xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision 5036d9652a5701d00e9e40ea942c278e9f77d33d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  * Copyright (c) 2023, 2024, Klara Inc.
37  * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
38  */
39 
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/vdev.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
65 #include <sys/dbuf.h>
66 #include <sys/zil.h>
67 #include <sys/zil_impl.h>
68 #include <sys/stat.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
75 #include <sys/arc.h>
76 #include <sys/arc_impl.h>
77 #include <sys/ddt.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
80 #include <sys/abd.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
85 #include <sys/brt.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
90 
91 #include <libnvpair.h>
92 #include <libzutil.h>
93 #include <libzfs_core.h>
94 
95 #include <libzdb.h>
96 
97 #include "zdb.h"
98 
99 
100 extern int reference_tracking_enable;
101 extern int zfs_recover;
102 extern uint_t zfs_vdev_async_read_max_active;
103 extern boolean_t spa_load_verify_dryrun;
104 extern boolean_t spa_mode_readable_spacemaps;
105 extern uint_t zfs_reconstruct_indirect_combinations_max;
106 extern uint_t zfs_btree_verify_intensity;
107 
108 static const char cmdname[] = "zdb";
109 uint8_t dump_opt[256];
110 
111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
112 
113 static uint64_t *zopt_metaslab = NULL;
114 static unsigned zopt_metaslab_args = 0;
115 
116 
117 static zopt_object_range_t *zopt_object_ranges = NULL;
118 static unsigned zopt_object_args = 0;
119 
120 static int flagbits[256];
121 
122 
123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects = 0;
125 static range_tree_t *mos_refd_objs;
126 static spa_t *spa;
127 static objset_t *os;
128 static boolean_t kernel_init_done;
129 
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
131     boolean_t);
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
135     dmu_tx_t *tx);
136 
137 
138 
139 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
140 static void zdb_exit(int reason);
141 
142 typedef struct sublivelist_verify_block_refcnt {
143 	/* block pointer entry in livelist being verified */
144 	blkptr_t svbr_blk;
145 
146 	/*
147 	 * Refcount gets incremented to 1 when we encounter the first
148 	 * FREE entry for the svfbr block pointer and a node for it
149 	 * is created in our ZDB verification/tracking metadata.
150 	 *
151 	 * As we encounter more FREE entries we increment this counter
152 	 * and similarly decrement it whenever we find the respective
153 	 * ALLOC entries for this block.
154 	 *
155 	 * When the refcount gets to 0 it means that all the FREE and
156 	 * ALLOC entries of this block have paired up and we no longer
157 	 * need to track it in our verification logic (e.g. the node
158 	 * containing this struct in our verification data structure
159 	 * should be freed).
160 	 *
161 	 * [refer to sublivelist_verify_blkptr() for the actual code]
162 	 */
163 	uint32_t svbr_refcnt;
164 } sublivelist_verify_block_refcnt_t;
165 
166 static int
167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
168 {
169 	const sublivelist_verify_block_refcnt_t *l = larg;
170 	const sublivelist_verify_block_refcnt_t *r = rarg;
171 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
172 }
173 
174 static int
175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
176     dmu_tx_t *tx)
177 {
178 	ASSERT3P(tx, ==, NULL);
179 	struct sublivelist_verify *sv = arg;
180 	sublivelist_verify_block_refcnt_t current = {
181 			.svbr_blk = *bp,
182 
183 			/*
184 			 * Start with 1 in case this is the first free entry.
185 			 * This field is not used for our B-Tree comparisons
186 			 * anyway.
