1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/fs/zfs.h> 52 #include <sys/zfs_znode.h> 53 #include <sys/zfs_sa.h> 54 #include <sys/sa.h> 55 #include <sys/sa_impl.h> 56 #include <sys/vdev.h> 57 #include <sys/vdev_impl.h> 58 #include <sys/metaslab_impl.h> 59 #include <sys/dmu_objset.h> 60 #include <sys/dsl_dir.h> 61 #include <sys/dsl_dataset.h> 62 #include <sys/dsl_pool.h> 63 #include <sys/dsl_bookmark.h> 64 #include <sys/dbuf.h> 65 #include <sys/zil.h> 66 #include <sys/zil_impl.h> 67 #include <sys/stat.h> 68 #include <sys/resource.h> 69 #include <sys/dmu_send.h> 70 #include <sys/dmu_traverse.h> 71 #include <sys/zio_checksum.h> 72 #include <sys/zio_compress.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/arc.h> 75 #include <sys/arc_impl.h> 76 #include <sys/ddt.h> 77 #include <sys/ddt_impl.h> 78 #include <sys/zfeature.h> 79 #include <sys/abd.h> 80 #include <sys/blkptr.h> 81 #include <sys/dsl_crypt.h> 82 #include <sys/dsl_scan.h> 83 #include <sys/btree.h> 84 #include <sys/brt.h> 85 #include <sys/brt_impl.h> 86 #include <zfs_comutil.h> 87 #include <sys/zstd/zstd.h> 88 89 #include <libnvpair.h> 90 #include <libzutil.h> 91 92 #include <libzdb.h> 93 94 #include "zdb.h" 95 96 97 extern int reference_tracking_enable; 98 extern int zfs_recover; 99 extern uint_t zfs_vdev_async_read_max_active; 100 extern boolean_t spa_load_verify_dryrun; 101 extern boolean_t spa_mode_readable_spacemaps; 102 extern uint_t zfs_reconstruct_indirect_combinations_max; 103 extern uint_t zfs_btree_verify_intensity; 104 105 static const char cmdname[] = "zdb"; 106 uint8_t dump_opt[256]; 107 108 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 109 110 static uint64_t *zopt_metaslab = NULL; 111 static unsigned zopt_metaslab_args = 0; 112 113 114 static zopt_object_range_t *zopt_object_ranges = NULL; 115 static unsigned zopt_object_args = 0; 116 117 static int flagbits[256]; 118 119 120 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 121 static int leaked_objects = 0; 122 static range_tree_t *mos_refd_objs; 123 124 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 125 boolean_t); 126 static void mos_obj_refd(uint64_t); 127 static void mos_obj_refd_multiple(uint64_t); 128 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 129 dmu_tx_t *tx); 130 131 132 133 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 134 135 typedef struct sublivelist_verify_block_refcnt { 136 /* block pointer entry in livelist being verified */ 137 blkptr_t svbr_blk; 138 139 /* 140 * Refcount gets incremented to 1 when we encounter the first 141 * FREE entry for the svfbr block pointer and a node for it 142 * is created in our ZDB verification/tracking metadata. 143 * 144 * As we encounter more FREE entries we increment this counter 145 * and similarly decrement it whenever we find the respective 146 * ALLOC entries for this block. 147 * 148 * When the refcount gets to 0 it means that all the FREE and 149 * ALLOC entries of this block have paired up and we no longer 150 * need to track it in our verification logic (e.g. the node 151 * containing this struct in our verification data structure 152 * should be freed). 153 * 154 * [refer to sublivelist_verify_blkptr() for the actual code] 155 */ 156 uint32_t svbr_refcnt; 157 } sublivelist_verify_block_refcnt_t; 158 159 static int 160 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 161 { 162 const sublivelist_verify_block_refcnt_t *l = larg; 163 const sublivelist_verify_block_refcnt_t *r = rarg; 164 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 165 } 166 167 static int 168 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 169 dmu_tx_t *tx) 170 { 171 ASSERT3P(tx, ==, NULL); 172 struct sublivelist_verify *sv = arg; 173 sublivelist_verify_block_refcnt_t current = { 174 .svbr_blk = *bp, 175 176 /* 177 * Start with 1 in case this is the first free entry. 178 * This field is not used for our B-Tree comparisons 179 * anyway. 180 */ 181 .svbr_refcnt = 1, 182 }; 183 184 zfs_btree_index_t where; 185 sublivelist_verify_block_refcnt_t *pair = 186 zfs_btree_find(&sv->sv_pair, ¤t, &where); 187 if (free) { 188 if (pair == NULL) { 189 /* first free entry for this block pointer */ 190 zfs_btree_add(&sv->sv_pair, ¤t); 191 } else { 192 pair->svbr_refcnt++; 193 } 194 } else { 195 if (pair == NULL) { 196 /* block that is currently marked as allocated */ 197 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 198 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 199 break; 200 sublivelist_verify_block_t svb = { 201 .svb_dva = bp->blk_dva[i], 202 .svb_allocated_txg = bp->blk_birth 203 }; 204 205 if (zfs_btree_find(&sv->sv_leftover, &svb, 206 &where) == NULL) { 207 zfs_btree_add_idx(&sv->sv_leftover, 208 &svb, &where); 209 } 210 } 211 } else { 212 /* alloc matches a free entry */ 213 pair->svbr_refcnt--; 214 if (pair->svbr_refcnt == 0) { 215 /* all allocs and frees have been matched */ 216 zfs_btree_remove_idx(&sv->sv_pair, &where); 217 } 218 } 219 } 220 221 return (0); 222 } 223 224 static int 225 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 226 { 227 int err; 228 struct sublivelist_verify *sv = args; 229 230 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 231 sizeof (sublivelist_verify_block_refcnt_t)); 232 233 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 234 sv, NULL); 235 236 sublivelist_verify_block_refcnt_t *e; 237 zfs_btree_index_t *cookie = NULL; 238 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 239 char blkbuf[BP_SPRINTF_LEN]; 240 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 241 &e->svbr_blk, B_TRUE); 242 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 243 e->svbr_refcnt, blkbuf); 244 } 245 zfs_btree_destroy(&sv->sv_pair); 246 247 return (err); 248 } 249 250 static int 251 livelist_block_compare(const void *larg, const void *rarg) 252 { 253 const sublivelist_verify_block_t *l = larg; 254 const sublivelist_verify_block_t *r = rarg; 255 256 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 257 return (-1); 258 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 259 return (+1); 260 261 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 262 return (-1); 263 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 264 return (+1); 265 266 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 267 return (-1); 268 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 269 return (+1); 270 271 return (0); 272 } 273 274 /* 275 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 276 * sublivelist_verify_t: sv->sv_leftover 277 */ 278 static void 279 livelist_verify(dsl_deadlist_t *dl, void *arg) 280 { 281 sublivelist_verify_t *sv = arg; 282 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 283 } 284 285 /* 286 * Check for errors in the livelist entry and discard the intermediary 287 * data structures 288 */ 289 static int 290 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 291 { 292 (void) args; 293 sublivelist_verify_t sv; 294 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 295 sizeof (sublivelist_verify_block_t)); 296 int err = sublivelist_verify_func(&sv, dle); 297 zfs_btree_clear(&sv.sv_leftover); 298 zfs_btree_destroy(&sv.sv_leftover); 299 return (err); 300 } 301 302 typedef struct metaslab_verify { 303 /* 304 * Tree containing all the leftover ALLOCs from the livelists 305 * that are part of this metaslab. 306 */ 307 zfs_btree_t mv_livelist_allocs; 308 309 /* 310 * Metaslab information. 311 */ 312 uint64_t mv_vdid; 313 uint64_t mv_msid; 314 uint64_t mv_start; 315 uint64_t mv_end; 316 317 /* 318 * What's currently allocated for this metaslab. 319 */ 320 range_tree_t *mv_allocated; 321 } metaslab_verify_t; 322 323 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 324 325 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 326 void *arg); 327 328 typedef struct unflushed_iter_cb_arg { 329 spa_t *uic_spa; 330 uint64_t uic_txg; 331 void *uic_arg; 332 zdb_log_sm_cb_t uic_cb; 333 } unflushed_iter_cb_arg_t; 334 335 static int 336 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 337 { 338 unflushed_iter_cb_arg_t *uic = arg; 339 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 340 } 341 342 static void 343 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 344 { 345 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 346 return; 347 348 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 349 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 350 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 351 space_map_t *sm = NULL; 352 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 353 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 354 355 unflushed_iter_cb_arg_t uic = { 356 .uic_spa = spa, 357 .uic_txg = sls->sls_txg, 358 .uic_arg = arg, 359 .uic_cb = cb 360 }; 361 VERIFY0(space_map_iterate(sm, space_map_length(sm), 362 iterate_through_spacemap_logs_cb, &uic)); 363 space_map_close(sm); 364 } 365 spa_config_exit(spa, SCL_CONFIG, FTAG); 366 } 367 368 static void 369 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 370 uint64_t offset, uint64_t size) 371 { 372 sublivelist_verify_block_t svb = {{{0}}}; 373 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 374 DVA_SET_OFFSET(&svb.svb_dva, offset); 375 DVA_SET_ASIZE(&svb.svb_dva, size); 376 zfs_btree_index_t where; 377 uint64_t end_offset = offset + size; 378 379 /* 380 * Look for an exact match for spacemap entry in the livelist entries. 381 * Then, look for other livelist entries that fall within the range 382 * of the spacemap entry as it may have been condensed 383 */ 384 sublivelist_verify_block_t *found = 385 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 386 if (found == NULL) { 387 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 388 } 389 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 390 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 391 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 392 if (found->svb_allocated_txg <= txg) { 393 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 394 "from TXG %llx FREED at TXG %llx\n", 395 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 396 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 397 (u_longlong_t)found->svb_allocated_txg, 398 (u_longlong_t)txg); 399 } 400 } 401 } 402 403 static int 404 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 405 { 406 metaslab_verify_t *mv = arg; 407 uint64_t offset = sme->sme_offset; 408 uint64_t size = sme->sme_run; 409 uint64_t txg = sme->sme_txg; 410 411 if (sme->sme_type == SM_ALLOC) { 412 if (range_tree_contains(mv->mv_allocated, 413 offset, size)) { 414 (void) printf("ERROR: DOUBLE ALLOC: " 415 "%llu [%llx:%llx] " 416 "%llu:%llu LOG_SM\n", 417 (u_longlong_t)txg, (u_longlong_t)offset, 418 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 419 (u_longlong_t)mv->mv_msid); 420 } else { 421 range_tree_add(mv->mv_allocated, 422 offset, size); 423 } 424 } else { 425 if (!range_tree_contains(mv->mv_allocated, 426 offset, size)) { 427 (void) printf("ERROR: DOUBLE FREE: " 428 "%llu [%llx:%llx] " 429 "%llu:%llu LOG_SM\n", 430 (u_longlong_t)txg, (u_longlong_t)offset, 431 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 432 (u_longlong_t)mv->mv_msid); 433 } else { 434 range_tree_remove(mv->mv_allocated, 435 offset, size); 436 } 437 } 438 439 if (sme->sme_type != SM_ALLOC) { 440 /* 441 * If something is freed in the spacemap, verify that 442 * it is not listed as allocated in the livelist. 443 */ 444 verify_livelist_allocs(mv, txg, offset, size); 445 } 446 return (0); 447 } 448 449 static int 450 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 451 uint64_t txg, void *arg) 452 { 453 metaslab_verify_t *mv = arg; 454 uint64_t offset = sme->sme_offset; 455 uint64_t vdev_id = sme->sme_vdev; 456 457 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 458 459 /* skip indirect vdevs */ 460 if (!vdev_is_concrete(vd)) 461 return (0); 462 463 if (vdev_id != mv->mv_vdid) 464 return (0); 465 466 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 467 if (ms->ms_id != mv->mv_msid) 468 return (0); 469 470 if (txg < metaslab_unflushed_txg(ms)) 471 return (0); 472 473 474 ASSERT3U(txg, ==, sme->sme_txg); 475 return (metaslab_spacemap_validation_cb(sme, mv)); 476 } 477 478 static void 479 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 480 { 481 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 482 } 483 484 static void 485 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 486 { 487 if (sm == NULL) 488 return; 489 490 VERIFY0(space_map_iterate(sm, space_map_length(sm), 491 metaslab_spacemap_validation_cb, mv)); 492 } 493 494 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 495 496 /* 497 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 498 * they are part of that metaslab (mv_msid). 499 */ 500 static void 501 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 502 { 503 zfs_btree_index_t where; 504 sublivelist_verify_block_t *svb; 505 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 506 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 507 svb != NULL; 508 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 509 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 510 continue; 511 512 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 513 (DVA_GET_OFFSET(&svb->svb_dva) + 514 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 515 (void) printf("ERROR: Found block that crosses " 516 "metaslab boundary: <%llu:%llx:%llx>\n", 517 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 518 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 519 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 520 continue; 521 } 522 523 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 524 continue; 525 526 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 527 continue; 528 529 if ((DVA_GET_OFFSET(&svb->svb_dva) + 530 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 531 (void) printf("ERROR: Found block that crosses " 532 "metaslab boundary: <%llu:%llx:%llx>\n", 533 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 534 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 535 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 536 continue; 537 } 538 539 zfs_btree_add(&mv->mv_livelist_allocs, svb); 540 } 541 542 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 543 svb != NULL; 544 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 545 zfs_btree_remove(&sv->sv_leftover, svb); 546 } 547 } 548 549 /* 550 * [Livelist Check] 551 * Iterate through all the sublivelists and: 552 * - report leftover frees (**) 553 * - record leftover ALLOCs together with their TXG [see Cross Check] 554 * 555 * (**) Note: Double ALLOCs are valid in datasets that have dedup 556 * enabled. Similarly double FREEs are allowed as well but 557 * only if they pair up with a corresponding ALLOC entry once 558 * we our done with our sublivelist iteration. 559 * 560 * [Spacemap Check] 561 * for each metaslab: 562 * - iterate over spacemap and then the metaslab's entries in the 563 * spacemap log, then report any double FREEs and ALLOCs (do not 564 * blow up). 565 * 566 * [Cross Check] 567 * After finishing the Livelist Check phase and while being in the 568 * Spacemap Check phase, we find all the recorded leftover ALLOCs 569 * of the livelist check that are part of the metaslab that we are 570 * currently looking at in the Spacemap Check. We report any entries 571 * that are marked as ALLOCs in the livelists but have been actually 572 * freed (and potentially allocated again) after their TXG stamp in 573 * the spacemaps. Also report any ALLOCs from the livelists that 574 * belong to indirect vdevs (e.g. their vdev completed removal). 575 * 576 * Note that this will miss Log Spacemap entries that cancelled each other 577 * out before being flushed to the metaslab, so we are not guaranteed 578 * to match all erroneous ALLOCs. 579 */ 580 static void 581 livelist_metaslab_validate(spa_t *spa) 582 { 583 (void) printf("Verifying deleted livelist entries\n"); 584 585 sublivelist_verify_t sv; 586 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 587 sizeof (sublivelist_verify_block_t)); 588 iterate_deleted_livelists(spa, livelist_verify, &sv); 589 590 (void) printf("Verifying metaslab entries\n"); 591 vdev_t *rvd = spa->spa_root_vdev; 592 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 593 vdev_t *vd = rvd->vdev_child[c]; 594 595 if (!vdev_is_concrete(vd)) 596 continue; 597 598 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 599 metaslab_t *m = vd->vdev_ms[mid]; 600 601 (void) fprintf(stderr, 602 "\rverifying concrete vdev %llu, " 603 "metaslab %llu of %llu ...", 604 (longlong_t)vd->vdev_id, 605 (longlong_t)mid, 606 (longlong_t)vd->vdev_ms_count); 607 608 uint64_t shift, start; 609 range_seg_type_t type = 610 metaslab_calculate_range_tree_type(vd, m, 611 &start, &shift); 612 metaslab_verify_t mv; 613 mv.mv_allocated = range_tree_create(NULL, 614 type, NULL, start, shift); 615 mv.mv_vdid = vd->vdev_id; 616 mv.mv_msid = m->ms_id; 617 mv.mv_start = m->ms_start; 618 mv.mv_end = m->ms_start + m->ms_size; 619 zfs_btree_create(&mv.mv_livelist_allocs, 620 livelist_block_compare, NULL, 621 sizeof (sublivelist_verify_block_t)); 622 623 mv_populate_livelist_allocs(&mv, &sv); 624 625 spacemap_check_ms_sm(m->ms_sm, &mv); 626 spacemap_check_sm_log(spa, &mv); 627 628 range_tree_vacate(mv.mv_allocated, NULL, NULL); 629 range_tree_destroy(mv.mv_allocated); 630 zfs_btree_clear(&mv.mv_livelist_allocs); 631 zfs_btree_destroy(&mv.mv_livelist_allocs); 632 } 633 } 634 (void) fprintf(stderr, "\n"); 635 636 /* 637 * If there are any segments in the leftover tree after we walked 638 * through all the metaslabs in the concrete vdevs then this means 639 * that we have segments in the livelists that belong to indirect 640 * vdevs and are marked as allocated. 641 */ 642 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 643 zfs_btree_destroy(&sv.sv_leftover); 644 return; 645 } 646 (void) printf("ERROR: Found livelist blocks marked as allocated " 647 "for indirect vdevs:\n"); 648 649 zfs_btree_index_t *where = NULL; 650 sublivelist_verify_block_t *svb; 651 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 652 NULL) { 653 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 654 ASSERT3U(vdev_id, <, rvd->vdev_children); 655 vdev_t *vd = rvd->vdev_child[vdev_id]; 656 ASSERT(!vdev_is_concrete(vd)); 657 (void) printf("<%d:%llx:%llx> TXG %llx\n", 658 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 659 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 660 (u_longlong_t)svb->svb_allocated_txg); 661 } 662 (void) printf("\n"); 663 zfs_btree_destroy(&sv.sv_leftover); 664 } 665 666 /* 667 * These libumem hooks provide a reasonable set of defaults for the allocator's 668 * debugging facilities. 669 */ 670 const char * 671 _umem_debug_init(void) 672 { 673 return ("default,verbose"); /* $UMEM_DEBUG setting */ 674 } 675 676 const char * 677 _umem_logging_init(void) 678 { 679 return ("fail,contents"); /* $UMEM_LOGGING setting */ 680 } 681 682 static void 683 usage(void) 684 { 685 (void) fprintf(stderr, 686 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 687 "[-I <inflight I/Os>]\n" 688 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 689 "\t\t[-K <key>]\n" 690 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 691 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 692 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 693 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 694 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 695 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 696 "\t%s [-v] <bookmark>\n" 697 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 698 "\t%s -l [-Aqu] <device>\n" 699 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 700 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 701 "\t%s -O [-K <key>] <dataset> <path>\n" 702 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 703 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 704 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 705 "\t%s -E [-A] word0:word1:...:word15\n" 706 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 707 "<poolname>\n\n", 708 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 709 cmdname, cmdname, cmdname, cmdname, cmdname); 710 711 (void) fprintf(stderr, " Dataset name must include at least one " 712 "separator character '/' or '@'\n"); 713 (void) fprintf(stderr, " If dataset name is specified, only that " 714 "dataset is dumped\n"); 715 (void) fprintf(stderr, " If object numbers or object number " 716 "ranges are specified, only those\n" 717 " objects or ranges are dumped.\n\n"); 718 (void) fprintf(stderr, 719 " Object ranges take the form <start>:<end>[:<flags>]\n" 720 " start Starting object number\n" 721 " end Ending object number, or -1 for no upper bound\n" 722 " flags Optional flags to select object types:\n" 723 " A All objects (this is the default)\n" 724 " d ZFS directories\n" 725 " f ZFS files \n" 726 " m SPA space maps\n" 727 " z ZAPs\n" 728 " - Negate effect of next flag\n\n"); 729 (void) fprintf(stderr, " Options to control amount of output:\n"); 730 (void) fprintf(stderr, " -b --block-stats " 731 "block statistics\n"); 732 (void) fprintf(stderr, " -B --backup " 733 "backup stream\n"); 734 (void) fprintf(stderr, " -c --checksum " 735 "checksum all metadata (twice for all data) blocks\n"); 736 (void) fprintf(stderr, " -C --config " 737 "config (or cachefile if alone)\n"); 738 (void) fprintf(stderr, " -d --datasets " 739 "dataset(s)\n"); 740 (void) fprintf(stderr, " -D --dedup-stats " 741 "dedup statistics\n"); 742 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 743 " decode and display block " 744 "from an embedded block pointer\n"); 745 (void) fprintf(stderr, " -h --history " 746 "pool history\n"); 747 (void) fprintf(stderr, " -i --intent-logs " 748 "intent logs\n"); 749 (void) fprintf(stderr, " -l --label " 750 "read label contents\n"); 751 (void) fprintf(stderr, " -k --checkpointed-state " 752 "examine the checkpointed state of the pool\n"); 753 (void) fprintf(stderr, " -L --disable-leak-tracking " 754 "disable leak tracking (do not load spacemaps)\n"); 755 (void) fprintf(stderr, " -m --metaslabs " 756 "metaslabs\n"); 757 (void) fprintf(stderr, " -M --metaslab-groups " 758 "metaslab groups\n"); 759 (void) fprintf(stderr, " -O --object-lookups " 760 "perform object lookups by path\n"); 761 (void) fprintf(stderr, " -r --copy-object " 762 "copy an object by path to file\n"); 763 (void) fprintf(stderr, " -R --read-block " 764 "read and display block from a device\n"); 765 (void) fprintf(stderr, " -s --io-stats " 766 "report stats on zdb's I/O\n"); 767 (void) fprintf(stderr, " -S --simulate-dedup " 768 "simulate dedup to measure effect\n"); 769 (void) fprintf(stderr, " -v --verbose " 770 "verbose (applies to all others)\n"); 771 (void) fprintf(stderr, " -y --livelist " 772 "perform livelist and metaslab validation on any livelists being " 773 "deleted\n\n"); 774 (void) fprintf(stderr, " Below options are intended for use " 775 "with other options:\n"); 776 (void) fprintf(stderr, " -A --ignore-assertions " 777 "ignore assertions (-A), enable panic recovery (-AA) or both " 778 "(-AAA)\n"); 779 (void) fprintf(stderr, " -e --exported " 780 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 781 (void) fprintf(stderr, " -F --automatic-rewind " 782 "attempt automatic rewind within safe range of transaction " 783 "groups\n"); 784 (void) fprintf(stderr, " -G --dump-debug-msg " 785 "dump zfs_dbgmsg buffer before exiting\n"); 786 (void) fprintf(stderr, " -I --inflight=INTEGER " 787 "specify the maximum number of checksumming I/Os " 788 "[default is 200]\n"); 789 (void) fprintf(stderr, " -K --key=KEY " 790 "decryption key for encrypted dataset\n"); 791 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 792 "set global variable to an unsigned 32-bit integer\n"); 793 (void) fprintf(stderr, " -p --path==PATH " 794 "use one or more with -e to specify path to vdev dir\n"); 795 (void) fprintf(stderr, " -P --parseable " 796 "print numbers in parseable form\n"); 797 (void) fprintf(stderr, " -q --skip-label " 798 "don't print label contents\n"); 799 (void) fprintf(stderr, " -t --txg=INTEGER " 800 "highest txg to use when searching for uberblocks\n"); 801 (void) fprintf(stderr, " -T --brt-stats " 802 "BRT statistics\n"); 803 (void) fprintf(stderr, " -u --uberblock " 804 "uberblock\n"); 805 (void) fprintf(stderr, " -U --cachefile=PATH " 806 "use alternate cachefile\n"); 807 (void) fprintf(stderr, " -V --verbatim " 808 "do verbatim import\n"); 809 (void) fprintf(stderr, " -x --dump-blocks=PATH " 810 "dump all read blocks into specified directory\n"); 811 (void) fprintf(stderr, " -X --extreme-rewind " 812 "attempt extreme rewind (does not work with dataset)\n"); 813 (void) fprintf(stderr, " -Y --all-reconstruction " 814 "attempt all reconstruction combinations for split blocks\n"); 815 (void) fprintf(stderr, " -Z --zstd-headers " 816 "show ZSTD headers \n"); 817 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 818 "to make only that option verbose\n"); 819 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 820 exit(1); 821 } 822 823 static void 824 dump_debug_buffer(void) 825 { 826 if (dump_opt['G']) { 827 (void) printf("\n"); 828 (void) fflush(stdout); 829 zfs_dbgmsg_print("zdb"); 830 } 831 } 832 833 /* 834 * Called for usage errors that are discovered after a call to spa_open(), 835 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 836 */ 837 838 static void 839 fatal(const char *fmt, ...) 840 { 841 va_list ap; 842 843 va_start(ap, fmt); 844 (void) fprintf(stderr, "%s: ", cmdname); 845 (void) vfprintf(stderr, fmt, ap); 846 va_end(ap); 847 (void) fprintf(stderr, "\n"); 848 849 dump_debug_buffer(); 850 851 exit(1); 852 } 853 854 static void 855 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 856 { 857 (void) size; 858 nvlist_t *nv; 859 size_t nvsize = *(uint64_t *)data; 860 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 861 862 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 863 864 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 865 866 umem_free(packed, nvsize); 867 868 dump_nvlist(nv, 8); 869 870 nvlist_free(nv); 871 } 872 873 static void 874 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 875 { 876 (void) os, (void) object, (void) size; 877 spa_history_phys_t *shp = data; 878 879 if (shp == NULL) 880 return; 881 882 (void) printf("\t\tpool_create_len = %llu\n", 883 (u_longlong_t)shp->sh_pool_create_len); 884 (void) printf("\t\tphys_max_off = %llu\n", 885 (u_longlong_t)shp->sh_phys_max_off); 886 (void) printf("\t\tbof = %llu\n", 887 (u_longlong_t)shp->sh_bof); 888 (void) printf("\t\teof = %llu\n", 889 (u_longlong_t)shp->sh_eof); 890 (void) printf("\t\trecords_lost = %llu\n", 891 (u_longlong_t)shp->sh_records_lost); 892 } 893 894 static void 895 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 896 { 897 if (dump_opt['P']) 898 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 899 else 900 nicenum(num, buf, buflen); 901 } 902 903 static void 904 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 905 { 906 if (dump_opt['P']) 907 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 908 else 909 zfs_nicebytes(bytes, buf, buflen); 910 } 911 912 static const char histo_stars[] = "****************************************"; 913 static const uint64_t histo_width = sizeof (histo_stars) - 1; 914 915 static void 916 dump_histogram(const uint64_t *histo, int size, int offset) 917 { 918 int i; 919 int minidx = size - 1; 920 int maxidx = 0; 921 uint64_t max = 0; 922 923 for (i = 0; i < size; i++) { 924 if (histo[i] == 0) 925 continue; 926 if (histo[i] > max) 927 max = histo[i]; 928 if (i > maxidx) 929 maxidx = i; 930 if (i < minidx) 931 minidx = i; 932 } 933 934 if (max < histo_width) 935 max = histo_width; 936 937 for (i = minidx; i <= maxidx; i++) { 938 (void) printf("\t\t\t%3u: %6llu %s\n", 939 i + offset, (u_longlong_t)histo[i], 940 &histo_stars[(max - histo[i]) * histo_width / max]); 941 } 942 } 943 944 static void 945 dump_zap_stats(objset_t *os, uint64_t object) 946 { 947 int error; 948 zap_stats_t zs; 949 950 error = zap_get_stats(os, object, &zs); 951 if (error) 952 return; 953 954 if (zs.zs_ptrtbl_len == 0) { 955 ASSERT(zs.zs_num_blocks == 1); 956 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 957 (u_longlong_t)zs.zs_blocksize, 958 (u_longlong_t)zs.zs_num_entries); 959 return; 960 } 961 962 (void) printf("\tFat ZAP stats:\n"); 963 964 (void) printf("\t\tPointer table:\n"); 965 (void) printf("\t\t\t%llu elements\n", 966 (u_longlong_t)zs.zs_ptrtbl_len); 967 (void) printf("\t\t\tzt_blk: %llu\n", 968 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 969 (void) printf("\t\t\tzt_numblks: %llu\n", 970 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 971 (void) printf("\t\t\tzt_shift: %llu\n", 972 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 973 (void) printf("\t\t\tzt_blks_copied: %llu\n", 974 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 975 (void) printf("\t\t\tzt_nextblk: %llu\n", 976 (u_longlong_t)zs.zs_ptrtbl_nextblk); 977 978 (void) printf("\t\tZAP entries: %llu\n", 979 (u_longlong_t)zs.zs_num_entries); 980 (void) printf("\t\tLeaf blocks: %llu\n", 981 (u_longlong_t)zs.zs_num_leafs); 982 (void) printf("\t\tTotal blocks: %llu\n", 983 (u_longlong_t)zs.zs_num_blocks); 984 (void) printf("\t\tzap_block_type: 0x%llx\n", 985 (u_longlong_t)zs.zs_block_type); 986 (void) printf("\t\tzap_magic: 0x%llx\n", 987 (u_longlong_t)zs.zs_magic); 988 (void) printf("\t\tzap_salt: 0x%llx\n", 989 (u_longlong_t)zs.zs_salt); 990 991 (void) printf("\t\tLeafs with 2^n pointers:\n"); 992 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 993 994 (void) printf("\t\tBlocks with n*5 entries:\n"); 995 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 996 997 (void) printf("\t\tBlocks n/10 full:\n"); 998 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 999 1000 (void) printf("\t\tEntries with n chunks:\n"); 1001 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1002 1003 (void) printf("\t\tBuckets with n entries:\n"); 1004 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1005 } 1006 1007 static void 1008 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1009 { 1010 (void) os, (void) object, (void) data, (void) size; 1011 } 1012 1013 static void 1014 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1015 { 1016 (void) os, (void) object, (void) data, (void) size; 1017 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1018 } 1019 1020 static void 1021 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1022 { 1023 (void) os, (void) object, (void) data, (void) size; 1024 } 1025 1026 static void 1027 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1028 { 1029 uint64_t *arr; 1030 uint64_t oursize; 1031 if (dump_opt['d'] < 6) 1032 return; 1033 1034 if (data == NULL) { 1035 dmu_object_info_t doi; 1036 1037 VERIFY0(dmu_object_info(os, object, &doi)); 1038 size = doi.doi_max_offset; 1039 /* 1040 * We cap the size at 1 mebibyte here to prevent 1041 * allocation failures and nigh-infinite printing if the 1042 * object is extremely large. 1043 */ 1044 oursize = MIN(size, 1 << 20); 1045 arr = kmem_alloc(oursize, KM_SLEEP); 1046 1047 int err = dmu_read(os, object, 0, oursize, arr, 0); 1048 if (err != 0) { 1049 (void) printf("got error %u from dmu_read\n", err); 1050 kmem_free(arr, oursize); 1051 return; 1052 } 1053 } else { 1054 /* 1055 * Even though the allocation is already done in this code path, 1056 * we still cap the size to prevent excessive printing. 