULL) { 7460 mos_obj_refd(vd->vdev_indirect_mapping-> 7461 vim_phys->vimp_counts_object); 7462 } 7463 if (vd->vdev_obsolete_sm != NULL) 7464 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7465 7466 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7467 metaslab_t *ms = vd->vdev_ms[m]; 7468 mos_obj_refd(space_map_object(ms->ms_sm)); 7469 } 7470 7471 if (vd->vdev_top_zap != 0) { 7472 mos_obj_refd(vd->vdev_top_zap); 7473 mos_leak_vdev_top_zap(vd); 7474 } 7475 7476 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7477 mos_leak_vdev(vd->vdev_child[c]); 7478 } 7479 } 7480 7481 static void 7482 mos_leak_log_spacemaps(spa_t *spa) 7483 { 7484 uint64_t spacemap_zap; 7485 int error = zap_lookup(spa_meta_objset(spa), 7486 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7487 sizeof (spacemap_zap), 1, &spacemap_zap); 7488 if (error == ENOENT) 7489 return; 7490 ASSERT0(error); 7491 7492 mos_obj_refd(spacemap_zap); 7493 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7494 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7495 mos_obj_refd(sls->sls_sm_obj); 7496 } 7497 7498 static int 7499 dump_mos_leaks(spa_t *spa) 7500 { 7501 int rv = 0; 7502 objset_t *mos = spa->spa_meta_objset; 7503 dsl_pool_t *dp = spa->spa_dsl_pool; 7504 7505 /* Visit and mark all referenced objects in the MOS */ 7506 7507 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7508 mos_obj_refd(spa->spa_pool_props_object); 7509 mos_obj_refd(spa->spa_config_object); 7510 mos_obj_refd(spa->spa_ddt_stat_object); 7511 mos_obj_refd(spa->spa_feat_desc_obj); 7512 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7513 mos_obj_refd(spa->spa_feat_for_read_obj); 7514 mos_obj_refd(spa->spa_feat_for_write_obj); 7515 mos_obj_refd(spa->spa_history); 7516 mos_obj_refd(spa->spa_errlog_last); 7517 mos_obj_refd(spa->spa_errlog_scrub); 7518 mos_obj_refd(spa->spa_all_vdev_zaps); 7519 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7520 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7521 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7522 bpobj_count_refd(&spa->spa_deferred_bpobj); 7523 mos_obj_refd(dp->dp_empty_bpobj); 7524 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7525 bpobj_count_refd(&dp->dp_free_bpobj); 7526 mos_obj_refd(spa->spa_l2cache.sav_object); 7527 mos_obj_refd(spa->spa_spares.sav_object); 7528 7529 if (spa->spa_syncing_log_sm != NULL) 7530 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7531 mos_leak_log_spacemaps(spa); 7532 7533 mos_obj_refd(spa->spa_condensing_indirect_phys. 7534 scip_next_mapping_object); 7535 mos_obj_refd(spa->spa_condensing_indirect_phys. 7536 scip_prev_obsolete_sm_object); 7537 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7538 vdev_indirect_mapping_t *vim = 7539 vdev_indirect_mapping_open(mos, 7540 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7541 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7542 vdev_indirect_mapping_close(vim); 7543 } 7544 deleted_livelists_dump_mos(spa); 7545 7546 if (dp->dp_origin_snap != NULL) { 7547 dsl_dataset_t *ds; 7548 7549 dsl_pool_config_enter(dp, FTAG); 7550 VERIFY0(dsl_dataset_hold_obj(dp, 7551 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7552 FTAG, &ds)); 7553 count_ds_mos_objects(ds); 7554 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7555 dsl_dataset_rele(ds, FTAG); 7556 dsl_pool_config_exit(dp, FTAG); 7557 7558 count_ds_mos_objects(dp->dp_origin_snap); 7559 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7560 } 7561 count_dir_mos_objects(dp->dp_mos_dir); 7562 if (dp->dp_free_dir != NULL) 7563 count_dir_mos_objects(dp->dp_free_dir); 7564 if (dp->dp_leak_dir != NULL) 7565 count_dir_mos_objects(dp->dp_leak_dir); 7566 7567 mos_leak_vdev(spa->spa_root_vdev); 7568 7569 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7570 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7571 for (uint64_t cksum = 0; 7572 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7573 ddt_t *ddt = spa->spa_ddt[cksum]; 7574 mos_obj_refd(ddt->ddt_object[type][class]); 7575 } 7576 } 7577 } 7578 7579 /* 7580 * Visit all allocated objects and make sure they are referenced. 7581 */ 7582 uint64_t object = 0; 7583 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7584 if (range_tree_contains(mos_refd_objs, object, 1)) { 7585 range_tree_remove(mos_refd_objs, object, 1); 7586 } else { 7587 dmu_object_info_t doi; 7588 const char *name; 7589 dmu_object_info(mos, object, &doi); 7590 if (doi.doi_type & DMU_OT_NEWTYPE) { 7591 dmu_object_byteswap_t bswap = 7592 DMU_OT_BYTESWAP(doi.doi_type); 7593 name = dmu_ot_byteswap[bswap].ob_name; 7594 } else { 7595 name = dmu_ot[doi.doi_type].ot_name; 7596 } 7597 7598 (void) printf("MOS object %llu (%s) leaked\n", 7599 (u_longlong_t)object, name); 7600 rv = 2; 7601 } 7602 } 7603 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7604 if (!range_tree_is_empty(mos_refd_objs)) 7605 rv = 2; 7606 range_tree_vacate(mos_refd_objs, NULL, NULL); 7607 range_tree_destroy(mos_refd_objs); 7608 return (rv); 7609 } 7610 7611 typedef struct log_sm_obsolete_stats_arg { 7612 uint64_t lsos_current_txg; 7613 7614 uint64_t lsos_total_entries; 7615 uint64_t lsos_valid_entries; 7616 7617 uint64_t lsos_sm_entries; 7618 uint64_t lsos_valid_sm_entries; 7619 } log_sm_obsolete_stats_arg_t; 7620 7621 static int 7622 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 7623 uint64_t txg, void *arg) 7624 { 7625 log_sm_obsolete_stats_arg_t *lsos = arg; 7626 7627 uint64_t offset = sme->sme_offset; 7628 uint64_t vdev_id = sme->sme_vdev; 7629 7630 if (lsos->lsos_current_txg == 0) { 7631 /* this is the first log */ 7632 lsos->lsos_current_txg = txg; 7633 } else if (lsos->lsos_current_txg < txg) { 7634 /* we just changed