1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, 2024, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, attrp) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010" PRIu64 "x = ", 1135 *(uint64_t *)attrp->za_name); 1136 else 1137 (void) printf("\t\t%s = ", attrp->za_name); 1138 1139 if (attrp->za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attrp->za_num_integers * 1144 attrp->za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attrp->za_name, 1, 1149 attrp->za_integer_length, attrp->za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attrp->za_name, 1153 attrp->za_integer_length, attrp->za_num_integers, 1154 prop); 1155 1156 if (attrp->za_integer_length == 1 && !key64) { 1157 if (strcmp(attrp->za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attrp->za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attrp->za_name, 1164 DMU_POOL_CHECKSUM_SALT) == 0) { 1165 uint8_t *u8 = prop; 1166 1167 for (i = 0; i < attrp->za_num_integers; i++) { 1168 (void) printf("%02x", u8[i]); 1169 } 1170 } else { 1171 (void) printf("%s", (char *)prop); 1172 } 1173 } else { 1174 for (i = 0; i < attrp->za_num_integers; i++) { 1175 switch (attrp->za_integer_length) { 1176 case 1: 1177 (void) printf("%u ", 1178 ((uint8_t *)prop)[i]); 1179 break; 1180 case 2: 1181 (void) printf("%u ", 1182 ((uint16_t *)prop)[i]); 1183 break; 1184 case 4: 1185 (void) printf("%u ", 1186 ((uint32_t *)prop)[i]); 1187 break; 1188 case 8: 1189 (void) printf("%lld ", 1190 (u_longlong_t)((int64_t *)prop)[i]); 1191 break; 1192 } 1193 } 1194 } 1195 (void) printf("\n"); 1196 umem_free(prop, 1197 attrp->za_num_integers * attrp->za_integer_length); 1198 } 1199 zap_cursor_fini(&zc); 1200 zap_attribute_free(attrp); 1201 } 1202 1203 static void 1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1205 { 1206 bpobj_phys_t *bpop = data; 1207 uint64_t i; 1208 char bytes[32], comp[32], uncomp[32]; 1209 1210 /* make sure the output won't get truncated */ 1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1214 1215 if (bpop == NULL) 1216 return; 1217 1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1221 1222 (void) printf("\t\tnum_blkptrs = %llu\n", 1223 (u_longlong_t)bpop->bpo_num_blkptrs); 1224 (void) printf("\t\tbytes = %s\n", bytes); 1225 if (size >= BPOBJ_SIZE_V1) { 1226 (void) printf("\t\tcomp = %s\n", comp); 1227 (void) printf("\t\tuncomp = %s\n", uncomp); 1228 } 1229 if (size >= BPOBJ_SIZE_V2) { 1230 (void) printf("\t\tsubobjs = %llu\n", 1231 (u_longlong_t)bpop->bpo_subobjs); 1232 (void) printf("\t\tnum_subobjs = %llu\n", 1233 (u_longlong_t)bpop->bpo_num_subobjs); 1234 } 1235 if (size >= sizeof (*bpop)) { 1236 (void) printf("\t\tnum_freed = %llu\n", 1237 (u_longlong_t)bpop->bpo_num_freed); 1238 } 1239 1240 if (dump_opt['d'] < 5) 1241 return; 1242 1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1244 char blkbuf[BP_SPRINTF_LEN]; 1245 blkptr_t bp; 1246 1247 int err = dmu_read(os, object, 1248 i * sizeof (bp), sizeof (bp), &bp, 0); 1249 if (err != 0) { 1250 (void) printf("got error %u from dmu_read\n", err); 1251 break; 1252 } 1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1254 BP_GET_FREE(&bp)); 1255 (void) printf("\t%s\n", blkbuf); 1256 } 1257 } 1258 1259 static void 1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1261 { 1262 (void) data, (void) size; 1263 dmu_object_info_t doi; 1264 int64_t i; 1265 1266 VERIFY0(dmu_object_info(os, object, &doi)); 1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1268 1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1270 if (err != 0) { 1271 (void) printf("got error %u from dmu_read\n", err); 1272 kmem_free(subobjs, doi.doi_max_offset); 1273 return; 1274 } 1275 1276 int64_t last_nonzero = -1; 1277 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1278 if (subobjs[i] != 0) 1279 last_nonzero = i; 1280 } 1281 1282 for (i = 0; i <= last_nonzero; i++) { 1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1284 } 1285 kmem_free(subobjs, doi.doi_max_offset); 1286 } 1287 1288 static void 1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1290 { 1291 (void) data, (void) size; 1292 dump_zap_stats(os, object); 1293 /* contents are printed elsewhere, properly decoded */ 1294 } 1295 1296 static void 1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1298 { 1299 (void) data, (void) size; 1300 zap_cursor_t zc; 1301 zap_attribute_t *attrp = zap_attribute_alloc(); 1302 1303 dump_zap_stats(os, object); 1304 (void) printf("\n"); 1305 1306 for (zap_cursor_init(&zc, os, object); 1307 zap_cursor_retrieve(&zc, attrp) == 0; 1308 zap_cursor_advance(&zc)) { 1309 (void) printf("\t\t%s = ", attrp->za_name); 1310 if (attrp->za_num_integers == 0) { 1311 (void) printf("\n"); 1312 continue; 1313 } 1314 (void) printf(" %llx : [%d:%d:%d]\n", 1315 (u_longlong_t)attrp->za_first_integer, 1316 (int)ATTR_LENGTH(attrp->za_first_integer), 1317 (int)ATTR_BSWAP(attrp->za_first_integer), 1318 (int)ATTR_NUM(attrp->za_first_integer)); 1319 } 1320 zap_cursor_fini(&zc); 1321 zap_attribute_free(attrp); 1322 } 1323 1324 static void 1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1326 { 1327 (void) data, (void) size; 1328 zap_cursor_t zc; 1329 zap_attribute_t *attrp = zap_attribute_alloc(); 1330 uint16_t *layout_attrs; 1331 unsigned i; 1332 1333 dump_zap_stats(os, object); 1334 (void) printf("\n"); 1335 1336 for (zap_cursor_init(&zc, os, object); 1337 zap_cursor_retrieve(&zc, attrp) == 0; 1338 zap_cursor_advance(&zc)) { 1339 (void) printf("\t\t%s = [", attrp->za_name); 1340 if (attrp->za_num_integers == 0) { 1341 (void) printf("\n"); 1342 continue; 1343 } 1344 1345 VERIFY(attrp->za_integer_length == 2); 1346 layout_attrs = umem_zalloc(attrp->za_num_integers * 1347 attrp->za_integer_length, UMEM_NOFAIL); 1348 1349 VERIFY(zap_lookup(os, object, attrp->za_name, 1350 attrp->za_integer_length, 1351 attrp->za_num_integers, layout_attrs) == 0); 1352 1353 for (i = 0; i != attrp->za_num_integers; i++) 1354 (void) printf(" %d ", (int)layout_attrs[i]); 1355 (void) printf("]\n"); 1356 umem_free(layout_attrs, 1357 attrp->za_num_integers * attrp->za_integer_length); 1358 } 1359 zap_cursor_fini(&zc); 1360 zap_attribute_free(attrp); 1361 } 1362 1363 static void 1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1365 { 1366 (void) data, (void) size; 1367 zap_cursor_t zc; 1368 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1369 const char *typenames[] = { 1370 /* 0 */ "not specified", 1371 /* 1 */ "FIFO", 1372 /* 2 */ "Character Device", 1373 /* 3 */ "3 (invalid)", 1374 /* 4 */ "Directory", 1375 /* 5 */ "5 (invalid)", 1376 /* 6 */ "Block Device", 1377 /* 7 */ "7 (invalid)", 1378 /* 8 */ "Regular File", 1379 /* 9 */ "9 (invalid)", 1380 /* 10 */ "Symbolic Link", 1381 /* 11 */ "11 (invalid)", 1382 /* 12 */ "Socket", 1383 /* 13 */ "Door", 1384 /* 14 */ "Event Port", 1385 /* 15 */ "15 (invalid)", 1386 }; 1387 1388 dump_zap_stats(os, object); 1389 (void) printf("\n"); 1390 1391 for (zap_cursor_init(&zc, os, object); 1392 zap_cursor_retrieve(&zc, attrp) == 0; 1393 zap_cursor_advance(&zc)) { 1394 (void) printf("\t\t%s = %lld (type: %s)\n", 1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1397 } 1398 zap_cursor_fini(&zc); 1399 zap_attribute_free(attrp); 1400 } 1401 1402 static int 1403 get_dtl_refcount(vdev_t *vd) 1404 { 1405 int refcount = 0; 1406 1407 if (vd->vdev_ops->vdev_op_leaf) { 1408 space_map_t *sm = vd->vdev_dtl_sm; 1409 1410 if (sm != NULL && 1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1412 return (1); 1413 return (0); 1414 } 1415 1416 for (unsigned c = 0; c < vd->vdev_children; c++) 1417 refcount += get_dtl_refcount(vd->vdev_child[c]); 1418 return (refcount); 1419 } 1420 1421 static int 1422 get_metaslab_refcount(vdev_t *vd) 1423 { 1424 int refcount = 0; 1425 1426 if (vd->vdev_top == vd) { 1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1429 1430 if (sm != NULL && 1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1432 refcount++; 1433 } 1434 } 1435 for (unsigned c = 0; c < vd->vdev_children; c++) 1436 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1437 1438 return (refcount); 1439 } 1440 1441 static int 1442 get_obsolete_refcount(vdev_t *vd) 1443 { 1444 uint64_t obsolete_sm_object; 1445 int refcount = 0; 1446 1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1449 dmu_object_info_t doi; 1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1451 obsolete_sm_object, &doi)); 1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1453 refcount++; 1454 } 1455 } else { 1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1457 ASSERT3U(obsolete_sm_object, ==, 0); 1458 } 1459 for (unsigned c = 0; c < vd->vdev_children; c++) { 1460 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1461 } 1462 1463 return (refcount); 1464 } 1465 1466 static int 1467 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1468 { 1469 uint64_t prev_obj = 1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1471 if (prev_obj != 0) { 1472 dmu_object_info_t doi; 1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1475 return (1); 1476 } 1477 } 1478 return (0); 1479 } 1480 1481 static int 1482 get_checkpoint_refcount(vdev_t *vd) 1483 { 1484 int refcount = 0; 1485 1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1487 zap_contains(spa_meta_objset(vd->vdev_spa), 1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1489 refcount++; 1490 1491 for (uint64_t c = 0; c < vd->vdev_children; c++) 1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1493 1494 return (refcount); 1495 } 1496 1497 static int 1498 get_log_spacemap_refcount(spa_t *spa) 1499 { 1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1501 } 1502 1503 static int 1504 verify_spacemap_refcounts(spa_t *spa) 1505 { 1506 uint64_t expected_refcount = 0; 1507 uint64_t actual_refcount; 1508 1509 (void) feature_get_refcount(spa, 1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1511 &expected_refcount); 1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1517 actual_refcount += get_log_spacemap_refcount(spa); 1518 1519 if (expected_refcount != actual_refcount) { 1520 (void) printf("space map refcount mismatch: expected %lld != " 1521 "actual %lld\n", 1522 (longlong_t)expected_refcount, 1523 (longlong_t)actual_refcount); 1524 return (2); 1525 } 1526 return (0); 1527 } 1528 1529 static void 1530 dump_spacemap(objset_t *os, space_map_t *sm) 1531 { 1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1533 "INVALID", "INVALID", "INVALID", "INVALID" }; 1534 1535 if (sm == NULL) 1536 return; 1537 1538 (void) printf("space map object %llu:\n", 1539 (longlong_t)sm->sm_object); 1540 (void) printf(" smp_length = 0x%llx\n", 1541 (longlong_t)sm->sm_phys->smp_length); 1542 (void) printf(" smp_alloc = 0x%llx\n", 1543 (longlong_t)sm->sm_phys->smp_alloc); 1544 1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1546 return; 1547 1548 /* 1549 * Print out the freelist entries in both encoded and decoded form. 1550 */ 1551 uint8_t mapshift = sm->sm_shift; 1552 int64_t alloc = 0; 1553 uint64_t word, entry_id = 0; 1554 for (uint64_t offset = 0; offset < space_map_length(sm); 1555 offset += sizeof (word)) { 1556 1557 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1558 sizeof (word), &word, DMU_READ_PREFETCH)); 1559 1560 if (sm_entry_is_debug(word)) { 1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1563 if (de_txg == 0) { 1564 (void) printf( 1565 "\t [%6llu] PADDING\n", 1566 (u_longlong_t)entry_id); 1567 } else { 1568 (void) printf( 1569 "\t [%6llu] %s: txg %llu pass %llu\n", 1570 (u_longlong_t)entry_id, 1571 ddata[SM_DEBUG_ACTION_DECODE(word)], 1572 (u_longlong_t)de_txg, 1573 (u_longlong_t)de_sync_pass); 1574 } 1575 entry_id++; 1576 continue; 1577 } 1578 1579 uint8_t words; 1580 char entry_type; 1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1582 1583 if (sm_entry_is_single_word(word)) { 1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1585 'A' : 'F'; 1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1587 sm->sm_start; 1588 entry_run = SM_RUN_DECODE(word) << mapshift; 1589 words = 1; 1590 } else { 1591 /* it is a two-word entry so we read another word */ 1592 ASSERT(sm_entry_is_double_word(word)); 1593 1594 uint64_t extra_word; 1595 offset += sizeof (extra_word); 1596 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1597 sizeof (extra_word), &extra_word, 1598 DMU_READ_PREFETCH)); 1599 1600 ASSERT3U(offset, <=, space_map_length(sm)); 1601 1602 entry_run = SM2_RUN_DECODE(word) << mapshift; 1603 entry_vdev = SM2_VDEV_DECODE(word); 1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1605 'A' : 'F'; 1606 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1607 mapshift) + sm->sm_start; 1608 words = 2; 1609 } 1610 1611 (void) printf("\t [%6llu] %c range:" 1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1613 (u_longlong_t)entry_id, 1614 entry_type, (u_longlong_t)entry_off, 1615 (u_longlong_t)(entry_off + entry_run), 1616 (u_longlong_t)entry_run, 1617 (u_longlong_t)entry_vdev, words); 1618 1619 if (entry_type == 'A') 1620 alloc += entry_run; 1621 else 1622 alloc -= entry_run; 1623 entry_id++; 1624 } 1625 if (alloc != space_map_allocated(sm)) { 1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1627 "with space map summary (%lld)\n", 1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1629 } 1630 } 1631 1632 static void 1633 dump_metaslab_stats(metaslab_t *msp) 1634 { 1635 char maxbuf[32]; 1636 range_tree_t *rt = msp->ms_allocatable; 1637 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1638 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1639 1640 /* max sure nicenum has enough space */ 1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1642 1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1644 1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1647 "freepct", free_pct); 1648 (void) printf("\tIn-memory histogram:\n"); 1649 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1650 } 1651 1652 static void 1653 dump_metaslab(metaslab_t *msp) 1654 { 1655 vdev_t *vd = msp->ms_group->mg_vd; 1656 spa_t *spa = vd->vdev_spa; 1657 space_map_t *sm = msp->ms_sm; 1658 char freebuf[32]; 1659 1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1661 sizeof (freebuf)); 1662 1663 (void) printf( 1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1666 (u_longlong_t)space_map_object(sm), freebuf); 1667 1668 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1669 mutex_enter(&msp->ms_lock); 1670 VERIFY0(metaslab_load(msp)); 1671 range_tree_stat_verify(msp->ms_allocatable); 1672 dump_metaslab_stats(msp); 1673 metaslab_unload(msp); 1674 mutex_exit(&msp->ms_lock); 1675 } 1676 1677 if (dump_opt['m'] > 1 && sm != NULL && 1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1679 /* 1680 * The space map histogram represents free space in chunks 1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1682 */ 1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1684 (u_longlong_t)msp->ms_fragmentation); 1685 dump_histogram(sm->sm_phys->smp_histogram, 1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1687 } 1688 1689 if (vd->vdev_ops == &vdev_draid_ops) 1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1691 else 1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1693 1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1695 1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1698 (u_longlong_t)metaslab_unflushed_txg(msp)); 1699 } 1700 } 1701 1702 static void 1703 print_vdev_metaslab_header(vdev_t *vd) 1704 { 1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1706 const char *bias_str = ""; 1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1708 bias_str = VDEV_ALLOC_BIAS_LOG; 1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1712 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1713 } 1714 1715 uint64_t ms_flush_data_obj = 0; 1716 if (vd->vdev_top_zap != 0) { 1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1719 sizeof (uint64_t), 1, &ms_flush_data_obj); 1720 if (error != ENOENT) { 1721 ASSERT0(error); 1722 } 1723 } 1724 1725 (void) printf("\tvdev %10llu %s", 1726 (u_longlong_t)vd->vdev_id, bias_str); 1727 1728 if (ms_flush_data_obj != 0) { 1729 (void) printf(" ms_unflushed_phys object %llu", 1730 (u_longlong_t)ms_flush_data_obj); 1731 } 1732 1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1735 "offset", "spacemap", "free"); 1736 (void) printf("\t%15s %19s %15s %12s\n", 1737 "---------------", "-------------------", 1738 "---------------", "------------"); 1739 } 1740 1741 static void 1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1743 { 1744 vdev_t *rvd = spa->spa_root_vdev; 1745 metaslab_class_t *mc = spa_normal_class(spa); 1746 metaslab_class_t *smc = spa_special_class(spa); 1747 uint64_t fragmentation; 1748 1749 metaslab_class_histogram_verify(mc); 1750 1751 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1752 vdev_t *tvd = rvd->vdev_child[c]; 1753 metaslab_group_t *mg = tvd->vdev_mg; 1754 1755 if (mg == NULL || (mg->mg_class != mc && 1756 (!show_special || mg->mg_class != smc))) 1757 continue; 1758 1759 metaslab_group_histogram_verify(mg); 1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1761 1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1763 "fragmentation", 1764 (u_longlong_t)tvd->vdev_id, 1765 (u_longlong_t)tvd->vdev_ms_count); 1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1767 (void) printf("%3s\n", "-"); 1768 } else { 1769 (void) printf("%3llu%%\n", 1770 (u_longlong_t)mg->mg_fragmentation); 1771 } 1772 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1773 } 1774 1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1776 fragmentation = metaslab_class_fragmentation(mc); 1777 if (fragmentation == ZFS_FRAG_INVALID) 1778 (void) printf("\t%3s\n", "-"); 1779 else 1780 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1781 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1782 } 1783 1784 static void 1785 print_vdev_indirect(vdev_t *vd) 1786 { 1787 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1788 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1789 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1790 1791 if (vim == NULL) { 1792 ASSERT3P(vib, ==, NULL); 1793 return; 1794 } 1795 1796 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1797 vic->vic_mapping_object); 1798 ASSERT3U(vdev_indirect_births_object(vib), ==, 1799 vic->vic_births_object); 1800 1801 (void) printf("indirect births obj %llu:\n", 1802 (longlong_t)vic->vic_births_object); 1803 (void) printf(" vib_count = %llu\n", 1804 (longlong_t)vdev_indirect_births_count(vib)); 1805 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1806 vdev_indirect_birth_entry_phys_t *cur_vibe = 1807 &vib->vib_entries[i]; 1808 (void) printf("\toffset %llx -> txg %llu\n", 1809 (longlong_t)cur_vibe->vibe_offset, 1810 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1811 } 1812 (void) printf("\n"); 1813 1814 (void) printf("indirect mapping obj %llu:\n", 1815 (longlong_t)vic->vic_mapping_object); 1816 (void) printf(" vim_max_offset = 0x%llx\n", 1817 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1818 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1819 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1820 (void) printf(" vim_count = %llu\n", 1821 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1822 1823 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1824 return; 1825 1826 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1827 1828 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1829 vdev_indirect_mapping_entry_phys_t *vimep = 1830 &vim->vim_entries[i]; 1831 (void) printf("\t<%llx:%llx:%llx> -> " 1832 "<%llx:%llx:%llx> (%x obsolete)\n", 1833 (longlong_t)vd->vdev_id, 1834 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1835 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1836 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1837 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1838 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1839 counts[i]); 1840 } 1841 (void) printf("\n"); 1842 1843 uint64_t obsolete_sm_object; 1844 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1845 if (obsolete_sm_object != 0) { 1846 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1847 (void) printf("obsolete space map object %llu:\n", 1848 (u_longlong_t)obsolete_sm_object); 1849 ASSERT(vd->vdev_obsolete_sm != NULL); 1850 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1851 obsolete_sm_object); 1852 dump_spacemap(mos, vd->vdev_obsolete_sm); 1853 (void) printf("\n"); 1854 } 1855 } 1856 1857 static void 1858 dump_metaslabs(spa_t *spa) 1859 { 1860 vdev_t *vd, *rvd = spa->spa_root_vdev; 1861 uint64_t m, c = 0, children = rvd->vdev_children; 1862 1863 (void) printf("\nMetaslabs:\n"); 1864 1865 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1866 c = zopt_metaslab[0]; 1867 1868 if (c >= children) 1869 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1870 1871 if (zopt_metaslab_args > 1) { 1872 vd = rvd->vdev_child[c]; 1873 print_vdev_metaslab_header(vd); 1874 1875 for (m = 1; m < zopt_metaslab_args; m++) { 1876 if (zopt_metaslab[m] < vd->vdev_ms_count) 1877 dump_metaslab( 1878 vd->vdev_ms[zopt_metaslab[m]]); 1879 else 1880 (void) fprintf(stderr, "bad metaslab " 1881 "number %llu\n", 1882 (u_longlong_t)zopt_metaslab[m]); 1883 } 1884 (void) printf("\n"); 1885 return; 1886 } 1887 children = c + 1; 1888 } 1889 for (; c < children; c++) { 1890 vd = rvd->vdev_child[c]; 1891 print_vdev_metaslab_header(vd); 1892 1893 print_vdev_indirect(vd); 1894 1895 for (m = 0; m < vd->vdev_ms_count; m++) 1896 dump_metaslab(vd->vdev_ms[m]); 1897 (void) printf("\n"); 1898 } 1899 } 1900 1901 static void 1902 dump_log_spacemaps(spa_t *spa) 1903 { 1904 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1905 return; 1906 1907 (void) printf("\nLog Space Maps in Pool:\n"); 1908 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1909 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1910 space_map_t *sm = NULL; 1911 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1912 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1913 1914 (void) printf("Log Spacemap object %llu txg %llu\n", 1915 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1916 dump_spacemap(spa->spa_meta_objset, sm); 1917 space_map_close(sm); 1918 } 1919 (void) printf("\n"); 1920 } 1921 1922 static void 1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1924 uint64_t index) 1925 { 1926 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1927 char blkbuf[BP_SPRINTF_LEN]; 1928 blkptr_t blk; 1929 int p; 1930 1931 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1932 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1933 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1934 1935 if (ddt_phys_birth(ddp, v) == 0) 1936 continue; 1937 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1938 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1939 (void) printf("index %llx refcnt %llu phys %d %s\n", 1940 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1941 p, blkbuf); 1942 } 1943 } 1944 1945 static void 1946 dump_dedup_ratio(const ddt_stat_t *dds) 1947 { 1948 double rL, rP, rD, D, dedup, compress, copies; 1949 1950 if (dds->dds_blocks == 0) 1951 return; 1952 1953 rL = (double)dds->dds_ref_lsize; 1954 rP = (double)dds->dds_ref_psize; 1955 rD = (double)dds->dds_ref_dsize; 1956 D = (double)dds->dds_dsize; 1957 1958 dedup = rD / D; 1959 compress = rL / rP; 1960 copies = rD / rP; 1961 1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1963 "dedup * compress / copies = %.2f\n\n", 1964 dedup, compress, copies, dedup * compress / copies); 1965 } 1966 1967 static void 1968 dump_ddt_log(ddt_t *ddt) 1969 { 1970 for (int n = 0; n < 2; n++) { 1971 ddt_log_t *ddl = &ddt->ddt_log[n]; 1972 1973 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1974 if (count == 0) 1975 continue; 1976 1977 printf(DMU_POOL_DDT_LOG ": %" PRIu64 " log entries\n", 1978 zio_checksum_table[ddt->ddt_checksum].ci_name, n, count); 1979 1980 if (dump_opt['D'] < 4) 1981 continue; 1982 1983 ddt_lightweight_entry_t ddlwe; 1984 uint64_t index = 0; 1985 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 1986 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 1987 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 1988 dump_ddt_entry(ddt, &ddlwe, index++); 1989 } 1990 } 1991 } 1992 1993 static void 1994 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1995 { 1996 char name[DDT_NAMELEN]; 1997 ddt_lightweight_entry_t ddlwe; 1998 uint64_t walk = 0; 1999 dmu_object_info_t doi; 2000 uint64_t count, dspace, mspace; 2001 int error; 2002 2003 error = ddt_object_info(ddt, type, class, &doi); 2004 2005 if (error == ENOENT) 2006 return; 2007 ASSERT(error == 0); 2008 2009 error = ddt_object_count(ddt, type, class, &count); 2010 ASSERT(error == 0); 2011 if (count == 0) 2012 return; 2013 2014 dspace = doi.doi_physical_blocks_512 << 9; 2015 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2016 2017 ddt_object_name(ddt, type, class, name); 2018 2019 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2020 name, 2021 (u_longlong_t)count, 2022 (u_longlong_t)dspace, 2023 (u_longlong_t)mspace); 2024 2025 if (dump_opt['D'] < 3) 2026 return; 2027 2028 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2029 2030 if (dump_opt['D'] < 4) 2031 return; 2032 2033 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2034 return; 2035 2036 (void) printf("%s contents:\n\n", name); 2037 2038 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2039 dump_ddt_entry(ddt, &ddlwe, walk); 2040 2041 ASSERT3U(error, ==, ENOENT); 2042 2043 (void) printf("\n"); 2044 } 2045 2046 static void 2047 dump_all_ddts(spa_t *spa) 2048 { 2049 ddt_histogram_t ddh_total = {{{0}}}; 2050 ddt_stat_t dds_total = {0}; 2051 2052 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2053 ddt_t *ddt = spa->spa_ddt[c]; 2054 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2055 continue; 2056 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2057 for (ddt_class_t class = 0; class < DDT_CLASSES; 2058 class++) { 2059 dump_ddt(ddt, type, class); 2060 } 2061 } 2062 dump_ddt_log(ddt); 2063 } 2064 2065 ddt_get_dedup_stats(spa, &dds_total); 2066 2067 if (dds_total.dds_blocks == 0) { 2068 (void) printf("All DDTs are empty\n"); 2069 return; 2070 } 2071 2072 (void) printf("\n"); 2073 2074 if (dump_opt['D'] > 1) { 2075 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2076 ddt_get_dedup_histogram(spa, &ddh_total); 2077 zpool_dump_ddt(&dds_total, &ddh_total); 2078 } 2079 2080 dump_dedup_ratio(&dds_total); 2081 2082 /* 2083 * Dump a histogram of unique class entry age 2084 */ 2085 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2086 ddt_age_histo_t histogram; 2087 2088 (void) printf("DDT walk unique, building age histogram...\n"); 2089 ddt_prune_walk(spa, 0, &histogram); 2090 2091 /* 2092 * print out histogram for unique entry class birth 2093 */ 2094 if (histogram.dah_entries > 0) { 2095 (void) printf("%5s %9s %4s\n", 2096 "age", "blocks", "amnt"); 2097 (void) printf("%5s %9s %4s\n", 2098 "-----", "---------", "----"); 2099 for (int i = 0; i < HIST_BINS; i++) { 2100 (void) printf("%5d %9d %4d%%\n", 1 << i, 2101 (int)histogram.dah_age_histo[i], 2102 (int)((histogram.dah_age_histo[i] * 100) / 2103 histogram.dah_entries)); 2104 } 2105 } 2106 } 2107 } 2108 2109 static void 2110 dump_brt(spa_t *spa) 2111 { 2112 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2113 printf("BRT: unsupported on this pool\n"); 2114 return; 2115 } 2116 2117 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2118 printf("BRT: empty\n"); 2119 return; 2120 } 2121 2122 brt_t *brt = spa->spa_brt; 2123 VERIFY(brt); 2124 2125 char count[32], used[32], saved[32]; 2126 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2127 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2128 uint64_t ratio = brt_get_ratio(spa); 2129 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2130 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2131 2132 if (dump_opt['T'] < 2) 2133 return; 2134 2135 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2136 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2137 if (brtvd == NULL) 2138 continue; 2139 2140 if (!brtvd->bv_initiated) { 2141 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2142 continue; 2143 } 2144 2145 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2146 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2147 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2148 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2149 vdevid, count, used, saved); 2150 } 2151 2152 if (dump_opt['T'] < 3) 2153 return; 2154 2155 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2156 boolean_t do_histo = dump_opt['T'] == 3; 2157 2158 char dva[64]; 2159 2160 if (!do_histo) 2161 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2162 2163 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2164 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2165 if (brtvd == NULL || !brtvd->bv_initiated) 2166 continue; 2167 2168 uint64_t counts[64] = {}; 2169 2170 zap_cursor_t zc; 2171 zap_attribute_t *za = zap_attribute_alloc(); 2172 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2173 zap_cursor_retrieve(&zc, za) == 0; 2174 zap_cursor_advance(&zc)) { 2175 uint64_t refcnt; 2176 VERIFY0(zap_lookup_uint64(brt->brt_mos, 2177 brtvd->bv_mos_entries, 2178 (const uint64_t *)za->za_name, 1, 2179 za->za_integer_length, za->za_num_integers, 2180 &refcnt)); 2181 2182 if (do_histo) 2183 counts[highbit64(refcnt)]++; 2184 else { 2185 uint64_t offset = 2186 *(const uint64_t *)za->za_name; 2187 2188 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2189 vdevid, (u_longlong_t)offset); 2190 printf("%-16s %-10llu\n", dva, 2191 (u_longlong_t)refcnt); 2192 } 2193 } 2194 zap_cursor_fini(&zc); 2195 zap_attribute_free(za); 2196 2197 if (do_histo) { 2198 printf("\nBRT: vdev %" PRIu64 2199 ": DVAs with 2^n refcnts:\n", vdevid); 2200 dump_histogram(counts, 64, 0); 2201 } 2202 } 2203 } 2204 2205 static void 2206 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2207 { 2208 char *prefix = arg; 2209 2210 (void) printf("%s [%llu,%llu) length %llu\n", 2211 prefix, 2212 (u_longlong_t)start, 2213 (u_longlong_t)(start + size), 2214 (u_longlong_t)(size)); 2215 } 2216 2217 static void 2218 dump_dtl(vdev_t *vd, int indent) 2219 { 2220 spa_t *spa = vd->vdev_spa; 2221 boolean_t required; 2222 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2223 "outage" }; 2224 char prefix[256]; 2225 2226 spa_vdev_state_enter(spa, SCL_NONE); 2227 required = vdev_dtl_required(vd); 2228 (void) spa_vdev_state_exit(spa, NULL, 0); 2229 2230 if (indent == 0) 2231 (void) printf("\nDirty time logs:\n\n"); 2232 2233 (void) printf("\t%*s%s [%s]\n", indent, "", 2234 vd->vdev_path ? vd->vdev_path : 2235 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2236 required ? "DTL-required" : "DTL-expendable"); 2237 2238 for (int t = 0; t < DTL_TYPES; t++) { 2239 range_tree_t *rt = vd->vdev_dtl[t]; 2240 if (range_tree_space(rt) == 0) 2241 continue; 2242 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2243 indent + 2, "", name[t]); 2244 range_tree_walk(rt, dump_dtl_seg, prefix); 2245 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2246 dump_spacemap(spa->spa_meta_objset, 2247 vd->vdev_dtl_sm); 2248 } 2249 2250 for (unsigned c = 0; c < vd->vdev_children; c++) 2251 dump_dtl(vd->vdev_child[c], indent + 4); 2252 } 2253 2254 static void 2255 dump_history(spa_t *spa) 2256 { 2257 nvlist_t **events = NULL; 2258 char *buf; 2259 uint64_t resid, len, off = 0; 2260 uint_t num = 0; 2261 int error; 2262 char tbuf[30]; 2263 2264 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2265 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2266 __func__); 2267 return; 2268 } 2269 2270 do { 2271 len = SPA_OLD_MAXBLOCKSIZE; 2272 2273 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2274 (void) fprintf(stderr, "Unable to read history: " 2275 "error %d\n", error); 2276 free(buf); 2277 return; 2278 } 2279 2280 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2281 break; 2282 2283 off -= resid; 2284 } while (len != 0); 2285 2286 (void) printf("\nHistory:\n"); 2287 for (unsigned i = 0; i < num; i++) { 2288 boolean_t printed = B_FALSE; 2289 2290 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2291 time_t tsec; 2292 struct tm t; 2293 2294 tsec = fnvlist_lookup_uint64(events[i], 2295 ZPOOL_HIST_TIME); 2296 (void) localtime_r(&tsec, &t); 2297 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2298 } else { 2299 tbuf[0] = '\0'; 2300 } 2301 2302 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2303 (void) printf("%s %s\n", tbuf, 2304 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2305 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2306 uint64_t ievent; 2307 2308 ievent = fnvlist_lookup_uint64(events[i], 2309 