187 			 */
188 			.svbr_refcnt = 1,
189 	};
190 
191 	zfs_btree_index_t where;
192 	sublivelist_verify_block_refcnt_t *pair =
193 	    zfs_btree_find(&sv->sv_pair, &current, &where);
194 	if (free) {
195 		if (pair == NULL) {
196 			/* first free entry for this block pointer */
197 			zfs_btree_add(&sv->sv_pair, &current);
198 		} else {
199 			pair->svbr_refcnt++;
200 		}
201 	} else {
202 		if (pair == NULL) {
203 			/* block that is currently marked as allocated */
204 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
205 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
206 					break;
207 				sublivelist_verify_block_t svb = {
208 				    .svb_dva = bp->blk_dva[i],
209 				    .svb_allocated_txg =
210 				    BP_GET_LOGICAL_BIRTH(bp)
211 				};
212 
213 				if (zfs_btree_find(&sv->sv_leftover, &svb,
214 				    &where) == NULL) {
215 					zfs_btree_add_idx(&sv->sv_leftover,
216 					    &svb, &where);
217 				}
218 			}
219 		} else {
220 			/* alloc matches a free entry */
221 			pair->svbr_refcnt--;
222 			if (pair->svbr_refcnt == 0) {
223 				/* all allocs and frees have been matched */
224 				zfs_btree_remove_idx(&sv->sv_pair, &where);
225 			}
226 		}
227 	}
228 
229 	return (0);
230 }
231 
232 static int
233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
234 {
235 	int err;
236 	struct sublivelist_verify *sv = args;
237 
238 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
239 	    sizeof (sublivelist_verify_block_refcnt_t));
240 
241 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
242 	    sv, NULL);
243 
244 	sublivelist_verify_block_refcnt_t *e;
245 	zfs_btree_index_t *cookie = NULL;
246 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
247 		char blkbuf[BP_SPRINTF_LEN];
248 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
249 		    &e->svbr_blk, B_TRUE);
250 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 		    e->svbr_refcnt, blkbuf);
252 	}
253 	zfs_btree_destroy(&sv->sv_pair);
254 
255 	return (err);
256 }
257 
258 static int
259 livelist_block_compare(const void *larg, const void *rarg)
260 {
261 	const sublivelist_verify_block_t *l = larg;
262 	const sublivelist_verify_block_t *r = rarg;
263 
264 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
265 		return (-1);
266 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
267 		return (+1);
268 
269 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
270 		return (-1);
271 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
272 		return (+1);
273 
274 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
275 		return (-1);
276 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
277 		return (+1);
278 
279 	return (0);
280 }
281 
282 /*
283  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284  * sublivelist_verify_t: sv->sv_leftover
285  */
286 static void
287 livelist_verify(dsl_deadlist_t *dl, void *arg)
288 {
289 	sublivelist_verify_t *sv = arg;
290 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
291 }
292 
293 /*
294  * Check for errors in the livelist entry and discard the intermediary
295  * data structures
296  */
297 static int
298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
299 {
300 	(void) args;
301 	sublivelist_verify_t sv;
302 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
303 	    sizeof (sublivelist_verify_block_t));
304 	int err = sublivelist_verify_func(&sv, dle);
305 	zfs_btree_clear(&sv.sv_leftover);
306 	zfs_btree_destroy(&sv.sv_leftover);
307 	return (err);
308 }
309 
310 typedef struct metaslab_verify {
311 	/*
312 	 * Tree containing all the leftover ALLOCs from the livelists
313 	 * that are part of this metaslab.
314 	 */
315 	zfs_btree_t mv_livelist_allocs;
316 
317 	/*
318 	 * Metaslab information.
319 	 */
320 	uint64_t mv_vdid;
321 	uint64_t mv_msid;
322 	uint64_t mv_start;
323 	uint64_t mv_end;
324 
325 	/*
326 	 * What's currently allocated for this metaslab.
327 	 */
328 	range_tree_t *mv_allocated;
329 } metaslab_verify_t;
330 
331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
332 
333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
334     void *arg);
335 
336 typedef struct unflushed_iter_cb_arg {
337 	spa_t *uic_spa;
338 	uint64_t uic_txg;
339 	void *uic_arg;
340 	zdb_log_sm_cb_t uic_cb;
341 } unflushed_iter_cb_arg_t;
342 
343 static int
344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
345 {
346 	unflushed_iter_cb_arg_t *uic = arg;
347 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
348 }
349 
350 static void
351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
352 {
353 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
354 		return;
355 
356 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
357 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
358 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
359 		space_map_t *sm = NULL;
360 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
361 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
362 
363 		unflushed_iter_cb_arg_t uic = {
364 			.uic_spa = spa,
365 			.uic_txg = sls->sls_txg,
366 			.uic_arg = arg,
367 			.uic_cb = cb
368 		};
369 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
370 		    iterate_through_spacemap_logs_cb, &uic));
371 		space_map_close(sm);
372 	}
373 	spa_config_exit(spa, SCL_CONFIG, FTAG);
374 }
375 
376 static void
377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
378     uint64_t offset, uint64_t size)
379 {
380 	sublivelist_verify_block_t svb = {{{0}}};
381 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
382 	DVA_SET_OFFSET(&svb.svb_dva, offset);
383 	DVA_SET_ASIZE(&svb.svb_dva, size);
384 	zfs_btree_index_t where;
385 	uint64_t end_offset = offset + size;
386 
387 	/*
388 	 *  Look for an exact match for spacemap entry in the livelist entries.
