xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision 65990b68a2cd89a08f0350e187df1968b16f4255)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  */
37 
38 #include <stdio.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 #include <sys/zfs_context.h>
43 #include <sys/spa.h>
44 #include <sys/spa_impl.h>
45 #include <sys/dmu.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/zfs_znode.h>
49 #include <sys/zfs_sa.h>
50 #include <sys/sa.h>
51 #include <sys/sa_impl.h>
52 #include <sys/vdev.h>
53 #include <sys/vdev_impl.h>
54 #include <sys/metaslab_impl.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/dsl_dir.h>
57 #include <sys/dsl_dataset.h>
58 #include <sys/dsl_pool.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/dbuf.h>
61 #include <sys/zil.h>
62 #include <sys/zil_impl.h>
63 #include <sys/stat.h>
64 #include <sys/resource.h>
65 #include <sys/dmu_send.h>
66 #include <sys/dmu_traverse.h>
67 #include <sys/zio_checksum.h>
68 #include <sys/zio_compress.h>
69 #include <sys/zfs_fuid.h>
70 #include <sys/arc.h>
71 #include <sys/arc_impl.h>
72 #include <sys/ddt.h>
73 #include <sys/zfeature.h>
74 #include <sys/abd.h>
75 #include <sys/blkptr.h>
76 #include <sys/dsl_crypt.h>
77 #include <sys/dsl_scan.h>
78 #include <sys/btree.h>
79 #include <zfs_comutil.h>
80 #include <sys/zstd/zstd.h>
81 
82 #include <libnvpair.h>
83 #include <libzutil.h>
84 
85 #include "zdb.h"
86 
87 #define	ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ?	\
88 	zio_compress_table[(idx)].ci_name : "UNKNOWN")
89 #define	ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ?	\
90 	zio_checksum_table[(idx)].ci_name : "UNKNOWN")
91 #define	ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) :		\
92 	(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ?	\
93 	DMU_OT_ZAP_OTHER : \
94 	(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
95 	DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
96 
97 /* Some platforms require part of inode IDs to be remapped */
98 #ifdef __APPLE__
99 #define	ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
100 #else
101 #define	ZDB_MAP_OBJECT_ID(obj) (obj)
102 #endif
103 
104 static char *
105 zdb_ot_name(dmu_object_type_t type)
106 {
107 	if (type < DMU_OT_NUMTYPES)
108 		return (dmu_ot[type].ot_name);
109 	else if ((type & DMU_OT_NEWTYPE) &&
110 	    ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
111 		return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
112 	else
113 		return ("UNKNOWN");
114 }
115 
116 extern int reference_tracking_enable;
117 extern int zfs_recover;
118 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit;
119 extern int zfs_vdev_async_read_max_active;
120 extern boolean_t spa_load_verify_dryrun;
121 extern boolean_t spa_mode_readable_spacemaps;
122 extern int zfs_reconstruct_indirect_combinations_max;
123 extern int zfs_btree_verify_intensity;
124 
125 static const char cmdname[] = "zdb";
126 uint8_t dump_opt[256];
127 
128 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
129 
130 uint64_t *zopt_metaslab = NULL;
131 static unsigned zopt_metaslab_args = 0;
132 
133 typedef struct zopt_object_range {
134 	uint64_t zor_obj_start;
135 	uint64_t zor_obj_end;
136 	uint64_t zor_flags;
137 } zopt_object_range_t;
138 zopt_object_range_t *zopt_object_ranges = NULL;
139 static unsigned zopt_object_args = 0;
140 
141 static int flagbits[256];
142 
143 #define	ZOR_FLAG_PLAIN_FILE	0x0001
144 #define	ZOR_FLAG_DIRECTORY	0x0002
145 #define	ZOR_FLAG_SPACE_MAP	0x0004
146 #define	ZOR_FLAG_ZAP		0x0008
147 #define	ZOR_FLAG_ALL_TYPES	-1
148 #define	ZOR_SUPPORTED_FLAGS	(ZOR_FLAG_PLAIN_FILE	| \
149 				ZOR_FLAG_DIRECTORY	| \
150 				ZOR_FLAG_SPACE_MAP	| \
151 				ZOR_FLAG_ZAP)
152 
153 #define	ZDB_FLAG_CHECKSUM	0x0001
154 #define	ZDB_FLAG_DECOMPRESS	0x0002
155 #define	ZDB_FLAG_BSWAP		0x0004
156 #define	ZDB_FLAG_GBH		0x0008
157 #define	ZDB_FLAG_INDIRECT	0x0010
158 #define	ZDB_FLAG_RAW		0x0020
159 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
160 #define	ZDB_FLAG_VERBOSE	0x0080
161 
162 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
163 static int leaked_objects = 0;
164 static range_tree_t *mos_refd_objs;
165 
166 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
167     boolean_t);
168 static void mos_obj_refd(uint64_t);
169 static void mos_obj_refd_multiple(uint64_t);
170 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
171     dmu_tx_t *tx);
172 
173 typedef struct sublivelist_verify {
174 	/* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
175 	zfs_btree_t sv_pair;
176 
177 	/* ALLOC's without a matching FREE, accumulates across sub-livelists */
178 	zfs_btree_t sv_leftover;
179 } sublivelist_verify_t;
180 
181 static int
182 livelist_compare(const void *larg, const void *rarg)
183 {
184 	const blkptr_t *l = larg;
185 	const blkptr_t *r = rarg;
186 
187 	/* Sort them according to dva[0] */
188 	uint64_t l_dva0_vdev, r_dva0_vdev;
189 	l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
190 	r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
191 	if (l_dva0_vdev < r_dva0_vdev)
192 		return (-1);
193 	else if (l_dva0_vdev > r_dva0_vdev)
194 		return (+1);
195 
196 	/* if vdevs are equal, sort by offsets. */
197 	uint64_t l_dva0_offset;
198 	uint64_t r_dva0_offset;
199 	l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
200 	r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
201 	if (l_dva0_offset < r_dva0_offset) {
202 		return (-1);
203 	} else if (l_dva0_offset > r_dva0_offset) {
204 		return (+1);
205 	}
206 
207 	/*
208 	 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
209 	 * it's possible the offsets are equal. In that case, sort by txg
210 	 */
211 	if (l->blk_birth < r->blk_birth) {
212 		return (-1);
213 	} else if (l->blk_birth > r->blk_birth) {
214 		return (+1);
215 	}
216 	return (0);
217 }
218 
219 typedef struct sublivelist_verify_block {
220 	dva_t svb_dva;
221 
222 	/*
223 	 * We need this to check if the block marked as allocated
224 	 * in the livelist was freed (and potentially reallocated)
225 	 * in the metaslab spacemaps at a later TXG.
226 	 */
227 	uint64_t svb_allocated_txg;
228 } sublivelist_verify_block_t;
229 
230 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
231 
232 typedef struct sublivelist_verify_block_refcnt {
233 	/* block pointer entry in livelist being verified */
234 	blkptr_t svbr_blk;
235 
236 	/*
237 	 * Refcount gets incremented to 1 when we encounter the first
238 	 * FREE entry for the svfbr block pointer and a node for it
239 	 * is created in our ZDB verification/tracking metadata.
240 	 *
241 	 * As we encounter more FREE entries we increment this counter
242 	 * and similarly decrement it whenever we find the respective
243 	 * ALLOC entries for this block.
244 	 *
245 	 * When the refcount gets to 0 it means that all the FREE and
246 	 * ALLOC entries of this block have paired up and we no longer
247 	 * need to track it in our verification logic (e.g. the node
248 	 * containing this struct in our verification data structure
249 	 * should be freed).
250 	 *
251 	 * [refer to sublivelist_verify_blkptr() for the actual code]
252 	 */
253 	uint32_t svbr_refcnt;
254 } sublivelist_verify_block_refcnt_t;
255 
256 static int
257 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
258 {
259 	const sublivelist_verify_block_refcnt_t *l = larg;
260 	const sublivelist_verify_block_refcnt_t *r = rarg;
261 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
262 }
263 
264 static int
265 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
266     dmu_tx_t *tx)
267 {
268 	ASSERT3P(tx, ==, NULL);
269 	struct sublivelist_verify *sv = arg;
270 	sublivelist_verify_block_refcnt_t current = {
271 			.svbr_blk = *bp,
272 
273 			/*
274 			 * Start with 1 in case this is the first free entry.
275 			 * This field is not used for our B-Tree comparisons
276 			 * anyway.
277 			 */
278 			.svbr_refcnt = 1,
279 	};
280 
281 	zfs_btree_index_t where;
282 	sublivelist_verify_block_refcnt_t *pair =
283 	    zfs_btree_find(&sv->sv_pair, &current, &where);
284 	if (free) {
285 		if (pair == NULL) {
286 			/* first free entry for this block pointer */
287 			zfs_btree_add(&sv->sv_pair, &current);
288 		} else {
289 			pair->svbr_refcnt++;
290 		}
291 	} else {
292 		if (pair == NULL) {
293 			/* block that is currently marked as allocated */
294 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
295 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
296 					break;
297 				sublivelist_verify_block_t svb = {
298 				    .svb_dva = bp->blk_dva[i],
299 				    .svb_allocated_txg = bp->blk_birth
300 				};
301 
302 				if (zfs_btree_find(&sv->sv_leftover, &svb,
303 				    &where) == NULL) {
304 					zfs_btree_add_idx(&sv->sv_leftover,
305 					    &svb, &where);
306 				}
307 			}
308 		} else {
309 			/* alloc matches a free entry */
310 			pair->svbr_refcnt--;
311 			if (pair->svbr_refcnt == 0) {
312 				/* all allocs and frees have been matched */
313 				zfs_btree_remove_idx(&sv->sv_pair, &where);
314 			}
315 		}
316 	}
317 
318 	return (0);
319 }
320 
321 static int
322 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
323 {
324 	int err;
325 	struct sublivelist_verify *sv = args;
326 
327 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
328 	    sizeof (sublivelist_verify_block_refcnt_t));
329 
330 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
331 	    sv, NULL);
332 
333 	sublivelist_verify_block_refcnt_t *e;
334 	zfs_btree_index_t *cookie = NULL;
335 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
336 		char blkbuf[BP_SPRINTF_LEN];
337 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
338 		    &e->svbr_blk, B_TRUE);
339 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
340 		    e->svbr_refcnt, blkbuf);
341 	}
342 	zfs_btree_destroy(&sv->sv_pair);
343 
344 	return (err);
345 }
346 
347 static int
348 livelist_block_compare(const void *larg, const void *rarg)
349 {
350 	const sublivelist_verify_block_t *l = larg;
351 	const sublivelist_verify_block_t *r = rarg;
352 
353 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
354 		return (-1);
355 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
356 		return (+1);
357 
358 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
359 		return (-1);
360 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
361 		return (+1);
362 
363 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
364 		return (-1);
365 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
366 		return (+1);
367 
368 	return (0);
369 }
370 
371 /*
372  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
373  * sublivelist_verify_t: sv->sv_leftover
374  */
375 static void
376 livelist_verify(dsl_deadlist_t *dl, void *arg)
377 {
378 	sublivelist_verify_t *sv = arg;
379 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
380 }
381 
382 /*
383  * Check for errors in the livelist entry and discard the intermediary
384  * data structures
385  */
386 /* ARGSUSED */
387 static int
388 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
389 {
390 	sublivelist_verify_t sv;
391 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
392 	    sizeof (sublivelist_verify_block_t));
393 	int err = sublivelist_verify_func(&sv, dle);
394 	zfs_btree_clear(&sv.sv_leftover);
395 	zfs_btree_destroy(&sv.sv_leftover);
396 	return (err);
397 }
398 
399 typedef struct metaslab_verify {
400 	/*
401 	 * Tree containing all the leftover ALLOCs from the livelists
402 	 * that are part of this metaslab.
403 	 */
404 	zfs_btree_t mv_livelist_allocs;
405 
406 	/*
407 	 * Metaslab information.
408 	 */
409 	uint64_t mv_vdid;
410 	uint64_t mv_msid;
411 	uint64_t mv_start;
412 	uint64_t mv_end;
413 
414 	/*
415 	 * What's currently allocated for this metaslab.
416 	 */
417 	range_tree_t *mv_allocated;
418 } metaslab_verify_t;
419 
420 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
421 
422 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
423     void *arg);
424 
425 typedef struct unflushed_iter_cb_arg {
426 	spa_t *uic_spa;
427 	uint64_t uic_txg;
428 	void *uic_arg;
429 	zdb_log_sm_cb_t uic_cb;
430 } unflushed_iter_cb_arg_t;
431 
432 static int
433 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
434 {
435 	unflushed_iter_cb_arg_t *uic = arg;
436 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
437 }
438 
439 static void
440 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
441 {
442 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
443 		return;
444 
445 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
446 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
447 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
448 		space_map_t *sm = NULL;
449 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
450 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
451 
452 		unflushed_iter_cb_arg_t uic = {
453 			.uic_spa = spa,
454 			.uic_txg = sls->sls_txg,
455 			.uic_arg = arg,
456 			.uic_cb = cb
457 		};
458 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
459 		    iterate_through_spacemap_logs_cb, &uic));
460 		space_map_close(sm);
461 	}
462 	spa_config_exit(spa, SCL_CONFIG, FTAG);
463 }
464 
465 static void
466 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
467     uint64_t offset, uint64_t size)
468 {
469 	sublivelist_verify_block_t svb;
470 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
471 	DVA_SET_OFFSET(&svb.svb_dva, offset);
472 	DVA_SET_ASIZE(&svb.svb_dva, size);
473 	zfs_btree_index_t where;
474 	uint64_t end_offset = offset + size;
475 
476 	/*
477 	 *  Look for an exact match for spacemap entry in the livelist entries.
478 	 *  Then, look for other livelist entries that fall within the range
479 	 *  of the spacemap entry as it may have been condensed
480 	 */
481 	sublivelist_verify_block_t *found =
482 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
483 	if (found == NULL) {
484 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
485 	}
486 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
487 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
488 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
489 		if (found->svb_allocated_txg <= txg) {
490 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
491 			    "from TXG %llx FREED at TXG %llx\n",
492 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
493 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
494 			    (u_longlong_t)found->svb_allocated_txg,
495 			    (u_longlong_t)txg);
496 		}
497 	}
498 }
499 
500 static int
501 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
502 {
503 	metaslab_verify_t *mv = arg;
504 	uint64_t offset = sme->sme_offset;
505 	uint64_t size = sme->sme_run;
506 	uint64_t txg = sme->sme_txg;
507 
508 	if (sme->sme_type == SM_ALLOC) {
509 		if (range_tree_contains(mv->mv_allocated,
510 		    offset, size)) {
511 			(void) printf("ERROR: DOUBLE ALLOC: "
512 			    "%llu [%llx:%llx] "
513 			    "%llu:%llu LOG_SM\n",
514 			    (u_longlong_t)txg, (u_longlong_t)offset,
515 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
516 			    (u_longlong_t)mv->mv_msid);
517 		} else {
518 			range_tree_add(mv->mv_allocated,
519 			    offset, size);
520 		}
521 	} else {
522 		if (!range_tree_contains(mv->mv_allocated,
523 		    offset, size)) {
524 			(void) printf("ERROR: DOUBLE FREE: "
525 			    "%llu [%llx:%llx] "
526 			    "%llu:%llu LOG_SM\n",
527 			    (u_longlong_t)txg, (u_longlong_t)offset,
528 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
529 			    (u_longlong_t)mv->mv_msid);
530 		} else {
531 			range_tree_remove(mv->mv_allocated,
532 			    offset, size);
533 		}
534 	}
535 
536 	if (sme->sme_type != SM_ALLOC) {
537 		/*
538 		 * If something is freed in the spacemap, verify that
539 		 * it is not listed as allocated in the livelist.
540 		 */
541 		verify_livelist_allocs(mv, txg, offset, size);
542 	}
543 	return (0);
544 }
545 
546 static int
547 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
548     uint64_t txg, void *arg)
549 {
550 	metaslab_verify_t *mv = arg;
551 	uint64_t offset = sme->sme_offset;
552 	uint64_t vdev_id = sme->sme_vdev;
553 
554 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
555 
556 	/* skip indirect vdevs */
557 	if (!vdev_is_concrete(vd))
558 		return (0);
559 
560 	if (vdev_id != mv->mv_vdid)
561 		return (0);
562 
563 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
564 	if (ms->ms_id != mv->mv_msid)
565 		return (0);
566 
567 	if (txg < metaslab_unflushed_txg(ms))
568 		return (0);
569 
570 
571 	ASSERT3U(txg, ==, sme->sme_txg);
572 	return (metaslab_spacemap_validation_cb(sme, mv));
573 }
574 
575 static void
576 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
577 {
578 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
579 }
580 
581 static void
582 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
583 {
584 	if (sm == NULL)
585 		return;
586 
587 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
588 	    metaslab_spacemap_validation_cb, mv));
589 }
590 
591 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
592 
593 /*
594  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
595  * they are part of that metaslab (mv_msid).
596  */
597 static void
598 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
599 {
600 	zfs_btree_index_t where;
601 	sublivelist_verify_block_t *svb;
602 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
603 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
604 	    svb != NULL;
605 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
606 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
607 			continue;
608 
609 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
610 		    (DVA_GET_OFFSET(&svb->svb_dva) +
611 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
612 			(void) printf("ERROR: Found block that crosses "
613 			    "metaslab boundary: <%llu:%llx:%llx>\n",
614 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
615 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
616 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
617 			continue;
618 		}
619 
620 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
621 			continue;
622 
623 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
624 			continue;
625 
626 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
627 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
628 			(void) printf("ERROR: Found block that crosses "
629 			    "metaslab boundary: <%llu:%llx:%llx>\n",
630 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
631 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
632 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
633 			continue;
634 		}
635 
636 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
637 	}
638 
639 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
640 	    svb != NULL;
641 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
642 		zfs_btree_remove(&sv->sv_leftover, svb);
643 	}
644 }
645 
646 /*
647  * [Livelist Check]
648  * Iterate through all the sublivelists and:
649  * - report leftover frees (**)
650  * - record leftover ALLOCs together with their TXG [see Cross Check]
651  *
652  * (**) Note: Double ALLOCs are valid in datasets that have dedup
653  *      enabled. Similarly double FREEs are allowed as well but
654  *      only if they pair up with a corresponding ALLOC entry once
655  *      we our done with our sublivelist iteration.
656  *
657  * [Spacemap Check]
658  * for each metaslab:
659  * - iterate over spacemap and then the metaslab's entries in the
660  *   spacemap log, then report any double FREEs and ALLOCs (do not
661  *   blow up).
662  *
663  * [Cross Check]
664  * After finishing the Livelist Check phase and while being in the
665  * Spacemap Check phase, we find all the recorded leftover ALLOCs
666  * of the livelist check that are part of the metaslab that we are
667  * currently looking at in the Spacemap Check. We report any entries
668  * that are marked as ALLOCs in the livelists but have been actually
669  * freed (and potentially allocated again) after their TXG stamp in
670  * the spacemaps. Also report any ALLOCs from the livelists that
671  * belong to indirect vdevs (e.g. their vdev completed removal).
672  *
673  * Note that this will miss Log Spacemap entries that cancelled each other
674  * out before being flushed to the metaslab, so we are not guaranteed
675  * to match all erroneous ALLOCs.
676  */
677 static void
678 livelist_metaslab_validate(spa_t *spa)
679 {
680 	(void) printf("Verifying deleted livelist entries\n");
681 
682 	sublivelist_verify_t sv;
683 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
684 	    sizeof (sublivelist_verify_block_t));
685 	iterate_deleted_livelists(spa, livelist_verify, &sv);
686 
687 	(void) printf("Verifying metaslab entries\n");
688 	vdev_t *rvd = spa->spa_root_vdev;
689 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
690 		vdev_t *vd = rvd->vdev_child[c];
691 
692 		if (!vdev_is_concrete(vd))
693 			continue;
694 
695 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
696 			metaslab_t *m = vd->vdev_ms[mid];
697 
698 			(void) fprintf(stderr,
699 			    "\rverifying concrete vdev %llu, "
700 			    "metaslab %llu of %llu ...",
701 			    (longlong_t)vd->vdev_id,
702 			    (longlong_t)mid,
703 			    (longlong_t)vd->vdev_ms_count);
704 
705 			uint64_t shift, start;
706 			range_seg_type_t type =
707 			    metaslab_calculate_range_tree_type(vd, m,
708 			    &start, &shift);
709 			metaslab_verify_t mv;
710 			mv.mv_allocated = range_tree_create(NULL,
711 			    type, NULL, start, shift);
712 			mv.mv_vdid = vd->vdev_id;
713 			mv.mv_msid = m->ms_id;
714 			mv.mv_start = m->ms_start;
715 			mv.mv_end = m->ms_start + m->ms_size;
716 			zfs_btree_create(&mv.mv_livelist_allocs,
717 			    livelist_block_compare,
718 			    sizeof (sublivelist_verify_block_t));
719 
720 			mv_populate_livelist_allocs(&mv, &sv);
721 
722 			spacemap_check_ms_sm(m->ms_sm, &mv);
723 			spacemap_check_sm_log(spa, &mv);
724 
725 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
726 			range_tree_destroy(mv.mv_allocated);
727 			zfs_btree_clear(&mv.mv_livelist_allocs);
728 			zfs_btree_destroy(&mv.mv_livelist_allocs);
729 		}
730 	}
731 	(void) fprintf(stderr, "\n");
732 
733 	/*
734 	 * If there are any segments in the leftover tree after we walked
735 	 * through all the metaslabs in the concrete vdevs then this means
736 	 * that we have segments in the livelists that belong to indirect
737 	 * vdevs and are marked as allocated.
738 	 */
739 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
740 		zfs_btree_destroy(&sv.sv_leftover);
741 		return;
742 	}
743 	(void) printf("ERROR: Found livelist blocks marked as allocated "
744 	    "for indirect vdevs:\n");
745 
746 	zfs_btree_index_t *where = NULL;
747 	sublivelist_verify_block_t *svb;
748 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
749 	    NULL) {
750 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
751 		ASSERT3U(vdev_id, <, rvd->vdev_children);
752 		vdev_t *vd = rvd->vdev_child[vdev_id];
753 		ASSERT(!vdev_is_concrete(vd));
754 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
755 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
756 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
757 		    (u_longlong_t)svb->svb_allocated_txg);
758 	}
759 	(void) printf("\n");
760 	zfs_btree_destroy(&sv.sv_leftover);
761 }
762 
763 /*
764  * These libumem hooks provide a reasonable set of defaults for the allocator's
765  * debugging facilities.
766  */
767 const char *
768 _umem_debug_init(void)
769 {
770 	return ("default,verbose"); /* $UMEM_DEBUG setting */
771 }
772 
773 const char *
774 _umem_logging_init(void)
775 {
776 	return ("fail,contents"); /* $UMEM_LOGGING setting */
777 }
778 
779 static void
780 usage(void)
781 {
782 	(void) fprintf(stderr,
783 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
784 	    "[-I <inflight I/Os>]\n"
785 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
786 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
787 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
788 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
789 	    "\t%s [-v] <bookmark>\n"
790 	    "\t%s -C [-A] [-U <cache>]\n"
791 	    "\t%s -l [-Aqu] <device>\n"
792 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
793 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
794 	    "\t%s -O <dataset> <path>\n"
795 	    "\t%s -r <dataset> <path> <destination>\n"
796 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
797 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
798 	    "\t%s -E [-A] word0:word1:...:word15\n"
799 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
800 	    "<poolname>\n\n",
801 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
802 	    cmdname, cmdname, cmdname, cmdname);
803 
804 	(void) fprintf(stderr, "    Dataset name must include at least one "
805 	    "separator character '/' or '@'\n");
806 	(void) fprintf(stderr, "    If dataset name is specified, only that "
807 	    "dataset is dumped\n");
808 	(void) fprintf(stderr,  "    If object numbers or object number "
809 	    "ranges are specified, only those\n"
810 	    "    objects or ranges are dumped.\n\n");
811 	(void) fprintf(stderr,
812 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
813 	    "        start    Starting object number\n"
814 	    "        end      Ending object number, or -1 for no upper bound\n"
815 	    "        flags    Optional flags to select object types:\n"
816 	    "            A     All objects (this is the default)\n"
817 	    "            d     ZFS directories\n"
818 	    "            f     ZFS files \n"
819 	    "            m     SPA space maps\n"
820 	    "            z     ZAPs\n"
821 	    "            -     Negate effect of next flag\n\n");
822 	(void) fprintf(stderr, "    Options to control amount of output:\n");
823 	(void) fprintf(stderr, "        -b block statistics\n");
824 	(void) fprintf(stderr, "        -c checksum all metadata (twice for "
825 	    "all data) blocks\n");
826 	(void) fprintf(stderr, "        -C config (or cachefile if alone)\n");
827 	(void) fprintf(stderr, "        -d dataset(s)\n");
828 	(void) fprintf(stderr, "        -D dedup statistics\n");
829 	(void) fprintf(stderr, "        -E decode and display block from an "
830 	    "embedded block pointer\n");
831 	(void) fprintf(stderr, "        -h pool history\n");
832 	(void) fprintf(stderr, "        -i intent logs\n");
833 	(void) fprintf(stderr, "        -l read label contents\n");
834 	(void) fprintf(stderr, "        -k examine the checkpointed state "
835 	    "of the pool\n");
836 	(void) fprintf(stderr, "        -L disable leak tracking (do not "
837 	    "load spacemaps)\n");
838 	(void) fprintf(stderr, "        -m metaslabs\n");
839 	(void) fprintf(stderr, "        -M metaslab groups\n");
840 	(void) fprintf(stderr, "        -O perform object lookups by path\n");
841 	(void) fprintf(stderr, "        -r copy an object by path to file\n");
842 	(void) fprintf(stderr, "        -R read and display block from a "
843 	    "device\n");
844 	(void) fprintf(stderr, "        -s report stats on zdb's I/O\n");
845 	(void) fprintf(stderr, "        -S simulate dedup to measure effect\n");
846 	(void) fprintf(stderr, "        -v verbose (applies to all "
847 	    "others)\n");
848 	(void) fprintf(stderr, "        -y perform livelist and metaslab "
849 	    "validation on any livelists being deleted\n\n");
850 	(void) fprintf(stderr, "    Below options are intended for use "
851 	    "with other options:\n");
852 	(void) fprintf(stderr, "        -A ignore assertions (-A), enable "
853 	    "panic recovery (-AA) or both (-AAA)\n");
854 	(void) fprintf(stderr, "        -e pool is exported/destroyed/"
855 	    "has altroot/not in a cachefile\n");
856 	(void) fprintf(stderr, "        -F attempt automatic rewind within "
857 	    "safe range of transaction groups\n");
858 	(void) fprintf(stderr, "        -G dump zfs_dbgmsg buffer before "
859 	    "exiting\n");
860 	(void) fprintf(stderr, "        -I <number of inflight I/Os> -- "
861 	    "specify the maximum number of\n           "
862 	    "checksumming I/Os [default is 200]\n");
863 	(void) fprintf(stderr, "        -o <variable>=<value> set global "
864 	    "variable to an unsigned 32-bit integer\n");
865 	(void) fprintf(stderr, "        -p <path> -- use one or more with "
866 	    "-e to specify path to vdev dir\n");
867 	(void) fprintf(stderr, "        -P print numbers in parseable form\n");
868 	(void) fprintf(stderr, "        -q don't print label contents\n");
869 	(void) fprintf(stderr, "        -t <txg> -- highest txg to use when "
870 	    "searching for uberblocks\n");
871 	(void) fprintf(stderr, "        -u uberblock\n");
872 	(void) fprintf(stderr, "        -U <cachefile_path> -- use alternate "
873 	    "cachefile\n");
874 	(void) fprintf(stderr, "        -V do verbatim import\n");
875 	(void) fprintf(stderr, "        -x <dumpdir> -- "
876 	    "dump all read blocks into specified directory\n");
877 	(void) fprintf(stderr, "        -X attempt extreme rewind (does not "
878 	    "work with dataset)\n");
879 	(void) fprintf(stderr, "        -Y attempt all reconstruction "
880 	    "combinations for split blocks\n");
881 	(void) fprintf(stderr, "        -Z show ZSTD headers \n");
882 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
883 	    "to make only that option verbose\n");
884 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
885 	exit(1);
886 }
887 
888 static void
889 dump_debug_buffer(void)
890 {
891 	if (dump_opt['G']) {
892 		(void) printf("\n");
893 		(void) fflush(stdout);
894 		zfs_dbgmsg_print("zdb");
895 	}
896 }
897 
898 /*
899  * Called for usage errors that are discovered after a call to spa_open(),
900  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
901  */
902 
903 static void
904 fatal(const char *fmt, ...)
905 {
906 	va_list ap;
907 
908 	va_start(ap, fmt);
909 	(void) fprintf(stderr, "%s: ", cmdname);
910 	(void) vfprintf(stderr, fmt, ap);
911 	va_end(ap);
912 	(void) fprintf(stderr, "\n");
913 
914 	dump_debug_buffer();
915 
916 	exit(1);
917 }
918 
919 /* ARGSUSED */
920 static void
921 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
922 {
923 	nvlist_t *nv;
924 	size_t nvsize = *(uint64_t *)data;
925 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
926 
927 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
928 
929 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
930 
931 	umem_free(packed, nvsize);
932 
933 	dump_nvlist(nv, 8);
934 
935 	nvlist_free(nv);
936 }
937 
938 /* ARGSUSED */
939 static void
940 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
941 {
942 	spa_history_phys_t *shp = data;
943 
944 	if (shp == NULL)
945 		return;
946 
947 	(void) printf("\t\tpool_create_len = %llu\n",
948 	    (u_longlong_t)shp->sh_pool_create_len);
949 	(void) printf("\t\tphys_max_off = %llu\n",
950 	    (u_longlong_t)shp->sh_phys_max_off);
951 	(void) printf("\t\tbof = %llu\n",
952 	    (u_longlong_t)shp->sh_bof);
953 	(void) printf("\t\teof = %llu\n",
954 	    (u_longlong_t)shp->sh_eof);
955 	(void) printf("\t\trecords_lost = %llu\n",
956 	    (u_longlong_t)shp->sh_records_lost);
957 }
958 
959 static void
960 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
961 {
962 	if (dump_opt['P'])
963 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
964 	else
965 		nicenum(num, buf, sizeof (buf));
966 }
967 
968 static const char histo_stars[] = "****************************************";
969 static const uint64_t histo_width = sizeof (histo_stars) - 1;
970 
971 static void
972 dump_histogram(const uint64_t *histo, int size, int offset)
973 {
974 	int i;
975 	int minidx = size - 1;
976 	int maxidx = 0;
977 	uint64_t max = 0;
978 
979 	for (i = 0; i < size; i++) {
980 		if (histo[i] > max)
981 			max = histo[i];
982 		if (histo[i] > 0 && i > maxidx)
983 			maxidx = i;
984 		if (histo[i] > 0 && i < minidx)
985 			minidx = i;
986 	}
987 
988 	if (max < histo_width)
989 		max = histo_width;
990 
991 	for (i = minidx; i <= maxidx; i++) {
992 		(void) printf("\t\t\t%3u: %6llu %s\n",
993 		    i + offset, (u_longlong_t)histo[i],
994 		    &histo_stars[(max - histo[i]) * histo_width / max]);
995 	}
996 }
997 
998 static void
999 dump_zap_stats(objset_t *os, uint64_t object)
1000 {
1001 	int error;
1002 	zap_stats_t zs;
1003 
1004 	error = zap_get_stats(os, object, &zs);
1005 	if (error)
1006 		return;
1007 
1008 	if (zs.zs_ptrtbl_len == 0) {
1009 		ASSERT(zs.zs_num_blocks == 1);
1010 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1011 		    (u_longlong_t)zs.zs_blocksize,
1012 		    (u_longlong_t)zs.zs_num_entries);
1013 		return;
1014 	}
1015 
1016 	(void) printf("\tFat ZAP stats:\n");
1017 
1018 	(void) printf("\t\tPointer table:\n");
1019 	(void) printf("\t\t\t%llu elements\n",
1020 	    (u_longlong_t)zs.zs_ptrtbl_len);
1021 	(void) printf("\t\t\tzt_blk: %llu\n",
1022 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1023 	(void) printf("\t\t\tzt_numblks: %llu\n",
1024 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1025 	(void) printf("\t\t\tzt_shift: %llu\n",
1026 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1027 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1028 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1029 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1030 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1031 
1032 	(void) printf("\t\tZAP entries: %llu\n",
1033 	    (u_longlong_t)zs.zs_num_entries);
1034 	(void) printf("\t\tLeaf blocks: %llu\n",
1035 	    (u_longlong_t)zs.zs_num_leafs);
1036 	(void) printf("\t\tTotal blocks: %llu\n",
1037 	    (u_longlong_t)zs.zs_num_blocks);
1038 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1039 	    (u_longlong_t)zs.zs_block_type);
1040 	(void) printf("\t\tzap_magic: 0x%llx\n",
1041 	    (u_longlong_t)zs.zs_magic);
1042 	(void) printf("\t\tzap_salt: 0x%llx\n",
1043 	    (u_longlong_t)zs.zs_salt);
1044 
1045 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1046 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1047 
1048 	(void) printf("\t\tBlocks with n*5 entries:\n");
1049 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1050 
1051 	(void) printf("\t\tBlocks n/10 full:\n");
1052 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1053 
1054 	(void) printf("\t\tEntries with n chunks:\n");
1055 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1056 
1057 	(void) printf("\t\tBuckets with n entries:\n");
1058 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1059 }
1060 
1061 /*ARGSUSED*/
1062 static void
1063 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1064 {
1065 }
1066 
1067 /*ARGSUSED*/
1068 static void
1069 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1070 {
1071 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1072 }
1073 
1074 /*ARGSUSED*/
1075 static void
1076 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1077 {
1078 }
1079 
1080 /*ARGSUSED*/
1081 static void
1082 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1083 {
1084 	uint64_t *arr;
1085 	uint64_t oursize;
1086 	if (dump_opt['d'] < 6)
1087 		return;
1088 
1089 	if (data == NULL) {
1090 		dmu_object_info_t doi;
1091 
1092 		VERIFY0(dmu_object_info(os, object, &doi));
1093 		size = doi.doi_max_offset;
1094 		/*
1095 		 * We cap the size at 1 mebibyte here to prevent
1096 		 * allocation failures and nigh-infinite printing if the
1097 		 * object is extremely large.
1098 		 */
1099 		oursize = MIN(size, 1 << 20);
1100 		arr = kmem_alloc(oursize, KM_SLEEP);
1101 
1102 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1103 		if (err != 0) {
1104 			(void) printf("got error %u from dmu_read\n", err);
1105 			kmem_free(arr, oursize);
1106 			return;
1107 		}
1108 	} else {
1109 		/*
1110 		 * Even though the allocation is already done in this code path,
1111 		 * we still cap the size to prevent excessive printing.