ZPOOL_HIST_INT_EVENT); 2310 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2311 goto next; 2312 2313 (void) printf(" %s [internal %s txg:%ju] %s\n", 2314 tbuf, 2315 zfs_history_event_names[ievent], 2316 fnvlist_lookup_uint64(events[i], 2317 ZPOOL_HIST_TXG), 2318 fnvlist_lookup_string(events[i], 2319 ZPOOL_HIST_INT_STR)); 2320 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2321 (void) printf("%s [txg:%ju] %s", tbuf, 2322 fnvlist_lookup_uint64(events[i], 2323 ZPOOL_HIST_TXG), 2324 fnvlist_lookup_string(events[i], 2325 ZPOOL_HIST_INT_NAME)); 2326 2327 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2328 (void) printf(" %s (%llu)", 2329 fnvlist_lookup_string(events[i], 2330 ZPOOL_HIST_DSNAME), 2331 (u_longlong_t)fnvlist_lookup_uint64( 2332 events[i], 2333 ZPOOL_HIST_DSID)); 2334 } 2335 2336 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2337 ZPOOL_HIST_INT_STR)); 2338 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2339 (void) printf("%s ioctl %s\n", tbuf, 2340 fnvlist_lookup_string(events[i], 2341 ZPOOL_HIST_IOCTL)); 2342 2343 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2344 (void) printf(" input:\n"); 2345 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2346 ZPOOL_HIST_INPUT_NVL), 8); 2347 } 2348 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2349 (void) printf(" output:\n"); 2350 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2351 ZPOOL_HIST_OUTPUT_NVL), 8); 2352 } 2353 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2354 (void) printf(" errno: %lld\n", 2355 (longlong_t)fnvlist_lookup_int64(events[i], 2356 ZPOOL_HIST_ERRNO)); 2357 } 2358 } else { 2359 goto next; 2360 } 2361 2362 printed = B_TRUE; 2363 next: 2364 if (dump_opt['h'] > 1) { 2365 if (!printed) 2366 (void) printf("unrecognized record:\n"); 2367 dump_nvlist(events[i], 2); 2368 } 2369 } 2370 free(buf); 2371 } 2372 2373 static void 2374 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2375 { 2376 (void) os, (void) object, (void) data, (void) size; 2377 } 2378 2379 static uint64_t 2380 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2381 const zbookmark_phys_t *zb) 2382 { 2383 if (dnp == NULL) { 2384 ASSERT(zb->zb_level < 0); 2385 if (zb->zb_object == 0) 2386 return (zb->zb_blkid); 2387 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2388 } 2389 2390 ASSERT(zb->zb_level >= 0); 2391 2392 return ((zb->zb_blkid << 2393 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2394 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2395 } 2396 2397 static void 2398 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2399 const blkptr_t *bp) 2400 { 2401 static abd_t *pabd = NULL; 2402 void *buf; 2403 zio_t *zio; 2404 zfs_zstdhdr_t zstd_hdr; 2405 int error; 2406 2407 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2408 return; 2409 2410 if (BP_IS_HOLE(bp)) 2411 return; 2412 2413 if (BP_IS_EMBEDDED(bp)) { 2414 buf = malloc(SPA_MAXBLOCKSIZE); 2415 if (buf == NULL) { 2416 (void) fprintf(stderr, "out of memory\n"); 2417 zdb_exit(1); 2418 } 2419 decode_embedded_bp_compressed(bp, buf); 2420 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2421 free(buf); 2422 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2423 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2424 (void) snprintf(blkbuf + strlen(blkbuf), 2425 buflen - strlen(blkbuf), 2426 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2427 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2428 zfs_get_hdrlevel(&zstd_hdr)); 2429 return; 2430 } 2431 2432 if (!pabd) 2433 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2434 zio = zio_root(spa, NULL, NULL, 0); 2435 2436 /* Decrypt but don't decompress so we can read the compression header */ 2437 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2438 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2439 NULL)); 2440 error = zio_wait(zio); 2441 if (error) { 2442 (void) fprintf(stderr, "read failed: %d\n", error); 2443 return; 2444 } 2445 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2446 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2447 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2448 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2449 2450 (void) snprintf(blkbuf + strlen(blkbuf), 2451 buflen - strlen(blkbuf), 2452 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2453 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2454 zfs_get_hdrlevel(&zstd_hdr)); 2455 2456 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2457 } 2458 2459 static void 2460 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2461 boolean_t bp_freed) 2462 { 2463 const dva_t *dva = bp->blk_dva; 2464 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2465 int i; 2466 2467 if (dump_opt['b'] >= 6) { 2468 snprintf_blkptr(blkbuf, buflen, bp); 2469 if (bp_freed) { 2470 (void) snprintf(blkbuf + strlen(blkbuf), 2471 buflen - strlen(blkbuf), " %s", "FREE"); 2472 } 2473 return; 2474 } 2475 2476 if (BP_IS_EMBEDDED(bp)) { 2477 (void) sprintf(blkbuf, 2478 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2479 (int)BPE_GET_ETYPE(bp), 2480 (u_longlong_t)BPE_GET_LSIZE(bp), 2481 (u_longlong_t)BPE_GET_PSIZE(bp), 2482 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2483 return; 2484 } 2485 2486 blkbuf[0] = '\0'; 2487 2488 for (i = 0; i < ndvas; i++) 2489 (void) snprintf(blkbuf + strlen(blkbuf), 2490 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2491 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2492 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2493 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2494 2495 if (BP_IS_HOLE(bp)) { 2496 (void) snprintf(blkbuf + strlen(blkbuf), 2497 buflen - strlen(blkbuf), 2498 "%llxL B=%llu", 2499 (u_longlong_t)BP_GET_LSIZE(bp), 2500 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2501 } else { 2502 (void) snprintf(blkbuf + strlen(blkbuf), 2503 buflen - strlen(blkbuf), 2504 "%llxL/%llxP F=%llu B=%llu/%llu", 2505 (u_longlong_t)BP_GET_LSIZE(bp), 2506 (u_longlong_t)BP_GET_PSIZE(bp), 2507 (u_longlong_t)BP_GET_FILL(bp), 2508 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2509 (u_longlong_t)BP_GET_BIRTH(bp)); 2510 if (bp_freed) 2511 (void) snprintf(blkbuf + strlen(blkbuf), 2512 buflen - strlen(blkbuf), " %s", "FREE"); 2513 (void) snprintf(blkbuf + strlen(blkbuf), 2514 buflen - strlen(blkbuf), 2515 " cksum=%016llx:%016llx:%016llx:%016llx", 2516 (u_longlong_t)bp->blk_cksum.zc_word[0], 2517 (u_longlong_t)bp->blk_cksum.zc_word[1], 2518 (u_longlong_t)bp->blk_cksum.zc_word[2], 2519 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2520 } 2521 } 2522 2523 static void 2524 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2525 const dnode_phys_t *dnp) 2526 { 2527 char blkbuf[BP_SPRINTF_LEN]; 2528 int l; 2529 2530 if (!BP_IS_EMBEDDED(bp)) { 2531 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2532 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2533 } 2534 2535 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2536 2537 ASSERT(zb->zb_level >= 0); 2538 2539 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2540 if (l == zb->zb_level) { 2541 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2542 } else { 2543 (void) printf(" "); 2544 } 2545 } 2546 2547 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2548 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2549 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2550 (void) printf("%s\n", blkbuf); 2551 } 2552 2553 static int 2554 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2555 blkptr_t *bp, const zbookmark_phys_t *zb) 2556 { 2557 int err = 0; 2558 2559 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2560 return (0); 2561 2562 print_indirect(spa, bp, zb, dnp); 2563 2564 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2565 arc_flags_t flags = ARC_FLAG_WAIT; 2566 int i; 2567 blkptr_t *cbp; 2568 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2569 arc_buf_t *buf; 2570 uint64_t fill = 0; 2571 ASSERT(!BP_IS_REDACTED(bp)); 2572 2573 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2574 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2575 if (err) 2576 return (err); 2577 ASSERT(buf->b_data); 2578 2579 /* recursively visit blocks below this */ 2580 cbp = buf->b_data; 2581 for (i = 0; i < epb; i++, cbp++) { 2582 zbookmark_phys_t czb; 2583 2584 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2585 zb->zb_level - 1, 2586 zb->zb_blkid * epb + i); 2587 err = visit_indirect(spa, dnp, cbp, &czb); 2588 if (err) 2589 break; 2590 fill += BP_GET_FILL(cbp); 2591 } 2592 if (!err) 2593 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2594 arc_buf_destroy(buf, &buf); 2595 } 2596 2597 return (err); 2598 } 2599 2600 static void 2601 dump_indirect(dnode_t *dn) 2602 { 2603 dnode_phys_t *dnp = dn->dn_phys; 2604 zbookmark_phys_t czb; 2605 2606 (void) printf("Indirect blocks:\n"); 2607 2608 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2609 dn->dn_object, dnp->dn_nlevels - 1, 0); 2610 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2611 czb.zb_blkid = j; 2612 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2613 &dnp->dn_blkptr[j], &czb); 2614 } 2615 2616 (void) printf("\n"); 2617 } 2618 2619 static void 2620 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2621 { 2622 (void) os, (void) object; 2623 dsl_dir_phys_t *dd = data; 2624 time_t crtime; 2625 char nice[32]; 2626 2627 /* make sure nicenum has enough space */ 2628 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2629 2630 if (dd == NULL) 2631 return; 2632 2633 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2634 2635 crtime = dd->dd_creation_time; 2636 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2637 (void) printf("\t\thead_dataset_obj = %llu\n", 2638 (u_longlong_t)dd->dd_head_dataset_obj); 2639 (void) printf("\t\tparent_dir_obj = %llu\n", 2640 (u_longlong_t)dd->dd_parent_obj); 2641 (void) printf("\t\torigin_obj = %llu\n", 2642 (u_longlong_t)dd->dd_origin_obj); 2643 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2644 (u_longlong_t)dd->dd_child_dir_zapobj); 2645 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2646 (void) printf("\t\tused_bytes = %s\n", nice); 2647 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2648 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2649 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2650 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2651 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2652 (void) printf("\t\tquota = %s\n", nice); 2653 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2654 (void) printf("\t\treserved = %s\n", nice); 2655 (void) printf("\t\tprops_zapobj = %llu\n", 2656 (u_longlong_t)dd->dd_props_zapobj); 2657 (void) printf("\t\tdeleg_zapobj = %llu\n", 2658 (u_longlong_t)dd->dd_deleg_zapobj); 2659 (void) printf("\t\tflags = %llx\n", 2660 (u_longlong_t)dd->dd_flags); 2661 2662 #define DO(which) \ 2663 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2664 sizeof (nice)); \ 2665 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2666 DO(HEAD); 2667 DO(SNAP); 2668 DO(CHILD); 2669 DO(CHILD_RSRV); 2670 DO(REFRSRV); 2671 #undef DO 2672 (void) printf("\t\tclones = %llu\n", 2673 (u_longlong_t)dd->dd_clones); 2674 } 2675 2676 static void 2677 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2678 { 2679 (void) os, (void) object; 2680 dsl_dataset_phys_t *ds = data; 2681 time_t crtime; 2682 char used[32], compressed[32], uncompressed[32], unique[32]; 2683 char blkbuf[BP_SPRINTF_LEN]; 2684 2685 /* make sure nicenum has enough space */ 2686 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2687 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2688 "compressed truncated"); 2689 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2690 "uncompressed truncated"); 2691 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2692 2693 if (ds == NULL) 2694 return; 2695 2696 ASSERT(size == sizeof (*ds)); 2697 crtime = ds->ds_creation_time; 2698 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2699 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2700 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2701 sizeof (uncompressed)); 2702 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2703 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2704 2705 (void) printf("\t\tdir_obj = %llu\n", 2706 (u_longlong_t)ds->ds_dir_obj); 2707 (void) printf("\t\tprev_snap_obj = %llu\n", 2708 (u_longlong_t)ds->ds_prev_snap_obj); 2709 (void) printf("\t\tprev_snap_txg = %llu\n", 2710 (u_longlong_t)ds->ds_prev_snap_txg); 2711 (void) printf("\t\tnext_snap_obj = %llu\n", 2712 (u_longlong_t)ds->ds_next_snap_obj); 2713 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2714 (u_longlong_t)ds->ds_snapnames_zapobj); 2715 (void) printf("\t\tnum_children = %llu\n", 2716 (u_longlong_t)ds->ds_num_children); 2717 (void) printf("\t\tuserrefs_obj = %llu\n", 2718 (u_longlong_t)ds->ds_userrefs_obj); 2719 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2720 (void) printf("\t\tcreation_txg = %llu\n", 2721 (u_longlong_t)ds->ds_creation_txg); 2722 (void) printf("\t\tdeadlist_obj = %llu\n", 2723 (u_longlong_t)ds->ds_deadlist_obj); 2724 (void) printf("\t\tused_bytes = %s\n", used); 2725 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2726 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2727 (void) printf("\t\tunique = %s\n", unique); 2728 (void) printf("\t\tfsid_guid = %llu\n", 2729 (u_longlong_t)ds->ds_fsid_guid); 2730 (void) printf("\t\tguid = %llu\n", 2731 (u_longlong_t)ds->ds_guid); 2732 (void) printf("\t\tflags = %llx\n", 2733 (u_longlong_t)ds->ds_flags); 2734 (void) printf("\t\tnext_clones_obj = %llu\n", 2735 (u_longlong_t)ds->ds_next_clones_obj); 2736 (void) printf("\t\tprops_obj = %llu\n", 2737 (u_longlong_t)ds->ds_props_obj); 2738 (void) printf("\t\tbp = %s\n", blkbuf); 2739 } 2740 2741 static int 2742 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2743 { 2744 (void) arg, (void) tx; 2745 char blkbuf[BP_SPRINTF_LEN]; 2746 2747 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2748 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2749 (void) printf("\t%s\n", blkbuf); 2750 } 2751 return (0); 2752 } 2753 2754 static void 2755 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2756 { 2757 char bytes[32]; 2758 bptree_phys_t *bt; 2759 dmu_buf_t *db; 2760 2761 /* make sure nicenum has enough space */ 2762 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2763 2764 if (dump_opt['d'] < 3) 2765 return; 2766 2767 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2768 bt = db->db_data; 2769 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2770 (void) printf("\n %s: %llu datasets, %s\n", 2771 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2772 dmu_buf_rele(db, FTAG); 2773 2774 if (dump_opt['d'] < 5) 2775 return; 2776 2777 (void) printf("\n"); 2778 2779 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2780 } 2781 2782 static int 2783 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2784 { 2785 (void) arg, (void) tx; 2786 char blkbuf[BP_SPRINTF_LEN]; 2787 2788 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2789 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2790 (void) printf("\t%s\n", blkbuf); 2791 return (0); 2792 } 2793 2794 static void 2795 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2796 { 2797 char bytes[32]; 2798 char comp[32]; 2799 char uncomp[32]; 2800 uint64_t i; 2801 2802 /* make sure nicenum has enough space */ 2803 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2804 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2805 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2806 2807 if (dump_opt['d'] < 3) 2808 return; 2809 2810 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2811 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2812 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2813 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2814 if (bpo->bpo_havefreed) { 2815 (void) printf(" %*s: object %llu, %llu local " 2816 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2817 "%s (%s/%s comp)\n", 2818 indent * 8, name, 2819 (u_longlong_t)bpo->bpo_object, 2820 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2821 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2822 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2823 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2824 bytes, comp, uncomp); 2825 } else { 2826 (void) printf(" %*s: object %llu, %llu local " 2827 "blkptrs, %llu subobjs in object %llu, " 2828 "%s (%s/%s comp)\n", 2829 indent * 8, name, 2830 (u_longlong_t)bpo->bpo_object, 2831 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2832 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2833 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2834 bytes, comp, uncomp); 2835 } 2836 2837 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2838 uint64_t subobj; 2839 bpobj_t subbpo; 2840 int error; 2841 VERIFY0(dmu_read(bpo->bpo_os, 2842 bpo->bpo_phys->bpo_subobjs, 2843 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2844 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2845 if (error != 0) { 2846 (void) printf("ERROR %u while trying to open " 2847 "subobj id %llu\n", 2848 error, (u_longlong_t)subobj); 2849 continue; 2850 } 2851 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2852 bpobj_close(&subbpo); 2853 } 2854 } else { 2855 if (bpo->bpo_havefreed) { 2856 (void) printf(" %*s: object %llu, %llu blkptrs, " 2857 "%llu freed, %s\n", 2858 indent * 8, name, 2859 (u_longlong_t)bpo->bpo_object, 2860 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2861 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2862 bytes); 2863 } else { 2864 (void) printf(" %*s: object %llu, %llu blkptrs, " 2865 "%s\n", 2866 indent * 8, name, 2867 (u_longlong_t)bpo->bpo_object, 2868 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2869 bytes); 2870 } 2871 } 2872 2873 if (dump_opt['d'] < 5) 2874 return; 2875 2876 2877 if (indent == 0) { 2878 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2879 (void) printf("\n"); 2880 } 2881 } 2882 2883 static int 2884 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2885 boolean_t print_list) 2886 { 2887 int err = 0; 2888 zfs_bookmark_phys_t prop; 2889 objset_t *mos = dp->dp_spa->spa_meta_objset; 2890 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2891 2892 if (err != 0) { 2893 return (err); 2894 } 2895 2896 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2897 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2898 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2899 (u_longlong_t)prop.zbm_creation_txg, 2900 (u_longlong_t)prop.zbm_creation_time, 2901 (u_longlong_t)prop.zbm_redaction_obj); 2902 2903 IMPLY(print_list, print_redact); 2904 if (!print_redact || prop.zbm_redaction_obj == 0) 2905 return (0); 2906 2907 redaction_list_t *rl; 2908 VERIFY0(dsl_redaction_list_hold_obj(dp, 2909 prop.zbm_redaction_obj, FTAG, &rl)); 2910 2911 redaction_list_phys_t *rlp = rl->rl_phys; 2912 (void) printf("\tRedacted:\n\t\tProgress: "); 2913 if (rlp->rlp_last_object != UINT64_MAX || 2914 rlp->rlp_last_blkid != UINT64_MAX) { 2915 (void) printf("%llu %llu (incomplete)\n", 2916 (u_longlong_t)rlp->rlp_last_object, 2917 (u_longlong_t)rlp->rlp_last_blkid); 2918 } else { 2919 (void) printf("complete\n"); 2920 } 2921 (void) printf("\t\tSnapshots: ["); 2922 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2923 if (i > 0) 2924 (void) printf(", "); 2925 (void) printf("%0llu", 2926 (u_longlong_t)rlp->rlp_snaps[i]); 2927 } 2928 (void) printf("]\n\t\tLength: %llu\n", 2929 (u_longlong_t)rlp->rlp_num_entries); 2930 2931 if (!print_list) { 2932 dsl_redaction_list_rele(rl, FTAG); 2933 return (0); 2934 } 2935 2936 if (rlp->rlp_num_entries == 0) { 2937 dsl_redaction_list_rele(rl, FTAG); 2938 (void) printf("\t\tRedaction List: []\n\n"); 2939 return (0); 2940 } 2941 2942 redact_block_phys_t *rbp_buf; 2943 uint64_t size; 2944 dmu_object_info_t doi; 2945 2946 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2947 size = doi.doi_max_offset; 2948 rbp_buf = kmem_alloc(size, KM_SLEEP); 2949 2950 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2951 rbp_buf, 0); 2952 if (err != 0) { 2953 dsl_redaction_list_rele(rl, FTAG); 2954 kmem_free(rbp_buf, size); 2955 return (err); 2956 } 2957 2958 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2959 "%llx, blksz: %x, count: %llx}", 2960 (u_longlong_t)rbp_buf[0].rbp_object, 2961 (u_longlong_t)rbp_buf[0].rbp_blkid, 2962 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2963 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2964 2965 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2966 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2967 "blksz: %x, count: %llx}", 2968 (u_longlong_t)rbp_buf[i].rbp_object, 2969 (u_longlong_t)rbp_buf[i].rbp_blkid, 2970 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2971 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2972 } 2973 dsl_redaction_list_rele(rl, FTAG); 2974 kmem_free(rbp_buf, size); 2975 (void) printf("]\n\n"); 2976 return (0); 2977 } 2978 2979 static void 2980 dump_bookmarks(objset_t *os, int verbosity) 2981 { 2982 zap_cursor_t zc; 2983 zap_attribute_t *attrp; 2984 dsl_dataset_t *ds = dmu_objset_ds(os); 2985 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2986 objset_t *mos = os->os_spa->spa_meta_objset; 2987 if (verbosity < 4) 2988 return; 2989 attrp = zap_attribute_alloc(); 2990 dsl_pool_config_enter(dp, FTAG); 2991 2992 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2993 zap_cursor_retrieve(&zc, attrp) == 0; 2994 zap_cursor_advance(&zc)) { 2995 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2996 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2997 int len; 2998 dmu_objset_name(os, osname); 2999 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 3000 attrp->za_name); 3001 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 3002 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 3003 } 3004 zap_cursor_fini(&zc); 3005 dsl_pool_config_exit(dp, FTAG); 3006 zap_attribute_free(attrp); 3007 } 3008 3009 static void 3010 bpobj_count_refd(bpobj_t *bpo) 3011 { 3012 mos_obj_refd(bpo->bpo_object); 3013 3014 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3015 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3016 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3017 uint64_t subobj; 3018 bpobj_t subbpo; 3019 int error; 3020 VERIFY0(dmu_read(bpo->bpo_os, 3021 bpo->bpo_phys->bpo_subobjs, 3022 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3023 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3024 if (error != 0) { 3025 (void) printf("ERROR %u while trying to open " 3026 "subobj id %llu\n", 3027 error, (u_longlong_t)subobj); 3028 continue; 3029 } 3030 bpobj_count_refd(&subbpo); 3031 bpobj_close(&subbpo); 3032 } 3033 } 3034 } 3035 3036 static int 3037 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3038 { 3039 spa_t *spa = arg; 3040 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3041 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3042 bpobj_count_refd(&dle->dle_bpobj); 3043 return (0); 3044 } 3045 3046 static int 3047 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3048 { 3049 ASSERT(arg == NULL); 3050 if (dump_opt['d'] >= 5) { 3051 char buf[128]; 3052 (void) snprintf(buf, sizeof (buf), 3053 "mintxg %llu -> obj %llu", 3054 (longlong_t)dle->dle_mintxg, 3055 (longlong_t)dle->dle_bpobj.bpo_object); 3056 3057 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3058 } else { 3059 (void) printf("mintxg %llu -> obj %llu\n", 3060 (longlong_t)dle->dle_mintxg, 3061 (longlong_t)dle->dle_bpobj.bpo_object); 3062 } 3063 return (0); 3064 } 3065 3066 static void 3067 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3068 { 3069 char bytes[32]; 3070 char comp[32]; 3071 char uncomp[32]; 3072 char entries[32]; 3073 spa_t *spa = dmu_objset_spa(dl->dl_os); 3074 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3075 3076 if (dl->dl_oldfmt) { 3077 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3078 bpobj_count_refd(&dl->dl_bpobj); 3079 } else { 3080 mos_obj_refd(dl->dl_object); 3081 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3082 } 3083 3084 /* make sure nicenum has enough space */ 3085 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3086 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3087 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3088 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3089 3090 if (dump_opt['d'] < 3) 3091 return; 3092 3093 if (dl->dl_oldfmt) { 3094 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3095 return; 3096 } 3097 3098 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3099 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3100 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3101 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3102 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3103 name, bytes, comp, uncomp, entries); 3104 3105 if (dump_opt['d'] < 4) 3106 return; 3107 3108 (void) putchar('\n'); 3109 3110 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3111 } 3112 3113 static int 3114 verify_dd_livelist(objset_t *os) 3115 { 3116 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3117 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3118 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3119 3120 ASSERT(!dmu_objset_is_snapshot(os)); 3121 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3122 return (0); 3123 3124 /* Iterate through the livelist to check for duplicates */ 3125 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3126 NULL); 3127 3128 dsl_pool_config_enter(dp, FTAG); 3129 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3130 &ll_comp, &ll_uncomp); 3131 3132 dsl_dataset_t *origin_ds; 3133 ASSERT(dsl_pool_config_held(dp)); 3134 VERIFY0(dsl_dataset_hold_obj(dp, 3135 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3136 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3137 &used, &comp, &uncomp)); 3138 dsl_dataset_rele(origin_ds, FTAG); 3139 dsl_pool_config_exit(dp, FTAG); 3140 /* 3141 * It's possible that the dataset's uncomp space is larger than the 3142 * livelist's because livelists do not track embedded block pointers 3143 */ 3144 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3145 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3146 (void) printf("Discrepancy in space accounting:\n"); 3147 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3148 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3149 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3150 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3151 nice_used, nice_comp, nice_uncomp); 3152 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3153 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3154 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3155 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3156 nice_used, nice_comp, nice_uncomp); 3157 return (1); 3158 } 3159 return (0); 3160 } 3161 3162 static char *key_material = NULL; 3163 3164 static boolean_t 3165 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3166 { 3167 uint64_t keyformat, salt, iters; 3168 int i; 3169 unsigned char c; 3170 3171 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3172 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3173 1, &keyformat)); 3174 3175 switch (keyformat) { 3176 case ZFS_KEYFORMAT_HEX: 3177 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3178 if (!isxdigit(key_material[i]) || 3179 !isxdigit(key_material[i+1])) 3180 return (B_FALSE); 3181 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3182 return (B_FALSE); 3183 key_out[i / 2] = c; 3184 } 3185 break; 3186 3187 case ZFS_KEYFORMAT_PASSPHRASE: 3188 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3189 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3190 sizeof (uint64_t), 1, &salt)); 3191 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3192 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3193 sizeof (uint64_t), 1, &iters)); 3194 3195 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3196 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3197 WRAPPING_KEY_LEN, key_out) != 1) 3198 return (B_FALSE); 3199 3200 break; 3201 3202 default: 3203 fatal("no support for key format %u\n", 3204 (unsigned int) keyformat); 3205 } 3206 3207 return (B_TRUE); 3208 } 3209 3210 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3211 static boolean_t key_loaded = B_FALSE; 3212 3213 static void 3214 zdb_load_key(objset_t *os) 3215 { 3216 dsl_pool_t *dp; 3217 dsl_dir_t *dd, *rdd; 3218 uint8_t key[WRAPPING_KEY_LEN]; 3219 uint64_t rddobj; 3220 int err; 3221 3222 dp = spa_get_dsl(os->os_spa); 3223 dd = os->os_dsl_dataset->ds_dir; 3224 3225 dsl_pool_config_enter(dp, FTAG); 3226 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3227 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3228 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3229 dsl_dir_name(rdd, encroot); 3230 dsl_dir_rele(rdd, FTAG); 3231 3232 if (!zdb_derive_key(dd, key)) 3233 fatal("couldn't derive encryption key"); 3234 3235 dsl_pool_config_exit(dp, FTAG); 3236 3237 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3238 3239 dsl_crypto_params_t *dcp; 3240 nvlist_t *crypto_args; 3241 3242 crypto_args = fnvlist_alloc(); 3243 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3244 (uint8_t *)key, WRAPPING_KEY_LEN); 3245 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3246 NULL, crypto_args, &dcp)); 3247 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3248 3249 dsl_crypto_params_free(dcp, (err != 0)); 3250 fnvlist_free(crypto_args); 3251 3252 if (err != 0) 3253 fatal( 3254 "couldn't load encryption key for %s: %s", 3255 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3256 "crypto params not supported" : strerror(err)); 3257 3258 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3259 3260 printf("Unlocked encryption root: %s\n", encroot); 3261 key_loaded = B_TRUE; 3262 } 3263 3264 static void 3265 zdb_unload_key(void) 3266 { 3267 if (!key_loaded) 3268 return; 3269 3270 VERIFY0(spa_keystore_unload_wkey(encroot)); 3271 key_loaded = B_FALSE; 3272 } 3273 3274 static avl_tree_t idx_tree; 3275 static avl_tree_t domain_tree; 3276 static boolean_t fuid_table_loaded; 3277 static objset_t *sa_os = NULL; 3278 static sa_attr_type_t *sa_attr_table = NULL; 3279 3280 static int 3281 open_objset(const char *path, const void *tag, objset_t **osp) 3282 { 3283 int err; 3284 uint64_t sa_attrs = 0; 3285 uint64_t version = 0; 3286 3287 VERIFY3P(sa_os, ==, NULL); 3288 3289 /* 3290 * We can't own an objset if it's redacted. Therefore, we do this 3291 * dance: hold the objset, then acquire a long hold on its dataset, then 3292 * release the pool (which is held as part of holding the objset). 3293 */ 3294 3295 if (dump_opt['K']) { 3296 /* decryption requested, try to load keys */ 3297 err = dmu_objset_hold(path, tag, osp); 3298 if (err != 0) { 3299 (void) fprintf(stderr, "failed to hold dataset " 3300 "'%s': %s\n", 3301 path, strerror(err)); 3302 return (err); 3303 } 3304 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3305 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3306 3307 /* succeeds or dies */ 3308 zdb_load_key(*osp); 3309 3310 /* release it all */ 3311 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3312 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3313 } 3314 3315 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3316 3317 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3318 if (err != 0) { 3319 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3320 path, strerror(err)); 3321 return (err); 3322 } 3323 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3324 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3325 3326 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3327 (key_loaded || !(*osp)->os_encrypted)) { 3328 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3329 8, 1, &version); 3330 if (version >= ZPL_VERSION_SA) { 3331 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3332 8, 1, &sa_attrs); 3333 } 3334 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3335 &sa_attr_table); 3336 if (err != 0) { 3337 (void) fprintf(stderr, "sa_setup failed: %s\n", 3338 strerror(err)); 3339 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3340 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3341 ds_hold_flags, tag); 3342 *osp = NULL; 3343 } 3344 } 3345 sa_os = *osp; 3346 3347 return (err); 3348 } 3349 3350 static void 3351 close_objset(objset_t *os, const void *tag) 3352 { 3353 VERIFY3P(os, ==, sa_os); 3354 if (os->os_sa != NULL) 3355 sa_tear_down(os); 3356 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3357 dsl_dataset_rele_flags(dmu_objset_ds(os), 3358 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3359 sa_attr_table = NULL; 3360 sa_os = NULL; 3361 3362 zdb_unload_key(); 3363 } 3364 3365 static void 3366 fuid_table_destroy(void) 3367 { 3368 if (fuid_table_loaded) { 3369 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3370 fuid_table_loaded = B_FALSE; 3371 } 3372 } 3373 3374 /* 3375 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3376 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3377 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3378 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3379 * 3380 * Note that this is not a particularly efficient way to do this, but 3381 * ddt_remove() is the only public method that can do the work we need, and it 3382 * requires the right locks and etc to do the job. This is only ever called 3383 * during zdb shutdown so efficiency is not especially important. 