1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, 2024, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static zfs_range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 zfs_range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (zfs_range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 zfs_range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!zfs_range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 zfs_range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 zfs_range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = zfs_range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 zfs_range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, attrp) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010" PRIu64 "x = ", 1135 *(uint64_t *)attrp->za_name); 1136 else 1137 (void) printf("\t\t%s = ", attrp->za_name); 1138 1139 if (attrp->za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attrp->za_num_integers * 1144 attrp->za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attrp->za_name, 1, 1149 attrp->za_integer_length, attrp->za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attrp->za_name, 1153 attrp->za_integer_length, attrp->za_num_integers, 1154 prop); 1155 1156 if (attrp->za_integer_length == 1 && !key64) { 1157 if (strcmp(attrp->za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attrp->za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attrp->za_name, 1164 DMU_POOL_CHECKSUM_SALT) == 0) { 1165 uint8_t *u8 = prop; 1166 1167 for (i = 0; i < attrp->za_num_integers; i++) { 1168 (void) printf("%02x", u8[i]); 1169 } 1170 } else { 1171 (void) printf("%s", (char *)prop); 1172 } 1173 } else { 1174 for (i = 0; i < attrp->za_num_integers; i++) { 1175 switch (attrp->za_integer_length) { 1176 case 1: 1177 (void) printf("%u ", 1178 ((uint8_t *)prop)[i]); 1179 break; 1180 case 2: 1181 (void) printf("%u ", 1182 ((uint16_t *)prop)[i]); 1183 break; 1184 case 4: 1185 (void) printf("%u ", 1186 ((uint32_t *)prop)[i]); 1187 break; 1188 case 8: 1189 (void) printf("%lld ", 1190 (u_longlong_t)((int64_t *)prop)[i]); 1191 break; 1192 } 1193 } 1194 } 1195 (void) printf("\n"); 1196 umem_free(prop, 1197 attrp->za_num_integers * attrp->za_integer_length); 1198 } 1199 zap_cursor_fini(&zc); 1200 zap_attribute_free(attrp); 1201 } 1202 1203 static void 1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1205 { 1206 bpobj_phys_t *bpop = data; 1207 uint64_t i; 1208 char bytes[32], comp[32], uncomp[32]; 1209 1210 /* make sure the output won't get truncated */ 1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1214 1215 if (bpop == NULL) 1216 return; 1217 1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1221 1222 (void) printf("\t\tnum_blkptrs = %llu\n", 1223 (u_longlong_t)bpop->bpo_num_blkptrs); 1224 (void) printf("\t\tbytes = %s\n", bytes); 1225 if (size >= BPOBJ_SIZE_V1) { 1226 (void) printf("\t\tcomp = %s\n", comp); 1227 (void) printf("\t\tuncomp = %s\n", uncomp); 1228 } 1229 if (size >= BPOBJ_SIZE_V2) { 1230 (void) printf("\t\tsubobjs = %llu\n", 1231 (u_longlong_t)bpop->bpo_subobjs); 1232 (void) printf("\t\tnum_subobjs = %llu\n", 1233 (u_longlong_t)bpop->bpo_num_subobjs); 1234 } 1235 if (size >= sizeof (*bpop)) { 1236 (void) printf("\t\tnum_freed = %llu\n", 1237 (u_longlong_t)bpop->bpo_num_freed); 1238 } 1239 1240 if (dump_opt['d'] < 5) 1241 return; 1242 1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1244 char blkbuf[BP_SPRINTF_LEN]; 1245 blkptr_t bp; 1246 1247 int err = dmu_read(os, object, 1248 i * sizeof (bp), sizeof (bp), &bp, 0); 1249 if (err != 0) { 1250 (void) printf("got error %u from dmu_read\n", err); 1251 break; 1252 } 1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1254 BP_GET_FREE(&bp)); 1255 (void) printf("\t%s\n", blkbuf); 1256 } 1257 } 1258 1259 static void 1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1261 { 1262 (void) data, (void) size; 1263 dmu_object_info_t doi; 1264 int64_t i; 1265 1266 VERIFY0(dmu_object_info(os, object, &doi)); 1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1268 1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1270 if (err != 0) { 1271 (void) printf("got error %u from dmu_read\n", err); 1272 kmem_free(subobjs, doi.doi_max_offset); 1273 return; 1274 } 1275 1276 int64_t last_nonzero = -1; 1277 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1278 if (subobjs[i] != 0) 1279 last_nonzero = i; 1280 } 1281 1282 for (i = 0; i <= last_nonzero; i++) { 1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1284 } 1285 kmem_free(subobjs, doi.doi_max_offset); 1286 } 1287 1288 static void 1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1290 { 1291 (void) data, (void) size; 1292 dump_zap_stats(os, object); 1293 /* contents are printed elsewhere, properly decoded */ 1294 } 1295 1296 static void 1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1298 { 1299 (void) data, (void) size; 1300 zap_cursor_t zc; 1301 zap_attribute_t *attrp = zap_attribute_alloc(); 1302 1303 dump_zap_stats(os, object); 1304 (void) printf("\n"); 1305 1306 for (zap_cursor_init(&zc, os, object); 1307 zap_cursor_retrieve(&zc, attrp) == 0; 1308 zap_cursor_advance(&zc)) { 1309 (void) printf("\t\t%s = ", attrp->za_name); 1310 if (attrp->za_num_integers == 0) { 1311 (void) printf("\n"); 1312 continue; 1313 } 1314 (void) printf(" %llx : [%d:%d:%d]\n", 1315 (u_longlong_t)attrp->za_first_integer, 1316 (int)ATTR_LENGTH(attrp->za_first_integer), 1317 (int)ATTR_BSWAP(attrp->za_first_integer), 1318 (int)ATTR_NUM(attrp->za_first_integer)); 1319 } 1320 zap_cursor_fini(&zc); 1321 zap_attribute_free(attrp); 1322 } 1323 1324 static void 1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1326 { 1327 (void) data, (void) size; 1328 zap_cursor_t zc; 1329 zap_attribute_t *attrp = zap_attribute_alloc(); 1330 uint16_t *layout_attrs; 1331 unsigned i; 1332 1333 dump_zap_stats(os, object); 1334 (void) printf("\n"); 1335 1336 for (zap_cursor_init(&zc, os, object); 1337 zap_cursor_retrieve(&zc, attrp) == 0; 1338 zap_cursor_advance(&zc)) { 1339 (void) printf("\t\t%s = [", attrp->za_name); 1340 if (attrp->za_num_integers == 0) { 1341 (void) printf("\n"); 1342 continue; 1343 } 1344 1345 VERIFY(attrp->za_integer_length == 2); 1346 layout_attrs = umem_zalloc(attrp->za_num_integers * 1347 attrp->za_integer_length, UMEM_NOFAIL); 1348 1349 VERIFY(zap_lookup(os, object, attrp->za_name, 1350 attrp->za_integer_length, 1351 attrp->za_num_integers, layout_attrs) == 0); 1352 1353 for (i = 0; i != attrp->za_num_integers; i++) 1354 (void) printf(" %d ", (int)layout_attrs[i]); 1355 (void) printf("]\n"); 1356 umem_free(layout_attrs, 1357 attrp->za_num_integers * attrp->za_integer_length); 1358 } 1359 zap_cursor_fini(&zc); 1360 zap_attribute_free(attrp); 1361 } 1362 1363 static void 1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1365 { 1366 (void) data, (void) size; 1367 zap_cursor_t zc; 1368 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1369 const char *typenames[] = { 1370 /* 0 */ "not specified", 1371 /* 1 */ "FIFO", 1372 /* 2 */ "Character Device", 1373 /* 3 */ "3 (invalid)", 1374 /* 4 */ "Directory", 1375 /* 5 */ "5 (invalid)", 1376 /* 6 */ "Block Device", 1377 /* 7 */ "7 (invalid)", 1378 /* 8 */ "Regular File", 1379 /* 9 */ "9 (invalid)", 1380 /* 10 */ "Symbolic Link", 1381 /* 11 */ "11 (invalid)", 1382 /* 12 */ "Socket", 1383 /* 13 */ "Door", 1384 /* 14 */ "Event Port", 1385 /* 15 */ "15 (invalid)", 1386 }; 1387 1388 dump_zap_stats(os, object); 1389 (void) printf("\n"); 1390 1391 for (zap_cursor_init(&zc, os, object); 1392 zap_cursor_retrieve(&zc, attrp) == 0; 1393 zap_cursor_advance(&zc)) { 1394 (void) printf("\t\t%s = %lld (type: %s)\n", 1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1397 } 1398 zap_cursor_fini(&zc); 1399 zap_attribute_free(attrp); 1400 } 1401 1402 static int 1403 get_dtl_refcount(vdev_t *vd) 1404 { 1405 int refcount = 0; 1406 1407 if (vd->vdev_ops->vdev_op_leaf) { 1408 space_map_t *sm = vd->vdev_dtl_sm; 1409 1410 if (sm != NULL && 1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1412 return (1); 1413 return (0); 1414 } 1415 1416 for (unsigned c = 0; c < vd->vdev_children; c++) 1417 refcount += get_dtl_refcount(vd->vdev_child[c]); 1418 return (refcount); 1419 } 1420 1421 static int 1422 get_metaslab_refcount(vdev_t *vd) 1423 { 1424 int refcount = 0; 1425 1426 if (vd->vdev_top == vd) { 1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1429 1430 if (sm != NULL && 1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1432 refcount++; 1433 } 1434 } 1435 for (unsigned c = 0; c < vd->vdev_children; c++) 1436 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1437 1438 return (refcount); 1439 } 1440 1441 static int 1442 get_obsolete_refcount(vdev_t *vd) 1443 { 1444 uint64_t obsolete_sm_object; 1445 int refcount = 0; 1446 1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1449 dmu_object_info_t doi; 1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1451 obsolete_sm_object, &doi)); 1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1453 refcount++; 1454 } 1455 } else { 1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1457 ASSERT3U(obsolete_sm_object, ==, 0); 1458 } 1459 for (unsigned c = 0; c < vd->vdev_children; c++) { 1460 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1461 } 1462 1463 return (refcount); 1464 } 1465 1466 static int 1467 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1468 { 1469 uint64_t prev_obj = 1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1471 if (prev_obj != 0) { 1472 dmu_object_info_t doi; 1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1475 return (1); 1476 } 1477 } 1478 return (0); 1479 } 1480 1481 static int 1482 get_checkpoint_refcount(vdev_t *vd) 1483 { 1484 int refcount = 0; 1485 1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1487 zap_contains(spa_meta_objset(vd->vdev_spa), 1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1489 refcount++; 1490 1491 for (uint64_t c = 0; c < vd->vdev_children; c++) 1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1493 1494 return (refcount); 1495 } 1496 1497 static int 1498 get_log_spacemap_refcount(spa_t *spa) 1499 { 1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1501 } 1502 1503 static int 1504 verify_spacemap_refcounts(spa_t *spa) 1505 { 1506 uint64_t expected_refcount = 0; 1507 uint64_t actual_refcount; 1508 1509 (void) feature_get_refcount(spa, 1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1511 &expected_refcount); 1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1517 actual_refcount += get_log_spacemap_refcount(spa); 1518 1519 if (expected_refcount != actual_refcount) { 1520 (void) printf("space map refcount mismatch: expected %lld != " 1521 "actual %lld\n", 1522 (longlong_t)expected_refcount, 1523 (longlong_t)actual_refcount); 1524 return (2); 1525 } 1526 return (0); 1527 } 1528 1529 static void 1530 dump_spacemap(objset_t *os, space_map_t *sm) 1531 { 1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1533 "INVALID", "INVALID", "INVALID", "INVALID" }; 1534 1535 if (sm == NULL) 1536 return; 1537 1538 (void) printf("space map object %llu:\n", 1539 (longlong_t)sm->sm_object); 1540 (void) printf(" smp_length = 0x%llx\n", 1541 (longlong_t)sm->sm_phys->smp_length); 1542 (void) printf(" smp_alloc = 0x%llx\n", 1543 (longlong_t)sm->sm_phys->smp_alloc); 1544 1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1546 return; 1547 1548 /* 1549 * Print out the freelist entries in both encoded and decoded form. 1550 */ 1551 uint8_t mapshift = sm->sm_shift; 1552 int64_t alloc = 0; 1553 uint64_t word, entry_id = 0; 1554 for (uint64_t offset = 0; offset < space_map_length(sm); 1555 offset += sizeof (word)) { 1556 1557 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1558 sizeof (word), &word, DMU_READ_PREFETCH)); 1559 1560 if (sm_entry_is_debug(word)) { 1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1563 if (de_txg == 0) { 1564 (void) printf( 1565 "\t [%6llu] PADDING\n", 1566 (u_longlong_t)entry_id); 1567 } else { 1568 (void) printf( 1569 "\t [%6llu] %s: txg %llu pass %llu\n", 1570 (u_longlong_t)entry_id, 1571 ddata[SM_DEBUG_ACTION_DECODE(word)], 1572 (u_longlong_t)de_txg, 1573 (u_longlong_t)de_sync_pass); 1574 } 1575 entry_id++; 1576 continue; 1577 } 1578 1579 uint8_t words; 1580 char entry_type; 1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1582 1583 if (sm_entry_is_single_word(word)) { 1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1585 'A' : 'F'; 1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1587 sm->sm_start; 1588 entry_run = SM_RUN_DECODE(word) << mapshift; 1589 words = 1; 1590 } else { 1591 /* it is a two-word entry so we read another word */ 1592 ASSERT(sm_entry_is_double_word(word)); 1593 1594 uint64_t extra_word; 1595 offset += sizeof (extra_word); 1596 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1597 sizeof (extra_word), &extra_word, 1598 DMU_READ_PREFETCH)); 1599 1600 ASSERT3U(offset, <=, space_map_length(sm)); 1601 1602 entry_run = SM2_RUN_DECODE(word) << mapshift; 1603 entry_vdev = SM2_VDEV_DECODE(word); 1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1605 'A' : 'F'; 1606 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1607 mapshift) + sm->sm_start; 1608 words = 2; 1609 } 1610 1611 (void) printf("\t [%6llu] %c range:" 1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1613 (u_longlong_t)entry_id, 1614 entry_type, (u_longlong_t)entry_off, 1615 (u_longlong_t)(entry_off + entry_run), 1616 (u_longlong_t)entry_run, 1617 (u_longlong_t)entry_vdev, words); 1618 1619 if (entry_type == 'A') 1620 alloc += entry_run; 1621 else 1622 alloc -= entry_run; 1623 entry_id++; 1624 } 1625 if (alloc != space_map_allocated(sm)) { 1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1627 "with space map summary (%lld)\n", 1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1629 } 1630 } 1631 1632 static void 1633 dump_metaslab_stats(metaslab_t *msp) 1634 { 1635 char maxbuf[32]; 1636 zfs_range_tree_t *rt = msp->ms_allocatable; 1637 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1638 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size; 1639 1640 /* max sure nicenum has enough space */ 1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1642 1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1644 1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1647 "freepct", free_pct); 1648 (void) printf("\tIn-memory histogram:\n"); 1649 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1650 } 1651 1652 static void 1653 dump_metaslab(metaslab_t *msp) 1654 { 1655 vdev_t *vd = msp->ms_group->mg_vd; 1656 spa_t *spa = vd->vdev_spa; 1657 space_map_t *sm = msp->ms_sm; 1658 char freebuf[32]; 1659 1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1661 sizeof (freebuf)); 1662 1663 (void) printf( 1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1666 (u_longlong_t)space_map_object(sm), freebuf); 1667 1668 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1669 mutex_enter(&msp->ms_lock); 1670 VERIFY0(metaslab_load(msp)); 1671 zfs_range_tree_stat_verify(msp->ms_allocatable); 1672 dump_metaslab_stats(msp); 1673 metaslab_unload(msp); 1674 mutex_exit(&msp->ms_lock); 1675 } 1676 1677 if (dump_opt['m'] > 1 && sm != NULL && 1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1679 /* 1680 * The space map histogram represents free space in chunks 1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1682 */ 1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1684 (u_longlong_t)msp->ms_fragmentation); 1685 dump_histogram(sm->sm_phys->smp_histogram, 1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1687 } 1688 1689 if (vd->vdev_ops == &vdev_draid_ops) 1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1691 else 1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1693 1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1695 1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1698 (u_longlong_t)metaslab_unflushed_txg(msp)); 1699 } 1700 } 1701 1702 static void 1703 print_vdev_metaslab_header(vdev_t *vd) 1704 { 1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1706 const char *bias_str = ""; 1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1708 bias_str = VDEV_ALLOC_BIAS_LOG; 1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1712 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1713 } 1714 1715 uint64_t ms_flush_data_obj = 0; 1716 if (vd->vdev_top_zap != 0) { 1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1719 sizeof (uint64_t), 1, &ms_flush_data_obj); 1720 if (error != ENOENT) { 1721 ASSERT0(error); 1722 } 1723 } 1724 1725 (void) printf("\tvdev %10llu %s", 1726 (u_longlong_t)vd->vdev_id, bias_str); 1727 1728 if (ms_flush_data_obj != 0) { 1729 (void) printf(" ms_unflushed_phys object %llu", 1730 (u_longlong_t)ms_flush_data_obj); 1731 } 1732 1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1735 "offset", "spacemap", "free"); 1736 (void) printf("\t%15s %19s %15s %12s\n", 1737 "---------------", "-------------------", 1738 "---------------", "------------"); 1739 } 1740 1741 static void 1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1743 { 1744 vdev_t *rvd = spa->spa_root_vdev; 1745 metaslab_class_t *mc = spa_normal_class(spa); 1746 metaslab_class_t *smc = spa_special_class(spa); 1747 uint64_t fragmentation; 1748 1749 metaslab_class_histogram_verify(mc); 1750 1751 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1752 vdev_t *tvd = rvd->vdev_child[c]; 1753 metaslab_group_t *mg = tvd->vdev_mg; 1754 1755 if (mg == NULL || (mg->mg_class != mc && 1756 (!show_special || mg->mg_class != smc))) 1757 continue; 1758 1759 metaslab_group_histogram_verify(mg); 1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1761 1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1763 "fragmentation", 1764 (u_longlong_t)tvd->vdev_id, 1765 (u_longlong_t)tvd->vdev_ms_count); 1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1767 (void) printf("%3s\n", "-"); 1768 } else { 1769 (void) printf("%3llu%%\n", 1770 (u_longlong_t)mg->mg_fragmentation); 1771 } 1772 dump_histogram(mg->mg_histogram, 1773 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1774 } 1775 1776 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1777 fragmentation = metaslab_class_fragmentation(mc); 1778 if (fragmentation == ZFS_FRAG_INVALID) 1779 (void) printf("\t%3s\n", "-"); 1780 else 1781 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1782 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1783 } 1784 1785 static void 1786 print_vdev_indirect(vdev_t *vd) 1787 { 1788 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1789 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1790 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1791 1792 if (vim == NULL) { 1793 ASSERT3P(vib, ==, NULL); 1794 return; 1795 } 1796 1797 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1798 vic->vic_mapping_object); 1799 ASSERT3U(vdev_indirect_births_object(vib), ==, 1800 vic->vic_births_object); 1801 1802 (void) printf("indirect births obj %llu:\n", 1803 (longlong_t)vic->vic_births_object); 1804 (void) printf(" vib_count = %llu\n", 1805 (longlong_t)vdev_indirect_births_count(vib)); 1806 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1807 vdev_indirect_birth_entry_phys_t *cur_vibe = 1808 &vib->vib_entries[i]; 1809 (void) printf("\toffset %llx -> txg %llu\n", 1810 (longlong_t)cur_vibe->vibe_offset, 1811 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1812 } 1813 (void) printf("\n"); 1814 1815 (void) printf("indirect mapping obj %llu:\n", 1816 (longlong_t)vic->vic_mapping_object); 1817 (void) printf(" vim_max_offset = 0x%llx\n", 1818 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1819 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1820 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1821 (void) printf(" vim_count = %llu\n", 1822 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1823 1824 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1825 return; 1826 1827 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1828 1829 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1830 vdev_indirect_mapping_entry_phys_t *vimep = 1831 &vim->vim_entries[i]; 1832 (void) printf("\t<%llx:%llx:%llx> -> " 1833 "<%llx:%llx:%llx> (%x obsolete)\n", 1834 (longlong_t)vd->vdev_id, 1835 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1836 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1837 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1838 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1839 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1840 counts[i]); 1841 } 1842 (void) printf("\n"); 1843 1844 uint64_t obsolete_sm_object; 1845 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1846 if (obsolete_sm_object != 0) { 1847 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1848 (void) printf("obsolete space map object %llu:\n", 1849 (u_longlong_t)obsolete_sm_object); 1850 ASSERT(vd->vdev_obsolete_sm != NULL); 1851 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1852 obsolete_sm_object); 1853 dump_spacemap(mos, vd->vdev_obsolete_sm); 1854 (void) printf("\n"); 1855 } 1856 } 1857 1858 static void 1859 dump_metaslabs(spa_t *spa) 1860 { 1861 vdev_t *vd, *rvd = spa->spa_root_vdev; 1862 uint64_t m, c = 0, children = rvd->vdev_children; 1863 1864 (void) printf("\nMetaslabs:\n"); 1865 1866 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1867 c = zopt_metaslab[0]; 1868 1869 if (c >= children) 1870 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1871 1872 if (zopt_metaslab_args > 1) { 1873 vd = rvd->vdev_child[c]; 1874 print_vdev_metaslab_header(vd); 1875 1876 for (m = 1; m < zopt_metaslab_args; m++) { 1877 if (zopt_metaslab[m] < vd->vdev_ms_count) 1878 dump_metaslab( 1879 vd->vdev_ms[zopt_metaslab[m]]); 1880 else 1881 (void) fprintf(stderr, "bad metaslab " 1882 "number %llu\n", 1883 (u_longlong_t)zopt_metaslab[m]); 1884 } 1885 (void) printf("\n"); 1886 return; 1887 } 1888 children = c + 1; 1889 } 1890 for (; c < children; c++) { 1891 vd = rvd->vdev_child[c]; 1892 print_vdev_metaslab_header(vd); 1893 1894 print_vdev_indirect(vd); 1895 1896 for (m = 0; m < vd->vdev_ms_count; m++) 1897 dump_metaslab(vd->vdev_ms[m]); 1898 (void) printf("\n"); 1899 } 1900 } 1901 1902 static void 1903 dump_log_spacemaps(spa_t *spa) 1904 { 1905 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1906 return; 1907 1908 (void) printf("\nLog Space Maps in Pool:\n"); 1909 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1910 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1911 space_map_t *sm = NULL; 1912 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1913 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1914 1915 (void) printf("Log Spacemap object %llu txg %llu\n", 1916 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1917 dump_spacemap(spa->spa_meta_objset, sm); 1918 space_map_close(sm); 1919 } 1920 (void) printf("\n"); 1921 } 1922 1923 static void 1924 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1925 uint64_t index) 1926 { 1927 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1928 char blkbuf[BP_SPRINTF_LEN]; 1929 blkptr_t blk; 1930 int p; 1931 1932 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1933 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1934 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1935 1936 if (ddt_phys_birth(ddp, v) == 0) 1937 continue; 1938 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1939 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1940 (void) printf("index %llx refcnt %llu phys %d %s\n", 1941 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1942 p, blkbuf); 1943 } 1944 } 1945 1946 static void 1947 dump_dedup_ratio(const ddt_stat_t *dds) 1948 { 1949 double rL, rP, rD, D, dedup, compress, copies; 1950 1951 if (dds->dds_blocks == 0) 1952 return; 1953 1954 rL = (double)dds->dds_ref_lsize; 1955 rP = (double)dds->dds_ref_psize; 1956 rD = (double)dds->dds_ref_dsize; 1957 D = (double)dds->dds_dsize; 1958 1959 dedup = rD / D; 1960 compress = rL / rP; 1961 copies = rD / rP; 1962 1963 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1964 "dedup * compress / copies = %.2f\n\n", 1965 dedup, compress, copies, dedup * compress / copies); 1966 } 1967 1968 static void 1969 dump_ddt_log(ddt_t *ddt) 1970 { 1971 if (ddt->ddt_version != DDT_VERSION_FDT || 1972 !(ddt->ddt_flags & DDT_FLAG_LOG)) 1973 return; 1974 1975 for (int n = 0; n < 2; n++) { 1976 ddt_log_t *ddl = &ddt->ddt_log[n]; 1977 1978 char flagstr[64] = {0}; 1979 if (ddl->ddl_flags > 0) { 1980 flagstr[0] = ' '; 1981 int c = 1; 1982 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 1983 c += strlcpy(&flagstr[c], " FLUSHING", 1984 sizeof (flagstr) - c); 1985 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) 1986 c += strlcpy(&flagstr[c], " CHECKPOINT", 1987 sizeof (flagstr) - c); 1988 if (ddl->ddl_flags & 1989 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT)) 1990 c += strlcpy(&flagstr[c], " UNKNOWN", 1991 sizeof (flagstr) - c); 1992 flagstr[1] = '['; 1993 flagstr[c++] = ']'; 1994 } 1995 1996 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1997 1998 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; " 1999 "len=%llu; txg=%llu; entries=%llu\n", 2000 zio_checksum_table[ddt->ddt_checksum].ci_name, n, 2001 ddl->ddl_flags, flagstr, 2002 (u_longlong_t)ddl->ddl_object, 2003 (u_longlong_t)ddl->ddl_length, 2004 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count); 2005 2006 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) { 2007 const ddt_key_t *ddk = &ddl->ddl_checkpoint; 2008 printf(" checkpoint: " 2009 "%016llx:%016llx:%016llx:%016llx:%016llx\n", 2010 (u_longlong_t)ddk->ddk_cksum.zc_word[0], 2011 (u_longlong_t)ddk->ddk_cksum.zc_word[1], 2012 (u_longlong_t)ddk->ddk_cksum.zc_word[2], 2013 (u_longlong_t)ddk->ddk_cksum.zc_word[3], 2014 (u_longlong_t)ddk->ddk_prop); 2015 } 2016 2017 if (count == 0 || dump_opt['D'] < 4) 2018 continue; 2019 2020 ddt_lightweight_entry_t ddlwe; 2021 uint64_t index = 0; 2022 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 2023 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 2024 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 2025 dump_ddt_entry(ddt, &ddlwe, index++); 2026 } 2027 } 2028 } 2029 2030 static void 2031 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 2032 { 2033 char name[DDT_NAMELEN]; 2034 ddt_lightweight_entry_t ddlwe; 2035 uint64_t walk = 0; 2036 dmu_object_info_t doi; 2037 uint64_t count, dspace, mspace; 2038 int error; 2039 2040 error = ddt_object_info(ddt, type, class, &doi); 2041 2042 if (error == ENOENT) 2043 return; 2044 ASSERT(error == 0); 2045 2046 error = ddt_object_count(ddt, type, class, &count); 2047 ASSERT(error == 0); 2048 if (count == 0) 2049 return; 2050 2051 dspace = doi.doi_physical_blocks_512 << 9; 2052 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2053 2054 ddt_object_name(ddt, type, class, name); 2055 2056 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name, 2057 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count); 2058 2059 if (dump_opt['D'] < 3) 2060 return; 2061 2062 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2063 2064 if (dump_opt['D'] < 4) 2065 return; 2066 2067 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2068 return; 2069 2070 (void) printf("%s contents:\n\n", name); 2071 2072 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2073 dump_ddt_entry(ddt, &ddlwe, walk); 2074 2075 ASSERT3U(error, ==, ENOENT); 2076 2077 (void) printf("\n"); 2078 } 2079 2080 static void 2081 dump_ddt(ddt_t *ddt) 2082 { 2083 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2084 return; 2085 2086 char flagstr[64] = {0}; 2087 if (ddt->ddt_flags > 0) { 2088 flagstr[0] = ' '; 2089 int c = 1; 2090 if (ddt->ddt_flags & DDT_FLAG_FLAT) 2091 c += strlcpy(&flagstr[c], " FLAT", 2092 sizeof (flagstr) - c); 2093 if (ddt->ddt_flags & DDT_FLAG_LOG) 2094 c += strlcpy(&flagstr[c], " LOG", 2095 sizeof (flagstr) - c); 2096 if (ddt->ddt_flags & ~DDT_FLAG_MASK) 2097 c += strlcpy(&flagstr[c], " UNKNOWN", 2098 sizeof (flagstr) - c); 2099 flagstr[1] = '['; 2100 flagstr[c] = ']'; 2101 } 2102 2103 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n", 2104 zio_checksum_table[ddt->ddt_checksum].ci_name, 2105 (u_longlong_t)ddt->ddt_version, 2106 (ddt->ddt_version == 0) ? "LEGACY" : 2107 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN", 2108 (u_longlong_t)ddt->ddt_flags, flagstr, 2109 (u_longlong_t)ddt->ddt_dir_object); 2110 2111 for (ddt_type_t type = 0; type < DDT_TYPES; type++) 2112 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) 2113 dump_ddt_object(ddt, type, class); 2114 2115 dump_ddt_log(ddt); 2116 } 2117 2118 static void 2119 dump_all_ddts(spa_t *spa) 2120 { 2121 ddt_histogram_t ddh_total = {{{0}}}; 2122 ddt_stat_t dds_total = {0}; 2123 2124 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) 2125 dump_ddt(spa->spa_ddt[c]); 2126 2127 ddt_get_dedup_stats(spa, &dds_total); 2128 2129 if (dds_total.dds_blocks == 0) { 2130 (void) printf("All DDTs are empty\n"); 2131 return; 2132 } 2133 2134 (void) printf("\n"); 2135 2136 if (dump_opt['D'] > 1) { 2137 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2138 ddt_get_dedup_histogram(spa, &ddh_total); 2139 zpool_dump_ddt(&dds_total, &ddh_total); 2140 } 2141 2142 dump_dedup_ratio(&dds_total); 2143 2144 /* 2145 * Dump a histogram of unique class entry age 2146 */ 2147 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2148 ddt_age_histo_t histogram; 2149 2150 (void) printf("DDT walk unique, building age histogram...