log - print stats and reset */ 7635 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7636 (u_longlong_t)lsos->lsos_valid_sm_entries, 7637 (u_longlong_t)lsos->lsos_sm_entries, 7638 (u_longlong_t)lsos->lsos_current_txg); 7639 lsos->lsos_valid_sm_entries = 0; 7640 lsos->lsos_sm_entries = 0; 7641 lsos->lsos_current_txg = txg; 7642 } 7643 ASSERT3U(lsos->lsos_current_txg, ==, txg); 7644 7645 lsos->lsos_sm_entries++; 7646 lsos->lsos_total_entries++; 7647 7648 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 7649 if (!vdev_is_concrete(vd)) 7650 return (0); 7651 7652 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 7653 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 7654 7655 if (txg < metaslab_unflushed_txg(ms)) 7656 return (0); 7657 lsos->lsos_valid_sm_entries++; 7658 lsos->lsos_valid_entries++; 7659 return (0); 7660 } 7661 7662 static void 7663 dump_log_spacemap_obsolete_stats(spa_t *spa) 7664 { 7665 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 7666 return; 7667 7668 log_sm_obsolete_stats_arg_t lsos = {0}; 7669 7670 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 7671 7672 iterate_through_spacemap_logs(spa, 7673 log_spacemap_obsolete_stats_cb, &lsos); 7674 7675 /* print stats for latest log */ 7676 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7677 (u_longlong_t)lsos.lsos_valid_sm_entries, 7678 (u_longlong_t)lsos.lsos_sm_entries, 7679 (u_longlong_t)lsos.lsos_current_txg); 7680 7681 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 7682 (u_longlong_t)lsos.lsos_valid_entries, 7683 (u_longlong_t)lsos.lsos_total_entries); 7684 } 7685 7686 static void 7687 dump_zpool(spa_t *spa) 7688 { 7689 dsl_pool_t *dp = spa_get_dsl(spa); 7690 int rc = 0; 7691 7692 if (dump_opt['y']) { 7693 livelist_metaslab_validate(spa); 7694 } 7695 7696 if (dump_opt['S']) { 7697 dump_simulated_ddt(spa); 7698 return; 7699 } 7700 7701 if (!dump_opt['e'] && dump_opt['C'] > 1) { 7702 (void) printf("\nCached configuration:\n"); 7703 dump_nvlist(spa->spa_config, 8); 7704 } 7705 7706 if (dump_opt['C']) 7707 dump_config(spa); 7708 7709 if (dump_opt['u']) 7710 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 7711 7712 if (dump_opt['D']) 7713 dump_all_ddts(spa); 7714 7715 if (dump_opt['d'] > 2 || dump_opt['m']) 7716 dump_metaslabs(spa); 7717 if (dump_opt['M']) 7718 dump_metaslab_groups(spa, dump_opt['M'] > 1); 7719 if (dump_opt['d'] > 2 || dump_opt['m']) { 7720 dump_log_spacemaps(spa); 7721 dump_log_spacemap_obsolete_stats(spa); 7722 } 7723 7724 if (dump_opt['d'] || dump_opt['i']) { 7725 spa_feature_t f; 7726 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 7727 0); 7728 dump_objset(dp->dp_meta_objset); 7729 7730 if (dump_opt['d'] >= 3) { 7731 dsl_pool_t *dp = spa->spa_dsl_pool; 7732 dump_full_bpobj(&spa->spa_deferred_bpobj, 7733 "Deferred frees", 0); 7734 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7735 dump_full_bpobj(&dp->dp_free_bpobj, 7736 "Pool snapshot frees", 0); 7737 } 7738 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 7739 ASSERT(spa_feature_is_enabled(spa, 7740 SPA_FEATURE_DEVICE_REMOVAL)); 7741 dump_full_bpobj(&dp->dp_obsolete_bpobj, 7742 "Pool obsolete blocks", 0); 7743 } 7744 7745 if (spa_feature_is_active(spa, 7746 SPA_FEATURE_ASYNC_DESTROY)) { 7747 dump_bptree(spa->spa_meta_objset, 7748 dp->dp_bptree_obj, 7749 "Pool dataset frees"); 7750 } 7751 dump_dtl(spa->spa_root_vdev, 0); 7752 } 7753 7754 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 7755 global_feature_count[f] = UINT64_MAX; 7756 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 7757 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 7758 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 7759 7760 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 7761 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7762 7763 if (rc == 0 && !dump_opt['L']) 7764 rc = dump_mos_leaks(spa); 7765 7766 for (f = 0; f < SPA_FEATURES; f++) { 7767 uint64_t refcount; 7768 7769 uint64_t *arr; 7770 if (!(spa_feature_table[f].fi_flags & 7771 ZFEATURE_FLAG_PER_DATASET)) { 7772 if (global_feature_count[f] == UINT64_MAX) 7773 continue; 7774 if (!spa_feature_is_enabled(spa, f)) { 7775 ASSERT0(global_feature_count[f]); 7776 continue; 7777 } 7778 arr = global_feature_count; 7779 } else { 7780 if (!spa_feature_is_enabled(spa, f)) { 7781 ASSERT0(dataset_feature_count[f]); 7782 continue; 7783 } 7784 arr = dataset_feature_count; 7785 } 7786 if (feature_get_refcount(spa, &spa_feature_table[f], 7787 &refcount) == ENOTSUP) 7788 continue; 7789 if (arr[f] != refcount) { 7790 (void) printf("%s feature refcount mismatch: " 7791 "%lld consumers != %lld refcount\n", 7792 spa_feature_table[f].fi_uname, 7793 (longlong_t)arr[f], (longlong_t)refcount); 7794 rc = 2; 7795 } else { 7796 (void) printf("Verified %s feature refcount " 7797 "of %llu is correct\n", 7798 spa_feature_table[f].fi_uname, 7799 (longlong_t)refcount); 7800 } 7801 } 7802 7803 if (rc == 0) 7804 rc = verify_device_removal_feature_counts(spa); 7805 } 7806 7807 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 7808 rc = dump_block_stats(spa); 7809 7810 if (rc == 0) 7811 rc = verify_spacemap_refcounts(spa); 7812 7813 if (dump_opt['s']) 7814 show_pool_stats(spa); 7815 7816 if (dump_opt['h']) 7817 dump_history(spa); 7818 7819 if (rc == 0) 7820 rc = verify_checkpoint(spa); 7821 7822 if (rc != 0) { 7823 dump_debug_buffer(); 7824 exit(rc); 7825 } 7826 } 7827 7828 #define ZDB_FLAG_CHECKSUM 0x0001 7829 #define ZDB_FLAG_DECOMPRESS 0x0002 7830 #define ZDB_FLAG_BSWAP 0x0004 7831 #define ZDB_FLAG_GBH 0x0008 7832 #define ZDB_FLAG_INDIRECT 0x0010 7833 #define ZDB_FLAG_RAW 0x0020 7834 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 7835 #define ZDB_FLAG_VERBOSE 0x0080 