389 	 *  Then, look for other livelist entries that fall within the range
390 	 *  of the spacemap entry as it may have been condensed
391 	 */
392 	sublivelist_verify_block_t *found =
393 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
394 	if (found == NULL) {
395 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
396 	}
397 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
398 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
399 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
400 		if (found->svb_allocated_txg <= txg) {
401 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 			    "from TXG %llx FREED at TXG %llx\n",
403 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
404 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
405 			    (u_longlong_t)found->svb_allocated_txg,
406 			    (u_longlong_t)txg);
407 		}
408 	}
409 }
410 
411 static int
412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
413 {
414 	metaslab_verify_t *mv = arg;
415 	uint64_t offset = sme->sme_offset;
416 	uint64_t size = sme->sme_run;
417 	uint64_t txg = sme->sme_txg;
418 
419 	if (sme->sme_type == SM_ALLOC) {
420 		if (range_tree_contains(mv->mv_allocated,
421 		    offset, size)) {
422 			(void) printf("ERROR: DOUBLE ALLOC: "
423 			    "%llu [%llx:%llx] "
424 			    "%llu:%llu LOG_SM\n",
425 			    (u_longlong_t)txg, (u_longlong_t)offset,
426 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
427 			    (u_longlong_t)mv->mv_msid);
428 		} else {
429 			range_tree_add(mv->mv_allocated,
430 			    offset, size);
431 		}
432 	} else {
433 		if (!range_tree_contains(mv->mv_allocated,
434 		    offset, size)) {
435 			(void) printf("ERROR: DOUBLE FREE: "
436 			    "%llu [%llx:%llx] "
437 			    "%llu:%llu LOG_SM\n",
438 			    (u_longlong_t)txg, (u_longlong_t)offset,
439 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
440 			    (u_longlong_t)mv->mv_msid);
441 		} else {
442 			range_tree_remove(mv->mv_allocated,
443 			    offset, size);
444 		}
445 	}
446 
447 	if (sme->sme_type != SM_ALLOC) {
448 		/*
449 		 * If something is freed in the spacemap, verify that
450 		 * it is not listed as allocated in the livelist.
451 		 */
452 		verify_livelist_allocs(mv, txg, offset, size);
453 	}
454 	return (0);
455 }
456 
457 static int
458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
459     uint64_t txg, void *arg)
460 {
461 	metaslab_verify_t *mv = arg;
462 	uint64_t offset = sme->sme_offset;
463 	uint64_t vdev_id = sme->sme_vdev;
464 
465 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
466 
467 	/* skip indirect vdevs */
468 	if (!vdev_is_concrete(vd))
469 		return (0);
470 
471 	if (vdev_id != mv->mv_vdid)
472 		return (0);
473 
474 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
475 	if (ms->ms_id != mv->mv_msid)
476 		return (0);
477 
478 	if (txg < metaslab_unflushed_txg(ms))
479 		return (0);
480 
481 
482 	ASSERT3U(txg, ==, sme->sme_txg);
483 	return (metaslab_spacemap_validation_cb(sme, mv));
484 }
485 
486 static void
487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
488 {
489 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
490 }
491 
492 static void
493 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
494 {
495 	if (sm == NULL)
496 		return;
497 
498 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
499 	    metaslab_spacemap_validation_cb, mv));
500 }
501 
502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
503 
504 /*
505  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506  * they are part of that metaslab (mv_msid).