\n"); 2151 ddt_prune_walk(spa, 0, &histogram); 2152 2153 /* 2154 * print out histogram for unique entry class birth 2155 */ 2156 if (histogram.dah_entries > 0) { 2157 (void) printf("%5s %9s %4s\n", 2158 "age", "blocks", "amnt"); 2159 (void) printf("%5s %9s %4s\n", 2160 "-----", "---------", "----"); 2161 for (int i = 0; i < HIST_BINS; i++) { 2162 (void) printf("%5d %9d %4d%%\n", 1 << i, 2163 (int)histogram.dah_age_histo[i], 2164 (int)((histogram.dah_age_histo[i] * 100) / 2165 histogram.dah_entries)); 2166 } 2167 } 2168 } 2169 } 2170 2171 static void 2172 dump_brt(spa_t *spa) 2173 { 2174 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2175 printf("BRT: unsupported on this pool\n"); 2176 return; 2177 } 2178 2179 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2180 printf("BRT: empty\n"); 2181 return; 2182 } 2183 2184 char count[32], used[32], saved[32]; 2185 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2186 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2187 uint64_t ratio = brt_get_ratio(spa); 2188 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2189 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2190 2191 if (dump_opt['T'] < 2) 2192 return; 2193 2194 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2195 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2196 if (!brtvd->bv_initiated) { 2197 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2198 continue; 2199 } 2200 2201 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2202 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2203 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2204 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2205 vdevid, count, used, saved); 2206 } 2207 2208 if (dump_opt['T'] < 3) 2209 return; 2210 2211 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2212 boolean_t do_histo = dump_opt['T'] == 3; 2213 2214 char dva[64]; 2215 2216 if (!do_histo) 2217 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2218 2219 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2220 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2221 if (!brtvd->bv_initiated) 2222 continue; 2223 2224 uint64_t counts[64] = {}; 2225 2226 zap_cursor_t zc; 2227 zap_attribute_t *za = zap_attribute_alloc(); 2228 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2229 brtvd->bv_mos_entries); 2230 zap_cursor_retrieve(&zc, za) == 0; 2231 zap_cursor_advance(&zc)) { 2232 uint64_t refcnt; 2233 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset, 2234 brtvd->bv_mos_entries, 2235 (const uint64_t *)za->za_name, 1, 2236 za->za_integer_length, za->za_num_integers, 2237 &refcnt)); 2238 2239 if (do_histo) 2240 counts[highbit64(refcnt)]++; 2241 else { 2242 uint64_t offset = 2243 *(const uint64_t *)za->za_name; 2244 2245 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2246 vdevid, (u_longlong_t)offset); 2247 printf("%-16s %-10llu\n", dva, 2248 (u_longlong_t)refcnt); 2249 } 2250 } 2251 zap_cursor_fini(&zc); 2252 zap_attribute_free(za); 2253 2254 if (do_histo) { 2255 printf("\nBRT: vdev %" PRIu64 2256 ": DVAs with 2^n refcnts:\n", vdevid); 2257 dump_histogram(counts, 64, 0); 2258 } 2259 } 2260 } 2261 2262 static void 2263 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2264 { 2265 char *prefix = arg; 2266 2267 (void) printf("%s [%llu,%llu) length %llu\n", 2268 prefix, 2269 (u_longlong_t)start, 2270 (u_longlong_t)(start + size), 2271 (u_longlong_t)(size)); 2272 } 2273 2274 static void 2275 dump_dtl(vdev_t *vd, int indent) 2276 { 2277 spa_t *spa = vd->vdev_spa; 2278 boolean_t required; 2279 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2280 "outage" }; 2281 char prefix[256]; 2282 2283 spa_vdev_state_enter(spa, SCL_NONE); 2284 required = vdev_dtl_required(vd); 2285 (void) spa_vdev_state_exit(spa, NULL, 0); 2286 2287 if (indent == 0) 2288 (void) printf("\nDirty time logs:\n\n"); 2289 2290 (void) printf("\t%*s%s [%s]\n", indent, "", 2291 vd->vdev_path ? vd->vdev_path : 2292 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2293 required ? "DTL-required" : "DTL-expendable"); 2294 2295 for (int t = 0; t < DTL_TYPES; t++) { 2296 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 2297 if (zfs_range_tree_space(rt) == 0) 2298 continue; 2299 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2300 indent + 2, "", name[t]); 2301 zfs_range_tree_walk(rt, dump_dtl_seg, prefix); 2302 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2303 dump_spacemap(spa->spa_meta_objset, 2304 vd->vdev_dtl_sm); 2305 } 2306 2307 for (unsigned c = 0; c < vd->vdev_children; c++) 2308 dump_dtl(vd->vdev_child[c], indent + 4); 2309 } 2310 2311 static void 2312 dump_history(spa_t *spa) 2313 { 2314 nvlist_t **events = NULL; 2315 char *buf; 2316 uint64_t resid, len, off = 0; 2317 uint_t num = 0; 2318 int error; 2319 char tbuf[30]; 2320 2321 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2322 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2323 __func__); 2324 return; 2325 } 2326 2327 do { 2328 len = SPA_OLD_MAXBLOCKSIZE; 2329 2330 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2331 (void) fprintf(stderr, "Unable to read history: " 2332 "error %d\n", error); 2333 free(buf); 2334 return; 2335 } 2336 2337 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2338 break; 2339 2340 off -= resid; 2341 } while (len != 0); 2342 2343 (void) printf("\nHistory:\n"); 2344 for (unsigned i = 0; i < num; i++) { 2345 boolean_t printed = B_FALSE; 2346 2347 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2348 time_t tsec; 2349 struct tm t; 2350 2351 tsec = fnvlist_lookup_uint64(events[i], 2352 ZPOOL_HIST_TIME); 2353 (void) localtime_r(&tsec, &t); 2354 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2355 } else { 2356 tbuf[0] = '\0'; 2357 } 2358 2359 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2360 (void) printf("%s %s\n", tbuf, 2361 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2362 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2363 uint64_t ievent; 2364 2365 ievent = fnvlist_lookup_uint64(events[i], 2366 ZPOOL_HIST_INT_EVENT); 2367 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2368 goto next; 2369 2370 (void) printf(" %s [internal %s txg:%ju] %s\n", 2371 tbuf, 2372 zfs_history_event_names[ievent], 2373 fnvlist_lookup_uint64(events[i], 2374 ZPOOL_HIST_TXG), 2375 fnvlist_lookup_string(events[i], 2376 ZPOOL_HIST_INT_STR)); 2377 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2378 (void) printf("%s [txg:%ju] %s", tbuf, 2379 fnvlist_lookup_uint64(events[i], 2380 ZPOOL_HIST_TXG), 2381 fnvlist_lookup_string(events[i], 2382 ZPOOL_HIST_INT_NAME)); 2383 2384 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2385 (void) printf(" %s (%llu)", 2386 fnvlist_lookup_string(events[i], 2387 ZPOOL_HIST_DSNAME), 2388 (u_longlong_t)fnvlist_lookup_uint64( 2389 events[i], 2390 ZPOOL_HIST_DSID)); 2391 } 2392 2393 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2394 ZPOOL_HIST_INT_STR)); 2395 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2396 (void) printf("%s ioctl %s\n", tbuf, 2397 fnvlist_lookup_string(events[i], 2398 ZPOOL_HIST_IOCTL)); 2399 2400 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2401 (void) printf(" input:\n"); 2402 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2403 ZPOOL_HIST_INPUT_NVL), 8); 2404 } 2405 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2406 (void) printf(" output:\n"); 2407 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2408 ZPOOL_HIST_OUTPUT_NVL), 8); 2409 } 2410 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2411 (void) printf(" errno: %lld\n", 2412 (longlong_t)fnvlist_lookup_int64(events[i], 2413 ZPOOL_HIST_ERRNO)); 2414 } 2415 } else { 2416 goto next; 2417 } 2418 2419 printed = B_TRUE; 2420 next: 2421 if (dump_opt['h'] > 1) { 2422 if (!printed) 2423 (void) printf("unrecognized record:\n"); 2424 dump_nvlist(events[i], 2); 2425 } 2426 } 2427 free(buf); 2428 } 2429 2430 static void 2431 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2432 { 2433 (void) os, (void) object, (void) data, (void) size; 2434 } 2435 2436 static uint64_t 2437 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2438 const zbookmark_phys_t *zb) 2439 { 2440 if (dnp == NULL) { 2441 ASSERT(zb->zb_level < 0); 2442 if (zb->zb_object == 0) 2443 return (zb->zb_blkid); 2444 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2445 } 2446 2447 ASSERT(zb->zb_level >= 0); 2448 2449 return ((zb->zb_blkid << 2450 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2451 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2452 } 2453 2454 static void 2455 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2456 const blkptr_t *bp) 2457 { 2458 static abd_t *pabd = NULL; 2459 void *buf; 2460 zio_t *zio; 2461 zfs_zstdhdr_t zstd_hdr; 2462 int error; 2463 2464 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2465 return; 2466 2467 if (BP_IS_HOLE(bp)) 2468 return; 2469 2470 if (BP_IS_EMBEDDED(bp)) { 2471 buf = malloc(SPA_MAXBLOCKSIZE); 2472 if (buf == NULL) { 2473 (void) fprintf(stderr, "out of memory\n"); 2474 zdb_exit(1); 2475 } 2476 decode_embedded_bp_compressed(bp, buf); 2477 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2478 free(buf); 2479 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2480 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2481 (void) snprintf(blkbuf + strlen(blkbuf), 2482 buflen - strlen(blkbuf), 2483 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2484 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2485 zfs_get_hdrlevel(&zstd_hdr)); 2486 return; 2487 } 2488 2489 if (!pabd) 2490 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2491 zio = zio_root(spa, NULL, NULL, 0); 2492 2493 /* Decrypt but don't decompress so we can read the compression header */ 2494 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2495 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2496 NULL)); 2497 error = zio_wait(zio); 2498 if (error) { 2499 (void) fprintf(stderr, "read failed: %d\n", error); 2500 return; 2501 } 2502 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2503 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2504 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2505 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2506 2507 (void) snprintf(blkbuf + strlen(blkbuf), 2508 buflen - strlen(blkbuf), 2509 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2510 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2511 zfs_get_hdrlevel(&zstd_hdr)); 2512 2513 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2514 } 2515 2516 static void 2517 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2518 boolean_t bp_freed) 2519 { 2520 const dva_t *dva = bp->blk_dva; 2521 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2522 int i; 2523 2524 if (dump_opt['b'] >= 6) { 2525 snprintf_blkptr(blkbuf, buflen, bp); 2526 if (bp_freed) { 2527 (void) snprintf(blkbuf + strlen(blkbuf), 2528 buflen - strlen(blkbuf), " %s", "FREE"); 2529 } 2530 return; 2531 } 2532 2533 if (BP_IS_EMBEDDED(bp)) { 2534 (void) sprintf(blkbuf, 2535 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2536 (int)BPE_GET_ETYPE(bp), 2537 (u_longlong_t)BPE_GET_LSIZE(bp), 2538 (u_longlong_t)BPE_GET_PSIZE(bp), 2539 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2540 return; 2541 } 2542 2543 blkbuf[0] = '\0'; 2544 2545 for (i = 0; i < ndvas; i++) 2546 (void) snprintf(blkbuf + strlen(blkbuf), 2547 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2548 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2549 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2550 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2551 2552 if (BP_IS_HOLE(bp)) { 2553 (void) snprintf(blkbuf + strlen(blkbuf), 2554 buflen - strlen(blkbuf), 2555 "%llxL B=%llu", 2556 (u_longlong_t)BP_GET_LSIZE(bp), 2557 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2558 } else { 2559 (void) snprintf(blkbuf + strlen(blkbuf), 2560 buflen - strlen(blkbuf), 2561 "%llxL/%llxP F=%llu B=%llu/%llu", 2562 (u_longlong_t)BP_GET_LSIZE(bp), 2563 (u_longlong_t)BP_GET_PSIZE(bp), 2564 (u_longlong_t)BP_GET_FILL(bp), 2565 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2566 (u_longlong_t)BP_GET_BIRTH(bp)); 2567 if (bp_freed) 2568 (void) snprintf(blkbuf + strlen(blkbuf), 2569 buflen - strlen(blkbuf), " %s", "FREE"); 2570 (void) snprintf(blkbuf + strlen(blkbuf), 2571 buflen - strlen(blkbuf), 2572 " cksum=%016llx:%016llx:%016llx:%016llx", 2573 (u_longlong_t)bp->blk_cksum.zc_word[0], 2574 (u_longlong_t)bp->blk_cksum.zc_word[1], 2575 (u_longlong_t)bp->blk_cksum.zc_word[2], 2576 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2577 } 2578 } 2579 2580 static void 2581 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2582 const dnode_phys_t *dnp) 2583 { 2584 char blkbuf[BP_SPRINTF_LEN]; 2585 int l; 2586 2587 if (!BP_IS_EMBEDDED(bp)) { 2588 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2589 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2590 } 2591 2592 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2593 2594 ASSERT(zb->zb_level >= 0); 2595 2596 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2597 if (l == zb->zb_level) { 2598 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2599 } else { 2600 (void) printf(" "); 2601 } 2602 } 2603 2604 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2605 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2606 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2607 (void) printf("%s\n", blkbuf); 2608 } 2609 2610 static int 2611 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2612 blkptr_t *bp, const zbookmark_phys_t *zb) 2613 { 2614 int err = 0; 2615 2616 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2617 return (0); 2618 2619 print_indirect(spa, bp, zb, dnp); 2620 2621 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2622 arc_flags_t flags = ARC_FLAG_WAIT; 2623 int i; 2624 blkptr_t *cbp; 2625 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2626 arc_buf_t *buf; 2627 uint64_t fill = 0; 2628 ASSERT(!BP_IS_REDACTED(bp)); 2629 2630 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2631 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2632 if (err) 2633 return (err); 2634 ASSERT(buf->b_data); 2635 2636 /* recursively visit blocks below this */ 2637 cbp = buf->b_data; 2638 for (i = 0; i < epb; i++, cbp++) { 2639 zbookmark_phys_t czb; 2640 2641 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2642 zb->zb_level - 1, 2643 zb->zb_blkid * epb + i); 2644 err = visit_indirect(spa, dnp, cbp, &czb); 2645 if (err) 2646 break; 2647 fill += BP_GET_FILL(cbp); 2648 } 2649 if (!err) 2650 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2651 arc_buf_destroy(buf, &buf); 2652 } 2653 2654 return (err); 2655 } 2656 2657 static void 2658 dump_indirect(dnode_t *dn) 2659 { 2660 dnode_phys_t *dnp = dn->dn_phys; 2661 zbookmark_phys_t czb; 2662 2663 (void) printf("Indirect blocks:\n"); 2664 2665 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2666 dn->dn_object, dnp->dn_nlevels - 1, 0); 2667 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2668 czb.zb_blkid = j; 2669 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2670 &dnp->dn_blkptr[j], &czb); 2671 } 2672 2673 (void) printf("\n"); 2674 } 2675 2676 static void 2677 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2678 { 2679 (void) os, (void) object; 2680 dsl_dir_phys_t *dd = data; 2681 time_t crtime; 2682 char nice[32]; 2683 2684 /* make sure nicenum has enough space */ 2685 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2686 2687 if (dd == NULL) 2688 return; 2689 2690 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2691 2692 crtime = dd->dd_creation_time; 2693 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2694 (void) printf("\t\thead_dataset_obj = %llu\n", 2695 (u_longlong_t)dd->dd_head_dataset_obj); 2696 (void) printf("\t\tparent_dir_obj = %llu\n", 2697 (u_longlong_t)dd->dd_parent_obj); 2698 (void) printf("\t\torigin_obj = %llu\n", 2699 (u_longlong_t)dd->dd_origin_obj); 2700 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2701 (u_longlong_t)dd->dd_child_dir_zapobj); 2702 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2703 (void) printf("\t\tused_bytes = %s\n", nice); 2704 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2705 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2706 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2707 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2708 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2709 (void) printf("\t\tquota = %s\n", nice); 2710 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2711 (void) printf("\t\treserved = %s\n", nice); 2712 (void) printf("\t\tprops_zapobj = %llu\n", 2713 (u_longlong_t)dd->dd_props_zapobj); 2714 (void) printf("\t\tdeleg_zapobj = %llu\n", 2715 (u_longlong_t)dd->dd_deleg_zapobj); 2716 (void) printf("\t\tflags = %llx\n", 2717 (u_longlong_t)dd->dd_flags); 2718 2719 #define DO(which) \ 2720 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2721 sizeof (nice)); \ 2722 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2723 DO(HEAD); 2724 DO(SNAP); 2725 DO(CHILD); 2726 DO(CHILD_RSRV); 2727 DO(REFRSRV); 2728 #undef DO 2729 (void) printf("\t\tclones = %llu\n", 2730 (u_longlong_t)dd->dd_clones); 2731 } 2732 2733 static void 2734 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2735 { 2736 (void) os, (void) object; 2737 dsl_dataset_phys_t *ds = data; 2738 time_t crtime; 2739 char used[32], compressed[32], uncompressed[32], unique[32]; 2740 char blkbuf[BP_SPRINTF_LEN]; 2741 2742 /* make sure nicenum has enough space */ 2743 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2744 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2745 "compressed truncated"); 2746 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2747 "uncompressed truncated"); 2748 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2749 2750 if (ds == NULL) 2751 return; 2752 2753 ASSERT(size == sizeof (*ds)); 2754 crtime = ds->ds_creation_time; 2755 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2756 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2757 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2758 sizeof (uncompressed)); 2759 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2760 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2761 2762 (void) printf("\t\tdir_obj = %llu\n", 2763 (u_longlong_t)ds->ds_dir_obj); 2764 (void) printf("\t\tprev_snap_obj = %llu\n", 2765 (u_longlong_t)ds->ds_prev_snap_obj); 2766 (void) printf("\t\tprev_snap_txg = %llu\n", 2767 (u_longlong_t)ds->ds_prev_snap_txg); 2768 (void) printf("\t\tnext_snap_obj = %llu\n", 2769 (u_longlong_t)ds->ds_next_snap_obj); 2770 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2771 (u_longlong_t)ds->ds_snapnames_zapobj); 2772 (void) printf("\t\tnum_children = %llu\n", 2773 (u_longlong_t)ds->ds_num_children); 2774 (void) printf("\t\tuserrefs_obj = %llu\n", 2775 (u_longlong_t)ds->ds_userrefs_obj); 2776 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2777 (void) printf("\t\tcreation_txg = %llu\n", 2778 (u_longlong_t)ds->ds_creation_txg); 2779 (void) printf("\t\tdeadlist_obj = %llu\n", 2780 (u_longlong_t)ds->ds_deadlist_obj); 2781 (void) printf("\t\tused_bytes = %s\n", used); 2782 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2783 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2784 (void) printf("\t\tunique = %s\n", unique); 2785 (void) printf("\t\tfsid_guid = %llu\n", 2786 (u_longlong_t)ds->ds_fsid_guid); 2787 (void) printf("\t\tguid = %llu\n", 2788 (u_longlong_t)ds->ds_guid); 2789 (void) printf("\t\tflags = %llx\n", 2790 (u_longlong_t)ds->ds_flags); 2791 (void) printf("\t\tnext_clones_obj = %llu\n", 2792 (u_longlong_t)ds->ds_next_clones_obj); 2793 (void) printf("\t\tprops_obj = %llu\n", 2794 (u_longlong_t)ds->ds_props_obj); 2795 (void) printf("\t\tbp = %s\n", blkbuf); 2796 } 2797 2798 static int 2799 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2800 { 2801 (void) arg, (void) tx; 2802 char blkbuf[BP_SPRINTF_LEN]; 2803 2804 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2805 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2806 (void) printf("\t%s\n", blkbuf); 2807 } 2808 return (0); 2809 } 2810 2811 static void 2812 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2813 { 2814 char bytes[32]; 2815 bptree_phys_t *bt; 2816 dmu_buf_t *db; 2817 2818 /* make sure nicenum has enough space */ 2819 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2820 2821 if (dump_opt['d'] < 3) 2822 return; 2823 2824 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2825 bt = db->db_data; 2826 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2827 (void) printf("\n %s: %llu datasets, %s\n", 2828 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2829 dmu_buf_rele(db, FTAG); 2830 2831 if (dump_opt['d'] < 5) 2832 return; 2833 2834 (void) printf("\n"); 2835 2836 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2837 } 2838 2839 static int 2840 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2841 { 2842 (void) arg, (void) tx; 2843 char blkbuf[BP_SPRINTF_LEN]; 2844 2845 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2846 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2847 (void) printf("\t%s\n", blkbuf); 2848 return (0); 2849 } 2850 2851 static void 2852 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2853 { 2854 char bytes[32]; 2855 char comp[32]; 2856 char uncomp[32]; 2857 uint64_t i; 2858 2859 /* make sure nicenum has enough space */ 2860 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2861 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2862 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2863 2864 if (dump_opt['d'] < 3) 2865 return; 2866 2867 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2868 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2869 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2870 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2871 if (bpo->bpo_havefreed) { 2872 (void) printf(" %*s: object %llu, %llu local " 2873 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2874 "%s (%s/%s comp)\n", 2875 indent * 8, name, 2876 (u_longlong_t)bpo->bpo_object, 2877 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2878 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2879 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2880 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2881 bytes, comp, uncomp); 2882 } else { 2883 (void) printf(" %*s: object %llu, %llu local " 2884 "blkptrs, %llu subobjs in object %llu, " 2885 "%s (%s/%s comp)\n", 2886 indent * 8, name, 2887 (u_longlong_t)bpo->bpo_object, 2888 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2889 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2890 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2891 bytes, comp, uncomp); 2892 } 2893 2894 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2895 uint64_t subobj; 2896 bpobj_t subbpo; 2897 int error; 2898 VERIFY0(dmu_read(bpo->bpo_os, 2899 bpo->bpo_phys->bpo_subobjs, 2900 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2901 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2902 if (error != 0) { 2903 (void) printf("ERROR %u while trying to open " 2904 "subobj id %llu\n", 2905 error, (u_longlong_t)subobj); 2906 continue; 2907 } 2908 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2909 bpobj_close(&subbpo); 2910 } 2911 } else { 2912 if (bpo->bpo_havefreed) { 2913 (void) printf(" %*s: object %llu, %llu blkptrs, " 2914 "%llu freed, %s\n", 2915 indent * 8, name, 2916 (u_longlong_t)bpo->bpo_object, 2917 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2918 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2919 bytes); 2920 } else { 2921 (void) printf(" %*s: object %llu, %llu blkptrs, " 2922 "%s\n", 2923 indent * 8, name, 2924 (u_longlong_t)bpo->bpo_object, 2925 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2926 bytes); 2927 } 2928 } 2929 2930 if (dump_opt['d'] < 5) 2931 return; 2932 2933 2934 if (indent == 0) { 2935 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2936 (void) printf("\n"); 2937 } 2938 } 2939 2940 static int 2941 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2942 boolean_t print_list) 2943 { 2944 int err = 0; 2945 zfs_bookmark_phys_t prop; 2946 objset_t *mos = dp->dp_spa->spa_meta_objset; 2947 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2948 2949 if (err != 0) { 2950 return (err); 2951 } 2952 2953 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2954 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2955 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2956 (u_longlong_t)prop.zbm_creation_txg, 2957 (u_longlong_t)prop.zbm_creation_time, 2958 (u_longlong_t)prop.zbm_redaction_obj); 2959 2960 IMPLY(print_list, print_redact); 2961 if (!print_redact || prop.zbm_redaction_obj == 0) 2962 return (0); 2963 2964 redaction_list_t *rl; 2965 VERIFY0(dsl_redaction_list_hold_obj(dp, 2966 prop.zbm_redaction_obj, FTAG, &rl)); 2967 2968 redaction_list_phys_t *rlp = rl->rl_phys; 2969 (void) printf("\tRedacted:\n\t\tProgress: "); 2970 if (rlp->rlp_last_object != UINT64_MAX || 2971 rlp->rlp_last_blkid != UINT64_MAX) { 2972 (void) printf("%llu %llu (incomplete)\n", 2973 (u_longlong_t)rlp->rlp_last_object, 2974 (u_longlong_t)rlp->rlp_last_blkid); 2975 } else { 2976 (void) printf("complete\n"); 2977 } 2978 (void) printf("\t\tSnapshots: ["); 2979 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2980 if (i > 0) 2981 (void) printf(", "); 2982 (void) printf("%0llu", 2983 (u_longlong_t)rlp->rlp_snaps[i]); 2984 } 2985 (void) printf("]\n\t\tLength: %llu\n", 2986 (u_longlong_t)rlp->rlp_num_entries); 2987 2988 if (!print_list) { 2989 dsl_redaction_list_rele(rl, FTAG); 2990 return (0); 2991 } 2992 2993 if (rlp->rlp_num_entries == 0) { 2994 dsl_redaction_list_rele(rl, FTAG); 2995 (void) printf("\t\tRedaction List: []\n\n"); 2996 return (0); 2997 } 2998 2999 redact_block_phys_t *rbp_buf; 3000 uint64_t size; 3001 dmu_object_info_t doi; 3002 3003 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 3004 size = doi.doi_max_offset; 3005 rbp_buf = kmem_alloc(size, KM_SLEEP); 3006 3007 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 3008 rbp_buf, 0); 3009 if (err != 0) { 3010 dsl_redaction_list_rele(rl, FTAG); 3011 kmem_free(rbp_buf, size); 3012 return (err); 3013 } 3014 3015 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 3016 "%llx, blksz: %x, count: %llx}", 3017 (u_longlong_t)rbp_buf[0].rbp_object, 3018 (u_longlong_t)rbp_buf[0].rbp_blkid, 3019 (uint_t)(redact_block_get_size(&rbp_buf[0])), 3020 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 3021 3022 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 3023 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 3024 "blksz: %x, count: %llx}", 3025 (u_longlong_t)rbp_buf[i].rbp_object, 3026 (u_longlong_t)rbp_buf[i].rbp_blkid, 3027 (uint_t)(redact_block_get_size(&rbp_buf[i])), 3028 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 3029 } 3030 dsl_redaction_list_rele(rl, FTAG); 3031 kmem_free(rbp_buf, size); 3032 (void) printf("]\n\n"); 3033 return (0); 3034 } 3035 3036 static void 3037 dump_bookmarks(objset_t *os, int verbosity) 3038 { 3039 zap_cursor_t zc; 3040 zap_attribute_t *attrp; 3041 dsl_dataset_t *ds = dmu_objset_ds(os); 3042 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3043 objset_t *mos = os->os_spa->spa_meta_objset; 3044 if (verbosity < 4) 3045 return; 3046 attrp = zap_attribute_alloc(); 3047 dsl_pool_config_enter(dp, FTAG); 3048 3049 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 3050 zap_cursor_retrieve(&zc, attrp) == 0; 3051 zap_cursor_advance(&zc)) { 3052 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3053 char buf[ZFS_MAX_DATASET_NAME_LEN]; 3054 int len; 3055 dmu_objset_name(os, osname); 3056 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 3057 attrp->za_name); 3058 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 3059 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 3060 } 3061 zap_cursor_fini(&zc); 3062 dsl_pool_config_exit(dp, FTAG); 3063 zap_attribute_free(attrp); 3064 } 3065 3066 static void 3067 bpobj_count_refd(bpobj_t *bpo) 3068 { 3069 mos_obj_refd(bpo->bpo_object); 3070 3071 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3072 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3073 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3074 uint64_t subobj; 3075 bpobj_t subbpo; 3076 int error; 3077 VERIFY0(dmu_read(bpo->bpo_os, 3078 bpo->bpo_phys->bpo_subobjs, 3079 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3080 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3081 if (error != 0) { 3082 (void) printf("ERROR %u while trying to open " 3083 "subobj id %llu\n", 3084 error, (u_longlong_t)subobj); 3085 continue; 3086 } 3087 bpobj_count_refd(&subbpo); 3088 bpobj_close(&subbpo); 3089 } 3090 } 3091 } 3092 3093 static int 3094 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3095 { 3096 spa_t *spa = arg; 3097 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3098 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3099 bpobj_count_refd(&dle->dle_bpobj); 3100 return (0); 3101 } 3102 3103 static int 3104 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3105 { 3106 ASSERT(arg == NULL); 3107 if (dump_opt['d'] >= 5) { 3108 char buf[128]; 3109 (void) snprintf(buf, sizeof (buf), 3110 "mintxg %llu -> obj %llu", 3111 (longlong_t)dle->dle_mintxg, 3112 (longlong_t)dle->dle_bpobj.bpo_object); 3113 3114 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3115 } else { 3116 (void) printf("mintxg %llu -> obj %llu\n", 3117 (longlong_t)dle->dle_mintxg, 3118 (longlong_t)dle->dle_bpobj.bpo_object); 3119 } 3120 return (0); 3121 } 3122 3123 static void 3124 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3125 { 3126 char bytes[32]; 3127 char comp[32]; 3128 char uncomp[32]; 3129 char entries[32]; 3130 spa_t *spa = dmu_objset_spa(dl->dl_os); 3131 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3132 3133 if (dl->dl_oldfmt) { 3134 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3135 bpobj_count_refd(&dl->dl_bpobj); 3136 } else { 3137 mos_obj_refd(dl->dl_object); 3138 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3139 } 3140 3141 /* make sure nicenum has enough space */ 3142 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3143 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3144 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3145 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3146 3147 if (dump_opt['d'] < 3) 3148 return; 3149 3150 if (dl->dl_oldfmt) { 3151 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3152 return; 3153 } 3154 3155 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3156 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3157 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3158 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3159 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3160 name, bytes, comp, uncomp, entries); 3161 3162 if (dump_opt['d'] < 4) 3163 return; 3164 3165 (void) putchar('\n'); 3166 3167 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3168 } 3169 3170 static int 3171 verify_dd_livelist(objset_t *os) 3172 { 3173 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3174 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3175 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3176 3177 ASSERT(!dmu_objset_is_snapshot(os)); 3178 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3179 return (0); 3180 3181 /* Iterate through the livelist to check for duplicates */ 3182 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3183 NULL); 3184 3185 dsl_pool_config_enter(dp, FTAG); 3186 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3187 &ll_comp, &ll_uncomp); 3188 3189 dsl_dataset_t *origin_ds; 3190 ASSERT(dsl_pool_config_held(dp)); 3191 VERIFY0(dsl_dataset_hold_obj(dp, 3192 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3193 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3194 &used, &comp, &uncomp)); 3195 dsl_dataset_rele(origin_ds, FTAG); 3196 dsl_pool_config_exit(dp, FTAG); 3197 /* 3198 * It's possible that the dataset's uncomp space is larger than the 3199 * livelist's because livelists do not track embedded block pointers 3200 */ 3201 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3202 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3203 (void) printf("Discrepancy in space accounting:\n"); 3204 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3205 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3206 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3207 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3208 nice_used, nice_comp, nice_uncomp); 3209 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3210 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3211 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3212 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3213 nice_used, nice_comp, nice_uncomp); 3214 return (1); 3215 } 3216 return (0); 3217 } 3218 3219 static char *key_material = NULL; 3220 3221 static boolean_t 3222 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3223 { 3224 uint64_t keyformat, salt, iters; 3225 int i; 3226 unsigned char c; 3227 3228 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3229 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3230 1, &keyformat)); 3231 3232 switch (keyformat) { 3233 case ZFS_KEYFORMAT_HEX: 3234 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3235 if (!isxdigit(key_material[i]) || 3236 !isxdigit(key_material[i+1])) 3237 return (B_FALSE); 3238 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3239 return (B_FALSE); 3240 key_out[i / 2] = c; 3241 } 3242 break; 3243 3244 case ZFS_KEYFORMAT_PASSPHRASE: 3245 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3246 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3247 sizeof (uint64_t), 1, &salt)); 3248 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3249 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3250 sizeof (uint64_t), 1, &iters)); 3251 3252 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3253 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3254 WRAPPING_KEY_LEN, key_out) != 1) 3255 return (B_FALSE); 3256 3257 break; 3258 3259 default: 3260 fatal("no support for key format %u\n", 3261 (unsigned int) keyformat); 3262 } 3263 3264 return (B_TRUE); 3265 } 3266 3267 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3268 static boolean_t key_loaded = B_FALSE; 3269 3270 static void 3271 zdb_load_key(objset_t *os) 3272 { 3273 dsl_pool_t *dp; 3274 dsl_dir_t *dd, *rdd; 3275 uint8_t key[WRAPPING_KEY_LEN]; 3276 uint64_t rddobj; 3277 int err; 3278 3279 dp = spa_get_dsl(os->os_spa); 3280 dd = os->os_dsl_dataset->ds_dir; 3281 3282 dsl_pool_config_enter(dp, FTAG); 3283 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3284 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3285 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3286 dsl_dir_name(rdd, encroot); 3287 dsl_dir_rele(rdd, FTAG); 3288 3289 if (!zdb_derive_key(dd, key)) 3290 fatal("couldn't derive encryption key"); 3291 3292 dsl_pool_config_exit(dp, FTAG); 3293 3294 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3295 3296 dsl_crypto_params_t *dcp; 3297 nvlist_t *crypto_args; 3298 3299 crypto_args = fnvlist_alloc(); 3300 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3301 (uint8_t *)key, WRAPPING_KEY_LEN); 3302 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3303 NULL, crypto_args, &dcp)); 3304 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3305 3306 dsl_crypto_params_free(dcp, (err != 0)); 3307 fnvlist_free(crypto_args); 3308 3309 if (err != 0) 3310 fatal( 3311 "couldn't load encryption key for %s: %s", 3312 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3313 "crypto params not supported" : strerror(err)); 3314 3315 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3316 3317 printf("Unlocked encryption root: %s\n", encroot); 3318 key_loaded = B_TRUE; 3319 } 3320 3321 static void 3322 zdb_unload_key(void) 3323 { 3324 if (!key_loaded) 3325 return; 3326 3327 VERIFY0(spa_keystore_unload_wkey(encroot)); 3328 key_loaded = B_FALSE; 3329 } 3330 3331 static avl_tree_t idx_tree; 3332 static avl_tree_t domain_tree; 3333 static boolean_t fuid_table_loaded; 3334 static objset_t *sa_os = NULL; 3335 static sa_attr_type_t *sa_attr_table = NULL; 3336 3337 static int 3338 open_objset(const char *path, const void *tag, objset_t **osp) 3339 { 3340 int err; 3341 uint64_t sa_attrs = 0; 3342 uint64_t version = 0; 3343 3344 VERIFY3P(sa_os, ==, NULL); 3345 3346 /* 3347 * We can't own an objset if it's redacted. Therefore, we do this 3348 * dance: hold the objset, then acquire a long hold on its dataset, then 3349 * release the pool (which is held as part of holding the objset). 