1112 		 */
1113 		oursize = MIN(size, 1 << 20);
1114 		arr = data;
1115 	}
1116 
1117 	if (size == 0) {
1118 		(void) printf("\t\t[]\n");
1119 		return;
1120 	}
1121 
1122 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1123 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1124 		if (i % 4 != 0)
1125 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1126 		else
1127 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1128 	}
1129 	if (oursize != size)
1130 		(void) printf(", ... ");
1131 	(void) printf("]\n");
1132 
1133 	if (data == NULL)
1134 		kmem_free(arr, oursize);
1135 }
1136 
1137 /*ARGSUSED*/
1138 static void
1139 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1140 {
1141 	zap_cursor_t zc;
1142 	zap_attribute_t attr;
1143 	void *prop;
1144 	unsigned i;
1145 
1146 	dump_zap_stats(os, object);
1147 	(void) printf("\n");
1148 
1149 	for (zap_cursor_init(&zc, os, object);
1150 	    zap_cursor_retrieve(&zc, &attr) == 0;
1151 	    zap_cursor_advance(&zc)) {
1152 		(void) printf("\t\t%s = ", attr.za_name);
1153 		if (attr.za_num_integers == 0) {
1154 			(void) printf("\n");
1155 			continue;
1156 		}
1157 		prop = umem_zalloc(attr.za_num_integers *
1158 		    attr.za_integer_length, UMEM_NOFAIL);
1159 		(void) zap_lookup(os, object, attr.za_name,
1160 		    attr.za_integer_length, attr.za_num_integers, prop);
1161 		if (attr.za_integer_length == 1) {
1162 			if (strcmp(attr.za_name,
1163 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1164 			    strcmp(attr.za_name,
1165 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1166 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1167 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1168 			    strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1169 				uint8_t *u8 = prop;
1170 
1171 				for (i = 0; i < attr.za_num_integers; i++) {
1172 					(void) printf("%02x", u8[i]);
1173 				}
1174 			} else {
1175 				(void) printf("%s", (char *)prop);
1176 			}
1177 		} else {
1178 			for (i = 0; i < attr.za_num_integers; i++) {
1179 				switch (attr.za_integer_length) {
1180 				case 2:
1181 					(void) printf("%u ",
1182 					    ((uint16_t *)prop)[i]);
1183 					break;
1184 				case 4:
1185 					(void) printf("%u ",
1186 					    ((uint32_t *)prop)[i]);
1187 					break;
1188 				case 8:
1189 					(void) printf("%lld ",
1190 					    (u_longlong_t)((int64_t *)prop)[i]);
1191 					break;
1192 				}
1193 			}
1194 		}
1195 		(void) printf("\n");
1196 		umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1197 	}
1198 	zap_cursor_fini(&zc);
1199 }
1200 
1201 static void
1202 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1203 {
1204 	bpobj_phys_t *bpop = data;
1205 	uint64_t i;
1206 	char bytes[32], comp[32], uncomp[32];
1207 
1208 	/* make sure the output won't get truncated */
1209 	CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
1210 	CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
1211 	CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
1212 
1213 	if (bpop == NULL)
1214 		return;
1215 
1216 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1217 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1218 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1219 
1220 	(void) printf("\t\tnum_blkptrs = %llu\n",
1221 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1222 	(void) printf("\t\tbytes = %s\n", bytes);
1223 	if (size >= BPOBJ_SIZE_V1) {
1224 		(void) printf("\t\tcomp = %s\n", comp);
1225 		(void) printf("\t\tuncomp = %s\n", uncomp);
1226 	}
1227 	if (size >= BPOBJ_SIZE_V2) {
1228 		(void) printf("\t\tsubobjs = %llu\n",
1229 		    (u_longlong_t)bpop->bpo_subobjs);
1230 		(void) printf("\t\tnum_subobjs = %llu\n",
1231 		    (u_longlong_t)bpop->bpo_num_subobjs);
1232 	}
1233 	if (size >= sizeof (*bpop)) {
1234 		(void) printf("\t\tnum_freed = %llu\n",
1235 		    (u_longlong_t)bpop->bpo_num_freed);
1236 	}
1237 
1238 	if (dump_opt['d'] < 5)
1239 		return;
1240 
1241 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1242 		char blkbuf[BP_SPRINTF_LEN];
1243 		blkptr_t bp;
1244 
1245 		int err = dmu_read(os, object,
1246 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1247 		if (err != 0) {
1248 			(void) printf("got error %u from dmu_read\n", err);
1249 			break;
1250 		}
1251 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1252 		    BP_GET_FREE(&bp));
1253 		(void) printf("\t%s\n", blkbuf);
1254 	}
1255 }
1256 
1257 /* ARGSUSED */
1258 static void
1259 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1260 {
1261 	dmu_object_info_t doi;
1262 	int64_t i;
1263 
1264 	VERIFY0(dmu_object_info(os, object, &doi));
1265 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1266 
1267 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1268 	if (err != 0) {
1269 		(void) printf("got error %u from dmu_read\n", err);
1270 		kmem_free(subobjs, doi.doi_max_offset);
1271 		return;
1272 	}
1273 
1274 	int64_t last_nonzero = -1;
1275 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1276 		if (subobjs[i] != 0)
1277 			last_nonzero = i;
1278 	}
1279 
1280 	for (i = 0; i <= last_nonzero; i++) {
1281 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1282 	}
1283 	kmem_free(subobjs, doi.doi_max_offset);
1284 }
1285 
1286 /*ARGSUSED*/
1287 static void
1288 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1289 {
1290 	dump_zap_stats(os, object);
1291 	/* contents are printed elsewhere, properly decoded */
1292 }
1293 
1294 /*ARGSUSED*/
1295 static void
1296 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1297 {
1298 	zap_cursor_t zc;
1299 	zap_attribute_t attr;
1300 
1301 	dump_zap_stats(os, object);
1302 	(void) printf("\n");
1303 
1304 	for (zap_cursor_init(&zc, os, object);
1305 	    zap_cursor_retrieve(&zc, &attr) == 0;
1306 	    zap_cursor_advance(&zc)) {
1307 		(void) printf("\t\t%s = ", attr.za_name);
1308 		if (attr.za_num_integers == 0) {
1309 			(void) printf("\n");
1310 			continue;
1311 		}
1312 		(void) printf(" %llx : [%d:%d:%d]\n",
1313 		    (u_longlong_t)attr.za_first_integer,
1314 		    (int)ATTR_LENGTH(attr.za_first_integer),
1315 		    (int)ATTR_BSWAP(attr.za_first_integer),
1316 		    (int)ATTR_NUM(attr.za_first_integer));
1317 	}
1318 	zap_cursor_fini(&zc);
1319 }
1320 
1321 /*ARGSUSED*/
1322 static void
1323 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1324 {
1325 	zap_cursor_t zc;
1326 	zap_attribute_t attr;
1327 	uint16_t *layout_attrs;
1328 	unsigned i;
1329 
1330 	dump_zap_stats(os, object);
1331 	(void) printf("\n");
1332 
1333 	for (zap_cursor_init(&zc, os, object);
1334 	    zap_cursor_retrieve(&zc, &attr) == 0;
1335 	    zap_cursor_advance(&zc)) {
1336 		(void) printf("\t\t%s = [", attr.za_name);
1337 		if (attr.za_num_integers == 0) {
1338 			(void) printf("\n");
1339 			continue;
1340 		}
1341 
1342 		VERIFY(attr.za_integer_length == 2);
1343 		layout_attrs = umem_zalloc(attr.za_num_integers *
1344 		    attr.za_integer_length, UMEM_NOFAIL);
1345 
1346 		VERIFY(zap_lookup(os, object, attr.za_name,
1347 		    attr.za_integer_length,
1348 		    attr.za_num_integers, layout_attrs) == 0);
1349 
1350 		for (i = 0; i != attr.za_num_integers; i++)
1351 			(void) printf(" %d ", (int)layout_attrs[i]);
1352 		(void) printf("]\n");
1353 		umem_free(layout_attrs,
1354 		    attr.za_num_integers * attr.za_integer_length);
1355 	}
1356 	zap_cursor_fini(&zc);
1357 }
1358 
1359 /*ARGSUSED*/
1360 static void
1361 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1362 {
1363 	zap_cursor_t zc;
1364 	zap_attribute_t attr;
1365 	const char *typenames[] = {
1366 		/* 0 */ "not specified",
1367 		/* 1 */ "FIFO",
1368 		/* 2 */ "Character Device",
1369 		/* 3 */ "3 (invalid)",
1370 		/* 4 */ "Directory",
1371 		/* 5 */ "5 (invalid)",
1372 		/* 6 */ "Block Device",
1373 		/* 7 */ "7 (invalid)",
1374 		/* 8 */ "Regular File",
1375 		/* 9 */ "9 (invalid)",
1376 		/* 10 */ "Symbolic Link",
1377 		/* 11 */ "11 (invalid)",
1378 		/* 12 */ "Socket",
1379 		/* 13 */ "Door",
1380 		/* 14 */ "Event Port",
1381 		/* 15 */ "15 (invalid)",
1382 	};
1383 
1384 	dump_zap_stats(os, object);
1385 	(void) printf("\n");
1386 
1387 	for (zap_cursor_init(&zc, os, object);
1388 	    zap_cursor_retrieve(&zc, &attr) == 0;
1389 	    zap_cursor_advance(&zc)) {
1390 		(void) printf("\t\t%s = %lld (type: %s)\n",
1391 		    attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1392 		    typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1393 	}
1394 	zap_cursor_fini(&zc);
1395 }
1396 
1397 static int
1398 get_dtl_refcount(vdev_t *vd)
1399 {
1400 	int refcount = 0;
1401 
1402 	if (vd->vdev_ops->vdev_op_leaf) {
1403 		space_map_t *sm = vd->vdev_dtl_sm;
1404 
1405 		if (sm != NULL &&
1406 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1407 			return (1);
1408 		return (0);
1409 	}
1410 
1411 	for (unsigned c = 0; c < vd->vdev_children; c++)
1412 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1413 	return (refcount);
1414 }
1415 
1416 static int
1417 get_metaslab_refcount(vdev_t *vd)
1418 {
1419 	int refcount = 0;
1420 
1421 	if (vd->vdev_top == vd) {
1422 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1423 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1424 
1425 			if (sm != NULL &&
1426 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1427 				refcount++;
1428 		}
1429 	}
1430 	for (unsigned c = 0; c < vd->vdev_children; c++)
1431 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1432 
1433 	return (refcount);
1434 }
1435 
1436 static int
1437 get_obsolete_refcount(vdev_t *vd)
1438 {
1439 	uint64_t obsolete_sm_object;
1440 	int refcount = 0;
1441 
1442 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1443 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1444 		dmu_object_info_t doi;
1445 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1446 		    obsolete_sm_object, &doi));
1447 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1448 			refcount++;
1449 		}
1450 	} else {
1451 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1452 		ASSERT3U(obsolete_sm_object, ==, 0);
1453 	}
1454 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1455 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1456 	}
1457 
1458 	return (refcount);
1459 }
1460 
1461 static int
1462 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1463 {
1464 	uint64_t prev_obj =
1465 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1466 	if (prev_obj != 0) {
1467 		dmu_object_info_t doi;
1468 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1469 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1470 			return (1);
1471 		}
1472 	}
1473 	return (0);
1474 }
1475 
1476 static int
1477 get_checkpoint_refcount(vdev_t *vd)
1478 {
1479 	int refcount = 0;
1480 
1481 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1482 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1483 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1484 		refcount++;
1485 
1486 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1487 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1488 
1489 	return (refcount);
1490 }
1491 
1492 static int
1493 get_log_spacemap_refcount(spa_t *spa)
1494 {
1495 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1496 }
1497 
1498 static int
1499 verify_spacemap_refcounts(spa_t *spa)
1500 {
1501 	uint64_t expected_refcount = 0;
1502 	uint64_t actual_refcount;
1503 
1504 	(void) feature_get_refcount(spa,
1505 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1506 	    &expected_refcount);
1507 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1508 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1509 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1510 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1511 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1512 	actual_refcount += get_log_spacemap_refcount(spa);
1513 
1514 	if (expected_refcount != actual_refcount) {
1515 		(void) printf("space map refcount mismatch: expected %lld != "
1516 		    "actual %lld\n",
1517 		    (longlong_t)expected_refcount,
1518 		    (longlong_t)actual_refcount);
1519 		return (2);
1520 	}
1521 	return (0);
1522 }
1523 
1524 static void
1525 dump_spacemap(objset_t *os, space_map_t *sm)
1526 {
1527 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1528 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1529 
1530 	if (sm == NULL)
1531 		return;
1532 
1533 	(void) printf("space map object %llu:\n",
1534 	    (longlong_t)sm->sm_object);
1535 	(void) printf("  smp_length = 0x%llx\n",
1536 	    (longlong_t)sm->sm_phys->smp_length);
1537 	(void) printf("  smp_alloc = 0x%llx\n",
1538 	    (longlong_t)sm->sm_phys->smp_alloc);
1539 
1540 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1541 		return;
1542 
1543 	/*
1544 	 * Print out the freelist entries in both encoded and decoded form.
1545 	 */
1546 	uint8_t mapshift = sm->sm_shift;
1547 	int64_t alloc = 0;
1548 	uint64_t word, entry_id = 0;
1549 	for (uint64_t offset = 0; offset < space_map_length(sm);
1550 	    offset += sizeof (word)) {
1551 
1552 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1553 		    sizeof (word), &word, DMU_READ_PREFETCH));
1554 
1555 		if (sm_entry_is_debug(word)) {
1556 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1557 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1558 			if (de_txg == 0) {
1559 				(void) printf(
1560 				    "\t    [%6llu] PADDING\n",
1561 				    (u_longlong_t)entry_id);
1562 			} else {
1563 				(void) printf(
1564 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1565 				    (u_longlong_t)entry_id,
1566 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1567 				    (u_longlong_t)de_txg,
1568 				    (u_longlong_t)de_sync_pass);
1569 			}
1570 			entry_id++;
1571 			continue;
1572 		}
1573 
1574 		uint8_t words;
1575 		char entry_type;
1576 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1577 
1578 		if (sm_entry_is_single_word(word)) {
1579 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1580 			    'A' : 'F';
1581 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1582 			    sm->sm_start;
1583 			entry_run = SM_RUN_DECODE(word) << mapshift;
1584 			words = 1;
1585 		} else {
1586 			/* it is a two-word entry so we read another word */
1587 			ASSERT(sm_entry_is_double_word(word));
1588 
1589 			uint64_t extra_word;
1590 			offset += sizeof (extra_word);
1591 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1592 			    sizeof (extra_word), &extra_word,
1593 			    DMU_READ_PREFETCH));
1594 
1595 			ASSERT3U(offset, <=, space_map_length(sm));
1596 
1597 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1598 			entry_vdev = SM2_VDEV_DECODE(word);
1599 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1600 			    'A' : 'F';
1601 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1602 			    mapshift) + sm->sm_start;
1603 			words = 2;
1604 		}
1605 
1606 		(void) printf("\t    [%6llu]    %c  range:"
1607 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1608 		    (u_longlong_t)entry_id,
1609 		    entry_type, (u_longlong_t)entry_off,
1610 		    (u_longlong_t)(entry_off + entry_run),
1611 		    (u_longlong_t)entry_run,
1612 		    (u_longlong_t)entry_vdev, words);
1613 
1614 		if (entry_type == 'A')
1615 			alloc += entry_run;
1616 		else
1617 			alloc -= entry_run;
1618 		entry_id++;
1619 	}
1620 	if (alloc != space_map_allocated(sm)) {
1621 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1622 		    "with space map summary (%lld)\n",
1623 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1624 	}
1625 }
1626 
1627 static void
1628 dump_metaslab_stats(metaslab_t *msp)
1629 {
1630 	char maxbuf[32];
1631 	range_tree_t *rt = msp->ms_allocatable;
1632 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1633 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1634 
1635 	/* max sure nicenum has enough space */
1636 	CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ);
1637 
1638 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1639 
1640 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1641 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1642 	    "freepct", free_pct);
1643 	(void) printf("\tIn-memory histogram:\n");
1644 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1645 }
1646 
1647 static void
1648 dump_metaslab(metaslab_t *msp)
1649 {
1650 	vdev_t *vd = msp->ms_group->mg_vd;
1651 	spa_t *spa = vd->vdev_spa;
1652 	space_map_t *sm = msp->ms_sm;
1653 	char freebuf[32];
1654 
1655 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1656 	    sizeof (freebuf));
1657 
1658 	(void) printf(
1659 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1660 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1661 	    (u_longlong_t)space_map_object(sm), freebuf);
1662 
1663 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1664 		mutex_enter(&msp->ms_lock);
1665 		VERIFY0(metaslab_load(msp));
1666 		range_tree_stat_verify(msp->ms_allocatable);
1667 		dump_metaslab_stats(msp);
1668 		metaslab_unload(msp);
1669 		mutex_exit(&msp->ms_lock);
1670 	}
1671 
1672 	if (dump_opt['m'] > 1 && sm != NULL &&
1673 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1674 		/*
1675 		 * The space map histogram represents free space in chunks
1676 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1677 		 */
1678 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1679 		    (u_longlong_t)msp->ms_fragmentation);
1680 		dump_histogram(sm->sm_phys->smp_histogram,
1681 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1682 	}
1683 
1684 	if (vd->vdev_ops == &vdev_draid_ops)
1685 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1686 	else
1687 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1688 
1689 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1690 
1691 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1692 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1693 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1694 	}
1695 }
1696 
1697 static void
1698 print_vdev_metaslab_header(vdev_t *vd)
1699 {
1700 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1701 	const char *bias_str = "";
1702 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1703 		bias_str = VDEV_ALLOC_BIAS_LOG;
1704 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1705 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1706 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1707 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1708 	}
1709 
1710 	uint64_t ms_flush_data_obj = 0;
1711 	if (vd->vdev_top_zap != 0) {
1712 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1713 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1714 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1715 		if (error != ENOENT) {
1716 			ASSERT0(error);
1717 		}
1718 	}
1719 
1720 	(void) printf("\tvdev %10llu   %s",
1721 	    (u_longlong_t)vd->vdev_id, bias_str);
1722 
1723 	if (ms_flush_data_obj != 0) {
1724 		(void) printf("   ms_unflushed_phys object %llu",
1725 		    (u_longlong_t)ms_flush_data_obj);
1726 	}
1727 
1728 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1729 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1730 	    "offset", "spacemap", "free");
1731 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1732 	    "---------------", "-------------------",
1733 	    "---------------", "------------");
1734 }
1735 
1736 static void
1737 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1738 {
1739 	vdev_t *rvd = spa->spa_root_vdev;
1740 	metaslab_class_t *mc = spa_normal_class(spa);
1741 	metaslab_class_t *smc = spa_special_class(spa);
1742 	uint64_t fragmentation;
1743 
1744 	metaslab_class_histogram_verify(mc);
1745 
1746 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1747 		vdev_t *tvd = rvd->vdev_child[c];
1748 		metaslab_group_t *mg = tvd->vdev_mg;
1749 
1750 		if (mg == NULL || (mg->mg_class != mc &&
1751 		    (!show_special || mg->mg_class != smc)))
1752 			continue;
1753 
1754 		metaslab_group_histogram_verify(mg);
1755 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1756 
1757 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1758 		    "fragmentation",
1759 		    (u_longlong_t)tvd->vdev_id,
1760 		    (u_longlong_t)tvd->vdev_ms_count);
1761 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1762 			(void) printf("%3s\n", "-");
1763 		} else {
1764 			(void) printf("%3llu%%\n",
1765 			    (u_longlong_t)mg->mg_fragmentation);
1766 		}
1767 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1768 	}
1769 
1770 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1771 	fragmentation = metaslab_class_fragmentation(mc);
1772 	if (fragmentation == ZFS_FRAG_INVALID)
1773 		(void) printf("\t%3s\n", "-");
1774 	else
1775 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1776 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1777 }
1778 
1779 static void
1780 print_vdev_indirect(vdev_t *vd)
1781 {
1782 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1783 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1784 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1785 
1786 	if (vim == NULL) {
1787 		ASSERT3P(vib, ==, NULL);
1788 		return;
1789 	}
1790 
1791 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1792 	    vic->vic_mapping_object);
1793 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1794 	    vic->vic_births_object);
1795 
1796 	(void) printf("indirect births obj %llu:\n",
1797 	    (longlong_t)vic->vic_births_object);
1798 	(void) printf("    vib_count = %llu\n",
1799 	    (longlong_t)vdev_indirect_births_count(vib));
1800 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1801 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1802 		    &vib->vib_entries[i];
1803 		(void) printf("\toffset %llx -> txg %llu\n",
1804 		    (longlong_t)cur_vibe->vibe_offset,
1805 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1806 	}
1807 	(void) printf("\n");
1808 
1809 	(void) printf("indirect mapping obj %llu:\n",
1810 	    (longlong_t)vic->vic_mapping_object);
1811 	(void) printf("    vim_max_offset = 0x%llx\n",
1812 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1813 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1814 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1815 	(void) printf("    vim_count = %llu\n",
1816 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1817 
1818 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1819 		return;
1820 
1821 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1822 
1823 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1824 		vdev_indirect_mapping_entry_phys_t *vimep =
1825 		    &vim->vim_entries[i];
1826 		(void) printf("\t<%llx:%llx:%llx> -> "
1827 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1828 		    (longlong_t)vd->vdev_id,
1829 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1830 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1831 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1832 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1833 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1834 		    counts[i]);
1835 	}
1836 	(void) printf("\n");
1837 
1838 	uint64_t obsolete_sm_object;
1839 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1840 	if (obsolete_sm_object != 0) {
1841 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1842 		(void) printf("obsolete space map object %llu:\n",
1843 		    (u_longlong_t)obsolete_sm_object);
1844 		ASSERT(vd->vdev_obsolete_sm != NULL);
1845 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1846 		    obsolete_sm_object);
1847 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1848 		(void) printf("\n");
1849 	}
1850 }
1851 
1852 static void
1853 dump_metaslabs(spa_t *spa)
1854 {
1855 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1856 	uint64_t m, c = 0, children = rvd->vdev_children;
1857 
1858 	(void) printf("\nMetaslabs:\n");
1859 
1860 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1861 		c = zopt_metaslab[0];
1862 
1863 		if (c >= children)
1864 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1865 
1866 		if (zopt_metaslab_args > 1) {
1867 			vd = rvd->vdev_child[c];
1868 			print_vdev_metaslab_header(vd);
1869 
1870 			for (m = 1; m < zopt_metaslab_args; m++) {
1871 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1872 					dump_metaslab(
1873 					    vd->vdev_ms[zopt_metaslab[m]]);
1874 				else
1875 					(void) fprintf(stderr, "bad metaslab "
1876 					    "number %llu\n",
1877 					    (u_longlong_t)zopt_metaslab[m]);
1878 			}
1879 			(void) printf("\n");
1880 			return;
1881 		}
1882 		children = c + 1;
1883 	}
1884 	for (; c < children; c++) {
1885 		vd = rvd->vdev_child[c];
1886 		print_vdev_metaslab_header(vd);
1887 
1888 		print_vdev_indirect(vd);
1889 
1890 		for (m = 0; m < vd->vdev_ms_count; m++)
1891 			dump_metaslab(vd->vdev_ms[m]);
1892 		(void) printf("\n");
1893 	}
1894 }
1895 
1896 static void
1897 dump_log_spacemaps(spa_t *spa)
1898 {
1899 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1900 		return;
1901 
1902 	(void) printf("\nLog Space Maps in Pool:\n");
1903 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1904 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1905 		space_map_t *sm = NULL;
1906 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1907 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1908 
1909 		(void) printf("Log Spacemap object %llu txg %llu\n",
1910 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1911 		dump_spacemap(spa->spa_meta_objset, sm);
1912 		space_map_close(sm);
1913 	}
1914 	(void) printf("\n");
1915 }
1916 
1917 static void
1918 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1919 {
1920 	const ddt_phys_t *ddp = dde->dde_phys;
1921 	const ddt_key_t *ddk = &dde->dde_key;
1922 	const char *types[4] = { "ditto", "single", "double", "triple" };
1923 	char blkbuf[BP_SPRINTF_LEN];
1924 	blkptr_t blk;
1925 	int p;
1926 
1927 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1928 		if (ddp->ddp_phys_birth == 0)
1929 			continue;
1930 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1931 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1932 		(void) printf("index %llx refcnt %llu %s %s\n",
1933 		    (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1934 		    types[p], blkbuf);
1935 	}
1936 }
1937 
1938 static void
1939 dump_dedup_ratio(const ddt_stat_t *dds)
1940 {
1941 	double rL, rP, rD, D, dedup, compress, copies;
1942 
1943 	if (dds->dds_blocks == 0)
1944 		return;
1945 
1946 	rL = (double)dds->dds_ref_lsize;
1947 	rP = (double)dds->dds_ref_psize;
1948 	rD = (double)dds->dds_ref_dsize;
1949 	D = (double)dds->dds_dsize;
1950 
1951 	dedup = rD / D;
1952 	compress = rL / rP;
1953 	copies = rD / rP;
1954 
1955 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1956 	    "dedup * compress / copies = %.2f\n\n",
1957 	    dedup, compress, copies, dedup * compress / copies);
1958 }
1959 
1960 static void
1961 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
1962 {
1963 	char name[DDT_NAMELEN];
1964 	ddt_entry_t dde;
1965 	uint64_t walk = 0;
1966 	dmu_object_info_t doi;
1967 	uint64_t count, dspace, mspace;
1968 	int error;
1969 
1970 	error = ddt_object_info(ddt, type, class, &doi);
1971 
1972 	if (error == ENOENT)
1973 		return;
1974 	ASSERT(error == 0);
1975 
1976 	error = ddt_object_count(ddt, type, class, &count);
1977 	ASSERT(error == 0);
1978 	if (count == 0)
1979 		return;
1980 
1981 	dspace = doi.doi_physical_blocks_512 << 9;
1982 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
1983 
1984 	ddt_object_name(ddt, type, class, name);
1985 
1986 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
1987 	    name,
1988 	    (u_longlong_t)count,
1989 	    (u_longlong_t)(dspace / count),
1990 	    (u_longlong_t)(mspace / count));
1991 
1992 	if (dump_opt['D'] < 3)
1993 		return;
1994 
1995 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
1996 
1997 	if (dump_opt['D'] < 4)
1998 		return;
1999 
2000 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2001 		return;
2002 
2003 	(void) printf("%s contents:\n\n", name);
2004 
2005 	while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2006 		dump_dde(ddt, &dde, walk);
2007 
2008 	ASSERT3U(error, ==, ENOENT);
2009 
2010 	(void) printf("\n");
2011 }
2012 
2013 static void
2014 dump_all_ddts(spa_t *spa)
2015 {
2016 	ddt_histogram_t ddh_total;
2017 	ddt_stat_t dds_total;
2018 
2019 	bzero(&ddh_total, sizeof (ddh_total));
2020 	bzero(&dds_total, sizeof (dds_total));
2021 
2022 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2023 		ddt_t *ddt = spa->spa_ddt[c];
2024 		for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2025 			for (enum ddt_class class = 0; class < DDT_CLASSES;
2026 			    class++) {
2027 				dump_ddt(ddt, type, class);
2028 			}
2029 		}
2030 	}
2031 
2032 	ddt_get_dedup_stats(spa, &dds_total);
2033 
2034 	if (dds_total.dds_blocks == 0) {
2035 		(void) printf("All DDTs are empty\n");
2036 		return;
2037 	}
2038 
2039 	(void) printf("\n");
2040 
2041 	if (dump_opt['D'] > 1) {
2042 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2043 		ddt_get_dedup_histogram(spa, &ddh_total);
2044 		zpool_dump_ddt(&dds_total, &ddh_total);
2045 	}
2046 
2047 	dump_dedup_ratio(&dds_total);
2048 }
2049 
2050 static void
2051 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2052 {
2053 	char *prefix = arg;
2054 
2055 	(void) printf("%s [%llu,%llu) length %llu\n",
2056 	    prefix,
2057 	    (u_longlong_t)start,
2058 	    (u_longlong_t)(start + size),
2059 	    (u_longlong_t)(size));
2060 }
2061 
2062 static void
2063 dump_dtl(vdev_t *vd, int indent)
2064 {
2065 	spa_t *spa = vd->vdev_spa;
2066 	boolean_t required;
2067 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2068 		"outage" };
2069 	char prefix[256];
2070 
2071 	spa_vdev_state_enter(spa, SCL_NONE);
2072 	required = vdev_dtl_required(vd);
2073 	(void) spa_vdev_state_exit(spa, NULL, 0);
2074 
2075 	if (indent == 0)
2076 		(void) printf("\nDirty time logs:\n\n");
2077 
2078 	(void) printf("\t%*s%s [%s]\n", indent, "",
2079 	    vd->vdev_path ? vd->vdev_path :
2080 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2081 	    required ? "DTL-required" : "DTL-expendable");
2082 
2083 	for (int t = 0; t < DTL_TYPES; t++) {
2084 		range_tree_t *rt = vd->vdev_dtl[t];
2085 		if (range_tree_space(rt) == 0)
2086 			continue;
2087 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2088 		    indent + 2, "", name[t]);
2089 		range_tree_walk(rt, dump_dtl_seg, prefix);
2090 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2091 			dump_spacemap(spa->spa_meta_objset,
2092 			    vd->vdev_dtl_sm);
2093 	}
2094 
2095 	for (unsigned c = 0; c < vd->vdev_children; c++)
2096 		dump_dtl(vd->vdev_child[c], indent + 4);
2097 }
2098 
2099 static void
2100 dump_history(spa_t *spa)
2101 {
2102 	nvlist_t **events = NULL;
2103 	char *buf;
2104 	uint64_t resid, len, off = 0;
2105 	uint_t num = 0;
2106 	int error;
2107 	char tbuf[30];
2108 
2109 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2110 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2111 		    __func__);
2112 		return;
2113 	}
2114 
2115 	do {
2116 		len = SPA_OLD_MAXBLOCKSIZE;
2117 
2118 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2119 			(void) fprintf(stderr, "Unable to read history: "
2120 			    "error %d\n", error);
2121 			free(buf);
2122 			return;
2123 		}
2124 
2125 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2126 			break;
2127 
2128 		off -= resid;
2129 	} while (len != 0);
2130 
2131 	(void) printf("\nHistory:\n");
2132 	for (unsigned i = 0; i < num; i++) {
2133 		boolean_t printed = B_FALSE;
2134 
2135 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2136 			time_t tsec;
2137 			struct tm t;
2138 
2139 			tsec = fnvlist_lookup_uint64(events[i],
2140 			    ZPOOL_HIST_TIME);
2141 			(void) localtime_r(&tsec, &t);
2142 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2143 		} else {
2144 			tbuf[0] = '\0';
2145 		}
2146 
2147 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2148 			(void) printf("%s %s\n", tbuf,
2149 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2150 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2151 			uint64_t ievent;
2152 
2153 			ievent = fnvlist_lookup_uint64(events[i],
2154 			    ZPOOL_HIST_INT_EVENT);
2155 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2156 				goto next;
2157 
2158 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2159 			    tbuf,
2160 			    zfs_history_event_names[ievent],
2161 			    fnvlist_lookup_uint64(events[i],
2162 			    ZPOOL_HIST_TXG),
2163 			    fnvlist_lookup_string(events[i],
2164 			    ZPOOL_HIST_INT_STR));
2165 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2166 			(void) printf("%s [txg:%ju] %s", tbuf,
2167 			    fnvlist_lookup_uint64(events[i],
2168 			    ZPOOL_HIST_TXG),
2169 			    fnvlist_lookup_string(events[i],
2170 			    ZPOOL_HIST_INT_NAME));
2171 
2172 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2173 				(void) printf(" %s (%llu)",
2174 				    fnvlist_lookup_string(events[i],
2175 				    ZPOOL_HIST_DSNAME),
2176 				    (u_longlong_t)fnvlist_lookup_uint64(
2177 				    events[i],
2178 				    ZPOOL_HIST_DSID));
2179 			}
2180 
2181 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2182 			    ZPOOL_HIST_INT_STR));
2183 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2184 			(void) printf("%s ioctl %s\n", tbuf,
2185 			    fnvlist_lookup_string(events[i],
2186 			    ZPOOL_HIST_IOCTL));
2187 
2188 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2189 				(void) printf("    input:\n");
2190 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2191 				    ZPOOL_HIST_INPUT_NVL), 8);
2192 			}
2193 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2194 				(void) printf("    output:\n");
2195 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2196 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2197 			}
2198 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2199 				(void) printf("    errno: %lld\n",
2200 				    (longlong_t)fnvlist_lookup_int64(events[i],
2201 				    ZPOOL_HIST_ERRNO));
2202 			}
2203 		} else {
2204 			goto next;
2205 		}
2206 
2207 		printed = B_TRUE;
2208 next:
2209 		if (dump_opt['h'] > 1) {
2210 			if (!printed)
2211 				(void) printf("unrecognized record:\n");
2212 			dump_nvlist(events[i], 2);
2213 		}
2214 	}
2215 	free(buf);
2216 }
2217 
2218 /*ARGSUSED*/
2219 static void
2220 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2221 {
2222 }
2223 
2224 static uint64_t
2225 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2226     const zbookmark_phys_t *zb)
2227 {
2228 	if (dnp == NULL) {
2229 		ASSERT(zb->zb_level < 0);
2230 		if (zb->zb_object == 0)
2231 			return (zb->zb_blkid);
2232 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2233 	}
2234 
2235 	ASSERT(zb->zb_level >= 0);
2236 
2237 	return ((zb->zb_blkid <<
2238 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2239 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2240 }
2241 
2242 static void
2243 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2244     const blkptr_t *bp)
2245 {
2246 	abd_t *pabd;
2247 	void *buf;
2248 	zio_t *zio;
2249 	zfs_zstdhdr_t zstd_hdr;
2250 	int error;
2251 
2252 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2253 		return;
2254 
2255 	if (BP_IS_HOLE(bp))
2256 		return;
2257 
2258 	if (BP_IS_EMBEDDED(bp)) {
2259 		buf = malloc(SPA_MAXBLOCKSIZE);
2260 		if (buf == NULL) {
2261 			(void) fprintf(stderr, "out of memory\n");
2262 			exit(1);
2263 		}
2264 		decode_embedded_bp_compressed(bp, buf);
2265 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2266 		free(buf);
2267 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2268 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2269 		(void) snprintf(blkbuf + strlen(blkbuf),
2270 		    buflen - strlen(blkbuf),
2271 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2272 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2273 		    zfs_get_hdrlevel(&zstd_hdr));
2274 		return;
2275 	}
2276 
2277 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2278 	zio = zio_root(spa, NULL, NULL, 0);
2279 
2280 	/* Decrypt but don't decompress so we can read the compression header */
2281 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2282 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2283 	    NULL));
2284 	error = zio_wait(zio);
2285 	if (error) {
2286 		(void) fprintf(stderr, "read failed: %d\n", error);
2287 		return;
2288 	}