3384 */ 3385 static void 3386 zdb_ddt_cleanup(spa_t *spa) 3387 { 3388 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3389 ddt_t *ddt = spa->spa_ddt[c]; 3390 if (!ddt) 3391 continue; 3392 3393 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3394 ddt_enter(ddt); 3395 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3396 while (dde) { 3397 next = AVL_NEXT(&ddt->ddt_tree, dde); 3398 dde->dde_io = NULL; 3399 ddt_remove(ddt, dde); 3400 dde = next; 3401 } 3402 ddt_exit(ddt); 3403 spa_config_exit(spa, SCL_CONFIG, FTAG); 3404 } 3405 } 3406 3407 static void 3408 zdb_exit(int reason) 3409 { 3410 if (spa != NULL) 3411 zdb_ddt_cleanup(spa); 3412 3413 if (os != NULL) { 3414 close_objset(os, FTAG); 3415 } else if (spa != NULL) { 3416 spa_close(spa, FTAG); 3417 } 3418 3419 fuid_table_destroy(); 3420 3421 if (kernel_init_done) 3422 kernel_fini(); 3423 3424 exit(reason); 3425 } 3426 3427 /* 3428 * print uid or gid information. 3429 * For normal POSIX id just the id is printed in decimal format. 3430 * For CIFS files with FUID the fuid is printed in hex followed by 3431 * the domain-rid string. 3432 */ 3433 static void 3434 print_idstr(uint64_t id, const char *id_type) 3435 { 3436 if (FUID_INDEX(id)) { 3437 const char *domain = 3438 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3439 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3440 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3441 } else { 3442 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3443 } 3444 3445 } 3446 3447 static void 3448 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3449 { 3450 uint32_t uid_idx, gid_idx; 3451 3452 uid_idx = FUID_INDEX(uid); 3453 gid_idx = FUID_INDEX(gid); 3454 3455 /* Load domain table, if not already loaded */ 3456 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3457 uint64_t fuid_obj; 3458 3459 /* first find the fuid object. It lives in the master node */ 3460 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3461 8, 1, &fuid_obj) == 0); 3462 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3463 (void) zfs_fuid_table_load(os, fuid_obj, 3464 &idx_tree, &domain_tree); 3465 fuid_table_loaded = B_TRUE; 3466 } 3467 3468 print_idstr(uid, "uid"); 3469 print_idstr(gid, "gid"); 3470 } 3471 3472 static void 3473 dump_znode_sa_xattr(sa_handle_t *hdl) 3474 { 3475 nvlist_t *sa_xattr; 3476 nvpair_t *elem = NULL; 3477 int sa_xattr_size = 0; 3478 int sa_xattr_entries = 0; 3479 int error; 3480 char *sa_xattr_packed; 3481 3482 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3483 if (error || sa_xattr_size == 0) 3484 return; 3485 3486 sa_xattr_packed = malloc(sa_xattr_size); 3487 if (sa_xattr_packed == NULL) 3488 return; 3489 3490 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3491 sa_xattr_packed, sa_xattr_size); 3492 if (error) { 3493 free(sa_xattr_packed); 3494 return; 3495 } 3496 3497 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3498 if (error) { 3499 free(sa_xattr_packed); 3500 return; 3501 } 3502 3503 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3504 sa_xattr_entries++; 3505 3506 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3507 sa_xattr_size, sa_xattr_entries); 3508 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3509 boolean_t can_print = !dump_opt['P']; 3510 uchar_t *value; 3511 uint_t cnt, idx; 3512 3513 (void) printf("\t\t%s = ", nvpair_name(elem)); 3514 nvpair_value_byte_array(elem, &value, &cnt); 3515 3516 for (idx = 0; idx < cnt; ++idx) { 3517 if (!isprint(value[idx])) { 3518 can_print = B_FALSE; 3519 break; 3520 } 3521 } 3522 3523 for (idx = 0; idx < cnt; ++idx) { 3524 if (can_print) 3525 (void) putchar(value[idx]); 3526 else 3527 (void) printf("\\%3.3o", value[idx]); 3528 } 3529 (void) putchar('\n'); 3530 } 3531 3532 nvlist_free(sa_xattr); 3533 free(sa_xattr_packed); 3534 } 3535 3536 static void 3537 dump_znode_symlink(sa_handle_t *hdl) 3538 { 3539 int sa_symlink_size = 0; 3540 char linktarget[MAXPATHLEN]; 3541 int error; 3542 3543 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3544 if (error || sa_symlink_size == 0) { 3545 return; 3546 } 3547 if (sa_symlink_size >= sizeof (linktarget)) { 3548 (void) printf("symlink size %d is too large\n", 3549 sa_symlink_size); 3550 return; 3551 } 3552 linktarget[sa_symlink_size] = '\0'; 3553 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3554 &linktarget, sa_symlink_size) == 0) 3555 (void) printf("\ttarget %s\n", linktarget); 3556 } 3557 3558 static void 3559 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3560 { 3561 (void) data, (void) size; 3562 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3563 sa_handle_t *hdl; 3564 uint64_t xattr, rdev, gen; 3565 uint64_t uid, gid, mode, fsize, parent, links; 3566 uint64_t pflags; 3567 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3568 time_t z_crtime, z_atime, z_mtime, z_ctime; 3569 sa_bulk_attr_t bulk[12]; 3570 int idx = 0; 3571 int error; 3572 3573 VERIFY3P(os, ==, sa_os); 3574 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3575 (void) printf("Failed to get handle for SA znode\n"); 3576 return; 3577 } 3578 3579 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3580 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3581 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3582 &links, 8); 3583 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3584 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3585 &mode, 8); 3586 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3587 NULL, &parent, 8); 3588 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3589 &fsize, 8); 3590 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3591 acctm, 16); 3592 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3593 modtm, 16); 3594 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3595 crtm, 16); 3596 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3597 chgtm, 16); 3598 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3599 &pflags, 8); 3600 3601 if (sa_bulk_lookup(hdl, bulk, idx)) { 3602 (void) sa_handle_destroy(hdl); 3603 return; 3604 } 3605 3606 z_crtime = (time_t)crtm[0]; 3607 z_atime = (time_t)acctm[0]; 3608 z_mtime = (time_t)modtm[0]; 3609 z_ctime = (time_t)chgtm[0]; 3610 3611 if (dump_opt['d'] > 4) { 3612 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3613 if (error == ESTALE) { 3614 (void) snprintf(path, sizeof (path), "on delete queue"); 3615 } else if (error != 0) { 3616 leaked_objects++; 3617 (void) snprintf(path, sizeof (path), 3618 "path not found, possibly leaked"); 3619 } 3620 (void) printf("\tpath %s\n", path); 3621 } 3622 3623 if (S_ISLNK(mode)) 3624 dump_znode_symlink(hdl); 3625 dump_uidgid(os, uid, gid); 3626 (void) printf("\tatime %s", ctime(&z_atime)); 3627 (void) printf("\tmtime %s", ctime(&z_mtime)); 3628 (void) printf("\tctime %s", ctime(&z_ctime)); 3629 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3630 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3631 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3632 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3633 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3634 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3635 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3636 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3637 uint64_t projid; 3638 3639 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3640 sizeof (uint64_t)) == 0) 3641 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3642 } 3643 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3644 sizeof (uint64_t)) == 0) 3645 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3646 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3647 sizeof (uint64_t)) == 0) 3648 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3649 dump_znode_sa_xattr(hdl); 3650 sa_handle_destroy(hdl); 3651 } 3652 3653 static void 3654 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3655 { 3656 (void) os, (void) object, (void) data, (void) size; 3657 } 3658 3659 static void 3660 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3661 { 3662 (void) os, (void) object, (void) data, (void) size; 3663 } 3664 3665 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3666 dump_none, /* unallocated */ 3667 dump_zap, /* object directory */ 3668 dump_uint64, /* object array */ 3669 dump_none, /* packed nvlist */ 3670 dump_packed_nvlist, /* packed nvlist size */ 3671 dump_none, /* bpobj */ 3672 dump_bpobj, /* bpobj header */ 3673 dump_none, /* SPA space map header */ 3674 dump_none, /* SPA space map */ 3675 dump_none, /* ZIL intent log */ 3676 dump_dnode, /* DMU dnode */ 3677 dump_dmu_objset, /* DMU objset */ 3678 dump_dsl_dir, /* DSL directory */ 3679 dump_zap, /* DSL directory child map */ 3680 dump_zap, /* DSL dataset snap map */ 3681 dump_zap, /* DSL props */ 3682 dump_dsl_dataset, /* DSL dataset */ 3683 dump_znode, /* ZFS znode */ 3684 dump_acl, /* ZFS V0 ACL */ 3685 dump_uint8, /* ZFS plain file */ 3686 dump_zpldir, /* ZFS directory */ 3687 dump_zap, /* ZFS master node */ 3688 dump_zap, /* ZFS delete queue */ 3689 dump_uint8, /* zvol object */ 3690 dump_zap, /* zvol prop */ 3691 dump_uint8, /* other uint8[] */ 3692 dump_uint64, /* other uint64[] */ 3693 dump_zap, /* other ZAP */ 3694 dump_zap, /* persistent error log */ 3695 dump_uint8, /* SPA history */ 3696 dump_history_offsets, /* SPA history offsets */ 3697 dump_zap, /* Pool properties */ 3698 dump_zap, /* DSL permissions */ 3699 dump_acl, /* ZFS ACL */ 3700 dump_uint8, /* ZFS SYSACL */ 3701 dump_none, /* FUID nvlist */ 3702 dump_packed_nvlist, /* FUID nvlist size */ 3703 dump_zap, /* DSL dataset next clones */ 3704 dump_zap, /* DSL scrub queue */ 3705 dump_zap, /* ZFS user/group/project used */ 3706 dump_zap, /* ZFS user/group/project quota */ 3707 dump_zap, /* snapshot refcount tags */ 3708 dump_ddt_zap, /* DDT ZAP object */ 3709 dump_zap, /* DDT statistics */ 3710 dump_znode, /* SA object */ 3711 dump_zap, /* SA Master Node */ 3712 dump_sa_attrs, /* SA attribute registration */ 3713 dump_sa_layouts, /* SA attribute layouts */ 3714 dump_zap, /* DSL scrub translations */ 3715 dump_none, /* fake dedup BP */ 3716 dump_zap, /* deadlist */ 3717 dump_none, /* deadlist hdr */ 3718 dump_zap, /* dsl clones */ 3719 dump_bpobj_subobjs, /* bpobj subobjs */ 3720 dump_unknown, /* Unknown type, must be last */ 3721 }; 3722 3723 static boolean_t 3724 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3725 { 3726 boolean_t match = B_TRUE; 3727 3728 switch (obj_type) { 3729 case DMU_OT_DIRECTORY_CONTENTS: 3730 if (!(flags & ZOR_FLAG_DIRECTORY)) 3731 match = B_FALSE; 3732 break; 3733 case DMU_OT_PLAIN_FILE_CONTENTS: 3734 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3735 match = B_FALSE; 3736 break; 3737 case DMU_OT_SPACE_MAP: 3738 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3739 match = B_FALSE; 3740 break; 3741 default: 3742 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3743 if (!(flags & ZOR_FLAG_ZAP)) 3744 match = B_FALSE; 3745 break; 3746 } 3747 3748 /* 3749 * If all bits except some of the supported flags are 3750 * set, the user combined the all-types flag (A) with 3751 * a negated flag to exclude some types (e.g. A-f to 3752 * show all object types except plain files). 3753 */ 3754 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3755 match = B_FALSE; 3756 3757 break; 3758 } 3759 3760 return (match); 3761 } 3762 3763 static void 3764 dump_object(objset_t *os, uint64_t object, int verbosity, 3765 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3766 { 3767 dmu_buf_t *db = NULL; 3768 dmu_object_info_t doi; 3769 dnode_t *dn; 3770 boolean_t dnode_held = B_FALSE; 3771 void *bonus = NULL; 3772 size_t bsize = 0; 3773 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3774 char bonus_size[32]; 3775 char aux[50]; 3776 int error; 3777 3778 /* make sure nicenum has enough space */ 3779 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3780 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3781 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3782 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3783 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3784 "bonus_size truncated"); 3785 3786 if (*print_header) { 3787 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3788 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3789 "lsize", "%full", "type"); 3790 *print_header = 0; 3791 } 3792 3793 if (object == 0) { 3794 dn = DMU_META_DNODE(os); 3795 dmu_object_info_from_dnode(dn, &doi); 3796 } else { 3797 /* 3798 * Encrypted datasets will have sensitive bonus buffers 3799 * encrypted. Therefore we cannot hold the bonus buffer and 3800 * must hold the dnode itself instead. 3801 */ 3802 error = dmu_object_info(os, object, &doi); 3803 if (error) 3804 fatal("dmu_object_info() failed, errno %u", error); 3805 3806 if (!key_loaded && os->os_encrypted && 3807 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3808 error = dnode_hold(os, object, FTAG, &dn); 3809 if (error) 3810 fatal("dnode_hold() failed, errno %u", error); 3811 dnode_held = B_TRUE; 3812 } else { 3813 error = dmu_bonus_hold(os, object, FTAG, &db); 3814 if (error) 3815 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3816 object, error); 3817 bonus = db->db_data; 3818 bsize = db->db_size; 3819 dn = DB_DNODE((dmu_buf_impl_t *)db); 3820 } 3821 } 3822 3823 /* 3824 * Default to showing all object types if no flags were specified. 3825 */ 3826 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3827 !match_object_type(doi.doi_type, flags)) 3828 goto out; 3829 3830 if (dnode_slots_used) 3831 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3832 3833 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3834 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3835 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3836 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3837 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3838 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3839 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3840 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3841 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3842 3843 aux[0] = '\0'; 3844 3845 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3846 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3847 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3848 } 3849 3850 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3851 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3852 const char *compname = NULL; 3853 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3854 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3855 &compname) == 0) { 3856 (void) snprintf(aux + strlen(aux), 3857 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3858 compname); 3859 } else { 3860 (void) snprintf(aux + strlen(aux), 3861 sizeof (aux) - strlen(aux), 3862 " (Z=inherit=%s-unknown)", 3863 ZDB_COMPRESS_NAME(os->os_compress)); 3864 } 3865 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3866 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3867 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3868 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3869 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3870 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3871 } 3872 3873 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3874 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3875 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3876 3877 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3878 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3879 "", "", "", "", "", "", bonus_size, "bonus", 3880 zdb_ot_name(doi.doi_bonus_type)); 3881 } 3882 3883 if (verbosity >= 4) { 3884 (void) printf("\tdnode flags: %s%s%s%s\n", 3885 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3886 "USED_BYTES " : "", 3887 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3888 "USERUSED_ACCOUNTED " : "", 3889 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3890 "USEROBJUSED_ACCOUNTED " : "", 3891 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3892 "SPILL_BLKPTR" : ""); 3893 (void) printf("\tdnode maxblkid: %llu\n", 3894 (longlong_t)dn->dn_phys->dn_maxblkid); 3895 3896 if (!dnode_held) { 3897 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3898 object, bonus, bsize); 3899 } else { 3900 (void) printf("\t\t(bonus encrypted)\n"); 3901 } 3902 3903 if (key_loaded || 3904 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3905 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3906 NULL, 0); 3907 } else { 3908 (void) printf("\t\t(object encrypted)\n"); 3909 } 3910 3911 *print_header = B_TRUE; 3912 } 3913 3914 if (verbosity >= 5) { 3915 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3916 char blkbuf[BP_SPRINTF_LEN]; 3917 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3918 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3919 (void) printf("\nSpill block: %s\n", blkbuf); 3920 } 3921 dump_indirect(dn); 3922 } 3923 3924 if (verbosity >= 5) { 3925 /* 3926 * Report the list of segments that comprise the object. 3927 */ 3928 uint64_t start = 0; 3929 uint64_t end; 3930 uint64_t blkfill = 1; 3931 int minlvl = 1; 3932 3933 if (dn->dn_type == DMU_OT_DNODE) { 3934 minlvl = 0; 3935 blkfill = DNODES_PER_BLOCK; 3936 } 3937 3938 for (;;) { 3939 char segsize[32]; 3940 /* make sure nicenum has enough space */ 3941 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3942 "segsize truncated"); 3943 error = dnode_next_offset(dn, 3944 0, &start, minlvl, blkfill, 0); 3945 if (error) 3946 break; 3947 end = start; 3948 error = dnode_next_offset(dn, 3949 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3950 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3951 (void) printf("\t\tsegment [%016llx, %016llx)" 3952 " size %5s\n", (u_longlong_t)start, 3953 (u_longlong_t)end, segsize); 3954 if (error) 3955 break; 3956 start = end; 3957 } 3958 } 3959 3960 out: 3961 if (db != NULL) 3962 dmu_buf_rele(db, FTAG); 3963 if (dnode_held) 3964 dnode_rele(dn, FTAG); 3965 } 3966 3967 static void 3968 count_dir_mos_objects(dsl_dir_t *dd) 3969 { 3970 mos_obj_refd(dd->dd_object); 3971 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3972 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3973 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3974 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3975 3976 /* 3977 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3978 * Ignore the references after the first one. 3979 */ 3980 mos_obj_refd_multiple(dd->dd_crypto_obj); 3981 } 3982 3983 static void 3984 count_ds_mos_objects(dsl_dataset_t *ds) 3985 { 3986 mos_obj_refd(ds->ds_object); 3987 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3988 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3989 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3990 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3991 mos_obj_refd(ds->ds_bookmarks_obj); 3992 3993 if (!dsl_dataset_is_snapshot(ds)) { 3994 count_dir_mos_objects(ds->ds_dir); 3995 } 3996 } 3997 3998 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3999 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 4000 4001 /* 4002 * Parse a string denoting a range of object IDs of the form 4003 * <start>[:<end>[:flags]], and store the results in zor. 4004 * Return 0 on success. On error, return 1 and update the msg 4005 * pointer to point to a descriptive error message. 4006 */ 4007 static int 4008 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4009 { 4010 uint64_t flags = 0; 4011 char *p, *s, *dup, *flagstr, *tmp = NULL; 4012 size_t len; 4013 int i; 4014 int rc = 0; 4015 4016 if (strchr(range, ':') == NULL) { 4017 zor->zor_obj_start = strtoull(range, &p, 0); 4018 if (*p != '\0') { 4019 *msg = "Invalid characters in object ID"; 4020 rc = 1; 4021 } 4022 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4023 zor->zor_obj_end = zor->zor_obj_start; 4024 return (rc); 4025 } 4026 4027 if (strchr(range, ':') == range) { 4028 *msg = "Invalid leading colon"; 4029 rc = 1; 4030 return (rc); 4031 } 4032 4033 len = strlen(range); 4034 if (range[len - 1] == ':') { 4035 *msg = "Invalid trailing colon"; 4036 rc = 1; 4037 return (rc); 4038 } 4039 4040 dup = strdup(range); 4041 s = strtok_r(dup, ":", &tmp); 4042 zor->zor_obj_start = strtoull(s, &p, 0); 4043 4044 if (*p != '\0') { 4045 *msg = "Invalid characters in start object ID"; 4046 rc = 1; 4047 goto out; 4048 } 4049 4050 s = strtok_r(NULL, ":", &tmp); 4051 zor->zor_obj_end = strtoull(s, &p, 0); 4052 4053 if (*p != '\0') { 4054 *msg = "Invalid characters in end object ID"; 4055 rc = 1; 4056 goto out; 4057 } 4058 4059 if (zor->zor_obj_start > zor->zor_obj_end) { 4060 *msg = "Start object ID may not exceed end object ID"; 4061 rc = 1; 4062 goto out; 4063 } 4064 4065 s = strtok_r(NULL, ":", &tmp); 4066 if (s == NULL) { 4067 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4068 goto out; 4069 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4070 *msg = "Invalid colon-delimited field after flags"; 4071 rc = 1; 4072 goto out; 4073 } 4074 4075 flagstr = s; 4076 for (i = 0; flagstr[i]; i++) { 4077 int bit; 4078 boolean_t negation = (flagstr[i] == '-'); 4079 4080 if (negation) { 4081 i++; 4082 if (flagstr[i] == '\0') { 4083 *msg = "Invalid trailing negation operator"; 4084 rc = 1; 4085 goto out; 4086 } 4087 } 4088 bit = flagbits[(uchar_t)flagstr[i]]; 4089 if (bit == 0) { 4090 *msg = "Invalid flag"; 4091 rc = 1; 4092 goto out; 4093 } 4094 if (negation) 4095 flags &= ~bit; 4096 else 4097 flags |= bit; 4098 } 4099 zor->zor_flags = flags; 4100 4101 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4102 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4103 4104 out: 4105 free(dup); 4106 return (rc); 4107 } 4108 4109 static void 4110 dump_objset(objset_t *os) 4111 { 4112 dmu_objset_stats_t dds = { 0 }; 4113 uint64_t object, object_count; 4114 uint64_t refdbytes, usedobjs, scratch; 4115 char numbuf[32]; 4116 char blkbuf[BP_SPRINTF_LEN + 20]; 4117 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4118 const char *type = "UNKNOWN"; 4119 int verbosity = dump_opt['d']; 4120 boolean_t print_header; 4121 unsigned i; 4122 int error; 4123 uint64_t total_slots_used = 0; 4124 uint64_t max_slot_used = 0; 4125 uint64_t dnode_slots; 4126 uint64_t obj_start; 4127 uint64_t obj_end; 4128 uint64_t flags; 4129 4130 /* make sure nicenum has enough space */ 4131 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4132 4133 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4134 dmu_objset_fast_stat(os, &dds); 4135 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4136 4137 print_header = B_TRUE; 4138 4139 if (dds.dds_type < DMU_OST_NUMTYPES) 4140 type = objset_types[dds.dds_type]; 4141 4142 if (dds.dds_type == DMU_OST_META) { 4143 dds.dds_creation_txg = TXG_INITIAL; 4144 usedobjs = BP_GET_FILL(os->os_rootbp); 4145 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4146 dd_used_bytes; 4147 } else { 4148 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4149 } 4150 4151 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4152 4153 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4154 4155 if (verbosity >= 4) { 4156 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4157 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4158 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4159 } else { 4160 blkbuf[0] = '\0'; 4161 } 4162 4163 dmu_objset_name(os, osname); 4164 4165 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4166 "%s, %llu objects%s%s\n", 4167 osname, type, (u_longlong_t)dmu_objset_id(os), 4168 (u_longlong_t)dds.dds_creation_txg, 4169 numbuf, (u_longlong_t)usedobjs, blkbuf, 4170 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4171 4172 for (i = 0; i < zopt_object_args; i++) { 4173 obj_start = zopt_object_ranges[i].zor_obj_start; 4174 obj_end = zopt_object_ranges[i].zor_obj_end; 4175 flags = zopt_object_ranges[i].zor_flags; 4176 4177 object = obj_start; 4178 if (object == 0 || obj_start == obj_end) 4179 dump_object(os, object, verbosity, &print_header, NULL, 4180 flags); 4181 else 4182 object--; 4183 4184 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4185 object <= obj_end) { 4186 dump_object(os, object, verbosity, &print_header, NULL, 4187 flags); 4188 } 4189 } 4190 4191 if (zopt_object_args > 0) { 4192 (void) printf("\n"); 4193 return; 4194 } 4195 4196 if (dump_opt['i'] != 0 || verbosity >= 2) 4197 dump_intent_log(dmu_objset_zil(os)); 4198 4199 if (dmu_objset_ds(os) != NULL) { 4200 dsl_dataset_t *ds = dmu_objset_ds(os); 4201 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4202 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4203 !dmu_objset_is_snapshot(os)) { 4204 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4205 if (verify_dd_livelist(os) != 0) 4206 fatal("livelist is incorrect"); 4207 } 4208 4209 if (dsl_dataset_remap_deadlist_exists(ds)) { 4210 (void) printf("ds_remap_deadlist:\n"); 4211 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4212 } 4213 count_ds_mos_objects(ds); 4214 } 4215 4216 if (dmu_objset_ds(os) != NULL) 4217 dump_bookmarks(os, verbosity); 4218 4219 if (verbosity < 2) 4220 return; 4221 4222 if (BP_IS_HOLE(os->os_rootbp)) 4223 return; 4224 4225 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4226 object_count = 0; 4227 if (DMU_USERUSED_DNODE(os) != NULL && 4228 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4229 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4230 NULL, 0); 4231 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4232 NULL, 0); 4233 } 4234 4235 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4236 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4237 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4238 &print_header, NULL, 0); 4239 4240 object = 0; 4241 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4242 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4243 0); 4244 object_count++; 4245 total_slots_used += dnode_slots; 4246 max_slot_used = object + dnode_slots - 1; 4247 } 4248 4249 (void) printf("\n"); 4250 4251 (void) printf(" Dnode slots:\n"); 4252 (void) printf("\tTotal used: %10llu\n", 4253 (u_longlong_t)total_slots_used); 4254 (void) printf("\tMax used: %10llu\n", 4255 (u_longlong_t)max_slot_used); 4256 (void) printf("\tPercent empty: %10lf\n", 4257 (double)(max_slot_used - total_slots_used)*100 / 4258 (double)max_slot_used); 4259 (void) printf("\n"); 4260 4261 if (error != ESRCH) { 4262 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4263 abort(); 4264 } 4265 4266 ASSERT3U(object_count, ==, usedobjs); 4267 4268 if (leaked_objects != 0) { 4269 (void) printf("%d potentially leaked objects detected\n", 4270 leaked_objects); 4271 leaked_objects = 0; 4272 } 4273 } 4274 4275 static void 4276 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4277 { 4278 time_t timestamp = ub->ub_timestamp; 4279 4280 (void) printf("%s", header ? header : ""); 4281 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4282 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4283 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4284 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4285 (void) printf("\ttimestamp = %llu UTC = %s", 4286 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4287 4288 char blkbuf[BP_SPRINTF_LEN]; 4289 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4290 (void) printf("\tbp = %s\n", blkbuf); 4291 4292 (void) printf("\tmmp_magic = %016llx\n", 4293 (u_longlong_t)ub->ub_mmp_magic); 4294 if (MMP_VALID(ub)) { 4295 (void) printf("\tmmp_delay = %0llu\n", 4296 (u_longlong_t)ub->ub_mmp_delay); 4297 if (MMP_SEQ_VALID(ub)) 4298 (void) printf("\tmmp_seq = %u\n", 4299 (unsigned int) MMP_SEQ(ub)); 4300 if (MMP_FAIL_INT_VALID(ub)) 4301 (void) printf("\tmmp_fail = %u\n", 4302 (unsigned int) MMP_FAIL_INT(ub)); 4303 if (MMP_INTERVAL_VALID(ub)) 4304 (void) printf("\tmmp_write = %u\n", 4305 (unsigned int) MMP_INTERVAL(ub)); 4306 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4307 (void) printf("\tmmp_valid = %x\n", 4308 (unsigned int) ub->ub_mmp_config & 0xFF); 4309 } 4310 4311 if (dump_opt['u'] >= 4) { 4312 char blkbuf[BP_SPRINTF_LEN]; 4313 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4314 (void) printf("\trootbp = %s\n", blkbuf); 4315 } 4316 (void) printf("\tcheckpoint_txg = %llu\n", 4317 (u_longlong_t)ub->ub_checkpoint_txg); 4318 4319 (void) printf("\traidz_reflow state=%u off=%llu\n", 4320 (int)RRSS_GET_STATE(ub), 4321 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4322 4323 (void) printf("%s", footer ? footer : ""); 4324 } 4325 4326 static void 4327 dump_config(spa_t *spa) 4328 { 4329 dmu_buf_t *db; 4330 size_t nvsize = 0; 4331 int error = 0; 4332 4333 4334 error = dmu_bonus_hold(spa->spa_meta_objset, 4335 spa->spa_config_object, FTAG, &db); 4336 4337 if (error == 0) { 4338 nvsize = *(uint64_t *)db->db_data; 4339 dmu_buf_rele(db, FTAG); 4340 4341 (void) printf("\nMOS Configuration:\n"); 4342 dump_packed_nvlist(spa->spa_meta_objset, 4343 spa->spa_config_object, (void *)&nvsize, 1); 4344 } else { 4345 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4346 (u_longlong_t)spa->spa_config_object, error); 4347 } 4348 } 4349 4350 static void 4351 dump_cachefile(const char *cachefile) 4352 { 4353 int fd; 4354 struct stat64 statbuf; 4355 char *buf; 4356 nvlist_t *config; 4357 4358 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4359 (void) printf("cannot open '%s': %s\n", cachefile, 4360 strerror(errno)); 4361 zdb_exit(1); 4362 } 4363 4364 if (fstat64(fd, &statbuf) != 0) { 4365 (void) printf("failed to stat '%s': %s\n", cachefile, 4366 strerror(errno)); 4367 zdb_exit(1); 4368 } 4369 4370 if ((buf = malloc(statbuf.st_size)) == NULL) { 4371 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4372 (u_longlong_t)statbuf.st_size); 4373 zdb_exit(1); 4374 } 4375 4376 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4377 (void) fprintf(stderr, "failed to read %llu bytes\n", 4378 (u_longlong_t)statbuf.st_size); 4379 zdb_exit(1); 4380 } 4381 4382 (void) close(fd); 4383 4384 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4385 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4386 zdb_exit(1); 4387 } 4388 4389 free(buf); 4390 4391 dump_nvlist(config, 0); 4392 4393 nvlist_free(config); 4394 } 4395 4396 /* 4397 * ZFS label nvlist stats 4398 */ 4399 typedef struct zdb_nvl_stats { 4400 int zns_list_count; 4401 int zns_leaf_count; 4402 size_t zns_leaf_largest; 4403 size_t zns_leaf_total; 4404 nvlist_t *zns_string; 4405 nvlist_t *zns_uint64; 4406 nvlist_t *zns_boolean; 4407 } zdb_nvl_stats_t; 4408 4409 static void 4410 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4411 { 4412 nvlist_t *list, **array; 4413 nvpair_t *nvp = NULL; 4414 const char *name; 4415 uint_t i, items; 4416 4417 stats->zns_list_count++; 4418 4419 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4420 name = nvpair_name(nvp); 4421 4422 switch (nvpair_type(nvp)) { 4423 case DATA_TYPE_STRING: 4424 fnvlist_add_string(stats->zns_string, name, 4425 fnvpair_value_string(nvp)); 4426 break; 4427 case DATA_TYPE_UINT64: 4428 fnvlist_add_uint64(stats->zns_uint64, name, 4429 fnvpair_value_uint64(nvp)); 4430 break; 4431 case DATA_TYPE_BOOLEAN: 4432 fnvlist_add_boolean(stats->zns_boolean, name); 4433 break; 4434 case DATA_TYPE_NVLIST: 4435 if (nvpair_value_nvlist(nvp, &list) == 0) 4436 collect_nvlist_stats(list, stats); 4437 break; 4438 case DATA_TYPE_NVLIST_ARRAY: 4439 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4440 break; 4441 4442 for (i = 0; i < items; i++) { 4443 collect_nvlist_stats(array[i], stats); 4444 4445 /* collect stats on leaf vdev */ 4446 if (strcmp(name, "children") == 0) { 4447 size_t size; 4448 4449 (void) nvlist_size(array[i], &size, 4450 NV_ENCODE_XDR); 4451 stats->zns_leaf_total += size; 4452 if (size > stats->zns_leaf_largest) 4453 stats->zns_leaf_largest = size; 4454 stats->zns_leaf_count++; 4455 } 4456 } 4457 break; 4458 default: 4459 