3350 */ 3351 3352 if (dump_opt['K']) { 3353 /* decryption requested, try to load keys */ 3354 err = dmu_objset_hold(path, tag, osp); 3355 if (err != 0) { 3356 (void) fprintf(stderr, "failed to hold dataset " 3357 "'%s': %s\n", 3358 path, strerror(err)); 3359 return (err); 3360 } 3361 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3362 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3363 3364 /* succeeds or dies */ 3365 zdb_load_key(*osp); 3366 3367 /* release it all */ 3368 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3369 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3370 } 3371 3372 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3373 3374 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3375 if (err != 0) { 3376 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3377 path, strerror(err)); 3378 return (err); 3379 } 3380 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3381 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3382 3383 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3384 (key_loaded || !(*osp)->os_encrypted)) { 3385 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3386 8, 1, &version); 3387 if (version >= ZPL_VERSION_SA) { 3388 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3389 8, 1, &sa_attrs); 3390 } 3391 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3392 &sa_attr_table); 3393 if (err != 0) { 3394 (void) fprintf(stderr, "sa_setup failed: %s\n", 3395 strerror(err)); 3396 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3397 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3398 ds_hold_flags, tag); 3399 *osp = NULL; 3400 } 3401 } 3402 sa_os = *osp; 3403 3404 return (err); 3405 } 3406 3407 static void 3408 close_objset(objset_t *os, const void *tag) 3409 { 3410 VERIFY3P(os, ==, sa_os); 3411 if (os->os_sa != NULL) 3412 sa_tear_down(os); 3413 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3414 dsl_dataset_rele_flags(dmu_objset_ds(os), 3415 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3416 sa_attr_table = NULL; 3417 sa_os = NULL; 3418 3419 zdb_unload_key(); 3420 } 3421 3422 static void 3423 fuid_table_destroy(void) 3424 { 3425 if (fuid_table_loaded) { 3426 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3427 fuid_table_loaded = B_FALSE; 3428 } 3429 } 3430 3431 /* 3432 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3433 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3434 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3435 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3436 * 3437 * Note that this is not a particularly efficient way to do this, but 3438 * ddt_remove() is the only public method that can do the work we need, and it 3439 * requires the right locks and etc to do the job. This is only ever called 3440 * during zdb shutdown so efficiency is not especially important. 3441 */ 3442 static void 3443 zdb_ddt_cleanup(spa_t *spa) 3444 { 3445 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3446 ddt_t *ddt = spa->spa_ddt[c]; 3447 if (!ddt) 3448 continue; 3449 3450 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3451 ddt_enter(ddt); 3452 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3453 while (dde) { 3454 next = AVL_NEXT(&ddt->ddt_tree, dde); 3455 dde->dde_io = NULL; 3456 ddt_remove(ddt, dde); 3457 dde = next; 3458 } 3459 ddt_exit(ddt); 3460 spa_config_exit(spa, SCL_CONFIG, FTAG); 3461 } 3462 } 3463 3464 static void 3465 zdb_exit(int reason) 3466 { 3467 if (spa != NULL) 3468 zdb_ddt_cleanup(spa); 3469 3470 if (os != NULL) { 3471 close_objset(os, FTAG); 3472 } else if (spa != NULL) { 3473 spa_close(spa, FTAG); 3474 } 3475 3476 fuid_table_destroy(); 3477 3478 if (kernel_init_done) 3479 kernel_fini(); 3480 3481 exit(reason); 3482 } 3483 3484 /* 3485 * print uid or gid information. 3486 * For normal POSIX id just the id is printed in decimal format. 3487 * For CIFS files with FUID the fuid is printed in hex followed by 3488 * the domain-rid string. 3489 */ 3490 static void 3491 print_idstr(uint64_t id, const char *id_type) 3492 { 3493 if (FUID_INDEX(id)) { 3494 const char *domain = 3495 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3496 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3497 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3498 } else { 3499 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3500 } 3501 3502 } 3503 3504 static void 3505 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3506 { 3507 uint32_t uid_idx, gid_idx; 3508 3509 uid_idx = FUID_INDEX(uid); 3510 gid_idx = FUID_INDEX(gid); 3511 3512 /* Load domain table, if not already loaded */ 3513 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3514 uint64_t fuid_obj; 3515 3516 /* first find the fuid object. It lives in the master node */ 3517 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3518 8, 1, &fuid_obj) == 0); 3519 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3520 (void) zfs_fuid_table_load(os, fuid_obj, 3521 &idx_tree, &domain_tree); 3522 fuid_table_loaded = B_TRUE; 3523 } 3524 3525 print_idstr(uid, "uid"); 3526 print_idstr(gid, "gid"); 3527 } 3528 3529 static void 3530 dump_znode_sa_xattr(sa_handle_t *hdl) 3531 { 3532 nvlist_t *sa_xattr; 3533 nvpair_t *elem = NULL; 3534 int sa_xattr_size = 0; 3535 int sa_xattr_entries = 0; 3536 int error; 3537 char *sa_xattr_packed; 3538 3539 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3540 if (error || sa_xattr_size == 0) 3541 return; 3542 3543 sa_xattr_packed = malloc(sa_xattr_size); 3544 if (sa_xattr_packed == NULL) 3545 return; 3546 3547 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3548 sa_xattr_packed, sa_xattr_size); 3549 if (error) { 3550 free(sa_xattr_packed); 3551 return; 3552 } 3553 3554 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3555 if (error) { 3556 free(sa_xattr_packed); 3557 return; 3558 } 3559 3560 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3561 sa_xattr_entries++; 3562 3563 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3564 sa_xattr_size, sa_xattr_entries); 3565 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3566 boolean_t can_print = !dump_opt['P']; 3567 uchar_t *value; 3568 uint_t cnt, idx; 3569 3570 (void) printf("\t\t%s = ", nvpair_name(elem)); 3571 nvpair_value_byte_array(elem, &value, &cnt); 3572 3573 for (idx = 0; idx < cnt; ++idx) { 3574 if (!isprint(value[idx])) { 3575 can_print = B_FALSE; 3576 break; 3577 } 3578 } 3579 3580 for (idx = 0; idx < cnt; ++idx) { 3581 if (can_print) 3582 (void) putchar(value[idx]); 3583 else 3584 (void) printf("\\%3.3o", value[idx]); 3585 } 3586 (void) putchar('\n'); 3587 } 3588 3589 nvlist_free(sa_xattr); 3590 free(sa_xattr_packed); 3591 } 3592 3593 static void 3594 dump_znode_symlink(sa_handle_t *hdl) 3595 { 3596 int sa_symlink_size = 0; 3597 char linktarget[MAXPATHLEN]; 3598 int error; 3599 3600 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3601 if (error || sa_symlink_size == 0) { 3602 return; 3603 } 3604 if (sa_symlink_size >= sizeof (linktarget)) { 3605 (void) printf("symlink size %d is too large\n", 3606 sa_symlink_size); 3607 return; 3608 } 3609 linktarget[sa_symlink_size] = '\0'; 3610 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3611 &linktarget, sa_symlink_size) == 0) 3612 (void) printf("\ttarget %s\n", linktarget); 3613 } 3614 3615 static void 3616 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3617 { 3618 (void) data, (void) size; 3619 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3620 sa_handle_t *hdl; 3621 uint64_t xattr, rdev, gen; 3622 uint64_t uid, gid, mode, fsize, parent, links; 3623 uint64_t pflags; 3624 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3625 time_t z_crtime, z_atime, z_mtime, z_ctime; 3626 sa_bulk_attr_t bulk[12]; 3627 int idx = 0; 3628 int error; 3629 3630 VERIFY3P(os, ==, sa_os); 3631 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3632 (void) printf("Failed to get handle for SA znode\n"); 3633 return; 3634 } 3635 3636 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3637 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3638 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3639 &links, 8); 3640 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3641 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3642 &mode, 8); 3643 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3644 NULL, &parent, 8); 3645 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3646 &fsize, 8); 3647 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3648 acctm, 16); 3649 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3650 modtm, 16); 3651 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3652 crtm, 16); 3653 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3654 chgtm, 16); 3655 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3656 &pflags, 8); 3657 3658 if (sa_bulk_lookup(hdl, bulk, idx)) { 3659 (void) sa_handle_destroy(hdl); 3660 return; 3661 } 3662 3663 z_crtime = (time_t)crtm[0]; 3664 z_atime = (time_t)acctm[0]; 3665 z_mtime = (time_t)modtm[0]; 3666 z_ctime = (time_t)chgtm[0]; 3667 3668 if (dump_opt['d'] > 4) { 3669 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3670 if (error == ESTALE) { 3671 (void) snprintf(path, sizeof (path), "on delete queue"); 3672 } else if (error != 0) { 3673 leaked_objects++; 3674 (void) snprintf(path, sizeof (path), 3675 "path not found, possibly leaked"); 3676 } 3677 (void) printf("\tpath %s\n", path); 3678 } 3679 3680 if (S_ISLNK(mode)) 3681 dump_znode_symlink(hdl); 3682 dump_uidgid(os, uid, gid); 3683 (void) printf("\tatime %s", ctime(&z_atime)); 3684 (void) printf("\tmtime %s", ctime(&z_mtime)); 3685 (void) printf("\tctime %s", ctime(&z_ctime)); 3686 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3687 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3688 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3689 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3690 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3691 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3692 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3693 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3694 uint64_t projid; 3695 3696 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3697 sizeof (uint64_t)) == 0) 3698 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3699 } 3700 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3701 sizeof (uint64_t)) == 0) 3702 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3703 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3704 sizeof (uint64_t)) == 0) 3705 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3706 dump_znode_sa_xattr(hdl); 3707 sa_handle_destroy(hdl); 3708 } 3709 3710 static void 3711 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3712 { 3713 (void) os, (void) object, (void) data, (void) size; 3714 } 3715 3716 static void 3717 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3718 { 3719 (void) os, (void) object, (void) data, (void) size; 3720 } 3721 3722 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3723 dump_none, /* unallocated */ 3724 dump_zap, /* object directory */ 3725 dump_uint64, /* object array */ 3726 dump_none, /* packed nvlist */ 3727 dump_packed_nvlist, /* packed nvlist size */ 3728 dump_none, /* bpobj */ 3729 dump_bpobj, /* bpobj header */ 3730 dump_none, /* SPA space map header */ 3731 dump_none, /* SPA space map */ 3732 dump_none, /* ZIL intent log */ 3733 dump_dnode, /* DMU dnode */ 3734 dump_dmu_objset, /* DMU objset */ 3735 dump_dsl_dir, /* DSL directory */ 3736 dump_zap, /* DSL directory child map */ 3737 dump_zap, /* DSL dataset snap map */ 3738 dump_zap, /* DSL props */ 3739 dump_dsl_dataset, /* DSL dataset */ 3740 dump_znode, /* ZFS znode */ 3741 dump_acl, /* ZFS V0 ACL */ 3742 dump_uint8, /* ZFS plain file */ 3743 dump_zpldir, /* ZFS directory */ 3744 dump_zap, /* ZFS master node */ 3745 dump_zap, /* ZFS delete queue */ 3746 dump_uint8, /* zvol object */ 3747 dump_zap, /* zvol prop */ 3748 dump_uint8, /* other uint8[] */ 3749 dump_uint64, /* other uint64[] */ 3750 dump_zap, /* other ZAP */ 3751 dump_zap, /* persistent error log */ 3752 dump_uint8, /* SPA history */ 3753 dump_history_offsets, /* SPA history offsets */ 3754 dump_zap, /* Pool properties */ 3755 dump_zap, /* DSL permissions */ 3756 dump_acl, /* ZFS ACL */ 3757 dump_uint8, /* ZFS SYSACL */ 3758 dump_none, /* FUID nvlist */ 3759 dump_packed_nvlist, /* FUID nvlist size */ 3760 dump_zap, /* DSL dataset next clones */ 3761 dump_zap, /* DSL scrub queue */ 3762 dump_zap, /* ZFS user/group/project used */ 3763 dump_zap, /* ZFS user/group/project quota */ 3764 dump_zap, /* snapshot refcount tags */ 3765 dump_ddt_zap, /* DDT ZAP object */ 3766 dump_zap, /* DDT statistics */ 3767 dump_znode, /* SA object */ 3768 dump_zap, /* SA Master Node */ 3769 dump_sa_attrs, /* SA attribute registration */ 3770 dump_sa_layouts, /* SA attribute layouts */ 3771 dump_zap, /* DSL scrub translations */ 3772 dump_none, /* fake dedup BP */ 3773 dump_zap, /* deadlist */ 3774 dump_none, /* deadlist hdr */ 3775 dump_zap, /* dsl clones */ 3776 dump_bpobj_subobjs, /* bpobj subobjs */ 3777 dump_unknown, /* Unknown type, must be last */ 3778 }; 3779 3780 static boolean_t 3781 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3782 { 3783 boolean_t match = B_TRUE; 3784 3785 switch (obj_type) { 3786 case DMU_OT_DIRECTORY_CONTENTS: 3787 if (!(flags & ZOR_FLAG_DIRECTORY)) 3788 match = B_FALSE; 3789 break; 3790 case DMU_OT_PLAIN_FILE_CONTENTS: 3791 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3792 match = B_FALSE; 3793 break; 3794 case DMU_OT_SPACE_MAP: 3795 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3796 match = B_FALSE; 3797 break; 3798 default: 3799 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3800 if (!(flags & ZOR_FLAG_ZAP)) 3801 match = B_FALSE; 3802 break; 3803 } 3804 3805 /* 3806 * If all bits except some of the supported flags are 3807 * set, the user combined the all-types flag (A) with 3808 * a negated flag to exclude some types (e.g. A-f to 3809 * show all object types except plain files). 3810 */ 3811 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3812 match = B_FALSE; 3813 3814 break; 3815 } 3816 3817 return (match); 3818 } 3819 3820 static void 3821 dump_object(objset_t *os, uint64_t object, int verbosity, 3822 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3823 { 3824 dmu_buf_t *db = NULL; 3825 dmu_object_info_t doi; 3826 dnode_t *dn; 3827 boolean_t dnode_held = B_FALSE; 3828 void *bonus = NULL; 3829 size_t bsize = 0; 3830 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3831 char bonus_size[32]; 3832 char aux[50]; 3833 int error; 3834 3835 /* make sure nicenum has enough space */ 3836 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3837 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3838 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3839 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3840 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3841 "bonus_size truncated"); 3842 3843 if (*print_header) { 3844 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3845 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3846 "lsize", "%full", "type"); 3847 *print_header = 0; 3848 } 3849 3850 if (object == 0) { 3851 dn = DMU_META_DNODE(os); 3852 dmu_object_info_from_dnode(dn, &doi); 3853 } else { 3854 /* 3855 * Encrypted datasets will have sensitive bonus buffers 3856 * encrypted. Therefore we cannot hold the bonus buffer and 3857 * must hold the dnode itself instead. 3858 */ 3859 error = dmu_object_info(os, object, &doi); 3860 if (error) 3861 fatal("dmu_object_info() failed, errno %u", error); 3862 3863 if (!key_loaded && os->os_encrypted && 3864 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3865 error = dnode_hold(os, object, FTAG, &dn); 3866 if (error) 3867 fatal("dnode_hold() failed, errno %u", error); 3868 dnode_held = B_TRUE; 3869 } else { 3870 error = dmu_bonus_hold(os, object, FTAG, &db); 3871 if (error) 3872 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3873 object, error); 3874 bonus = db->db_data; 3875 bsize = db->db_size; 3876 dn = DB_DNODE((dmu_buf_impl_t *)db); 3877 } 3878 } 3879 3880 /* 3881 * Default to showing all object types if no flags were specified. 3882 */ 3883 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3884 !match_object_type(doi.doi_type, flags)) 3885 goto out; 3886 3887 if (dnode_slots_used) 3888 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3889 3890 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3891 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3892 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3893 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3894 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3895 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3896 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3897 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3898 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3899 3900 aux[0] = '\0'; 3901 3902 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3903 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3904 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3905 } 3906 3907 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3908 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3909 const char *compname = NULL; 3910 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3911 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3912 &compname) == 0) { 3913 (void) snprintf(aux + strlen(aux), 3914 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3915 compname); 3916 } else { 3917 (void) snprintf(aux + strlen(aux), 3918 sizeof (aux) - strlen(aux), 3919 " (Z=inherit=%s-unknown)", 3920 ZDB_COMPRESS_NAME(os->os_compress)); 3921 } 3922 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3923 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3924 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3925 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3926 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3927 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3928 } 3929 3930 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3931 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3932 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3933 3934 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3935 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3936 "", "", "", "", "", "", bonus_size, "bonus", 3937 zdb_ot_name(doi.doi_bonus_type)); 3938 } 3939 3940 if (verbosity >= 4) { 3941 (void) printf("\tdnode flags: %s%s%s%s\n", 3942 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3943 "USED_BYTES " : "", 3944 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3945 "USERUSED_ACCOUNTED " : "", 3946 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3947 "USEROBJUSED_ACCOUNTED " : "", 3948 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3949 "SPILL_BLKPTR" : ""); 3950 (void) printf("\tdnode maxblkid: %llu\n", 3951 (longlong_t)dn->dn_phys->dn_maxblkid); 3952 3953 if (!dnode_held) { 3954 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3955 object, bonus, bsize); 3956 } else { 3957 (void) printf("\t\t(bonus encrypted)\n"); 3958 } 3959 3960 if (key_loaded || 3961 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3962 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3963 NULL, 0); 3964 } else { 3965 (void) printf("\t\t(object encrypted)\n"); 3966 } 3967 3968 *print_header = B_TRUE; 3969 } 3970 3971 if (verbosity >= 5) { 3972 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3973 char blkbuf[BP_SPRINTF_LEN]; 3974 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3975 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3976 (void) printf("\nSpill block: %s\n", blkbuf); 3977 } 3978 dump_indirect(dn); 3979 } 3980 3981 if (verbosity >= 5) { 3982 /* 3983 * Report the list of segments that comprise the object. 3984 */ 3985 uint64_t start = 0; 3986 uint64_t end; 3987 uint64_t blkfill = 1; 3988 int minlvl = 1; 3989 3990 if (dn->dn_type == DMU_OT_DNODE) { 3991 minlvl = 0; 3992 blkfill = DNODES_PER_BLOCK; 3993 } 3994 3995 for (;;) { 3996 char segsize[32]; 3997 /* make sure nicenum has enough space */ 3998 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3999 "segsize truncated"); 4000 error = dnode_next_offset(dn, 4001 0, &start, minlvl, blkfill, 0); 4002 if (error) 4003 break; 4004 end = start; 4005 error = dnode_next_offset(dn, 4006 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 4007 zdb_nicenum(end - start, segsize, sizeof (segsize)); 4008 (void) printf("\t\tsegment [%016llx, %016llx)" 4009 " size %5s\n", (u_longlong_t)start, 4010 (u_longlong_t)end, segsize); 4011 if (error) 4012 break; 4013 start = end; 4014 } 4015 } 4016 4017 out: 4018 if (db != NULL) 4019 dmu_buf_rele(db, FTAG); 4020 if (dnode_held) 4021 dnode_rele(dn, FTAG); 4022 } 4023 4024 static void 4025 count_dir_mos_objects(dsl_dir_t *dd) 4026 { 4027 mos_obj_refd(dd->dd_object); 4028 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 4029 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 4030 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 4031 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 4032 4033 /* 4034 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 4035 * Ignore the references after the first one. 4036 */ 4037 mos_obj_refd_multiple(dd->dd_crypto_obj); 4038 } 4039 4040 static void 4041 count_ds_mos_objects(dsl_dataset_t *ds) 4042 { 4043 mos_obj_refd(ds->ds_object); 4044 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 4045 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 4046 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 4047 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 4048 mos_obj_refd(ds->ds_bookmarks_obj); 4049 4050 if (!dsl_dataset_is_snapshot(ds)) { 4051 count_dir_mos_objects(ds->ds_dir); 4052 } 4053 } 4054 4055 static const char *const objset_types[DMU_OST_NUMTYPES] = { 4056 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 4057 4058 /* 4059 * Parse a string denoting a range of object IDs of the form 4060 * <start>[:<end>[:flags]], and store the results in zor. 4061 * Return 0 on success. On error, return 1 and update the msg 4062 * pointer to point to a descriptive error message. 4063 */ 4064 static int 4065 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4066 { 4067 uint64_t flags = 0; 4068 char *p, *s, *dup, *flagstr, *tmp = NULL; 4069 size_t len; 4070 int i; 4071 int rc = 0; 4072 4073 if (strchr(range, ':') == NULL) { 4074 zor->zor_obj_start = strtoull(range, &p, 0); 4075 if (*p != '\0') { 4076 *msg = "Invalid characters in object ID"; 4077 rc = 1; 4078 } 4079 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4080 zor->zor_obj_end = zor->zor_obj_start; 4081 return (rc); 4082 } 4083 4084 if (strchr(range, ':') == range) { 4085 *msg = "Invalid leading colon"; 4086 rc = 1; 4087 return (rc); 4088 } 4089 4090 len = strlen(range); 4091 if (range[len - 1] == ':') { 4092 *msg = "Invalid trailing colon"; 4093 rc = 1; 4094 return (rc); 4095 } 4096 4097 dup = strdup(range); 4098 s = strtok_r(dup, ":", &tmp); 4099 zor->zor_obj_start = strtoull(s, &p, 0); 4100 4101 if (*p != '\0') { 4102 *msg = "Invalid characters in start object ID"; 4103 rc = 1; 4104 goto out; 4105 } 4106 4107 s = strtok_r(NULL, ":", &tmp); 4108 zor->zor_obj_end = strtoull(s, &p, 0); 4109 4110 if (*p != '\0') { 4111 *msg = "Invalid characters in end object ID"; 4112 rc = 1; 4113 goto out; 4114 } 4115 4116 if (zor->zor_obj_start > zor->zor_obj_end) { 4117 *msg = "Start object ID may not exceed end object ID"; 4118 rc = 1; 4119 goto out; 4120 } 4121 4122 s = strtok_r(NULL, ":", &tmp); 4123 if (s == NULL) { 4124 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4125 goto out; 4126 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4127 *msg = "Invalid colon-delimited field after flags"; 4128 rc = 1; 4129 goto out; 4130 } 4131 4132 flagstr = s; 4133 for (i = 0; flagstr[i]; i++) { 4134 int bit; 4135 boolean_t negation = (flagstr[i] == '-'); 4136 4137 if (negation) { 4138 i++; 4139 if (flagstr[i] == '\0') { 4140 *msg = "Invalid trailing negation operator"; 4141 rc = 1; 4142 goto out; 4143 } 4144 } 4145 bit = flagbits[(uchar_t)flagstr[i]]; 4146 if (bit == 0) { 4147 *msg = "Invalid flag"; 4148 rc = 1; 4149 goto out; 4150 } 4151 if (negation) 4152 flags &= ~bit; 4153 else 4154 flags |= bit; 4155 } 4156 zor->zor_flags = flags; 4157 4158 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4159 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4160 4161 out: 4162 free(dup); 4163 return (rc); 4164 } 4165 4166 static void 4167 dump_objset(objset_t *os) 4168 { 4169 dmu_objset_stats_t dds = { 0 }; 4170 uint64_t object, object_count; 4171 uint64_t refdbytes, usedobjs, scratch; 4172 char numbuf[32]; 4173 char blkbuf[BP_SPRINTF_LEN + 20]; 4174 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4175 const char *type = "UNKNOWN"; 4176 int verbosity = dump_opt['d']; 4177 boolean_t print_header; 4178 unsigned i; 4179 int error; 4180 uint64_t total_slots_used = 0; 4181 uint64_t max_slot_used = 0; 4182 uint64_t dnode_slots; 4183 uint64_t obj_start; 4184 uint64_t obj_end; 4185 uint64_t flags; 4186 4187 /* make sure nicenum has enough space */ 4188 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4189 4190 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4191 dmu_objset_fast_stat(os, &dds); 4192 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4193 4194 print_header = B_TRUE; 4195 4196 if (dds.dds_type < DMU_OST_NUMTYPES) 4197 type = objset_types[dds.dds_type]; 4198 4199 if (dds.dds_type == DMU_OST_META) { 4200 dds.dds_creation_txg = TXG_INITIAL; 4201 usedobjs = BP_GET_FILL(os->os_rootbp); 4202 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4203 dd_used_bytes; 4204 } else { 4205 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4206 } 4207 4208 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4209 4210 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4211 4212 if (verbosity >= 4) { 4213 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4214 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4215 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4216 } else { 4217 blkbuf[0] = '\0'; 4218 } 4219 4220 dmu_objset_name(os, osname); 4221 4222 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4223 "%s, %llu objects%s%s\n", 4224 osname, type, (u_longlong_t)dmu_objset_id(os), 4225 (u_longlong_t)dds.dds_creation_txg, 4226 numbuf, (u_longlong_t)usedobjs, blkbuf, 4227 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4228 4229 for (i = 0; i < zopt_object_args; i++) { 4230 obj_start = zopt_object_ranges[i].zor_obj_start; 4231 obj_end = zopt_object_ranges[i].zor_obj_end; 4232 flags = zopt_object_ranges[i].zor_flags; 4233 4234 object = obj_start; 4235 if (object == 0 || obj_start == obj_end) 4236 dump_object(os, object, verbosity, &print_header, NULL, 4237 flags); 4238 else 4239 object--; 4240 4241 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4242 object <= obj_end) { 4243 dump_object(os, object, verbosity, &print_header, NULL, 4244 flags); 4245 } 4246 } 4247 4248 if (zopt_object_args > 0) { 4249 (void) printf("\n"); 4250 return; 4251 } 4252 4253 if (dump_opt['i'] != 0 || verbosity >= 2) 4254 dump_intent_log(dmu_objset_zil(os)); 4255 4256 if (dmu_objset_ds(os) != NULL) { 4257 dsl_dataset_t *ds = dmu_objset_ds(os); 4258 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4259 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4260 !dmu_objset_is_snapshot(os)) { 4261 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4262 if (verify_dd_livelist(os) != 0) 4263 fatal("livelist is incorrect"); 4264 } 4265 4266 if (dsl_dataset_remap_deadlist_exists(ds)) { 4267 (void) printf("ds_remap_deadlist:\n"); 4268 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4269 } 4270 count_ds_mos_objects(ds); 4271 } 4272 4273 if (dmu_objset_ds(os) != NULL) 4274 dump_bookmarks(os, verbosity); 4275 4276 if (verbosity < 2) 4277 return; 4278 4279 if (BP_IS_HOLE(os->os_rootbp)) 4280 return; 4281 4282 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4283 object_count = 0; 4284 if (DMU_USERUSED_DNODE(os) != NULL && 4285 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4286 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4287 NULL, 0); 4288 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4289 NULL, 0); 4290 } 4291 4292 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4293 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4294 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4295 &print_header, NULL, 0); 4296 4297 object = 0; 4298 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4299 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4300 0); 4301 object_count++; 4302 total_slots_used += dnode_slots; 4303 max_slot_used = object + dnode_slots - 1; 4304 } 4305 4306 (void) printf("\n"); 4307 4308 (void) printf(" Dnode slots:\n"); 4309 (void) printf("\tTotal used: %10llu\n", 4310 (u_longlong_t)total_slots_used); 4311 (void) printf("\tMax used: %10llu\n", 4312 (u_longlong_t)max_slot_used); 4313 (void) printf("\tPercent empty: %10lf\n", 4314 (double)(max_slot_used - total_slots_used)*100 / 4315 (double)max_slot_used); 4316 (void) printf("\n"); 4317 4318 if (error != ESRCH) { 4319 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4320 abort(); 4321 } 4322 4323 ASSERT3U(object_count, ==, usedobjs); 4324 4325 if (leaked_objects != 0) { 4326 (void) printf("%d potentially leaked objects detected\n", 4327 leaked_objects); 4328 leaked_objects = 0; 4329 } 4330 } 4331 4332 static void 4333 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4334 { 4335 time_t timestamp = ub->ub_timestamp; 4336 4337 (void) printf("%s", header ? header : ""); 4338 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4339 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4340 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4341 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4342 (void) printf("\ttimestamp = %llu UTC = %s", 4343 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4344 4345 char blkbuf[BP_SPRINTF_LEN]; 4346 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4347 (void) printf("\tbp = %s\n", blkbuf); 4348 4349 (void) printf("\tmmp_magic = %016llx\n", 4350 (u_longlong_t)ub->ub_mmp_magic); 4351 if (MMP_VALID(ub)) { 4352 (void) printf("\tmmp_delay = %0llu\n", 4353 (u_longlong_t)ub->ub_mmp_delay); 4354 if (MMP_SEQ_VALID(ub)) 4355 (void) printf("\tmmp_seq = %u\n", 4356 (unsigned int) MMP_SEQ(ub)); 4357 if (MMP_FAIL_INT_VALID(ub)) 4358 (void) printf("\tmmp_fail = %u\n", 4359 (unsigned int) MMP_FAIL_INT(ub)); 4360 if (MMP_INTERVAL_VALID(ub)) 4361 (void) printf("\tmmp_write = %u\n", 4362 (unsigned int) MMP_INTERVAL(ub)); 4363 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4364 (void) printf("\tmmp_valid = %x\n", 4365 (unsigned int) ub->ub_mmp_config & 0xFF); 4366 } 4367 4368 if (dump_opt['u'] >= 4) { 4369 char blkbuf[BP_SPRINTF_LEN]; 4370 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4371 (void) printf("\trootbp = %s\n", blkbuf); 4372 } 4373 (void) printf("\tcheckpoint_txg = %llu\n", 4374 (u_longlong_t)ub->ub_checkpoint_txg); 4375 4376 (void) printf("\traidz_reflow state=%u off=%llu\n", 4377 (int)RRSS_GET_STATE(ub), 4378 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4379 4380 (void) printf("%s", footer ? footer : ""); 4381 } 4382 4383 static void 4384 dump_config(spa_t *spa) 4385 { 4386 dmu_buf_t *db; 4387 size_t nvsize = 0; 4388 int error = 0; 4389 4390 4391 error = dmu_bonus_hold(spa->spa_meta_objset, 4392 spa->spa_config_object, FTAG, &db); 4393 4394 if (error == 0) { 4395 nvsize = *(uint64_t *)db->db_data; 4396 dmu_buf_rele(db, FTAG); 4397 4398 (void) printf("\nMOS Configuration:\n"); 4399 dump_packed_nvlist(spa->spa_meta_objset, 4400 spa->spa_config_object, (void *)&nvsize, 1); 4401 } else { 4402 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4403 (u_longlong_t)spa->spa_config_object, error); 4404 } 4405 } 4406 4407 static void 4408 dump_cachefile(const char *cachefile) 4409 { 4410 int fd; 4411 struct stat64 statbuf; 4412 char *buf; 4413 nvlist_t *config; 4414 4415 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4416 (void) printf("cannot open '%s': %s\n", cachefile, 4417 strerror(errno)); 4418 zdb_exit(1); 4419 } 4420 4421 if (fstat64(fd, &statbuf) != 0) { 4422 (void) printf("failed to stat '%s': %s\n", cachefile, 4423 strerror(errno)); 4424 zdb_exit(1); 4425 } 4426 4427 if ((buf = malloc(statbuf.st_size)) == NULL) { 4428 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4429 (u_longlong_t)statbuf.st_size); 4430 zdb_exit(1); 4431 } 4432 4433 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4434 (void) fprintf(stderr, "failed to read %llu bytes\n", 4435 (u_longlong_t)statbuf.st_size); 4436 zdb_exit(1); 4437 } 4438 4439 (void) close(fd); 4440 4441 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4442 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4443 zdb_exit(1); 4444 } 4445 4446 free(buf); 4447 4448 dump_nvlist(config, 0); 4449 4450 nvlist_free(config); 4451 } 4452 4453 /* 4454 * ZFS