1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, 2024, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, attrp) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010" PRIu64 "x = ", 1135 *(uint64_t *)attrp->za_name); 1136 else 1137 (void) printf("\t\t%s = ", attrp->za_name); 1138 1139 if (attrp->za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attrp->za_num_integers * 1144 attrp->za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attrp->za_name, 1, 1149 attrp->za_integer_length, attrp->za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attrp->za_name, 1153 attrp->za_integer_length, attrp->za_num_integers, 1154 prop); 1155 1156 if (attrp->za_integer_length == 1 && !key64) { 1157 if (strcmp(attrp->za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attrp->za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attrp->za_name, 1164 DMU_POOL_CHECKSUM_SALT) == 0) { 1165 uint8_t *u8 = prop; 1166 1167 for (i = 0; i < attrp->za_num_integers; i++) { 1168 (void) printf("%02x", u8[i]); 1169 } 1170 } else { 1171 (void) printf("%s", (char *)prop); 1172 } 1173 } else { 1174 for (i = 0; i < attrp->za_num_integers; i++) { 1175 switch (attrp->za_integer_length) { 1176 case 1: 1177 (void) printf("%u ", 1178 ((uint8_t *)prop)[i]); 1179 break; 1180 case 2: 1181 (void) printf("%u ", 1182 ((uint16_t *)prop)[i]); 1183 break; 1184 case 4: 1185 (void) printf("%u ", 1186 ((uint32_t *)prop)[i]); 1187 break; 1188 case 8: 1189 (void) printf("%lld ", 1190 (u_longlong_t)((int64_t *)prop)[i]); 1191 break; 1192 } 1193 } 1194 } 1195 (void) printf("\n"); 1196 umem_free(prop, 1197 attrp->za_num_integers * attrp->za_integer_length); 1198 } 1199 zap_cursor_fini(&zc); 1200 zap_attribute_free(attrp); 1201 } 1202 1203 static void 1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1205 { 1206 bpobj_phys_t *bpop = data; 1207 uint64_t i; 1208 char bytes[32], comp[32], uncomp[32]; 1209 1210 /* make sure the output won't get truncated */ 1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1214 1215 if (bpop == NULL) 1216 return; 1217 1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1221 1222 (void) printf("\t\tnum_blkptrs = %llu\n", 1223 (u_longlong_t)bpop->bpo_num_blkptrs); 1224 (void) printf("\t\tbytes = %s\n", bytes); 1225 if (size >= BPOBJ_SIZE_V1) { 1226 (void) printf("\t\tcomp = %s\n", comp); 1227 (void) printf("\t\tuncomp = %s\n", uncomp); 1228 } 1229 if (size >= BPOBJ_SIZE_V2) { 1230 (void) printf("\t\tsubobjs = %llu\n", 1231 (u_longlong_t)bpop->bpo_subobjs); 1232 (void) printf("\t\tnum_subobjs = %llu\n", 1233 (u_longlong_t)bpop->bpo_num_subobjs); 1234 } 1235 if (size >= sizeof (*bpop)) { 1236 (void) printf("\t\tnum_freed = %llu\n", 1237 (u_longlong_t)bpop->bpo_num_freed); 1238 } 1239 1240 if (dump_opt['d'] < 5) 1241 return; 1242 1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1244 char blkbuf[BP_SPRINTF_LEN]; 1245 blkptr_t bp; 1246 1247 int err = dmu_read(os, object, 1248 i * sizeof (bp), sizeof (bp), &bp, 0); 1249 if (err != 0) { 1250 (void) printf("got error %u from dmu_read\n", err); 1251 break; 1252 } 1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1254 BP_GET_FREE(&bp)); 1255 (void) printf("\t%s\n", blkbuf); 1256 } 1257 } 1258 1259 static void 1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1261 { 1262 (void) data, (void) size; 1263 dmu_object_info_t doi; 1264 int64_t i; 1265 1266 VERIFY0(dmu_object_info(os, object, &doi)); 1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1268 1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1270 if (err != 0) { 1271 (void) printf("got error %u from dmu_read\n", err); 1272 kmem_free(subobjs, doi.doi_max_offset); 1273 return; 1274 } 1275 1276 int64_t last_nonzero = -1; 1277 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1278 if (subobjs[i] != 0) 1279 last_nonzero = i; 1280 } 1281 1282 for (i = 0; i <= last_nonzero; i++) { 1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1284 } 1285 kmem_free(subobjs, doi.doi_max_offset); 1286 } 1287 1288 static void 1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1290 { 1291 (void) data, (void) size; 1292 dump_zap_stats(os, object); 1293 /* contents are printed elsewhere, properly decoded */ 1294 } 1295 1296 static void 1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1298 { 1299 (void) data, (void) size; 1300 zap_cursor_t zc; 1301 zap_attribute_t *attrp = zap_attribute_alloc(); 1302 1303 dump_zap_stats(os, object); 1304 (void) printf("\n"); 1305 1306 for (zap_cursor_init(&zc, os, object); 1307 zap_cursor_retrieve(&zc, attrp) == 0; 1308 zap_cursor_advance(&zc)) { 1309 (void) printf("\t\t%s = ", attrp->za_name); 1310 if (attrp->za_num_integers == 0) { 1311 (void) printf("\n"); 1312 continue; 1313 } 1314 (void) printf(" %llx : [%d:%d:%d]\n", 1315 (u_longlong_t)attrp->za_first_integer, 1316 (int)ATTR_LENGTH(attrp->za_first_integer), 1317 (int)ATTR_BSWAP(attrp->za_first_integer), 1318 (int)ATTR_NUM(attrp->za_first_integer)); 1319 } 1320 zap_cursor_fini(&zc); 1321 zap_attribute_free(attrp); 1322 } 1323 1324 static void 1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1326 { 1327 (void) data, (void) size; 1328 zap_cursor_t zc; 1329 zap_attribute_t *attrp = zap_attribute_alloc(); 1330 uint16_t *layout_attrs; 1331 unsigned i; 1332 1333 dump_zap_stats(os, object); 1334 (void) printf("\n"); 1335 1336 for (zap_cursor_init(&zc, os, object); 1337 zap_cursor_retrieve(&zc, attrp) == 0; 1338 zap_cursor_advance(&zc)) { 1339 (void) printf("\t\t%s = [", attrp->za_name); 1340 if (attrp->za_num_integers == 0) { 1341 (void) printf("\n"); 1342 continue; 1343 } 1344 1345 VERIFY(attrp->za_integer_length == 2); 1346 layout_attrs = umem_zalloc(attrp->za_num_integers * 1347 attrp->za_integer_length, UMEM_NOFAIL); 1348 1349 VERIFY(zap_lookup(os, object, attrp->za_name, 1350 attrp->za_integer_length, 1351 attrp->za_num_integers, layout_attrs) == 0); 1352 1353 for (i = 0; i != attrp->za_num_integers; i++) 1354 (void) printf(" %d ", (int)layout_attrs[i]); 1355 (void) printf("]\n"); 1356 umem_free(layout_attrs, 1357 attrp->za_num_integers * attrp->za_integer_length); 1358 } 1359 zap_cursor_fini(&zc); 1360 zap_attribute_free(attrp); 1361 } 1362 1363 static void 1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1365 { 1366 (void) data, (void) size; 1367 zap_cursor_t zc; 1368 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1369 const char *typenames[] = { 1370 /* 0 */ "not specified", 1371 /* 1 */ "FIFO", 1372 /* 2 */ "Character Device", 1373 /* 3 */ "3 (invalid)", 1374 /* 4 */ "Directory", 1375 /* 5 */ "5 (invalid)", 1376 /* 6 */ "Block Device", 1377 /* 7 */ "7 (invalid)", 1378 /* 8 */ "Regular File", 1379 /* 9 */ "9 (invalid)", 1380 /* 10 */ "Symbolic Link", 1381 /* 11 */ "11 (invalid)", 1382 /* 12 */ "Socket", 1383 /* 13 */ "Door", 1384 /* 14 */ "Event Port", 1385 /* 15 */ "15 (invalid)", 1386 }; 1387 1388 dump_zap_stats(os, object); 1389 (void) printf("\n"); 1390 1391 for (zap_cursor_init(&zc, os, object); 1392 zap_cursor_retrieve(&zc, attrp) == 0; 1393 zap_cursor_advance(&zc)) { 1394 (void) printf("\t\t%s = %lld (type: %s)\n", 1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1397 } 1398 zap_cursor_fini(&zc); 1399 zap_attribute_free(attrp); 1400 } 1401 1402 static int 1403 get_dtl_refcount(vdev_t *vd) 1404 { 1405 int refcount = 0; 1406 1407 if (vd->vdev_ops->vdev_op_leaf) { 1408 space_map_t *sm = vd->vdev_dtl_sm; 1409 1410 if (sm != NULL && 1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1412 return (1); 1413 return (0); 1414 } 1415 1416 for (unsigned c = 0; c < vd->vdev_children; c++) 1417 refcount += get_dtl_refcount(vd->vdev_child[c]); 1418 return (refcount); 1419 } 1420 1421 static int 1422 get_metaslab_refcount(vdev_t *vd) 1423 { 1424 int refcount = 0; 1425 1426 if (vd->vdev_top == vd) { 1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1429 1430 if (sm != NULL && 1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1432 refcount++; 1433 } 1434 } 1435 for (unsigned c = 0; c < vd->vdev_children; c++) 1436 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1437 1438 return (refcount); 1439 } 1440 1441 static int 1442 get_obsolete_refcount(vdev_t *vd) 1443 { 1444 uint64_t obsolete_sm_object; 1445 int refcount = 0; 1446 1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1449 dmu_object_info_t doi; 1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1451 obsolete_sm_object, &doi)); 1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1453 refcount++; 1454 } 1455 } else { 1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1457 ASSERT3U(obsolete_sm_object, ==, 0); 1458 } 1459 for (unsigned c = 0; c < vd->vdev_children; c++) { 1460 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1461 } 1462 1463 return (refcount); 1464 } 1465 1466 static int 1467 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1468 { 1469 uint64_t prev_obj = 1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1471 if (prev_obj != 0) { 1472 dmu_object_info_t doi; 1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1475 return (1); 1476 } 1477 } 1478 return (0); 1479 } 1480 1481 static int 1482 get_checkpoint_refcount(vdev_t *vd) 1483 { 1484 int refcount = 0; 1485 1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1487 zap_contains(spa_meta_objset(vd->vdev_spa), 1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1489 refcount++; 1490 1491 for (uint64_t c = 0; c < vd->vdev_children; c++) 1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1493 1494 return (refcount); 1495 } 1496 1497 static int 1498 get_log_spacemap_refcount(spa_t *spa) 1499 { 1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1501 } 1502 1503 static int 1504 verify_spacemap_refcounts(spa_t *spa) 1505 { 1506 uint64_t expected_refcount = 0; 1507 uint64_t actual_refcount; 1508 1509 (void) feature_get_refcount(spa, 1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1511 &expected_refcount); 1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1517 actual_refcount += get_log_spacemap_refcount(spa); 1518 1519 if (expected_refcount != actual_refcount) { 1520 (void) printf("space map refcount mismatch: expected %lld != " 1521 "actual %lld\n", 1522 (longlong_t)expected_refcount, 1523 (longlong_t)actual_refcount); 1524 return (2); 1525 } 1526 return (0); 1527 } 1528 1529 static void 1530 dump_spacemap(objset_t *os, space_map_t *sm) 1531 { 1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1533 "INVALID", "INVALID", "INVALID", "INVALID" }; 1534 1535 if (sm == NULL) 1536 return; 1537 1538 (void) printf("space map object %llu:\n", 1539 (longlong_t)sm->sm_object); 1540 (void) printf(" smp_length = 0x%llx\n", 1541 (longlong_t)sm->sm_phys->smp_length); 1542 (void) printf(" smp_alloc = 0x%llx\n", 1543 (longlong_t)sm->sm_phys->smp_alloc); 1544 1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1546 return; 1547 1548 /* 1549 * Print out the freelist entries in both encoded and decoded form. 1550 */ 1551 uint8_t mapshift = sm->sm_shift; 1552 int64_t alloc = 0; 1553 uint64_t word, entry_id = 0; 1554 for (uint64_t offset = 0; offset < space_map_length(sm); 1555 offset += sizeof (word)) { 1556 1557 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1558 sizeof (word), &word, DMU_READ_PREFETCH)); 1559 1560 if (sm_entry_is_debug(word)) { 1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1563 if (de_txg == 0) { 1564 (void) printf( 1565 "\t [%6llu] PADDING\n", 1566 (u_longlong_t)entry_id); 1567 } else { 1568 (void) printf( 1569 "\t [%6llu] %s: txg %llu pass %llu\n", 1570 (u_longlong_t)entry_id, 1571 ddata[SM_DEBUG_ACTION_DECODE(word)], 1572 (u_longlong_t)de_txg, 1573 (u_longlong_t)de_sync_pass); 1574 } 1575 entry_id++; 1576 continue; 1577 } 1578 1579 uint8_t words; 1580 char entry_type; 1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1582 1583 if (sm_entry_is_single_word(word)) { 1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1585 'A' : 'F'; 1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1587 sm->sm_start; 1588 entry_run = SM_RUN_DECODE(word) << mapshift; 1589 words = 1; 1590 } else { 1591 /* it is a two-word entry so we read another word */ 1592 ASSERT(sm_entry_is_double_word(word)); 1593 1594 uint64_t extra_word; 1595 offset += sizeof (extra_word); 1596 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1597 sizeof (extra_word), &extra_word, 1598 DMU_READ_PREFETCH)); 1599 1600 ASSERT3U(offset, <=, space_map_length(sm)); 1601 1602 entry_run = SM2_RUN_DECODE(word) << mapshift; 1603 entry_vdev = SM2_VDEV_DECODE(word); 1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1605 'A' : 'F'; 1606 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1607 mapshift) + sm->sm_start; 1608 words = 2; 1609 } 1610 1611 (void) printf("\t [%6llu] %c range:" 1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1613 (u_longlong_t)entry_id, 1614 entry_type, (u_longlong_t)entry_off, 1615 (u_longlong_t)(entry_off + entry_run), 1616 (u_longlong_t)entry_run, 1617 (u_longlong_t)entry_vdev, words); 1618 1619 if (entry_type == 'A') 1620 alloc += entry_run; 1621 else 1622 alloc -= entry_run; 1623 entry_id++; 1624 } 1625 if (alloc != space_map_allocated(sm)) { 1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1627 "with space map summary (%lld)\n", 1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1629 } 1630 } 1631 1632 static void 1633 dump_metaslab_stats(metaslab_t *msp) 1634 { 1635 char maxbuf[32]; 1636 range_tree_t *rt = msp->ms_allocatable; 1637 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1638 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1639 1640 /* max sure nicenum has enough space */ 1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1642 1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1644 1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1647 "freepct", free_pct); 1648 (void) printf("\tIn-memory histogram:\n"); 1649 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1650 } 1651 1652 static void 1653 dump_metaslab(metaslab_t *msp) 1654 { 1655 vdev_t *vd = msp->ms_group->mg_vd; 1656 spa_t *spa = vd->vdev_spa; 1657 space_map_t *sm = msp->ms_sm; 1658 char freebuf[32]; 1659 1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1661 sizeof (freebuf)); 1662 1663 (void) printf( 1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1666 (u_longlong_t)space_map_object(sm), freebuf); 1667 1668 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1669 mutex_enter(&msp->ms_lock); 1670 VERIFY0(metaslab_load(msp)); 1671 range_tree_stat_verify(msp->ms_allocatable); 1672 dump_metaslab_stats(msp); 1673 metaslab_unload(msp); 1674 mutex_exit(&msp->ms_lock); 1675 } 1676 1677 if (dump_opt['m'] > 1 && sm != NULL && 1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1679 /* 1680 * The space map histogram represents free space in chunks 1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1682 */ 1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1684 (u_longlong_t)msp->ms_fragmentation); 1685 dump_histogram(sm->sm_phys->smp_histogram, 1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1687 } 1688 1689 if (vd->vdev_ops == &vdev_draid_ops) 1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1691 else 1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1693 1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1695 1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1698 (u_longlong_t)metaslab_unflushed_txg(msp)); 1699 } 1700 } 1701 1702 static void 1703 print_vdev_metaslab_header(vdev_t *vd) 1704 { 1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1706 const char *bias_str = ""; 1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1708 bias_str = VDEV_ALLOC_BIAS_LOG; 1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1712 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1713 } 1714 1715 uint64_t ms_flush_data_obj = 0; 1716 if (vd->vdev_top_zap != 0) { 1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1719 sizeof (uint64_t), 1, &ms_flush_data_obj); 1720 if (error != ENOENT) { 1721 ASSERT0(error); 1722 } 1723 } 1724 1725 (void) printf("\tvdev %10llu %s", 1726 (u_longlong_t)vd->vdev_id, bias_str); 1727 1728 if (ms_flush_data_obj != 0) { 1729 (void) printf(" ms_unflushed_phys object %llu", 1730 (u_longlong_t)ms_flush_data_obj); 1731 } 1732 1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1735 "offset", "spacemap", "free"); 1736 (void) printf("\t%15s %19s %15s %12s\n", 1737 "---------------", "-------------------", 1738 "---------------", "------------"); 1739 } 1740 1741 static void 1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1743 { 1744 vdev_t *rvd = spa->spa_root_vdev; 1745 metaslab_class_t *mc = spa_normal_class(spa); 1746 metaslab_class_t *smc = spa_special_class(spa); 1747 uint64_t fragmentation; 1748 1749 metaslab_class_histogram_verify(mc); 1750 1751 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1752 vdev_t *tvd = rvd->vdev_child[c]; 1753 metaslab_group_t *mg = tvd->vdev_mg; 1754 1755 if (mg == NULL || (mg->mg_class != mc && 1756 (!show_special || mg->mg_class != smc))) 1757 continue; 1758 1759 metaslab_group_histogram_verify(mg); 1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1761 1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1763 "fragmentation", 1764 (u_longlong_t)tvd->vdev_id, 1765 (u_longlong_t)tvd->vdev_ms_count); 1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1767 (void) printf("%3s\n", "-"); 1768 } else { 1769 (void) printf("%3llu%%\n", 1770 (u_longlong_t)mg->mg_fragmentation); 1771 } 1772 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1773 } 1774 1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1776 fragmentation = metaslab_class_fragmentation(mc); 1777 if (fragmentation == ZFS_FRAG_INVALID) 1778 (void) printf("\t%3s\n", "-"); 1779 else 1780 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1781 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1782 } 1783 1784 static void 1785 print_vdev_indirect(vdev_t *vd) 1786 { 1787 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1788 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1789 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1790 1791 if (vim == NULL) { 1792 ASSERT3P(vib, ==, NULL); 1793 return; 1794 } 1795 1796 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1797 vic->vic_mapping_object); 1798 ASSERT3U(vdev_indirect_births_object(vib), ==, 1799 vic->vic_births_object); 1800 1801 (void) printf("indirect births obj %llu:\n", 1802 (longlong_t)vic->vic_births_object); 1803 (void) printf(" vib_count = %llu\n", 1804 (longlong_t)vdev_indirect_births_count(vib)); 1805 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1806 vdev_indirect_birth_entry_phys_t *cur_vibe = 1807 &vib->vib_entries[i]; 1808 (void) printf("\toffset %llx -> txg %llu\n", 1809 (longlong_t)cur_vibe->vibe_offset, 1810 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1811 } 1812 (void) printf("\n"); 1813 1814 (void) printf("indirect mapping obj %llu:\n", 1815 (longlong_t)vic->vic_mapping_object); 1816 (void) printf(" vim_max_offset = 0x%llx\n", 1817 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1818 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1819 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1820 (void) printf(" vim_count = %llu\n", 1821 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1822 1823 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1824 return; 1825 1826 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1827 1828 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1829 vdev_indirect_mapping_entry_phys_t *vimep = 1830 &vim->vim_entries[i]; 1831 (void) printf("\t<%llx:%llx:%llx> -> " 1832 "<%llx:%llx:%llx> (%x obsolete)\n", 1833 (longlong_t)vd->vdev_id, 1834 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1835 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1836 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1837 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1838 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1839 counts[i]); 1840 } 1841 (void) printf("\n"); 1842 1843 uint64_t obsolete_sm_object; 1844 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1845 if (obsolete_sm_object != 0) { 1846 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1847 (void) printf("obsolete space map object %llu:\n", 1848 (u_longlong_t)obsolete_sm_object); 1849 ASSERT(vd->vdev_obsolete_sm != NULL); 1850 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1851 obsolete_sm_object); 1852 dump_spacemap(mos, vd->vdev_obsolete_sm); 1853 (void) printf("\n"); 1854 } 1855 } 1856 1857 static void 1858 dump_metaslabs(spa_t *spa) 1859 { 1860 vdev_t *vd, *rvd = spa->spa_root_vdev; 1861 uint64_t m, c = 0, children = rvd->vdev_children; 1862 1863 (void) printf("\nMetaslabs:\n"); 1864 1865 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1866 c = zopt_metaslab[0]; 1867 1868 if (c >= children) 1869 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1870 1871 if (zopt_metaslab_args > 1) { 1872 vd = rvd->vdev_child[c]; 1873 print_vdev_metaslab_header(vd); 1874 1875 for (m = 1; m < zopt_metaslab_args; m++) { 1876 if (zopt_metaslab[m] < vd->vdev_ms_count) 1877 dump_metaslab( 1878 vd->vdev_ms[zopt_metaslab[m]]); 1879 else 1880 (void) fprintf(stderr, "bad metaslab " 1881 "number %llu\n", 1882 (u_longlong_t)zopt_metaslab[m]); 1883 } 1884 (void) printf("\n"); 1885 return; 1886 } 1887 children = c + 1; 1888 } 1889 for (; c < children; c++) { 1890 vd = rvd->vdev_child[c]; 1891 print_vdev_metaslab_header(vd); 1892 1893 print_vdev_indirect(vd); 1894 1895 for (m = 0; m < vd->vdev_ms_count; m++) 1896 dump_metaslab(vd->vdev_ms[m]); 1897 (void) printf("\n"); 1898 } 1899 } 1900 1901 static void 1902 dump_log_spacemaps(spa_t *spa) 1903 { 1904 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1905 return; 1906 1907 (void) printf("\nLog Space Maps in Pool:\n"); 1908 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1909 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1910 space_map_t *sm = NULL; 1911 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1912 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1913 1914 (void) printf("Log Spacemap object %llu txg %llu\n", 1915 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1916 dump_spacemap(spa->spa_meta_objset, sm); 1917 space_map_close(sm); 1918 } 1919 (void) printf("\n"); 1920 } 1921 1922 static void 1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1924 uint64_t index) 1925 { 1926 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1927 char blkbuf[BP_SPRINTF_LEN]; 1928 blkptr_t blk; 1929 int p; 1930 1931 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1932 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1933 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1934 1935 if (ddt_phys_birth(ddp, v) == 0) 1936 continue; 1937 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1938 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1939 (void) printf("index %llx refcnt %llu phys %d %s\n", 1940 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1941 p, blkbuf); 1942 } 1943 } 1944 1945 static void 1946 dump_dedup_ratio(const ddt_stat_t *dds) 1947 { 1948 double rL, rP, rD, D, dedup, compress, copies; 1949 1950 if (dds->dds_blocks == 0) 1951 return; 1952 1953 rL = (double)dds->dds_ref_lsize; 1954 rP = (double)dds->dds_ref_psize; 1955 rD = (double)dds->dds_ref_dsize; 1956 D = (double)dds->dds_dsize; 1957 1958 dedup = rD / D; 1959 compress = rL / rP; 1960 copies = rD / rP; 1961 1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1963 "dedup * compress / copies = %.2f\n\n", 1964 dedup, compress, copies, dedup * compress / copies); 1965 } 1966 1967 static void 1968 dump_ddt_log(ddt_t *ddt) 1969 { 1970 for (int n = 0; n < 2; n++) { 1971 ddt_log_t *ddl = &ddt->ddt_log[n]; 1972 1973 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1974 if (count == 0) 1975 continue; 1976 1977 printf(DMU_POOL_DDT_LOG ": %" PRIu64 " log entries\n", 1978 zio_checksum_table[ddt->ddt_checksum].ci_name, n, count); 1979 1980 if (dump_opt['D'] < 4) 1981 continue; 1982 1983 ddt_lightweight_entry_t ddlwe; 1984 uint64_t index = 0; 1985 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 1986 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 1987 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 1988 dump_ddt_entry(ddt, &ddlwe, index++); 1989 } 1990 } 1991 } 1992 1993 static void 1994 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1995 { 1996 char name[DDT_NAMELEN]; 1997 ddt_lightweight_entry_t ddlwe; 1998 uint64_t walk = 0; 1999 dmu_object_info_t doi; 2000 uint64_t count, dspace, mspace; 2001 int error; 2002 2003 error = ddt_object_info(ddt, type, class, &doi); 2004 2005 if (error == ENOENT) 2006 return; 2007 ASSERT(error == 0); 2008 2009 error = ddt_object_count(ddt, type, class, &count); 2010 ASSERT(error == 0); 2011 if (count == 0) 2012 return; 2013 2014 dspace = doi.doi_physical_blocks_512 << 9; 2015 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2016 2017 ddt_object_name(ddt, type, class, name); 2018 2019 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2020 name, 2021 (u_longlong_t)count, 2022 (u_longlong_t)dspace, 2023 (u_longlong_t)mspace); 2024 2025 if (dump_opt['D'] < 3) 2026 return; 2027 2028 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2029 2030 if (dump_opt['D'] < 4) 2031 return; 2032 2033 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2034 return; 2035 2036 (void) printf("%s contents:\n\n", name); 2037 2038 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2039 dump_ddt_entry(ddt, &ddlwe, walk); 2040 2041 ASSERT3U(error, ==, ENOENT); 2042 2043 (void) printf("\n"); 2044 } 2045 2046 static void 2047 dump_all_ddts(spa_t *spa) 2048 { 2049 ddt_histogram_t ddh_total = {{{0}}}; 2050 ddt_stat_t dds_total = {0}; 2051 2052 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2053 ddt_t *ddt = spa->spa_ddt[c]; 2054 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2055 continue; 2056 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2057 for (ddt_class_t class = 0; class < DDT_CLASSES; 2058 class++) { 2059 dump_ddt(ddt, type, class); 2060 } 2061 } 2062 dump_ddt_log(ddt); 2063 } 2064 2065 ddt_get_dedup_stats(spa, &dds_total); 2066 2067 if (dds_total.dds_blocks == 0) { 2068 (void) printf("All DDTs are empty\n"); 2069 return; 2070 } 2071 2072 (void) printf("\n"); 2073 2074 if (dump_opt['D'] > 1) { 2075 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2076 ddt_get_dedup_histogram(spa, &ddh_total); 2077 zpool_dump_ddt(&dds_total, &ddh_total); 2078 } 2079 2080 dump_dedup_ratio(&dds_total); 2081 2082 /* 2083 * Dump a histogram of unique class entry age 2084 */ 2085 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2086 ddt_age_histo_t histogram; 2087 2088 (void) printf("DDT walk unique, building age histogram...\n"); 2089 ddt_prune_walk(spa, 0, &histogram); 2090 2091 /* 2092 * print out histogram for unique entry class birth 2093 */ 2094 if (histogram.dah_entries > 0) { 2095 (void) printf("%5s %9s %4s\n", 2096 "age", "blocks", "amnt"); 2097 (void) printf("%5s %9s %4s\n", 2098 "-----", "---------", "----"); 2099 for (int i = 0; i < HIST_BINS; i++) { 2100 (void) printf("%5d %9d %4d%%\n", 1 << i, 2101 (int)histogram.dah_age_histo[i], 2102 (int)((histogram.dah_age_histo[i] * 100) / 2103 histogram.dah_entries)); 2104 } 2105 } 2106 } 2107 } 2108 2109 static void 2110 dump_brt(spa_t *spa) 2111 { 2112 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2113 printf("BRT: unsupported on this pool\n"); 2114 return; 2115 } 2116 2117 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2118 printf("BRT: empty\n"); 2119 return; 2120 } 2121 2122 char count[32], used[32], saved[32]; 2123 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2124 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2125 uint64_t ratio = brt_get_ratio(spa); 2126 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2127 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2128 2129 if (dump_opt['T'] < 2) 2130 return; 2131 2132 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2133 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2134 if (!brtvd->bv_initiated) { 2135 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2136 continue; 2137 } 2138 2139 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2140 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2141 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2142 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2143 vdevid, count, used, saved); 2144 } 2145 2146 if (dump_opt['T'] < 3) 2147 return; 2148 2149 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2150 boolean_t do_histo = dump_opt['T'] == 3; 2151 2152 char dva[64]; 2153 2154 if (!do_histo) 2155 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2156 2157 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2158 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2159 if (!brtvd->bv_initiated) 2160 continue; 2161 2162 uint64_t counts[64] = {}; 2163 2164 zap_cursor_t zc; 2165 zap_attribute_t *za = zap_attribute_alloc(); 2166 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2167 brtvd->bv_mos_entries); 2168 zap_cursor_retrieve(&zc, za) == 0; 2169 zap_cursor_advance(&zc)) { 2170 uint64_t refcnt; 2171 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset, 2172 brtvd->bv_mos_entries, 2173 (const uint64_t *)za->za_name, 1, 2174 za->za_integer_length, za->za_num_integers, 2175 &refcnt)); 2176 2177 if (do_histo) 2178 counts[highbit64(refcnt)]++; 2179 else { 2180 uint64_t offset = 2181 *(const uint64_t *)za->za_name; 2182 2183 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2184 vdevid, (u_longlong_t)offset); 2185 printf("%-16s %-10llu\n", dva, 2186 (u_longlong_t)refcnt); 2187 } 2188 } 2189 zap_cursor_fini(&zc); 2190 zap_attribute_free(za); 2191 2192 if (do_histo) { 2193 printf("\nBRT: vdev %" PRIu64 2194 ": DVAs with 2^n refcnts:\n", vdevid); 2195 dump_histogram(counts, 64, 0); 2196 } 2197 } 2198 } 2199 2200 static void 2201 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2202 { 2203 char *prefix = arg; 2204 2205 (void) printf("%s [%llu,%llu) length %llu\n", 2206 prefix, 2207 (u_longlong_t)start, 2208 (u_longlong_t)(start + size), 2209 (u_longlong_t)(size)); 2210 } 2211 2212 static void 2213 dump_dtl(vdev_t *vd, int indent) 2214 { 2215 spa_t *spa = vd->vdev_spa; 2216 boolean_t required; 2217 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2218 "outage" }; 2219 char prefix[256]; 2220 2221 spa_vdev_state_enter(spa, SCL_NONE); 2222 required = vdev_dtl_required(vd); 2223 (void) spa_vdev_state_exit(spa, NULL, 0); 2224 2225 if (indent == 0) 2226 (void) printf("\nDirty time logs:\n\n"); 2227 2228 (void) printf("\t%*s%s [%s]\n", indent, "", 2229 vd->vdev_path ? vd->vdev_path : 2230 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2231 required ? "DTL-required" : "DTL-expendable"); 2232 2233 for (int t = 0; t < DTL_TYPES; t++) { 2234 range_tree_t *rt = vd->vdev_dtl[t]; 2235 if (range_tree_space(rt) == 0) 2236 continue; 2237 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2238 indent + 2, "", name[t]); 2239 range_tree_walk(rt, dump_dtl_seg, prefix); 2240 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2241 dump_spacemap(spa->spa_meta_objset, 2242 vd->vdev_dtl_sm); 2243 } 2244 2245 for (unsigned c = 0; c < vd->vdev_children; c++) 2246 dump_dtl(vd->vdev_child[c], indent + 4); 2247 } 2248 2249 static void 2250 dump_history(spa_t *spa) 2251 { 2252 nvlist_t **events = NULL; 2253 char *buf; 2254 uint64_t resid, len, off = 0; 2255 uint_t num = 0; 2256 int error; 2257 char tbuf[30]; 2258 2259 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2260 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2261 __func__); 2262 return; 2263 } 2264 2265 do { 2266 len = SPA_OLD_MAXBLOCKSIZE; 2267 2268 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2269 (void) fprintf(stderr, "Unable to read history: " 2270 "error %d\n", error); 2271 free(buf); 2272 return; 2273 } 2274 2275 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2276 break; 2277 2278 off -= resid; 2279 } while (len != 0); 2280 2281 (void) printf("\nHistory:\n"); 2282 for (unsigned i = 0; i < num; i++) { 2283 boolean_t printed = B_FALSE; 2284 2285 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2286 time_t tsec; 2287 struct tm t; 2288 2289 tsec = fnvlist_lookup_uint64(events[i], 2290 ZPOOL_HIST_TIME); 2291 (void) localtime_r(&tsec, &t); 2292 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2293 } else { 2294 tbuf[0] = '\0'; 2295 } 2296 2297 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2298 (void) printf("%s %s\n", tbuf, 2299 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2300 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2301 uint64_t ievent; 2302 2303 ievent = fnvlist_lookup_uint64(events[i], 2304 ZPOOL_HIST_INT_EVENT); 2305 