1057 */ 1058 oursize = MIN(size, 1 << 20); 1059 arr = data; 1060 } 1061 1062 if (size == 0) { 1063 if (data == NULL) 1064 kmem_free(arr, oursize); 1065 (void) printf("\t\t[]\n"); 1066 return; 1067 } 1068 1069 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1070 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1071 if (i % 4 != 0) 1072 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1073 else 1074 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1075 } 1076 if (oursize != size) 1077 (void) printf(", ... "); 1078 (void) printf("]\n"); 1079 1080 if (data == NULL) 1081 kmem_free(arr, oursize); 1082 } 1083 1084 static void 1085 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1086 { 1087 (void) data, (void) size; 1088 zap_cursor_t zc; 1089 zap_attribute_t attr; 1090 void *prop; 1091 unsigned i; 1092 1093 dump_zap_stats(os, object); 1094 (void) printf("\n"); 1095 1096 for (zap_cursor_init(&zc, os, object); 1097 zap_cursor_retrieve(&zc, &attr) == 0; 1098 zap_cursor_advance(&zc)) { 1099 (void) printf("\t\t%s = ", attr.za_name); 1100 if (attr.za_num_integers == 0) { 1101 (void) printf("\n"); 1102 continue; 1103 } 1104 prop = umem_zalloc(attr.za_num_integers * 1105 attr.za_integer_length, UMEM_NOFAIL); 1106 (void) zap_lookup(os, object, attr.za_name, 1107 attr.za_integer_length, attr.za_num_integers, prop); 1108 if (attr.za_integer_length == 1) { 1109 if (strcmp(attr.za_name, 1110 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1111 strcmp(attr.za_name, 1112 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1113 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1114 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1115 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1116 uint8_t *u8 = prop; 1117 1118 for (i = 0; i < attr.za_num_integers; i++) { 1119 (void) printf("%02x", u8[i]); 1120 } 1121 } else { 1122 (void) printf("%s", (char *)prop); 1123 } 1124 } else { 1125 for (i = 0; i < attr.za_num_integers; i++) { 1126 switch (attr.za_integer_length) { 1127 case 2: 1128 (void) printf("%u ", 1129 ((uint16_t *)prop)[i]); 1130 break; 1131 case 4: 1132 (void) printf("%u ", 1133 ((uint32_t *)prop)[i]); 1134 break; 1135 case 8: 1136 (void) printf("%lld ", 1137 (u_longlong_t)((int64_t *)prop)[i]); 1138 break; 1139 } 1140 } 1141 } 1142 (void) printf("\n"); 1143 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1144 } 1145 zap_cursor_fini(&zc); 1146 } 1147 1148 static void 1149 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1150 { 1151 bpobj_phys_t *bpop = data; 1152 uint64_t i; 1153 char bytes[32], comp[32], uncomp[32]; 1154 1155 /* make sure the output won't get truncated */ 1156 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1157 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1158 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1159 1160 if (bpop == NULL) 1161 return; 1162 1163 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1164 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1165 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1166 1167 (void) printf("\t\tnum_blkptrs = %llu\n", 1168 (u_longlong_t)bpop->bpo_num_blkptrs); 1169 (void) printf("\t\tbytes = %s\n", bytes); 1170 if (size >= BPOBJ_SIZE_V1) { 1171 (void) printf("\t\tcomp = %s\n", comp); 1172 (void) printf("\t\tuncomp = %s\n", uncomp); 1173 } 1174 if (size >= BPOBJ_SIZE_V2) { 1175 (void) printf("\t\tsubobjs = %llu\n", 1176 (u_longlong_t)bpop->bpo_subobjs); 1177 (void) printf("\t\tnum_subobjs = %llu\n", 1178 (u_longlong_t)bpop->bpo_num_subobjs); 1179 } 1180 if (size >= sizeof (*bpop)) { 1181 (void) printf("\t\tnum_freed = %llu\n", 1182 (u_longlong_t)bpop->bpo_num_freed); 1183 } 1184 1185 if (dump_opt['d'] < 5) 1186 return; 1187 1188 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1189 char blkbuf[BP_SPRINTF_LEN]; 1190 blkptr_t bp; 1191 1192 int err = dmu_read(os, object, 1193 i * sizeof (bp), sizeof (bp), &bp, 0); 1194 if (err != 0) { 1195 (void) printf("got error %u from dmu_read\n", err); 1196 break; 1197 } 1198 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1199 BP_GET_FREE(&bp)); 1200 (void) printf("\t%s\n", blkbuf); 1201 } 1202 } 1203 1204 static void 1205 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1206 { 1207 (void) data, (void) size; 1208 dmu_object_info_t doi; 1209 int64_t i; 1210 1211 VERIFY0(dmu_object_info(os, object, &doi)); 1212 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1213 1214 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1215 if (err != 0) { 1216 (void) printf("got error %u from dmu_read\n", err); 1217 kmem_free(subobjs, doi.doi_max_offset); 1218 return; 1219 } 1220 1221 int64_t last_nonzero = -1; 1222 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1223 if (subobjs[i] != 0) 1224 last_nonzero = i; 1225 } 1226 1227 for (i = 0; i <= last_nonzero; i++) { 1228 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1229 } 1230 kmem_free(subobjs, doi.doi_max_offset); 1231 } 1232 1233 static void 1234 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1235 { 1236 (void) data, (void) size; 1237 dump_zap_stats(os, object); 1238 /* contents are printed elsewhere, properly decoded */ 1239 } 1240 1241 static void 1242 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1243 { 1244 (void) data, (void) size; 1245 zap_cursor_t zc; 1246 zap_attribute_t attr; 1247 1248 dump_zap_stats(os, object); 1249 (void) printf("\n"); 1250 1251 for (zap_cursor_init(&zc, os, object); 1252 zap_cursor_retrieve(&zc, &attr) == 0; 1253 zap_cursor_advance(&zc)) { 1254 (void) printf("\t\t%s = ", attr.za_name); 1255 if (attr.za_num_integers == 0) { 1256 (void) printf("\n"); 1257 continue; 1258 } 1259 (void) printf(" %llx : [%d:%d:%d]\n", 1260 (u_longlong_t)attr.za_first_integer, 1261 (int)ATTR_LENGTH(attr.za_first_integer), 1262 (int)ATTR_BSWAP(attr.za_first_integer), 1263 (int)ATTR_NUM(attr.za_first_integer)); 1264 } 1265 zap_cursor_fini(&zc); 1266 } 1267 1268 static void 1269 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1270 { 1271 (void) data, (void) size; 1272 zap_cursor_t zc; 1273 zap_attribute_t attr; 1274 uint16_t *layout_attrs; 1275 unsigned i; 1276 1277 dump_zap_stats(os, object); 1278 (void) printf("\n"); 1279 1280 for (zap_cursor_init(&zc, os, object); 1281 zap_cursor_retrieve(&zc, &attr) == 0; 1282 zap_cursor_advance(&zc)) { 1283 (void) printf("\t\t%s = [", attr.za_name); 1284 if (attr.za_num_integers == 0) { 1285 (void) printf("\n"); 1286 continue; 1287 } 1288 1289 VERIFY(attr.za_integer_length == 2); 1290 layout_attrs = umem_zalloc(attr.za_num_integers * 1291 attr.za_integer_length, UMEM_NOFAIL); 1292 1293 VERIFY(zap_lookup(os, object, attr.za_name, 1294 attr.za_integer_length, 1295 attr.za_num_integers, layout_attrs) == 0); 1296 1297 for (i = 0; i != attr.za_num_integers; i++) 1298 (void) printf(" %d ", (int)layout_attrs[i]); 1299 (void) printf("]\n"); 1300 umem_free(layout_attrs, 1301 attr.za_num_integers * attr.za_integer_length); 1302 } 1303 zap_cursor_fini(&zc); 1304 } 1305 1306 static void 1307 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1308 { 1309 (void) data, (void) size; 1310 zap_cursor_t zc; 1311 zap_attribute_t attr; 1312 const char *typenames[] = { 1313 /* 0 */ "not specified", 1314 /* 1 */ "FIFO", 1315 /* 2 */ "Character Device", 1316 /* 3 */ "3 (invalid)", 1317 /* 4 */ "Directory", 1318 /* 5 */ "5 (invalid)", 1319 /* 6 */ "Block Device", 1320 /* 7 */ "7 (invalid)", 1321 /* 8 */ "Regular File", 1322 /* 9 */ "9 (invalid)", 1323 /* 10 */ "Symbolic Link", 1324 /* 11 */ "11 (invalid)", 1325 /* 12 */ "Socket", 1326 /* 13 */ "Door", 1327 /* 14 */ "Event Port", 1328 /* 15 */ "15 (invalid)", 1329 }; 1330 1331 dump_zap_stats(os, object); 1332 (void) printf("\n"); 1333 1334 for (zap_cursor_init(&zc, os, object); 1335 zap_cursor_retrieve(&zc, &attr) == 0; 1336 zap_cursor_advance(&zc)) { 1337 (void) printf("\t\t%s = %lld (type: %s)\n", 1338 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1339 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1340 } 1341 zap_cursor_fini(&zc); 1342 } 1343 1344 static int 1345 get_dtl_refcount(vdev_t *vd) 1346 { 1347 int refcount = 0; 1348 1349 if (vd->vdev_ops->vdev_op_leaf) { 1350 space_map_t *sm = vd->vdev_dtl_sm; 1351 1352 if (sm != NULL && 1353 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1354 return (1); 1355 return (0); 1356 } 1357 1358 for (unsigned c = 0; c < vd->vdev_children; c++) 1359 refcount += get_dtl_refcount(vd->vdev_child[c]); 1360 return (refcount); 1361 } 1362 1363 static int 1364 get_metaslab_refcount(vdev_t *vd) 1365 { 1366 int refcount = 0; 1367 1368 if (vd->vdev_top == vd) { 1369 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1370 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1371 1372 if (sm != NULL && 1373 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1374 refcount++; 1375 } 1376 } 1377 for (unsigned c = 0; c < vd->vdev_children; c++) 1378 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1379 1380 return (refcount); 1381 } 1382 1383 static int 1384 get_obsolete_refcount(vdev_t *vd) 1385 { 1386 uint64_t obsolete_sm_object; 1387 int refcount = 0; 1388 1389 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1390 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1391 dmu_object_info_t doi; 1392 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1393 obsolete_sm_object, &doi)); 1394 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1395 refcount++; 1396 } 1397 } else { 1398 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1399 ASSERT3U(obsolete_sm_object, ==, 0); 1400 } 1401 for (unsigned c = 0; c < vd->vdev_children; c++) { 1402 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1403 } 1404 1405 return (refcount); 1406 } 1407 1408 static int 1409 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1410 { 1411 uint64_t prev_obj = 1412 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1413 if (prev_obj != 0) { 1414 dmu_object_info_t doi; 1415 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1416 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1417 return (1); 1418 } 1419 } 1420 return (0); 1421 } 1422 1423 static int 1424 get_checkpoint_refcount(vdev_t *vd) 1425 { 1426 int refcount = 0; 1427 1428 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1429 zap_contains(spa_meta_objset(vd->vdev_spa), 1430 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1431 refcount++; 1432 1433 for (uint64_t c = 0; c < vd->vdev_children; c++) 1434 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1435 1436 return (refcount); 1437 } 1438 1439 static int 1440 get_log_spacemap_refcount(spa_t *spa) 1441 { 1442 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1443 } 1444 1445 static int 1446 verify_spacemap_refcounts(spa_t *spa) 1447 { 1448 uint64_t expected_refcount = 0; 1449 uint64_t actual_refcount; 1450 1451 (void) feature_get_refcount(spa, 1452 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1453 &expected_refcount); 1454 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1455 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1456 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1457 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1458 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1459 actual_refcount += get_log_spacemap_refcount(spa); 1460 1461 if (expected_refcount != actual_refcount) { 1462 (void) printf("space map refcount mismatch: expected %lld != " 1463 "actual %lld\n", 1464 (longlong_t)expected_refcount, 1465 (longlong_t)actual_refcount); 1466 return (2); 1467 } 1468 return (0); 1469 } 1470 1471 static void 1472 dump_spacemap(objset_t *os, space_map_t *sm) 1473 { 1474 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1475 "INVALID", "INVALID", "INVALID", "INVALID" }; 1476 1477 if (sm == NULL) 1478 return; 1479 1480 (void) printf("space map object %llu:\n", 1481 (longlong_t)sm->sm_object); 1482 (void) printf(" smp_length = 0x%llx\n", 1483 (longlong_t)sm->sm_phys->smp_length); 1484 (void) printf(" smp_alloc = 0x%llx\n", 1485 (longlong_t)sm->sm_phys->smp_alloc); 1486 1487 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1488 return; 1489 1490 /* 1491 * Print out the freelist entries in both encoded and decoded form. 1492 */ 1493 uint8_t mapshift = sm->sm_shift; 1494 int64_t alloc = 0; 1495 uint64_t word, entry_id = 0; 1496 for (uint64_t offset = 0; offset < space_map_length(sm); 1497 offset += sizeof (word)) { 1498 1499 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1500 sizeof (word), &word, DMU_READ_PREFETCH)); 1501 1502 if (sm_entry_is_debug(word)) { 1503 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1504 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1505 if (de_txg == 0) { 1506 (void) printf( 1507 "\t [%6llu] PADDING\n", 1508 (u_longlong_t)entry_id); 1509 } else { 1510 (void) printf( 1511 "\t [%6llu] %s: txg %llu pass %llu\n", 1512 (u_longlong_t)entry_id, 1513 ddata[SM_DEBUG_ACTION_DECODE(word)], 1514 (u_longlong_t)de_txg, 1515 (u_longlong_t)de_sync_pass); 1516 } 1517 entry_id++; 1518 continue; 1519 } 1520 1521 uint8_t words; 1522 char entry_type; 1523 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1524 1525 if (sm_entry_is_single_word(word)) { 1526 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1527 'A' : 'F'; 1528 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1529 sm->sm_start; 1530 entry_run = SM_RUN_DECODE(word) << mapshift; 1531 words = 1; 1532 } else { 1533 /* it is a two-word entry so we read another word */ 1534 ASSERT(sm_entry_is_double_word(word)); 1535 1536 uint64_t extra_word; 1537 offset += sizeof (extra_word); 1538 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1539 sizeof (extra_word), &extra_word, 1540 DMU_READ_PREFETCH)); 1541 1542 ASSERT3U(offset, <=, space_map_length(sm)); 1543 1544 entry_run = SM2_RUN_DECODE(word) << mapshift; 1545 entry_vdev = SM2_VDEV_DECODE(word); 1546 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1547 'A' : 'F'; 1548 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1549 mapshift) + sm->sm_start; 1550 words = 2; 1551 } 1552 1553 (void) printf("\t [%6llu] %c range:" 1554 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1555 (u_longlong_t)entry_id, 1556 entry_type, (u_longlong_t)entry_off, 1557 (u_longlong_t)(entry_off + entry_run), 1558 (u_longlong_t)entry_run, 1559 (u_longlong_t)entry_vdev, words); 1560 1561 if (entry_type == 'A') 1562 alloc += entry_run; 1563 else 1564 alloc -= entry_run; 1565 entry_id++; 1566 } 1567 if (alloc != space_map_allocated(sm)) { 1568 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1569 "with space map summary (%lld)\n", 1570 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1571 } 1572 } 1573 1574 static void 1575 dump_metaslab_stats(metaslab_t *msp) 1576 { 1577 char maxbuf[32]; 1578 range_tree_t *rt = msp->ms_allocatable; 1579 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1580 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1581 1582 /* max sure nicenum has enough space */ 1583 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1584 1585 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1586 1587 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1588 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1589 "freepct", free_pct); 1590 (void) printf("\tIn-memory histogram:\n"); 1591 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1592 } 1593 1594 static void 1595 dump_metaslab(metaslab_t *msp) 1596 { 1597 vdev_t *vd = msp->ms_group->mg_vd; 1598 spa_t *spa = vd->vdev_spa; 1599 space_map_t *sm = msp->ms_sm; 1600 char freebuf[32]; 1601 1602 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1603 sizeof (freebuf)); 1604 1605 (void) printf( 1606 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1607 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1608 (u_longlong_t)space_map_object(sm), freebuf); 1609 1610 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1611 mutex_enter(&msp->ms_lock); 1612 VERIFY0(metaslab_load(msp)); 1613 range_tree_stat_verify(msp->ms_allocatable); 1614 dump_metaslab_stats(msp); 1615 metaslab_unload(msp); 1616 mutex_exit(&msp->ms_lock); 1617 } 1618 1619 if (dump_opt['m'] > 1 && sm != NULL && 1620 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1621 /* 1622 * The space map histogram represents free space in chunks 1623 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1624 */ 1625 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1626 (u_longlong_t)msp->ms_fragmentation); 1627 dump_histogram(sm->sm_phys->smp_histogram, 1628 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1629 } 1630 1631 if (vd->vdev_ops == &vdev_draid_ops) 1632 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1633 else 1634 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1635 1636 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1637 1638 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1639 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1640 (u_longlong_t)metaslab_unflushed_txg(msp)); 1641 } 1642 } 1643 1644 static void 1645 print_vdev_metaslab_header(vdev_t *vd) 1646 { 1647 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1648 const char *bias_str = ""; 1649 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1650 bias_str = VDEV_ALLOC_BIAS_LOG; 1651 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1652 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1653 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1654 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1655 } 1656 1657 uint64_t ms_flush_data_obj = 0; 1658 if (vd->vdev_top_zap != 0) { 1659 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1660 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1661 sizeof (uint64_t), 1, &ms_flush_data_obj); 1662 if (error != ENOENT) { 1663 ASSERT0(error); 1664 } 1665 } 1666 1667 (void) printf("\tvdev %10llu %s", 1668 (u_longlong_t)vd->vdev_id, bias_str); 1669 1670 if (ms_flush_data_obj != 0) { 1671 (void) printf(" ms_unflushed_phys object %llu", 1672 (u_longlong_t)ms_flush_data_obj); 1673 } 1674 1675 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1676 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1677 "offset", "spacemap", "free"); 1678 (void) printf("\t%15s %19s %15s %12s\n", 1679 "---------------", "-------------------", 1680 "---------------", "------------"); 1681 } 1682 1683 static void 1684 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1685 { 1686 vdev_t *rvd = spa->spa_root_vdev; 1687 metaslab_class_t *mc = spa_normal_class(spa); 1688 metaslab_class_t *smc = spa_special_class(spa); 1689 uint64_t fragmentation; 1690 1691 metaslab_class_histogram_verify(mc); 1692 1693 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1694 vdev_t *tvd = rvd->vdev_child[c]; 1695 metaslab_group_t *mg = tvd->vdev_mg; 1696 1697 if (mg == NULL || (mg->mg_class != mc && 1698 (!show_special || mg->mg_class != smc))) 1699 continue; 1700 1701 metaslab_group_histogram_verify(mg); 1702 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1703 1704 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1705 "fragmentation", 1706 (u_longlong_t)tvd->vdev_id, 1707 (u_longlong_t)tvd->vdev_ms_count); 1708 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1709 (void) printf("%3s\n", "-"); 1710 } else { 1711 (void) printf("%3llu%%\n", 1712 (u_longlong_t)mg->mg_fragmentation); 1713 } 1714 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1715 } 1716 1717 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1718 fragmentation = metaslab_class_fragmentation(mc); 1719 if (fragmentation == ZFS_FRAG_INVALID) 1720 (void) printf("\t%3s\n", "-"); 1721 else 1722 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1723 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1724 } 1725 1726 static void 1727 print_vdev_indirect(vdev_t *vd) 1728 { 1729 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1730 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1731 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1732 1733 if (vim == NULL) { 1734 ASSERT3P(vib, ==, NULL); 1735 return; 1736 } 1737 1738 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1739 vic->vic_mapping_object); 1740 ASSERT3U(vdev_indirect_births_object(vib), ==, 1741 vic->vic_births_object); 1742 1743 (void) printf("indirect births obj %llu:\n", 1744 (longlong_t)vic->vic_births_object); 1745 (void) printf(" vib_count = %llu\n", 1746 (longlong_t)vdev_indirect_births_count(vib)); 1747 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1748 vdev_indirect_birth_entry_phys_t *cur_vibe = 1749 &vib->vib_entries[i]; 1750 (void) printf("\toffset %llx -> txg %llu\n", 1751 (longlong_t)cur_vibe->vibe_offset, 1752 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1753 } 1754 (void) printf("\n"); 1755 1756 (void) printf("indirect mapping obj %llu:\n", 1757 (longlong_t)vic->vic_mapping_object); 1758 (void) printf(" vim_max_offset = 0x%llx\n", 1759 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1760 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1761 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1762 (void) printf(" vim_count = %llu\n", 1763 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1764 1765 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1766 return; 1767 1768 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1769 1770 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1771 vdev_indirect_mapping_entry_phys_t *vimep = 1772 &vim->vim_entries[i]; 1773 (void) printf("\t<%llx:%llx:%llx> -> " 1774 "<%llx:%llx:%llx> (%x obsolete)\n", 1775 (longlong_t)vd->vdev_id, 1776 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1777 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1778 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1779 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1780 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1781 counts[i]); 1782 } 1783 (void) printf("\n"); 1784 1785 uint64_t obsolete_sm_object; 1786 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1787 if (obsolete_sm_object != 0) { 1788 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1789 (void) printf("obsolete space map object %llu:\n", 1790 (u_longlong_t)obsolete_sm_object); 1791 ASSERT(vd->vdev_obsolete_sm != NULL); 1792 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1793 obsolete_sm_object); 1794 dump_spacemap(mos, vd->vdev_obsolete_sm); 1795 (void) printf("\n"); 1796 } 1797 } 1798 1799 static void 1800 dump_metaslabs(spa_t *spa) 1801 { 1802 vdev_t *vd, *rvd = spa->spa_root_vdev; 1803 uint64_t m, c = 0, children = rvd->vdev_children; 1804 1805 (void) printf("\nMetaslabs:\n"); 1806 1807 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1808 c = zopt_metaslab[0]; 1809 1810 if (c >= children) 1811 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1812 1813 if (zopt_metaslab_args > 1) { 1814 vd = rvd->vdev_child[c]; 1815 print_vdev_metaslab_header(vd); 1816 1817 for (m = 1; m < zopt_metaslab_args; m++) { 1818 if (zopt_metaslab[m] < vd->vdev_ms_count) 1819 dump_metaslab( 1820 vd->vdev_ms[zopt_metaslab[m]]); 1821 else 1822 (void) fprintf(stderr, "bad metaslab " 1823 "number %llu\n", 1824 (u_longlong_t)zopt_metaslab[m]); 1825 } 1826 (void) printf("\n"); 1827 return; 1828 } 1829 children = c + 1; 1830 } 1831 for (; c < children; c++) { 1832 vd = rvd->vdev_child[c]; 1833 print_vdev_metaslab_header(vd); 1834 1835 print_vdev_indirect(vd); 1836 1837 for (m = 0; m < vd->vdev_ms_count; m++) 1838 dump_metaslab(vd->vdev_ms[m]); 1839 (void) printf("\n"); 1840 } 1841 } 1842 1843 static void 1844 dump_log_spacemaps(spa_t *spa) 1845 { 1846 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1847 return; 1848 1849 (void) printf("\nLog Space Maps in Pool:\n"); 1850 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1851 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1852 space_map_t *sm = NULL; 1853 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1854 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1855 1856 (void) printf("Log Spacemap object %llu txg %llu\n", 1857 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1858 dump_spacemap(spa->spa_meta_objset, sm); 1859 space_map_close(sm); 1860 } 1861 (void) printf("\n"); 1862 } 1863 1864 static void 1865 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1866 { 1867 const ddt_phys_t *ddp = dde->dde_phys; 1868 const ddt_key_t *ddk = &dde->dde_key; 1869 const char *types[4] = { "ditto", "single", "double", "triple" }; 1870 char blkbuf[BP_SPRINTF_LEN]; 1871 blkptr_t blk; 1872 int p; 1873 1874 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1875 if (ddp->ddp_phys_birth == 0) 1876 continue; 1877 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1878 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1879 (void) printf("index %llx refcnt %llu %s %s\n", 1880 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1881 types[p], blkbuf); 1882 } 1883 } 1884 1885 static void 1886 dump_dedup_ratio(const ddt_stat_t *dds) 1887 { 1888 double rL, rP, rD, D, dedup, compress, copies; 1889 1890 if (dds->dds_blocks == 0) 1891 return; 1892 1893 rL = (double)dds->dds_ref_lsize; 1894 rP = (double)dds->dds_ref_psize; 1895 rD = (double)dds->dds_ref_dsize; 1896 D = (double)dds->dds_dsize; 1897 1898 dedup = rD / D; 1899 compress = rL / rP; 1900 copies = rD / rP; 1901 1902 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1903 "dedup * compress / copies = %.2f\n\n", 1904 dedup, compress, copies, dedup * compress / copies); 1905 } 1906 1907 static void 1908 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1909 { 1910 char name[DDT_NAMELEN]; 1911 ddt_entry_t dde; 1912 uint64_t walk = 0; 1913 dmu_object_info_t doi; 1914 uint64_t count, dspace, mspace; 1915 int error; 1916 1917 error = ddt_object_info(ddt, type, class, &doi); 1918 1919 if (error == ENOENT) 1920 return; 1921 ASSERT(error == 0); 1922 1923 error = ddt_object_count(ddt, type, class, &count); 1924 ASSERT(error == 0); 1925 if (count == 0) 1926 return; 1927 1928 dspace = doi.doi_physical_blocks_512 << 9; 1929 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1930 1931 ddt_object_name(ddt, type, class, name); 1932 1933 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1934 name, 1935 (u_longlong_t)count, 1936 (u_longlong_t)(dspace / count), 1937 (u_longlong_t)(mspace / count)); 1938 1939 if (dump_opt['D'] < 3) 1940 return; 1941 1942 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1943 1944 if (dump_opt['D'] < 4) 1945 return; 1946 1947 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 1948 return; 1949 1950 (void) printf("%s contents:\n\n", name); 1951 1952 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 1953 dump_dde(ddt, &dde, walk); 1954 1955 ASSERT3U(error, ==, ENOENT); 1956 1957 (void) printf("\n"); 1958 } 1959 1960 static void 1961 dump_all_ddts(spa_t *spa) 1962 { 1963 ddt_histogram_t ddh_total = {{{0}}}; 1964 ddt_stat_t dds_total = {0}; 1965 1966 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1967 ddt_t *ddt = spa->spa_ddt[c]; 1968 if (!ddt) 1969 continue; 1970 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 1971 for (ddt_class_t class = 0; class < DDT_CLASSES; 1972 class++) { 1973 dump_ddt(ddt, type, class); 1974 } 1975 } 1976 } 1977 1978 ddt_get_dedup_stats(spa, &dds_total); 1979 1980 if (dds_total.dds_blocks == 0) { 1981 (void) printf("All DDTs are empty\n"); 1982 return; 1983 } 1984 1985 (void) printf("\n"); 1986 1987 if (dump_opt['D'] > 1) { 1988 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 1989 ddt_get_dedup_histogram(spa, &ddh_total); 1990 zpool_dump_ddt(&dds_total, &ddh_total); 1991 } 1992 1993 dump_dedup_ratio(&dds_total); 1994 } 1995 1996 static void 1997 dump_brt(spa_t *spa) 1998 { 1999 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2000 printf("BRT: unsupported on this pool\n"); 2001 return; 2002 } 2003 2004 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2005 printf("BRT: empty\n"); 2006 return; 2007 } 2008 2009 brt_t *brt = spa->spa_brt; 2010 VERIFY(brt); 2011 2012 char count[32], used[32], saved[32]; 2013 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2014 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2015 uint64_t ratio = brt_get_ratio(spa); 2016 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2017 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2018 2019 if (dump_opt['T'] < 2) 2020 return; 2021 2022 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2023 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2024 if (brtvd == NULL) 2025 continue; 2026 2027 if (!brtvd->bv_initiated) { 2028 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2029 continue; 2030 } 2031 2032 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2033 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2034 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2035 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2036 vdevid, count, used, saved); 2037 } 2038 2039 if (dump_opt['T'] < 3) 2040 return; 2041 2042 char dva[64]; 2043 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2044 2045 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2046 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2047 if (brtvd == NULL || !brtvd->bv_initiated) 2048 continue; 2049 2050 zap_cursor_t zc; 2051 zap_attribute_t za; 2052 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2053 zap_cursor_retrieve(&zc, &za) == 0; 2054 zap_cursor_advance(&zc)) { 2055 uint64_t offset = *(uint64_t *)za.za_name; 2056 uint64_t refcnt = za.za_first_integer; 2057 2058 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2059 (u_longlong_t)offset); 2060 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2061 } 2062 zap_cursor_fini(&zc); 2063 } 2064 } 2065 2066 static void 2067 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2068 { 2069 char *prefix = arg; 2070 2071 (void) printf("%s [%llu,%llu) length %llu\n", 2072 prefix, 2073 (u_longlong_t)start, 2074 (u_longlong_t)(start + size), 2075 (u_longlong_t)(size)); 2076 } 2077 2078 static void 2079 dump_dtl(vdev_t *vd, int indent) 2080 { 2081 spa_t *spa = vd->vdev_spa; 2082 boolean_t required; 2083 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2084 "outage" }; 2085 char prefix[256]; 2086 2087 spa_vdev_state_enter(spa, SCL_NONE); 2088 required = vdev_dtl_required(vd); 2089 (void) spa_vdev_state_exit(spa, NULL, 0); 2090 2091 if (indent == 0) 2092 (void) printf("\nDirty time logs:\n\n"); 2093 2094 (void) printf("\t%*s%s [%s]\n", indent, "", 2095 vd->vdev_path ? vd->vdev_path : 2096 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2097 required ? "DTL-required" : "DTL-expendable"); 2098 2099 for (int t = 0; t < DTL_TYPES; t++) { 2100 range_tree_t *rt = vd->vdev_dtl[t]; 2101 if (range_tree_space(rt) == 0) 2102 continue; 2103 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2104 indent + 2, "", name[t]); 2105 range_tree_walk(rt, dump_dtl_seg, prefix); 2106 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2107 dump_spacemap(spa->spa_meta_objset, 2108 vd->vdev_dtl_sm); 2109 } 2110 2111 for (unsigned c = 0; c < vd->vdev_children; c++) 2112 dump_dtl(vd->vdev_child[c], indent + 4); 2113 } 2114 2115 static void 2116 dump_history(spa_t *spa) 2117 { 2118 nvlist_t **events = NULL; 2119 char *buf; 2120 uint64_t resid, len, off = 0; 2121 uint_t num = 0; 2122 int error; 2123 char tbuf[30]; 2124 2125 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2126 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2127 __func__); 2128 return; 2129 } 2130 2131 do { 2132 len = SPA_OLD_MAXBLOCKSIZE; 2133 2134 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2135 (void) fprintf(stderr, "Unable to read history: " 2136 "error %d\n", error); 2137 free(buf); 2138 return; 2139 } 2140 2141 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2142 break; 2143 2144 off -= resid; 2145 } while (len != 0); 2146 2147 (void) printf("\nHistory:\n"); 2148 for (unsigned i = 0; i < num; i++) { 2149 boolean_t printed = B_FALSE; 2150 2151 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2152 time_t tsec; 2153 struct tm t; 2154 2155 tsec = fnvlist_lookup_uint64(events[i], 2156 ZPOOL_HIST_TIME); 2157 (void) localtime_r(&tsec, &t); 2158 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2159 } else { 2160 tbuf[0] = '\0'; 2161 } 2162 2163 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2164 (void) printf("%s %s\n", tbuf, 2165 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2166 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2167 uint64_t ievent; 2168 2169 ievent = fnvlist_lookup_uint64(events[i], 2170 ZPOOL_HIST_INT_EVENT); 2171 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2172 goto next; 2173 2174 (void) printf(" %s [internal %s txg:%ju] %s\n", 2175 tbuf, 2176 zfs_history_event_names[ievent], 2177 fnvlist_lookup_uint64(events[i], 2178 ZPOOL_HIST_TXG), 2179 fnvlist_lookup_string(events[i], 2180 ZPOOL_HIST_INT_STR)); 2181 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2182 (void) printf("%s [txg:%ju] %s", tbuf, 2183 fnvlist_lookup_uint64(events[i], 2184 ZPOOL_HIST_TXG), 2185 fnvlist_lookup_string(events[i], 2186 ZPOOL_HIST_INT_NAME)); 2187 2188 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2189 (void) printf(" %s (%llu)", 2190 fnvlist_lookup_string(events[i], 2191 ZPOOL_HIST_DSNAME), 2192 (u_longlong_t)fnvlist_lookup_uint64( 2193 events[i], 2194 ZPOOL_HIST_DSID)); 2195 } 2196 2197 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2198 ZPOOL_HIST_INT_STR)); 2199 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2200 (void) printf("%s ioctl %s\n", tbuf, 2201 fnvlist_lookup_string(events[i], 2202 ZPOOL_HIST_IOCTL)); 2203 2204 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2205 (void) printf(" input:\n"); 2206 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2207 ZPOOL_HIST_INPUT_NVL), 8); 2208 } 2209 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2210 (void) printf(" output:\n"); 2211 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2212 ZPOOL_HIST_OUTPUT_NVL), 8); 2213 } 2214 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2215 (void) printf(" errno: %lld\n", 2216 (longlong_t)fnvlist_lookup_int64(events[i], 2217 ZPOOL_HIST_ERRNO)); 2218 } 2219 } else { 2220 goto next; 2221 } 2222 2223 printed = B_TRUE; 2224 next: 2225 if (dump_opt['h'] > 1) { 2226 if (!printed) 2227 (void) printf("unrecognized record:\n"); 2228 dump_nvlist(events[i], 2); 2229 } 2230 } 2231 free(buf); 2232 } 2233 2234 static void 2235 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2236 { 2237 (void) os, (void) object, (void) data, (void) size; 2238 } 2239 2240 static uint64_t 2241 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2242 const zbookmark_phys_t *zb) 2243 { 2244 if (dnp == NULL) { 2245 ASSERT(zb->zb_level < 0); 2246 if (zb->zb_object == 0) 2247 return (zb->zb_blkid); 2248 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2249 } 2250 2251 ASSERT(zb->zb_level >= 0); 2252 2253 return ((zb->zb_blkid << 2254 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2255 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2256 } 2257 2258 static void 2259 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2260 const blkptr_t *bp) 2261 { 2262 static abd_t *pabd = NULL; 2263 void *buf; 2264 zio_t *zio; 2265 zfs_zstdhdr_t zstd_hdr; 2266 int error; 2267 2268 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2269 return; 2270 2271 if (BP_IS_HOLE(bp)) 2272 return; 2273 2274 if (BP_IS_EMBEDDED(bp)) { 2275 buf = malloc(SPA_MAXBLOCKSIZE); 2276 if (buf == NULL) { 2277 (void) fprintf(stderr, "out of memory\n"); 2278 exit(1); 2279 } 2280 decode_embedded_bp_compressed(bp, buf); 2281 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2282 free(buf); 2283 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2284 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2285 (void) snprintf(blkbuf + strlen(blkbuf), 2286 buflen - strlen(blkbuf), 2287 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2288 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2289 zfs_get_hdrlevel(&zstd_hdr)); 2290 return; 2291 } 2292 2293 if (!pabd) 2294 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2295 zio = zio_root(spa, NULL, NULL, 0); 2296 2297 /* Decrypt but don't decompress so we can read the compression header */ 2298 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2299 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2300 NULL)); 2301 error = zio_wait(zio); 2302 if (error) { 2303 (void) fprintf(stderr, "read failed: %d\n", error); 2304 return; 2305 } 2306 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2307 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2308 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2309 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2310 2311 (void) snprintf(blkbuf + strlen(blkbuf), 2312 buflen - strlen(blkbuf), 2313 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2314 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2315 zfs_get_hdrlevel(&zstd_hdr)); 2316 2317 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2318 } 2319 2320 static void 2321 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2322 boolean_t bp_freed) 2323 { 2324 const dva_t *dva = bp->blk_dva; 2325 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2326 int i; 2327 2328 if (dump_opt['b'] >= 6) { 2329 snprintf_blkptr(blkbuf, buflen, bp); 2330 if (bp_freed) { 2331 (void) snprintf(blkbuf + strlen(blkbuf), 2332 buflen - strlen(blkbuf), " %s", "FREE"); 2333 } 2334 return; 2335 } 2336 2337 if (BP_IS_EMBEDDED(bp)) { 2338 (void) sprintf(blkbuf, 2339 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2340 (int)BPE_GET_ETYPE(bp), 2341 (u_longlong_t)BPE_GET_LSIZE(bp), 2342 (u_longlong_t)BPE_GET_PSIZE(bp), 2343 (u_longlong_t)bp->blk_birth); 2344 return; 2345 } 2346 2347 blkbuf[0] = '\0'; 2348 2349 for (i = 0; i < ndvas; i++) 2350 (void) snprintf(blkbuf + strlen(blkbuf), 2351 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2352 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2353 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2354 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2355 2356 if (BP_IS_HOLE(bp)) { 2357 (void) snprintf(blkbuf + strlen(blkbuf), 2358 buflen - strlen(blkbuf), 2359 "%llxL B=%llu", 2360 (u_longlong_t)BP_GET_LSIZE(bp), 2361 (u_longlong_t)bp->blk_birth); 2362 } else { 2363 (void) snprintf(blkbuf + strlen(blkbuf), 2364 buflen - strlen(blkbuf), 2365 "%llxL/%llxP F=%llu B=%llu/%llu", 2366 (u_longlong_t)BP_GET_LSIZE(bp), 2367 (u_longlong_t)BP_GET_PSIZE(bp), 2368 (u_longlong_t)BP_GET_FILL(bp), 2369 (u_longlong_t)bp->blk_birth, 2370 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2371 if (bp_freed) 2372 (void) snprintf(blkbuf + strlen(blkbuf), 2373 buflen - strlen(blkbuf), " %s", "FREE"); 2374 (void) snprintf(blkbuf + strlen(blkbuf), 2375 buflen - strlen(blkbuf), 2376 " cksum=%016llx:%016llx:%016llx:%016llx", 2377 (u_longlong_t)bp->blk_cksum.zc_word[0], 2378 (u_longlong_t)bp->blk_cksum.zc_word[1], 2379 (u_longlong_t)bp->blk_cksum.zc_word[2], 2380 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2381 } 2382 } 2383 2384 static void 2385 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2386 const dnode_phys_t *dnp) 2387 { 2388 char blkbuf[BP_SPRINTF_LEN]; 2389 int l; 2390 2391 if (!BP_IS_EMBEDDED(bp)) { 2392 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2393 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2394 } 2395 2396 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2397 2398 ASSERT(zb->zb_level >= 0); 2399 2400 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2401 if (l == zb->zb_level) { 2402 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2403 } else { 2404 (void) printf(" "); 2405 } 2406 } 2407 2408 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2409 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2410 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2411 (void) printf("%s\n", blkbuf); 2412 } 2413 2414 static