2289 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2290 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2291 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2292 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2293 
2294 	(void) snprintf(blkbuf + strlen(blkbuf),
2295 	    buflen - strlen(blkbuf),
2296 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2297 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2298 	    zfs_get_hdrlevel(&zstd_hdr));
2299 
2300 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2301 }
2302 
2303 static void
2304 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2305     boolean_t bp_freed)
2306 {
2307 	const dva_t *dva = bp->blk_dva;
2308 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2309 	int i;
2310 
2311 	if (dump_opt['b'] >= 6) {
2312 		snprintf_blkptr(blkbuf, buflen, bp);
2313 		if (bp_freed) {
2314 			(void) snprintf(blkbuf + strlen(blkbuf),
2315 			    buflen - strlen(blkbuf), " %s", "FREE");
2316 		}
2317 		return;
2318 	}
2319 
2320 	if (BP_IS_EMBEDDED(bp)) {
2321 		(void) sprintf(blkbuf,
2322 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2323 		    (int)BPE_GET_ETYPE(bp),
2324 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2325 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2326 		    (u_longlong_t)bp->blk_birth);
2327 		return;
2328 	}
2329 
2330 	blkbuf[0] = '\0';
2331 
2332 	for (i = 0; i < ndvas; i++)
2333 		(void) snprintf(blkbuf + strlen(blkbuf),
2334 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2335 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2336 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2337 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2338 
2339 	if (BP_IS_HOLE(bp)) {
2340 		(void) snprintf(blkbuf + strlen(blkbuf),
2341 		    buflen - strlen(blkbuf),
2342 		    "%llxL B=%llu",
2343 		    (u_longlong_t)BP_GET_LSIZE(bp),
2344 		    (u_longlong_t)bp->blk_birth);
2345 	} else {
2346 		(void) snprintf(blkbuf + strlen(blkbuf),
2347 		    buflen - strlen(blkbuf),
2348 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2349 		    (u_longlong_t)BP_GET_LSIZE(bp),
2350 		    (u_longlong_t)BP_GET_PSIZE(bp),
2351 		    (u_longlong_t)BP_GET_FILL(bp),
2352 		    (u_longlong_t)bp->blk_birth,
2353 		    (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2354 		if (bp_freed)
2355 			(void) snprintf(blkbuf + strlen(blkbuf),
2356 			    buflen - strlen(blkbuf), " %s", "FREE");
2357 		(void) snprintf(blkbuf + strlen(blkbuf),
2358 		    buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx",
2359 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2360 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2361 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2362 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2363 	}
2364 }
2365 
2366 static void
2367 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2368     const dnode_phys_t *dnp)
2369 {
2370 	char blkbuf[BP_SPRINTF_LEN];
2371 	int l;
2372 
2373 	if (!BP_IS_EMBEDDED(bp)) {
2374 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2375 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2376 	}
2377 
2378 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2379 
2380 	ASSERT(zb->zb_level >= 0);
2381 
2382 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2383 		if (l == zb->zb_level) {
2384 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2385 		} else {
2386 			(void) printf(" ");
2387 		}
2388 	}
2389 
2390 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2391 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2392 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2393 	(void) printf("%s\n", blkbuf);
2394 }
2395 
2396 static int
2397 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2398     blkptr_t *bp, const zbookmark_phys_t *zb)
2399 {
2400 	int err = 0;
2401 
2402 	if (bp->blk_birth == 0)
2403 		return (0);
2404 
2405 	print_indirect(spa, bp, zb, dnp);
2406 
2407 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2408 		arc_flags_t flags = ARC_FLAG_WAIT;
2409 		int i;
2410 		blkptr_t *cbp;
2411 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2412 		arc_buf_t *buf;
2413 		uint64_t fill = 0;
2414 		ASSERT(!BP_IS_REDACTED(bp));
2415 
2416 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2417 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2418 		if (err)
2419 			return (err);
2420 		ASSERT(buf->b_data);
2421 
2422 		/* recursively visit blocks below this */
2423 		cbp = buf->b_data;
2424 		for (i = 0; i < epb; i++, cbp++) {
2425 			zbookmark_phys_t czb;
2426 
2427 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2428 			    zb->zb_level - 1,
2429 			    zb->zb_blkid * epb + i);
2430 			err = visit_indirect(spa, dnp, cbp, &czb);
2431 			if (err)
2432 				break;
2433 			fill += BP_GET_FILL(cbp);
2434 		}
2435 		if (!err)
2436 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2437 		arc_buf_destroy(buf, &buf);
2438 	}
2439 
2440 	return (err);
2441 }
2442 
2443 /*ARGSUSED*/
2444 static void
2445 dump_indirect(dnode_t *dn)
2446 {
2447 	dnode_phys_t *dnp = dn->dn_phys;
2448 	int j;
2449 	zbookmark_phys_t czb;
2450 
2451 	(void) printf("Indirect blocks:\n");
2452 
2453 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2454 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2455 	for (j = 0; j < dnp->dn_nblkptr; j++) {
2456 		czb.zb_blkid = j;
2457 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2458 		    &dnp->dn_blkptr[j], &czb);
2459 	}
2460 
2461 	(void) printf("\n");
2462 }
2463 
2464 /*ARGSUSED*/
2465 static void
2466 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2467 {
2468 	dsl_dir_phys_t *dd = data;
2469 	time_t crtime;
2470 	char nice[32];
2471 
2472 	/* make sure nicenum has enough space */
2473 	CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ);
2474 
2475 	if (dd == NULL)
2476 		return;
2477 
2478 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2479 
2480 	crtime = dd->dd_creation_time;
2481 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2482 	(void) printf("\t\thead_dataset_obj = %llu\n",
2483 	    (u_longlong_t)dd->dd_head_dataset_obj);
2484 	(void) printf("\t\tparent_dir_obj = %llu\n",
2485 	    (u_longlong_t)dd->dd_parent_obj);
2486 	(void) printf("\t\torigin_obj = %llu\n",
2487 	    (u_longlong_t)dd->dd_origin_obj);
2488 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2489 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2490 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2491 	(void) printf("\t\tused_bytes = %s\n", nice);
2492 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2493 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2494 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2495 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2496 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2497 	(void) printf("\t\tquota = %s\n", nice);
2498 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2499 	(void) printf("\t\treserved = %s\n", nice);
2500 	(void) printf("\t\tprops_zapobj = %llu\n",
2501 	    (u_longlong_t)dd->dd_props_zapobj);
2502 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2503 	    (u_longlong_t)dd->dd_deleg_zapobj);
2504 	(void) printf("\t\tflags = %llx\n",
2505 	    (u_longlong_t)dd->dd_flags);
2506 
2507 #define	DO(which) \
2508 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2509 	    sizeof (nice)); \
2510 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2511 	DO(HEAD);
2512 	DO(SNAP);
2513 	DO(CHILD);
2514 	DO(CHILD_RSRV);
2515 	DO(REFRSRV);
2516 #undef DO
2517 	(void) printf("\t\tclones = %llu\n",
2518 	    (u_longlong_t)dd->dd_clones);
2519 }
2520 
2521 /*ARGSUSED*/
2522 static void
2523 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2524 {
2525 	dsl_dataset_phys_t *ds = data;
2526 	time_t crtime;
2527 	char used[32], compressed[32], uncompressed[32], unique[32];
2528 	char blkbuf[BP_SPRINTF_LEN];
2529 
2530 	/* make sure nicenum has enough space */
2531 	CTASSERT(sizeof (used) >= NN_NUMBUF_SZ);
2532 	CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ);
2533 	CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ);
2534 	CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ);
2535 
2536 	if (ds == NULL)
2537 		return;
2538 
2539 	ASSERT(size == sizeof (*ds));
2540 	crtime = ds->ds_creation_time;
2541 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2542 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2543 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2544 	    sizeof (uncompressed));
2545 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2546 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2547 
2548 	(void) printf("\t\tdir_obj = %llu\n",
2549 	    (u_longlong_t)ds->ds_dir_obj);
2550 	(void) printf("\t\tprev_snap_obj = %llu\n",
2551 	    (u_longlong_t)ds->ds_prev_snap_obj);
2552 	(void) printf("\t\tprev_snap_txg = %llu\n",
2553 	    (u_longlong_t)ds->ds_prev_snap_txg);
2554 	(void) printf("\t\tnext_snap_obj = %llu\n",
2555 	    (u_longlong_t)ds->ds_next_snap_obj);
2556 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2557 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2558 	(void) printf("\t\tnum_children = %llu\n",
2559 	    (u_longlong_t)ds->ds_num_children);
2560 	(void) printf("\t\tuserrefs_obj = %llu\n",
2561 	    (u_longlong_t)ds->ds_userrefs_obj);
2562 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2563 	(void) printf("\t\tcreation_txg = %llu\n",
2564 	    (u_longlong_t)ds->ds_creation_txg);
2565 	(void) printf("\t\tdeadlist_obj = %llu\n",
2566 	    (u_longlong_t)ds->ds_deadlist_obj);
2567 	(void) printf("\t\tused_bytes = %s\n", used);
2568 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2569 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2570 	(void) printf("\t\tunique = %s\n", unique);
2571 	(void) printf("\t\tfsid_guid = %llu\n",
2572 	    (u_longlong_t)ds->ds_fsid_guid);
2573 	(void) printf("\t\tguid = %llu\n",
2574 	    (u_longlong_t)ds->ds_guid);
2575 	(void) printf("\t\tflags = %llx\n",
2576 	    (u_longlong_t)ds->ds_flags);
2577 	(void) printf("\t\tnext_clones_obj = %llu\n",
2578 	    (u_longlong_t)ds->ds_next_clones_obj);
2579 	(void) printf("\t\tprops_obj = %llu\n",
2580 	    (u_longlong_t)ds->ds_props_obj);
2581 	(void) printf("\t\tbp = %s\n", blkbuf);
2582 }
2583 
2584 /* ARGSUSED */
2585 static int
2586 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2587 {
2588 	char blkbuf[BP_SPRINTF_LEN];
2589 
2590 	if (bp->blk_birth != 0) {
2591 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2592 		(void) printf("\t%s\n", blkbuf);
2593 	}
2594 	return (0);
2595 }
2596 
2597 static void
2598 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2599 {
2600 	char bytes[32];
2601 	bptree_phys_t *bt;
2602 	dmu_buf_t *db;
2603 
2604 	/* make sure nicenum has enough space */
2605 	CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
2606 
2607 	if (dump_opt['d'] < 3)
2608 		return;
2609 
2610 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2611 	bt = db->db_data;
2612 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2613 	(void) printf("\n    %s: %llu datasets, %s\n",
2614 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2615 	dmu_buf_rele(db, FTAG);
2616 
2617 	if (dump_opt['d'] < 5)
2618 		return;
2619 
2620 	(void) printf("\n");
2621 
2622 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2623 }
2624 
2625 /* ARGSUSED */
2626 static int
2627 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2628 {
2629 	char blkbuf[BP_SPRINTF_LEN];
2630 
2631 	ASSERT(bp->blk_birth != 0);
2632 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2633 	(void) printf("\t%s\n", blkbuf);
2634 	return (0);
2635 }
2636 
2637 static void
2638 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2639 {
2640 	char bytes[32];
2641 	char comp[32];
2642 	char uncomp[32];
2643 	uint64_t i;
2644 
2645 	/* make sure nicenum has enough space */
2646 	CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
2647 	CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
2648 	CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
2649 
2650 	if (dump_opt['d'] < 3)
2651 		return;
2652 
2653 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2654 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2655 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2656 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2657 		if (bpo->bpo_havefreed) {
2658 			(void) printf("    %*s: object %llu, %llu local "
2659 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2660 			    "%s (%s/%s comp)\n",
2661 			    indent * 8, name,
2662 			    (u_longlong_t)bpo->bpo_object,
2663 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2664 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2665 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2666 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2667 			    bytes, comp, uncomp);
2668 		} else {
2669 			(void) printf("    %*s: object %llu, %llu local "
2670 			    "blkptrs, %llu subobjs in object %llu, "
2671 			    "%s (%s/%s comp)\n",
2672 			    indent * 8, name,
2673 			    (u_longlong_t)bpo->bpo_object,
2674 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2675 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2676 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2677 			    bytes, comp, uncomp);
2678 		}
2679 
2680 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2681 			uint64_t subobj;
2682 			bpobj_t subbpo;
2683 			int error;
2684 			VERIFY0(dmu_read(bpo->bpo_os,
2685 			    bpo->bpo_phys->bpo_subobjs,
2686 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2687 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2688 			if (error != 0) {
2689 				(void) printf("ERROR %u while trying to open "
2690 				    "subobj id %llu\n",
2691 				    error, (u_longlong_t)subobj);
2692 				continue;
2693 			}
2694 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2695 			bpobj_close(&subbpo);
2696 		}
2697 	} else {
2698 		if (bpo->bpo_havefreed) {
2699 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2700 			    "%llu freed, %s\n",
2701 			    indent * 8, name,
2702 			    (u_longlong_t)bpo->bpo_object,
2703 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2704 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2705 			    bytes);
2706 		} else {
2707 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2708 			    "%s\n",
2709 			    indent * 8, name,
2710 			    (u_longlong_t)bpo->bpo_object,
2711 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2712 			    bytes);
2713 		}
2714 	}
2715 
2716 	if (dump_opt['d'] < 5)
2717 		return;
2718 
2719 
2720 	if (indent == 0) {
2721 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2722 		(void) printf("\n");
2723 	}
2724 }
2725 
2726 static int
2727 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2728     boolean_t print_list)
2729 {
2730 	int err = 0;
2731 	zfs_bookmark_phys_t prop;
2732 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2733 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2734 
2735 	if (err != 0) {
2736 		return (err);
2737 	}
2738 
2739 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2740 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2741 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2742 	    (u_longlong_t)prop.zbm_creation_txg,
2743 	    (u_longlong_t)prop.zbm_creation_time,
2744 	    (u_longlong_t)prop.zbm_redaction_obj);
2745 
2746 	IMPLY(print_list, print_redact);
2747 	if (!print_redact || prop.zbm_redaction_obj == 0)
2748 		return (0);
2749 
2750 	redaction_list_t *rl;
2751 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2752 	    prop.zbm_redaction_obj, FTAG, &rl));
2753 
2754 	redaction_list_phys_t *rlp = rl->rl_phys;
2755 	(void) printf("\tRedacted:\n\t\tProgress: ");
2756 	if (rlp->rlp_last_object != UINT64_MAX ||
2757 	    rlp->rlp_last_blkid != UINT64_MAX) {
2758 		(void) printf("%llu %llu (incomplete)\n",
2759 		    (u_longlong_t)rlp->rlp_last_object,
2760 		    (u_longlong_t)rlp->rlp_last_blkid);
2761 	} else {
2762 		(void) printf("complete\n");
2763 	}
2764 	(void) printf("\t\tSnapshots: [");
2765 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2766 		if (i > 0)
2767 			(void) printf(", ");
2768 		(void) printf("%0llu",
2769 		    (u_longlong_t)rlp->rlp_snaps[i]);
2770 	}
2771 	(void) printf("]\n\t\tLength: %llu\n",
2772 	    (u_longlong_t)rlp->rlp_num_entries);
2773 
2774 	if (!print_list) {
2775 		dsl_redaction_list_rele(rl, FTAG);
2776 		return (0);
2777 	}
2778 
2779 	if (rlp->rlp_num_entries == 0) {
2780 		dsl_redaction_list_rele(rl, FTAG);
2781 		(void) printf("\t\tRedaction List: []\n\n");
2782 		return (0);
2783 	}
2784 
2785 	redact_block_phys_t *rbp_buf;
2786 	uint64_t size;
2787 	dmu_object_info_t doi;
2788 
2789 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2790 	size = doi.doi_max_offset;
2791 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2792 
2793 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2794 	    rbp_buf, 0);
2795 	if (err != 0) {
2796 		dsl_redaction_list_rele(rl, FTAG);
2797 		kmem_free(rbp_buf, size);
2798 		return (err);
2799 	}
2800 
2801 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2802 	    "%llx, blksz: %x, count: %llx}",
2803 	    (u_longlong_t)rbp_buf[0].rbp_object,
2804 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2805 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2806 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2807 
2808 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2809 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2810 		    "blksz: %x, count: %llx}",
2811 		    (u_longlong_t)rbp_buf[i].rbp_object,
2812 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2813 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2814 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2815 	}
2816 	dsl_redaction_list_rele(rl, FTAG);
2817 	kmem_free(rbp_buf, size);
2818 	(void) printf("]\n\n");
2819 	return (0);
2820 }
2821 
2822 static void
2823 dump_bookmarks(objset_t *os, int verbosity)
2824 {
2825 	zap_cursor_t zc;
2826 	zap_attribute_t attr;
2827 	dsl_dataset_t *ds = dmu_objset_ds(os);
2828 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2829 	objset_t *mos = os->os_spa->spa_meta_objset;
2830 	if (verbosity < 4)
2831 		return;
2832 	dsl_pool_config_enter(dp, FTAG);
2833 
2834 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2835 	    zap_cursor_retrieve(&zc, &attr) == 0;
2836 	    zap_cursor_advance(&zc)) {
2837 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2838 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2839 		dmu_objset_name(os, osname);
2840 		VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname,
2841 		    attr.za_name));
2842 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2843 	}
2844 	zap_cursor_fini(&zc);
2845 	dsl_pool_config_exit(dp, FTAG);
2846 }
2847 
2848 static void
2849 bpobj_count_refd(bpobj_t *bpo)
2850 {
2851 	mos_obj_refd(bpo->bpo_object);
2852 
2853 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2854 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2855 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2856 			uint64_t subobj;
2857 			bpobj_t subbpo;
2858 			int error;
2859 			VERIFY0(dmu_read(bpo->bpo_os,
2860 			    bpo->bpo_phys->bpo_subobjs,
2861 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2862 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2863 			if (error != 0) {
2864 				(void) printf("ERROR %u while trying to open "
2865 				    "subobj id %llu\n",
2866 				    error, (u_longlong_t)subobj);
2867 				continue;
2868 			}
2869 			bpobj_count_refd(&subbpo);
2870 			bpobj_close(&subbpo);
2871 		}
2872 	}
2873 }
2874 
2875 static int
2876 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2877 {
2878 	spa_t *spa = arg;
2879 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2880 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
2881 		bpobj_count_refd(&dle->dle_bpobj);
2882 	return (0);
2883 }
2884 
2885 static int
2886 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
2887 {
2888 	ASSERT(arg == NULL);
2889 	if (dump_opt['d'] >= 5) {
2890 		char buf[128];
2891 		(void) snprintf(buf, sizeof (buf),
2892 		    "mintxg %llu -> obj %llu",
2893 		    (longlong_t)dle->dle_mintxg,
2894 		    (longlong_t)dle->dle_bpobj.bpo_object);
2895 
2896 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
2897 	} else {
2898 		(void) printf("mintxg %llu -> obj %llu\n",
2899 		    (longlong_t)dle->dle_mintxg,
2900 		    (longlong_t)dle->dle_bpobj.bpo_object);
2901 	}
2902 	return (0);
2903 }
2904 
2905 static void
2906 dump_blkptr_list(dsl_deadlist_t *dl, char *name)
2907 {
2908 	char bytes[32];
2909 	char comp[32];
2910 	char uncomp[32];
2911 	char entries[32];
2912 	spa_t *spa = dmu_objset_spa(dl->dl_os);
2913 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2914 
2915 	if (dl->dl_oldfmt) {
2916 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
2917 			bpobj_count_refd(&dl->dl_bpobj);
2918 	} else {
2919 		mos_obj_refd(dl->dl_object);
2920 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
2921 	}
2922 
2923 	/* make sure nicenum has enough space */
2924 	CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ);
2925 	CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ);
2926 	CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ);
2927 	CTASSERT(sizeof (entries) >= NN_NUMBUF_SZ);
2928 
2929 	if (dump_opt['d'] < 3)
2930 		return;
2931 
2932 	if (dl->dl_oldfmt) {
2933 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
2934 		return;
2935 	}
2936 
2937 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
2938 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
2939 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
2940 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
2941 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
2942 	    name, bytes, comp, uncomp, entries);
2943 
2944 	if (dump_opt['d'] < 4)
2945 		return;
2946 
2947 	(void) printf("\n");
2948 
2949 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
2950 }
2951 
2952 static int
2953 verify_dd_livelist(objset_t *os)
2954 {
2955 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
2956 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2957 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
2958 
2959 	ASSERT(!dmu_objset_is_snapshot(os));
2960 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2961 		return (0);
2962 
2963 	/* Iterate through the livelist to check for duplicates */
2964 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
2965 	    NULL);
2966 
2967 	dsl_pool_config_enter(dp, FTAG);
2968 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
2969 	    &ll_comp, &ll_uncomp);
2970 
2971 	dsl_dataset_t *origin_ds;
2972 	ASSERT(dsl_pool_config_held(dp));
2973 	VERIFY0(dsl_dataset_hold_obj(dp,
2974 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
2975 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
2976 	    &used, &comp, &uncomp));
2977 	dsl_dataset_rele(origin_ds, FTAG);
2978 	dsl_pool_config_exit(dp, FTAG);
2979 	/*
2980 	 *  It's possible that the dataset's uncomp space is larger than the
2981 	 *  livelist's because livelists do not track embedded block pointers
2982 	 */
2983 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
2984 		char nice_used[32], nice_comp[32], nice_uncomp[32];
2985 		(void) printf("Discrepancy in space accounting:\n");
2986 		zdb_nicenum(used, nice_used, sizeof (nice_used));
2987 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
2988 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
2989 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
2990 		    nice_used, nice_comp, nice_uncomp);
2991 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
2992 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
2993 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
2994 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
2995 		    nice_used, nice_comp, nice_uncomp);
2996 		return (1);
2997 	}
2998 	return (0);
2999 }
3000 
3001 static avl_tree_t idx_tree;
3002 static avl_tree_t domain_tree;
3003 static boolean_t fuid_table_loaded;
3004 static objset_t *sa_os = NULL;
3005 static sa_attr_type_t *sa_attr_table = NULL;
3006 
3007 static int
3008 open_objset(const char *path, void *tag, objset_t **osp)
3009 {
3010 	int err;
3011 	uint64_t sa_attrs = 0;
3012 	uint64_t version = 0;
3013 
3014 	VERIFY3P(sa_os, ==, NULL);
3015 	/*
3016 	 * We can't own an objset if it's redacted.  Therefore, we do this
3017 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3018 	 * release the pool (which is held as part of holding the objset).
3019 	 */
3020 	err = dmu_objset_hold(path, tag, osp);
3021 	if (err != 0) {
3022 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3023 		    path, strerror(err));
3024 		return (err);
3025 	}
3026 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3027 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3028 
3029 	if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
3030 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3031 		    8, 1, &version);
3032 		if (version >= ZPL_VERSION_SA) {
3033 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3034 			    8, 1, &sa_attrs);
3035 		}
3036 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3037 		    &sa_attr_table);
3038 		if (err != 0) {
3039 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3040 			    strerror(err));
3041 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3042 			dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3043 			*osp = NULL;
3044 		}
3045 	}
3046 	sa_os = *osp;
3047 
3048 	return (0);
3049 }
3050 
3051 static void
3052 close_objset(objset_t *os, void *tag)
3053 {
3054 	VERIFY3P(os, ==, sa_os);
3055 	if (os->os_sa != NULL)
3056 		sa_tear_down(os);
3057 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3058 	dsl_dataset_rele(dmu_objset_ds(os), tag);
3059 	sa_attr_table = NULL;
3060 	sa_os = NULL;
3061 }
3062 
3063 static void
3064 fuid_table_destroy(void)
3065 {
3066 	if (fuid_table_loaded) {
3067 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3068 		fuid_table_loaded = B_FALSE;
3069 	}
3070 }
3071 
3072 /*
3073  * print uid or gid information.
3074  * For normal POSIX id just the id is printed in decimal format.
3075  * For CIFS files with FUID the fuid is printed in hex followed by
3076  * the domain-rid string.
3077  */
3078 static void
3079 print_idstr(uint64_t id, const char *id_type)
3080 {
3081 	if (FUID_INDEX(id)) {
3082 		char *domain;
3083 
3084 		domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3085 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3086 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3087 	} else {
3088 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3089 	}
3090 
3091 }
3092 
3093 static void
3094 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3095 {
3096 	uint32_t uid_idx, gid_idx;
3097 
3098 	uid_idx = FUID_INDEX(uid);
3099 	gid_idx = FUID_INDEX(gid);
3100 
3101 	/* Load domain table, if not already loaded */
3102 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3103 		uint64_t fuid_obj;
3104 
3105 		/* first find the fuid object.  It lives in the master node */
3106 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3107 		    8, 1, &fuid_obj) == 0);
3108 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3109 		(void) zfs_fuid_table_load(os, fuid_obj,
3110 		    &idx_tree, &domain_tree);
3111 		fuid_table_loaded = B_TRUE;
3112 	}
3113 
3114 	print_idstr(uid, "uid");
3115 	print_idstr(gid, "gid");
3116 }
3117 
3118 static void
3119 dump_znode_sa_xattr(sa_handle_t *hdl)
3120 {
3121 	nvlist_t *sa_xattr;
3122 	nvpair_t *elem = NULL;
3123 	int sa_xattr_size = 0;
3124 	int sa_xattr_entries = 0;
3125 	int error;
3126 	char *sa_xattr_packed;
3127 
3128 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3129 	if (error || sa_xattr_size == 0)
3130 		return;
3131 
3132 	sa_xattr_packed = malloc(sa_xattr_size);
3133 	if (sa_xattr_packed == NULL)
3134 		return;
3135 
3136 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3137 	    sa_xattr_packed, sa_xattr_size);
3138 	if (error) {
3139 		free(sa_xattr_packed);
3140 		return;
3141 	}
3142 
3143 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3144 	if (error) {
3145 		free(sa_xattr_packed);
3146 		return;
3147 	}
3148 
3149 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3150 		sa_xattr_entries++;
3151 
3152 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3153 	    sa_xattr_size, sa_xattr_entries);
3154 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3155 		uchar_t *value;
3156 		uint_t cnt, idx;
3157 
3158 		(void) printf("\t\t%s = ", nvpair_name(elem));
3159 		nvpair_value_byte_array(elem, &value, &cnt);
3160 		for (idx = 0; idx < cnt; ++idx) {
3161 			if (isprint(value[idx]))
3162 				(void) putchar(value[idx]);
3163 			else
3164 				(void) printf("\\%3.3o", value[idx]);
3165 		}
3166 		(void) putchar('\n');
3167 	}
3168 
3169 	nvlist_free(sa_xattr);
3170 	free(sa_xattr_packed);
3171 }
3172 
3173 static void
3174 dump_znode_symlink(sa_handle_t *hdl)
3175 {
3176 	int sa_symlink_size = 0;
3177 	char linktarget[MAXPATHLEN];
3178 	linktarget[0] = '\0';
3179 	int error;
3180 
3181 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3182 	if (error || sa_symlink_size == 0) {
3183 		return;
3184 	}
3185 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3186 	    &linktarget, sa_symlink_size) == 0)
3187 		(void) printf("\ttarget	%s\n", linktarget);
3188 }
3189 
3190 /*ARGSUSED*/
3191 static void
3192 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3193 {
3194 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3195 	sa_handle_t *hdl;
3196 	uint64_t xattr, rdev, gen;
3197 	uint64_t uid, gid, mode, fsize, parent, links;
3198 	uint64_t pflags;
3199 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3200 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3201 	sa_bulk_attr_t bulk[12];
3202 	int idx = 0;
3203 	int error;
3204 
3205 	VERIFY3P(os, ==, sa_os);
3206 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3207 		(void) printf("Failed to get handle for SA znode\n");
3208 		return;
3209 	}
3210 
3211 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3212 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3213 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3214 	    &links, 8);
3215 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3216 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3217 	    &mode, 8);
3218 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3219 	    NULL, &parent, 8);
3220 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3221 	    &fsize, 8);
3222 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3223 	    acctm, 16);
3224 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3225 	    modtm, 16);
3226 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3227 	    crtm, 16);
3228 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3229 	    chgtm, 16);
3230 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3231 	    &pflags, 8);
3232 
3233 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3234 		(void) sa_handle_destroy(hdl);
3235 		return;
3236 	}
3237 
3238 	z_crtime = (time_t)crtm[0];
3239 	z_atime = (time_t)acctm[0];
3240 	z_mtime = (time_t)modtm[0];
3241 	z_ctime = (time_t)chgtm[0];
3242 
3243 	if (dump_opt['d'] > 4) {
3244 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3245 		if (error == ESTALE) {
3246 			(void) snprintf(path, sizeof (path), "on delete queue");
3247 		} else if (error != 0) {
3248 			leaked_objects++;
3249 			(void) snprintf(path, sizeof (path),
3250 			    "path not found, possibly leaked");
3251 		}
3252 		(void) printf("\tpath	%s\n", path);
3253 	}
3254 
3255 	if (S_ISLNK(mode))
3256 		dump_znode_symlink(hdl);
3257 	dump_uidgid(os, uid, gid);
3258 	(void) printf("\tatime	%s", ctime(&z_atime));
3259 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3260 	(void) printf("\tctime	%s", ctime(&z_ctime));
3261 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3262 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3263 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3264 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3265 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3266 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3267 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3268 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3269 		uint64_t projid;
3270 
3271 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3272 		    sizeof (uint64_t)) == 0)
3273 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3274 	}
3275 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3276 	    sizeof (uint64_t)) == 0)
3277 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3278 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3279 	    sizeof (uint64_t)) == 0)
3280 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3281 	dump_znode_sa_xattr(hdl);
3282 	sa_handle_destroy(hdl);
3283 }
3284 
3285 /*ARGSUSED*/
3286 static void
3287 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3288 {
3289 }
3290 
3291 /*ARGSUSED*/
3292 static void
3293 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3294 {
3295 }
3296 
3297 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3298 	dump_none,		/* unallocated			*/
3299 	dump_zap,		/* object directory		*/
3300 	dump_uint64,		/* object array			*/
3301 	dump_none,		/* packed nvlist		*/
3302 	dump_packed_nvlist,	/* packed nvlist size		*/
3303 	dump_none,		/* bpobj			*/
3304 	dump_bpobj,		/* bpobj header			*/
3305 	dump_none,		/* SPA space map header		*/
3306 	dump_none,		/* SPA space map		*/
3307 	dump_none,		/* ZIL intent log		*/
3308 	dump_dnode,		/* DMU dnode			*/
3309 	dump_dmu_objset,	/* DMU objset			*/
3310 	dump_dsl_dir,		/* DSL directory		*/
3311 	dump_zap,		/* DSL directory child map	*/
3312 	dump_zap,		/* DSL dataset snap map		*/
3313 	dump_zap,		/* DSL props			*/
3314 	dump_dsl_dataset,	/* DSL dataset			*/
3315 	dump_znode,		/* ZFS znode			*/
3316 	dump_acl,		/* ZFS V0 ACL			*/
3317 	dump_uint8,		/* ZFS plain file		*/
3318 	dump_zpldir,		/* ZFS directory		*/
3319 	dump_zap,		/* ZFS master node		*/
3320 	dump_zap,		/* ZFS delete queue		*/
3321 	dump_uint8,		/* zvol object			*/
3322 	dump_zap,		/* zvol prop			*/
3323 	dump_uint8,		/* other uint8[]		*/
3324 	dump_uint64,		/* other uint64[]		*/
3325 	dump_zap,		/* other ZAP			*/
3326 	dump_zap,		/* persistent error log		*/
3327 	dump_uint8,		/* SPA history			*/
3328 	dump_history_offsets,	/* SPA history offsets		*/
3329 	dump_zap,		/* Pool properties		*/
3330 	dump_zap,		/* DSL permissions		*/
3331 	dump_acl,		/* ZFS ACL			*/
3332 	dump_uint8,		/* ZFS SYSACL			*/
3333 	dump_none,		/* FUID nvlist			*/
3334 	dump_packed_nvlist,	/* FUID nvlist size		*/
3335 	dump_zap,		/* DSL dataset next clones	*/
3336 	dump_zap,		/* DSL scrub queue		*/
3337 	dump_zap,		/* ZFS user/group/project used	*/
3338 	dump_zap,		/* ZFS user/group/project quota	*/
3339 	dump_zap,		/* snapshot refcount tags	*/
3340 	dump_ddt_zap,		/* DDT ZAP object		*/
3341 	dump_zap,		/* DDT statistics		*/
3342 	dump_znode,		/* SA object			*/
3343 	dump_zap,		/* SA Master Node		*/
3344 	dump_sa_attrs,		/* SA attribute registration	*/
3345 	dump_sa_layouts,	/* SA attribute layouts		*/
3346 	dump_zap,		/* DSL scrub translations	*/
3347 	dump_none,		/* fake dedup BP		*/
3348 	dump_zap,		/* deadlist			*/
3349 	dump_none,		/* deadlist hdr			*/
3350 	dump_zap,		/* dsl clones			*/
3351 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3352 	dump_unknown,		/* Unknown type, must be last	*/
3353 };
3354 
3355 static boolean_t
3356 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3357 {
3358 	boolean_t match = B_TRUE;
3359 
3360 	switch (obj_type) {
3361 	case DMU_OT_DIRECTORY_CONTENTS:
3362 		if (!(flags & ZOR_FLAG_DIRECTORY))
3363 			match = B_FALSE;
3364 		break;
3365 	case DMU_OT_PLAIN_FILE_CONTENTS:
3366 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3367 			match = B_FALSE;
3368 		break;
3369 	case DMU_OT_SPACE_MAP:
3370 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3371 			match = B_FALSE;
3372 		break;
3373 	default:
3374 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3375 			if (!(flags & ZOR_FLAG_ZAP))
3376 				match = B_FALSE;
3377 			break;
3378 		}
3379 
3380 		/*
3381 		 * If all bits except some of the supported flags are
3382 		 * set, the user combined the all-types flag (A) with
3383 		 * a negated flag to exclude some types (e.g. A-f to
3384 		 * show all object types except plain files).