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2306 goto next; 2307 2308 (void) printf(" %s [internal %s txg:%ju] %s\n", 2309 tbuf, 2310 zfs_history_event_names[ievent], 2311 fnvlist_lookup_uint64(events[i], 2312 ZPOOL_HIST_TXG), 2313 fnvlist_lookup_string(events[i], 2314 ZPOOL_HIST_INT_STR)); 2315 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2316 (void) printf("%s [txg:%ju] %s", tbuf, 2317 fnvlist_lookup_uint64(events[i], 2318 ZPOOL_HIST_TXG), 2319 fnvlist_lookup_string(events[i], 2320 ZPOOL_HIST_INT_NAME)); 2321 2322 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2323 (void) printf(" %s (%llu)", 2324 fnvlist_lookup_string(events[i], 2325 ZPOOL_HIST_DSNAME), 2326 (u_longlong_t)fnvlist_lookup_uint64( 2327 events[i], 2328 ZPOOL_HIST_DSID)); 2329 } 2330 2331 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2332 ZPOOL_HIST_INT_STR)); 2333 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2334 (void) printf("%s ioctl %s\n", tbuf, 2335 fnvlist_lookup_string(events[i], 2336 ZPOOL_HIST_IOCTL)); 2337 2338 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2339 (void) printf(" input:\n"); 2340 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2341 ZPOOL_HIST_INPUT_NVL), 8); 2342 } 2343 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2344 (void) printf(" output:\n"); 2345 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2346 ZPOOL_HIST_OUTPUT_NVL), 8); 2347 } 2348 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2349 (void) printf(" errno: %lld\n", 2350 (longlong_t)fnvlist_lookup_int64(events[i], 2351 ZPOOL_HIST_ERRNO)); 2352 } 2353 } else { 2354 goto next; 2355 } 2356 2357 printed = B_TRUE; 2358 next: 2359 if (dump_opt['h'] > 1) { 2360 if (!printed) 2361 (void) printf("unrecognized record:\n"); 2362 dump_nvlist(events[i], 2); 2363 } 2364 } 2365 free(buf); 2366 } 2367 2368 static void 2369 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2370 { 2371 (void) os, (void) object, (void) data, (void) size; 2372 } 2373 2374 static uint64_t 2375 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2376 const zbookmark_phys_t *zb) 2377 { 2378 if (dnp == NULL) { 2379 ASSERT(zb->zb_level < 0); 2380 if (zb->zb_object == 0) 2381 return (zb->zb_blkid); 2382 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2383 } 2384 2385 ASSERT(zb->zb_level >= 0); 2386 2387 return ((zb->zb_blkid << 2388 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2389 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2390 } 2391 2392 static void 2393 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2394 const blkptr_t *bp) 2395 { 2396 static abd_t *pabd = NULL; 2397 void *buf; 2398 zio_t *zio; 2399 zfs_zstdhdr_t zstd_hdr; 2400 int error; 2401 2402 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2403 return; 2404 2405 if (BP_IS_HOLE(bp)) 2406 return; 2407 2408 if (BP_IS_EMBEDDED(bp)) { 2409 buf = malloc(SPA_MAXBLOCKSIZE); 2410 if (buf == NULL) { 2411 (void) fprintf(stderr, "out of memory\n"); 2412 zdb_exit(1); 2413 } 2414 decode_embedded_bp_compressed(bp, buf); 2415 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2416 free(buf); 2417 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2418 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2419 (void) snprintf(blkbuf + strlen(blkbuf), 2420 buflen - strlen(blkbuf), 2421 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2422 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2423 zfs_get_hdrlevel(&zstd_hdr)); 2424 return; 2425 } 2426 2427 if (!pabd) 2428 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2429 zio = zio_root(spa, NULL, NULL, 0); 2430 2431 /* Decrypt but don't decompress so we can read the compression header */ 2432 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2433 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2434 NULL)); 2435 error = zio_wait(zio); 2436 if (error) { 2437 (void) fprintf(stderr, "read failed: %d\n", error); 2438 return; 2439 } 2440 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2441 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2442 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2443 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2444 2445 (void) snprintf(blkbuf + strlen(blkbuf), 2446 buflen - strlen(blkbuf), 2447 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2448 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2449 zfs_get_hdrlevel(&zstd_hdr)); 2450 2451 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2452 } 2453 2454 static void 2455 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2456 boolean_t bp_freed) 2457 { 2458 const dva_t *dva = bp->blk_dva; 2459 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2460 int i; 2461 2462 if (dump_opt['b'] >= 6) { 2463 snprintf_blkptr(blkbuf, buflen, bp); 2464 if (bp_freed) { 2465 (void) snprintf(blkbuf + strlen(blkbuf), 2466 buflen - strlen(blkbuf), " %s", "FREE"); 2467 } 2468 return; 2469 } 2470 2471 if (BP_IS_EMBEDDED(bp)) { 2472 (void) sprintf(blkbuf, 2473 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2474 (int)BPE_GET_ETYPE(bp), 2475 (u_longlong_t)BPE_GET_LSIZE(bp), 2476 (u_longlong_t)BPE_GET_PSIZE(bp), 2477 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2478 return; 2479 } 2480 2481 blkbuf[0] = '\0'; 2482 2483 for (i = 0; i < ndvas; i++) 2484 (void) snprintf(blkbuf + strlen(blkbuf), 2485 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2486 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2487 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2488 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2489 2490 if (BP_IS_HOLE(bp)) { 2491 (void) snprintf(blkbuf + strlen(blkbuf), 2492 buflen - strlen(blkbuf), 2493 "%llxL B=%llu", 2494 (u_longlong_t)BP_GET_LSIZE(bp), 2495 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2496 } else { 2497 (void) snprintf(blkbuf + strlen(blkbuf), 2498 buflen - strlen(blkbuf), 2499 "%llxL/%llxP F=%llu B=%llu/%llu", 2500 (u_longlong_t)BP_GET_LSIZE(bp), 2501 (u_longlong_t)BP_GET_PSIZE(bp), 2502 (u_longlong_t)BP_GET_FILL(bp), 2503 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2504 (u_longlong_t)BP_GET_BIRTH(bp)); 2505 if (bp_freed) 2506 (void) snprintf(blkbuf + strlen(blkbuf), 2507 buflen - strlen(blkbuf), " %s", "FREE"); 2508 (void) snprintf(blkbuf + strlen(blkbuf), 2509 buflen - strlen(blkbuf), 2510 " cksum=%016llx:%016llx:%016llx:%016llx", 2511 (u_longlong_t)bp->blk_cksum.zc_word[0], 2512 (u_longlong_t)bp->blk_cksum.zc_word[1], 2513 (u_longlong_t)bp->blk_cksum.zc_word[2], 2514 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2515 } 2516 } 2517 2518 static void 2519 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2520 const dnode_phys_t *dnp) 2521 { 2522 char blkbuf[BP_SPRINTF_LEN]; 2523 int l; 2524 2525 if (!BP_IS_EMBEDDED(bp)) { 2526 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2527 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2528 } 2529 2530 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2531 2532 ASSERT(zb->zb_level >= 0); 2533 2534 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2535 if (l == zb->zb_level) { 2536 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2537 } else { 2538 (void) printf(" "); 2539 } 2540 } 2541 2542 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2543 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2544 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2545 (void) printf("%s\n", blkbuf); 2546 } 2547 2548 static int 2549 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2550 blkptr_t *bp, const zbookmark_phys_t *zb) 2551 { 2552 int err = 0; 2553 2554 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2555 return (0); 2556 2557 print_indirect(spa, bp, zb, dnp); 2558 2559 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2560 arc_flags_t flags = ARC_FLAG_WAIT; 2561 int i; 2562 blkptr_t *cbp; 2563 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2564 arc_buf_t *buf; 2565 uint64_t fill = 0; 2566 ASSERT(!BP_IS_REDACTED(bp)); 2567 2568 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2569 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2570 if (err) 2571 return (err); 2572 ASSERT(buf->b_data); 2573 2574 /* recursively visit blocks below this */ 2575 cbp = buf->b_data; 2576 for (i = 0; i < epb; i++, cbp++) { 2577 zbookmark_phys_t czb; 2578 2579 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2580 zb->zb_level - 1, 2581 zb->zb_blkid * epb + i); 2582 err = visit_indirect(spa, dnp, cbp, &czb); 2583 if (err) 2584 break; 2585 fill += BP_GET_FILL(cbp); 2586 } 2587 if (!err) 2588 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2589 arc_buf_destroy(buf, &buf); 2590 } 2591 2592 return (err); 2593 } 2594 2595 static void 2596 dump_indirect(dnode_t *dn) 2597 { 2598 dnode_phys_t *dnp = dn->dn_phys; 2599 zbookmark_phys_t czb; 2600 2601 (void) printf("Indirect blocks:\n"); 2602 2603 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2604 dn->dn_object, dnp->dn_nlevels - 1, 0); 2605 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2606 czb.zb_blkid = j; 2607 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2608 &dnp->dn_blkptr[j], &czb); 2609 } 2610 2611 (void) printf("\n"); 2612 } 2613 2614 static void 2615 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2616 { 2617 (void) os, (void) object; 2618 dsl_dir_phys_t *dd = data; 2619 time_t crtime; 2620 char nice[32]; 2621 2622 /* make sure nicenum has enough space */ 2623 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2624 2625 if (dd == NULL) 2626 return; 2627 2628 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2629 2630 crtime = dd->dd_creation_time; 2631 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2632 (void) printf("\t\thead_dataset_obj = %llu\n", 2633 (u_longlong_t)dd->dd_head_dataset_obj); 2634 (void) printf("\t\tparent_dir_obj = %llu\n", 2635 (u_longlong_t)dd->dd_parent_obj); 2636 (void) printf("\t\torigin_obj = %llu\n", 2637 (u_longlong_t)dd->dd_origin_obj); 2638 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2639 (u_longlong_t)dd->dd_child_dir_zapobj); 2640 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2641 (void) printf("\t\tused_bytes = %s\n", nice); 2642 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2643 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2644 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2645 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2646 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2647 (void) printf("\t\tquota = %s\n", nice); 2648 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2649 (void) printf("\t\treserved = %s\n", nice); 2650 (void) printf("\t\tprops_zapobj = %llu\n", 2651 (u_longlong_t)dd->dd_props_zapobj); 2652 (void) printf("\t\tdeleg_zapobj = %llu\n", 2653 (u_longlong_t)dd->dd_deleg_zapobj); 2654 (void) printf("\t\tflags = %llx\n", 2655 (u_longlong_t)dd->dd_flags); 2656 2657 #define DO(which) \ 2658 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2659 sizeof (nice)); \ 2660 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2661 DO(HEAD); 2662 DO(SNAP); 2663 DO(CHILD); 2664 DO(CHILD_RSRV); 2665 DO(REFRSRV); 2666 #undef DO 2667 (void) printf("\t\tclones = %llu\n", 2668 (u_longlong_t)dd->dd_clones); 2669 } 2670 2671 static void 2672 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2673 { 2674 (void) os, (void) object; 2675 dsl_dataset_phys_t *ds = data; 2676 time_t crtime; 2677 char used[32], compressed[32], uncompressed[32], unique[32]; 2678 char blkbuf[BP_SPRINTF_LEN]; 2679 2680 /* make sure nicenum has enough space */ 2681 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2682 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2683 "compressed truncated"); 2684 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2685 "uncompressed truncated"); 2686 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2687 2688 if (ds == NULL) 2689 return; 2690 2691 ASSERT(size == sizeof (*ds)); 2692 crtime = ds->ds_creation_time; 2693 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2694 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2695 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2696 sizeof (uncompressed)); 2697 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2698 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2699 2700 (void) printf("\t\tdir_obj = %llu\n", 2701 (u_longlong_t)ds->ds_dir_obj); 2702 (void) printf("\t\tprev_snap_obj = %llu\n", 2703 (u_longlong_t)ds->ds_prev_snap_obj); 2704 (void) printf("\t\tprev_snap_txg = %llu\n", 2705 (u_longlong_t)ds->ds_prev_snap_txg); 2706 (void) printf("\t\tnext_snap_obj = %llu\n", 2707 (u_longlong_t)ds->ds_next_snap_obj); 2708 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2709 (u_longlong_t)ds->ds_snapnames_zapobj); 2710 (void) printf("\t\tnum_children = %llu\n", 2711 (u_longlong_t)ds->ds_num_children); 2712 (void) printf("\t\tuserrefs_obj = %llu\n", 2713 (u_longlong_t)ds->ds_userrefs_obj); 2714 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2715 (void) printf("\t\tcreation_txg = %llu\n", 2716 (u_longlong_t)ds->ds_creation_txg); 2717 (void) printf("\t\tdeadlist_obj = %llu\n", 2718 (u_longlong_t)ds->ds_deadlist_obj); 2719 (void) printf("\t\tused_bytes = %s\n", used); 2720 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2721 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2722 (void) printf("\t\tunique = %s\n", unique); 2723 (void) printf("\t\tfsid_guid = %llu\n", 2724 (u_longlong_t)ds->ds_fsid_guid); 2725 (void) printf("\t\tguid = %llu\n", 2726 (u_longlong_t)ds->ds_guid); 2727 (void) printf("\t\tflags = %llx\n", 2728 (u_longlong_t)ds->ds_flags); 2729 (void) printf("\t\tnext_clones_obj = %llu\n", 2730 (u_longlong_t)ds->ds_next_clones_obj); 2731 (void) printf("\t\tprops_obj = %llu\n", 2732 (u_longlong_t)ds->ds_props_obj); 2733 (void) printf("\t\tbp = %s\n", blkbuf); 2734 } 2735 2736 static int 2737 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2738 { 2739 (void) arg, (void) tx; 2740 char blkbuf[BP_SPRINTF_LEN]; 2741 2742 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2743 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2744 (void) printf("\t%s\n", blkbuf); 2745 } 2746 return (0); 2747 } 2748 2749 static void 2750 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2751 { 2752 char bytes[32]; 2753 bptree_phys_t *bt; 2754 dmu_buf_t *db; 2755 2756 /* make sure nicenum has enough space */ 2757 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2758 2759 if (dump_opt['d'] < 3) 2760 return; 2761 2762 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2763 bt = db->db_data; 2764 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2765 (void) printf("\n %s: %llu datasets, %s\n", 2766 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2767 dmu_buf_rele(db, FTAG); 2768 2769 if (dump_opt['d'] < 5) 2770 return; 2771 2772 (void) printf("\n"); 2773 2774 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2775 } 2776 2777 static int 2778 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2779 { 2780 (void) arg, (void) tx; 2781 char blkbuf[BP_SPRINTF_LEN]; 2782 2783 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2784 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2785 (void) printf("\t%s\n", blkbuf); 2786 return (0); 2787 } 2788 2789 static void 2790 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2791 { 2792 char bytes[32]; 2793 char comp[32]; 2794 char uncomp[32]; 2795 uint64_t i; 2796 2797 /* make sure nicenum has enough space */ 2798 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2799 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2800 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2801 2802 if (dump_opt['d'] < 3) 2803 return; 2804 2805 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2806 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2807 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2808 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2809 if (bpo->bpo_havefreed) { 2810 (void) printf(" %*s: object %llu, %llu local " 2811 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2812 "%s (%s/%s comp)\n", 2813 indent * 8, name, 2814 (u_longlong_t)bpo->bpo_object, 2815 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2816 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2817 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2818 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2819 bytes, comp, uncomp); 2820 } else { 2821 (void) printf(" %*s: object %llu, %llu local " 2822 "blkptrs, %llu subobjs in object %llu, " 2823 "%s (%s/%s comp)\n", 2824 indent * 8, name, 2825 (u_longlong_t)bpo->bpo_object, 2826 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2827 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2828 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2829 bytes, comp, uncomp); 2830 } 2831 2832 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2833 uint64_t subobj; 2834 bpobj_t subbpo; 2835 int error; 2836 VERIFY0(dmu_read(bpo->bpo_os, 2837 bpo->bpo_phys->bpo_subobjs, 2838 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2839 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2840 if (error != 0) { 2841 (void) printf("ERROR %u while trying to open " 2842 "subobj id %llu\n", 2843 error, (u_longlong_t)subobj); 2844 continue; 2845 } 2846 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2847 bpobj_close(&subbpo); 2848 } 2849 } else { 2850 if (bpo->bpo_havefreed) { 2851 (void) printf(" %*s: object %llu, %llu blkptrs, " 2852 "%llu freed, %s\n", 2853 indent * 8, name, 2854 (u_longlong_t)bpo->bpo_object, 2855 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2856 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2857 bytes); 2858 } else { 2859 (void) printf(" %*s: object %llu, %llu blkptrs, " 2860 "%s\n", 2861 indent * 8, name, 2862 (u_longlong_t)bpo->bpo_object, 2863 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2864 bytes); 2865 } 2866 } 2867 2868 if (dump_opt['d'] < 5) 2869 return; 2870 2871 2872 if (indent == 0) { 2873 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2874 (void) printf("\n"); 2875 } 2876 } 2877 2878 static int 2879 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2880 boolean_t print_list) 2881 { 2882 int err = 0; 2883 zfs_bookmark_phys_t prop; 2884 objset_t *mos = dp->dp_spa->spa_meta_objset; 2885 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2886 2887 if (err != 0) { 2888 return (err); 2889 } 2890 2891 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2892 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2893 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2894 (u_longlong_t)prop.zbm_creation_txg, 2895 (u_longlong_t)prop.zbm_creation_time, 2896 (u_longlong_t)prop.zbm_redaction_obj); 2897 2898 IMPLY(print_list, print_redact); 2899 if (!print_redact || prop.zbm_redaction_obj == 0) 2900 return (0); 2901 2902 redaction_list_t *rl; 2903 VERIFY0(dsl_redaction_list_hold_obj(dp, 2904 prop.zbm_redaction_obj, FTAG, &rl)); 2905 2906 redaction_list_phys_t *rlp = rl->rl_phys; 2907 (void) printf("\tRedacted:\n\t\tProgress: "); 2908 if (rlp->rlp_last_object != UINT64_MAX || 2909 rlp->rlp_last_blkid != UINT64_MAX) { 2910 (void) printf("%llu %llu (incomplete)\n", 2911 (u_longlong_t)rlp->rlp_last_object, 2912 (u_longlong_t)rlp->rlp_last_blkid); 2913 } else { 2914 (void) printf("complete\n"); 2915 } 2916 (void) printf("\t\tSnapshots: ["); 2917 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2918 if (i > 0) 2919 (void) printf(", "); 2920 (void) printf("%0llu", 2921 (u_longlong_t)rlp->rlp_snaps[i]); 2922 } 2923 (void) printf("]\n\t\tLength: %llu\n", 2924 (u_longlong_t)rlp->rlp_num_entries); 2925 2926 if (!print_list) { 2927 dsl_redaction_list_rele(rl, FTAG); 2928 return (0); 2929 } 2930 2931 if (rlp->rlp_num_entries == 0) { 2932 dsl_redaction_list_rele(rl, FTAG); 2933 (void) printf("\t\tRedaction List: []\n\n"); 2934 return (0); 2935 } 2936 2937 redact_block_phys_t *rbp_buf; 2938 uint64_t size; 2939 dmu_object_info_t doi; 2940 2941 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2942 size = doi.doi_max_offset; 2943 rbp_buf = kmem_alloc(size, KM_SLEEP); 2944 2945 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2946 rbp_buf, 0); 2947 if (err != 0) { 2948 dsl_redaction_list_rele(rl, FTAG); 2949 kmem_free(rbp_buf, size); 2950 return (err); 2951 } 2952 2953 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2954 "%llx, blksz: %x, count: %llx}", 2955 (u_longlong_t)rbp_buf[0].rbp_object, 2956 (u_longlong_t)rbp_buf[0].rbp_blkid, 2957 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2958 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2959 2960 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2961 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2962 "blksz: %x, count: %llx}", 2963 (u_longlong_t)rbp_buf[i].rbp_object, 2964 (u_longlong_t)rbp_buf[i].rbp_blkid, 2965 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2966 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2967 } 2968 dsl_redaction_list_rele(rl, FTAG); 2969 kmem_free(rbp_buf, size); 2970 (void) printf("]\n\n"); 2971 return (0); 2972 } 2973 2974 static void 2975 dump_bookmarks(objset_t *os, int verbosity) 2976 { 2977 zap_cursor_t zc; 2978 zap_attribute_t *attrp; 2979 dsl_dataset_t *ds = dmu_objset_ds(os); 2980 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2981 objset_t *mos = os->os_spa->spa_meta_objset; 2982 if (verbosity < 4) 2983 return; 2984 attrp = zap_attribute_alloc(); 2985 dsl_pool_config_enter(dp, FTAG); 2986 2987 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2988 zap_cursor_retrieve(&zc, attrp) == 0; 2989 zap_cursor_advance(&zc)) { 2990 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2991 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2992 int len; 2993 dmu_objset_name(os, osname); 2994 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2995 attrp->za_name); 2996 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2997 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2998 } 2999 zap_cursor_fini(&zc); 3000 dsl_pool_config_exit(dp, FTAG); 3001 zap_attribute_free(attrp); 3002 } 3003 3004 static void 3005 bpobj_count_refd(bpobj_t *bpo) 3006 { 3007 mos_obj_refd(bpo->bpo_object); 3008 3009 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3010 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3011 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3012 uint64_t subobj; 3013 bpobj_t subbpo; 3014 int error; 3015 VERIFY0(dmu_read(bpo->bpo_os, 3016 bpo->bpo_phys->bpo_subobjs, 3017 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3018 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3019 if (error != 0) { 3020 (void) printf("ERROR %u while trying to open " 3021 "subobj id %llu\n", 3022 error, (u_longlong_t)subobj); 3023 continue; 3024 } 3025 bpobj_count_refd(&subbpo); 3026 bpobj_close(&subbpo); 3027 } 3028 } 3029 } 3030 3031 static int 3032 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3033 { 3034 spa_t *spa = arg; 3035 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3036 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3037 bpobj_count_refd(&dle->dle_bpobj); 3038 return (0); 3039 } 3040 3041 static int 3042 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3043 { 3044 ASSERT(arg == NULL); 3045 if (dump_opt['d'] >= 5) { 3046 char buf[128]; 3047 (void) snprintf(buf, sizeof (buf), 3048 "mintxg %llu -> obj %llu", 3049 (longlong_t)dle->dle_mintxg, 3050 (longlong_t)dle->dle_bpobj.bpo_object); 3051 3052 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3053 } else { 3054 (void) printf("mintxg %llu -> obj %llu\n", 3055 (longlong_t)dle->dle_mintxg, 3056 (longlong_t)dle->dle_bpobj.bpo_object); 3057 } 3058 return (0); 3059 } 3060 3061 static void 3062 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3063 { 3064 char bytes[32]; 3065 char comp[32]; 3066 char uncomp[32]; 3067 char entries[32]; 3068 spa_t *spa = dmu_objset_spa(dl->dl_os); 3069 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3070 3071 if (dl->dl_oldfmt) { 3072 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3073 bpobj_count_refd(&dl->dl_bpobj); 3074 } else { 3075 mos_obj_refd(dl->dl_object); 3076 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3077 } 3078 3079 /* make sure nicenum has enough space */ 3080 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3081 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3082 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3083 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3084 3085 if (dump_opt['d'] < 3) 3086 return; 3087 3088 if (dl->dl_oldfmt) { 3089 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3090 return; 3091 } 3092 3093 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3094 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3095 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3096 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3097 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3098 name, bytes, comp, uncomp, entries); 3099 3100 if (dump_opt['d'] < 4) 3101 return; 3102 3103 (void) putchar('\n'); 3104 3105 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3106 } 3107 3108 static int 3109 verify_dd_livelist(objset_t *os) 3110 { 3111 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3112 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3113 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3114 3115 ASSERT(!dmu_objset_is_snapshot(os)); 3116 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3117 return (0); 3118 3119 /* Iterate through the livelist to check for duplicates */ 3120 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3121 NULL); 3122 3123 dsl_pool_config_enter(dp, FTAG); 3124 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3125 &ll_comp, &ll_uncomp); 3126 3127 dsl_dataset_t *origin_ds; 3128 ASSERT(dsl_pool_config_held(dp)); 3129 VERIFY0(dsl_dataset_hold_obj(dp, 3130 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3131 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3132 &used, &comp, &uncomp)); 3133 dsl_dataset_rele(origin_ds, FTAG); 3134 dsl_pool_config_exit(dp, FTAG); 3135 /* 3136 * It's possible that the dataset's uncomp space is larger than the 3137 * livelist's because livelists do not track embedded block pointers 3138 */ 3139 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3140 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3141 (void) printf("Discrepancy in space accounting:\n"); 3142 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3143 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3144 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3145 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3146 nice_used, nice_comp, nice_uncomp); 3147 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3148 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3149 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3150 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3151 nice_used, nice_comp, nice_uncomp); 3152 return (1); 3153 } 3154 return (0); 3155 } 3156 3157 static char *key_material = NULL; 3158 3159 static boolean_t 3160 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3161 { 3162 uint64_t keyformat, salt, iters; 3163 int i; 3164 unsigned char c; 3165 3166 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3167 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3168 1, &keyformat)); 3169 3170 switch (keyformat) { 3171 case ZFS_KEYFORMAT_HEX: 3172 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3173 if (!isxdigit(key_material[i]) || 3174 !isxdigit(key_material[i+1])) 3175 return (B_FALSE); 3176 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3177 return (B_FALSE); 3178 key_out[i / 2] = c; 3179 } 3180 break; 3181 3182 case ZFS_KEYFORMAT_PASSPHRASE: 3183 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3184 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3185 sizeof (uint64_t), 1, &salt)); 3186 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3187 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3188 sizeof (uint64_t), 1, &iters)); 3189 3190 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3191 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3192 WRAPPING_KEY_LEN, key_out) != 1) 3193 return (B_FALSE); 3194 3195 break; 3196 3197 default: 3198 fatal("no support for key format %u\n", 3199 (unsigned int) keyformat); 3200 } 3201 3202 return (B_TRUE); 3203 } 3204 3205 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3206 static boolean_t key_loaded = B_FALSE; 3207 3208 static void 3209 zdb_load_key(objset_t *os) 3210 { 3211 dsl_pool_t *dp; 3212 dsl_dir_t *dd, *rdd; 3213 uint8_t key[WRAPPING_KEY_LEN]; 3214 uint64_t rddobj; 3215 int err; 3216 3217 dp = spa_get_dsl(os->os_spa); 3218 dd = os->os_dsl_dataset->ds_dir; 3219 3220 dsl_pool_config_enter(dp, FTAG); 3221 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3222 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3223 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3224 dsl_dir_name(rdd, encroot); 3225 dsl_dir_rele(rdd, FTAG); 3226 3227 if (!zdb_derive_key(dd, key)) 3228 fatal("couldn't derive encryption key"); 3229 3230 dsl_pool_config_exit(dp, FTAG); 3231 3232 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3233 3234 dsl_crypto_params_t *dcp; 3235 nvlist_t *crypto_args; 3236 3237 crypto_args = fnvlist_alloc(); 3238 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3239 (uint8_t *)key, WRAPPING_KEY_LEN); 3240 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3241 NULL, crypto_args, &dcp)); 3242 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3243 3244 dsl_crypto_params_free(dcp, (err != 0)); 3245 fnvlist_free(crypto_args); 3246 3247 if (err != 0) 3248 fatal( 3249 "couldn't load encryption key for %s: %s", 3250 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3251 "crypto params not supported" : strerror(err)); 3252 3253 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3254 3255 printf("Unlocked encryption root: %s\n", encroot); 3256 key_loaded = B_TRUE; 3257 } 3258 3259 static void 3260 zdb_unload_key(void) 3261 { 3262 if (!key_loaded) 3263 return; 3264 3265 VERIFY0(spa_keystore_unload_wkey(encroot)); 3266 key_loaded = B_FALSE; 3267 } 3268 3269 static avl_tree_t idx_tree; 3270 static avl_tree_t domain_tree; 3271 static boolean_t fuid_table_loaded; 3272 static objset_t *sa_os = NULL; 3273 static sa_attr_type_t *sa_attr_table = NULL; 3274 3275 static int 3276 open_objset(const char *path, const void *tag, objset_t **osp) 3277 { 3278 int err; 3279 uint64_t sa_attrs = 0; 3280 uint64_t version = 0; 3281 3282 VERIFY3P(sa_os, ==, NULL); 3283 3284 /* 3285 * We can't own an objset if it's redacted. Therefore, we do this 3286 * dance: hold the objset, then acquire a long hold on its dataset, then 3287 * release the pool (which is held as part of holding the objset). 3288 */ 3289 3290 if (dump_opt['K']) { 3291 /* decryption requested, try to load keys */ 3292 err = dmu_objset_hold(path, tag, osp); 3293 if (err != 0) { 3294 (void) fprintf(stderr, "failed to hold dataset " 3295 "'%s': %s\n", 3296 path, strerror(err)); 3297 return (err); 3298 } 3299 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3300 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3301 3302 /* succeeds or dies */ 3303 zdb_load_key(*osp); 3304 3305 /* release it all */ 3306 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3307 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3308 } 3309 3310 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3311 3312 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3313 if (err != 0) { 3314 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3315 path, strerror(err)); 3316 return (err); 3317 } 3318 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3319 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3320 3321 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3322 (key_loaded || !(*osp)->os_encrypted)) { 3323 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3324 8, 1, &version); 3325 if (version >= ZPL_VERSION_SA) { 3326 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3327 8, 1, &sa_attrs); 3328 } 3329 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3330 &sa_attr_table); 3331 if (err != 0) { 3332 (void) fprintf(stderr, "sa_setup failed: %s\n", 3333 strerror(err)); 3334 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3335 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3336 ds_hold_flags, tag); 3337 *osp = NULL; 3338 } 3339 } 3340 sa_os = *osp; 3341 3342 return (err); 3343 } 3344 3345 static void 3346 close_objset(objset_t *os, const void *tag) 3347 { 3348 VERIFY3P(os, ==, sa_os); 3349 if (os->os_sa != NULL) 3350 sa_tear_down(os); 3351 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3352 dsl_dataset_rele_flags(dmu_objset_ds(os), 3353 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3354 sa_attr_table = NULL; 3355 sa_os = NULL; 3356 3357 zdb_unload_key(); 3358 } 3359 3360 static void 3361 fuid_table_destroy(void) 3362 { 3363 if (fuid_table_loaded) { 3364 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3365 fuid_table_loaded = B_FALSE; 3366 } 3367 } 3368 3369 /* 3370 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3371 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3372 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3373 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3374 * 3375 * Note that this is not a particularly efficient way to do this, but 3376 * ddt_remove() is the only public method that can do the work we need, and it 3377 * requires the right locks and etc to do the job. This is only ever called 3378 * during zdb shutdown so efficiency is not especially important. 