7836 7837 static int flagbits[256]; 7838 static char flagbitstr[16]; 7839 7840 static void 7841 zdb_print_blkptr(const blkptr_t *bp, int flags) 7842 { 7843 char blkbuf[BP_SPRINTF_LEN]; 7844 7845 if (flags & ZDB_FLAG_BSWAP) 7846 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 7847 7848 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 7849 (void) printf("%s\n", blkbuf); 7850 } 7851 7852 static void 7853 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 7854 { 7855 int i; 7856 7857 for (i = 0; i < nbps; i++) 7858 zdb_print_blkptr(&bp[i], flags); 7859 } 7860 7861 static void 7862 zdb_dump_gbh(void *buf, int flags) 7863 { 7864 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 7865 } 7866 7867 static void 7868 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 7869 { 7870 if (flags & ZDB_FLAG_BSWAP) 7871 byteswap_uint64_array(buf, size); 7872 VERIFY(write(fileno(stdout), buf, size) == size); 7873 } 7874 7875 static void 7876 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 7877 { 7878 uint64_t *d = (uint64_t *)buf; 7879 unsigned nwords = size / sizeof (uint64_t); 7880 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 7881 unsigned i, j; 7882 const char *hdr; 7883 char *c; 7884 7885 7886 if (do_bswap) 7887 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 7888 else 7889 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 7890 7891 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 7892 7893 #ifdef _LITTLE_ENDIAN 7894 /* correct the endianness */ 7895 do_bswap = !do_bswap; 7896 #endif 7897 for (i = 0; i < nwords; i += 2) { 7898 (void) printf("%06llx: %016llx %016llx ", 7899 (u_longlong_t)(i * sizeof (uint64_t)), 7900 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 7901 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 7902 7903 c = (char *)&d[i]; 7904 for (j = 0; j < 2 * sizeof (uint64_t); j++) 7905 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 7906 (void) printf("\n"); 7907 } 7908 } 7909 7910 /* 7911 * There are two acceptable formats: 7912 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 7913 * child[.child]* - For example: 0.1.1 7914 * 7915 * The second form can be used to specify arbitrary vdevs anywhere 7916 * in the hierarchy. For example, in a pool with a mirror of 7917 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 7918 */ 7919 static vdev_t * 7920 zdb_vdev_lookup(vdev_t *vdev, const char *path) 7921 { 7922 char *s, *p, *q; 7923 unsigned i; 7924 7925 if (vdev == NULL) 7926 return (NULL); 7927 7928 /* First, assume the x.x.x.x format */ 7929 i = strtoul(path, &s, 10); 7930 if (s == path || (s && *s != '.' && *s != '\0')) 7931 goto name; 7932 if (i >= vdev->vdev_children) 7933 return (NULL); 7934 7935 vdev = vdev->vdev_child[i]; 7936 if (s && *s == '\0') 7937 return (vdev); 7938 return (zdb_vdev_lookup(vdev, s+1)); 7939 7940 name: 7941 for (i = 0; i < vdev->vdev_children; i++) { 7942 vdev_t *vc = vdev->vdev_child[i]; 7943 7944 if (vc->vdev_path == NULL) { 7945 vc = zdb_vdev_lookup(vc, path); 7946 if (vc == NULL) 7947 continue; 7948 else 7949 return (vc); 7950 } 7951 7952 p = strrchr(vc->vdev_path, '/'); 7953 p = p ? p + 1 : vc->vdev_path; 7954 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 7955 7956 if (strcmp(vc->vdev_path, path) == 0) 7957 return (vc); 7958 if (strcmp(p, path) == 0) 7959 return (vc); 7960 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 7961 return (vc); 7962 } 7963 7964 return (NULL); 7965 } 7966 7967 static int 7968 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 7969 { 7970 dsl_dataset_t *ds; 7971 7972 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 7973 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 7974 NULL, &ds); 7975 if (error != 0) { 7976 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 7977 (u_longlong_t)objset_id, strerror(error)); 7978 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7979 return (error); 7980 } 7981 dsl_dataset_name(ds, outstr); 7982 dsl_dataset_rele(ds, NULL); 7983 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7984 return (0); 7985 } 7986 7987 static boolean_t 7988 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 7989 { 7990 char *s0, *s1, *tmp = NULL; 7991 7992 if (sizes == NULL) 7993 return (B_FALSE); 7994 7995 s0 = strtok_r(sizes, "/", &tmp); 7996 if (s0 == NULL) 7997 return (B_FALSE); 7998 s1 = strtok_r(NULL, "/", &tmp); 7999 *lsize = strtoull(s0, NULL, 16); 8000 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8001 return (*lsize >= *psize && *psize > 0); 8002 } 8003 8004 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8005 8006 static boolean_t 8007 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8008 uint64_t psize, int flags) 8009 { 8010 (void) buf; 8011 boolean_t exceeded = B_FALSE; 8012 /* 8013 * We don't know how the data was compressed, so just try 8014 * every decompress function at every inflated blocksize. 8015 */ 8016 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8017 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8018 int *cfuncp = cfuncs; 8019 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8020 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8021 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8022 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 8023 *cfuncp++ = ZIO_COMPRESS_LZ4; 8024 *cfuncp++ = ZIO_COMPRESS_LZJB; 8025 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8026 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8027 if (((1ULL << c) & mask) == 0) 8028 *cfuncp++ = c; 8029 8030 /* 8031 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8032 * could take a while and we should let the user know 8033 * we are not stuck. On the other hand, printing progress 8034 * info gets old after a while. User can specify 'v' flag 8035 * to see the progression. 