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4460 } 4461 } 4462 } 4463 4464 static void 4465 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4466 { 4467 zdb_nvl_stats_t stats = { 0 }; 4468 size_t size, sum = 0, total; 4469 size_t noise; 4470 4471 /* requires nvlist with non-unique names for stat collection */ 4472 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4473 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4474 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4475 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4476 4477 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4478 4479 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4480 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4481 (int)total, (int)(cap - total), 100.0 * total / cap); 4482 4483 collect_nvlist_stats(nvl, &stats); 4484 4485 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4486 size -= noise; 4487 sum += size; 4488 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4489 (int)fnvlist_num_pairs(stats.zns_uint64), 4490 (int)size, 100.0 * size / total); 4491 4492 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4493 size -= noise; 4494 sum += size; 4495 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4496 (int)fnvlist_num_pairs(stats.zns_string), 4497 (int)size, 100.0 * size / total); 4498 4499 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4500 size -= noise; 4501 sum += size; 4502 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4503 (int)fnvlist_num_pairs(stats.zns_boolean), 4504 (int)size, 100.0 * size / total); 4505 4506 size = total - sum; /* treat remainder as nvlist overhead */ 4507 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4508 stats.zns_list_count, (int)size, 100.0 * size / total); 4509 4510 if (stats.zns_leaf_count > 0) { 4511 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4512 4513 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4514 stats.zns_leaf_count, (int)average); 4515 (void) printf("%24d bytes largest\n", 4516 (int)stats.zns_leaf_largest); 4517 4518 if (dump_opt['l'] >= 3 && average > 0) 4519 (void) printf(" space for %d additional leaf vdevs\n", 4520 (int)((cap - total) / average)); 4521 } 4522 (void) printf("\n"); 4523 4524 nvlist_free(stats.zns_string); 4525 nvlist_free(stats.zns_uint64); 4526 nvlist_free(stats.zns_boolean); 4527 } 4528 4529 typedef struct cksum_record { 4530 zio_cksum_t cksum; 4531 boolean_t labels[VDEV_LABELS]; 4532 avl_node_t link; 4533 } cksum_record_t; 4534 4535 static int 4536 cksum_record_compare(const void *x1, const void *x2) 4537 { 4538 const cksum_record_t *l = (cksum_record_t *)x1; 4539 const cksum_record_t *r = (cksum_record_t *)x2; 4540 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4541 int difference = 0; 4542 4543 for (int i = 0; i < arraysize; i++) { 4544 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4545 if (difference) 4546 break; 4547 } 4548 4549 return (difference); 4550 } 4551 4552 static cksum_record_t * 4553 cksum_record_alloc(zio_cksum_t *cksum, int l) 4554 { 4555 cksum_record_t *rec; 4556 4557 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4558 rec->cksum = *cksum; 4559 rec->labels[l] = B_TRUE; 4560 4561 return (rec); 4562 } 4563 4564 static cksum_record_t * 4565 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4566 { 4567 cksum_record_t lookup = { .cksum = *cksum }; 4568 avl_index_t where; 4569 4570 return (avl_find(tree, &lookup, &where)); 4571 } 4572 4573 static cksum_record_t * 4574 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4575 { 4576 cksum_record_t *rec; 4577 4578 rec = cksum_record_lookup(tree, cksum); 4579 if (rec) { 4580 rec->labels[l] = B_TRUE; 4581 } else { 4582 rec = cksum_record_alloc(cksum, l); 4583 avl_add(tree, rec); 4584 } 4585 4586 return (rec); 4587 } 4588 4589 static int 4590 first_label(cksum_record_t *rec) 4591 { 4592 for (int i = 0; i < VDEV_LABELS; i++) 4593 if (rec->labels[i]) 4594 return (i); 4595 4596 return (-1); 4597 } 4598 4599 static void 4600 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4601 { 4602 fputs(prefix, stdout); 4603 for (int i = 0; i < VDEV_LABELS; i++) 4604 if (rec->labels[i] == B_TRUE) 4605 printf("%d ", i); 4606 putchar('\n'); 4607 } 4608 4609 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4610 4611 typedef struct zdb_label { 4612 vdev_label_t label; 4613 uint64_t label_offset; 4614 nvlist_t *config_nv; 4615 cksum_record_t *config; 4616 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4617 boolean_t header_printed; 4618 boolean_t read_failed; 4619 boolean_t cksum_valid; 4620 } zdb_label_t; 4621 4622 static void 4623 print_label_header(zdb_label_t *label, int l) 4624 { 4625 4626 if (dump_opt['q']) 4627 return; 4628 4629 if (label->header_printed == B_TRUE) 4630 return; 4631 4632 (void) printf("------------------------------------\n"); 4633 (void) printf("LABEL %d %s\n", l, 4634 label->cksum_valid ? "" : "(Bad label cksum)"); 4635 (void) printf("------------------------------------\n"); 4636 4637 label->header_printed = B_TRUE; 4638 } 4639 4640 static void 4641 print_l2arc_header(void) 4642 { 4643 (void) printf("------------------------------------\n"); 4644 (void) printf("L2ARC device header\n"); 4645 (void) printf("------------------------------------\n"); 4646 } 4647 4648 static void 4649 print_l2arc_log_blocks(void) 4650 { 4651 (void) printf("------------------------------------\n"); 4652 (void) printf("L2ARC device log blocks\n"); 4653 (void) printf("------------------------------------\n"); 4654 } 4655 4656 static void 4657 dump_l2arc_log_entries(uint64_t log_entries, 4658 l2arc_log_ent_phys_t *le, uint64_t i) 4659 { 4660 for (int j = 0; j < log_entries; j++) { 4661 dva_t dva = le[j].le_dva; 4662 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4663 "vdev: %llu, offset: %llu\n", 4664 (u_longlong_t)i, j + 1, 4665 (u_longlong_t)DVA_GET_ASIZE(&dva), 4666 (u_longlong_t)DVA_GET_VDEV(&dva), 4667 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4668 (void) printf("|\t\t\t\tbirth: %llu\n", 4669 (u_longlong_t)le[j].le_birth); 4670 (void) printf("|\t\t\t\tlsize: %llu\n", 4671 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4672 (void) printf("|\t\t\t\tpsize: %llu\n", 4673 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4674 (void) printf("|\t\t\t\tcompr: %llu\n", 4675 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4676 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4677 (u_longlong_t)(&le[j])->le_complevel); 4678 (void) printf("|\t\t\t\ttype: %llu\n", 4679 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4680 (void) printf("|\t\t\t\tprotected: %llu\n", 4681 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4682 (void) printf("|\t\t\t\tprefetch: %llu\n", 4683 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4684 (void) printf("|\t\t\t\taddress: %llu\n", 4685 (u_longlong_t)le[j].le_daddr); 4686 (void) printf("|\t\t\t\tARC state: %llu\n", 4687 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4688 (void) printf("|\n"); 4689 } 4690 (void) printf("\n"); 4691 } 4692 4693 static void 4694 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4695 { 4696 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4697 (void) printf("|\t\tpayload_asize: %llu\n", 4698 (u_longlong_t)lbps->lbp_payload_asize); 4699 (void) printf("|\t\tpayload_start: %llu\n", 4700 (u_longlong_t)lbps->lbp_payload_start); 4701 (void) printf("|\t\tlsize: %llu\n", 4702 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4703 (void) printf("|\t\tasize: %llu\n", 4704 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4705 (void) printf("|\t\tcompralgo: %llu\n", 4706 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4707 (void) printf("|\t\tcksumalgo: %llu\n", 4708 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4709 (void) printf("|\n\n"); 4710 } 4711 4712 static void 4713 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4714 l2arc_dev_hdr_phys_t *rebuild) 4715 { 4716 l2arc_log_blk_phys_t this_lb; 4717 uint64_t asize; 4718 l2arc_log_blkptr_t lbps[2]; 4719 zio_cksum_t cksum; 4720 int failed = 0; 4721 l2arc_dev_t dev; 4722 4723 if (!dump_opt['q']) 4724 print_l2arc_log_blocks(); 4725 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4726 4727 dev.l2ad_evict = l2dhdr->dh_evict; 4728 dev.l2ad_start = l2dhdr->dh_start; 4729 dev.l2ad_end = l2dhdr->dh_end; 4730 4731 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4732 /* no log blocks to read */ 4733 if (!dump_opt['q']) { 4734 (void) printf("No log blocks to read\n"); 4735 (void) printf("\n"); 4736 } 4737 return; 4738 } else { 4739 dev.l2ad_hand = lbps[0].lbp_daddr + 4740 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4741 } 4742 4743 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4744 4745 for (;;) { 4746 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4747 break; 4748 4749 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4750 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4751 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4752 if (!dump_opt['q']) { 4753 (void) printf("Error while reading next log " 4754 "block\n\n"); 4755 } 4756 break; 4757 } 4758 4759 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4760 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4761 failed++; 4762 if (!dump_opt['q']) { 4763 (void) printf("Invalid cksum\n"); 4764 dump_l2arc_log_blkptr(&lbps[0]); 4765 } 4766 break; 4767 } 4768 4769 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4770 case ZIO_COMPRESS_OFF: 4771 break; 4772 default: { 4773 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4774 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4775 abd_t dabd; 4776 abd_get_from_buf_struct(&dabd, &this_lb, 4777 sizeof (this_lb)); 4778 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4779 (&lbps[0])->lbp_prop), abd, &dabd, 4780 asize, sizeof (this_lb), NULL); 4781 abd_free(&dabd); 4782 abd_free(abd); 4783 if (err != 0) { 4784 (void) printf("L2ARC block decompression " 4785 "failed\n"); 4786 goto out; 4787 } 4788 break; 4789 } 4790 } 4791 4792 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4793 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4794 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4795 if (!dump_opt['q']) 4796 (void) printf("Invalid log block magic\n\n"); 4797 break; 4798 } 4799 4800 rebuild->dh_lb_count++; 4801 rebuild->dh_lb_asize += asize; 4802 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4803 (void) printf("lb[%4llu]\tmagic: %llu\n", 4804 (u_longlong_t)rebuild->dh_lb_count, 4805 (u_longlong_t)this_lb.lb_magic); 4806 dump_l2arc_log_blkptr(&lbps[0]); 4807 } 4808 4809 if (dump_opt['l'] > 2 && !dump_opt['q']) 4810 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4811 this_lb.lb_entries, 4812 rebuild->dh_lb_count); 4813 4814 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4815 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4816 !dev.l2ad_first) 4817 break; 4818 4819 lbps[0] = lbps[1]; 4820 lbps[1] = this_lb.lb_prev_lbp; 4821 } 4822 out: 4823 if (!dump_opt['q']) { 4824 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4825 (u_longlong_t)rebuild->dh_lb_count); 4826 (void) printf("\t\t %d with invalid cksum\n", failed); 4827 (void) printf("log_blk_asize:\t %llu\n\n", 4828 (u_longlong_t)rebuild->dh_lb_asize); 4829 } 4830 } 4831 4832 static int 4833 dump_l2arc_header(int fd) 4834 { 4835 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4836 int error = B_FALSE; 4837 4838 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4839 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4840 error = B_TRUE; 4841 } else { 4842 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4843 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4844 4845 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4846 error = B_TRUE; 4847 } 4848 4849 if (error) { 4850 (void) printf("L2ARC device header not found\n\n"); 4851 /* Do not return an error here for backward compatibility */ 4852 return (0); 4853 } else if (!dump_opt['q']) { 4854 print_l2arc_header(); 4855 4856 (void) printf(" magic: %llu\n", 4857 (u_longlong_t)l2dhdr.dh_magic); 4858 (void) printf(" version: %llu\n", 4859 (u_longlong_t)l2dhdr.dh_version); 4860 (void) printf(" pool_guid: %llu\n", 4861 (u_longlong_t)l2dhdr.dh_spa_guid); 4862 (void) printf(" flags: %llu\n", 4863 (u_longlong_t)l2dhdr.dh_flags); 4864 (void) printf(" start_lbps[0]: %llu\n", 4865 (u_longlong_t) 4866 l2dhdr.dh_start_lbps[0].lbp_daddr); 4867 (void) printf(" start_lbps[1]: %llu\n", 4868 (u_longlong_t) 4869 l2dhdr.dh_start_lbps[1].lbp_daddr); 4870 (void) printf(" log_blk_ent: %llu\n", 4871 (u_longlong_t)l2dhdr.dh_log_entries); 4872 (void) printf(" start: %llu\n", 4873 (u_longlong_t)l2dhdr.dh_start); 4874 (void) printf(" end: %llu\n", 4875 (u_longlong_t)l2dhdr.dh_end); 4876 (void) printf(" evict: %llu\n", 4877 (u_longlong_t)l2dhdr.dh_evict); 4878 (void) printf(" lb_asize_refcount: %llu\n", 4879 (u_longlong_t)l2dhdr.dh_lb_asize); 4880 (void) printf(" lb_count_refcount: %llu\n", 4881 (u_longlong_t)l2dhdr.dh_lb_count); 4882 (void) printf(" trim_action_time: %llu\n", 4883 (u_longlong_t)l2dhdr.dh_trim_action_time); 4884 (void) printf(" trim_state: %llu\n\n", 4885 (u_longlong_t)l2dhdr.dh_trim_state); 4886 } 4887 4888 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4889 /* 4890 * The total aligned size of log blocks and the number of log blocks 4891 * reported in the header of the device may be less than what zdb 4892 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4893 * This happens because dump_l2arc_log_blocks() lacks the memory 4894 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4895 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4896 * and dh_lb_count will be lower to begin with than what exists on the 4897 * device. This is normal and zdb should not exit with an error. The 4898 * opposite case should never happen though, the values reported in the 4899 * header should never be higher than what dump_l2arc_log_blocks() and 4900 * l2arc_rebuild() report. If this happens there is a leak in the 4901 * accounting of log blocks. 4902 */ 4903 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4904 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4905 return (1); 4906 4907 return (0); 4908 } 4909 4910 static void 4911 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4912 { 4913 if (dump_opt['q']) 4914 return; 4915 4916 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4917 return; 4918 4919 print_label_header(label, l); 4920 dump_nvlist(label->config_nv, 4); 4921 print_label_numbers(" labels = ", label->config); 4922 4923 if (dump_opt['l'] >= 2) 4924 dump_nvlist_stats(label->config_nv, buflen); 4925 } 4926 4927 #define ZDB_MAX_UB_HEADER_SIZE 32 4928 4929 static void 4930 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4931 { 4932 4933 vdev_t vd; 4934 char header[ZDB_MAX_UB_HEADER_SIZE]; 4935 4936 vd.vdev_ashift = ashift; 4937 vd.vdev_top = &vd; 4938 4939 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4940 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4941 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4942 cksum_record_t *rec = label->uberblocks[i]; 4943 4944 if (rec == NULL) { 4945 if (dump_opt['u'] >= 2) { 4946 print_label_header(label, label_num); 4947 (void) printf(" Uberblock[%d] invalid\n", i); 4948 } 4949 continue; 4950 } 4951 4952 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4953 continue; 4954 4955 if ((dump_opt['u'] < 4) && 4956 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4957 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4958 continue; 4959 4960 print_label_header(label, label_num); 4961 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4962 " Uberblock[%d]\n", i); 4963 dump_uberblock(ub, header, ""); 4964 print_label_numbers(" labels = ", rec); 4965 } 4966 } 4967 4968 static char curpath[PATH_MAX]; 4969 4970 /* 4971 * Iterate through the path components, recursively passing 4972 * current one's obj and remaining path until we find the obj 4973 * for the last one. 4974 */ 4975 static int 4976 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4977 { 4978 int err; 4979 boolean_t header = B_TRUE; 4980 uint64_t child_obj; 4981 char *s; 4982 dmu_buf_t *db; 4983 dmu_object_info_t doi; 4984 4985 if ((s = strchr(name, '/')) != NULL) 4986 *s = '\0'; 4987 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4988 4989 (void) strlcat(curpath, name, sizeof (curpath)); 4990 4991 if (err != 0) { 4992 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4993 curpath, strerror(err)); 4994 return (err); 4995 } 4996 4997 child_obj = ZFS_DIRENT_OBJ(child_obj); 4998 err = sa_buf_hold(os, child_obj, FTAG, &db); 4999 if (err != 0) { 5000 (void) fprintf(stderr, 5001 "failed to get SA dbuf for obj %llu: %s\n", 5002 (u_longlong_t)child_obj, strerror(err)); 5003 return (EINVAL); 5004 } 5005 dmu_object_info_from_db(db, &doi); 5006 sa_buf_rele(db, FTAG); 5007 5008 if (doi.doi_bonus_type != DMU_OT_SA && 5009 doi.doi_bonus_type != DMU_OT_ZNODE) { 5010 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5011 doi.doi_bonus_type, (u_longlong_t)child_obj); 5012 return (EINVAL); 5013 } 5014 5015 if (dump_opt['v'] > 6) { 5016 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5017 (u_longlong_t)child_obj, curpath, doi.doi_type, 5018 doi.doi_bonus_type); 5019 } 5020 5021 (void) strlcat(curpath, "/", sizeof (curpath)); 5022 5023 switch (doi.doi_type) { 5024 case DMU_OT_DIRECTORY_CONTENTS: 5025 if (s != NULL && *(s + 1) != '\0') 5026 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5027 zfs_fallthrough; 5028 case DMU_OT_PLAIN_FILE_CONTENTS: 5029 if (retobj != NULL) { 5030 *retobj = child_obj; 5031 } else { 5032 dump_object(os, child_obj, dump_opt['v'], &header, 5033 NULL, 0); 5034 } 5035 return (0); 5036 default: 5037 (void) fprintf(stderr, "object %llu has non-file/directory " 5038 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5039 break; 5040 } 5041 5042 return (EINVAL); 5043 } 5044 5045 /* 5046 * Dump the blocks for the object specified by path inside the dataset. 5047 */ 5048 static int 5049 dump_path(char *ds, char *path, uint64_t *retobj) 5050 { 5051 int err; 5052 objset_t *os; 5053 uint64_t root_obj; 5054 5055 err = open_objset(ds, FTAG, &os); 5056 if (err != 0) 5057 return (err); 5058 5059 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5060 if (err != 0) { 5061 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5062 strerror(err)); 5063 close_objset(os, FTAG); 5064 return (EINVAL); 5065 } 5066 5067 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5068 5069 err = dump_path_impl(os, root_obj, path, retobj); 5070 5071 close_objset(os, FTAG); 5072 return (err); 5073 } 5074 5075 static int 5076 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5077 { 5078 const char *p = (const char *)buf; 5079 ssize_t nwritten; 5080 5081 (void) os; 5082 (void) arg; 5083 5084 /* Write the data out, handling short writes and signals. */ 5085 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5086 if (nwritten < 0) { 5087 if (errno == EINTR) 5088 continue; 5089 return (errno); 5090 } 5091 p += nwritten; 5092 len -= nwritten; 5093 } 5094 5095 return (0); 5096 } 5097 5098 static void 5099 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5100 { 5101 boolean_t embed = B_FALSE; 5102 boolean_t large_block = B_FALSE; 5103 boolean_t compress = B_FALSE; 5104 boolean_t raw = B_FALSE; 5105 5106 const char *c; 5107 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5108 switch (*c) { 5109 case 'e': 5110 embed = B_TRUE; 5111 break; 5112 case 'L': 5113 large_block = B_TRUE; 5114 break; 5115 case 'c': 5116 compress = B_TRUE; 5117 break; 5118 case 'w': 5119 raw = B_TRUE; 5120 break; 5121 default: 5122 fprintf(stderr, "dump_backup: invalid flag " 5123 "'%c'\n", *c); 5124 return; 5125 } 5126 } 5127 5128 if (isatty(STDOUT_FILENO)) { 5129 fprintf(stderr, "dump_backup: stream cannot be written " 5130 "to a terminal\n"); 5131 return; 5132 } 5133 5134 offset_t off = 0; 5135 dmu_send_outparams_t out = { 5136 .dso_outfunc = dump_backup_bytes, 5137 .dso_dryrun = B_FALSE, 5138 }; 5139 5140 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5141 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5142 &off, &out); 5143 if (err != 0) { 5144 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5145 strerror(err)); 5146 return; 5147 } 5148 } 5149 5150 static int 5151 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5152 { 5153 int err = 0; 5154 uint64_t size, readsize, oursize, offset; 5155 ssize_t writesize; 5156 sa_handle_t *hdl; 5157 5158 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5159 destfile); 5160 5161 VERIFY3P(os, ==, sa_os); 5162 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5163 (void) printf("Failed to get handle for SA znode\n"); 5164 return (err); 5165 } 5166 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5167 (void) sa_handle_destroy(hdl); 5168 return (err); 5169 } 5170 (void) sa_handle_destroy(hdl); 5171 5172 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5173 size); 5174 if (size == 0) { 5175 return (EINVAL); 5176 } 5177 5178 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5179 if (fd == -1) 5180 return (errno); 5181 /* 5182 * We cap the size at 1 mebibyte here to prevent 5183 * allocation failures and nigh-infinite printing if the 5184 * object is extremely large. 5185 */ 5186 oursize = MIN(size, 1 << 20); 5187 offset = 0; 5188 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5189 if (buf == NULL) { 5190 (void) close(fd); 5191 return (ENOMEM); 5192 } 5193 5194 while (offset < size) { 5195 readsize = MIN(size - offset, 1 << 20); 5196 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5197 if (err != 0) { 5198 (void) printf("got error %u from dmu_read\n", err); 5199 kmem_free(buf, oursize); 5200 (void) close(fd); 5201 return (err); 5202 } 5203 if (dump_opt['v'] > 3) { 5204 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5205 " error=%d\n", offset, readsize, err); 5206 } 5207 5208 writesize = write(fd, buf, readsize); 5209 if (writesize < 0) { 5210 err = errno; 5211 break; 5212 } else if (writesize != readsize) { 5213 /* Incomplete write */ 5214 (void) fprintf(stderr, "Short write, only wrote %llu of" 5215 " %" PRIu64 " bytes, exiting...\n", 5216 (u_longlong_t)writesize, readsize); 5217 break; 5218 } 5219 5220 offset += readsize; 5221 } 5222 5223 (void) close(fd); 5224 5225 if (buf != NULL) 5226 kmem_free(buf, oursize); 5227 5228 return (err); 5229 } 5230 5231 static boolean_t 5232 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5233 { 5234 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5235 zio_cksum_t expected_cksum; 5236 zio_cksum_t actual_cksum; 5237 zio_cksum_t verifier; 5238 zio_eck_t *eck; 5239 int byteswap; 5240 5241 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5242 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5243 5244 offset += offsetof(vdev_label_t, vl_vdev_phys); 5245 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5246 5247 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5248 if (byteswap) 5249 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5250 5251 expected_cksum = eck->zec_cksum; 5252 eck->zec_cksum = verifier; 5253 5254 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5255 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5256 abd_free(abd); 5257 5258 if (byteswap) 5259 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5260 5261 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5262 return (B_TRUE); 5263 5264 return (B_FALSE); 5265 } 5266 5267 static int 5268 dump_label(const char *dev) 5269 { 5270 char path[MAXPATHLEN]; 5271 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5272 uint64_t psize, ashift, l2cache; 5273 struct stat64 statbuf; 5274 boolean_t config_found = B_FALSE; 5275 boolean_t error = B_FALSE; 5276 boolean_t read_l2arc_header = B_FALSE; 5277 avl_tree_t config_tree; 5278 avl_tree_t uberblock_tree; 5279 void *node, *cookie; 5280 int fd; 5281 5282 /* 5283 * Check if we were given absolute path and use it as is. 5284 * Otherwise if the provided vdev name doesn't point to a file, 5285 * try prepending expected disk paths and partition numbers. 5286 */ 5287 (void) strlcpy(path, dev, sizeof (path)); 5288 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5289 int error; 5290 5291 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5292 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5293 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5294 error = ENOENT; 5295 } 5296 5297 if (error || (stat64(path, &statbuf) != 0)) { 5298 (void) printf("failed to find device %s, try " 5299 "specifying absolute path instead\n", dev); 5300 return (1); 5301 } 5302 } 5303 5304 if ((fd = open64(path, O_RDONLY)) < 0) { 5305 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5306 zdb_exit(1); 5307 } 5308 5309 if (fstat64_blk(fd, &statbuf) != 0) { 5310 (void) printf("failed to stat '%s': %s\n", path, 5311 strerror(errno)); 5312 (void) close(fd); 5313 zdb_exit(1); 5314 } 5315 5316 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5317 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5318 strerror(errno)); 5319 5320 avl_create(&config_tree, cksum_record_compare, 5321 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5322 avl_create(&uberblock_tree, cksum_record_compare, 5323 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5324 5325 psize = statbuf.st_size; 5326 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5327 ashift = SPA_MINBLOCKSHIFT; 5328 5329 /* 5330 * 1. Read the label from disk 5331 * 2. Verify label cksum 5332 * 3. Unpack the configuration and insert in config tree. 5333 * 4. Traverse all uberblocks and insert in uberblock tree. 5334 */ 5335 for (int l = 0; l < VDEV_LABELS; l++) { 5336 zdb_label_t *label = &labels[l]; 5337 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5338 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5339 nvlist_t *config; 5340 cksum_record_t *rec; 5341 zio_cksum_t cksum; 5342 vdev_t vd; 5343 5344 label->label_offset = vdev_label_offset(psize, l, 0); 5345 5346 if (pread64(fd, &label->label, sizeof (label->label), 5347 label->label_offset) != sizeof (label->label)) { 5348 if (!dump_opt['q']) 5349 (void) printf("failed to read label %d\n", l); 5350 label->read_failed = B_TRUE; 5351 error = B_TRUE; 5352 continue; 5353 } 5354 5355 label->read_failed = B_FALSE; 5356 label->cksum_valid = label_cksum_valid(&label->label, 5357 label->label_offset); 5358 5359 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5360 nvlist_t *vdev_tree = NULL; 5361 size_t size; 5362 5363 if ((nvlist_lookup_nvlist(config, 5364 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5365 (nvlist_lookup_uint64(vdev_tree, 5366 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5367 ashift = SPA_MINBLOCKSHIFT; 5368 5369 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5370 size = buflen; 5371 5372 /* If the device is a cache device read the header. */ 5373 if (!read_l2arc_header) { 5374 if (nvlist_lookup_uint64(config, 5375 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5376 l2cache == POOL_STATE_L2CACHE) { 5377 read_l2arc_header = B_TRUE; 5378 } 5379 } 5380 5381 fletcher_4_native_varsize(buf, size, &cksum); 5382 rec = cksum_record_insert(&config_tree, &cksum, l); 5383 5384 label->config = rec; 5385 label->config_nv = config; 5386 config_found = B_TRUE; 5387 } else { 5388 error = B_TRUE; 5389 } 5390 5391 vd.vdev_ashift = ashift; 5392 vd.vdev_top = &vd; 5393 5394 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5395 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5396 uberblock_t *ub = (void *)((char *)label + uoff); 5397 5398 if (uberblock_verify(ub)) 5399 continue; 5400 5401 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5402 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5403 5404 label->uberblocks[i] = rec; 5405 } 5406 } 5407 5408 /* 5409 * Dump the label and uberblocks. 5410 */ 5411 for (int l = 0; l < VDEV_LABELS; l++) { 5412 zdb_label_t *label = &labels[l]; 5413 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5414 5415 if (label->read_failed == B_TRUE) 5416 continue; 5417 5418 if (label->config_nv) { 5419 dump_config_from_label(label, buflen, l); 5420 } else { 5421 if (!dump_opt['q']) 5422 (void) printf("failed to unpack label %d\n", l); 5423 } 5424 5425 if (dump_opt['u']) 5426 dump_label_uberblocks(label, ashift, l); 5427 5428 nvlist_free(label->config_nv); 5429 } 5430 5431 /* 5432 * Dump the L2ARC header, if existent. 5433 */ 5434 if (read_l2arc_header) 5435 error |= dump_l2arc_header(fd); 5436 5437 cookie = NULL; 5438 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5439 umem_free(node, sizeof (cksum_record_t)); 5440 5441 cookie = NULL; 5442 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5443 umem_free(node, sizeof (cksum_record_t)); 5444 5445 avl_destroy(&config_tree); 5446 avl_destroy(&uberblock_tree); 5447 5448 (void) close(fd); 5449 5450 return (config_found == B_FALSE ? 2 : 5451 (error == B_TRUE ? 1 : 0)); 5452 } 5453 5454 static uint64_t dataset_feature_count[SPA_FEATURES]; 5455 static uint64_t global_feature_count[SPA_FEATURES]; 5456 static uint64_t remap_deadlist_count = 0; 5457 5458 static int 5459 dump_one_objset(const char *dsname, void *arg) 5460 { 5461 (void) arg; 5462 int error; 5463 objset_t *os; 5464 spa_feature_t f; 5465 5466 error = open_objset(dsname, FTAG, &os); 5467 if (error != 0) 5468 return (0); 5469 5470 for (f = 0; f < SPA_FEATURES; f++) { 5471 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5472 continue; 5473 ASSERT(spa_feature_table[f].fi_flags & 5474 ZFEATURE_FLAG_PER_DATASET); 5475 dataset_feature_count[f]++; 5476 } 5477 5478 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5479 remap_deadlist_count++; 5480 } 5481 5482 for (dsl_bookmark_node_t *dbn = 5483 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5484 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5485 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5486 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5487 global_feature_count[ 5488 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5489 objset_t *mos = os->os_spa->spa_meta_objset; 5490 dnode_t *rl; 5491 VERIFY0(dnode_hold(mos, 5492 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5493 if (rl->dn_have_spill) { 5494 global_feature_count[ 5495 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5496 } 5497 } 5498 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5499 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5500 } 5501 5502 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5503 !dmu_objset_is_snapshot(os)) { 5504 global_feature_count[SPA_FEATURE_LIVELIST]++; 5505 } 5506 5507 dump_objset(os); 5508 close_objset(os, FTAG); 5509 fuid_table_destroy(); 5510 return (0); 5511 } 5512 5513 /* 5514 * Block statistics. 5515 */ 5516 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5517 typedef struct zdb_blkstats { 5518 uint64_t zb_asize; 5519 uint64_t zb_lsize; 5520 uint64_t zb_psize; 5521 uint64_t zb_count; 5522 uint64_t zb_gangs; 5523 uint64_t zb_ditto_samevdev; 5524 uint64_t zb_ditto_same_ms; 5525 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5526 } zdb_blkstats_t; 5527 5528 /* 5529 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5530 */ 5531 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5532 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5533 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5534 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5535 5536 static const char *zdb_ot_extname[] = { 5537 "deferred free", 5538 "dedup ditto", 5539 "other", 5540 "Total", 5541 }; 5542 5543 #define ZB_TOTAL DN_MAX_LEVELS 5544 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5545 5546 typedef struct zdb_brt_entry { 5547 dva_t zbre_dva; 5548 uint64_t zbre_refcount; 5549 avl_node_t zbre_node; 5550 } zdb_brt_entry_t; 5551 5552 typedef struct zdb_cb { 5553 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5554 uint64_t zcb_removing_size; 5555 uint64_t zcb_checkpoint_size; 5556 uint64_t zcb_dedup_asize; 5557 uint64_t zcb_dedup_blocks; 5558 uint64_t zcb_clone_asize; 5559 uint64_t zcb_clone_blocks; 5560 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5561 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5562 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5563 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5564 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5565 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5566 uint64_t zcb_psize_total; 5567 uint64_t zcb_lsize_total; 5568 uint64_t zcb_asize_total; 5569 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5570 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5571 [BPE_PAYLOAD_SIZE + 1]; 5572 uint64_t zcb_start; 5573 hrtime_t zcb_lastprint; 5574 uint64_t zcb_totalasize; 5575 uint64_t zcb_errors[256]; 5576 int zcb_readfails; 5577 int zcb_haderrors; 5578 spa_t *zcb_spa; 5579 uint32_t **zcb_vd_obsolete_counts; 5580 avl_tree_t zcb_brt; 5581 boolean_t zcb_brt_is_active; 5582 } zdb_cb_t; 5583 5584 /* test if two DVA offsets from same vdev are within the same metaslab */ 5585 static boolean_t 5586 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5587 { 5588 vdev_t *vd = vdev_lookup_top(spa, vdev); 5589 uint64_t ms_shift = vd->vdev_ms_shift; 5590 5591 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5592 } 5593 5594 /* 5595 * Used to simplify reporting of the histogram data. 5596 */ 5597 typedef struct one_histo { 5598 const char *name; 5599 uint64_t *count; 5600 uint64_t *len; 5601 uint64_t cumulative; 5602 } one_histo_t; 5603 5604 /* 5605 * The number of separate histograms processed for psize, lsize and asize. 