507  */
508 static void
509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
510 {
511 	zfs_btree_index_t where;
512 	sublivelist_verify_block_t *svb;
513 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
514 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
515 	    svb != NULL;
516 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
517 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
518 			continue;
519 
520 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
521 		    (DVA_GET_OFFSET(&svb->svb_dva) +
522 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
523 			(void) printf("ERROR: Found block that crosses "
524 			    "metaslab boundary: <%llu:%llx:%llx>\n",
525 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
526 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
527 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
528 			continue;
529 		}
530 
531 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
532 			continue;
533 
534 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
535 			continue;
536 
537 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
538 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
539 			(void) printf("ERROR: Found block that crosses "
540 			    "metaslab boundary: <%llu:%llx:%llx>\n",
541 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
542 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
543 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
544 			continue;
545 		}
546 
547 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
548 	}
549 
550 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
551 	    svb != NULL;
552 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
553 		zfs_btree_remove(&sv->sv_leftover, svb);
554 	}
555 }
556 
557 /*
558  * [Livelist Check]
559  * Iterate through all the sublivelists and:
560  * - report leftover frees (**)
561  * - record leftover ALLOCs together with their TXG [see Cross Check]
562  *
563  * (**) Note: Double ALLOCs are valid in datasets that have dedup
564  *      enabled. Similarly double FREEs are allowed as well but
565  *      only if they pair up with a corresponding ALLOC entry once
566  *      we our done with our sublivelist iteration.
567  *
568  * [Spacemap Check]
569  * for each metaslab:
570  * - iterate over spacemap and then the metaslab's entries in the
571  *   spacemap log, then report any double FREEs and ALLOCs (do not
572  *   blow up).
573  *
574  * [Cross Check]
575  * After finishing the Livelist Check phase and while being in the
576  * Spacemap Check phase, we find all the recorded leftover ALLOCs
577  * of the livelist check that are part of the metaslab that we are
578  * currently looking at in the Spacemap Check. We report any entries
579  * that are marked as ALLOCs in the livelists but have been actually
580  * freed (and potentially allocated again) after their TXG stamp in
581  * the spacemaps. Also report any ALLOCs from the livelists that
582  * belong to indirect vdevs (e.g. their vdev completed removal).
583  *
584  * Note that this will miss Log Spacemap entries that cancelled each other
585  * out before being flushed to the metaslab, so we are not guaranteed
586  * to match all erroneous ALLOCs.
587  */
588 static void
589 livelist_metaslab_validate(spa_t *spa)
590 {
591 	(void) printf("Verifying deleted livelist entries\n");
592 
593 	sublivelist_verify_t sv;
594 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
595 	    sizeof (sublivelist_verify_block_t));
596 	iterate_deleted_livelists(spa, livelist_verify, &sv);
597 
598 	(void) printf("Verifying metaslab entries\n");
599 	vdev_t *rvd = spa->spa_root_vdev;
600 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
601 		vdev_t *vd = rvd->vdev_child[c];
602 
603 		if (!vdev_is_concrete(vd))
604 			continue;
605 
606 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
607 			metaslab_t *m = vd->vdev_ms[mid];
608 
609 			(void) fprintf(stderr,
610 			    "\rverifying concrete vdev %llu, "
611 			    "metaslab %llu of %llu ...",
612 			    (longlong_t)vd->vdev_id,
613 			    (longlong_t)mid,
614 			    (longlong_t)vd->vdev_ms_count);
615 
616 			uint64_t shift, start;
617 			range_seg_type_t type =
618 			    metaslab_calculate_range_tree_type(vd, m,
619 			    &start, &shift);
620 			metaslab_verify_t mv;
621 			mv.mv_allocated = range_tree_create(NULL,
622 			    type, NULL, start, shift);
623 			mv.mv_vdid = vd->vdev_id;
624 			mv.mv_msid = m->ms_id;
625 			mv.mv_start = m->ms_start;
626 			mv.mv_end = m->ms_start + m->ms_size;
627 			zfs_btree_create(&mv.mv_livelist_allocs,
628 			    livelist_block_compare, NULL,
629 			    sizeof (sublivelist_verify_block_t));
630 
631 			mv_populate_livelist_allocs(&mv, &sv);
632 
633 			spacemap_check_ms_sm(m->ms_sm, &mv);
634 			spacemap_check_sm_log(spa, &mv);
635 
636 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
637 			range_tree_destroy(mv.mv_allocated);
638 			zfs_btree_clear(&mv.mv_livelist_allocs);
639 			zfs_btree_destroy(&mv.mv_livelist_allocs);
640 		}
641 	}
642 	(void) fprintf(stderr, "\n");
643 
644 	/*
645 	 * If there are any segments in the leftover tree after we walked
646 	 * through all the metaslabs in the concrete vdevs then this means
647 	 * that we have segments in the livelists that belong to indirect
648 	 * vdevs and are marked as allocated.