8036 */ 8037 if (lsize == psize) 8038 lsize += SPA_MINBLOCKSIZE; 8039 else 8040 maxlsize = lsize; 8041 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8042 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8043 if (flags & ZDB_FLAG_VERBOSE) { 8044 (void) fprintf(stderr, 8045 "Trying %05llx -> %05llx (%s)\n", 8046 (u_longlong_t)psize, 8047 (u_longlong_t)lsize, 8048 zio_compress_table[*cfuncp].\ 8049 ci_name); 8050 } 8051 8052 /* 8053 * We randomize lbuf2, and decompress to both 8054 * lbuf and lbuf2. This way, we will know if 8055 * decompression fill exactly to lsize. 8056 */ 8057 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 8058 8059 if (zio_decompress_data(*cfuncp, pabd, 8060 lbuf, psize, lsize, NULL) == 0 && 8061 zio_decompress_data(*cfuncp, pabd, 8062 lbuf2, psize, lsize, NULL) == 0 && 8063 memcmp(lbuf, lbuf2, lsize) == 0) 8064 break; 8065 } 8066 if (*cfuncp != 0) 8067 break; 8068 } 8069 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8070 8071 if (lsize > maxlsize) { 8072 exceeded = B_TRUE; 8073 } 8074 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8075 printf("\nZLE decompression was selected. If you " 8076 "suspect the results are wrong,\ntry avoiding ZLE " 8077 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8078 } 8079 8080 return (exceeded); 8081 } 8082 8083 /* 8084 * Read a block from a pool and print it out. The syntax of the 8085 * block descriptor is: 8086 * 8087 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8088 * 8089 * pool - The name of the pool you wish to read from 8090 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8091 * offset - offset, in hex, in bytes 8092 * size - Amount of data to read, in hex, in bytes 8093 * flags - A string of characters specifying options 8094 * b: Decode a blkptr at given offset within block 8095 * c: Calculate and display checksums 8096 * d: Decompress data before dumping 8097 * e: Byteswap data before dumping 8098 * g: Display data as a gang block header 8099 * i: Display as an indirect block 8100 * r: Dump raw data to stdout 8101 * v: Verbose 8102 * 8103 */ 8104 static void 8105 zdb_read_block(char *thing, spa_t *spa) 8106 { 8107 blkptr_t blk, *bp = &blk; 8108 dva_t *dva = bp->blk_dva; 8109 int flags = 0; 8110 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8111 zio_t *zio; 8112 vdev_t *vd; 8113 abd_t *pabd; 8114 void *lbuf, *buf; 8115 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8116 const char *vdev, *errmsg = NULL; 8117 int i, error; 8118 boolean_t borrowed = B_FALSE, found = B_FALSE; 8119 8120 dup = strdup(thing); 8121 s = strtok_r(dup, ":", &tmp); 8122 vdev = s ?: ""; 8123 s = strtok_r(NULL, ":", &tmp); 8124 offset = strtoull(s ? s : "", NULL, 16); 8125 sizes = strtok_r(NULL, ":", &tmp); 8126 s = strtok_r(NULL, ":", &tmp); 8127 flagstr = strdup(s ?: ""); 8128 8129 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8130 errmsg = "invalid size(s)"; 8131 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8132 errmsg = "size must be a multiple of sector size"; 8133 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8134 errmsg = "offset must be a multiple of sector size"; 8135 if (errmsg) { 8136 (void) printf("Invalid block specifier: %s - %s\n", 8137 thing, errmsg); 8138 goto done; 8139 } 8140 8141 tmp = NULL; 8142 for (s = strtok_r(flagstr, ":", &tmp); 8143 s != NULL; 8144 s = strtok_r(NULL, ":", &tmp)) { 8145 for (i = 0; i < strlen(flagstr); i++) { 8146 int bit = flagbits[(uchar_t)flagstr[i]]; 8147 8148 if (bit == 0) { 8149 (void) printf("***Ignoring flag: %c\n", 8150 (uchar_t)flagstr[i]); 8151 continue; 8152 } 8153 found = B_TRUE; 8154 flags |= bit; 8155 8156 p = &flagstr[i + 1]; 8157 if (*p != ':' && *p != '\0') { 8158 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8159 char *end, offstr[8] = { 0 }; 8160 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8161 (nextbit == 0)) { 8162 /* look ahead to isolate the offset */ 8163 while (nextbit == 0 && 8164 strchr(flagbitstr, *p) == NULL) { 8165 offstr[j] = *p; 8166 j++; 8167 if (i + j > strlen(flagstr)) 8168 break; 8169 p++; 8170 nextbit = flagbits[(uchar_t)*p]; 8171 } 8172 blkptr_offset = strtoull(offstr, &end, 8173 16); 8174 i += j; 8175 } else if (nextbit == 0) { 8176 (void) printf("***Ignoring flag arg:" 8177 " '%c'\n", (uchar_t)*p); 8178 } 8179 } 8180 } 8181 } 8182 if (blkptr_offset % sizeof (blkptr_t)) { 8183 printf("Block pointer offset 0x%llx " 8184 "must be divisible by 0x%x\n", 8185 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8186 goto done; 8187 } 8188 if (found == B_FALSE && strlen(flagstr) > 0) { 8189 printf("Invalid flag arg: '%s'\n", flagstr); 8190 goto done; 8191 } 8192 8193 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8194 if (vd == NULL) { 8195 (void) printf("***Invalid vdev: %s\n", vdev); 8196 free(dup); 8197 return; 8198 } else { 8199 if (vd->vdev_path) 8200 (void) fprintf(stderr, "Found vdev: %s\n", 8201 vd->vdev_path); 8202 else 8203 (void) fprintf(stderr, "Found vdev type: %s\n", 8204 vd->vdev_ops->vdev_op_type); 8205 } 8206 8207 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8208 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8209 8210 BP_ZERO(bp); 8211 8212 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8213 DVA_SET_OFFSET(&dva[0], offset); 8214 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8215 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8216 8217 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8218 8219 BP_SET_LSIZE(bp, lsize); 8220 BP_SET_PSIZE(bp, psize); 8221 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8222 