int 2415 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2416 blkptr_t *bp, const zbookmark_phys_t *zb) 2417 { 2418 int err = 0; 2419 2420 if (bp->blk_birth == 0) 2421 return (0); 2422 2423 print_indirect(spa, bp, zb, dnp); 2424 2425 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2426 arc_flags_t flags = ARC_FLAG_WAIT; 2427 int i; 2428 blkptr_t *cbp; 2429 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2430 arc_buf_t *buf; 2431 uint64_t fill = 0; 2432 ASSERT(!BP_IS_REDACTED(bp)); 2433 2434 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2435 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2436 if (err) 2437 return (err); 2438 ASSERT(buf->b_data); 2439 2440 /* recursively visit blocks below this */ 2441 cbp = buf->b_data; 2442 for (i = 0; i < epb; i++, cbp++) { 2443 zbookmark_phys_t czb; 2444 2445 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2446 zb->zb_level - 1, 2447 zb->zb_blkid * epb + i); 2448 err = visit_indirect(spa, dnp, cbp, &czb); 2449 if (err) 2450 break; 2451 fill += BP_GET_FILL(cbp); 2452 } 2453 if (!err) 2454 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2455 arc_buf_destroy(buf, &buf); 2456 } 2457 2458 return (err); 2459 } 2460 2461 static void 2462 dump_indirect(dnode_t *dn) 2463 { 2464 dnode_phys_t *dnp = dn->dn_phys; 2465 zbookmark_phys_t czb; 2466 2467 (void) printf("Indirect blocks:\n"); 2468 2469 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2470 dn->dn_object, dnp->dn_nlevels - 1, 0); 2471 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2472 czb.zb_blkid = j; 2473 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2474 &dnp->dn_blkptr[j], &czb); 2475 } 2476 2477 (void) printf("\n"); 2478 } 2479 2480 static void 2481 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2482 { 2483 (void) os, (void) object; 2484 dsl_dir_phys_t *dd = data; 2485 time_t crtime; 2486 char nice[32]; 2487 2488 /* make sure nicenum has enough space */ 2489 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2490 2491 if (dd == NULL) 2492 return; 2493 2494 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2495 2496 crtime = dd->dd_creation_time; 2497 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2498 (void) printf("\t\thead_dataset_obj = %llu\n", 2499 (u_longlong_t)dd->dd_head_dataset_obj); 2500 (void) printf("\t\tparent_dir_obj = %llu\n", 2501 (u_longlong_t)dd->dd_parent_obj); 2502 (void) printf("\t\torigin_obj = %llu\n", 2503 (u_longlong_t)dd->dd_origin_obj); 2504 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2505 (u_longlong_t)dd->dd_child_dir_zapobj); 2506 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2507 (void) printf("\t\tused_bytes = %s\n", nice); 2508 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2509 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2510 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2511 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2512 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2513 (void) printf("\t\tquota = %s\n", nice); 2514 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2515 (void) printf("\t\treserved = %s\n", nice); 2516 (void) printf("\t\tprops_zapobj = %llu\n", 2517 (u_longlong_t)dd->dd_props_zapobj); 2518 (void) printf("\t\tdeleg_zapobj = %llu\n", 2519 (u_longlong_t)dd->dd_deleg_zapobj); 2520 (void) printf("\t\tflags = %llx\n", 2521 (u_longlong_t)dd->dd_flags); 2522 2523 #define DO(which) \ 2524 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2525 sizeof (nice)); \ 2526 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2527 DO(HEAD); 2528 DO(SNAP); 2529 DO(CHILD); 2530 DO(CHILD_RSRV); 2531 DO(REFRSRV); 2532 #undef DO 2533 (void) printf("\t\tclones = %llu\n", 2534 (u_longlong_t)dd->dd_clones); 2535 } 2536 2537 static void 2538 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2539 { 2540 (void) os, (void) object; 2541 dsl_dataset_phys_t *ds = data; 2542 time_t crtime; 2543 char used[32], compressed[32], uncompressed[32], unique[32]; 2544 char blkbuf[BP_SPRINTF_LEN]; 2545 2546 /* make sure nicenum has enough space */ 2547 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2548 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2549 "compressed truncated"); 2550 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2551 "uncompressed truncated"); 2552 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2553 2554 if (ds == NULL) 2555 return; 2556 2557 ASSERT(size == sizeof (*ds)); 2558 crtime = ds->ds_creation_time; 2559 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2560 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2561 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2562 sizeof (uncompressed)); 2563 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2564 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2565 2566 (void) printf("\t\tdir_obj = %llu\n", 2567 (u_longlong_t)ds->ds_dir_obj); 2568 (void) printf("\t\tprev_snap_obj = %llu\n", 2569 (u_longlong_t)ds->ds_prev_snap_obj); 2570 (void) printf("\t\tprev_snap_txg = %llu\n", 2571 (u_longlong_t)ds->ds_prev_snap_txg); 2572 (void) printf("\t\tnext_snap_obj = %llu\n", 2573 (u_longlong_t)ds->ds_next_snap_obj); 2574 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2575 (u_longlong_t)ds->ds_snapnames_zapobj); 2576 (void) printf("\t\tnum_children = %llu\n", 2577 (u_longlong_t)ds->ds_num_children); 2578 (void) printf("\t\tuserrefs_obj = %llu\n", 2579 (u_longlong_t)ds->ds_userrefs_obj); 2580 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2581 (void) printf("\t\tcreation_txg = %llu\n", 2582 (u_longlong_t)ds->ds_creation_txg); 2583 (void) printf("\t\tdeadlist_obj = %llu\n", 2584 (u_longlong_t)ds->ds_deadlist_obj); 2585 (void) printf("\t\tused_bytes = %s\n", used); 2586 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2587 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2588 (void) printf("\t\tunique = %s\n", unique); 2589 (void) printf("\t\tfsid_guid = %llu\n", 2590 (u_longlong_t)ds->ds_fsid_guid); 2591 (void) printf("\t\tguid = %llu\n", 2592 (u_longlong_t)ds->ds_guid); 2593 (void) printf("\t\tflags = %llx\n", 2594 (u_longlong_t)ds->ds_flags); 2595 (void) printf("\t\tnext_clones_obj = %llu\n", 2596 (u_longlong_t)ds->ds_next_clones_obj); 2597 (void) printf("\t\tprops_obj = %llu\n", 2598 (u_longlong_t)ds->ds_props_obj); 2599 (void) printf("\t\tbp = %s\n", blkbuf); 2600 } 2601 2602 static int 2603 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2604 { 2605 (void) arg, (void) tx; 2606 char blkbuf[BP_SPRINTF_LEN]; 2607 2608 if (bp->blk_birth != 0) { 2609 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2610 (void) printf("\t%s\n", blkbuf); 2611 } 2612 return (0); 2613 } 2614 2615 static void 2616 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2617 { 2618 char bytes[32]; 2619 bptree_phys_t *bt; 2620 dmu_buf_t *db; 2621 2622 /* make sure nicenum has enough space */ 2623 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2624 2625 if (dump_opt['d'] < 3) 2626 return; 2627 2628 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2629 bt = db->db_data; 2630 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2631 (void) printf("\n %s: %llu datasets, %s\n", 2632 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2633 dmu_buf_rele(db, FTAG); 2634 2635 if (dump_opt['d'] < 5) 2636 return; 2637 2638 (void) printf("\n"); 2639 2640 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2641 } 2642 2643 static int 2644 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2645 { 2646 (void) arg, (void) tx; 2647 char blkbuf[BP_SPRINTF_LEN]; 2648 2649 ASSERT(bp->blk_birth != 0); 2650 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2651 (void) printf("\t%s\n", blkbuf); 2652 return (0); 2653 } 2654 2655 static void 2656 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2657 { 2658 char bytes[32]; 2659 char comp[32]; 2660 char uncomp[32]; 2661 uint64_t i; 2662 2663 /* make sure nicenum has enough space */ 2664 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2665 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2666 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2667 2668 if (dump_opt['d'] < 3) 2669 return; 2670 2671 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2672 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2673 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2674 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2675 if (bpo->bpo_havefreed) { 2676 (void) printf(" %*s: object %llu, %llu local " 2677 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2678 "%s (%s/%s comp)\n", 2679 indent * 8, name, 2680 (u_longlong_t)bpo->bpo_object, 2681 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2682 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2683 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2684 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2685 bytes, comp, uncomp); 2686 } else { 2687 (void) printf(" %*s: object %llu, %llu local " 2688 "blkptrs, %llu subobjs in object %llu, " 2689 "%s (%s/%s comp)\n", 2690 indent * 8, name, 2691 (u_longlong_t)bpo->bpo_object, 2692 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2693 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2694 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2695 bytes, comp, uncomp); 2696 } 2697 2698 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2699 uint64_t subobj; 2700 bpobj_t subbpo; 2701 int error; 2702 VERIFY0(dmu_read(bpo->bpo_os, 2703 bpo->bpo_phys->bpo_subobjs, 2704 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2705 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2706 if (error != 0) { 2707 (void) printf("ERROR %u while trying to open " 2708 "subobj id %llu\n", 2709 error, (u_longlong_t)subobj); 2710 continue; 2711 } 2712 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2713 bpobj_close(&subbpo); 2714 } 2715 } else { 2716 if (bpo->bpo_havefreed) { 2717 (void) printf(" %*s: object %llu, %llu blkptrs, " 2718 "%llu freed, %s\n", 2719 indent * 8, name, 2720 (u_longlong_t)bpo->bpo_object, 2721 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2722 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2723 bytes); 2724 } else { 2725 (void) printf(" %*s: object %llu, %llu blkptrs, " 2726 "%s\n", 2727 indent * 8, name, 2728 (u_longlong_t)bpo->bpo_object, 2729 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2730 bytes); 2731 } 2732 } 2733 2734 if (dump_opt['d'] < 5) 2735 return; 2736 2737 2738 if (indent == 0) { 2739 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2740 (void) printf("\n"); 2741 } 2742 } 2743 2744 static int 2745 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2746 boolean_t print_list) 2747 { 2748 int err = 0; 2749 zfs_bookmark_phys_t prop; 2750 objset_t *mos = dp->dp_spa->spa_meta_objset; 2751 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2752 2753 if (err != 0) { 2754 return (err); 2755 } 2756 2757 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2758 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2759 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2760 (u_longlong_t)prop.zbm_creation_txg, 2761 (u_longlong_t)prop.zbm_creation_time, 2762 (u_longlong_t)prop.zbm_redaction_obj); 2763 2764 IMPLY(print_list, print_redact); 2765 if (!print_redact || prop.zbm_redaction_obj == 0) 2766 return (0); 2767 2768 redaction_list_t *rl; 2769 VERIFY0(dsl_redaction_list_hold_obj(dp, 2770 prop.zbm_redaction_obj, FTAG, &rl)); 2771 2772 redaction_list_phys_t *rlp = rl->rl_phys; 2773 (void) printf("\tRedacted:\n\t\tProgress: "); 2774 if (rlp->rlp_last_object != UINT64_MAX || 2775 rlp->rlp_last_blkid != UINT64_MAX) { 2776 (void) printf("%llu %llu (incomplete)\n", 2777 (u_longlong_t)rlp->rlp_last_object, 2778 (u_longlong_t)rlp->rlp_last_blkid); 2779 } else { 2780 (void) printf("complete\n"); 2781 } 2782 (void) printf("\t\tSnapshots: ["); 2783 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2784 if (i > 0) 2785 (void) printf(", "); 2786 (void) printf("%0llu", 2787 (u_longlong_t)rlp->rlp_snaps[i]); 2788 } 2789 (void) printf("]\n\t\tLength: %llu\n", 2790 (u_longlong_t)rlp->rlp_num_entries); 2791 2792 if (!print_list) { 2793 dsl_redaction_list_rele(rl, FTAG); 2794 return (0); 2795 } 2796 2797 if (rlp->rlp_num_entries == 0) { 2798 dsl_redaction_list_rele(rl, FTAG); 2799 (void) printf("\t\tRedaction List: []\n\n"); 2800 return (0); 2801 } 2802 2803 redact_block_phys_t *rbp_buf; 2804 uint64_t size; 2805 dmu_object_info_t doi; 2806 2807 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2808 size = doi.doi_max_offset; 2809 rbp_buf = kmem_alloc(size, KM_SLEEP); 2810 2811 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2812 rbp_buf, 0); 2813 if (err != 0) { 2814 dsl_redaction_list_rele(rl, FTAG); 2815 kmem_free(rbp_buf, size); 2816 return (err); 2817 } 2818 2819 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2820 "%llx, blksz: %x, count: %llx}", 2821 (u_longlong_t)rbp_buf[0].rbp_object, 2822 (u_longlong_t)rbp_buf[0].rbp_blkid, 2823 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2824 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2825 2826 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2827 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2828 "blksz: %x, count: %llx}", 2829 (u_longlong_t)rbp_buf[i].rbp_object, 2830 (u_longlong_t)rbp_buf[i].rbp_blkid, 2831 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2832 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2833 } 2834 dsl_redaction_list_rele(rl, FTAG); 2835 kmem_free(rbp_buf, size); 2836 (void) printf("]\n\n"); 2837 return (0); 2838 } 2839 2840 static void 2841 dump_bookmarks(objset_t *os, int verbosity) 2842 { 2843 zap_cursor_t zc; 2844 zap_attribute_t attr; 2845 dsl_dataset_t *ds = dmu_objset_ds(os); 2846 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2847 objset_t *mos = os->os_spa->spa_meta_objset; 2848 if (verbosity < 4) 2849 return; 2850 dsl_pool_config_enter(dp, FTAG); 2851 2852 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2853 zap_cursor_retrieve(&zc, &attr) == 0; 2854 zap_cursor_advance(&zc)) { 2855 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2856 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2857 int len; 2858 dmu_objset_name(os, osname); 2859 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2860 attr.za_name); 2861 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2862 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2863 } 2864 zap_cursor_fini(&zc); 2865 dsl_pool_config_exit(dp, FTAG); 2866 } 2867 2868 static void 2869 bpobj_count_refd(bpobj_t *bpo) 2870 { 2871 mos_obj_refd(bpo->bpo_object); 2872 2873 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2874 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2875 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2876 uint64_t subobj; 2877 bpobj_t subbpo; 2878 int error; 2879 VERIFY0(dmu_read(bpo->bpo_os, 2880 bpo->bpo_phys->bpo_subobjs, 2881 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2882 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2883 if (error != 0) { 2884 (void) printf("ERROR %u while trying to open " 2885 "subobj id %llu\n", 2886 error, (u_longlong_t)subobj); 2887 continue; 2888 } 2889 bpobj_count_refd(&subbpo); 2890 bpobj_close(&subbpo); 2891 } 2892 } 2893 } 2894 2895 static int 2896 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2897 { 2898 spa_t *spa = arg; 2899 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2900 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2901 bpobj_count_refd(&dle->dle_bpobj); 2902 return (0); 2903 } 2904 2905 static int 2906 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2907 { 2908 ASSERT(arg == NULL); 2909 if (dump_opt['d'] >= 5) { 2910 char buf[128]; 2911 (void) snprintf(buf, sizeof (buf), 2912 "mintxg %llu -> obj %llu", 2913 (longlong_t)dle->dle_mintxg, 2914 (longlong_t)dle->dle_bpobj.bpo_object); 2915 2916 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2917 } else { 2918 (void) printf("mintxg %llu -> obj %llu\n", 2919 (longlong_t)dle->dle_mintxg, 2920 (longlong_t)dle->dle_bpobj.bpo_object); 2921 } 2922 return (0); 2923 } 2924 2925 static void 2926 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2927 { 2928 char bytes[32]; 2929 char comp[32]; 2930 char uncomp[32]; 2931 char entries[32]; 2932 spa_t *spa = dmu_objset_spa(dl->dl_os); 2933 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2934 2935 if (dl->dl_oldfmt) { 2936 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2937 bpobj_count_refd(&dl->dl_bpobj); 2938 } else { 2939 mos_obj_refd(dl->dl_object); 2940 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2941 } 2942 2943 /* make sure nicenum has enough space */ 2944 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2945 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2946 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2947 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 2948 2949 if (dump_opt['d'] < 3) 2950 return; 2951 2952 if (dl->dl_oldfmt) { 2953 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2954 return; 2955 } 2956 2957 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2958 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2959 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2960 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2961 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2962 name, bytes, comp, uncomp, entries); 2963 2964 if (dump_opt['d'] < 4) 2965 return; 2966 2967 (void) putchar('\n'); 2968 2969 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2970 } 2971 2972 static int 2973 verify_dd_livelist(objset_t *os) 2974 { 2975 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2976 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2977 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2978 2979 ASSERT(!dmu_objset_is_snapshot(os)); 2980 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2981 return (0); 2982 2983 /* Iterate through the livelist to check for duplicates */ 2984 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2985 NULL); 2986 2987 dsl_pool_config_enter(dp, FTAG); 2988 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2989 &ll_comp, &ll_uncomp); 2990 2991 dsl_dataset_t *origin_ds; 2992 ASSERT(dsl_pool_config_held(dp)); 2993 VERIFY0(dsl_dataset_hold_obj(dp, 2994 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2995 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2996 &used, &comp, &uncomp)); 2997 dsl_dataset_rele(origin_ds, FTAG); 2998 dsl_pool_config_exit(dp, FTAG); 2999 /* 3000 * It's possible that the dataset's uncomp space is larger than the 3001 * livelist's because livelists do not track embedded block pointers 3002 */ 3003 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3004 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3005 (void) printf("Discrepancy in space accounting:\n"); 3006 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3007 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3008 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3009 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3010 nice_used, nice_comp, nice_uncomp); 3011 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3012 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3013 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3014 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3015 nice_used, nice_comp, nice_uncomp); 3016 return (1); 3017 } 3018 return (0); 3019 } 3020 3021 static char *key_material = NULL; 3022 3023 static boolean_t 3024 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3025 { 3026 uint64_t keyformat, salt, iters; 3027 int i; 3028 unsigned char c; 3029 3030 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3031 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3032 1, &keyformat)); 3033 3034 switch (keyformat) { 3035 case ZFS_KEYFORMAT_HEX: 3036 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3037 if (!isxdigit(key_material[i]) || 3038 !isxdigit(key_material[i+1])) 3039 return (B_FALSE); 3040 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3041 return (B_FALSE); 3042 key_out[i / 2] = c; 3043 } 3044 break; 3045 3046 case ZFS_KEYFORMAT_PASSPHRASE: 3047 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3048 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3049 sizeof (uint64_t), 1, &salt)); 3050 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3051 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3052 sizeof (uint64_t), 1, &iters)); 3053 3054 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3055 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3056 WRAPPING_KEY_LEN, key_out) != 1) 3057 return (B_FALSE); 3058 3059 break; 3060 3061 default: 3062 fatal("no support for key format %u\n", 3063 (unsigned int) keyformat); 3064 } 3065 3066 return (B_TRUE); 3067 } 3068 3069 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3070 static boolean_t key_loaded = B_FALSE; 3071 3072 static void 3073 zdb_load_key(objset_t *os) 3074 { 3075 dsl_pool_t *dp; 3076 dsl_dir_t *dd, *rdd; 3077 uint8_t key[WRAPPING_KEY_LEN]; 3078 uint64_t rddobj; 3079 int err; 3080 3081 dp = spa_get_dsl(os->os_spa); 3082 dd = os->os_dsl_dataset->ds_dir; 3083 3084 dsl_pool_config_enter(dp, FTAG); 3085 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3086 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3087 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3088 dsl_dir_name(rdd, encroot); 3089 dsl_dir_rele(rdd, FTAG); 3090 3091 if (!zdb_derive_key(dd, key)) 3092 fatal("couldn't derive encryption key"); 3093 3094 dsl_pool_config_exit(dp, FTAG); 3095 3096 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3097 3098 dsl_crypto_params_t *dcp; 3099 nvlist_t *crypto_args; 3100 3101 crypto_args = fnvlist_alloc(); 3102 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3103 (uint8_t *)key, WRAPPING_KEY_LEN); 3104 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3105 NULL, crypto_args, &dcp)); 3106 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3107 3108 dsl_crypto_params_free(dcp, (err != 0)); 3109 fnvlist_free(crypto_args); 3110 3111 if (err != 0) 3112 fatal( 3113 "couldn't load encryption key for %s: %s", 3114 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3115 "crypto params not supported" : strerror(err)); 3116 3117 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3118 3119 printf("Unlocked encryption root: %s\n", encroot); 3120 key_loaded = B_TRUE; 3121 } 3122 3123 static void 3124 zdb_unload_key(void) 3125 { 3126 if (!key_loaded) 3127 return; 3128 3129 VERIFY0(spa_keystore_unload_wkey(encroot)); 3130 key_loaded = B_FALSE; 3131 } 3132 3133 static avl_tree_t idx_tree; 3134 static avl_tree_t domain_tree; 3135 static boolean_t fuid_table_loaded; 3136 static objset_t *sa_os = NULL; 3137 static sa_attr_type_t *sa_attr_table = NULL; 3138 3139 static int 3140 open_objset(const char *path, const void *tag, objset_t **osp) 3141 { 3142 int err; 3143 uint64_t sa_attrs = 0; 3144 uint64_t version = 0; 3145 3146 VERIFY3P(sa_os, ==, NULL); 3147 3148 /* 3149 * We can't own an objset if it's redacted. Therefore, we do this 3150 * dance: hold the objset, then acquire a long hold on its dataset, then 3151 * release the pool (which is held as part of holding the objset). 3152 */ 3153 3154 if (dump_opt['K']) { 3155 /* decryption requested, try to load keys */ 3156 err = dmu_objset_hold(path, tag, osp); 3157 if (err != 0) { 3158 (void) fprintf(stderr, "failed to hold dataset " 3159 "'%s': %s\n", 3160 path, strerror(err)); 3161 return (err); 3162 } 3163 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3164 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3165 3166 /* succeeds or dies */ 3167 zdb_load_key(*osp); 3168 3169 /* release it all */ 3170 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3171 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3172 } 3173 3174 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3175 3176 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3177 if (err != 0) { 3178 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3179 path, strerror(err)); 3180 return (err); 3181 } 3182 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3183 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3184 3185 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3186 (key_loaded || !(*osp)->os_encrypted)) { 3187 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3188 8, 1, &version); 3189 if (version >= ZPL_VERSION_SA) { 3190 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3191 8, 1, &sa_attrs); 3192 } 3193 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3194 &sa_attr_table); 3195 if (err != 0) { 3196 (void) fprintf(stderr, "sa_setup failed: %s\n", 3197 strerror(err)); 3198 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3199 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3200 ds_hold_flags, tag); 3201 *osp = NULL; 3202 } 3203 } 3204 sa_os = *osp; 3205 3206 return (err); 3207 } 3208 3209 static void 3210 close_objset(objset_t *os, const void *tag) 3211 { 3212 VERIFY3P(os, ==, sa_os); 3213 if (os->os_sa != NULL) 3214 sa_tear_down(os); 3215 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3216 dsl_dataset_rele_flags(dmu_objset_ds(os), 3217 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3218 sa_attr_table = NULL; 3219 sa_os = NULL; 3220 3221 zdb_unload_key(); 3222 } 3223 3224 static void 3225 fuid_table_destroy(void) 3226 { 3227 if (fuid_table_loaded) { 3228 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3229 fuid_table_loaded = B_FALSE; 3230 } 3231 } 3232 3233 /* 3234 * print uid or gid information. 3235 * For normal POSIX id just the id is printed in decimal format. 3236 * For CIFS files with FUID the fuid is printed in hex followed by 3237 * the domain-rid string. 3238 */ 3239 static void 3240 print_idstr(uint64_t id, const char *id_type) 3241 { 3242 if (FUID_INDEX(id)) { 3243 const char *domain = 3244 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3245 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3246 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3247 } else { 3248 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3249 } 3250 3251 } 3252 3253 static void 3254 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3255 { 3256 uint32_t uid_idx, gid_idx; 3257 3258 uid_idx = FUID_INDEX(uid); 3259 gid_idx = FUID_INDEX(gid); 3260 3261 /* Load domain table, if not already loaded */ 3262 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3263 uint64_t fuid_obj; 3264 3265 /* first find the fuid object. It lives in the master node */ 3266 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3267 8, 1, &fuid_obj) == 0); 3268 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3269 (void) zfs_fuid_table_load(os, fuid_obj, 3270 &idx_tree, &domain_tree); 3271 fuid_table_loaded = B_TRUE; 3272 } 3273 3274 print_idstr(uid, "uid"); 3275 print_idstr(gid, "gid"); 3276 } 3277 3278 static void 3279 dump_znode_sa_xattr(sa_handle_t *hdl) 3280 { 3281 nvlist_t *sa_xattr; 3282 nvpair_t *elem = NULL; 3283 int sa_xattr_size = 0; 3284 int sa_xattr_entries = 0; 3285 int error; 3286 char *sa_xattr_packed; 3287 3288 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3289 if (error || sa_xattr_size == 0) 3290 return; 3291 3292 sa_xattr_packed = malloc(sa_xattr_size); 3293 if (sa_xattr_packed == NULL) 3294 return; 3295 3296 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3297 sa_xattr_packed, sa_xattr_size); 3298 if (error) { 3299 free(sa_xattr_packed); 3300 return; 3301 } 3302 3303 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3304 if (error) { 3305 free(sa_xattr_packed); 3306 return; 3307 } 3308 3309 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3310 sa_xattr_entries++; 3311 3312 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3313 sa_xattr_size, sa_xattr_entries); 3314 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3315 boolean_t can_print = !dump_opt['P']; 3316 uchar_t *value; 3317 uint_t cnt, idx; 3318 3319 (void) printf("\t\t%s = ", nvpair_name(elem)); 3320 nvpair_value_byte_array(elem, &value, &cnt); 3321 3322 for (idx = 0; idx < cnt; ++idx) { 3323 if (!isprint(value[idx])) { 3324 can_print = B_FALSE; 3325 break; 3326 } 3327 } 3328 3329 for (idx = 0; idx < cnt; ++idx) { 3330 if (can_print) 3331 (void) putchar(value[idx]); 3332 else 3333 (void) printf("\\%3.3o", value[idx]); 3334 } 3335 (void) putchar('\n'); 3336 } 3337 3338 nvlist_free(sa_xattr); 3339 free(sa_xattr_packed); 3340 } 3341 3342 static void 3343 dump_znode_symlink(sa_handle_t *hdl) 3344 { 3345 int sa_symlink_size = 0; 3346 char linktarget[MAXPATHLEN]; 3347 int error; 3348 3349 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3350 if (error || sa_symlink_size == 0) { 3351 return; 3352 } 3353 if (sa_symlink_size >= sizeof (linktarget)) { 3354 (void) printf("symlink size %d is too large\n", 3355 sa_symlink_size); 3356 return; 3357 } 3358 linktarget[sa_symlink_size] = '\0'; 3359 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3360 &linktarget, sa_symlink_size) == 0) 3361 (void) printf("\ttarget %s\n", linktarget); 3362 } 3363 3364 static void 3365 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3366 { 3367 (void) data, (void) size; 3368 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3369 sa_handle_t *hdl; 3370 uint64_t xattr, rdev, gen; 3371 uint64_t uid, gid, mode, fsize, parent, links; 3372 uint64_t pflags; 3373 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3374 time_t z_crtime, z_atime, z_mtime, z_ctime; 3375 sa_bulk_attr_t bulk[12]; 3376 int idx = 0; 3377 int error; 3378 3379 VERIFY3P(os, ==, sa_os); 3380 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3381 (void) printf("Failed to get handle for SA znode\n"); 3382 return; 3383 } 3384 3385 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3386 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3387 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3388 &links, 8); 3389 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3390 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3391 &mode, 8); 3392 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3393 NULL, &parent, 8); 3394 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3395 &fsize, 8); 3396 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3397 acctm, 16); 3398 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3399 modtm, 16); 3400 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3401 crtm, 16); 3402 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3403 chgtm, 16); 3404 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3405 &pflags, 8); 3406 3407 if (sa_bulk_lookup(hdl, bulk, idx)) { 3408 (void) sa_handle_destroy(hdl); 3409 return; 3410 } 3411 3412 z_crtime = (time_t)crtm[0]; 3413 z_atime = (time_t)acctm[0]; 3414 z_mtime = (time_t)modtm[0]; 3415 z_ctime = (time_t)chgtm[0]; 3416 3417 if (dump_opt['d'] > 4) { 3418 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3419 if (error == ESTALE) { 3420 (void) snprintf(path, sizeof (path), "on delete queue"); 3421 } else if (error != 0) { 3422 leaked_objects++; 3423 (void) snprintf(path, sizeof (path), 3424 "path not found, possibly leaked"); 3425 } 3426 (void) printf("\tpath %s\n", path); 3427 } 3428 3429 if (S_ISLNK(mode)) 3430 dump_znode_symlink(hdl); 3431 dump_uidgid(os, uid, gid); 3432 (void) printf("\tatime %s", ctime(&z_atime)); 3433 (void) printf("\tmtime %s", ctime(&z_mtime)); 3434 (void) printf("\tctime %s", ctime(&z_ctime)); 3435 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3436 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3437 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3438 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3439 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3440 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3441 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3442 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3443 uint64_t projid; 3444 3445 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3446 sizeof (uint64_t)) == 0) 3447 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3448 } 3449 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3450 sizeof (uint64_t)) == 0) 3451 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3452 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3453 sizeof (uint64_t)) == 0) 3454 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3455 dump_znode_sa_xattr(hdl); 3456 sa_handle_destroy(hdl); 3457 } 3458 3459 static void 3460 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3461 { 3462 (void) os, (void) object, (void) data, (void) size; 3463 } 3464 3465 static void 3466 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3467 { 3468 (void) os, (void) object, (void) data, (void) size; 3469 } 3470 3471 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3472 dump_none, /* unallocated */ 3473 dump_zap, /* object directory */ 3474 dump_uint64, /* object array */ 3475 dump_none, /* packed nvlist */ 3476 dump_packed_nvlist, /* packed nvlist size */ 3477 dump_none, /* bpobj */ 3478 dump_bpobj, /* bpobj header */ 3479 dump_none, /* SPA space map header */ 3480 dump_none, /* SPA space map */ 3481 dump_none, /* ZIL intent log */ 3482 dump_dnode, /* DMU dnode */ 3483 dump_dmu_objset, /* DMU objset */ 3484 dump_dsl_dir, /* DSL directory */ 3485 dump_zap, /* DSL directory child map */ 3486 dump_zap, /* DSL dataset snap map */ 3487 dump_zap, /* DSL props */ 3488 dump_dsl_dataset, /* DSL dataset */ 3489 dump_znode, /* ZFS znode */ 3490 dump_acl, /* ZFS V0 ACL */ 3491 dump_uint8, /* ZFS plain file */ 3492 dump_zpldir, /* ZFS directory */ 3493 dump_zap, /* ZFS master node */ 3494 dump_zap, /* ZFS delete queue */ 3495 dump_uint8, /* zvol object */ 3496 dump_zap, /* zvol prop */ 3497 dump_uint8, /* other uint8[] */ 3498 dump_uint64, /* other uint64[] */ 3499 dump_zap, /* other ZAP */ 3500 dump_zap, /* persistent error log */ 3501 dump_uint8, /* SPA history */ 3502 dump_history_offsets, /* SPA history offsets */ 3503 dump_zap, /* Pool properties */ 3504 dump_zap, /* DSL permissions */ 3505 dump_acl, /* ZFS ACL */ 3506 dump_uint8, /* ZFS SYSACL */ 3507 dump_none, /* FUID nvlist */ 3508 dump_packed_nvlist, /* FUID nvlist size */ 3509 dump_zap, /* DSL dataset next clones */ 3510 dump_zap, /* DSL scrub queue */ 3511 dump_zap, /* ZFS user/group/project used */ 3512 dump_zap, /* ZFS user/group/project quota */ 3513 dump_zap, /* snapshot refcount tags */ 3514 dump_ddt_zap, /* DDT ZAP object */ 3515 dump_zap, /* DDT statistics */ 3516 dump_znode, /* SA object */ 3517 dump_zap, /* SA Master Node */ 3518 dump_sa_attrs, /* SA attribute registration */ 3519 dump_sa_layouts, /* SA attribute layouts */ 3520 dump_zap, /* DSL scrub translations */ 3521 dump_none, /* fake dedup BP */ 3522 dump_zap, /* deadlist */ 3523 dump_none, /* deadlist hdr */ 3524 dump_zap, /* dsl clones */ 3525 dump_bpobj_subobjs, /* bpobj subobjs */ 3526 dump_unknown, /* Unknown type, must be last */ 3527 }; 3528 3529 static boolean_t 3530 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3531 { 3532 boolean_t match = B_TRUE; 3533 3534 switch (obj_type) { 3535 case DMU_OT_DIRECTORY_CONTENTS: 3536 if (!(flags & ZOR_FLAG_DIRECTORY)) 3537 match = B_FALSE; 3538 break; 3539 case DMU_OT_PLAIN_FILE_CONTENTS: 3540 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3541 match = B_FALSE; 3542 break; 3543 case DMU_OT_SPACE_MAP: 3544 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3545 match = B_FALSE; 3546 break; 3547 default: 3548 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3549 if (!(flags & ZOR_FLAG_ZAP)) 3550 match = B_FALSE; 3551 break; 3552 } 3553 3554 /* 3555 * If all bits except some of the supported flags are 3556 * set, the user combined the all-types flag (A) with 3557 * a negated flag to exclude some types (e.g. A-f to 3558 * show all object types except plain files). 