3379 */ 3380 static void 3381 zdb_ddt_cleanup(spa_t *spa) 3382 { 3383 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3384 ddt_t *ddt = spa->spa_ddt[c]; 3385 if (!ddt) 3386 continue; 3387 3388 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3389 ddt_enter(ddt); 3390 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3391 while (dde) { 3392 next = AVL_NEXT(&ddt->ddt_tree, dde); 3393 dde->dde_io = NULL; 3394 ddt_remove(ddt, dde); 3395 dde = next; 3396 } 3397 ddt_exit(ddt); 3398 spa_config_exit(spa, SCL_CONFIG, FTAG); 3399 } 3400 } 3401 3402 static void 3403 zdb_exit(int reason) 3404 { 3405 if (spa != NULL) 3406 zdb_ddt_cleanup(spa); 3407 3408 if (os != NULL) { 3409 close_objset(os, FTAG); 3410 } else if (spa != NULL) { 3411 spa_close(spa, FTAG); 3412 } 3413 3414 fuid_table_destroy(); 3415 3416 if (kernel_init_done) 3417 kernel_fini(); 3418 3419 exit(reason); 3420 } 3421 3422 /* 3423 * print uid or gid information. 3424 * For normal POSIX id just the id is printed in decimal format. 3425 * For CIFS files with FUID the fuid is printed in hex followed by 3426 * the domain-rid string. 3427 */ 3428 static void 3429 print_idstr(uint64_t id, const char *id_type) 3430 { 3431 if (FUID_INDEX(id)) { 3432 const char *domain = 3433 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3434 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3435 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3436 } else { 3437 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3438 } 3439 3440 } 3441 3442 static void 3443 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3444 { 3445 uint32_t uid_idx, gid_idx; 3446 3447 uid_idx = FUID_INDEX(uid); 3448 gid_idx = FUID_INDEX(gid); 3449 3450 /* Load domain table, if not already loaded */ 3451 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3452 uint64_t fuid_obj; 3453 3454 /* first find the fuid object. It lives in the master node */ 3455 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3456 8, 1, &fuid_obj) == 0); 3457 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3458 (void) zfs_fuid_table_load(os, fuid_obj, 3459 &idx_tree, &domain_tree); 3460 fuid_table_loaded = B_TRUE; 3461 } 3462 3463 print_idstr(uid, "uid"); 3464 print_idstr(gid, "gid"); 3465 } 3466 3467 static void 3468 dump_znode_sa_xattr(sa_handle_t *hdl) 3469 { 3470 nvlist_t *sa_xattr; 3471 nvpair_t *elem = NULL; 3472 int sa_xattr_size = 0; 3473 int sa_xattr_entries = 0; 3474 int error; 3475 char *sa_xattr_packed; 3476 3477 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3478 if (error || sa_xattr_size == 0) 3479 return; 3480 3481 sa_xattr_packed = malloc(sa_xattr_size); 3482 if (sa_xattr_packed == NULL) 3483 return; 3484 3485 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3486 sa_xattr_packed, sa_xattr_size); 3487 if (error) { 3488 free(sa_xattr_packed); 3489 return; 3490 } 3491 3492 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3493 if (error) { 3494 free(sa_xattr_packed); 3495 return; 3496 } 3497 3498 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3499 sa_xattr_entries++; 3500 3501 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3502 sa_xattr_size, sa_xattr_entries); 3503 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3504 boolean_t can_print = !dump_opt['P']; 3505 uchar_t *value; 3506 uint_t cnt, idx; 3507 3508 (void) printf("\t\t%s = ", nvpair_name(elem)); 3509 nvpair_value_byte_array(elem, &value, &cnt); 3510 3511 for (idx = 0; idx < cnt; ++idx) { 3512 if (!isprint(value[idx])) { 3513 can_print = B_FALSE; 3514 break; 3515 } 3516 } 3517 3518 for (idx = 0; idx < cnt; ++idx) { 3519 if (can_print) 3520 (void) putchar(value[idx]); 3521 else 3522 (void) printf("\\%3.3o", value[idx]); 3523 } 3524 (void) putchar('\n'); 3525 } 3526 3527 nvlist_free(sa_xattr); 3528 free(sa_xattr_packed); 3529 } 3530 3531 static void 3532 dump_znode_symlink(sa_handle_t *hdl) 3533 { 3534 int sa_symlink_size = 0; 3535 char linktarget[MAXPATHLEN]; 3536 int error; 3537 3538 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3539 if (error || sa_symlink_size == 0) { 3540 return; 3541 } 3542 if (sa_symlink_size >= sizeof (linktarget)) { 3543 (void) printf("symlink size %d is too large\n", 3544 sa_symlink_size); 3545 return; 3546 } 3547 linktarget[sa_symlink_size] = '\0'; 3548 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3549 &linktarget, sa_symlink_size) == 0) 3550 (void) printf("\ttarget %s\n", linktarget); 3551 } 3552 3553 static void 3554 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3555 { 3556 (void) data, (void) size; 3557 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3558 sa_handle_t *hdl; 3559 uint64_t xattr, rdev, gen; 3560 uint64_t uid, gid, mode, fsize, parent, links; 3561 uint64_t pflags; 3562 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3563 time_t z_crtime, z_atime, z_mtime, z_ctime; 3564 sa_bulk_attr_t bulk[12]; 3565 int idx = 0; 3566 int error; 3567 3568 VERIFY3P(os, ==, sa_os); 3569 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3570 (void) printf("Failed to get handle for SA znode\n"); 3571 return; 3572 } 3573 3574 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3575 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3576 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3577 &links, 8); 3578 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3579 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3580 &mode, 8); 3581 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3582 NULL, &parent, 8); 3583 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3584 &fsize, 8); 3585 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3586 acctm, 16); 3587 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3588 modtm, 16); 3589 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3590 crtm, 16); 3591 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3592 chgtm, 16); 3593 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3594 &pflags, 8); 3595 3596 if (sa_bulk_lookup(hdl, bulk, idx)) { 3597 (void) sa_handle_destroy(hdl); 3598 return; 3599 } 3600 3601 z_crtime = (time_t)crtm[0]; 3602 z_atime = (time_t)acctm[0]; 3603 z_mtime = (time_t)modtm[0]; 3604 z_ctime = (time_t)chgtm[0]; 3605 3606 if (dump_opt['d'] > 4) { 3607 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3608 if (error == ESTALE) { 3609 (void) snprintf(path, sizeof (path), "on delete queue"); 3610 } else if (error != 0) { 3611 leaked_objects++; 3612 (void) snprintf(path, sizeof (path), 3613 "path not found, possibly leaked"); 3614 } 3615 (void) printf("\tpath %s\n", path); 3616 } 3617 3618 if (S_ISLNK(mode)) 3619 dump_znode_symlink(hdl); 3620 dump_uidgid(os, uid, gid); 3621 (void) printf("\tatime %s", ctime(&z_atime)); 3622 (void) printf("\tmtime %s", ctime(&z_mtime)); 3623 (void) printf("\tctime %s", ctime(&z_ctime)); 3624 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3625 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3626 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3627 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3628 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3629 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3630 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3631 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3632 uint64_t projid; 3633 3634 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3635 sizeof (uint64_t)) == 0) 3636 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3637 } 3638 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3639 sizeof (uint64_t)) == 0) 3640 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3641 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3642 sizeof (uint64_t)) == 0) 3643 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3644 dump_znode_sa_xattr(hdl); 3645 sa_handle_destroy(hdl); 3646 } 3647 3648 static void 3649 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3650 { 3651 (void) os, (void) object, (void) data, (void) size; 3652 } 3653 3654 static void 3655 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3656 { 3657 (void) os, (void) object, (void) data, (void) size; 3658 } 3659 3660 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3661 dump_none, /* unallocated */ 3662 dump_zap, /* object directory */ 3663 dump_uint64, /* object array */ 3664 dump_none, /* packed nvlist */ 3665 dump_packed_nvlist, /* packed nvlist size */ 3666 dump_none, /* bpobj */ 3667 dump_bpobj, /* bpobj header */ 3668 dump_none, /* SPA space map header */ 3669 dump_none, /* SPA space map */ 3670 dump_none, /* ZIL intent log */ 3671 dump_dnode, /* DMU dnode */ 3672 dump_dmu_objset, /* DMU objset */ 3673 dump_dsl_dir, /* DSL directory */ 3674 dump_zap, /* DSL directory child map */ 3675 dump_zap, /* DSL dataset snap map */ 3676 dump_zap, /* DSL props */ 3677 dump_dsl_dataset, /* DSL dataset */ 3678 dump_znode, /* ZFS znode */ 3679 dump_acl, /* ZFS V0 ACL */ 3680 dump_uint8, /* ZFS plain file */ 3681 dump_zpldir, /* ZFS directory */ 3682 dump_zap, /* ZFS master node */ 3683 dump_zap, /* ZFS delete queue */ 3684 dump_uint8, /* zvol object */ 3685 dump_zap, /* zvol prop */ 3686 dump_uint8, /* other uint8[] */ 3687 dump_uint64, /* other uint64[] */ 3688 dump_zap, /* other ZAP */ 3689 dump_zap, /* persistent error log */ 3690 dump_uint8, /* SPA history */ 3691 dump_history_offsets, /* SPA history offsets */ 3692 dump_zap, /* Pool properties */ 3693 dump_zap, /* DSL permissions */ 3694 dump_acl, /* ZFS ACL */ 3695 dump_uint8, /* ZFS SYSACL */ 3696 dump_none, /* FUID nvlist */ 3697 dump_packed_nvlist, /* FUID nvlist size */ 3698 dump_zap, /* DSL dataset next clones */ 3699 dump_zap, /* DSL scrub queue */ 3700 dump_zap, /* ZFS user/group/project used */ 3701 dump_zap, /* ZFS user/group/project quota */ 3702 dump_zap, /* snapshot refcount tags */ 3703 dump_ddt_zap, /* DDT ZAP object */ 3704 dump_zap, /* DDT statistics */ 3705 dump_znode, /* SA object */ 3706 dump_zap, /* SA Master Node */ 3707 dump_sa_attrs, /* SA attribute registration */ 3708 dump_sa_layouts, /* SA attribute layouts */ 3709 dump_zap, /* DSL scrub translations */ 3710 dump_none, /* fake dedup BP */ 3711 dump_zap, /* deadlist */ 3712 dump_none, /* deadlist hdr */ 3713 dump_zap, /* dsl clones */ 3714 dump_bpobj_subobjs, /* bpobj subobjs */ 3715 dump_unknown, /* Unknown type, must be last */ 3716 }; 3717 3718 static boolean_t 3719 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3720 { 3721 boolean_t match = B_TRUE; 3722 3723 switch (obj_type) { 3724 case DMU_OT_DIRECTORY_CONTENTS: 3725 if (!(flags & ZOR_FLAG_DIRECTORY)) 3726 match = B_FALSE; 3727 break; 3728 case DMU_OT_PLAIN_FILE_CONTENTS: 3729 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3730 match = B_FALSE; 3731 break; 3732 case DMU_OT_SPACE_MAP: 3733 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3734 match = B_FALSE; 3735 break; 3736 default: 3737 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3738 if (!(flags & ZOR_FLAG_ZAP)) 3739 match = B_FALSE; 3740 break; 3741 } 3742 3743 /* 3744 * If all bits except some of the supported flags are 3745 * set, the user combined the all-types flag (A) with 3746 * a negated flag to exclude some types (e.g. A-f to 3747 * show all object types except plain files). 3748 */ 3749 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3750 match = B_FALSE; 3751 3752 break; 3753 } 3754 3755 return (match); 3756 } 3757 3758 static void 3759 dump_object(objset_t *os, uint64_t object, int verbosity, 3760 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3761 { 3762 dmu_buf_t *db = NULL; 3763 dmu_object_info_t doi; 3764 dnode_t *dn; 3765 boolean_t dnode_held = B_FALSE; 3766 void *bonus = NULL; 3767 size_t bsize = 0; 3768 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3769 char bonus_size[32]; 3770 char aux[50]; 3771 int error; 3772 3773 /* make sure nicenum has enough space */ 3774 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3775 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3776 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3777 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3778 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3779 "bonus_size truncated"); 3780 3781 if (*print_header) { 3782 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3783 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3784 "lsize", "%full", "type"); 3785 *print_header = 0; 3786 } 3787 3788 if (object == 0) { 3789 dn = DMU_META_DNODE(os); 3790 dmu_object_info_from_dnode(dn, &doi); 3791 } else { 3792 /* 3793 * Encrypted datasets will have sensitive bonus buffers 3794 * encrypted. Therefore we cannot hold the bonus buffer and 3795 * must hold the dnode itself instead. 3796 */ 3797 error = dmu_object_info(os, object, &doi); 3798 if (error) 3799 fatal("dmu_object_info() failed, errno %u", error); 3800 3801 if (!key_loaded && os->os_encrypted && 3802 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3803 error = dnode_hold(os, object, FTAG, &dn); 3804 if (error) 3805 fatal("dnode_hold() failed, errno %u", error); 3806 dnode_held = B_TRUE; 3807 } else { 3808 error = dmu_bonus_hold(os, object, FTAG, &db); 3809 if (error) 3810 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3811 object, error); 3812 bonus = db->db_data; 3813 bsize = db->db_size; 3814 dn = DB_DNODE((dmu_buf_impl_t *)db); 3815 } 3816 } 3817 3818 /* 3819 * Default to showing all object types if no flags were specified. 3820 */ 3821 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3822 !match_object_type(doi.doi_type, flags)) 3823 goto out; 3824 3825 if (dnode_slots_used) 3826 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3827 3828 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3829 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3830 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3831 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3832 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3833 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3834 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3835 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3836 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3837 3838 aux[0] = '\0'; 3839 3840 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3841 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3842 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3843 } 3844 3845 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3846 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3847 const char *compname = NULL; 3848 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3849 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3850 &compname) == 0) { 3851 (void) snprintf(aux + strlen(aux), 3852 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3853 compname); 3854 } else { 3855 (void) snprintf(aux + strlen(aux), 3856 sizeof (aux) - strlen(aux), 3857 " (Z=inherit=%s-unknown)", 3858 ZDB_COMPRESS_NAME(os->os_compress)); 3859 } 3860 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3861 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3862 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3863 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3864 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3865 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3866 } 3867 3868 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3869 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3870 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3871 3872 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3873 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3874 "", "", "", "", "", "", bonus_size, "bonus", 3875 zdb_ot_name(doi.doi_bonus_type)); 3876 } 3877 3878 if (verbosity >= 4) { 3879 (void) printf("\tdnode flags: %s%s%s%s\n", 3880 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3881 "USED_BYTES " : "", 3882 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3883 "USERUSED_ACCOUNTED " : "", 3884 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3885 "USEROBJUSED_ACCOUNTED " : "", 3886 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3887 "SPILL_BLKPTR" : ""); 3888 (void) printf("\tdnode maxblkid: %llu\n", 3889 (longlong_t)dn->dn_phys->dn_maxblkid); 3890 3891 if (!dnode_held) { 3892 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3893 object, bonus, bsize); 3894 } else { 3895 (void) printf("\t\t(bonus encrypted)\n"); 3896 } 3897 3898 if (key_loaded || 3899 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3900 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3901 NULL, 0); 3902 } else { 3903 (void) printf("\t\t(object encrypted)\n"); 3904 } 3905 3906 *print_header = B_TRUE; 3907 } 3908 3909 if (verbosity >= 5) { 3910 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3911 char blkbuf[BP_SPRINTF_LEN]; 3912 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3913 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3914 (void) printf("\nSpill block: %s\n", blkbuf); 3915 } 3916 dump_indirect(dn); 3917 } 3918 3919 if (verbosity >= 5) { 3920 /* 3921 * Report the list of segments that comprise the object. 3922 */ 3923 uint64_t start = 0; 3924 uint64_t end; 3925 uint64_t blkfill = 1; 3926 int minlvl = 1; 3927 3928 if (dn->dn_type == DMU_OT_DNODE) { 3929 minlvl = 0; 3930 blkfill = DNODES_PER_BLOCK; 3931 } 3932 3933 for (;;) { 3934 char segsize[32]; 3935 /* make sure nicenum has enough space */ 3936 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3937 "segsize truncated"); 3938 error = dnode_next_offset(dn, 3939 0, &start, minlvl, blkfill, 0); 3940 if (error) 3941 break; 3942 end = start; 3943 error = dnode_next_offset(dn, 3944 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3945 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3946 (void) printf("\t\tsegment [%016llx, %016llx)" 3947 " size %5s\n", (u_longlong_t)start, 3948 (u_longlong_t)end, segsize); 3949 if (error) 3950 break; 3951 start = end; 3952 } 3953 } 3954 3955 out: 3956 if (db != NULL) 3957 dmu_buf_rele(db, FTAG); 3958 if (dnode_held) 3959 dnode_rele(dn, FTAG); 3960 } 3961 3962 static void 3963 count_dir_mos_objects(dsl_dir_t *dd) 3964 { 3965 mos_obj_refd(dd->dd_object); 3966 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3967 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3968 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3969 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3970 3971 /* 3972 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3973 * Ignore the references after the first one. 3974 */ 3975 mos_obj_refd_multiple(dd->dd_crypto_obj); 3976 } 3977 3978 static void 3979 count_ds_mos_objects(dsl_dataset_t *ds) 3980 { 3981 mos_obj_refd(ds->ds_object); 3982 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3983 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3984 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3985 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3986 mos_obj_refd(ds->ds_bookmarks_obj); 3987 3988 if (!dsl_dataset_is_snapshot(ds)) { 3989 count_dir_mos_objects(ds->ds_dir); 3990 } 3991 } 3992 3993 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3994 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3995 3996 /* 3997 * Parse a string denoting a range of object IDs of the form 3998 * <start>[:<end>[:flags]], and store the results in zor. 3999 * Return 0 on success. On error, return 1 and update the msg 4000 * pointer to point to a descriptive error message. 4001 */ 4002 static int 4003 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4004 { 4005 uint64_t flags = 0; 4006 char *p, *s, *dup, *flagstr, *tmp = NULL; 4007 size_t len; 4008 int i; 4009 int rc = 0; 4010 4011 if (strchr(range, ':') == NULL) { 4012 zor->zor_obj_start = strtoull(range, &p, 0); 4013 if (*p != '\0') { 4014 *msg = "Invalid characters in object ID"; 4015 rc = 1; 4016 } 4017 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4018 zor->zor_obj_end = zor->zor_obj_start; 4019 return (rc); 4020 } 4021 4022 if (strchr(range, ':') == range) { 4023 *msg = "Invalid leading colon"; 4024 rc = 1; 4025 return (rc); 4026 } 4027 4028 len = strlen(range); 4029 if (range[len - 1] == ':') { 4030 *msg = "Invalid trailing colon"; 4031 rc = 1; 4032 return (rc); 4033 } 4034 4035 dup = strdup(range); 4036 s = strtok_r(dup, ":", &tmp); 4037 zor->zor_obj_start = strtoull(s, &p, 0); 4038 4039 if (*p != '\0') { 4040 *msg = "Invalid characters in start object ID"; 4041 rc = 1; 4042 goto out; 4043 } 4044 4045 s = strtok_r(NULL, ":", &tmp); 4046 zor->zor_obj_end = strtoull(s, &p, 0); 4047 4048 if (*p != '\0') { 4049 *msg = "Invalid characters in end object ID"; 4050 rc = 1; 4051 goto out; 4052 } 4053 4054 if (zor->zor_obj_start > zor->zor_obj_end) { 4055 *msg = "Start object ID may not exceed end object ID"; 4056 rc = 1; 4057 goto out; 4058 } 4059 4060 s = strtok_r(NULL, ":", &tmp); 4061 if (s == NULL) { 4062 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4063 goto out; 4064 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4065 *msg = "Invalid colon-delimited field after flags"; 4066 rc = 1; 4067 goto out; 4068 } 4069 4070 flagstr = s; 4071 for (i = 0; flagstr[i]; i++) { 4072 int bit; 4073 boolean_t negation = (flagstr[i] == '-'); 4074 4075 if (negation) { 4076 i++; 4077 if (flagstr[i] == '\0') { 4078 *msg = "Invalid trailing negation operator"; 4079 rc = 1; 4080 goto out; 4081 } 4082 } 4083 bit = flagbits[(uchar_t)flagstr[i]]; 4084 if (bit == 0) { 4085 *msg = "Invalid flag"; 4086 rc = 1; 4087 goto out; 4088 } 4089 if (negation) 4090 flags &= ~bit; 4091 else 4092 flags |= bit; 4093 } 4094 zor->zor_flags = flags; 4095 4096 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4097 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4098 4099 out: 4100 free(dup); 4101 return (rc); 4102 } 4103 4104 static void 4105 dump_objset(objset_t *os) 4106 { 4107 dmu_objset_stats_t dds = { 0 }; 4108 uint64_t object, object_count; 4109 uint64_t refdbytes, usedobjs, scratch; 4110 char numbuf[32]; 4111 char blkbuf[BP_SPRINTF_LEN + 20]; 4112 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4113 const char *type = "UNKNOWN"; 4114 int verbosity = dump_opt['d']; 4115 boolean_t print_header; 4116 unsigned i; 4117 int error; 4118 uint64_t total_slots_used = 0; 4119 uint64_t max_slot_used = 0; 4120 uint64_t dnode_slots; 4121 uint64_t obj_start; 4122 uint64_t obj_end; 4123 uint64_t flags; 4124 4125 /* make sure nicenum has enough space */ 4126 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4127 4128 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4129 dmu_objset_fast_stat(os, &dds); 4130 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4131 4132 print_header = B_TRUE; 4133 4134 if (dds.dds_type < DMU_OST_NUMTYPES) 4135 type = objset_types[dds.dds_type]; 4136 4137 if (dds.dds_type == DMU_OST_META) { 4138 dds.dds_creation_txg = TXG_INITIAL; 4139 usedobjs = BP_GET_FILL(os->os_rootbp); 4140 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4141 dd_used_bytes; 4142 } else { 4143 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4144 } 4145 4146 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4147 4148 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4149 4150 if (verbosity >= 4) { 4151 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4152 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4153 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4154 } else { 4155 blkbuf[0] = '\0'; 4156 } 4157 4158 dmu_objset_name(os, osname); 4159 4160 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4161 "%s, %llu objects%s%s\n", 4162 osname, type, (u_longlong_t)dmu_objset_id(os), 4163 (u_longlong_t)dds.dds_creation_txg, 4164 numbuf, (u_longlong_t)usedobjs, blkbuf, 4165 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4166 4167 for (i = 0; i < zopt_object_args; i++) { 4168 obj_start = zopt_object_ranges[i].zor_obj_start; 4169 obj_end = zopt_object_ranges[i].zor_obj_end; 4170 flags = zopt_object_ranges[i].zor_flags; 4171 4172 object = obj_start; 4173 if (object == 0 || obj_start == obj_end) 4174 dump_object(os, object, verbosity, &print_header, NULL, 4175 flags); 4176 else 4177 object--; 4178 4179 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4180 object <= obj_end) { 4181 dump_object(os, object, verbosity, &print_header, NULL, 4182 flags); 4183 } 4184 } 4185 4186 if (zopt_object_args > 0) { 4187 (void) printf("\n"); 4188 return; 4189 } 4190 4191 if (dump_opt['i'] != 0 || verbosity >= 2) 4192 dump_intent_log(dmu_objset_zil(os)); 4193 4194 if (dmu_objset_ds(os) != NULL) { 4195 dsl_dataset_t *ds = dmu_objset_ds(os); 4196 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4197 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4198 !dmu_objset_is_snapshot(os)) { 4199 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4200 if (verify_dd_livelist(os) != 0) 4201 fatal("livelist is incorrect"); 4202 } 4203 4204 if (dsl_dataset_remap_deadlist_exists(ds)) { 4205 (void) printf("ds_remap_deadlist:\n"); 4206 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4207 } 4208 count_ds_mos_objects(ds); 4209 } 4210 4211 if (dmu_objset_ds(os) != NULL) 4212 dump_bookmarks(os, verbosity); 4213 4214 if (verbosity < 2) 4215 return; 4216 4217 if (BP_IS_HOLE(os->os_rootbp)) 4218 return; 4219 4220 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4221 object_count = 0; 4222 if (DMU_USERUSED_DNODE(os) != NULL && 4223 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4224 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4225 NULL, 0); 4226 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4227 NULL, 0); 4228 } 4229 4230 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4231 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4232 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4233 &print_header, NULL, 0); 4234 4235 object = 0; 4236 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4237 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4238 0); 4239 object_count++; 4240 total_slots_used += dnode_slots; 4241 max_slot_used = object + dnode_slots - 1; 4242 } 4243 4244 (void) printf("\n"); 4245 4246 (void) printf(" Dnode slots:\n"); 4247 (void) printf("\tTotal used: %10llu\n", 4248 (u_longlong_t)total_slots_used); 4249 (void) printf("\tMax used: %10llu\n", 4250 (u_longlong_t)max_slot_used); 4251 (void) printf("\tPercent empty: %10lf\n", 4252 (double)(max_slot_used - total_slots_used)*100 / 4253 (double)max_slot_used); 4254 (void) printf("\n"); 4255 4256 if (error != ESRCH) { 4257 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4258 abort(); 4259 } 4260 4261 ASSERT3U(object_count, ==, usedobjs); 4262 4263 if (leaked_objects != 0) { 4264 (void) printf("%d potentially leaked objects detected\n", 4265 leaked_objects); 4266 leaked_objects = 0; 4267 } 4268 } 4269 4270 static void 4271 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4272 { 4273 time_t timestamp = ub->ub_timestamp; 4274 4275 (void) printf("%s", header ? header : ""); 4276 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4277 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4278 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4279 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4280 (void) printf("\ttimestamp = %llu UTC = %s", 4281 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4282 4283 char blkbuf[BP_SPRINTF_LEN]; 4284 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4285 (void) printf("\tbp = %s\n", blkbuf); 4286 4287 (void) printf("\tmmp_magic = %016llx\n", 4288 (u_longlong_t)ub->ub_mmp_magic); 4289 if (MMP_VALID(ub)) { 4290 (void) printf("\tmmp_delay = %0llu\n", 4291 (u_longlong_t)ub->ub_mmp_delay); 4292 if (MMP_SEQ_VALID(ub)) 4293 (void) printf("\tmmp_seq = %u\n", 4294 (unsigned int) MMP_SEQ(ub)); 4295 if (MMP_FAIL_INT_VALID(ub)) 4296 (void) printf("\tmmp_fail = %u\n", 4297 (unsigned int) MMP_FAIL_INT(ub)); 4298 if (MMP_INTERVAL_VALID(ub)) 4299 (void) printf("\tmmp_write = %u\n", 4300 (unsigned int) MMP_INTERVAL(ub)); 4301 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4302 (void) printf("\tmmp_valid = %x\n", 4303 (unsigned int) ub->ub_mmp_config & 0xFF); 4304 } 4305 4306 if (dump_opt['u'] >= 4) { 4307 char blkbuf[BP_SPRINTF_LEN]; 4308 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4309 (void) printf("\trootbp = %s\n", blkbuf); 4310 } 4311 (void) printf("\tcheckpoint_txg = %llu\n", 4312 (u_longlong_t)ub->ub_checkpoint_txg); 4313 4314 (void) printf("\traidz_reflow state=%u off=%llu\n", 4315 (int)RRSS_GET_STATE(ub), 4316 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4317 4318 (void) printf("%s", footer ? footer : ""); 4319 } 4320 4321 static void 4322 dump_config(spa_t *spa) 4323 { 4324 dmu_buf_t *db; 4325 size_t nvsize = 0; 4326 int error = 0; 4327 4328 4329 error = dmu_bonus_hold(spa->spa_meta_objset, 4330 spa->spa_config_object, FTAG, &db); 4331 4332 if (error == 0) { 4333 nvsize = *(uint64_t *)db->db_data; 4334 dmu_buf_rele(db, FTAG); 4335 4336 (void) printf("\nMOS Configuration:\n"); 4337 dump_packed_nvlist(spa->spa_meta_objset, 4338 spa->spa_config_object, (void *)&nvsize, 1); 4339 } else { 4340 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4341 (u_longlong_t)spa->spa_config_object, error); 4342 } 4343 } 4344 4345 static void 4346 dump_cachefile(const char *cachefile) 4347 { 4348 int fd; 4349 struct stat64 statbuf; 4350 char *buf; 4351 nvlist_t *config; 4352 4353 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4354 (void) printf("cannot open '%s': %s\n", cachefile, 4355 strerror(errno)); 4356 zdb_exit(1); 4357 } 4358 4359 if (fstat64(fd, &statbuf) != 0) { 4360 (void) printf("failed to stat '%s': %s\n", cachefile, 4361 strerror(errno)); 4362 zdb_exit(1); 4363 } 4364 4365 if ((buf = malloc(statbuf.st_size)) == NULL) { 4366 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4367 (u_longlong_t)statbuf.st_size); 4368 zdb_exit(1); 4369 } 4370 4371 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4372 (void) fprintf(stderr, "failed to read %llu bytes\n", 4373 (u_longlong_t)statbuf.st_size); 4374 zdb_exit(1); 4375 } 4376 4377 (void) close(fd); 4378 4379 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4380 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4381 zdb_exit(1); 4382 } 4383 4384 free(buf); 4385 4386 dump_nvlist(config, 0); 4387 4388 nvlist_free(config); 4389 } 4390 4391 /* 4392 * ZFS label nvlist stats 4393 */ 4394 typedef struct zdb_nvl_stats { 4395 int zns_list_count; 4396 int zns_leaf_count; 4397 size_t zns_leaf_largest; 4398 size_t zns_leaf_total; 4399 nvlist_t *zns_string; 4400 nvlist_t *zns_uint64; 4401 nvlist_t *zns_boolean; 4402 } zdb_nvl_stats_t; 4403 4404 static void 4405 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4406 { 4407 nvlist_t *list, **array; 4408 nvpair_t *nvp = NULL; 4409 const char *name; 4410 uint_t i, items; 4411 4412 stats->zns_list_count++; 4413 4414 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4415 name = nvpair_name(nvp); 4416 4417 switch (nvpair_type(nvp)) { 4418 case DATA_TYPE_STRING: 4419 fnvlist_add_string(stats->zns_string, name, 4420 fnvpair_value_string(nvp)); 4421 break; 4422 case DATA_TYPE_UINT64: 4423 fnvlist_add_uint64(stats->zns_uint64, name, 4424 fnvpair_value_uint64(nvp)); 4425 break; 4426 case DATA_TYPE_BOOLEAN: 4427 fnvlist_add_boolean(stats->zns_boolean, name); 4428 break; 4429 case DATA_TYPE_NVLIST: 4430 if (nvpair_value_nvlist(nvp, &list) == 0) 4431 collect_nvlist_stats(list, stats); 4432 break; 4433 case DATA_TYPE_NVLIST_ARRAY: 4434 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4435 break; 4436 4437 for (i = 0; i < items; i++) { 4438 collect_nvlist_stats(array[i], stats); 4439 4440 /* collect stats on leaf vdev */ 4441 if (strcmp(name, "children") == 0) { 4442 size_t size; 4443 4444 (void) nvlist_size(array[i], &size, 4445 NV_ENCODE_XDR); 4446 stats->zns_leaf_total += size; 4447 if (size > stats->zns_leaf_largest) 4448 stats->zns_leaf_largest = size; 4449 stats->zns_leaf_count++; 4450 } 4451 } 4452 break; 4453 default: 4454 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4455 } 4456 } 4457 } 4458 4459 static void 4460 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4461 { 4462 zdb_nvl_stats_t stats = { 0 }; 4463 size_t size, sum = 0, total; 4464 size_t noise; 4465 4466 /* requires nvlist with non-unique names for stat collection */ 4467 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4468 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4469 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4470 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4471 4472 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4473 4474 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4475 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4476 (int)total, (int)(cap - total), 100.0 * total / cap); 4477 4478 collect_nvlist_stats(nvl, &stats); 4479 4480 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4481 size -= noise; 4482 sum += size; 4483 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4484 (int)fnvlist_num_pairs(stats.zns_uint64), 4485 (int)size, 100.0 * size / total); 4486 4487 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4488 size -= noise; 4489 sum += size; 4490 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4491 (int)fnvlist_num_pairs(stats.zns_string), 4492 (int)size, 100.0 * size / total); 4493 4494 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4495 size -= noise; 4496 sum += size; 4497 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4498 (int)fnvlist_num_pairs(stats.zns_boolean), 4499 (int)size, 100.0 * size / total); 4500 4501 size = total - sum; /* treat remainder as nvlist overhead */ 4502 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4503 stats.zns_list_count, (int)size, 100.0 * size / total); 4504 4505 if (stats.zns_leaf_count > 0) { 4506 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4507 4508 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4509 stats.zns_leaf_count, (int)average); 4510 (void) printf("%24d bytes largest\n", 4511 (int)stats.zns_leaf_largest); 4512 4513 if (dump_opt['l'] >= 3 && average > 0) 4514 (void) printf(" space for %d additional leaf vdevs\n", 4515 (int)((cap - total) / average)); 4516 } 4517 (void) printf("\n"); 4518 4519 nvlist_free(stats.zns_string); 4520 nvlist_free(stats.zns_uint64); 4521 nvlist_free(stats.zns_boolean); 4522 } 4523 4524 typedef struct cksum_record { 4525 zio_cksum_t cksum; 4526 boolean_t labels[VDEV_LABELS]; 4527 avl_node_t link; 4528 } cksum_record_t; 4529 4530 static int 4531 cksum_record_compare(const void *x1, const void *x2) 4532 { 4533 const cksum_record_t *l = (cksum_record_t *)x1; 4534 const cksum_record_t *r = (cksum_record_t *)x2; 4535 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4536 int difference = 0; 4537 4538 for (int i = 0; i < arraysize; i++) { 4539 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4540 if (difference) 4541 break; 4542 } 4543 4544 return (difference); 4545 } 4546 4547 static cksum_record_t * 4548 cksum_record_alloc(zio_cksum_t *cksum, int l) 4549 { 4550 cksum_record_t *rec; 4551 4552 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4553 rec->cksum = *cksum; 4554 rec->labels[l] = B_TRUE; 4555 4556 return (rec); 4557 } 4558 4559 static cksum_record_t * 4560 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4561 { 4562 cksum_record_t lookup = { .cksum = *cksum }; 4563 avl_index_t where; 4564 4565 return (avl_find(tree, &lookup, &where)); 4566 } 4567 4568 static cksum_record_t * 4569 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4570 { 4571 cksum_record_t *rec; 4572 4573 rec = cksum_record_lookup(tree, cksum); 4574 if (rec) { 4575 rec->labels[l] = B_TRUE; 4576 } else { 4577 rec = cksum_record_alloc(cksum, l); 4578 avl_add(tree, rec); 4579 } 4580 4581 return (rec); 4582 } 4583 4584 static int 4585 first_label(cksum_record_t *rec) 4586 { 4587 for (int i = 0; i < VDEV_LABELS; i++) 4588 if (rec->labels[i]) 4589 return (i); 4590 4591 return (-1); 4592 } 4593 4594 static void 4595 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4596 { 4597 fputs(prefix, stdout); 4598 for (int i = 0; i < VDEV_LABELS; i++) 4599 if (rec->labels[i] == B_TRUE) 4600 printf("%d ", i); 4601 putchar('\n'); 4602 } 4603 4604 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4605 4606 typedef struct zdb_label { 4607 vdev_label_t label; 4608 uint64_t label_offset; 4609 nvlist_t *config_nv; 4610 cksum_record_t *config; 4611 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4612 boolean_t header_printed; 4613 boolean_t read_failed; 4614 boolean_t cksum_valid; 4615 } zdb_label_t; 4616 4617 static void 4618 print_label_header(zdb_label_t *label, int l) 4619 { 4620 4621 if (dump_opt['q']) 4622 return; 4623 4624 if (label->header_printed == B_TRUE) 4625 return; 4626 4627 (void) printf("------------------------------------\n"); 4628 (void) printf("LABEL %d %s\n", l, 4629 label->cksum_valid ? "" : "(Bad label cksum)"); 4630 (void) printf("------------------------------------\n"); 4631 4632 label->header_printed = B_TRUE; 4633 } 4634 4635 static void 4636 print_l2arc_header(void) 4637 { 4638 (void) printf("------------------------------------\n"); 4639 (void) printf("L2ARC device header\n"); 4640 (void) printf("------------------------------------\n"); 4641 } 4642 4643 static void 4644 print_l2arc_log_blocks(void) 4645 { 4646 (void) printf("------------------------------------\n"); 4647 (void) printf("L2ARC device log blocks\n"); 4648 (void) printf("------------------------------------\n"); 4649 } 4650 4651 static void 4652 dump_l2arc_log_entries(uint64_t log_entries, 4653 l2arc_log_ent_phys_t *le, uint64_t i) 4654 { 4655 for (int j = 0; j < log_entries; j++) { 4656 dva_t dva = le[j].le_dva; 4657 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4658 "vdev: %llu, offset: %llu\n", 4659 (u_longlong_t)i, j + 1, 4660 (u_longlong_t)DVA_GET_ASIZE(&dva), 4661 (u_longlong_t)DVA_GET_VDEV(&dva), 4662 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4663 (void) printf("|\t\t\t\tbirth: %llu\n", 4664 (u_longlong_t)le[j].le_birth); 4665 (void) printf("|\t\t\t\tlsize: %llu\n", 4666 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4667 (void) printf("|\t\t\t\tpsize: %llu\n", 4668 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4669 (void) printf("|\t\t\t\tcompr: %llu\n", 4670 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4671 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4672 (u_longlong_t)(&le[j])->le_complevel); 4673 (void) printf("|\t\t\t\ttype: %llu\n", 4674 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4675 (void) printf("|\t\t\t\tprotected: %llu\n", 4676 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4677 (void) printf("|\t\t\t\tprefetch: %llu\n", 4678 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4679 (void) printf("|\t\t\t\taddress: %llu\n", 4680 (u_longlong_t)le[j].le_daddr); 4681 (void) printf("|\t\t\t\tARC state: %llu\n", 4682 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4683 (void) printf("|\n"); 4684 } 4685 (void) printf("\n"); 4686 } 4687 4688 static void 4689 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4690 { 4691 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4692 (void) printf("|\t\tpayload_asize: %llu\n", 4693 (u_longlong_t)lbps->lbp_payload_asize); 4694 (void) printf("|\t\tpayload_start: %llu\n", 4695 (u_longlong_t)lbps->lbp_payload_start); 4696 (void) printf("|\t\tlsize: %llu\n", 4697 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4698 (void) printf("|\t\tasize: %llu\n", 4699 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4700 (void) printf("|\t\tcompralgo: %llu\n", 4701 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4702 (void) printf("|\t\tcksumalgo: %llu\n", 4703 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4704 (void) printf("|\n\n"); 4705 } 4706 4707 static void 4708 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4709 l2arc_dev_hdr_phys_t *rebuild) 4710 { 4711 l2arc_log_blk_phys_t this_lb; 4712 uint64_t asize; 4713 l2arc_log_blkptr_t lbps[2]; 4714 zio_cksum_t cksum; 4715 int failed = 0; 4716 l2arc_dev_t dev; 4717 4718 if (!dump_opt['q']) 4719 print_l2arc_log_blocks(); 4720 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4721 4722 dev.l2ad_evict = l2dhdr->dh_evict; 4723 dev.l2ad_start = l2dhdr->dh_start; 4724 dev.l2ad_end = l2dhdr->dh_end; 4725 4726 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4727 /* no log blocks to read */ 4728 if (!dump_opt['q']) { 4729 (void) printf("No log blocks to read\n"); 4730 (void) printf("\n"); 4731 } 4732 return; 4733 } else { 4734 dev.l2ad_hand = lbps[0].lbp_daddr + 4735 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4736 } 4737 4738 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4739 4740 for (;;) { 4741 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4742 break; 4743 4744 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4745 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4746 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4747 if (!dump_opt['q']) { 4748 (void) printf("Error while reading next log " 4749 "block\n\n"); 4750 } 4751 break; 4752 } 4753 4754 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4755 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4756 failed++; 4757 if (!dump_opt['q']) { 4758 (void) printf("Invalid cksum\n"); 4759 dump_l2arc_log_blkptr(&lbps[0]); 4760 } 4761 break; 4762 } 4763 4764 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4765 case ZIO_COMPRESS_OFF: 4766 break; 4767 default: { 4768 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4769 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4770 abd_t dabd; 4771 abd_get_from_buf_struct(&dabd, &this_lb, 4772 sizeof (this_lb)); 4773 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4774 (&lbps[0])->lbp_prop), abd, &dabd, 4775 asize, sizeof (this_lb), NULL); 4776 abd_free(&dabd); 4777 abd_free(abd); 4778 if (err != 0) { 4779 (void) printf("L2ARC block decompression " 4780 "failed\n"); 4781 goto out; 4782 } 4783 break; 4784 } 4785 } 4786 4787 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4788 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4789 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4790 if (!dump_opt['q']) 4791 (void) printf("Invalid log block magic\n\n"); 4792 break; 4793 } 4794 4795 rebuild->dh_lb_count++; 4796 rebuild->dh_lb_asize += asize; 4797 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4798 (void) printf("lb[%4llu]\tmagic: %llu\n", 4799 (u_longlong_t)rebuild->dh_lb_count, 4800 (u_longlong_t)this_lb.lb_magic); 4801 dump_l2arc_log_blkptr(&lbps[0]); 4802 } 4803 4804 if (dump_opt['l'] > 2 && !dump_opt['q']) 4805 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4806 this_lb.lb_entries, 4807 rebuild->dh_lb_count); 4808 4809 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4810 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4811 !dev.l2ad_first) 4812 break; 4813 4814 lbps[0] = lbps[1]; 4815 lbps[1] = this_lb.lb_prev_lbp; 4816 } 4817 out: 4818 if (!dump_opt['q']) { 4819 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4820 (u_longlong_t)rebuild->dh_lb_count); 4821 (void) printf("\t\t %d with invalid cksum\n", failed); 4822 (void) printf("log_blk_asize:\t %llu\n\n", 4823 (u_longlong_t)rebuild->dh_lb_asize); 4824 } 4825 } 4826 4827 static int 4828 dump_l2arc_header(int fd) 4829 { 4830 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4831 int error = B_FALSE; 4832 4833 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4834 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4835 error = B_TRUE; 4836 } else { 4837 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4838 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4839 4840 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4841 error = B_TRUE; 4842 } 4843 4844 if (error) { 4845 (void) printf("L2ARC device header not found\n\n"); 4846 /* Do not return an error here for backward compatibility */ 4847 return (0); 4848 } else if (!dump_opt['q']) { 4849 print_l2arc_header(); 4850 4851 (void) printf(" magic: %llu\n", 4852 (u_longlong_t)l2dhdr.dh_magic); 4853 (void) printf(" version: %llu\n", 4854 (u_longlong_t)l2dhdr.dh_version); 4855 (void) printf(" pool_guid: %llu\n", 4856 (u_longlong_t)l2dhdr.dh_spa_guid); 4857 (void) printf(" flags: %llu\n", 4858 (u_longlong_t)l2dhdr.dh_flags); 4859 (void) printf(" start_lbps[0]: %llu\n", 4860 (u_longlong_t) 4861 l2dhdr.dh_start_lbps[0].lbp_daddr); 4862 (void) printf(" start_lbps[1]: %llu\n", 4863 (u_longlong_t) 4864 l2dhdr.dh_start_lbps[1].lbp_daddr); 4865 (void) printf(" log_blk_ent: %llu\n", 4866 (u_longlong_t)l2dhdr.dh_log_entries); 4867 (void) printf(" start: %llu\n", 4868 (u_longlong_t)l2dhdr.dh_start); 4869 (void) printf(" end: %llu\n", 4870 (u_longlong_t)l2dhdr.dh_end); 4871 (void) printf(" evict: %llu\n", 4872 (u_longlong_t)l2dhdr.dh_evict); 4873 (void) printf(" lb_asize_refcount: %llu\n", 4874 (u_longlong_t)l2dhdr.dh_lb_asize); 4875 (void) printf(" lb_count_refcount: %llu\n", 4876 (u_longlong_t)l2dhdr.dh_lb_count); 4877 (void) printf(" trim_action_time: %llu\n", 4878 (u_longlong_t)l2dhdr.dh_trim_action_time); 4879 (void) printf(" trim_state: %llu\n\n", 4880 (u_longlong_t)l2dhdr.dh_trim_state); 4881 } 4882 4883 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4884 /* 4885 * The total aligned size of log blocks and the number of log blocks 4886 * reported in the header of the device may be less than what zdb 4887 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4888 * This happens because dump_l2arc_log_blocks() lacks the memory 4889 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4890 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4891 * and dh_lb_count will be lower to begin with than what exists on the 4892 * device. This is normal and zdb should not exit with an error. The 4893 * opposite case should never happen though, the values reported in the 4894 * header should never be higher than what dump_l2arc_log_blocks() and 4895 * l2arc_rebuild() report. If this happens there is a leak in the 4896 * accounting of log blocks. 4897 */ 4898 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4899 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4900 return (1); 4901 4902 return (0); 4903 } 4904 4905 static void 4906 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4907 { 4908 if (dump_opt['q']) 4909 return; 4910 4911 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4912 return; 4913 4914 print_label_header(label, l); 4915 dump_nvlist(label->config_nv, 4); 4916 print_label_numbers(" labels = ", label->config); 4917 4918 if (dump_opt['l'] >= 2) 4919 dump_nvlist_stats(label->config_nv, buflen); 4920 } 4921 4922 #define ZDB_MAX_UB_HEADER_SIZE 32 4923 4924 static void 4925 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4926 { 4927 4928 vdev_t vd; 4929 char header[ZDB_MAX_UB_HEADER_SIZE]; 4930 4931 vd.vdev_ashift = ashift; 4932 vd.vdev_top = &vd; 4933 4934 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4935 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4936 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4937 cksum_record_t *rec = label->uberblocks[i]; 4938 4939 if (rec == NULL) { 4940 if (dump_opt['u'] >= 2) { 4941 print_label_header(label, label_num); 4942 (void) printf(" Uberblock[%d] invalid\n", i); 4943 } 4944 continue; 4945 } 4946 4947 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4948 continue; 4949 4950 if ((dump_opt['u'] < 4) && 4951 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4952 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4953 continue; 4954 4955 print_label_header(label, label_num); 4956 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4957 " Uberblock[%d]\n", i); 4958 dump_uberblock(ub, header, ""); 4959 print_label_numbers(" labels = ", rec); 4960 } 4961 } 4962 4963 static char curpath[PATH_MAX]; 4964 4965 /* 4966 * Iterate through the path components, recursively passing 4967 * current one's obj and remaining path until we find the obj 4968 * for the last one. 4969 */ 4970 static int 4971 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4972 { 4973 int err; 4974 boolean_t header = B_TRUE; 4975 uint64_t child_obj; 4976 char *s; 4977 dmu_buf_t *db; 4978 dmu_object_info_t doi; 4979 4980 if ((s = strchr(name, '/')) != NULL) 4981 *s = '\0'; 4982 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4983 4984 (void) strlcat(curpath, name, sizeof (curpath)); 4985 4986 if (err != 0) { 4987 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4988 curpath, strerror(err)); 4989 return (err); 4990 } 4991 4992 child_obj = ZFS_DIRENT_OBJ(child_obj); 4993 err = sa_buf_hold(os, child_obj, FTAG, &db); 4994 if (err != 0) { 4995 (void) fprintf(stderr, 4996 "failed to get SA dbuf for obj %llu: %s\n", 4997 (u_longlong_t)child_obj, strerror(err)); 4998 return (EINVAL); 4999 } 5000 dmu_object_info_from_db(db, &doi); 5001 sa_buf_rele(db, FTAG); 5002 5003 if (doi.doi_bonus_type != DMU_OT_SA && 5004 doi.doi_bonus_type != DMU_OT_ZNODE) { 5005 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5006 doi.doi_bonus_type, (u_longlong_t)child_obj); 5007 return (EINVAL); 5008 } 5009 5010 if (dump_opt['v'] > 6) { 5011 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5012 (u_longlong_t)child_obj, curpath, doi.doi_type, 5013 doi.doi_bonus_type); 5014 } 5015 5016 (void) strlcat(curpath, "/", sizeof (curpath)); 5017 5018 switch (doi.doi_type) { 5019 case DMU_OT_DIRECTORY_CONTENTS: 5020 if (s != NULL && *(s + 1) != '\0') 5021 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5022 zfs_fallthrough; 5023 case DMU_OT_PLAIN_FILE_CONTENTS: 5024 if (retobj != NULL) { 5025 *retobj = child_obj; 5026 } else { 5027 dump_object(os, child_obj, dump_opt['v'], &header, 5028 NULL, 0); 5029 } 5030 return (0); 5031 default: 5032 (void) fprintf(stderr, "object %llu has non-file/directory " 5033 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5034 break; 5035 } 5036 5037 return (EINVAL); 5038 } 5039 5040 /* 5041 * Dump the blocks for the object specified by path inside the dataset. 5042 */ 5043 static int 5044 dump_path(char *ds, char *path, uint64_t *retobj) 5045 { 5046 int err; 5047 objset_t *os; 5048 uint64_t root_obj; 5049 5050 err = open_objset(ds, FTAG, &os); 5051 if (err != 0) 5052 return (err); 5053 5054 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5055 if (err != 0) { 5056 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5057 strerror(err)); 5058 close_objset(os, FTAG); 5059 return (EINVAL); 5060 } 5061 5062 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5063 5064 err = dump_path_impl(os, root_obj, path, retobj); 5065 5066 close_objset(os, FTAG); 5067 return (err); 5068 } 5069 5070 static int 5071 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5072 { 5073 const char *p = (const char *)buf; 5074 ssize_t nwritten; 5075 5076 (void) os; 5077 (void) arg; 5078 5079 /* Write the data out, handling short writes and signals. */ 5080 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5081 if (nwritten < 0) { 5082 if (errno == EINTR) 5083 continue; 5084 return (errno); 5085 } 5086 p += nwritten; 5087 len -= nwritten; 5088 } 5089 5090 return (0); 5091 } 5092 5093 static void 5094 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5095 { 5096 boolean_t embed = B_FALSE; 5097 boolean_t large_block = B_FALSE; 5098 boolean_t compress = B_FALSE; 5099 boolean_t raw = B_FALSE; 5100 5101 const char *c; 5102 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5103 switch (*c) { 5104 case 'e': 5105 embed = B_TRUE; 5106 break; 5107 case 'L': 5108 large_block = B_TRUE; 5109 break; 5110 case 'c': 5111 compress = B_TRUE; 5112 break; 5113 case 'w': 5114 raw = B_TRUE; 5115 break; 5116 default: 5117 fprintf(stderr, "dump_backup: invalid flag " 5118 "'%c'\n", *c); 5119 return; 5120 } 5121 } 5122 5123 if (isatty(STDOUT_FILENO)) { 5124 fprintf(stderr, "dump_backup: stream cannot be written " 5125 "to a terminal\n"); 5126 return; 5127 } 5128 5129 offset_t off = 0; 5130 dmu_send_outparams_t out = { 5131 .dso_outfunc = dump_backup_bytes, 5132 .dso_dryrun = B_FALSE, 5133 }; 5134 5135 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5136 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5137 &off, &out); 5138 if (err != 0) { 5139 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5140 strerror(err)); 5141 return; 5142 } 5143 } 5144 5145 static int 5146 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5147 { 5148 int err = 0; 5149 uint64_t size, readsize, oursize, offset; 5150 ssize_t writesize; 5151 sa_handle_t *hdl; 5152 5153 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5154 destfile); 5155 5156 VERIFY3P(os, ==, sa_os); 5157 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5158 (void) printf("Failed to get handle for SA znode\n"); 5159 return (err); 5160 } 5161 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5162 (void) sa_handle_destroy(hdl); 5163 return (err); 5164 } 5165 (void) sa_handle_destroy(hdl); 5166 5167 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5168 size); 5169 if (size == 0) { 5170 return (EINVAL); 5171 } 5172 5173 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5174 if (fd == -1) 5175 return (errno); 5176 /* 5177 * We cap the size at 1 mebibyte here to prevent 5178 * allocation failures and nigh-infinite printing if the 5179 * object is extremely large. 5180 */ 5181 oursize = MIN(size, 1 << 20); 5182 offset = 0; 5183 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5184 if (buf == NULL) { 5185 (void) close(fd); 5186 return (ENOMEM); 5187 } 5188 5189 while (offset < size) { 5190 readsize = MIN(size - offset, 1 << 20); 5191 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5192 if (err != 0) { 5193 (void) printf("got error %u from dmu_read\n", err); 5194 kmem_free(buf, oursize); 5195 (void) close(fd); 5196 return (err); 5197 } 5198 if (dump_opt['v'] > 3) { 5199 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5200 " error=%d\n", offset, readsize, err); 5201 } 5202 5203 writesize = write(fd, buf, readsize); 5204 if (writesize < 0) { 5205 err = errno; 5206 break; 5207 } else if (writesize != readsize) { 5208 /* Incomplete write */ 5209 (void) fprintf(stderr, "Short write, only wrote %llu of" 5210 " %" PRIu64 " bytes, exiting...\n", 5211 (u_longlong_t)writesize, readsize); 5212 break; 5213 } 5214 5215 offset += readsize; 5216 } 5217 5218 (void) close(fd); 5219 5220 if (buf != NULL) 5221 kmem_free(buf, oursize); 5222 5223 return (err); 5224 } 5225 5226 static boolean_t 5227 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5228 { 5229 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5230 zio_cksum_t expected_cksum; 5231 zio_cksum_t actual_cksum; 5232 zio_cksum_t verifier; 5233 zio_eck_t *eck; 5234 int byteswap; 5235 5236 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5237 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5238 5239 offset += offsetof(vdev_label_t, vl_vdev_phys); 5240 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5241 5242 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5243 if (byteswap) 5244 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5245 5246 expected_cksum = eck->zec_cksum; 5247 eck->zec_cksum = verifier; 5248 5249 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5250 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5251 abd_free(abd); 5252 5253 if (byteswap) 5254 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5255 5256 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5257 return (B_TRUE); 5258 5259 return (B_FALSE); 5260 } 5261 5262 static int 5263 dump_label(const char *dev) 5264 { 5265 char path[MAXPATHLEN]; 5266 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5267 uint64_t psize, ashift, l2cache; 5268 struct stat64 statbuf; 5269 boolean_t config_found = B_FALSE; 5270 boolean_t error = B_FALSE; 5271 boolean_t read_l2arc_header = B_FALSE; 5272 avl_tree_t config_tree; 5273 avl_tree_t uberblock_tree; 5274 void *node, *cookie; 5275 int fd; 5276 5277 /* 5278 * Check if we were given absolute path and use it as is. 5279 * Otherwise if the provided vdev name doesn't point to a file, 5280 * try prepending expected disk paths and partition numbers. 5281 */ 5282 (void) strlcpy(path, dev, sizeof (path)); 5283 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5284 int error; 5285 5286 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5287 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5288 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5289 error = ENOENT; 5290 } 5291 5292 if (error || (stat64(path, &statbuf) != 0)) { 5293 (void) printf("failed to find device %s, try " 5294 "specifying absolute path instead\n", dev); 5295 return (1); 5296 } 5297 } 5298 5299 if ((fd = open64(path, O_RDONLY)) < 0) { 5300 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5301 zdb_exit(1); 5302 } 5303 5304 if (fstat64_blk(fd, &statbuf) != 0) { 5305 (void) printf("failed to stat '%s': %s\n", path, 5306 strerror(errno)); 5307 (void) close(fd); 5308 zdb_exit(1); 5309 } 5310 5311 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5312 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5313 strerror(errno)); 5314 5315 avl_create(&config_tree, cksum_record_compare, 5316 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5317 avl_create(&uberblock_tree, cksum_record_compare, 5318 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5319 5320 psize = statbuf.st_size; 5321 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5322 ashift = SPA_MINBLOCKSHIFT; 5323 5324 /* 5325 * 1. Read the label from disk 5326 * 2. Verify label cksum 5327 * 3. Unpack the configuration and insert in config tree. 5328 * 4. Traverse all uberblocks and insert in uberblock tree. 5329 */ 5330 for (int l = 0; l < VDEV_LABELS; l++) { 5331 zdb_label_t *label = &labels[l]; 5332 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5333 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5334 nvlist_t *config; 5335 cksum_record_t *rec; 5336 zio_cksum_t cksum; 5337 vdev_t vd; 5338 5339 label->label_offset = vdev_label_offset(psize, l, 0); 5340 5341 if (pread64(fd, &label->label, sizeof (label->label), 5342 label->label_offset) != sizeof (label->label)) { 5343 if (!dump_opt['q']) 5344 (void) printf("failed to read label %d\n", l); 5345 label->read_failed = B_TRUE; 5346 error = B_TRUE; 5347 continue; 5348 } 5349 5350 label->read_failed = B_FALSE; 5351 label->cksum_valid = label_cksum_valid(&label->label, 5352 label->label_offset); 5353 5354 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5355 nvlist_t *vdev_tree = NULL; 5356 size_t size; 5357 5358 if ((nvlist_lookup_nvlist(config, 5359 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5360 (nvlist_lookup_uint64(vdev_tree, 5361 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5362 ashift = SPA_MINBLOCKSHIFT; 5363 5364 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5365 size = buflen; 5366 5367 /* If the device is a cache device read the header. */ 5368 if (!read_l2arc_header) { 5369 if (nvlist_lookup_uint64(config, 5370 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5371 l2cache == POOL_STATE_L2CACHE) { 5372 read_l2arc_header = B_TRUE; 5373 } 5374 } 5375 5376 fletcher_4_native_varsize(buf, size, &cksum); 5377 rec = cksum_record_insert(&config_tree, &cksum, l); 5378 5379 label->config = rec; 5380 label->config_nv = config; 5381 config_found = B_TRUE; 5382 } else { 5383 error = B_TRUE; 5384 } 5385 5386 vd.vdev_ashift = ashift; 5387 vd.vdev_top = &vd; 5388 5389 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5390 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5391 uberblock_t *ub = (void *)((char *)label + uoff); 5392 5393 if (uberblock_verify(ub)) 5394 continue; 5395 5396 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5397 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5398 5399 label->uberblocks[i] = rec; 5400 } 5401 } 5402 5403 /* 5404 * Dump the label and uberblocks. 5405 */ 5406 for (int l = 0; l < VDEV_LABELS; l++) { 5407 zdb_label_t *label = &labels[l]; 5408 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5409 5410 if (label->read_failed == B_TRUE) 5411 continue; 5412 5413 if (label->config_nv) { 5414 dump_config_from_label(label, buflen, l); 5415 } else { 5416 if (!dump_opt['q']) 5417 (void) printf("failed to unpack label %d\n", l); 5418 } 5419 5420 if (dump_opt['u']) 5421 dump_label_uberblocks(label, ashift, l); 5422 5423 nvlist_free(label->config_nv); 5424 } 5425 5426 /* 5427 * Dump the L2ARC header, if existent. 5428 */ 5429 if (read_l2arc_header) 5430 error |= dump_l2arc_header(fd); 5431 5432 cookie = NULL; 5433 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5434 umem_free(node, sizeof (cksum_record_t)); 5435 5436 cookie = NULL; 5437 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5438 umem_free(node, sizeof (cksum_record_t)); 5439 5440 avl_destroy(&config_tree); 5441 avl_destroy(&uberblock_tree); 5442 5443 (void) close(fd); 5444 5445 return (config_found == B_FALSE ? 2 : 5446 (error == B_TRUE ? 1 : 0)); 5447 } 5448 5449 static uint64_t dataset_feature_count[SPA_FEATURES]; 5450 static uint64_t global_feature_count[SPA_FEATURES]; 5451 static uint64_t remap_deadlist_count = 0; 5452 5453 static int 5454 dump_one_objset(const char *dsname, void *arg) 5455 { 5456 (void) arg; 5457 int error; 5458 objset_t *os; 5459 spa_feature_t f; 5460 5461 error = open_objset(dsname, FTAG, &os); 5462 if (error != 0) 5463 return (0); 5464 5465 for (f = 0; f < SPA_FEATURES; f++) { 5466 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5467 continue; 5468 ASSERT(spa_feature_table[f].fi_flags & 5469 ZFEATURE_FLAG_PER_DATASET); 5470 dataset_feature_count[f]++; 5471 } 5472 5473 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5474 remap_deadlist_count++; 5475 } 5476 5477 for (dsl_bookmark_node_t *dbn = 5478 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5479 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5480 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5481 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5482 global_feature_count[ 5483 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5484 objset_t *mos = os->os_spa->spa_meta_objset; 5485 dnode_t *rl; 5486 VERIFY0(dnode_hold(mos, 5487 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5488 if (rl->dn_have_spill) { 5489 global_feature_count[ 5490 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5491 } 5492 } 5493 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5494 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5495 } 5496 5497 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5498 !dmu_objset_is_snapshot(os)) { 5499 global_feature_count[SPA_FEATURE_LIVELIST]++; 5500 } 5501 5502 dump_objset(os); 5503 close_objset(os, FTAG); 5504 fuid_table_destroy(); 5505 return (0); 5506 } 5507 5508 /* 5509 * Block statistics. 5510 */ 5511 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5512 typedef struct zdb_blkstats { 5513 uint64_t zb_asize; 5514 uint64_t zb_lsize; 5515 uint64_t zb_psize; 5516 uint64_t zb_count; 5517 uint64_t zb_gangs; 5518 uint64_t zb_ditto_samevdev; 5519 uint64_t zb_ditto_same_ms; 5520 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5521 } zdb_blkstats_t; 5522 5523 /* 5524 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5525 */ 5526 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5527 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5528 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5529 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5530 5531 static const char *zdb_ot_extname[] = { 5532 "deferred free", 5533 "dedup ditto", 5534 "other", 5535 "Total", 5536 }; 5537 5538 #define ZB_TOTAL DN_MAX_LEVELS 5539 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5540 5541 typedef struct zdb_brt_entry { 5542 dva_t zbre_dva; 5543 uint64_t zbre_refcount; 5544 avl_node_t zbre_node; 5545 } zdb_brt_entry_t; 5546 5547 typedef struct zdb_cb { 5548 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5549 uint64_t zcb_removing_size; 5550 uint64_t zcb_checkpoint_size; 5551 uint64_t zcb_dedup_asize; 5552 uint64_t zcb_dedup_blocks; 5553 uint64_t zcb_clone_asize; 5554 uint64_t zcb_clone_blocks; 5555 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5556 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5557 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5558 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5559 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5560 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5561 uint64_t zcb_psize_total; 5562 uint64_t zcb_lsize_total; 5563 uint64_t zcb_asize_total; 5564 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5565 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5566 [BPE_PAYLOAD_SIZE + 1]; 5567 uint64_t zcb_start; 5568 hrtime_t zcb_lastprint; 5569 uint64_t zcb_totalasize; 5570 uint64_t zcb_errors[256]; 5571 int zcb_readfails; 5572 int zcb_haderrors; 5573 spa_t *zcb_spa; 5574 uint32_t **zcb_vd_obsolete_counts; 5575 avl_tree_t zcb_brt; 5576 boolean_t zcb_brt_is_active; 5577 } zdb_cb_t; 5578 5579 /* test if two DVA offsets from same vdev are within the same metaslab */ 5580 static boolean_t 5581 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5582 { 5583 vdev_t *vd = vdev_lookup_top(spa, vdev); 5584 uint64_t ms_shift = vd->vdev_ms_shift; 5585 5586 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5587 } 5588 5589 /* 5590 * Used to simplify reporting of the histogram data. 5591 */ 5592 typedef struct one_histo { 5593 const char *name; 5594 uint64_t *count; 5595 uint64_t *len; 5596 uint64_t cumulative; 5597 } one_histo_t; 5598 5599 /* 5600 * The number of separate histograms processed for psize, lsize and asize. 