label nvlist stats 4455 */ 4456 typedef struct zdb_nvl_stats { 4457 int zns_list_count; 4458 int zns_leaf_count; 4459 size_t zns_leaf_largest; 4460 size_t zns_leaf_total; 4461 nvlist_t *zns_string; 4462 nvlist_t *zns_uint64; 4463 nvlist_t *zns_boolean; 4464 } zdb_nvl_stats_t; 4465 4466 static void 4467 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4468 { 4469 nvlist_t *list, **array; 4470 nvpair_t *nvp = NULL; 4471 const char *name; 4472 uint_t i, items; 4473 4474 stats->zns_list_count++; 4475 4476 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4477 name = nvpair_name(nvp); 4478 4479 switch (nvpair_type(nvp)) { 4480 case DATA_TYPE_STRING: 4481 fnvlist_add_string(stats->zns_string, name, 4482 fnvpair_value_string(nvp)); 4483 break; 4484 case DATA_TYPE_UINT64: 4485 fnvlist_add_uint64(stats->zns_uint64, name, 4486 fnvpair_value_uint64(nvp)); 4487 break; 4488 case DATA_TYPE_BOOLEAN: 4489 fnvlist_add_boolean(stats->zns_boolean, name); 4490 break; 4491 case DATA_TYPE_NVLIST: 4492 if (nvpair_value_nvlist(nvp, &list) == 0) 4493 collect_nvlist_stats(list, stats); 4494 break; 4495 case DATA_TYPE_NVLIST_ARRAY: 4496 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4497 break; 4498 4499 for (i = 0; i < items; i++) { 4500 collect_nvlist_stats(array[i], stats); 4501 4502 /* collect stats on leaf vdev */ 4503 if (strcmp(name, "children") == 0) { 4504 size_t size; 4505 4506 (void) nvlist_size(array[i], &size, 4507 NV_ENCODE_XDR); 4508 stats->zns_leaf_total += size; 4509 if (size > stats->zns_leaf_largest) 4510 stats->zns_leaf_largest = size; 4511 stats->zns_leaf_count++; 4512 } 4513 } 4514 break; 4515 default: 4516 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4517 } 4518 } 4519 } 4520 4521 static void 4522 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4523 { 4524 zdb_nvl_stats_t stats = { 0 }; 4525 size_t size, sum = 0, total; 4526 size_t noise; 4527 4528 /* requires nvlist with non-unique names for stat collection */ 4529 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4530 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4531 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4532 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4533 4534 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4535 4536 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4537 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4538 (int)total, (int)(cap - total), 100.0 * total / cap); 4539 4540 collect_nvlist_stats(nvl, &stats); 4541 4542 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4543 size -= noise; 4544 sum += size; 4545 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4546 (int)fnvlist_num_pairs(stats.zns_uint64), 4547 (int)size, 100.0 * size / total); 4548 4549 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4550 size -= noise; 4551 sum += size; 4552 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4553 (int)fnvlist_num_pairs(stats.zns_string), 4554 (int)size, 100.0 * size / total); 4555 4556 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4557 size -= noise; 4558 sum += size; 4559 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4560 (int)fnvlist_num_pairs(stats.zns_boolean), 4561 (int)size, 100.0 * size / total); 4562 4563 size = total - sum; /* treat remainder as nvlist overhead */ 4564 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4565 stats.zns_list_count, (int)size, 100.0 * size / total); 4566 4567 if (stats.zns_leaf_count > 0) { 4568 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4569 4570 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4571 stats.zns_leaf_count, (int)average); 4572 (void) printf("%24d bytes largest\n", 4573 (int)stats.zns_leaf_largest); 4574 4575 if (dump_opt['l'] >= 3 && average > 0) 4576 (void) printf(" space for %d additional leaf vdevs\n", 4577 (int)((cap - total) / average)); 4578 } 4579 (void) printf("\n"); 4580 4581 nvlist_free(stats.zns_string); 4582 nvlist_free(stats.zns_uint64); 4583 nvlist_free(stats.zns_boolean); 4584 } 4585 4586 typedef struct cksum_record { 4587 zio_cksum_t cksum; 4588 boolean_t labels[VDEV_LABELS]; 4589 avl_node_t link; 4590 } cksum_record_t; 4591 4592 static int 4593 cksum_record_compare(const void *x1, const void *x2) 4594 { 4595 const cksum_record_t *l = (cksum_record_t *)x1; 4596 const cksum_record_t *r = (cksum_record_t *)x2; 4597 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4598 int difference = 0; 4599 4600 for (int i = 0; i < arraysize; i++) { 4601 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4602 if (difference) 4603 break; 4604 } 4605 4606 return (difference); 4607 } 4608 4609 static cksum_record_t * 4610 cksum_record_alloc(zio_cksum_t *cksum, int l) 4611 { 4612 cksum_record_t *rec; 4613 4614 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4615 rec->cksum = *cksum; 4616 rec->labels[l] = B_TRUE; 4617 4618 return (rec); 4619 } 4620 4621 static cksum_record_t * 4622 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4623 { 4624 cksum_record_t lookup = { .cksum = *cksum }; 4625 avl_index_t where; 4626 4627 return (avl_find(tree, &lookup, &where)); 4628 } 4629 4630 static cksum_record_t * 4631 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4632 { 4633 cksum_record_t *rec; 4634 4635 rec = cksum_record_lookup(tree, cksum); 4636 if (rec) { 4637 rec->labels[l] = B_TRUE; 4638 } else { 4639 rec = cksum_record_alloc(cksum, l); 4640 avl_add(tree, rec); 4641 } 4642 4643 return (rec); 4644 } 4645 4646 static int 4647 first_label(cksum_record_t *rec) 4648 { 4649 for (int i = 0; i < VDEV_LABELS; i++) 4650 if (rec->labels[i]) 4651 return (i); 4652 4653 return (-1); 4654 } 4655 4656 static void 4657 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4658 { 4659 fputs(prefix, stdout); 4660 for (int i = 0; i < VDEV_LABELS; i++) 4661 if (rec->labels[i] == B_TRUE) 4662 printf("%d ", i); 4663 putchar('\n'); 4664 } 4665 4666 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4667 4668 typedef struct zdb_label { 4669 vdev_label_t label; 4670 uint64_t label_offset; 4671 nvlist_t *config_nv; 4672 cksum_record_t *config; 4673 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4674 boolean_t header_printed; 4675 boolean_t read_failed; 4676 boolean_t cksum_valid; 4677 } zdb_label_t; 4678 4679 static void 4680 print_label_header(zdb_label_t *label, int l) 4681 { 4682 4683 if (dump_opt['q']) 4684 return; 4685 4686 if (label->header_printed == B_TRUE) 4687 return; 4688 4689 (void) printf("------------------------------------\n"); 4690 (void) printf("LABEL %d %s\n", l, 4691 label->cksum_valid ? "" : "(Bad label cksum)"); 4692 (void) printf("------------------------------------\n"); 4693 4694 label->header_printed = B_TRUE; 4695 } 4696 4697 static void 4698 print_l2arc_header(void) 4699 { 4700 (void) printf("------------------------------------\n"); 4701 (void) printf("L2ARC device header\n"); 4702 (void) printf("------------------------------------\n"); 4703 } 4704 4705 static void 4706 print_l2arc_log_blocks(void) 4707 { 4708 (void) printf("------------------------------------\n"); 4709 (void) printf("L2ARC device log blocks\n"); 4710 (void) printf("------------------------------------\n"); 4711 } 4712 4713 static void 4714 dump_l2arc_log_entries(uint64_t log_entries, 4715 l2arc_log_ent_phys_t *le, uint64_t i) 4716 { 4717 for (int j = 0; j < log_entries; j++) { 4718 dva_t dva = le[j].le_dva; 4719 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4720 "vdev: %llu, offset: %llu\n", 4721 (u_longlong_t)i, j + 1, 4722 (u_longlong_t)DVA_GET_ASIZE(&dva), 4723 (u_longlong_t)DVA_GET_VDEV(&dva), 4724 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4725 (void) printf("|\t\t\t\tbirth: %llu\n", 4726 (u_longlong_t)le[j].le_birth); 4727 (void) printf("|\t\t\t\tlsize: %llu\n", 4728 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4729 (void) printf("|\t\t\t\tpsize: %llu\n", 4730 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4731 (void) printf("|\t\t\t\tcompr: %llu\n", 4732 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4733 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4734 (u_longlong_t)(&le[j])->le_complevel); 4735 (void) printf("|\t\t\t\ttype: %llu\n", 4736 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4737 (void) printf("|\t\t\t\tprotected: %llu\n", 4738 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4739 (void) printf("|\t\t\t\tprefetch: %llu\n", 4740 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4741 (void) printf("|\t\t\t\taddress: %llu\n", 4742 (u_longlong_t)le[j].le_daddr); 4743 (void) printf("|\t\t\t\tARC state: %llu\n", 4744 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4745 (void) printf("|\n"); 4746 } 4747 (void) printf("\n"); 4748 } 4749 4750 static void 4751 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4752 { 4753 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4754 (void) printf("|\t\tpayload_asize: %llu\n", 4755 (u_longlong_t)lbps->lbp_payload_asize); 4756 (void) printf("|\t\tpayload_start: %llu\n", 4757 (u_longlong_t)lbps->lbp_payload_start); 4758 (void) printf("|\t\tlsize: %llu\n", 4759 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4760 (void) printf("|\t\tasize: %llu\n", 4761 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4762 (void) printf("|\t\tcompralgo: %llu\n", 4763 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4764 (void) printf("|\t\tcksumalgo: %llu\n", 4765 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4766 (void) printf("|\n\n"); 4767 } 4768 4769 static void 4770 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4771 l2arc_dev_hdr_phys_t *rebuild) 4772 { 4773 l2arc_log_blk_phys_t this_lb; 4774 uint64_t asize; 4775 l2arc_log_blkptr_t lbps[2]; 4776 zio_cksum_t cksum; 4777 int failed = 0; 4778 l2arc_dev_t dev; 4779 4780 if (!dump_opt['q']) 4781 print_l2arc_log_blocks(); 4782 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4783 4784 dev.l2ad_evict = l2dhdr->dh_evict; 4785 dev.l2ad_start = l2dhdr->dh_start; 4786 dev.l2ad_end = l2dhdr->dh_end; 4787 4788 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4789 /* no log blocks to read */ 4790 if (!dump_opt['q']) { 4791 (void) printf("No log blocks to read\n"); 4792 (void) printf("\n"); 4793 } 4794 return; 4795 } else { 4796 dev.l2ad_hand = lbps[0].lbp_daddr + 4797 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4798 } 4799 4800 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4801 4802 for (;;) { 4803 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4804 break; 4805 4806 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4807 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4808 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4809 if (!dump_opt['q']) { 4810 (void) printf("Error while reading next log " 4811 "block\n\n"); 4812 } 4813 break; 4814 } 4815 4816 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4817 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4818 failed++; 4819 if (!dump_opt['q']) { 4820 (void) printf("Invalid cksum\n"); 4821 dump_l2arc_log_blkptr(&lbps[0]); 4822 } 4823 break; 4824 } 4825 4826 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4827 case ZIO_COMPRESS_OFF: 4828 break; 4829 default: { 4830 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4831 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4832 abd_t dabd; 4833 abd_get_from_buf_struct(&dabd, &this_lb, 4834 sizeof (this_lb)); 4835 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4836 (&lbps[0])->lbp_prop), abd, &dabd, 4837 asize, sizeof (this_lb), NULL); 4838 abd_free(&dabd); 4839 abd_free(abd); 4840 if (err != 0) { 4841 (void) printf("L2ARC block decompression " 4842 "failed\n"); 4843 goto out; 4844 } 4845 break; 4846 } 4847 } 4848 4849 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4850 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4851 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4852 if (!dump_opt['q']) 4853 (void) printf("Invalid log block magic\n\n"); 4854 break; 4855 } 4856 4857 rebuild->dh_lb_count++; 4858 rebuild->dh_lb_asize += asize; 4859 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4860 (void) printf("lb[%4llu]\tmagic: %llu\n", 4861 (u_longlong_t)rebuild->dh_lb_count, 4862 (u_longlong_t)this_lb.lb_magic); 4863 dump_l2arc_log_blkptr(&lbps[0]); 4864 } 4865 4866 if (dump_opt['l'] > 2 && !dump_opt['q']) 4867 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4868 this_lb.lb_entries, 4869 rebuild->dh_lb_count); 4870 4871 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4872 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4873 !dev.l2ad_first) 4874 break; 4875 4876 lbps[0] = lbps[1]; 4877 lbps[1] = this_lb.lb_prev_lbp; 4878 } 4879 out: 4880 if (!dump_opt['q']) { 4881 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4882 (u_longlong_t)rebuild->dh_lb_count); 4883 (void) printf("\t\t %d with invalid cksum\n", failed); 4884 (void) printf("log_blk_asize:\t %llu\n\n", 4885 (u_longlong_t)rebuild->dh_lb_asize); 4886 } 4887 } 4888 4889 static int 4890 dump_l2arc_header(int fd) 4891 { 4892 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4893 int error = B_FALSE; 4894 4895 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4896 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4897 error = B_TRUE; 4898 } else { 4899 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4900 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4901 4902 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4903 error = B_TRUE; 4904 } 4905 4906 if (error) { 4907 (void) printf("L2ARC device header not found\n\n"); 4908 /* Do not return an error here for backward compatibility */ 4909 return (0); 4910 } else if (!dump_opt['q']) { 4911 print_l2arc_header(); 4912 4913 (void) printf(" magic: %llu\n", 4914 (u_longlong_t)l2dhdr.dh_magic); 4915 (void) printf(" version: %llu\n", 4916 (u_longlong_t)l2dhdr.dh_version); 4917 (void) printf(" pool_guid: %llu\n", 4918 (u_longlong_t)l2dhdr.dh_spa_guid); 4919 (void) printf(" flags: %llu\n", 4920 (u_longlong_t)l2dhdr.dh_flags); 4921 (void) printf(" start_lbps[0]: %llu\n", 4922 (u_longlong_t) 4923 l2dhdr.dh_start_lbps[0].lbp_daddr); 4924 (void) printf(" start_lbps[1]: %llu\n", 4925 (u_longlong_t) 4926 l2dhdr.dh_start_lbps[1].lbp_daddr); 4927 (void) printf(" log_blk_ent: %llu\n", 4928 (u_longlong_t)l2dhdr.dh_log_entries); 4929 (void) printf(" start: %llu\n", 4930 (u_longlong_t)l2dhdr.dh_start); 4931 (void) printf(" end: %llu\n", 4932 (u_longlong_t)l2dhdr.dh_end); 4933 (void) printf(" evict: %llu\n", 4934 (u_longlong_t)l2dhdr.dh_evict); 4935 (void) printf(" lb_asize_refcount: %llu\n", 4936 (u_longlong_t)l2dhdr.dh_lb_asize); 4937 (void) printf(" lb_count_refcount: %llu\n", 4938 (u_longlong_t)l2dhdr.dh_lb_count); 4939 (void) printf(" trim_action_time: %llu\n", 4940 (u_longlong_t)l2dhdr.dh_trim_action_time); 4941 (void) printf(" trim_state: %llu\n\n", 4942 (u_longlong_t)l2dhdr.dh_trim_state); 4943 } 4944 4945 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4946 /* 4947 * The total aligned size of log blocks and the number of log blocks 4948 * reported in the header of the device may be less than what zdb 4949 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4950 * This happens because dump_l2arc_log_blocks() lacks the memory 4951 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4952 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4953 * and dh_lb_count will be lower to begin with than what exists on the 4954 * device. This is normal and zdb should not exit with an error. The 4955 * opposite case should never happen though, the values reported in the 4956 * header should never be higher than what dump_l2arc_log_blocks() and 4957 * l2arc_rebuild() report. If this happens there is a leak in the 4958 * accounting of log blocks. 4959 */ 4960 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4961 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4962 return (1); 4963 4964 return (0); 4965 } 4966 4967 static void 4968 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4969 { 4970 if (dump_opt['q']) 4971 return; 4972 4973 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4974 return; 4975 4976 print_label_header(label, l); 4977 dump_nvlist(label->config_nv, 4); 4978 print_label_numbers(" labels = ", label->config); 4979 4980 if (dump_opt['l'] >= 2) 4981 dump_nvlist_stats(label->config_nv, buflen); 4982 } 4983 4984 #define ZDB_MAX_UB_HEADER_SIZE 32 4985 4986 static void 4987 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4988 { 4989 4990 vdev_t vd; 4991 char header[ZDB_MAX_UB_HEADER_SIZE]; 4992 4993 vd.vdev_ashift = ashift; 4994 vd.vdev_top = &vd; 4995 4996 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4997 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4998 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4999 cksum_record_t *rec = label->uberblocks[i]; 5000 5001 if (rec == NULL) { 5002 if (dump_opt['u'] >= 2) { 5003 print_label_header(label, label_num); 5004 (void) printf(" Uberblock[%d] invalid\n", i); 5005 } 5006 continue; 5007 } 5008 5009 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 5010 continue; 5011 5012 if ((dump_opt['u'] < 4) && 5013 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 5014 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 5015 continue; 5016 5017 print_label_header(label, label_num); 5018 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 5019 " Uberblock[%d]\n", i); 5020 dump_uberblock(ub, header, ""); 5021 print_label_numbers(" labels = ", rec); 5022 } 5023 } 5024 5025 static char curpath[PATH_MAX]; 5026 5027 /* 5028 * Iterate through the path components, recursively passing 5029 * current one's obj and remaining path until we find the obj 5030 * for the last one. 5031 */ 5032 static int 5033 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 5034 { 5035 int err; 5036 boolean_t header = B_TRUE; 5037 uint64_t child_obj; 5038 char *s; 5039 dmu_buf_t *db; 5040 dmu_object_info_t doi; 5041 5042 if ((s = strchr(name, '/')) != NULL) 5043 *s = '\0'; 5044 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 5045 5046 (void) strlcat(curpath, name, sizeof (curpath)); 5047 5048 if (err != 0) { 5049 (void) fprintf(stderr, "failed to lookup %s: %s\n", 5050 curpath, strerror(err)); 5051 return (err); 5052 } 5053 5054 child_obj = ZFS_DIRENT_OBJ(child_obj); 5055 err = sa_buf_hold(os, child_obj, FTAG, &db); 5056 if (err != 0) { 5057 (void) fprintf(stderr, 5058 "failed to get SA dbuf for obj %llu: %s\n", 5059 (u_longlong_t)child_obj, strerror(err)); 5060 return (EINVAL); 5061 } 5062 dmu_object_info_from_db(db, &doi); 5063 sa_buf_rele(db, FTAG); 5064 5065 if (doi.doi_bonus_type != DMU_OT_SA && 5066 doi.doi_bonus_type != DMU_OT_ZNODE) { 5067 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5068 doi.doi_bonus_type, (u_longlong_t)child_obj); 5069 return (EINVAL); 5070 } 5071 5072 if (dump_opt['v'] > 6) { 5073 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5074 (u_longlong_t)child_obj, curpath, doi.doi_type, 5075 doi.doi_bonus_type); 5076 } 5077 5078 (void) strlcat(curpath, "/", sizeof (curpath)); 5079 5080 switch (doi.doi_type) { 5081 case DMU_OT_DIRECTORY_CONTENTS: 5082 if (s != NULL && *(s + 1) != '\0') 5083 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5084 zfs_fallthrough; 5085 case DMU_OT_PLAIN_FILE_CONTENTS: 5086 if (retobj != NULL) { 5087 *retobj = child_obj; 5088 } else { 5089 dump_object(os, child_obj, dump_opt['v'], &header, 5090 NULL, 0); 5091 } 5092 return (0); 5093 default: 5094 (void) fprintf(stderr, "object %llu has non-file/directory " 5095 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5096 break; 5097 } 5098 5099 return (EINVAL); 5100 } 5101 5102 /* 5103 * Dump the blocks for the object specified by path inside the dataset. 5104 */ 5105 static int 5106 dump_path(char *ds, char *path, uint64_t *retobj) 5107 { 5108 int err; 5109 objset_t *os; 5110 uint64_t root_obj; 5111 5112 err = open_objset(ds, FTAG, &os); 5113 if (err != 0) 5114 return (err); 5115 5116 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5117 if (err != 0) { 5118 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5119 strerror(err)); 5120 close_objset(os, FTAG); 5121 return (EINVAL); 5122 } 5123 5124 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5125 5126 err = dump_path_impl(os, root_obj, path, retobj); 5127 5128 close_objset(os, FTAG); 5129 return (err); 5130 } 5131 5132 static int 5133 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5134 { 5135 const char *p = (const char *)buf; 5136 ssize_t nwritten; 5137 5138 (void) os; 5139 (void) arg; 5140 5141 /* Write the data out, handling short writes and signals. */ 5142 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5143 if (nwritten < 0) { 5144 if (errno == EINTR) 5145 continue; 5146 return (errno); 5147 } 5148 p += nwritten; 5149 len -= nwritten; 5150 } 5151 5152 return (0); 5153 } 5154 5155 static void 5156 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5157 { 5158 boolean_t embed = B_FALSE; 5159 boolean_t large_block = B_FALSE; 5160 boolean_t compress = B_FALSE; 5161 boolean_t raw = B_FALSE; 5162 5163 const char *c; 5164 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5165 switch (*c) { 5166 case 'e': 5167 embed = B_TRUE; 5168 break; 5169 case 'L': 5170 large_block = B_TRUE; 5171 break; 5172 case 'c': 5173 compress = B_TRUE; 5174 break; 5175 case 'w': 5176 raw = B_TRUE; 5177 break; 5178 default: 5179 fprintf(stderr, "dump_backup: invalid flag " 5180 "'%c'\n", *c); 5181 return; 5182 } 5183 } 5184 5185 if (isatty(STDOUT_FILENO)) { 5186 fprintf(stderr, "dump_backup: stream cannot be written " 5187 "to a terminal\n"); 5188 return; 5189 } 5190 5191 offset_t off = 0; 5192 dmu_send_outparams_t out = { 5193 .dso_outfunc = dump_backup_bytes, 5194 .dso_dryrun = B_FALSE, 5195 }; 5196 5197 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5198 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5199 &off, &out); 5200 if (err != 0) { 5201 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5202 strerror(err)); 5203 return; 5204 } 5205 } 5206 5207 static int 5208 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5209 { 5210 int err = 0; 5211 uint64_t size, readsize, oursize, offset; 5212 ssize_t writesize; 5213 sa_handle_t *hdl; 5214 5215 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5216 destfile); 5217 5218 VERIFY3P(os, ==, sa_os); 5219 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5220 (void) printf("Failed to get handle for SA znode\n"); 5221 return (err); 5222 } 5223 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5224 (void) sa_handle_destroy(hdl); 5225 return (err); 5226 } 5227 (void) sa_handle_destroy(hdl); 5228 5229 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5230 size); 5231 if (size == 0) { 5232 return (EINVAL); 5233 } 5234 5235 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5236 if (fd == -1) 5237 return (errno); 5238 /* 5239 * We cap the size at 1 mebibyte here to prevent 5240 * allocation failures and nigh-infinite printing if the 5241 * object is extremely large. 5242 */ 5243 oursize = MIN(size, 1 << 20); 5244 offset = 0; 5245 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5246 if (buf == NULL) { 5247 (void) close(fd); 5248 return (ENOMEM); 5249 } 5250 5251 while (offset < size) { 5252 readsize = MIN(size - offset, 1 << 20); 5253 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5254 if (err != 0) { 5255 (void) printf("got error %u from dmu_read\n", err); 5256 kmem_free(buf, oursize); 5257 (void) close(fd); 5258 return (err); 5259 } 5260 if (dump_opt['v'] > 3) { 5261 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5262 " error=%d\n", offset, readsize, err); 5263 } 5264 5265 writesize = write(fd, buf, readsize); 5266 if (writesize < 0) { 5267 err = errno; 5268 break; 5269 } else if (writesize != readsize) { 5270 /* Incomplete write */ 5271 (void) fprintf(stderr, "Short write, only wrote %llu of" 5272 " %" PRIu64 " bytes, exiting...\n", 5273 (u_longlong_t)writesize, readsize); 5274 break; 5275 } 5276 5277 offset += readsize; 5278 } 5279 5280 (void) close(fd); 5281 5282 if (buf != NULL) 5283 kmem_free(buf, oursize); 5284 5285 return (err); 5286 } 5287 5288 static boolean_t 5289 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5290 { 5291 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5292 zio_cksum_t expected_cksum; 5293 zio_cksum_t actual_cksum; 5294 zio_cksum_t verifier; 5295 zio_eck_t *eck; 5296 int byteswap; 5297 5298 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5299 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5300 5301 offset += offsetof(vdev_label_t, vl_vdev_phys); 5302 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5303 5304 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5305 if (byteswap) 5306 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5307 5308 expected_cksum = eck->zec_cksum; 5309 eck->zec_cksum = verifier; 5310 5311 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5312 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5313 abd_free(abd); 5314 5315 if (byteswap) 5316 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5317 5318 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5319 return (B_TRUE); 5320 5321 return (B_FALSE); 5322 } 5323 5324 static int 5325 dump_label(const char *dev) 5326 { 5327 char path[MAXPATHLEN]; 5328 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5329 uint64_t psize, ashift, l2cache; 5330 struct stat64 statbuf; 5331 boolean_t config_found = B_FALSE; 5332 boolean_t error = B_FALSE; 5333 boolean_t read_l2arc_header = B_FALSE; 5334 avl_tree_t config_tree; 5335 avl_tree_t uberblock_tree; 5336 void *node, *cookie; 5337 int fd; 5338 5339 /* 5340 * Check if we were given absolute path and use it as is. 5341 * Otherwise if the provided vdev name doesn't point to a file, 5342 * try prepending expected disk paths and partition numbers. 5343 */ 5344 (void) strlcpy(path, dev, sizeof (path)); 5345 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5346 int error; 5347 5348 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5349 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5350 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5351 error = ENOENT; 5352 } 5353 5354 if (error || (stat64(path, &statbuf) != 0)) { 5355 (void) printf("failed to find device %s, try " 5356 "specifying absolute path instead\n", dev); 5357 return (1); 5358 } 5359 } 5360 5361 if ((fd = open64(path, O_RDONLY)) < 0) { 5362 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5363 zdb_exit(1); 5364 } 5365 5366 if (fstat64_blk(fd, &statbuf) != 0) { 5367 (void) printf("failed to stat '%s': %s\n", path, 5368 strerror(errno)); 5369 (void) close(fd); 5370 zdb_exit(1); 5371 } 5372 5373 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5374 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5375 strerror(errno)); 5376 5377 avl_create(&config_tree, cksum_record_compare, 5378 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5379 avl_create(&uberblock_tree, cksum_record_compare, 5380 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5381 5382 psize = statbuf.st_size; 5383 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5384 ashift = SPA_MINBLOCKSHIFT; 5385 5386 /* 5387 * 1. Read the label from disk 5388 * 2. Verify label cksum 5389 * 3. Unpack the configuration and insert in config tree. 5390 * 4. Traverse all uberblocks and insert in uberblock tree. 5391 */ 5392 for (int l = 0; l < VDEV_LABELS; l++) { 5393 zdb_label_t *label = &labels[l]; 5394 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5395 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5396 nvlist_t *config; 5397 cksum_record_t *rec; 5398 zio_cksum_t cksum; 5399 vdev_t vd; 5400 5401 label->label_offset = vdev_label_offset(psize, l, 0); 5402 5403 if (pread64(fd, &label->label, sizeof (label->label), 5404 label->label_offset) != sizeof (label->label)) { 5405 if (!dump_opt['q']) 5406 (void) printf("failed to read label %d\n", l); 5407 label->read_failed = B_TRUE; 5408 error = B_TRUE; 5409 continue; 5410 } 5411 5412 label->read_failed = B_FALSE; 5413 label->cksum_valid = label_cksum_valid(&label->label, 5414 label->label_offset); 5415 5416 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5417 nvlist_t *vdev_tree = NULL; 5418 size_t size; 5419 5420 if ((nvlist_lookup_nvlist(config, 5421 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5422 (nvlist_lookup_uint64(vdev_tree, 5423 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5424 ashift = SPA_MINBLOCKSHIFT; 5425 5426 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5427 size = buflen; 5428 5429 /* If the device is a cache device read the header. */ 5430 if (!read_l2arc_header) { 5431 if (nvlist_lookup_uint64(config, 5432 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5433 l2cache == POOL_STATE_L2CACHE) { 5434 read_l2arc_header = B_TRUE; 5435 } 5436 } 5437 5438 fletcher_4_native_varsize(buf, size, &cksum); 5439 rec = cksum_record_insert(&config_tree, &cksum, l); 5440 5441 label->config = rec; 5442 label->config_nv = config; 5443 config_found = B_TRUE; 5444 } else { 5445 error = B_TRUE; 5446 } 5447 5448 vd.vdev_ashift = ashift; 5449 vd.vdev_top = &vd; 5450 5451 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5452 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5453 uberblock_t *ub = (void *)((char *)label + uoff); 5454 5455 if (uberblock_verify(ub)) 5456 continue; 5457 5458 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5459 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5460 5461 label->uberblocks[i] = rec; 5462 } 5463 } 5464 5465 /* 5466 * Dump the label and uberblocks. 5467 */ 5468 for (int l = 0; l < VDEV_LABELS; l++) { 5469 zdb_label_t *label = &labels[l]; 5470 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5471 5472 if (label->read_failed == B_TRUE) 5473 continue; 5474 5475 if (label->config_nv) { 5476 dump_config_from_label(label, buflen, l); 5477 } else { 5478 if (!dump_opt['q']) 5479 (void) printf("failed to unpack label %d\n", l); 5480 } 5481 5482 if (dump_opt['u']) 5483 dump_label_uberblocks(label, ashift, l); 5484 5485 nvlist_free(label->config_nv); 5486 } 5487 5488 /* 5489 * Dump the L2ARC header, if existent. 5490 */ 5491 if (read_l2arc_header) 5492 error |= dump_l2arc_header(fd); 5493 5494 cookie = NULL; 5495 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5496 umem_free(node, sizeof (cksum_record_t)); 5497 5498 cookie = NULL; 5499 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5500 umem_free(node, sizeof (cksum_record_t)); 5501 5502 avl_destroy(&config_tree); 5503 avl_destroy(&uberblock_tree); 5504 5505 (void) close(fd); 5506 5507 return (config_found == B_FALSE ? 2 : 5508 (error == B_TRUE ? 1 : 0)); 5509 } 5510 5511 static uint64_t dataset_feature_count[SPA_FEATURES]; 5512 static uint64_t global_feature_count[SPA_FEATURES]; 5513 static uint64_t remap_deadlist_count = 0; 5514 5515 static int 5516 dump_one_objset(const char *dsname, void *arg) 5517 { 5518 (void) arg; 5519 int error; 5520 objset_t *os; 5521 spa_feature_t f; 5522 5523 error = open_objset(dsname, FTAG, &os); 5524 if (error != 0) 5525 return (0); 5526 5527 for (f = 0; f < SPA_FEATURES; f++) { 5528 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5529 continue; 5530 ASSERT(spa_feature_table[f].fi_flags & 5531 ZFEATURE_FLAG_PER_DATASET); 5532 dataset_feature_count[f]++; 5533 } 5534 5535 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5536 remap_deadlist_count++; 5537 } 5538 5539 for (dsl_bookmark_node_t *dbn = 5540 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5541 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5542 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5543 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5544 global_feature_count[ 5545 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5546 objset_t *mos = os->os_spa->spa_meta_objset; 5547 dnode_t *rl; 5548 VERIFY0(dnode_hold(mos, 5549 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5550 if (rl->dn_have_spill) { 5551 global_feature_count[ 5552 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5553 } 5554 } 5555 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5556 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5557 } 5558 5559 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5560 !dmu_objset_is_snapshot(os)) { 5561 global_feature_count[SPA_FEATURE_LIVELIST]++; 5562 } 5563 5564 dump_objset(os); 5565 close_objset(os, FTAG); 5566 fuid_table_destroy(); 5567 return (0); 5568 } 5569 5570 /* 5571 * Block statistics. 