3559 */ 3560 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3561 match = B_FALSE; 3562 3563 break; 3564 } 3565 3566 return (match); 3567 } 3568 3569 static void 3570 dump_object(objset_t *os, uint64_t object, int verbosity, 3571 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3572 { 3573 dmu_buf_t *db = NULL; 3574 dmu_object_info_t doi; 3575 dnode_t *dn; 3576 boolean_t dnode_held = B_FALSE; 3577 void *bonus = NULL; 3578 size_t bsize = 0; 3579 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3580 char bonus_size[32]; 3581 char aux[50]; 3582 int error; 3583 3584 /* make sure nicenum has enough space */ 3585 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3586 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3587 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3588 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3589 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3590 "bonus_size truncated"); 3591 3592 if (*print_header) { 3593 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3594 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3595 "lsize", "%full", "type"); 3596 *print_header = 0; 3597 } 3598 3599 if (object == 0) { 3600 dn = DMU_META_DNODE(os); 3601 dmu_object_info_from_dnode(dn, &doi); 3602 } else { 3603 /* 3604 * Encrypted datasets will have sensitive bonus buffers 3605 * encrypted. Therefore we cannot hold the bonus buffer and 3606 * must hold the dnode itself instead. 3607 */ 3608 error = dmu_object_info(os, object, &doi); 3609 if (error) 3610 fatal("dmu_object_info() failed, errno %u", error); 3611 3612 if (!key_loaded && os->os_encrypted && 3613 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3614 error = dnode_hold(os, object, FTAG, &dn); 3615 if (error) 3616 fatal("dnode_hold() failed, errno %u", error); 3617 dnode_held = B_TRUE; 3618 } else { 3619 error = dmu_bonus_hold(os, object, FTAG, &db); 3620 if (error) 3621 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3622 object, error); 3623 bonus = db->db_data; 3624 bsize = db->db_size; 3625 dn = DB_DNODE((dmu_buf_impl_t *)db); 3626 } 3627 } 3628 3629 /* 3630 * Default to showing all object types if no flags were specified. 3631 */ 3632 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3633 !match_object_type(doi.doi_type, flags)) 3634 goto out; 3635 3636 if (dnode_slots_used) 3637 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3638 3639 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3640 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3641 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3642 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3643 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3644 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3645 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3646 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3647 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3648 3649 aux[0] = '\0'; 3650 3651 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3652 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3653 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3654 } 3655 3656 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3657 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3658 const char *compname = NULL; 3659 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3660 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3661 &compname) == 0) { 3662 (void) snprintf(aux + strlen(aux), 3663 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3664 compname); 3665 } else { 3666 (void) snprintf(aux + strlen(aux), 3667 sizeof (aux) - strlen(aux), 3668 " (Z=inherit=%s-unknown)", 3669 ZDB_COMPRESS_NAME(os->os_compress)); 3670 } 3671 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3672 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3673 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3674 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3675 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3676 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3677 } 3678 3679 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3680 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3681 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3682 3683 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3684 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3685 "", "", "", "", "", "", bonus_size, "bonus", 3686 zdb_ot_name(doi.doi_bonus_type)); 3687 } 3688 3689 if (verbosity >= 4) { 3690 (void) printf("\tdnode flags: %s%s%s%s\n", 3691 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3692 "USED_BYTES " : "", 3693 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3694 "USERUSED_ACCOUNTED " : "", 3695 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3696 "USEROBJUSED_ACCOUNTED " : "", 3697 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3698 "SPILL_BLKPTR" : ""); 3699 (void) printf("\tdnode maxblkid: %llu\n", 3700 (longlong_t)dn->dn_phys->dn_maxblkid); 3701 3702 if (!dnode_held) { 3703 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3704 object, bonus, bsize); 3705 } else { 3706 (void) printf("\t\t(bonus encrypted)\n"); 3707 } 3708 3709 if (key_loaded || 3710 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3711 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3712 NULL, 0); 3713 } else { 3714 (void) printf("\t\t(object encrypted)\n"); 3715 } 3716 3717 *print_header = B_TRUE; 3718 } 3719 3720 if (verbosity >= 5) { 3721 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3722 char blkbuf[BP_SPRINTF_LEN]; 3723 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3724 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3725 (void) printf("\nSpill block: %s\n", blkbuf); 3726 } 3727 dump_indirect(dn); 3728 } 3729 3730 if (verbosity >= 5) { 3731 /* 3732 * Report the list of segments that comprise the object. 3733 */ 3734 uint64_t start = 0; 3735 uint64_t end; 3736 uint64_t blkfill = 1; 3737 int minlvl = 1; 3738 3739 if (dn->dn_type == DMU_OT_DNODE) { 3740 minlvl = 0; 3741 blkfill = DNODES_PER_BLOCK; 3742 } 3743 3744 for (;;) { 3745 char segsize[32]; 3746 /* make sure nicenum has enough space */ 3747 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3748 "segsize truncated"); 3749 error = dnode_next_offset(dn, 3750 0, &start, minlvl, blkfill, 0); 3751 if (error) 3752 break; 3753 end = start; 3754 error = dnode_next_offset(dn, 3755 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3756 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3757 (void) printf("\t\tsegment [%016llx, %016llx)" 3758 " size %5s\n", (u_longlong_t)start, 3759 (u_longlong_t)end, segsize); 3760 if (error) 3761 break; 3762 start = end; 3763 } 3764 } 3765 3766 out: 3767 if (db != NULL) 3768 dmu_buf_rele(db, FTAG); 3769 if (dnode_held) 3770 dnode_rele(dn, FTAG); 3771 } 3772 3773 static void 3774 count_dir_mos_objects(dsl_dir_t *dd) 3775 { 3776 mos_obj_refd(dd->dd_object); 3777 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3778 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3779 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3780 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3781 3782 /* 3783 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3784 * Ignore the references after the first one. 3785 */ 3786 mos_obj_refd_multiple(dd->dd_crypto_obj); 3787 } 3788 3789 static void 3790 count_ds_mos_objects(dsl_dataset_t *ds) 3791 { 3792 mos_obj_refd(ds->ds_object); 3793 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3794 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3795 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3796 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3797 mos_obj_refd(ds->ds_bookmarks_obj); 3798 3799 if (!dsl_dataset_is_snapshot(ds)) { 3800 count_dir_mos_objects(ds->ds_dir); 3801 } 3802 } 3803 3804 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3805 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3806 3807 /* 3808 * Parse a string denoting a range of object IDs of the form 3809 * <start>[:<end>[:flags]], and store the results in zor. 3810 * Return 0 on success. On error, return 1 and update the msg 3811 * pointer to point to a descriptive error message. 3812 */ 3813 static int 3814 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3815 { 3816 uint64_t flags = 0; 3817 char *p, *s, *dup, *flagstr, *tmp = NULL; 3818 size_t len; 3819 int i; 3820 int rc = 0; 3821 3822 if (strchr(range, ':') == NULL) { 3823 zor->zor_obj_start = strtoull(range, &p, 0); 3824 if (*p != '\0') { 3825 *msg = "Invalid characters in object ID"; 3826 rc = 1; 3827 } 3828 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3829 zor->zor_obj_end = zor->zor_obj_start; 3830 return (rc); 3831 } 3832 3833 if (strchr(range, ':') == range) { 3834 *msg = "Invalid leading colon"; 3835 rc = 1; 3836 return (rc); 3837 } 3838 3839 len = strlen(range); 3840 if (range[len - 1] == ':') { 3841 *msg = "Invalid trailing colon"; 3842 rc = 1; 3843 return (rc); 3844 } 3845 3846 dup = strdup(range); 3847 s = strtok_r(dup, ":", &tmp); 3848 zor->zor_obj_start = strtoull(s, &p, 0); 3849 3850 if (*p != '\0') { 3851 *msg = "Invalid characters in start object ID"; 3852 rc = 1; 3853 goto out; 3854 } 3855 3856 s = strtok_r(NULL, ":", &tmp); 3857 zor->zor_obj_end = strtoull(s, &p, 0); 3858 3859 if (*p != '\0') { 3860 *msg = "Invalid characters in end object ID"; 3861 rc = 1; 3862 goto out; 3863 } 3864 3865 if (zor->zor_obj_start > zor->zor_obj_end) { 3866 *msg = "Start object ID may not exceed end object ID"; 3867 rc = 1; 3868 goto out; 3869 } 3870 3871 s = strtok_r(NULL, ":", &tmp); 3872 if (s == NULL) { 3873 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3874 goto out; 3875 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3876 *msg = "Invalid colon-delimited field after flags"; 3877 rc = 1; 3878 goto out; 3879 } 3880 3881 flagstr = s; 3882 for (i = 0; flagstr[i]; i++) { 3883 int bit; 3884 boolean_t negation = (flagstr[i] == '-'); 3885 3886 if (negation) { 3887 i++; 3888 if (flagstr[i] == '\0') { 3889 *msg = "Invalid trailing negation operator"; 3890 rc = 1; 3891 goto out; 3892 } 3893 } 3894 bit = flagbits[(uchar_t)flagstr[i]]; 3895 if (bit == 0) { 3896 *msg = "Invalid flag"; 3897 rc = 1; 3898 goto out; 3899 } 3900 if (negation) 3901 flags &= ~bit; 3902 else 3903 flags |= bit; 3904 } 3905 zor->zor_flags = flags; 3906 3907 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3908 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3909 3910 out: 3911 free(dup); 3912 return (rc); 3913 } 3914 3915 static void 3916 dump_objset(objset_t *os) 3917 { 3918 dmu_objset_stats_t dds = { 0 }; 3919 uint64_t object, object_count; 3920 uint64_t refdbytes, usedobjs, scratch; 3921 char numbuf[32]; 3922 char blkbuf[BP_SPRINTF_LEN + 20]; 3923 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3924 const char *type = "UNKNOWN"; 3925 int verbosity = dump_opt['d']; 3926 boolean_t print_header; 3927 unsigned i; 3928 int error; 3929 uint64_t total_slots_used = 0; 3930 uint64_t max_slot_used = 0; 3931 uint64_t dnode_slots; 3932 uint64_t obj_start; 3933 uint64_t obj_end; 3934 uint64_t flags; 3935 3936 /* make sure nicenum has enough space */ 3937 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 3938 3939 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3940 dmu_objset_fast_stat(os, &dds); 3941 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3942 3943 print_header = B_TRUE; 3944 3945 if (dds.dds_type < DMU_OST_NUMTYPES) 3946 type = objset_types[dds.dds_type]; 3947 3948 if (dds.dds_type == DMU_OST_META) { 3949 dds.dds_creation_txg = TXG_INITIAL; 3950 usedobjs = BP_GET_FILL(os->os_rootbp); 3951 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3952 dd_used_bytes; 3953 } else { 3954 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3955 } 3956 3957 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3958 3959 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3960 3961 if (verbosity >= 4) { 3962 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3963 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3964 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3965 } else { 3966 blkbuf[0] = '\0'; 3967 } 3968 3969 dmu_objset_name(os, osname); 3970 3971 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3972 "%s, %llu objects%s%s\n", 3973 osname, type, (u_longlong_t)dmu_objset_id(os), 3974 (u_longlong_t)dds.dds_creation_txg, 3975 numbuf, (u_longlong_t)usedobjs, blkbuf, 3976 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3977 3978 for (i = 0; i < zopt_object_args; i++) { 3979 obj_start = zopt_object_ranges[i].zor_obj_start; 3980 obj_end = zopt_object_ranges[i].zor_obj_end; 3981 flags = zopt_object_ranges[i].zor_flags; 3982 3983 object = obj_start; 3984 if (object == 0 || obj_start == obj_end) 3985 dump_object(os, object, verbosity, &print_header, NULL, 3986 flags); 3987 else 3988 object--; 3989 3990 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3991 object <= obj_end) { 3992 dump_object(os, object, verbosity, &print_header, NULL, 3993 flags); 3994 } 3995 } 3996 3997 if (zopt_object_args > 0) { 3998 (void) printf("\n"); 3999 return; 4000 } 4001 4002 if (dump_opt['i'] != 0 || verbosity >= 2) 4003 dump_intent_log(dmu_objset_zil(os)); 4004 4005 if (dmu_objset_ds(os) != NULL) { 4006 dsl_dataset_t *ds = dmu_objset_ds(os); 4007 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4008 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4009 !dmu_objset_is_snapshot(os)) { 4010 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4011 if (verify_dd_livelist(os) != 0) 4012 fatal("livelist is incorrect"); 4013 } 4014 4015 if (dsl_dataset_remap_deadlist_exists(ds)) { 4016 (void) printf("ds_remap_deadlist:\n"); 4017 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4018 } 4019 count_ds_mos_objects(ds); 4020 } 4021 4022 if (dmu_objset_ds(os) != NULL) 4023 dump_bookmarks(os, verbosity); 4024 4025 if (verbosity < 2) 4026 return; 4027 4028 if (BP_IS_HOLE(os->os_rootbp)) 4029 return; 4030 4031 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4032 object_count = 0; 4033 if (DMU_USERUSED_DNODE(os) != NULL && 4034 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4035 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4036 NULL, 0); 4037 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4038 NULL, 0); 4039 } 4040 4041 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4042 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4043 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4044 &print_header, NULL, 0); 4045 4046 object = 0; 4047 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4048 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4049 0); 4050 object_count++; 4051 total_slots_used += dnode_slots; 4052 max_slot_used = object + dnode_slots - 1; 4053 } 4054 4055 (void) printf("\n"); 4056 4057 (void) printf(" Dnode slots:\n"); 4058 (void) printf("\tTotal used: %10llu\n", 4059 (u_longlong_t)total_slots_used); 4060 (void) printf("\tMax used: %10llu\n", 4061 (u_longlong_t)max_slot_used); 4062 (void) printf("\tPercent empty: %10lf\n", 4063 (double)(max_slot_used - total_slots_used)*100 / 4064 (double)max_slot_used); 4065 (void) printf("\n"); 4066 4067 if (error != ESRCH) { 4068 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4069 abort(); 4070 } 4071 4072 ASSERT3U(object_count, ==, usedobjs); 4073 4074 if (leaked_objects != 0) { 4075 (void) printf("%d potentially leaked objects detected\n", 4076 leaked_objects); 4077 leaked_objects = 0; 4078 } 4079 } 4080 4081 static void 4082 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4083 { 4084 time_t timestamp = ub->ub_timestamp; 4085 4086 (void) printf("%s", header ? header : ""); 4087 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4088 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4089 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4090 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4091 (void) printf("\ttimestamp = %llu UTC = %s", 4092 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4093 4094 (void) printf("\tmmp_magic = %016llx\n", 4095 (u_longlong_t)ub->ub_mmp_magic); 4096 if (MMP_VALID(ub)) { 4097 (void) printf("\tmmp_delay = %0llu\n", 4098 (u_longlong_t)ub->ub_mmp_delay); 4099 if (MMP_SEQ_VALID(ub)) 4100 (void) printf("\tmmp_seq = %u\n", 4101 (unsigned int) MMP_SEQ(ub)); 4102 if (MMP_FAIL_INT_VALID(ub)) 4103 (void) printf("\tmmp_fail = %u\n", 4104 (unsigned int) MMP_FAIL_INT(ub)); 4105 if (MMP_INTERVAL_VALID(ub)) 4106 (void) printf("\tmmp_write = %u\n", 4107 (unsigned int) MMP_INTERVAL(ub)); 4108 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4109 (void) printf("\tmmp_valid = %x\n", 4110 (unsigned int) ub->ub_mmp_config & 0xFF); 4111 } 4112 4113 if (dump_opt['u'] >= 4) { 4114 char blkbuf[BP_SPRINTF_LEN]; 4115 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4116 (void) printf("\trootbp = %s\n", blkbuf); 4117 } 4118 (void) printf("\tcheckpoint_txg = %llu\n", 4119 (u_longlong_t)ub->ub_checkpoint_txg); 4120 4121 (void) printf("\traidz_reflow state=%u off=%llu\n", 4122 (int)RRSS_GET_STATE(ub), 4123 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4124 4125 (void) printf("%s", footer ? footer : ""); 4126 } 4127 4128 static void 4129 dump_config(spa_t *spa) 4130 { 4131 dmu_buf_t *db; 4132 size_t nvsize = 0; 4133 int error = 0; 4134 4135 4136 error = dmu_bonus_hold(spa->spa_meta_objset, 4137 spa->spa_config_object, FTAG, &db); 4138 4139 if (error == 0) { 4140 nvsize = *(uint64_t *)db->db_data; 4141 dmu_buf_rele(db, FTAG); 4142 4143 (void) printf("\nMOS Configuration:\n"); 4144 dump_packed_nvlist(spa->spa_meta_objset, 4145 spa->spa_config_object, (void *)&nvsize, 1); 4146 } else { 4147 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4148 (u_longlong_t)spa->spa_config_object, error); 4149 } 4150 } 4151 4152 static void 4153 dump_cachefile(const char *cachefile) 4154 { 4155 int fd; 4156 struct stat64 statbuf; 4157 char *buf; 4158 nvlist_t *config; 4159 4160 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4161 (void) printf("cannot open '%s': %s\n", cachefile, 4162 strerror(errno)); 4163 exit(1); 4164 } 4165 4166 if (fstat64(fd, &statbuf) != 0) { 4167 (void) printf("failed to stat '%s': %s\n", cachefile, 4168 strerror(errno)); 4169 exit(1); 4170 } 4171 4172 if ((buf = malloc(statbuf.st_size)) == NULL) { 4173 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4174 (u_longlong_t)statbuf.st_size); 4175 exit(1); 4176 } 4177 4178 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4179 (void) fprintf(stderr, "failed to read %llu bytes\n", 4180 (u_longlong_t)statbuf.st_size); 4181 exit(1); 4182 } 4183 4184 (void) close(fd); 4185 4186 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4187 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4188 exit(1); 4189 } 4190 4191 free(buf); 4192 4193 dump_nvlist(config, 0); 4194 4195 nvlist_free(config); 4196 } 4197 4198 /* 4199 * ZFS label nvlist stats 4200 */ 4201 typedef struct zdb_nvl_stats { 4202 int zns_list_count; 4203 int zns_leaf_count; 4204 size_t zns_leaf_largest; 4205 size_t zns_leaf_total; 4206 nvlist_t *zns_string; 4207 nvlist_t *zns_uint64; 4208 nvlist_t *zns_boolean; 4209 } zdb_nvl_stats_t; 4210 4211 static void 4212 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4213 { 4214 nvlist_t *list, **array; 4215 nvpair_t *nvp = NULL; 4216 const char *name; 4217 uint_t i, items; 4218 4219 stats->zns_list_count++; 4220 4221 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4222 name = nvpair_name(nvp); 4223 4224 switch (nvpair_type(nvp)) { 4225 case DATA_TYPE_STRING: 4226 fnvlist_add_string(stats->zns_string, name, 4227 fnvpair_value_string(nvp)); 4228 break; 4229 case DATA_TYPE_UINT64: 4230 fnvlist_add_uint64(stats->zns_uint64, name, 4231 fnvpair_value_uint64(nvp)); 4232 break; 4233 case DATA_TYPE_BOOLEAN: 4234 fnvlist_add_boolean(stats->zns_boolean, name); 4235 break; 4236 case DATA_TYPE_NVLIST: 4237 if (nvpair_value_nvlist(nvp, &list) == 0) 4238 collect_nvlist_stats(list, stats); 4239 break; 4240 case DATA_TYPE_NVLIST_ARRAY: 4241 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4242 break; 4243 4244 for (i = 0; i < items; i++) { 4245 collect_nvlist_stats(array[i], stats); 4246 4247 /* collect stats on leaf vdev */ 4248 if (strcmp(name, "children") == 0) { 4249 size_t size; 4250 4251 (void) nvlist_size(array[i], &size, 4252 NV_ENCODE_XDR); 4253 stats->zns_leaf_total += size; 4254 if (size > stats->zns_leaf_largest) 4255 stats->zns_leaf_largest = size; 4256 stats->zns_leaf_count++; 4257 } 4258 } 4259 break; 4260 default: 4261 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4262 } 4263 } 4264 } 4265 4266 static void 4267 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4268 { 4269 zdb_nvl_stats_t stats = { 0 }; 4270 size_t size, sum = 0, total; 4271 size_t noise; 4272 4273 /* requires nvlist with non-unique names for stat collection */ 4274 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4275 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4276 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4277 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4278 4279 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4280 4281 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4282 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4283 (int)total, (int)(cap - total), 100.0 * total / cap); 4284 4285 collect_nvlist_stats(nvl, &stats); 4286 4287 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4288 size -= noise; 4289 sum += size; 4290 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4291 (int)fnvlist_num_pairs(stats.zns_uint64), 4292 (int)size, 100.0 * size / total); 4293 4294 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4295 size -= noise; 4296 sum += size; 4297 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4298 (int)fnvlist_num_pairs(stats.zns_string), 4299 (int)size, 100.0 * size / total); 4300 4301 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4302 size -= noise; 4303 sum += size; 4304 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4305 (int)fnvlist_num_pairs(stats.zns_boolean), 4306 (int)size, 100.0 * size / total); 4307 4308 size = total - sum; /* treat remainder as nvlist overhead */ 4309 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4310 stats.zns_list_count, (int)size, 100.0 * size / total); 4311 4312 if (stats.zns_leaf_count > 0) { 4313 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4314 4315 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4316 stats.zns_leaf_count, (int)average); 4317 (void) printf("%24d bytes largest\n", 4318 (int)stats.zns_leaf_largest); 4319 4320 if (dump_opt['l'] >= 3 && average > 0) 4321 (void) printf(" space for %d additional leaf vdevs\n", 4322 (int)((cap - total) / average)); 4323 } 4324 (void) printf("\n"); 4325 4326 nvlist_free(stats.zns_string); 4327 nvlist_free(stats.zns_uint64); 4328 nvlist_free(stats.zns_boolean); 4329 } 4330 4331 typedef struct cksum_record { 4332 zio_cksum_t cksum; 4333 boolean_t labels[VDEV_LABELS]; 4334 avl_node_t link; 4335 } cksum_record_t; 4336 4337 static int 4338 cksum_record_compare(const void *x1, const void *x2) 4339 { 4340 const cksum_record_t *l = (cksum_record_t *)x1; 4341 const cksum_record_t *r = (cksum_record_t *)x2; 4342 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4343 int difference = 0; 4344 4345 for (int i = 0; i < arraysize; i++) { 4346 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4347 if (difference) 4348 break; 4349 } 4350 4351 return (difference); 4352 } 4353 4354 static cksum_record_t * 4355 cksum_record_alloc(zio_cksum_t *cksum, int l) 4356 { 4357 cksum_record_t *rec; 4358 4359 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4360 rec->cksum = *cksum; 4361 rec->labels[l] = B_TRUE; 4362 4363 return (rec); 4364 } 4365 4366 static cksum_record_t * 4367 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4368 { 4369 cksum_record_t lookup = { .cksum = *cksum }; 4370 avl_index_t where; 4371 4372 return (avl_find(tree, &lookup, &where)); 4373 } 4374 4375 static cksum_record_t * 4376 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4377 { 4378 cksum_record_t *rec; 4379 4380 rec = cksum_record_lookup(tree, cksum); 4381 if (rec) { 4382 rec->labels[l] = B_TRUE; 4383 } else { 4384 rec = cksum_record_alloc(cksum, l); 4385 avl_add(tree, rec); 4386 } 4387 4388 return (rec); 4389 } 4390 4391 static int 4392 first_label(cksum_record_t *rec) 4393 { 4394 for (int i = 0; i < VDEV_LABELS; i++) 4395 if (rec->labels[i]) 4396 return (i); 4397 4398 return (-1); 4399 } 4400 4401 static void 4402 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4403 { 4404 fputs(prefix, stdout); 4405 for (int i = 0; i < VDEV_LABELS; i++) 4406 if (rec->labels[i] == B_TRUE) 4407 printf("%d ", i); 4408 putchar('\n'); 4409 } 4410 4411 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4412 4413 typedef struct zdb_label { 4414 vdev_label_t label; 4415 uint64_t label_offset; 4416 nvlist_t *config_nv; 4417 cksum_record_t *config; 4418 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4419 boolean_t header_printed; 4420 boolean_t read_failed; 4421 boolean_t cksum_valid; 4422 } zdb_label_t; 4423 4424 static void 4425 print_label_header(zdb_label_t *label, int l) 4426 { 4427 4428 if (dump_opt['q']) 4429 return; 4430 4431 if (label->header_printed == B_TRUE) 4432 return; 4433 4434 (void) printf("------------------------------------\n"); 4435 (void) printf("LABEL %d %s\n", l, 4436 label->cksum_valid ? "" : "(Bad label cksum)"); 4437 (void) printf("------------------------------------\n"); 4438 4439 label->header_printed = B_TRUE; 4440 } 4441 4442 static void 4443 print_l2arc_header(void) 4444 { 4445 (void) printf("------------------------------------\n"); 4446 (void) printf("L2ARC device header\n"); 4447 (void) printf("------------------------------------\n"); 4448 } 4449 4450 static void 4451 print_l2arc_log_blocks(void) 4452 { 4453 (void) printf("------------------------------------\n"); 4454 (void) printf("L2ARC device log blocks\n"); 4455 (void) printf("------------------------------------\n"); 4456 } 4457 4458 static void 4459 dump_l2arc_log_entries(uint64_t log_entries, 4460 l2arc_log_ent_phys_t *le, uint64_t i) 4461 { 4462 for (int j = 0; j < log_entries; j++) { 4463 dva_t dva = le[j].le_dva; 4464 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4465 "vdev: %llu, offset: %llu\n", 4466 (u_longlong_t)i, j + 1, 4467 (u_longlong_t)DVA_GET_ASIZE(&dva), 4468 (u_longlong_t)DVA_GET_VDEV(&dva), 4469 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4470 (void) printf("|\t\t\t\tbirth: %llu\n", 4471 (u_longlong_t)le[j].le_birth); 4472 (void) printf("|\t\t\t\tlsize: %llu\n", 4473 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4474 (void) printf("|\t\t\t\tpsize: %llu\n", 4475 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4476 (void) printf("|\t\t\t\tcompr: %llu\n", 4477 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4478 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4479 (u_longlong_t)(&le[j])->le_complevel); 4480 (void) printf("|\t\t\t\ttype: %llu\n", 4481 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4482 (void) printf("|\t\t\t\tprotected: %llu\n", 4483 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4484 (void) printf("|\t\t\t\tprefetch: %llu\n", 4485 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4486 (void) printf("|\t\t\t\taddress: %llu\n", 4487 (u_longlong_t)le[j].le_daddr); 4488 (void) printf("|\t\t\t\tARC state: %llu\n", 4489 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4490 (void) printf("|\n"); 4491 } 4492 (void) printf("\n"); 4493 } 4494 4495 static void 4496 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4497 { 4498 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4499 (void) printf("|\t\tpayload_asize: %llu\n", 4500 (u_longlong_t)lbps->lbp_payload_asize); 4501 (void) printf("|\t\tpayload_start: %llu\n", 4502 (u_longlong_t)lbps->lbp_payload_start); 4503 (void) printf("|\t\tlsize: %llu\n", 4504 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4505 (void) printf("|\t\tasize: %llu\n", 4506 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4507 (void) printf("|\t\tcompralgo: %llu\n", 4508 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4509 (void) printf("|\t\tcksumalgo: %llu\n", 4510 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4511 (void) printf("|\n\n"); 4512 } 4513 4514 static void 4515 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4516 l2arc_dev_hdr_phys_t *rebuild) 4517 { 4518 l2arc_log_blk_phys_t this_lb; 4519 uint64_t asize; 4520 l2arc_log_blkptr_t lbps[2]; 4521 abd_t *abd; 4522 zio_cksum_t cksum; 4523 int failed = 0; 4524 l2arc_dev_t dev; 4525 4526 if (!dump_opt['q']) 4527 print_l2arc_log_blocks(); 4528 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4529 4530 dev.l2ad_evict = l2dhdr->dh_evict; 4531 dev.l2ad_start = l2dhdr->dh_start; 4532 dev.l2ad_end = l2dhdr->dh_end; 4533 4534 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4535 /* no log blocks to read */ 4536 if (!dump_opt['q']) { 4537 (void) printf("No log blocks to read\n"); 4538 (void) printf("\n"); 4539 } 4540 return; 4541 } else { 4542 dev.l2ad_hand = lbps[0].lbp_daddr + 4543 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4544 } 4545 4546 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4547 4548 for (;;) { 4549 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4550 break; 4551 4552 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4553 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4554 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4555 if (!dump_opt['q']) { 4556 (void) printf("Error while reading next log " 4557 "block\n\n"); 4558 } 4559 break; 4560 } 4561 4562 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4563 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4564 failed++; 4565 if (!dump_opt['q']) { 4566 (void) printf("Invalid cksum\n"); 4567 dump_l2arc_log_blkptr(&lbps[0]); 4568 } 4569 break; 4570 } 4571 4572 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4573 case ZIO_COMPRESS_OFF: 4574 break; 4575 default: 4576 abd = abd_alloc_for_io(asize, B_TRUE); 4577 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4578 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4579 (&lbps[0])->lbp_prop), abd, &this_lb, 4580 asize, sizeof (this_lb), NULL) != 0) { 4581 (void) printf("L2ARC block decompression " 4582 "failed\n"); 4583 abd_free(abd); 4584 goto out; 4585 } 4586 abd_free(abd); 4587 break; 4588 } 4589 4590 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4591 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4592 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4593 if (!dump_opt['q']) 4594 (void) printf("Invalid log block magic\n\n"); 4595 break; 4596 } 4597 4598 rebuild->dh_lb_count++; 4599 rebuild->dh_lb_asize += asize; 4600 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4601 (void) printf("lb[%4llu]\tmagic: %llu\n", 4602 (u_longlong_t)rebuild->dh_lb_count, 4603 (u_longlong_t)this_lb.lb_magic); 4604 dump_l2arc_log_blkptr(&lbps[0]); 4605 } 4606 4607 if (dump_opt['l'] > 2 && !dump_opt['q']) 4608 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4609 this_lb.lb_entries, 4610 rebuild->dh_lb_count); 4611 4612 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4613 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4614 !dev.l2ad_first) 4615 break; 4616 4617 lbps[0] = lbps[1]; 4618 lbps[1] = this_lb.lb_prev_lbp; 4619 } 4620 out: 4621 if (!dump_opt['q']) { 4622 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4623 (u_longlong_t)rebuild->dh_lb_count); 4624 (void) printf("\t\t %d with invalid cksum\n", failed); 4625 (void) printf("log_blk_asize:\t %llu\n\n", 4626 (u_longlong_t)rebuild->dh_lb_asize); 4627 } 4628 } 4629 4630 static int 4631 dump_l2arc_header(int fd) 4632 { 4633 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4634 int error = B_FALSE; 4635 4636 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4637 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4638 error = B_TRUE; 4639 } else { 4640 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4641 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4642 4643 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4644 error = B_TRUE; 4645 } 4646 4647 if (error) { 4648 (void) printf("L2ARC device header not found\n\n"); 4649 /* Do not return an error here for backward compatibility */ 4650 return (0); 4651 } else if (!dump_opt['q']) { 4652 print_l2arc_header(); 4653 4654 (void) printf(" magic: %llu\n", 4655 (u_longlong_t)l2dhdr.dh_magic); 4656 (void) printf(" version: %llu\n", 4657 (u_longlong_t)l2dhdr.dh_version); 4658 (void) printf(" pool_guid: %llu\n", 4659 (u_longlong_t)l2dhdr.dh_spa_guid); 4660 (void) printf(" flags: %llu\n", 4661 (u_longlong_t)l2dhdr.dh_flags); 4662 (void) printf(" start_lbps[0]: %llu\n", 4663 (u_longlong_t) 4664 l2dhdr.dh_start_lbps[0].lbp_daddr); 4665 (void) printf(" start_lbps[1]: %llu\n", 4666 (u_longlong_t) 4667 l2dhdr.dh_start_lbps[1].lbp_daddr); 4668 (void) printf(" log_blk_ent: %llu\n", 4669 (u_longlong_t)l2dhdr.dh_log_entries); 4670 (void) printf(" start: %llu\n", 4671 (u_longlong_t)l2dhdr.dh_start); 4672 (void) printf(" end: %llu\n", 4673 (u_longlong_t)l2dhdr.dh_end); 4674 (void) printf(" evict: %llu\n", 4675 (u_longlong_t)l2dhdr.dh_evict); 4676 (void) printf(" lb_asize_refcount: %llu\n", 4677 (u_longlong_t)l2dhdr.dh_lb_asize); 4678 (void) printf(" lb_count_refcount: %llu\n", 4679 (u_longlong_t)l2dhdr.dh_lb_count); 4680 (void) printf(" trim_action_time: %llu\n", 4681 (u_longlong_t)l2dhdr.dh_trim_action_time); 4682 (void) printf(" trim_state: %llu\n\n", 4683 (u_longlong_t)l2dhdr.dh_trim_state); 4684 } 4685 4686 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4687 /* 4688 * The total aligned size of log blocks and the number of log blocks 4689 * reported in the header of the device may be less than what zdb 4690 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4691 * This happens because dump_l2arc_log_blocks() lacks the memory 4692 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4693 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4694 * and dh_lb_count will be lower to begin with than what exists on the 4695 * device. This is normal and zdb should not exit with an error. The 4696 * opposite case should never happen though, the values reported in the 4697 * header should never be higher than what dump_l2arc_log_blocks() and 4698 * l2arc_rebuild() report. If this happens there is a leak in the 4699 * accounting of log blocks. 