5601 */ 5602 #define NUM_HISTO 3 5603 5604 /* 5605 * This routine will create a fixed column size output of three different 5606 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5607 * the count, length and cumulative length of the psize, lsize and 5608 * asize blocks. 5609 * 5610 * All three types of blocks are listed on a single line 5611 * 5612 * By default the table is printed in nicenumber format (e.g. 123K) but 5613 * if the '-P' parameter is specified then the full raw number (parseable) 5614 * is printed out. 5615 */ 5616 static void 5617 dump_size_histograms(zdb_cb_t *zcb) 5618 { 5619 /* 5620 * A temporary buffer that allows us to convert a number into 5621 * a string using zdb_nicenumber to allow either raw or human 5622 * readable numbers to be output. 5623 */ 5624 char numbuf[32]; 5625 5626 /* 5627 * Define titles which are used in the headers of the tables 5628 * printed by this routine. 5629 */ 5630 const char blocksize_title1[] = "block"; 5631 const char blocksize_title2[] = "size"; 5632 const char count_title[] = "Count"; 5633 const char length_title[] = "Size"; 5634 const char cumulative_title[] = "Cum."; 5635 5636 /* 5637 * Setup the histogram arrays (psize, lsize, and asize). 5638 */ 5639 one_histo_t parm_histo[NUM_HISTO]; 5640 5641 parm_histo[0].name = "psize"; 5642 parm_histo[0].count = zcb->zcb_psize_count; 5643 parm_histo[0].len = zcb->zcb_psize_len; 5644 parm_histo[0].cumulative = 0; 5645 5646 parm_histo[1].name = "lsize"; 5647 parm_histo[1].count = zcb->zcb_lsize_count; 5648 parm_histo[1].len = zcb->zcb_lsize_len; 5649 parm_histo[1].cumulative = 0; 5650 5651 parm_histo[2].name = "asize"; 5652 parm_histo[2].count = zcb->zcb_asize_count; 5653 parm_histo[2].len = zcb->zcb_asize_len; 5654 parm_histo[2].cumulative = 0; 5655 5656 5657 (void) printf("\nBlock Size Histogram\n"); 5658 /* 5659 * Print the first line titles 5660 */ 5661 if (dump_opt['P']) 5662 (void) printf("\n%s\t", blocksize_title1); 5663 else 5664 (void) printf("\n%7s ", blocksize_title1); 5665 5666 for (int j = 0; j < NUM_HISTO; j++) { 5667 if (dump_opt['P']) { 5668 if (j < NUM_HISTO - 1) { 5669 (void) printf("%s\t\t\t", parm_histo[j].name); 5670 } else { 5671 /* Don't print trailing spaces */ 5672 (void) printf(" %s", parm_histo[j].name); 5673 } 5674 } else { 5675 if (j < NUM_HISTO - 1) { 5676 /* Left aligned strings in the output */ 5677 (void) printf("%-7s ", 5678 parm_histo[j].name); 5679 } else { 5680 /* Don't print trailing spaces */ 5681 (void) printf("%s", parm_histo[j].name); 5682 } 5683 } 5684 } 5685 (void) printf("\n"); 5686 5687 /* 5688 * Print the second line titles 5689 */ 5690 if (dump_opt['P']) { 5691 (void) printf("%s\t", blocksize_title2); 5692 } else { 5693 (void) printf("%7s ", blocksize_title2); 5694 } 5695 5696 for (int i = 0; i < NUM_HISTO; i++) { 5697 if (dump_opt['P']) { 5698 (void) printf("%s\t%s\t%s\t", 5699 count_title, length_title, cumulative_title); 5700 } else { 5701 (void) printf("%7s%7s%7s", 5702 count_title, length_title, cumulative_title); 5703 } 5704 } 5705 (void) printf("\n"); 5706 5707 /* 5708 * Print the rows 5709 */ 5710 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5711 5712 /* 5713 * Print the first column showing the blocksize 5714 */ 5715 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5716 5717 if (dump_opt['P']) { 5718 printf("%s", numbuf); 5719 } else { 5720 printf("%7s:", numbuf); 5721 } 5722 5723 /* 5724 * Print the remaining set of 3 columns per size: 5725 * for psize, lsize and asize 5726 */ 5727 for (int j = 0; j < NUM_HISTO; j++) { 5728 parm_histo[j].cumulative += parm_histo[j].len[i]; 5729 5730 zdb_nicenum(parm_histo[j].count[i], 5731 numbuf, sizeof (numbuf)); 5732 if (dump_opt['P']) 5733 (void) printf("\t%s", numbuf); 5734 else 5735 (void) printf("%7s", numbuf); 5736 5737 zdb_nicenum(parm_histo[j].len[i], 5738 numbuf, sizeof (numbuf)); 5739 if (dump_opt['P']) 5740 (void) printf("\t%s", numbuf); 5741 else 5742 (void) printf("%7s", numbuf); 5743 5744 zdb_nicenum(parm_histo[j].cumulative, 5745 numbuf, sizeof (numbuf)); 5746 if (dump_opt['P']) 5747 (void) printf("\t%s", numbuf); 5748 else 5749 (void) printf("%7s", numbuf); 5750 } 5751 (void) printf("\n"); 5752 } 5753 } 5754 5755 static void 5756 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5757 dmu_object_type_t type) 5758 { 5759 int i; 5760 5761 ASSERT(type < ZDB_OT_TOTAL); 5762 5763 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5764 return; 5765 5766 /* 5767 * This flag controls if we will issue a claim for the block while 5768 * counting it, to ensure that all blocks are referenced in space maps. 5769 * We don't issue claims if we're not doing leak tracking, because it's 5770 * expensive if the user isn't interested. We also don't claim the 5771 * second or later occurences of cloned or dedup'd blocks, because we 5772 * already claimed them the first time. 5773 */ 5774 boolean_t do_claim = !dump_opt['L']; 5775 5776 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5777 5778 blkptr_t tempbp; 5779 if (BP_GET_DEDUP(bp)) { 5780 /* 5781 * Dedup'd blocks are special. We need to count them, so we can 5782 * later uncount them when reporting leaked space, and we must 5783 * only claim them once. 5784 * 5785 * We use the existing dedup system to track what we've seen. 5786 * The first time we see a block, we do a ddt_lookup() to see 5787 * if it exists in the DDT. If we're doing leak tracking, we 5788 * claim the block at this time. 5789 * 5790 * Each time we see a block, we reduce the refcount in the 5791 * entry by one, and add to the size and count of dedup'd 5792 * blocks to report at the end. 5793 */ 5794 5795 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5796 5797 ddt_enter(ddt); 5798 5799 /* 5800 * Find the block. This will create the entry in memory, but 5801 * we'll know if that happened by its refcount. 5802 */ 5803 ddt_entry_t *dde = ddt_lookup(ddt, bp); 5804 5805 /* 5806 * ddt_lookup() can return NULL if this block didn't exist 5807 * in the DDT and creating it would take the DDT over its 5808 * quota. Since we got the block from disk, it must exist in 5809 * the DDT, so this can't happen. However, when unique entries 5810 * are pruned, the dedup bit can be set with no corresponding 5811 * entry in the DDT. 5812 */ 5813 if (dde == NULL) { 5814 ddt_exit(ddt); 5815 goto skipped; 5816 } 5817 5818 /* Get the phys for this variant */ 5819 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5820 5821 /* 5822 * This entry may have multiple sets of DVAs. We must claim 5823 * each set the first time we see them in a real block on disk, 5824 * or count them on subsequent occurences. We don't have a 5825 * convenient way to track the first time we see each variant, 5826 * so we repurpose dde_io as a set of "seen" flag bits. We can 5827 * do this safely in zdb because it never writes, so it will 5828 * never have a writing zio for this block in that pointer. 5829 */ 5830 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5831 if (!seen) 5832 dde->dde_io = 5833 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5834 5835 /* Consume a reference for this block. */ 5836 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5837 ddt_phys_decref(dde->dde_phys, v); 5838 5839 /* 5840 * If this entry has a single flat phys, it may have been 5841 * extended with additional DVAs at some time in its life. 5842 * This block might be from before it was fully extended, and 5843 * so have fewer DVAs. 5844 * 5845 * If this is the first time we've seen this block, and we 5846 * claimed it as-is, then we would miss the claim on some 5847 * number of DVAs, which would then be seen as leaked. 5848 * 5849 * In all cases, if we've had fewer DVAs, then the asize would 5850 * be too small, and would lead to the pool apparently using 5851 * more space than allocated. 5852 * 5853 * To handle this, we copy the canonical set of DVAs from the 5854 * entry back to the block pointer before we claim it. 5855 */ 5856 if (v == DDT_PHYS_FLAT) { 5857 ASSERT3U(BP_GET_BIRTH(bp), ==, 5858 ddt_phys_birth(dde->dde_phys, v)); 5859 tempbp = *bp; 5860 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5861 BP_GET_BIRTH(bp)); 5862 bp = &tempbp; 5863 } 5864 5865 if (seen) { 5866 /* 5867 * The second or later time we see this block, 5868 * it's a duplicate and we count it. 5869 */ 5870 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5871 zcb->zcb_dedup_blocks++; 5872 5873 /* Already claimed, don't do it again. */ 5874 do_claim = B_FALSE; 5875 } 5876 5877 ddt_exit(ddt); 5878 } else if (zcb->zcb_brt_is_active && 5879 brt_maybe_exists(zcb->zcb_spa, bp)) { 5880 /* 5881 * Cloned blocks are special. We need to count them, so we can 5882 * later uncount them when reporting leaked space, and we must 5883 * only claim them once. 5884 * 5885 * To do this, we keep our own in-memory BRT. For each block 5886 * we haven't seen before, we look it up in the real BRT and 5887 * if its there, we note it and its refcount then proceed as 5888 * normal. If we see the block again, we count it as a clone 5889 * and then give it no further consideration. 5890 */ 5891 zdb_brt_entry_t zbre_search, *zbre; 5892 avl_index_t where; 5893 5894 zbre_search.zbre_dva = bp->blk_dva[0]; 5895 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5896 if (zbre == NULL) { 5897 /* Not seen before; track it */ 5898 uint64_t refcnt = 5899 brt_entry_get_refcount(zcb->zcb_spa, bp); 5900 if (refcnt > 0) { 5901 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5902 UMEM_NOFAIL); 5903 zbre->zbre_dva = bp->blk_dva[0]; 5904 zbre->zbre_refcount = refcnt; 5905 avl_insert(&zcb->zcb_brt, zbre, where); 5906 } 5907 } else { 5908 /* 5909 * Second or later occurrence, count it and take a 5910 * refcount. 5911 */ 5912 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5913 zcb->zcb_clone_blocks++; 5914 5915 zbre->zbre_refcount--; 5916 if (zbre->zbre_refcount == 0) { 5917 avl_remove(&zcb->zcb_brt, zbre); 5918 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5919 } 5920 5921 /* Already claimed, don't do it again. */ 5922 do_claim = B_FALSE; 5923 } 5924 } 5925 5926 skipped: 5927 for (i = 0; i < 4; i++) { 5928 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5929 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5930 int equal; 5931 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5932 5933 zb->zb_asize += BP_GET_ASIZE(bp); 5934 zb->zb_lsize += BP_GET_LSIZE(bp); 5935 zb->zb_psize += BP_GET_PSIZE(bp); 5936 zb->zb_count++; 5937 5938 /* 5939 * The histogram is only big enough to record blocks up to 5940 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5941 * "other", bucket. 5942 */ 5943 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5944 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5945 zb->zb_psize_histogram[idx]++; 5946 5947 zb->zb_gangs += BP_COUNT_GANG(bp); 5948 5949 switch (BP_GET_NDVAS(bp)) { 5950 case 2: 5951 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5952 DVA_GET_VDEV(&bp->blk_dva[1])) { 5953 zb->zb_ditto_samevdev++; 5954 5955 if (same_metaslab(zcb->zcb_spa, 5956 DVA_GET_VDEV(&bp->blk_dva[0]), 5957 DVA_GET_OFFSET(&bp->blk_dva[0]), 5958 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5959 zb->zb_ditto_same_ms++; 5960 } 5961 break; 5962 case 3: 5963 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5964 DVA_GET_VDEV(&bp->blk_dva[1])) + 5965 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5966 DVA_GET_VDEV(&bp->blk_dva[2])) + 5967 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5968 DVA_GET_VDEV(&bp->blk_dva[2])); 5969 if (equal != 0) { 5970 zb->zb_ditto_samevdev++; 5971 5972 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5973 DVA_GET_VDEV(&bp->blk_dva[1]) && 5974 same_metaslab(zcb->zcb_spa, 5975 DVA_GET_VDEV(&bp->blk_dva[0]), 5976 DVA_GET_OFFSET(&bp->blk_dva[0]), 5977 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5978 zb->zb_ditto_same_ms++; 5979 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5980 DVA_GET_VDEV(&bp->blk_dva[2]) && 5981 same_metaslab(zcb->zcb_spa, 5982 DVA_GET_VDEV(&bp->blk_dva[0]), 5983 DVA_GET_OFFSET(&bp->blk_dva[0]), 5984 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5985 zb->zb_ditto_same_ms++; 5986 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5987 DVA_GET_VDEV(&bp->blk_dva[2]) && 5988 same_metaslab(zcb->zcb_spa, 5989 DVA_GET_VDEV(&bp->blk_dva[1]), 5990 DVA_GET_OFFSET(&bp->blk_dva[1]), 5991 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5992 zb->zb_ditto_same_ms++; 5993 } 5994 break; 5995 } 5996 } 5997 5998 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5999 6000 if (BP_IS_EMBEDDED(bp)) { 6001 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6002 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6003 [BPE_GET_PSIZE(bp)]++; 6004 return; 6005 } 6006 /* 6007 * The binning histogram bins by powers of two up to 6008 * SPA_MAXBLOCKSIZE rather than creating bins for 6009 * every possible blocksize found in the pool. 6010 */ 6011 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6012 6013 zcb->zcb_psize_count[bin]++; 6014 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6015 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6016 6017 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6018 6019 zcb->zcb_lsize_count[bin]++; 6020 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6021 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6022 6023 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6024 6025 zcb->zcb_asize_count[bin]++; 6026 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6027 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6028 6029 if (!do_claim) 6030 return; 6031 6032 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6033 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6034 ZIO_FLAG_CANFAIL))); 6035 } 6036 6037 static void 6038 zdb_blkptr_done(zio_t *zio) 6039 { 6040 spa_t *spa = zio->io_spa; 6041 blkptr_t *bp = zio->io_bp; 6042 int ioerr = zio->io_error; 6043 zdb_cb_t *zcb = zio->io_private; 6044 zbookmark_phys_t *zb = &zio->io_bookmark; 6045 6046 mutex_enter(&spa->spa_scrub_lock); 6047 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6048 cv_broadcast(&spa->spa_scrub_io_cv); 6049 6050 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6051 char blkbuf[BP_SPRINTF_LEN]; 6052 6053 zcb->zcb_haderrors = 1; 6054 zcb->zcb_errors[ioerr]++; 6055 6056 if (dump_opt['b'] >= 2) 6057 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6058 else 6059 blkbuf[0] = '\0'; 6060 6061 (void) printf("zdb_blkptr_cb: " 6062 "Got error %d reading " 6063 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6064 ioerr, 6065 (u_longlong_t)zb->zb_objset, 6066 (u_longlong_t)zb->zb_object, 6067 (u_longlong_t)zb->zb_level, 6068 (u_longlong_t)zb->zb_blkid, 6069 blkbuf); 6070 } 6071 mutex_exit(&spa->spa_scrub_lock); 6072 6073 abd_free(zio->io_abd); 6074 } 6075 6076 static int 6077 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6078 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6079 { 6080 zdb_cb_t *zcb = arg; 6081 dmu_object_type_t type; 6082 boolean_t is_metadata; 6083 6084 if (zb->zb_level == ZB_DNODE_LEVEL) 6085 return (0); 6086 6087 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6088 char blkbuf[BP_SPRINTF_LEN]; 6089 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6090 (void) printf("objset %llu object %llu " 6091 "level %lld offset 0x%llx %s\n", 6092 (u_longlong_t)zb->zb_objset, 6093 (u_longlong_t)zb->zb_object, 6094 (longlong_t)zb->zb_level, 6095 (u_longlong_t)blkid2offset(dnp, bp, zb), 6096 blkbuf); 6097 } 6098 6099 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6100 return (0); 6101 6102 type = BP_GET_TYPE(bp); 6103 6104 zdb_count_block(zcb, zilog, bp, 6105 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6106 6107 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6108 6109 if (!BP_IS_EMBEDDED(bp) && 6110 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6111 size_t size = BP_GET_PSIZE(bp); 6112 abd_t *abd = abd_alloc(size, B_FALSE); 6113 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6114 6115 /* If it's an intent log block, failure is expected. */ 6116 if (zb->zb_level == ZB_ZIL_LEVEL) 6117 flags |= ZIO_FLAG_SPECULATIVE; 6118 6119 mutex_enter(&spa->spa_scrub_lock); 6120 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6121 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6122 spa->spa_load_verify_bytes += size; 6123 mutex_exit(&spa->spa_scrub_lock); 6124 6125 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6126 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6127 } 6128 6129 zcb->zcb_readfails = 0; 6130 6131 /* only call gethrtime() every 100 blocks */ 6132 static int iters; 6133 if (++iters > 100) 6134 iters = 0; 6135 else 6136 return (0); 6137 6138 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6139 uint64_t now = gethrtime(); 6140 char buf[10]; 6141 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6142 uint64_t kb_per_sec = 6143 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6144 uint64_t sec_remaining = 6145 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6146 6147 /* make sure nicenum has enough space */ 6148 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6149 6150 zfs_nicebytes(bytes, buf, sizeof (buf)); 6151 (void) fprintf(stderr, 6152 "\r%5s completed (%4"PRIu64"MB/s) " 6153 "estimated time remaining: " 6154 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6155 buf, kb_per_sec / 1024, 6156 sec_remaining / 60 / 60, 6157 sec_remaining / 60 % 60, 6158 sec_remaining % 60); 6159 6160 zcb->zcb_lastprint = now; 6161 } 6162 6163 return (0); 6164 } 6165 6166 static void 6167 zdb_leak(void *arg, uint64_t start, uint64_t size) 6168 { 6169 vdev_t *vd = arg; 6170 6171 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6172 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6173 } 6174 6175 static metaslab_ops_t zdb_metaslab_ops = { 6176 NULL /* alloc */ 6177 }; 6178 6179 static int 6180 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6181 uint64_t txg, void *arg) 6182 { 6183 spa_vdev_removal_t *svr = arg; 6184 6185 uint64_t offset = sme->sme_offset; 6186 uint64_t size = sme->sme_run; 6187 6188 /* skip vdevs we don't care about */ 6189 if (sme->sme_vdev != svr->svr_vdev_id) 6190 return (0); 6191 6192 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6193 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6194 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6195 6196 if (txg < metaslab_unflushed_txg(ms)) 6197 return (0); 6198 6199 if (sme->sme_type == SM_ALLOC) 6200 range_tree_add(svr->svr_allocd_segs, offset, size); 6201 else 6202 range_tree_remove(svr->svr_allocd_segs, offset, size); 6203 6204 return (0); 6205 } 6206 6207 static void 6208 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6209 uint64_t size, void *arg) 6210 { 6211 (void) inner_offset, (void) arg; 6212 6213 /* 6214 * This callback was called through a remap from 6215 * a device being removed. Therefore, the vdev that 6216 * this callback is applied to is a concrete 6217 * vdev. 6218 */ 6219 ASSERT(vdev_is_concrete(vd)); 6220 6221 VERIFY0(metaslab_claim_impl(vd, offset, size, 6222 spa_min_claim_txg(vd->vdev_spa))); 6223 } 6224 6225 static void 6226 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6227 { 6228 vdev_t *vd = arg; 6229 6230 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6231 claim_segment_impl_cb, NULL); 6232 } 6233 6234 /* 6235 * After accounting for all allocated blocks that are directly referenced, 6236 * we might have missed a reference to a block from a partially complete 6237 * (and thus unused) indirect mapping object. We perform a secondary pass 6238 * through the metaslabs we have already mapped and claim the destination 6239 * blocks. 6240 */ 6241 static void 6242 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6243 { 6244 if (dump_opt['L']) 6245 return; 6246 6247 if (spa->spa_vdev_removal == NULL) 6248 return; 6249 6250 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6251 6252 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6253 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6254 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6255 6256 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6257 6258 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6259 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6260 metaslab_t *msp = vd->vdev_ms[msi]; 6261 6262 ASSERT0(range_tree_space(allocs)); 6263 if (msp->ms_sm != NULL) 6264 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6265 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6266 } 6267 range_tree_destroy(allocs); 6268 6269 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6270 6271 /* 6272 * Clear everything past what has been synced, 6273 * because we have not allocated mappings for 6274 * it yet. 6275 */ 6276 range_tree_clear(svr->svr_allocd_segs, 6277 vdev_indirect_mapping_max_offset(vim), 6278 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6279 6280 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6281 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6282 6283 spa_config_exit(spa, SCL_CONFIG, FTAG); 6284 } 6285 6286 static int 6287 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6288 dmu_tx_t *tx) 6289 { 6290 (void) tx; 6291 zdb_cb_t *zcb = arg; 6292 spa_t *spa = zcb->zcb_spa; 6293 vdev_t *vd; 6294 const dva_t *dva = &bp->blk_dva[0]; 6295 6296 ASSERT(!bp_freed); 6297 ASSERT(!dump_opt['L']); 6298 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6299 6300 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6301 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6302 ASSERT3P(vd, !=, NULL); 6303 spa_config_exit(spa, SCL_VDEV, FTAG); 6304 6305 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6306 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6307 6308 vdev_indirect_mapping_increment_obsolete_count( 6309 vd->vdev_indirect_mapping, 6310 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6311 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6312 6313 return (0); 6314 } 6315 6316 static uint32_t * 6317 zdb_load_obsolete_counts(vdev_t *vd) 6318 { 6319 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6320 spa_t *spa = vd->vdev_spa; 6321 spa_condensing_indirect_phys_t *scip = 6322 &spa->spa_condensing_indirect_phys; 6323 uint64_t obsolete_sm_object; 6324 uint32_t *counts; 6325 6326 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6327 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6328 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6329 if (vd->vdev_obsolete_sm != NULL) { 6330 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6331 vd->vdev_obsolete_sm); 6332 } 6333 if (scip->scip_vdev == vd->vdev_id && 6334 scip->scip_prev_obsolete_sm_object != 0) { 6335 space_map_t *prev_obsolete_sm = NULL; 6336 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6337 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6338 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6339 prev_obsolete_sm); 6340 space_map_close(prev_obsolete_sm); 6341 } 6342 return (counts); 6343 } 6344 6345 typedef struct checkpoint_sm_exclude_entry_arg { 6346 vdev_t *cseea_vd; 6347 uint64_t cseea_checkpoint_size; 6348 } checkpoint_sm_exclude_entry_arg_t; 6349 6350 static int 6351 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6352 { 6353 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6354 vdev_t *vd = cseea->cseea_vd; 6355 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6356 uint64_t end = sme->sme_offset + sme->sme_run; 6357 6358 ASSERT(sme->sme_type == SM_FREE); 6359 6360 /* 6361 * Since the vdev_checkpoint_sm exists in the vdev level 6362 * and the ms_sm space maps exist in the metaslab level, 6363 * an entry in the checkpoint space map could theoretically 6364 * cross the boundaries of the metaslab that it belongs. 6365 * 6366 * In reality, because of the way that we populate and 6367 * manipulate the checkpoint's space maps currently, 6368 * there shouldn't be any entries that cross metaslabs. 6369 * Hence the assertion below. 6370 * 6371 * That said, there is no fundamental requirement that 6372 * the checkpoint's space map entries should not cross 6373 * metaslab boundaries. So if needed we could add code 6374 * that handles metaslab-crossing segments in the future. 6375 */ 6376 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6377 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6378 6379 /* 6380 * By removing the entry from the allocated segments we 6381 * also verify that the entry is there to begin with. 6382 */ 6383 mutex_enter(&ms->ms_lock); 6384 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6385 mutex_exit(&ms->ms_lock); 6386 6387 cseea->cseea_checkpoint_size += sme->sme_run; 6388 return (0); 6389 } 6390 6391 static void 6392 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6393 { 6394 spa_t *spa = vd->vdev_spa; 6395 space_map_t *checkpoint_sm = NULL; 6396 uint64_t checkpoint_sm_obj; 6397 6398 /* 6399 * If there is no vdev_top_zap, we are in a pool whose 6400 * version predates the pool checkpoint feature. 6401 */ 6402 if (vd->vdev_top_zap == 0) 6403 return; 6404 6405 /* 6406 * If there is no reference of the vdev_checkpoint_sm in 6407 * the vdev_top_zap, then one of the following scenarios 6408 * is true: 6409 * 6410 * 1] There is no checkpoint 6411 * 2] There is a checkpoint, but no checkpointed blocks 6412 * have been freed yet 6413 * 3] The current vdev is indirect 6414 * 6415 * In these cases we return immediately. 6416 */ 6417 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6418 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6419 return; 6420 6421 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6422 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6423 &checkpoint_sm_obj)); 6424 6425 checkpoint_sm_exclude_entry_arg_t cseea; 6426 cseea.cseea_vd = vd; 6427 cseea.cseea_checkpoint_size = 0; 6428 6429 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6430 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6431 6432 VERIFY0(space_map_iterate(checkpoint_sm, 6433 space_map_length(checkpoint_sm), 6434 checkpoint_sm_exclude_entry_cb, &cseea)); 6435 space_map_close(checkpoint_sm); 6436 6437 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6438 } 6439 6440 static void 6441 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6442 { 6443 ASSERT(!dump_opt['L']); 6444 6445 vdev_t *rvd = spa->spa_root_vdev; 6446 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6447 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6448 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6449 } 6450 } 6451 6452 static int 6453 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6454 uint64_t txg, void *arg) 6455 { 6456 int64_t *ualloc_space = arg; 6457 6458 uint64_t offset = sme->sme_offset; 6459 uint64_t vdev_id = sme->sme_vdev; 6460 6461 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6462 if (!vdev_is_concrete(vd)) 6463 return (0); 6464 6465 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6466 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6467 6468 if (txg < metaslab_unflushed_txg(ms)) 6469 return (0); 6470 6471 if (sme->sme_type == SM_ALLOC) 6472 *ualloc_space += sme->sme_run; 6473 else 6474 *ualloc_space -= sme->sme_run; 6475 6476 return (0); 6477 } 6478 6479 static int64_t 6480 get_unflushed_alloc_space(spa_t *spa) 6481 { 6482 if (dump_opt['L']) 6483 return (0); 6484 6485 int64_t ualloc_space = 0; 6486 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6487 &ualloc_space); 6488 return (ualloc_space); 6489 } 6490 6491 static int 6492 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6493 { 6494 maptype_t *uic_maptype = arg; 6495 6496 uint64_t offset = sme->sme_offset; 6497 uint64_t size = sme->sme_run; 6498 uint64_t vdev_id = sme->sme_vdev; 6499 6500 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6501 6502 /* skip indirect vdevs */ 6503 if (!vdev_is_concrete(vd)) 6504 return (0); 6505 6506 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6507 6508 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6509 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6510 6511 if (txg < metaslab_unflushed_txg(ms)) 6512 return (0); 6513 6514 if (*uic_maptype == sme->sme_type) 6515 range_tree_add(ms->ms_allocatable, offset, size); 6516 else 6517 range_tree_remove(ms->ms_allocatable, offset, size); 6518 6519 return (0); 6520 } 6521 6522 static void 6523 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6524 { 6525 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6526 } 6527 6528 static void 6529 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6530 { 6531 vdev_t *rvd = spa->spa_root_vdev; 6532 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6533 vdev_t *vd = rvd->vdev_child[i]; 6534 6535 ASSERT3U(i, ==, vd->vdev_id); 6536 6537 if (vd->vdev_ops == &vdev_indirect_ops) 6538 continue; 6539 6540 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6541 metaslab_t *msp = vd->vdev_ms[m]; 6542 6543 (void) fprintf(stderr, 6544 "\rloading concrete vdev %llu, " 6545 "metaslab %llu of %llu ...", 6546 (longlong_t)vd->vdev_id, 6547 (longlong_t)msp->ms_id, 6548 (longlong_t)vd->vdev_ms_count); 6549 6550 mutex_enter(&msp->ms_lock); 6551 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6552 6553 /* 6554 * We don't want to spend the CPU manipulating the 6555 * size-ordered tree, so clear the range_tree ops. 6556 */ 6557 msp->ms_allocatable->rt_ops = NULL; 6558 6559 if (msp->ms_sm != NULL) { 6560 VERIFY0(space_map_load(msp->ms_sm, 6561 msp->ms_allocatable, maptype)); 6562 } 6563 if (!msp->ms_loaded) 6564 msp->ms_loaded = B_TRUE; 6565 mutex_exit(&msp->ms_lock); 6566 } 6567 } 6568 6569 load_unflushed_to_ms_allocatables(spa, maptype); 6570 } 6571 6572 /* 6573 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6574 * index in vim_entries that has the first entry in this metaslab. 6575 * On return, it will be set to the first entry after this metaslab. 6576 */ 6577 static void 6578 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6579 uint64_t *vim_idxp) 6580 { 6581 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6582 6583 mutex_enter(&msp->ms_lock); 6584 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6585 6586 /* 6587 * We don't want to spend the CPU manipulating the 6588 * size-ordered tree, so clear the range_tree ops. 6589 */ 6590 msp->ms_allocatable->rt_ops = NULL; 6591 6592 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6593 (*vim_idxp)++) { 6594 vdev_indirect_mapping_entry_phys_t *vimep = 6595 &vim->vim_entries[*vim_idxp]; 6596 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6597 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6598 ASSERT3U(ent_offset, >=, msp->ms_start); 6599 if (ent_offset >= msp->ms_start + msp->ms_size) 6600 break; 6601 6602 /* 6603 * Mappings do not cross metaslab boundaries, 6604 * because we create them by walking the metaslabs. 6605 */ 6606 ASSERT3U(ent_offset + ent_len, <=, 6607 msp->ms_start + msp->ms_size); 6608 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6609 } 6610 6611 if (!msp->ms_loaded) 6612 msp->ms_loaded = B_TRUE; 6613 mutex_exit(&msp->ms_lock); 6614 } 6615 6616 static void 6617 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6618 { 6619 ASSERT(!dump_opt['L']); 6620 6621 vdev_t *rvd = spa->spa_root_vdev; 6622 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6623 vdev_t *vd = rvd->vdev_child[c]; 6624 6625 ASSERT3U(c, ==, vd->vdev_id); 6626 6627 if (vd->vdev_ops != &vdev_indirect_ops) 6628 continue; 6629 6630 /* 6631 * Note: we don't check for mapping leaks on 6632 * removing vdevs because their ms_allocatable's 6633 * are used to look for leaks in allocated space. 6634 */ 6635 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6636 6637 /* 6638 * Normally, indirect vdevs don't have any 6639 * metaslabs. We want to set them up for 6640 * zio_claim(). 