3385 		 */
3386 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3387 			match = B_FALSE;
3388 
3389 		break;
3390 	}
3391 
3392 	return (match);
3393 }
3394 
3395 static void
3396 dump_object(objset_t *os, uint64_t object, int verbosity,
3397     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3398 {
3399 	dmu_buf_t *db = NULL;
3400 	dmu_object_info_t doi;
3401 	dnode_t *dn;
3402 	boolean_t dnode_held = B_FALSE;
3403 	void *bonus = NULL;
3404 	size_t bsize = 0;
3405 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3406 	char bonus_size[32];
3407 	char aux[50];
3408 	int error;
3409 
3410 	/* make sure nicenum has enough space */
3411 	CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ);
3412 	CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ);
3413 	CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ);
3414 	CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ);
3415 	CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ);
3416 
3417 	if (*print_header) {
3418 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3419 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3420 		    "lsize", "%full", "type");
3421 		*print_header = 0;
3422 	}
3423 
3424 	if (object == 0) {
3425 		dn = DMU_META_DNODE(os);
3426 		dmu_object_info_from_dnode(dn, &doi);
3427 	} else {
3428 		/*
3429 		 * Encrypted datasets will have sensitive bonus buffers
3430 		 * encrypted. Therefore we cannot hold the bonus buffer and
3431 		 * must hold the dnode itself instead.
3432 		 */
3433 		error = dmu_object_info(os, object, &doi);
3434 		if (error)
3435 			fatal("dmu_object_info() failed, errno %u", error);
3436 
3437 		if (os->os_encrypted &&
3438 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3439 			error = dnode_hold(os, object, FTAG, &dn);
3440 			if (error)
3441 				fatal("dnode_hold() failed, errno %u", error);
3442 			dnode_held = B_TRUE;
3443 		} else {
3444 			error = dmu_bonus_hold(os, object, FTAG, &db);
3445 			if (error)
3446 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3447 				    object, error);
3448 			bonus = db->db_data;
3449 			bsize = db->db_size;
3450 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3451 		}
3452 	}
3453 
3454 	/*
3455 	 * Default to showing all object types if no flags were specified.
3456 	 */
3457 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3458 	    !match_object_type(doi.doi_type, flags))
3459 		goto out;
3460 
3461 	if (dnode_slots_used)
3462 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3463 
3464 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3465 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3466 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3467 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3468 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3469 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3470 	(void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count *
3471 	    doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) /
3472 	    doi.doi_max_offset);
3473 
3474 	aux[0] = '\0';
3475 
3476 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3477 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3478 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3479 	}
3480 
3481 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3482 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3483 		const char *compname = NULL;
3484 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3485 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3486 		    &compname) == 0) {
3487 			(void) snprintf(aux + strlen(aux),
3488 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3489 			    compname);
3490 		} else {
3491 			(void) snprintf(aux + strlen(aux),
3492 			    sizeof (aux) - strlen(aux),
3493 			    " (Z=inherit=%s-unknown)",
3494 			    ZDB_COMPRESS_NAME(os->os_compress));
3495 		}
3496 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3497 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3498 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3499 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3500 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3501 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3502 	}
3503 
3504 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3505 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3506 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3507 
3508 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3509 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3510 		    "", "", "", "", "", "", bonus_size, "bonus",
3511 		    zdb_ot_name(doi.doi_bonus_type));
3512 	}
3513 
3514 	if (verbosity >= 4) {
3515 		(void) printf("\tdnode flags: %s%s%s%s\n",
3516 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3517 		    "USED_BYTES " : "",
3518 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3519 		    "USERUSED_ACCOUNTED " : "",
3520 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3521 		    "USEROBJUSED_ACCOUNTED " : "",
3522 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3523 		    "SPILL_BLKPTR" : "");
3524 		(void) printf("\tdnode maxblkid: %llu\n",
3525 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3526 
3527 		if (!dnode_held) {
3528 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3529 			    object, bonus, bsize);
3530 		} else {
3531 			(void) printf("\t\t(bonus encrypted)\n");
3532 		}
3533 
3534 		if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
3535 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3536 			    NULL, 0);
3537 		} else {
3538 			(void) printf("\t\t(object encrypted)\n");
3539 		}
3540 
3541 		*print_header = B_TRUE;
3542 	}
3543 
3544 	if (verbosity >= 5)
3545 		dump_indirect(dn);
3546 
3547 	if (verbosity >= 5) {
3548 		/*
3549 		 * Report the list of segments that comprise the object.
3550 		 */
3551 		uint64_t start = 0;
3552 		uint64_t end;
3553 		uint64_t blkfill = 1;
3554 		int minlvl = 1;
3555 
3556 		if (dn->dn_type == DMU_OT_DNODE) {
3557 			minlvl = 0;
3558 			blkfill = DNODES_PER_BLOCK;
3559 		}
3560 
3561 		for (;;) {
3562 			char segsize[32];
3563 			/* make sure nicenum has enough space */
3564 			CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ);
3565 			error = dnode_next_offset(dn,
3566 			    0, &start, minlvl, blkfill, 0);
3567 			if (error)
3568 				break;
3569 			end = start;
3570 			error = dnode_next_offset(dn,
3571 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3572 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3573 			(void) printf("\t\tsegment [%016llx, %016llx)"
3574 			    " size %5s\n", (u_longlong_t)start,
3575 			    (u_longlong_t)end, segsize);
3576 			if (error)
3577 				break;
3578 			start = end;
3579 		}
3580 	}
3581 
3582 out:
3583 	if (db != NULL)
3584 		dmu_buf_rele(db, FTAG);
3585 	if (dnode_held)
3586 		dnode_rele(dn, FTAG);
3587 }
3588 
3589 static void
3590 count_dir_mos_objects(dsl_dir_t *dd)
3591 {
3592 	mos_obj_refd(dd->dd_object);
3593 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3594 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3595 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3596 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3597 
3598 	/*
3599 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3600 	 * Ignore the references after the first one.
3601 	 */
3602 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3603 }
3604 
3605 static void
3606 count_ds_mos_objects(dsl_dataset_t *ds)
3607 {
3608 	mos_obj_refd(ds->ds_object);
3609 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3610 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3611 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3612 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3613 	mos_obj_refd(ds->ds_bookmarks_obj);
3614 
3615 	if (!dsl_dataset_is_snapshot(ds)) {
3616 		count_dir_mos_objects(ds->ds_dir);
3617 	}
3618 }
3619 
3620 static const char *objset_types[DMU_OST_NUMTYPES] = {
3621 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3622 
3623 /*
3624  * Parse a string denoting a range of object IDs of the form
3625  * <start>[:<end>[:flags]], and store the results in zor.
3626  * Return 0 on success. On error, return 1 and update the msg
3627  * pointer to point to a descriptive error message.
3628  */
3629 static int
3630 parse_object_range(char *range, zopt_object_range_t *zor, char **msg)
3631 {
3632 	uint64_t flags = 0;
3633 	char *p, *s, *dup, *flagstr, *tmp = NULL;
3634 	size_t len;
3635 	int i;
3636 	int rc = 0;
3637 
3638 	if (strchr(range, ':') == NULL) {
3639 		zor->zor_obj_start = strtoull(range, &p, 0);
3640 		if (*p != '\0') {
3641 			*msg = "Invalid characters in object ID";
3642 			rc = 1;
3643 		}
3644 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3645 		zor->zor_obj_end = zor->zor_obj_start;
3646 		return (rc);
3647 	}
3648 
3649 	if (strchr(range, ':') == range) {
3650 		*msg = "Invalid leading colon";
3651 		rc = 1;
3652 		return (rc);
3653 	}
3654 
3655 	len = strlen(range);
3656 	if (range[len - 1] == ':') {
3657 		*msg = "Invalid trailing colon";
3658 		rc = 1;
3659 		return (rc);
3660 	}
3661 
3662 	dup = strdup(range);
3663 	s = strtok_r(dup, ":", &tmp);
3664 	zor->zor_obj_start = strtoull(s, &p, 0);
3665 
3666 	if (*p != '\0') {
3667 		*msg = "Invalid characters in start object ID";
3668 		rc = 1;
3669 		goto out;
3670 	}
3671 
3672 	s = strtok_r(NULL, ":", &tmp);
3673 	zor->zor_obj_end = strtoull(s, &p, 0);
3674 
3675 	if (*p != '\0') {
3676 		*msg = "Invalid characters in end object ID";
3677 		rc = 1;
3678 		goto out;
3679 	}
3680 
3681 	if (zor->zor_obj_start > zor->zor_obj_end) {
3682 		*msg = "Start object ID may not exceed end object ID";
3683 		rc = 1;
3684 		goto out;
3685 	}
3686 
3687 	s = strtok_r(NULL, ":", &tmp);
3688 	if (s == NULL) {
3689 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3690 		goto out;
3691 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
3692 		*msg = "Invalid colon-delimited field after flags";
3693 		rc = 1;
3694 		goto out;
3695 	}
3696 
3697 	flagstr = s;
3698 	for (i = 0; flagstr[i]; i++) {
3699 		int bit;
3700 		boolean_t negation = (flagstr[i] == '-');
3701 
3702 		if (negation) {
3703 			i++;
3704 			if (flagstr[i] == '\0') {
3705 				*msg = "Invalid trailing negation operator";
3706 				rc = 1;
3707 				goto out;
3708 			}
3709 		}
3710 		bit = flagbits[(uchar_t)flagstr[i]];
3711 		if (bit == 0) {
3712 			*msg = "Invalid flag";
3713 			rc = 1;
3714 			goto out;
3715 		}
3716 		if (negation)
3717 			flags &= ~bit;
3718 		else
3719 			flags |= bit;
3720 	}
3721 	zor->zor_flags = flags;
3722 
3723 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3724 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
3725 
3726 out:
3727 	free(dup);
3728 	return (rc);
3729 }
3730 
3731 static void
3732 dump_objset(objset_t *os)
3733 {
3734 	dmu_objset_stats_t dds = { 0 };
3735 	uint64_t object, object_count;
3736 	uint64_t refdbytes, usedobjs, scratch;
3737 	char numbuf[32];
3738 	char blkbuf[BP_SPRINTF_LEN + 20];
3739 	char osname[ZFS_MAX_DATASET_NAME_LEN];
3740 	const char *type = "UNKNOWN";
3741 	int verbosity = dump_opt['d'];
3742 	boolean_t print_header;
3743 	unsigned i;
3744 	int error;
3745 	uint64_t total_slots_used = 0;
3746 	uint64_t max_slot_used = 0;
3747 	uint64_t dnode_slots;
3748 	uint64_t obj_start;
3749 	uint64_t obj_end;
3750 	uint64_t flags;
3751 
3752 	/* make sure nicenum has enough space */
3753 	CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ);
3754 
3755 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
3756 	dmu_objset_fast_stat(os, &dds);
3757 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
3758 
3759 	print_header = B_TRUE;
3760 
3761 	if (dds.dds_type < DMU_OST_NUMTYPES)
3762 		type = objset_types[dds.dds_type];
3763 
3764 	if (dds.dds_type == DMU_OST_META) {
3765 		dds.dds_creation_txg = TXG_INITIAL;
3766 		usedobjs = BP_GET_FILL(os->os_rootbp);
3767 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
3768 		    dd_used_bytes;
3769 	} else {
3770 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
3771 	}
3772 
3773 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
3774 
3775 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
3776 
3777 	if (verbosity >= 4) {
3778 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
3779 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
3780 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
3781 	} else {
3782 		blkbuf[0] = '\0';
3783 	}
3784 
3785 	dmu_objset_name(os, osname);
3786 
3787 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
3788 	    "%s, %llu objects%s%s\n",
3789 	    osname, type, (u_longlong_t)dmu_objset_id(os),
3790 	    (u_longlong_t)dds.dds_creation_txg,
3791 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
3792 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
3793 
3794 	for (i = 0; i < zopt_object_args; i++) {
3795 		obj_start = zopt_object_ranges[i].zor_obj_start;
3796 		obj_end = zopt_object_ranges[i].zor_obj_end;
3797 		flags = zopt_object_ranges[i].zor_flags;
3798 
3799 		object = obj_start;
3800 		if (object == 0 || obj_start == obj_end)
3801 			dump_object(os, object, verbosity, &print_header, NULL,
3802 			    flags);
3803 		else
3804 			object--;
3805 
3806 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
3807 		    object <= obj_end) {
3808 			dump_object(os, object, verbosity, &print_header, NULL,
3809 			    flags);
3810 		}
3811 	}
3812 
3813 	if (zopt_object_args > 0) {
3814 		(void) printf("\n");
3815 		return;
3816 	}
3817 
3818 	if (dump_opt['i'] != 0 || verbosity >= 2)
3819 		dump_intent_log(dmu_objset_zil(os));
3820 
3821 	if (dmu_objset_ds(os) != NULL) {
3822 		dsl_dataset_t *ds = dmu_objset_ds(os);
3823 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
3824 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
3825 		    !dmu_objset_is_snapshot(os)) {
3826 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
3827 			if (verify_dd_livelist(os) != 0)
3828 				fatal("livelist is incorrect");
3829 		}
3830 
3831 		if (dsl_dataset_remap_deadlist_exists(ds)) {
3832 			(void) printf("ds_remap_deadlist:\n");
3833 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
3834 		}
3835 		count_ds_mos_objects(ds);
3836 	}
3837 
3838 	if (dmu_objset_ds(os) != NULL)
3839 		dump_bookmarks(os, verbosity);
3840 
3841 	if (verbosity < 2)
3842 		return;
3843 
3844 	if (BP_IS_HOLE(os->os_rootbp))
3845 		return;
3846 
3847 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
3848 	object_count = 0;
3849 	if (DMU_USERUSED_DNODE(os) != NULL &&
3850 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
3851 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
3852 		    NULL, 0);
3853 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
3854 		    NULL, 0);
3855 	}
3856 
3857 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
3858 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
3859 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
3860 		    &print_header, NULL, 0);
3861 
3862 	object = 0;
3863 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
3864 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
3865 		    0);
3866 		object_count++;
3867 		total_slots_used += dnode_slots;
3868 		max_slot_used = object + dnode_slots - 1;
3869 	}
3870 
3871 	(void) printf("\n");
3872 
3873 	(void) printf("    Dnode slots:\n");
3874 	(void) printf("\tTotal used:    %10llu\n",
3875 	    (u_longlong_t)total_slots_used);
3876 	(void) printf("\tMax used:      %10llu\n",
3877 	    (u_longlong_t)max_slot_used);
3878 	(void) printf("\tPercent empty: %10lf\n",
3879 	    (double)(max_slot_used - total_slots_used)*100 /
3880 	    (double)max_slot_used);
3881 	(void) printf("\n");
3882 
3883 	if (error != ESRCH) {
3884 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
3885 		abort();
3886 	}
3887 
3888 	ASSERT3U(object_count, ==, usedobjs);
3889 
3890 	if (leaked_objects != 0) {
3891 		(void) printf("%d potentially leaked objects detected\n",
3892 		    leaked_objects);
3893 		leaked_objects = 0;
3894 	}
3895 }
3896 
3897 static void
3898 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
3899 {
3900 	time_t timestamp = ub->ub_timestamp;
3901 
3902 	(void) printf("%s", header ? header : "");
3903 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
3904 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
3905 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
3906 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
3907 	(void) printf("\ttimestamp = %llu UTC = %s",
3908 	    (u_longlong_t)ub->ub_timestamp, asctime(localtime(&timestamp)));
3909 
3910 	(void) printf("\tmmp_magic = %016llx\n",
3911 	    (u_longlong_t)ub->ub_mmp_magic);
3912 	if (MMP_VALID(ub)) {
3913 		(void) printf("\tmmp_delay = %0llu\n",
3914 		    (u_longlong_t)ub->ub_mmp_delay);
3915 		if (MMP_SEQ_VALID(ub))
3916 			(void) printf("\tmmp_seq = %u\n",
3917 			    (unsigned int) MMP_SEQ(ub));
3918 		if (MMP_FAIL_INT_VALID(ub))
3919 			(void) printf("\tmmp_fail = %u\n",
3920 			    (unsigned int) MMP_FAIL_INT(ub));
3921 		if (MMP_INTERVAL_VALID(ub))
3922 			(void) printf("\tmmp_write = %u\n",
3923 			    (unsigned int) MMP_INTERVAL(ub));
3924 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
3925 		(void) printf("\tmmp_valid = %x\n",
3926 		    (unsigned int) ub->ub_mmp_config & 0xFF);
3927 	}
3928 
3929 	if (dump_opt['u'] >= 4) {
3930 		char blkbuf[BP_SPRINTF_LEN];
3931 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
3932 		(void) printf("\trootbp = %s\n", blkbuf);
3933 	}
3934 	(void) printf("\tcheckpoint_txg = %llu\n",
3935 	    (u_longlong_t)ub->ub_checkpoint_txg);
3936 	(void) printf("%s", footer ? footer : "");
3937 }
3938 
3939 static void
3940 dump_config(spa_t *spa)
3941 {
3942 	dmu_buf_t *db;
3943 	size_t nvsize = 0;
3944 	int error = 0;
3945 
3946 
3947 	error = dmu_bonus_hold(spa->spa_meta_objset,
3948 	    spa->spa_config_object, FTAG, &db);
3949 
3950 	if (error == 0) {
3951 		nvsize = *(uint64_t *)db->db_data;
3952 		dmu_buf_rele(db, FTAG);
3953 
3954 		(void) printf("\nMOS Configuration:\n");
3955 		dump_packed_nvlist(spa->spa_meta_objset,
3956 		    spa->spa_config_object, (void *)&nvsize, 1);
3957 	} else {
3958 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
3959 		    (u_longlong_t)spa->spa_config_object, error);
3960 	}
3961 }
3962 
3963 static void
3964 dump_cachefile(const char *cachefile)
3965 {
3966 	int fd;
3967 	struct stat64 statbuf;
3968 	char *buf;
3969 	nvlist_t *config;
3970 
3971 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
3972 		(void) printf("cannot open '%s': %s\n", cachefile,
3973 		    strerror(errno));
3974 		exit(1);
3975 	}
3976 
3977 	if (fstat64(fd, &statbuf) != 0) {
3978 		(void) printf("failed to stat '%s': %s\n", cachefile,
3979 		    strerror(errno));
3980 		exit(1);
3981 	}
3982 
3983 	if ((buf = malloc(statbuf.st_size)) == NULL) {
3984 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
3985 		    (u_longlong_t)statbuf.st_size);
3986 		exit(1);
3987 	}
3988 
3989 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
3990 		(void) fprintf(stderr, "failed to read %llu bytes\n",
3991 		    (u_longlong_t)statbuf.st_size);
3992 		exit(1);
3993 	}
3994 
3995 	(void) close(fd);
3996 
3997 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
3998 		(void) fprintf(stderr, "failed to unpack nvlist\n");
3999 		exit(1);
4000 	}
4001 
4002 	free(buf);
4003 
4004 	dump_nvlist(config, 0);
4005 
4006 	nvlist_free(config);
4007 }
4008 
4009 /*
4010  * ZFS label nvlist stats
4011  */
4012 typedef struct zdb_nvl_stats {
4013 	int		zns_list_count;
4014 	int		zns_leaf_count;
4015 	size_t		zns_leaf_largest;
4016 	size_t		zns_leaf_total;
4017 	nvlist_t	*zns_string;
4018 	nvlist_t	*zns_uint64;
4019 	nvlist_t	*zns_boolean;
4020 } zdb_nvl_stats_t;
4021 
4022 static void
4023 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4024 {
4025 	nvlist_t *list, **array;
4026 	nvpair_t *nvp = NULL;
4027 	char *name;
4028 	uint_t i, items;
4029 
4030 	stats->zns_list_count++;
4031 
4032 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4033 		name = nvpair_name(nvp);
4034 
4035 		switch (nvpair_type(nvp)) {
4036 		case DATA_TYPE_STRING:
4037 			fnvlist_add_string(stats->zns_string, name,
4038 			    fnvpair_value_string(nvp));
4039 			break;
4040 		case DATA_TYPE_UINT64:
4041 			fnvlist_add_uint64(stats->zns_uint64, name,
4042 			    fnvpair_value_uint64(nvp));
4043 			break;
4044 		case DATA_TYPE_BOOLEAN:
4045 			fnvlist_add_boolean(stats->zns_boolean, name);
4046 			break;
4047 		case DATA_TYPE_NVLIST:
4048 			if (nvpair_value_nvlist(nvp, &list) == 0)
4049 				collect_nvlist_stats(list, stats);
4050 			break;
4051 		case DATA_TYPE_NVLIST_ARRAY:
4052 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4053 				break;
4054 
4055 			for (i = 0; i < items; i++) {
4056 				collect_nvlist_stats(array[i], stats);
4057 
4058 				/* collect stats on leaf vdev */
4059 				if (strcmp(name, "children") == 0) {
4060 					size_t size;
4061 
4062 					(void) nvlist_size(array[i], &size,
4063 					    NV_ENCODE_XDR);
4064 					stats->zns_leaf_total += size;
4065 					if (size > stats->zns_leaf_largest)
4066 						stats->zns_leaf_largest = size;
4067 					stats->zns_leaf_count++;
4068 				}
4069 			}
4070 			break;
4071 		default:
4072 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4073 		}
4074 	}
4075 }
4076 
4077 static void
4078 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4079 {
4080 	zdb_nvl_stats_t stats = { 0 };
4081 	size_t size, sum = 0, total;
4082 	size_t noise;
4083 
4084 	/* requires nvlist with non-unique names for stat collection */
4085 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4086 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4087 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4088 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4089 
4090 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4091 
4092 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4093 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4094 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4095 
4096 	collect_nvlist_stats(nvl, &stats);
4097 
4098 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4099 	size -= noise;
4100 	sum += size;
4101 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4102 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4103 	    (int)size, 100.0 * size / total);
4104 
4105 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4106 	size -= noise;
4107 	sum += size;
4108 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4109 	    (int)fnvlist_num_pairs(stats.zns_string),
4110 	    (int)size, 100.0 * size / total);
4111 
4112 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4113 	size -= noise;
4114 	sum += size;
4115 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4116 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4117 	    (int)size, 100.0 * size / total);
4118 
4119 	size = total - sum;	/* treat remainder as nvlist overhead */
4120 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4121 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4122 
4123 	if (stats.zns_leaf_count > 0) {
4124 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4125 
4126 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4127 		    stats.zns_leaf_count, (int)average);
4128 		(void) printf("%24d bytes largest\n",
4129 		    (int)stats.zns_leaf_largest);
4130 
4131 		if (dump_opt['l'] >= 3 && average > 0)
4132 			(void) printf("  space for %d additional leaf vdevs\n",
4133 			    (int)((cap - total) / average));
4134 	}
4135 	(void) printf("\n");
4136 
4137 	nvlist_free(stats.zns_string);
4138 	nvlist_free(stats.zns_uint64);
4139 	nvlist_free(stats.zns_boolean);
4140 }
4141 
4142 typedef struct cksum_record {
4143 	zio_cksum_t cksum;
4144 	boolean_t labels[VDEV_LABELS];
4145 	avl_node_t link;
4146 } cksum_record_t;
4147 
4148 static int
4149 cksum_record_compare(const void *x1, const void *x2)
4150 {
4151 	const cksum_record_t *l = (cksum_record_t *)x1;
4152 	const cksum_record_t *r = (cksum_record_t *)x2;
4153 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4154 	int difference = 0;
4155 
4156 	for (int i = 0; i < arraysize; i++) {
4157 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4158 		if (difference)
4159 			break;
4160 	}
4161 
4162 	return (difference);
4163 }
4164 
4165 static cksum_record_t *
4166 cksum_record_alloc(zio_cksum_t *cksum, int l)
4167 {
4168 	cksum_record_t *rec;
4169 
4170 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4171 	rec->cksum = *cksum;
4172 	rec->labels[l] = B_TRUE;
4173 
4174 	return (rec);
4175 }
4176 
4177 static cksum_record_t *
4178 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4179 {
4180 	cksum_record_t lookup = { .cksum = *cksum };
4181 	avl_index_t where;
4182 
4183 	return (avl_find(tree, &lookup, &where));
4184 }
4185 
4186 static cksum_record_t *
4187 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4188 {
4189 	cksum_record_t *rec;
4190 
4191 	rec = cksum_record_lookup(tree, cksum);
4192 	if (rec) {
4193 		rec->labels[l] = B_TRUE;
4194 	} else {
4195 		rec = cksum_record_alloc(cksum, l);
4196 		avl_add(tree, rec);
4197 	}
4198 
4199 	return (rec);
4200 }
4201 
4202 static int
4203 first_label(cksum_record_t *rec)
4204 {
4205 	for (int i = 0; i < VDEV_LABELS; i++)
4206 		if (rec->labels[i])
4207 			return (i);
4208 
4209 	return (-1);
4210 }
4211 
4212 static void
4213 print_label_numbers(char *prefix, cksum_record_t *rec)
4214 {
4215 	printf("%s", prefix);
4216 	for (int i = 0; i < VDEV_LABELS; i++)
4217 		if (rec->labels[i] == B_TRUE)
4218 			printf("%d ", i);
4219 	printf("\n");
4220 }
4221 
4222 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4223 
4224 typedef struct zdb_label {
4225 	vdev_label_t label;
4226 	uint64_t label_offset;
4227 	nvlist_t *config_nv;
4228 	cksum_record_t *config;
4229 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4230 	boolean_t header_printed;
4231 	boolean_t read_failed;
4232 	boolean_t cksum_valid;
4233 } zdb_label_t;
4234 
4235 static void
4236 print_label_header(zdb_label_t *label, int l)
4237 {
4238 
4239 	if (dump_opt['q'])
4240 		return;
4241 
4242 	if (label->header_printed == B_TRUE)
4243 		return;
4244 
4245 	(void) printf("------------------------------------\n");
4246 	(void) printf("LABEL %d %s\n", l,
4247 	    label->cksum_valid ? "" : "(Bad label cksum)");
4248 	(void) printf("------------------------------------\n");
4249 
4250 	label->header_printed = B_TRUE;
4251 }
4252 
4253 static void
4254 print_l2arc_header(void)
4255 {
4256 	(void) printf("------------------------------------\n");
4257 	(void) printf("L2ARC device header\n");
4258 	(void) printf("------------------------------------\n");
4259 }
4260 
4261 static void
4262 print_l2arc_log_blocks(void)
4263 {
4264 	(void) printf("------------------------------------\n");
4265 	(void) printf("L2ARC device log blocks\n");
4266 	(void) printf("------------------------------------\n");
4267 }
4268 
4269 static void
4270 dump_l2arc_log_entries(uint64_t log_entries,
4271     l2arc_log_ent_phys_t *le, uint64_t i)
4272 {
4273 	for (int j = 0; j < log_entries; j++) {
4274 		dva_t dva = le[j].le_dva;
4275 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4276 		    "vdev: %llu, offset: %llu\n",
4277 		    (u_longlong_t)i, j + 1,
4278 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4279 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4280 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4281 		(void) printf("|\t\t\t\tbirth: %llu\n",
4282 		    (u_longlong_t)le[j].le_birth);
4283 		(void) printf("|\t\t\t\tlsize: %llu\n",
4284 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4285 		(void) printf("|\t\t\t\tpsize: %llu\n",
4286 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4287 		(void) printf("|\t\t\t\tcompr: %llu\n",
4288 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4289 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4290 		    (u_longlong_t)(&le[j])->le_complevel);
4291 		(void) printf("|\t\t\t\ttype: %llu\n",
4292 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4293 		(void) printf("|\t\t\t\tprotected: %llu\n",
4294 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4295 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4296 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4297 		(void) printf("|\t\t\t\taddress: %llu\n",
4298 		    (u_longlong_t)le[j].le_daddr);
4299 		(void) printf("|\t\t\t\tARC state: %llu\n",
4300 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4301 		(void) printf("|\n");
4302 	}
4303 	(void) printf("\n");
4304 }
4305 
4306 static void
4307 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps)
4308 {
4309 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr);
4310 	(void) printf("|\t\tpayload_asize: %llu\n",
4311 	    (u_longlong_t)lbps.lbp_payload_asize);
4312 	(void) printf("|\t\tpayload_start: %llu\n",
4313 	    (u_longlong_t)lbps.lbp_payload_start);
4314 	(void) printf("|\t\tlsize: %llu\n",
4315 	    (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop));
4316 	(void) printf("|\t\tasize: %llu\n",
4317 	    (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop));
4318 	(void) printf("|\t\tcompralgo: %llu\n",
4319 	    (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop));
4320 	(void) printf("|\t\tcksumalgo: %llu\n",
4321 	    (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop));
4322 	(void) printf("|\n\n");
4323 }
4324 
4325 static void
4326 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr,
4327     l2arc_dev_hdr_phys_t *rebuild)
4328 {
4329 	l2arc_log_blk_phys_t this_lb;
4330 	uint64_t asize;
4331 	l2arc_log_blkptr_t lbps[2];
4332 	abd_t *abd;
4333 	zio_cksum_t cksum;
4334 	int failed = 0;
4335 	l2arc_dev_t dev;
4336 
4337 	if (!dump_opt['q'])
4338 		print_l2arc_log_blocks();
4339 	bcopy((&l2dhdr)->dh_start_lbps, lbps, sizeof (lbps));
4340 
4341 	dev.l2ad_evict = l2dhdr.dh_evict;
4342 	dev.l2ad_start = l2dhdr.dh_start;
4343 	dev.l2ad_end = l2dhdr.dh_end;
4344 
4345 	if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) {
4346 		/* no log blocks to read */
4347 		if (!dump_opt['q']) {
4348 			(void) printf("No log blocks to read\n");
4349 			(void) printf("\n");
4350 		}
4351 		return;
4352 	} else {
4353 		dev.l2ad_hand = lbps[0].lbp_daddr +
4354 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4355 	}
4356 
4357 	dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4358 
4359 	for (;;) {
4360 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4361 			break;
4362 
4363 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4364 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4365 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4366 			if (!dump_opt['q']) {
4367 				(void) printf("Error while reading next log "
4368 				    "block\n\n");
4369 			}
4370 			break;
4371 		}
4372 
4373 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4374 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4375 			failed++;
4376 			if (!dump_opt['q']) {
4377 				(void) printf("Invalid cksum\n");
4378 				dump_l2arc_log_blkptr(lbps[0]);
4379 			}
4380 			break;
4381 		}
4382 
4383 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4384 		case ZIO_COMPRESS_OFF:
4385 			break;
4386 		default:
4387 			abd = abd_alloc_for_io(asize, B_TRUE);
4388 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4389 			zio_decompress_data(L2BLK_GET_COMPRESS(
4390 			    (&lbps[0])->lbp_prop), abd, &this_lb,
4391 			    asize, sizeof (this_lb), NULL);
4392 			abd_free(abd);
4393 			break;
4394 		}
4395 
4396 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4397 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4398 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4399 			if (!dump_opt['q'])
4400 				(void) printf("Invalid log block magic\n\n");
4401 			break;
4402 		}
4403 
4404 		rebuild->dh_lb_count++;
4405 		rebuild->dh_lb_asize += asize;
4406 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4407 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4408 			    (u_longlong_t)rebuild->dh_lb_count,
4409 			    (u_longlong_t)this_lb.lb_magic);
4410 			dump_l2arc_log_blkptr(lbps[0]);
4411 		}
4412 
4413 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4414 			dump_l2arc_log_entries(l2dhdr.dh_log_entries,
4415 			    this_lb.lb_entries,
4416 			    rebuild->dh_lb_count);
4417 
4418 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4419 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4420 		    !dev.l2ad_first)
4421 			break;
4422 
4423 		lbps[0] = lbps[1];
4424 		lbps[1] = this_lb.lb_prev_lbp;
4425 	}
4426 
4427 	if (!dump_opt['q']) {
4428 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4429 		    (u_longlong_t)rebuild->dh_lb_count);
4430 		(void) printf("\t\t %d with invalid cksum\n", failed);
4431 		(void) printf("log_blk_asize:\t %llu\n\n",
4432 		    (u_longlong_t)rebuild->dh_lb_asize);
4433 	}
4434 }
4435 
4436 static int
4437 dump_l2arc_header(int fd)
4438 {
4439 	l2arc_dev_hdr_phys_t l2dhdr, rebuild;
4440 	int error = B_FALSE;
4441 
4442 	bzero(&l2dhdr, sizeof (l2dhdr));
4443 	bzero(&rebuild, sizeof (rebuild));
4444 
4445 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4446 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4447 		error = B_TRUE;
4448 	} else {
4449 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4450 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4451 
4452 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4453 			error = B_TRUE;
4454 	}
4455 
4456 	if (error) {
4457 		(void) printf("L2ARC device header not found\n\n");
4458 		/* Do not return an error here for backward compatibility */
4459 		return (0);
4460 	} else if (!dump_opt['q']) {
4461 		print_l2arc_header();
4462 
4463 		(void) printf("    magic: %llu\n",
4464 		    (u_longlong_t)l2dhdr.dh_magic);
4465 		(void) printf("    version: %llu\n",
4466 		    (u_longlong_t)l2dhdr.dh_version);
4467 		(void) printf("    pool_guid: %llu\n",
4468 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4469 		(void) printf("    flags: %llu\n",
4470 		    (u_longlong_t)l2dhdr.dh_flags);
4471 		(void) printf("    start_lbps[0]: %llu\n",
4472 		    (u_longlong_t)
4473 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4474 		(void) printf("    start_lbps[1]: %llu\n",
4475 		    (u_longlong_t)
4476 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4477 		(void) printf("    log_blk_ent: %llu\n",
4478 		    (u_longlong_t)l2dhdr.dh_log_entries);
4479 		(void) printf("    start: %llu\n",
4480 		    (u_longlong_t)l2dhdr.dh_start);
4481 		(void) printf("    end: %llu\n",
4482 		    (u_longlong_t)l2dhdr.dh_end);
4483 		(void) printf("    evict: %llu\n",
4484 		    (u_longlong_t)l2dhdr.dh_evict);
4485 		(void) printf("    lb_asize_refcount: %llu\n",
4486 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4487 		(void) printf("    lb_count_refcount: %llu\n",
4488 		    (u_longlong_t)l2dhdr.dh_lb_count);
4489 		(void) printf("    trim_action_time: %llu\n",
4490 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4491 		(void) printf("    trim_state: %llu\n\n",
4492 		    (u_longlong_t)l2dhdr.dh_trim_state);
4493 	}
4494 
4495 	dump_l2arc_log_blocks(fd, l2dhdr, &rebuild);
4496 	/*
4497 	 * The total aligned size of log blocks and the number of log blocks
4498 	 * reported in the header of the device may be less than what zdb
4499 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4500 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4501 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4502 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4503 	 * and dh_lb_count will be lower to begin with than what exists on the
4504 	 * device. This is normal and zdb should not exit with an error. The
4505 	 * opposite case should never happen though, the values reported in the
4506 	 * header should never be higher than what dump_l2arc_log_blocks() and
4507 	 * l2arc_rebuild() report. If this happens there is a leak in the
4508 	 * accounting of log blocks.