4700 */ 4701 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4702 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4703 return (1); 4704 4705 return (0); 4706 } 4707 4708 static void 4709 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4710 { 4711 if (dump_opt['q']) 4712 return; 4713 4714 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4715 return; 4716 4717 print_label_header(label, l); 4718 dump_nvlist(label->config_nv, 4); 4719 print_label_numbers(" labels = ", label->config); 4720 4721 if (dump_opt['l'] >= 2) 4722 dump_nvlist_stats(label->config_nv, buflen); 4723 } 4724 4725 #define ZDB_MAX_UB_HEADER_SIZE 32 4726 4727 static void 4728 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4729 { 4730 4731 vdev_t vd; 4732 char header[ZDB_MAX_UB_HEADER_SIZE]; 4733 4734 vd.vdev_ashift = ashift; 4735 vd.vdev_top = &vd; 4736 4737 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4738 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4739 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4740 cksum_record_t *rec = label->uberblocks[i]; 4741 4742 if (rec == NULL) { 4743 if (dump_opt['u'] >= 2) { 4744 print_label_header(label, label_num); 4745 (void) printf(" Uberblock[%d] invalid\n", i); 4746 } 4747 continue; 4748 } 4749 4750 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4751 continue; 4752 4753 if ((dump_opt['u'] < 4) && 4754 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4755 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4756 continue; 4757 4758 print_label_header(label, label_num); 4759 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4760 " Uberblock[%d]\n", i); 4761 dump_uberblock(ub, header, ""); 4762 print_label_numbers(" labels = ", rec); 4763 } 4764 } 4765 4766 static char curpath[PATH_MAX]; 4767 4768 /* 4769 * Iterate through the path components, recursively passing 4770 * current one's obj and remaining path until we find the obj 4771 * for the last one. 4772 */ 4773 static int 4774 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4775 { 4776 int err; 4777 boolean_t header = B_TRUE; 4778 uint64_t child_obj; 4779 char *s; 4780 dmu_buf_t *db; 4781 dmu_object_info_t doi; 4782 4783 if ((s = strchr(name, '/')) != NULL) 4784 *s = '\0'; 4785 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4786 4787 (void) strlcat(curpath, name, sizeof (curpath)); 4788 4789 if (err != 0) { 4790 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4791 curpath, strerror(err)); 4792 return (err); 4793 } 4794 4795 child_obj = ZFS_DIRENT_OBJ(child_obj); 4796 err = sa_buf_hold(os, child_obj, FTAG, &db); 4797 if (err != 0) { 4798 (void) fprintf(stderr, 4799 "failed to get SA dbuf for obj %llu: %s\n", 4800 (u_longlong_t)child_obj, strerror(err)); 4801 return (EINVAL); 4802 } 4803 dmu_object_info_from_db(db, &doi); 4804 sa_buf_rele(db, FTAG); 4805 4806 if (doi.doi_bonus_type != DMU_OT_SA && 4807 doi.doi_bonus_type != DMU_OT_ZNODE) { 4808 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4809 doi.doi_bonus_type, (u_longlong_t)child_obj); 4810 return (EINVAL); 4811 } 4812 4813 if (dump_opt['v'] > 6) { 4814 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4815 (u_longlong_t)child_obj, curpath, doi.doi_type, 4816 doi.doi_bonus_type); 4817 } 4818 4819 (void) strlcat(curpath, "/", sizeof (curpath)); 4820 4821 switch (doi.doi_type) { 4822 case DMU_OT_DIRECTORY_CONTENTS: 4823 if (s != NULL && *(s + 1) != '\0') 4824 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4825 zfs_fallthrough; 4826 case DMU_OT_PLAIN_FILE_CONTENTS: 4827 if (retobj != NULL) { 4828 *retobj = child_obj; 4829 } else { 4830 dump_object(os, child_obj, dump_opt['v'], &header, 4831 NULL, 0); 4832 } 4833 return (0); 4834 default: 4835 (void) fprintf(stderr, "object %llu has non-file/directory " 4836 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4837 break; 4838 } 4839 4840 return (EINVAL); 4841 } 4842 4843 /* 4844 * Dump the blocks for the object specified by path inside the dataset. 4845 */ 4846 static int 4847 dump_path(char *ds, char *path, uint64_t *retobj) 4848 { 4849 int err; 4850 objset_t *os; 4851 uint64_t root_obj; 4852 4853 err = open_objset(ds, FTAG, &os); 4854 if (err != 0) 4855 return (err); 4856 4857 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4858 if (err != 0) { 4859 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4860 strerror(err)); 4861 close_objset(os, FTAG); 4862 return (EINVAL); 4863 } 4864 4865 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4866 4867 err = dump_path_impl(os, root_obj, path, retobj); 4868 4869 close_objset(os, FTAG); 4870 return (err); 4871 } 4872 4873 static int 4874 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4875 { 4876 const char *p = (const char *)buf; 4877 ssize_t nwritten; 4878 4879 (void) os; 4880 (void) arg; 4881 4882 /* Write the data out, handling short writes and signals. */ 4883 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4884 if (nwritten < 0) { 4885 if (errno == EINTR) 4886 continue; 4887 return (errno); 4888 } 4889 p += nwritten; 4890 len -= nwritten; 4891 } 4892 4893 return (0); 4894 } 4895 4896 static void 4897 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4898 { 4899 boolean_t embed = B_FALSE; 4900 boolean_t large_block = B_FALSE; 4901 boolean_t compress = B_FALSE; 4902 boolean_t raw = B_FALSE; 4903 4904 const char *c; 4905 for (c = flagstr; c != NULL && *c != '\0'; c++) { 4906 switch (*c) { 4907 case 'e': 4908 embed = B_TRUE; 4909 break; 4910 case 'L': 4911 large_block = B_TRUE; 4912 break; 4913 case 'c': 4914 compress = B_TRUE; 4915 break; 4916 case 'w': 4917 raw = B_TRUE; 4918 break; 4919 default: 4920 fprintf(stderr, "dump_backup: invalid flag " 4921 "'%c'\n", *c); 4922 return; 4923 } 4924 } 4925 4926 if (isatty(STDOUT_FILENO)) { 4927 fprintf(stderr, "dump_backup: stream cannot be written " 4928 "to a terminal\n"); 4929 return; 4930 } 4931 4932 offset_t off = 0; 4933 dmu_send_outparams_t out = { 4934 .dso_outfunc = dump_backup_bytes, 4935 .dso_dryrun = B_FALSE, 4936 }; 4937 4938 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 4939 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 4940 &off, &out); 4941 if (err != 0) { 4942 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 4943 strerror(err)); 4944 return; 4945 } 4946 } 4947 4948 static int 4949 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4950 { 4951 int err = 0; 4952 uint64_t size, readsize, oursize, offset; 4953 ssize_t writesize; 4954 sa_handle_t *hdl; 4955 4956 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4957 destfile); 4958 4959 VERIFY3P(os, ==, sa_os); 4960 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4961 (void) printf("Failed to get handle for SA znode\n"); 4962 return (err); 4963 } 4964 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4965 (void) sa_handle_destroy(hdl); 4966 return (err); 4967 } 4968 (void) sa_handle_destroy(hdl); 4969 4970 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4971 size); 4972 if (size == 0) { 4973 return (EINVAL); 4974 } 4975 4976 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4977 if (fd == -1) 4978 return (errno); 4979 /* 4980 * We cap the size at 1 mebibyte here to prevent 4981 * allocation failures and nigh-infinite printing if the 4982 * object is extremely large. 4983 */ 4984 oursize = MIN(size, 1 << 20); 4985 offset = 0; 4986 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4987 if (buf == NULL) { 4988 (void) close(fd); 4989 return (ENOMEM); 4990 } 4991 4992 while (offset < size) { 4993 readsize = MIN(size - offset, 1 << 20); 4994 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 4995 if (err != 0) { 4996 (void) printf("got error %u from dmu_read\n", err); 4997 kmem_free(buf, oursize); 4998 (void) close(fd); 4999 return (err); 5000 } 5001 if (dump_opt['v'] > 3) { 5002 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5003 " error=%d\n", offset, readsize, err); 5004 } 5005 5006 writesize = write(fd, buf, readsize); 5007 if (writesize < 0) { 5008 err = errno; 5009 break; 5010 } else if (writesize != readsize) { 5011 /* Incomplete write */ 5012 (void) fprintf(stderr, "Short write, only wrote %llu of" 5013 " %" PRIu64 " bytes, exiting...\n", 5014 (u_longlong_t)writesize, readsize); 5015 break; 5016 } 5017 5018 offset += readsize; 5019 } 5020 5021 (void) close(fd); 5022 5023 if (buf != NULL) 5024 kmem_free(buf, oursize); 5025 5026 return (err); 5027 } 5028 5029 static boolean_t 5030 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5031 { 5032 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5033 zio_cksum_t expected_cksum; 5034 zio_cksum_t actual_cksum; 5035 zio_cksum_t verifier; 5036 zio_eck_t *eck; 5037 int byteswap; 5038 5039 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5040 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5041 5042 offset += offsetof(vdev_label_t, vl_vdev_phys); 5043 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5044 5045 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5046 if (byteswap) 5047 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5048 5049 expected_cksum = eck->zec_cksum; 5050 eck->zec_cksum = verifier; 5051 5052 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5053 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5054 abd_free(abd); 5055 5056 if (byteswap) 5057 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5058 5059 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5060 return (B_TRUE); 5061 5062 return (B_FALSE); 5063 } 5064 5065 static int 5066 dump_label(const char *dev) 5067 { 5068 char path[MAXPATHLEN]; 5069 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5070 uint64_t psize, ashift, l2cache; 5071 struct stat64 statbuf; 5072 boolean_t config_found = B_FALSE; 5073 boolean_t error = B_FALSE; 5074 boolean_t read_l2arc_header = B_FALSE; 5075 avl_tree_t config_tree; 5076 avl_tree_t uberblock_tree; 5077 void *node, *cookie; 5078 int fd; 5079 5080 /* 5081 * Check if we were given absolute path and use it as is. 5082 * Otherwise if the provided vdev name doesn't point to a file, 5083 * try prepending expected disk paths and partition numbers. 5084 */ 5085 (void) strlcpy(path, dev, sizeof (path)); 5086 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5087 int error; 5088 5089 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5090 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5091 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5092 error = ENOENT; 5093 } 5094 5095 if (error || (stat64(path, &statbuf) != 0)) { 5096 (void) printf("failed to find device %s, try " 5097 "specifying absolute path instead\n", dev); 5098 return (1); 5099 } 5100 } 5101 5102 if ((fd = open64(path, O_RDONLY)) < 0) { 5103 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5104 exit(1); 5105 } 5106 5107 if (fstat64_blk(fd, &statbuf) != 0) { 5108 (void) printf("failed to stat '%s': %s\n", path, 5109 strerror(errno)); 5110 (void) close(fd); 5111 exit(1); 5112 } 5113 5114 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5115 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5116 strerror(errno)); 5117 5118 avl_create(&config_tree, cksum_record_compare, 5119 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5120 avl_create(&uberblock_tree, cksum_record_compare, 5121 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5122 5123 psize = statbuf.st_size; 5124 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 5125 ashift = SPA_MINBLOCKSHIFT; 5126 5127 /* 5128 * 1. Read the label from disk 5129 * 2. Verify label cksum 5130 * 3. Unpack the configuration and insert in config tree. 5131 * 4. Traverse all uberblocks and insert in uberblock tree. 5132 */ 5133 for (int l = 0; l < VDEV_LABELS; l++) { 5134 zdb_label_t *label = &labels[l]; 5135 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5136 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5137 nvlist_t *config; 5138 cksum_record_t *rec; 5139 zio_cksum_t cksum; 5140 vdev_t vd; 5141 5142 label->label_offset = vdev_label_offset(psize, l, 0); 5143 5144 if (pread64(fd, &label->label, sizeof (label->label), 5145 label->label_offset) != sizeof (label->label)) { 5146 if (!dump_opt['q']) 5147 (void) printf("failed to read label %d\n", l); 5148 label->read_failed = B_TRUE; 5149 error = B_TRUE; 5150 continue; 5151 } 5152 5153 label->read_failed = B_FALSE; 5154 label->cksum_valid = label_cksum_valid(&label->label, 5155 label->label_offset); 5156 5157 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5158 nvlist_t *vdev_tree = NULL; 5159 size_t size; 5160 5161 if ((nvlist_lookup_nvlist(config, 5162 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5163 (nvlist_lookup_uint64(vdev_tree, 5164 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5165 ashift = SPA_MINBLOCKSHIFT; 5166 5167 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5168 size = buflen; 5169 5170 /* If the device is a cache device read the header. */ 5171 if (!read_l2arc_header) { 5172 if (nvlist_lookup_uint64(config, 5173 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5174 l2cache == POOL_STATE_L2CACHE) { 5175 read_l2arc_header = B_TRUE; 5176 } 5177 } 5178 5179 fletcher_4_native_varsize(buf, size, &cksum); 5180 rec = cksum_record_insert(&config_tree, &cksum, l); 5181 5182 label->config = rec; 5183 label->config_nv = config; 5184 config_found = B_TRUE; 5185 } else { 5186 error = B_TRUE; 5187 } 5188 5189 vd.vdev_ashift = ashift; 5190 vd.vdev_top = &vd; 5191 5192 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5193 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5194 uberblock_t *ub = (void *)((char *)label + uoff); 5195 5196 if (uberblock_verify(ub)) 5197 continue; 5198 5199 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5200 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5201 5202 label->uberblocks[i] = rec; 5203 } 5204 } 5205 5206 /* 5207 * Dump the label and uberblocks. 5208 */ 5209 for (int l = 0; l < VDEV_LABELS; l++) { 5210 zdb_label_t *label = &labels[l]; 5211 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5212 5213 if (label->read_failed == B_TRUE) 5214 continue; 5215 5216 if (label->config_nv) { 5217 dump_config_from_label(label, buflen, l); 5218 } else { 5219 if (!dump_opt['q']) 5220 (void) printf("failed to unpack label %d\n", l); 5221 } 5222 5223 if (dump_opt['u']) 5224 dump_label_uberblocks(label, ashift, l); 5225 5226 nvlist_free(label->config_nv); 5227 } 5228 5229 /* 5230 * Dump the L2ARC header, if existent. 5231 */ 5232 if (read_l2arc_header) 5233 error |= dump_l2arc_header(fd); 5234 5235 cookie = NULL; 5236 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5237 umem_free(node, sizeof (cksum_record_t)); 5238 5239 cookie = NULL; 5240 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5241 umem_free(node, sizeof (cksum_record_t)); 5242 5243 avl_destroy(&config_tree); 5244 avl_destroy(&uberblock_tree); 5245 5246 (void) close(fd); 5247 5248 return (config_found == B_FALSE ? 2 : 5249 (error == B_TRUE ? 1 : 0)); 5250 } 5251 5252 static uint64_t dataset_feature_count[SPA_FEATURES]; 5253 static uint64_t global_feature_count[SPA_FEATURES]; 5254 static uint64_t remap_deadlist_count = 0; 5255 5256 static int 5257 dump_one_objset(const char *dsname, void *arg) 5258 { 5259 (void) arg; 5260 int error; 5261 objset_t *os; 5262 spa_feature_t f; 5263 5264 error = open_objset(dsname, FTAG, &os); 5265 if (error != 0) 5266 return (0); 5267 5268 for (f = 0; f < SPA_FEATURES; f++) { 5269 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5270 continue; 5271 ASSERT(spa_feature_table[f].fi_flags & 5272 ZFEATURE_FLAG_PER_DATASET); 5273 dataset_feature_count[f]++; 5274 } 5275 5276 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5277 remap_deadlist_count++; 5278 } 5279 5280 for (dsl_bookmark_node_t *dbn = 5281 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5282 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5283 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5284 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5285 global_feature_count[ 5286 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5287 objset_t *mos = os->os_spa->spa_meta_objset; 5288 dnode_t *rl; 5289 VERIFY0(dnode_hold(mos, 5290 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5291 if (rl->dn_have_spill) { 5292 global_feature_count[ 5293 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5294 } 5295 } 5296 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5297 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5298 } 5299 5300 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5301 !dmu_objset_is_snapshot(os)) { 5302 global_feature_count[SPA_FEATURE_LIVELIST]++; 5303 } 5304 5305 dump_objset(os); 5306 close_objset(os, FTAG); 5307 fuid_table_destroy(); 5308 return (0); 5309 } 5310 5311 /* 5312 * Block statistics. 5313 */ 5314 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5315 typedef struct zdb_blkstats { 5316 uint64_t zb_asize; 5317 uint64_t zb_lsize; 5318 uint64_t zb_psize; 5319 uint64_t zb_count; 5320 uint64_t zb_gangs; 5321 uint64_t zb_ditto_samevdev; 5322 uint64_t zb_ditto_same_ms; 5323 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5324 } zdb_blkstats_t; 5325 5326 /* 5327 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5328 */ 5329 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5330 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5331 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5332 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5333 5334 static const char *zdb_ot_extname[] = { 5335 "deferred free", 5336 "dedup ditto", 5337 "other", 5338 "Total", 5339 }; 5340 5341 #define ZB_TOTAL DN_MAX_LEVELS 5342 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5343 5344 typedef struct zdb_brt_entry { 5345 dva_t zbre_dva; 5346 uint64_t zbre_refcount; 5347 avl_node_t zbre_node; 5348 } zdb_brt_entry_t; 5349 5350 typedef struct zdb_cb { 5351 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5352 uint64_t zcb_removing_size; 5353 uint64_t zcb_checkpoint_size; 5354 uint64_t zcb_dedup_asize; 5355 uint64_t zcb_dedup_blocks; 5356 uint64_t zcb_clone_asize; 5357 uint64_t zcb_clone_blocks; 5358 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5359 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5360 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5361 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5362 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5363 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5364 uint64_t zcb_psize_total; 5365 uint64_t zcb_lsize_total; 5366 uint64_t zcb_asize_total; 5367 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5368 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5369 [BPE_PAYLOAD_SIZE + 1]; 5370 uint64_t zcb_start; 5371 hrtime_t zcb_lastprint; 5372 uint64_t zcb_totalasize; 5373 uint64_t zcb_errors[256]; 5374 int zcb_readfails; 5375 int zcb_haderrors; 5376 spa_t *zcb_spa; 5377 uint32_t **zcb_vd_obsolete_counts; 5378 avl_tree_t zcb_brt; 5379 boolean_t zcb_brt_is_active; 5380 } zdb_cb_t; 5381 5382 /* test if two DVA offsets from same vdev are within the same metaslab */ 5383 static boolean_t 5384 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5385 { 5386 vdev_t *vd = vdev_lookup_top(spa, vdev); 5387 uint64_t ms_shift = vd->vdev_ms_shift; 5388 5389 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5390 } 5391 5392 /* 5393 * Used to simplify reporting of the histogram data. 5394 */ 5395 typedef struct one_histo { 5396 const char *name; 5397 uint64_t *count; 5398 uint64_t *len; 5399 uint64_t cumulative; 5400 } one_histo_t; 5401 5402 /* 5403 * The number of separate histograms processed for psize, lsize and asize. 5404 */ 5405 #define NUM_HISTO 3 5406 5407 /* 5408 * This routine will create a fixed column size output of three different 5409 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5410 * the count, length and cumulative length of the psize, lsize and 5411 * asize blocks. 5412 * 5413 * All three types of blocks are listed on a single line 5414 * 5415 * By default the table is printed in nicenumber format (e.g. 123K) but 5416 * if the '-P' parameter is specified then the full raw number (parseable) 5417 * is printed out. 5418 */ 5419 static void 5420 dump_size_histograms(zdb_cb_t *zcb) 5421 { 5422 /* 5423 * A temporary buffer that allows us to convert a number into 5424 * a string using zdb_nicenumber to allow either raw or human 5425 * readable numbers to be output. 5426 */ 5427 char numbuf[32]; 5428 5429 /* 5430 * Define titles which are used in the headers of the tables 5431 * printed by this routine. 5432 */ 5433 const char blocksize_title1[] = "block"; 5434 const char blocksize_title2[] = "size"; 5435 const char count_title[] = "Count"; 5436 const char length_title[] = "Size"; 5437 const char cumulative_title[] = "Cum."; 5438 5439 /* 5440 * Setup the histogram arrays (psize, lsize, and asize). 5441 */ 5442 one_histo_t parm_histo[NUM_HISTO]; 5443 5444 parm_histo[0].name = "psize"; 5445 parm_histo[0].count = zcb->zcb_psize_count; 5446 parm_histo[0].len = zcb->zcb_psize_len; 5447 parm_histo[0].cumulative = 0; 5448 5449 parm_histo[1].name = "lsize"; 5450 parm_histo[1].count = zcb->zcb_lsize_count; 5451 parm_histo[1].len = zcb->zcb_lsize_len; 5452 parm_histo[1].cumulative = 0; 5453 5454 parm_histo[2].name = "asize"; 5455 parm_histo[2].count = zcb->zcb_asize_count; 5456 parm_histo[2].len = zcb->zcb_asize_len; 5457 parm_histo[2].cumulative = 0; 5458 5459 5460 (void) printf("\nBlock Size Histogram\n"); 5461 /* 5462 * Print the first line titles 5463 */ 5464 if (dump_opt['P']) 5465 (void) printf("\n%s\t", blocksize_title1); 5466 else 5467 (void) printf("\n%7s ", blocksize_title1); 5468 5469 for (int j = 0; j < NUM_HISTO; j++) { 5470 if (dump_opt['P']) { 5471 if (j < NUM_HISTO - 1) { 5472 (void) printf("%s\t\t\t", parm_histo[j].name); 5473 } else { 5474 /* Don't print trailing spaces */ 5475 (void) printf(" %s", parm_histo[j].name); 5476 } 5477 } else { 5478 if (j < NUM_HISTO - 1) { 5479 /* Left aligned strings in the output */ 5480 (void) printf("%-7s ", 5481 parm_histo[j].name); 5482 } else { 5483 /* Don't print trailing spaces */ 5484 (void) printf("%s", parm_histo[j].name); 5485 } 5486 } 5487 } 5488 (void) printf("\n"); 5489 5490 /* 5491 * Print the second line titles 5492 */ 5493 if (dump_opt['P']) { 5494 (void) printf("%s\t", blocksize_title2); 5495 } else { 5496 (void) printf("%7s ", blocksize_title2); 5497 } 5498 5499 for (int i = 0; i < NUM_HISTO; i++) { 5500 if (dump_opt['P']) { 5501 (void) printf("%s\t%s\t%s\t", 5502 count_title, length_title, cumulative_title); 5503 } else { 5504 (void) printf("%7s%7s%7s", 5505 count_title, length_title, cumulative_title); 5506 } 5507 } 5508 (void) printf("\n"); 5509 5510 /* 5511 * Print the rows 5512 */ 5513 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5514 5515 /* 5516 * Print the first column showing the blocksize 5517 */ 5518 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5519 5520 if (dump_opt['P']) { 5521 printf("%s", numbuf); 5522 } else { 5523 printf("%7s:", numbuf); 5524 } 5525 5526 /* 5527 * Print the remaining set of 3 columns per size: 5528 * for psize, lsize and asize 5529 */ 5530 for (int j = 0; j < NUM_HISTO; j++) { 5531 parm_histo[j].cumulative += parm_histo[j].len[i]; 5532 5533 zdb_nicenum(parm_histo[j].count[i], 5534 numbuf, sizeof (numbuf)); 5535 if (dump_opt['P']) 5536 (void) printf("\t%s", numbuf); 5537 else 5538 (void) printf("%7s", numbuf); 5539 5540 zdb_nicenum(parm_histo[j].len[i], 5541 numbuf, sizeof (numbuf)); 5542 if (dump_opt['P']) 5543 (void) printf("\t%s", numbuf); 5544 else 5545 (void) printf("%7s", numbuf); 5546 5547 zdb_nicenum(parm_histo[j].cumulative, 5548 numbuf, sizeof (numbuf)); 5549 if (dump_opt['P']) 5550 (void) printf("\t%s", numbuf); 5551 else 5552 (void) printf("%7s", numbuf); 5553 } 5554 (void) printf("\n"); 5555 } 5556 } 5557 5558 static void 5559 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5560 dmu_object_type_t type) 5561 { 5562 uint64_t refcnt = 0; 5563 int i; 5564 5565 ASSERT(type < ZDB_OT_TOTAL); 5566 5567 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5568 return; 5569 5570 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5571 5572 for (i = 0; i < 4; i++) { 5573 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5574 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5575 int equal; 5576 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5577 5578 zb->zb_asize += BP_GET_ASIZE(bp); 5579 zb->zb_lsize += BP_GET_LSIZE(bp); 5580 zb->zb_psize += BP_GET_PSIZE(bp); 5581 zb->zb_count++; 5582 5583 /* 5584 * The histogram is only big enough to record blocks up to 5585 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5586 * "other", bucket. 5587 */ 5588 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5589 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5590 zb->zb_psize_histogram[idx]++; 5591 5592 zb->zb_gangs += BP_COUNT_GANG(bp); 5593 5594 switch (BP_GET_NDVAS(bp)) { 5595 case 2: 5596 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5597 DVA_GET_VDEV(&bp->blk_dva[1])) { 5598 zb->zb_ditto_samevdev++; 5599 5600 if (same_metaslab(zcb->zcb_spa, 5601 DVA_GET_VDEV(&bp->blk_dva[0]), 5602 DVA_GET_OFFSET(&bp->blk_dva[0]), 5603 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5604 zb->zb_ditto_same_ms++; 5605 } 5606 break; 5607 case 3: 5608 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5609 DVA_GET_VDEV(&bp->blk_dva[1])) + 5610 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5611 DVA_GET_VDEV(&bp->blk_dva[2])) + 5612 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5613 DVA_GET_VDEV(&bp->blk_dva[2])); 5614 if (equal != 0) { 5615 zb->zb_ditto_samevdev++; 5616 5617 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5618 DVA_GET_VDEV(&bp->blk_dva[1]) && 5619 same_metaslab(zcb->zcb_spa, 5620 DVA_GET_VDEV(&bp->blk_dva[0]), 5621 DVA_GET_OFFSET(&bp->blk_dva[0]), 5622 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5623 zb->zb_ditto_same_ms++; 5624 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5625 DVA_GET_VDEV(&bp->blk_dva[2]) && 5626 same_metaslab(zcb->zcb_spa, 5627 DVA_GET_VDEV(&bp->blk_dva[0]), 5628 DVA_GET_OFFSET(&bp->blk_dva[0]), 5629 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5630 zb->zb_ditto_same_ms++; 5631 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5632 DVA_GET_VDEV(&bp->blk_dva[2]) && 5633 same_metaslab(zcb->zcb_spa, 5634 DVA_GET_VDEV(&bp->blk_dva[1]), 5635 DVA_GET_OFFSET(&bp->blk_dva[1]), 5636 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5637 zb->zb_ditto_same_ms++; 5638 } 5639 break; 5640 } 5641 } 5642 5643 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5644 5645 if (BP_IS_EMBEDDED(bp)) { 5646 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5647 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5648 [BPE_GET_PSIZE(bp)]++; 5649 return; 5650 } 5651 /* 5652 * The binning histogram bins by powers of two up to 5653 * SPA_MAXBLOCKSIZE rather than creating bins for 5654 * every possible blocksize found in the pool. 5655 */ 5656 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5657 5658 zcb->zcb_psize_count[bin]++; 5659 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5660 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5661 5662 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5663 5664 zcb->zcb_lsize_count[bin]++; 5665 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5666 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5667 5668 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5669 5670 zcb->zcb_asize_count[bin]++; 5671 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5672 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5673 5674 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5675 /* 5676 * Cloned blocks are special. We need to count them, so we can 5677 * later uncount them when reporting leaked space, and we must 5678 * only claim them them once. 5679 * 5680 * To do this, we keep our own in-memory BRT. For each block 5681 * we haven't seen before, we look it up in the real BRT and 5682 * if its there, we note it and its refcount then proceed as 5683 * normal. If we see the block again, we count it as a clone 5684 * and then give it no further consideration. 5685 */ 5686 zdb_brt_entry_t zbre_search, *zbre; 5687 avl_index_t where; 5688 5689 zbre_search.zbre_dva = bp->blk_dva[0]; 5690 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5691 if (zbre != NULL) { 5692 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5693 zcb->zcb_clone_blocks++; 5694 5695 zbre->zbre_refcount--; 5696 if (zbre->zbre_refcount == 0) { 5697 avl_remove(&zcb->zcb_brt, zbre); 5698 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5699 } 5700 return; 5701 } 5702 5703 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5704 if (crefcnt > 0) { 5705 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5706 UMEM_NOFAIL); 5707 zbre->zbre_dva = bp->blk_dva[0]; 5708 zbre->zbre_refcount = crefcnt; 5709 avl_insert(&zcb->zcb_brt, zbre, where); 5710 } 5711 } 5712 5713 if (dump_opt['L']) 5714 return; 5715 5716 if (BP_GET_DEDUP(bp)) { 5717 ddt_t *ddt; 5718 ddt_entry_t *dde; 5719 5720 ddt = ddt_select(zcb->zcb_spa, bp); 5721 ddt_enter(ddt); 5722 dde = ddt_lookup(ddt, bp, B_FALSE); 5723 5724 if (dde == NULL) { 5725 refcnt = 0; 5726 } else { 5727 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5728 ddt_phys_decref(ddp); 5729 refcnt = ddp->ddp_refcnt; 5730 if (ddt_phys_total_refcnt(dde) == 0) 5731 ddt_remove(ddt, dde); 5732 } 5733 ddt_exit(ddt); 5734 } 5735 5736 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5737 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5738 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5739 } 5740 5741 static void 5742 zdb_blkptr_done(zio_t *zio) 5743 { 5744 spa_t *spa = zio->io_spa; 5745 blkptr_t *bp = zio->io_bp; 5746 int ioerr = zio->io_error; 5747 zdb_cb_t *zcb = zio->io_private; 5748 zbookmark_phys_t *zb = &zio->io_bookmark; 5749 5750 mutex_enter(&spa->spa_scrub_lock); 5751 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5752 cv_broadcast(&spa->spa_scrub_io_cv); 5753 5754 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5755 char blkbuf[BP_SPRINTF_LEN]; 5756 5757 zcb->zcb_haderrors = 1; 5758 zcb->zcb_errors[ioerr]++; 5759 5760 if (dump_opt['b'] >= 2) 5761 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5762 else 5763 blkbuf[0] = '\0'; 5764 5765 (void) printf("zdb_blkptr_cb: " 5766 "Got error %d reading " 5767 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5768 ioerr, 5769 (u_longlong_t)zb->zb_objset, 5770 (u_longlong_t)zb->zb_object, 5771 (u_longlong_t)zb->zb_level, 5772 (u_longlong_t)zb->zb_blkid, 5773 blkbuf); 5774 } 5775 mutex_exit(&spa->spa_scrub_lock); 5776 5777 abd_free(zio->io_abd); 5778 } 5779 5780 static int 5781 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5782 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5783 { 5784 zdb_cb_t *zcb = arg; 5785 dmu_object_type_t type; 5786 boolean_t is_metadata; 5787 5788 if (zb->zb_level == ZB_DNODE_LEVEL) 5789 return (0); 5790 5791 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5792 char blkbuf[BP_SPRINTF_LEN]; 5793 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5794 (void) printf("objset %llu object %llu " 5795 "level %lld offset 0x%llx %s\n", 5796 (u_longlong_t)zb->zb_objset, 5797 (u_longlong_t)zb->zb_object, 5798 (longlong_t)zb->zb_level, 5799 (u_longlong_t)blkid2offset(dnp, bp, zb), 5800 blkbuf); 5801 } 5802 5803 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5804 return (0); 5805 5806 type = BP_GET_TYPE(bp); 5807 5808 zdb_count_block(zcb, zilog, bp, 5809 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5810 5811 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5812 5813 if (!BP_IS_EMBEDDED(bp) && 5814 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5815 size_t size = BP_GET_PSIZE(bp); 5816 abd_t *abd = abd_alloc(size, B_FALSE); 5817 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5818 5819 /* If it's an intent log block, failure is expected. */ 5820 if (zb->zb_level == ZB_ZIL_LEVEL) 5821 flags |= ZIO_FLAG_SPECULATIVE; 5822 5823 mutex_enter(&spa->spa_scrub_lock); 5824 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5825 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5826 spa->spa_load_verify_bytes += size; 5827 mutex_exit(&spa->spa_scrub_lock); 5828 5829 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5830 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5831 } 5832 5833 zcb->zcb_readfails = 0; 5834 5835 /* only call gethrtime() every 100 blocks */ 5836 static int iters; 5837 if (++iters > 100) 5838 iters = 0; 5839 else 5840 return (0); 5841 5842 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5843 uint64_t now = gethrtime(); 5844 char buf[10]; 5845 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5846 uint64_t kb_per_sec = 5847 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5848 uint64_t sec_remaining = 5849 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5850 5851 /* make sure nicenum has enough space */ 5852 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5853 5854 zfs_nicebytes(bytes, buf, sizeof (buf)); 5855 (void) fprintf(stderr, 5856 "\r%5s completed (%4"PRIu64"MB/s) " 5857 "estimated time remaining: " 5858 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5859 buf, kb_per_sec / 1024, 5860 sec_remaining / 60 / 60, 5861 sec_remaining / 60 % 60, 5862 sec_remaining % 60); 5863 5864 zcb->zcb_lastprint = now; 5865 } 5866 5867 return (0); 5868 } 5869 5870 static void 5871 zdb_leak(void *arg, uint64_t start, uint64_t size) 5872 { 5873 vdev_t *vd = arg; 5874 5875 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5876 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5877 } 5878 5879 static metaslab_ops_t zdb_metaslab_ops = { 5880 NULL /* alloc */ 5881 }; 5882 5883 static int 5884 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5885 uint64_t txg, void *arg) 5886 { 5887 spa_vdev_removal_t *svr = arg; 5888 5889 uint64_t offset = sme->sme_offset; 5890 uint64_t size = sme->sme_run; 5891 5892 /* skip vdevs we don't care about */ 5893 if (sme->sme_vdev != svr->svr_vdev_id) 5894 return (0); 5895 5896 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5897 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5898 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5899 5900 if (txg < metaslab_unflushed_txg(ms)) 5901 return (0); 5902 5903 if (sme->sme_type == SM_ALLOC) 5904 range_tree_add(svr->svr_allocd_segs, offset, size); 5905 else 5906 range_tree_remove(svr->svr_allocd_segs, offset, size); 5907 5908 return (0); 5909 } 5910 5911 static void 5912 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5913 uint64_t size, void *arg) 5914 { 5915 (void) inner_offset, (void) arg; 5916 5917 /* 5918 * This callback was called through a remap from 5919 * a device being removed. Therefore, the vdev that 5920 * this callback is applied to is a concrete 5921 * vdev. 5922 */ 5923 ASSERT(vdev_is_concrete(vd)); 5924 5925 VERIFY0(metaslab_claim_impl(vd, offset, size, 5926 spa_min_claim_txg(vd->vdev_spa))); 5927 } 5928 5929 static void 5930 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5931 { 5932 vdev_t *vd = arg; 5933 5934 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5935 claim_segment_impl_cb, NULL); 5936 } 5937 5938 /* 5939 * After accounting for all allocated blocks that are directly referenced, 5940 * we might have missed a reference to a block from a partially complete 5941 * (and thus unused) indirect mapping object. We perform a secondary pass 5942 * through the metaslabs we have already mapped and claim the destination 5943 * blocks. 5944 */ 5945 static void 5946 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5947 { 5948 if (dump_opt['L']) 5949 return; 5950 5951 if (spa->spa_vdev_removal == NULL) 5952 return; 5953 5954 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5955 5956 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5957 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5958 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5959 5960 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5961 5962 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5963 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5964 metaslab_t *msp = vd->vdev_ms[msi]; 5965 5966 ASSERT0(range_tree_space(allocs)); 5967 if (msp->ms_sm != NULL) 5968 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5969 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5970 } 5971 range_tree_destroy(allocs); 5972 5973 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5974 5975 /* 5976 * Clear everything past what has been synced, 5977 * because we have not allocated mappings for 5978 * it yet. 5979 */ 5980 range_tree_clear(svr->svr_allocd_segs, 5981 vdev_indirect_mapping_max_offset(vim), 5982 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5983 5984 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5985 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5986 5987 spa_config_exit(spa, SCL_CONFIG, FTAG); 5988 } 5989 5990 static int 5991 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5992 dmu_tx_t *tx) 5993 { 5994 (void) tx; 5995 zdb_cb_t *zcb = arg; 5996 spa_t *spa = zcb->zcb_spa; 5997 vdev_t *vd; 5998 const dva_t *dva = &bp->blk_dva[0]; 5999 6000 ASSERT(!bp_freed); 6001 ASSERT(!dump_opt['L']); 6002 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6003 6004 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6005 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6006 ASSERT3P(vd, !