6641 */ 6642 vdev_metaslab_group_create(vd); 6643 VERIFY0(vdev_metaslab_init(vd, 0)); 6644 6645 vdev_indirect_mapping_t *vim __maybe_unused = 6646 vd->vdev_indirect_mapping; 6647 uint64_t vim_idx = 0; 6648 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6649 6650 (void) fprintf(stderr, 6651 "\rloading indirect vdev %llu, " 6652 "metaslab %llu of %llu ...", 6653 (longlong_t)vd->vdev_id, 6654 (longlong_t)vd->vdev_ms[m]->ms_id, 6655 (longlong_t)vd->vdev_ms_count); 6656 6657 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6658 &vim_idx); 6659 } 6660 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6661 } 6662 } 6663 6664 static void 6665 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6666 { 6667 zcb->zcb_spa = spa; 6668 6669 if (dump_opt['L']) 6670 return; 6671 6672 dsl_pool_t *dp = spa->spa_dsl_pool; 6673 vdev_t *rvd = spa->spa_root_vdev; 6674 6675 /* 6676 * We are going to be changing the meaning of the metaslab's 6677 * ms_allocatable. Ensure that the allocator doesn't try to 6678 * use the tree. 6679 */ 6680 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6681 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6682 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6683 6684 zcb->zcb_vd_obsolete_counts = 6685 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6686 UMEM_NOFAIL); 6687 6688 /* 6689 * For leak detection, we overload the ms_allocatable trees 6690 * to contain allocated segments instead of free segments. 6691 * As a result, we can't use the normal metaslab_load/unload 6692 * interfaces. 6693 */ 6694 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6695 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6696 6697 /* 6698 * On load_concrete_ms_allocatable_trees() we loaded all the 6699 * allocated entries from the ms_sm to the ms_allocatable for 6700 * each metaslab. If the pool has a checkpoint or is in the 6701 * middle of discarding a checkpoint, some of these blocks 6702 * may have been freed but their ms_sm may not have been 6703 * updated because they are referenced by the checkpoint. In 6704 * order to avoid false-positives during leak-detection, we 6705 * go through the vdev's checkpoint space map and exclude all 6706 * its entries from their relevant ms_allocatable. 6707 * 6708 * We also aggregate the space held by the checkpoint and add 6709 * it to zcb_checkpoint_size. 6710 * 6711 * Note that at this point we are also verifying that all the 6712 * entries on the checkpoint_sm are marked as allocated in 6713 * the ms_sm of their relevant metaslab. 6714 * [see comment in checkpoint_sm_exclude_entry_cb()] 6715 */ 6716 zdb_leak_init_exclude_checkpoint(spa, zcb); 6717 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6718 6719 /* for cleaner progress output */ 6720 (void) fprintf(stderr, "\n"); 6721 6722 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6723 ASSERT(spa_feature_is_enabled(spa, 6724 SPA_FEATURE_DEVICE_REMOVAL)); 6725 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6726 increment_indirect_mapping_cb, zcb, NULL); 6727 } 6728 } 6729 6730 static boolean_t 6731 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6732 { 6733 boolean_t leaks = B_FALSE; 6734 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6735 uint64_t total_leaked = 0; 6736 boolean_t are_precise = B_FALSE; 6737 6738 ASSERT(vim != NULL); 6739 6740 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6741 vdev_indirect_mapping_entry_phys_t *vimep = 6742 &vim->vim_entries[i]; 6743 uint64_t obsolete_bytes = 0; 6744 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6745 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6746 6747 /* 6748 * This is not very efficient but it's easy to 6749 * verify correctness. 6750 */ 6751 for (uint64_t inner_offset = 0; 6752 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6753 inner_offset += 1ULL << vd->vdev_ashift) { 6754 if (range_tree_contains(msp->ms_allocatable, 6755 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6756 obsolete_bytes += 1ULL << vd->vdev_ashift; 6757 } 6758 } 6759 6760 int64_t bytes_leaked = obsolete_bytes - 6761 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6762 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6763 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6764 6765 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6766 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6767 (void) printf("obsolete indirect mapping count " 6768 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6769 (u_longlong_t)vd->vdev_id, 6770 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6771 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6772 (u_longlong_t)bytes_leaked); 6773 } 6774 total_leaked += ABS(bytes_leaked); 6775 } 6776 6777 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6778 if (!are_precise && total_leaked > 0) { 6779 int pct_leaked = total_leaked * 100 / 6780 vdev_indirect_mapping_bytes_mapped(vim); 6781 (void) printf("cannot verify obsolete indirect mapping " 6782 "counts of vdev %llu because precise feature was not " 6783 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6784 "unreferenced\n", 6785 (u_longlong_t)vd->vdev_id, pct_leaked, 6786 (u_longlong_t)total_leaked); 6787 } else if (total_leaked > 0) { 6788 (void) printf("obsolete indirect mapping count mismatch " 6789 "for vdev %llu -- %llx total bytes mismatched\n", 6790 (u_longlong_t)vd->vdev_id, 6791 (u_longlong_t)total_leaked); 6792 leaks |= B_TRUE; 6793 } 6794 6795 vdev_indirect_mapping_free_obsolete_counts(vim, 6796 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6797 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6798 6799 return (leaks); 6800 } 6801 6802 static boolean_t 6803 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6804 { 6805 if (dump_opt['L']) 6806 return (B_FALSE); 6807 6808 boolean_t leaks = B_FALSE; 6809 vdev_t *rvd = spa->spa_root_vdev; 6810 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6811 vdev_t *vd = rvd->vdev_child[c]; 6812 6813 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6814 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6815 } 6816 6817 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6818 metaslab_t *msp = vd->vdev_ms[m]; 6819 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6820 spa_embedded_log_class(spa)) ? 6821 vd->vdev_log_mg : vd->vdev_mg); 6822 6823 /* 6824 * ms_allocatable has been overloaded 6825 * to contain allocated segments. Now that 6826 * we finished traversing all blocks, any 6827 * block that remains in the ms_allocatable 6828 * represents an allocated block that we 6829 * did not claim during the traversal. 6830 * Claimed blocks would have been removed 6831 * from the ms_allocatable. For indirect 6832 * vdevs, space remaining in the tree 6833 * represents parts of the mapping that are 6834 * not referenced, which is not a bug. 6835 */ 6836 if (vd->vdev_ops == &vdev_indirect_ops) { 6837 range_tree_vacate(msp->ms_allocatable, 6838 NULL, NULL); 6839 } else { 6840 range_tree_vacate(msp->ms_allocatable, 6841 zdb_leak, vd); 6842 } 6843 if (msp->ms_loaded) { 6844 msp->ms_loaded = B_FALSE; 6845 } 6846 } 6847 } 6848 6849 umem_free(zcb->zcb_vd_obsolete_counts, 6850 rvd->vdev_children * sizeof (uint32_t *)); 6851 zcb->zcb_vd_obsolete_counts = NULL; 6852 6853 return (leaks); 6854 } 6855 6856 static int 6857 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6858 { 6859 (void) tx; 6860 zdb_cb_t *zcb = arg; 6861 6862 if (dump_opt['b'] >= 5) { 6863 char blkbuf[BP_SPRINTF_LEN]; 6864 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6865 (void) printf("[%s] %s\n", 6866 "deferred free", blkbuf); 6867 } 6868 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6869 return (0); 6870 } 6871 6872 /* 6873 * Iterate over livelists which have been destroyed by the user but 6874 * are still present in the MOS, waiting to be freed 6875 */ 6876 static void 6877 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6878 { 6879 objset_t *mos = spa->spa_meta_objset; 6880 uint64_t zap_obj; 6881 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6882 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6883 if (err == ENOENT) 6884 return; 6885 ASSERT0(err); 6886 6887 zap_cursor_t zc; 6888 zap_attribute_t *attrp = zap_attribute_alloc(); 6889 dsl_deadlist_t ll; 6890 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6891 ll.dl_os = NULL; 6892 for (zap_cursor_init(&zc, mos, zap_obj); 6893 zap_cursor_retrieve(&zc, attrp) == 0; 6894 (void) zap_cursor_advance(&zc)) { 6895 dsl_deadlist_open(&ll, mos, attrp->za_first_integer); 6896 func(&ll, arg); 6897 dsl_deadlist_close(&ll); 6898 } 6899 zap_cursor_fini(&zc); 6900 zap_attribute_free(attrp); 6901 } 6902 6903 static int 6904 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6905 dmu_tx_t *tx) 6906 { 6907 ASSERT(!bp_freed); 6908 return (count_block_cb(arg, bp, tx)); 6909 } 6910 6911 static int 6912 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6913 { 6914 zdb_cb_t *zbc = args; 6915 bplist_t blks; 6916 bplist_create(&blks); 6917 /* determine which blocks have been alloc'd but not freed */ 6918 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6919 /* count those blocks */ 6920 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6921 bplist_destroy(&blks); 6922 return (0); 6923 } 6924 6925 static void 6926 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6927 { 6928 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6929 } 6930 6931 /* 6932 * Count the blocks in the livelists that have been destroyed by the user 6933 * but haven't yet been freed. 6934 */ 6935 static void 6936 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6937 { 6938 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6939 } 6940 6941 static void 6942 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6943 { 6944 ASSERT3P(arg, ==, NULL); 6945 global_feature_count[SPA_FEATURE_LIVELIST]++; 6946 dump_blkptr_list(ll, "Deleted Livelist"); 6947 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6948 } 6949 6950 /* 6951 * Print out, register object references to, and increment feature counts for 6952 * livelists that have been destroyed by the user but haven't yet been freed. 6953 */ 6954 static void 6955 deleted_livelists_dump_mos(spa_t *spa) 6956 { 6957 uint64_t zap_obj; 6958 objset_t *mos = spa->spa_meta_objset; 6959 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6960 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6961 if (err == ENOENT) 6962 return; 6963 mos_obj_refd(zap_obj); 6964 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6965 } 6966 6967 static int 6968 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6969 { 6970 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6971 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6972 int cmp; 6973 6974 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6975 if (cmp == 0) 6976 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6977 6978 return (cmp); 6979 } 6980 6981 static int 6982 dump_block_stats(spa_t *spa) 6983 { 6984 zdb_cb_t *zcb; 6985 zdb_blkstats_t *zb, *tzb; 6986 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6987 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6988 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6989 boolean_t leaks = B_FALSE; 6990 int e, c, err; 6991 bp_embedded_type_t i; 6992 6993 ddt_prefetch_all(spa); 6994 6995 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6996 6997 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6998 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6999 sizeof (zdb_brt_entry_t), 7000 offsetof(zdb_brt_entry_t, zbre_node)); 7001 zcb->zcb_brt_is_active = B_TRUE; 7002 } 7003 7004 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7005 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7006 (dump_opt['c'] == 1) ? "metadata " : "", 7007 dump_opt['c'] ? "checksums " : "", 7008 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7009 !dump_opt['L'] ? "nothing leaked " : ""); 7010 7011 /* 7012 * When leak detection is enabled we load all space maps as SM_ALLOC 7013 * maps, then traverse the pool claiming each block we discover. If 7014 * the pool is perfectly consistent, the segment trees will be empty 7015 * when we're done. Anything left over is a leak; any block we can't 7016 * claim (because it's not part of any space map) is a double 7017 * allocation, reference to a freed block, or an unclaimed log block. 7018 * 7019 * When leak detection is disabled (-L option) we still traverse the 7020 * pool claiming each block we discover, but we skip opening any space 7021 * maps. 7022 */ 7023 zdb_leak_init(spa, zcb); 7024 7025 /* 7026 * If there's a deferred-free bplist, process that first. 7027 */ 7028 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7029 bpobj_count_block_cb, zcb, NULL); 7030 7031 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7032 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7033 bpobj_count_block_cb, zcb, NULL); 7034 } 7035 7036 zdb_claim_removing(spa, zcb); 7037 7038 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7039 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7040 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7041 zcb, NULL)); 7042 } 7043 7044 deleted_livelists_count_blocks(spa, zcb); 7045 7046 if (dump_opt['c'] > 1) 7047 flags |= TRAVERSE_PREFETCH_DATA; 7048 7049 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7050 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7051 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7052 zcb->zcb_totalasize += 7053 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7054 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7055 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7056 7057 /* 7058 * If we've traversed the data blocks then we need to wait for those 7059 * I/Os to complete. We leverage "The Godfather" zio to wait on 7060 * all async I/Os to complete. 7061 */ 7062 if (dump_opt['c']) { 7063 for (c = 0; c < max_ncpus; c++) { 7064 (void) zio_wait(spa->spa_async_zio_root[c]); 7065 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7066 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7067 ZIO_FLAG_GODFATHER); 7068 } 7069 } 7070 ASSERT0(spa->spa_load_verify_bytes); 7071 7072 /* 7073 * Done after zio_wait() since zcb_haderrors is modified in 7074 * zdb_blkptr_done() 7075 */ 7076 zcb->zcb_haderrors |= err; 7077 7078 if (zcb->zcb_haderrors) { 7079 (void) printf("\nError counts:\n\n"); 7080 (void) printf("\t%5s %s\n", "errno", "count"); 7081 for (e = 0; e < 256; e++) { 7082 if (zcb->zcb_errors[e] != 0) { 7083 (void) printf("\t%5d %llu\n", 7084 e, (u_longlong_t)zcb->zcb_errors[e]); 7085 } 7086 } 7087 } 7088 7089 /* 7090 * Report any leaked segments. 7091 */ 7092 leaks |= zdb_leak_fini(spa, zcb); 7093 7094 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7095 7096 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7097 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7098 7099 total_alloc = norm_alloc + 7100 metaslab_class_get_alloc(spa_log_class(spa)) + 7101 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7102 metaslab_class_get_alloc(spa_special_class(spa)) + 7103 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7104 get_unflushed_alloc_space(spa); 7105 total_found = 7106 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7107 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7108 7109 if (total_found == total_alloc && !dump_opt['L']) { 7110 (void) printf("\n\tNo leaks (block sum matches space" 7111 " maps exactly)\n"); 7112 } else if (!dump_opt['L']) { 7113 (void) printf("block traversal size %llu != alloc %llu " 7114 "(%s %lld)\n", 7115 (u_longlong_t)total_found, 7116 (u_longlong_t)total_alloc, 7117 (dump_opt['L']) ? "unreachable" : "leaked", 7118 (longlong_t)(total_alloc - total_found)); 7119 } 7120 7121 if (tzb->zb_count == 0) { 7122 umem_free(zcb, sizeof (zdb_cb_t)); 7123 return (2); 7124 } 7125 7126 (void) printf("\n"); 7127 (void) printf("\t%-16s %14llu\n", "bp count:", 7128 (u_longlong_t)tzb->zb_count); 7129 (void) printf("\t%-16s %14llu\n", "ganged count:", 7130 (longlong_t)tzb->zb_gangs); 7131 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7132 (u_longlong_t)tzb->zb_lsize, 7133 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7134 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7135 "bp physical:", (u_longlong_t)tzb->zb_psize, 7136 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7137 (double)tzb->zb_lsize / tzb->zb_psize); 7138 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7139 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7140 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7141 (double)tzb->zb_lsize / tzb->zb_asize); 7142 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7143 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7144 (u_longlong_t)zcb->zcb_dedup_blocks, 7145 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7146 (void) printf("\t%-16s %14llu count: %6llu\n", 7147 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7148 (u_longlong_t)zcb->zcb_clone_blocks); 7149 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7150 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7151 7152 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7153 uint64_t alloc = metaslab_class_get_alloc( 7154 spa_special_class(spa)); 7155 uint64_t space = metaslab_class_get_space( 7156 spa_special_class(spa)); 7157 7158 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7159 "Special class", (u_longlong_t)alloc, 7160 100.0 * alloc / space); 7161 } 7162 7163 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7164 uint64_t alloc = metaslab_class_get_alloc( 7165 spa_dedup_class(spa)); 7166 uint64_t space = metaslab_class_get_space( 7167 spa_dedup_class(spa)); 7168 7169 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7170 "Dedup class", (u_longlong_t)alloc, 7171 100.0 * alloc / space); 7172 } 7173 7174 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7175 uint64_t alloc = metaslab_class_get_alloc( 7176 spa_embedded_log_class(spa)); 7177 uint64_t space = metaslab_class_get_space( 7178 spa_embedded_log_class(spa)); 7179 7180 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7181 "Embedded log class", (u_longlong_t)alloc, 7182 100.0 * alloc / space); 7183 } 7184 7185 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7186 if (zcb->zcb_embedded_blocks[i] == 0) 7187 continue; 7188 (void) printf("\n"); 7189 (void) printf("\tadditional, non-pointer bps of type %u: " 7190 "%10llu\n", 7191 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7192 7193 if (dump_opt['b'] >= 3) { 7194 (void) printf("\t number of (compressed) bytes: " 7195 "number of bps\n"); 7196 dump_histogram(zcb->zcb_embedded_histogram[i], 7197 sizeof (zcb->zcb_embedded_histogram[i]) / 7198 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7199 } 7200 } 7201 7202 if (tzb->zb_ditto_samevdev != 0) { 7203 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7204 (longlong_t)tzb->zb_ditto_samevdev); 7205 } 7206 if (tzb->zb_ditto_same_ms != 0) { 7207 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7208 (longlong_t)tzb->zb_ditto_same_ms); 7209 } 7210 7211 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7212 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7213 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7214 7215 if (vim == NULL) { 7216 continue; 7217 } 7218 7219 char mem[32]; 7220 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7221 mem, vdev_indirect_mapping_size(vim)); 7222 7223 (void) printf("\tindirect vdev id %llu has %llu segments " 7224 "(%s in memory)\n", 7225 (longlong_t)vd->vdev_id, 7226 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7227 } 7228 7229 if (dump_opt['b'] >= 2) { 7230 int l, t, level; 7231 char csize[32], lsize[32], psize[32], asize[32]; 7232 char avg[32], gang[32]; 7233 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7234 "\t avg\t comp\t%%Total\tType\n"); 7235 7236 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7237 UMEM_NOFAIL); 7238 7239 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7240 const char *typename; 7241 7242 /* make sure nicenum has enough space */ 7243 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7244 "csize truncated"); 7245 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7246 "lsize truncated"); 7247 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7248 "psize truncated"); 7249 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7250 "asize truncated"); 7251 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7252 "avg truncated"); 7253 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7254 "gang truncated"); 7255 7256 if (t < DMU_OT_NUMTYPES) 7257 typename = dmu_ot[t].ot_name; 7258 else 7259 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7260 7261 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7262 (void) printf("%6s\t%5s\t%5s\t%5s" 7263 "\t%5s\t%5s\t%6s\t%s\n", 7264 "-", 7265 "-", 7266 "-", 7267 "-", 7268 "-", 7269 "-", 7270 "-", 7271 typename); 7272 continue; 7273 } 7274 7275 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7276 level = (l == -1 ? ZB_TOTAL : l); 7277 zb = &zcb->zcb_type[level][t]; 7278 7279 if (zb->zb_asize == 0) 7280 continue; 7281 7282 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7283 (level > 0 || DMU_OT_IS_METADATA(t))) { 7284 mdstats->zb_count += zb->zb_count; 7285 mdstats->zb_lsize += zb->zb_lsize; 7286 mdstats->zb_psize += zb->zb_psize; 7287 mdstats->zb_asize += zb->zb_asize; 7288 mdstats->zb_gangs += zb->zb_gangs; 7289 } 7290 7291 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7292 continue; 7293 7294 if (level == 0 && zb->zb_asize == 7295 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7296 continue; 7297 7298 zdb_nicenum(zb->zb_count, csize, 7299 sizeof (csize)); 7300 zdb_nicenum(zb->zb_lsize, lsize, 7301 sizeof (lsize)); 7302 zdb_nicenum(zb->zb_psize, psize, 7303 sizeof (psize)); 7304 zdb_nicenum(zb->zb_asize, asize, 7305 sizeof (asize)); 7306 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7307 sizeof (avg)); 7308 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7309 7310 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7311 "\t%5.2f\t%6.2f\t", 7312 csize, lsize, psize, asize, avg, 7313 (double)zb->zb_lsize / zb->zb_psize, 7314 100.0 * zb->zb_asize / tzb->zb_asize); 7315 7316 if (level == ZB_TOTAL) 7317 (void) printf("%s\n", typename); 7318 else 7319 (void) printf(" L%d %s\n", 7320 level, typename); 7321 7322 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7323 (void) printf("\t number of ganged " 7324 "blocks: %s\n", gang); 7325 } 7326 7327 if (dump_opt['b'] >= 4) { 7328 (void) printf("psize " 7329 "(in 512-byte sectors): " 7330 "number of blocks\n"); 7331 dump_histogram(zb->zb_psize_histogram, 7332 PSIZE_HISTO_SIZE, 0); 7333 } 7334 } 7335 } 7336 zdb_nicenum(mdstats->zb_count, csize, 7337 sizeof (csize)); 7338 zdb_nicenum(mdstats->zb_lsize, lsize, 7339 sizeof (lsize)); 7340 zdb_nicenum(mdstats->zb_psize, psize, 7341 sizeof (psize)); 7342 zdb_nicenum(mdstats->zb_asize, asize, 7343 sizeof (asize)); 7344 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7345 sizeof (avg)); 7346 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7347 7348 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7349 "\t%5.2f\t%6.2f\t", 7350 csize, lsize, psize, asize, avg, 7351 (double)mdstats->zb_lsize / mdstats->zb_psize, 7352 100.0 * mdstats->zb_asize / tzb->zb_asize); 7353 (void) printf("%s\n", "Metadata Total"); 7354 7355 /* Output a table summarizing block sizes in the pool */ 7356 if (dump_opt['b'] >= 2) { 7357 dump_size_histograms(zcb); 7358 } 7359 7360 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7361 } 7362 7363 (void) printf("\n"); 7364 7365 if (leaks) { 7366 umem_free(zcb, sizeof (zdb_cb_t)); 7367 return (2); 7368 } 7369 7370 if (zcb->zcb_haderrors) { 7371 umem_free(zcb, sizeof (zdb_cb_t)); 7372 return (3); 7373 } 7374 7375 umem_free(zcb, sizeof (zdb_cb_t)); 7376 return (0); 7377 } 7378 7379 typedef struct zdb_ddt_entry { 7380 /* key must be first for ddt_key_compare */ 7381 ddt_key_t zdde_key; 7382 uint64_t zdde_ref_blocks; 7383 uint64_t zdde_ref_lsize; 7384 uint64_t zdde_ref_psize; 7385 uint64_t zdde_ref_dsize; 7386 avl_node_t zdde_node; 7387 } zdb_ddt_entry_t; 7388 7389 static int 7390 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7391 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7392 { 7393 (void) zilog, (void) dnp; 7394 avl_tree_t *t = arg; 7395 avl_index_t where; 7396 zdb_ddt_entry_t *zdde, zdde_search; 7397 7398 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7399 BP_IS_EMBEDDED(bp)) 7400 return (0); 7401 7402 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7403 (void) printf("traversing objset %llu, %llu objects, " 7404 "%lu blocks so far\n", 7405 (u_longlong_t)zb->zb_objset, 7406 (u_longlong_t)BP_GET_FILL(bp), 7407 avl_numnodes(t)); 7408 } 7409 7410 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7411 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7412 return (0); 7413 7414 ddt_key_fill(&zdde_search.zdde_key, bp); 7415 7416 zdde = avl_find(t, &zdde_search, &where); 7417 7418 if (zdde == NULL) { 7419 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7420 zdde->zdde_key = zdde_search.zdde_key; 7421 avl_insert(t, zdde, where); 7422 } 7423 7424 zdde->zdde_ref_blocks += 1; 7425 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7426 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7427 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7428 7429 return (0); 7430 } 7431 7432 static void 7433 dump_simulated_ddt(spa_t *spa) 7434 { 7435 avl_tree_t t; 7436 void *cookie = NULL; 7437 zdb_ddt_entry_t *zdde; 7438 ddt_histogram_t ddh_total = {{{0}}}; 7439 ddt_stat_t dds_total = {0}; 7440 7441 avl_create(&t, ddt_key_compare, 7442 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7443 7444 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7445 7446 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7447 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7448 7449 spa_config_exit(spa, SCL_CONFIG, FTAG); 7450 7451 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7452 uint64_t refcnt = zdde->zdde_ref_blocks; 7453 ASSERT(refcnt != 0); 7454 7455 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7456 7457 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7458 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7459 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7460 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7461 7462 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7463 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7464 dds->dds_ref_psize += zdde->zdde_ref_psize; 7465 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7466 7467 umem_free(zdde, sizeof (*zdde)); 7468 } 7469 7470 avl_destroy(&t); 7471 7472 ddt_histogram_total(&dds_total, &ddh_total); 7473 7474 (void) printf("Simulated DDT histogram:\n"); 7475 7476 zpool_dump_ddt(&dds_total, &ddh_total); 7477 7478 dump_dedup_ratio(&dds_total); 7479 } 7480 7481 static int 7482 verify_device_removal_feature_counts(spa_t *spa) 7483 { 7484 uint64_t dr_feature_refcount = 0; 7485 uint64_t oc_feature_refcount = 0; 7486 uint64_t indirect_vdev_count = 0; 7487 uint64_t precise_vdev_count = 0; 7488 uint64_t obsolete_counts_object_count = 0; 7489 uint64_t obsolete_sm_count = 0; 7490 uint64_t obsolete_counts_count = 0; 7491 uint64_t scip_count = 0; 7492 uint64_t obsolete_bpobj_count = 0; 7493 int ret = 0; 7494 7495 spa_condensing_indirect_phys_t *scip = 7496 &spa->spa_condensing_indirect_phys; 7497 if (scip->scip_next_mapping_object != 0) { 7498 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7499 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7500 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7501 7502 (void) printf("Condensing indirect vdev %llu: new mapping " 7503 "object %llu, prev obsolete sm %llu\n", 7504 (u_longlong_t)scip->scip_vdev, 7505 (u_longlong_t)scip->scip_next_mapping_object, 7506 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7507 if (scip->scip_prev_obsolete_sm_object != 0) { 7508 space_map_t *prev_obsolete_sm = NULL; 7509 VERIFY0(space_map_open(&prev_obsolete_sm, 7510 spa->spa_meta_objset, 7511 scip->scip_prev_obsolete_sm_object, 7512 0, vd->vdev_asize, 0)); 7513 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7514 (void) printf("\n"); 7515 space_map_close(prev_obsolete_sm); 7516 } 7517 7518 scip_count += 2; 7519 } 7520 7521 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7522 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7523 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7524 7525 if (vic->vic_mapping_object != 0) { 7526 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7527 vd->vdev_removing); 7528 indirect_vdev_count++; 7529 7530 if (vd->vdev_indirect_mapping->vim_havecounts) { 7531 obsolete_counts_count++; 7532 } 7533 } 7534 7535 boolean_t are_precise; 7536 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7537 if (are_precise) { 7538 ASSERT(vic->vic_mapping_object != 0); 7539 precise_vdev_count++; 7540 } 7541 7542 uint64_t obsolete_sm_object; 7543 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7544 if (obsolete_sm_object != 0) { 7545 ASSERT(vic->vic_mapping_object != 0); 7546 obsolete_sm_count++; 7547 } 7548 } 7549 7550 (void) feature_get_refcount(spa, 7551 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7552 &dr_feature_refcount); 7553 (void) feature_get_refcount(spa, 7554 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7555 &oc_feature_refcount); 7556 7557 if (dr_feature_refcount != indirect_vdev_count) { 7558 ret = 1; 7559 (void) printf("Number of indirect vdevs (%llu) " \ 7560 "does not match feature count (%llu)\n", 7561 (u_longlong_t)indirect_vdev_count, 7562 (u_longlong_t)dr_feature_refcount); 7563 } else { 7564 (void) printf("Verified device_removal feature refcount " \ 7565 "of %llu is correct\n", 7566 (u_longlong_t)dr_feature_refcount); 7567 } 7568 7569 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7570 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7571 obsolete_bpobj_count++; 7572 } 7573 7574 7575 obsolete_counts_object_count = precise_vdev_count; 7576 obsolete_counts_object_count += obsolete_sm_count; 7577 obsolete_counts_object_count += obsolete_counts_count; 7578 obsolete_counts_object_count += scip_count; 7579 obsolete_counts_object_count += obsolete_bpobj_count; 7580 obsolete_counts_object_count += remap_deadlist_count; 7581 7582 if (oc_feature_refcount != obsolete_counts_object_count) { 7583 ret = 1; 7584 (void) printf("Number of obsolete counts objects (%llu) " \ 7585 "does not match feature count (%llu)\n", 7586 (u_longlong_t)obsolete_counts_object_count, 7587 (u_longlong_t)oc_feature_refcount); 7588 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7589 "ob:%llu rd:%llu\n", 7590 (u_longlong_t)precise_vdev_count, 7591 (u_longlong_t)obsolete_sm_count, 7592 (u_longlong_t)obsolete_counts_count, 7593 (u_longlong_t)scip_count, 7594 (u_longlong_t)obsolete_bpobj_count, 7595 (u_longlong_t)remap_deadlist_count); 7596 } else { 7597 (void) printf("Verified indirect_refcount feature refcount " \ 7598 "of %llu is correct\n", 7599 (u_longlong_t)oc_feature_refcount); 7600 } 7601 return (ret); 7602 } 7603 7604 static void 7605 zdb_set_skip_mmp(char *target) 7606 { 7607 spa_t *spa; 7608 7609 /* 7610 * Disable the activity check to allow examination of 7611 * active pools. 7612 */ 7613 mutex_enter(&spa_namespace_lock); 7614 if ((spa = spa_lookup(target)) != NULL) { 7615 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7616 } 7617 mutex_exit(&spa_namespace_lock); 7618 } 7619 7620 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7621 /* 7622 * Import the checkpointed state of the pool specified by the target 7623 * parameter as readonly. The function also accepts a pool config 7624 * as an optional parameter, else it attempts to infer the config by 7625 * the name of the target pool. 7626 * 7627 * Note that the checkpointed state's pool name will be the name of 7628 * the original pool with the above suffix appended to it. In addition, 7629 * if the target is not a pool name (e.g. a path to a dataset) then 7630 * the new_path parameter is populated with the updated path to 7631 * reflect the fact that we are looking into the checkpointed state. 7632 * 7633 * The function returns a newly-allocated copy of the name of the 7634 * pool containing the checkpointed state. When this copy is no 7635 * longer needed it should be freed with free(3C). Same thing 7636 * applies to the new_path parameter if allocated. 