649 	 */
650 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
651 		zfs_btree_destroy(&sv.sv_leftover);
652 		return;
653 	}
654 	(void) printf("ERROR: Found livelist blocks marked as allocated "
655 	    "for indirect vdevs:\n");
656 
657 	zfs_btree_index_t *where = NULL;
658 	sublivelist_verify_block_t *svb;
659 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
660 	    NULL) {
661 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
662 		ASSERT3U(vdev_id, <, rvd->vdev_children);
663 		vdev_t *vd = rvd->vdev_child[vdev_id];
664 		ASSERT(!vdev_is_concrete(vd));
665 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
666 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
667 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
668 		    (u_longlong_t)svb->svb_allocated_txg);
669 	}
670 	(void) printf("\n");
671 	zfs_btree_destroy(&sv.sv_leftover);
672 }
673 
674 /*
675  * These libumem hooks provide a reasonable set of defaults for the allocator's
676  * debugging facilities.
677  */
678 const char *
679 _umem_debug_init(void)
680 {
681 	return ("default,verbose"); /* $UMEM_DEBUG setting */
682 }
683 
684 const char *
685 _umem_logging_init(void)
686 {
687 	return ("fail,contents"); /* $UMEM_LOGGING setting */
688 }
689 
690 static void
691 usage(void)
692 {
693 	(void) fprintf(stderr,
694 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 	    "[-I <inflight I/Os>]\n"
696 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
697 	    "\t\t[-K <key>]\n"
698 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 	    "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 	    "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 	    "\t%s [-v] <bookmark>\n"
705 	    "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 	    "\t%s -l [-Aqu] <device>\n"
707 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 	    "\t%s -O [-K <key>] <dataset> <path>\n"
710 	    "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 	    "\t%s -E [-A] word0:word1:...:word15\n"
714 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
715 	    "<poolname>\n\n",
716 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
717 	    cmdname, cmdname, cmdname, cmdname, cmdname);
718 
719 	(void) fprintf(stderr, "    Dataset name must include at least one "
720 	    "separator character '/' or '@'\n");
721 	(void) fprintf(stderr, "    If dataset name is specified, only that "
722 	    "dataset is dumped\n");
723 	(void) fprintf(stderr,  "    If object numbers or object number "
724 	    "ranges are specified, only those\n"
725 	    "    objects or ranges are dumped.\n\n");
726 	(void) fprintf(stderr,
727 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
728 	    "        start    Starting object number\n"
729 	    "        end      Ending object number, or -1 for no upper bound\n"
730 	    "        flags    Optional flags to select object types:\n"
731 	    "            A     All objects (this is the default)\n"
732 	    "            d     ZFS directories\n"
733 	    "            f     ZFS files \n"
734 	    "            m     SPA space maps\n"
735 	    "            z     ZAPs\n"
736 	    "            -     Negate effect of next flag\n\n");
737 	(void) fprintf(stderr, "    Options to control amount of output:\n");
738 	(void) fprintf(stderr, "        -b --block-stats             "
739 	    "block statistics\n");
740 	(void) fprintf(stderr, "        -B --backup                  "
741 	    "backup stream\n");
742 	(void) fprintf(stderr, "        -c --checksum                "
743 	    "checksum all metadata (twice for all data) blocks\n");
744 	(void) fprintf(stderr, "        -C --config                  "
745 	    "config (or cachefile if alone)\n");
746 	(void) fprintf(stderr, "        -d --datasets                "
747 	    "dataset(s)\n");
748 	(void) fprintf(stderr, "        -D --dedup-stats             "
749 	    "dedup statistics\n");
750 	(void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
751 	    "                                     decode and display block "
752 	    "from an embedded block pointer\n");
753 	(void) fprintf(stderr, "        -h --history                 "
754 	    "pool history\n");
755 	(void) fprintf(stderr, "        -i --intent-logs             "
756 	    "intent logs\n");
757 	(void) fprintf(stderr, "        -l --label                   "
758 	    "read label contents\n");
759 	(void) fprintf(stderr, "        -k --checkpointed-state      "
760 	    "examine the checkpointed state of the pool\n");