=, NULL); 6007 spa_config_exit(spa, SCL_VDEV, FTAG); 6008 6009 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6010 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6011 6012 vdev_indirect_mapping_increment_obsolete_count( 6013 vd->vdev_indirect_mapping, 6014 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6015 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6016 6017 return (0); 6018 } 6019 6020 static uint32_t * 6021 zdb_load_obsolete_counts(vdev_t *vd) 6022 { 6023 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6024 spa_t *spa = vd->vdev_spa; 6025 spa_condensing_indirect_phys_t *scip = 6026 &spa->spa_condensing_indirect_phys; 6027 uint64_t obsolete_sm_object; 6028 uint32_t *counts; 6029 6030 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6031 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6032 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6033 if (vd->vdev_obsolete_sm != NULL) { 6034 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6035 vd->vdev_obsolete_sm); 6036 } 6037 if (scip->scip_vdev == vd->vdev_id && 6038 scip->scip_prev_obsolete_sm_object != 0) { 6039 space_map_t *prev_obsolete_sm = NULL; 6040 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6041 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6042 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6043 prev_obsolete_sm); 6044 space_map_close(prev_obsolete_sm); 6045 } 6046 return (counts); 6047 } 6048 6049 static void 6050 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6051 { 6052 ddt_bookmark_t ddb = {0}; 6053 ddt_entry_t dde; 6054 int error; 6055 int p; 6056 6057 ASSERT(!dump_opt['L']); 6058 6059 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6060 blkptr_t blk; 6061 ddt_phys_t *ddp = dde.dde_phys; 6062 6063 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6064 return; 6065 6066 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6067 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6068 VERIFY(ddt); 6069 6070 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6071 if (ddp->ddp_phys_birth == 0) 6072 continue; 6073 ddt_bp_create(ddb.ddb_checksum, 6074 &dde.dde_key, ddp, &blk); 6075 if (p == DDT_PHYS_DITTO) { 6076 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6077 } else { 6078 zcb->zcb_dedup_asize += 6079 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6080 zcb->zcb_dedup_blocks++; 6081 } 6082 } 6083 6084 ddt_enter(ddt); 6085 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6086 ddt_exit(ddt); 6087 } 6088 6089 ASSERT(error == ENOENT); 6090 } 6091 6092 typedef struct checkpoint_sm_exclude_entry_arg { 6093 vdev_t *cseea_vd; 6094 uint64_t cseea_checkpoint_size; 6095 } checkpoint_sm_exclude_entry_arg_t; 6096 6097 static int 6098 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6099 { 6100 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6101 vdev_t *vd = cseea->cseea_vd; 6102 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6103 uint64_t end = sme->sme_offset + sme->sme_run; 6104 6105 ASSERT(sme->sme_type == SM_FREE); 6106 6107 /* 6108 * Since the vdev_checkpoint_sm exists in the vdev level 6109 * and the ms_sm space maps exist in the metaslab level, 6110 * an entry in the checkpoint space map could theoretically 6111 * cross the boundaries of the metaslab that it belongs. 6112 * 6113 * In reality, because of the way that we populate and 6114 * manipulate the checkpoint's space maps currently, 6115 * there shouldn't be any entries that cross metaslabs. 6116 * Hence the assertion below. 6117 * 6118 * That said, there is no fundamental requirement that 6119 * the checkpoint's space map entries should not cross 6120 * metaslab boundaries. So if needed we could add code 6121 * that handles metaslab-crossing segments in the future. 6122 */ 6123 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6124 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6125 6126 /* 6127 * By removing the entry from the allocated segments we 6128 * also verify that the entry is there to begin with. 6129 */ 6130 mutex_enter(&ms->ms_lock); 6131 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6132 mutex_exit(&ms->ms_lock); 6133 6134 cseea->cseea_checkpoint_size += sme->sme_run; 6135 return (0); 6136 } 6137 6138 static void 6139 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6140 { 6141 spa_t *spa = vd->vdev_spa; 6142 space_map_t *checkpoint_sm = NULL; 6143 uint64_t checkpoint_sm_obj; 6144 6145 /* 6146 * If there is no vdev_top_zap, we are in a pool whose 6147 * version predates the pool checkpoint feature. 6148 */ 6149 if (vd->vdev_top_zap == 0) 6150 return; 6151 6152 /* 6153 * If there is no reference of the vdev_checkpoint_sm in 6154 * the vdev_top_zap, then one of the following scenarios 6155 * is true: 6156 * 6157 * 1] There is no checkpoint 6158 * 2] There is a checkpoint, but no checkpointed blocks 6159 * have been freed yet 6160 * 3] The current vdev is indirect 6161 * 6162 * In these cases we return immediately. 6163 */ 6164 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6165 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6166 return; 6167 6168 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6169 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6170 &checkpoint_sm_obj)); 6171 6172 checkpoint_sm_exclude_entry_arg_t cseea; 6173 cseea.cseea_vd = vd; 6174 cseea.cseea_checkpoint_size = 0; 6175 6176 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6177 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6178 6179 VERIFY0(space_map_iterate(checkpoint_sm, 6180 space_map_length(checkpoint_sm), 6181 checkpoint_sm_exclude_entry_cb, &cseea)); 6182 space_map_close(checkpoint_sm); 6183 6184 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6185 } 6186 6187 static void 6188 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6189 { 6190 ASSERT(!dump_opt['L']); 6191 6192 vdev_t *rvd = spa->spa_root_vdev; 6193 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6194 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6195 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6196 } 6197 } 6198 6199 static int 6200 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6201 uint64_t txg, void *arg) 6202 { 6203 int64_t *ualloc_space = arg; 6204 6205 uint64_t offset = sme->sme_offset; 6206 uint64_t vdev_id = sme->sme_vdev; 6207 6208 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6209 if (!vdev_is_concrete(vd)) 6210 return (0); 6211 6212 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6213 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6214 6215 if (txg < metaslab_unflushed_txg(ms)) 6216 return (0); 6217 6218 if (sme->sme_type == SM_ALLOC) 6219 *ualloc_space += sme->sme_run; 6220 else 6221 *ualloc_space -= sme->sme_run; 6222 6223 return (0); 6224 } 6225 6226 static int64_t 6227 get_unflushed_alloc_space(spa_t *spa) 6228 { 6229 if (dump_opt['L']) 6230 return (0); 6231 6232 int64_t ualloc_space = 0; 6233 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6234 &ualloc_space); 6235 return (ualloc_space); 6236 } 6237 6238 static int 6239 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6240 { 6241 maptype_t *uic_maptype = arg; 6242 6243 uint64_t offset = sme->sme_offset; 6244 uint64_t size = sme->sme_run; 6245 uint64_t vdev_id = sme->sme_vdev; 6246 6247 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6248 6249 /* skip indirect vdevs */ 6250 if (!vdev_is_concrete(vd)) 6251 return (0); 6252 6253 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6254 6255 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6256 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6257 6258 if (txg < metaslab_unflushed_txg(ms)) 6259 return (0); 6260 6261 if (*uic_maptype == sme->sme_type) 6262 range_tree_add(ms->ms_allocatable, offset, size); 6263 else 6264 range_tree_remove(ms->ms_allocatable, offset, size); 6265 6266 return (0); 6267 } 6268 6269 static void 6270 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6271 { 6272 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6273 } 6274 6275 static void 6276 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6277 { 6278 vdev_t *rvd = spa->spa_root_vdev; 6279 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6280 vdev_t *vd = rvd->vdev_child[i]; 6281 6282 ASSERT3U(i, ==, vd->vdev_id); 6283 6284 if (vd->vdev_ops == &vdev_indirect_ops) 6285 continue; 6286 6287 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6288 metaslab_t *msp = vd->vdev_ms[m]; 6289 6290 (void) fprintf(stderr, 6291 "\rloading concrete vdev %llu, " 6292 "metaslab %llu of %llu ...", 6293 (longlong_t)vd->vdev_id, 6294 (longlong_t)msp->ms_id, 6295 (longlong_t)vd->vdev_ms_count); 6296 6297 mutex_enter(&msp->ms_lock); 6298 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6299 6300 /* 6301 * We don't want to spend the CPU manipulating the 6302 * size-ordered tree, so clear the range_tree ops. 6303 */ 6304 msp->ms_allocatable->rt_ops = NULL; 6305 6306 if (msp->ms_sm != NULL) { 6307 VERIFY0(space_map_load(msp->ms_sm, 6308 msp->ms_allocatable, maptype)); 6309 } 6310 if (!msp->ms_loaded) 6311 msp->ms_loaded = B_TRUE; 6312 mutex_exit(&msp->ms_lock); 6313 } 6314 } 6315 6316 load_unflushed_to_ms_allocatables(spa, maptype); 6317 } 6318 6319 /* 6320 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6321 * index in vim_entries that has the first entry in this metaslab. 6322 * On return, it will be set to the first entry after this metaslab. 6323 */ 6324 static void 6325 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6326 uint64_t *vim_idxp) 6327 { 6328 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6329 6330 mutex_enter(&msp->ms_lock); 6331 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6332 6333 /* 6334 * We don't want to spend the CPU manipulating the 6335 * size-ordered tree, so clear the range_tree ops. 6336 */ 6337 msp->ms_allocatable->rt_ops = NULL; 6338 6339 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6340 (*vim_idxp)++) { 6341 vdev_indirect_mapping_entry_phys_t *vimep = 6342 &vim->vim_entries[*vim_idxp]; 6343 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6344 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6345 ASSERT3U(ent_offset, >=, msp->ms_start); 6346 if (ent_offset >= msp->ms_start + msp->ms_size) 6347 break; 6348 6349 /* 6350 * Mappings do not cross metaslab boundaries, 6351 * because we create them by walking the metaslabs. 6352 */ 6353 ASSERT3U(ent_offset + ent_len, <=, 6354 msp->ms_start + msp->ms_size); 6355 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6356 } 6357 6358 if (!msp->ms_loaded) 6359 msp->ms_loaded = B_TRUE; 6360 mutex_exit(&msp->ms_lock); 6361 } 6362 6363 static void 6364 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6365 { 6366 ASSERT(!dump_opt['L']); 6367 6368 vdev_t *rvd = spa->spa_root_vdev; 6369 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6370 vdev_t *vd = rvd->vdev_child[c]; 6371 6372 ASSERT3U(c, ==, vd->vdev_id); 6373 6374 if (vd->vdev_ops != &vdev_indirect_ops) 6375 continue; 6376 6377 /* 6378 * Note: we don't check for mapping leaks on 6379 * removing vdevs because their ms_allocatable's 6380 * are used to look for leaks in allocated space. 6381 */ 6382 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6383 6384 /* 6385 * Normally, indirect vdevs don't have any 6386 * metaslabs. We want to set them up for 6387 * zio_claim(). 6388 */ 6389 vdev_metaslab_group_create(vd); 6390 VERIFY0(vdev_metaslab_init(vd, 0)); 6391 6392 vdev_indirect_mapping_t *vim __maybe_unused = 6393 vd->vdev_indirect_mapping; 6394 uint64_t vim_idx = 0; 6395 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6396 6397 (void) fprintf(stderr, 6398 "\rloading indirect vdev %llu, " 6399 "metaslab %llu of %llu ...", 6400 (longlong_t)vd->vdev_id, 6401 (longlong_t)vd->vdev_ms[m]->ms_id, 6402 (longlong_t)vd->vdev_ms_count); 6403 6404 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6405 &vim_idx); 6406 } 6407 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6408 } 6409 } 6410 6411 static void 6412 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6413 { 6414 zcb->zcb_spa = spa; 6415 6416 if (dump_opt['L']) 6417 return; 6418 6419 dsl_pool_t *dp = spa->spa_dsl_pool; 6420 vdev_t *rvd = spa->spa_root_vdev; 6421 6422 /* 6423 * We are going to be changing the meaning of the metaslab's 6424 * ms_allocatable. Ensure that the allocator doesn't try to 6425 * use the tree. 6426 */ 6427 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6428 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6429 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6430 6431 zcb->zcb_vd_obsolete_counts = 6432 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6433 UMEM_NOFAIL); 6434 6435 /* 6436 * For leak detection, we overload the ms_allocatable trees 6437 * to contain allocated segments instead of free segments. 6438 * As a result, we can't use the normal metaslab_load/unload 6439 * interfaces. 6440 */ 6441 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6442 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6443 6444 /* 6445 * On load_concrete_ms_allocatable_trees() we loaded all the 6446 * allocated entries from the ms_sm to the ms_allocatable for 6447 * each metaslab. If the pool has a checkpoint or is in the 6448 * middle of discarding a checkpoint, some of these blocks 6449 * may have been freed but their ms_sm may not have been 6450 * updated because they are referenced by the checkpoint. In 6451 * order to avoid false-positives during leak-detection, we 6452 * go through the vdev's checkpoint space map and exclude all 6453 * its entries from their relevant ms_allocatable. 6454 * 6455 * We also aggregate the space held by the checkpoint and add 6456 * it to zcb_checkpoint_size. 6457 * 6458 * Note that at this point we are also verifying that all the 6459 * entries on the checkpoint_sm are marked as allocated in 6460 * the ms_sm of their relevant metaslab. 6461 * [see comment in checkpoint_sm_exclude_entry_cb()] 6462 */ 6463 zdb_leak_init_exclude_checkpoint(spa, zcb); 6464 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6465 6466 /* for cleaner progress output */ 6467 (void) fprintf(stderr, "\n"); 6468 6469 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6470 ASSERT(spa_feature_is_enabled(spa, 6471 SPA_FEATURE_DEVICE_REMOVAL)); 6472 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6473 increment_indirect_mapping_cb, zcb, NULL); 6474 } 6475 6476 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6477 zdb_ddt_leak_init(spa, zcb); 6478 spa_config_exit(spa, SCL_CONFIG, FTAG); 6479 } 6480 6481 static boolean_t 6482 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6483 { 6484 boolean_t leaks = B_FALSE; 6485 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6486 uint64_t total_leaked = 0; 6487 boolean_t are_precise = B_FALSE; 6488 6489 ASSERT(vim != NULL); 6490 6491 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6492 vdev_indirect_mapping_entry_phys_t *vimep = 6493 &vim->vim_entries[i]; 6494 uint64_t obsolete_bytes = 0; 6495 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6496 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6497 6498 /* 6499 * This is not very efficient but it's easy to 6500 * verify correctness. 6501 */ 6502 for (uint64_t inner_offset = 0; 6503 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6504 inner_offset += 1ULL << vd->vdev_ashift) { 6505 if (range_tree_contains(msp->ms_allocatable, 6506 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6507 obsolete_bytes += 1ULL << vd->vdev_ashift; 6508 } 6509 } 6510 6511 int64_t bytes_leaked = obsolete_bytes - 6512 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6513 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6514 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6515 6516 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6517 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6518 (void) printf("obsolete indirect mapping count " 6519 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6520 (u_longlong_t)vd->vdev_id, 6521 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6522 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6523 (u_longlong_t)bytes_leaked); 6524 } 6525 total_leaked += ABS(bytes_leaked); 6526 } 6527 6528 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6529 if (!are_precise && total_leaked > 0) { 6530 int pct_leaked = total_leaked * 100 / 6531 vdev_indirect_mapping_bytes_mapped(vim); 6532 (void) printf("cannot verify obsolete indirect mapping " 6533 "counts of vdev %llu because precise feature was not " 6534 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6535 "unreferenced\n", 6536 (u_longlong_t)vd->vdev_id, pct_leaked, 6537 (u_longlong_t)total_leaked); 6538 } else if (total_leaked > 0) { 6539 (void) printf("obsolete indirect mapping count mismatch " 6540 "for vdev %llu -- %llx total bytes mismatched\n", 6541 (u_longlong_t)vd->vdev_id, 6542 (u_longlong_t)total_leaked); 6543 leaks |= B_TRUE; 6544 } 6545 6546 vdev_indirect_mapping_free_obsolete_counts(vim, 6547 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6548 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6549 6550 return (leaks); 6551 } 6552 6553 static boolean_t 6554 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6555 { 6556 if (dump_opt['L']) 6557 return (B_FALSE); 6558 6559 boolean_t leaks = B_FALSE; 6560 vdev_t *rvd = spa->spa_root_vdev; 6561 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6562 vdev_t *vd = rvd->vdev_child[c]; 6563 6564 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6565 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6566 } 6567 6568 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6569 metaslab_t *msp = vd->vdev_ms[m]; 6570 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6571 spa_embedded_log_class(spa)) ? 6572 vd->vdev_log_mg : vd->vdev_mg); 6573 6574 /* 6575 * ms_allocatable has been overloaded 6576 * to contain allocated segments. Now that 6577 * we finished traversing all blocks, any 6578 * block that remains in the ms_allocatable 6579 * represents an allocated block that we 6580 * did not claim during the traversal. 6581 * Claimed blocks would have been removed 6582 * from the ms_allocatable. For indirect 6583 * vdevs, space remaining in the tree 6584 * represents parts of the mapping that are 6585 * not referenced, which is not a bug. 6586 */ 6587 if (vd->vdev_ops == &vdev_indirect_ops) { 6588 range_tree_vacate(msp->ms_allocatable, 6589 NULL, NULL); 6590 } else { 6591 range_tree_vacate(msp->ms_allocatable, 6592 zdb_leak, vd); 6593 } 6594 if (msp->ms_loaded) { 6595 msp->ms_loaded = B_FALSE; 6596 } 6597 } 6598 } 6599 6600 umem_free(zcb->zcb_vd_obsolete_counts, 6601 rvd->vdev_children * sizeof (uint32_t *)); 6602 zcb->zcb_vd_obsolete_counts = NULL; 6603 6604 return (leaks); 6605 } 6606 6607 static int 6608 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6609 { 6610 (void) tx; 6611 zdb_cb_t *zcb = arg; 6612 6613 if (dump_opt['b'] >= 5) { 6614 char blkbuf[BP_SPRINTF_LEN]; 6615 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6616 (void) printf("[%s] %s\n", 6617 "deferred free", blkbuf); 6618 } 6619 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6620 return (0); 6621 } 6622 6623 /* 6624 * Iterate over livelists which have been destroyed by the user but 6625 * are still present in the MOS, waiting to be freed 6626 */ 6627 static void 6628 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6629 { 6630 objset_t *mos = spa->spa_meta_objset; 6631 uint64_t zap_obj; 6632 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6633 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6634 if (err == ENOENT) 6635 return; 6636 ASSERT0(err); 6637 6638 zap_cursor_t zc; 6639 zap_attribute_t attr; 6640 dsl_deadlist_t ll; 6641 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6642 ll.dl_os = NULL; 6643 for (zap_cursor_init(&zc, mos, zap_obj); 6644 zap_cursor_retrieve(&zc, &attr) == 0; 6645 (void) zap_cursor_advance(&zc)) { 6646 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6647 func(&ll, arg); 6648 dsl_deadlist_close(&ll); 6649 } 6650 zap_cursor_fini(&zc); 6651 } 6652 6653 static int 6654 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6655 dmu_tx_t *tx) 6656 { 6657 ASSERT(!bp_freed); 6658 return (count_block_cb(arg, bp, tx)); 6659 } 6660 6661 static int 6662 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6663 { 6664 zdb_cb_t *zbc = args; 6665 bplist_t blks; 6666 bplist_create(&blks); 6667 /* determine which blocks have been alloc'd but not freed */ 6668 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6669 /* count those blocks */ 6670 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6671 bplist_destroy(&blks); 6672 return (0); 6673 } 6674 6675 static void 6676 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6677 { 6678 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6679 } 6680 6681 /* 6682 * Count the blocks in the livelists that have been destroyed by the user 6683 * but haven't yet been freed. 6684 */ 6685 static void 6686 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6687 { 6688 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6689 } 6690 6691 static void 6692 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6693 { 6694 ASSERT3P(arg, ==, NULL); 6695 global_feature_count[SPA_FEATURE_LIVELIST]++; 6696 dump_blkptr_list(ll, "Deleted Livelist"); 6697 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6698 } 6699 6700 /* 6701 * Print out, register object references to, and increment feature counts for 6702 * livelists that have been destroyed by the user but haven't yet been freed. 6703 */ 6704 static void 6705 deleted_livelists_dump_mos(spa_t *spa) 6706 { 6707 uint64_t zap_obj; 6708 objset_t *mos = spa->spa_meta_objset; 6709 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6710 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6711 if (err == ENOENT) 6712 return; 6713 mos_obj_refd(zap_obj); 6714 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6715 } 6716 6717 static int 6718 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6719 { 6720 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6721 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6722 int cmp; 6723 6724 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6725 if (cmp == 0) 6726 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6727 6728 return (cmp); 6729 } 6730 6731 static int 6732 dump_block_stats(spa_t *spa) 6733 { 6734 zdb_cb_t *zcb; 6735 zdb_blkstats_t *zb, *tzb; 6736 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6737 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6738 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6739 boolean_t leaks = B_FALSE; 6740 int e, c, err; 6741 bp_embedded_type_t i; 6742 6743 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6744 6745 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6746 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6747 sizeof (zdb_brt_entry_t), 6748 offsetof(zdb_brt_entry_t, zbre_node)); 6749 zcb->zcb_brt_is_active = B_TRUE; 6750 } 6751 6752 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6753 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6754 (dump_opt['c'] == 1) ? "metadata " : "", 6755 dump_opt['c'] ? "checksums " : "", 6756 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6757 !dump_opt['L'] ? "nothing leaked " : ""); 6758 6759 /* 6760 * When leak detection is enabled we load all space maps as SM_ALLOC 6761 * maps, then traverse the pool claiming each block we discover. If 6762 * the pool is perfectly consistent, the segment trees will be empty 6763 * when we're done. Anything left over is a leak; any block we can't 6764 * claim (because it's not part of any space map) is a double 6765 * allocation, reference to a freed block, or an unclaimed log block. 6766 * 6767 * When leak detection is disabled (-L option) we still traverse the 6768 * pool claiming each block we discover, but we skip opening any space 6769 * maps. 6770 */ 6771 zdb_leak_init(spa, zcb); 6772 6773 /* 6774 * If there's a deferred-free bplist, process that first. 6775 */ 6776 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6777 bpobj_count_block_cb, zcb, NULL); 6778 6779 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6780 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6781 bpobj_count_block_cb, zcb, NULL); 6782 } 6783 6784 zdb_claim_removing(spa, zcb); 6785 6786 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6787 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6788 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6789 zcb, NULL)); 6790 } 6791 6792 deleted_livelists_count_blocks(spa, zcb); 6793 6794 if (dump_opt['c'] > 1) 6795 flags |= TRAVERSE_PREFETCH_DATA; 6796 6797 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6798 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6799 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6800 zcb->zcb_totalasize += 6801 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6802 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6803 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6804 6805 /* 6806 * If we've traversed the data blocks then we need to wait for those 6807 * I/Os to complete. We leverage "The Godfather" zio to wait on 6808 * all async I/Os to complete. 6809 */ 6810 if (dump_opt['c']) { 6811 for (c = 0; c < max_ncpus; c++) { 6812 (void) zio_wait(spa->spa_async_zio_root[c]); 6813 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6814 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6815 ZIO_FLAG_GODFATHER); 6816 } 6817 } 6818 ASSERT0(spa->spa_load_verify_bytes); 6819 6820 /* 6821 * Done after zio_wait() since zcb_haderrors is modified in 6822 * zdb_blkptr_done() 6823 */ 6824 zcb->zcb_haderrors |= err; 6825 6826 if (zcb->zcb_haderrors) { 6827 (void) printf("\nError counts:\n\n"); 6828 (void) printf("\t%5s %s\n", "errno", "count"); 6829 for (e = 0; e < 256; e++) { 6830 if (zcb->zcb_errors[e] != 0) { 6831 (void) printf("\t%5d %llu\n", 6832 e, (u_longlong_t)zcb->zcb_errors[e]); 6833 } 6834 } 6835 } 6836 6837 /* 6838 * Report any leaked segments. 6839 */ 6840 leaks |= zdb_leak_fini(spa, zcb); 6841 6842 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6843 6844 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6845 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6846 6847 total_alloc = norm_alloc + 6848 metaslab_class_get_alloc(spa_log_class(spa)) + 6849 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6850 metaslab_class_get_alloc(spa_special_class(spa)) + 6851 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6852 get_unflushed_alloc_space(spa); 6853 total_found = 6854 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6855 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6856 6857 if (total_found == total_alloc && !dump_opt['L']) { 6858 (void) printf("\n\tNo leaks (block sum matches space" 6859 " maps exactly)\n"); 6860 } else if (!dump_opt['L']) { 6861 (void) printf("block traversal size %llu != alloc %llu " 6862 "(%s %lld)\n", 6863 (u_longlong_t)total_found, 6864 (u_longlong_t)total_alloc, 6865 (dump_opt['L']) ? "unreachable" : "leaked", 6866 (longlong_t)(total_alloc - total_found)); 6867 leaks = B_TRUE; 6868 } 6869 6870 if (tzb->zb_count == 0) { 6871 umem_free(zcb, sizeof (zdb_cb_t)); 6872 return (2); 6873 } 6874 6875 (void) printf("\n"); 6876 (void) printf("\t%-16s %14llu\n", "bp count:", 6877 (u_longlong_t)tzb->zb_count); 6878 (void) printf("\t%-16s %14llu\n", "ganged count:", 6879 (longlong_t)tzb->zb_gangs); 6880 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6881 (u_longlong_t)tzb->zb_lsize, 6882 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6883 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6884 "bp physical:", (u_longlong_t)tzb->zb_psize, 6885 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6886 (double)tzb->zb_lsize / tzb->zb_psize); 6887 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6888 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6889 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6890 (double)tzb->zb_lsize / tzb->zb_asize); 6891 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6892 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6893 (u_longlong_t)zcb->zcb_dedup_blocks, 6894 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6895 (void) printf("\t%-16s %14llu count: %6llu\n", 6896 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6897 (u_longlong_t)zcb->zcb_clone_blocks); 6898 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6899 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6900 6901 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6902 uint64_t alloc = metaslab_class_get_alloc( 6903 spa_special_class(spa)); 6904 uint64_t space = metaslab_class_get_space( 6905 spa_special_class(spa)); 6906 6907 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6908 "Special class", (u_longlong_t)alloc, 6909 100.0 * alloc / space); 6910 } 6911 6912 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6913 uint64_t alloc = metaslab_class_get_alloc( 6914 spa_dedup_class(spa)); 6915 uint64_t space = metaslab_class_get_space( 6916 spa_dedup_class(spa)); 6917 6918 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6919 "Dedup class", (u_longlong_t)alloc, 6920 100.0 * alloc / space); 6921 } 6922 6923 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6924 uint64_t alloc = metaslab_class_get_alloc( 6925 spa_embedded_log_class(spa)); 6926 uint64_t space = metaslab_class_get_space( 6927 spa_embedded_log_class(spa)); 6928 6929 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6930 "Embedded log class", (u_longlong_t)alloc, 6931 100.0 * alloc / space); 6932 } 6933 6934 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6935 if (zcb->zcb_embedded_blocks[i] == 0) 6936 continue; 6937 (void) printf("\n"); 6938 (void) printf("\tadditional, non-pointer bps of type %u: " 6939 "%10llu\n", 6940 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 6941 6942 if (dump_opt['b'] >= 3) { 6943 (void) printf("\t number of (compressed) bytes: " 6944 "number of bps\n"); 6945 dump_histogram(zcb->zcb_embedded_histogram[i], 6946 sizeof (zcb->zcb_embedded_histogram[i]) / 6947 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 6948 } 6949 } 6950 6951 if (tzb->zb_ditto_samevdev != 0) { 6952 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6953 (longlong_t)tzb->zb_ditto_samevdev); 6954 } 6955 if (tzb->zb_ditto_same_ms != 0) { 6956 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6957 (longlong_t)tzb->zb_ditto_same_ms); 6958 } 6959 6960 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6961 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6962 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6963 6964 if (vim == NULL) { 6965 continue; 6966 } 6967 6968 char mem[32]; 6969 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6970 mem, vdev_indirect_mapping_size(vim)); 6971 6972 (void) printf("\tindirect vdev id %llu has %llu segments " 6973 "(%s in memory)\n", 6974 (longlong_t)vd->vdev_id, 6975 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6976 } 6977 6978 if (dump_opt['b'] >= 2) { 6979 int l, t, level; 6980 char csize[32], lsize[32], psize[32], asize[32]; 6981 char avg[32], gang[32]; 6982 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6983 "\t avg\t comp\t%%Total\tType\n"); 6984 6985 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 6986 UMEM_NOFAIL); 6987 6988 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6989 const char *typename; 6990 6991 /* make sure nicenum has enough space */ 6992 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 6993 "csize truncated"); 6994 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 6995 "lsize truncated"); 6996 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 6997 "psize truncated"); 6998 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 6999 "asize truncated"); 7000 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7001 "avg truncated"); 7002 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7003 "gang truncated"); 7004 7005 if (t < DMU_OT_NUMTYPES) 7006 typename = dmu_ot[t].ot_name; 7007 else 7008 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7009 7010 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7011 (void) printf("%6s\t%5s\t%5s\t%5s" 7012 "\t%5s\t%5s\t%6s\t%s\n", 7013 "-", 7014 "-", 7015 "-", 7016 "-", 7017 "-", 7018 "-", 7019 "-", 7020 typename); 7021 continue; 7022 } 7023 7024 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7025 level = (l == -1 ? ZB_TOTAL : l); 7026 zb = &zcb->zcb_type[level][t]; 7027 7028 if (zb->zb_asize == 0) 7029 continue; 7030 7031 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7032 (level > 0 || DMU_OT_IS_METADATA(t))) { 7033 mdstats->zb_count += zb->zb_count; 7034 mdstats->zb_lsize += zb->zb_lsize; 7035 mdstats->zb_psize += zb->zb_psize; 7036 mdstats->zb_asize += zb->zb_asize; 7037 mdstats->zb_gangs += zb->zb_gangs; 7038 } 7039 7040 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7041 continue; 7042 7043 if (level == 0 && zb->zb_asize == 7044 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7045 continue; 7046 7047 zdb_nicenum(zb->zb_count, csize, 7048 sizeof (csize)); 7049 zdb_nicenum(zb->zb_lsize, lsize, 7050 sizeof (lsize)); 7051 zdb_nicenum(zb->zb_psize, psize, 7052 sizeof (psize)); 7053 zdb_nicenum(zb->zb_asize, asize, 7054 sizeof (asize)); 7055 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7056 sizeof (avg)); 7057 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7058 7059 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7060 "\t%5.2f\t%6.2f\t", 7061 csize, lsize, psize, asize, avg, 7062 (double)zb->zb_lsize / zb->zb_psize, 7063 100.0 * zb->zb_asize / tzb->zb_asize); 7064 7065 if (level == ZB_TOTAL) 7066 (void) printf("%s\n", typename); 7067 else 7068 (void) printf(" L%d %s\n", 7069 level, typename); 7070 7071 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7072 (void) printf("\t number of ganged " 7073 "blocks: %s\n", gang); 7074 } 7075 7076 if (dump_opt['b'] >= 4) { 7077 (void) printf("psize " 7078 "(in 512-byte sectors): " 7079 "number of blocks\n"); 7080 dump_histogram(zb->zb_psize_histogram, 7081 PSIZE_HISTO_SIZE, 0); 7082 } 7083 } 7084 } 7085 zdb_nicenum(mdstats->zb_count, csize, 7086 sizeof (csize)); 7087 zdb_nicenum(mdstats->zb_lsize, lsize, 7088 sizeof (lsize)); 7089 zdb_nicenum(mdstats->zb_psize, psize, 7090 sizeof (psize)); 7091 zdb_nicenum(mdstats->zb_asize, asize, 7092 sizeof (asize)); 7093 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7094 sizeof (avg)); 7095 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7096 7097 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7098 "\t%5.2f\t%6.2f\t", 7099 csize, lsize, psize, asize, avg, 7100 (double)mdstats->zb_lsize / mdstats->zb_psize, 7101 100.0 * mdstats->zb_asize / tzb->zb_asize); 7102 (void) printf("%s\n", "Metadata Total"); 7103 7104 /* Output a table summarizing block sizes in the pool */ 7105 if (dump_opt['b'] >= 2) { 7106 dump_size_histograms(zcb); 7107 } 7108 7109 