7637 */ 7638 static char * 7639 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7640 { 7641 int error = 0; 7642 char *poolname, *bogus_name = NULL; 7643 boolean_t freecfg = B_FALSE; 7644 7645 /* If the target is not a pool, the extract the pool name */ 7646 char *path_start = strchr(target, '/'); 7647 if (path_start != NULL) { 7648 size_t poolname_len = path_start - target; 7649 poolname = strndup(target, poolname_len); 7650 } else { 7651 poolname = target; 7652 } 7653 7654 if (cfg == NULL) { 7655 zdb_set_skip_mmp(poolname); 7656 error = spa_get_stats(poolname, &cfg, NULL, 0); 7657 if (error != 0) { 7658 fatal("Tried to read config of pool \"%s\" but " 7659 "spa_get_stats() failed with error %d\n", 7660 poolname, error); 7661 } 7662 freecfg = B_TRUE; 7663 } 7664 7665 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7666 if (target != poolname) 7667 free(poolname); 7668 return (NULL); 7669 } 7670 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7671 7672 error = spa_import(bogus_name, cfg, NULL, 7673 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7674 ZFS_IMPORT_SKIP_MMP); 7675 if (freecfg) 7676 nvlist_free(cfg); 7677 if (error != 0) { 7678 fatal("Tried to import pool \"%s\" but spa_import() failed " 7679 "with error %d\n", bogus_name, error); 7680 } 7681 7682 if (new_path != NULL && path_start != NULL) { 7683 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7684 free(bogus_name); 7685 if (path_start != NULL) 7686 free(poolname); 7687 return (NULL); 7688 } 7689 } 7690 7691 if (target != poolname) 7692 free(poolname); 7693 7694 return (bogus_name); 7695 } 7696 7697 typedef struct verify_checkpoint_sm_entry_cb_arg { 7698 vdev_t *vcsec_vd; 7699 7700 /* the following fields are only used for printing progress */ 7701 uint64_t vcsec_entryid; 7702 uint64_t vcsec_num_entries; 7703 } verify_checkpoint_sm_entry_cb_arg_t; 7704 7705 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7706 7707 static int 7708 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7709 { 7710 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7711 vdev_t *vd = vcsec->vcsec_vd; 7712 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7713 uint64_t end = sme->sme_offset + sme->sme_run; 7714 7715 ASSERT(sme->sme_type == SM_FREE); 7716 7717 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7718 (void) fprintf(stderr, 7719 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7720 (longlong_t)vd->vdev_id, 7721 (longlong_t)vcsec->vcsec_entryid, 7722 (longlong_t)vcsec->vcsec_num_entries); 7723 } 7724 vcsec->vcsec_entryid++; 7725 7726 /* 7727 * See comment in checkpoint_sm_exclude_entry_cb() 7728 */ 7729 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7730 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7731 7732 /* 7733 * The entries in the vdev_checkpoint_sm should be marked as 7734 * allocated in the checkpointed state of the pool, therefore 7735 * their respective ms_allocateable trees should not contain them. 7736 */ 7737 mutex_enter(&ms->ms_lock); 7738 range_tree_verify_not_present(ms->ms_allocatable, 7739 sme->sme_offset, sme->sme_run); 7740 mutex_exit(&ms->ms_lock); 7741 7742 return (0); 7743 } 7744 7745 /* 7746 * Verify that all segments in the vdev_checkpoint_sm are allocated 7747 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7748 * ms_allocatable). 7749 * 7750 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7751 * each vdev in the current state of the pool to the metaslab space maps 7752 * (ms_sm) of the checkpointed state of the pool. 7753 * 7754 * Note that the function changes the state of the ms_allocatable 7755 * trees of the current spa_t. The entries of these ms_allocatable 7756 * trees are cleared out and then repopulated from with the free 7757 * entries of their respective ms_sm space maps. 7758 */ 7759 static void 7760 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7761 { 7762 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7763 vdev_t *current_rvd = current->spa_root_vdev; 7764 7765 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7766 7767 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7768 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7769 vdev_t *current_vd = current_rvd->vdev_child[c]; 7770 7771 space_map_t *checkpoint_sm = NULL; 7772 uint64_t checkpoint_sm_obj; 7773 7774 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7775 /* 7776 * Since we don't allow device removal in a pool 7777 * that has a checkpoint, we expect that all removed 7778 * vdevs were removed from the pool before the 7779 * checkpoint. 7780 */ 7781 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7782 continue; 7783 } 7784 7785 /* 7786 * If the checkpoint space map doesn't exist, then nothing 7787 * here is checkpointed so there's nothing to verify. 7788 */ 7789 if (current_vd->vdev_top_zap == 0 || 7790 zap_contains(spa_meta_objset(current), 7791 current_vd->vdev_top_zap, 7792 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7793 continue; 7794 7795 VERIFY0(zap_lookup(spa_meta_objset(current), 7796 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7797 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7798 7799 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7800 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7801 current_vd->vdev_ashift)); 7802 7803 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7804 vcsec.vcsec_vd = ckpoint_vd; 7805 vcsec.vcsec_entryid = 0; 7806 vcsec.vcsec_num_entries = 7807 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7808 VERIFY0(space_map_iterate(checkpoint_sm, 7809 space_map_length(checkpoint_sm), 7810 verify_checkpoint_sm_entry_cb, &vcsec)); 7811 if (dump_opt['m'] > 3) 7812 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7813 space_map_close(checkpoint_sm); 7814 } 7815 7816 /* 7817 * If we've added vdevs since we took the checkpoint, ensure 7818 * that their checkpoint space maps are empty. 7819 */ 7820 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7821 for (uint64_t c = ckpoint_rvd->vdev_children; 7822 c < current_rvd->vdev_children; c++) { 7823 vdev_t *current_vd = current_rvd->vdev_child[c]; 7824 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7825 } 7826 } 7827 7828 /* for cleaner progress output */ 7829 (void) fprintf(stderr, "\n"); 7830 } 7831 7832 /* 7833 * Verifies that all space that's allocated in the checkpoint is 7834 * still allocated in the current version, by checking that everything 7835 * in checkpoint's ms_allocatable (which is actually allocated, not 7836 * allocatable/free) is not present in current's ms_allocatable. 7837 * 7838 * Note that the function changes the state of the ms_allocatable 7839 * trees of both spas when called. The entries of all ms_allocatable 7840 * trees are cleared out and then repopulated from their respective 7841 * ms_sm space maps. In the checkpointed state we load the allocated 7842 * entries, and in the current state we load the free entries. 7843 */ 7844 static void 7845 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7846 { 7847 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7848 vdev_t *current_rvd = current->spa_root_vdev; 7849 7850 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7851 load_concrete_ms_allocatable_trees(current, SM_FREE); 7852 7853 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7854 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7855 vdev_t *current_vd = current_rvd->vdev_child[i]; 7856 7857 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7858 /* 7859 * See comment in verify_checkpoint_vdev_spacemaps() 7860 */ 7861 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7862 continue; 7863 } 7864 7865 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7866 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7867 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7868 7869 (void) fprintf(stderr, 7870 "\rverifying vdev %llu of %llu, " 7871 "metaslab %llu of %llu ...", 7872 (longlong_t)current_vd->vdev_id, 7873 (longlong_t)current_rvd->vdev_children, 7874 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7875 (longlong_t)current_vd->vdev_ms_count); 7876 7877 /* 7878 * We walk through the ms_allocatable trees that 7879 * are loaded with the allocated blocks from the 7880 * ms_sm spacemaps of the checkpoint. For each 7881 * one of these ranges we ensure that none of them 7882 * exists in the ms_allocatable trees of the 7883 * current state which are loaded with the ranges 7884 * that are currently free. 7885 * 7886 * This way we ensure that none of the blocks that 7887 * are part of the checkpoint were freed by mistake. 7888 */ 7889 range_tree_walk(ckpoint_msp->ms_allocatable, 7890 (range_tree_func_t *)range_tree_verify_not_present, 7891 current_msp->ms_allocatable); 7892 } 7893 } 7894 7895 /* for cleaner progress output */ 7896 (void) fprintf(stderr, "\n"); 7897 } 7898 7899 static void 7900 verify_checkpoint_blocks(spa_t *spa) 7901 { 7902 ASSERT(!dump_opt['L']); 7903 7904 spa_t *checkpoint_spa; 7905 char *checkpoint_pool; 7906 int error = 0; 7907 7908 /* 7909 * We import the checkpointed state of the pool (under a different 7910 * name) so we can do verification on it against the current state 7911 * of the pool. 7912 */ 7913 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7914 NULL); 7915 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7916 7917 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7918 if (error != 0) { 7919 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7920 "error %d\n", checkpoint_pool, error); 7921 } 7922 7923 /* 7924 * Ensure that ranges in the checkpoint space maps of each vdev 7925 * are allocated according to the checkpointed state's metaslab 7926 * space maps. 7927 */ 7928 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7929 7930 /* 7931 * Ensure that allocated ranges in the checkpoint's metaslab 7932 * space maps remain allocated in the metaslab space maps of 7933 * the current state. 7934 */ 7935 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7936 7937 /* 7938 * Once we are done, we get rid of the checkpointed state. 7939 */ 7940 spa_close(checkpoint_spa, FTAG); 7941 free(checkpoint_pool); 7942 } 7943 7944 static void 7945 dump_leftover_checkpoint_blocks(spa_t *spa) 7946 { 7947 vdev_t *rvd = spa->spa_root_vdev; 7948 7949 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7950 vdev_t *vd = rvd->vdev_child[i]; 7951 7952 space_map_t *checkpoint_sm = NULL; 7953 uint64_t checkpoint_sm_obj; 7954 7955 if (vd->vdev_top_zap == 0) 7956 continue; 7957 7958 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7959 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7960 continue; 7961 7962 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7963 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7964 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7965 7966 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7967 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7968 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7969 space_map_close(checkpoint_sm); 7970 } 7971 } 7972 7973 static int 7974 verify_checkpoint(spa_t *spa) 7975 { 7976 uberblock_t checkpoint; 7977 int error; 7978 7979 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7980 return (0); 7981 7982 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7983 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7984 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7985 7986 if (error == ENOENT && !dump_opt['L']) { 7987 /* 7988 * If the feature is active but the uberblock is missing 7989 * then we must be in the middle of discarding the 7990 * checkpoint. 7991 */ 7992 (void) printf("\nPartially discarded checkpoint " 7993 "state found:\n"); 7994 if (dump_opt['m'] > 3) 7995 dump_leftover_checkpoint_blocks(spa); 7996 return (0); 7997 } else if (error != 0) { 7998 (void) printf("lookup error %d when looking for " 7999 "checkpointed uberblock in MOS\n", error); 8000 return (error); 8001 } 8002 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8003 8004 if (checkpoint.ub_checkpoint_txg == 0) { 8005 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8006 "uberblock\n"); 8007 error = 3; 8008 } 8009 8010 if (error == 0 && !dump_opt['L']) 8011 verify_checkpoint_blocks(spa); 8012 8013 return (error); 8014 } 8015 8016 static void 8017 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8018 { 8019 (void) arg; 8020 for (uint64_t i = start; i < size; i++) { 8021 (void) printf("MOS object %llu referenced but not allocated\n", 8022 (u_longlong_t)i); 8023 } 8024 } 8025 8026 static void 8027 mos_obj_refd(uint64_t obj) 8028 { 8029 if (obj != 0 && mos_refd_objs != NULL) 8030 range_tree_add(mos_refd_objs, obj, 1); 8031 } 8032 8033 /* 8034 * Call on a MOS object that may already have been referenced. 8035 */ 8036 static void 8037 mos_obj_refd_multiple(uint64_t obj) 8038 { 8039 if (obj != 0 && mos_refd_objs != NULL && 8040 !range_tree_contains(mos_refd_objs, obj, 1)) 8041 range_tree_add(mos_refd_objs, obj, 1); 8042 } 8043 8044 static void 8045 mos_leak_vdev_top_zap(vdev_t *vd) 8046 { 8047 uint64_t ms_flush_data_obj; 8048 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8049 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8050 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8051 if (error == ENOENT) 8052 return; 8053 ASSERT0(error); 8054 8055 mos_obj_refd(ms_flush_data_obj); 8056 } 8057 8058 static void 8059 mos_leak_vdev(vdev_t *vd) 8060 { 8061 mos_obj_refd(vd->vdev_dtl_object); 8062 mos_obj_refd(vd->vdev_ms_array); 8063 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8064 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8065 mos_obj_refd(vd->vdev_leaf_zap); 8066 if (vd->vdev_checkpoint_sm != NULL) 8067 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8068 if (vd->vdev_indirect_mapping != NULL) { 8069 mos_obj_refd(vd->vdev_indirect_mapping-> 8070 vim_phys->vimp_counts_object); 8071 } 8072 if (vd->vdev_obsolete_sm != NULL) 8073 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8074 8075 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8076 metaslab_t *ms = vd->vdev_ms[m]; 8077 mos_obj_refd(space_map_object(ms->ms_sm)); 8078 } 8079 8080 if (vd->vdev_root_zap != 0) 8081 mos_obj_refd(vd->vdev_root_zap); 8082 8083 if (vd->vdev_top_zap != 0) { 8084 mos_obj_refd(vd->vdev_top_zap); 8085 mos_leak_vdev_top_zap(vd); 8086 } 8087 8088 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8089 mos_leak_vdev(vd->vdev_child[c]); 8090 } 8091 } 8092 8093 static void 8094 mos_leak_log_spacemaps(spa_t *spa) 8095 { 8096 uint64_t spacemap_zap; 8097 int error = zap_lookup(spa_meta_objset(spa), 8098 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8099 sizeof (spacemap_zap), 1, &spacemap_zap); 8100 if (error == ENOENT) 8101 return; 8102 ASSERT0(error); 8103 8104 mos_obj_refd(spacemap_zap); 8105 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8106 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8107 mos_obj_refd(sls->sls_sm_obj); 8108 } 8109 8110 static void 8111 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8112 { 8113 zap_cursor_t zc; 8114 zap_attribute_t *za = zap_attribute_alloc(); 8115 for (zap_cursor_init(&zc, mos, errlog); 8116 zap_cursor_retrieve(&zc, za) == 0; 8117 zap_cursor_advance(&zc)) { 8118 mos_obj_refd(za->za_first_integer); 8119 } 8120 zap_cursor_fini(&zc); 8121 zap_attribute_free(za); 8122 } 8123 8124 static int 8125 dump_mos_leaks(spa_t *spa) 8126 { 8127 int rv = 0; 8128 objset_t *mos = spa->spa_meta_objset; 8129 dsl_pool_t *dp = spa->spa_dsl_pool; 8130 8131 /* Visit and mark all referenced objects in the MOS */ 8132 8133 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8134 mos_obj_refd(spa->spa_pool_props_object); 8135 mos_obj_refd(spa->spa_config_object); 8136 mos_obj_refd(spa->spa_ddt_stat_object); 8137 mos_obj_refd(spa->spa_feat_desc_obj); 8138 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8139 mos_obj_refd(spa->spa_feat_for_read_obj); 8140 mos_obj_refd(spa->spa_feat_for_write_obj); 8141 mos_obj_refd(spa->spa_history); 8142 mos_obj_refd(spa->spa_errlog_last); 8143 mos_obj_refd(spa->spa_errlog_scrub); 8144 8145 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8146 errorlog_count_refd(mos, spa->spa_errlog_last); 8147 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8148 } 8149 8150 mos_obj_refd(spa->spa_all_vdev_zaps); 8151 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8152 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8153 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8154 bpobj_count_refd(&spa->spa_deferred_bpobj); 8155 mos_obj_refd(dp->dp_empty_bpobj); 8156 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8157 bpobj_count_refd(&dp->dp_free_bpobj); 8158 mos_obj_refd(spa->spa_l2cache.sav_object); 8159 mos_obj_refd(spa->spa_spares.sav_object); 8160 8161 if (spa->spa_syncing_log_sm != NULL) 8162 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8163 mos_leak_log_spacemaps(spa); 8164 8165 mos_obj_refd(spa->spa_condensing_indirect_phys. 8166 scip_next_mapping_object); 8167 mos_obj_refd(spa->spa_condensing_indirect_phys. 8168 scip_prev_obsolete_sm_object); 8169 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8170 vdev_indirect_mapping_t *vim = 8171 vdev_indirect_mapping_open(mos, 8172 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8173 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8174 vdev_indirect_mapping_close(vim); 8175 } 8176 deleted_livelists_dump_mos(spa); 8177 8178 if (dp->dp_origin_snap != NULL) { 8179 dsl_dataset_t *ds; 8180 8181 dsl_pool_config_enter(dp, FTAG); 8182 VERIFY0(dsl_dataset_hold_obj(dp, 8183 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8184 FTAG, &ds)); 8185 count_ds_mos_objects(ds); 8186 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8187 dsl_dataset_rele(ds, FTAG); 8188 dsl_pool_config_exit(dp, FTAG); 8189 8190 count_ds_mos_objects(dp->dp_origin_snap); 8191 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8192 } 8193 count_dir_mos_objects(dp->dp_mos_dir); 8194 if (dp->dp_free_dir != NULL) 8195 count_dir_mos_objects(dp->dp_free_dir); 8196 if (dp->dp_leak_dir != NULL) 8197 count_dir_mos_objects(dp->dp_leak_dir); 8198 8199 mos_leak_vdev(spa->spa_root_vdev); 8200 8201 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8202 ddt_t *ddt = spa->spa_ddt[c]; 8203 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8204 continue; 8205 8206 /* DDT store objects */ 8207 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8208 for (ddt_class_t class = 0; class < DDT_CLASSES; 8209 class++) { 8210 mos_obj_refd(ddt->ddt_object[type][class]); 8211 } 8212 } 8213 8214 /* FDT container */ 8215 if (ddt->ddt_version == DDT_VERSION_FDT) 8216 mos_obj_refd(ddt->ddt_dir_object); 8217 8218 /* FDT log objects */ 8219 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8220 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8221 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8222 } 8223 } 8224 8225 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 8226 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 8227 if (brtvd->bv_initiated) { 8228 mos_obj_refd(brtvd->bv_mos_brtvdev); 8229 mos_obj_refd(brtvd->bv_mos_entries); 8230 } 8231 } 8232 8233 /* 8234 * Visit all allocated objects and make sure they are referenced. 8235 */ 8236 uint64_t object = 0; 8237 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8238 if (range_tree_contains(mos_refd_objs, object, 1)) { 8239 range_tree_remove(mos_refd_objs, object, 1); 8240 } else { 8241 dmu_object_info_t doi; 8242 const char *name; 8243 VERIFY0(dmu_object_info(mos, object, &doi)); 8244 if (doi.doi_type & DMU_OT_NEWTYPE) { 8245 dmu_object_byteswap_t bswap = 8246 DMU_OT_BYTESWAP(doi.doi_type); 8247 name = dmu_ot_byteswap[bswap].ob_name; 8248 } else { 8249 name = dmu_ot[doi.doi_type].ot_name; 8250 } 8251 8252 (void) printf("MOS object %llu (%s) leaked\n", 8253 (u_longlong_t)object, name); 8254 rv = 2; 8255 } 8256 } 8257 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8258 if (!range_tree_is_empty(mos_refd_objs)) 8259 rv = 2; 8260 range_tree_vacate(mos_refd_objs, NULL, NULL); 8261 range_tree_destroy(mos_refd_objs); 8262 return (rv); 8263 } 8264 8265 typedef struct log_sm_obsolete_stats_arg { 8266 uint64_t lsos_current_txg; 8267 8268 uint64_t lsos_total_entries; 8269 uint64_t lsos_valid_entries; 8270 8271 uint64_t lsos_sm_entries; 8272 uint64_t lsos_valid_sm_entries; 8273 } log_sm_obsolete_stats_arg_t; 8274 8275 static int 8276 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8277 uint64_t txg, void *arg) 8278 { 8279 log_sm_obsolete_stats_arg_t *lsos = arg; 8280 8281 uint64_t offset = sme->sme_offset; 8282 uint64_t vdev_id = sme->sme_vdev; 8283 8284 if (lsos->lsos_current_txg == 0) { 8285 /* this is the first log */ 8286 lsos->lsos_current_txg = txg; 8287 } else if (lsos->lsos_current_txg < txg) { 8288 /* we just changed log - print stats and reset */ 8289 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8290 (u_longlong_t)lsos->lsos_valid_sm_entries, 8291 (u_longlong_t)lsos->lsos_sm_entries, 8292 (u_longlong_t)lsos->lsos_current_txg); 8293 lsos->lsos_valid_sm_entries = 0; 8294 lsos->lsos_sm_entries = 0; 8295 lsos->lsos_current_txg = txg; 8296 } 8297 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8298 8299 lsos->lsos_sm_entries++; 8300 lsos->lsos_total_entries++; 8301 8302 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8303 if (!vdev_is_concrete(vd)) 8304 return (0); 8305 8306 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8307 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8308 8309 if (txg < metaslab_unflushed_txg(ms)) 8310 return (0); 8311 lsos->lsos_valid_sm_entries++; 8312 lsos->lsos_valid_entries++; 8313 return (0); 8314 } 8315 8316 static void 8317 dump_log_spacemap_obsolete_stats(spa_t *spa) 8318 { 8319 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8320 return; 8321 8322 log_sm_obsolete_stats_arg_t lsos = {0}; 8323 8324 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8325 8326 iterate_through_spacemap_logs(spa, 8327 log_spacemap_obsolete_stats_cb, &lsos); 8328 8329 /* print stats for latest log */ 8330 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8331 (u_longlong_t)lsos.lsos_valid_sm_entries, 8332 (u_longlong_t)lsos.lsos_sm_entries, 8333 (u_longlong_t)lsos.lsos_current_txg); 8334 8335 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8336 (u_longlong_t)lsos.lsos_valid_entries, 8337 (u_longlong_t)lsos.lsos_total_entries); 8338 } 8339 8340 static void 8341 dump_zpool(spa_t *spa) 8342 { 8343 dsl_pool_t *dp = spa_get_dsl(spa); 8344 int rc = 0; 8345 8346 if (dump_opt['y']) { 8347 livelist_metaslab_validate(spa); 8348 } 8349 8350 if (dump_opt['S']) { 8351 dump_simulated_ddt(spa); 8352 return; 8353 } 8354 8355 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8356 (void) printf("\nCached configuration:\n"); 8357 dump_nvlist(spa->spa_config, 8); 8358 } 8359 8360 if (dump_opt['C']) 8361 dump_config(spa); 8362 8363 if (dump_opt['u']) 8364 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8365 8366 if (dump_opt['D']) 8367 dump_all_ddts(spa); 8368 8369 if (dump_opt['T']) 8370 dump_brt(spa); 8371 8372 if (dump_opt['d'] > 2 || dump_opt['m']) 8373 dump_metaslabs(spa); 8374 if (dump_opt['M']) 8375 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8376 if (dump_opt['d'] > 2 || dump_opt['m']) { 8377 dump_log_spacemaps(spa); 8378 dump_log_spacemap_obsolete_stats(spa); 8379 } 8380 8381 if (dump_opt['d'] || dump_opt['i']) { 8382 spa_feature_t f; 8383 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8384 0); 8385 dump_objset(dp->dp_meta_objset); 8386 8387 if (dump_opt['d'] >= 3) { 8388 dsl_pool_t *dp = spa->spa_dsl_pool; 8389 dump_full_bpobj(&spa->spa_deferred_bpobj, 8390 "Deferred frees", 0); 8391 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8392 dump_full_bpobj(&dp->dp_free_bpobj, 8393 "Pool snapshot frees", 0); 8394 } 8395 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8396 ASSERT(spa_feature_is_enabled(spa, 8397 SPA_FEATURE_DEVICE_REMOVAL)); 8398 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8399 "Pool obsolete blocks", 0); 8400 } 8401 8402 if (spa_feature_is_active(spa, 8403 SPA_FEATURE_ASYNC_DESTROY)) { 8404 dump_bptree(spa->spa_meta_objset, 8405 dp->dp_bptree_obj, 8406 "Pool dataset frees"); 8407 } 8408 dump_dtl(spa->spa_root_vdev, 0); 8409 } 8410 8411 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8412 global_feature_count[f] = UINT64_MAX; 8413 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8414 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8415 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8416 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8417 8418 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8419 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8420 8421 if (rc == 0 && !dump_opt['L']) 8422 rc = dump_mos_leaks(spa); 8423 8424 for (f = 0; f < SPA_FEATURES; f++) { 8425 uint64_t refcount; 8426 8427 uint64_t *arr; 8428 if (!(spa_feature_table[f].fi_flags & 8429 ZFEATURE_FLAG_PER_DATASET)) { 8430 if (global_feature_count[f] == UINT64_MAX) 8431 continue; 8432 if (!spa_feature_is_enabled(spa, f)) { 8433 ASSERT0(global_feature_count[f]); 8434 continue; 8435 } 8436 arr = global_feature_count; 8437 } else { 8438 if (!spa_feature_is_enabled(spa, f)) { 8439 ASSERT0(dataset_feature_count[f]); 8440 continue; 8441 } 8442 arr = dataset_feature_count; 8443 } 8444 if (feature_get_refcount(spa, &spa_feature_table[f], 8445 &refcount) == ENOTSUP) 8446 continue; 8447 if (arr[f] != refcount) { 8448 (void) printf("%s feature refcount mismatch: " 8449 "%lld consumers != %lld refcount\n", 8450 spa_feature_table[f].fi_uname, 8451 (longlong_t)arr[f], (longlong_t)refcount); 8452 rc = 2; 8453 } else { 8454 (void) printf("Verified %s feature refcount " 8455 "of %llu is correct\n", 8456 spa_feature_table[f].fi_uname, 8457 (longlong_t)refcount); 8458 } 8459 } 8460 8461 if (rc == 0) 8462 rc = verify_device_removal_feature_counts(spa); 8463 } 8464 8465 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8466 rc = dump_block_stats(spa); 8467 8468 if (rc == 0) 8469 rc = verify_spacemap_refcounts(spa); 8470 8471 if (dump_opt['s']) 8472 show_pool_stats(spa); 8473 8474 if (dump_opt['h']) 8475 dump_history(spa); 8476 8477 if (rc == 0) 8478 rc = verify_checkpoint(spa); 8479 8480 if (rc != 0) { 8481 dump_debug_buffer(); 8482 zdb_exit(rc); 8483 } 8484 } 8485 8486 #define ZDB_FLAG_CHECKSUM 0x0001 8487 #define ZDB_FLAG_DECOMPRESS 0x0002 8488 #define ZDB_FLAG_BSWAP 0x0004 8489 #define ZDB_FLAG_GBH 0x0008 8490 #define ZDB_FLAG_INDIRECT 0x0010 8491 #define ZDB_FLAG_RAW 0x0020 8492 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8493 #define ZDB_FLAG_VERBOSE 0x0080 8494 8495 static int flagbits[256]; 8496 static char flagbitstr[16]; 8497 8498 static void 8499 zdb_print_blkptr(const blkptr_t *bp, int flags) 8500 { 8501 char blkbuf[BP_SPRINTF_LEN]; 8502 8503 if (flags & ZDB_FLAG_BSWAP) 8504 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8505 8506 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8507 (void) printf("%s\n", blkbuf); 8508 } 8509 8510 static void 8511 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8512 { 8513 int i; 8514 8515 for (i = 0; i < nbps; i++) 8516 zdb_print_blkptr(&bp[i], flags); 8517 } 8518 8519 static void 8520 zdb_dump_gbh(void *buf, int flags) 8521 { 8522 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8523 } 8524 8525 static void 8526 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8527 { 8528 if (flags & ZDB_FLAG_BSWAP) 8529 byteswap_uint64_array(buf, size); 8530 VERIFY(write(fileno(stdout), buf, size) == size); 8531 } 8532 8533 static void 8534 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8535 { 8536 uint64_t *d = (uint64_t *)buf; 8537 unsigned nwords = size / sizeof (uint64_t); 8538 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8539 unsigned i, j; 8540 const char *hdr; 8541 char *c; 8542 8543 8544 if (do_bswap) 8545 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8546 else 8547 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8548 8549 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8550 8551 #ifdef _ZFS_LITTLE_ENDIAN 8552 /* correct the endianness */ 8553 do_bswap = !do_bswap; 8554 #endif 8555 for (i = 0; i < nwords; i += 2) { 8556 (void) printf("%06llx: %016llx %016llx ", 8557 (u_longlong_t)(i * sizeof (uint64_t)), 8558 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8559 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8560 8561 c = (char *)&d[i]; 8562 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8563 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8564 (void) printf("\n"); 8565 } 8566 } 8567 8568 /* 8569 * There are two acceptable formats: 8570 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8571 * child[.child]* - For example: 0.1.1 8572 * 8573 * The second form can be used to specify arbitrary vdevs anywhere 8574 * in the hierarchy. For example, in a pool with a mirror of 8575 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8576 */ 8577 static vdev_t * 8578 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8579 { 8580 char *s, *p, *q; 8581 unsigned i; 8582 8583 if (vdev == NULL) 8584 return (NULL); 8585 8586 /* First, assume the x.x.x.x format */ 8587 i = strtoul(path, &s, 10); 8588 if (s == path || (s && *s != '.' && *s != '\0')) 8589 goto name; 8590 if (i >= vdev->vdev_children) 8591 return (NULL); 8592 8593 vdev = vdev->vdev_child[i]; 8594 if (s && *s == '\0') 8595 return (vdev); 8596 return (zdb_vdev_lookup(vdev, s+1)); 8597 8598 name: 8599 for (i = 0; i < vdev->vdev_children; i++) { 8600 vdev_t *vc = vdev->vdev_child[i]; 8601 8602 if (vc->vdev_path == NULL) { 8603 vc = zdb_vdev_lookup(vc, path); 8604 if (vc == NULL) 8605 continue; 8606 else 8607 return (vc); 8608 } 8609 8610 p = strrchr(vc->vdev_path, '/'); 8611 p = p ? p + 1 : vc->vdev_path; 8612 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8613 8614 if (strcmp(vc->vdev_path, path) == 0) 8615 return (vc); 8616 if (strcmp(p, path) == 0) 8617 return (vc); 8618 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8619 return (vc); 8620 } 8621 8622 return (NULL); 8623 } 8624 8625 static int 8626 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8627 { 8628 dsl_dataset_t *ds; 8629 8630 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8631 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8632 NULL, &ds); 8633 if (error != 0) { 8634 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8635 (u_longlong_t)objset_id, strerror(error)); 8636 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8637 return (error); 8638 } 8639 dsl_dataset_name(ds, outstr); 8640 dsl_dataset_rele(ds, NULL); 8641 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8642 return (0); 8643 } 8644 8645 static boolean_t 8646 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8647 { 8648 char *s0, *s1, *tmp = NULL; 8649 8650 if (sizes == NULL) 8651 return (B_FALSE); 8652 8653 s0 = strtok_r(sizes, "/", &tmp); 8654 if (s0 == NULL) 8655 return (B_FALSE); 8656 s1 = strtok_r(NULL, "/", &tmp); 8657 *lsize = strtoull(s0, NULL, 16); 8658 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8659 return (*lsize >= *psize && *psize > 0); 8660 } 8661 8662 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8663 8664 static boolean_t 8665 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8666 int flags, int cfunc, void *lbuf, void *lbuf2) 8667 { 8668 if (flags & ZDB_FLAG_VERBOSE) { 8669 (void) fprintf(stderr, 8670 "Trying %05llx -> %05llx (%s)\n", 8671 (u_longlong_t)psize, 8672 (u_longlong_t)lsize, 8673 zio_compress_table[cfunc].ci_name); 8674 } 8675 8676 /* 8677 * We set lbuf to all zeros and lbuf2 to all 8678 * ones, then decompress to both buffers and 8679 * compare their contents. This way we can 8680 * know if decompression filled exactly to 8681 * lsize or if it left some bytes unwritten. 8682 */ 8683 8684 memset(lbuf, 0x00, lsize); 8685 memset(lbuf2, 0xff, lsize); 8686 8687 abd_t labd, labd2; 8688 abd_get_from_buf_struct(&labd, lbuf, lsize); 8689 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8690 8691 boolean_t ret = B_FALSE; 8692 if (zio_decompress_data(cfunc, pabd, 8693 &labd, psize, lsize, NULL) == 0 && 8694 zio_decompress_data(cfunc, pabd, 8695 &labd2, psize, lsize, NULL) == 0 && 8696 memcmp(lbuf, lbuf2, lsize) == 0) 8697 ret = B_TRUE; 8698 8699 abd_free(&labd2); 8700 abd_free(&labd); 8701 8702 return (ret); 8703 } 8704 8705 static uint64_t 8706 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8707 uint64_t psize, int flags) 8708 { 8709 (void) buf; 8710 uint64_t orig_lsize = lsize; 8711 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8712 boolean_t found = B_FALSE; 8713 /* 8714 * We don't know how the data was compressed, so just try 8715 * every decompress function at every inflated blocksize. 