5572 */ 5573 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5574 typedef struct zdb_blkstats { 5575 uint64_t zb_asize; 5576 uint64_t zb_lsize; 5577 uint64_t zb_psize; 5578 uint64_t zb_count; 5579 uint64_t zb_gangs; 5580 uint64_t zb_ditto_samevdev; 5581 uint64_t zb_ditto_same_ms; 5582 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5583 } zdb_blkstats_t; 5584 5585 /* 5586 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5587 */ 5588 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5589 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5590 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5591 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5592 5593 static const char *zdb_ot_extname[] = { 5594 "deferred free", 5595 "dedup ditto", 5596 "other", 5597 "Total", 5598 }; 5599 5600 #define ZB_TOTAL DN_MAX_LEVELS 5601 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5602 5603 typedef struct zdb_brt_entry { 5604 dva_t zbre_dva; 5605 uint64_t zbre_refcount; 5606 avl_node_t zbre_node; 5607 } zdb_brt_entry_t; 5608 5609 typedef struct zdb_cb { 5610 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5611 uint64_t zcb_removing_size; 5612 uint64_t zcb_checkpoint_size; 5613 uint64_t zcb_dedup_asize; 5614 uint64_t zcb_dedup_blocks; 5615 uint64_t zcb_clone_asize; 5616 uint64_t zcb_clone_blocks; 5617 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5618 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5619 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5620 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5621 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5622 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5623 uint64_t zcb_psize_total; 5624 uint64_t zcb_lsize_total; 5625 uint64_t zcb_asize_total; 5626 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5627 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5628 [BPE_PAYLOAD_SIZE + 1]; 5629 uint64_t zcb_start; 5630 hrtime_t zcb_lastprint; 5631 uint64_t zcb_totalasize; 5632 uint64_t zcb_errors[256]; 5633 int zcb_readfails; 5634 int zcb_haderrors; 5635 spa_t *zcb_spa; 5636 uint32_t **zcb_vd_obsolete_counts; 5637 avl_tree_t zcb_brt; 5638 boolean_t zcb_brt_is_active; 5639 } zdb_cb_t; 5640 5641 /* test if two DVA offsets from same vdev are within the same metaslab */ 5642 static boolean_t 5643 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5644 { 5645 vdev_t *vd = vdev_lookup_top(spa, vdev); 5646 uint64_t ms_shift = vd->vdev_ms_shift; 5647 5648 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5649 } 5650 5651 /* 5652 * Used to simplify reporting of the histogram data. 5653 */ 5654 typedef struct one_histo { 5655 const char *name; 5656 uint64_t *count; 5657 uint64_t *len; 5658 uint64_t cumulative; 5659 } one_histo_t; 5660 5661 /* 5662 * The number of separate histograms processed for psize, lsize and asize. 5663 */ 5664 #define NUM_HISTO 3 5665 5666 /* 5667 * This routine will create a fixed column size output of three different 5668 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5669 * the count, length and cumulative length of the psize, lsize and 5670 * asize blocks. 5671 * 5672 * All three types of blocks are listed on a single line 5673 * 5674 * By default the table is printed in nicenumber format (e.g. 123K) but 5675 * if the '-P' parameter is specified then the full raw number (parseable) 5676 * is printed out. 5677 */ 5678 static void 5679 dump_size_histograms(zdb_cb_t *zcb) 5680 { 5681 /* 5682 * A temporary buffer that allows us to convert a number into 5683 * a string using zdb_nicenumber to allow either raw or human 5684 * readable numbers to be output. 5685 */ 5686 char numbuf[32]; 5687 5688 /* 5689 * Define titles which are used in the headers of the tables 5690 * printed by this routine. 5691 */ 5692 const char blocksize_title1[] = "block"; 5693 const char blocksize_title2[] = "size"; 5694 const char count_title[] = "Count"; 5695 const char length_title[] = "Size"; 5696 const char cumulative_title[] = "Cum."; 5697 5698 /* 5699 * Setup the histogram arrays (psize, lsize, and asize). 5700 */ 5701 one_histo_t parm_histo[NUM_HISTO]; 5702 5703 parm_histo[0].name = "psize"; 5704 parm_histo[0].count = zcb->zcb_psize_count; 5705 parm_histo[0].len = zcb->zcb_psize_len; 5706 parm_histo[0].cumulative = 0; 5707 5708 parm_histo[1].name = "lsize"; 5709 parm_histo[1].count = zcb->zcb_lsize_count; 5710 parm_histo[1].len = zcb->zcb_lsize_len; 5711 parm_histo[1].cumulative = 0; 5712 5713 parm_histo[2].name = "asize"; 5714 parm_histo[2].count = zcb->zcb_asize_count; 5715 parm_histo[2].len = zcb->zcb_asize_len; 5716 parm_histo[2].cumulative = 0; 5717 5718 5719 (void) printf("\nBlock Size Histogram\n"); 5720 /* 5721 * Print the first line titles 5722 */ 5723 if (dump_opt['P']) 5724 (void) printf("\n%s\t", blocksize_title1); 5725 else 5726 (void) printf("\n%7s ", blocksize_title1); 5727 5728 for (int j = 0; j < NUM_HISTO; j++) { 5729 if (dump_opt['P']) { 5730 if (j < NUM_HISTO - 1) { 5731 (void) printf("%s\t\t\t", parm_histo[j].name); 5732 } else { 5733 /* Don't print trailing spaces */ 5734 (void) printf(" %s", parm_histo[j].name); 5735 } 5736 } else { 5737 if (j < NUM_HISTO - 1) { 5738 /* Left aligned strings in the output */ 5739 (void) printf("%-7s ", 5740 parm_histo[j].name); 5741 } else { 5742 /* Don't print trailing spaces */ 5743 (void) printf("%s", parm_histo[j].name); 5744 } 5745 } 5746 } 5747 (void) printf("\n"); 5748 5749 /* 5750 * Print the second line titles 5751 */ 5752 if (dump_opt['P']) { 5753 (void) printf("%s\t", blocksize_title2); 5754 } else { 5755 (void) printf("%7s ", blocksize_title2); 5756 } 5757 5758 for (int i = 0; i < NUM_HISTO; i++) { 5759 if (dump_opt['P']) { 5760 (void) printf("%s\t%s\t%s\t", 5761 count_title, length_title, cumulative_title); 5762 } else { 5763 (void) printf("%7s%7s%7s", 5764 count_title, length_title, cumulative_title); 5765 } 5766 } 5767 (void) printf("\n"); 5768 5769 /* 5770 * Print the rows 5771 */ 5772 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5773 5774 /* 5775 * Print the first column showing the blocksize 5776 */ 5777 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5778 5779 if (dump_opt['P']) { 5780 printf("%s", numbuf); 5781 } else { 5782 printf("%7s:", numbuf); 5783 } 5784 5785 /* 5786 * Print the remaining set of 3 columns per size: 5787 * for psize, lsize and asize 5788 */ 5789 for (int j = 0; j < NUM_HISTO; j++) { 5790 parm_histo[j].cumulative += parm_histo[j].len[i]; 5791 5792 zdb_nicenum(parm_histo[j].count[i], 5793 numbuf, sizeof (numbuf)); 5794 if (dump_opt['P']) 5795 (void) printf("\t%s", numbuf); 5796 else 5797 (void) printf("%7s", numbuf); 5798 5799 zdb_nicenum(parm_histo[j].len[i], 5800 numbuf, sizeof (numbuf)); 5801 if (dump_opt['P']) 5802 (void) printf("\t%s", numbuf); 5803 else 5804 (void) printf("%7s", numbuf); 5805 5806 zdb_nicenum(parm_histo[j].cumulative, 5807 numbuf, sizeof (numbuf)); 5808 if (dump_opt['P']) 5809 (void) printf("\t%s", numbuf); 5810 else 5811 (void) printf("%7s", numbuf); 5812 } 5813 (void) printf("\n"); 5814 } 5815 } 5816 5817 static void 5818 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5819 dmu_object_type_t type) 5820 { 5821 int i; 5822 5823 ASSERT(type < ZDB_OT_TOTAL); 5824 5825 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5826 return; 5827 5828 /* 5829 * This flag controls if we will issue a claim for the block while 5830 * counting it, to ensure that all blocks are referenced in space maps. 5831 * We don't issue claims if we're not doing leak tracking, because it's 5832 * expensive if the user isn't interested. We also don't claim the 5833 * second or later occurences of cloned or dedup'd blocks, because we 5834 * already claimed them the first time. 5835 */ 5836 boolean_t do_claim = !dump_opt['L']; 5837 5838 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5839 5840 blkptr_t tempbp; 5841 if (BP_GET_DEDUP(bp)) { 5842 /* 5843 * Dedup'd blocks are special. We need to count them, so we can 5844 * later uncount them when reporting leaked space, and we must 5845 * only claim them once. 5846 * 5847 * We use the existing dedup system to track what we've seen. 5848 * The first time we see a block, we do a ddt_lookup() to see 5849 * if it exists in the DDT. If we're doing leak tracking, we 5850 * claim the block at this time. 5851 * 5852 * Each time we see a block, we reduce the refcount in the 5853 * entry by one, and add to the size and count of dedup'd 5854 * blocks to report at the end. 5855 */ 5856 5857 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5858 5859 ddt_enter(ddt); 5860 5861 /* 5862 * Find the block. This will create the entry in memory, but 5863 * we'll know if that happened by its refcount. 5864 */ 5865 ddt_entry_t *dde = ddt_lookup(ddt, bp); 5866 5867 /* 5868 * ddt_lookup() can return NULL if this block didn't exist 5869 * in the DDT and creating it would take the DDT over its 5870 * quota. Since we got the block from disk, it must exist in 5871 * the DDT, so this can't happen. However, when unique entries 5872 * are pruned, the dedup bit can be set with no corresponding 5873 * entry in the DDT. 5874 */ 5875 if (dde == NULL) { 5876 ddt_exit(ddt); 5877 goto skipped; 5878 } 5879 5880 /* Get the phys for this variant */ 5881 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5882 5883 /* 5884 * This entry may have multiple sets of DVAs. We must claim 5885 * each set the first time we see them in a real block on disk, 5886 * or count them on subsequent occurences. We don't have a 5887 * convenient way to track the first time we see each variant, 5888 * so we repurpose dde_io as a set of "seen" flag bits. We can 5889 * do this safely in zdb because it never writes, so it will 5890 * never have a writing zio for this block in that pointer. 5891 */ 5892 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5893 if (!seen) 5894 dde->dde_io = 5895 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5896 5897 /* Consume a reference for this block. */ 5898 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5899 ddt_phys_decref(dde->dde_phys, v); 5900 5901 /* 5902 * If this entry has a single flat phys, it may have been 5903 * extended with additional DVAs at some time in its life. 5904 * This block might be from before it was fully extended, and 5905 * so have fewer DVAs. 5906 * 5907 * If this is the first time we've seen this block, and we 5908 * claimed it as-is, then we would miss the claim on some 5909 * number of DVAs, which would then be seen as leaked. 5910 * 5911 * In all cases, if we've had fewer DVAs, then the asize would 5912 * be too small, and would lead to the pool apparently using 5913 * more space than allocated. 5914 * 5915 * To handle this, we copy the canonical set of DVAs from the 5916 * entry back to the block pointer before we claim it. 5917 */ 5918 if (v == DDT_PHYS_FLAT) { 5919 ASSERT3U(BP_GET_BIRTH(bp), ==, 5920 ddt_phys_birth(dde->dde_phys, v)); 5921 tempbp = *bp; 5922 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5923 BP_GET_BIRTH(bp)); 5924 bp = &tempbp; 5925 } 5926 5927 if (seen) { 5928 /* 5929 * The second or later time we see this block, 5930 * it's a duplicate and we count it. 5931 */ 5932 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5933 zcb->zcb_dedup_blocks++; 5934 5935 /* Already claimed, don't do it again. */ 5936 do_claim = B_FALSE; 5937 } 5938 5939 ddt_exit(ddt); 5940 } else if (zcb->zcb_brt_is_active && 5941 brt_maybe_exists(zcb->zcb_spa, bp)) { 5942 /* 5943 * Cloned blocks are special. We need to count them, so we can 5944 * later uncount them when reporting leaked space, and we must 5945 * only claim them once. 5946 * 5947 * To do this, we keep our own in-memory BRT. For each block 5948 * we haven't seen before, we look it up in the real BRT and 5949 * if its there, we note it and its refcount then proceed as 5950 * normal. If we see the block again, we count it as a clone 5951 * and then give it no further consideration. 5952 */ 5953 zdb_brt_entry_t zbre_search, *zbre; 5954 avl_index_t where; 5955 5956 zbre_search.zbre_dva = bp->blk_dva[0]; 5957 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5958 if (zbre == NULL) { 5959 /* Not seen before; track it */ 5960 uint64_t refcnt = 5961 brt_entry_get_refcount(zcb->zcb_spa, bp); 5962 if (refcnt > 0) { 5963 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5964 UMEM_NOFAIL); 5965 zbre->zbre_dva = bp->blk_dva[0]; 5966 zbre->zbre_refcount = refcnt; 5967 avl_insert(&zcb->zcb_brt, zbre, where); 5968 } 5969 } else { 5970 /* 5971 * Second or later occurrence, count it and take a 5972 * refcount. 5973 */ 5974 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5975 zcb->zcb_clone_blocks++; 5976 5977 zbre->zbre_refcount--; 5978 if (zbre->zbre_refcount == 0) { 5979 avl_remove(&zcb->zcb_brt, zbre); 5980 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5981 } 5982 5983 /* Already claimed, don't do it again. */ 5984 do_claim = B_FALSE; 5985 } 5986 } 5987 5988 skipped: 5989 for (i = 0; i < 4; i++) { 5990 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5991 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5992 int equal; 5993 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5994 5995 zb->zb_asize += BP_GET_ASIZE(bp); 5996 zb->zb_lsize += BP_GET_LSIZE(bp); 5997 zb->zb_psize += BP_GET_PSIZE(bp); 5998 zb->zb_count++; 5999 6000 /* 6001 * The histogram is only big enough to record blocks up to 6002 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 6003 * "other", bucket. 6004 */ 6005 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 6006 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 6007 zb->zb_psize_histogram[idx]++; 6008 6009 zb->zb_gangs += BP_COUNT_GANG(bp); 6010 6011 switch (BP_GET_NDVAS(bp)) { 6012 case 2: 6013 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6014 DVA_GET_VDEV(&bp->blk_dva[1])) { 6015 zb->zb_ditto_samevdev++; 6016 6017 if (same_metaslab(zcb->zcb_spa, 6018 DVA_GET_VDEV(&bp->blk_dva[0]), 6019 DVA_GET_OFFSET(&bp->blk_dva[0]), 6020 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6021 zb->zb_ditto_same_ms++; 6022 } 6023 break; 6024 case 3: 6025 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 6026 DVA_GET_VDEV(&bp->blk_dva[1])) + 6027 (DVA_GET_VDEV(&bp->blk_dva[0]) == 6028 DVA_GET_VDEV(&bp->blk_dva[2])) + 6029 (DVA_GET_VDEV(&bp->blk_dva[1]) == 6030 DVA_GET_VDEV(&bp->blk_dva[2])); 6031 if (equal != 0) { 6032 zb->zb_ditto_samevdev++; 6033 6034 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6035 DVA_GET_VDEV(&bp->blk_dva[1]) && 6036 same_metaslab(zcb->zcb_spa, 6037 DVA_GET_VDEV(&bp->blk_dva[0]), 6038 DVA_GET_OFFSET(&bp->blk_dva[0]), 6039 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6040 zb->zb_ditto_same_ms++; 6041 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6042 DVA_GET_VDEV(&bp->blk_dva[2]) && 6043 same_metaslab(zcb->zcb_spa, 6044 DVA_GET_VDEV(&bp->blk_dva[0]), 6045 DVA_GET_OFFSET(&bp->blk_dva[0]), 6046 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6047 zb->zb_ditto_same_ms++; 6048 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 6049 DVA_GET_VDEV(&bp->blk_dva[2]) && 6050 same_metaslab(zcb->zcb_spa, 6051 DVA_GET_VDEV(&bp->blk_dva[1]), 6052 DVA_GET_OFFSET(&bp->blk_dva[1]), 6053 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6054 zb->zb_ditto_same_ms++; 6055 } 6056 break; 6057 } 6058 } 6059 6060 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 6061 6062 if (BP_IS_EMBEDDED(bp)) { 6063 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6064 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6065 [BPE_GET_PSIZE(bp)]++; 6066 return; 6067 } 6068 /* 6069 * The binning histogram bins by powers of two up to 6070 * SPA_MAXBLOCKSIZE rather than creating bins for 6071 * every possible blocksize found in the pool. 6072 */ 6073 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6074 6075 zcb->zcb_psize_count[bin]++; 6076 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6077 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6078 6079 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6080 6081 zcb->zcb_lsize_count[bin]++; 6082 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6083 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6084 6085 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6086 6087 zcb->zcb_asize_count[bin]++; 6088 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6089 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6090 6091 if (!do_claim) 6092 return; 6093 6094 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6095 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6096 ZIO_FLAG_CANFAIL))); 6097 } 6098 6099 static void 6100 zdb_blkptr_done(zio_t *zio) 6101 { 6102 spa_t *spa = zio->io_spa; 6103 blkptr_t *bp = zio->io_bp; 6104 int ioerr = zio->io_error; 6105 zdb_cb_t *zcb = zio->io_private; 6106 zbookmark_phys_t *zb = &zio->io_bookmark; 6107 6108 mutex_enter(&spa->spa_scrub_lock); 6109 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6110 cv_broadcast(&spa->spa_scrub_io_cv); 6111 6112 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6113 char blkbuf[BP_SPRINTF_LEN]; 6114 6115 zcb->zcb_haderrors = 1; 6116 zcb->zcb_errors[ioerr]++; 6117 6118 if (dump_opt['b'] >= 2) 6119 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6120 else 6121 blkbuf[0] = '\0'; 6122 6123 (void) printf("zdb_blkptr_cb: " 6124 "Got error %d reading " 6125 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6126 ioerr, 6127 (u_longlong_t)zb->zb_objset, 6128 (u_longlong_t)zb->zb_object, 6129 (u_longlong_t)zb->zb_level, 6130 (u_longlong_t)zb->zb_blkid, 6131 blkbuf); 6132 } 6133 mutex_exit(&spa->spa_scrub_lock); 6134 6135 abd_free(zio->io_abd); 6136 } 6137 6138 static int 6139 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6140 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6141 { 6142 zdb_cb_t *zcb = arg; 6143 dmu_object_type_t type; 6144 boolean_t is_metadata; 6145 6146 if (zb->zb_level == ZB_DNODE_LEVEL) 6147 return (0); 6148 6149 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6150 char blkbuf[BP_SPRINTF_LEN]; 6151 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6152 (void) printf("objset %llu object %llu " 6153 "level %lld offset 0x%llx %s\n", 6154 (u_longlong_t)zb->zb_objset, 6155 (u_longlong_t)zb->zb_object, 6156 (longlong_t)zb->zb_level, 6157 (u_longlong_t)blkid2offset(dnp, bp, zb), 6158 blkbuf); 6159 } 6160 6161 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6162 return (0); 6163 6164 type = BP_GET_TYPE(bp); 6165 6166 zdb_count_block(zcb, zilog, bp, 6167 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6168 6169 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6170 6171 if (!BP_IS_EMBEDDED(bp) && 6172 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6173 size_t size = BP_GET_PSIZE(bp); 6174 abd_t *abd = abd_alloc(size, B_FALSE); 6175 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6176 6177 /* If it's an intent log block, failure is expected. */ 6178 if (zb->zb_level == ZB_ZIL_LEVEL) 6179 flags |= ZIO_FLAG_SPECULATIVE; 6180 6181 mutex_enter(&spa->spa_scrub_lock); 6182 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6183 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6184 spa->spa_load_verify_bytes += size; 6185 mutex_exit(&spa->spa_scrub_lock); 6186 6187 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6188 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6189 } 6190 6191 zcb->zcb_readfails = 0; 6192 6193 /* only call gethrtime() every 100 blocks */ 6194 static int iters; 6195 if (++iters > 100) 6196 iters = 0; 6197 else 6198 return (0); 6199 6200 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6201 uint64_t now = gethrtime(); 6202 char buf[10]; 6203 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6204 uint64_t kb_per_sec = 6205 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6206 uint64_t sec_remaining = 6207 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6208 6209 /* make sure nicenum has enough space */ 6210 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6211 6212 zfs_nicebytes(bytes, buf, sizeof (buf)); 6213 (void) fprintf(stderr, 6214 "\r%5s completed (%4"PRIu64"MB/s) " 6215 "estimated time remaining: " 6216 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6217 buf, kb_per_sec / 1024, 6218 sec_remaining / 60 / 60, 6219 sec_remaining / 60 % 60, 6220 sec_remaining % 60); 6221 6222 zcb->zcb_lastprint = now; 6223 } 6224 6225 return (0); 6226 } 6227 6228 static void 6229 zdb_leak(void *arg, uint64_t start, uint64_t size) 6230 { 6231 vdev_t *vd = arg; 6232 6233 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6234 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6235 } 6236 6237 static metaslab_ops_t zdb_metaslab_ops = { 6238 NULL /* alloc */ 6239 }; 6240 6241 static int 6242 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6243 uint64_t txg, void *arg) 6244 { 6245 spa_vdev_removal_t *svr = arg; 6246 6247 uint64_t offset = sme->sme_offset; 6248 uint64_t size = sme->sme_run; 6249 6250 /* skip vdevs we don't care about */ 6251 if (sme->sme_vdev != svr->svr_vdev_id) 6252 return (0); 6253 6254 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6255 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6256 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6257 6258 if (txg < metaslab_unflushed_txg(ms)) 6259 return (0); 6260 6261 if (sme->sme_type == SM_ALLOC) 6262 zfs_range_tree_add(svr->svr_allocd_segs, offset, size); 6263 else 6264 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size); 6265 6266 return (0); 6267 } 6268 6269 static void 6270 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6271 uint64_t size, void *arg) 6272 { 6273 (void) inner_offset, (void) arg; 6274 6275 /* 6276 * This callback was called through a remap from 6277 * a device being removed. Therefore, the vdev that 6278 * this callback is applied to is a concrete 6279 * vdev. 6280 */ 6281 ASSERT(vdev_is_concrete(vd)); 6282 6283 VERIFY0(metaslab_claim_impl(vd, offset, size, 6284 spa_min_claim_txg(vd->vdev_spa))); 6285 } 6286 6287 static void 6288 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6289 { 6290 vdev_t *vd = arg; 6291 6292 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6293 claim_segment_impl_cb, NULL); 6294 } 6295 6296 /* 6297 * After accounting for all allocated blocks that are directly referenced, 6298 * we might have missed a reference to a block from a partially complete 6299 * (and thus unused) indirect mapping object. We perform a secondary pass 6300 * through the metaslabs we have already mapped and claim the destination 6301 * blocks. 6302 */ 6303 static void 6304 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6305 { 6306 if (dump_opt['L']) 6307 return; 6308 6309 if (spa->spa_vdev_removal == NULL) 6310 return; 6311 6312 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6313 6314 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6315 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6316 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6317 6318 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 6319 6320 zfs_range_tree_t *allocs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 6321 NULL, 0, 0); 6322 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6323 metaslab_t *msp = vd->vdev_ms[msi]; 6324 6325 ASSERT0(zfs_range_tree_space(allocs)); 6326 if (msp->ms_sm != NULL) 6327 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6328 zfs_range_tree_vacate(allocs, zfs_range_tree_add, 6329 svr->svr_allocd_segs); 6330 } 6331 zfs_range_tree_destroy(allocs); 6332 6333 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6334 6335 /* 6336 * Clear everything past what has been synced, 6337 * because we have not allocated mappings for 6338 * it yet. 6339 */ 6340 zfs_range_tree_clear(svr->svr_allocd_segs, 6341 vdev_indirect_mapping_max_offset(vim), 6342 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6343 6344 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs); 6345 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6346 6347 spa_config_exit(spa, SCL_CONFIG, FTAG); 6348 } 6349 6350 static int 6351 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6352 dmu_tx_t *tx) 6353 { 6354 (void) tx; 6355 zdb_cb_t *zcb = arg; 6356 spa_t *spa = zcb->zcb_spa; 6357 vdev_t *vd; 6358 const dva_t *dva = &bp->blk_dva[0]; 6359 6360 ASSERT(!bp_freed); 6361 ASSERT(!dump_opt['L']); 6362 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6363 6364 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6365 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6366 ASSERT3P(vd, !=, NULL); 6367 spa_config_exit(spa, SCL_VDEV, FTAG); 6368 6369 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6370 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6371 6372 vdev_indirect_mapping_increment_obsolete_count( 6373 vd->vdev_indirect_mapping, 6374 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6375 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6376 6377 return (0); 6378 } 6379 6380 static uint32_t * 6381 zdb_load_obsolete_counts(vdev_t *vd) 6382 { 6383 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6384 spa_t *spa = vd->vdev_spa; 6385 spa_condensing_indirect_phys_t *scip = 6386 &spa->spa_condensing_indirect_phys; 6387 uint64_t obsolete_sm_object; 6388 uint32_t *counts; 6389 6390 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6391 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6392 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6393 if (vd->vdev_obsolete_sm != NULL) { 6394 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6395 vd->vdev_obsolete_sm); 6396 } 6397 if (scip->scip_vdev == vd->vdev_id && 6398 scip->scip_prev_obsolete_sm_object != 0) { 6399 space_map_t *prev_obsolete_sm = NULL; 6400 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6401 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6402 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6403 prev_obsolete_sm); 6404 space_map_close(prev_obsolete_sm); 6405 } 6406 return (counts); 6407 } 6408 6409 typedef struct checkpoint_sm_exclude_entry_arg { 6410 vdev_t *cseea_vd; 6411 uint64_t cseea_checkpoint_size; 6412 } checkpoint_sm_exclude_entry_arg_t; 6413 6414 static int 6415 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6416 { 6417 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6418 vdev_t *vd = cseea->cseea_vd; 6419 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6420 uint64_t end = sme->sme_offset + sme->sme_run; 6421 6422 ASSERT(sme->sme_type == SM_FREE); 6423 6424 /* 6425 * Since the vdev_checkpoint_sm exists in the vdev level 6426 * and the ms_sm space maps exist in the metaslab level, 6427 * an entry in the checkpoint space map could theoretically 6428 * cross the boundaries of the metaslab that it belongs. 6429 * 6430 * In reality, because of the way that we populate and 6431 * manipulate the checkpoint's space maps currently, 6432 * there shouldn't be any entries that cross metaslabs. 6433 * Hence the assertion below. 6434 * 6435 * That said, there is no fundamental requirement that 6436 * the checkpoint's space map entries should not cross 6437 * metaslab boundaries. So if needed we could add code 6438 * that handles metaslab-crossing segments in the future. 6439 */ 6440 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6441 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6442 6443 /* 6444 * By removing the entry from the allocated segments we 6445 * also verify that the entry is there to begin with. 6446 */ 6447 mutex_enter(&ms->ms_lock); 6448 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset, 6449 sme->sme_run); 6450 mutex_exit(&ms->ms_lock); 6451 6452 cseea->cseea_checkpoint_size += sme->sme_run; 6453 return (0); 6454 } 6455 6456 static void 6457 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6458 { 6459 spa_t *spa = vd->vdev_spa; 6460 space_map_t *checkpoint_sm = NULL; 6461 uint64_t checkpoint_sm_obj; 6462 6463 /* 6464 * If there is no vdev_top_zap, we are in a pool whose 6465 * version predates the pool checkpoint feature. 6466 */ 6467 if (vd->vdev_top_zap == 0) 6468 return; 6469 6470 /* 6471 * If there is no reference of the vdev_checkpoint_sm in 6472 * the vdev_top_zap, then one of the following scenarios 6473 * is true: 6474 * 6475 * 1] There is no checkpoint 6476 * 2] There is a checkpoint, but no checkpointed blocks 6477 * have been freed yet 6478 * 3] The current vdev is indirect 6479 * 6480 * In these cases we return immediately. 6481 */ 6482 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6483 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6484 return; 6485 6486 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6487 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6488 &checkpoint_sm_obj)); 6489 6490 checkpoint_sm_exclude_entry_arg_t cseea; 6491 cseea.cseea_vd = vd; 6492 cseea.cseea_checkpoint_size = 0; 6493 6494 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6495 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6496 6497 VERIFY0(space_map_iterate(checkpoint_sm, 6498 space_map_length(checkpoint_sm), 6499 checkpoint_sm_exclude_entry_cb, &cseea)); 6500 space_map_close(checkpoint_sm); 6501 6502 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6503 } 6504 6505 static void 6506 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6507 { 6508 ASSERT(!dump_opt['L']); 6509 6510 vdev_t *rvd = spa->spa_root_vdev; 6511 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6512 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6513 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6514 } 6515 } 6516 6517 static int 6518 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6519 uint64_t txg, void *arg) 6520 { 6521 int64_t *ualloc_space = arg; 6522 6523 uint64_t offset = sme->sme_offset; 6524 uint64_t vdev_id = sme->sme_vdev; 6525 6526 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6527 if (!vdev_is_concrete(vd)) 6528 return (0); 6529 6530 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6531 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6532 6533 if (txg < metaslab_unflushed_txg(ms)) 6534 return (0); 6535 6536 if (sme->sme_type == SM_ALLOC) 6537 *ualloc_space += sme->sme_run; 6538 else 6539 *ualloc_space -= sme->sme_run; 6540 6541 return (0); 6542 } 6543 6544 static int64_t 6545 get_unflushed_alloc_space(spa_t *spa) 6546 { 6547 if (dump_opt['L']) 6548 return (0); 6549 6550 int64_t ualloc_space = 0; 6551 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6552 &ualloc_space); 6553 return (ualloc_space); 6554 } 6555 6556 static int 6557 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6558 { 6559 maptype_t *uic_maptype = arg; 6560 6561 uint64_t offset = sme->sme_offset; 6562 uint64_t size = sme->sme_run; 6563 uint64_t vdev_id = sme->sme_vdev; 6564 6565 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6566 6567 /* skip indirect vdevs */ 6568 if (!vdev_is_concrete(vd)) 6569 return (0); 6570 6571 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6572 6573 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6574 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6575 6576 if (txg < metaslab_unflushed_txg(ms)) 6577 return (0); 6578 6579 if (*uic_maptype == sme->sme_type) 6580 zfs_range_tree_add(ms->ms_allocatable, offset, size); 6581 else 6582 zfs_range_tree_remove(ms->ms_allocatable, offset, size); 6583 6584 return (0); 6585 } 6586 6587 static void 6588 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6589 { 6590 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6591 } 6592 6593 static void 6594 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6595 { 6596 vdev_t *rvd = spa->spa_root_vdev; 6597 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6598 vdev_t *vd = rvd->vdev_child[i]; 6599 6600 ASSERT3U(i, ==, vd->vdev_id); 6601 6602 if (vd->vdev_ops == &vdev_indirect_ops) 6603 continue; 6604 6605 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6606 metaslab_t *msp = vd->vdev_ms[m]; 6607 6608 (void) fprintf(stderr, 6609 "\rloading concrete vdev %llu, " 6610 "metaslab %llu of %llu ...", 6611 (longlong_t)vd->vdev_id, 6612 (longlong_t)msp->ms_id, 6613 (longlong_t)vd->vdev_ms_count); 6614 6615 mutex_enter(&msp->ms_lock); 6616 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6617 6618 /* 6619 * We don't want to spend the CPU manipulating the 6620 * size-ordered tree, so clear the range_tree ops. 6621 */ 6622 msp->ms_allocatable->rt_ops = NULL; 6623 6624 if (msp->ms_sm != NULL) { 6625 VERIFY0(space_map_load(msp->ms_sm, 6626 msp->ms_allocatable, maptype)); 6627 } 6628 if (!msp->ms_loaded) 6629 msp->ms_loaded = B_TRUE; 6630 mutex_exit(&msp->ms_lock); 6631 } 6632 } 6633 6634 load_unflushed_to_ms_allocatables(spa, maptype); 6635 } 6636 6637 /* 6638 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6639 * index in vim_entries that has the first entry in this metaslab. 6640 * On return, it will be set to the first entry after this metaslab. 6641 */ 6642 static void 6643 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6644 uint64_t *vim_idxp) 6645 { 6646 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6647 6648 mutex_enter(&msp->ms_lock); 6649 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6650 6651 /* 6652 * We don't want to spend the CPU manipulating the 6653 * size-ordered tree, so clear the range_tree ops. 6654 */ 6655 msp->ms_allocatable->rt_ops = NULL; 6656 6657 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6658 (*vim_idxp)++) { 6659 vdev_indirect_mapping_entry_phys_t *vimep = 6660 &vim->vim_entries[*vim_idxp]; 6661 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6662 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6663 ASSERT3U(ent_offset, >=, msp->ms_start); 6664 if (ent_offset >= msp->ms_start + msp->ms_size) 6665 break; 6666 6667 /* 6668 * Mappings do not cross metaslab boundaries, 6669 * because we create them by walking the metaslabs. 