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8223 BP_SET_TYPE(bp, DMU_OT_NONE); 8224 BP_SET_LEVEL(bp, 0); 8225 BP_SET_DEDUP(bp, 0); 8226 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8227 8228 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8229 zio = zio_root(spa, NULL, NULL, 0); 8230 8231 if (vd == vd->vdev_top) { 8232 /* 8233 * Treat this as a normal block read. 8234 */ 8235 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8236 ZIO_PRIORITY_SYNC_READ, 8237 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8238 } else { 8239 /* 8240 * Treat this as a vdev child I/O. 8241 */ 8242 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8243 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8244 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | 8245 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8246 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8247 } 8248 8249 error = zio_wait(zio); 8250 spa_config_exit(spa, SCL_STATE, FTAG); 8251 8252 if (error) { 8253 (void) printf("Read of %s failed, error: %d\n", thing, error); 8254 goto out; 8255 } 8256 8257 uint64_t orig_lsize = lsize; 8258 buf = lbuf; 8259 if (flags & ZDB_FLAG_DECOMPRESS) { 8260 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 8261 lsize, psize, flags); 8262 if (failed) { 8263 (void) printf("Decompress of %s failed\n", thing); 8264 goto out; 8265 } 8266 } else { 8267 buf = abd_borrow_buf_copy(pabd, lsize); 8268 borrowed = B_TRUE; 8269 } 8270 /* 8271 * Try to detect invalid block pointer. If invalid, try 8272 * decompressing. 8273 */ 8274 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8275 !(flags & ZDB_FLAG_DECOMPRESS)) { 8276 const blkptr_t *b = (const blkptr_t *)(void *) 8277 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8278 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) == 8279 B_FALSE) { 8280 abd_return_buf_copy(pabd, buf, lsize); 8281 borrowed = B_FALSE; 8282 buf = lbuf; 8283 boolean_t failed = zdb_decompress_block(pabd, buf, 8284 lbuf, lsize, psize, flags); 8285 b = (const blkptr_t *)(void *) 8286 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8287 if (failed || zfs_blkptr_verify(spa, b, B_FALSE, 8288 BLK_VERIFY_LOG) == B_FALSE) { 8289 printf("invalid block pointer at this DVA\n"); 8290 goto out; 8291 } 8292 } 8293 } 8294 8295 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8296 zdb_print_blkptr((blkptr_t *)(void *) 8297 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8298 else if (flags & ZDB_FLAG_RAW) 8299 zdb_dump_block_raw(buf, lsize, flags); 8300 else if (flags & ZDB_FLAG_INDIRECT) 8301 zdb_dump_indirect((blkptr_t *)buf, 8302 orig_lsize / sizeof (blkptr_t), flags); 8303 else if (flags & ZDB_FLAG_GBH) 8304 zdb_dump_gbh(buf, flags); 8305 else 8306 zdb_dump_block(thing, buf, lsize, flags); 8307 8308 /* 8309 * If :c was specified, iterate through the checksum table to 8310 * calculate and display each checksum for our specified 8311 * DVA and length. 8312 */ 8313 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8314 !(flags & ZDB_FLAG_GBH)) { 8315 zio_t *czio; 8316 (void) printf("\n"); 8317 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8318 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8319 8320 if ((zio_checksum_table[ck].ci_flags & 8321 ZCHECKSUM_FLAG_EMBEDDED) || 8322 ck == ZIO_CHECKSUM_NOPARITY) { 8323 continue; 8324 } 8325 BP_SET_CHECKSUM(bp, ck); 8326 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8327 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8328 czio->io_bp = bp; 8329 8330 if (vd == vd->vdev_top) { 8331 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8332 NULL, NULL, 8333 ZIO_PRIORITY_SYNC_READ, 8334 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8335 ZIO_FLAG_DONT_RETRY, NULL)); 8336 } else { 8337 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8338 offset, pabd, psize, ZIO_TYPE_READ, 8339 ZIO_PRIORITY_SYNC_READ, 8340 ZIO_FLAG_DONT_CACHE | 8341 ZIO_FLAG_DONT_PROPAGATE | 8342 ZIO_FLAG_DONT_RETRY | 8343 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8344 ZIO_FLAG_SPECULATIVE | 8345 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8346 } 8347 error = zio_wait(czio); 8348 if (error == 0 || error == ECKSUM) { 8349 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8350 ck_zio->io_offset = 8351 DVA_GET_OFFSET(&bp->blk_dva[0]); 8352 ck_zio->io_bp = bp; 8353 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8354 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n", 8355 zio_checksum_table[ck].ci_name, 8356 (u_longlong_t)bp->blk_cksum.zc_word[0], 8357 (u_longlong_t)bp->blk_cksum.zc_word[1], 8358 (u_longlong_t)bp->blk_cksum.zc_word[2], 8359 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8360 zio_wait(ck_zio); 8361 } else { 8362 printf("error %d reading block\n", error); 8363 } 8364 spa_config_exit(spa, SCL_STATE, FTAG); 8365 } 8366 } 8367 8368 if (borrowed) 8369 abd_return_buf_copy(pabd, buf, lsize); 8370 8371 out: 8372 abd_free(pabd); 8373 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8374 done: 8375 free(flagstr); 8376 free(dup); 8377 } 8378 8379 static void 8380 zdb_embedded_block(char *thing) 8381 { 8382 blkptr_t bp = {{{{0}}}}; 8383 unsigned long long *words = (void *)&bp; 8384 char *buf; 8385 int err; 8386 8387 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8388 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8389 words + 0, words + 1, words + 2, words + 3, 8390 words + 4, words + 5, words + 6, words + 7, 8391 words + 8, words + 9, words + 10, words + 11, 8392 words + 12, words + 13, words + 14, words + 15); 8393 if (err != 16) { 8394 (void) fprintf(stderr, "invalid input format\n"); 8395 exit(1); 8396 } 8397 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8398 buf = malloc(SPA_MAXBLOCKSIZE); 8399 if (buf == NULL) { 8400 (void) fprintf(stderr, "out of memory\n"); 8401 exit(1); 8402 } 8403 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8404 if (err != 0) { 8405 (void) fprintf(stderr, "decode failed: %u\n", err); 8406 exit(1); 8407 } 8408 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8409 free(buf); 8410 } 8411 8412 /* check for valid hex or decimal numeric string */ 8413 static boolean_t 8414 zdb_numeric(char *str) 8415 { 8416 int i = 0; 8417 8418 if (strlen(str) == 0) 8419 return (B_FALSE); 8420 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8421 i = 2; 8422 for (; i < strlen(str); i++) { 8423 if (!isxdigit(str[i])) 8424 return (B_FALSE); 8425 } 8426 return (B_TRUE); 8427 } 8428 8429 int 8430 main(int argc, char **argv) 8431 { 8432 int c; 8433 spa_t *spa = NULL; 8434 objset_t *os = NULL; 8435 int dump_all = 1; 8436 int verbose = 0; 8437 int error = 0; 8438 char **searchdirs = NULL; 8439 int nsearch = 0; 8440 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8441 nvlist_t *policy = NULL; 8442 uint64_t max_txg = UINT64_MAX; 8443 int64_t objset_id = -1; 8444 uint64_t object; 8445 int flags = ZFS_IMPORT_MISSING_LOG; 8446 int rewind = ZPOOL_NEVER_REWIND; 8447 char *spa_config_path_env, *objset_str; 8448 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8449 nvlist_t *cfg = NULL; 8450 8451 dprintf_setup(&argc, argv); 8452 8453 /* 8454 * If there is an environment variable SPA_CONFIG_PATH it overrides 8455 * default spa_config_path setting. If -U flag is specified it will 8456 * override this environment variable settings once again. 8457 */ 8458 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8459 if (spa_config_path_env != NULL) 8460 spa_config_path = spa_config_path_env; 8461 8462 /* 8463 * For performance reasons, we set this tunable down. We do so before 8464 * the arg parsing section so that the user can override this value if 8465 * they choose. 8466 */ 8467 zfs_btree_verify_intensity = 3; 8468 8469 struct option long_options[] = { 8470 {"ignore-assertions", no_argument, NULL, 'A'}, 8471 {"block-stats", no_argument, NULL, 'b'}, 8472 {"checksum", no_argument, NULL, 'c'}, 8473 {"config", no_argument, NULL, 'C'}, 8474 {"datasets", no_argument, NULL, 'd'}, 8475 {"dedup-stats", no_argument, NULL, 'D'}, 8476 {"exported", no_argument, NULL, 'e'}, 8477 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8478 {"automatic-rewind", no_argument, NULL, 'F'}, 8479 {"dump-debug-msg", no_argument, NULL, 'G'}, 8480 {"history", no_argument, NULL, 'h'}, 8481 {"intent-logs", no_argument, NULL, 'i'}, 8482 {"inflight", required_argument, NULL, 'I'}, 8483 {"checkpointed-state", no_argument, NULL, 'k'}, 8484 {"label", no_argument, NULL, 'l'}, 8485 {"disable-leak-tracking", no_argument, NULL, 'L'}, 8486 {"metaslabs", no_argument, NULL, 'm'}, 8487 {"metaslab-groups", no_argument, NULL, 'M'}, 8488 {"numeric", no_argument, NULL, 'N'}, 8489 {"option", required_argument, NULL, 'o'}, 8490 {"object-lookups", no_argument, NULL, 'O'}, 8491 {"path", required_argument, NULL, 'p'}, 8492 {"parseable", no_argument, NULL, 'P'}, 8493 {"skip-label", no_argument, NULL, 'q'}, 8494 {"copy-object", no_argument, NULL, 'r'}, 8495 {"read-block", no_argument, NULL, 'R'}, 8496 {"io-stats", no_argument, NULL, 's'}, 8497 {"simulate-dedup", no_argument, NULL, 'S'}, 8498 {"txg", required_argument, NULL, 't'}, 8499 {"uberblock", no_argument, NULL, 'u'}, 8500 {"cachefile", required_argument, NULL, 'U'}, 8501 {"verbose", no_argument, NULL, 'v'}, 8502 {"verbatim", no_argument, NULL, 'V'}, 8503 {"dump-blocks", required_argument, NULL, 'x'}, 8504 {"extreme-rewind", no_argument, NULL, 'X'}, 8505 {"all-reconstruction", no_argument, NULL, 'Y'}, 8506 {"livelist", no_argument, NULL, 'y'}, 8507 {"zstd-headers", no_argument, NULL, 'Z'}, 8508 {0, 0, 0, 0} 8509 }; 8510 8511 while ((c = getopt_long(argc, argv, 8512 "AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ", 8513 long_options, NULL)) != -1) { 8514 switch (c) { 8515 case 'b': 8516 case 'c': 8517 case 'C': 8518 case 'd': 8519 case 'D': 8520 case 'E': 8521 case 'G': 8522 case 'h': 8523 case 'i': 8524 case 'l': 8525 case 'm': 8526 case 'M': 8527 case 'N': 8528 case 'O': 8529 case 'r': 8530 case 'R': 8531 case 's': 8532 case 'S': 8533 case 'u': 8534 case 'y': 8535 case 'Z': 8536 dump_opt[c]++; 8537 dump_all = 0; 8538 break; 8539 case 'A': 8540 case 'e': 8541 case 'F': 8542 case 'k': 8543 case 'L': 8544 case 'P': 8545 case 'q': 8546 case 'X': 8547 dump_opt[c]++; 8548 break; 8549 case 'Y': 8550 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8551 zfs_deadman_enabled = 0; 8552 break; 8553 /* NB: Sort single match options below. */ 8554 case 'I': 8555 max_inflight_bytes = strtoull(optarg, NULL, 0); 8556 if (max_inflight_bytes == 0) { 8557 (void) fprintf(stderr, "maximum number " 8558 "of inflight bytes must be greater " 8559 "than 0\n"); 8560 usage(); 8561 } 8562 break; 8563 case 'o': 8564 error = set_global_var(optarg); 8565 if (error != 0) 8566 usage(); 8567 break; 8568 case 'p': 8569 if (searchdirs == NULL) { 8570 searchdirs = umem_alloc(sizeof (char *), 8571 UMEM_NOFAIL); 8572 } else { 8573 char **tmp = umem_alloc((nsearch + 1) * 8574 sizeof (char *), UMEM_NOFAIL); 8575 memcpy(tmp, searchdirs, nsearch * 8576 sizeof (char *)); 8577 umem_free(searchdirs, 8578 nsearch * sizeof (char *)); 8579 searchdirs = tmp; 8580 } 8581 searchdirs[nsearch++] = optarg; 8582 break; 8583 case 't': 8584 max_txg = strtoull(optarg, NULL, 0); 8585 if (max_txg < TXG_INITIAL) { 8586 (void) fprintf(stderr, "incorrect txg " 8587 "specified: %s\n", optarg); 8588 usage(); 8589 } 8590 break; 8591 case 'U': 8592 spa_config_path = optarg; 8593 if (spa_config_path[0] != '/') { 8594 (void) fprintf(stderr, 8595 "cachefile must be an absolute path " 8596 "(i.e. start with a slash)\n"); 8597 usage(); 8598 } 8599 break; 8600 case 'v': 8601 verbose++; 8602 break; 8603 case 'V': 8604 flags = ZFS_IMPORT_VERBATIM; 8605 break; 8606 case 'x': 8607 vn_dumpdir = optarg; 8608 break; 8609 default: 8610 usage(); 8611 break; 8612 } 8613 } 8614 8615 if (!dump_opt['e'] && searchdirs != NULL) { 8616 (void) fprintf(stderr, "-p option requires use of -e\n"); 8617 usage(); 8618 } 8619 #if defined(_LP64) 8620 /* 8621 * ZDB does not typically re-read blocks; therefore limit the ARC 8622 * to 256 MB, which can be used entirely for metadata. 