761 	(void) fprintf(stderr, "        -L --disable-leak-tracking   "
762 	    "disable leak tracking (do not load spacemaps)\n");
763 	(void) fprintf(stderr, "        -m --metaslabs               "
764 	    "metaslabs\n");
765 	(void) fprintf(stderr, "        -M --metaslab-groups         "
766 	    "metaslab groups\n");
767 	(void) fprintf(stderr, "        -O --object-lookups          "
768 	    "perform object lookups by path\n");
769 	(void) fprintf(stderr, "        -r --copy-object             "
770 	    "copy an object by path to file\n");
771 	(void) fprintf(stderr, "        -R --read-block              "
772 	    "read and display block from a device\n");
773 	(void) fprintf(stderr, "        -s --io-stats                "
774 	    "report stats on zdb's I/O\n");
775 	(void) fprintf(stderr, "        -S --simulate-dedup          "
776 	    "simulate dedup to measure effect\n");
777 	(void) fprintf(stderr, "        -v --verbose                 "
778 	    "verbose (applies to all others)\n");
779 	(void) fprintf(stderr, "        -y --livelist                "
780 	    "perform livelist and metaslab validation on any livelists being "
781 	    "deleted\n\n");
782 	(void) fprintf(stderr, "    Below options are intended for use "
783 	    "with other options:\n");
784 	(void) fprintf(stderr, "        -A --ignore-assertions       "
785 	    "ignore assertions (-A), enable panic recovery (-AA) or both "
786 	    "(-AAA)\n");
787 	(void) fprintf(stderr, "        -e --exported                "
788 	    "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 	(void) fprintf(stderr, "        -F --automatic-rewind        "
790 	    "attempt automatic rewind within safe range of transaction "
791 	    "groups\n");
792 	(void) fprintf(stderr, "        -G --dump-debug-msg          "
793 	    "dump zfs_dbgmsg buffer before exiting\n");
794 	(void) fprintf(stderr, "        -I --inflight=INTEGER        "
795 	    "specify the maximum number of checksumming I/Os "
796 	    "[default is 200]\n");
797 	(void) fprintf(stderr, "        -K --key=KEY                 "
798 	    "decryption key for encrypted dataset\n");
799 	(void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
800 	    "set global variable to an unsigned 32-bit integer\n");
801 	(void) fprintf(stderr, "        -p --path==PATH              "
802 	    "use one or more with -e to specify path to vdev dir\n");
803 	(void) fprintf(stderr, "        -P --parseable               "
804 	    "print numbers in parseable form\n");
805 	(void) fprintf(stderr, "        -q --skip-label              "
806 	    "don't print label contents\n");
807 	(void) fprintf(stderr, "        -t --txg=INTEGER             "
808 	    "highest txg to use when searching for uberblocks\n");
809 	(void) fprintf(stderr, "        -T --brt-stats               "
810 	    "BRT statistics\n");
811 	(void) fprintf(stderr, "        -u --uberblock               "
812 	    "uberblock\n");
813 	(void) fprintf(stderr, "        -U --cachefile=PATH          "
814 	    "use alternate cachefile\n");
815 	(void) fprintf(stderr, "        -V --verbatim                "
816 	    "do verbatim import\n");
817 	(void) fprintf(stderr, "        -x --dump-blocks=PATH        "
818 	    "dump all read blocks into specified directory\n");
819 	(void) fprintf(stderr, "        -X --extreme-rewind          "
820 	    "attempt extreme rewind (does not work with dataset)\n");
821 	(void) fprintf(stderr, "        -Y --all-reconstruction      "
822 	    "attempt all reconstruction combinations for split blocks\n");
823 	(void) fprintf(stderr, "        -Z --zstd-headers            "
824 	    "show ZSTD headers \n");
825 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
826 	    "to make only that option verbose\n");
827 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
828 	zdb_exit(1);
829 }
830 
831 static void
832 dump_debug_buffer(void)
833 {
834 	ssize_t ret __attribute__((unused));
835 
836 	if (!dump_opt['G'])
837 		return;
838 	/*
839 	 * We use write() instead of printf() so that this function
840 	 * is safe to call from a signal handler.
841 	 */
842 	ret = write(STDERR_FILENO, "\n", 1);
843 	zfs_dbgmsg_print(STDERR_FILENO, "zdb");
844 }
845 
846 static void sig_handler(int signo)
847 {
848 	struct sigaction action;
849 
850 	libspl_backtrace(STDERR_FILENO);
851 	dump_debug_buffer();
852 
853 	/*
854 	 * Restore default action and re-raise signal so SIGSEGV and
855 	 * SIGABRT can trigger a core dump.