4509 	 */
4510 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4511 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4512 		return (1);
4513 
4514 	return (0);
4515 }
4516 
4517 static void
4518 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4519 {
4520 	if (dump_opt['q'])
4521 		return;
4522 
4523 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4524 		return;
4525 
4526 	print_label_header(label, l);
4527 	dump_nvlist(label->config_nv, 4);
4528 	print_label_numbers("    labels = ", label->config);
4529 
4530 	if (dump_opt['l'] >= 2)
4531 		dump_nvlist_stats(label->config_nv, buflen);
4532 }
4533 
4534 #define	ZDB_MAX_UB_HEADER_SIZE 32
4535 
4536 static void
4537 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4538 {
4539 
4540 	vdev_t vd;
4541 	char header[ZDB_MAX_UB_HEADER_SIZE];
4542 
4543 	vd.vdev_ashift = ashift;
4544 	vd.vdev_top = &vd;
4545 
4546 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4547 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4548 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4549 		cksum_record_t *rec = label->uberblocks[i];
4550 
4551 		if (rec == NULL) {
4552 			if (dump_opt['u'] >= 2) {
4553 				print_label_header(label, label_num);
4554 				(void) printf("    Uberblock[%d] invalid\n", i);
4555 			}
4556 			continue;
4557 		}
4558 
4559 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4560 			continue;
4561 
4562 		if ((dump_opt['u'] < 4) &&
4563 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4564 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4565 			continue;
4566 
4567 		print_label_header(label, label_num);
4568 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4569 		    "    Uberblock[%d]\n", i);
4570 		dump_uberblock(ub, header, "");
4571 		print_label_numbers("        labels = ", rec);
4572 	}
4573 }
4574 
4575 static char curpath[PATH_MAX];
4576 
4577 /*
4578  * Iterate through the path components, recursively passing
4579  * current one's obj and remaining path until we find the obj
4580  * for the last one.
4581  */
4582 static int
4583 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4584 {
4585 	int err;
4586 	boolean_t header = B_TRUE;
4587 	uint64_t child_obj;
4588 	char *s;
4589 	dmu_buf_t *db;
4590 	dmu_object_info_t doi;
4591 
4592 	if ((s = strchr(name, '/')) != NULL)
4593 		*s = '\0';
4594 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4595 
4596 	(void) strlcat(curpath, name, sizeof (curpath));
4597 
4598 	if (err != 0) {
4599 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4600 		    curpath, strerror(err));
4601 		return (err);
4602 	}
4603 
4604 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4605 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4606 	if (err != 0) {
4607 		(void) fprintf(stderr,
4608 		    "failed to get SA dbuf for obj %llu: %s\n",
4609 		    (u_longlong_t)child_obj, strerror(err));
4610 		return (EINVAL);
4611 	}
4612 	dmu_object_info_from_db(db, &doi);
4613 	sa_buf_rele(db, FTAG);
4614 
4615 	if (doi.doi_bonus_type != DMU_OT_SA &&
4616 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
4617 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4618 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
4619 		return (EINVAL);
4620 	}
4621 
4622 	if (dump_opt['v'] > 6) {
4623 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
4624 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
4625 		    doi.doi_bonus_type);
4626 	}
4627 
4628 	(void) strlcat(curpath, "/", sizeof (curpath));
4629 
4630 	switch (doi.doi_type) {
4631 	case DMU_OT_DIRECTORY_CONTENTS:
4632 		if (s != NULL && *(s + 1) != '\0')
4633 			return (dump_path_impl(os, child_obj, s + 1, retobj));
4634 		fallthrough;
4635 	case DMU_OT_PLAIN_FILE_CONTENTS:
4636 		if (retobj != NULL) {
4637 			*retobj = child_obj;
4638 		} else {
4639 			dump_object(os, child_obj, dump_opt['v'], &header,
4640 			    NULL, 0);
4641 		}
4642 		return (0);
4643 	default:
4644 		(void) fprintf(stderr, "object %llu has non-file/directory "
4645 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
4646 		break;
4647 	}
4648 
4649 	return (EINVAL);
4650 }
4651 
4652 /*
4653  * Dump the blocks for the object specified by path inside the dataset.
4654  */
4655 static int
4656 dump_path(char *ds, char *path, uint64_t *retobj)
4657 {
4658 	int err;
4659 	objset_t *os;
4660 	uint64_t root_obj;
4661 
4662 	err = open_objset(ds, FTAG, &os);
4663 	if (err != 0)
4664 		return (err);
4665 
4666 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4667 	if (err != 0) {
4668 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
4669 		    strerror(err));
4670 		close_objset(os, FTAG);
4671 		return (EINVAL);
4672 	}
4673 
4674 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4675 
4676 	err = dump_path_impl(os, root_obj, path, retobj);
4677 
4678 	close_objset(os, FTAG);
4679 	return (err);
4680 }
4681 
4682 static int
4683 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
4684 {
4685 	int err = 0;
4686 	uint64_t size, readsize, oursize, offset;
4687 	ssize_t writesize;
4688 	sa_handle_t *hdl;
4689 
4690 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
4691 	    destfile);
4692 
4693 	VERIFY3P(os, ==, sa_os);
4694 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
4695 		(void) printf("Failed to get handle for SA znode\n");
4696 		return (err);
4697 	}
4698 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
4699 		(void) sa_handle_destroy(hdl);
4700 		return (err);
4701 	}
4702 	(void) sa_handle_destroy(hdl);
4703 
4704 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
4705 	    size);
4706 	if (size == 0) {
4707 		return (EINVAL);
4708 	}
4709 
4710 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
4711 	/*
4712 	 * We cap the size at 1 mebibyte here to prevent
4713 	 * allocation failures and nigh-infinite printing if the
4714 	 * object is extremely large.
4715 	 */
4716 	oursize = MIN(size, 1 << 20);
4717 	offset = 0;
4718 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
4719 	if (buf == NULL) {
4720 		return (ENOMEM);
4721 	}
4722 
4723 	while (offset < size) {
4724 		readsize = MIN(size - offset, 1 << 20);
4725 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
4726 		if (err != 0) {
4727 			(void) printf("got error %u from dmu_read\n", err);
4728 			kmem_free(buf, oursize);
4729 			return (err);
4730 		}
4731 		if (dump_opt['v'] > 3) {
4732 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
4733 			    " error=%d\n", offset, readsize, err);
4734 		}
4735 
4736 		writesize = write(fd, buf, readsize);
4737 		if (writesize < 0) {
4738 			err = errno;
4739 			break;
4740 		} else if (writesize != readsize) {
4741 			/* Incomplete write */
4742 			(void) fprintf(stderr, "Short write, only wrote %llu of"
4743 			    " %" PRIu64 " bytes, exiting...\n",
4744 			    (u_longlong_t)writesize, readsize);
4745 			break;
4746 		}
4747 
4748 		offset += readsize;
4749 	}
4750 
4751 	(void) close(fd);
4752 
4753 	if (buf != NULL)
4754 		kmem_free(buf, oursize);
4755 
4756 	return (err);
4757 }
4758 
4759 static boolean_t
4760 label_cksum_valid(vdev_label_t *label, uint64_t offset)
4761 {
4762 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
4763 	zio_cksum_t expected_cksum;
4764 	zio_cksum_t actual_cksum;
4765 	zio_cksum_t verifier;
4766 	zio_eck_t *eck;
4767 	int byteswap;
4768 
4769 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
4770 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
4771 
4772 	offset += offsetof(vdev_label_t, vl_vdev_phys);
4773 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
4774 
4775 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
4776 	if (byteswap)
4777 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
4778 
4779 	expected_cksum = eck->zec_cksum;
4780 	eck->zec_cksum = verifier;
4781 
4782 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
4783 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
4784 	abd_free(abd);
4785 
4786 	if (byteswap)
4787 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
4788 
4789 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
4790 		return (B_TRUE);
4791 
4792 	return (B_FALSE);
4793 }
4794 
4795 static int
4796 dump_label(const char *dev)
4797 {
4798 	char path[MAXPATHLEN];
4799 	zdb_label_t labels[VDEV_LABELS];
4800 	uint64_t psize, ashift, l2cache;
4801 	struct stat64 statbuf;
4802 	boolean_t config_found = B_FALSE;
4803 	boolean_t error = B_FALSE;
4804 	boolean_t read_l2arc_header = B_FALSE;
4805 	avl_tree_t config_tree;
4806 	avl_tree_t uberblock_tree;
4807 	void *node, *cookie;
4808 	int fd;
4809 
4810 	bzero(labels, sizeof (labels));
4811 
4812 	/*
4813 	 * Check if we were given absolute path and use it as is.
4814 	 * Otherwise if the provided vdev name doesn't point to a file,
4815 	 * try prepending expected disk paths and partition numbers.
4816 	 */
4817 	(void) strlcpy(path, dev, sizeof (path));
4818 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
4819 		int error;
4820 
4821 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
4822 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
4823 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
4824 				error = ENOENT;
4825 		}
4826 
4827 		if (error || (stat64(path, &statbuf) != 0)) {
4828 			(void) printf("failed to find device %s, try "
4829 			    "specifying absolute path instead\n", dev);
4830 			return (1);
4831 		}
4832 	}
4833 
4834 	if ((fd = open64(path, O_RDONLY)) < 0) {
4835 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
4836 		exit(1);
4837 	}
4838 
4839 	if (fstat64_blk(fd, &statbuf) != 0) {
4840 		(void) printf("failed to stat '%s': %s\n", path,
4841 		    strerror(errno));
4842 		(void) close(fd);
4843 		exit(1);
4844 	}
4845 
4846 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
4847 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
4848 		    strerror(errno));
4849 
4850 	avl_create(&config_tree, cksum_record_compare,
4851 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4852 	avl_create(&uberblock_tree, cksum_record_compare,
4853 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4854 
4855 	psize = statbuf.st_size;
4856 	psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
4857 	ashift = SPA_MINBLOCKSHIFT;
4858 
4859 	/*
4860 	 * 1. Read the label from disk
4861 	 * 2. Verify label cksum
4862 	 * 3. Unpack the configuration and insert in config tree.
4863 	 * 4. Traverse all uberblocks and insert in uberblock tree.
4864 	 */
4865 	for (int l = 0; l < VDEV_LABELS; l++) {
4866 		zdb_label_t *label = &labels[l];
4867 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
4868 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4869 		nvlist_t *config;
4870 		cksum_record_t *rec;
4871 		zio_cksum_t cksum;
4872 		vdev_t vd;
4873 
4874 		label->label_offset = vdev_label_offset(psize, l, 0);
4875 
4876 		if (pread64(fd, &label->label, sizeof (label->label),
4877 		    label->label_offset) != sizeof (label->label)) {
4878 			if (!dump_opt['q'])
4879 				(void) printf("failed to read label %d\n", l);
4880 			label->read_failed = B_TRUE;
4881 			error = B_TRUE;
4882 			continue;
4883 		}
4884 
4885 		label->read_failed = B_FALSE;
4886 		label->cksum_valid = label_cksum_valid(&label->label,
4887 		    label->label_offset);
4888 
4889 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
4890 			nvlist_t *vdev_tree = NULL;
4891 			size_t size;
4892 
4893 			if ((nvlist_lookup_nvlist(config,
4894 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
4895 			    (nvlist_lookup_uint64(vdev_tree,
4896 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
4897 				ashift = SPA_MINBLOCKSHIFT;
4898 
4899 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
4900 				size = buflen;
4901 
4902 			/* If the device is a cache device clear the header. */
4903 			if (!read_l2arc_header) {
4904 				if (nvlist_lookup_uint64(config,
4905 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
4906 				    l2cache == POOL_STATE_L2CACHE) {
4907 					read_l2arc_header = B_TRUE;
4908 				}
4909 			}
4910 
4911 			fletcher_4_native_varsize(buf, size, &cksum);
4912 			rec = cksum_record_insert(&config_tree, &cksum, l);
4913 
4914 			label->config = rec;
4915 			label->config_nv = config;
4916 			config_found = B_TRUE;
4917 		} else {
4918 			error = B_TRUE;
4919 		}
4920 
4921 		vd.vdev_ashift = ashift;
4922 		vd.vdev_top = &vd;
4923 
4924 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4925 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4926 			uberblock_t *ub = (void *)((char *)label + uoff);
4927 
4928 			if (uberblock_verify(ub))
4929 				continue;
4930 
4931 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
4932 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
4933 
4934 			label->uberblocks[i] = rec;
4935 		}
4936 	}
4937 
4938 	/*
4939 	 * Dump the label and uberblocks.
4940 	 */
4941 	for (int l = 0; l < VDEV_LABELS; l++) {
4942 		zdb_label_t *label = &labels[l];
4943 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4944 
4945 		if (label->read_failed == B_TRUE)
4946 			continue;
4947 
4948 		if (label->config_nv) {
4949 			dump_config_from_label(label, buflen, l);
4950 		} else {
4951 			if (!dump_opt['q'])
4952 				(void) printf("failed to unpack label %d\n", l);
4953 		}
4954 
4955 		if (dump_opt['u'])
4956 			dump_label_uberblocks(label, ashift, l);
4957 
4958 		nvlist_free(label->config_nv);
4959 	}
4960 
4961 	/*
4962 	 * Dump the L2ARC header, if existent.
4963 	 */
4964 	if (read_l2arc_header)
4965 		error |= dump_l2arc_header(fd);
4966 
4967 	cookie = NULL;
4968 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
4969 		umem_free(node, sizeof (cksum_record_t));
4970 
4971 	cookie = NULL;
4972 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
4973 		umem_free(node, sizeof (cksum_record_t));
4974 
4975 	avl_destroy(&config_tree);
4976 	avl_destroy(&uberblock_tree);
4977 
4978 	(void) close(fd);
4979 
4980 	return (config_found == B_FALSE ? 2 :
4981 	    (error == B_TRUE ? 1 : 0));
4982 }
4983 
4984 static uint64_t dataset_feature_count[SPA_FEATURES];
4985 static uint64_t global_feature_count[SPA_FEATURES];
4986 static uint64_t remap_deadlist_count = 0;
4987 
4988 /*ARGSUSED*/
4989 static int
4990 dump_one_objset(const char *dsname, void *arg)
4991 {
4992 	int error;
4993 	objset_t *os;
4994 	spa_feature_t f;
4995 
4996 	error = open_objset(dsname, FTAG, &os);
4997 	if (error != 0)
4998 		return (0);
4999 
5000 	for (f = 0; f < SPA_FEATURES; f++) {
5001 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5002 			continue;
5003 		ASSERT(spa_feature_table[f].fi_flags &
5004 		    ZFEATURE_FLAG_PER_DATASET);
5005 		dataset_feature_count[f]++;
5006 	}
5007 
5008 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5009 		remap_deadlist_count++;
5010 	}
5011 
5012 	for (dsl_bookmark_node_t *dbn =
5013 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5014 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5015 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5016 		if (dbn->dbn_phys.zbm_redaction_obj != 0)
5017 			global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
5018 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5019 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5020 	}
5021 
5022 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5023 	    !dmu_objset_is_snapshot(os)) {
5024 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5025 	}
5026 
5027 	dump_objset(os);
5028 	close_objset(os, FTAG);
5029 	fuid_table_destroy();
5030 	return (0);
5031 }
5032 
5033 /*
5034  * Block statistics.
5035  */
5036 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5037 typedef struct zdb_blkstats {
5038 	uint64_t zb_asize;
5039 	uint64_t zb_lsize;
5040 	uint64_t zb_psize;
5041 	uint64_t zb_count;
5042 	uint64_t zb_gangs;
5043 	uint64_t zb_ditto_samevdev;
5044 	uint64_t zb_ditto_same_ms;
5045 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5046 } zdb_blkstats_t;
5047 
5048 /*
5049  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5050  */
5051 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5052 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5053 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5054 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5055 
5056 static const char *zdb_ot_extname[] = {
5057 	"deferred free",
5058 	"dedup ditto",
5059 	"other",
5060 	"Total",
5061 };
5062 
5063 #define	ZB_TOTAL	DN_MAX_LEVELS
5064 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5065 
5066 typedef struct zdb_cb {
5067 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5068 	uint64_t	zcb_removing_size;
5069 	uint64_t	zcb_checkpoint_size;
5070 	uint64_t	zcb_dedup_asize;
5071 	uint64_t	zcb_dedup_blocks;
5072 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5073 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5074 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5075 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5076 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5077 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5078 	uint64_t	zcb_psize_total;
5079 	uint64_t	zcb_lsize_total;
5080 	uint64_t	zcb_asize_total;
5081 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5082 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5083 	    [BPE_PAYLOAD_SIZE + 1];
5084 	uint64_t	zcb_start;
5085 	hrtime_t	zcb_lastprint;
5086 	uint64_t	zcb_totalasize;
5087 	uint64_t	zcb_errors[256];
5088 	int		zcb_readfails;
5089 	int		zcb_haderrors;
5090 	spa_t		*zcb_spa;
5091 	uint32_t	**zcb_vd_obsolete_counts;
5092 } zdb_cb_t;
5093 
5094 /* test if two DVA offsets from same vdev are within the same metaslab */
5095 static boolean_t
5096 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5097 {
5098 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5099 	uint64_t ms_shift = vd->vdev_ms_shift;
5100 
5101 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5102 }
5103 
5104 /*
5105  * Used to simplify reporting of the histogram data.
5106  */
5107 typedef struct one_histo {
5108 	char *name;
5109 	uint64_t *count;
5110 	uint64_t *len;
5111 	uint64_t cumulative;
5112 } one_histo_t;
5113 
5114 /*
5115  * The number of separate histograms processed for psize, lsize and asize.
5116  */
5117 #define	NUM_HISTO 3
5118 
5119 /*
5120  * This routine will create a fixed column size output of three different
5121  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5122  * the count, length and cumulative length of the psize, lsize and
5123  * asize blocks.
5124  *
5125  * All three types of blocks are listed on a single line
5126  *
5127  * By default the table is printed in nicenumber format (e.g. 123K) but
5128  * if the '-P' parameter is specified then the full raw number (parseable)
5129  * is printed out.
5130  */
5131 static void
5132 dump_size_histograms(zdb_cb_t *zcb)
5133 {
5134 	/*
5135 	 * A temporary buffer that allows us to convert a number into
5136 	 * a string using zdb_nicenumber to allow either raw or human
5137 	 * readable numbers to be output.
5138 	 */
5139 	char numbuf[32];
5140 
5141 	/*
5142 	 * Define titles which are used in the headers of the tables
5143 	 * printed by this routine.
5144 	 */
5145 	const char blocksize_title1[] = "block";
5146 	const char blocksize_title2[] = "size";
5147 	const char count_title[] = "Count";
5148 	const char length_title[] = "Size";
5149 	const char cumulative_title[] = "Cum.";
5150 
5151 	/*
5152 	 * Setup the histogram arrays (psize, lsize, and asize).
5153 	 */
5154 	one_histo_t parm_histo[NUM_HISTO];
5155 
5156 	parm_histo[0].name = "psize";
5157 	parm_histo[0].count = zcb->zcb_psize_count;
5158 	parm_histo[0].len = zcb->zcb_psize_len;
5159 	parm_histo[0].cumulative = 0;
5160 
5161 	parm_histo[1].name = "lsize";
5162 	parm_histo[1].count = zcb->zcb_lsize_count;
5163 	parm_histo[1].len = zcb->zcb_lsize_len;
5164 	parm_histo[1].cumulative = 0;
5165 
5166 	parm_histo[2].name = "asize";
5167 	parm_histo[2].count = zcb->zcb_asize_count;
5168 	parm_histo[2].len = zcb->zcb_asize_len;
5169 	parm_histo[2].cumulative = 0;
5170 
5171 
5172 	(void) printf("\nBlock Size Histogram\n");
5173 	/*
5174 	 * Print the first line titles
5175 	 */
5176 	if (dump_opt['P'])
5177 		(void) printf("\n%s\t", blocksize_title1);
5178 	else
5179 		(void) printf("\n%7s   ", blocksize_title1);
5180 
5181 	for (int j = 0; j < NUM_HISTO; j++) {
5182 		if (dump_opt['P']) {
5183 			if (j < NUM_HISTO - 1) {
5184 				(void) printf("%s\t\t\t", parm_histo[j].name);
5185 			} else {
5186 				/* Don't print trailing spaces */
5187 				(void) printf("  %s", parm_histo[j].name);
5188 			}
5189 		} else {
5190 			if (j < NUM_HISTO - 1) {
5191 				/* Left aligned strings in the output */
5192 				(void) printf("%-7s              ",
5193 				    parm_histo[j].name);
5194 			} else {
5195 				/* Don't print trailing spaces */
5196 				(void) printf("%s", parm_histo[j].name);
5197 			}
5198 		}
5199 	}
5200 	(void) printf("\n");
5201 
5202 	/*
5203 	 * Print the second line titles
5204 	 */
5205 	if (dump_opt['P']) {
5206 		(void) printf("%s\t", blocksize_title2);
5207 	} else {
5208 		(void) printf("%7s ", blocksize_title2);
5209 	}
5210 
5211 	for (int i = 0; i < NUM_HISTO; i++) {
5212 		if (dump_opt['P']) {
5213 			(void) printf("%s\t%s\t%s\t",
5214 			    count_title, length_title, cumulative_title);
5215 		} else {
5216 			(void) printf("%7s%7s%7s",
5217 			    count_title, length_title, cumulative_title);
5218 		}
5219 	}
5220 	(void) printf("\n");
5221 
5222 	/*
5223 	 * Print the rows
5224 	 */
5225 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5226 
5227 		/*
5228 		 * Print the first column showing the blocksize
5229 		 */
5230 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5231 
5232 		if (dump_opt['P']) {
5233 			printf("%s", numbuf);
5234 		} else {
5235 			printf("%7s:", numbuf);
5236 		}
5237 
5238 		/*
5239 		 * Print the remaining set of 3 columns per size:
5240 		 * for psize, lsize and asize
5241 		 */
5242 		for (int j = 0; j < NUM_HISTO; j++) {
5243 			parm_histo[j].cumulative += parm_histo[j].len[i];
5244 
5245 			zdb_nicenum(parm_histo[j].count[i],
5246 			    numbuf, sizeof (numbuf));
5247 			if (dump_opt['P'])
5248 				(void) printf("\t%s", numbuf);
5249 			else
5250 				(void) printf("%7s", numbuf);
5251 
5252 			zdb_nicenum(parm_histo[j].len[i],
5253 			    numbuf, sizeof (numbuf));
5254 			if (dump_opt['P'])
5255 				(void) printf("\t%s", numbuf);
5256 			else
5257 				(void) printf("%7s", numbuf);
5258 
5259 			zdb_nicenum(parm_histo[j].cumulative,
5260 			    numbuf, sizeof (numbuf));
5261 			if (dump_opt['P'])
5262 				(void) printf("\t%s", numbuf);
5263 			else
5264 				(void) printf("%7s", numbuf);
5265 		}
5266 		(void) printf("\n");
5267 	}
5268 }
5269 
5270 static void
5271 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5272     dmu_object_type_t type)
5273 {
5274 	uint64_t refcnt = 0;
5275 	int i;
5276 
5277 	ASSERT(type < ZDB_OT_TOTAL);
5278 
5279 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5280 		return;
5281 
5282 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5283 
5284 	for (i = 0; i < 4; i++) {
5285 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5286 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5287 		int equal;
5288 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5289 
5290 		zb->zb_asize += BP_GET_ASIZE(bp);
5291 		zb->zb_lsize += BP_GET_LSIZE(bp);
5292 		zb->zb_psize += BP_GET_PSIZE(bp);
5293 		zb->zb_count++;
5294 
5295 		/*
5296 		 * The histogram is only big enough to record blocks up to
5297 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5298 		 * "other", bucket.
5299 		 */
5300 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5301 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5302 		zb->zb_psize_histogram[idx]++;
5303 
5304 		zb->zb_gangs += BP_COUNT_GANG(bp);
5305 
5306 		switch (BP_GET_NDVAS(bp)) {
5307 		case 2:
5308 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5309 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5310 				zb->zb_ditto_samevdev++;
5311 
5312 				if (same_metaslab(zcb->zcb_spa,
5313 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5314 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5315 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5316 					zb->zb_ditto_same_ms++;
5317 			}
5318 			break;
5319 		case 3:
5320 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5321 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5322 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5323 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5324 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5325 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5326 			if (equal != 0) {
5327 				zb->zb_ditto_samevdev++;
5328 
5329 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5330 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5331 				    same_metaslab(zcb->zcb_spa,
5332 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5333 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5334 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5335 					zb->zb_ditto_same_ms++;
5336 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5337 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5338 				    same_metaslab(zcb->zcb_spa,
5339 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5340 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5341 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5342 					zb->zb_ditto_same_ms++;
5343 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5344 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5345 				    same_metaslab(zcb->zcb_spa,
5346 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5347 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5348 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5349 					zb->zb_ditto_same_ms++;
5350 			}
5351 			break;
5352 		}
5353 	}
5354 
5355 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5356 
5357 	if (BP_IS_EMBEDDED(bp)) {
5358 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5359 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5360 		    [BPE_GET_PSIZE(bp)]++;
5361 		return;
5362 	}
5363 	/*
5364 	 * The binning histogram bins by powers of two up to
5365 	 * SPA_MAXBLOCKSIZE rather than creating bins for
5366 	 * every possible blocksize found in the pool.
5367 	 */
5368 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5369 
5370 	zcb->zcb_psize_count[bin]++;
5371 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5372 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5373 
5374 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5375 
5376 	zcb->zcb_lsize_count[bin]++;
5377 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5378 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5379 
5380 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5381 
5382 	zcb->zcb_asize_count[bin]++;
5383 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5384 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5385 
5386 	if (dump_opt['L'])
5387 		return;
5388 
5389 	if (BP_GET_DEDUP(bp)) {
5390 		ddt_t *ddt;
5391 		ddt_entry_t *dde;
5392 
5393 		ddt = ddt_select(zcb->zcb_spa, bp);
5394 		ddt_enter(ddt);
5395 		dde = ddt_lookup(ddt, bp, B_FALSE);
5396 
5397 		if (dde == NULL) {
5398 			refcnt = 0;
5399 		} else {
5400 			ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5401 			ddt_phys_decref(ddp);
5402 			refcnt = ddp->ddp_refcnt;
5403 			if (ddt_phys_total_refcnt(dde) == 0)
5404 				ddt_remove(ddt, dde);
5405 		}
5406 		ddt_exit(ddt);
5407 	}
5408 
5409 	VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5410 	    refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5411 	    bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5412 }
5413 
5414 static void
5415 zdb_blkptr_done(zio_t *zio)
5416 {
5417 	spa_t *spa = zio->io_spa;
5418 	blkptr_t *bp = zio->io_bp;
5419 	int ioerr = zio->io_error;
5420 	zdb_cb_t *zcb = zio->io_private;
5421 	zbookmark_phys_t *zb = &zio->io_bookmark;
5422 
5423 	mutex_enter(&spa->spa_scrub_lock);
5424 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5425 	cv_broadcast(&spa->spa_scrub_io_cv);
5426 
5427 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5428 		char blkbuf[BP_SPRINTF_LEN];
5429 
5430 		zcb->zcb_haderrors = 1;
5431 		zcb->zcb_errors[ioerr]++;
5432 
5433 		if (dump_opt['b'] >= 2)
5434 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5435 		else
5436 			blkbuf[0] = '\0';
5437 
5438 		(void) printf("zdb_blkptr_cb: "
5439 		    "Got error %d reading "
5440 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5441 		    ioerr,
5442 		    (u_longlong_t)zb->zb_objset,
5443 		    (u_longlong_t)zb->zb_object,
5444 		    (u_longlong_t)zb->zb_level,
5445 		    (u_longlong_t)zb->zb_blkid,
5446 		    blkbuf);
5447 	}
5448 	mutex_exit(&spa->spa_scrub_lock);
5449 
5450 	abd_free(zio->io_abd);
5451 }
5452 
5453 static int
5454 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5455     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5456 {
5457 	zdb_cb_t *zcb = arg;
5458 	dmu_object_type_t type;
5459 	boolean_t is_metadata;
5460 
5461 	if (zb->zb_level == ZB_DNODE_LEVEL)
5462 		return (0);
5463 
5464 	if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5465 		char blkbuf[BP_SPRINTF_LEN];
5466 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5467 		(void) printf("objset %llu object %llu "
5468 		    "level %lld offset 0x%llx %s\n",
5469 		    (u_longlong_t)zb->zb_objset,
5470 		    (u_longlong_t)zb->zb_object,
5471 		    (longlong_t)zb->zb_level,
5472 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
5473 		    blkbuf);
5474 	}
5475 
5476 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5477 		return (0);
5478 
5479 	type = BP_GET_TYPE(bp);
5480 
5481 	zdb_count_block(zcb, zilog, bp,
5482 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5483 
5484 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5485 
5486 	if (!BP_IS_EMBEDDED(bp) &&
5487 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5488 		size_t size = BP_GET_PSIZE(bp);
5489 		abd_t *abd = abd_alloc(size, B_FALSE);
5490 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5491 
5492 		/* If it's an intent log block, failure is expected. */
5493 		if (zb->zb_level == ZB_ZIL_LEVEL)
5494 			flags |= ZIO_FLAG_SPECULATIVE;
5495 
5496 		mutex_enter(&spa->spa_scrub_lock);
5497 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
5498 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5499 		spa->spa_load_verify_bytes += size;
5500 		mutex_exit(&spa->spa_scrub_lock);
5501 
5502 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
5503 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5504 	}
5505 
5506 	zcb->zcb_readfails = 0;
5507 
5508 	/* only call gethrtime() every 100 blocks */
5509 	static int iters;
5510 	if (++iters > 100)
5511 		iters = 0;
5512 	else
5513 		return (0);
5514 
5515 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5516 		uint64_t now = gethrtime();
5517 		char buf[10];
5518 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5519 		uint64_t kb_per_sec =
5520 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5521 		uint64_t sec_remaining =
5522 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5523 
5524 		/* make sure nicenum has enough space */
5525 		CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ);
5526 
5527 		zfs_nicebytes(bytes, buf, sizeof (buf));
5528 		(void) fprintf(stderr,
5529 		    "\r%5s completed (%4"PRIu64"MB/s) "
5530 		    "estimated time remaining: "
5531 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
5532 		    buf, kb_per_sec / 1024,
5533 		    sec_remaining / 60 / 60,
5534 		    sec_remaining / 60 % 60,
5535 		    sec_remaining % 60);
5536 
5537 		zcb->zcb_lastprint = now;
5538 	}
5539 
5540 	return (0);
5541 }
5542 
5543 static void
5544 zdb_leak(void *arg, uint64_t start, uint64_t size)
5545 {
5546 	vdev_t *vd = arg;
5547 
5548 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5549 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5550 }
5551 
5552 static metaslab_ops_t zdb_metaslab_ops = {
5553 	NULL	/* alloc */
5554 };
5555 
5556 /* ARGSUSED */
5557 static int
5558 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5559     uint64_t txg, void *arg)
5560 {
5561 	spa_vdev_removal_t *svr = arg;
5562 
5563 	uint64_t offset = sme->sme_offset;
5564 	uint64_t size = sme->sme_run;
5565 
5566 	/* skip vdevs we don't care about */
5567 	if (sme->sme_vdev != svr->svr_vdev_id)
5568 		return (0);
5569 
5570 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5571 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5572 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5573 
5574 	if (txg < metaslab_unflushed_txg(ms))
5575 		return (0);
5576 
5577 	if (sme->sme_type == SM_ALLOC)
5578 		range_tree_add(svr->svr_allocd_segs, offset, size);
5579 	else
5580 		range_tree_remove(svr->svr_allocd_segs, offset, size);
5581 
5582 	return (0);
5583 }
5584 
5585 /* ARGSUSED */
5586 static void
5587 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5588     uint64_t size, void *arg)
5589 {
5590 	/*
5591 	 * This callback was called through a remap from
5592 	 * a device being removed. Therefore, the vdev that
5593 	 * this callback is applied to is a concrete
5594 	 * vdev.
5595 	 */
5596 	ASSERT(vdev_is_concrete(vd));
5597 
5598 	VERIFY0(metaslab_claim_impl(vd, offset, size,
5599 	    spa_min_claim_txg(vd->vdev_spa)));
5600 }
5601 
5602 static void
5603 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
5604 {
5605 	vdev_t *vd = arg;
5606 
5607 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
5608 	    claim_segment_impl_cb, NULL);
5609 }
5610 
5611 /*
5612  * After accounting for all allocated blocks that are directly referenced,
5613  * we might have missed a reference to a block from a partially complete
5614  * (and thus unused) indirect mapping object. We perform a secondary pass
5615  * through the metaslabs we have already mapped and claim the destination
5616  * blocks.
5617  */
5618 static void
5619 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
5620 {
5621 	if (dump_opt['L'])
5622 		return;
5623 
5624 	if (spa->spa_vdev_removal == NULL)
5625 		return;
5626 
5627 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5628 
5629 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
5630 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
5631 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5632 
5633 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
5634 
5635 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
5636 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
5637 		metaslab_t *msp = vd->vdev_ms[msi];
5638 
5639 		ASSERT0(range_tree_space(allocs));
5640 		if (msp->ms_sm != NULL)
5641 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
5642 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
5643 	}
5644 	range_tree_destroy(allocs);
5645 
5646 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
5647 
5648 	/*
5649 	 * Clear everything past what has been synced,
5650 	 * because we have not allocated mappings for
5651 	 * it yet.