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7110 } 7111 7112 (void) printf("\n"); 7113 7114 if (leaks) { 7115 umem_free(zcb, sizeof (zdb_cb_t)); 7116 return (2); 7117 } 7118 7119 if (zcb->zcb_haderrors) { 7120 umem_free(zcb, sizeof (zdb_cb_t)); 7121 return (3); 7122 } 7123 7124 umem_free(zcb, sizeof (zdb_cb_t)); 7125 return (0); 7126 } 7127 7128 typedef struct zdb_ddt_entry { 7129 /* key must be first for ddt_key_compare */ 7130 ddt_key_t zdde_key; 7131 uint64_t zdde_ref_blocks; 7132 uint64_t zdde_ref_lsize; 7133 uint64_t zdde_ref_psize; 7134 uint64_t zdde_ref_dsize; 7135 avl_node_t zdde_node; 7136 } zdb_ddt_entry_t; 7137 7138 static int 7139 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7140 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7141 { 7142 (void) zilog, (void) dnp; 7143 avl_tree_t *t = arg; 7144 avl_index_t where; 7145 zdb_ddt_entry_t *zdde, zdde_search; 7146 7147 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7148 BP_IS_EMBEDDED(bp)) 7149 return (0); 7150 7151 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7152 (void) printf("traversing objset %llu, %llu objects, " 7153 "%lu blocks so far\n", 7154 (u_longlong_t)zb->zb_objset, 7155 (u_longlong_t)BP_GET_FILL(bp), 7156 avl_numnodes(t)); 7157 } 7158 7159 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7160 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7161 return (0); 7162 7163 ddt_key_fill(&zdde_search.zdde_key, bp); 7164 7165 zdde = avl_find(t, &zdde_search, &where); 7166 7167 if (zdde == NULL) { 7168 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7169 zdde->zdde_key = zdde_search.zdde_key; 7170 avl_insert(t, zdde, where); 7171 } 7172 7173 zdde->zdde_ref_blocks += 1; 7174 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7175 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7176 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7177 7178 return (0); 7179 } 7180 7181 static void 7182 dump_simulated_ddt(spa_t *spa) 7183 { 7184 avl_tree_t t; 7185 void *cookie = NULL; 7186 zdb_ddt_entry_t *zdde; 7187 ddt_histogram_t ddh_total = {{{0}}}; 7188 ddt_stat_t dds_total = {0}; 7189 7190 avl_create(&t, ddt_key_compare, 7191 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7192 7193 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7194 7195 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7196 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7197 7198 spa_config_exit(spa, SCL_CONFIG, FTAG); 7199 7200 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7201 ddt_stat_t dds; 7202 uint64_t refcnt = zdde->zdde_ref_blocks; 7203 ASSERT(refcnt != 0); 7204 7205 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7206 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7207 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7208 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7209 7210 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7211 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7212 dds.dds_ref_psize = zdde->zdde_ref_psize; 7213 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7214 7215 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7216 &dds, 0); 7217 7218 umem_free(zdde, sizeof (*zdde)); 7219 } 7220 7221 avl_destroy(&t); 7222 7223 ddt_histogram_stat(&dds_total, &ddh_total); 7224 7225 (void) printf("Simulated DDT histogram:\n"); 7226 7227 zpool_dump_ddt(&dds_total, &ddh_total); 7228 7229 dump_dedup_ratio(&dds_total); 7230 } 7231 7232 static int 7233 verify_device_removal_feature_counts(spa_t *spa) 7234 { 7235 uint64_t dr_feature_refcount = 0; 7236 uint64_t oc_feature_refcount = 0; 7237 uint64_t indirect_vdev_count = 0; 7238 uint64_t precise_vdev_count = 0; 7239 uint64_t obsolete_counts_object_count = 0; 7240 uint64_t obsolete_sm_count = 0; 7241 uint64_t obsolete_counts_count = 0; 7242 uint64_t scip_count = 0; 7243 uint64_t obsolete_bpobj_count = 0; 7244 int ret = 0; 7245 7246 spa_condensing_indirect_phys_t *scip = 7247 &spa->spa_condensing_indirect_phys; 7248 if (scip->scip_next_mapping_object != 0) { 7249 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7250 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7251 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7252 7253 (void) printf("Condensing indirect vdev %llu: new mapping " 7254 "object %llu, prev obsolete sm %llu\n", 7255 (u_longlong_t)scip->scip_vdev, 7256 (u_longlong_t)scip->scip_next_mapping_object, 7257 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7258 if (scip->scip_prev_obsolete_sm_object != 0) { 7259 space_map_t *prev_obsolete_sm = NULL; 7260 VERIFY0(space_map_open(&prev_obsolete_sm, 7261 spa->spa_meta_objset, 7262 scip->scip_prev_obsolete_sm_object, 7263 0, vd->vdev_asize, 0)); 7264 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7265 (void) printf("\n"); 7266 space_map_close(prev_obsolete_sm); 7267 } 7268 7269 scip_count += 2; 7270 } 7271 7272 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7273 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7274 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7275 7276 if (vic->vic_mapping_object != 0) { 7277 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7278 vd->vdev_removing); 7279 indirect_vdev_count++; 7280 7281 if (vd->vdev_indirect_mapping->vim_havecounts) { 7282 obsolete_counts_count++; 7283 } 7284 } 7285 7286 boolean_t are_precise; 7287 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7288 if (are_precise) { 7289 ASSERT(vic->vic_mapping_object != 0); 7290 precise_vdev_count++; 7291 } 7292 7293 uint64_t obsolete_sm_object; 7294 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7295 if (obsolete_sm_object != 0) { 7296 ASSERT(vic->vic_mapping_object != 0); 7297 obsolete_sm_count++; 7298 } 7299 } 7300 7301 (void) feature_get_refcount(spa, 7302 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7303 &dr_feature_refcount); 7304 (void) feature_get_refcount(spa, 7305 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7306 &oc_feature_refcount); 7307 7308 if (dr_feature_refcount != indirect_vdev_count) { 7309 ret = 1; 7310 (void) printf("Number of indirect vdevs (%llu) " \ 7311 "does not match feature count (%llu)\n", 7312 (u_longlong_t)indirect_vdev_count, 7313 (u_longlong_t)dr_feature_refcount); 7314 } else { 7315 (void) printf("Verified device_removal feature refcount " \ 7316 "of %llu is correct\n", 7317 (u_longlong_t)dr_feature_refcount); 7318 } 7319 7320 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7321 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7322 obsolete_bpobj_count++; 7323 } 7324 7325 7326 obsolete_counts_object_count = precise_vdev_count; 7327 obsolete_counts_object_count += obsolete_sm_count; 7328 obsolete_counts_object_count += obsolete_counts_count; 7329 obsolete_counts_object_count += scip_count; 7330 obsolete_counts_object_count += obsolete_bpobj_count; 7331 obsolete_counts_object_count += remap_deadlist_count; 7332 7333 if (oc_feature_refcount != obsolete_counts_object_count) { 7334 ret = 1; 7335 (void) printf("Number of obsolete counts objects (%llu) " \ 7336 "does not match feature count (%llu)\n", 7337 (u_longlong_t)obsolete_counts_object_count, 7338 (u_longlong_t)oc_feature_refcount); 7339 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7340 "ob:%llu rd:%llu\n", 7341 (u_longlong_t)precise_vdev_count, 7342 (u_longlong_t)obsolete_sm_count, 7343 (u_longlong_t)obsolete_counts_count, 7344 (u_longlong_t)scip_count, 7345 (u_longlong_t)obsolete_bpobj_count, 7346 (u_longlong_t)remap_deadlist_count); 7347 } else { 7348 (void) printf("Verified indirect_refcount feature refcount " \ 7349 "of %llu is correct\n", 7350 (u_longlong_t)oc_feature_refcount); 7351 } 7352 return (ret); 7353 } 7354 7355 static void 7356 zdb_set_skip_mmp(char *target) 7357 { 7358 spa_t *spa; 7359 7360 /* 7361 * Disable the activity check to allow examination of 7362 * active pools. 7363 */ 7364 mutex_enter(&spa_namespace_lock); 7365 if ((spa = spa_lookup(target)) != NULL) { 7366 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7367 } 7368 mutex_exit(&spa_namespace_lock); 7369 } 7370 7371 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7372 /* 7373 * Import the checkpointed state of the pool specified by the target 7374 * parameter as readonly. The function also accepts a pool config 7375 * as an optional parameter, else it attempts to infer the config by 7376 * the name of the target pool. 7377 * 7378 * Note that the checkpointed state's pool name will be the name of 7379 * the original pool with the above suffix appended to it. In addition, 7380 * if the target is not a pool name (e.g. a path to a dataset) then 7381 * the new_path parameter is populated with the updated path to 7382 * reflect the fact that we are looking into the checkpointed state. 7383 * 7384 * The function returns a newly-allocated copy of the name of the 7385 * pool containing the checkpointed state. When this copy is no 7386 * longer needed it should be freed with free(3C). Same thing 7387 * applies to the new_path parameter if allocated. 7388 */ 7389 static char * 7390 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7391 { 7392 int error = 0; 7393 char *poolname, *bogus_name = NULL; 7394 boolean_t freecfg = B_FALSE; 7395 7396 /* If the target is not a pool, the extract the pool name */ 7397 char *path_start = strchr(target, '/'); 7398 if (path_start != NULL) { 7399 size_t poolname_len = path_start - target; 7400 poolname = strndup(target, poolname_len); 7401 } else { 7402 poolname = target; 7403 } 7404 7405 if (cfg == NULL) { 7406 zdb_set_skip_mmp(poolname); 7407 error = spa_get_stats(poolname, &cfg, NULL, 0); 7408 if (error != 0) { 7409 fatal("Tried to read config of pool \"%s\" but " 7410 "spa_get_stats() failed with error %d\n", 7411 poolname, error); 7412 } 7413 freecfg = B_TRUE; 7414 } 7415 7416 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7417 if (target != poolname) 7418 free(poolname); 7419 return (NULL); 7420 } 7421 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7422 7423 error = spa_import(bogus_name, cfg, NULL, 7424 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7425 ZFS_IMPORT_SKIP_MMP); 7426 if (freecfg) 7427 nvlist_free(cfg); 7428 if (error != 0) { 7429 fatal("Tried to import pool \"%s\" but spa_import() failed " 7430 "with error %d\n", bogus_name, error); 7431 } 7432 7433 if (new_path != NULL && path_start != NULL) { 7434 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7435 free(bogus_name); 7436 if (path_start != NULL) 7437 free(poolname); 7438 return (NULL); 7439 } 7440 } 7441 7442 if (target != poolname) 7443 free(poolname); 7444 7445 return (bogus_name); 7446 } 7447 7448 typedef struct verify_checkpoint_sm_entry_cb_arg { 7449 vdev_t *vcsec_vd; 7450 7451 /* the following fields are only used for printing progress */ 7452 uint64_t vcsec_entryid; 7453 uint64_t vcsec_num_entries; 7454 } verify_checkpoint_sm_entry_cb_arg_t; 7455 7456 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7457 7458 static int 7459 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7460 { 7461 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7462 vdev_t *vd = vcsec->vcsec_vd; 7463 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7464 uint64_t end = sme->sme_offset + sme->sme_run; 7465 7466 ASSERT(sme->sme_type == SM_FREE); 7467 7468 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7469 (void) fprintf(stderr, 7470 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7471 (longlong_t)vd->vdev_id, 7472 (longlong_t)vcsec->vcsec_entryid, 7473 (longlong_t)vcsec->vcsec_num_entries); 7474 } 7475 vcsec->vcsec_entryid++; 7476 7477 /* 7478 * See comment in checkpoint_sm_exclude_entry_cb() 7479 */ 7480 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7481 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7482 7483 /* 7484 * The entries in the vdev_checkpoint_sm should be marked as 7485 * allocated in the checkpointed state of the pool, therefore 7486 * their respective ms_allocateable trees should not contain them. 7487 */ 7488 mutex_enter(&ms->ms_lock); 7489 range_tree_verify_not_present(ms->ms_allocatable, 7490 sme->sme_offset, sme->sme_run); 7491 mutex_exit(&ms->ms_lock); 7492 7493 return (0); 7494 } 7495 7496 /* 7497 * Verify that all segments in the vdev_checkpoint_sm are allocated 7498 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7499 * ms_allocatable). 7500 * 7501 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7502 * each vdev in the current state of the pool to the metaslab space maps 7503 * (ms_sm) of the checkpointed state of the pool. 7504 * 7505 * Note that the function changes the state of the ms_allocatable 7506 * trees of the current spa_t. The entries of these ms_allocatable 7507 * trees are cleared out and then repopulated from with the free 7508 * entries of their respective ms_sm space maps. 7509 */ 7510 static void 7511 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7512 { 7513 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7514 vdev_t *current_rvd = current->spa_root_vdev; 7515 7516 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7517 7518 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7519 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7520 vdev_t *current_vd = current_rvd->vdev_child[c]; 7521 7522 space_map_t *checkpoint_sm = NULL; 7523 uint64_t checkpoint_sm_obj; 7524 7525 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7526 /* 7527 * Since we don't allow device removal in a pool 7528 * that has a checkpoint, we expect that all removed 7529 * vdevs were removed from the pool before the 7530 * checkpoint. 7531 */ 7532 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7533 continue; 7534 } 7535 7536 /* 7537 * If the checkpoint space map doesn't exist, then nothing 7538 * here is checkpointed so there's nothing to verify. 7539 */ 7540 if (current_vd->vdev_top_zap == 0 || 7541 zap_contains(spa_meta_objset(current), 7542 current_vd->vdev_top_zap, 7543 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7544 continue; 7545 7546 VERIFY0(zap_lookup(spa_meta_objset(current), 7547 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7548 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7549 7550 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7551 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7552 current_vd->vdev_ashift)); 7553 7554 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7555 vcsec.vcsec_vd = ckpoint_vd; 7556 vcsec.vcsec_entryid = 0; 7557 vcsec.vcsec_num_entries = 7558 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7559 VERIFY0(space_map_iterate(checkpoint_sm, 7560 space_map_length(checkpoint_sm), 7561 verify_checkpoint_sm_entry_cb, &vcsec)); 7562 if (dump_opt['m'] > 3) 7563 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7564 space_map_close(checkpoint_sm); 7565 } 7566 7567 /* 7568 * If we've added vdevs since we took the checkpoint, ensure 7569 * that their checkpoint space maps are empty. 7570 */ 7571 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7572 for (uint64_t c = ckpoint_rvd->vdev_children; 7573 c < current_rvd->vdev_children; c++) { 7574 vdev_t *current_vd = current_rvd->vdev_child[c]; 7575 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7576 } 7577 } 7578 7579 /* for cleaner progress output */ 7580 (void) fprintf(stderr, "\n"); 7581 } 7582 7583 /* 7584 * Verifies that all space that's allocated in the checkpoint is 7585 * still allocated in the current version, by checking that everything 7586 * in checkpoint's ms_allocatable (which is actually allocated, not 7587 * allocatable/free) is not present in current's ms_allocatable. 7588 * 7589 * Note that the function changes the state of the ms_allocatable 7590 * trees of both spas when called. The entries of all ms_allocatable 7591 * trees are cleared out and then repopulated from their respective 7592 * ms_sm space maps. In the checkpointed state we load the allocated 7593 * entries, and in the current state we load the free entries. 7594 */ 7595 static void 7596 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7597 { 7598 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7599 vdev_t *current_rvd = current->spa_root_vdev; 7600 7601 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7602 load_concrete_ms_allocatable_trees(current, SM_FREE); 7603 7604 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7605 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7606 vdev_t *current_vd = current_rvd->vdev_child[i]; 7607 7608 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7609 /* 7610 * See comment in verify_checkpoint_vdev_spacemaps() 7611 */ 7612 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7613 continue; 7614 } 7615 7616 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7617 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7618 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7619 7620 (void) fprintf(stderr, 7621 "\rverifying vdev %llu of %llu, " 7622 "metaslab %llu of %llu ...", 7623 (longlong_t)current_vd->vdev_id, 7624 (longlong_t)current_rvd->vdev_children, 7625 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7626 (longlong_t)current_vd->vdev_ms_count); 7627 7628 /* 7629 * We walk through the ms_allocatable trees that 7630 * are loaded with the allocated blocks from the 7631 * ms_sm spacemaps of the checkpoint. For each 7632 * one of these ranges we ensure that none of them 7633 * exists in the ms_allocatable trees of the 7634 * current state which are loaded with the ranges 7635 * that are currently free. 7636 * 7637 * This way we ensure that none of the blocks that 7638 * are part of the checkpoint were freed by mistake. 7639 */ 7640 range_tree_walk(ckpoint_msp->ms_allocatable, 7641 (range_tree_func_t *)range_tree_verify_not_present, 7642 current_msp->ms_allocatable); 7643 } 7644 } 7645 7646 /* for cleaner progress output */ 7647 (void) fprintf(stderr, "\n"); 7648 } 7649 7650 static void 7651 verify_checkpoint_blocks(spa_t *spa) 7652 { 7653 ASSERT(!dump_opt['L']); 7654 7655 spa_t *checkpoint_spa; 7656 char *checkpoint_pool; 7657 int error = 0; 7658 7659 /* 7660 * We import the checkpointed state of the pool (under a different 7661 * name) so we can do verification on it against the current state 7662 * of the pool. 7663 */ 7664 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7665 NULL); 7666 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7667 7668 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7669 if (error != 0) { 7670 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7671 "error %d\n", checkpoint_pool, error); 7672 } 7673 7674 /* 7675 * Ensure that ranges in the checkpoint space maps of each vdev 7676 * are allocated according to the checkpointed state's metaslab 7677 * space maps. 7678 */ 7679 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7680 7681 /* 7682 * Ensure that allocated ranges in the checkpoint's metaslab 7683 * space maps remain allocated in the metaslab space maps of 7684 * the current state. 7685 */ 7686 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7687 7688 /* 7689 * Once we are done, we get rid of the checkpointed state. 7690 */ 7691 spa_close(checkpoint_spa, FTAG); 7692 free(checkpoint_pool); 7693 } 7694 7695 static void 7696 dump_leftover_checkpoint_blocks(spa_t *spa) 7697 { 7698 vdev_t *rvd = spa->spa_root_vdev; 7699 7700 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7701 vdev_t *vd = rvd->vdev_child[i]; 7702 7703 space_map_t *checkpoint_sm = NULL; 7704 uint64_t checkpoint_sm_obj; 7705 7706 if (vd->vdev_top_zap == 0) 7707 continue; 7708 7709 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7710 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7711 continue; 7712 7713 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7714 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7715 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7716 7717 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7718 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7719 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7720 space_map_close(checkpoint_sm); 7721 } 7722 } 7723 7724 static int 7725 verify_checkpoint(spa_t *spa) 7726 { 7727 uberblock_t checkpoint; 7728 int error; 7729 7730 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7731 return (0); 7732 7733 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7734 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7735 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7736 7737 if (error == ENOENT && !dump_opt['L']) { 7738 /* 7739 * If the feature is active but the uberblock is missing 7740 * then we must be in the middle of discarding the 7741 * checkpoint. 7742 */ 7743 (void) printf("\nPartially discarded checkpoint " 7744 "state found:\n"); 7745 if (dump_opt['m'] > 3) 7746 dump_leftover_checkpoint_blocks(spa); 7747 return (0); 7748 } else if (error != 0) { 7749 (void) printf("lookup error %d when looking for " 7750 "checkpointed uberblock in MOS\n", error); 7751 return (error); 7752 } 7753 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7754 7755 if (checkpoint.ub_checkpoint_txg == 0) { 7756 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7757 "uberblock\n"); 7758 error = 3; 7759 } 7760 7761 if (error == 0 && !dump_opt['L']) 7762 verify_checkpoint_blocks(spa); 7763 7764 return (error); 7765 } 7766 7767 static void 7768 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7769 { 7770 (void) arg; 7771 for (uint64_t i = start; i < size; i++) { 7772 (void) printf("MOS object %llu referenced but not allocated\n", 7773 (u_longlong_t)i); 7774 } 7775 } 7776 7777 static void 7778 mos_obj_refd(uint64_t obj) 7779 { 7780 if (obj != 0 && mos_refd_objs != NULL) 7781 range_tree_add(mos_refd_objs, obj, 1); 7782 } 7783 7784 /* 7785 * Call on a MOS object that may already have been referenced. 7786 */ 7787 static void 7788 mos_obj_refd_multiple(uint64_t obj) 7789 { 7790 if (obj != 0 && mos_refd_objs != NULL && 7791 !range_tree_contains(mos_refd_objs, obj, 1)) 7792 range_tree_add(mos_refd_objs, obj, 1); 7793 } 7794 7795 static void 7796 mos_leak_vdev_top_zap(vdev_t *vd) 7797 { 7798 uint64_t ms_flush_data_obj; 7799 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7800 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7801 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7802 if (error == ENOENT) 7803 return; 7804 ASSERT0(error); 7805 7806 mos_obj_refd(ms_flush_data_obj); 7807 } 7808 7809 static void 7810 mos_leak_vdev(vdev_t *vd) 7811 { 7812 mos_obj_refd(vd->vdev_dtl_object); 7813 mos_obj_refd(vd->vdev_ms_array); 7814 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7815 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7816 mos_obj_refd(vd->vdev_leaf_zap); 7817 if (vd->vdev_checkpoint_sm != NULL) 7818 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7819 if (vd->vdev_indirect_mapping != NULL) { 7820 mos_obj_refd(vd->vdev_indirect_mapping-> 7821 vim_phys->vimp_counts_object); 7822 } 7823 if (vd->vdev_obsolete_sm != NULL) 7824 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7825 7826 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7827 metaslab_t *ms = vd->vdev_ms[m]; 7828 mos_obj_refd(space_map_object(ms->ms_sm)); 7829 } 7830 7831 if (vd->vdev_root_zap != 0) 7832 mos_obj_refd(vd->vdev_root_zap); 7833 7834 if (vd->vdev_top_zap != 0) { 7835 mos_obj_refd(vd->vdev_top_zap); 7836 mos_leak_vdev_top_zap(vd); 7837 } 7838 7839 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7840 mos_leak_vdev(vd->vdev_child[c]); 7841 } 7842 } 7843 7844 static void 7845 mos_leak_log_spacemaps(spa_t *spa) 7846 { 7847 uint64_t spacemap_zap; 7848 int error = zap_lookup(spa_meta_objset(spa), 7849 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7850 sizeof (spacemap_zap), 1, &spacemap_zap); 7851 if (error == ENOENT) 7852 return; 7853 ASSERT0(error); 7854 7855 mos_obj_refd(spacemap_zap); 7856 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7857 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7858 mos_obj_refd(sls->sls_sm_obj); 7859 } 7860 7861 static void 7862 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7863 { 7864 zap_cursor_t zc; 7865 zap_attribute_t za; 7866 for (zap_cursor_init(&zc, mos, errlog); 7867 zap_cursor_retrieve(&zc, &za) == 0; 7868 zap_cursor_advance(&zc)) { 7869 mos_obj_refd(za.za_first_integer); 7870 } 7871 zap_cursor_fini(&zc); 7872 } 7873 7874 static int 7875 dump_mos_leaks(spa_t *spa) 7876 { 7877 int rv = 0; 7878 objset_t *mos = spa->spa_meta_objset; 7879 dsl_pool_t *dp = spa->spa_dsl_pool; 7880 7881 /* Visit and mark all referenced objects in the MOS */ 7882 7883 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7884 mos_obj_refd(spa->spa_pool_props_object); 7885 mos_obj_refd(spa->spa_config_object); 7886 mos_obj_refd(spa->spa_ddt_stat_object); 7887 mos_obj_refd(spa->spa_feat_desc_obj); 7888 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7889 mos_obj_refd(spa->spa_feat_for_read_obj); 7890 mos_obj_refd(spa->spa_feat_for_write_obj); 7891 mos_obj_refd(spa->spa_history); 7892 mos_obj_refd(spa->spa_errlog_last); 7893 mos_obj_refd(spa->spa_errlog_scrub); 7894 7895 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7896 errorlog_count_refd(mos, spa->spa_errlog_last); 7897 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7898 } 7899 7900 mos_obj_refd(spa->spa_all_vdev_zaps); 7901 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7902 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7903 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7904 bpobj_count_refd(&spa->spa_deferred_bpobj); 7905 mos_obj_refd(dp->dp_empty_bpobj); 7906 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7907 bpobj_count_refd(&dp->dp_free_bpobj); 7908 mos_obj_refd(spa->spa_l2cache.sav_object); 7909 mos_obj_refd(spa->spa_spares.sav_object); 7910 7911 if (spa->spa_syncing_log_sm != NULL) 7912 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7913 mos_leak_log_spacemaps(spa); 7914 7915 mos_obj_refd(spa->spa_condensing_indirect_phys. 7916 scip_next_mapping_object); 7917 mos_obj_refd(spa->spa_condensing_indirect_phys. 7918 scip_prev_obsolete_sm_object); 7919 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7920 vdev_indirect_mapping_t *vim = 7921 vdev_indirect_mapping_open(mos, 7922 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7923 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7924 vdev_indirect_mapping_close(vim); 7925 } 7926 deleted_livelists_dump_mos(spa); 7927 7928 if (dp->dp_origin_snap != NULL) { 7929 dsl_dataset_t *ds; 7930 7931 dsl_pool_config_enter(dp, FTAG); 7932 VERIFY0(dsl_dataset_hold_obj(dp, 7933 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7934 FTAG, &ds)); 7935 count_ds_mos_objects(ds); 7936 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7937 dsl_dataset_rele(ds, FTAG); 7938 dsl_pool_config_exit(dp, FTAG); 7939 7940 count_ds_mos_objects(dp->dp_origin_snap); 7941 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7942 } 7943 count_dir_mos_objects(dp->dp_mos_dir); 7944 if (dp->dp_free_dir != NULL) 7945 count_dir_mos_objects(dp->dp_free_dir); 7946 if (dp->dp_leak_dir != NULL) 7947 count_dir_mos_objects(dp->dp_leak_dir); 7948 7949 mos_leak_vdev(spa->spa_root_vdev); 7950 7951 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7952 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7953 for (uint64_t cksum = 0; 7954 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7955 ddt_t *ddt = spa->spa_ddt[cksum]; 7956 if (!ddt) 7957 continue; 7958 mos_obj_refd(ddt->ddt_object[type][class]); 7959 } 7960 } 7961 } 7962 7963 if (spa->spa_brt != NULL) { 7964 brt_t *brt = spa->spa_brt; 7965 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 7966 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 7967 if (brtvd != NULL && brtvd->bv_initiated) { 7968 mos_obj_refd(brtvd->bv_mos_brtvdev); 7969 mos_obj_refd(brtvd->bv_mos_entries); 7970 } 7971 } 7972 } 7973 7974 /* 7975 * Visit all allocated objects and make sure they are referenced. 7976 */ 7977 uint64_t object = 0; 7978 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7979 if (range_tree_contains(mos_refd_objs, object, 1)) { 7980 range_tree_remove(mos_refd_objs, object, 1); 7981 } else { 7982 dmu_object_info_t doi; 7983 const char *name; 7984 VERIFY0(dmu_object_info(mos, object, &doi)); 7985 if (doi.doi_type & DMU_OT_NEWTYPE) { 7986 dmu_object_byteswap_t bswap = 7987 DMU_OT_BYTESWAP(doi.doi_type); 7988 name = dmu_ot_byteswap[bswap].ob_name; 7989 } else { 7990 name = dmu_ot[doi.doi_type].ot_name; 7991 } 7992 7993 (void) printf("MOS object %llu (%s) leaked\n", 7994 (u_longlong_t)object, name); 7995 rv = 2; 7996 } 7997 } 7998 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7999 if (!range_tree_is_empty(mos_refd_objs)) 8000 rv = 2; 8001 range_tree_vacate(mos_refd_objs, NULL, NULL); 8002 range_tree_destroy(mos_refd_objs); 8003 return (rv); 8004 } 8005 8006 typedef struct log_sm_obsolete_stats_arg { 8007 uint64_t lsos_current_txg; 8008 8009 uint64_t lsos_total_entries; 8010 uint64_t lsos_valid_entries; 8011 8012 uint64_t lsos_sm_entries; 8013 uint64_t lsos_valid_sm_entries; 8014 } log_sm_obsolete_stats_arg_t; 8015 8016 static int 8017 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8018 uint64_t txg, void *arg) 8019 { 8020 log_sm_obsolete_stats_arg_t *lsos = arg; 8021 8022 uint64_t offset = sme->sme_offset; 8023 uint64_t vdev_id = sme->sme_vdev; 8024 8025 if (lsos->lsos_current_txg == 0) { 8026 /* this is the first log */ 8027 lsos->lsos_current_txg = txg; 8028 } else if (lsos->lsos_current_txg < txg) { 8029 /* we just changed log - print stats and reset */ 8030 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8031 (u_longlong_t)lsos->lsos_valid_sm_entries, 8032 (u_longlong_t)lsos->lsos_sm_entries, 8033 (u_longlong_t)lsos->lsos_current_txg); 8034 lsos->lsos_valid_sm_entries = 0; 8035 lsos->lsos_sm_entries = 0; 8036 lsos->lsos_current_txg = txg; 8037 } 8038 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8039 8040 lsos->lsos_sm_entries++; 8041 lsos->lsos_total_entries++; 8042 8043 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8044 if (!vdev_is_concrete(vd)) 8045 return (0); 8046 8047 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8048 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8049 8050 if (txg < metaslab_unflushed_txg(ms)) 8051 return (0); 8052 lsos->lsos_valid_sm_entries++; 8053 lsos->lsos_valid_entries++; 8054 return (0); 8055 } 8056 8057 static void 8058 dump_log_spacemap_obsolete_stats(spa_t *spa) 8059 { 8060 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8061 return; 8062 8063 log_sm_obsolete_stats_arg_t lsos = {0}; 8064 8065 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8066 8067 iterate_through_spacemap_logs(spa, 8068 log_spacemap_obsolete_stats_cb, &lsos); 8069 8070 /* print stats for latest log */ 8071 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8072 (u_longlong_t)lsos.lsos_valid_sm_entries, 8073 (u_longlong_t)lsos.lsos_sm_entries, 8074 (u_longlong_t)lsos.lsos_current_txg); 8075 8076 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8077 (u_longlong_t)lsos.lsos_valid_entries, 8078 (u_longlong_t)lsos.lsos_total_entries); 8079 } 8080 8081 static void 8082 dump_zpool(spa_t *spa) 8083 { 8084 dsl_pool_t *dp = spa_get_dsl(spa); 8085 int rc = 0; 8086 8087 if (dump_opt['y']) { 8088 livelist_metaslab_validate(spa); 8089 } 8090 8091 if (dump_opt['S']) { 8092 dump_simulated_ddt(spa); 8093 return; 8094 } 8095 8096 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8097 (void) printf("\nCached configuration:\n"); 8098 dump_nvlist(spa->spa_config, 8); 8099 } 8100 8101 if (dump_opt['C']) 8102 dump_config(spa); 8103 8104 if (dump_opt['u']) 8105 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8106 8107 if (dump_opt['D']) 8108 dump_all_ddts(spa); 8109 8110 if (dump_opt['T']) 8111 dump_brt(spa); 8112 8113 if (dump_opt['d'] > 2 || dump_opt['m']) 8114 dump_metaslabs(spa); 8115 if (dump_opt['M']) 8116 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8117 if (dump_opt['d'] > 2 || dump_opt['m']) { 8118 dump_log_spacemaps(spa); 8119 dump_log_spacemap_obsolete_stats(spa); 8120 } 8121 8122 if (dump_opt['d'] || dump_opt['i']) { 8123 spa_feature_t f; 8124 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8125 0); 8126 dump_objset(dp->dp_meta_objset); 8127 8128 if (dump_opt['d'] >= 3) { 8129 dsl_pool_t *dp = spa->spa_dsl_pool; 8130 dump_full_bpobj(&spa->spa_deferred_bpobj, 8131 "Deferred frees", 0); 8132 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8133 dump_full_bpobj(&dp->dp_free_bpobj, 8134 "Pool snapshot frees", 0); 8135 } 8136 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8137 ASSERT(spa_feature_is_enabled(spa, 8138 SPA_FEATURE_DEVICE_REMOVAL)); 8139 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8140 "Pool obsolete blocks", 0); 8141 } 8142 8143 if (spa_feature_is_active(spa, 8144 SPA_FEATURE_ASYNC_DESTROY)) { 8145 dump_bptree(spa->spa_meta_objset, 8146 dp->dp_bptree_obj, 8147 "Pool dataset frees"); 8148 } 8149 dump_dtl(spa->spa_root_vdev, 0); 8150 } 8151 8152 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8153 global_feature_count[f] = UINT64_MAX; 8154 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8155 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8156 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8157 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8158 8159 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8160 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8161 8162 if (rc == 0 && !dump_opt['L']) 8163 rc = dump_mos_leaks(spa); 8164 8165 for (f = 0; f < SPA_FEATURES; f++) { 8166 uint64_t refcount; 8167 8168 uint64_t *arr; 8169 if (!