5606 */ 5607 #define NUM_HISTO 3 5608 5609 /* 5610 * This routine will create a fixed column size output of three different 5611 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5612 * the count, length and cumulative length of the psize, lsize and 5613 * asize blocks. 5614 * 5615 * All three types of blocks are listed on a single line 5616 * 5617 * By default the table is printed in nicenumber format (e.g. 123K) but 5618 * if the '-P' parameter is specified then the full raw number (parseable) 5619 * is printed out. 5620 */ 5621 static void 5622 dump_size_histograms(zdb_cb_t *zcb) 5623 { 5624 /* 5625 * A temporary buffer that allows us to convert a number into 5626 * a string using zdb_nicenumber to allow either raw or human 5627 * readable numbers to be output. 5628 */ 5629 char numbuf[32]; 5630 5631 /* 5632 * Define titles which are used in the headers of the tables 5633 * printed by this routine. 5634 */ 5635 const char blocksize_title1[] = "block"; 5636 const char blocksize_title2[] = "size"; 5637 const char count_title[] = "Count"; 5638 const char length_title[] = "Size"; 5639 const char cumulative_title[] = "Cum."; 5640 5641 /* 5642 * Setup the histogram arrays (psize, lsize, and asize). 5643 */ 5644 one_histo_t parm_histo[NUM_HISTO]; 5645 5646 parm_histo[0].name = "psize"; 5647 parm_histo[0].count = zcb->zcb_psize_count; 5648 parm_histo[0].len = zcb->zcb_psize_len; 5649 parm_histo[0].cumulative = 0; 5650 5651 parm_histo[1].name = "lsize"; 5652 parm_histo[1].count = zcb->zcb_lsize_count; 5653 parm_histo[1].len = zcb->zcb_lsize_len; 5654 parm_histo[1].cumulative = 0; 5655 5656 parm_histo[2].name = "asize"; 5657 parm_histo[2].count = zcb->zcb_asize_count; 5658 parm_histo[2].len = zcb->zcb_asize_len; 5659 parm_histo[2].cumulative = 0; 5660 5661 5662 (void) printf("\nBlock Size Histogram\n"); 5663 /* 5664 * Print the first line titles 5665 */ 5666 if (dump_opt['P']) 5667 (void) printf("\n%s\t", blocksize_title1); 5668 else 5669 (void) printf("\n%7s ", blocksize_title1); 5670 5671 for (int j = 0; j < NUM_HISTO; j++) { 5672 if (dump_opt['P']) { 5673 if (j < NUM_HISTO - 1) { 5674 (void) printf("%s\t\t\t", parm_histo[j].name); 5675 } else { 5676 /* Don't print trailing spaces */ 5677 (void) printf(" %s", parm_histo[j].name); 5678 } 5679 } else { 5680 if (j < NUM_HISTO - 1) { 5681 /* Left aligned strings in the output */ 5682 (void) printf("%-7s ", 5683 parm_histo[j].name); 5684 } else { 5685 /* Don't print trailing spaces */ 5686 (void) printf("%s", parm_histo[j].name); 5687 } 5688 } 5689 } 5690 (void) printf("\n"); 5691 5692 /* 5693 * Print the second line titles 5694 */ 5695 if (dump_opt['P']) { 5696 (void) printf("%s\t", blocksize_title2); 5697 } else { 5698 (void) printf("%7s ", blocksize_title2); 5699 } 5700 5701 for (int i = 0; i < NUM_HISTO; i++) { 5702 if (dump_opt['P']) { 5703 (void) printf("%s\t%s\t%s\t", 5704 count_title, length_title, cumulative_title); 5705 } else { 5706 (void) printf("%7s%7s%7s", 5707 count_title, length_title, cumulative_title); 5708 } 5709 } 5710 (void) printf("\n"); 5711 5712 /* 5713 * Print the rows 5714 */ 5715 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5716 5717 /* 5718 * Print the first column showing the blocksize 5719 */ 5720 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5721 5722 if (dump_opt['P']) { 5723 printf("%s", numbuf); 5724 } else { 5725 printf("%7s:", numbuf); 5726 } 5727 5728 /* 5729 * Print the remaining set of 3 columns per size: 5730 * for psize, lsize and asize 5731 */ 5732 for (int j = 0; j < NUM_HISTO; j++) { 5733 parm_histo[j].cumulative += parm_histo[j].len[i]; 5734 5735 zdb_nicenum(parm_histo[j].count[i], 5736 numbuf, sizeof (numbuf)); 5737 if (dump_opt['P']) 5738 (void) printf("\t%s", numbuf); 5739 else 5740 (void) printf("%7s", numbuf); 5741 5742 zdb_nicenum(parm_histo[j].len[i], 5743 numbuf, sizeof (numbuf)); 5744 if (dump_opt['P']) 5745 (void) printf("\t%s", numbuf); 5746 else 5747 (void) printf("%7s", numbuf); 5748 5749 zdb_nicenum(parm_histo[j].cumulative, 5750 numbuf, sizeof (numbuf)); 5751 if (dump_opt['P']) 5752 (void) printf("\t%s", numbuf); 5753 else 5754 (void) printf("%7s", numbuf); 5755 } 5756 (void) printf("\n"); 5757 } 5758 } 5759 5760 static void 5761 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5762 dmu_object_type_t type) 5763 { 5764 int i; 5765 5766 ASSERT(type < ZDB_OT_TOTAL); 5767 5768 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5769 return; 5770 5771 /* 5772 * This flag controls if we will issue a claim for the block while 5773 * counting it, to ensure that all blocks are referenced in space maps. 5774 * We don't issue claims if we're not doing leak tracking, because it's 5775 * expensive if the user isn't interested. We also don't claim the 5776 * second or later occurences of cloned or dedup'd blocks, because we 5777 * already claimed them the first time. 5778 */ 5779 boolean_t do_claim = !dump_opt['L']; 5780 5781 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5782 5783 blkptr_t tempbp; 5784 if (BP_GET_DEDUP(bp)) { 5785 /* 5786 * Dedup'd blocks are special. We need to count them, so we can 5787 * later uncount them when reporting leaked space, and we must 5788 * only claim them once. 5789 * 5790 * We use the existing dedup system to track what we've seen. 5791 * The first time we see a block, we do a ddt_lookup() to see 5792 * if it exists in the DDT. If we're doing leak tracking, we 5793 * claim the block at this time. 5794 * 5795 * Each time we see a block, we reduce the refcount in the 5796 * entry by one, and add to the size and count of dedup'd 5797 * blocks to report at the end. 5798 */ 5799 5800 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5801 5802 ddt_enter(ddt); 5803 5804 /* 5805 * Find the block. This will create the entry in memory, but 5806 * we'll know if that happened by its refcount. 5807 */ 5808 ddt_entry_t *dde = ddt_lookup(ddt, bp); 5809 5810 /* 5811 * ddt_lookup() can return NULL if this block didn't exist 5812 * in the DDT and creating it would take the DDT over its 5813 * quota. Since we got the block from disk, it must exist in 5814 * the DDT, so this can't happen. However, when unique entries 5815 * are pruned, the dedup bit can be set with no corresponding 5816 * entry in the DDT. 5817 */ 5818 if (dde == NULL) { 5819 ddt_exit(ddt); 5820 goto skipped; 5821 } 5822 5823 /* Get the phys for this variant */ 5824 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5825 5826 /* 5827 * This entry may have multiple sets of DVAs. We must claim 5828 * each set the first time we see them in a real block on disk, 5829 * or count them on subsequent occurences. We don't have a 5830 * convenient way to track the first time we see each variant, 5831 * so we repurpose dde_io as a set of "seen" flag bits. We can 5832 * do this safely in zdb because it never writes, so it will 5833 * never have a writing zio for this block in that pointer. 5834 */ 5835 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5836 if (!seen) 5837 dde->dde_io = 5838 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5839 5840 /* Consume a reference for this block. */ 5841 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5842 ddt_phys_decref(dde->dde_phys, v); 5843 5844 /* 5845 * If this entry has a single flat phys, it may have been 5846 * extended with additional DVAs at some time in its life. 5847 * This block might be from before it was fully extended, and 5848 * so have fewer DVAs. 5849 * 5850 * If this is the first time we've seen this block, and we 5851 * claimed it as-is, then we would miss the claim on some 5852 * number of DVAs, which would then be seen as leaked. 5853 * 5854 * In all cases, if we've had fewer DVAs, then the asize would 5855 * be too small, and would lead to the pool apparently using 5856 * more space than allocated. 5857 * 5858 * To handle this, we copy the canonical set of DVAs from the 5859 * entry back to the block pointer before we claim it. 5860 */ 5861 if (v == DDT_PHYS_FLAT) { 5862 ASSERT3U(BP_GET_BIRTH(bp), ==, 5863 ddt_phys_birth(dde->dde_phys, v)); 5864 tempbp = *bp; 5865 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5866 BP_GET_BIRTH(bp)); 5867 bp = &tempbp; 5868 } 5869 5870 if (seen) { 5871 /* 5872 * The second or later time we see this block, 5873 * it's a duplicate and we count it. 5874 */ 5875 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5876 zcb->zcb_dedup_blocks++; 5877 5878 /* Already claimed, don't do it again. */ 5879 do_claim = B_FALSE; 5880 } 5881 5882 ddt_exit(ddt); 5883 } else if (zcb->zcb_brt_is_active && 5884 brt_maybe_exists(zcb->zcb_spa, bp)) { 5885 /* 5886 * Cloned blocks are special. We need to count them, so we can 5887 * later uncount them when reporting leaked space, and we must 5888 * only claim them once. 5889 * 5890 * To do this, we keep our own in-memory BRT. For each block 5891 * we haven't seen before, we look it up in the real BRT and 5892 * if its there, we note it and its refcount then proceed as 5893 * normal. If we see the block again, we count it as a clone 5894 * and then give it no further consideration. 5895 */ 5896 zdb_brt_entry_t zbre_search, *zbre; 5897 avl_index_t where; 5898 5899 zbre_search.zbre_dva = bp->blk_dva[0]; 5900 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5901 if (zbre == NULL) { 5902 /* Not seen before; track it */ 5903 uint64_t refcnt = 5904 brt_entry_get_refcount(zcb->zcb_spa, bp); 5905 if (refcnt > 0) { 5906 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5907 UMEM_NOFAIL); 5908 zbre->zbre_dva = bp->blk_dva[0]; 5909 zbre->zbre_refcount = refcnt; 5910 avl_insert(&zcb->zcb_brt, zbre, where); 5911 } 5912 } else { 5913 /* 5914 * Second or later occurrence, count it and take a 5915 * refcount. 5916 */ 5917 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5918 zcb->zcb_clone_blocks++; 5919 5920 zbre->zbre_refcount--; 5921 if (zbre->zbre_refcount == 0) { 5922 avl_remove(&zcb->zcb_brt, zbre); 5923 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5924 } 5925 5926 /* Already claimed, don't do it again. */ 5927 do_claim = B_FALSE; 5928 } 5929 } 5930 5931 skipped: 5932 for (i = 0; i < 4; i++) { 5933 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5934 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5935 int equal; 5936 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5937 5938 zb->zb_asize += BP_GET_ASIZE(bp); 5939 zb->zb_lsize += BP_GET_LSIZE(bp); 5940 zb->zb_psize += BP_GET_PSIZE(bp); 5941 zb->zb_count++; 5942 5943 /* 5944 * The histogram is only big enough to record blocks up to 5945 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5946 * "other", bucket. 5947 */ 5948 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5949 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5950 zb->zb_psize_histogram[idx]++; 5951 5952 zb->zb_gangs += BP_COUNT_GANG(bp); 5953 5954 switch (BP_GET_NDVAS(bp)) { 5955 case 2: 5956 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5957 DVA_GET_VDEV(&bp->blk_dva[1])) { 5958 zb->zb_ditto_samevdev++; 5959 5960 if (same_metaslab(zcb->zcb_spa, 5961 DVA_GET_VDEV(&bp->blk_dva[0]), 5962 DVA_GET_OFFSET(&bp->blk_dva[0]), 5963 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5964 zb->zb_ditto_same_ms++; 5965 } 5966 break; 5967 case 3: 5968 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5969 DVA_GET_VDEV(&bp->blk_dva[1])) + 5970 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5971 DVA_GET_VDEV(&bp->blk_dva[2])) + 5972 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5973 DVA_GET_VDEV(&bp->blk_dva[2])); 5974 if (equal != 0) { 5975 zb->zb_ditto_samevdev++; 5976 5977 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5978 DVA_GET_VDEV(&bp->blk_dva[1]) && 5979 same_metaslab(zcb->zcb_spa, 5980 DVA_GET_VDEV(&bp->blk_dva[0]), 5981 DVA_GET_OFFSET(&bp->blk_dva[0]), 5982 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5983 zb->zb_ditto_same_ms++; 5984 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5985 DVA_GET_VDEV(&bp->blk_dva[2]) && 5986 same_metaslab(zcb->zcb_spa, 5987 DVA_GET_VDEV(&bp->blk_dva[0]), 5988 DVA_GET_OFFSET(&bp->blk_dva[0]), 5989 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5990 zb->zb_ditto_same_ms++; 5991 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5992 DVA_GET_VDEV(&bp->blk_dva[2]) && 5993 same_metaslab(zcb->zcb_spa, 5994 DVA_GET_VDEV(&bp->blk_dva[1]), 5995 DVA_GET_OFFSET(&bp->blk_dva[1]), 5996 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5997 zb->zb_ditto_same_ms++; 5998 } 5999 break; 6000 } 6001 } 6002 6003 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 6004 6005 if (BP_IS_EMBEDDED(bp)) { 6006 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6007 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6008 [BPE_GET_PSIZE(bp)]++; 6009 return; 6010 } 6011 /* 6012 * The binning histogram bins by powers of two up to 6013 * SPA_MAXBLOCKSIZE rather than creating bins for 6014 * every possible blocksize found in the pool. 6015 */ 6016 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6017 6018 zcb->zcb_psize_count[bin]++; 6019 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6020 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6021 6022 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6023 6024 zcb->zcb_lsize_count[bin]++; 6025 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6026 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6027 6028 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6029 6030 zcb->zcb_asize_count[bin]++; 6031 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6032 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6033 6034 if (!do_claim) 6035 return; 6036 6037 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6038 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6039 ZIO_FLAG_CANFAIL))); 6040 } 6041 6042 static void 6043 zdb_blkptr_done(zio_t *zio) 6044 { 6045 spa_t *spa = zio->io_spa; 6046 blkptr_t *bp = zio->io_bp; 6047 int ioerr = zio->io_error; 6048 zdb_cb_t *zcb = zio->io_private; 6049 zbookmark_phys_t *zb = &zio->io_bookmark; 6050 6051 mutex_enter(&spa->spa_scrub_lock); 6052 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6053 cv_broadcast(&spa->spa_scrub_io_cv); 6054 6055 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6056 char blkbuf[BP_SPRINTF_LEN]; 6057 6058 zcb->zcb_haderrors = 1; 6059 zcb->zcb_errors[ioerr]++; 6060 6061 if (dump_opt['b'] >= 2) 6062 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6063 else 6064 blkbuf[0] = '\0'; 6065 6066 (void) printf("zdb_blkptr_cb: " 6067 "Got error %d reading " 6068 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6069 ioerr, 6070 (u_longlong_t)zb->zb_objset, 6071 (u_longlong_t)zb->zb_object, 6072 (u_longlong_t)zb->zb_level, 6073 (u_longlong_t)zb->zb_blkid, 6074 blkbuf); 6075 } 6076 mutex_exit(&spa->spa_scrub_lock); 6077 6078 abd_free(zio->io_abd); 6079 } 6080 6081 static int 6082 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6083 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6084 { 6085 zdb_cb_t *zcb = arg; 6086 dmu_object_type_t type; 6087 boolean_t is_metadata; 6088 6089 if (zb->zb_level == ZB_DNODE_LEVEL) 6090 return (0); 6091 6092 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6093 char blkbuf[BP_SPRINTF_LEN]; 6094 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6095 (void) printf("objset %llu object %llu " 6096 "level %lld offset 0x%llx %s\n", 6097 (u_longlong_t)zb->zb_objset, 6098 (u_longlong_t)zb->zb_object, 6099 (longlong_t)zb->zb_level, 6100 (u_longlong_t)blkid2offset(dnp, bp, zb), 6101 blkbuf); 6102 } 6103 6104 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6105 return (0); 6106 6107 type = BP_GET_TYPE(bp); 6108 6109 zdb_count_block(zcb, zilog, bp, 6110 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6111 6112 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6113 6114 if (!BP_IS_EMBEDDED(bp) && 6115 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6116 size_t size = BP_GET_PSIZE(bp); 6117 abd_t *abd = abd_alloc(size, B_FALSE); 6118 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6119 6120 /* If it's an intent log block, failure is expected. */ 6121 if (zb->zb_level == ZB_ZIL_LEVEL) 6122 flags |= ZIO_FLAG_SPECULATIVE; 6123 6124 mutex_enter(&spa->spa_scrub_lock); 6125 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6126 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6127 spa->spa_load_verify_bytes += size; 6128 mutex_exit(&spa->spa_scrub_lock); 6129 6130 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6131 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6132 } 6133 6134 zcb->zcb_readfails = 0; 6135 6136 /* only call gethrtime() every 100 blocks */ 6137 static int iters; 6138 if (++iters > 100) 6139 iters = 0; 6140 else 6141 return (0); 6142 6143 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6144 uint64_t now = gethrtime(); 6145 char buf[10]; 6146 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6147 uint64_t kb_per_sec = 6148 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6149 uint64_t sec_remaining = 6150 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6151 6152 /* make sure nicenum has enough space */ 6153 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6154 6155 zfs_nicebytes(bytes, buf, sizeof (buf)); 6156 (void) fprintf(stderr, 6157 "\r%5s completed (%4"PRIu64"MB/s) " 6158 "estimated time remaining: " 6159 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6160 buf, kb_per_sec / 1024, 6161 sec_remaining / 60 / 60, 6162 sec_remaining / 60 % 60, 6163 sec_remaining % 60); 6164 6165 zcb->zcb_lastprint = now; 6166 } 6167 6168 return (0); 6169 } 6170 6171 static void 6172 zdb_leak(void *arg, uint64_t start, uint64_t size) 6173 { 6174 vdev_t *vd = arg; 6175 6176 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6177 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6178 } 6179 6180 static metaslab_ops_t zdb_metaslab_ops = { 6181 NULL /* alloc */ 6182 }; 6183 6184 static int 6185 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6186 uint64_t txg, void *arg) 6187 { 6188 spa_vdev_removal_t *svr = arg; 6189 6190 uint64_t offset = sme->sme_offset; 6191 uint64_t size = sme->sme_run; 6192 6193 /* skip vdevs we don't care about */ 6194 if (sme->sme_vdev != svr->svr_vdev_id) 6195 return (0); 6196 6197 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6198 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6199 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6200 6201 if (txg < metaslab_unflushed_txg(ms)) 6202 return (0); 6203 6204 if (sme->sme_type == SM_ALLOC) 6205 range_tree_add(svr->svr_allocd_segs, offset, size); 6206 else 6207 range_tree_remove(svr->svr_allocd_segs, offset, size); 6208 6209 return (0); 6210 } 6211 6212 static void 6213 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6214 uint64_t size, void *arg) 6215 { 6216 (void) inner_offset, (void) arg; 6217 6218 /* 6219 * This callback was called through a remap from 6220 * a device being removed. Therefore, the vdev that 6221 * this callback is applied to is a concrete 6222 * vdev. 6223 */ 6224 ASSERT(vdev_is_concrete(vd)); 6225 6226 VERIFY0(metaslab_claim_impl(vd, offset, size, 6227 spa_min_claim_txg(vd->vdev_spa))); 6228 } 6229 6230 static void 6231 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6232 { 6233 vdev_t *vd = arg; 6234 6235 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6236 claim_segment_impl_cb, NULL); 6237 } 6238 6239 /* 6240 * After accounting for all allocated blocks that are directly referenced, 6241 * we might have missed a reference to a block from a partially complete 6242 * (and thus unused) indirect mapping object. We perform a secondary pass 6243 * through the metaslabs we have already mapped and claim the destination 6244 * blocks. 6245 */ 6246 static void 6247 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6248 { 6249 if (dump_opt['L']) 6250 return; 6251 6252 if (spa->spa_vdev_removal == NULL) 6253 return; 6254 6255 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6256 6257 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6258 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6259 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6260 6261 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6262 6263 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6264 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6265 metaslab_t *msp = vd->vdev_ms[msi]; 6266 6267 ASSERT0(range_tree_space(allocs)); 6268 if (msp->ms_sm != NULL) 6269 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6270 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6271 } 6272 range_tree_destroy(allocs); 6273 6274 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6275 6276 /* 6277 * Clear everything past what has been synced, 6278 * because we have not allocated mappings for 6279 * it yet. 6280 */ 6281 range_tree_clear(svr->svr_allocd_segs, 6282 vdev_indirect_mapping_max_offset(vim), 6283 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6284 6285 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6286 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6287 6288 spa_config_exit(spa, SCL_CONFIG, FTAG); 6289 } 6290 6291 static int 6292 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6293 dmu_tx_t *tx) 6294 { 6295 (void) tx; 6296 zdb_cb_t *zcb = arg; 6297 spa_t *spa = zcb->zcb_spa; 6298 vdev_t *vd; 6299 const dva_t *dva = &bp->blk_dva[0]; 6300 6301 ASSERT(!bp_freed); 6302 ASSERT(!dump_opt['L']); 6303 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6304 6305 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6306 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6307 ASSERT3P(vd, !=, NULL); 6308 spa_config_exit(spa, SCL_VDEV, FTAG); 6309 6310 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6311 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6312 6313 vdev_indirect_mapping_increment_obsolete_count( 6314 vd->vdev_indirect_mapping, 6315 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6316 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6317 6318 return (0); 6319 } 6320 6321 static uint32_t * 6322 zdb_load_obsolete_counts(vdev_t *vd) 6323 { 6324 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6325 spa_t *spa = vd->vdev_spa; 6326 spa_condensing_indirect_phys_t *scip = 6327 &spa->spa_condensing_indirect_phys; 6328 uint64_t obsolete_sm_object; 6329 uint32_t *counts; 6330 6331 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6332 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6333 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6334 if (vd->vdev_obsolete_sm != NULL) { 6335 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6336 vd->vdev_obsolete_sm); 6337 } 6338 if (scip->scip_vdev == vd->vdev_id && 6339 scip->scip_prev_obsolete_sm_object != 0) { 6340 space_map_t *prev_obsolete_sm = NULL; 6341 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6342 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6343 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6344 prev_obsolete_sm); 6345 space_map_close(prev_obsolete_sm); 6346 } 6347 return (counts); 6348 } 6349 6350 typedef struct checkpoint_sm_exclude_entry_arg { 6351 vdev_t *cseea_vd; 6352 uint64_t cseea_checkpoint_size; 6353 } checkpoint_sm_exclude_entry_arg_t; 6354 6355 static int 6356 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6357 { 6358 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6359 vdev_t *vd = cseea->cseea_vd; 6360 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6361 uint64_t end = sme->sme_offset + sme->sme_run; 6362 6363 ASSERT(sme->sme_type == SM_FREE); 6364 6365 /* 6366 * Since the vdev_checkpoint_sm exists in the vdev level 6367 * and the ms_sm space maps exist in the metaslab level, 6368 * an entry in the checkpoint space map could theoretically 6369 * cross the boundaries of the metaslab that it belongs. 6370 * 6371 * In reality, because of the way that we populate and 6372 * manipulate the checkpoint's space maps currently, 6373 * there shouldn't be any entries that cross metaslabs. 6374 * Hence the assertion below. 6375 * 6376 * That said, there is no fundamental requirement that 6377 * the checkpoint's space map entries should not cross 6378 * metaslab boundaries. So if needed we could add code 6379 * that handles metaslab-crossing segments in the future. 6380 */ 6381 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6382 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6383 6384 /* 6385 * By removing the entry from the allocated segments we 6386 * also verify that the entry is there to begin with. 6387 */ 6388 mutex_enter(&ms->ms_lock); 6389 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6390 mutex_exit(&ms->ms_lock); 6391 6392 cseea->cseea_checkpoint_size += sme->sme_run; 6393 return (0); 6394 } 6395 6396 static void 6397 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6398 { 6399 spa_t *spa = vd->vdev_spa; 6400 space_map_t *checkpoint_sm = NULL; 6401 uint64_t checkpoint_sm_obj; 6402 6403 /* 6404 * If there is no vdev_top_zap, we are in a pool whose 6405 * version predates the pool checkpoint feature. 6406 */ 6407 if (vd->vdev_top_zap == 0) 6408 return; 6409 6410 /* 6411 * If there is no reference of the vdev_checkpoint_sm in 6412 * the vdev_top_zap, then one of the following scenarios 6413 * is true: 6414 * 6415 * 1] There is no checkpoint 6416 * 2] There is a checkpoint, but no checkpointed blocks 6417 * have been freed yet 6418 * 3] The current vdev is indirect 6419 * 6420 * In these cases we return immediately. 6421 */ 6422 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6423 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6424 return; 6425 6426 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6427 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6428 &checkpoint_sm_obj)); 6429 6430 checkpoint_sm_exclude_entry_arg_t cseea; 6431 cseea.cseea_vd = vd; 6432 cseea.cseea_checkpoint_size = 0; 6433 6434 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6435 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6436 6437 VERIFY0(space_map_iterate(checkpoint_sm, 6438 space_map_length(checkpoint_sm), 6439 checkpoint_sm_exclude_entry_cb, &cseea)); 6440 space_map_close(checkpoint_sm); 6441 6442 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6443 } 6444 6445 static void 6446 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6447 { 6448 ASSERT(!dump_opt['L']); 6449 6450 vdev_t *rvd = spa->spa_root_vdev; 6451 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6452 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6453 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6454 } 6455 } 6456 6457 static int 6458 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6459 uint64_t txg, void *arg) 6460 { 6461 int64_t *ualloc_space = arg; 6462 6463 uint64_t offset = sme->sme_offset; 6464 uint64_t vdev_id = sme->sme_vdev; 6465 6466 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6467 if (!vdev_is_concrete(vd)) 6468 return (0); 6469 6470 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6471 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6472 6473 if (txg < metaslab_unflushed_txg(ms)) 6474 return (0); 6475 6476 if (sme->sme_type == SM_ALLOC) 6477 *ualloc_space += sme->sme_run; 6478 else 6479 *ualloc_space -= sme->sme_run; 6480 6481 return (0); 6482 } 6483 6484 static int64_t 6485 get_unflushed_alloc_space(spa_t *spa) 6486 { 6487 if (dump_opt['L']) 6488 return (0); 6489 6490 int64_t ualloc_space = 0; 6491 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6492 &ualloc_space); 6493 return (ualloc_space); 6494 } 6495 6496 static int 6497 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6498 { 6499 maptype_t *uic_maptype = arg; 6500 6501 uint64_t offset = sme->sme_offset; 6502 uint64_t size = sme->sme_run; 6503 uint64_t vdev_id = sme->sme_vdev; 6504 6505 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6506 6507 /* skip indirect vdevs */ 6508 if (!vdev_is_concrete(vd)) 6509 return (0); 6510 6511 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6512 6513 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6514 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6515 6516 if (txg < metaslab_unflushed_txg(ms)) 6517 return (0); 6518 6519 if (*uic_maptype == sme->sme_type) 6520 range_tree_add(ms->ms_allocatable, offset, size); 6521 else 6522 range_tree_remove(ms->ms_allocatable, offset, size); 6523 6524 return (0); 6525 } 6526 6527 static void 6528 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6529 { 6530 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6531 } 6532 6533 static void 6534 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6535 { 6536 vdev_t *rvd = spa->spa_root_vdev; 6537 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6538 vdev_t *vd = rvd->vdev_child[i]; 6539 6540 ASSERT3U(i, ==, vd->vdev_id); 6541 6542 if (vd->vdev_ops == &vdev_indirect_ops) 6543 continue; 6544 6545 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6546 metaslab_t *msp = vd->vdev_ms[m]; 6547 6548 (void) fprintf(stderr, 6549 "\rloading concrete vdev %llu, " 6550 "metaslab %llu of %llu ...", 6551 (longlong_t)vd->vdev_id, 6552 (longlong_t)msp->ms_id, 6553 (longlong_t)vd->vdev_ms_count); 6554 6555 mutex_enter(&msp->ms_lock); 6556 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6557 6558 /* 6559 * We don't want to spend the CPU manipulating the 6560 * size-ordered tree, so clear the range_tree ops. 6561 */ 6562 msp->ms_allocatable->rt_ops = NULL; 6563 6564 if (msp->ms_sm != NULL) { 6565 VERIFY0(space_map_load(msp->ms_sm, 6566 msp->ms_allocatable, maptype)); 6567 } 6568 if (!msp->ms_loaded) 6569 msp->ms_loaded = B_TRUE; 6570 mutex_exit(&msp->ms_lock); 6571 } 6572 } 6573 6574 load_unflushed_to_ms_allocatables(spa, maptype); 6575 } 6576 6577 /* 6578 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6579 * index in vim_entries that has the first entry in this metaslab. 6580 * On return, it will be set to the first entry after this metaslab. 6581 */ 6582 static void 6583 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6584 uint64_t *vim_idxp) 6585 { 6586 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6587 6588 mutex_enter(&msp->ms_lock); 6589 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6590 6591 /* 6592 * We don't want to spend the CPU manipulating the 6593 * size-ordered tree, so clear the range_tree ops. 6594 */ 6595 msp->ms_allocatable->rt_ops = NULL; 6596 6597 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6598 (*vim_idxp)++) { 6599 vdev_indirect_mapping_entry_phys_t *vimep = 6600 &vim->vim_entries[*vim_idxp]; 6601 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6602 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6603 ASSERT3U(ent_offset, >=, msp->ms_start); 6604 if (ent_offset >= msp->ms_start + msp->ms_size) 6605 break; 6606 6607 /* 6608 * Mappings do not cross metaslab boundaries, 6609 * because we create them by walking the metaslabs. 6610 */ 6611 ASSERT3U(ent_offset + ent_len, <=, 6612 msp->ms_start + msp->ms_size); 6613 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6614 } 6615 6616 if (!msp->ms_loaded) 6617 msp->ms_loaded = B_TRUE; 6618 mutex_exit(&msp->ms_lock); 6619 } 6620 6621 static void 6622 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6623 { 6624 ASSERT(!dump_opt['L']); 6625 6626 vdev_t *rvd = spa->spa_root_vdev; 6627 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6628 vdev_t *vd = rvd->vdev_child[c]; 6629 6630 ASSERT3U(c, ==, vd->vdev_id); 6631 6632 if (vd->vdev_ops != &vdev_indirect_ops) 6633 continue; 6634 6635 /* 6636 * Note: we don't check for mapping leaks on 6637 * removing vdevs because their ms_allocatable's 6638 * are used to look for leaks in allocated space. 6639 */ 6640 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6641 6642 /* 6643 * Normally, indirect vdevs don't have any 6644 * metaslabs. We want to set them up for 6645 * zio_claim(). 