856 	 */
857 	action.sa_handler = SIG_DFL;
858 	sigemptyset(&action.sa_mask);
859 	action.sa_flags = 0;
860 	(void) sigaction(signo, &action, NULL);
861 	raise(signo);
862 }
863 
864 /*
865  * Called for usage errors that are discovered after a call to spa_open(),
866  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
867  */
868 
869 static void
870 fatal(const char *fmt, ...)
871 {
872 	va_list ap;
873 
874 	va_start(ap, fmt);
875 	(void) fprintf(stderr, "%s: ", cmdname);
876 	(void) vfprintf(stderr, fmt, ap);
877 	va_end(ap);
878 	(void) fprintf(stderr, "\n");
879 
880 	dump_debug_buffer();
881 
882 	zdb_exit(1);
883 }
884 
885 static void
886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
887 {
888 	(void) size;
889 	nvlist_t *nv;
890 	size_t nvsize = *(uint64_t *)data;
891 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
892 
893 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
894 
895 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
896 
897 	umem_free(packed, nvsize);
898 
899 	dump_nvlist(nv, 8);
900 
901 	nvlist_free(nv);
902 }
903 
904 static void
905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
906 {
907 	(void) os, (void) object, (void) size;
908 	spa_history_phys_t *shp = data;
909 
910 	if (shp == NULL)
911 		return;
912 
913 	(void) printf("\t\tpool_create_len = %llu\n",
914 	    (u_longlong_t)shp->sh_pool_create_len);
915 	(void) printf("\t\tphys_max_off = %llu\n",
916 	    (u_longlong_t)shp->sh_phys_max_off);
917 	(void) printf("\t\tbof = %llu\n",
918 	    (u_longlong_t)shp->sh_bof);
919 	(void) printf("\t\teof = %llu\n",
920 	    (u_longlong_t)shp->sh_eof);
921 	(void) printf("\t\trecords_lost = %llu\n",
922 	    (u_longlong_t)shp->sh_records_lost);
923 }
924 
925 static void
926 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
927 {
928 	if (dump_opt['P'])
929 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
930 	else
931 		nicenum(num, buf, buflen);
932 }
933 
934 static void
935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
936 {
937 	if (dump_opt['P'])
938 		(void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
939 	else
940 		zfs_nicebytes(bytes, buf, buflen);
941 }
942 
943 static const char histo_stars[] = "****************************************";
944 static const uint64_t histo_width = sizeof (histo_stars) - 1;
945 
946 static void
947 dump_histogram(const uint64_t *histo, int size, int offset)
948 {
949 	int i;
950 	int minidx = size - 1;
951 	int maxidx = 0;
952 	uint64_t max = 0;
953 
954 	for (i = 0; i < size; i++) {
955 		if (histo[i] == 0)
956 			continue;
957 		if (histo[i] > max)
958 			max = histo[i];
959 		if (i > maxidx)
960 			maxidx = i;
961 		if (i < minidx)
962 			minidx = i;
963 	}
964 
965 	if (max < histo_width)
966 		max = histo_width;
967 
968 	for (i = minidx; i <= maxidx; i++) {
969 		(void) printf("\t\t\t%3u: %6llu %s\n",
970 		    i + offset, (u_longlong_t)histo[i],
971 		    &histo_stars[(max - histo[i]) * histo_width / max]);
972 	}
973 }
974 
975 static void
976 dump_zap_stats(objset_t *os, uint64_t object)
977 {
978 	int error;
979 	zap_stats_t zs;
980 
981 	error = zap_get_stats(os, object, &zs);
982 	if (error)
983 		return;
984 
985 	if (zs.zs_ptrtbl_len == 0) {
986 		ASSERT(zs.zs_num_blocks == 1);
987 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 		    (u_longlong_t)zs.zs_blocksize,
989 		    (u_longlong_t)zs.zs_num_entries);
990 		return;
991 	}
992 
993 	(void) printf("\tFat ZAP stats:\n");
994 
995 	(void) printf("\t\tPointer table:\n");
996 	(void) printf("\t\t\t%llu elements\n",
997 	    (u_longlong_t)zs.zs_ptrtbl_len);
998 	(void) printf("\t\t\tzt_blk: %llu\n",
999 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1000 	(void) printf("\t\t\tzt_numblks: %llu\n",
1001 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1002 	(void) printf("\t\t\tzt_shift: %llu\n",
1003 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1004 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1006 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1007 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1008 