5652 	 */
5653 	range_tree_clear(svr->svr_allocd_segs,
5654 	    vdev_indirect_mapping_max_offset(vim),
5655 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
5656 
5657 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
5658 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
5659 
5660 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5661 }
5662 
5663 /* ARGSUSED */
5664 static int
5665 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
5666     dmu_tx_t *tx)
5667 {
5668 	zdb_cb_t *zcb = arg;
5669 	spa_t *spa = zcb->zcb_spa;
5670 	vdev_t *vd;
5671 	const dva_t *dva = &bp->blk_dva[0];
5672 
5673 	ASSERT(!bp_freed);
5674 	ASSERT(!dump_opt['L']);
5675 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
5676 
5677 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5678 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
5679 	ASSERT3P(vd, !=, NULL);
5680 	spa_config_exit(spa, SCL_VDEV, FTAG);
5681 
5682 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
5683 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
5684 
5685 	vdev_indirect_mapping_increment_obsolete_count(
5686 	    vd->vdev_indirect_mapping,
5687 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
5688 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
5689 
5690 	return (0);
5691 }
5692 
5693 static uint32_t *
5694 zdb_load_obsolete_counts(vdev_t *vd)
5695 {
5696 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5697 	spa_t *spa = vd->vdev_spa;
5698 	spa_condensing_indirect_phys_t *scip =
5699 	    &spa->spa_condensing_indirect_phys;
5700 	uint64_t obsolete_sm_object;
5701 	uint32_t *counts;
5702 
5703 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
5704 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
5705 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
5706 	if (vd->vdev_obsolete_sm != NULL) {
5707 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5708 		    vd->vdev_obsolete_sm);
5709 	}
5710 	if (scip->scip_vdev == vd->vdev_id &&
5711 	    scip->scip_prev_obsolete_sm_object != 0) {
5712 		space_map_t *prev_obsolete_sm = NULL;
5713 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
5714 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
5715 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5716 		    prev_obsolete_sm);
5717 		space_map_close(prev_obsolete_sm);
5718 	}
5719 	return (counts);
5720 }
5721 
5722 static void
5723 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
5724 {
5725 	ddt_bookmark_t ddb;
5726 	ddt_entry_t dde;
5727 	int error;
5728 	int p;
5729 
5730 	ASSERT(!dump_opt['L']);
5731 
5732 	bzero(&ddb, sizeof (ddb));
5733 	while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
5734 		blkptr_t blk;
5735 		ddt_phys_t *ddp = dde.dde_phys;
5736 
5737 		if (ddb.ddb_class == DDT_CLASS_UNIQUE)
5738 			return;
5739 
5740 		ASSERT(ddt_phys_total_refcnt(&dde) > 1);
5741 
5742 		for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
5743 			if (ddp->ddp_phys_birth == 0)
5744 				continue;
5745 			ddt_bp_create(ddb.ddb_checksum,
5746 			    &dde.dde_key, ddp, &blk);
5747 			if (p == DDT_PHYS_DITTO) {
5748 				zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
5749 			} else {
5750 				zcb->zcb_dedup_asize +=
5751 				    BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
5752 				zcb->zcb_dedup_blocks++;
5753 			}
5754 		}
5755 		ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
5756 		ddt_enter(ddt);
5757 		VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
5758 		ddt_exit(ddt);
5759 	}
5760 
5761 	ASSERT(error == ENOENT);
5762 }
5763 
5764 typedef struct checkpoint_sm_exclude_entry_arg {
5765 	vdev_t *cseea_vd;
5766 	uint64_t cseea_checkpoint_size;
5767 } checkpoint_sm_exclude_entry_arg_t;
5768 
5769 static int
5770 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
5771 {
5772 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
5773 	vdev_t *vd = cseea->cseea_vd;
5774 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
5775 	uint64_t end = sme->sme_offset + sme->sme_run;
5776 
5777 	ASSERT(sme->sme_type == SM_FREE);
5778 
5779 	/*
5780 	 * Since the vdev_checkpoint_sm exists in the vdev level
5781 	 * and the ms_sm space maps exist in the metaslab level,
5782 	 * an entry in the checkpoint space map could theoretically
5783 	 * cross the boundaries of the metaslab that it belongs.
5784 	 *
5785 	 * In reality, because of the way that we populate and
5786 	 * manipulate the checkpoint's space maps currently,
5787 	 * there shouldn't be any entries that cross metaslabs.
5788 	 * Hence the assertion below.
5789 	 *
5790 	 * That said, there is no fundamental requirement that
5791 	 * the checkpoint's space map entries should not cross
5792 	 * metaslab boundaries. So if needed we could add code
5793 	 * that handles metaslab-crossing segments in the future.
5794 	 */
5795 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
5796 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
5797 
5798 	/*
5799 	 * By removing the entry from the allocated segments we
5800 	 * also verify that the entry is there to begin with.
5801 	 */
5802 	mutex_enter(&ms->ms_lock);
5803 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
5804 	mutex_exit(&ms->ms_lock);
5805 
5806 	cseea->cseea_checkpoint_size += sme->sme_run;
5807 	return (0);
5808 }
5809 
5810 static void
5811 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
5812 {
5813 	spa_t *spa = vd->vdev_spa;
5814 	space_map_t *checkpoint_sm = NULL;
5815 	uint64_t checkpoint_sm_obj;
5816 
5817 	/*
5818 	 * If there is no vdev_top_zap, we are in a pool whose
5819 	 * version predates the pool checkpoint feature.
5820 	 */
5821 	if (vd->vdev_top_zap == 0)
5822 		return;
5823 
5824 	/*
5825 	 * If there is no reference of the vdev_checkpoint_sm in
5826 	 * the vdev_top_zap, then one of the following scenarios
5827 	 * is true:
5828 	 *
5829 	 * 1] There is no checkpoint
5830 	 * 2] There is a checkpoint, but no checkpointed blocks
5831 	 *    have been freed yet
5832 	 * 3] The current vdev is indirect
5833 	 *
5834 	 * In these cases we return immediately.
5835 	 */
5836 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
5837 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
5838 		return;
5839 
5840 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
5841 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
5842 	    &checkpoint_sm_obj));
5843 
5844 	checkpoint_sm_exclude_entry_arg_t cseea;
5845 	cseea.cseea_vd = vd;
5846 	cseea.cseea_checkpoint_size = 0;
5847 
5848 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
5849 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
5850 
5851 	VERIFY0(space_map_iterate(checkpoint_sm,
5852 	    space_map_length(checkpoint_sm),
5853 	    checkpoint_sm_exclude_entry_cb, &cseea));
5854 	space_map_close(checkpoint_sm);
5855 
5856 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
5857 }
5858 
5859 static void
5860 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
5861 {
5862 	ASSERT(!dump_opt['L']);
5863 
5864 	vdev_t *rvd = spa->spa_root_vdev;
5865 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
5866 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
5867 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
5868 	}
5869 }
5870 
5871 static int
5872 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
5873     uint64_t txg, void *arg)
5874 {
5875 	int64_t *ualloc_space = arg;
5876 
5877 	uint64_t offset = sme->sme_offset;
5878 	uint64_t vdev_id = sme->sme_vdev;
5879 
5880 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5881 	if (!vdev_is_concrete(vd))
5882 		return (0);
5883 
5884 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5885 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5886 
5887 	if (txg < metaslab_unflushed_txg(ms))
5888 		return (0);
5889 
5890 	if (sme->sme_type == SM_ALLOC)
5891 		*ualloc_space += sme->sme_run;
5892 	else
5893 		*ualloc_space -= sme->sme_run;
5894 
5895 	return (0);
5896 }
5897 
5898 static int64_t
5899 get_unflushed_alloc_space(spa_t *spa)
5900 {
5901 	if (dump_opt['L'])
5902 		return (0);
5903 
5904 	int64_t ualloc_space = 0;
5905 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
5906 	    &ualloc_space);
5907 	return (ualloc_space);
5908 }
5909 
5910 static int
5911 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
5912 {
5913 	maptype_t *uic_maptype = arg;
5914 
5915 	uint64_t offset = sme->sme_offset;
5916 	uint64_t size = sme->sme_run;
5917 	uint64_t vdev_id = sme->sme_vdev;
5918 
5919 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5920 
5921 	/* skip indirect vdevs */
5922 	if (!vdev_is_concrete(vd))
5923 		return (0);
5924 
5925 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5926 
5927 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5928 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
5929 
5930 	if (txg < metaslab_unflushed_txg(ms))
5931 		return (0);
5932 
5933 	if (*uic_maptype == sme->sme_type)
5934 		range_tree_add(ms->ms_allocatable, offset, size);
5935 	else
5936 		range_tree_remove(ms->ms_allocatable, offset, size);
5937 
5938 	return (0);
5939 }
5940 
5941 static void
5942 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
5943 {
5944 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
5945 }
5946 
5947 static void
5948 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
5949 {
5950 	vdev_t *rvd = spa->spa_root_vdev;
5951 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5952 		vdev_t *vd = rvd->vdev_child[i];
5953 
5954 		ASSERT3U(i, ==, vd->vdev_id);
5955 
5956 		if (vd->vdev_ops == &vdev_indirect_ops)
5957 			continue;
5958 
5959 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
5960 			metaslab_t *msp = vd->vdev_ms[m];
5961 
5962 			(void) fprintf(stderr,
5963 			    "\rloading concrete vdev %llu, "
5964 			    "metaslab %llu of %llu ...",
5965 			    (longlong_t)vd->vdev_id,
5966 			    (longlong_t)msp->ms_id,
5967 			    (longlong_t)vd->vdev_ms_count);
5968 
5969 			mutex_enter(&msp->ms_lock);
5970 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
5971 
5972 			/*
5973 			 * We don't want to spend the CPU manipulating the
5974 			 * size-ordered tree, so clear the range_tree ops.
5975 			 */
5976 			msp->ms_allocatable->rt_ops = NULL;
5977 
5978 			if (msp->ms_sm != NULL) {
5979 				VERIFY0(space_map_load(msp->ms_sm,
5980 				    msp->ms_allocatable, maptype));
5981 			}
5982 			if (!msp->ms_loaded)
5983 				msp->ms_loaded = B_TRUE;
5984 			mutex_exit(&msp->ms_lock);
5985 		}
5986 	}
5987 
5988 	load_unflushed_to_ms_allocatables(spa, maptype);
5989 }
5990 
5991 /*
5992  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
5993  * index in vim_entries that has the first entry in this metaslab.
5994  * On return, it will be set to the first entry after this metaslab.
5995  */
5996 static void
5997 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
5998     uint64_t *vim_idxp)
5999 {
6000 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6001 
6002 	mutex_enter(&msp->ms_lock);
6003 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6004 
6005 	/*
6006 	 * We don't want to spend the CPU manipulating the
6007 	 * size-ordered tree, so clear the range_tree ops.
6008 	 */
6009 	msp->ms_allocatable->rt_ops = NULL;
6010 
6011 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6012 	    (*vim_idxp)++) {
6013 		vdev_indirect_mapping_entry_phys_t *vimep =
6014 		    &vim->vim_entries[*vim_idxp];
6015 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6016 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6017 		ASSERT3U(ent_offset, >=, msp->ms_start);
6018 		if (ent_offset >= msp->ms_start + msp->ms_size)
6019 			break;
6020 
6021 		/*
6022 		 * Mappings do not cross metaslab boundaries,
6023 		 * because we create them by walking the metaslabs.
6024 		 */
6025 		ASSERT3U(ent_offset + ent_len, <=,
6026 		    msp->ms_start + msp->ms_size);
6027 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6028 	}
6029 
6030 	if (!msp->ms_loaded)
6031 		msp->ms_loaded = B_TRUE;
6032 	mutex_exit(&msp->ms_lock);
6033 }
6034 
6035 static void
6036 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6037 {
6038 	ASSERT(!dump_opt['L']);
6039 
6040 	vdev_t *rvd = spa->spa_root_vdev;
6041 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6042 		vdev_t *vd = rvd->vdev_child[c];
6043 
6044 		ASSERT3U(c, ==, vd->vdev_id);
6045 
6046 		if (vd->vdev_ops != &vdev_indirect_ops)
6047 			continue;
6048 
6049 		/*
6050 		 * Note: we don't check for mapping leaks on
6051 		 * removing vdevs because their ms_allocatable's
6052 		 * are used to look for leaks in allocated space.
6053 		 */
6054 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6055 
6056 		/*
6057 		 * Normally, indirect vdevs don't have any
6058 		 * metaslabs.  We want to set them up for
6059 		 * zio_claim().
6060 		 */
6061 		vdev_metaslab_group_create(vd);
6062 		VERIFY0(vdev_metaslab_init(vd, 0));
6063 
6064 		vdev_indirect_mapping_t *vim __maybe_unused =
6065 		    vd->vdev_indirect_mapping;
6066 		uint64_t vim_idx = 0;
6067 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6068 
6069 			(void) fprintf(stderr,
6070 			    "\rloading indirect vdev %llu, "
6071 			    "metaslab %llu of %llu ...",
6072 			    (longlong_t)vd->vdev_id,
6073 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6074 			    (longlong_t)vd->vdev_ms_count);
6075 
6076 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6077 			    &vim_idx);
6078 		}
6079 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6080 	}
6081 }
6082 
6083 static void
6084 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6085 {
6086 	zcb->zcb_spa = spa;
6087 
6088 	if (dump_opt['L'])
6089 		return;
6090 
6091 	dsl_pool_t *dp = spa->spa_dsl_pool;
6092 	vdev_t *rvd = spa->spa_root_vdev;
6093 
6094 	/*
6095 	 * We are going to be changing the meaning of the metaslab's
6096 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6097 	 * use the tree.
6098 	 */
6099 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6100 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6101 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6102 
6103 	zcb->zcb_vd_obsolete_counts =
6104 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6105 	    UMEM_NOFAIL);
6106 
6107 	/*
6108 	 * For leak detection, we overload the ms_allocatable trees
6109 	 * to contain allocated segments instead of free segments.
6110 	 * As a result, we can't use the normal metaslab_load/unload
6111 	 * interfaces.
6112 	 */
6113 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6114 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6115 
6116 	/*
6117 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6118 	 * allocated entries from the ms_sm to the ms_allocatable for
6119 	 * each metaslab. If the pool has a checkpoint or is in the
6120 	 * middle of discarding a checkpoint, some of these blocks
6121 	 * may have been freed but their ms_sm may not have been
6122 	 * updated because they are referenced by the checkpoint. In
6123 	 * order to avoid false-positives during leak-detection, we
6124 	 * go through the vdev's checkpoint space map and exclude all
6125 	 * its entries from their relevant ms_allocatable.
6126 	 *
6127 	 * We also aggregate the space held by the checkpoint and add
6128 	 * it to zcb_checkpoint_size.
6129 	 *
6130 	 * Note that at this point we are also verifying that all the
6131 	 * entries on the checkpoint_sm are marked as allocated in
6132 	 * the ms_sm of their relevant metaslab.
6133 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6134 	 */
6135 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6136 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6137 
6138 	/* for cleaner progress output */
6139 	(void) fprintf(stderr, "\n");
6140 
6141 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6142 		ASSERT(spa_feature_is_enabled(spa,
6143 		    SPA_FEATURE_DEVICE_REMOVAL));
6144 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6145 		    increment_indirect_mapping_cb, zcb, NULL);
6146 	}
6147 
6148 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6149 	zdb_ddt_leak_init(spa, zcb);
6150 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6151 }
6152 
6153 static boolean_t
6154 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6155 {
6156 	boolean_t leaks = B_FALSE;
6157 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6158 	uint64_t total_leaked = 0;
6159 	boolean_t are_precise = B_FALSE;
6160 
6161 	ASSERT(vim != NULL);
6162 
6163 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6164 		vdev_indirect_mapping_entry_phys_t *vimep =
6165 		    &vim->vim_entries[i];
6166 		uint64_t obsolete_bytes = 0;
6167 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6168 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6169 
6170 		/*
6171 		 * This is not very efficient but it's easy to
6172 		 * verify correctness.
6173 		 */
6174 		for (uint64_t inner_offset = 0;
6175 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6176 		    inner_offset += 1 << vd->vdev_ashift) {
6177 			if (range_tree_contains(msp->ms_allocatable,
6178 			    offset + inner_offset, 1 << vd->vdev_ashift)) {
6179 				obsolete_bytes += 1 << vd->vdev_ashift;
6180 			}
6181 		}
6182 
6183 		int64_t bytes_leaked = obsolete_bytes -
6184 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6185 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6186 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6187 
6188 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6189 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6190 			(void) printf("obsolete indirect mapping count "
6191 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6192 			    (u_longlong_t)vd->vdev_id,
6193 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6194 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6195 			    (u_longlong_t)bytes_leaked);
6196 		}
6197 		total_leaked += ABS(bytes_leaked);
6198 	}
6199 
6200 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6201 	if (!are_precise && total_leaked > 0) {
6202 		int pct_leaked = total_leaked * 100 /
6203 		    vdev_indirect_mapping_bytes_mapped(vim);
6204 		(void) printf("cannot verify obsolete indirect mapping "
6205 		    "counts of vdev %llu because precise feature was not "
6206 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6207 		    "unreferenced\n",
6208 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6209 		    (u_longlong_t)total_leaked);
6210 	} else if (total_leaked > 0) {
6211 		(void) printf("obsolete indirect mapping count mismatch "
6212 		    "for vdev %llu -- %llx total bytes mismatched\n",
6213 		    (u_longlong_t)vd->vdev_id,
6214 		    (u_longlong_t)total_leaked);
6215 		leaks |= B_TRUE;
6216 	}
6217 
6218 	vdev_indirect_mapping_free_obsolete_counts(vim,
6219 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6220 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6221 
6222 	return (leaks);
6223 }
6224 
6225 static boolean_t
6226 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6227 {
6228 	if (dump_opt['L'])
6229 		return (B_FALSE);
6230 
6231 	boolean_t leaks = B_FALSE;
6232 	vdev_t *rvd = spa->spa_root_vdev;
6233 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6234 		vdev_t *vd = rvd->vdev_child[c];
6235 
6236 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6237 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6238 		}
6239 
6240 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6241 			metaslab_t *msp = vd->vdev_ms[m];
6242 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6243 			    spa_embedded_log_class(spa)) ?
6244 			    vd->vdev_log_mg : vd->vdev_mg);
6245 
6246 			/*
6247 			 * ms_allocatable has been overloaded
6248 			 * to contain allocated segments. Now that
6249 			 * we finished traversing all blocks, any
6250 			 * block that remains in the ms_allocatable
6251 			 * represents an allocated block that we
6252 			 * did not claim during the traversal.
6253 			 * Claimed blocks would have been removed
6254 			 * from the ms_allocatable.  For indirect
6255 			 * vdevs, space remaining in the tree
6256 			 * represents parts of the mapping that are
6257 			 * not referenced, which is not a bug.
6258 			 */
6259 			if (vd->vdev_ops == &vdev_indirect_ops) {
6260 				range_tree_vacate(msp->ms_allocatable,
6261 				    NULL, NULL);
6262 			} else {
6263 				range_tree_vacate(msp->ms_allocatable,
6264 				    zdb_leak, vd);
6265 			}
6266 			if (msp->ms_loaded) {
6267 				msp->ms_loaded = B_FALSE;
6268 			}
6269 		}
6270 	}
6271 
6272 	umem_free(zcb->zcb_vd_obsolete_counts,
6273 	    rvd->vdev_children * sizeof (uint32_t *));
6274 	zcb->zcb_vd_obsolete_counts = NULL;
6275 
6276 	return (leaks);
6277 }
6278 
6279 /* ARGSUSED */
6280 static int
6281 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6282 {
6283 	zdb_cb_t *zcb = arg;
6284 
6285 	if (dump_opt['b'] >= 5) {
6286 		char blkbuf[BP_SPRINTF_LEN];
6287 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6288 		(void) printf("[%s] %s\n",
6289 		    "deferred free", blkbuf);
6290 	}
6291 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6292 	return (0);
6293 }
6294 
6295 /*
6296  * Iterate over livelists which have been destroyed by the user but
6297  * are still present in the MOS, waiting to be freed
6298  */
6299 static void
6300 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6301 {
6302 	objset_t *mos = spa->spa_meta_objset;
6303 	uint64_t zap_obj;
6304 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6305 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6306 	if (err == ENOENT)
6307 		return;
6308 	ASSERT0(err);
6309 
6310 	zap_cursor_t zc;
6311 	zap_attribute_t attr;
6312 	dsl_deadlist_t ll;
6313 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6314 	ll.dl_os = NULL;
6315 	for (zap_cursor_init(&zc, mos, zap_obj);
6316 	    zap_cursor_retrieve(&zc, &attr) == 0;
6317 	    (void) zap_cursor_advance(&zc)) {
6318 		dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6319 		func(&ll, arg);
6320 		dsl_deadlist_close(&ll);
6321 	}
6322 	zap_cursor_fini(&zc);
6323 }
6324 
6325 static int
6326 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6327     dmu_tx_t *tx)
6328 {
6329 	ASSERT(!bp_freed);
6330 	return (count_block_cb(arg, bp, tx));
6331 }
6332 
6333 static int
6334 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6335 {
6336 	zdb_cb_t *zbc = args;
6337 	bplist_t blks;
6338 	bplist_create(&blks);
6339 	/* determine which blocks have been alloc'd but not freed */
6340 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6341 	/* count those blocks */
6342 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6343 	bplist_destroy(&blks);
6344 	return (0);
6345 }
6346 
6347 static void
6348 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6349 {
6350 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6351 }
6352 
6353 /*
6354  * Count the blocks in the livelists that have been destroyed by the user
6355  * but haven't yet been freed.
6356  */
6357 static void
6358 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6359 {
6360 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6361 }
6362 
6363 static void
6364 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6365 {
6366 	ASSERT3P(arg, ==, NULL);
6367 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6368 	dump_blkptr_list(ll, "Deleted Livelist");
6369 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6370 }
6371 
6372 /*
6373  * Print out, register object references to, and increment feature counts for
6374  * livelists that have been destroyed by the user but haven't yet been freed.
6375  */
6376 static void
6377 deleted_livelists_dump_mos(spa_t *spa)
6378 {
6379 	uint64_t zap_obj;
6380 	objset_t *mos = spa->spa_meta_objset;
6381 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6382 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6383 	if (err == ENOENT)
6384 		return;
6385 	mos_obj_refd(zap_obj);
6386 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6387 }
6388 
6389 static int
6390 dump_block_stats(spa_t *spa)
6391 {
6392 	zdb_cb_t zcb;
6393 	zdb_blkstats_t *zb, *tzb;
6394 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6395 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6396 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6397 	boolean_t leaks = B_FALSE;
6398 	int e, c, err;
6399 	bp_embedded_type_t i;
6400 
6401 	bzero(&zcb, sizeof (zcb));
6402 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6403 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6404 	    (dump_opt['c'] == 1) ? "metadata " : "",
6405 	    dump_opt['c'] ? "checksums " : "",
6406 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6407 	    !dump_opt['L'] ? "nothing leaked " : "");
6408 
6409 	/*
6410 	 * When leak detection is enabled we load all space maps as SM_ALLOC
6411 	 * maps, then traverse the pool claiming each block we discover. If
6412 	 * the pool is perfectly consistent, the segment trees will be empty
6413 	 * when we're done. Anything left over is a leak; any block we can't
6414 	 * claim (because it's not part of any space map) is a double
6415 	 * allocation, reference to a freed block, or an unclaimed log block.
6416 	 *
6417 	 * When leak detection is disabled (-L option) we still traverse the
6418 	 * pool claiming each block we discover, but we skip opening any space
6419 	 * maps.
6420 	 */
6421 	bzero(&zcb, sizeof (zdb_cb_t));
6422 	zdb_leak_init(spa, &zcb);
6423 
6424 	/*
6425 	 * If there's a deferred-free bplist, process that first.
6426 	 */
6427 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6428 	    bpobj_count_block_cb, &zcb, NULL);
6429 
6430 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6431 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6432 		    bpobj_count_block_cb, &zcb, NULL);
6433 	}
6434 
6435 	zdb_claim_removing(spa, &zcb);
6436 
6437 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6438 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6439 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6440 		    &zcb, NULL));
6441 	}
6442 
6443 	deleted_livelists_count_blocks(spa, &zcb);
6444 
6445 	if (dump_opt['c'] > 1)
6446 		flags |= TRAVERSE_PREFETCH_DATA;
6447 
6448 	zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6449 	zcb.zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6450 	zcb.zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6451 	zcb.zcb_totalasize +=
6452 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
6453 	zcb.zcb_start = zcb.zcb_lastprint = gethrtime();
6454 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb);
6455 
6456 	/*
6457 	 * If we've traversed the data blocks then we need to wait for those
6458 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
6459 	 * all async I/Os to complete.
6460 	 */
6461 	if (dump_opt['c']) {
6462 		for (c = 0; c < max_ncpus; c++) {
6463 			(void) zio_wait(spa->spa_async_zio_root[c]);
6464 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6465 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6466 			    ZIO_FLAG_GODFATHER);
6467 		}
6468 	}
6469 	ASSERT0(spa->spa_load_verify_bytes);
6470 
6471 	/*
6472 	 * Done after zio_wait() since zcb_haderrors is modified in
6473 	 * zdb_blkptr_done()
6474 	 */
6475 	zcb.zcb_haderrors |= err;
6476 
6477 	if (zcb.zcb_haderrors) {
6478 		(void) printf("\nError counts:\n\n");
6479 		(void) printf("\t%5s  %s\n", "errno", "count");
6480 		for (e = 0; e < 256; e++) {
6481 			if (zcb.zcb_errors[e] != 0) {
6482 				(void) printf("\t%5d  %llu\n",
6483 				    e, (u_longlong_t)zcb.zcb_errors[e]);
6484 			}
6485 		}
6486 	}
6487 
6488 	/*
6489 	 * Report any leaked segments.
6490 	 */
6491 	leaks |= zdb_leak_fini(spa, &zcb);
6492 
6493 	tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6494 
6495 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6496 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
6497 
6498 	total_alloc = norm_alloc +
6499 	    metaslab_class_get_alloc(spa_log_class(spa)) +
6500 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6501 	    metaslab_class_get_alloc(spa_special_class(spa)) +
6502 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
6503 	    get_unflushed_alloc_space(spa);
6504 	total_found = tzb->zb_asize - zcb.zcb_dedup_asize +
6505 	    zcb.zcb_removing_size + zcb.zcb_checkpoint_size;
6506 
6507 	if (total_found == total_alloc && !dump_opt['L']) {
6508 		(void) printf("\n\tNo leaks (block sum matches space"
6509 		    " maps exactly)\n");
6510 	} else if (!dump_opt['L']) {
6511 		(void) printf("block traversal size %llu != alloc %llu "
6512 		    "(%s %lld)\n",
6513 		    (u_longlong_t)total_found,
6514 		    (u_longlong_t)total_alloc,
6515 		    (dump_opt['L']) ? "unreachable" : "leaked",
6516 		    (longlong_t)(total_alloc - total_found));
6517 		leaks = B_TRUE;
6518 	}
6519 
6520 	if (tzb->zb_count == 0)
6521 		return (2);
6522 
6523 	(void) printf("\n");
6524 	(void) printf("\t%-16s %14llu\n", "bp count:",
6525 	    (u_longlong_t)tzb->zb_count);
6526 	(void) printf("\t%-16s %14llu\n", "ganged count:",
6527 	    (longlong_t)tzb->zb_gangs);
6528 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
6529 	    (u_longlong_t)tzb->zb_lsize,
6530 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6531 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6532 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
6533 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6534 	    (double)tzb->zb_lsize / tzb->zb_psize);
6535 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6536 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
6537 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6538 	    (double)tzb->zb_lsize / tzb->zb_asize);
6539 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
6540 	    "bp deduped:", (u_longlong_t)zcb.zcb_dedup_asize,
6541 	    (u_longlong_t)zcb.zcb_dedup_blocks,
6542 	    (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0);
6543 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
6544 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6545 
6546 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6547 		uint64_t alloc = metaslab_class_get_alloc(
6548 		    spa_special_class(spa));
6549 		uint64_t space = metaslab_class_get_space(
6550 		    spa_special_class(spa));
6551 
6552 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6553 		    "Special class", (u_longlong_t)alloc,
6554 		    100.0 * alloc / space);
6555 	}
6556 
6557 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6558 		uint64_t alloc = metaslab_class_get_alloc(
6559 		    spa_dedup_class(spa));
6560 		uint64_t space = metaslab_class_get_space(
6561 		    spa_dedup_class(spa));
6562 
6563 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6564 		    "Dedup class", (u_longlong_t)alloc,
6565 		    100.0 * alloc / space);
6566 	}
6567 
6568 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6569 		uint64_t alloc = metaslab_class_get_alloc(
6570 		    spa_embedded_log_class(spa));
6571 		uint64_t space = metaslab_class_get_space(
6572 		    spa_embedded_log_class(spa));
6573 
6574 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6575 		    "Embedded log class", (u_longlong_t)alloc,
6576 		    100.0 * alloc / space);
6577 	}
6578 
6579 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
6580 		if (zcb.zcb_embedded_blocks[i] == 0)
6581 			continue;
6582 		(void) printf("\n");
6583 		(void) printf("\tadditional, non-pointer bps of type %u: "
6584 		    "%10llu\n",
6585 		    i, (u_longlong_t)zcb.zcb_embedded_blocks[i]);
6586 
6587 		if (dump_opt['b'] >= 3) {
6588 			(void) printf("\t number of (compressed) bytes:  "
6589 			    "number of bps\n");
6590 			dump_histogram(zcb.zcb_embedded_histogram[i],
6591 			    sizeof (zcb.zcb_embedded_histogram[i]) /
6592 			    sizeof (zcb.zcb_embedded_histogram[i][0]), 0);
6593 		}
6594 	}
6595 
6596 	if (tzb->zb_ditto_samevdev != 0) {
6597 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
6598 		    (longlong_t)tzb->zb_ditto_samevdev);
6599 	}
6600 	if (tzb->zb_ditto_same_ms != 0) {
6601 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
6602 		    (longlong_t)tzb->zb_ditto_same_ms);
6603 	}
6604 
6605 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
6606 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
6607 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6608 
6609 		if (vim == NULL) {
6610 			continue;
6611 		}
6612 
6613 		char mem[32];
6614 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
6615 		    mem, vdev_indirect_mapping_size(vim));
6616 
6617 		(void) printf("\tindirect vdev id %llu has %llu segments "
6618 		    "(%s in memory)\n",
6619 		    (longlong_t)vd->vdev_id,
6620 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
6621 	}
6622 
6623 	if (dump_opt['b'] >= 2) {
6624 		int l, t, level;
6625 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
6626 		    "\t  avg\t comp\t%%Total\tType\n");
6627 
6628 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
6629 			char csize[32], lsize[32], psize[32], asize[32];
6630 			char avg[32], gang[32];
6631 			const char *typename;
6632 
6633 			/* make sure nicenum has enough space */
6634 			CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ);
6635 			CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ);
6636 			CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ);
6637 			CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ);
6638 			CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ);
6639 			CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ);
6640 
6641 			if (t < DMU_OT_NUMTYPES)
6642 				typename = dmu_ot[t].ot_name;
6643 			else
6644 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
6645 
6646 			if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) {
6647 				(void) printf("%6s\t%5s\t%5s\t%5s"
6648 				    "\t%5s\t%5s\t%6s\t%s\n",
6649 				    "-",
6650 				    "-",
6651 				    "-",
6652 				    "-",
6653 				    "-",
6654 				    "-",
6655 				    "-",
6656 				    typename);
6657 				continue;
6658 			}
6659 
6660 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
6661 				level = (l == -1 ? ZB_TOTAL : l);
6662 				zb = &zcb.zcb_type[level][t];
6663 
6664 				if (zb->zb_asize == 0)
6665 					continue;
6666 
6667 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
6668 					continue;
6669 
6670 				if (level == 0 && zb->zb_asize ==
6671 				    zcb.zcb_type[ZB_TOTAL][t].zb_asize)
6672 					continue;
6673 
6674 				zdb_nicenum(zb->zb_count, csize,
6675 				    sizeof (csize));
6676 				zdb_nicenum(zb->zb_lsize, lsize,
6677 				    sizeof (lsize));
6678 				zdb_nicenum(zb->zb_psize, psize,
6679 				    sizeof (psize));
6680 				zdb_nicenum(zb->zb_asize, asize,
6681 				    sizeof (asize));
6682 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
6683 				    sizeof (avg));
6684 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
6685 
6686 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6687 				    "\t%5.2f\t%6.2f\t",
6688 				    csize, lsize, psize, asize, avg,
6689 				    (double)zb->zb_lsize / zb->zb_psize,
6690 				    100.0 * zb->zb_asize / tzb->zb_asize);
6691 
6692 				if (level == ZB_TOTAL)
6693 					(void) printf("%s\n", typename);
6694 				else
6695 					(void) printf("    L%d %s\n",
6696 					    level, typename);
6697 
6698 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
6699 					(void) printf("\t number of ganged "
6700 					    "blocks: %s\n", gang);
6701 				}
6702 
6703 				if (dump_opt['b'] >= 4) {
6704 					(void) printf("psize "
6705 					    "(in 512-byte sectors): "
6706 					    "number of blocks\n");
6707 					dump_histogram(zb->zb_psize_histogram,
6708 					    PSIZE_HISTO_SIZE, 0);
6709 				}
6710 			}
6711 		}
6712 
6713 		/* Output a table summarizing block sizes in the pool */
6714 		if (dump_opt['b'] >= 2) {
6715 			dump_size_histograms(&zcb);
6716 		}
6717 	}
6718 
6719 	(void) printf("\n");
6720 
6721 	if (leaks)
6722 		return (2);
6723 
6724 	if (zcb.zcb_haderrors)
6725 		return (3);
6726 
6727 	return (0);
6728 }
6729 
6730 typedef struct zdb_ddt_entry {
6731 	ddt_key_t	zdde_key;
6732 	uint64_t	zdde_ref_blocks;
6733 	uint64_t	zdde_ref_lsize;
6734 	uint64_t	zdde_ref_psize;
6735 	uint64_t	zdde_ref_dsize;
6736 	avl_node_t	zdde_node;
6737 } zdb_ddt_entry_t;
6738 
6739 /* ARGSUSED */
6740 static int
6741 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6742     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6743 {
6744 	avl_tree_t *t = arg;
6745 	avl_index_t where;
6746 	zdb_ddt_entry_t *zdde, zdde_search;
6747 
6748 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
6749 	    BP_IS_EMBEDDED(bp))
6750 		return (0);
6751 
6752 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
6753 		(void) printf("traversing objset %llu, %llu objects, "
6754 		    "%lu blocks so far\n",
6755 		    (u_longlong_t)zb->zb_objset,
6756 		    (u_longlong_t)BP_GET_FILL(bp),
6757 		    avl_numnodes(t));
6758 	}
6759 
6760 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
6761 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
6762 		return (0);
6763 
6764 	ddt_key_fill(&zdde_search.zdde_key, bp);
6765 
6766 	zdde = avl_find(t, &zdde_search, &where);
6767 
6768 	if (zdde == NULL) {
6769 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
6770 		zdde->zdde_key = zdde_search.zdde_key;
6771 		avl_insert(t, zdde, where);
6772 	}
6773 
6774 	zdde->zdde_ref_blocks += 1;
6775 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
6776 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
6777 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
6778 
6779 	return (0);
6780 }
6781 
6782 static void
6783 dump_simulated_ddt(spa_t *spa)
6784 {
6785 	avl_tree_t t;
6786 	void *cookie = NULL;
6787 	zdb_ddt_entry_t *zdde;
6788 	ddt_histogram_t ddh_total;
6789 	ddt_stat_t dds_total;
6790 
6791 	bzero(&ddh_total, sizeof (ddh_total));
6792 	bzero(&dds_total, sizeof (dds_total));
6793 	avl_create(&t, ddt_entry_compare,
6794 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
6795 
6796 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6797 
6798 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6799 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
6800 
6801 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6802 
6803 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
6804 		ddt_stat_t dds;
6805 		uint64_t refcnt = zdde->zdde_ref_blocks;
6806 		ASSERT(refcnt != 0);
6807 
6808 		dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
6809 		dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
6810 		dds.dds_psize = zdde->zdde_ref_psize / refcnt;
6811 		dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
6812 
6813 		dds.dds_ref_blocks = zdde->zdde_ref_blocks;
6814 		dds.dds_ref_lsize = zdde->zdde_ref_lsize;
6815 		dds.dds_ref_psize = zdde->zdde_ref_psize;
6816 		dds.dds_ref_dsize = zdde->zdde_ref_dsize;
6817 
6818 		ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
6819 		    &dds, 0);
6820 
6821 		umem_free(zdde, sizeof (*zdde));
6822 	}
6823 
6824 	avl_destroy(&t);
6825 
6826 	ddt_histogram_stat(&dds_total, &ddh_total);
6827 
6828 	(void) printf("Simulated DDT histogram:\n");
6829 
6830 	zpool_dump_ddt(&dds_total, &ddh_total);
6831 
6832 	dump_dedup_ratio(&dds_total);
6833 }
6834 
6835 static int
6836 verify_device_removal_feature_counts(spa_t *spa)
6837 {
6838 	uint64_t dr_feature_refcount = 0;
6839 	uint64_t oc_feature_refcount = 0;
6840 	uint64_t indirect_vdev_count = 0;
6841 	uint64_t precise_vdev_count = 0;
6842 	uint64_t obsolete_counts_object_count = 0;
6843 	uint64_t obsolete_sm_count = 0;
6844 	uint64_t obsolete_counts_count = 0;
6845 	uint64_t scip_count = 0;
6846 	uint64_t obsolete_bpobj_count = 0;
6847 	int ret = 0;
6848 
6849 	spa_condensing_indirect_phys_t *scip =
6850 	    &spa->spa_condensing_indirect_phys;
6851 	if (scip->scip_next_mapping_object != 0) {
6852 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
6853 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
6854 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
6855 
6856 		(void) printf("Condensing indirect vdev %llu: new mapping "
6857 		    "object %llu, prev obsolete sm %llu\n",
6858 		    (u_longlong_t)scip->scip_vdev,
6859 		    (u_longlong_t)scip->scip_next_mapping_object,
6860 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
6861 		if (scip->scip_prev_obsolete_sm_object != 0) {
6862 			space_map_t *prev_obsolete_sm = NULL;
6863 			VERIFY0(space_map_open(&prev_obsolete_sm,
6864 			    spa->spa_meta_objset,
6865 			    scip->scip_prev_obsolete_sm_object,
6866 			    0, vd->vdev_asize, 0));
6867 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
6868 			(void) printf("\n");
6869 			space_map_close(prev_obsolete_sm);
6870 		}
6871 
6872 		scip_count += 2;
6873 	}
6874 
6875 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
6876 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
6877 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
6878 
6879 		if (vic->vic_mapping_object != 0) {
6880 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
6881 			    vd->vdev_removing);
6882 			indirect_vdev_count++;
6883 
6884 			if (vd->vdev_indirect_mapping->vim_havecounts) {
6885 				obsolete_counts_count++;
6886 			}
6887 		}
6888 
6889 		boolean_t are_precise;
6890 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6891 		if (are_precise) {
6892 			ASSERT(vic->vic_mapping_object != 0);
6893 			precise_vdev_count++;
6894 		}
6895 
6896 		uint64_t obsolete_sm_object;
6897 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6898 		if (obsolete_sm_object != 0) {
6899 			ASSERT(vic->vic_mapping_object != 0);
6900 			obsolete_sm_count++;
6901 		}
6902 	}
6903 
6904 	(void) feature_get_refcount(spa,
6905 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
6906 	    &dr_feature_refcount);
6907 	(void) feature_get_refcount(spa,
6908 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
6909 	    &oc_feature_refcount);
6910 
6911 	if (dr_feature_refcount != indirect_vdev_count) {
6912 		ret = 1;
6913 		(void) printf("Number of indirect vdevs (%llu) " \
6914 		    "does not match feature count (%llu)\n",
6915 		    (u_longlong_t)indirect_vdev_count,
6916 		    (u_longlong_t)dr_feature_refcount);
6917 	} else {
6918 		(void) printf("Verified device_removal feature refcount " \
6919 		    "of %llu is correct\n",
6920 		    (u_longlong_t)dr_feature_refcount);
6921 	}
6922 
6923 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
6924 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
6925 		obsolete_bpobj_count++;
6926 	}
6927 
6928 
6929 	obsolete_counts_object_count = precise_vdev_count;
6930 	obsolete_counts_object_count += obsolete_sm_count;
6931 	obsolete_counts_object_count += obsolete_counts_count;
6932 	obsolete_counts_object_count += scip_count;
6933 	obsolete_counts_object_count += obsolete_bpobj_count;
6934 	obsolete_counts_object_count += remap_deadlist_count;
6935 
6936 	if (oc_feature_refcount != obsolete_counts_object_count) {
6937 		ret = 1;
6938 		(void) printf("Number of obsolete counts objects (%llu) " \
6939 		    "does not match feature count (%llu)\n",
6940 		    (u_longlong_t)obsolete_counts_object_count,
6941 		    (u_longlong_t)oc_feature_refcount);
6942 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
6943 		    "ob:%llu rd:%llu\n",
6944 		    (u_longlong_t)precise_vdev_count,
6945 		    (u_longlong_t)obsolete_sm_count,
6946 		    (u_longlong_t)obsolete_counts_count,
6947 		    (u_longlong_t)scip_count,
6948 		    (u_longlong_t)obsolete_bpobj_count,
6949 		    (u_longlong_t)remap_deadlist_count);
6950 	} else {
6951 		(void) printf("Verified indirect_refcount feature refcount " \
6952 		    "of %llu is correct\n",
6953 		    (u_longlong_t)oc_feature_refcount);
6954 	}
6955 	return (ret);
6956 }
6957 
6958 static void
6959 zdb_set_skip_mmp(char *target)
6960 {
6961 	spa_t *spa;
6962 
6963 	/*
6964 	 * Disable the activity check to allow examination of
6965 	 * active pools.