(spa_feature_table[f].fi_flags & 8170 ZFEATURE_FLAG_PER_DATASET)) { 8171 if (global_feature_count[f] == UINT64_MAX) 8172 continue; 8173 if (!spa_feature_is_enabled(spa, f)) { 8174 ASSERT0(global_feature_count[f]); 8175 continue; 8176 } 8177 arr = global_feature_count; 8178 } else { 8179 if (!spa_feature_is_enabled(spa, f)) { 8180 ASSERT0(dataset_feature_count[f]); 8181 continue; 8182 } 8183 arr = dataset_feature_count; 8184 } 8185 if (feature_get_refcount(spa, &spa_feature_table[f], 8186 &refcount) == ENOTSUP) 8187 continue; 8188 if (arr[f] != refcount) { 8189 (void) printf("%s feature refcount mismatch: " 8190 "%lld consumers != %lld refcount\n", 8191 spa_feature_table[f].fi_uname, 8192 (longlong_t)arr[f], (longlong_t)refcount); 8193 rc = 2; 8194 } else { 8195 (void) printf("Verified %s feature refcount " 8196 "of %llu is correct\n", 8197 spa_feature_table[f].fi_uname, 8198 (longlong_t)refcount); 8199 } 8200 } 8201 8202 if (rc == 0) 8203 rc = verify_device_removal_feature_counts(spa); 8204 } 8205 8206 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8207 rc = dump_block_stats(spa); 8208 8209 if (rc == 0) 8210 rc = verify_spacemap_refcounts(spa); 8211 8212 if (dump_opt['s']) 8213 show_pool_stats(spa); 8214 8215 if (dump_opt['h']) 8216 dump_history(spa); 8217 8218 if (rc == 0) 8219 rc = verify_checkpoint(spa); 8220 8221 if (rc != 0) { 8222 dump_debug_buffer(); 8223 exit(rc); 8224 } 8225 } 8226 8227 #define ZDB_FLAG_CHECKSUM 0x0001 8228 #define ZDB_FLAG_DECOMPRESS 0x0002 8229 #define ZDB_FLAG_BSWAP 0x0004 8230 #define ZDB_FLAG_GBH 0x0008 8231 #define ZDB_FLAG_INDIRECT 0x0010 8232 #define ZDB_FLAG_RAW 0x0020 8233 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8234 #define ZDB_FLAG_VERBOSE 0x0080 8235 8236 static int flagbits[256]; 8237 static char flagbitstr[16]; 8238 8239 static void 8240 zdb_print_blkptr(const blkptr_t *bp, int flags) 8241 { 8242 char blkbuf[BP_SPRINTF_LEN]; 8243 8244 if (flags & ZDB_FLAG_BSWAP) 8245 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8246 8247 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8248 (void) printf("%s\n", blkbuf); 8249 } 8250 8251 static void 8252 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8253 { 8254 int i; 8255 8256 for (i = 0; i < nbps; i++) 8257 zdb_print_blkptr(&bp[i], flags); 8258 } 8259 8260 static void 8261 zdb_dump_gbh(void *buf, int flags) 8262 { 8263 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8264 } 8265 8266 static void 8267 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8268 { 8269 if (flags & ZDB_FLAG_BSWAP) 8270 byteswap_uint64_array(buf, size); 8271 VERIFY(write(fileno(stdout), buf, size) == size); 8272 } 8273 8274 static void 8275 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8276 { 8277 uint64_t *d = (uint64_t *)buf; 8278 unsigned nwords = size / sizeof (uint64_t); 8279 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8280 unsigned i, j; 8281 const char *hdr; 8282 char *c; 8283 8284 8285 if (do_bswap) 8286 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8287 else 8288 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8289 8290 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8291 8292 #ifdef _LITTLE_ENDIAN 8293 /* correct the endianness */ 8294 do_bswap = !do_bswap; 8295 #endif 8296 for (i = 0; i < nwords; i += 2) { 8297 (void) printf("%06llx: %016llx %016llx ", 8298 (u_longlong_t)(i * sizeof (uint64_t)), 8299 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8300 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8301 8302 c = (char *)&d[i]; 8303 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8304 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8305 (void) printf("\n"); 8306 } 8307 } 8308 8309 /* 8310 * There are two acceptable formats: 8311 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8312 * child[.child]* - For example: 0.1.1 8313 * 8314 * The second form can be used to specify arbitrary vdevs anywhere 8315 * in the hierarchy. For example, in a pool with a mirror of 8316 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8317 */ 8318 static vdev_t * 8319 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8320 { 8321 char *s, *p, *q; 8322 unsigned i; 8323 8324 if (vdev == NULL) 8325 return (NULL); 8326 8327 /* First, assume the x.x.x.x format */ 8328 i = strtoul(path, &s, 10); 8329 if (s == path || (s && *s != '.' && *s != '\0')) 8330 goto name; 8331 if (i >= vdev->vdev_children) 8332 return (NULL); 8333 8334 vdev = vdev->vdev_child[i]; 8335 if (s && *s == '\0') 8336 return (vdev); 8337 return (zdb_vdev_lookup(vdev, s+1)); 8338 8339 name: 8340 for (i = 0; i < vdev->vdev_children; i++) { 8341 vdev_t *vc = vdev->vdev_child[i]; 8342 8343 if (vc->vdev_path == NULL) { 8344 vc = zdb_vdev_lookup(vc, path); 8345 if (vc == NULL) 8346 continue; 8347 else 8348 return (vc); 8349 } 8350 8351 p = strrchr(vc->vdev_path, '/'); 8352 p = p ? p + 1 : vc->vdev_path; 8353 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8354 8355 if (strcmp(vc->vdev_path, path) == 0) 8356 return (vc); 8357 if (strcmp(p, path) == 0) 8358 return (vc); 8359 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8360 return (vc); 8361 } 8362 8363 return (NULL); 8364 } 8365 8366 static int 8367 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8368 { 8369 dsl_dataset_t *ds; 8370 8371 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8372 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8373 NULL, &ds); 8374 if (error != 0) { 8375 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8376 (u_longlong_t)objset_id, strerror(error)); 8377 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8378 return (error); 8379 } 8380 dsl_dataset_name(ds, outstr); 8381 dsl_dataset_rele(ds, NULL); 8382 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8383 return (0); 8384 } 8385 8386 static boolean_t 8387 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8388 { 8389 char *s0, *s1, *tmp = NULL; 8390 8391 if (sizes == NULL) 8392 return (B_FALSE); 8393 8394 s0 = strtok_r(sizes, "/", &tmp); 8395 if (s0 == NULL) 8396 return (B_FALSE); 8397 s1 = strtok_r(NULL, "/", &tmp); 8398 *lsize = strtoull(s0, NULL, 16); 8399 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8400 return (*lsize >= *psize && *psize > 0); 8401 } 8402 8403 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8404 8405 static boolean_t 8406 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8407 int flags, int cfunc, void *lbuf, void *lbuf2) 8408 { 8409 if (flags & ZDB_FLAG_VERBOSE) { 8410 (void) fprintf(stderr, 8411 "Trying %05llx -> %05llx (%s)\n", 8412 (u_longlong_t)psize, 8413 (u_longlong_t)lsize, 8414 zio_compress_table[cfunc].ci_name); 8415 } 8416 8417 /* 8418 * We set lbuf to all zeros and lbuf2 to all 8419 * ones, then decompress to both buffers and 8420 * compare their contents. This way we can 8421 * know if decompression filled exactly to 8422 * lsize or if it left some bytes unwritten. 8423 */ 8424 8425 memset(lbuf, 0x00, lsize); 8426 memset(lbuf2, 0xff, lsize); 8427 8428 if (zio_decompress_data(cfunc, pabd, 8429 lbuf, psize, lsize, NULL) == 0 && 8430 zio_decompress_data(cfunc, pabd, 8431 lbuf2, psize, lsize, NULL) == 0 && 8432 memcmp(lbuf, lbuf2, lsize) == 0) 8433 return (B_TRUE); 8434 return (B_FALSE); 8435 } 8436 8437 static uint64_t 8438 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8439 uint64_t psize, int flags) 8440 { 8441 (void) buf; 8442 uint64_t orig_lsize = lsize; 8443 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8444 boolean_t found = B_FALSE; 8445 /* 8446 * We don't know how the data was compressed, so just try 8447 * every decompress function at every inflated blocksize. 8448 */ 8449 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8450 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8451 int *cfuncp = cfuncs; 8452 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8453 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8454 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8455 ZIO_COMPRESS_MASK(ZLE); 8456 *cfuncp++ = ZIO_COMPRESS_LZ4; 8457 *cfuncp++ = ZIO_COMPRESS_LZJB; 8458 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8459 /* 8460 * Every gzip level has the same decompressor, no need to 8461 * run it 9 times per bruteforce attempt. 8462 */ 8463 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8464 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8465 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8466 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8467 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8468 if (((1ULL << c) & mask) == 0) 8469 *cfuncp++ = c; 8470 8471 /* 8472 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8473 * could take a while and we should let the user know 8474 * we are not stuck. On the other hand, printing progress 8475 * info gets old after a while. User can specify 'v' flag 8476 * to see the progression. 8477 */ 8478 if (lsize == psize) 8479 lsize += SPA_MINBLOCKSIZE; 8480 else 8481 maxlsize = lsize; 8482 8483 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8484 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8485 if (try_decompress_block(pabd, lsize, psize, flags, 8486 *cfuncp, lbuf, lbuf2)) { 8487 found = B_TRUE; 8488 break; 8489 } 8490 } 8491 if (*cfuncp != 0) 8492 break; 8493 } 8494 if (!found && tryzle) { 8495 for (lsize = orig_lsize; lsize <= maxlsize; 8496 lsize += SPA_MINBLOCKSIZE) { 8497 if (try_decompress_block(pabd, lsize, psize, flags, 8498 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8499 *cfuncp = ZIO_COMPRESS_ZLE; 8500 found = B_TRUE; 8501 break; 8502 } 8503 } 8504 } 8505 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8506 8507 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8508 printf("\nZLE decompression was selected. If you " 8509 "suspect the results are wrong,\ntry avoiding ZLE " 8510 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8511 } 8512 8513 return (lsize > maxlsize ? -1 : lsize); 8514 } 8515 8516 /* 8517 * Read a block from a pool and print it out. The syntax of the 8518 * block descriptor is: 8519 * 8520 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8521 * 8522 * pool - The name of the pool you wish to read from 8523 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8524 * offset - offset, in hex, in bytes 8525 * size - Amount of data to read, in hex, in bytes 8526 * flags - A string of characters specifying options 8527 * b: Decode a blkptr at given offset within block 8528 * c: Calculate and display checksums 8529 * d: Decompress data before dumping 8530 * e: Byteswap data before dumping 8531 * g: Display data as a gang block header 8532 * i: Display as an indirect block 8533 * r: Dump raw data to stdout 8534 * v: Verbose 8535 * 8536 */ 8537 static void 8538 zdb_read_block(char *thing, spa_t *spa) 8539 { 8540 blkptr_t blk, *bp = &blk; 8541 dva_t *dva = bp->blk_dva; 8542 int flags = 0; 8543 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8544 zio_t *zio; 8545 vdev_t *vd; 8546 abd_t *pabd; 8547 void *lbuf, *buf; 8548 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8549 const char *vdev, *errmsg = NULL; 8550 int i, error; 8551 boolean_t borrowed = B_FALSE, found = B_FALSE; 8552 8553 dup = strdup(thing); 8554 s = strtok_r(dup, ":", &tmp); 8555 vdev = s ?: ""; 8556 s = strtok_r(NULL, ":", &tmp); 8557 offset = strtoull(s ? s : "", NULL, 16); 8558 sizes = strtok_r(NULL, ":", &tmp); 8559 s = strtok_r(NULL, ":", &tmp); 8560 flagstr = strdup(s ?: ""); 8561 8562 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8563 errmsg = "invalid size(s)"; 8564 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8565 errmsg = "size must be a multiple of sector size"; 8566 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8567 errmsg = "offset must be a multiple of sector size"; 8568 if (errmsg) { 8569 (void) printf("Invalid block specifier: %s - %s\n", 8570 thing, errmsg); 8571 goto done; 8572 } 8573 8574 tmp = NULL; 8575 for (s = strtok_r(flagstr, ":", &tmp); 8576 s != NULL; 8577 s = strtok_r(NULL, ":", &tmp)) { 8578 for (i = 0; i < strlen(flagstr); i++) { 8579 int bit = flagbits[(uchar_t)flagstr[i]]; 8580 8581 if (bit == 0) { 8582 (void) printf("***Ignoring flag: %c\n", 8583 (uchar_t)flagstr[i]); 8584 continue; 8585 } 8586 found = B_TRUE; 8587 flags |= bit; 8588 8589 p = &flagstr[i + 1]; 8590 if (*p != ':' && *p != '\0') { 8591 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8592 char *end, offstr[8] = { 0 }; 8593 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8594 (nextbit == 0)) { 8595 /* look ahead to isolate the offset */ 8596 while (nextbit == 0 && 8597 strchr(flagbitstr, *p) == NULL) { 8598 offstr[j] = *p; 8599 j++; 8600 if (i + j > strlen(flagstr)) 8601 break; 8602 p++; 8603 nextbit = flagbits[(uchar_t)*p]; 8604 } 8605 blkptr_offset = strtoull(offstr, &end, 8606 16); 8607 i += j; 8608 } else if (nextbit == 0) { 8609 (void) printf("***Ignoring flag arg:" 8610 " '%c'\n", (uchar_t)*p); 8611 } 8612 } 8613 } 8614 } 8615 if (blkptr_offset % sizeof (blkptr_t)) { 8616 printf("Block pointer offset 0x%llx " 8617 "must be divisible by 0x%x\n", 8618 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8619 goto done; 8620 } 8621 if (found == B_FALSE && strlen(flagstr) > 0) { 8622 printf("Invalid flag arg: '%s'\n", flagstr); 8623 goto done; 8624 } 8625 8626 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8627 if (vd == NULL) { 8628 (void) printf("***Invalid vdev: %s\n", vdev); 8629 goto done; 8630 } else { 8631 if (vd->vdev_path) 8632 (void) fprintf(stderr, "Found vdev: %s\n", 8633 vd->vdev_path); 8634 else 8635 (void) fprintf(stderr, "Found vdev type: %s\n", 8636 vd->vdev_ops->vdev_op_type); 8637 } 8638 8639 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8640 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8641 8642 BP_ZERO(bp); 8643 8644 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8645 DVA_SET_OFFSET(&dva[0], offset); 8646 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8647 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8648 8649 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8650 8651 BP_SET_LSIZE(bp, lsize); 8652 BP_SET_PSIZE(bp, psize); 8653 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8654 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8655 BP_SET_TYPE(bp, DMU_OT_NONE); 8656 BP_SET_LEVEL(bp, 0); 8657 BP_SET_DEDUP(bp, 0); 8658 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8659 8660 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8661 zio = zio_root(spa, NULL, NULL, 0); 8662 8663 if (vd == vd->vdev_top) { 8664 /* 8665 * Treat this as a normal block read. 8666 */ 8667 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8668 ZIO_PRIORITY_SYNC_READ, 8669 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8670 } else { 8671 /* 8672 * Treat this as a vdev child I/O. 8673 */ 8674 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8675 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8676 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8677 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8678 NULL, NULL)); 8679 } 8680 8681 error = zio_wait(zio); 8682 spa_config_exit(spa, SCL_STATE, FTAG); 8683 8684 if (error) { 8685 (void) printf("Read of %s failed, error: %d\n", thing, error); 8686 goto out; 8687 } 8688 8689 uint64_t orig_lsize = lsize; 8690 buf = lbuf; 8691 if (flags & ZDB_FLAG_DECOMPRESS) { 8692 lsize = zdb_decompress_block(pabd, buf, lbuf, 8693 lsize, psize, flags); 8694 if (lsize == -1) { 8695 (void) printf("Decompress of %s failed\n", thing); 8696 goto out; 8697 } 8698 } else { 8699 buf = abd_borrow_buf_copy(pabd, lsize); 8700 borrowed = B_TRUE; 8701 } 8702 /* 8703 * Try to detect invalid block pointer. If invalid, try 8704 * decompressing. 8705 */ 8706 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8707 !(flags & ZDB_FLAG_DECOMPRESS)) { 8708 const blkptr_t *b = (const blkptr_t *)(void *) 8709 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8710 if (zfs_blkptr_verify(spa, b, 8711 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8712 abd_return_buf_copy(pabd, buf, lsize); 8713 borrowed = B_FALSE; 8714 buf = lbuf; 8715 lsize = zdb_decompress_block(pabd, buf, 8716 lbuf, lsize, psize, flags); 8717 b = (const blkptr_t *)(void *) 8718 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8719 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8720 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8721 printf("invalid block pointer at this DVA\n"); 8722 goto out; 8723 } 8724 } 8725 } 8726 8727 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8728 zdb_print_blkptr((blkptr_t *)(void *) 8729 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8730 else if (flags & ZDB_FLAG_RAW) 8731 zdb_dump_block_raw(buf, lsize, flags); 8732 else if (flags & ZDB_FLAG_INDIRECT) 8733 zdb_dump_indirect((blkptr_t *)buf, 8734 orig_lsize / sizeof (blkptr_t), flags); 8735 else if (flags & ZDB_FLAG_GBH) 8736 zdb_dump_gbh(buf, flags); 8737 else 8738 zdb_dump_block(thing, buf, lsize, flags); 8739 8740 /* 8741 * If :c was specified, iterate through the checksum table to 8742 * calculate and display each checksum for our specified 8743 * DVA and length. 8744 */ 8745 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8746 !(flags & ZDB_FLAG_GBH)) { 8747 zio_t *czio; 8748 (void) printf("\n"); 8749 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8750 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8751 8752 if ((zio_checksum_table[ck].ci_flags & 8753 ZCHECKSUM_FLAG_EMBEDDED) || 8754 ck == ZIO_CHECKSUM_NOPARITY) { 8755 continue; 8756 } 8757 BP_SET_CHECKSUM(bp, ck); 8758 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8759 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8760 if (vd == vd->vdev_top) { 8761 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8762 NULL, NULL, 8763 ZIO_PRIORITY_SYNC_READ, 8764 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8765 ZIO_FLAG_DONT_RETRY, NULL)); 8766 } else { 8767 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8768 offset, pabd, psize, ZIO_TYPE_READ, 8769 ZIO_PRIORITY_SYNC_READ, 8770 ZIO_FLAG_DONT_PROPAGATE | 8771 ZIO_FLAG_DONT_RETRY | 8772 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8773 ZIO_FLAG_SPECULATIVE | 8774 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8775 } 8776 error = zio_wait(czio); 8777 if (error == 0 || error == ECKSUM) { 8778 zio_t *ck_zio = zio_null(NULL, spa, NULL, 8779 NULL, NULL, 0); 8780 ck_zio->io_offset = 8781 DVA_GET_OFFSET(&bp->blk_dva[0]); 8782 ck_zio->io_bp = bp; 8783 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8784 printf( 8785 "%12s\t" 8786 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8787 zio_checksum_table[ck].ci_name, 8788 (u_longlong_t)bp->blk_cksum.zc_word[0], 8789 (u_longlong_t)bp->blk_cksum.zc_word[1], 8790 (u_longlong_t)bp->blk_cksum.zc_word[2], 8791 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8792 zio_wait(ck_zio); 8793 } else { 8794 printf("error %d reading block\n", error); 8795 } 8796 spa_config_exit(spa, SCL_STATE, FTAG); 8797 } 8798 } 8799 8800 if (borrowed) 8801 abd_return_buf_copy(pabd, buf, lsize); 8802 8803 out: 8804 abd_free(pabd); 8805 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8806 done: 8807 free(flagstr); 8808 free(dup); 8809 } 8810 8811 static void 8812 zdb_embedded_block(char *thing) 8813 { 8814 blkptr_t bp = {{{{0}}}}; 8815 unsigned long long *words = (void *)&bp; 8816 char *buf; 8817 int err; 8818 8819 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8820 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8821 words + 0, words + 1, words + 2, words + 3, 8822 words + 4, words + 5, words + 6, words + 7, 8823 words + 8, words + 9, words + 10, words + 11, 8824 words + 12, words + 13, words + 14, words + 15); 8825 if (err != 16) { 8826 (void) fprintf(stderr, "invalid input format\n"); 8827 exit(1); 8828 } 8829 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8830 buf = malloc(SPA_MAXBLOCKSIZE); 8831 if (buf == NULL) { 8832 (void) fprintf(stderr, "out of memory\n"); 8833 exit(1); 8834 } 8835 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8836 if (err != 0) { 8837 (void) fprintf(stderr, "decode failed: %u\n", err); 8838 exit(1); 8839 } 8840 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8841 free(buf); 8842 } 8843 8844 /* check for valid hex or decimal numeric string */ 8845 static boolean_t 8846 zdb_numeric(char *str) 8847 { 8848 int i = 0; 8849 8850 if (strlen(str) == 0) 8851 return (B_FALSE); 8852 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8853 i = 2; 8854 for (; i < strlen(str); i++) { 8855 if (!isxdigit(str[i])) 8856 return (B_FALSE); 8857 } 8858 return (B_TRUE); 8859 } 8860 8861 int 8862 main(int argc, char **argv) 8863 { 8864 int c; 8865 spa_t *spa = NULL; 8866 objset_t *os = NULL; 8867 int dump_all = 1; 8868 int verbose = 0; 8869 int error = 0; 8870 char **searchdirs = NULL; 8871 int nsearch = 0; 8872 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8873 nvlist_t *policy = NULL; 8874 uint64_t max_txg = UINT64_MAX; 8875 int64_t objset_id = -1; 8876 uint64_t object; 8877 int flags = ZFS_IMPORT_MISSING_LOG; 8878 int rewind = ZPOOL_NEVER_REWIND; 8879 char *spa_config_path_env, *objset_str; 8880 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8881 nvlist_t *cfg = NULL; 8882 8883 dprintf_setup(&argc, argv); 8884 8885 /* 8886 * If there is an environment variable SPA_CONFIG_PATH it overrides 8887 * default spa_config_path setting. If -U flag is specified it will 8888 * override this environment variable settings once again. 8889 */ 8890 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8891 if (spa_config_path_env != NULL) 8892 spa_config_path = spa_config_path_env; 8893 8894 /* 8895 * For performance reasons, we set this tunable down. We do so before 8896 * the arg parsing section so that the user can override this value if 8897 * they choose. 8898 */ 8899 zfs_btree_verify_intensity = 3; 8900 8901 struct option long_options[] = { 8902 {"ignore-assertions", no_argument, NULL, 'A'}, 8903 {"block-stats", no_argument, NULL, 'b'}, 8904 {"backup", no_argument, NULL, 'B'}, 8905 {"checksum", no_argument, NULL, 'c'}, 8906 {"config", no_argument, NULL, 'C'}, 8907 {"datasets", no_argument, NULL, 'd'}, 8908 {"dedup-stats", no_argument, NULL, 'D'}, 8909 {"exported", no_argument, NULL, 'e'}, 8910 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8911 {"automatic-rewind", no_argument, NULL, 'F'}, 8912 {"dump-debug-msg", no_argument, NULL, 'G'}, 8913 {"history", no_argument, NULL, 'h'}, 8914 {"intent-logs", no_argument, NULL, 'i'}, 8915 {"inflight", required_argument, NULL, 'I'}, 8916 {"checkpointed-state", no_argument, NULL, 'k'}, 8917 {"key", required_argument, NULL, 'K'}, 8918 {"label", no_argument, NULL, 'l'}, 8919 {"disable-leak-tracking", no_argument, NULL, 'L'}, 8920 {"metaslabs", no_argument, NULL, 'm'}, 8921 {"metaslab-groups", no_argument, NULL, 'M'}, 8922 {"numeric", no_argument, NULL, 'N'}, 8923 {"option", required_argument, NULL, 'o'}, 8924 {"object-lookups", no_argument, NULL, 'O'}, 8925 {"path", required_argument, NULL, 'p'}, 8926 {"parseable", no_argument, NULL, 'P'}, 8927 {"skip-label", no_argument, NULL, 'q'}, 8928 {"copy-object", no_argument, NULL, 'r'}, 8929 {"read-block", no_argument, NULL, 'R'}, 8930 {"io-stats", no_argument, NULL, 's'}, 8931 {"simulate-dedup", no_argument, NULL, 'S'}, 8932 {"txg", required_argument, NULL, 't'}, 8933 {"brt-stats", no_argument, NULL, 'T'}, 8934 {"uberblock", no_argument, NULL, 'u'}, 8935 {"cachefile", required_argument, NULL, 'U'}, 8936 {"verbose", no_argument, NULL, 'v'}, 8937 {"verbatim", no_argument, NULL, 'V'}, 8938 {"dump-blocks", required_argument, NULL, 'x'}, 8939 {"extreme-rewind", no_argument, NULL, 'X'}, 8940 {"all-reconstruction", no_argument, NULL, 'Y'}, 8941 {"livelist", no_argument, NULL, 'y'}, 8942 {"zstd-headers", no_argument, NULL, 'Z'}, 8943 {0, 0, 0, 0} 8944 }; 8945 8946 while ((c = getopt_long(argc, argv, 8947 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 8948 long_options, NULL)) != -1) { 8949 switch (c) { 8950 case 'b': 8951 case 'B': 8952 case 'c': 8953 case 'C': 8954 case 'd': 8955 case 'D': 8956 case 'E': 8957 case 'G': 8958 case 'h': 8959 case 'i': 8960 case 'l': 8961 case 'm': 8962 case 'M': 8963 case 'N': 8964 case 'O': 8965 case 'r': 8966 case 'R': 8967 case 's': 8968 case 'S': 8969 case 'T': 8970 case 'u': 8971 case 'y': 8972 case 'Z': 8973 dump_opt[c]++; 8974 dump_all = 0; 8975 break; 8976 case 'A': 8977 case 'e': 8978 case 'F': 8979 case 'k': 8980 case 'L': 8981 case 'P': 8982 case 'q': 8983 case 'X': 8984 dump_opt[c]++; 8985 break; 8986 case 'Y': 8987 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8988 zfs_deadman_enabled = 0; 8989 break; 8990 /* NB: Sort single match options below. */ 8991 case 'I': 8992 max_inflight_bytes = strtoull(optarg, NULL, 0); 8993 if (max_inflight_bytes == 0) { 8994 (void) fprintf(stderr, "maximum number " 8995 "of inflight bytes must be greater " 8996 "than 0\n"); 8997 usage(); 8998 } 8999 break; 9000 case 'K': 9001 dump_opt[c]++; 9002 key_material = strdup(optarg); 9003 /* redact key material in process table */ 9004 while (*optarg != '\0') { *optarg++ = '*'; } 9005 break; 9006 case 'o': 9007 error = set_global_var(optarg); 9008 if (error != 0) 9009 usage(); 9010 break; 9011 case 'p': 9012 if (searchdirs == NULL) { 9013 searchdirs = umem_alloc(sizeof (char *), 9014 UMEM_NOFAIL); 9015 } else { 9016 char **tmp = umem_alloc((nsearch + 1) * 9017 sizeof (char *), UMEM_NOFAIL); 9018 memcpy(tmp, searchdirs, nsearch * 9019 sizeof (char *)); 9020 umem_free(searchdirs, 9021 nsearch * sizeof (char *)); 9022 searchdirs = tmp; 9023 } 9024 searchdirs[nsearch++] = optarg; 9025 break; 9026 case 't': 9027 max_txg = strtoull(optarg, NULL, 0); 9028 if (max_txg < TXG_INITIAL) { 9029 (void) fprintf(stderr, "incorrect txg " 9030 "specified: %s\n", optarg); 9031 usage(); 9032 } 9033 break; 9034 case 'U': 9035 spa_config_path = optarg; 9036 if (spa_config_path[0] != '/') { 9037 (void) fprintf(stderr, 9038 "cachefile must be an absolute path " 9039 "(i.e. start with a slash)\n"); 9040 usage(); 9041 } 9042 break; 9043 case 'v': 9044 verbose++; 9045 break; 9046 case 'V': 9047 flags = ZFS_IMPORT_VERBATIM; 9048 break; 9049 case 'x': 9050 vn_dumpdir = optarg; 9051 break; 9052 default: 9053 usage(); 9054 break; 9055 } 9056 } 9057 9058 if (!dump_opt['e'] && searchdirs != NULL) { 9059 (void) fprintf(stderr, "-p option requires use of -e\n"); 9060 usage(); 9061 } 9062 #if defined(_LP64) 9063 /* 9064 * ZDB does not typically re-read blocks; therefore limit the ARC 9065 * to 256 MB, which can be used entirely for metadata. 9066 */ 9067 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9068 zfs_arc_max = 256 * 1024 * 1024; 9069 #endif 9070 9071 /* 9072 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9073 * "zdb -b" uses traversal prefetch which uses async reads. 9074 * For good performance, let several of them be active at once. 9075 */ 9076 zfs_vdev_async_read_max_active = 10; 9077 9078 /* 9079 * Disable reference tracking for better performance. 9080 */ 9081 reference_tracking_enable = B_FALSE; 9082 9083 /* 9084 * Do not fail spa_load when spa_load_verify fails. This is needed 9085 * to load non-idle pools. 9086 */ 9087 spa_load_verify_dryrun = B_TRUE; 9088 9089 /* 9090 * ZDB should have ability to read spacemaps. 9091 */ 9092 spa_mode_readable_spacemaps = B_TRUE; 9093 9094 kernel_init(SPA_MODE_READ); 9095 9096 if (dump_all) 9097 verbose = MAX(verbose, 1); 9098 9099 for (c = 0; c < 256; c++) { 9100 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9101 dump_opt[c] = 1; 9102 if (dump_opt[c]) 9103 dump_opt[c] += verbose; 9104 } 9105 9106 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9107 zfs_recover = (dump_opt['A'] > 1); 9108 9109 argc -= optind; 9110 argv += optind; 9111 if (argc < 2 && dump_opt['R']) 9112 usage(); 9113 9114 if (dump_opt['E']) { 9115 if (argc != 1) 9116 usage(); 9117 zdb_embedded_block(argv[0]); 9118 return (0); 9119 } 9120 9121 if (argc < 1) { 9122 if (!dump_opt['e'] && dump_opt['C']) { 9123 dump_cachefile(spa_config_path); 9124 return (0); 9125 } 9126 usage(); 9127 } 9128 9129 if (dump_opt['l']) 9130 return (dump_label(argv[0])); 9131 9132 if (dump_opt['X'] || dump_opt['F']) 9133 rewind = ZPOOL_DO_REWIND | 9134 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9135 9136 /* -N implies -d */ 9137 if (dump_opt['N'] && dump_opt['d'] == 0) 9138 dump_opt['d'] = dump_opt['N']; 9139 9140 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9141 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9142 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9143 fatal("internal error: %s", strerror(ENOMEM)); 9144 9145 error = 0; 9146 target = argv[0]; 9147 9148 if (strpbrk(target, "/@") != NULL) { 9149 size_t targetlen; 9150 9151 target_pool = strdup(target); 9152 *strpbrk(target_pool, "/@") = '\0'; 9153 9154 target_is_spa = B_FALSE; 9155 targetlen = strlen(target); 9156 if (targetlen && target[targetlen - 1] == '/') 9157 target[targetlen - 1] = '\0'; 9158 9159 /* 9160 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9161 * To disambiguate tank/100, consider the 100 as objsetID 9162 * if -N was given, otherwise 100 is an objsetID iff 9163 * tank/100 as a named dataset fails on lookup. 9164 */ 9165 objset_str = strchr(target, '/'); 9166 if (objset_str && strlen(objset_str) > 1 && 9167 zdb_numeric(objset_str + 1)) { 9168 char *endptr; 9169 errno = 0; 9170 objset_str++; 9171 objset_id = strtoull(objset_str, &endptr, 0); 9172 /* dataset 0 is the same as opening the pool */ 9173 if (errno == 0 && endptr != objset_str && 9174 objset_id != 0) { 9175 if (dump_opt['N']) 9176 dataset_lookup = B_TRUE; 9177 } 9178 /* normal dataset name not an objset ID */ 9179 if (endptr == objset_str) { 9180 objset_id = -1; 9181 } 9182 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9183 dump_opt['N']) { 9184 printf("Supply a numeric objset ID with -N\n"); 9185 exit(1); 9186 } 9187 } else { 9188 target_pool = target; 9189 } 9190 9191 if (dump_opt['e']) { 9192 importargs_t args = { 0 }; 9193 9194 args.paths = nsearch; 9195 args.path = searchdirs; 9196 args.can_be_active = B_TRUE; 9197 9198 libpc_handle_t lpch = { 9199 .lpc_lib_handle = NULL, 9200 .lpc_ops = &libzpool_config_ops, 9201 .lpc_printerr = B_TRUE 9202 }; 9203 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9204 9205 if (error == 0) { 9206 9207 if (nvlist_add_nvlist(cfg, 9208 ZPOOL_LOAD_POLICY, policy) != 0) { 9209 fatal("can't open '%s': %s", 9210 target, strerror(ENOMEM)); 9211 } 9212 9213 if (dump_opt['C'] > 1) { 9214 (void) printf("\nConfiguration for import:\n"); 9215 dump_nvlist(cfg, 8); 9216 } 9217 9218 /* 9219 * Disable the activity check to allow examination of 9220 * active pools. 9221 */ 9222 error = spa_import(target_pool, cfg, NULL, 9223 flags | ZFS_IMPORT_SKIP_MMP); 9224 } 9225 } 9226 9227 if (searchdirs != NULL) { 9228 umem_free(searchdirs, nsearch * sizeof (char *)); 9229 searchdirs = NULL; 9230 } 9231 9232 /* 9233 * We need to make sure to process -O option or call 9234 * dump_path after the -e option has been processed, 9235 * which imports the pool to the namespace if it's 9236 * not in the cachefile. 9237 */ 9238 if (dump_opt['O']) { 9239 if (argc != 2) 9240 usage(); 9241 dump_opt['v'] = verbose + 3; 9242 return (dump_path(argv[0], argv[1], NULL)); 9243 } 9244 9245 if (dump_opt['r']) { 9246 target_is_spa = B_FALSE; 9247 if (argc != 3) 9248 usage(); 9249 dump_opt['v'] = verbose; 9250 error = dump_path(argv[0], argv[1], &object); 9251 if (error != 0) 9252 fatal("internal error: %s", strerror(error)); 9253 } 9254 9255 /* 9256 * import_checkpointed_state makes the assumption that the 9257 * target pool that we pass it is already part of the spa 9258 * namespace. Because of that we need to make sure to call 9259 * it always after the -e option has been processed, which 9260 * imports the pool to the namespace if it's not in the 9261 * cachefile. 9262 */ 9263 char *checkpoint_pool = NULL; 9264 char *checkpoint_target = NULL; 9265 if (dump_opt['k']) { 9266 checkpoint_pool = import_checkpointed_state(target, cfg, 9267 &checkpoint_target); 9268 9269 if (checkpoint_target != NULL) 9270 target = checkpoint_target; 9271 } 9272 9273 if (cfg != NULL) { 9274 nvlist_free(cfg); 9275 cfg = NULL; 9276 } 9277 9278 if (target_pool != target) 9279 free(target_pool); 9280 9281 if (error == 0) { 9282 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9283 ASSERT(checkpoint_pool != NULL); 9284 ASSERT(checkpoint_target == NULL); 9285 9286 error = spa_open(checkpoint_pool, &spa, FTAG); 9287 if (error != 0) { 9288 fatal("Tried to open pool \"%s\" but " 9289 "spa_open() failed with error %d\n", 9290 checkpoint_pool, error); 9291 } 9292 9293 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9294 objset_id == 0) { 9295 zdb_set_skip_mmp(target); 9296 error = spa_open_rewind(target, &spa, FTAG, policy, 9297 NULL); 9298 if (error) { 9299 /* 9300 * If we're missing the log device then 9301 * try opening the pool after clearing the 9302 * log state. 9303 */ 9304 mutex_enter(&spa_namespace_lock); 9305 if ((spa = spa_lookup(target)) != NULL && 9306 spa->spa_log_state == SPA_LOG_MISSING) { 9307 spa->spa_log_state = SPA_LOG_CLEAR; 9308 error = 0; 9309 } 9310 mutex_exit(&spa_namespace_lock); 9311 9312 if (!error) { 9313 error = spa_open_rewind(target, &spa, 9314 FTAG, policy, NULL); 9315 } 9316 } 9317 } else if (strpbrk(target, "#") != NULL) { 9318 dsl_pool_t *dp; 9319 error = dsl_pool_hold(target, FTAG, &dp); 9320 if (error != 0) { 9321 fatal("can't dump '%s': %s", target, 9322 strerror(error)); 9323 } 9324 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9325 dsl_pool_rele(dp, FTAG); 9326 if (error != 0) { 9327 fatal("can't dump '%s': %s", target, 9328 strerror(error)); 9329 } 9330 return (error); 9331 } else { 9332 target_pool = strdup(target); 9333 if (strpbrk(target, "/@") != NULL) 9334 *strpbrk(target_pool, "/@") = '\0'; 9335 9336 zdb_set_skip_mmp(target); 9337 /* 9338 * If -N was supplied, the user has indicated that 9339 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9340 * we first assume that the dataset string is the 9341 * dataset name. If dmu_objset_hold fails with the 9342 * dataset string, and we have an objset_id, retry the 9343 * lookup with the objsetID. 9344 */ 9345 boolean_t retry = B_TRUE; 9346 retry_lookup: 9347 if (dataset_lookup == B_TRUE) { 9348 /* 9349 * Use the supplied id to get the name 9350 * for open_objset. 9351 */ 9352 error = spa_open(target_pool, &spa, FTAG); 9353 if (error == 0) { 9354 error = name_from_objset_id(spa, 9355 objset_id, dsname); 9356 spa_close(spa, FTAG); 9357 if (error == 0) 9358 target = dsname; 9359 } 9360 } 9361 if (error == 0) { 9362 if (objset_id > 0 && retry) { 9363 int err = dmu_objset_hold(target, FTAG, 9364 &os); 9365 if (err) { 9366 dataset_lookup = B_TRUE; 9367 retry = B_FALSE; 9368 goto retry_lookup; 9369 } else { 9370 dmu_objset_rele(os, FTAG); 9371 } 9372 } 9373 error = open_objset(target, FTAG, &os); 9374 } 9375 if (error == 0) 9376 spa = dmu_objset_spa(os); 9377 free(target_pool); 9378 } 9379 } 9380 nvlist_free(policy); 9381 9382 if (error) 9383 fatal("can't open '%s': %s", target, strerror(error)); 9384 9385 /* 9386 * Set the pool failure mode to panic in order to prevent the pool 9387 * from suspending. A suspended I/O will have no way to resume and 9388 * can prevent the zdb(8) command from terminating as expected. 9389 */ 9390 if (spa != NULL) 9391 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9392 9393 argv++; 9394 argc--; 9395 if (dump_opt['r']) { 9396 error = zdb_copy_object(os, object, argv[1]); 9397 } else if (!dump_opt['R']) { 9398 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9399 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9400 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9401 flagbits['z'] = ZOR_FLAG_ZAP; 9402 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9403 9404 if (argc > 0 && dump_opt['d']) { 9405 zopt_object_args = argc; 9406 zopt_object_ranges = calloc(zopt_object_args, 9407 sizeof (zopt_object_range_t)); 9408 for (unsigned i = 0; i < zopt_object_args; i++) { 9409 int err; 9410 const char *msg = NULL; 9411 9412 err = parse_object_range(argv[i], 9413 &zopt_object_ranges[i], &msg); 9414 if (err != 0) 9415 fatal("Bad object or range: '%s': %s\n", 9416 argv[i], msg ?: ""); 9417 } 9418 } else if (argc > 0 && dump_opt['m']) { 9419 zopt_metaslab_args = argc; 9420 zopt_metaslab = calloc(zopt_metaslab_args, 9421 sizeof (uint64_t)); 9422 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9423 errno = 0; 9424 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9425 if (zopt_metaslab[i] == 0 && errno != 0) 9426 fatal("bad number %s: %s", argv[i], 9427 strerror(errno)); 9428 } 9429 } 9430 if (dump_opt['B']) { 9431 dump_backup(target, objset_id, 9432 argc > 0 ? argv[0] : NULL); 9433 } else if (os != NULL) { 9434 dump_objset(os); 9435 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9436 dump_objset(spa->spa_meta_objset); 9437 } else { 9438 dump_zpool(spa); 9439 } 9440 } else { 9441 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9442 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9443 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9444 flagbits['e'] = ZDB_FLAG_BSWAP; 9445 flagbits['g'] = ZDB_FLAG_GBH; 9446 flagbits['i'] = ZDB_FLAG_INDIRECT; 9447 flagbits['r'] = ZDB_FLAG_RAW; 9448 flagbits['v'] = ZDB_FLAG_VERBOSE; 9449 9450 for (int i = 0; i < argc; i++) 9451 zdb_read_block(argv[i], spa); 9452 } 9453 9454 if (dump_opt['k']) { 9455 free(checkpoint_pool); 9456 if (!target_is_spa) 9457 free(checkpoint_target); 9458 } 9459 9460 if (os != NULL) { 9461 close_objset(os, FTAG); 9462 } else { 9463 spa_close(spa, FTAG); 9464 } 9465 9466 fuid_table_destroy(); 9467 9468 dump_debug_buffer(); 9469 9470 kernel_fini(); 9471 9472 return (error); 9473 } 9474