8623 */ 8624 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT; 8625 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; 8626 #endif 8627 8628 /* 8629 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 8630 * "zdb -b" uses traversal prefetch which uses async reads. 8631 * For good performance, let several of them be active at once. 8632 */ 8633 zfs_vdev_async_read_max_active = 10; 8634 8635 /* 8636 * Disable reference tracking for better performance. 8637 */ 8638 reference_tracking_enable = B_FALSE; 8639 8640 /* 8641 * Do not fail spa_load when spa_load_verify fails. This is needed 8642 * to load non-idle pools. 8643 */ 8644 spa_load_verify_dryrun = B_TRUE; 8645 8646 /* 8647 * ZDB should have ability to read spacemaps. 8648 */ 8649 spa_mode_readable_spacemaps = B_TRUE; 8650 8651 kernel_init(SPA_MODE_READ); 8652 8653 if (dump_all) 8654 verbose = MAX(verbose, 1); 8655 8656 for (c = 0; c < 256; c++) { 8657 if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL) 8658 dump_opt[c] = 1; 8659 if (dump_opt[c]) 8660 dump_opt[c] += verbose; 8661 } 8662 8663 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 8664 zfs_recover = (dump_opt['A'] > 1); 8665 8666 argc -= optind; 8667 argv += optind; 8668 if (argc < 2 && dump_opt['R']) 8669 usage(); 8670 8671 if (dump_opt['E']) { 8672 if (argc != 1) 8673 usage(); 8674 zdb_embedded_block(argv[0]); 8675 return (0); 8676 } 8677 8678 if (argc < 1) { 8679 if (!dump_opt['e'] && dump_opt['C']) { 8680 dump_cachefile(spa_config_path); 8681 return (0); 8682 } 8683 usage(); 8684 } 8685 8686 if (dump_opt['l']) 8687 return (dump_label(argv[0])); 8688 8689 if (dump_opt['O']) { 8690 if (argc != 2) 8691 usage(); 8692 dump_opt['v'] = verbose + 3; 8693 return (dump_path(argv[0], argv[1], NULL)); 8694 } 8695 if (dump_opt['r']) { 8696 target_is_spa = B_FALSE; 8697 if (argc != 3) 8698 usage(); 8699 dump_opt['v'] = verbose; 8700 error = dump_path(argv[0], argv[1], &object); 8701 } 8702 8703 if (dump_opt['X'] || dump_opt['F']) 8704 rewind = ZPOOL_DO_REWIND | 8705 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 8706 8707 /* -N implies -d */ 8708 if (dump_opt['N'] && dump_opt['d'] == 0) 8709 dump_opt['d'] = dump_opt['N']; 8710 8711 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 8712 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 8713 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 8714 fatal("internal error: %s", strerror(ENOMEM)); 8715 8716 error = 0; 8717 target = argv[0]; 8718 8719 if (strpbrk(target, "/@") != NULL) { 8720 size_t targetlen; 8721 8722 target_pool = strdup(target); 8723 *strpbrk(target_pool, "/@") = '\0'; 8724 8725 target_is_spa = B_FALSE; 8726 targetlen = strlen(target); 8727 if (targetlen && target[targetlen - 1] == '/') 8728 target[targetlen - 1] = '\0'; 8729 8730 /* 8731 * See if an objset ID was supplied (-d <pool>/<objset ID>). 8732 * To disambiguate tank/100, consider the 100 as objsetID 8733 * if -N was given, otherwise 100 is an objsetID iff 8734 * tank/100 as a named dataset fails on lookup. 8735 */ 8736 objset_str = strchr(target, '/'); 8737 if (objset_str && strlen(objset_str) > 1 && 8738 zdb_numeric(objset_str + 1)) { 8739 char *endptr; 8740 errno = 0; 8741 objset_str++; 8742 objset_id = strtoull(objset_str, &endptr, 0); 8743 /* dataset 0 is the same as opening the pool */ 8744 if (errno == 0 && endptr != objset_str && 8745 objset_id != 0) { 8746 if (dump_opt['N']) 8747 dataset_lookup = B_TRUE; 8748 } 8749 /* normal dataset name not an objset ID */ 8750 if (endptr == objset_str) { 8751 objset_id = -1; 8752 } 8753 } else if (objset_str && !zdb_numeric(objset_str + 1) && 8754 dump_opt['N']) { 8755 printf("Supply a numeric objset ID with -N\n"); 8756 exit(1); 8757 } 8758 } else { 8759 target_pool = target; 8760 } 8761 8762 if (dump_opt['e']) { 8763 importargs_t args = { 0 }; 8764 8765 args.paths = nsearch; 8766 args.path = searchdirs; 8767 args.can_be_active = B_TRUE; 8768 8769 error = zpool_find_config(NULL, target_pool, &cfg, &args, 8770 &libzpool_config_ops); 8771 8772 if (error == 0) { 8773 8774 if (nvlist_add_nvlist(cfg, 8775 ZPOOL_LOAD_POLICY, policy) != 0) { 8776 fatal("can't open '%s': %s", 8777 target, strerror(ENOMEM)); 8778 } 8779 8780 if (dump_opt['C'] > 1) { 8781 (void) printf("\nConfiguration for import:\n"); 8782 dump_nvlist(cfg, 8); 8783 } 8784 8785 /* 8786 * Disable the activity check to allow examination of 8787 * active pools. 8788 */ 8789 error = spa_import(target_pool, cfg, NULL, 8790 flags | ZFS_IMPORT_SKIP_MMP); 8791 } 8792 } 8793 8794 if (searchdirs != NULL) { 8795 umem_free(searchdirs, nsearch * sizeof (char *)); 8796 searchdirs = NULL; 8797 } 8798 8799 /* 8800 * import_checkpointed_state makes the assumption that the 8801 * target pool that we pass it is already part of the spa 8802 * namespace. Because of that we need to make sure to call 8803 * it always after the -e option has been processed, which 8804 * imports the pool to the namespace if it's not in the 8805 * cachefile. 