6966 	 */
6967 	mutex_enter(&spa_namespace_lock);
6968 	if ((spa = spa_lookup(target)) != NULL) {
6969 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
6970 	}
6971 	mutex_exit(&spa_namespace_lock);
6972 }
6973 
6974 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
6975 /*
6976  * Import the checkpointed state of the pool specified by the target
6977  * parameter as readonly. The function also accepts a pool config
6978  * as an optional parameter, else it attempts to infer the config by
6979  * the name of the target pool.
6980  *
6981  * Note that the checkpointed state's pool name will be the name of
6982  * the original pool with the above suffix appended to it. In addition,
6983  * if the target is not a pool name (e.g. a path to a dataset) then
6984  * the new_path parameter is populated with the updated path to
6985  * reflect the fact that we are looking into the checkpointed state.
6986  *
6987  * The function returns a newly-allocated copy of the name of the
6988  * pool containing the checkpointed state. When this copy is no
6989  * longer needed it should be freed with free(3C). Same thing
6990  * applies to the new_path parameter if allocated.
6991  */
6992 static char *
6993 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
6994 {
6995 	int error = 0;
6996 	char *poolname, *bogus_name = NULL;
6997 	boolean_t freecfg = B_FALSE;
6998 
6999 	/* If the target is not a pool, the extract the pool name */
7000 	char *path_start = strchr(target, '/');
7001 	if (path_start != NULL) {
7002 		size_t poolname_len = path_start - target;
7003 		poolname = strndup(target, poolname_len);
7004 	} else {
7005 		poolname = target;
7006 	}
7007 
7008 	if (cfg == NULL) {
7009 		zdb_set_skip_mmp(poolname);
7010 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7011 		if (error != 0) {
7012 			fatal("Tried to read config of pool \"%s\" but "
7013 			    "spa_get_stats() failed with error %d\n",
7014 			    poolname, error);
7015 		}
7016 		freecfg = B_TRUE;
7017 	}
7018 
7019 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1)
7020 		return (NULL);
7021 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7022 
7023 	error = spa_import(bogus_name, cfg, NULL,
7024 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7025 	    ZFS_IMPORT_SKIP_MMP);
7026 	if (freecfg)
7027 		nvlist_free(cfg);
7028 	if (error != 0) {
7029 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7030 		    "with error %d\n", bogus_name, error);
7031 	}
7032 
7033 	if (new_path != NULL && path_start != NULL) {
7034 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7035 			if (path_start != NULL)
7036 				free(poolname);
7037 			return (NULL);
7038 		}
7039 	}
7040 
7041 	if (target != poolname)
7042 		free(poolname);
7043 
7044 	return (bogus_name);
7045 }
7046 
7047 typedef struct verify_checkpoint_sm_entry_cb_arg {
7048 	vdev_t *vcsec_vd;
7049 
7050 	/* the following fields are only used for printing progress */
7051 	uint64_t vcsec_entryid;
7052 	uint64_t vcsec_num_entries;
7053 } verify_checkpoint_sm_entry_cb_arg_t;
7054 
7055 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7056 
7057 static int
7058 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7059 {
7060 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7061 	vdev_t *vd = vcsec->vcsec_vd;
7062 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7063 	uint64_t end = sme->sme_offset + sme->sme_run;
7064 
7065 	ASSERT(sme->sme_type == SM_FREE);
7066 
7067 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7068 		(void) fprintf(stderr,
7069 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7070 		    (longlong_t)vd->vdev_id,
7071 		    (longlong_t)vcsec->vcsec_entryid,
7072 		    (longlong_t)vcsec->vcsec_num_entries);
7073 	}
7074 	vcsec->vcsec_entryid++;
7075 
7076 	/*
7077 	 * See comment in checkpoint_sm_exclude_entry_cb()
7078 	 */
7079 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7080 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7081 
7082 	/*
7083 	 * The entries in the vdev_checkpoint_sm should be marked as
7084 	 * allocated in the checkpointed state of the pool, therefore
7085 	 * their respective ms_allocateable trees should not contain them.
7086 	 */
7087 	mutex_enter(&ms->ms_lock);
7088 	range_tree_verify_not_present(ms->ms_allocatable,
7089 	    sme->sme_offset, sme->sme_run);
7090 	mutex_exit(&ms->ms_lock);
7091 
7092 	return (0);
7093 }
7094 
7095 /*
7096  * Verify that all segments in the vdev_checkpoint_sm are allocated
7097  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7098  * ms_allocatable).
7099  *
7100  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7101  * each vdev in the current state of the pool to the metaslab space maps
7102  * (ms_sm) of the checkpointed state of the pool.
7103  *
7104  * Note that the function changes the state of the ms_allocatable
7105  * trees of the current spa_t. The entries of these ms_allocatable
7106  * trees are cleared out and then repopulated from with the free
7107  * entries of their respective ms_sm space maps.
7108  */
7109 static void
7110 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7111 {
7112 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7113 	vdev_t *current_rvd = current->spa_root_vdev;
7114 
7115 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7116 
7117 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7118 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7119 		vdev_t *current_vd = current_rvd->vdev_child[c];
7120 
7121 		space_map_t *checkpoint_sm = NULL;
7122 		uint64_t checkpoint_sm_obj;
7123 
7124 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7125 			/*
7126 			 * Since we don't allow device removal in a pool
7127 			 * that has a checkpoint, we expect that all removed
7128 			 * vdevs were removed from the pool before the
7129 			 * checkpoint.
7130 			 */
7131 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7132 			continue;
7133 		}
7134 
7135 		/*
7136 		 * If the checkpoint space map doesn't exist, then nothing
7137 		 * here is checkpointed so there's nothing to verify.
7138 		 */
7139 		if (current_vd->vdev_top_zap == 0 ||
7140 		    zap_contains(spa_meta_objset(current),
7141 		    current_vd->vdev_top_zap,
7142 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7143 			continue;
7144 
7145 		VERIFY0(zap_lookup(spa_meta_objset(current),
7146 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7147 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7148 
7149 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7150 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7151 		    current_vd->vdev_ashift));
7152 
7153 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7154 		vcsec.vcsec_vd = ckpoint_vd;
7155 		vcsec.vcsec_entryid = 0;
7156 		vcsec.vcsec_num_entries =
7157 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7158 		VERIFY0(space_map_iterate(checkpoint_sm,
7159 		    space_map_length(checkpoint_sm),
7160 		    verify_checkpoint_sm_entry_cb, &vcsec));
7161 		if (dump_opt['m'] > 3)
7162 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7163 		space_map_close(checkpoint_sm);
7164 	}
7165 
7166 	/*
7167 	 * If we've added vdevs since we took the checkpoint, ensure
7168 	 * that their checkpoint space maps are empty.
7169 	 */
7170 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7171 		for (uint64_t c = ckpoint_rvd->vdev_children;
7172 		    c < current_rvd->vdev_children; c++) {
7173 			vdev_t *current_vd = current_rvd->vdev_child[c];
7174 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7175 		}
7176 	}
7177 
7178 	/* for cleaner progress output */
7179 	(void) fprintf(stderr, "\n");
7180 }
7181 
7182 /*
7183  * Verifies that all space that's allocated in the checkpoint is
7184  * still allocated in the current version, by checking that everything
7185  * in checkpoint's ms_allocatable (which is actually allocated, not
7186  * allocatable/free) is not present in current's ms_allocatable.
7187  *
7188  * Note that the function changes the state of the ms_allocatable
7189  * trees of both spas when called. The entries of all ms_allocatable
7190  * trees are cleared out and then repopulated from their respective
7191  * ms_sm space maps. In the checkpointed state we load the allocated
7192  * entries, and in the current state we load the free entries.
7193  */
7194 static void
7195 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7196 {
7197 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7198 	vdev_t *current_rvd = current->spa_root_vdev;
7199 
7200 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7201 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7202 
7203 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7204 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7205 		vdev_t *current_vd = current_rvd->vdev_child[i];
7206 
7207 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7208 			/*
7209 			 * See comment in verify_checkpoint_vdev_spacemaps()
7210 			 */
7211 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7212 			continue;
7213 		}
7214 
7215 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7216 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7217 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7218 
7219 			(void) fprintf(stderr,
7220 			    "\rverifying vdev %llu of %llu, "
7221 			    "metaslab %llu of %llu ...",
7222 			    (longlong_t)current_vd->vdev_id,
7223 			    (longlong_t)current_rvd->vdev_children,
7224 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7225 			    (longlong_t)current_vd->vdev_ms_count);
7226 
7227 			/*
7228 			 * We walk through the ms_allocatable trees that
7229 			 * are loaded with the allocated blocks from the
7230 			 * ms_sm spacemaps of the checkpoint. For each
7231 			 * one of these ranges we ensure that none of them
7232 			 * exists in the ms_allocatable trees of the
7233 			 * current state which are loaded with the ranges
7234 			 * that are currently free.
7235 			 *
7236 			 * This way we ensure that none of the blocks that
7237 			 * are part of the checkpoint were freed by mistake.
7238 			 */
7239 			range_tree_walk(ckpoint_msp->ms_allocatable,
7240 			    (range_tree_func_t *)range_tree_verify_not_present,
7241 			    current_msp->ms_allocatable);
7242 		}
7243 	}
7244 
7245 	/* for cleaner progress output */
7246 	(void) fprintf(stderr, "\n");
7247 }
7248 
7249 static void
7250 verify_checkpoint_blocks(spa_t *spa)
7251 {
7252 	ASSERT(!dump_opt['L']);
7253 
7254 	spa_t *checkpoint_spa;
7255 	char *checkpoint_pool;
7256 	int error = 0;
7257 
7258 	/*
7259 	 * We import the checkpointed state of the pool (under a different
7260 	 * name) so we can do verification on it against the current state
7261 	 * of the pool.
7262 	 */
7263 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7264 	    NULL);
7265 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7266 
7267 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7268 	if (error != 0) {
7269 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7270 		    "error %d\n", checkpoint_pool, error);
7271 	}
7272 
7273 	/*
7274 	 * Ensure that ranges in the checkpoint space maps of each vdev
7275 	 * are allocated according to the checkpointed state's metaslab
7276 	 * space maps.
7277 	 */
7278 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7279 
7280 	/*
7281 	 * Ensure that allocated ranges in the checkpoint's metaslab
7282 	 * space maps remain allocated in the metaslab space maps of
7283 	 * the current state.
7284 	 */
7285 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7286 
7287 	/*
7288 	 * Once we are done, we get rid of the checkpointed state.
7289 	 */
7290 	spa_close(checkpoint_spa, FTAG);
7291 	free(checkpoint_pool);
7292 }
7293 
7294 static void
7295 dump_leftover_checkpoint_blocks(spa_t *spa)
7296 {
7297 	vdev_t *rvd = spa->spa_root_vdev;
7298 
7299 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7300 		vdev_t *vd = rvd->vdev_child[i];
7301 
7302 		space_map_t *checkpoint_sm = NULL;
7303 		uint64_t checkpoint_sm_obj;
7304 
7305 		if (vd->vdev_top_zap == 0)
7306 			continue;
7307 
7308 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7309 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7310 			continue;
7311 
7312 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7313 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7314 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7315 
7316 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7317 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7318 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7319 		space_map_close(checkpoint_sm);
7320 	}
7321 }
7322 
7323 static int
7324 verify_checkpoint(spa_t *spa)
7325 {
7326 	uberblock_t checkpoint;
7327 	int error;
7328 
7329 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7330 		return (0);
7331 
7332 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7333 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7334 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7335 
7336 	if (error == ENOENT && !dump_opt['L']) {
7337 		/*
7338 		 * If the feature is active but the uberblock is missing
7339 		 * then we must be in the middle of discarding the
7340 		 * checkpoint.
7341 		 */
7342 		(void) printf("\nPartially discarded checkpoint "
7343 		    "state found:\n");
7344 		if (dump_opt['m'] > 3)
7345 			dump_leftover_checkpoint_blocks(spa);
7346 		return (0);
7347 	} else if (error != 0) {
7348 		(void) printf("lookup error %d when looking for "
7349 		    "checkpointed uberblock in MOS\n", error);
7350 		return (error);
7351 	}
7352 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7353 
7354 	if (checkpoint.ub_checkpoint_txg == 0) {
7355 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
7356 		    "uberblock\n");
7357 		error = 3;
7358 	}
7359 
7360 	if (error == 0 && !dump_opt['L'])
7361 		verify_checkpoint_blocks(spa);
7362 
7363 	return (error);
7364 }
7365 
7366 /* ARGSUSED */
7367 static void
7368 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7369 {
7370 	for (uint64_t i = start; i < size; i++) {
7371 		(void) printf("MOS object %llu referenced but not allocated\n",
7372 		    (u_longlong_t)i);
7373 	}
7374 }
7375 
7376 static void
7377 mos_obj_refd(uint64_t obj)
7378 {
7379 	if (obj != 0 && mos_refd_objs != NULL)
7380 		range_tree_add(mos_refd_objs, obj, 1);
7381 }
7382 
7383 /*
7384  * Call on a MOS object that may already have been referenced.
7385  */
7386 static void
7387 mos_obj_refd_multiple(uint64_t obj)
7388 {
7389 	if (obj != 0 && mos_refd_objs != NULL &&
7390 	    !range_tree_contains(mos_refd_objs, obj, 1))
7391 		range_tree_add(mos_refd_objs, obj, 1);
7392 }
7393 
7394 static void
7395 mos_leak_vdev_top_zap(vdev_t *vd)
7396 {
7397 	uint64_t ms_flush_data_obj;
7398 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7399 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7400 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7401 	if (error == ENOENT)
7402 		return;
7403 	ASSERT0(error);
7404 
7405 	mos_obj_refd(ms_flush_data_obj);
7406 }
7407 
7408 static void
7409 mos_leak_vdev(vdev_t *vd)
7410 {
7411 	mos_obj_refd(vd->vdev_dtl_object);
7412 	mos_obj_refd(vd->vdev_ms_array);
7413 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7414 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7415 	mos_obj_refd(vd->vdev_leaf_zap);
7416 	if (vd->vdev_checkpoint_sm != NULL)
7417 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7418 	if (vd->vdev_indirect_mapping != NULL) {
7419 		mos_obj_refd(vd->vdev_indirect_mapping->
7420 		    vim_phys->vimp_counts_object);
7421 	}
7422 	if (vd->vdev_obsolete_sm != NULL)
7423 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7424 
7425 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7426 		metaslab_t *ms = vd->vdev_ms[m];
7427 		mos_obj_refd(space_map_object(ms->ms_sm));
7428 	}
7429 
7430 	if (vd->vdev_top_zap != 0) {
7431 		mos_obj_refd(vd->vdev_top_zap);
7432 		mos_leak_vdev_top_zap(vd);
7433 	}
7434 
7435 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
7436 		mos_leak_vdev(vd->vdev_child[c]);
7437 	}
7438 }
7439 
7440 static void
7441 mos_leak_log_spacemaps(spa_t *spa)
7442 {
7443 	uint64_t spacemap_zap;
7444 	int error = zap_lookup(spa_meta_objset(spa),
7445 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7446 	    sizeof (spacemap_zap), 1, &spacemap_zap);
7447 	if (error == ENOENT)
7448 		return;
7449 	ASSERT0(error);
7450 
7451 	mos_obj_refd(spacemap_zap);
7452 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7453 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7454 		mos_obj_refd(sls->sls_sm_obj);
7455 }
7456 
7457 static int
7458 dump_mos_leaks(spa_t *spa)
7459 {
7460 	int rv = 0;
7461 	objset_t *mos = spa->spa_meta_objset;
7462 	dsl_pool_t *dp = spa->spa_dsl_pool;
7463 
7464 	/* Visit and mark all referenced objects in the MOS */
7465 
7466 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7467 	mos_obj_refd(spa->spa_pool_props_object);
7468 	mos_obj_refd(spa->spa_config_object);
7469 	mos_obj_refd(spa->spa_ddt_stat_object);
7470 	mos_obj_refd(spa->spa_feat_desc_obj);
7471 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7472 	mos_obj_refd(spa->spa_feat_for_read_obj);
7473 	mos_obj_refd(spa->spa_feat_for_write_obj);
7474 	mos_obj_refd(spa->spa_history);
7475 	mos_obj_refd(spa->spa_errlog_last);
7476 	mos_obj_refd(spa->spa_errlog_scrub);
7477 	mos_obj_refd(spa->spa_all_vdev_zaps);
7478 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7479 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
7480 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
7481 	bpobj_count_refd(&spa->spa_deferred_bpobj);
7482 	mos_obj_refd(dp->dp_empty_bpobj);
7483 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
7484 	bpobj_count_refd(&dp->dp_free_bpobj);
7485 	mos_obj_refd(spa->spa_l2cache.sav_object);
7486 	mos_obj_refd(spa->spa_spares.sav_object);
7487 
7488 	if (spa->spa_syncing_log_sm != NULL)
7489 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
7490 	mos_leak_log_spacemaps(spa);
7491 
7492 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7493 	    scip_next_mapping_object);
7494 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7495 	    scip_prev_obsolete_sm_object);
7496 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
7497 		vdev_indirect_mapping_t *vim =
7498 		    vdev_indirect_mapping_open(mos,
7499 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
7500 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
7501 		vdev_indirect_mapping_close(vim);
7502 	}
7503 	deleted_livelists_dump_mos(spa);
7504 
7505 	if (dp->dp_origin_snap != NULL) {
7506 		dsl_dataset_t *ds;
7507 
7508 		dsl_pool_config_enter(dp, FTAG);
7509 		VERIFY0(dsl_dataset_hold_obj(dp,
7510 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
7511 		    FTAG, &ds));
7512 		count_ds_mos_objects(ds);
7513 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
7514 		dsl_dataset_rele(ds, FTAG);
7515 		dsl_pool_config_exit(dp, FTAG);
7516 
7517 		count_ds_mos_objects(dp->dp_origin_snap);
7518 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
7519 	}
7520 	count_dir_mos_objects(dp->dp_mos_dir);
7521 	if (dp->dp_free_dir != NULL)
7522 		count_dir_mos_objects(dp->dp_free_dir);
7523 	if (dp->dp_leak_dir != NULL)
7524 		count_dir_mos_objects(dp->dp_leak_dir);
7525 
7526 	mos_leak_vdev(spa->spa_root_vdev);
7527 
7528 	for (uint64_t class = 0; class < DDT_CLASSES; class++) {
7529 		for (uint64_t type = 0; type < DDT_TYPES; type++) {
7530 			for (uint64_t cksum = 0;
7531 			    cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
7532 				ddt_t *ddt = spa->spa_ddt[cksum];
7533 				mos_obj_refd(ddt->ddt_object[type][class]);
7534 			}
7535 		}
7536 	}
7537 
7538 	/*
7539 	 * Visit all allocated objects and make sure they are referenced.
7540 	 */
7541 	uint64_t object = 0;
7542 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
7543 		if (range_tree_contains(mos_refd_objs, object, 1)) {
7544 			range_tree_remove(mos_refd_objs, object, 1);
7545 		} else {
7546 			dmu_object_info_t doi;
7547 			const char *name;
7548 			dmu_object_info(mos, object, &doi);
7549 			if (doi.doi_type & DMU_OT_NEWTYPE) {
7550 				dmu_object_byteswap_t bswap =
7551 				    DMU_OT_BYTESWAP(doi.doi_type);
7552 				name = dmu_ot_byteswap[bswap].ob_name;
7553 			} else {
7554 				name = dmu_ot[doi.doi_type].ot_name;
7555 			}
7556 
7557 			(void) printf("MOS object %llu (%s) leaked\n",
7558 			    (u_longlong_t)object, name);
7559 			rv = 2;
7560 		}
7561 	}
7562 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
7563 	if (!range_tree_is_empty(mos_refd_objs))
7564 		rv = 2;
7565 	range_tree_vacate(mos_refd_objs, NULL, NULL);
7566 	range_tree_destroy(mos_refd_objs);
7567 	return (rv);
7568 }
7569 
7570 typedef struct log_sm_obsolete_stats_arg {
7571 	uint64_t lsos_current_txg;
7572 
7573 	uint64_t lsos_total_entries;
7574 	uint64_t lsos_valid_entries;
7575 
7576 	uint64_t lsos_sm_entries;
7577 	uint64_t lsos_valid_sm_entries;
7578 } log_sm_obsolete_stats_arg_t;
7579 
7580 static int
7581 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
7582     uint64_t txg, void *arg)
7583 {
7584 	log_sm_obsolete_stats_arg_t *lsos = arg;
7585 
7586 	uint64_t offset = sme->sme_offset;
7587 	uint64_t vdev_id = sme->sme_vdev;
7588 
7589 	if (lsos->lsos_current_txg == 0) {
7590 		/* this is the first log */
7591 		lsos->lsos_current_txg = txg;
7592 	} else if (lsos->lsos_current_txg < txg) {
7593 		/* we just changed log - print stats and reset */
7594 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7595 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
7596 		    (u_longlong_t)lsos->lsos_sm_entries,
7597 		    (u_longlong_t)lsos->lsos_current_txg);
7598 		lsos->lsos_valid_sm_entries = 0;
7599 		lsos->lsos_sm_entries = 0;
7600 		lsos->lsos_current_txg = txg;
7601 	}
7602 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
7603 
7604 	lsos->lsos_sm_entries++;
7605 	lsos->lsos_total_entries++;
7606 
7607 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
7608 	if (!vdev_is_concrete(vd))
7609 		return (0);
7610 
7611 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7612 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
7613 
7614 	if (txg < metaslab_unflushed_txg(ms))
7615 		return (0);
7616 	lsos->lsos_valid_sm_entries++;
7617 	lsos->lsos_valid_entries++;
7618 	return (0);
7619 }
7620 
7621 static void
7622 dump_log_spacemap_obsolete_stats(spa_t *spa)
7623 {
7624 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
7625 		return;
7626 
7627 	log_sm_obsolete_stats_arg_t lsos;
7628 	bzero(&lsos, sizeof (lsos));
7629 
7630 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
7631 
7632 	iterate_through_spacemap_logs(spa,
7633 	    log_spacemap_obsolete_stats_cb, &lsos);
7634 
7635 	/* print stats for latest log */
7636 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7637 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
7638 	    (u_longlong_t)lsos.lsos_sm_entries,
7639 	    (u_longlong_t)lsos.lsos_current_txg);
7640 
7641 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
7642 	    (u_longlong_t)lsos.lsos_valid_entries,
7643 	    (u_longlong_t)lsos.lsos_total_entries);
7644 }
7645 
7646 static void
7647 dump_zpool(spa_t *spa)
7648 {
7649 	dsl_pool_t *dp = spa_get_dsl(spa);
7650 	int rc = 0;
7651 
7652 	if (dump_opt['y']) {
7653 		livelist_metaslab_validate(spa);
7654 	}
7655 
7656 	if (dump_opt['S']) {
7657 		dump_simulated_ddt(spa);
7658 		return;
7659 	}
7660 
7661 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
7662 		(void) printf("\nCached configuration:\n");
7663 		dump_nvlist(spa->spa_config, 8);
7664 	}
7665 
7666 	if (dump_opt['C'])
7667 		dump_config(spa);
7668 
7669 	if (dump_opt['u'])
7670 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
7671 
7672 	if (dump_opt['D'])
7673 		dump_all_ddts(spa);
7674 
7675 	if (dump_opt['d'] > 2 || dump_opt['m'])
7676 		dump_metaslabs(spa);
7677 	if (dump_opt['M'])
7678 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
7679 	if (dump_opt['d'] > 2 || dump_opt['m']) {
7680 		dump_log_spacemaps(spa);
7681 		dump_log_spacemap_obsolete_stats(spa);
7682 	}
7683 
7684 	if (dump_opt['d'] || dump_opt['i']) {
7685 		spa_feature_t f;
7686 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
7687 		    0);
7688 		dump_objset(dp->dp_meta_objset);
7689 
7690 		if (dump_opt['d'] >= 3) {
7691 			dsl_pool_t *dp = spa->spa_dsl_pool;
7692 			dump_full_bpobj(&spa->spa_deferred_bpobj,
7693 			    "Deferred frees", 0);
7694 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7695 				dump_full_bpobj(&dp->dp_free_bpobj,
7696 				    "Pool snapshot frees", 0);
7697 			}
7698 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
7699 				ASSERT(spa_feature_is_enabled(spa,
7700 				    SPA_FEATURE_DEVICE_REMOVAL));
7701 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
7702 				    "Pool obsolete blocks", 0);
7703 			}
7704 
7705 			if (spa_feature_is_active(spa,
7706 			    SPA_FEATURE_ASYNC_DESTROY)) {
7707 				dump_bptree(spa->spa_meta_objset,
7708 				    dp->dp_bptree_obj,
7709 				    "Pool dataset frees");
7710 			}
7711 			dump_dtl(spa->spa_root_vdev, 0);
7712 		}
7713 
7714 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
7715 			global_feature_count[f] = UINT64_MAX;
7716 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
7717 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
7718 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
7719 
7720 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
7721 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7722 
7723 		if (rc == 0 && !dump_opt['L'])
7724 			rc = dump_mos_leaks(spa);
7725 
7726 		for (f = 0; f < SPA_FEATURES; f++) {
7727 			uint64_t refcount;
7728 
7729 			uint64_t *arr;
7730 			if (!(spa_feature_table[f].fi_flags &
7731 			    ZFEATURE_FLAG_PER_DATASET)) {
7732 				if (global_feature_count[f] == UINT64_MAX)
7733 					continue;
7734 				if (!spa_feature_is_enabled(spa, f)) {
7735 					ASSERT0(global_feature_count[f]);
7736 					continue;
7737 				}
7738 				arr = global_feature_count;
7739 			} else {
7740 				if (!spa_feature_is_enabled(spa, f)) {
7741 					ASSERT0(dataset_feature_count[f]);
7742 					continue;
7743 				}
7744 				arr = dataset_feature_count;
7745 			}
7746 			if (feature_get_refcount(spa, &spa_feature_table[f],
7747 			    &refcount) == ENOTSUP)
7748 				continue;
7749 			if (arr[f] != refcount) {
7750 				(void) printf("%s feature refcount mismatch: "
7751 				    "%lld consumers != %lld refcount\n",
7752 				    spa_feature_table[f].fi_uname,
7753 				    (longlong_t)arr[f], (longlong_t)refcount);
7754 				rc = 2;
7755 			} else {
7756 				(void) printf("Verified %s feature refcount "
7757 				    "of %llu is correct\n",
7758 				    spa_feature_table[f].fi_uname,
7759 				    (longlong_t)refcount);
7760 			}
7761 		}
7762 
7763 		if (rc == 0)
7764 			rc = verify_device_removal_feature_counts(spa);
7765 	}
7766 
7767 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
7768 		rc = dump_block_stats(spa);
7769 
7770 	if (rc == 0)
7771 		rc = verify_spacemap_refcounts(spa);
7772 
7773 	if (dump_opt['s'])
7774 		show_pool_stats(spa);
7775 
7776 	if (dump_opt['h'])
7777 		dump_history(spa);
7778 
7779 	if (rc == 0)
7780 		rc = verify_checkpoint(spa);
7781 
7782 	if (rc != 0) {
7783 		dump_debug_buffer();
7784 		exit(rc);
7785 	}
7786 }
7787 
7788 #define	ZDB_FLAG_CHECKSUM	0x0001
7789 #define	ZDB_FLAG_DECOMPRESS	0x0002
7790 #define	ZDB_FLAG_BSWAP		0x0004
7791 #define	ZDB_FLAG_GBH		0x0008
7792 #define	ZDB_FLAG_INDIRECT	0x0010
7793 #define	ZDB_FLAG_RAW		0x0020
7794 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
7795 #define	ZDB_FLAG_VERBOSE	0x0080
7796 
7797 static int flagbits[256];
7798 static char flagbitstr[16];
7799 
7800 static void
7801 zdb_print_blkptr(const blkptr_t *bp, int flags)
7802 {
7803 	char blkbuf[BP_SPRINTF_LEN];
7804 
7805 	if (flags & ZDB_FLAG_BSWAP)
7806 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
7807 
7808 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
7809 	(void) printf("%s\n", blkbuf);
7810 }
7811 
7812 static void
7813 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
7814 {
7815 	int i;
7816 
7817 	for (i = 0; i < nbps; i++)
7818 		zdb_print_blkptr(&bp[i], flags);
7819 }
7820 
7821 static void
7822 zdb_dump_gbh(void *buf, int flags)
7823 {
7824 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
7825 }
7826 
7827 static void
7828 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
7829 {
7830 	if (flags & ZDB_FLAG_BSWAP)
7831 		byteswap_uint64_array(buf, size);
7832 	VERIFY(write(fileno(stdout), buf, size) == size);
7833 }
7834 
7835 static void
7836 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
7837 {
7838 	uint64_t *d = (uint64_t *)buf;
7839 	unsigned nwords = size / sizeof (uint64_t);
7840 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
7841 	unsigned i, j;
7842 	const char *hdr;
7843 	char *c;
7844 
7845 
7846 	if (do_bswap)
7847 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
7848 	else
7849 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
7850 
7851 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
7852 
7853 #ifdef _LITTLE_ENDIAN
7854 	/* correct the endianness */
7855 	do_bswap = !do_bswap;
7856 #endif
7857 	for (i = 0; i < nwords; i += 2) {
7858 		(void) printf("%06llx:  %016llx  %016llx  ",
7859 		    (u_longlong_t)(i * sizeof (uint64_t)),
7860 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
7861 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
7862 
7863 		c = (char *)&d[i];
7864 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
7865 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
7866 		(void) printf("\n");
7867 	}
7868 }
7869 
7870 /*
7871  * There are two acceptable formats:
7872  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
7873  *	child[.child]*    - For example: 0.1.1
7874  *
7875  * The second form can be used to specify arbitrary vdevs anywhere
7876  * in the hierarchy.  For example, in a pool with a mirror of
7877  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
7878  */
7879 static vdev_t *
7880 zdb_vdev_lookup(vdev_t *vdev, const char *path)
7881 {
7882 	char *s, *p, *q;
7883 	unsigned i;
7884 
7885 	if (vdev == NULL)
7886 		return (NULL);
7887 
7888 	/* First, assume the x.x.x.x format */
7889 	i = strtoul(path, &s, 10);
7890 	if (s == path || (s && *s != '.' && *s != '\0'))
7891 		goto name;
7892 	if (i >= vdev->vdev_children)
7893 		return (NULL);
7894 
7895 	vdev = vdev->vdev_child[i];
7896 	if (s && *s == '\0')
7897 		return (vdev);
7898 	return (zdb_vdev_lookup(vdev, s+1));
7899 
7900 name:
7901 	for (i = 0; i < vdev->vdev_children; i++) {
7902 		vdev_t *vc = vdev->vdev_child[i];
7903 
7904 		if (vc->vdev_path == NULL) {
7905 			vc = zdb_vdev_lookup(vc, path);
7906 			if (vc == NULL)
7907 				continue;
7908 			else
7909 				return (vc);
7910 		}
7911 
7912 		p = strrchr(vc->vdev_path, '/');
7913 		p = p ? p + 1 : vc->vdev_path;
7914 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
7915 
7916 		if (strcmp(vc->vdev_path, path) == 0)
7917 			return (vc);
7918 		if (strcmp(p, path) == 0)
7919 			return (vc);
7920 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
7921 			return (vc);
7922 	}
7923 
7924 	return (NULL);
7925 }
7926 
7927 static int
7928 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
7929 {
7930 	dsl_dataset_t *ds;
7931 
7932 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
7933 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
7934 	    NULL, &ds);
7935 	if (error != 0) {
7936 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
7937 		    (u_longlong_t)objset_id, strerror(error));
7938 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7939 		return (error);
7940 	}
7941 	dsl_dataset_name(ds, outstr);
7942 	dsl_dataset_rele(ds, NULL);
7943 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7944 	return (0);
7945 }
7946 
7947 static boolean_t
7948 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
7949 {
7950 	char *s0, *s1, *tmp = NULL;
7951 
7952 	if (sizes == NULL)
7953 		return (B_FALSE);
7954 
7955 	s0 = strtok_r(sizes, "/", &tmp);
7956 	if (s0 == NULL)
7957 		return (B_FALSE);
7958 	s1 = strtok_r(NULL, "/", &tmp);
7959 	*lsize = strtoull(s0, NULL, 16);
7960 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
7961 	return (*lsize >= *psize && *psize > 0);
7962 }
7963 
7964 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
7965 
7966 static boolean_t
7967 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
7968     uint64_t psize, int flags)
7969 {
7970 	boolean_t exceeded = B_FALSE;
7971 	/*
7972 	 * We don't know how the data was compressed, so just try
7973 	 * every decompress function at every inflated blocksize.