6670 */ 6671 ASSERT3U(ent_offset + ent_len, <=, 6672 msp->ms_start + msp->ms_size); 6673 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6674 } 6675 6676 if (!msp->ms_loaded) 6677 msp->ms_loaded = B_TRUE; 6678 mutex_exit(&msp->ms_lock); 6679 } 6680 6681 static void 6682 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6683 { 6684 ASSERT(!dump_opt['L']); 6685 6686 vdev_t *rvd = spa->spa_root_vdev; 6687 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6688 vdev_t *vd = rvd->vdev_child[c]; 6689 6690 ASSERT3U(c, ==, vd->vdev_id); 6691 6692 if (vd->vdev_ops != &vdev_indirect_ops) 6693 continue; 6694 6695 /* 6696 * Note: we don't check for mapping leaks on 6697 * removing vdevs because their ms_allocatable's 6698 * are used to look for leaks in allocated space. 6699 */ 6700 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6701 6702 /* 6703 * Normally, indirect vdevs don't have any 6704 * metaslabs. We want to set them up for 6705 * zio_claim(). 6706 */ 6707 vdev_metaslab_group_create(vd); 6708 VERIFY0(vdev_metaslab_init(vd, 0)); 6709 6710 vdev_indirect_mapping_t *vim __maybe_unused = 6711 vd->vdev_indirect_mapping; 6712 uint64_t vim_idx = 0; 6713 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6714 6715 (void) fprintf(stderr, 6716 "\rloading indirect vdev %llu, " 6717 "metaslab %llu of %llu ...", 6718 (longlong_t)vd->vdev_id, 6719 (longlong_t)vd->vdev_ms[m]->ms_id, 6720 (longlong_t)vd->vdev_ms_count); 6721 6722 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6723 &vim_idx); 6724 } 6725 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6726 } 6727 } 6728 6729 static void 6730 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6731 { 6732 zcb->zcb_spa = spa; 6733 6734 if (dump_opt['L']) 6735 return; 6736 6737 dsl_pool_t *dp = spa->spa_dsl_pool; 6738 vdev_t *rvd = spa->spa_root_vdev; 6739 6740 /* 6741 * We are going to be changing the meaning of the metaslab's 6742 * ms_allocatable. Ensure that the allocator doesn't try to 6743 * use the tree. 6744 */ 6745 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6746 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6747 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6748 6749 zcb->zcb_vd_obsolete_counts = 6750 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6751 UMEM_NOFAIL); 6752 6753 /* 6754 * For leak detection, we overload the ms_allocatable trees 6755 * to contain allocated segments instead of free segments. 6756 * As a result, we can't use the normal metaslab_load/unload 6757 * interfaces. 6758 */ 6759 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6760 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6761 6762 /* 6763 * On load_concrete_ms_allocatable_trees() we loaded all the 6764 * allocated entries from the ms_sm to the ms_allocatable for 6765 * each metaslab. If the pool has a checkpoint or is in the 6766 * middle of discarding a checkpoint, some of these blocks 6767 * may have been freed but their ms_sm may not have been 6768 * updated because they are referenced by the checkpoint. In 6769 * order to avoid false-positives during leak-detection, we 6770 * go through the vdev's checkpoint space map and exclude all 6771 * its entries from their relevant ms_allocatable. 6772 * 6773 * We also aggregate the space held by the checkpoint and add 6774 * it to zcb_checkpoint_size. 6775 * 6776 * Note that at this point we are also verifying that all the 6777 * entries on the checkpoint_sm are marked as allocated in 6778 * the ms_sm of their relevant metaslab. 6779 * [see comment in checkpoint_sm_exclude_entry_cb()] 6780 */ 6781 zdb_leak_init_exclude_checkpoint(spa, zcb); 6782 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6783 6784 /* for cleaner progress output */ 6785 (void) fprintf(stderr, "\n"); 6786 6787 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6788 ASSERT(spa_feature_is_enabled(spa, 6789 SPA_FEATURE_DEVICE_REMOVAL)); 6790 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6791 increment_indirect_mapping_cb, zcb, NULL); 6792 } 6793 } 6794 6795 static boolean_t 6796 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6797 { 6798 boolean_t leaks = B_FALSE; 6799 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6800 uint64_t total_leaked = 0; 6801 boolean_t are_precise = B_FALSE; 6802 6803 ASSERT(vim != NULL); 6804 6805 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6806 vdev_indirect_mapping_entry_phys_t *vimep = 6807 &vim->vim_entries[i]; 6808 uint64_t obsolete_bytes = 0; 6809 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6810 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6811 6812 /* 6813 * This is not very efficient but it's easy to 6814 * verify correctness. 6815 */ 6816 for (uint64_t inner_offset = 0; 6817 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6818 inner_offset += 1ULL << vd->vdev_ashift) { 6819 if (zfs_range_tree_contains(msp->ms_allocatable, 6820 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6821 obsolete_bytes += 1ULL << vd->vdev_ashift; 6822 } 6823 } 6824 6825 int64_t bytes_leaked = obsolete_bytes - 6826 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6827 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6828 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6829 6830 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6831 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6832 (void) printf("obsolete indirect mapping count " 6833 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6834 (u_longlong_t)vd->vdev_id, 6835 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6836 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6837 (u_longlong_t)bytes_leaked); 6838 } 6839 total_leaked += ABS(bytes_leaked); 6840 } 6841 6842 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6843 if (!are_precise && total_leaked > 0) { 6844 int pct_leaked = total_leaked * 100 / 6845 vdev_indirect_mapping_bytes_mapped(vim); 6846 (void) printf("cannot verify obsolete indirect mapping " 6847 "counts of vdev %llu because precise feature was not " 6848 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6849 "unreferenced\n", 6850 (u_longlong_t)vd->vdev_id, pct_leaked, 6851 (u_longlong_t)total_leaked); 6852 } else if (total_leaked > 0) { 6853 (void) printf("obsolete indirect mapping count mismatch " 6854 "for vdev %llu -- %llx total bytes mismatched\n", 6855 (u_longlong_t)vd->vdev_id, 6856 (u_longlong_t)total_leaked); 6857 leaks |= B_TRUE; 6858 } 6859 6860 vdev_indirect_mapping_free_obsolete_counts(vim, 6861 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6862 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6863 6864 return (leaks); 6865 } 6866 6867 static boolean_t 6868 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6869 { 6870 if (dump_opt['L']) 6871 return (B_FALSE); 6872 6873 boolean_t leaks = B_FALSE; 6874 vdev_t *rvd = spa->spa_root_vdev; 6875 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6876 vdev_t *vd = rvd->vdev_child[c]; 6877 6878 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6879 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6880 } 6881 6882 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6883 metaslab_t *msp = vd->vdev_ms[m]; 6884 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6885 spa_embedded_log_class(spa)) ? 6886 vd->vdev_log_mg : vd->vdev_mg); 6887 6888 /* 6889 * ms_allocatable has been overloaded 6890 * to contain allocated segments. Now that 6891 * we finished traversing all blocks, any 6892 * block that remains in the ms_allocatable 6893 * represents an allocated block that we 6894 * did not claim during the traversal. 6895 * Claimed blocks would have been removed 6896 * from the ms_allocatable. For indirect 6897 * vdevs, space remaining in the tree 6898 * represents parts of the mapping that are 6899 * not referenced, which is not a bug. 6900 */ 6901 if (vd->vdev_ops == &vdev_indirect_ops) { 6902 zfs_range_tree_vacate(msp->ms_allocatable, 6903 NULL, NULL); 6904 } else { 6905 zfs_range_tree_vacate(msp->ms_allocatable, 6906 zdb_leak, vd); 6907 } 6908 if (msp->ms_loaded) { 6909 msp->ms_loaded = B_FALSE; 6910 } 6911 } 6912 } 6913 6914 umem_free(zcb->zcb_vd_obsolete_counts, 6915 rvd->vdev_children * sizeof (uint32_t *)); 6916 zcb->zcb_vd_obsolete_counts = NULL; 6917 6918 return (leaks); 6919 } 6920 6921 static int 6922 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6923 { 6924 (void) tx; 6925 zdb_cb_t *zcb = arg; 6926 6927 if (dump_opt['b'] >= 5) { 6928 char blkbuf[BP_SPRINTF_LEN]; 6929 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6930 (void) printf("[%s] %s\n", 6931 "deferred free", blkbuf); 6932 } 6933 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6934 return (0); 6935 } 6936 6937 /* 6938 * Iterate over livelists which have been destroyed by the user but 6939 * are still present in the MOS, waiting to be freed 6940 */ 6941 static void 6942 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6943 { 6944 objset_t *mos = spa->spa_meta_objset; 6945 uint64_t zap_obj; 6946 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6947 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6948 if (err == ENOENT) 6949 return; 6950 ASSERT0(err); 6951 6952 zap_cursor_t zc; 6953 zap_attribute_t *attrp = zap_attribute_alloc(); 6954 dsl_deadlist_t ll; 6955 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6956 ll.dl_os = NULL; 6957 for (zap_cursor_init(&zc, mos, zap_obj); 6958 zap_cursor_retrieve(&zc, attrp) == 0; 6959 (void) zap_cursor_advance(&zc)) { 6960 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer)); 6961 func(&ll, arg); 6962 dsl_deadlist_close(&ll); 6963 } 6964 zap_cursor_fini(&zc); 6965 zap_attribute_free(attrp); 6966 } 6967 6968 static int 6969 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6970 dmu_tx_t *tx) 6971 { 6972 ASSERT(!bp_freed); 6973 return (count_block_cb(arg, bp, tx)); 6974 } 6975 6976 static int 6977 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6978 { 6979 zdb_cb_t *zbc = args; 6980 bplist_t blks; 6981 bplist_create(&blks); 6982 /* determine which blocks have been alloc'd but not freed */ 6983 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6984 /* count those blocks */ 6985 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6986 bplist_destroy(&blks); 6987 return (0); 6988 } 6989 6990 static void 6991 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6992 { 6993 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6994 } 6995 6996 /* 6997 * Count the blocks in the livelists that have been destroyed by the user 6998 * but haven't yet been freed. 6999 */ 7000 static void 7001 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 7002 { 7003 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 7004 } 7005 7006 static void 7007 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 7008 { 7009 ASSERT3P(arg, ==, NULL); 7010 global_feature_count[SPA_FEATURE_LIVELIST]++; 7011 dump_blkptr_list(ll, "Deleted Livelist"); 7012 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 7013 } 7014 7015 /* 7016 * Print out, register object references to, and increment feature counts for 7017 * livelists that have been destroyed by the user but haven't yet been freed. 7018 */ 7019 static void 7020 deleted_livelists_dump_mos(spa_t *spa) 7021 { 7022 uint64_t zap_obj; 7023 objset_t *mos = spa->spa_meta_objset; 7024 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 7025 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 7026 if (err == ENOENT) 7027 return; 7028 mos_obj_refd(zap_obj); 7029 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 7030 } 7031 7032 static int 7033 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 7034 { 7035 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 7036 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 7037 int cmp; 7038 7039 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 7040 if (cmp == 0) 7041 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 7042 7043 return (cmp); 7044 } 7045 7046 static int 7047 dump_block_stats(spa_t *spa) 7048 { 7049 zdb_cb_t *zcb; 7050 zdb_blkstats_t *zb, *tzb; 7051 uint64_t norm_alloc, norm_space, total_alloc, total_found; 7052 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7053 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 7054 boolean_t leaks = B_FALSE; 7055 int e, c, err; 7056 bp_embedded_type_t i; 7057 7058 ddt_prefetch_all(spa); 7059 7060 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 7061 7062 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 7063 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 7064 sizeof (zdb_brt_entry_t), 7065 offsetof(zdb_brt_entry_t, zbre_node)); 7066 zcb->zcb_brt_is_active = B_TRUE; 7067 } 7068 7069 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7070 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7071 (dump_opt['c'] == 1) ? "metadata " : "", 7072 dump_opt['c'] ? "checksums " : "", 7073 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7074 !dump_opt['L'] ? "nothing leaked " : ""); 7075 7076 /* 7077 * When leak detection is enabled we load all space maps as SM_ALLOC 7078 * maps, then traverse the pool claiming each block we discover. If 7079 * the pool is perfectly consistent, the segment trees will be empty 7080 * when we're done. Anything left over is a leak; any block we can't 7081 * claim (because it's not part of any space map) is a double 7082 * allocation, reference to a freed block, or an unclaimed log block. 7083 * 7084 * When leak detection is disabled (-L option) we still traverse the 7085 * pool claiming each block we discover, but we skip opening any space 7086 * maps. 7087 */ 7088 zdb_leak_init(spa, zcb); 7089 7090 /* 7091 * If there's a deferred-free bplist, process that first. 7092 */ 7093 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7094 bpobj_count_block_cb, zcb, NULL); 7095 7096 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7097 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7098 bpobj_count_block_cb, zcb, NULL); 7099 } 7100 7101 zdb_claim_removing(spa, zcb); 7102 7103 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7104 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7105 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7106 zcb, NULL)); 7107 } 7108 7109 deleted_livelists_count_blocks(spa, zcb); 7110 7111 if (dump_opt['c'] > 1) 7112 flags |= TRAVERSE_PREFETCH_DATA; 7113 7114 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7115 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7116 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7117 zcb->zcb_totalasize += 7118 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7119 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7120 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7121 7122 /* 7123 * If we've traversed the data blocks then we need to wait for those 7124 * I/Os to complete. We leverage "The Godfather" zio to wait on 7125 * all async I/Os to complete. 7126 */ 7127 if (dump_opt['c']) { 7128 for (c = 0; c < max_ncpus; c++) { 7129 (void) zio_wait(spa->spa_async_zio_root[c]); 7130 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7131 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7132 ZIO_FLAG_GODFATHER); 7133 } 7134 } 7135 ASSERT0(spa->spa_load_verify_bytes); 7136 7137 /* 7138 * Done after zio_wait() since zcb_haderrors is modified in 7139 * zdb_blkptr_done() 7140 */ 7141 zcb->zcb_haderrors |= err; 7142 7143 if (zcb->zcb_haderrors) { 7144 (void) printf("\nError counts:\n\n"); 7145 (void) printf("\t%5s %s\n", "errno", "count"); 7146 for (e = 0; e < 256; e++) { 7147 if (zcb->zcb_errors[e] != 0) { 7148 (void) printf("\t%5d %llu\n", 7149 e, (u_longlong_t)zcb->zcb_errors[e]); 7150 } 7151 } 7152 } 7153 7154 /* 7155 * Report any leaked segments. 7156 */ 7157 leaks |= zdb_leak_fini(spa, zcb); 7158 7159 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7160 7161 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7162 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7163 7164 total_alloc = norm_alloc + 7165 metaslab_class_get_alloc(spa_log_class(spa)) + 7166 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7167 metaslab_class_get_alloc(spa_special_class(spa)) + 7168 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7169 get_unflushed_alloc_space(spa); 7170 total_found = 7171 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7172 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7173 7174 if (total_found == total_alloc && !dump_opt['L']) { 7175 (void) printf("\n\tNo leaks (block sum matches space" 7176 " maps exactly)\n"); 7177 } else if (!dump_opt['L']) { 7178 (void) printf("block traversal size %llu != alloc %llu " 7179 "(%s %lld)\n", 7180 (u_longlong_t)total_found, 7181 (u_longlong_t)total_alloc, 7182 (dump_opt['L']) ? "unreachable" : "leaked", 7183 (longlong_t)(total_alloc - total_found)); 7184 } 7185 7186 if (tzb->zb_count == 0) { 7187 umem_free(zcb, sizeof (zdb_cb_t)); 7188 return (2); 7189 } 7190 7191 (void) printf("\n"); 7192 (void) printf("\t%-16s %14llu\n", "bp count:", 7193 (u_longlong_t)tzb->zb_count); 7194 (void) printf("\t%-16s %14llu\n", "ganged count:", 7195 (longlong_t)tzb->zb_gangs); 7196 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7197 (u_longlong_t)tzb->zb_lsize, 7198 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7199 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7200 "bp physical:", (u_longlong_t)tzb->zb_psize, 7201 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7202 (double)tzb->zb_lsize / tzb->zb_psize); 7203 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7204 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7205 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7206 (double)tzb->zb_lsize / tzb->zb_asize); 7207 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7208 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7209 (u_longlong_t)zcb->zcb_dedup_blocks, 7210 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7211 (void) printf("\t%-16s %14llu count: %6llu\n", 7212 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7213 (u_longlong_t)zcb->zcb_clone_blocks); 7214 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7215 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7216 7217 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7218 uint64_t alloc = metaslab_class_get_alloc( 7219 spa_special_class(spa)); 7220 uint64_t space = metaslab_class_get_space( 7221 spa_special_class(spa)); 7222 7223 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7224 "Special class", (u_longlong_t)alloc, 7225 100.0 * alloc / space); 7226 } 7227 7228 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7229 uint64_t alloc = metaslab_class_get_alloc( 7230 spa_dedup_class(spa)); 7231 uint64_t space = metaslab_class_get_space( 7232 spa_dedup_class(spa)); 7233 7234 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7235 "Dedup class", (u_longlong_t)alloc, 7236 100.0 * alloc / space); 7237 } 7238 7239 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7240 uint64_t alloc = metaslab_class_get_alloc( 7241 spa_embedded_log_class(spa)); 7242 uint64_t space = metaslab_class_get_space( 7243 spa_embedded_log_class(spa)); 7244 7245 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7246 "Embedded log class", (u_longlong_t)alloc, 7247 100.0 * alloc / space); 7248 } 7249 7250 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7251 if (zcb->zcb_embedded_blocks[i] == 0) 7252 continue; 7253 (void) printf("\n"); 7254 (void) printf("\tadditional, non-pointer bps of type %u: " 7255 "%10llu\n", 7256 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7257 7258 if (dump_opt['b'] >= 3) { 7259 (void) printf("\t number of (compressed) bytes: " 7260 "number of bps\n"); 7261 dump_histogram(zcb->zcb_embedded_histogram[i], 7262 sizeof (zcb->zcb_embedded_histogram[i]) / 7263 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7264 } 7265 } 7266 7267 if (tzb->zb_ditto_samevdev != 0) { 7268 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7269 (longlong_t)tzb->zb_ditto_samevdev); 7270 } 7271 if (tzb->zb_ditto_same_ms != 0) { 7272 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7273 (longlong_t)tzb->zb_ditto_same_ms); 7274 } 7275 7276 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7277 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7278 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7279 7280 if (vim == NULL) { 7281 continue; 7282 } 7283 7284 char mem[32]; 7285 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7286 mem, vdev_indirect_mapping_size(vim)); 7287 7288 (void) printf("\tindirect vdev id %llu has %llu segments " 7289 "(%s in memory)\n", 7290 (longlong_t)vd->vdev_id, 7291 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7292 } 7293 7294 if (dump_opt['b'] >= 2) { 7295 int l, t, level; 7296 char csize[32], lsize[32], psize[32], asize[32]; 7297 char avg[32], gang[32]; 7298 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7299 "\t avg\t comp\t%%Total\tType\n"); 7300 7301 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7302 UMEM_NOFAIL); 7303 7304 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7305 const char *typename; 7306 7307 /* make sure nicenum has enough space */ 7308 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7309 "csize truncated"); 7310 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7311 "lsize truncated"); 7312 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7313 "psize truncated"); 7314 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7315 "asize truncated"); 7316 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7317 "avg truncated"); 7318 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7319 "gang truncated"); 7320 7321 if (t < DMU_OT_NUMTYPES) 7322 typename = dmu_ot[t].ot_name; 7323 else 7324 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7325 7326 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7327 (void) printf("%6s\t%5s\t%5s\t%5s" 7328 "\t%5s\t%5s\t%6s\t%s\n", 7329 "-", 7330 "-", 7331 "-", 7332 "-", 7333 "-", 7334 "-", 7335 "-", 7336 typename); 7337 continue; 7338 } 7339 7340 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7341 level = (l == -1 ? ZB_TOTAL : l); 7342 zb = &zcb->zcb_type[level][t]; 7343 7344 if (zb->zb_asize == 0) 7345 continue; 7346 7347 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7348 (level > 0 || DMU_OT_IS_METADATA(t))) { 7349 mdstats->zb_count += zb->zb_count; 7350 mdstats->zb_lsize += zb->zb_lsize; 7351 mdstats->zb_psize += zb->zb_psize; 7352 mdstats->zb_asize += zb->zb_asize; 7353 mdstats->zb_gangs += zb->zb_gangs; 7354 } 7355 7356 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7357 continue; 7358 7359 if (level == 0 && zb->zb_asize == 7360 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7361 continue; 7362 7363 zdb_nicenum(zb->zb_count, csize, 7364 sizeof (csize)); 7365 zdb_nicenum(zb->zb_lsize, lsize, 7366 sizeof (lsize)); 7367 zdb_nicenum(zb->zb_psize, psize, 7368 sizeof (psize)); 7369 zdb_nicenum(zb->zb_asize, asize, 7370 sizeof (asize)); 7371 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7372 sizeof (avg)); 7373 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7374 7375 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7376 "\t%5.2f\t%6.2f\t", 7377 csize, lsize, psize, asize, avg, 7378 (double)zb->zb_lsize / zb->zb_psize, 7379 100.0 * zb->zb_asize / tzb->zb_asize); 7380 7381 if (level == ZB_TOTAL) 7382 (void) printf("%s\n", typename); 7383 else 7384 (void) printf(" L%d %s\n", 7385 level, typename); 7386 7387 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7388 (void) printf("\t number of ganged " 7389 "blocks: %s\n", gang); 7390 } 7391 7392 if (dump_opt['b'] >= 4) { 7393 (void) printf("psize " 7394 "(in 512-byte sectors): " 7395 "number of blocks\n"); 7396 dump_histogram(zb->zb_psize_histogram, 7397 PSIZE_HISTO_SIZE, 0); 7398 } 7399 } 7400 } 7401 zdb_nicenum(mdstats->zb_count, csize, 7402 sizeof (csize)); 7403 zdb_nicenum(mdstats->zb_lsize, lsize, 7404 sizeof (lsize)); 7405 zdb_nicenum(mdstats->zb_psize, psize, 7406 sizeof (psize)); 7407 zdb_nicenum(mdstats->zb_asize, asize, 7408 sizeof (asize)); 7409 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7410 sizeof (avg)); 7411 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7412 7413 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7414 "\t%5.2f\t%6.2f\t", 7415 csize, lsize, psize, asize, avg, 7416 (double)mdstats->zb_lsize / mdstats->zb_psize, 7417 100.0 * mdstats->zb_asize / tzb->zb_asize); 7418 (void) printf("%s\n", "Metadata Total"); 7419 7420 /* Output a table summarizing block sizes in the pool */ 7421 if (dump_opt['b'] >= 2) { 7422 dump_size_histograms(zcb); 7423 } 7424 7425 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7426 } 7427 7428 (void) printf("\n"); 7429 7430 if (leaks) { 7431 umem_free(zcb, sizeof (zdb_cb_t)); 7432 return (2); 7433 } 7434 7435 if (zcb->zcb_haderrors) { 7436 umem_free(zcb, sizeof (zdb_cb_t)); 7437 return (3); 7438 } 7439 7440 umem_free(zcb, sizeof (zdb_cb_t)); 7441 return (0); 7442 } 7443 7444 typedef struct zdb_ddt_entry { 7445 /* key must be first for ddt_key_compare */ 7446 ddt_key_t zdde_key; 7447 uint64_t zdde_ref_blocks; 7448 uint64_t zdde_ref_lsize; 7449 uint64_t zdde_ref_psize; 7450 uint64_t zdde_ref_dsize; 7451 avl_node_t zdde_node; 7452 } zdb_ddt_entry_t; 7453 7454 static int 7455 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7456 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7457 { 7458 (void) zilog, (void) dnp; 7459 avl_tree_t *t = arg; 7460 avl_index_t where; 7461 zdb_ddt_entry_t *zdde, zdde_search; 7462 7463 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7464 BP_IS_EMBEDDED(bp)) 7465 return (0); 7466 7467 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7468 (void) printf("traversing objset %llu, %llu objects, " 7469 "%lu blocks so far\n", 7470 (u_longlong_t)zb->zb_objset, 7471 (u_longlong_t)BP_GET_FILL(bp), 7472 avl_numnodes(t)); 7473 } 7474 7475 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7476 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7477 return (0); 7478 7479 ddt_key_fill(&zdde_search.zdde_key, bp); 7480 7481 zdde = avl_find(t, &zdde_search, &where); 7482 7483 if (zdde == NULL) { 7484 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7485 zdde->zdde_key = zdde_search.zdde_key; 7486 avl_insert(t, zdde, where); 7487 } 7488 7489 zdde->zdde_ref_blocks += 1; 7490 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7491 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7492 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7493 7494 return (0); 7495 } 7496 7497 static void 7498 dump_simulated_ddt(spa_t *spa) 7499 { 7500 avl_tree_t t; 7501 void *cookie = NULL; 7502 zdb_ddt_entry_t *zdde; 7503 ddt_histogram_t ddh_total = {{{0}}}; 7504 ddt_stat_t dds_total = {0}; 7505 7506 avl_create(&t, ddt_key_compare, 7507 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7508 7509 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7510 7511 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7512 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7513 7514 spa_config_exit(spa, SCL_CONFIG, FTAG); 7515 7516 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7517 uint64_t refcnt = zdde->zdde_ref_blocks; 7518 ASSERT(refcnt != 0); 7519 7520 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7521 7522 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7523 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7524 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7525 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7526 7527 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7528 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7529 dds->dds_ref_psize += zdde->zdde_ref_psize; 7530 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7531 7532 umem_free(zdde, sizeof (*zdde)); 7533 } 7534 7535 avl_destroy(&t); 7536 7537 ddt_histogram_total(&dds_total, &ddh_total); 7538 7539 (void) printf("Simulated DDT histogram:\n"); 7540 7541 zpool_dump_ddt(&dds_total, &ddh_total); 7542 7543 dump_dedup_ratio(&dds_total); 7544 } 7545 7546 static int 7547 verify_device_removal_feature_counts(spa_t *spa) 7548 { 7549 uint64_t dr_feature_refcount = 0; 7550 uint64_t oc_feature_refcount = 0; 7551 uint64_t indirect_vdev_count = 0; 7552 uint64_t precise_vdev_count = 0; 7553 uint64_t obsolete_counts_object_count = 0; 7554 uint64_t obsolete_sm_count = 0; 7555 uint64_t obsolete_counts_count = 0; 7556 uint64_t scip_count = 0; 7557 uint64_t obsolete_bpobj_count = 0; 7558 int ret = 0; 7559 7560 spa_condensing_indirect_phys_t *scip = 7561 &spa->spa_condensing_indirect_phys; 7562 if (scip->scip_next_mapping_object != 0) { 7563 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7564 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7565 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7566 7567 (void) printf("Condensing indirect vdev %llu: new mapping " 7568 "object %llu, prev obsolete sm %llu\n", 7569 (u_longlong_t)scip->scip_vdev, 7570 (u_longlong_t)scip->scip_next_mapping_object, 7571 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7572 if (scip->scip_prev_obsolete_sm_object != 0) { 7573 space_map_t *prev_obsolete_sm = NULL; 7574 VERIFY0(space_map_open(&prev_obsolete_sm, 7575 spa->spa_meta_objset, 7576 scip->scip_prev_obsolete_sm_object, 7577 0, vd->vdev_asize, 0)); 7578 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7579 (void) printf("\n"); 7580 space_map_close(prev_obsolete_sm); 7581 } 7582 7583 scip_count += 2; 7584 } 7585 7586 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7587 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7588 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7589 7590 if (vic->vic_mapping_object != 0) { 7591 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7592 vd->vdev_removing); 7593 indirect_vdev_count++; 7594 7595 if (vd->vdev_indirect_mapping->vim_havecounts) { 7596 obsolete_counts_count++; 7597 } 7598 } 7599 7600 boolean_t are_precise; 7601 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7602 if (are_precise) { 7603 ASSERT(vic->vic_mapping_object != 0); 7604 precise_vdev_count++; 7605 } 7606 7607 uint64_t obsolete_sm_object; 7608 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7609 if (obsolete_sm_object != 0) { 7610 ASSERT(vic->vic_mapping_object != 0); 7611 obsolete_sm_count++; 7612 } 7613 } 7614 7615 (void) feature_get_refcount(spa, 7616 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7617 &dr_feature_refcount); 7618 (void) feature_get_refcount(spa, 7619 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7620 &oc_feature_refcount); 7621 7622 if (dr_feature_refcount != indirect_vdev_count) { 7623 ret = 1; 7624 (void) printf("Number of indirect vdevs (%llu) " \ 7625 "does not match feature count (%llu)\n", 7626 (u_longlong_t)indirect_vdev_count, 7627 (u_longlong_t)dr_feature_refcount); 7628 } else { 7629 (void) printf("Verified device_removal feature refcount " \ 7630 "of %llu is correct\n", 7631 (u_longlong_t)dr_feature_refcount); 7632 } 7633 7634 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7635 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7636 obsolete_bpobj_count++; 7637 } 7638 7639 7640 obsolete_counts_object_count = precise_vdev_count; 7641 obsolete_counts_object_count += obsolete_sm_count; 7642 obsolete_counts_object_count += obsolete_counts_count; 7643 obsolete_counts_object_count += scip_count; 7644 obsolete_counts_object_count += obsolete_bpobj_count; 7645 obsolete_counts_object_count += remap_deadlist_count; 7646 7647 if (oc_feature_refcount != obsolete_counts_object_count) { 7648 ret = 1; 7649 (void) printf("Number of obsolete counts objects (%llu) " \ 7650 "does not match feature count (%llu)\n", 7651 (u_longlong_t)obsolete_counts_object_count, 7652 (u_longlong_t)oc_feature_refcount); 7653 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7654 "ob:%llu rd:%llu\n", 7655 (u_longlong_t)precise_vdev_count, 7656 (u_longlong_t)obsolete_sm_count, 7657 (u_longlong_t)obsolete_counts_count, 7658 (u_longlong_t)scip_count, 7659 (u_longlong_t)obsolete_bpobj_count, 7660 (u_longlong_t)remap_deadlist_count); 7661 } else { 7662 (void) printf("Verified indirect_refcount feature refcount " \ 7663 "of %llu is correct\n", 7664 (u_longlong_t)oc_feature_refcount); 7665 } 7666 return (ret); 7667 } 7668 7669 static void 7670 zdb_set_skip_mmp(char *target) 7671 { 7672 spa_t *spa; 7673 7674 /* 7675 * Disable the activity check to allow examination of 7676 * active pools. 7677 */ 7678 mutex_enter(&spa_namespace_lock); 7679 if ((spa = spa_lookup(target)) != NULL) { 7680 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7681 } 7682 mutex_exit(&spa_namespace_lock); 7683 } 7684 7685 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7686 /* 7687 * Import the checkpointed state of the pool specified by the target 7688 * parameter as readonly. The function also accepts a pool config 7689 * as an optional parameter, else it attempts to infer the config by 7690 * the name of the target pool. 7691 * 7692 * Note that the checkpointed state's pool name will be the name of 7693 * the original pool with the above suffix appended to it. In addition, 7694 * if the target is not a pool name (e.g. a path to a dataset) then 7695 * the new_path parameter is populated with the updated path to 7696 * reflect the fact that we are looking into the checkpointed state. 