8806 */ 8807 char *checkpoint_pool = NULL; 8808 char *checkpoint_target = NULL; 8809 if (dump_opt['k']) { 8810 checkpoint_pool = import_checkpointed_state(target, cfg, 8811 &checkpoint_target); 8812 8813 if (checkpoint_target != NULL) 8814 target = checkpoint_target; 8815 } 8816 8817 if (cfg != NULL) { 8818 nvlist_free(cfg); 8819 cfg = NULL; 8820 } 8821 8822 if (target_pool != target) 8823 free(target_pool); 8824 8825 if (error == 0) { 8826 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 8827 ASSERT(checkpoint_pool != NULL); 8828 ASSERT(checkpoint_target == NULL); 8829 8830 error = spa_open(checkpoint_pool, &spa, FTAG); 8831 if (error != 0) { 8832 fatal("Tried to open pool \"%s\" but " 8833 "spa_open() failed with error %d\n", 8834 checkpoint_pool, error); 8835 } 8836 8837 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) { 8838 zdb_set_skip_mmp(target); 8839 error = spa_open_rewind(target, &spa, FTAG, policy, 8840 NULL); 8841 if (error) { 8842 /* 8843 * If we're missing the log device then 8844 * try opening the pool after clearing the 8845 * log state. 8846 */ 8847 mutex_enter(&spa_namespace_lock); 8848 if ((spa = spa_lookup(target)) != NULL && 8849 spa->spa_log_state == SPA_LOG_MISSING) { 8850 spa->spa_log_state = SPA_LOG_CLEAR; 8851 error = 0; 8852 } 8853 mutex_exit(&spa_namespace_lock); 8854 8855 if (!error) { 8856 error = spa_open_rewind(target, &spa, 8857 FTAG, policy, NULL); 8858 } 8859 } 8860 } else if (strpbrk(target, "#") != NULL) { 8861 dsl_pool_t *dp; 8862 error = dsl_pool_hold(target, FTAG, &dp); 8863 if (error != 0) { 8864 fatal("can't dump '%s': %s", target, 8865 strerror(error)); 8866 } 8867 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 8868 dsl_pool_rele(dp, FTAG); 8869 if (error != 0) { 8870 fatal("can't dump '%s': %s", target, 8871 strerror(error)); 8872 } 8873 return (error); 8874 } else { 8875 target_pool = strdup(target); 8876 if (strpbrk(target, "/@") != NULL) 8877 *strpbrk(target_pool, "/@") = '\0'; 8878 8879 zdb_set_skip_mmp(target); 8880 /* 8881 * If -N was supplied, the user has indicated that 8882 * zdb -d <pool>/<objsetID> is in effect. Otherwise 8883 * we first assume that the dataset string is the 8884 * dataset name. If dmu_objset_hold fails with the 8885 * dataset string, and we have an objset_id, retry the 8886 * lookup with the objsetID. 8887 */ 8888 boolean_t retry = B_TRUE; 8889 retry_lookup: 8890 if (dataset_lookup == B_TRUE) { 8891 /* 8892 * Use the supplied id to get the name 8893 * for open_objset. 8894 */ 8895 error = spa_open(target_pool, &spa, FTAG); 8896 if (error == 0) { 8897 error = name_from_objset_id(spa, 8898 objset_id, dsname); 8899 spa_close(spa, FTAG); 8900 if (error == 0) 8901 target = dsname; 8902 } 8903 } 8904 if (error == 0) { 8905 if (objset_id > 0 && retry) { 8906 int err = dmu_objset_hold(target, FTAG, 8907 &os); 8908 if (err) { 8909 dataset_lookup = B_TRUE; 8910 retry = B_FALSE; 8911 goto retry_lookup; 8912 } else { 8913 dmu_objset_rele(os, FTAG); 8914 } 8915 } 8916 error = open_objset(target, FTAG, &os); 8917 } 8918 if (error == 0) 8919 spa = dmu_objset_spa(os); 8920 free(target_pool); 8921 } 8922 } 8923 nvlist_free(policy); 8924 8925 if (error) 8926 fatal("can't open '%s': %s", target, strerror(error)); 8927 8928 /* 8929 * Set the pool failure mode to panic in order to prevent the pool 8930 * from suspending. A suspended I/O will have no way to resume and 8931 * can prevent the zdb(8) command from terminating as expected. 8932 */ 8933 if (spa != NULL) 8934 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 8935 8936 argv++; 8937 argc--; 8938 if (dump_opt['r']) { 8939 error = zdb_copy_object(os, object, argv[1]); 8940 } else if (!dump_opt['R']) { 8941 flagbits['d'] = ZOR_FLAG_DIRECTORY; 8942 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 8943 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 8944 flagbits['z'] = ZOR_FLAG_ZAP; 8945 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 8946 8947 if (argc > 0 && dump_opt['d']) { 8948 zopt_object_args = argc; 8949 zopt_object_ranges = calloc(zopt_object_args, 8950 sizeof (zopt_object_range_t)); 8951 for (unsigned i = 0; i < zopt_object_args; i++) { 8952 int err; 8953 const char *msg = NULL; 8954 8955 err = parse_object_range(argv[i], 8956 &zopt_object_ranges[i], &msg); 8957 if (err != 0) 8958 fatal("Bad object or range: '%s': %s\n", 8959 argv[i], msg ?: ""); 8960 } 8961 } else if (argc > 0 && dump_opt['m']) { 8962 zopt_metaslab_args = argc; 8963 zopt_metaslab = calloc(zopt_metaslab_args, 8964 sizeof (uint64_t)); 8965 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 8966 errno = 0; 8967 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 8968 if (zopt_metaslab[i] == 0 && errno != 0) 8969 fatal("bad number %s: %s", argv[i], 8970 strerror(errno)); 8971 } 8972 } 8973 if (os != NULL) { 8974 dump_objset(os); 8975 } else if (zopt_object_args > 0 && !dump_opt['m']) { 8976 dump_objset(spa->spa_meta_objset); 8977 } else { 8978 dump_zpool(spa); 8979 } 8980 } else { 8981 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 8982 flagbits['c'] = ZDB_FLAG_CHECKSUM; 8983 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 8984 flagbits['e'] = ZDB_FLAG_BSWAP; 8985 flagbits['g'] = ZDB_FLAG_GBH; 8986 flagbits['i'] = ZDB_FLAG_INDIRECT; 8987 flagbits['r'] = ZDB_FLAG_RAW; 8988 flagbits['v'] = ZDB_FLAG_VERBOSE; 8989 8990 for (int i = 0; i < argc; i++) 8991 zdb_read_block(argv[i], spa); 8992 } 8993 8994 if (dump_opt['k']) { 8995 free(checkpoint_pool); 8996 if (!target_is_spa) 8997 free(checkpoint_target); 8998 } 8999 9000 if (os != NULL) { 9001 close_objset(os, FTAG); 9002 } else { 9003 spa_close(spa, FTAG); 9004 } 9005 9006 fuid_table_destroy(); 9007 9008 dump_debug_buffer(); 9009 9010 kernel_fini(); 9011 9012 return (error); 9013 } 9014