6646 */ 6647 vdev_metaslab_group_create(vd); 6648 VERIFY0(vdev_metaslab_init(vd, 0)); 6649 6650 vdev_indirect_mapping_t *vim __maybe_unused = 6651 vd->vdev_indirect_mapping; 6652 uint64_t vim_idx = 0; 6653 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6654 6655 (void) fprintf(stderr, 6656 "\rloading indirect vdev %llu, " 6657 "metaslab %llu of %llu ...", 6658 (longlong_t)vd->vdev_id, 6659 (longlong_t)vd->vdev_ms[m]->ms_id, 6660 (longlong_t)vd->vdev_ms_count); 6661 6662 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6663 &vim_idx); 6664 } 6665 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6666 } 6667 } 6668 6669 static void 6670 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6671 { 6672 zcb->zcb_spa = spa; 6673 6674 if (dump_opt['L']) 6675 return; 6676 6677 dsl_pool_t *dp = spa->spa_dsl_pool; 6678 vdev_t *rvd = spa->spa_root_vdev; 6679 6680 /* 6681 * We are going to be changing the meaning of the metaslab's 6682 * ms_allocatable. Ensure that the allocator doesn't try to 6683 * use the tree. 6684 */ 6685 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6686 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6687 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6688 6689 zcb->zcb_vd_obsolete_counts = 6690 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6691 UMEM_NOFAIL); 6692 6693 /* 6694 * For leak detection, we overload the ms_allocatable trees 6695 * to contain allocated segments instead of free segments. 6696 * As a result, we can't use the normal metaslab_load/unload 6697 * interfaces. 6698 */ 6699 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6700 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6701 6702 /* 6703 * On load_concrete_ms_allocatable_trees() we loaded all the 6704 * allocated entries from the ms_sm to the ms_allocatable for 6705 * each metaslab. If the pool has a checkpoint or is in the 6706 * middle of discarding a checkpoint, some of these blocks 6707 * may have been freed but their ms_sm may not have been 6708 * updated because they are referenced by the checkpoint. In 6709 * order to avoid false-positives during leak-detection, we 6710 * go through the vdev's checkpoint space map and exclude all 6711 * its entries from their relevant ms_allocatable. 6712 * 6713 * We also aggregate the space held by the checkpoint and add 6714 * it to zcb_checkpoint_size. 6715 * 6716 * Note that at this point we are also verifying that all the 6717 * entries on the checkpoint_sm are marked as allocated in 6718 * the ms_sm of their relevant metaslab. 6719 * [see comment in checkpoint_sm_exclude_entry_cb()] 6720 */ 6721 zdb_leak_init_exclude_checkpoint(spa, zcb); 6722 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6723 6724 /* for cleaner progress output */ 6725 (void) fprintf(stderr, "\n"); 6726 6727 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6728 ASSERT(spa_feature_is_enabled(spa, 6729 SPA_FEATURE_DEVICE_REMOVAL)); 6730 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6731 increment_indirect_mapping_cb, zcb, NULL); 6732 } 6733 } 6734 6735 static boolean_t 6736 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6737 { 6738 boolean_t leaks = B_FALSE; 6739 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6740 uint64_t total_leaked = 0; 6741 boolean_t are_precise = B_FALSE; 6742 6743 ASSERT(vim != NULL); 6744 6745 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6746 vdev_indirect_mapping_entry_phys_t *vimep = 6747 &vim->vim_entries[i]; 6748 uint64_t obsolete_bytes = 0; 6749 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6750 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6751 6752 /* 6753 * This is not very efficient but it's easy to 6754 * verify correctness. 6755 */ 6756 for (uint64_t inner_offset = 0; 6757 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6758 inner_offset += 1ULL << vd->vdev_ashift) { 6759 if (range_tree_contains(msp->ms_allocatable, 6760 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6761 obsolete_bytes += 1ULL << vd->vdev_ashift; 6762 } 6763 } 6764 6765 int64_t bytes_leaked = obsolete_bytes - 6766 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6767 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6768 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6769 6770 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6771 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6772 (void) printf("obsolete indirect mapping count " 6773 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6774 (u_longlong_t)vd->vdev_id, 6775 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6776 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6777 (u_longlong_t)bytes_leaked); 6778 } 6779 total_leaked += ABS(bytes_leaked); 6780 } 6781 6782 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6783 if (!are_precise && total_leaked > 0) { 6784 int pct_leaked = total_leaked * 100 / 6785 vdev_indirect_mapping_bytes_mapped(vim); 6786 (void) printf("cannot verify obsolete indirect mapping " 6787 "counts of vdev %llu because precise feature was not " 6788 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6789 "unreferenced\n", 6790 (u_longlong_t)vd->vdev_id, pct_leaked, 6791 (u_longlong_t)total_leaked); 6792 } else if (total_leaked > 0) { 6793 (void) printf("obsolete indirect mapping count mismatch " 6794 "for vdev %llu -- %llx total bytes mismatched\n", 6795 (u_longlong_t)vd->vdev_id, 6796 (u_longlong_t)total_leaked); 6797 leaks |= B_TRUE; 6798 } 6799 6800 vdev_indirect_mapping_free_obsolete_counts(vim, 6801 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6802 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6803 6804 return (leaks); 6805 } 6806 6807 static boolean_t 6808 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6809 { 6810 if (dump_opt['L']) 6811 return (B_FALSE); 6812 6813 boolean_t leaks = B_FALSE; 6814 vdev_t *rvd = spa->spa_root_vdev; 6815 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6816 vdev_t *vd = rvd->vdev_child[c]; 6817 6818 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6819 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6820 } 6821 6822 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6823 metaslab_t *msp = vd->vdev_ms[m]; 6824 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6825 spa_embedded_log_class(spa)) ? 6826 vd->vdev_log_mg : vd->vdev_mg); 6827 6828 /* 6829 * ms_allocatable has been overloaded 6830 * to contain allocated segments. Now that 6831 * we finished traversing all blocks, any 6832 * block that remains in the ms_allocatable 6833 * represents an allocated block that we 6834 * did not claim during the traversal. 6835 * Claimed blocks would have been removed 6836 * from the ms_allocatable. For indirect 6837 * vdevs, space remaining in the tree 6838 * represents parts of the mapping that are 6839 * not referenced, which is not a bug. 6840 */ 6841 if (vd->vdev_ops == &vdev_indirect_ops) { 6842 range_tree_vacate(msp->ms_allocatable, 6843 NULL, NULL); 6844 } else { 6845 range_tree_vacate(msp->ms_allocatable, 6846 zdb_leak, vd); 6847 } 6848 if (msp->ms_loaded) { 6849 msp->ms_loaded = B_FALSE; 6850 } 6851 } 6852 } 6853 6854 umem_free(zcb->zcb_vd_obsolete_counts, 6855 rvd->vdev_children * sizeof (uint32_t *)); 6856 zcb->zcb_vd_obsolete_counts = NULL; 6857 6858 return (leaks); 6859 } 6860 6861 static int 6862 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6863 { 6864 (void) tx; 6865 zdb_cb_t *zcb = arg; 6866 6867 if (dump_opt['b'] >= 5) { 6868 char blkbuf[BP_SPRINTF_LEN]; 6869 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6870 (void) printf("[%s] %s\n", 6871 "deferred free", blkbuf); 6872 } 6873 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6874 return (0); 6875 } 6876 6877 /* 6878 * Iterate over livelists which have been destroyed by the user but 6879 * are still present in the MOS, waiting to be freed 6880 */ 6881 static void 6882 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6883 { 6884 objset_t *mos = spa->spa_meta_objset; 6885 uint64_t zap_obj; 6886 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6887 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6888 if (err == ENOENT) 6889 return; 6890 ASSERT0(err); 6891 6892 zap_cursor_t zc; 6893 zap_attribute_t *attrp = zap_attribute_alloc(); 6894 dsl_deadlist_t ll; 6895 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6896 ll.dl_os = NULL; 6897 for (zap_cursor_init(&zc, mos, zap_obj); 6898 zap_cursor_retrieve(&zc, attrp) == 0; 6899 (void) zap_cursor_advance(&zc)) { 6900 dsl_deadlist_open(&ll, mos, attrp->za_first_integer); 6901 func(&ll, arg); 6902 dsl_deadlist_close(&ll); 6903 } 6904 zap_cursor_fini(&zc); 6905 zap_attribute_free(attrp); 6906 } 6907 6908 static int 6909 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6910 dmu_tx_t *tx) 6911 { 6912 ASSERT(!bp_freed); 6913 return (count_block_cb(arg, bp, tx)); 6914 } 6915 6916 static int 6917 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6918 { 6919 zdb_cb_t *zbc = args; 6920 bplist_t blks; 6921 bplist_create(&blks); 6922 /* determine which blocks have been alloc'd but not freed */ 6923 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6924 /* count those blocks */ 6925 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6926 bplist_destroy(&blks); 6927 return (0); 6928 } 6929 6930 static void 6931 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6932 { 6933 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6934 } 6935 6936 /* 6937 * Count the blocks in the livelists that have been destroyed by the user 6938 * but haven't yet been freed. 6939 */ 6940 static void 6941 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6942 { 6943 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6944 } 6945 6946 static void 6947 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6948 { 6949 ASSERT3P(arg, ==, NULL); 6950 global_feature_count[SPA_FEATURE_LIVELIST]++; 6951 dump_blkptr_list(ll, "Deleted Livelist"); 6952 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6953 } 6954 6955 /* 6956 * Print out, register object references to, and increment feature counts for 6957 * livelists that have been destroyed by the user but haven't yet been freed. 6958 */ 6959 static void 6960 deleted_livelists_dump_mos(spa_t *spa) 6961 { 6962 uint64_t zap_obj; 6963 objset_t *mos = spa->spa_meta_objset; 6964 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6965 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6966 if (err == ENOENT) 6967 return; 6968 mos_obj_refd(zap_obj); 6969 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6970 } 6971 6972 static int 6973 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6974 { 6975 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6976 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6977 int cmp; 6978 6979 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6980 if (cmp == 0) 6981 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6982 6983 return (cmp); 6984 } 6985 6986 static int 6987 dump_block_stats(spa_t *spa) 6988 { 6989 zdb_cb_t *zcb; 6990 zdb_blkstats_t *zb, *tzb; 6991 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6992 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6993 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6994 boolean_t leaks = B_FALSE; 6995 int e, c, err; 6996 bp_embedded_type_t i; 6997 6998 ddt_prefetch_all(spa); 6999 7000 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 7001 7002 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 7003 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 7004 sizeof (zdb_brt_entry_t), 7005 offsetof(zdb_brt_entry_t, zbre_node)); 7006 zcb->zcb_brt_is_active = B_TRUE; 7007 } 7008 7009 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7010 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7011 (dump_opt['c'] == 1) ? "metadata " : "", 7012 dump_opt['c'] ? "checksums " : "", 7013 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7014 !dump_opt['L'] ? "nothing leaked " : ""); 7015 7016 /* 7017 * When leak detection is enabled we load all space maps as SM_ALLOC 7018 * maps, then traverse the pool claiming each block we discover. If 7019 * the pool is perfectly consistent, the segment trees will be empty 7020 * when we're done. Anything left over is a leak; any block we can't 7021 * claim (because it's not part of any space map) is a double 7022 * allocation, reference to a freed block, or an unclaimed log block. 7023 * 7024 * When leak detection is disabled (-L option) we still traverse the 7025 * pool claiming each block we discover, but we skip opening any space 7026 * maps. 7027 */ 7028 zdb_leak_init(spa, zcb); 7029 7030 /* 7031 * If there's a deferred-free bplist, process that first. 7032 */ 7033 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7034 bpobj_count_block_cb, zcb, NULL); 7035 7036 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7037 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7038 bpobj_count_block_cb, zcb, NULL); 7039 } 7040 7041 zdb_claim_removing(spa, zcb); 7042 7043 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7044 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7045 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7046 zcb, NULL)); 7047 } 7048 7049 deleted_livelists_count_blocks(spa, zcb); 7050 7051 if (dump_opt['c'] > 1) 7052 flags |= TRAVERSE_PREFETCH_DATA; 7053 7054 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7055 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7056 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7057 zcb->zcb_totalasize += 7058 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7059 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7060 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7061 7062 /* 7063 * If we've traversed the data blocks then we need to wait for those 7064 * I/Os to complete. We leverage "The Godfather" zio to wait on 7065 * all async I/Os to complete. 7066 */ 7067 if (dump_opt['c']) { 7068 for (c = 0; c < max_ncpus; c++) { 7069 (void) zio_wait(spa->spa_async_zio_root[c]); 7070 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7071 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7072 ZIO_FLAG_GODFATHER); 7073 } 7074 } 7075 ASSERT0(spa->spa_load_verify_bytes); 7076 7077 /* 7078 * Done after zio_wait() since zcb_haderrors is modified in 7079 * zdb_blkptr_done() 7080 */ 7081 zcb->zcb_haderrors |= err; 7082 7083 if (zcb->zcb_haderrors) { 7084 (void) printf("\nError counts:\n\n"); 7085 (void) printf("\t%5s %s\n", "errno", "count"); 7086 for (e = 0; e < 256; e++) { 7087 if (zcb->zcb_errors[e] != 0) { 7088 (void) printf("\t%5d %llu\n", 7089 e, (u_longlong_t)zcb->zcb_errors[e]); 7090 } 7091 } 7092 } 7093 7094 /* 7095 * Report any leaked segments. 7096 */ 7097 leaks |= zdb_leak_fini(spa, zcb); 7098 7099 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7100 7101 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7102 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7103 7104 total_alloc = norm_alloc + 7105 metaslab_class_get_alloc(spa_log_class(spa)) + 7106 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7107 metaslab_class_get_alloc(spa_special_class(spa)) + 7108 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7109 get_unflushed_alloc_space(spa); 7110 total_found = 7111 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7112 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7113 7114 if (total_found == total_alloc && !dump_opt['L']) { 7115 (void) printf("\n\tNo leaks (block sum matches space" 7116 " maps exactly)\n"); 7117 } else if (!dump_opt['L']) { 7118 (void) printf("block traversal size %llu != alloc %llu " 7119 "(%s %lld)\n", 7120 (u_longlong_t)total_found, 7121 (u_longlong_t)total_alloc, 7122 (dump_opt['L']) ? "unreachable" : "leaked", 7123 (longlong_t)(total_alloc - total_found)); 7124 } 7125 7126 if (tzb->zb_count == 0) { 7127 umem_free(zcb, sizeof (zdb_cb_t)); 7128 return (2); 7129 } 7130 7131 (void) printf("\n"); 7132 (void) printf("\t%-16s %14llu\n", "bp count:", 7133 (u_longlong_t)tzb->zb_count); 7134 (void) printf("\t%-16s %14llu\n", "ganged count:", 7135 (longlong_t)tzb->zb_gangs); 7136 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7137 (u_longlong_t)tzb->zb_lsize, 7138 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7139 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7140 "bp physical:", (u_longlong_t)tzb->zb_psize, 7141 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7142 (double)tzb->zb_lsize / tzb->zb_psize); 7143 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7144 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7145 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7146 (double)tzb->zb_lsize / tzb->zb_asize); 7147 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7148 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7149 (u_longlong_t)zcb->zcb_dedup_blocks, 7150 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7151 (void) printf("\t%-16s %14llu count: %6llu\n", 7152 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7153 (u_longlong_t)zcb->zcb_clone_blocks); 7154 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7155 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7156 7157 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7158 uint64_t alloc = metaslab_class_get_alloc( 7159 spa_special_class(spa)); 7160 uint64_t space = metaslab_class_get_space( 7161 spa_special_class(spa)); 7162 7163 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7164 "Special class", (u_longlong_t)alloc, 7165 100.0 * alloc / space); 7166 } 7167 7168 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7169 uint64_t alloc = metaslab_class_get_alloc( 7170 spa_dedup_class(spa)); 7171 uint64_t space = metaslab_class_get_space( 7172 spa_dedup_class(spa)); 7173 7174 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7175 "Dedup class", (u_longlong_t)alloc, 7176 100.0 * alloc / space); 7177 } 7178 7179 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7180 uint64_t alloc = metaslab_class_get_alloc( 7181 spa_embedded_log_class(spa)); 7182 uint64_t space = metaslab_class_get_space( 7183 spa_embedded_log_class(spa)); 7184 7185 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7186 "Embedded log class", (u_longlong_t)alloc, 7187 100.0 * alloc / space); 7188 } 7189 7190 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7191 if (zcb->zcb_embedded_blocks[i] == 0) 7192 continue; 7193 (void) printf("\n"); 7194 (void) printf("\tadditional, non-pointer bps of type %u: " 7195 "%10llu\n", 7196 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7197 7198 if (dump_opt['b'] >= 3) { 7199 (void) printf("\t number of (compressed) bytes: " 7200 "number of bps\n"); 7201 dump_histogram(zcb->zcb_embedded_histogram[i], 7202 sizeof (zcb->zcb_embedded_histogram[i]) / 7203 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7204 } 7205 } 7206 7207 if (tzb->zb_ditto_samevdev != 0) { 7208 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7209 (longlong_t)tzb->zb_ditto_samevdev); 7210 } 7211 if (tzb->zb_ditto_same_ms != 0) { 7212 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7213 (longlong_t)tzb->zb_ditto_same_ms); 7214 } 7215 7216 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7217 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7218 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7219 7220 if (vim == NULL) { 7221 continue; 7222 } 7223 7224 char mem[32]; 7225 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7226 mem, vdev_indirect_mapping_size(vim)); 7227 7228 (void) printf("\tindirect vdev id %llu has %llu segments " 7229 "(%s in memory)\n", 7230 (longlong_t)vd->vdev_id, 7231 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7232 } 7233 7234 if (dump_opt['b'] >= 2) { 7235 int l, t, level; 7236 char csize[32], lsize[32], psize[32], asize[32]; 7237 char avg[32], gang[32]; 7238 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7239 "\t avg\t comp\t%%Total\tType\n"); 7240 7241 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7242 UMEM_NOFAIL); 7243 7244 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7245 const char *typename; 7246 7247 /* make sure nicenum has enough space */ 7248 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7249 "csize truncated"); 7250 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7251 "lsize truncated"); 7252 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7253 "psize truncated"); 7254 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7255 "asize truncated"); 7256 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7257 "avg truncated"); 7258 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7259 "gang truncated"); 7260 7261 if (t < DMU_OT_NUMTYPES) 7262 typename = dmu_ot[t].ot_name; 7263 else 7264 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7265 7266 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7267 (void) printf("%6s\t%5s\t%5s\t%5s" 7268 "\t%5s\t%5s\t%6s\t%s\n", 7269 "-", 7270 "-", 7271 "-", 7272 "-", 7273 "-", 7274 "-", 7275 "-", 7276 typename); 7277 continue; 7278 } 7279 7280 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7281 level = (l == -1 ? ZB_TOTAL : l); 7282 zb = &zcb->zcb_type[level][t]; 7283 7284 if (zb->zb_asize == 0) 7285 continue; 7286 7287 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7288 (level > 0 || DMU_OT_IS_METADATA(t))) { 7289 mdstats->zb_count += zb->zb_count; 7290 mdstats->zb_lsize += zb->zb_lsize; 7291 mdstats->zb_psize += zb->zb_psize; 7292 mdstats->zb_asize += zb->zb_asize; 7293 mdstats->zb_gangs += zb->zb_gangs; 7294 } 7295 7296 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7297 continue; 7298 7299 if (level == 0 && zb->zb_asize == 7300 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7301 continue; 7302 7303 zdb_nicenum(zb->zb_count, csize, 7304 sizeof (csize)); 7305 zdb_nicenum(zb->zb_lsize, lsize, 7306 sizeof (lsize)); 7307 zdb_nicenum(zb->zb_psize, psize, 7308 sizeof (psize)); 7309 zdb_nicenum(zb->zb_asize, asize, 7310 sizeof (asize)); 7311 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7312 sizeof (avg)); 7313 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7314 7315 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7316 "\t%5.2f\t%6.2f\t", 7317 csize, lsize, psize, asize, avg, 7318 (double)zb->zb_lsize / zb->zb_psize, 7319 100.0 * zb->zb_asize / tzb->zb_asize); 7320 7321 if (level == ZB_TOTAL) 7322 (void) printf("%s\n", typename); 7323 else 7324 (void) printf(" L%d %s\n", 7325 level, typename); 7326 7327 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7328 (void) printf("\t number of ganged " 7329 "blocks: %s\n", gang); 7330 } 7331 7332 if (dump_opt['b'] >= 4) { 7333 (void) printf("psize " 7334 "(in 512-byte sectors): " 7335 "number of blocks\n"); 7336 dump_histogram(zb->zb_psize_histogram, 7337 PSIZE_HISTO_SIZE, 0); 7338 } 7339 } 7340 } 7341 zdb_nicenum(mdstats->zb_count, csize, 7342 sizeof (csize)); 7343 zdb_nicenum(mdstats->zb_lsize, lsize, 7344 sizeof (lsize)); 7345 zdb_nicenum(mdstats->zb_psize, psize, 7346 sizeof (psize)); 7347 zdb_nicenum(mdstats->zb_asize, asize, 7348 sizeof (asize)); 7349 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7350 sizeof (avg)); 7351 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7352 7353 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7354 "\t%5.2f\t%6.2f\t", 7355 csize, lsize, psize, asize, avg, 7356 (double)mdstats->zb_lsize / mdstats->zb_psize, 7357 100.0 * mdstats->zb_asize / tzb->zb_asize); 7358 (void) printf("%s\n", "Metadata Total"); 7359 7360 /* Output a table summarizing block sizes in the pool */ 7361 if (dump_opt['b'] >= 2) { 7362 dump_size_histograms(zcb); 7363 } 7364 7365 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7366 } 7367 7368 (void) printf("\n"); 7369 7370 if (leaks) { 7371 umem_free(zcb, sizeof (zdb_cb_t)); 7372 return (2); 7373 } 7374 7375 if (zcb->zcb_haderrors) { 7376 umem_free(zcb, sizeof (zdb_cb_t)); 7377 return (3); 7378 } 7379 7380 umem_free(zcb, sizeof (zdb_cb_t)); 7381 return (0); 7382 } 7383 7384 typedef struct zdb_ddt_entry { 7385 /* key must be first for ddt_key_compare */ 7386 ddt_key_t zdde_key; 7387 uint64_t zdde_ref_blocks; 7388 uint64_t zdde_ref_lsize; 7389 uint64_t zdde_ref_psize; 7390 uint64_t zdde_ref_dsize; 7391 avl_node_t zdde_node; 7392 } zdb_ddt_entry_t; 7393 7394 static int 7395 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7396 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7397 { 7398 (void) zilog, (void) dnp; 7399 avl_tree_t *t = arg; 7400 avl_index_t where; 7401 zdb_ddt_entry_t *zdde, zdde_search; 7402 7403 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7404 BP_IS_EMBEDDED(bp)) 7405 return (0); 7406 7407 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7408 (void) printf("traversing objset %llu, %llu objects, " 7409 "%lu blocks so far\n", 7410 (u_longlong_t)zb->zb_objset, 7411 (u_longlong_t)BP_GET_FILL(bp), 7412 avl_numnodes(t)); 7413 } 7414 7415 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7416 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7417 return (0); 7418 7419 ddt_key_fill(&zdde_search.zdde_key, bp); 7420 7421 zdde = avl_find(t, &zdde_search, &where); 7422 7423 if (zdde == NULL) { 7424 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7425 zdde->zdde_key = zdde_search.zdde_key; 7426 avl_insert(t, zdde, where); 7427 } 7428 7429 zdde->zdde_ref_blocks += 1; 7430 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7431 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7432 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7433 7434 return (0); 7435 } 7436 7437 static void 7438 dump_simulated_ddt(spa_t *spa) 7439 { 7440 avl_tree_t t; 7441 void *cookie = NULL; 7442 zdb_ddt_entry_t *zdde; 7443 ddt_histogram_t ddh_total = {{{0}}}; 7444 ddt_stat_t dds_total = {0}; 7445 7446 avl_create(&t, ddt_key_compare, 7447 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7448 7449 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7450 7451 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7452 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7453 7454 spa_config_exit(spa, SCL_CONFIG, FTAG); 7455 7456 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7457 uint64_t refcnt = zdde->zdde_ref_blocks; 7458 ASSERT(refcnt != 0); 7459 7460 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7461 7462 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7463 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7464 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7465 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7466 7467 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7468 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7469 dds->dds_ref_psize += zdde->zdde_ref_psize; 7470 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7471 7472 umem_free(zdde, sizeof (*zdde)); 7473 } 7474 7475 avl_destroy(&t); 7476 7477 ddt_histogram_total(&dds_total, &ddh_total); 7478 7479 (void) printf("Simulated DDT histogram:\n"); 7480 7481 zpool_dump_ddt(&dds_total, &ddh_total); 7482 7483 dump_dedup_ratio(&dds_total); 7484 } 7485 7486 static int 7487 verify_device_removal_feature_counts(spa_t *spa) 7488 { 7489 uint64_t dr_feature_refcount = 0; 7490 uint64_t oc_feature_refcount = 0; 7491 uint64_t indirect_vdev_count = 0; 7492 uint64_t precise_vdev_count = 0; 7493 uint64_t obsolete_counts_object_count = 0; 7494 uint64_t obsolete_sm_count = 0; 7495 uint64_t obsolete_counts_count = 0; 7496 uint64_t scip_count = 0; 7497 uint64_t obsolete_bpobj_count = 0; 7498 int ret = 0; 7499 7500 spa_condensing_indirect_phys_t *scip = 7501 &spa->spa_condensing_indirect_phys; 7502 if (scip->scip_next_mapping_object != 0) { 7503 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7504 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7505 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7506 7507 (void) printf("Condensing indirect vdev %llu: new mapping " 7508 "object %llu, prev obsolete sm %llu\n", 7509 (u_longlong_t)scip->scip_vdev, 7510 (u_longlong_t)scip->scip_next_mapping_object, 7511 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7512 if (scip->scip_prev_obsolete_sm_object != 0) { 7513 space_map_t *prev_obsolete_sm = NULL; 7514 VERIFY0(space_map_open(&prev_obsolete_sm, 7515 spa->spa_meta_objset, 7516 scip->scip_prev_obsolete_sm_object, 7517 0, vd->vdev_asize, 0)); 7518 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7519 (void) printf("\n"); 7520 space_map_close(prev_obsolete_sm); 7521 } 7522 7523 scip_count += 2; 7524 } 7525 7526 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7527 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7528 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7529 7530 if (vic->vic_mapping_object != 0) { 7531 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7532 vd->vdev_removing); 7533 indirect_vdev_count++; 7534 7535 if (vd->vdev_indirect_mapping->vim_havecounts) { 7536 obsolete_counts_count++; 7537 } 7538 } 7539 7540 boolean_t are_precise; 7541 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7542 if (are_precise) { 7543 ASSERT(vic->vic_mapping_object != 0); 7544 precise_vdev_count++; 7545 } 7546 7547 uint64_t obsolete_sm_object; 7548 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7549 if (obsolete_sm_object != 0) { 7550 ASSERT(vic->vic_mapping_object != 0); 7551 obsolete_sm_count++; 7552 } 7553 } 7554 7555 (void) feature_get_refcount(spa, 7556 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7557 &dr_feature_refcount); 7558 (void) feature_get_refcount(spa, 7559 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7560 &oc_feature_refcount); 7561 7562 if (dr_feature_refcount != indirect_vdev_count) { 7563 ret = 1; 7564 (void) printf("Number of indirect vdevs (%llu) " \ 7565 "does not match feature count (%llu)\n", 7566 (u_longlong_t)indirect_vdev_count, 7567 (u_longlong_t)dr_feature_refcount); 7568 } else { 7569 (void) printf("Verified device_removal feature refcount " \ 7570 "of %llu is correct\n", 7571 (u_longlong_t)dr_feature_refcount); 7572 } 7573 7574 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7575 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7576 obsolete_bpobj_count++; 7577 } 7578 7579 7580 obsolete_counts_object_count = precise_vdev_count; 7581 obsolete_counts_object_count += obsolete_sm_count; 7582 obsolete_counts_object_count += obsolete_counts_count; 7583 obsolete_counts_object_count += scip_count; 7584 obsolete_counts_object_count += obsolete_bpobj_count; 7585 obsolete_counts_object_count += remap_deadlist_count; 7586 7587 if (oc_feature_refcount != obsolete_counts_object_count) { 7588 ret = 1; 7589 (void) printf("Number of obsolete counts objects (%llu) " \ 7590 "does not match feature count (%llu)\n", 7591 (u_longlong_t)obsolete_counts_object_count, 7592 (u_longlong_t)oc_feature_refcount); 7593 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7594 "ob:%llu rd:%llu\n", 7595 (u_longlong_t)precise_vdev_count, 7596 (u_longlong_t)obsolete_sm_count, 7597 (u_longlong_t)obsolete_counts_count, 7598 (u_longlong_t)scip_count, 7599 (u_longlong_t)obsolete_bpobj_count, 7600 (u_longlong_t)remap_deadlist_count); 7601 } else { 7602 (void) printf("Verified indirect_refcount feature refcount " \ 7603 "of %llu is correct\n", 7604 (u_longlong_t)oc_feature_refcount); 7605 } 7606 return (ret); 7607 } 7608 7609 static void 7610 zdb_set_skip_mmp(char *target) 7611 { 7612 spa_t *spa; 7613 7614 /* 7615 * Disable the activity check to allow examination of 7616 * active pools. 7617 */ 7618 mutex_enter(&spa_namespace_lock); 7619 if ((spa = spa_lookup(target)) != NULL) { 7620 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7621 } 7622 mutex_exit(&spa_namespace_lock); 7623 } 7624 7625 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7626 /* 7627 * Import the checkpointed state of the pool specified by the target 7628 * parameter as readonly. The function also accepts a pool config 7629 * as an optional parameter, else it attempts to infer the config by 7630 * the name of the target pool. 7631 * 7632 * Note that the checkpointed state's pool name will be the name of 7633 * the original pool with the above suffix appended to it. In addition, 7634 * if the target is not a pool name (e.g. a path to a dataset) then 7635 * the new_path parameter is populated with the updated path to 7636 * reflect the fact that we are looking into the checkpointed state. 7637 * 7638 * The function returns a newly-allocated copy of the name of the 7639 * pool containing the checkpointed state. When this copy is no 7640 * longer needed it should be freed with free(3C). Same thing 7641 * applies to the new_path parameter if allocated. 