7697 * 7698 * The function returns a newly-allocated copy of the name of the 7699 * pool containing the checkpointed state. When this copy is no 7700 * longer needed it should be freed with free(3C). Same thing 7701 * applies to the new_path parameter if allocated. 7702 */ 7703 static char * 7704 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7705 { 7706 int error = 0; 7707 char *poolname, *bogus_name = NULL; 7708 boolean_t freecfg = B_FALSE; 7709 7710 /* If the target is not a pool, the extract the pool name */ 7711 char *path_start = strchr(target, '/'); 7712 if (path_start != NULL) { 7713 size_t poolname_len = path_start - target; 7714 poolname = strndup(target, poolname_len); 7715 } else { 7716 poolname = target; 7717 } 7718 7719 if (cfg == NULL) { 7720 zdb_set_skip_mmp(poolname); 7721 error = spa_get_stats(poolname, &cfg, NULL, 0); 7722 if (error != 0) { 7723 fatal("Tried to read config of pool \"%s\" but " 7724 "spa_get_stats() failed with error %d\n", 7725 poolname, error); 7726 } 7727 freecfg = B_TRUE; 7728 } 7729 7730 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7731 if (target != poolname) 7732 free(poolname); 7733 return (NULL); 7734 } 7735 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7736 7737 error = spa_import(bogus_name, cfg, NULL, 7738 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7739 ZFS_IMPORT_SKIP_MMP); 7740 if (freecfg) 7741 nvlist_free(cfg); 7742 if (error != 0) { 7743 fatal("Tried to import pool \"%s\" but spa_import() failed " 7744 "with error %d\n", bogus_name, error); 7745 } 7746 7747 if (new_path != NULL && path_start != NULL) { 7748 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7749 free(bogus_name); 7750 if (path_start != NULL) 7751 free(poolname); 7752 return (NULL); 7753 } 7754 } 7755 7756 if (target != poolname) 7757 free(poolname); 7758 7759 return (bogus_name); 7760 } 7761 7762 typedef struct verify_checkpoint_sm_entry_cb_arg { 7763 vdev_t *vcsec_vd; 7764 7765 /* the following fields are only used for printing progress */ 7766 uint64_t vcsec_entryid; 7767 uint64_t vcsec_num_entries; 7768 } verify_checkpoint_sm_entry_cb_arg_t; 7769 7770 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7771 7772 static int 7773 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7774 { 7775 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7776 vdev_t *vd = vcsec->vcsec_vd; 7777 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7778 uint64_t end = sme->sme_offset + sme->sme_run; 7779 7780 ASSERT(sme->sme_type == SM_FREE); 7781 7782 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7783 (void) fprintf(stderr, 7784 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7785 (longlong_t)vd->vdev_id, 7786 (longlong_t)vcsec->vcsec_entryid, 7787 (longlong_t)vcsec->vcsec_num_entries); 7788 } 7789 vcsec->vcsec_entryid++; 7790 7791 /* 7792 * See comment in checkpoint_sm_exclude_entry_cb() 7793 */ 7794 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7795 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7796 7797 /* 7798 * The entries in the vdev_checkpoint_sm should be marked as 7799 * allocated in the checkpointed state of the pool, therefore 7800 * their respective ms_allocateable trees should not contain them. 7801 */ 7802 mutex_enter(&ms->ms_lock); 7803 zfs_range_tree_verify_not_present(ms->ms_allocatable, 7804 sme->sme_offset, sme->sme_run); 7805 mutex_exit(&ms->ms_lock); 7806 7807 return (0); 7808 } 7809 7810 /* 7811 * Verify that all segments in the vdev_checkpoint_sm are allocated 7812 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7813 * ms_allocatable). 7814 * 7815 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7816 * each vdev in the current state of the pool to the metaslab space maps 7817 * (ms_sm) of the checkpointed state of the pool. 7818 * 7819 * Note that the function changes the state of the ms_allocatable 7820 * trees of the current spa_t. The entries of these ms_allocatable 7821 * trees are cleared out and then repopulated from with the free 7822 * entries of their respective ms_sm space maps. 7823 */ 7824 static void 7825 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7826 { 7827 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7828 vdev_t *current_rvd = current->spa_root_vdev; 7829 7830 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7831 7832 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7833 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7834 vdev_t *current_vd = current_rvd->vdev_child[c]; 7835 7836 space_map_t *checkpoint_sm = NULL; 7837 uint64_t checkpoint_sm_obj; 7838 7839 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7840 /* 7841 * Since we don't allow device removal in a pool 7842 * that has a checkpoint, we expect that all removed 7843 * vdevs were removed from the pool before the 7844 * checkpoint. 7845 */ 7846 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7847 continue; 7848 } 7849 7850 /* 7851 * If the checkpoint space map doesn't exist, then nothing 7852 * here is checkpointed so there's nothing to verify. 7853 */ 7854 if (current_vd->vdev_top_zap == 0 || 7855 zap_contains(spa_meta_objset(current), 7856 current_vd->vdev_top_zap, 7857 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7858 continue; 7859 7860 VERIFY0(zap_lookup(spa_meta_objset(current), 7861 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7862 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7863 7864 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7865 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7866 current_vd->vdev_ashift)); 7867 7868 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7869 vcsec.vcsec_vd = ckpoint_vd; 7870 vcsec.vcsec_entryid = 0; 7871 vcsec.vcsec_num_entries = 7872 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7873 VERIFY0(space_map_iterate(checkpoint_sm, 7874 space_map_length(checkpoint_sm), 7875 verify_checkpoint_sm_entry_cb, &vcsec)); 7876 if (dump_opt['m'] > 3) 7877 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7878 space_map_close(checkpoint_sm); 7879 } 7880 7881 /* 7882 * If we've added vdevs since we took the checkpoint, ensure 7883 * that their checkpoint space maps are empty. 7884 */ 7885 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7886 for (uint64_t c = ckpoint_rvd->vdev_children; 7887 c < current_rvd->vdev_children; c++) { 7888 vdev_t *current_vd = current_rvd->vdev_child[c]; 7889 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7890 } 7891 } 7892 7893 /* for cleaner progress output */ 7894 (void) fprintf(stderr, "\n"); 7895 } 7896 7897 /* 7898 * Verifies that all space that's allocated in the checkpoint is 7899 * still allocated in the current version, by checking that everything 7900 * in checkpoint's ms_allocatable (which is actually allocated, not 7901 * allocatable/free) is not present in current's ms_allocatable. 7902 * 7903 * Note that the function changes the state of the ms_allocatable 7904 * trees of both spas when called. The entries of all ms_allocatable 7905 * trees are cleared out and then repopulated from their respective 7906 * ms_sm space maps. In the checkpointed state we load the allocated 7907 * entries, and in the current state we load the free entries. 7908 */ 7909 static void 7910 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7911 { 7912 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7913 vdev_t *current_rvd = current->spa_root_vdev; 7914 7915 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7916 load_concrete_ms_allocatable_trees(current, SM_FREE); 7917 7918 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7919 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7920 vdev_t *current_vd = current_rvd->vdev_child[i]; 7921 7922 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7923 /* 7924 * See comment in verify_checkpoint_vdev_spacemaps() 7925 */ 7926 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7927 continue; 7928 } 7929 7930 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7931 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7932 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7933 7934 (void) fprintf(stderr, 7935 "\rverifying vdev %llu of %llu, " 7936 "metaslab %llu of %llu ...", 7937 (longlong_t)current_vd->vdev_id, 7938 (longlong_t)current_rvd->vdev_children, 7939 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7940 (longlong_t)current_vd->vdev_ms_count); 7941 7942 /* 7943 * We walk through the ms_allocatable trees that 7944 * are loaded with the allocated blocks from the 7945 * ms_sm spacemaps of the checkpoint. For each 7946 * one of these ranges we ensure that none of them 7947 * exists in the ms_allocatable trees of the 7948 * current state which are loaded with the ranges 7949 * that are currently free. 7950 * 7951 * This way we ensure that none of the blocks that 7952 * are part of the checkpoint were freed by mistake. 7953 */ 7954 zfs_range_tree_walk(ckpoint_msp->ms_allocatable, 7955 (zfs_range_tree_func_t *) 7956 zfs_range_tree_verify_not_present, 7957 current_msp->ms_allocatable); 7958 } 7959 } 7960 7961 /* for cleaner progress output */ 7962 (void) fprintf(stderr, "\n"); 7963 } 7964 7965 static void 7966 verify_checkpoint_blocks(spa_t *spa) 7967 { 7968 ASSERT(!dump_opt['L']); 7969 7970 spa_t *checkpoint_spa; 7971 char *checkpoint_pool; 7972 int error = 0; 7973 7974 /* 7975 * We import the checkpointed state of the pool (under a different 7976 * name) so we can do verification on it against the current state 7977 * of the pool. 7978 */ 7979 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7980 NULL); 7981 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7982 7983 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7984 if (error != 0) { 7985 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7986 "error %d\n", checkpoint_pool, error); 7987 } 7988 7989 /* 7990 * Ensure that ranges in the checkpoint space maps of each vdev 7991 * are allocated according to the checkpointed state's metaslab 7992 * space maps. 7993 */ 7994 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7995 7996 /* 7997 * Ensure that allocated ranges in the checkpoint's metaslab 7998 * space maps remain allocated in the metaslab space maps of 7999 * the current state. 8000 */ 8001 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 8002 8003 /* 8004 * Once we are done, we get rid of the checkpointed state. 8005 */ 8006 spa_close(checkpoint_spa, FTAG); 8007 free(checkpoint_pool); 8008 } 8009 8010 static void 8011 dump_leftover_checkpoint_blocks(spa_t *spa) 8012 { 8013 vdev_t *rvd = spa->spa_root_vdev; 8014 8015 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 8016 vdev_t *vd = rvd->vdev_child[i]; 8017 8018 space_map_t *checkpoint_sm = NULL; 8019 uint64_t checkpoint_sm_obj; 8020 8021 if (vd->vdev_top_zap == 0) 8022 continue; 8023 8024 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 8025 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 8026 continue; 8027 8028 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 8029 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 8030 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 8031 8032 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 8033 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 8034 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 8035 space_map_close(checkpoint_sm); 8036 } 8037 } 8038 8039 static int 8040 verify_checkpoint(spa_t *spa) 8041 { 8042 uberblock_t checkpoint; 8043 int error; 8044 8045 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 8046 return (0); 8047 8048 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8049 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 8050 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 8051 8052 if (error == ENOENT && !dump_opt['L']) { 8053 /* 8054 * If the feature is active but the uberblock is missing 8055 * then we must be in the middle of discarding the 8056 * checkpoint. 8057 */ 8058 (void) printf("\nPartially discarded checkpoint " 8059 "state found:\n"); 8060 if (dump_opt['m'] > 3) 8061 dump_leftover_checkpoint_blocks(spa); 8062 return (0); 8063 } else if (error != 0) { 8064 (void) printf("lookup error %d when looking for " 8065 "checkpointed uberblock in MOS\n", error); 8066 return (error); 8067 } 8068 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8069 8070 if (checkpoint.ub_checkpoint_txg == 0) { 8071 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8072 "uberblock\n"); 8073 error = 3; 8074 } 8075 8076 if (error == 0 && !dump_opt['L']) 8077 verify_checkpoint_blocks(spa); 8078 8079 return (error); 8080 } 8081 8082 static void 8083 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8084 { 8085 (void) arg; 8086 for (uint64_t i = start; i < size; i++) { 8087 (void) printf("MOS object %llu referenced but not allocated\n", 8088 (u_longlong_t)i); 8089 } 8090 } 8091 8092 static void 8093 mos_obj_refd(uint64_t obj) 8094 { 8095 if (obj != 0 && mos_refd_objs != NULL) 8096 zfs_range_tree_add(mos_refd_objs, obj, 1); 8097 } 8098 8099 /* 8100 * Call on a MOS object that may already have been referenced. 8101 */ 8102 static void 8103 mos_obj_refd_multiple(uint64_t obj) 8104 { 8105 if (obj != 0 && mos_refd_objs != NULL && 8106 !zfs_range_tree_contains(mos_refd_objs, obj, 1)) 8107 zfs_range_tree_add(mos_refd_objs, obj, 1); 8108 } 8109 8110 static void 8111 mos_leak_vdev_top_zap(vdev_t *vd) 8112 { 8113 uint64_t ms_flush_data_obj; 8114 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8115 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8116 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8117 if (error == ENOENT) 8118 return; 8119 ASSERT0(error); 8120 8121 mos_obj_refd(ms_flush_data_obj); 8122 } 8123 8124 static void 8125 mos_leak_vdev(vdev_t *vd) 8126 { 8127 mos_obj_refd(vd->vdev_dtl_object); 8128 mos_obj_refd(vd->vdev_ms_array); 8129 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8130 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8131 mos_obj_refd(vd->vdev_leaf_zap); 8132 if (vd->vdev_checkpoint_sm != NULL) 8133 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8134 if (vd->vdev_indirect_mapping != NULL) { 8135 mos_obj_refd(vd->vdev_indirect_mapping-> 8136 vim_phys->vimp_counts_object); 8137 } 8138 if (vd->vdev_obsolete_sm != NULL) 8139 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8140 8141 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8142 metaslab_t *ms = vd->vdev_ms[m]; 8143 mos_obj_refd(space_map_object(ms->ms_sm)); 8144 } 8145 8146 if (vd->vdev_root_zap != 0) 8147 mos_obj_refd(vd->vdev_root_zap); 8148 8149 if (vd->vdev_top_zap != 0) { 8150 mos_obj_refd(vd->vdev_top_zap); 8151 mos_leak_vdev_top_zap(vd); 8152 } 8153 8154 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8155 mos_leak_vdev(vd->vdev_child[c]); 8156 } 8157 } 8158 8159 static void 8160 mos_leak_log_spacemaps(spa_t *spa) 8161 { 8162 uint64_t spacemap_zap; 8163 int error = zap_lookup(spa_meta_objset(spa), 8164 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8165 sizeof (spacemap_zap), 1, &spacemap_zap); 8166 if (error == ENOENT) 8167 return; 8168 ASSERT0(error); 8169 8170 mos_obj_refd(spacemap_zap); 8171 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8172 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8173 mos_obj_refd(sls->sls_sm_obj); 8174 } 8175 8176 static void 8177 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8178 { 8179 zap_cursor_t zc; 8180 zap_attribute_t *za = zap_attribute_alloc(); 8181 for (zap_cursor_init(&zc, mos, errlog); 8182 zap_cursor_retrieve(&zc, za) == 0; 8183 zap_cursor_advance(&zc)) { 8184 mos_obj_refd(za->za_first_integer); 8185 } 8186 zap_cursor_fini(&zc); 8187 zap_attribute_free(za); 8188 } 8189 8190 static int 8191 dump_mos_leaks(spa_t *spa) 8192 { 8193 int rv = 0; 8194 objset_t *mos = spa->spa_meta_objset; 8195 dsl_pool_t *dp = spa->spa_dsl_pool; 8196 8197 /* Visit and mark all referenced objects in the MOS */ 8198 8199 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8200 mos_obj_refd(spa->spa_pool_props_object); 8201 mos_obj_refd(spa->spa_config_object); 8202 mos_obj_refd(spa->spa_ddt_stat_object); 8203 mos_obj_refd(spa->spa_feat_desc_obj); 8204 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8205 mos_obj_refd(spa->spa_feat_for_read_obj); 8206 mos_obj_refd(spa->spa_feat_for_write_obj); 8207 mos_obj_refd(spa->spa_history); 8208 mos_obj_refd(spa->spa_errlog_last); 8209 mos_obj_refd(spa->spa_errlog_scrub); 8210 8211 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8212 errorlog_count_refd(mos, spa->spa_errlog_last); 8213 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8214 } 8215 8216 mos_obj_refd(spa->spa_all_vdev_zaps); 8217 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8218 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8219 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8220 bpobj_count_refd(&spa->spa_deferred_bpobj); 8221 mos_obj_refd(dp->dp_empty_bpobj); 8222 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8223 bpobj_count_refd(&dp->dp_free_bpobj); 8224 mos_obj_refd(spa->spa_l2cache.sav_object); 8225 mos_obj_refd(spa->spa_spares.sav_object); 8226 8227 if (spa->spa_syncing_log_sm != NULL) 8228 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8229 mos_leak_log_spacemaps(spa); 8230 8231 mos_obj_refd(spa->spa_condensing_indirect_phys. 8232 scip_next_mapping_object); 8233 mos_obj_refd(spa->spa_condensing_indirect_phys. 8234 scip_prev_obsolete_sm_object); 8235 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8236 vdev_indirect_mapping_t *vim = 8237 vdev_indirect_mapping_open(mos, 8238 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8239 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8240 vdev_indirect_mapping_close(vim); 8241 } 8242 deleted_livelists_dump_mos(spa); 8243 8244 if (dp->dp_origin_snap != NULL) { 8245 dsl_dataset_t *ds; 8246 8247 dsl_pool_config_enter(dp, FTAG); 8248 VERIFY0(dsl_dataset_hold_obj(dp, 8249 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8250 FTAG, &ds)); 8251 count_ds_mos_objects(ds); 8252 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8253 dsl_dataset_rele(ds, FTAG); 8254 dsl_pool_config_exit(dp, FTAG); 8255 8256 count_ds_mos_objects(dp->dp_origin_snap); 8257 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8258 } 8259 count_dir_mos_objects(dp->dp_mos_dir); 8260 if (dp->dp_free_dir != NULL) 8261 count_dir_mos_objects(dp->dp_free_dir); 8262 if (dp->dp_leak_dir != NULL) 8263 count_dir_mos_objects(dp->dp_leak_dir); 8264 8265 mos_leak_vdev(spa->spa_root_vdev); 8266 8267 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8268 ddt_t *ddt = spa->spa_ddt[c]; 8269 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8270 continue; 8271 8272 /* DDT store objects */ 8273 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8274 for (ddt_class_t class = 0; class < DDT_CLASSES; 8275 class++) { 8276 mos_obj_refd(ddt->ddt_object[type][class]); 8277 } 8278 } 8279 8280 /* FDT container */ 8281 if (ddt->ddt_version == DDT_VERSION_FDT) 8282 mos_obj_refd(ddt->ddt_dir_object); 8283 8284 /* FDT log objects */ 8285 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8286 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8287 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8288 } 8289 } 8290 8291 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 8292 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 8293 if (brtvd->bv_initiated) { 8294 mos_obj_refd(brtvd->bv_mos_brtvdev); 8295 mos_obj_refd(brtvd->bv_mos_entries); 8296 } 8297 } 8298 8299 /* 8300 * Visit all allocated objects and make sure they are referenced. 8301 */ 8302 uint64_t object = 0; 8303 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8304 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) { 8305 zfs_range_tree_remove(mos_refd_objs, object, 1); 8306 } else { 8307 dmu_object_info_t doi; 8308 const char *name; 8309 VERIFY0(dmu_object_info(mos, object, &doi)); 8310 if (doi.doi_type & DMU_OT_NEWTYPE) { 8311 dmu_object_byteswap_t bswap = 8312 DMU_OT_BYTESWAP(doi.doi_type); 8313 name = dmu_ot_byteswap[bswap].ob_name; 8314 } else { 8315 name = dmu_ot[doi.doi_type].ot_name; 8316 } 8317 8318 (void) printf("MOS object %llu (%s) leaked\n", 8319 (u_longlong_t)object, name); 8320 rv = 2; 8321 } 8322 } 8323 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8324 if (!zfs_range_tree_is_empty(mos_refd_objs)) 8325 rv = 2; 8326 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL); 8327 zfs_range_tree_destroy(mos_refd_objs); 8328 return (rv); 8329 } 8330 8331 typedef struct log_sm_obsolete_stats_arg { 8332 uint64_t lsos_current_txg; 8333 8334 uint64_t lsos_total_entries; 8335 uint64_t lsos_valid_entries; 8336 8337 uint64_t lsos_sm_entries; 8338 uint64_t lsos_valid_sm_entries; 8339 } log_sm_obsolete_stats_arg_t; 8340 8341 static int 8342 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8343 uint64_t txg, void *arg) 8344 { 8345 log_sm_obsolete_stats_arg_t *lsos = arg; 8346 8347 uint64_t offset = sme->sme_offset; 8348 uint64_t vdev_id = sme->sme_vdev; 8349 8350 if (lsos->lsos_current_txg == 0) { 8351 /* this is the first log */ 8352 lsos->lsos_current_txg = txg; 8353 } else if (lsos->lsos_current_txg < txg) { 8354 /* we just changed log - print stats and reset */ 8355 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8356 (u_longlong_t)lsos->lsos_valid_sm_entries, 8357 (u_longlong_t)lsos->lsos_sm_entries, 8358 (u_longlong_t)lsos->lsos_current_txg); 8359 lsos->lsos_valid_sm_entries = 0; 8360 lsos->lsos_sm_entries = 0; 8361 lsos->lsos_current_txg = txg; 8362 } 8363 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8364 8365 lsos->lsos_sm_entries++; 8366 lsos->lsos_total_entries++; 8367 8368 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8369 if (!vdev_is_concrete(vd)) 8370 return (0); 8371 8372 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8373 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8374 8375 if (txg < metaslab_unflushed_txg(ms)) 8376 return (0); 8377 lsos->lsos_valid_sm_entries++; 8378 lsos->lsos_valid_entries++; 8379 return (0); 8380 } 8381 8382 static void 8383 dump_log_spacemap_obsolete_stats(spa_t *spa) 8384 { 8385 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8386 return; 8387 8388 log_sm_obsolete_stats_arg_t lsos = {0}; 8389 8390 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8391 8392 iterate_through_spacemap_logs(spa, 8393 log_spacemap_obsolete_stats_cb, &lsos); 8394 8395 /* print stats for latest log */ 8396 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8397 (u_longlong_t)lsos.lsos_valid_sm_entries, 8398 (u_longlong_t)lsos.lsos_sm_entries, 8399 (u_longlong_t)lsos.lsos_current_txg); 8400 8401 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8402 (u_longlong_t)lsos.lsos_valid_entries, 8403 (u_longlong_t)lsos.lsos_total_entries); 8404 } 8405 8406 static void 8407 dump_zpool(spa_t *spa) 8408 { 8409 dsl_pool_t *dp = spa_get_dsl(spa); 8410 int rc = 0; 8411 8412 if (dump_opt['y']) { 8413 livelist_metaslab_validate(spa); 8414 } 8415 8416 if (dump_opt['S']) { 8417 dump_simulated_ddt(spa); 8418 return; 8419 } 8420 8421 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8422 (void) printf("\nCached configuration:\n"); 8423 dump_nvlist(spa->spa_config, 8); 8424 } 8425 8426 if (dump_opt['C']) 8427 dump_config(spa); 8428 8429 if (dump_opt['u']) 8430 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8431 8432 if (dump_opt['D']) 8433 dump_all_ddts(spa); 8434 8435 if (dump_opt['T']) 8436 dump_brt(spa); 8437 8438 if (dump_opt['d'] > 2 || dump_opt['m']) 8439 dump_metaslabs(spa); 8440 if (dump_opt['M']) 8441 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8442 if (dump_opt['d'] > 2 || dump_opt['m']) { 8443 dump_log_spacemaps(spa); 8444 dump_log_spacemap_obsolete_stats(spa); 8445 } 8446 8447 if (dump_opt['d'] || dump_opt['i']) { 8448 spa_feature_t f; 8449 mos_refd_objs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 8450 NULL, 0, 0); 8451 dump_objset(dp->dp_meta_objset); 8452 8453 if (dump_opt['d'] >= 3) { 8454 dsl_pool_t *dp = spa->spa_dsl_pool; 8455 dump_full_bpobj(&spa->spa_deferred_bpobj, 8456 "Deferred frees", 0); 8457 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8458 dump_full_bpobj(&dp->dp_free_bpobj, 8459 "Pool snapshot frees", 0); 8460 } 8461 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8462 ASSERT(spa_feature_is_enabled(spa, 8463 SPA_FEATURE_DEVICE_REMOVAL)); 8464 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8465 "Pool obsolete blocks", 0); 8466 } 8467 8468 if (spa_feature_is_active(spa, 8469 SPA_FEATURE_ASYNC_DESTROY)) { 8470 dump_bptree(spa->spa_meta_objset, 8471 dp->dp_bptree_obj, 8472 "Pool dataset frees"); 8473 } 8474 dump_dtl(spa->spa_root_vdev, 0); 8475 } 8476 8477 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8478 global_feature_count[f] = UINT64_MAX; 8479 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8480 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8481 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8482 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8483 8484 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8485 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8486 8487 if (rc == 0 && !dump_opt['L']) 8488 rc = dump_mos_leaks(spa); 8489 8490 for (f = 0; f < SPA_FEATURES; f++) { 8491 uint64_t refcount; 8492 8493 uint64_t *arr; 8494 if (!(spa_feature_table[f].fi_flags & 8495 ZFEATURE_FLAG_PER_DATASET)) { 8496 if (global_feature_count[f] == UINT64_MAX) 8497 continue; 8498 if (!spa_feature_is_enabled(spa, f)) { 8499 ASSERT0(global_feature_count[f]); 8500 continue; 8501 } 8502 arr = global_feature_count; 8503 } else { 8504 if (!spa_feature_is_enabled(spa, f)) { 8505 ASSERT0(dataset_feature_count[f]); 8506 continue; 8507 } 8508 arr = dataset_feature_count; 8509 } 8510 if (feature_get_refcount(spa, &spa_feature_table[f], 8511 &refcount) == ENOTSUP) 8512 continue; 8513 if (arr[f] != refcount) { 8514 (void) printf("%s feature refcount mismatch: " 8515 "%lld consumers != %lld refcount\n", 8516 spa_feature_table[f].fi_uname, 8517 (longlong_t)arr[f], (longlong_t)refcount); 8518 rc = 2; 8519 } else { 8520 (void) printf("Verified %s feature refcount " 8521 "of %llu is correct\n", 8522 spa_feature_table[f].fi_uname, 8523 (longlong_t)refcount); 8524 } 8525 } 8526 8527 if (rc == 0) 8528 rc = verify_device_removal_feature_counts(spa); 8529 } 8530 8531 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8532 rc = dump_block_stats(spa); 8533 8534 if (rc == 0) 8535 rc = verify_spacemap_refcounts(spa); 8536 8537 if (dump_opt['s']) 8538 show_pool_stats(spa); 8539 8540 if (dump_opt['h']) 8541 dump_history(spa); 8542 8543 if (rc == 0) 8544 rc = verify_checkpoint(spa); 8545 8546 if (rc != 0) { 8547 dump_debug_buffer(); 8548 zdb_exit(rc); 8549 } 8550 } 8551 8552 #define ZDB_FLAG_CHECKSUM 0x0001 8553 #define ZDB_FLAG_DECOMPRESS 0x0002 8554 #define ZDB_FLAG_BSWAP 0x0004 8555 #define ZDB_FLAG_GBH 0x0008 8556 #define ZDB_FLAG_INDIRECT 0x0010 8557 #define ZDB_FLAG_RAW 0x0020 8558 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8559 #define ZDB_FLAG_VERBOSE 0x0080 8560 8561 static int flagbits[256]; 8562 static char flagbitstr[16]; 8563 8564 static void 8565 zdb_print_blkptr(const blkptr_t *bp, int flags) 8566 { 8567 char blkbuf[BP_SPRINTF_LEN]; 8568 8569 if (flags & ZDB_FLAG_BSWAP) 8570 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8571 8572 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8573 (void) printf("%s\n", blkbuf); 8574 } 8575 8576 static void 8577 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8578 { 8579 int i; 8580 8581 for (i = 0; i < nbps; i++) 8582 zdb_print_blkptr(&bp[i], flags); 8583 } 8584 8585 static void 8586 zdb_dump_gbh(void *buf, int flags) 8587 { 8588 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8589 } 8590 8591 static void 8592 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8593 { 8594 if (flags & ZDB_FLAG_BSWAP) 8595 byteswap_uint64_array(buf, size); 8596 VERIFY(write(fileno(stdout), buf, size) == size); 8597 } 8598 8599 static void 8600 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8601 { 8602 uint64_t *d = (uint64_t *)buf; 8603 unsigned nwords = size / sizeof (uint64_t); 8604 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8605 unsigned i, j; 8606 const char *hdr; 8607 char *c; 8608 8609 8610 if (do_bswap) 8611 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8612 else 8613 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8614 8615 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8616 8617 #ifdef _ZFS_LITTLE_ENDIAN 8618 /* correct the endianness */ 8619 do_bswap = !do_bswap; 8620 #endif 8621 for (i = 0; i < nwords; i += 2) { 8622 (void) printf("%06llx: %016llx %016llx ", 8623 (u_longlong_t)(i * sizeof (uint64_t)), 8624 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8625 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8626 8627 c = (char *)&d[i]; 8628 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8629 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8630 (void) printf("\n"); 8631 } 8632 } 8633 8634 /* 8635 * There are two acceptable formats: 8636 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8637 * child[.child]* - For example: 0.1.1 8638 * 8639 * The second form can be used to specify arbitrary vdevs anywhere 8640 * in the hierarchy. For example, in a pool with a mirror of 8641 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8642 */ 8643 static vdev_t * 8644 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8645 { 8646 char *s, *p, *q; 8647 unsigned i; 8648 8649 if (vdev == NULL) 8650 return (NULL); 8651 8652 /* First, assume the x.x.x.x format */ 8653 i = strtoul(path, &s, 10); 8654 if (s == path || (s && *s != '.' && *s != '\0')) 8655 goto name; 8656 if (i >= vdev->vdev_children) 8657 return (NULL); 8658 8659 vdev = vdev->vdev_child[i]; 8660 if (s && *s == '\0') 8661 return (vdev); 8662 return (zdb_vdev_lookup(vdev, s+1)); 8663 8664 name: 8665 for (i = 0; i < vdev->vdev_children; i++) { 8666 vdev_t *vc = vdev->vdev_child[i]; 8667 8668 if (vc->vdev_path == NULL) { 8669 vc = zdb_vdev_lookup(vc, path); 8670 if (vc == NULL) 8671 continue; 8672 else 8673 return (vc); 8674 } 8675 8676 p = strrchr(vc->vdev_path, '/'); 8677 p = p ? p + 1 : vc->vdev_path; 8678 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8679 8680 if (strcmp(vc->vdev_path, path) == 0) 8681 return (vc); 8682 if (strcmp(p, path) == 0) 8683 return (vc); 8684 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8685 return (vc); 8686 } 8687 8688 return (NULL); 8689 } 8690 8691 static int 8692 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8693 { 8694 dsl_dataset_t *ds; 8695 8696 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8697 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8698 NULL, &ds); 8699 if (error != 0) { 8700 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8701 (u_longlong_t)objset_id, strerror(error)); 8702 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8703 return (error); 8704 } 8705 dsl_dataset_name(ds, outstr); 8706 dsl_dataset_rele(ds, NULL); 8707 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8708 return (0); 8709 } 8710 8711 static boolean_t 8712 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8713 { 8714 char *s0, *s1, *tmp = NULL; 8715 8716 if (sizes == NULL) 8717 return (B_FALSE); 8718 8719 s0 = strtok_r(sizes, "/", &tmp); 8720 if (s0 == NULL) 8721 return (B_FALSE); 8722 s1 = strtok_r(NULL, "/", &tmp); 8723 *lsize = strtoull(s0, NULL, 16); 8724 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8725 return (*lsize >= *psize && *psize > 0); 8726 } 8727 8728 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8729 8730 static boolean_t 8731 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8732 int flags, int cfunc, void *lbuf, void *lbuf2) 8733 { 8734 if (flags & ZDB_FLAG_VERBOSE) { 8735 (void) fprintf(stderr, 8736 "Trying %05llx -> %05llx (%s)\n", 8737 (u_longlong_t)psize, 8738 (u_longlong_t)lsize, 8739 zio_compress_table[cfunc].ci_name); 8740 } 8741 8742 /* 8743 * We set lbuf to all zeros and lbuf2 to all 8744 * ones, then decompress to both buffers and 8745 * compare their contents. This way we can 8746 * know if decompression filled exactly to 8747 * lsize or if it left some bytes unwritten. 8748 */ 8749 8750 memset(lbuf, 0x00, lsize); 8751 memset(lbuf2, 0xff, lsize); 8752 8753 abd_t labd, labd2; 8754 abd_get_from_buf_struct(&labd, lbuf, lsize); 8755 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8756 8757 boolean_t ret = B_FALSE; 8758 if (zio_decompress_data(cfunc, pabd, 8759 &labd, psize, lsize, NULL) == 0 && 8760 zio_decompress_data(cfunc, pabd, 8761 &labd2, psize, lsize, NULL) == 0 && 8762 memcmp(lbuf, lbuf2, lsize) == 0) 8763 ret = B_TRUE; 8764 8765 abd_free(&labd2); 8766 abd_free(&labd); 8767 8768 return (ret); 8769 } 8770 8771 static uint64_t 8772 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8773 uint64_t psize, int flags) 8774 { 8775 (void) buf; 8776 uint64_t orig_lsize = lsize; 8777 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8778 boolean_t found = B_FALSE; 8779 /* 8780 * We don't know how the data was compressed, so just try 8781 * every decompress function at every inflated blocksize. 