8716 */ 8717 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8718 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8719 int *cfuncp = cfuncs; 8720 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8721 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8722 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8723 ZIO_COMPRESS_MASK(ZLE); 8724 *cfuncp++ = ZIO_COMPRESS_LZ4; 8725 *cfuncp++ = ZIO_COMPRESS_LZJB; 8726 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8727 /* 8728 * Every gzip level has the same decompressor, no need to 8729 * run it 9 times per bruteforce attempt. 8730 */ 8731 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8732 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8733 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8734 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8735 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8736 if (((1ULL << c) & mask) == 0) 8737 *cfuncp++ = c; 8738 8739 /* 8740 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8741 * could take a while and we should let the user know 8742 * we are not stuck. On the other hand, printing progress 8743 * info gets old after a while. User can specify 'v' flag 8744 * to see the progression. 8745 */ 8746 if (lsize == psize) 8747 lsize += SPA_MINBLOCKSIZE; 8748 else 8749 maxlsize = lsize; 8750 8751 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8752 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8753 if (try_decompress_block(pabd, lsize, psize, flags, 8754 *cfuncp, lbuf, lbuf2)) { 8755 found = B_TRUE; 8756 break; 8757 } 8758 } 8759 if (*cfuncp != 0) 8760 break; 8761 } 8762 if (!found && tryzle) { 8763 for (lsize = orig_lsize; lsize <= maxlsize; 8764 lsize += SPA_MINBLOCKSIZE) { 8765 if (try_decompress_block(pabd, lsize, psize, flags, 8766 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8767 *cfuncp = ZIO_COMPRESS_ZLE; 8768 found = B_TRUE; 8769 break; 8770 } 8771 } 8772 } 8773 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8774 8775 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8776 printf("\nZLE decompression was selected. If you " 8777 "suspect the results are wrong,\ntry avoiding ZLE " 8778 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8779 } 8780 8781 return (lsize > maxlsize ? -1 : lsize); 8782 } 8783 8784 /* 8785 * Read a block from a pool and print it out. The syntax of the 8786 * block descriptor is: 8787 * 8788 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8789 * 8790 * pool - The name of the pool you wish to read from 8791 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8792 * offset - offset, in hex, in bytes 8793 * size - Amount of data to read, in hex, in bytes 8794 * flags - A string of characters specifying options 8795 * b: Decode a blkptr at given offset within block 8796 * c: Calculate and display checksums 8797 * d: Decompress data before dumping 8798 * e: Byteswap data before dumping 8799 * g: Display data as a gang block header 8800 * i: Display as an indirect block 8801 * r: Dump raw data to stdout 8802 * v: Verbose 8803 * 8804 */ 8805 static void 8806 zdb_read_block(char *thing, spa_t *spa) 8807 { 8808 blkptr_t blk, *bp = &blk; 8809 dva_t *dva = bp->blk_dva; 8810 int flags = 0; 8811 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8812 zio_t *zio; 8813 vdev_t *vd; 8814 abd_t *pabd; 8815 void *lbuf, *buf; 8816 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8817 const char *vdev, *errmsg = NULL; 8818 int i, len, error; 8819 boolean_t borrowed = B_FALSE, found = B_FALSE; 8820 8821 dup = strdup(thing); 8822 s = strtok_r(dup, ":", &tmp); 8823 vdev = s ?: ""; 8824 s = strtok_r(NULL, ":", &tmp); 8825 offset = strtoull(s ? s : "", NULL, 16); 8826 sizes = strtok_r(NULL, ":", &tmp); 8827 s = strtok_r(NULL, ":", &tmp); 8828 flagstr = strdup(s ?: ""); 8829 8830 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8831 errmsg = "invalid size(s)"; 8832 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8833 errmsg = "size must be a multiple of sector size"; 8834 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8835 errmsg = "offset must be a multiple of sector size"; 8836 if (errmsg) { 8837 (void) printf("Invalid block specifier: %s - %s\n", 8838 thing, errmsg); 8839 goto done; 8840 } 8841 8842 tmp = NULL; 8843 for (s = strtok_r(flagstr, ":", &tmp); 8844 s != NULL; 8845 s = strtok_r(NULL, ":", &tmp)) { 8846 len = strlen(flagstr); 8847 for (i = 0; i < len; i++) { 8848 int bit = flagbits[(uchar_t)flagstr[i]]; 8849 8850 if (bit == 0) { 8851 (void) printf("***Ignoring flag: %c\n", 8852 (uchar_t)flagstr[i]); 8853 continue; 8854 } 8855 found = B_TRUE; 8856 flags |= bit; 8857 8858 p = &flagstr[i + 1]; 8859 if (*p != ':' && *p != '\0') { 8860 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8861 char *end, offstr[8] = { 0 }; 8862 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8863 (nextbit == 0)) { 8864 /* look ahead to isolate the offset */ 8865 while (nextbit == 0 && 8866 strchr(flagbitstr, *p) == NULL) { 8867 offstr[j] = *p; 8868 j++; 8869 if (i + j > strlen(flagstr)) 8870 break; 8871 p++; 8872 nextbit = flagbits[(uchar_t)*p]; 8873 } 8874 blkptr_offset = strtoull(offstr, &end, 8875 16); 8876 i += j; 8877 } else if (nextbit == 0) { 8878 (void) printf("***Ignoring flag arg:" 8879 " '%c'\n", (uchar_t)*p); 8880 } 8881 } 8882 } 8883 } 8884 if (blkptr_offset % sizeof (blkptr_t)) { 8885 printf("Block pointer offset 0x%llx " 8886 "must be divisible by 0x%x\n", 8887 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8888 goto done; 8889 } 8890 if (found == B_FALSE && strlen(flagstr) > 0) { 8891 printf("Invalid flag arg: '%s'\n", flagstr); 8892 goto done; 8893 } 8894 8895 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8896 if (vd == NULL) { 8897 (void) printf("***Invalid vdev: %s\n", vdev); 8898 goto done; 8899 } else { 8900 if (vd->vdev_path) 8901 (void) fprintf(stderr, "Found vdev: %s\n", 8902 vd->vdev_path); 8903 else 8904 (void) fprintf(stderr, "Found vdev type: %s\n", 8905 vd->vdev_ops->vdev_op_type); 8906 } 8907 8908 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8909 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8910 8911 BP_ZERO(bp); 8912 8913 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8914 DVA_SET_OFFSET(&dva[0], offset); 8915 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8916 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8917 8918 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8919 8920 BP_SET_LSIZE(bp, lsize); 8921 BP_SET_PSIZE(bp, psize); 8922 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8923 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8924 BP_SET_TYPE(bp, DMU_OT_NONE); 8925 BP_SET_LEVEL(bp, 0); 8926 BP_SET_DEDUP(bp, 0); 8927 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8928 8929 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8930 zio = zio_root(spa, NULL, NULL, 0); 8931 8932 if (vd == vd->vdev_top) { 8933 /* 8934 * Treat this as a normal block read. 8935 */ 8936 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8937 ZIO_PRIORITY_SYNC_READ, 8938 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8939 } else { 8940 /* 8941 * Treat this as a vdev child I/O. 8942 */ 8943 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8944 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8945 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8946 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8947 NULL, NULL)); 8948 } 8949 8950 error = zio_wait(zio); 8951 spa_config_exit(spa, SCL_STATE, FTAG); 8952 8953 if (error) { 8954 (void) printf("Read of %s failed, error: %d\n", thing, error); 8955 goto out; 8956 } 8957 8958 uint64_t orig_lsize = lsize; 8959 buf = lbuf; 8960 if (flags & ZDB_FLAG_DECOMPRESS) { 8961 lsize = zdb_decompress_block(pabd, buf, lbuf, 8962 lsize, psize, flags); 8963 if (lsize == -1) { 8964 (void) printf("Decompress of %s failed\n", thing); 8965 goto out; 8966 } 8967 } else { 8968 buf = abd_borrow_buf_copy(pabd, lsize); 8969 borrowed = B_TRUE; 8970 } 8971 /* 8972 * Try to detect invalid block pointer. If invalid, try 8973 * decompressing. 8974 */ 8975 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8976 !(flags & ZDB_FLAG_DECOMPRESS)) { 8977 const blkptr_t *b = (const blkptr_t *)(void *) 8978 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8979 if (zfs_blkptr_verify(spa, b, 8980 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8981 abd_return_buf_copy(pabd, buf, lsize); 8982 borrowed = B_FALSE; 8983 buf = lbuf; 8984 lsize = zdb_decompress_block(pabd, buf, 8985 lbuf, lsize, psize, flags); 8986 b = (const blkptr_t *)(void *) 8987 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8988 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8989 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8990 printf("invalid block pointer at this DVA\n"); 8991 goto out; 8992 } 8993 } 8994 } 8995 8996 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8997 zdb_print_blkptr((blkptr_t *)(void *) 8998 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8999 else if (flags & ZDB_FLAG_RAW) 9000 zdb_dump_block_raw(buf, lsize, flags); 9001 else if (flags & ZDB_FLAG_INDIRECT) 9002 zdb_dump_indirect((blkptr_t *)buf, 9003 orig_lsize / sizeof (blkptr_t), flags); 9004 else if (flags & ZDB_FLAG_GBH) 9005 zdb_dump_gbh(buf, flags); 9006 else 9007 zdb_dump_block(thing, buf, lsize, flags); 9008 9009 /* 9010 * If :c was specified, iterate through the checksum table to 9011 * calculate and display each checksum for our specified 9012 * DVA and length. 9013 */ 9014 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9015 !(flags & ZDB_FLAG_GBH)) { 9016 zio_t *czio; 9017 (void) printf("\n"); 9018 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9019 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9020 9021 if ((zio_checksum_table[ck].ci_flags & 9022 ZCHECKSUM_FLAG_EMBEDDED) || 9023 ck == ZIO_CHECKSUM_NOPARITY) { 9024 continue; 9025 } 9026 BP_SET_CHECKSUM(bp, ck); 9027 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9028 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9029 if (vd == vd->vdev_top) { 9030 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9031 NULL, NULL, 9032 ZIO_PRIORITY_SYNC_READ, 9033 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9034 ZIO_FLAG_DONT_RETRY, NULL)); 9035 } else { 9036 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9037 offset, pabd, psize, ZIO_TYPE_READ, 9038 ZIO_PRIORITY_SYNC_READ, 9039 ZIO_FLAG_DONT_PROPAGATE | 9040 ZIO_FLAG_DONT_RETRY | 9041 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9042 ZIO_FLAG_SPECULATIVE | 9043 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9044 } 9045 error = zio_wait(czio); 9046 if (error == 0 || error == ECKSUM) { 9047 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9048 NULL, NULL, 0); 9049 ck_zio->io_offset = 9050 DVA_GET_OFFSET(&bp->blk_dva[0]); 9051 ck_zio->io_bp = bp; 9052 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9053 printf( 9054 "%12s\t" 9055 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9056 zio_checksum_table[ck].ci_name, 9057 (u_longlong_t)bp->blk_cksum.zc_word[0], 9058 (u_longlong_t)bp->blk_cksum.zc_word[1], 9059 (u_longlong_t)bp->blk_cksum.zc_word[2], 9060 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9061 zio_wait(ck_zio); 9062 } else { 9063 printf("error %d reading block\n", error); 9064 } 9065 spa_config_exit(spa, SCL_STATE, FTAG); 9066 } 9067 } 9068 9069 if (borrowed) 9070 abd_return_buf_copy(pabd, buf, lsize); 9071 9072 out: 9073 abd_free(pabd); 9074 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9075 done: 9076 free(flagstr); 9077 free(dup); 9078 } 9079 9080 static void 9081 zdb_embedded_block(char *thing) 9082 { 9083 blkptr_t bp = {{{{0}}}}; 9084 unsigned long long *words = (void *)&bp; 9085 char *buf; 9086 int err; 9087 9088 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9089 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9090 words + 0, words + 1, words + 2, words + 3, 9091 words + 4, words + 5, words + 6, words + 7, 9092 words + 8, words + 9, words + 10, words + 11, 9093 words + 12, words + 13, words + 14, words + 15); 9094 if (err != 16) { 9095 (void) fprintf(stderr, "invalid input format\n"); 9096 zdb_exit(1); 9097 } 9098 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9099 buf = malloc(SPA_MAXBLOCKSIZE); 9100 if (buf == NULL) { 9101 (void) fprintf(stderr, "out of memory\n"); 9102 zdb_exit(1); 9103 } 9104 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9105 if (err != 0) { 9106 (void) fprintf(stderr, "decode failed: %u\n", err); 9107 zdb_exit(1); 9108 } 9109 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9110 free(buf); 9111 } 9112 9113 /* check for valid hex or decimal numeric string */ 9114 static boolean_t 9115 zdb_numeric(char *str) 9116 { 9117 int i = 0, len; 9118 9119 len = strlen(str); 9120 if (len == 0) 9121 return (B_FALSE); 9122 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9123 i = 2; 9124 for (; i < len; i++) { 9125 if (!isxdigit(str[i])) 9126 return (B_FALSE); 9127 } 9128 return (B_TRUE); 9129 } 9130 9131 static int 9132 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9133 zfs_file_info_t *zoi) 9134 { 9135 (void) data, (void) zoi; 9136 9137 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9138 return (ENOENT); 9139 9140 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9141 abort(); 9142 } 9143 9144 int 9145 main(int argc, char **argv) 9146 { 9147 int c; 9148 int dump_all = 1; 9149 int verbose = 0; 9150 int error = 0; 9151 char **searchdirs = NULL; 9152 int nsearch = 0; 9153 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9154 nvlist_t *policy = NULL; 9155 uint64_t max_txg = UINT64_MAX; 9156 int64_t objset_id = -1; 9157 uint64_t object; 9158 int flags = ZFS_IMPORT_MISSING_LOG; 9159 int rewind = ZPOOL_NEVER_REWIND; 9160 char *spa_config_path_env, *objset_str; 9161 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9162 nvlist_t *cfg = NULL; 9163 struct sigaction action; 9164 boolean_t force_import = B_FALSE; 9165 boolean_t config_path_console = B_FALSE; 9166 char pbuf[MAXPATHLEN]; 9167 9168 dprintf_setup(&argc, argv); 9169 9170 /* 9171 * Set up signal handlers, so if we crash due to bad on-disk data we 9172 * can get more info. Unlike ztest, we don't bail out if we can't set 9173 * up signal handlers, because zdb is very useful without them. 9174 */ 9175 action.sa_handler = sig_handler; 9176 sigemptyset(&action.sa_mask); 9177 action.sa_flags = 0; 9178 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9179 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9180 strerror(errno)); 9181 } 9182 if (sigaction(SIGABRT, &action, NULL) < 0) { 9183 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9184 strerror(errno)); 9185 } 9186 9187 /* 9188 * If there is an environment variable SPA_CONFIG_PATH it overrides 9189 * default spa_config_path setting. If -U flag is specified it will 9190 * override this environment variable settings once again. 9191 */ 9192 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9193 if (spa_config_path_env != NULL) 9194 spa_config_path = spa_config_path_env; 9195 9196 /* 9197 * For performance reasons, we set this tunable down. We do so before 9198 * the arg parsing section so that the user can override this value if 9199 * they choose. 9200 */ 9201 zfs_btree_verify_intensity = 3; 9202 9203 struct option long_options[] = { 9204 {"ignore-assertions", no_argument, NULL, 'A'}, 9205 {"block-stats", no_argument, NULL, 'b'}, 9206 {"backup", no_argument, NULL, 'B'}, 9207 {"checksum", no_argument, NULL, 'c'}, 9208 {"config", no_argument, NULL, 'C'}, 9209 {"datasets", no_argument, NULL, 'd'}, 9210 {"dedup-stats", no_argument, NULL, 'D'}, 9211 {"exported", no_argument, NULL, 'e'}, 9212 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9213 {"automatic-rewind", no_argument, NULL, 'F'}, 9214 {"dump-debug-msg", no_argument, NULL, 'G'}, 9215 {"history", no_argument, NULL, 'h'}, 9216 {"intent-logs", no_argument, NULL, 'i'}, 9217 {"inflight", required_argument, NULL, 'I'}, 9218 {"checkpointed-state", no_argument, NULL, 'k'}, 9219 {"key", required_argument, NULL, 'K'}, 9220 {"label", no_argument, NULL, 'l'}, 9221 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9222 {"metaslabs", no_argument, NULL, 'm'}, 9223 {"metaslab-groups", no_argument, NULL, 'M'}, 9224 {"numeric", no_argument, NULL, 'N'}, 9225 {"option", required_argument, NULL, 'o'}, 9226 {"object-lookups", no_argument, NULL, 'O'}, 9227 {"path", required_argument, NULL, 'p'}, 9228 {"parseable", no_argument, NULL, 'P'}, 9229 {"skip-label", no_argument, NULL, 'q'}, 9230 {"copy-object", no_argument, NULL, 'r'}, 9231 {"read-block", no_argument, NULL, 'R'}, 9232 {"io-stats", no_argument, NULL, 's'}, 9233 {"simulate-dedup", no_argument, NULL, 'S'}, 9234 {"txg", required_argument, NULL, 't'}, 9235 {"brt-stats", no_argument, NULL, 'T'}, 9236 {"uberblock", no_argument, NULL, 'u'}, 9237 {"cachefile", required_argument, NULL, 'U'}, 9238 {"verbose", no_argument, NULL, 'v'}, 9239 {"verbatim", no_argument, NULL, 'V'}, 9240 {"dump-blocks", required_argument, NULL, 'x'}, 9241 {"extreme-rewind", no_argument, NULL, 'X'}, 9242 {"all-reconstruction", no_argument, NULL, 'Y'}, 9243 {"livelist", no_argument, NULL, 'y'}, 9244 {"zstd-headers", no_argument, NULL, 'Z'}, 9245 {0, 0, 0, 0} 9246 }; 9247 9248 while ((c = getopt_long(argc, argv, 9249 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9250 long_options, NULL)) != -1) { 9251 switch (c) { 9252 case 'b': 9253 case 'B': 9254 case 'c': 9255 case 'C': 9256 case 'd': 9257 case 'D': 9258 case 'E': 9259 case 'G': 9260 case 'h': 9261 case 'i': 9262 case 'l': 9263 case 'm': 9264 case 'M': 9265 case 'N': 9266 case 'O': 9267 case 'r': 9268 case 'R': 9269 case 's': 9270 case 'S': 9271 case 'T': 9272 case 'u': 9273 case 'y': 9274 case 'Z': 9275 dump_opt[c]++; 9276 dump_all = 0; 9277 break; 9278 case 'A': 9279 case 'e': 9280 case 'F': 9281 case 'k': 9282 case 'L': 9283 case 'P': 9284 case 'q': 9285 case 'X': 9286 dump_opt[c]++; 9287 break; 9288 case 'Y': 9289 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9290 zfs_deadman_enabled = 0; 9291 break; 9292 /* NB: Sort single match options below. */ 9293 case 'I': 9294 max_inflight_bytes = strtoull(optarg, NULL, 0); 9295 if (max_inflight_bytes == 0) { 9296 (void) fprintf(stderr, "maximum number " 9297 "of inflight bytes must be greater " 9298 "than 0\n"); 9299 usage(); 9300 } 9301 break; 9302 case 'K': 9303 dump_opt[c]++; 9304 key_material = strdup(optarg); 9305 /* redact key material in process table */ 9306 while (*optarg != '\0') { *optarg++ = '*'; } 9307 break; 9308 case 'o': 9309 error = set_global_var(optarg); 9310 if (error != 0) 9311 usage(); 9312 break; 9313 case 'p': 9314 if (searchdirs == NULL) { 9315 searchdirs = umem_alloc(sizeof (char *), 9316 UMEM_NOFAIL); 9317 } else { 9318 char **tmp = umem_alloc((nsearch + 1) * 9319 sizeof (char *), UMEM_NOFAIL); 9320 memcpy(tmp, searchdirs, nsearch * 9321 sizeof (char *)); 9322 umem_free(searchdirs, 9323 nsearch * sizeof (char *)); 9324 searchdirs = tmp; 9325 } 9326 searchdirs[nsearch++] = optarg; 9327 break; 9328 case 't': 9329 max_txg = strtoull(optarg, NULL, 0); 9330 if (max_txg < TXG_INITIAL) { 9331 (void) fprintf(stderr, "incorrect txg " 9332 "specified: %s\n", optarg); 9333 usage(); 9334 } 9335 break; 9336 case 'U': 9337 config_path_console = B_TRUE; 9338 spa_config_path = optarg; 9339 if (spa_config_path[0] != '/') { 9340 (void) fprintf(stderr, 9341 "cachefile must be an absolute path " 9342 "(i.e. start with a slash)\n"); 9343 usage(); 9344 } 9345 break; 9346 case 'v': 9347 verbose++; 9348 break; 9349 case 'V': 9350 flags = ZFS_IMPORT_VERBATIM; 9351 break; 9352 case 'x': 9353 vn_dumpdir = optarg; 9354 break; 9355 default: 9356 usage(); 9357 break; 9358 } 9359 } 9360 9361 if (!dump_opt['e'] && searchdirs != NULL) { 9362 (void) fprintf(stderr, "-p option requires use of -e\n"); 9363 usage(); 9364 } 9365 #if defined(_LP64) 9366 /* 9367 * ZDB does not typically re-read blocks; therefore limit the ARC 9368 * to 256 MB, which can be used entirely for metadata. 9369 */ 9370 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9371 zfs_arc_max = 256 * 1024 * 1024; 9372 #endif 9373 9374 /* 9375 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9376 * "zdb -b" uses traversal prefetch which uses async reads. 9377 * For good performance, let several of them be active at once. 9378 */ 9379 zfs_vdev_async_read_max_active = 10; 9380 9381 /* 9382 * Disable reference tracking for better performance. 9383 */ 9384 reference_tracking_enable = B_FALSE; 9385 9386 /* 9387 * Do not fail spa_load when spa_load_verify fails. This is needed 9388 * to load non-idle pools. 9389 */ 9390 spa_load_verify_dryrun = B_TRUE; 9391 9392 /* 9393 * ZDB should have ability to read spacemaps. 9394 */ 9395 spa_mode_readable_spacemaps = B_TRUE; 9396 9397 if (dump_all) 9398 verbose = MAX(verbose, 1); 9399 9400 for (c = 0; c < 256; c++) { 9401 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9402 dump_opt[c] = 1; 9403 if (dump_opt[c]) 9404 dump_opt[c] += verbose; 9405 } 9406 9407 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9408 zfs_recover = (dump_opt['A'] > 1); 9409 9410 argc -= optind; 9411 argv += optind; 9412 if (argc < 2 && dump_opt['R']) 9413 usage(); 9414 9415 target = argv[0]; 9416 9417 /* 9418 * Automate cachefile 9419 */ 9420 if (!spa_config_path_env && !config_path_console && target && 9421 libzfs_core_init() == 0) { 9422 char *pname = strdup(target); 9423 const char *value; 9424 nvlist_t *pnvl = NULL; 9425 nvlist_t *vnvl = NULL; 9426 9427 if (strpbrk(pname, "/@") != NULL) 9428 *strpbrk(pname, "/@") = '\0'; 9429 9430 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9431 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9432 &vnvl) == 0) { 9433 value = fnvlist_lookup_string(vnvl, 9434 ZPROP_VALUE); 9435 } else { 9436 value = "-"; 9437 } 9438 strlcpy(pbuf, value, sizeof (pbuf)); 9439 if (pbuf[0] != '\0') { 9440 if (pbuf[0] == '/') { 9441 if (access(pbuf, F_OK) == 0) 9442 spa_config_path = pbuf; 9443 else 9444 force_import = B_TRUE; 9445 } else if ((strcmp(pbuf, "-") == 0 && 9446 access(ZPOOL_CACHE, F_OK) != 0) || 9447 strcmp(pbuf, "none") == 0) { 9448 force_import = B_TRUE; 9449 } 9450 } 9451 nvlist_free(vnvl); 9452 } 9453 9454 free(pname); 9455 nvlist_free(pnvl); 9456 libzfs_core_fini(); 9457 } 9458 9459 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9460 kernel_init(SPA_MODE_READ); 9461 kernel_init_done = B_TRUE; 9462 9463 if (dump_opt['E']) { 9464 if (argc != 1) 9465 usage(); 9466 zdb_embedded_block(argv[0]); 9467 error = 0; 9468 goto fini; 9469 } 9470 9471 if (argc < 1) { 9472 if (!dump_opt['e'] && dump_opt['C']) { 9473 dump_cachefile(spa_config_path); 9474 error = 0; 9475 goto fini; 9476 } 9477 usage(); 9478 } 9479 9480 if (dump_opt['l']) { 9481 error = dump_label(argv[0]); 9482 goto fini; 9483 } 9484 9485 if (dump_opt['X'] || dump_opt['F']) 9486 rewind = ZPOOL_DO_REWIND | 9487 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9488 9489 /* -N implies -d */ 9490 if (dump_opt['N'] && dump_opt['d'] == 0) 9491 dump_opt['d'] = dump_opt['N']; 9492 9493 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9494 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9495 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9496 fatal("internal error: %s", strerror(ENOMEM)); 9497 9498 error = 0; 9499 9500 if (strpbrk(target, "/@") != NULL) { 9501 size_t targetlen; 9502 9503 target_pool = strdup(target); 9504 *strpbrk(target_pool, "/@") = '\0'; 9505 9506 target_is_spa = B_FALSE; 9507 targetlen = strlen(target); 9508 if (targetlen && target[targetlen - 1] == '/') 9509 target[targetlen - 1] = '\0'; 9510 9511 /* 9512 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9513 * To disambiguate tank/100, consider the 100 as objsetID 9514 * if -N was given, otherwise 100 is an objsetID iff 9515 * tank/100 as a named dataset fails on lookup. 9516 */ 9517 objset_str = strchr(target, '/'); 9518 if (objset_str && strlen(objset_str) > 1 && 9519 zdb_numeric(objset_str + 1)) { 9520 char *endptr; 9521 errno = 0; 9522 objset_str++; 9523 objset_id = strtoull(objset_str, &endptr, 0); 9524 /* dataset 0 is the same as opening the pool */ 9525 if (errno == 0 && endptr != objset_str && 9526 objset_id != 0) { 9527 if (dump_opt['N']) 9528 dataset_lookup = B_TRUE; 9529 } 9530 /* normal dataset name not an objset ID */ 9531 if (endptr == objset_str) { 9532 objset_id = -1; 9533 } 9534 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9535 dump_opt['N']) { 9536 printf("Supply a numeric objset ID with -N\n"); 9537 error = 1; 9538 goto fini; 9539 } 9540 } else { 9541 target_pool = target; 9542 } 9543 9544 if (dump_opt['e'] || force_import) { 9545 importargs_t args = { 0 }; 9546 9547 /* 9548 * If path is not provided, search in /dev 9549 */ 9550 if (searchdirs == NULL) { 9551 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9552 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9553 } 9554 9555 args.paths = nsearch; 9556 args.path = searchdirs; 9557 args.can_be_active = B_TRUE; 9558 9559 libpc_handle_t lpch = { 9560 .lpc_lib_handle = NULL, 9561 .lpc_ops = &libzpool_config_ops, 9562 .lpc_printerr = B_TRUE 9563 }; 9564 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9565 9566 if (error == 0) { 9567 9568 if (nvlist_add_nvlist(cfg, 9569 ZPOOL_LOAD_POLICY, policy) != 0) { 9570 fatal("can't open '%s': %s", 9571 target, strerror(ENOMEM)); 9572 } 9573 9574 if (dump_opt['C'] > 1) { 9575 (void) printf("\nConfiguration for import:\n"); 9576 dump_nvlist(cfg, 8); 9577 } 9578 9579 /* 9580 * Disable the activity check to allow examination of 9581 * active pools. 9582 */ 9583 error = spa_import(target_pool, cfg, NULL, 9584 flags | ZFS_IMPORT_SKIP_MMP); 9585 } 9586 } 9587 9588 if (searchdirs != NULL) { 9589 umem_free(searchdirs, nsearch * sizeof (char *)); 9590 searchdirs = NULL; 9591 } 9592 9593 /* 9594 * We need to make sure to process -O option or call 9595 * dump_path after the -e option has been processed, 9596 * which imports the pool to the namespace if it's 9597 * not in the cachefile. 9598 */ 9599 if (dump_opt['O']) { 9600 if (argc != 2) 9601 usage(); 9602 dump_opt['v'] = verbose + 3; 9603 error = dump_path(argv[0], argv[1], NULL); 9604 goto fini; 9605 } 9606 9607 if (dump_opt['r']) { 9608 target_is_spa = B_FALSE; 9609 if (argc != 3) 9610 usage(); 9611 dump_opt['v'] = verbose; 9612 error = dump_path(argv[0], argv[1], &object); 9613 if (error != 0) 9614 fatal("internal error: %s", strerror(error)); 9615 } 9616 9617 /* 9618 * import_checkpointed_state makes the assumption that the 9619 * target pool that we pass it is already part of the spa 9620 * namespace. Because of that we need to make sure to call 9621 * it always after the -e option has been processed, which 9622 * imports the pool to the namespace if it's not in the 9623 * cachefile. 9624 */ 9625 char *checkpoint_pool = NULL; 9626 char *checkpoint_target = NULL; 9627 if (dump_opt['k']) { 9628 checkpoint_pool = import_checkpointed_state(target, cfg, 9629 &checkpoint_target); 9630 9631 if (checkpoint_target != NULL) 9632 target = checkpoint_target; 9633 } 9634 9635 if (cfg != NULL) { 9636 nvlist_free(cfg); 9637 cfg = NULL; 9638 } 9639 9640 if (target_pool != target) 9641 free(target_pool); 9642 9643 if (error == 0) { 9644 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9645 ASSERT(checkpoint_pool != NULL); 9646 ASSERT(checkpoint_target == NULL); 9647 9648 error = spa_open(checkpoint_pool, &spa, FTAG); 9649 if (error != 0) { 9650 fatal("Tried to open pool \"%s\" but " 9651 "spa_open() failed with error %d\n", 9652 checkpoint_pool, error); 9653 } 9654 9655 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9656 objset_id == 0) { 9657 zdb_set_skip_mmp(target); 9658 error = spa_open_rewind(target, &spa, FTAG, policy, 9659 NULL); 9660 if (error) { 9661 /* 9662 * If we're missing the log device then 9663 * try opening the pool after clearing the 9664 * log state. 9665 */ 9666 mutex_enter(&spa_namespace_lock); 9667 if ((spa = spa_lookup(target)) != NULL && 9668 spa->spa_log_state == SPA_LOG_MISSING) { 9669 spa->spa_log_state = SPA_LOG_CLEAR; 9670 error = 0; 9671 } 9672 mutex_exit(&spa_namespace_lock); 9673 9674 if (!error) { 9675 error = spa_open_rewind(target, &spa, 9676 FTAG, policy, NULL); 9677 } 9678 } 9679 } else if (strpbrk(target, "#") != NULL) { 9680 dsl_pool_t *dp; 9681 error = dsl_pool_hold(target, FTAG, &dp); 9682 if (error != 0) { 9683 fatal("can't dump '%s': %s", target, 9684 strerror(error)); 9685 } 9686 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9687 dsl_pool_rele(dp, FTAG); 9688 if (error != 0) { 9689 fatal("can't dump '%s': %s", target, 9690 strerror(error)); 9691 } 9692 goto fini; 9693 } else { 9694 target_pool = strdup(target); 9695 if (strpbrk(target, "/@") != NULL) 9696 *strpbrk(target_pool, "/@") = '\0'; 9697 9698 zdb_set_skip_mmp(target); 9699 /* 9700 * If -N was supplied, the user has indicated that 9701 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9702 * we first assume that the dataset string is the 9703 * dataset name. If dmu_objset_hold fails with the 9704 * dataset string, and we have an objset_id, retry the 9705 * lookup with the objsetID. 9706 */ 9707 boolean_t retry = B_TRUE; 9708 retry_lookup: 9709 if (dataset_lookup == B_TRUE) { 9710 /* 9711 * Use the supplied id to get the name 9712 * for open_objset. 9713 */ 9714 error = spa_open(target_pool, &spa, FTAG); 9715 if (error == 0) { 9716 error = name_from_objset_id(spa, 9717 objset_id, dsname); 9718 spa_close(spa, FTAG); 9719 if (error == 0) 9720 target = dsname; 9721 } 9722 } 9723 if (error == 0) { 9724 if (objset_id > 0 && retry) { 9725 int err = dmu_objset_hold(target, FTAG, 9726 &os); 9727 if (err) { 9728 dataset_lookup = B_TRUE; 9729 retry = B_FALSE; 9730 goto retry_lookup; 9731 } else { 9732 dmu_objset_rele(os, FTAG); 9733 } 9734 } 9735 error = open_objset(target, FTAG, &os); 9736 } 9737 if (error == 0) 9738 spa = dmu_objset_spa(os); 9739 free(target_pool); 9740 } 9741 } 9742 nvlist_free(policy); 9743 9744 if (error) 9745 fatal("can't open '%s': %s", target, strerror(error)); 9746 9747 /* 9748 * Set the pool failure mode to panic in order to prevent the pool 9749 * from suspending. A suspended I/O will have no way to resume and 9750 * can prevent the zdb(8) command from terminating as expected. 9751 */ 9752 if (spa != NULL) 9753 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9754 9755 argv++; 9756 argc--; 9757 if (dump_opt['r']) { 9758 error = zdb_copy_object(os, object, argv[1]); 9759 } else if (!dump_opt['R']) { 9760 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9761 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9762 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9763 flagbits['z'] = ZOR_FLAG_ZAP; 9764 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9765 9766 if (argc > 0 && dump_opt['d']) { 9767 zopt_object_args = argc; 9768 zopt_object_ranges = calloc(zopt_object_args, 9769 sizeof (zopt_object_range_t)); 9770 for (unsigned i = 0; i < zopt_object_args; i++) { 9771 int err; 9772 const char *msg = NULL; 9773 9774 err = parse_object_range(argv[i], 9775 &zopt_object_ranges[i], &msg); 9776 if (err != 0) 9777 fatal("Bad object or range: '%s': %s\n", 9778 argv[i], msg ?: ""); 9779 } 9780 } else if (argc > 0 && dump_opt['m']) { 9781 zopt_metaslab_args = argc; 9782 zopt_metaslab = calloc(zopt_metaslab_args, 9783 sizeof (uint64_t)); 9784 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9785 errno = 0; 9786 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9787 if (zopt_metaslab[i] == 0 && errno != 0) 9788 fatal("bad number %s: %s", argv[i], 9789 strerror(errno)); 9790 } 9791 } 9792 if (dump_opt['B']) { 9793 dump_backup(target, objset_id, 9794 argc > 0 ? argv[0] : NULL); 9795 } else if (os != NULL) { 9796 dump_objset(os); 9797 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9798 dump_objset(spa->spa_meta_objset); 9799 } else { 9800 dump_zpool(spa); 9801 } 9802 } else { 9803 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9804 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9805 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9806 flagbits['e'] = ZDB_FLAG_BSWAP; 9807 flagbits['g'] = ZDB_FLAG_GBH; 9808 flagbits['i'] = ZDB_FLAG_INDIRECT; 9809 flagbits['r'] = ZDB_FLAG_RAW; 9810 flagbits['v'] = ZDB_FLAG_VERBOSE; 9811 9812 for (int i = 0; i < argc; i++) 9813 zdb_read_block(argv[i], spa); 9814 } 9815 9816 if (dump_opt['k']) { 9817 free(checkpoint_pool); 9818 if (!target_is_spa) 9819 free(checkpoint_target); 9820 } 9821 9822 fini: 9823 if (spa != NULL) 9824 zdb_ddt_cleanup(spa); 9825 9826 if (os != NULL) { 9827 close_objset(os, FTAG); 9828 } else if (spa != NULL) { 9829 spa_close(spa, FTAG); 9830 } 9831 9832 fuid_table_destroy(); 9833 9834 dump_debug_buffer(); 9835 9836 if (kernel_init_done) 9837 kernel_fini(); 9838 9839 return (error); 9840 } 9841