7642 */ 7643 static char * 7644 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7645 { 7646 int error = 0; 7647 char *poolname, *bogus_name = NULL; 7648 boolean_t freecfg = B_FALSE; 7649 7650 /* If the target is not a pool, the extract the pool name */ 7651 char *path_start = strchr(target, '/'); 7652 if (path_start != NULL) { 7653 size_t poolname_len = path_start - target; 7654 poolname = strndup(target, poolname_len); 7655 } else { 7656 poolname = target; 7657 } 7658 7659 if (cfg == NULL) { 7660 zdb_set_skip_mmp(poolname); 7661 error = spa_get_stats(poolname, &cfg, NULL, 0); 7662 if (error != 0) { 7663 fatal("Tried to read config of pool \"%s\" but " 7664 "spa_get_stats() failed with error %d\n", 7665 poolname, error); 7666 } 7667 freecfg = B_TRUE; 7668 } 7669 7670 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7671 if (target != poolname) 7672 free(poolname); 7673 return (NULL); 7674 } 7675 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7676 7677 error = spa_import(bogus_name, cfg, NULL, 7678 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7679 ZFS_IMPORT_SKIP_MMP); 7680 if (freecfg) 7681 nvlist_free(cfg); 7682 if (error != 0) { 7683 fatal("Tried to import pool \"%s\" but spa_import() failed " 7684 "with error %d\n", bogus_name, error); 7685 } 7686 7687 if (new_path != NULL && path_start != NULL) { 7688 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7689 free(bogus_name); 7690 if (path_start != NULL) 7691 free(poolname); 7692 return (NULL); 7693 } 7694 } 7695 7696 if (target != poolname) 7697 free(poolname); 7698 7699 return (bogus_name); 7700 } 7701 7702 typedef struct verify_checkpoint_sm_entry_cb_arg { 7703 vdev_t *vcsec_vd; 7704 7705 /* the following fields are only used for printing progress */ 7706 uint64_t vcsec_entryid; 7707 uint64_t vcsec_num_entries; 7708 } verify_checkpoint_sm_entry_cb_arg_t; 7709 7710 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7711 7712 static int 7713 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7714 { 7715 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7716 vdev_t *vd = vcsec->vcsec_vd; 7717 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7718 uint64_t end = sme->sme_offset + sme->sme_run; 7719 7720 ASSERT(sme->sme_type == SM_FREE); 7721 7722 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7723 (void) fprintf(stderr, 7724 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7725 (longlong_t)vd->vdev_id, 7726 (longlong_t)vcsec->vcsec_entryid, 7727 (longlong_t)vcsec->vcsec_num_entries); 7728 } 7729 vcsec->vcsec_entryid++; 7730 7731 /* 7732 * See comment in checkpoint_sm_exclude_entry_cb() 7733 */ 7734 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7735 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7736 7737 /* 7738 * The entries in the vdev_checkpoint_sm should be marked as 7739 * allocated in the checkpointed state of the pool, therefore 7740 * their respective ms_allocateable trees should not contain them. 7741 */ 7742 mutex_enter(&ms->ms_lock); 7743 range_tree_verify_not_present(ms->ms_allocatable, 7744 sme->sme_offset, sme->sme_run); 7745 mutex_exit(&ms->ms_lock); 7746 7747 return (0); 7748 } 7749 7750 /* 7751 * Verify that all segments in the vdev_checkpoint_sm are allocated 7752 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7753 * ms_allocatable). 7754 * 7755 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7756 * each vdev in the current state of the pool to the metaslab space maps 7757 * (ms_sm) of the checkpointed state of the pool. 7758 * 7759 * Note that the function changes the state of the ms_allocatable 7760 * trees of the current spa_t. The entries of these ms_allocatable 7761 * trees are cleared out and then repopulated from with the free 7762 * entries of their respective ms_sm space maps. 7763 */ 7764 static void 7765 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7766 { 7767 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7768 vdev_t *current_rvd = current->spa_root_vdev; 7769 7770 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7771 7772 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7773 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7774 vdev_t *current_vd = current_rvd->vdev_child[c]; 7775 7776 space_map_t *checkpoint_sm = NULL; 7777 uint64_t checkpoint_sm_obj; 7778 7779 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7780 /* 7781 * Since we don't allow device removal in a pool 7782 * that has a checkpoint, we expect that all removed 7783 * vdevs were removed from the pool before the 7784 * checkpoint. 7785 */ 7786 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7787 continue; 7788 } 7789 7790 /* 7791 * If the checkpoint space map doesn't exist, then nothing 7792 * here is checkpointed so there's nothing to verify. 7793 */ 7794 if (current_vd->vdev_top_zap == 0 || 7795 zap_contains(spa_meta_objset(current), 7796 current_vd->vdev_top_zap, 7797 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7798 continue; 7799 7800 VERIFY0(zap_lookup(spa_meta_objset(current), 7801 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7802 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7803 7804 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7805 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7806 current_vd->vdev_ashift)); 7807 7808 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7809 vcsec.vcsec_vd = ckpoint_vd; 7810 vcsec.vcsec_entryid = 0; 7811 vcsec.vcsec_num_entries = 7812 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7813 VERIFY0(space_map_iterate(checkpoint_sm, 7814 space_map_length(checkpoint_sm), 7815 verify_checkpoint_sm_entry_cb, &vcsec)); 7816 if (dump_opt['m'] > 3) 7817 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7818 space_map_close(checkpoint_sm); 7819 } 7820 7821 /* 7822 * If we've added vdevs since we took the checkpoint, ensure 7823 * that their checkpoint space maps are empty. 7824 */ 7825 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7826 for (uint64_t c = ckpoint_rvd->vdev_children; 7827 c < current_rvd->vdev_children; c++) { 7828 vdev_t *current_vd = current_rvd->vdev_child[c]; 7829 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7830 } 7831 } 7832 7833 /* for cleaner progress output */ 7834 (void) fprintf(stderr, "\n"); 7835 } 7836 7837 /* 7838 * Verifies that all space that's allocated in the checkpoint is 7839 * still allocated in the current version, by checking that everything 7840 * in checkpoint's ms_allocatable (which is actually allocated, not 7841 * allocatable/free) is not present in current's ms_allocatable. 7842 * 7843 * Note that the function changes the state of the ms_allocatable 7844 * trees of both spas when called. The entries of all ms_allocatable 7845 * trees are cleared out and then repopulated from their respective 7846 * ms_sm space maps. In the checkpointed state we load the allocated 7847 * entries, and in the current state we load the free entries. 7848 */ 7849 static void 7850 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7851 { 7852 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7853 vdev_t *current_rvd = current->spa_root_vdev; 7854 7855 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7856 load_concrete_ms_allocatable_trees(current, SM_FREE); 7857 7858 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7859 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7860 vdev_t *current_vd = current_rvd->vdev_child[i]; 7861 7862 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7863 /* 7864 * See comment in verify_checkpoint_vdev_spacemaps() 7865 */ 7866 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7867 continue; 7868 } 7869 7870 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7871 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7872 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7873 7874 (void) fprintf(stderr, 7875 "\rverifying vdev %llu of %llu, " 7876 "metaslab %llu of %llu ...", 7877 (longlong_t)current_vd->vdev_id, 7878 (longlong_t)current_rvd->vdev_children, 7879 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7880 (longlong_t)current_vd->vdev_ms_count); 7881 7882 /* 7883 * We walk through the ms_allocatable trees that 7884 * are loaded with the allocated blocks from the 7885 * ms_sm spacemaps of the checkpoint. For each 7886 * one of these ranges we ensure that none of them 7887 * exists in the ms_allocatable trees of the 7888 * current state which are loaded with the ranges 7889 * that are currently free. 7890 * 7891 * This way we ensure that none of the blocks that 7892 * are part of the checkpoint were freed by mistake. 7893 */ 7894 range_tree_walk(ckpoint_msp->ms_allocatable, 7895 (range_tree_func_t *)range_tree_verify_not_present, 7896 current_msp->ms_allocatable); 7897 } 7898 } 7899 7900 /* for cleaner progress output */ 7901 (void) fprintf(stderr, "\n"); 7902 } 7903 7904 static void 7905 verify_checkpoint_blocks(spa_t *spa) 7906 { 7907 ASSERT(!dump_opt['L']); 7908 7909 spa_t *checkpoint_spa; 7910 char *checkpoint_pool; 7911 int error = 0; 7912 7913 /* 7914 * We import the checkpointed state of the pool (under a different 7915 * name) so we can do verification on it against the current state 7916 * of the pool. 7917 */ 7918 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7919 NULL); 7920 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7921 7922 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7923 if (error != 0) { 7924 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7925 "error %d\n", checkpoint_pool, error); 7926 } 7927 7928 /* 7929 * Ensure that ranges in the checkpoint space maps of each vdev 7930 * are allocated according to the checkpointed state's metaslab 7931 * space maps. 7932 */ 7933 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7934 7935 /* 7936 * Ensure that allocated ranges in the checkpoint's metaslab 7937 * space maps remain allocated in the metaslab space maps of 7938 * the current state. 7939 */ 7940 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7941 7942 /* 7943 * Once we are done, we get rid of the checkpointed state. 7944 */ 7945 spa_close(checkpoint_spa, FTAG); 7946 free(checkpoint_pool); 7947 } 7948 7949 static void 7950 dump_leftover_checkpoint_blocks(spa_t *spa) 7951 { 7952 vdev_t *rvd = spa->spa_root_vdev; 7953 7954 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7955 vdev_t *vd = rvd->vdev_child[i]; 7956 7957 space_map_t *checkpoint_sm = NULL; 7958 uint64_t checkpoint_sm_obj; 7959 7960 if (vd->vdev_top_zap == 0) 7961 continue; 7962 7963 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7964 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7965 continue; 7966 7967 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7968 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7969 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7970 7971 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7972 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7973 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7974 space_map_close(checkpoint_sm); 7975 } 7976 } 7977 7978 static int 7979 verify_checkpoint(spa_t *spa) 7980 { 7981 uberblock_t checkpoint; 7982 int error; 7983 7984 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7985 return (0); 7986 7987 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7988 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7989 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7990 7991 if (error == ENOENT && !dump_opt['L']) { 7992 /* 7993 * If the feature is active but the uberblock is missing 7994 * then we must be in the middle of discarding the 7995 * checkpoint. 7996 */ 7997 (void) printf("\nPartially discarded checkpoint " 7998 "state found:\n"); 7999 if (dump_opt['m'] > 3) 8000 dump_leftover_checkpoint_blocks(spa); 8001 return (0); 8002 } else if (error != 0) { 8003 (void) printf("lookup error %d when looking for " 8004 "checkpointed uberblock in MOS\n", error); 8005 return (error); 8006 } 8007 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8008 8009 if (checkpoint.ub_checkpoint_txg == 0) { 8010 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8011 "uberblock\n"); 8012 error = 3; 8013 } 8014 8015 if (error == 0 && !dump_opt['L']) 8016 verify_checkpoint_blocks(spa); 8017 8018 return (error); 8019 } 8020 8021 static void 8022 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8023 { 8024 (void) arg; 8025 for (uint64_t i = start; i < size; i++) { 8026 (void) printf("MOS object %llu referenced but not allocated\n", 8027 (u_longlong_t)i); 8028 } 8029 } 8030 8031 static void 8032 mos_obj_refd(uint64_t obj) 8033 { 8034 if (obj != 0 && mos_refd_objs != NULL) 8035 range_tree_add(mos_refd_objs, obj, 1); 8036 } 8037 8038 /* 8039 * Call on a MOS object that may already have been referenced. 8040 */ 8041 static void 8042 mos_obj_refd_multiple(uint64_t obj) 8043 { 8044 if (obj != 0 && mos_refd_objs != NULL && 8045 !range_tree_contains(mos_refd_objs, obj, 1)) 8046 range_tree_add(mos_refd_objs, obj, 1); 8047 } 8048 8049 static void 8050 mos_leak_vdev_top_zap(vdev_t *vd) 8051 { 8052 uint64_t ms_flush_data_obj; 8053 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8054 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8055 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8056 if (error == ENOENT) 8057 return; 8058 ASSERT0(error); 8059 8060 mos_obj_refd(ms_flush_data_obj); 8061 } 8062 8063 static void 8064 mos_leak_vdev(vdev_t *vd) 8065 { 8066 mos_obj_refd(vd->vdev_dtl_object); 8067 mos_obj_refd(vd->vdev_ms_array); 8068 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8069 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8070 mos_obj_refd(vd->vdev_leaf_zap); 8071 if (vd->vdev_checkpoint_sm != NULL) 8072 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8073 if (vd->vdev_indirect_mapping != NULL) { 8074 mos_obj_refd(vd->vdev_indirect_mapping-> 8075 vim_phys->vimp_counts_object); 8076 } 8077 if (vd->vdev_obsolete_sm != NULL) 8078 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8079 8080 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8081 metaslab_t *ms = vd->vdev_ms[m]; 8082 mos_obj_refd(space_map_object(ms->ms_sm)); 8083 } 8084 8085 if (vd->vdev_root_zap != 0) 8086 mos_obj_refd(vd->vdev_root_zap); 8087 8088 if (vd->vdev_top_zap != 0) { 8089 mos_obj_refd(vd->vdev_top_zap); 8090 mos_leak_vdev_top_zap(vd); 8091 } 8092 8093 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8094 mos_leak_vdev(vd->vdev_child[c]); 8095 } 8096 } 8097 8098 static void 8099 mos_leak_log_spacemaps(spa_t *spa) 8100 { 8101 uint64_t spacemap_zap; 8102 int error = zap_lookup(spa_meta_objset(spa), 8103 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8104 sizeof (spacemap_zap), 1, &spacemap_zap); 8105 if (error == ENOENT) 8106 return; 8107 ASSERT0(error); 8108 8109 mos_obj_refd(spacemap_zap); 8110 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8111 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8112 mos_obj_refd(sls->sls_sm_obj); 8113 } 8114 8115 static void 8116 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8117 { 8118 zap_cursor_t zc; 8119 zap_attribute_t *za = zap_attribute_alloc(); 8120 for (zap_cursor_init(&zc, mos, errlog); 8121 zap_cursor_retrieve(&zc, za) == 0; 8122 zap_cursor_advance(&zc)) { 8123 mos_obj_refd(za->za_first_integer); 8124 } 8125 zap_cursor_fini(&zc); 8126 zap_attribute_free(za); 8127 } 8128 8129 static int 8130 dump_mos_leaks(spa_t *spa) 8131 { 8132 int rv = 0; 8133 objset_t *mos = spa->spa_meta_objset; 8134 dsl_pool_t *dp = spa->spa_dsl_pool; 8135 8136 /* Visit and mark all referenced objects in the MOS */ 8137 8138 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8139 mos_obj_refd(spa->spa_pool_props_object); 8140 mos_obj_refd(spa->spa_config_object); 8141 mos_obj_refd(spa->spa_ddt_stat_object); 8142 mos_obj_refd(spa->spa_feat_desc_obj); 8143 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8144 mos_obj_refd(spa->spa_feat_for_read_obj); 8145 mos_obj_refd(spa->spa_feat_for_write_obj); 8146 mos_obj_refd(spa->spa_history); 8147 mos_obj_refd(spa->spa_errlog_last); 8148 mos_obj_refd(spa->spa_errlog_scrub); 8149 8150 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8151 errorlog_count_refd(mos, spa->spa_errlog_last); 8152 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8153 } 8154 8155 mos_obj_refd(spa->spa_all_vdev_zaps); 8156 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8157 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8158 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8159 bpobj_count_refd(&spa->spa_deferred_bpobj); 8160 mos_obj_refd(dp->dp_empty_bpobj); 8161 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8162 bpobj_count_refd(&dp->dp_free_bpobj); 8163 mos_obj_refd(spa->spa_l2cache.sav_object); 8164 mos_obj_refd(spa->spa_spares.sav_object); 8165 8166 if (spa->spa_syncing_log_sm != NULL) 8167 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8168 mos_leak_log_spacemaps(spa); 8169 8170 mos_obj_refd(spa->spa_condensing_indirect_phys. 8171 scip_next_mapping_object); 8172 mos_obj_refd(spa->spa_condensing_indirect_phys. 8173 scip_prev_obsolete_sm_object); 8174 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8175 vdev_indirect_mapping_t *vim = 8176 vdev_indirect_mapping_open(mos, 8177 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8178 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8179 vdev_indirect_mapping_close(vim); 8180 } 8181 deleted_livelists_dump_mos(spa); 8182 8183 if (dp->dp_origin_snap != NULL) { 8184 dsl_dataset_t *ds; 8185 8186 dsl_pool_config_enter(dp, FTAG); 8187 VERIFY0(dsl_dataset_hold_obj(dp, 8188 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8189 FTAG, &ds)); 8190 count_ds_mos_objects(ds); 8191 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8192 dsl_dataset_rele(ds, FTAG); 8193 dsl_pool_config_exit(dp, FTAG); 8194 8195 count_ds_mos_objects(dp->dp_origin_snap); 8196 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8197 } 8198 count_dir_mos_objects(dp->dp_mos_dir); 8199 if (dp->dp_free_dir != NULL) 8200 count_dir_mos_objects(dp->dp_free_dir); 8201 if (dp->dp_leak_dir != NULL) 8202 count_dir_mos_objects(dp->dp_leak_dir); 8203 8204 mos_leak_vdev(spa->spa_root_vdev); 8205 8206 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8207 ddt_t *ddt = spa->spa_ddt[c]; 8208 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8209 continue; 8210 8211 /* DDT store objects */ 8212 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8213 for (ddt_class_t class = 0; class < DDT_CLASSES; 8214 class++) { 8215 mos_obj_refd(ddt->ddt_object[type][class]); 8216 } 8217 } 8218 8219 /* FDT container */ 8220 if (ddt->ddt_version == DDT_VERSION_FDT) 8221 mos_obj_refd(ddt->ddt_dir_object); 8222 8223 /* FDT log objects */ 8224 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8225 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8226 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8227 } 8228 } 8229 8230 if (spa->spa_brt != NULL) { 8231 brt_t *brt = spa->spa_brt; 8232 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 8233 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 8234 if (brtvd != NULL && brtvd->bv_initiated) { 8235 mos_obj_refd(brtvd->bv_mos_brtvdev); 8236 mos_obj_refd(brtvd->bv_mos_entries); 8237 } 8238 } 8239 } 8240 8241 /* 8242 * Visit all allocated objects and make sure they are referenced. 8243 */ 8244 uint64_t object = 0; 8245 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8246 if (range_tree_contains(mos_refd_objs, object, 1)) { 8247 range_tree_remove(mos_refd_objs, object, 1); 8248 } else { 8249 dmu_object_info_t doi; 8250 const char *name; 8251 VERIFY0(dmu_object_info(mos, object, &doi)); 8252 if (doi.doi_type & DMU_OT_NEWTYPE) { 8253 dmu_object_byteswap_t bswap = 8254 DMU_OT_BYTESWAP(doi.doi_type); 8255 name = dmu_ot_byteswap[bswap].ob_name; 8256 } else { 8257 name = dmu_ot[doi.doi_type].ot_name; 8258 } 8259 8260 (void) printf("MOS object %llu (%s) leaked\n", 8261 (u_longlong_t)object, name); 8262 rv = 2; 8263 } 8264 } 8265 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8266 if (!range_tree_is_empty(mos_refd_objs)) 8267 rv = 2; 8268 range_tree_vacate(mos_refd_objs, NULL, NULL); 8269 range_tree_destroy(mos_refd_objs); 8270 return (rv); 8271 } 8272 8273 typedef struct log_sm_obsolete_stats_arg { 8274 uint64_t lsos_current_txg; 8275 8276 uint64_t lsos_total_entries; 8277 uint64_t lsos_valid_entries; 8278 8279 uint64_t lsos_sm_entries; 8280 uint64_t lsos_valid_sm_entries; 8281 } log_sm_obsolete_stats_arg_t; 8282 8283 static int 8284 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8285 uint64_t txg, void *arg) 8286 { 8287 log_sm_obsolete_stats_arg_t *lsos = arg; 8288 8289 uint64_t offset = sme->sme_offset; 8290 uint64_t vdev_id = sme->sme_vdev; 8291 8292 if (lsos->lsos_current_txg == 0) { 8293 /* this is the first log */ 8294 lsos->lsos_current_txg = txg; 8295 } else if (lsos->lsos_current_txg < txg) { 8296 /* we just changed log - print stats and reset */ 8297 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8298 (u_longlong_t)lsos->lsos_valid_sm_entries, 8299 (u_longlong_t)lsos->lsos_sm_entries, 8300 (u_longlong_t)lsos->lsos_current_txg); 8301 lsos->lsos_valid_sm_entries = 0; 8302 lsos->lsos_sm_entries = 0; 8303 lsos->lsos_current_txg = txg; 8304 } 8305 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8306 8307 lsos->lsos_sm_entries++; 8308 lsos->lsos_total_entries++; 8309 8310 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8311 if (!vdev_is_concrete(vd)) 8312 return (0); 8313 8314 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8315 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8316 8317 if (txg < metaslab_unflushed_txg(ms)) 8318 return (0); 8319 lsos->lsos_valid_sm_entries++; 8320 lsos->lsos_valid_entries++; 8321 return (0); 8322 } 8323 8324 static void 8325 dump_log_spacemap_obsolete_stats(spa_t *spa) 8326 { 8327 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8328 return; 8329 8330 log_sm_obsolete_stats_arg_t lsos = {0}; 8331 8332 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8333 8334 iterate_through_spacemap_logs(spa, 8335 log_spacemap_obsolete_stats_cb, &lsos); 8336 8337 /* print stats for latest log */ 8338 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8339 (u_longlong_t)lsos.lsos_valid_sm_entries, 8340 (u_longlong_t)lsos.lsos_sm_entries, 8341 (u_longlong_t)lsos.lsos_current_txg); 8342 8343 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8344 (u_longlong_t)lsos.lsos_valid_entries, 8345 (u_longlong_t)lsos.lsos_total_entries); 8346 } 8347 8348 static void 8349 dump_zpool(spa_t *spa) 8350 { 8351 dsl_pool_t *dp = spa_get_dsl(spa); 8352 int rc = 0; 8353 8354 if (dump_opt['y']) { 8355 livelist_metaslab_validate(spa); 8356 } 8357 8358 if (dump_opt['S']) { 8359 dump_simulated_ddt(spa); 8360 return; 8361 } 8362 8363 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8364 (void) printf("\nCached configuration:\n"); 8365 dump_nvlist(spa->spa_config, 8); 8366 } 8367 8368 if (dump_opt['C']) 8369 dump_config(spa); 8370 8371 if (dump_opt['u']) 8372 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8373 8374 if (dump_opt['D']) 8375 dump_all_ddts(spa); 8376 8377 if (dump_opt['T']) 8378 dump_brt(spa); 8379 8380 if (dump_opt['d'] > 2 || dump_opt['m']) 8381 dump_metaslabs(spa); 8382 if (dump_opt['M']) 8383 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8384 if (dump_opt['d'] > 2 || dump_opt['m']) { 8385 dump_log_spacemaps(spa); 8386 dump_log_spacemap_obsolete_stats(spa); 8387 } 8388 8389 if (dump_opt['d'] || dump_opt['i']) { 8390 spa_feature_t f; 8391 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8392 0); 8393 dump_objset(dp->dp_meta_objset); 8394 8395 if (dump_opt['d'] >= 3) { 8396 dsl_pool_t *dp = spa->spa_dsl_pool; 8397 dump_full_bpobj(&spa->spa_deferred_bpobj, 8398 "Deferred frees", 0); 8399 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8400 dump_full_bpobj(&dp->dp_free_bpobj, 8401 "Pool snapshot frees", 0); 8402 } 8403 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8404 ASSERT(spa_feature_is_enabled(spa, 8405 SPA_FEATURE_DEVICE_REMOVAL)); 8406 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8407 "Pool obsolete blocks", 0); 8408 } 8409 8410 if (spa_feature_is_active(spa, 8411 SPA_FEATURE_ASYNC_DESTROY)) { 8412 dump_bptree(spa->spa_meta_objset, 8413 dp->dp_bptree_obj, 8414 "Pool dataset frees"); 8415 } 8416 dump_dtl(spa->spa_root_vdev, 0); 8417 } 8418 8419 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8420 global_feature_count[f] = UINT64_MAX; 8421 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8422 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8423 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8424 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8425 8426 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8427 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8428 8429 if (rc == 0 && !dump_opt['L']) 8430 rc = dump_mos_leaks(spa); 8431 8432 for (f = 0; f < SPA_FEATURES; f++) { 8433 uint64_t refcount; 8434 8435 uint64_t *arr; 8436 if (!(spa_feature_table[f].fi_flags & 8437 ZFEATURE_FLAG_PER_DATASET)) { 8438 if (global_feature_count[f] == UINT64_MAX) 8439 continue; 8440 if (!spa_feature_is_enabled(spa, f)) { 8441 ASSERT0(global_feature_count[f]); 8442 continue; 8443 } 8444 arr = global_feature_count; 8445 } else { 8446 if (!spa_feature_is_enabled(spa, f)) { 8447 ASSERT0(dataset_feature_count[f]); 8448 continue; 8449 } 8450 arr = dataset_feature_count; 8451 } 8452 if (feature_get_refcount(spa, &spa_feature_table[f], 8453 &refcount) == ENOTSUP) 8454 continue; 8455 if (arr[f] != refcount) { 8456 (void) printf("%s feature refcount mismatch: " 8457 "%lld consumers != %lld refcount\n", 8458 spa_feature_table[f].fi_uname, 8459 (longlong_t)arr[f], (longlong_t)refcount); 8460 rc = 2; 8461 } else { 8462 (void) printf("Verified %s feature refcount " 8463 "of %llu is correct\n", 8464 spa_feature_table[f].fi_uname, 8465 (longlong_t)refcount); 8466 } 8467 } 8468 8469 if (rc == 0) 8470 rc = verify_device_removal_feature_counts(spa); 8471 } 8472 8473 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8474 rc = dump_block_stats(spa); 8475 8476 if (rc == 0) 8477 rc = verify_spacemap_refcounts(spa); 8478 8479 if (dump_opt['s']) 8480 show_pool_stats(spa); 8481 8482 if (dump_opt['h']) 8483 dump_history(spa); 8484 8485 if (rc == 0) 8486 rc = verify_checkpoint(spa); 8487 8488 if (rc != 0) { 8489 dump_debug_buffer(); 8490 zdb_exit(rc); 8491 } 8492 } 8493 8494 #define ZDB_FLAG_CHECKSUM 0x0001 8495 #define ZDB_FLAG_DECOMPRESS 0x0002 8496 #define ZDB_FLAG_BSWAP 0x0004 8497 #define ZDB_FLAG_GBH 0x0008 8498 #define ZDB_FLAG_INDIRECT 0x0010 8499 #define ZDB_FLAG_RAW 0x0020 8500 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8501 #define ZDB_FLAG_VERBOSE 0x0080 8502 8503 static int flagbits[256]; 8504 static char flagbitstr[16]; 8505 8506 static void 8507 zdb_print_blkptr(const blkptr_t *bp, int flags) 8508 { 8509 char blkbuf[BP_SPRINTF_LEN]; 8510 8511 if (flags & ZDB_FLAG_BSWAP) 8512 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8513 8514 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8515 (void) printf("%s\n", blkbuf); 8516 } 8517 8518 static void 8519 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8520 { 8521 int i; 8522 8523 for (i = 0; i < nbps; i++) 8524 zdb_print_blkptr(&bp[i], flags); 8525 } 8526 8527 static void 8528 zdb_dump_gbh(void *buf, int flags) 8529 { 8530 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8531 } 8532 8533 static void 8534 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8535 { 8536 if (flags & ZDB_FLAG_BSWAP) 8537 byteswap_uint64_array(buf, size); 8538 VERIFY(write(fileno(stdout), buf, size) == size); 8539 } 8540 8541 static void 8542 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8543 { 8544 uint64_t *d = (uint64_t *)buf; 8545 unsigned nwords = size / sizeof (uint64_t); 8546 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8547 unsigned i, j; 8548 const char *hdr; 8549 char *c; 8550 8551 8552 if (do_bswap) 8553 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8554 else 8555 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8556 8557 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8558 8559 #ifdef _ZFS_LITTLE_ENDIAN 8560 /* correct the endianness */ 8561 do_bswap = !do_bswap; 8562 #endif 8563 for (i = 0; i < nwords; i += 2) { 8564 (void) printf("%06llx: %016llx %016llx ", 8565 (u_longlong_t)(i * sizeof (uint64_t)), 8566 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8567 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8568 8569 c = (char *)&d[i]; 8570 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8571 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8572 (void) printf("\n"); 8573 } 8574 } 8575 8576 /* 8577 * There are two acceptable formats: 8578 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8579 * child[.child]* - For example: 0.1.1 8580 * 8581 * The second form can be used to specify arbitrary vdevs anywhere 8582 * in the hierarchy. For example, in a pool with a mirror of 8583 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8584 */ 8585 static vdev_t * 8586 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8587 { 8588 char *s, *p, *q; 8589 unsigned i; 8590 8591 if (vdev == NULL) 8592 return (NULL); 8593 8594 /* First, assume the x.x.x.x format */ 8595 i = strtoul(path, &s, 10); 8596 if (s == path || (s && *s != '.' && *s != '\0')) 8597 goto name; 8598 if (i >= vdev->vdev_children) 8599 return (NULL); 8600 8601 vdev = vdev->vdev_child[i]; 8602 if (s && *s == '\0') 8603 return (vdev); 8604 return (zdb_vdev_lookup(vdev, s+1)); 8605 8606 name: 8607 for (i = 0; i < vdev->vdev_children; i++) { 8608 vdev_t *vc = vdev->vdev_child[i]; 8609 8610 if (vc->vdev_path == NULL) { 8611 vc = zdb_vdev_lookup(vc, path); 8612 if (vc == NULL) 8613 continue; 8614 else 8615 return (vc); 8616 } 8617 8618 p = strrchr(vc->vdev_path, '/'); 8619 p = p ? p + 1 : vc->vdev_path; 8620 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8621 8622 if (strcmp(vc->vdev_path, path) == 0) 8623 return (vc); 8624 if (strcmp(p, path) == 0) 8625 return (vc); 8626 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8627 return (vc); 8628 } 8629 8630 return (NULL); 8631 } 8632 8633 static int 8634 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8635 { 8636 dsl_dataset_t *ds; 8637 8638 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8639 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8640 NULL, &ds); 8641 if (error != 0) { 8642 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8643 (u_longlong_t)objset_id, strerror(error)); 8644 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8645 return (error); 8646 } 8647 dsl_dataset_name(ds, outstr); 8648 dsl_dataset_rele(ds, NULL); 8649 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8650 return (0); 8651 } 8652 8653 static boolean_t 8654 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8655 { 8656 char *s0, *s1, *tmp = NULL; 8657 8658 if (sizes == NULL) 8659 return (B_FALSE); 8660 8661 s0 = strtok_r(sizes, "/", &tmp); 8662 if (s0 == NULL) 8663 return (B_FALSE); 8664 s1 = strtok_r(NULL, "/", &tmp); 8665 *lsize = strtoull(s0, NULL, 16); 8666 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8667 return (*lsize >= *psize && *psize > 0); 8668 } 8669 8670 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8671 8672 static boolean_t 8673 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8674 int flags, int cfunc, void *lbuf, void *lbuf2) 8675 { 8676 if (flags & ZDB_FLAG_VERBOSE) { 8677 (void) fprintf(stderr, 8678 "Trying %05llx -> %05llx (%s)\n", 8679 (u_longlong_t)psize, 8680 (u_longlong_t)lsize, 8681 zio_compress_table[cfunc].ci_name); 8682 } 8683 8684 /* 8685 * We set lbuf to all zeros and lbuf2 to all 8686 * ones, then decompress to both buffers and 8687 * compare their contents. This way we can 8688 * know if decompression filled exactly to 8689 * lsize or if it left some bytes unwritten. 8690 */ 8691 8692 memset(lbuf, 0x00, lsize); 8693 memset(lbuf2, 0xff, lsize); 8694 8695 abd_t labd, labd2; 8696 abd_get_from_buf_struct(&labd, lbuf, lsize); 8697 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8698 8699 boolean_t ret = B_FALSE; 8700 if (zio_decompress_data(cfunc, pabd, 8701 &labd, psize, lsize, NULL) == 0 && 8702 zio_decompress_data(cfunc, pabd, 8703 &labd2, psize, lsize, NULL) == 0 && 8704 memcmp(lbuf, lbuf2, lsize) == 0) 8705 ret = B_TRUE; 8706 8707 abd_free(&labd2); 8708 abd_free(&labd); 8709 8710 return (ret); 8711 } 8712 8713 static uint64_t 8714 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8715 uint64_t psize, int flags) 8716 { 8717 (void) buf; 8718 uint64_t orig_lsize = lsize; 8719 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8720 boolean_t found = B_FALSE; 8721 /* 8722 * We don't know how the data was compressed, so just try 8723 * every decompress function at every inflated blocksize. 