8782 */ 8783 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8784 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8785 int *cfuncp = cfuncs; 8786 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8787 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8788 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8789 ZIO_COMPRESS_MASK(ZLE); 8790 *cfuncp++ = ZIO_COMPRESS_LZ4; 8791 *cfuncp++ = ZIO_COMPRESS_LZJB; 8792 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8793 /* 8794 * Every gzip level has the same decompressor, no need to 8795 * run it 9 times per bruteforce attempt. 8796 */ 8797 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8798 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8799 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8800 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8801 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8802 if (((1ULL << c) & mask) == 0) 8803 *cfuncp++ = c; 8804 8805 /* 8806 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8807 * could take a while and we should let the user know 8808 * we are not stuck. On the other hand, printing progress 8809 * info gets old after a while. User can specify 'v' flag 8810 * to see the progression. 8811 */ 8812 if (lsize == psize) 8813 lsize += SPA_MINBLOCKSIZE; 8814 else 8815 maxlsize = lsize; 8816 8817 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8818 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8819 if (try_decompress_block(pabd, lsize, psize, flags, 8820 *cfuncp, lbuf, lbuf2)) { 8821 found = B_TRUE; 8822 break; 8823 } 8824 } 8825 if (*cfuncp != 0) 8826 break; 8827 } 8828 if (!found && tryzle) { 8829 for (lsize = orig_lsize; lsize <= maxlsize; 8830 lsize += SPA_MINBLOCKSIZE) { 8831 if (try_decompress_block(pabd, lsize, psize, flags, 8832 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8833 *cfuncp = ZIO_COMPRESS_ZLE; 8834 found = B_TRUE; 8835 break; 8836 } 8837 } 8838 } 8839 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8840 8841 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8842 printf("\nZLE decompression was selected. If you " 8843 "suspect the results are wrong,\ntry avoiding ZLE " 8844 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8845 } 8846 8847 return (lsize > maxlsize ? -1 : lsize); 8848 } 8849 8850 /* 8851 * Read a block from a pool and print it out. The syntax of the 8852 * block descriptor is: 8853 * 8854 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8855 * 8856 * pool - The name of the pool you wish to read from 8857 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8858 * offset - offset, in hex, in bytes 8859 * size - Amount of data to read, in hex, in bytes 8860 * flags - A string of characters specifying options 8861 * b: Decode a blkptr at given offset within block 8862 * c: Calculate and display checksums 8863 * d: Decompress data before dumping 8864 * e: Byteswap data before dumping 8865 * g: Display data as a gang block header 8866 * i: Display as an indirect block 8867 * r: Dump raw data to stdout 8868 * v: Verbose 8869 * 8870 */ 8871 static void 8872 zdb_read_block(char *thing, spa_t *spa) 8873 { 8874 blkptr_t blk, *bp = &blk; 8875 dva_t *dva = bp->blk_dva; 8876 int flags = 0; 8877 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8878 zio_t *zio; 8879 vdev_t *vd; 8880 abd_t *pabd; 8881 void *lbuf, *buf; 8882 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8883 const char *vdev, *errmsg = NULL; 8884 int i, len, error; 8885 boolean_t borrowed = B_FALSE, found = B_FALSE; 8886 8887 dup = strdup(thing); 8888 s = strtok_r(dup, ":", &tmp); 8889 vdev = s ?: ""; 8890 s = strtok_r(NULL, ":", &tmp); 8891 offset = strtoull(s ? s : "", NULL, 16); 8892 sizes = strtok_r(NULL, ":", &tmp); 8893 s = strtok_r(NULL, ":", &tmp); 8894 flagstr = strdup(s ?: ""); 8895 8896 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8897 errmsg = "invalid size(s)"; 8898 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8899 errmsg = "size must be a multiple of sector size"; 8900 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8901 errmsg = "offset must be a multiple of sector size"; 8902 if (errmsg) { 8903 (void) printf("Invalid block specifier: %s - %s\n", 8904 thing, errmsg); 8905 goto done; 8906 } 8907 8908 tmp = NULL; 8909 for (s = strtok_r(flagstr, ":", &tmp); 8910 s != NULL; 8911 s = strtok_r(NULL, ":", &tmp)) { 8912 len = strlen(flagstr); 8913 for (i = 0; i < len; i++) { 8914 int bit = flagbits[(uchar_t)flagstr[i]]; 8915 8916 if (bit == 0) { 8917 (void) printf("***Ignoring flag: %c\n", 8918 (uchar_t)flagstr[i]); 8919 continue; 8920 } 8921 found = B_TRUE; 8922 flags |= bit; 8923 8924 p = &flagstr[i + 1]; 8925 if (*p != ':' && *p != '\0') { 8926 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8927 char *end, offstr[8] = { 0 }; 8928 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8929 (nextbit == 0)) { 8930 /* look ahead to isolate the offset */ 8931 while (nextbit == 0 && 8932 strchr(flagbitstr, *p) == NULL) { 8933 offstr[j] = *p; 8934 j++; 8935 if (i + j > strlen(flagstr)) 8936 break; 8937 p++; 8938 nextbit = flagbits[(uchar_t)*p]; 8939 } 8940 blkptr_offset = strtoull(offstr, &end, 8941 16); 8942 i += j; 8943 } else if (nextbit == 0) { 8944 (void) printf("***Ignoring flag arg:" 8945 " '%c'\n", (uchar_t)*p); 8946 } 8947 } 8948 } 8949 } 8950 if (blkptr_offset % sizeof (blkptr_t)) { 8951 printf("Block pointer offset 0x%llx " 8952 "must be divisible by 0x%x\n", 8953 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8954 goto done; 8955 } 8956 if (found == B_FALSE && strlen(flagstr) > 0) { 8957 printf("Invalid flag arg: '%s'\n", flagstr); 8958 goto done; 8959 } 8960 8961 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8962 if (vd == NULL) { 8963 (void) printf("***Invalid vdev: %s\n", vdev); 8964 goto done; 8965 } else { 8966 if (vd->vdev_path) 8967 (void) fprintf(stderr, "Found vdev: %s\n", 8968 vd->vdev_path); 8969 else 8970 (void) fprintf(stderr, "Found vdev type: %s\n", 8971 vd->vdev_ops->vdev_op_type); 8972 } 8973 8974 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8975 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8976 8977 BP_ZERO(bp); 8978 8979 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8980 DVA_SET_OFFSET(&dva[0], offset); 8981 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8982 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8983 8984 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8985 8986 BP_SET_LSIZE(bp, lsize); 8987 BP_SET_PSIZE(bp, psize); 8988 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8989 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8990 BP_SET_TYPE(bp, DMU_OT_NONE); 8991 BP_SET_LEVEL(bp, 0); 8992 BP_SET_DEDUP(bp, 0); 8993 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8994 8995 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8996 zio = zio_root(spa, NULL, NULL, 0); 8997 8998 if (vd == vd->vdev_top) { 8999 /* 9000 * Treat this as a normal block read. 9001 */ 9002 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 9003 ZIO_PRIORITY_SYNC_READ, 9004 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 9005 } else { 9006 /* 9007 * Treat this as a vdev child I/O. 9008 */ 9009 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 9010 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 9011 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9012 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 9013 NULL, NULL)); 9014 } 9015 9016 error = zio_wait(zio); 9017 spa_config_exit(spa, SCL_STATE, FTAG); 9018 9019 if (error) { 9020 (void) printf("Read of %s failed, error: %d\n", thing, error); 9021 goto out; 9022 } 9023 9024 uint64_t orig_lsize = lsize; 9025 buf = lbuf; 9026 if (flags & ZDB_FLAG_DECOMPRESS) { 9027 lsize = zdb_decompress_block(pabd, buf, lbuf, 9028 lsize, psize, flags); 9029 if (lsize == -1) { 9030 (void) printf("Decompress of %s failed\n", thing); 9031 goto out; 9032 } 9033 } else { 9034 buf = abd_borrow_buf_copy(pabd, lsize); 9035 borrowed = B_TRUE; 9036 } 9037 /* 9038 * Try to detect invalid block pointer. If invalid, try 9039 * decompressing. 9040 */ 9041 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 9042 !(flags & ZDB_FLAG_DECOMPRESS)) { 9043 const blkptr_t *b = (const blkptr_t *)(void *) 9044 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9045 if (zfs_blkptr_verify(spa, b, 9046 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 9047 abd_return_buf_copy(pabd, buf, lsize); 9048 borrowed = B_FALSE; 9049 buf = lbuf; 9050 lsize = zdb_decompress_block(pabd, buf, 9051 lbuf, lsize, psize, flags); 9052 b = (const blkptr_t *)(void *) 9053 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9054 if (lsize == -1 || zfs_blkptr_verify(spa, b, 9055 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 9056 printf("invalid block pointer at this DVA\n"); 9057 goto out; 9058 } 9059 } 9060 } 9061 9062 if (flags & ZDB_FLAG_PRINT_BLKPTR) 9063 zdb_print_blkptr((blkptr_t *)(void *) 9064 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 9065 else if (flags & ZDB_FLAG_RAW) 9066 zdb_dump_block_raw(buf, lsize, flags); 9067 else if (flags & ZDB_FLAG_INDIRECT) 9068 zdb_dump_indirect((blkptr_t *)buf, 9069 orig_lsize / sizeof (blkptr_t), flags); 9070 else if (flags & ZDB_FLAG_GBH) 9071 zdb_dump_gbh(buf, flags); 9072 else 9073 zdb_dump_block(thing, buf, lsize, flags); 9074 9075 /* 9076 * If :c was specified, iterate through the checksum table to 9077 * calculate and display each checksum for our specified 9078 * DVA and length. 9079 */ 9080 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9081 !(flags & ZDB_FLAG_GBH)) { 9082 zio_t *czio; 9083 (void) printf("\n"); 9084 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9085 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9086 9087 if ((zio_checksum_table[ck].ci_flags & 9088 ZCHECKSUM_FLAG_EMBEDDED) || 9089 ck == ZIO_CHECKSUM_NOPARITY) { 9090 continue; 9091 } 9092 BP_SET_CHECKSUM(bp, ck); 9093 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9094 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9095 if (vd == vd->vdev_top) { 9096 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9097 NULL, NULL, 9098 ZIO_PRIORITY_SYNC_READ, 9099 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9100 ZIO_FLAG_DONT_RETRY, NULL)); 9101 } else { 9102 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9103 offset, pabd, psize, ZIO_TYPE_READ, 9104 ZIO_PRIORITY_SYNC_READ, 9105 ZIO_FLAG_DONT_PROPAGATE | 9106 ZIO_FLAG_DONT_RETRY | 9107 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9108 ZIO_FLAG_SPECULATIVE | 9109 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9110 } 9111 error = zio_wait(czio); 9112 if (error == 0 || error == ECKSUM) { 9113 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9114 NULL, NULL, 0); 9115 ck_zio->io_offset = 9116 DVA_GET_OFFSET(&bp->blk_dva[0]); 9117 ck_zio->io_bp = bp; 9118 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9119 printf( 9120 "%12s\t" 9121 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9122 zio_checksum_table[ck].ci_name, 9123 (u_longlong_t)bp->blk_cksum.zc_word[0], 9124 (u_longlong_t)bp->blk_cksum.zc_word[1], 9125 (u_longlong_t)bp->blk_cksum.zc_word[2], 9126 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9127 zio_wait(ck_zio); 9128 } else { 9129 printf("error %d reading block\n", error); 9130 } 9131 spa_config_exit(spa, SCL_STATE, FTAG); 9132 } 9133 } 9134 9135 if (borrowed) 9136 abd_return_buf_copy(pabd, buf, lsize); 9137 9138 out: 9139 abd_free(pabd); 9140 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9141 done: 9142 free(flagstr); 9143 free(dup); 9144 } 9145 9146 static void 9147 zdb_embedded_block(char *thing) 9148 { 9149 blkptr_t bp = {{{{0}}}}; 9150 unsigned long long *words = (void *)&bp; 9151 char *buf; 9152 int err; 9153 9154 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9155 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9156 words + 0, words + 1, words + 2, words + 3, 9157 words + 4, words + 5, words + 6, words + 7, 9158 words + 8, words + 9, words + 10, words + 11, 9159 words + 12, words + 13, words + 14, words + 15); 9160 if (err != 16) { 9161 (void) fprintf(stderr, "invalid input format\n"); 9162 zdb_exit(1); 9163 } 9164 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9165 buf = malloc(SPA_MAXBLOCKSIZE); 9166 if (buf == NULL) { 9167 (void) fprintf(stderr, "out of memory\n"); 9168 zdb_exit(1); 9169 } 9170 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9171 if (err != 0) { 9172 (void) fprintf(stderr, "decode failed: %u\n", err); 9173 zdb_exit(1); 9174 } 9175 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9176 free(buf); 9177 } 9178 9179 /* check for valid hex or decimal numeric string */ 9180 static boolean_t 9181 zdb_numeric(char *str) 9182 { 9183 int i = 0, len; 9184 9185 len = strlen(str); 9186 if (len == 0) 9187 return (B_FALSE); 9188 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9189 i = 2; 9190 for (; i < len; i++) { 9191 if (!isxdigit(str[i])) 9192 return (B_FALSE); 9193 } 9194 return (B_TRUE); 9195 } 9196 9197 static int 9198 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9199 zfs_file_info_t *zoi) 9200 { 9201 (void) data, (void) zoi; 9202 9203 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9204 return (ENOENT); 9205 9206 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9207 abort(); 9208 } 9209 9210 int 9211 main(int argc, char **argv) 9212 { 9213 int c; 9214 int dump_all = 1; 9215 int verbose = 0; 9216 int error = 0; 9217 char **searchdirs = NULL; 9218 int nsearch = 0; 9219 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9220 nvlist_t *policy = NULL; 9221 uint64_t max_txg = UINT64_MAX; 9222 int64_t objset_id = -1; 9223 uint64_t object; 9224 int flags = ZFS_IMPORT_MISSING_LOG; 9225 int rewind = ZPOOL_NEVER_REWIND; 9226 char *spa_config_path_env, *objset_str; 9227 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9228 nvlist_t *cfg = NULL; 9229 struct sigaction action; 9230 boolean_t force_import = B_FALSE; 9231 boolean_t config_path_console = B_FALSE; 9232 char pbuf[MAXPATHLEN]; 9233 9234 dprintf_setup(&argc, argv); 9235 9236 /* 9237 * Set up signal handlers, so if we crash due to bad on-disk data we 9238 * can get more info. Unlike ztest, we don't bail out if we can't set 9239 * up signal handlers, because zdb is very useful without them. 9240 */ 9241 action.sa_handler = sig_handler; 9242 sigemptyset(&action.sa_mask); 9243 action.sa_flags = 0; 9244 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9245 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9246 strerror(errno)); 9247 } 9248 if (sigaction(SIGABRT, &action, NULL) < 0) { 9249 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9250 strerror(errno)); 9251 } 9252 9253 /* 9254 * If there is an environment variable SPA_CONFIG_PATH it overrides 9255 * default spa_config_path setting. If -U flag is specified it will 9256 * override this environment variable settings once again. 9257 */ 9258 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9259 if (spa_config_path_env != NULL) 9260 spa_config_path = spa_config_path_env; 9261 9262 /* 9263 * For performance reasons, we set this tunable down. We do so before 9264 * the arg parsing section so that the user can override this value if 9265 * they choose. 9266 */ 9267 zfs_btree_verify_intensity = 3; 9268 9269 struct option long_options[] = { 9270 {"ignore-assertions", no_argument, NULL, 'A'}, 9271 {"block-stats", no_argument, NULL, 'b'}, 9272 {"backup", no_argument, NULL, 'B'}, 9273 {"checksum", no_argument, NULL, 'c'}, 9274 {"config", no_argument, NULL, 'C'}, 9275 {"datasets", no_argument, NULL, 'd'}, 9276 {"dedup-stats", no_argument, NULL, 'D'}, 9277 {"exported", no_argument, NULL, 'e'}, 9278 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9279 {"automatic-rewind", no_argument, NULL, 'F'}, 9280 {"dump-debug-msg", no_argument, NULL, 'G'}, 9281 {"history", no_argument, NULL, 'h'}, 9282 {"intent-logs", no_argument, NULL, 'i'}, 9283 {"inflight", required_argument, NULL, 'I'}, 9284 {"checkpointed-state", no_argument, NULL, 'k'}, 9285 {"key", required_argument, NULL, 'K'}, 9286 {"label", no_argument, NULL, 'l'}, 9287 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9288 {"metaslabs", no_argument, NULL, 'm'}, 9289 {"metaslab-groups", no_argument, NULL, 'M'}, 9290 {"numeric", no_argument, NULL, 'N'}, 9291 {"option", required_argument, NULL, 'o'}, 9292 {"object-lookups", no_argument, NULL, 'O'}, 9293 {"path", required_argument, NULL, 'p'}, 9294 {"parseable", no_argument, NULL, 'P'}, 9295 {"skip-label", no_argument, NULL, 'q'}, 9296 {"copy-object", no_argument, NULL, 'r'}, 9297 {"read-block", no_argument, NULL, 'R'}, 9298 {"io-stats", no_argument, NULL, 's'}, 9299 {"simulate-dedup", no_argument, NULL, 'S'}, 9300 {"txg", required_argument, NULL, 't'}, 9301 {"brt-stats", no_argument, NULL, 'T'}, 9302 {"uberblock", no_argument, NULL, 'u'}, 9303 {"cachefile", required_argument, NULL, 'U'}, 9304 {"verbose", no_argument, NULL, 'v'}, 9305 {"verbatim", no_argument, NULL, 'V'}, 9306 {"dump-blocks", required_argument, NULL, 'x'}, 9307 {"extreme-rewind", no_argument, NULL, 'X'}, 9308 {"all-reconstruction", no_argument, NULL, 'Y'}, 9309 {"livelist", no_argument, NULL, 'y'}, 9310 {"zstd-headers", no_argument, NULL, 'Z'}, 9311 {0, 0, 0, 0} 9312 }; 9313 9314 while ((c = getopt_long(argc, argv, 9315 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9316 long_options, NULL)) != -1) { 9317 switch (c) { 9318 case 'b': 9319 case 'B': 9320 case 'c': 9321 case 'C': 9322 case 'd': 9323 case 'D': 9324 case 'E': 9325 case 'G': 9326 case 'h': 9327 case 'i': 9328 case 'l': 9329 case 'm': 9330 case 'M': 9331 case 'N': 9332 case 'O': 9333 case 'r': 9334 case 'R': 9335 case 's': 9336 case 'S': 9337 case 'T': 9338 case 'u': 9339 case 'y': 9340 case 'Z': 9341 dump_opt[c]++; 9342 dump_all = 0; 9343 break; 9344 case 'A': 9345 case 'e': 9346 case 'F': 9347 case 'k': 9348 case 'L': 9349 case 'P': 9350 case 'q': 9351 case 'X': 9352 dump_opt[c]++; 9353 break; 9354 case 'Y': 9355 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9356 zfs_deadman_enabled = 0; 9357 break; 9358 /* NB: Sort single match options below. */ 9359 case 'I': 9360 max_inflight_bytes = strtoull(optarg, NULL, 0); 9361 if (max_inflight_bytes == 0) { 9362 (void) fprintf(stderr, "maximum number " 9363 "of inflight bytes must be greater " 9364 "than 0\n"); 9365 usage(); 9366 } 9367 break; 9368 case 'K': 9369 dump_opt[c]++; 9370 key_material = strdup(optarg); 9371 /* redact key material in process table */ 9372 while (*optarg != '\0') { *optarg++ = '*'; } 9373 break; 9374 case 'o': 9375 error = set_global_var(optarg); 9376 if (error != 0) 9377 usage(); 9378 break; 9379 case 'p': 9380 if (searchdirs == NULL) { 9381 searchdirs = umem_alloc(sizeof (char *), 9382 UMEM_NOFAIL); 9383 } else { 9384 char **tmp = umem_alloc((nsearch + 1) * 9385 sizeof (char *), UMEM_NOFAIL); 9386 memcpy(tmp, searchdirs, nsearch * 9387 sizeof (char *)); 9388 umem_free(searchdirs, 9389 nsearch * sizeof (char *)); 9390 searchdirs = tmp; 9391 } 9392 searchdirs[nsearch++] = optarg; 9393 break; 9394 case 't': 9395 max_txg = strtoull(optarg, NULL, 0); 9396 if (max_txg < TXG_INITIAL) { 9397 (void) fprintf(stderr, "incorrect txg " 9398 "specified: %s\n", optarg); 9399 usage(); 9400 } 9401 break; 9402 case 'U': 9403 config_path_console = B_TRUE; 9404 spa_config_path = optarg; 9405 if (spa_config_path[0] != '/') { 9406 (void) fprintf(stderr, 9407 "cachefile must be an absolute path " 9408 "(i.e. start with a slash)\n"); 9409 usage(); 9410 } 9411 break; 9412 case 'v': 9413 verbose++; 9414 break; 9415 case 'V': 9416 flags = ZFS_IMPORT_VERBATIM; 9417 break; 9418 case 'x': 9419 vn_dumpdir = optarg; 9420 break; 9421 default: 9422 usage(); 9423 break; 9424 } 9425 } 9426 9427 if (!dump_opt['e'] && searchdirs != NULL) { 9428 (void) fprintf(stderr, "-p option requires use of -e\n"); 9429 usage(); 9430 } 9431 #if defined(_LP64) 9432 /* 9433 * ZDB does not typically re-read blocks; therefore limit the ARC 9434 * to 256 MB, which can be used entirely for metadata. 9435 */ 9436 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9437 zfs_arc_max = 256 * 1024 * 1024; 9438 #endif 9439 9440 /* 9441 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9442 * "zdb -b" uses traversal prefetch which uses async reads. 9443 * For good performance, let several of them be active at once. 9444 */ 9445 zfs_vdev_async_read_max_active = 10; 9446 9447 /* 9448 * Disable reference tracking for better performance. 9449 */ 9450 reference_tracking_enable = B_FALSE; 9451 9452 /* 9453 * Do not fail spa_load when spa_load_verify fails. This is needed 9454 * to load non-idle pools. 9455 */ 9456 spa_load_verify_dryrun = B_TRUE; 9457 9458 /* 9459 * ZDB should have ability to read spacemaps. 9460 */ 9461 spa_mode_readable_spacemaps = B_TRUE; 9462 9463 if (dump_all) 9464 verbose = MAX(verbose, 1); 9465 9466 for (c = 0; c < 256; c++) { 9467 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9468 dump_opt[c] = 1; 9469 if (dump_opt[c]) 9470 dump_opt[c] += verbose; 9471 } 9472 9473 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9474 zfs_recover = (dump_opt['A'] > 1); 9475 9476 argc -= optind; 9477 argv += optind; 9478 if (argc < 2 && dump_opt['R']) 9479 usage(); 9480 9481 target = argv[0]; 9482 9483 /* 9484 * Automate cachefile 9485 */ 9486 if (!spa_config_path_env && !config_path_console && target && 9487 libzfs_core_init() == 0) { 9488 char *pname = strdup(target); 9489 const char *value; 9490 nvlist_t *pnvl = NULL; 9491 nvlist_t *vnvl = NULL; 9492 9493 if (strpbrk(pname, "/@") != NULL) 9494 *strpbrk(pname, "/@") = '\0'; 9495 9496 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9497 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9498 &vnvl) == 0) { 9499 value = fnvlist_lookup_string(vnvl, 9500 ZPROP_VALUE); 9501 } else { 9502 value = "-"; 9503 } 9504 strlcpy(pbuf, value, sizeof (pbuf)); 9505 if (pbuf[0] != '\0') { 9506 if (pbuf[0] == '/') { 9507 if (access(pbuf, F_OK) == 0) 9508 spa_config_path = pbuf; 9509 else 9510 force_import = B_TRUE; 9511 } else if ((strcmp(pbuf, "-") == 0 && 9512 access(ZPOOL_CACHE, F_OK) != 0) || 9513 strcmp(pbuf, "none") == 0) { 9514 force_import = B_TRUE; 9515 } 9516 } 9517 nvlist_free(vnvl); 9518 } 9519 9520 free(pname); 9521 nvlist_free(pnvl); 9522 libzfs_core_fini(); 9523 } 9524 9525 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9526 kernel_init(SPA_MODE_READ); 9527 kernel_init_done = B_TRUE; 9528 9529 if (dump_opt['E']) { 9530 if (argc != 1) 9531 usage(); 9532 zdb_embedded_block(argv[0]); 9533 error = 0; 9534 goto fini; 9535 } 9536 9537 if (argc < 1) { 9538 if (!dump_opt['e'] && dump_opt['C']) { 9539 dump_cachefile(spa_config_path); 9540 error = 0; 9541 goto fini; 9542 } 9543 usage(); 9544 } 9545 9546 if (dump_opt['l']) { 9547 error = dump_label(argv[0]); 9548 goto fini; 9549 } 9550 9551 if (dump_opt['X'] || dump_opt['F']) 9552 rewind = ZPOOL_DO_REWIND | 9553 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9554 9555 /* -N implies -d */ 9556 if (dump_opt['N'] && dump_opt['d'] == 0) 9557 dump_opt['d'] = dump_opt['N']; 9558 9559 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9560 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9561 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9562 fatal("internal error: %s", strerror(ENOMEM)); 9563 9564 error = 0; 9565 9566 if (strpbrk(target, "/@") != NULL) { 9567 size_t targetlen; 9568 9569 target_pool = strdup(target); 9570 *strpbrk(target_pool, "/@") = '\0'; 9571 9572 target_is_spa = B_FALSE; 9573 targetlen = strlen(target); 9574 if (targetlen && target[targetlen - 1] == '/') 9575 target[targetlen - 1] = '\0'; 9576 9577 /* 9578 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9579 * To disambiguate tank/100, consider the 100 as objsetID 9580 * if -N was given, otherwise 100 is an objsetID iff 9581 * tank/100 as a named dataset fails on lookup. 9582 */ 9583 objset_str = strchr(target, '/'); 9584 if (objset_str && strlen(objset_str) > 1 && 9585 zdb_numeric(objset_str + 1)) { 9586 char *endptr; 9587 errno = 0; 9588 objset_str++; 9589 objset_id = strtoull(objset_str, &endptr, 0); 9590 /* dataset 0 is the same as opening the pool */ 9591 if (errno == 0 && endptr != objset_str && 9592 objset_id != 0) { 9593 if (dump_opt['N']) 9594 dataset_lookup = B_TRUE; 9595 } 9596 /* normal dataset name not an objset ID */ 9597 if (endptr == objset_str) { 9598 objset_id = -1; 9599 } 9600 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9601 dump_opt['N']) { 9602 printf("Supply a numeric objset ID with -N\n"); 9603 error = 1; 9604 goto fini; 9605 } 9606 } else { 9607 target_pool = target; 9608 } 9609 9610 if (dump_opt['e'] || force_import) { 9611 importargs_t args = { 0 }; 9612 9613 /* 9614 * If path is not provided, search in /dev 9615 */ 9616 if (searchdirs == NULL) { 9617 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9618 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9619 } 9620 9621 args.paths = nsearch; 9622 args.path = searchdirs; 9623 args.can_be_active = B_TRUE; 9624 9625 libpc_handle_t lpch = { 9626 .lpc_lib_handle = NULL, 9627 .lpc_ops = &libzpool_config_ops, 9628 .lpc_printerr = B_TRUE 9629 }; 9630 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9631 9632 if (error == 0) { 9633 9634 if (nvlist_add_nvlist(cfg, 9635 ZPOOL_LOAD_POLICY, policy) != 0) { 9636 fatal("can't open '%s': %s", 9637 target, strerror(ENOMEM)); 9638 } 9639 9640 if (dump_opt['C'] > 1) { 9641 (void) printf("\nConfiguration for import:\n"); 9642 dump_nvlist(cfg, 8); 9643 } 9644 9645 /* 9646 * Disable the activity check to allow examination of 9647 * active pools. 9648 */ 9649 error = spa_import(target_pool, cfg, NULL, 9650 flags | ZFS_IMPORT_SKIP_MMP); 9651 } 9652 } 9653 9654 if (searchdirs != NULL) { 9655 umem_free(searchdirs, nsearch * sizeof (char *)); 9656 searchdirs = NULL; 9657 } 9658 9659 /* 9660 * We need to make sure to process -O option or call 9661 * dump_path after the -e option has been processed, 9662 * which imports the pool to the namespace if it's 9663 * not in the cachefile. 9664 */ 9665 if (dump_opt['O']) { 9666 if (argc != 2) 9667 usage(); 9668 dump_opt['v'] = verbose + 3; 9669 error = dump_path(argv[0], argv[1], NULL); 9670 goto fini; 9671 } 9672 9673 if (dump_opt['r']) { 9674 target_is_spa = B_FALSE; 9675 if (argc != 3) 9676 usage(); 9677 dump_opt['v'] = verbose; 9678 error = dump_path(argv[0], argv[1], &object); 9679 if (error != 0) 9680 fatal("internal error: %s", strerror(error)); 9681 } 9682 9683 /* 9684 * import_checkpointed_state makes the assumption that the 9685 * target pool that we pass it is already part of the spa 9686 * namespace. Because of that we need to make sure to call 9687 * it always after the -e option has been processed, which 9688 * imports the pool to the namespace if it's not in the 9689 * cachefile. 9690 */ 9691 char *checkpoint_pool = NULL; 9692 char *checkpoint_target = NULL; 9693 if (dump_opt['k']) { 9694 checkpoint_pool = import_checkpointed_state(target, cfg, 9695 &checkpoint_target); 9696 9697 if (checkpoint_target != NULL) 9698 target = checkpoint_target; 9699 } 9700 9701 if (cfg != NULL) { 9702 nvlist_free(cfg); 9703 cfg = NULL; 9704 } 9705 9706 if (target_pool != target) 9707 free(target_pool); 9708 9709 if (error == 0) { 9710 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9711 ASSERT(checkpoint_pool != NULL); 9712 ASSERT(checkpoint_target == NULL); 9713 9714 error = spa_open(checkpoint_pool, &spa, FTAG); 9715 if (error != 0) { 9716 fatal("Tried to open pool \"%s\" but " 9717 "spa_open() failed with error %d\n", 9718 checkpoint_pool, error); 9719 } 9720 9721 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9722 objset_id == 0) { 9723 zdb_set_skip_mmp(target); 9724 error = spa_open_rewind(target, &spa, FTAG, policy, 9725 NULL); 9726 if (error) { 9727 /* 9728 * If we're missing the log device then 9729 * try opening the pool after clearing the 9730 * log state. 9731 */ 9732 mutex_enter(&spa_namespace_lock); 9733 if ((spa = spa_lookup(target)) != NULL && 9734 spa->spa_log_state == SPA_LOG_MISSING) { 9735 spa->spa_log_state = SPA_LOG_CLEAR; 9736 error = 0; 9737 } 9738 mutex_exit(&spa_namespace_lock); 9739 9740 if (!error) { 9741 error = spa_open_rewind(target, &spa, 9742 FTAG, policy, NULL); 9743 } 9744 } 9745 } else if (strpbrk(target, "#") != NULL) { 9746 dsl_pool_t *dp; 9747 error = dsl_pool_hold(target, FTAG, &dp); 9748 if (error != 0) { 9749 fatal("can't dump '%s': %s", target, 9750 strerror(error)); 9751 } 9752 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9753 dsl_pool_rele(dp, FTAG); 9754 if (error != 0) { 9755 fatal("can't dump '%s': %s", target, 9756 strerror(error)); 9757 } 9758 goto fini; 9759 } else { 9760 target_pool = strdup(target); 9761 if (strpbrk(target, "/@") != NULL) 9762 *strpbrk(target_pool, "/@") = '\0'; 9763 9764 zdb_set_skip_mmp(target); 9765 /* 9766 * If -N was supplied, the user has indicated that 9767 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9768 * we first assume that the dataset string is the 9769 * dataset name. If dmu_objset_hold fails with the 9770 * dataset string, and we have an objset_id, retry the 9771 * lookup with the objsetID. 9772 */ 9773 boolean_t retry = B_TRUE; 9774 retry_lookup: 9775 if (dataset_lookup == B_TRUE) { 9776 /* 9777 * Use the supplied id to get the name 9778 * for open_objset. 9779 */ 9780 error = spa_open(target_pool, &spa, FTAG); 9781 if (error == 0) { 9782 error = name_from_objset_id(spa, 9783 objset_id, dsname); 9784 spa_close(spa, FTAG); 9785 if (error == 0) 9786 target = dsname; 9787 } 9788 } 9789 if (error == 0) { 9790 if (objset_id > 0 && retry) { 9791 int err = dmu_objset_hold(target, FTAG, 9792 &os); 9793 if (err) { 9794 dataset_lookup = B_TRUE; 9795 retry = B_FALSE; 9796 goto retry_lookup; 9797 } else { 9798 dmu_objset_rele(os, FTAG); 9799 } 9800 } 9801 error = open_objset(target, FTAG, &os); 9802 } 9803 if (error == 0) 9804 spa = dmu_objset_spa(os); 9805 free(target_pool); 9806 } 9807 } 9808 nvlist_free(policy); 9809 9810 if (error) 9811 fatal("can't open '%s': %s", target, strerror(error)); 9812 9813 /* 9814 * Set the pool failure mode to panic in order to prevent the pool 9815 * from suspending. A suspended I/O will have no way to resume and 9816 * can prevent the zdb(8) command from terminating as expected. 9817 */ 9818 if (spa != NULL) 9819 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9820 9821 argv++; 9822 argc--; 9823 if (dump_opt['r']) { 9824 error = zdb_copy_object(os, object, argv[1]); 9825 } else if (!dump_opt['R']) { 9826 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9827 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9828 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9829 flagbits['z'] = ZOR_FLAG_ZAP; 9830 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9831 9832 if (argc > 0 && dump_opt['d']) { 9833 zopt_object_args = argc; 9834 zopt_object_ranges = calloc(zopt_object_args, 9835 sizeof (zopt_object_range_t)); 9836 for (unsigned i = 0; i < zopt_object_args; i++) { 9837 int err; 9838 const char *msg = NULL; 9839 9840 err = parse_object_range(argv[i], 9841 &zopt_object_ranges[i], &msg); 9842 if (err != 0) 9843 fatal("Bad object or range: '%s': %s\n", 9844 argv[i], msg ?: ""); 9845 } 9846 } else if (argc > 0 && dump_opt['m']) { 9847 zopt_metaslab_args = argc; 9848 zopt_metaslab = calloc(zopt_metaslab_args, 9849 sizeof (uint64_t)); 9850 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9851 errno = 0; 9852 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9853 if (zopt_metaslab[i] == 0 && errno != 0) 9854 fatal("bad number %s: %s", argv[i], 9855 strerror(errno)); 9856 } 9857 } 9858 if (dump_opt['B']) { 9859 dump_backup(target, objset_id, 9860 argc > 0 ? argv[0] : NULL); 9861 } else if (os != NULL) { 9862 dump_objset(os); 9863 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9864 dump_objset(spa->spa_meta_objset); 9865 } else { 9866 dump_zpool(spa); 9867 } 9868 } else { 9869 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9870 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9871 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9872 flagbits['e'] = ZDB_FLAG_BSWAP; 9873 flagbits['g'] = ZDB_FLAG_GBH; 9874 flagbits['i'] = ZDB_FLAG_INDIRECT; 9875 flagbits['r'] = ZDB_FLAG_RAW; 9876 flagbits['v'] = ZDB_FLAG_VERBOSE; 9877 9878 for (int i = 0; i < argc; i++) 9879 zdb_read_block(argv[i], spa); 9880 } 9881 9882 if (dump_opt['k']) { 9883 free(checkpoint_pool); 9884 if (!target_is_spa) 9885 free(checkpoint_target); 9886 } 9887 9888 fini: 9889 if (spa != NULL) 9890 zdb_ddt_cleanup(spa); 9891 9892 if (os != NULL) { 9893 close_objset(os, FTAG); 9894 } else if (spa != NULL) { 9895 spa_close(spa, FTAG); 9896 } 9897 9898 fuid_table_destroy(); 9899 9900 dump_debug_buffer(); 9901 9902 if (kernel_init_done) 9903 kernel_fini(); 9904 9905 return (error); 9906 } 9907