7974 	 */
7975 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
7976 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
7977 	int *cfuncp = cfuncs;
7978 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
7979 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
7980 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
7981 	    (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
7982 	*cfuncp++ = ZIO_COMPRESS_LZ4;
7983 	*cfuncp++ = ZIO_COMPRESS_LZJB;
7984 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
7985 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
7986 		if (((1ULL << c) & mask) == 0)
7987 			*cfuncp++ = c;
7988 
7989 	/*
7990 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
7991 	 * could take a while and we should let the user know
7992 	 * we are not stuck.  On the other hand, printing progress
7993 	 * info gets old after a while.  User can specify 'v' flag
7994 	 * to see the progression.
7995 	 */
7996 	if (lsize == psize)
7997 		lsize += SPA_MINBLOCKSIZE;
7998 	else
7999 		maxlsize = lsize;
8000 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8001 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8002 			if (flags & ZDB_FLAG_VERBOSE) {
8003 				(void) fprintf(stderr,
8004 				    "Trying %05llx -> %05llx (%s)\n",
8005 				    (u_longlong_t)psize,
8006 				    (u_longlong_t)lsize,
8007 				    zio_compress_table[*cfuncp].\
8008 				    ci_name);
8009 			}
8010 
8011 			/*
8012 			 * We randomize lbuf2, and decompress to both
8013 			 * lbuf and lbuf2. This way, we will know if
8014 			 * decompression fill exactly to lsize.
8015 			 */
8016 			VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8017 
8018 			if (zio_decompress_data(*cfuncp, pabd,
8019 			    lbuf, psize, lsize, NULL) == 0 &&
8020 			    zio_decompress_data(*cfuncp, pabd,
8021 			    lbuf2, psize, lsize, NULL) == 0 &&
8022 			    bcmp(lbuf, lbuf2, lsize) == 0)
8023 				break;
8024 		}
8025 		if (*cfuncp != 0)
8026 			break;
8027 	}
8028 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8029 
8030 	if (lsize > maxlsize) {
8031 		exceeded = B_TRUE;
8032 	}
8033 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8034 		printf("\nZLE decompression was selected. If you "
8035 		    "suspect the results are wrong,\ntry avoiding ZLE "
8036 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8037 	}
8038 
8039 	return (exceeded);
8040 }
8041 
8042 /*
8043  * Read a block from a pool and print it out.  The syntax of the
8044  * block descriptor is:
8045  *
8046  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8047  *
8048  *	pool           - The name of the pool you wish to read from
8049  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8050  *	offset         - offset, in hex, in bytes
8051  *	size           - Amount of data to read, in hex, in bytes
8052  *	flags          - A string of characters specifying options
8053  *		 b: Decode a blkptr at given offset within block
8054  *		 c: Calculate and display checksums
8055  *		 d: Decompress data before dumping
8056  *		 e: Byteswap data before dumping
8057  *		 g: Display data as a gang block header
8058  *		 i: Display as an indirect block
8059  *		 r: Dump raw data to stdout
8060  *		 v: Verbose
8061  *
8062  */
8063 static void
8064 zdb_read_block(char *thing, spa_t *spa)
8065 {
8066 	blkptr_t blk, *bp = &blk;
8067 	dva_t *dva = bp->blk_dva;
8068 	int flags = 0;
8069 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8070 	zio_t *zio;
8071 	vdev_t *vd;
8072 	abd_t *pabd;
8073 	void *lbuf, *buf;
8074 	char *s, *p, *dup, *vdev, *flagstr, *sizes, *tmp = NULL;
8075 	int i, error;
8076 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8077 
8078 	dup = strdup(thing);
8079 	s = strtok_r(dup, ":", &tmp);
8080 	vdev = s ? s : "";
8081 	s = strtok_r(NULL, ":", &tmp);
8082 	offset = strtoull(s ? s : "", NULL, 16);
8083 	sizes = strtok_r(NULL, ":", &tmp);
8084 	s = strtok_r(NULL, ":", &tmp);
8085 	flagstr = strdup(s ? s : "");
8086 
8087 	s = NULL;
8088 	tmp = NULL;
8089 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8090 		s = "invalid size(s)";
8091 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8092 		s = "size must be a multiple of sector size";
8093 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8094 		s = "offset must be a multiple of sector size";
8095 	if (s) {
8096 		(void) printf("Invalid block specifier: %s  - %s\n", thing, s);
8097 		goto done;
8098 	}
8099 
8100 	for (s = strtok_r(flagstr, ":", &tmp);
8101 	    s != NULL;
8102 	    s = strtok_r(NULL, ":", &tmp)) {
8103 		for (i = 0; i < strlen(flagstr); i++) {
8104 			int bit = flagbits[(uchar_t)flagstr[i]];
8105 
8106 			if (bit == 0) {
8107 				(void) printf("***Ignoring flag: %c\n",
8108 				    (uchar_t)flagstr[i]);
8109 				continue;
8110 			}
8111 			found = B_TRUE;
8112 			flags |= bit;
8113 
8114 			p = &flagstr[i + 1];
8115 			if (*p != ':' && *p != '\0') {
8116 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8117 				char *end, offstr[8] = { 0 };
8118 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8119 				    (nextbit == 0)) {
8120 					/* look ahead to isolate the offset */
8121 					while (nextbit == 0 &&
8122 					    strchr(flagbitstr, *p) == NULL) {
8123 						offstr[j] = *p;
8124 						j++;
8125 						if (i + j > strlen(flagstr))
8126 							break;
8127 						p++;
8128 						nextbit = flagbits[(uchar_t)*p];
8129 					}
8130 					blkptr_offset = strtoull(offstr, &end,
8131 					    16);
8132 					i += j;
8133 				} else if (nextbit == 0) {
8134 					(void) printf("***Ignoring flag arg:"
8135 					    " '%c'\n", (uchar_t)*p);
8136 				}
8137 			}
8138 		}
8139 	}
8140 	if (blkptr_offset % sizeof (blkptr_t)) {
8141 		printf("Block pointer offset 0x%llx "
8142 		    "must be divisible by 0x%x\n",
8143 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8144 		goto done;
8145 	}
8146 	if (found == B_FALSE && strlen(flagstr) > 0) {
8147 		printf("Invalid flag arg: '%s'\n", flagstr);
8148 		goto done;
8149 	}
8150 
8151 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8152 	if (vd == NULL) {
8153 		(void) printf("***Invalid vdev: %s\n", vdev);
8154 		free(dup);
8155 		return;
8156 	} else {
8157 		if (vd->vdev_path)
8158 			(void) fprintf(stderr, "Found vdev: %s\n",
8159 			    vd->vdev_path);
8160 		else
8161 			(void) fprintf(stderr, "Found vdev type: %s\n",
8162 			    vd->vdev_ops->vdev_op_type);
8163 	}
8164 
8165 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8166 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8167 
8168 	BP_ZERO(bp);
8169 
8170 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8171 	DVA_SET_OFFSET(&dva[0], offset);
8172 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8173 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8174 
8175 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8176 
8177 	BP_SET_LSIZE(bp, lsize);
8178 	BP_SET_PSIZE(bp, psize);
8179 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8180 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8181 	BP_SET_TYPE(bp, DMU_OT_NONE);
8182 	BP_SET_LEVEL(bp, 0);
8183 	BP_SET_DEDUP(bp, 0);
8184 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8185 
8186 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8187 	zio = zio_root(spa, NULL, NULL, 0);
8188 
8189 	if (vd == vd->vdev_top) {
8190 		/*
8191 		 * Treat this as a normal block read.
8192 		 */
8193 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8194 		    ZIO_PRIORITY_SYNC_READ,
8195 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8196 	} else {
8197 		/*
8198 		 * Treat this as a vdev child I/O.
8199 		 */
8200 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8201 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8202 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
8203 		    ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8204 		    ZIO_FLAG_OPTIONAL, NULL, NULL));
8205 	}
8206 
8207 	error = zio_wait(zio);
8208 	spa_config_exit(spa, SCL_STATE, FTAG);
8209 
8210 	if (error) {
8211 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8212 		goto out;
8213 	}
8214 
8215 	uint64_t orig_lsize = lsize;
8216 	buf = lbuf;
8217 	if (flags & ZDB_FLAG_DECOMPRESS) {
8218 		boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8219 		    lsize, psize, flags);
8220 		if (failed) {
8221 			(void) printf("Decompress of %s failed\n", thing);
8222 			goto out;
8223 		}
8224 	} else {
8225 		buf = abd_borrow_buf_copy(pabd, lsize);
8226 		borrowed = B_TRUE;
8227 	}
8228 	/*
8229 	 * Try to detect invalid block pointer.  If invalid, try
8230 	 * decompressing.
8231 	 */
8232 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8233 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8234 		const blkptr_t *b = (const blkptr_t *)(void *)
8235 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8236 		if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
8237 		    B_FALSE) {
8238 			abd_return_buf_copy(pabd, buf, lsize);
8239 			borrowed = B_FALSE;
8240 			buf = lbuf;
8241 			boolean_t failed = zdb_decompress_block(pabd, buf,
8242 			    lbuf, lsize, psize, flags);
8243 			b = (const blkptr_t *)(void *)
8244 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8245 			if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
8246 			    BLK_VERIFY_LOG) == B_FALSE) {
8247 				printf("invalid block pointer at this DVA\n");
8248 				goto out;
8249 			}
8250 		}
8251 	}
8252 
8253 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
8254 		zdb_print_blkptr((blkptr_t *)(void *)
8255 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8256 	else if (flags & ZDB_FLAG_RAW)
8257 		zdb_dump_block_raw(buf, lsize, flags);
8258 	else if (flags & ZDB_FLAG_INDIRECT)
8259 		zdb_dump_indirect((blkptr_t *)buf,
8260 		    orig_lsize / sizeof (blkptr_t), flags);
8261 	else if (flags & ZDB_FLAG_GBH)
8262 		zdb_dump_gbh(buf, flags);
8263 	else
8264 		zdb_dump_block(thing, buf, lsize, flags);
8265 
8266 	/*
8267 	 * If :c was specified, iterate through the checksum table to
8268 	 * calculate and display each checksum for our specified
8269 	 * DVA and length.
8270 	 */
8271 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8272 	    !(flags & ZDB_FLAG_GBH)) {
8273 		zio_t *czio;
8274 		(void) printf("\n");
8275 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8276 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8277 
8278 			if ((zio_checksum_table[ck].ci_flags &
8279 			    ZCHECKSUM_FLAG_EMBEDDED) ||
8280 			    ck == ZIO_CHECKSUM_NOPARITY) {
8281 				continue;
8282 			}
8283 			BP_SET_CHECKSUM(bp, ck);
8284 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8285 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8286 			czio->io_bp = bp;
8287 
8288 			if (vd == vd->vdev_top) {
8289 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8290 				    NULL, NULL,
8291 				    ZIO_PRIORITY_SYNC_READ,
8292 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8293 				    ZIO_FLAG_DONT_RETRY, NULL));
8294 			} else {
8295 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
8296 				    offset, pabd, psize, ZIO_TYPE_READ,
8297 				    ZIO_PRIORITY_SYNC_READ,
8298 				    ZIO_FLAG_DONT_CACHE |
8299 				    ZIO_FLAG_DONT_PROPAGATE |
8300 				    ZIO_FLAG_DONT_RETRY |
8301 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8302 				    ZIO_FLAG_SPECULATIVE |
8303 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
8304 			}
8305 			error = zio_wait(czio);
8306 			if (error == 0 || error == ECKSUM) {
8307 				zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
8308 				ck_zio->io_offset =
8309 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
8310 				ck_zio->io_bp = bp;
8311 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
8312 				printf("%12s\tcksum=%llx:%llx:%llx:%llx\n",
8313 				    zio_checksum_table[ck].ci_name,
8314 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
8315 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
8316 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
8317 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
8318 				zio_wait(ck_zio);
8319 			} else {
8320 				printf("error %d reading block\n", error);
8321 			}
8322 			spa_config_exit(spa, SCL_STATE, FTAG);
8323 		}
8324 	}
8325 
8326 	if (borrowed)
8327 		abd_return_buf_copy(pabd, buf, lsize);
8328 
8329 out:
8330 	abd_free(pabd);
8331 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
8332 done:
8333 	free(flagstr);
8334 	free(dup);
8335 }
8336 
8337 static void
8338 zdb_embedded_block(char *thing)
8339 {
8340 	blkptr_t bp;
8341 	unsigned long long *words = (void *)&bp;
8342 	char *buf;
8343 	int err;
8344 
8345 	bzero(&bp, sizeof (bp));
8346 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8347 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8348 	    words + 0, words + 1, words + 2, words + 3,
8349 	    words + 4, words + 5, words + 6, words + 7,
8350 	    words + 8, words + 9, words + 10, words + 11,
8351 	    words + 12, words + 13, words + 14, words + 15);
8352 	if (err != 16) {
8353 		(void) fprintf(stderr, "invalid input format\n");
8354 		exit(1);
8355 	}
8356 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8357 	buf = malloc(SPA_MAXBLOCKSIZE);
8358 	if (buf == NULL) {
8359 		(void) fprintf(stderr, "out of memory\n");
8360 		exit(1);
8361 	}
8362 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8363 	if (err != 0) {
8364 		(void) fprintf(stderr, "decode failed: %u\n", err);
8365 		exit(1);
8366 	}
8367 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8368 	free(buf);
8369 }
8370 
8371 int
8372 main(int argc, char **argv)
8373 {
8374 	int c;
8375 	struct rlimit rl = { 1024, 1024 };
8376 	spa_t *spa = NULL;
8377 	objset_t *os = NULL;
8378 	int dump_all = 1;
8379 	int verbose = 0;
8380 	int error = 0;
8381 	char **searchdirs = NULL;
8382 	int nsearch = 0;
8383 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8384 	nvlist_t *policy = NULL;
8385 	uint64_t max_txg = UINT64_MAX;
8386 	int64_t objset_id = -1;
8387 	uint64_t object;
8388 	int flags = ZFS_IMPORT_MISSING_LOG;
8389 	int rewind = ZPOOL_NEVER_REWIND;
8390 	char *spa_config_path_env, *objset_str;
8391 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8392 	nvlist_t *cfg = NULL;
8393 
8394 	(void) setrlimit(RLIMIT_NOFILE, &rl);
8395 	(void) enable_extended_FILE_stdio(-1, -1);
8396 
8397 	dprintf_setup(&argc, argv);
8398 
8399 	/*
8400 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
8401 	 * default spa_config_path setting. If -U flag is specified it will
8402 	 * override this environment variable settings once again.
8403 	 */
8404 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
8405 	if (spa_config_path_env != NULL)
8406 		spa_config_path = spa_config_path_env;
8407 
8408 	/*
8409 	 * For performance reasons, we set this tunable down. We do so before
8410 	 * the arg parsing section so that the user can override this value if
8411 	 * they choose.
8412 	 */
8413 	zfs_btree_verify_intensity = 3;
8414 
8415 	while ((c = getopt(argc, argv,
8416 	    "AbcCdDeEFGhiI:klLmMo:Op:PqrRsSt:uU:vVx:XYyZ")) != -1) {
8417 		switch (c) {
8418 		case 'b':
8419 		case 'c':
8420 		case 'C':
8421 		case 'd':
8422 		case 'D':
8423 		case 'E':
8424 		case 'G':
8425 		case 'h':
8426 		case 'i':
8427 		case 'l':
8428 		case 'm':
8429 		case 'M':
8430 		case 'O':
8431 		case 'r':
8432 		case 'R':
8433 		case 's':
8434 		case 'S':
8435 		case 'u':
8436 		case 'y':
8437 		case 'Z':
8438 			dump_opt[c]++;
8439 			dump_all = 0;
8440 			break;
8441 		case 'A':
8442 		case 'e':
8443 		case 'F':
8444 		case 'k':
8445 		case 'L':
8446 		case 'P':
8447 		case 'q':
8448 		case 'X':
8449 			dump_opt[c]++;
8450 			break;
8451 		case 'Y':
8452 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
8453 			zfs_deadman_enabled = 0;
8454 			break;
8455 		/* NB: Sort single match options below. */
8456 		case 'I':
8457 			max_inflight_bytes = strtoull(optarg, NULL, 0);
8458 			if (max_inflight_bytes == 0) {
8459 				(void) fprintf(stderr, "maximum number "
8460 				    "of inflight bytes must be greater "
8461 				    "than 0\n");
8462 				usage();
8463 			}
8464 			break;
8465 		case 'o':
8466 			error = set_global_var(optarg);
8467 			if (error != 0)
8468 				usage();
8469 			break;
8470 		case 'p':
8471 			if (searchdirs == NULL) {
8472 				searchdirs = umem_alloc(sizeof (char *),
8473 				    UMEM_NOFAIL);
8474 			} else {
8475 				char **tmp = umem_alloc((nsearch + 1) *
8476 				    sizeof (char *), UMEM_NOFAIL);
8477 				bcopy(searchdirs, tmp, nsearch *
8478 				    sizeof (char *));
8479 				umem_free(searchdirs,
8480 				    nsearch * sizeof (char *));
8481 				searchdirs = tmp;
8482 			}
8483 			searchdirs[nsearch++] = optarg;
8484 			break;
8485 		case 't':
8486 			max_txg = strtoull(optarg, NULL, 0);
8487 			if (max_txg < TXG_INITIAL) {
8488 				(void) fprintf(stderr, "incorrect txg "
8489 				    "specified: %s\n", optarg);
8490 				usage();
8491 			}
8492 			break;
8493 		case 'U':
8494 			spa_config_path = optarg;
8495 			if (spa_config_path[0] != '/') {
8496 				(void) fprintf(stderr,
8497 				    "cachefile must be an absolute path "
8498 				    "(i.e. start with a slash)\n");
8499 				usage();
8500 			}
8501 			break;
8502 		case 'v':
8503 			verbose++;
8504 			break;
8505 		case 'V':
8506 			flags = ZFS_IMPORT_VERBATIM;
8507 			break;
8508 		case 'x':
8509 			vn_dumpdir = optarg;
8510 			break;
8511 		default:
8512 			usage();
8513 			break;
8514 		}
8515 	}
8516 
8517 	if (!dump_opt['e'] && searchdirs != NULL) {
8518 		(void) fprintf(stderr, "-p option requires use of -e\n");
8519 		usage();
8520 	}
8521 	if (dump_opt['d'] || dump_opt['r']) {
8522 		/* <pool>[/<dataset | objset id> is accepted */
8523 		if (argv[2] && (objset_str = strchr(argv[2], '/')) != NULL &&
8524 		    objset_str++ != NULL) {
8525 			char *endptr;
8526 			errno = 0;
8527 			objset_id = strtoull(objset_str, &endptr, 0);
8528 			/* dataset 0 is the same as opening the pool */
8529 			if (errno == 0 && endptr != objset_str &&
8530 			    objset_id != 0) {
8531 				target_is_spa = B_FALSE;
8532 				dataset_lookup = B_TRUE;
8533 			} else if (objset_id != 0) {
8534 				printf("failed to open objset %s "
8535 				    "%llu %s", objset_str,
8536 				    (u_longlong_t)objset_id,
8537 				    strerror(errno));
8538 				exit(1);
8539 			}
8540 			/* normal dataset name not an objset ID */
8541 			if (endptr == objset_str) {
8542 				objset_id = -1;
8543 			}
8544 		}
8545 	}
8546 
8547 #if defined(_LP64)
8548 	/*
8549 	 * ZDB does not typically re-read blocks; therefore limit the ARC
8550 	 * to 256 MB, which can be used entirely for metadata.
8551 	 */
8552 	zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT;
8553 	zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
8554 #endif
8555 
8556 	/*
8557 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
8558 	 * "zdb -b" uses traversal prefetch which uses async reads.
8559 	 * For good performance, let several of them be active at once.
8560 	 */
8561 	zfs_vdev_async_read_max_active = 10;
8562 
8563 	/*
8564 	 * Disable reference tracking for better performance.
8565 	 */
8566 	reference_tracking_enable = B_FALSE;
8567 
8568 	/*
8569 	 * Do not fail spa_load when spa_load_verify fails. This is needed
8570 	 * to load non-idle pools.
8571 	 */
8572 	spa_load_verify_dryrun = B_TRUE;
8573 
8574 	/*
8575 	 * ZDB should have ability to read spacemaps.
8576 	 */
8577 	spa_mode_readable_spacemaps = B_TRUE;
8578 
8579 	kernel_init(SPA_MODE_READ);
8580 
8581 	if (dump_all)
8582 		verbose = MAX(verbose, 1);
8583 
8584 	for (c = 0; c < 256; c++) {
8585 		if (dump_all && strchr("AeEFklLOPrRSXy", c) == NULL)
8586 			dump_opt[c] = 1;
8587 		if (dump_opt[c])
8588 			dump_opt[c] += verbose;
8589 	}
8590 
8591 	libspl_assert_ok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2);
8592 	zfs_recover = (dump_opt['A'] > 1);
8593 
8594 	argc -= optind;
8595 	argv += optind;
8596 	if (argc < 2 && dump_opt['R'])
8597 		usage();
8598 
8599 	if (dump_opt['E']) {
8600 		if (argc != 1)
8601 			usage();
8602 		zdb_embedded_block(argv[0]);
8603 		return (0);
8604 	}
8605 
8606 	if (argc < 1) {
8607 		if (!dump_opt['e'] && dump_opt['C']) {
8608 			dump_cachefile(spa_config_path);
8609 			return (0);
8610 		}
8611 		usage();
8612 	}
8613 
8614 	if (dump_opt['l'])
8615 		return (dump_label(argv[0]));
8616 
8617 	if (dump_opt['O']) {
8618 		if (argc != 2)
8619 			usage();
8620 		dump_opt['v'] = verbose + 3;
8621 		return (dump_path(argv[0], argv[1], NULL));
8622 	}
8623 	if (dump_opt['r']) {
8624 		if (argc != 3)
8625 			usage();
8626 		dump_opt['v'] = verbose;
8627 		error = dump_path(argv[0], argv[1], &object);
8628 	}
8629 
8630 	if (dump_opt['X'] || dump_opt['F'])
8631 		rewind = ZPOOL_DO_REWIND |
8632 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
8633 
8634 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
8635 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
8636 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
8637 		fatal("internal error: %s", strerror(ENOMEM));
8638 
8639 	error = 0;
8640 	target = argv[0];
8641 
8642 	if (strpbrk(target, "/@") != NULL) {
8643 		size_t targetlen;
8644 
8645 		target_pool = strdup(target);
8646 		*strpbrk(target_pool, "/@") = '\0';
8647 
8648 		target_is_spa = B_FALSE;
8649 		targetlen = strlen(target);
8650 		if (targetlen && target[targetlen - 1] == '/')
8651 			target[targetlen - 1] = '\0';
8652 	} else {
8653 		target_pool = target;
8654 	}
8655 
8656 	if (dump_opt['e']) {
8657 		importargs_t args = { 0 };
8658 
8659 		args.paths = nsearch;
8660 		args.path = searchdirs;
8661 		args.can_be_active = B_TRUE;
8662 
8663 		error = zpool_find_config(NULL, target_pool, &cfg, &args,
8664 		    &libzpool_config_ops);
8665 
8666 		if (error == 0) {
8667 
8668 			if (nvlist_add_nvlist(cfg,
8669 			    ZPOOL_LOAD_POLICY, policy) != 0) {
8670 				fatal("can't open '%s': %s",
8671 				    target, strerror(ENOMEM));
8672 			}
8673 
8674 			if (dump_opt['C'] > 1) {
8675 				(void) printf("\nConfiguration for import:\n");
8676 				dump_nvlist(cfg, 8);
8677 			}
8678 
8679 			/*
8680 			 * Disable the activity check to allow examination of
8681 			 * active pools.
8682 			 */
8683 			error = spa_import(target_pool, cfg, NULL,
8684 			    flags | ZFS_IMPORT_SKIP_MMP);
8685 		}
8686 	}
8687 
8688 	if (searchdirs != NULL) {
8689 		umem_free(searchdirs, nsearch * sizeof (char *));
8690 		searchdirs = NULL;
8691 	}
8692 
8693 	/*
8694 	 * import_checkpointed_state makes the assumption that the
8695 	 * target pool that we pass it is already part of the spa
8696 	 * namespace. Because of that we need to make sure to call
8697 	 * it always after the -e option has been processed, which
8698 	 * imports the pool to the namespace if it's not in the
8699 	 * cachefile.
8700 	 */
8701 	char *checkpoint_pool = NULL;
8702 	char *checkpoint_target = NULL;
8703 	if (dump_opt['k']) {
8704 		checkpoint_pool = import_checkpointed_state(target, cfg,
8705 		    &checkpoint_target);
8706 
8707 		if (checkpoint_target != NULL)
8708 			target = checkpoint_target;
8709 	}
8710 
8711 	if (cfg != NULL) {
8712 		nvlist_free(cfg);
8713 		cfg = NULL;
8714 	}
8715 
8716 	if (target_pool != target)
8717 		free(target_pool);
8718 
8719 	if (error == 0) {
8720 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
8721 			ASSERT(checkpoint_pool != NULL);
8722 			ASSERT(checkpoint_target == NULL);
8723 
8724 			error = spa_open(checkpoint_pool, &spa, FTAG);
8725 			if (error != 0) {
8726 				fatal("Tried to open pool \"%s\" but "
8727 				    "spa_open() failed with error %d\n",
8728 				    checkpoint_pool, error);
8729 			}
8730 
8731 		} else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
8732 			zdb_set_skip_mmp(target);
8733 			error = spa_open_rewind(target, &spa, FTAG, policy,
8734 			    NULL);
8735 			if (error) {
8736 				/*
8737 				 * If we're missing the log device then
8738 				 * try opening the pool after clearing the
8739 				 * log state.
8740 				 */
8741 				mutex_enter(&spa_namespace_lock);
8742 				if ((spa = spa_lookup(target)) != NULL &&
8743 				    spa->spa_log_state == SPA_LOG_MISSING) {
8744 					spa->spa_log_state = SPA_LOG_CLEAR;
8745 					error = 0;
8746 				}
8747 				mutex_exit(&spa_namespace_lock);
8748 
8749 				if (!error) {
8750 					error = spa_open_rewind(target, &spa,
8751 					    FTAG, policy, NULL);
8752 				}
8753 			}
8754 		} else if (strpbrk(target, "#") != NULL) {
8755 			dsl_pool_t *dp;
8756 			error = dsl_pool_hold(target, FTAG, &dp);
8757 			if (error != 0) {
8758 				fatal("can't dump '%s': %s", target,
8759 				    strerror(error));
8760 			}
8761 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
8762 			dsl_pool_rele(dp, FTAG);
8763 			if (error != 0) {
8764 				fatal("can't dump '%s': %s", target,
8765 				    strerror(error));
8766 			}
8767 			return (error);
8768 		} else {
8769 			zdb_set_skip_mmp(target);
8770 			if (dataset_lookup == B_TRUE) {
8771 				/*
8772 				 * Use the supplied id to get the name
8773 				 * for open_objset.
8774 				 */
8775 				error = spa_open(target, &spa, FTAG);
8776 				if (error == 0) {
8777 					error = name_from_objset_id(spa,
8778 					    objset_id, dsname);
8779 					spa_close(spa, FTAG);
8780 					if (error == 0)
8781 						target = dsname;
8782 				}
8783 			}
8784 			if (error == 0)
8785 				error = open_objset(target, FTAG, &os);
8786 			if (error == 0)
8787 				spa = dmu_objset_spa(os);
8788 		}
8789 	}
8790 	nvlist_free(policy);
8791 
8792 	if (error)
8793 		fatal("can't open '%s': %s", target, strerror(error));
8794 
8795 	/*
8796 	 * Set the pool failure mode to panic in order to prevent the pool
8797 	 * from suspending.  A suspended I/O will have no way to resume and
8798 	 * can prevent the zdb(8) command from terminating as expected.
8799 	 */
8800 	if (spa != NULL)
8801 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
8802 
8803 	argv++;
8804 	argc--;
8805 	if (dump_opt['r']) {
8806 		error = zdb_copy_object(os, object, argv[1]);
8807 	} else if (!dump_opt['R']) {
8808 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
8809 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
8810 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
8811 		flagbits['z'] = ZOR_FLAG_ZAP;
8812 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
8813 
8814 		if (argc > 0 && dump_opt['d']) {
8815 			zopt_object_args = argc;
8816 			zopt_object_ranges = calloc(zopt_object_args,
8817 			    sizeof (zopt_object_range_t));
8818 			for (unsigned i = 0; i < zopt_object_args; i++) {
8819 				int err;
8820 				char *msg = NULL;
8821 
8822 				err = parse_object_range(argv[i],
8823 				    &zopt_object_ranges[i], &msg);
8824 				if (err != 0)
8825 					fatal("Bad object or range: '%s': %s\n",
8826 					    argv[i], msg ? msg : "");
8827 			}
8828 		} else if (argc > 0 && dump_opt['m']) {
8829 			zopt_metaslab_args = argc;
8830 			zopt_metaslab = calloc(zopt_metaslab_args,
8831 			    sizeof (uint64_t));
8832 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
8833 				errno = 0;
8834 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
8835 				if (zopt_metaslab[i] == 0 && errno != 0)
8836 					fatal("bad number %s: %s", argv[i],
8837 					    strerror(errno));
8838 			}
8839 		}
8840 		if (os != NULL) {
8841 			dump_objset(os);
8842 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
8843 			dump_objset(spa->spa_meta_objset);
8844 		} else {
8845 			dump_zpool(spa);
8846 		}
8847 	} else {
8848 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
8849 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
8850 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
8851 		flagbits['e'] = ZDB_FLAG_BSWAP;
8852 		flagbits['g'] = ZDB_FLAG_GBH;
8853 		flagbits['i'] = ZDB_FLAG_INDIRECT;
8854 		flagbits['r'] = ZDB_FLAG_RAW;
8855 		flagbits['v'] = ZDB_FLAG_VERBOSE;
8856 
8857 		for (int i = 0; i < argc; i++)
8858 			zdb_read_block(argv[i], spa);
8859 	}
8860 
8861 	if (dump_opt['k']) {
8862 		free(checkpoint_pool);
8863 		if (!target_is_spa)
8864 			free(checkpoint_target);
8865 	}
8866 
8867 	if (os != NULL) {
8868 		close_objset(os, FTAG);
8869 	} else {
8870 		spa_close(spa, FTAG);
8871 	}
8872 
8873 	fuid_table_destroy();
8874 
8875 	dump_debug_buffer();
8876 
8877 	kernel_fini();
8878 
8879 	return (error);
8880 }
8881