8724 */ 8725 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8726 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8727 int *cfuncp = cfuncs; 8728 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8729 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8730 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8731 ZIO_COMPRESS_MASK(ZLE); 8732 *cfuncp++ = ZIO_COMPRESS_LZ4; 8733 *cfuncp++ = ZIO_COMPRESS_LZJB; 8734 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8735 /* 8736 * Every gzip level has the same decompressor, no need to 8737 * run it 9 times per bruteforce attempt. 8738 */ 8739 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8740 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8741 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8742 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8743 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8744 if (((1ULL << c) & mask) == 0) 8745 *cfuncp++ = c; 8746 8747 /* 8748 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8749 * could take a while and we should let the user know 8750 * we are not stuck. On the other hand, printing progress 8751 * info gets old after a while. User can specify 'v' flag 8752 * to see the progression. 8753 */ 8754 if (lsize == psize) 8755 lsize += SPA_MINBLOCKSIZE; 8756 else 8757 maxlsize = lsize; 8758 8759 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8760 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8761 if (try_decompress_block(pabd, lsize, psize, flags, 8762 *cfuncp, lbuf, lbuf2)) { 8763 found = B_TRUE; 8764 break; 8765 } 8766 } 8767 if (*cfuncp != 0) 8768 break; 8769 } 8770 if (!found && tryzle) { 8771 for (lsize = orig_lsize; lsize <= maxlsize; 8772 lsize += SPA_MINBLOCKSIZE) { 8773 if (try_decompress_block(pabd, lsize, psize, flags, 8774 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8775 *cfuncp = ZIO_COMPRESS_ZLE; 8776 found = B_TRUE; 8777 break; 8778 } 8779 } 8780 } 8781 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8782 8783 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8784 printf("\nZLE decompression was selected. If you " 8785 "suspect the results are wrong,\ntry avoiding ZLE " 8786 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8787 } 8788 8789 return (lsize > maxlsize ? -1 : lsize); 8790 } 8791 8792 /* 8793 * Read a block from a pool and print it out. The syntax of the 8794 * block descriptor is: 8795 * 8796 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8797 * 8798 * pool - The name of the pool you wish to read from 8799 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8800 * offset - offset, in hex, in bytes 8801 * size - Amount of data to read, in hex, in bytes 8802 * flags - A string of characters specifying options 8803 * b: Decode a blkptr at given offset within block 8804 * c: Calculate and display checksums 8805 * d: Decompress data before dumping 8806 * e: Byteswap data before dumping 8807 * g: Display data as a gang block header 8808 * i: Display as an indirect block 8809 * r: Dump raw data to stdout 8810 * v: Verbose 8811 * 8812 */ 8813 static void 8814 zdb_read_block(char *thing, spa_t *spa) 8815 { 8816 blkptr_t blk, *bp = &blk; 8817 dva_t *dva = bp->blk_dva; 8818 int flags = 0; 8819 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8820 zio_t *zio; 8821 vdev_t *vd; 8822 abd_t *pabd; 8823 void *lbuf, *buf; 8824 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8825 const char *vdev, *errmsg = NULL; 8826 int i, len, error; 8827 boolean_t borrowed = B_FALSE, found = B_FALSE; 8828 8829 dup = strdup(thing); 8830 s = strtok_r(dup, ":", &tmp); 8831 vdev = s ?: ""; 8832 s = strtok_r(NULL, ":", &tmp); 8833 offset = strtoull(s ? s : "", NULL, 16); 8834 sizes = strtok_r(NULL, ":", &tmp); 8835 s = strtok_r(NULL, ":", &tmp); 8836 flagstr = strdup(s ?: ""); 8837 8838 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8839 errmsg = "invalid size(s)"; 8840 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8841 errmsg = "size must be a multiple of sector size"; 8842 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8843 errmsg = "offset must be a multiple of sector size"; 8844 if (errmsg) { 8845 (void) printf("Invalid block specifier: %s - %s\n", 8846 thing, errmsg); 8847 goto done; 8848 } 8849 8850 tmp = NULL; 8851 for (s = strtok_r(flagstr, ":", &tmp); 8852 s != NULL; 8853 s = strtok_r(NULL, ":", &tmp)) { 8854 len = strlen(flagstr); 8855 for (i = 0; i < len; i++) { 8856 int bit = flagbits[(uchar_t)flagstr[i]]; 8857 8858 if (bit == 0) { 8859 (void) printf("***Ignoring flag: %c\n", 8860 (uchar_t)flagstr[i]); 8861 continue; 8862 } 8863 found = B_TRUE; 8864 flags |= bit; 8865 8866 p = &flagstr[i + 1]; 8867 if (*p != ':' && *p != '\0') { 8868 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8869 char *end, offstr[8] = { 0 }; 8870 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8871 (nextbit == 0)) { 8872 /* look ahead to isolate the offset */ 8873 while (nextbit == 0 && 8874 strchr(flagbitstr, *p) == NULL) { 8875 offstr[j] = *p; 8876 j++; 8877 if (i + j > strlen(flagstr)) 8878 break; 8879 p++; 8880 nextbit = flagbits[(uchar_t)*p]; 8881 } 8882 blkptr_offset = strtoull(offstr, &end, 8883 16); 8884 i += j; 8885 } else if (nextbit == 0) { 8886 (void) printf("***Ignoring flag arg:" 8887 " '%c'\n", (uchar_t)*p); 8888 } 8889 } 8890 } 8891 } 8892 if (blkptr_offset % sizeof (blkptr_t)) { 8893 printf("Block pointer offset 0x%llx " 8894 "must be divisible by 0x%x\n", 8895 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8896 goto done; 8897 } 8898 if (found == B_FALSE && strlen(flagstr) > 0) { 8899 printf("Invalid flag arg: '%s'\n", flagstr); 8900 goto done; 8901 } 8902 8903 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8904 if (vd == NULL) { 8905 (void) printf("***Invalid vdev: %s\n", vdev); 8906 goto done; 8907 } else { 8908 if (vd->vdev_path) 8909 (void) fprintf(stderr, "Found vdev: %s\n", 8910 vd->vdev_path); 8911 else 8912 (void) fprintf(stderr, "Found vdev type: %s\n", 8913 vd->vdev_ops->vdev_op_type); 8914 } 8915 8916 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8917 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8918 8919 BP_ZERO(bp); 8920 8921 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8922 DVA_SET_OFFSET(&dva[0], offset); 8923 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8924 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8925 8926 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8927 8928 BP_SET_LSIZE(bp, lsize); 8929 BP_SET_PSIZE(bp, psize); 8930 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8931 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8932 BP_SET_TYPE(bp, DMU_OT_NONE); 8933 BP_SET_LEVEL(bp, 0); 8934 BP_SET_DEDUP(bp, 0); 8935 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8936 8937 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8938 zio = zio_root(spa, NULL, NULL, 0); 8939 8940 if (vd == vd->vdev_top) { 8941 /* 8942 * Treat this as a normal block read. 8943 */ 8944 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8945 ZIO_PRIORITY_SYNC_READ, 8946 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8947 } else { 8948 /* 8949 * Treat this as a vdev child I/O. 8950 */ 8951 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8952 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8953 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8954 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8955 NULL, NULL)); 8956 } 8957 8958 error = zio_wait(zio); 8959 spa_config_exit(spa, SCL_STATE, FTAG); 8960 8961 if (error) { 8962 (void) printf("Read of %s failed, error: %d\n", thing, error); 8963 goto out; 8964 } 8965 8966 uint64_t orig_lsize = lsize; 8967 buf = lbuf; 8968 if (flags & ZDB_FLAG_DECOMPRESS) { 8969 lsize = zdb_decompress_block(pabd, buf, lbuf, 8970 lsize, psize, flags); 8971 if (lsize == -1) { 8972 (void) printf("Decompress of %s failed\n", thing); 8973 goto out; 8974 } 8975 } else { 8976 buf = abd_borrow_buf_copy(pabd, lsize); 8977 borrowed = B_TRUE; 8978 } 8979 /* 8980 * Try to detect invalid block pointer. If invalid, try 8981 * decompressing. 8982 */ 8983 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8984 !(flags & ZDB_FLAG_DECOMPRESS)) { 8985 const blkptr_t *b = (const blkptr_t *)(void *) 8986 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8987 if (zfs_blkptr_verify(spa, b, 8988 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8989 abd_return_buf_copy(pabd, buf, lsize); 8990 borrowed = B_FALSE; 8991 buf = lbuf; 8992 lsize = zdb_decompress_block(pabd, buf, 8993 lbuf, lsize, psize, flags); 8994 b = (const blkptr_t *)(void *) 8995 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8996 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8997 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8998 printf("invalid block pointer at this DVA\n"); 8999 goto out; 9000 } 9001 } 9002 } 9003 9004 if (flags & ZDB_FLAG_PRINT_BLKPTR) 9005 zdb_print_blkptr((blkptr_t *)(void *) 9006 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 9007 else if (flags & ZDB_FLAG_RAW) 9008 zdb_dump_block_raw(buf, lsize, flags); 9009 else if (flags & ZDB_FLAG_INDIRECT) 9010 zdb_dump_indirect((blkptr_t *)buf, 9011 orig_lsize / sizeof (blkptr_t), flags); 9012 else if (flags & ZDB_FLAG_GBH) 9013 zdb_dump_gbh(buf, flags); 9014 else 9015 zdb_dump_block(thing, buf, lsize, flags); 9016 9017 /* 9018 * If :c was specified, iterate through the checksum table to 9019 * calculate and display each checksum for our specified 9020 * DVA and length. 9021 */ 9022 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9023 !(flags & ZDB_FLAG_GBH)) { 9024 zio_t *czio; 9025 (void) printf("\n"); 9026 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9027 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9028 9029 if ((zio_checksum_table[ck].ci_flags & 9030 ZCHECKSUM_FLAG_EMBEDDED) || 9031 ck == ZIO_CHECKSUM_NOPARITY) { 9032 continue; 9033 } 9034 BP_SET_CHECKSUM(bp, ck); 9035 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9036 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9037 if (vd == vd->vdev_top) { 9038 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9039 NULL, NULL, 9040 ZIO_PRIORITY_SYNC_READ, 9041 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9042 ZIO_FLAG_DONT_RETRY, NULL)); 9043 } else { 9044 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9045 offset, pabd, psize, ZIO_TYPE_READ, 9046 ZIO_PRIORITY_SYNC_READ, 9047 ZIO_FLAG_DONT_PROPAGATE | 9048 ZIO_FLAG_DONT_RETRY | 9049 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9050 ZIO_FLAG_SPECULATIVE | 9051 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9052 } 9053 error = zio_wait(czio); 9054 if (error == 0 || error == ECKSUM) { 9055 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9056 NULL, NULL, 0); 9057 ck_zio->io_offset = 9058 DVA_GET_OFFSET(&bp->blk_dva[0]); 9059 ck_zio->io_bp = bp; 9060 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9061 printf( 9062 "%12s\t" 9063 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9064 zio_checksum_table[ck].ci_name, 9065 (u_longlong_t)bp->blk_cksum.zc_word[0], 9066 (u_longlong_t)bp->blk_cksum.zc_word[1], 9067 (u_longlong_t)bp->blk_cksum.zc_word[2], 9068 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9069 zio_wait(ck_zio); 9070 } else { 9071 printf("error %d reading block\n", error); 9072 } 9073 spa_config_exit(spa, SCL_STATE, FTAG); 9074 } 9075 } 9076 9077 if (borrowed) 9078 abd_return_buf_copy(pabd, buf, lsize); 9079 9080 out: 9081 abd_free(pabd); 9082 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9083 done: 9084 free(flagstr); 9085 free(dup); 9086 } 9087 9088 static void 9089 zdb_embedded_block(char *thing) 9090 { 9091 blkptr_t bp = {{{{0}}}}; 9092 unsigned long long *words = (void *)&bp; 9093 char *buf; 9094 int err; 9095 9096 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9097 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9098 words + 0, words + 1, words + 2, words + 3, 9099 words + 4, words + 5, words + 6, words + 7, 9100 words + 8, words + 9, words + 10, words + 11, 9101 words + 12, words + 13, words + 14, words + 15); 9102 if (err != 16) { 9103 (void) fprintf(stderr, "invalid input format\n"); 9104 zdb_exit(1); 9105 } 9106 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9107 buf = malloc(SPA_MAXBLOCKSIZE); 9108 if (buf == NULL) { 9109 (void) fprintf(stderr, "out of memory\n"); 9110 zdb_exit(1); 9111 } 9112 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9113 if (err != 0) { 9114 (void) fprintf(stderr, "decode failed: %u\n", err); 9115 zdb_exit(1); 9116 } 9117 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9118 free(buf); 9119 } 9120 9121 /* check for valid hex or decimal numeric string */ 9122 static boolean_t 9123 zdb_numeric(char *str) 9124 { 9125 int i = 0, len; 9126 9127 len = strlen(str); 9128 if (len == 0) 9129 return (B_FALSE); 9130 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9131 i = 2; 9132 for (; i < len; i++) { 9133 if (!isxdigit(str[i])) 9134 return (B_FALSE); 9135 } 9136 return (B_TRUE); 9137 } 9138 9139 static int 9140 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9141 zfs_file_info_t *zoi) 9142 { 9143 (void) data, (void) zoi; 9144 9145 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9146 return (ENOENT); 9147 9148 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9149 abort(); 9150 } 9151 9152 int 9153 main(int argc, char **argv) 9154 { 9155 int c; 9156 int dump_all = 1; 9157 int verbose = 0; 9158 int error = 0; 9159 char **searchdirs = NULL; 9160 int nsearch = 0; 9161 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9162 nvlist_t *policy = NULL; 9163 uint64_t max_txg = UINT64_MAX; 9164 int64_t objset_id = -1; 9165 uint64_t object; 9166 int flags = ZFS_IMPORT_MISSING_LOG; 9167 int rewind = ZPOOL_NEVER_REWIND; 9168 char *spa_config_path_env, *objset_str; 9169 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9170 nvlist_t *cfg = NULL; 9171 struct sigaction action; 9172 boolean_t force_import = B_FALSE; 9173 boolean_t config_path_console = B_FALSE; 9174 char pbuf[MAXPATHLEN]; 9175 9176 dprintf_setup(&argc, argv); 9177 9178 /* 9179 * Set up signal handlers, so if we crash due to bad on-disk data we 9180 * can get more info. Unlike ztest, we don't bail out if we can't set 9181 * up signal handlers, because zdb is very useful without them. 9182 */ 9183 action.sa_handler = sig_handler; 9184 sigemptyset(&action.sa_mask); 9185 action.sa_flags = 0; 9186 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9187 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9188 strerror(errno)); 9189 } 9190 if (sigaction(SIGABRT, &action, NULL) < 0) { 9191 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9192 strerror(errno)); 9193 } 9194 9195 /* 9196 * If there is an environment variable SPA_CONFIG_PATH it overrides 9197 * default spa_config_path setting. If -U flag is specified it will 9198 * override this environment variable settings once again. 9199 */ 9200 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9201 if (spa_config_path_env != NULL) 9202 spa_config_path = spa_config_path_env; 9203 9204 /* 9205 * For performance reasons, we set this tunable down. We do so before 9206 * the arg parsing section so that the user can override this value if 9207 * they choose. 9208 */ 9209 zfs_btree_verify_intensity = 3; 9210 9211 struct option long_options[] = { 9212 {"ignore-assertions", no_argument, NULL, 'A'}, 9213 {"block-stats", no_argument, NULL, 'b'}, 9214 {"backup", no_argument, NULL, 'B'}, 9215 {"checksum", no_argument, NULL, 'c'}, 9216 {"config", no_argument, NULL, 'C'}, 9217 {"datasets", no_argument, NULL, 'd'}, 9218 {"dedup-stats", no_argument, NULL, 'D'}, 9219 {"exported", no_argument, NULL, 'e'}, 9220 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9221 {"automatic-rewind", no_argument, NULL, 'F'}, 9222 {"dump-debug-msg", no_argument, NULL, 'G'}, 9223 {"history", no_argument, NULL, 'h'}, 9224 {"intent-logs", no_argument, NULL, 'i'}, 9225 {"inflight", required_argument, NULL, 'I'}, 9226 {"checkpointed-state", no_argument, NULL, 'k'}, 9227 {"key", required_argument, NULL, 'K'}, 9228 {"label", no_argument, NULL, 'l'}, 9229 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9230 {"metaslabs", no_argument, NULL, 'm'}, 9231 {"metaslab-groups", no_argument, NULL, 'M'}, 9232 {"numeric", no_argument, NULL, 'N'}, 9233 {"option", required_argument, NULL, 'o'}, 9234 {"object-lookups", no_argument, NULL, 'O'}, 9235 {"path", required_argument, NULL, 'p'}, 9236 {"parseable", no_argument, NULL, 'P'}, 9237 {"skip-label", no_argument, NULL, 'q'}, 9238 {"copy-object", no_argument, NULL, 'r'}, 9239 {"read-block", no_argument, NULL, 'R'}, 9240 {"io-stats", no_argument, NULL, 's'}, 9241 {"simulate-dedup", no_argument, NULL, 'S'}, 9242 {"txg", required_argument, NULL, 't'}, 9243 {"brt-stats", no_argument, NULL, 'T'}, 9244 {"uberblock", no_argument, NULL, 'u'}, 9245 {"cachefile", required_argument, NULL, 'U'}, 9246 {"verbose", no_argument, NULL, 'v'}, 9247 {"verbatim", no_argument, NULL, 'V'}, 9248 {"dump-blocks", required_argument, NULL, 'x'}, 9249 {"extreme-rewind", no_argument, NULL, 'X'}, 9250 {"all-reconstruction", no_argument, NULL, 'Y'}, 9251 {"livelist", no_argument, NULL, 'y'}, 9252 {"zstd-headers", no_argument, NULL, 'Z'}, 9253 {0, 0, 0, 0} 9254 }; 9255 9256 while ((c = getopt_long(argc, argv, 9257 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9258 long_options, NULL)) != -1) { 9259 switch (c) { 9260 case 'b': 9261 case 'B': 9262 case 'c': 9263 case 'C': 9264 case 'd': 9265 case 'D': 9266 case 'E': 9267 case 'G': 9268 case 'h': 9269 case 'i': 9270 case 'l': 9271 case 'm': 9272 case 'M': 9273 case 'N': 9274 case 'O': 9275 case 'r': 9276 case 'R': 9277 case 's': 9278 case 'S': 9279 case 'T': 9280 case 'u': 9281 case 'y': 9282 case 'Z': 9283 dump_opt[c]++; 9284 dump_all = 0; 9285 break; 9286 case 'A': 9287 case 'e': 9288 case 'F': 9289 case 'k': 9290 case 'L': 9291 case 'P': 9292 case 'q': 9293 case 'X': 9294 dump_opt[c]++; 9295 break; 9296 case 'Y': 9297 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9298 zfs_deadman_enabled = 0; 9299 break; 9300 /* NB: Sort single match options below. */ 9301 case 'I': 9302 max_inflight_bytes = strtoull(optarg, NULL, 0); 9303 if (max_inflight_bytes == 0) { 9304 (void) fprintf(stderr, "maximum number " 9305 "of inflight bytes must be greater " 9306 "than 0\n"); 9307 usage(); 9308 } 9309 break; 9310 case 'K': 9311 dump_opt[c]++; 9312 key_material = strdup(optarg); 9313 /* redact key material in process table */ 9314 while (*optarg != '\0') { *optarg++ = '*'; } 9315 break; 9316 case 'o': 9317 error = set_global_var(optarg); 9318 if (error != 0) 9319 usage(); 9320 break; 9321 case 'p': 9322 if (searchdirs == NULL) { 9323 searchdirs = umem_alloc(sizeof (char *), 9324 UMEM_NOFAIL); 9325 } else { 9326 char **tmp = umem_alloc((nsearch + 1) * 9327 sizeof (char *), UMEM_NOFAIL); 9328 memcpy(tmp, searchdirs, nsearch * 9329 sizeof (char *)); 9330 umem_free(searchdirs, 9331 nsearch * sizeof (char *)); 9332 searchdirs = tmp; 9333 } 9334 searchdirs[nsearch++] = optarg; 9335 break; 9336 case 't': 9337 max_txg = strtoull(optarg, NULL, 0); 9338 if (max_txg < TXG_INITIAL) { 9339 (void) fprintf(stderr, "incorrect txg " 9340 "specified: %s\n", optarg); 9341 usage(); 9342 } 9343 break; 9344 case 'U': 9345 config_path_console = B_TRUE; 9346 spa_config_path = optarg; 9347 if (spa_config_path[0] != '/') { 9348 (void) fprintf(stderr, 9349 "cachefile must be an absolute path " 9350 "(i.e. start with a slash)\n"); 9351 usage(); 9352 } 9353 break; 9354 case 'v': 9355 verbose++; 9356 break; 9357 case 'V': 9358 flags = ZFS_IMPORT_VERBATIM; 9359 break; 9360 case 'x': 9361 vn_dumpdir = optarg; 9362 break; 9363 default: 9364 usage(); 9365 break; 9366 } 9367 } 9368 9369 if (!dump_opt['e'] && searchdirs != NULL) { 9370 (void) fprintf(stderr, "-p option requires use of -e\n"); 9371 usage(); 9372 } 9373 #if defined(_LP64) 9374 /* 9375 * ZDB does not typically re-read blocks; therefore limit the ARC 9376 * to 256 MB, which can be used entirely for metadata. 9377 */ 9378 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9379 zfs_arc_max = 256 * 1024 * 1024; 9380 #endif 9381 9382 /* 9383 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9384 * "zdb -b" uses traversal prefetch which uses async reads. 9385 * For good performance, let several of them be active at once. 9386 */ 9387 zfs_vdev_async_read_max_active = 10; 9388 9389 /* 9390 * Disable reference tracking for better performance. 9391 */ 9392 reference_tracking_enable = B_FALSE; 9393 9394 /* 9395 * Do not fail spa_load when spa_load_verify fails. This is needed 9396 * to load non-idle pools. 9397 */ 9398 spa_load_verify_dryrun = B_TRUE; 9399 9400 /* 9401 * ZDB should have ability to read spacemaps. 9402 */ 9403 spa_mode_readable_spacemaps = B_TRUE; 9404 9405 if (dump_all) 9406 verbose = MAX(verbose, 1); 9407 9408 for (c = 0; c < 256; c++) { 9409 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9410 dump_opt[c] = 1; 9411 if (dump_opt[c]) 9412 dump_opt[c] += verbose; 9413 } 9414 9415 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9416 zfs_recover = (dump_opt['A'] > 1); 9417 9418 argc -= optind; 9419 argv += optind; 9420 if (argc < 2 && dump_opt['R']) 9421 usage(); 9422 9423 target = argv[0]; 9424 9425 /* 9426 * Automate cachefile 9427 */ 9428 if (!spa_config_path_env && !config_path_console && target && 9429 libzfs_core_init() == 0) { 9430 char *pname = strdup(target); 9431 const char *value; 9432 nvlist_t *pnvl = NULL; 9433 nvlist_t *vnvl = NULL; 9434 9435 if (strpbrk(pname, "/@") != NULL) 9436 *strpbrk(pname, "/@") = '\0'; 9437 9438 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9439 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9440 &vnvl) == 0) { 9441 value = fnvlist_lookup_string(vnvl, 9442 ZPROP_VALUE); 9443 } else { 9444 value = "-"; 9445 } 9446 strlcpy(pbuf, value, sizeof (pbuf)); 9447 if (pbuf[0] != '\0') { 9448 if (pbuf[0] == '/') { 9449 if (access(pbuf, F_OK) == 0) 9450 spa_config_path = pbuf; 9451 else 9452 force_import = B_TRUE; 9453 } else if ((strcmp(pbuf, "-") == 0 && 9454 access(ZPOOL_CACHE, F_OK) != 0) || 9455 strcmp(pbuf, "none") == 0) { 9456 force_import = B_TRUE; 9457 } 9458 } 9459 nvlist_free(vnvl); 9460 } 9461 9462 free(pname); 9463 nvlist_free(pnvl); 9464 libzfs_core_fini(); 9465 } 9466 9467 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9468 kernel_init(SPA_MODE_READ); 9469 kernel_init_done = B_TRUE; 9470 9471 if (dump_opt['E']) { 9472 if (argc != 1) 9473 usage(); 9474 zdb_embedded_block(argv[0]); 9475 error = 0; 9476 goto fini; 9477 } 9478 9479 if (argc < 1) { 9480 if (!dump_opt['e'] && dump_opt['C']) { 9481 dump_cachefile(spa_config_path); 9482 error = 0; 9483 goto fini; 9484 } 9485 usage(); 9486 } 9487 9488 if (dump_opt['l']) { 9489 error = dump_label(argv[0]); 9490 goto fini; 9491 } 9492 9493 if (dump_opt['X'] || dump_opt['F']) 9494 rewind = ZPOOL_DO_REWIND | 9495 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9496 9497 /* -N implies -d */ 9498 if (dump_opt['N'] && dump_opt['d'] == 0) 9499 dump_opt['d'] = dump_opt['N']; 9500 9501 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9502 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9503 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9504 fatal("internal error: %s", strerror(ENOMEM)); 9505 9506 error = 0; 9507 9508 if (strpbrk(target, "/@") != NULL) { 9509 size_t targetlen; 9510 9511 target_pool = strdup(target); 9512 *strpbrk(target_pool, "/@") = '\0'; 9513 9514 target_is_spa = B_FALSE; 9515 targetlen = strlen(target); 9516 if (targetlen && target[targetlen - 1] == '/') 9517 target[targetlen - 1] = '\0'; 9518 9519 /* 9520 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9521 * To disambiguate tank/100, consider the 100 as objsetID 9522 * if -N was given, otherwise 100 is an objsetID iff 9523 * tank/100 as a named dataset fails on lookup. 9524 */ 9525 objset_str = strchr(target, '/'); 9526 if (objset_str && strlen(objset_str) > 1 && 9527 zdb_numeric(objset_str + 1)) { 9528 char *endptr; 9529 errno = 0; 9530 objset_str++; 9531 objset_id = strtoull(objset_str, &endptr, 0); 9532 /* dataset 0 is the same as opening the pool */ 9533 if (errno == 0 && endptr != objset_str && 9534 objset_id != 0) { 9535 if (dump_opt['N']) 9536 dataset_lookup = B_TRUE; 9537 } 9538 /* normal dataset name not an objset ID */ 9539 if (endptr == objset_str) { 9540 objset_id = -1; 9541 } 9542 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9543 dump_opt['N']) { 9544 printf("Supply a numeric objset ID with -N\n"); 9545 error = 1; 9546 goto fini; 9547 } 9548 } else { 9549 target_pool = target; 9550 } 9551 9552 if (dump_opt['e'] || force_import) { 9553 importargs_t args = { 0 }; 9554 9555 /* 9556 * If path is not provided, search in /dev 9557 */ 9558 if (searchdirs == NULL) { 9559 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9560 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9561 } 9562 9563 args.paths = nsearch; 9564 args.path = searchdirs; 9565 args.can_be_active = B_TRUE; 9566 9567 libpc_handle_t lpch = { 9568 .lpc_lib_handle = NULL, 9569 .lpc_ops = &libzpool_config_ops, 9570 .lpc_printerr = B_TRUE 9571 }; 9572 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9573 9574 if (error == 0) { 9575 9576 if (nvlist_add_nvlist(cfg, 9577 ZPOOL_LOAD_POLICY, policy) != 0) { 9578 fatal("can't open '%s': %s", 9579 target, strerror(ENOMEM)); 9580 } 9581 9582 if (dump_opt['C'] > 1) { 9583 (void) printf("\nConfiguration for import:\n"); 9584 dump_nvlist(cfg, 8); 9585 } 9586 9587 /* 9588 * Disable the activity check to allow examination of 9589 * active pools. 9590 */ 9591 error = spa_import(target_pool, cfg, NULL, 9592 flags | ZFS_IMPORT_SKIP_MMP); 9593 } 9594 } 9595 9596 if (searchdirs != NULL) { 9597 umem_free(searchdirs, nsearch * sizeof (char *)); 9598 searchdirs = NULL; 9599 } 9600 9601 /* 9602 * We need to make sure to process -O option or call 9603 * dump_path after the -e option has been processed, 9604 * which imports the pool to the namespace if it's 9605 * not in the cachefile. 9606 */ 9607 if (dump_opt['O']) { 9608 if (argc != 2) 9609 usage(); 9610 dump_opt['v'] = verbose + 3; 9611 error = dump_path(argv[0], argv[1], NULL); 9612 goto fini; 9613 } 9614 9615 if (dump_opt['r']) { 9616 target_is_spa = B_FALSE; 9617 if (argc != 3) 9618 usage(); 9619 dump_opt['v'] = verbose; 9620 error = dump_path(argv[0], argv[1], &object); 9621 if (error != 0) 9622 fatal("internal error: %s", strerror(error)); 9623 } 9624 9625 /* 9626 * import_checkpointed_state makes the assumption that the 9627 * target pool that we pass it is already part of the spa 9628 * namespace. Because of that we need to make sure to call 9629 * it always after the -e option has been processed, which 9630 * imports the pool to the namespace if it's not in the 9631 * cachefile. 9632 */ 9633 char *checkpoint_pool = NULL; 9634 char *checkpoint_target = NULL; 9635 if (dump_opt['k']) { 9636 checkpoint_pool = import_checkpointed_state(target, cfg, 9637 &checkpoint_target); 9638 9639 if (checkpoint_target != NULL) 9640 target = checkpoint_target; 9641 } 9642 9643 if (cfg != NULL) { 9644 nvlist_free(cfg); 9645 cfg = NULL; 9646 } 9647 9648 if (target_pool != target) 9649 free(target_pool); 9650 9651 if (error == 0) { 9652 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9653 ASSERT(checkpoint_pool != NULL); 9654 ASSERT(checkpoint_target == NULL); 9655 9656 error = spa_open(checkpoint_pool, &spa, FTAG); 9657 if (error != 0) { 9658 fatal("Tried to open pool \"%s\" but " 9659 "spa_open() failed with error %d\n", 9660 checkpoint_pool, error); 9661 } 9662 9663 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9664 objset_id == 0) { 9665 zdb_set_skip_mmp(target); 9666 error = spa_open_rewind(target, &spa, FTAG, policy, 9667 NULL); 9668 if (error) { 9669 /* 9670 * If we're missing the log device then 9671 * try opening the pool after clearing the 9672 * log state. 9673 */ 9674 mutex_enter(&spa_namespace_lock); 9675 if ((spa = spa_lookup(target)) != NULL && 9676 spa->spa_log_state == SPA_LOG_MISSING) { 9677 spa->spa_log_state = SPA_LOG_CLEAR; 9678 error = 0; 9679 } 9680 mutex_exit(&spa_namespace_lock); 9681 9682 if (!error) { 9683 error = spa_open_rewind(target, &spa, 9684 FTAG, policy, NULL); 9685 } 9686 } 9687 } else if (strpbrk(target, "#") != NULL) { 9688 dsl_pool_t *dp; 9689 error = dsl_pool_hold(target, FTAG, &dp); 9690 if (error != 0) { 9691 fatal("can't dump '%s': %s", target, 9692 strerror(error)); 9693 } 9694 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9695 dsl_pool_rele(dp, FTAG); 9696 if (error != 0) { 9697 fatal("can't dump '%s': %s", target, 9698 strerror(error)); 9699 } 9700 goto fini; 9701 } else { 9702 target_pool = strdup(target); 9703 if (strpbrk(target, "/@") != NULL) 9704 *strpbrk(target_pool, "/@") = '\0'; 9705 9706 zdb_set_skip_mmp(target); 9707 /* 9708 * If -N was supplied, the user has indicated that 9709 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9710 * we first assume that the dataset string is the 9711 * dataset name. If dmu_objset_hold fails with the 9712 * dataset string, and we have an objset_id, retry the 9713 * lookup with the objsetID. 9714 */ 9715 boolean_t retry = B_TRUE; 9716 retry_lookup: 9717 if (dataset_lookup == B_TRUE) { 9718 /* 9719 * Use the supplied id to get the name 9720 * for open_objset. 9721 */ 9722 error = spa_open(target_pool, &spa, FTAG); 9723 if (error == 0) { 9724 error = name_from_objset_id(spa, 9725 objset_id, dsname); 9726 spa_close(spa, FTAG); 9727 if (error == 0) 9728 target = dsname; 9729 } 9730 } 9731 if (error == 0) { 9732 if (objset_id > 0 && retry) { 9733 int err = dmu_objset_hold(target, FTAG, 9734 &os); 9735 if (err) { 9736 dataset_lookup = B_TRUE; 9737 retry = B_FALSE; 9738 goto retry_lookup; 9739 } else { 9740 dmu_objset_rele(os, FTAG); 9741 } 9742 } 9743 error = open_objset(target, FTAG, &os); 9744 } 9745 if (error == 0) 9746 spa = dmu_objset_spa(os); 9747 free(target_pool); 9748 } 9749 } 9750 nvlist_free(policy); 9751 9752 if (error) 9753 fatal("can't open '%s': %s", target, strerror(error)); 9754 9755 /* 9756 * Set the pool failure mode to panic in order to prevent the pool 9757 * from suspending. A suspended I/O will have no way to resume and 9758 * can prevent the zdb(8) command from terminating as expected. 9759 */ 9760 if (spa != NULL) 9761 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9762 9763 argv++; 9764 argc--; 9765 if (dump_opt['r']) { 9766 error = zdb_copy_object(os, object, argv[1]); 9767 } else if (!dump_opt['R']) { 9768 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9769 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9770 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9771 flagbits['z'] = ZOR_FLAG_ZAP; 9772 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9773 9774 if (argc > 0 && dump_opt['d']) { 9775 zopt_object_args = argc; 9776 zopt_object_ranges = calloc(zopt_object_args, 9777 sizeof (zopt_object_range_t)); 9778 for (unsigned i = 0; i < zopt_object_args; i++) { 9779 int err; 9780 const char *msg = NULL; 9781 9782 err = parse_object_range(argv[i], 9783 &zopt_object_ranges[i], &msg); 9784 if (err != 0) 9785 fatal("Bad object or range: '%s': %s\n", 9786 argv[i], msg ?: ""); 9787 } 9788 } else if (argc > 0 && dump_opt['m']) { 9789 zopt_metaslab_args = argc; 9790 zopt_metaslab = calloc(zopt_metaslab_args, 9791 sizeof (uint64_t)); 9792 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9793 errno = 0; 9794 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9795 if (zopt_metaslab[i] == 0 && errno != 0) 9796 fatal("bad number %s: %s", argv[i], 9797 strerror(errno)); 9798 } 9799 } 9800 if (dump_opt['B']) { 9801 dump_backup(target, objset_id, 9802 argc > 0 ? argv[0] : NULL); 9803 } else if (os != NULL) { 9804 dump_objset(os); 9805 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9806 dump_objset(spa->spa_meta_objset); 9807 } else { 9808 dump_zpool(spa); 9809 } 9810 } else { 9811 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9812 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9813 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9814 flagbits['e'] = ZDB_FLAG_BSWAP; 9815 flagbits['g'] = ZDB_FLAG_GBH; 9816 flagbits['i'] = ZDB_FLAG_INDIRECT; 9817 flagbits['r'] = ZDB_FLAG_RAW; 9818 flagbits['v'] = ZDB_FLAG_VERBOSE; 9819 9820 for (int i = 0; i < argc; i++) 9821 zdb_read_block(argv[i], spa); 9822 } 9823 9824 if (dump_opt['k']) { 9825 free(checkpoint_pool); 9826 if (!target_is_spa) 9827 free(checkpoint_target); 9828 } 9829 9830 fini: 9831 if (spa != NULL) 9832 zdb_ddt_cleanup(spa); 9833 9834 if (os != NULL) { 9835 close_objset(os, FTAG); 9836 } else if (spa != NULL) { 9837 spa_close(spa, FTAG); 9838 } 9839 9840 fuid_table_destroy(); 9841 9842 dump_debug_buffer(); 9843 9844 if (kernel_init_done) 9845 kernel_fini(); 9846 9847 return (error); 9848 } 9849