1009 	(void) printf("\t\tZAP entries: %llu\n",
1010 	    (u_longlong_t)zs.zs_num_entries);
1011 	(void) printf("\t\tLeaf blocks: %llu\n",
1012 	    (u_longlong_t)zs.zs_num_leafs);
1013 	(void) printf("\t\tTotal blocks: %llu\n",
1014 	    (u_longlong_t)zs.zs_num_blocks);
1015 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1016 	    (u_longlong_t)zs.zs_block_type);
1017 	(void) printf("\t\tzap_magic: 0x%llx\n",
1018 	    (u_longlong_t)zs.zs_magic);
1019 	(void) printf("\t\tzap_salt: 0x%llx\n",
1020 	    (u_longlong_t)zs.zs_salt);
1021 
1022 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1023 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1024 
1025 	(void) printf("\t\tBlocks with n*5 entries:\n");
1026 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1027 
1028 	(void) printf("\t\tBlocks n/10 full:\n");
1029 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1030 
1031 	(void) printf("\t\tEntries with n chunks:\n");
1032 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1033 
1034 	(void) printf("\t\tBuckets with n entries:\n");
1035 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1036 }
1037 
1038 static void
1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1040 {
1041 	(void) os, (void) object, (void) data, (void) size;
1042 }
1043 
1044 static void
1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1046 {
1047 	(void) os, (void) object, (void) data, (void) size;
1048 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1049 }
1050 
1051 static void
1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1053 {
1054 	(void) os, (void) object, (void) data, (void) size;
1055 }
1056 
1057 static void
1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1059 {
1060 	uint64_t *arr;
1061 	uint64_t oursize;
1062 	if (dump_opt['d'] < 6)
1063 		return;
1064 
1065 	if (data == NULL) {
1066 		dmu_object_info_t doi;
1067 
1068 		VERIFY0(dmu_object_info(os, object, &doi));
1069 		size = doi.doi_max_offset;
1070 		/*
1071 		 * We cap the size at 1 mebibyte here to prevent
1072 		 * allocation failures and nigh-infinite printing if the
1073 		 * object is extremely large.
1074 		 */
1075 		oursize = MIN(size, 1 << 20);
1076 		arr = kmem_alloc(oursize, KM_SLEEP);
1077 
1078 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1079 		if (err != 0) {
1080 			(void) printf("got error %u from dmu_read\n", err);
1081 			kmem_free(arr, oursize);
1082 			return;
1083 		}
1084 	} else {
1085 		/*
1086 		 * Even though the allocation is already done in this code path,
1087 		 * we still cap the size to prevent excessive printing.
1088 		 */
1089 		oursize = MIN(size, 1 << 20);
1090 		arr = data;
1091 	}
1092 
1093 	if (size == 0) {
1094 		if (data == NULL)
1095 			kmem_free(arr, oursize);
1096 		(void) printf("\t\t[]\n");
1097 		return;
1098 	}
1099 
1100 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1101 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1102 		if (i % 4 != 0)
1103 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1104 		else
1105 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1106 	}
1107 	if (oursize != size)
1108 		(void) printf(", ... ");
1109 	(void) printf("]\n");
1110 
1111 	if (data == NULL)
1112 		kmem_free(arr, oursize);
1113 }
1114 
1115 static void
1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1117 {
1118 	(void) data, (void) size;
1119 	zap_cursor_t zc;
1120 	zap_attribute_t *attrp = zap_attribute_long_alloc();
1121 	void *prop;
1122 	unsigned i;
1123 
1124 	dump_zap_stats(os, object);
1125 	(void) printf("\n");
1126 
1127 	for (zap_cursor_init(&zc, os, object);
1128 	    zap_cursor_retrieve(&zc, attrp) == 0;
1129 	    zap_cursor_advance(&zc)) {
1130 		boolean_t key64 =
1131 		    !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1132 
1133 		if (key64)
1134 			(void) printf("\t\t0x%010" PRIu64 "x = ",
1135 			    *(uint64_t *)attrp->za_name);
1136 		else
1137 			(void) printf("\t\t%s = ", attrp->za_name);
1138 
1139 		if (attrp->za_num_integers == 0) {
1140 			(void) printf("\n");
1141 			continue;
1142 		}
1143 		prop = umem_zalloc(attrp->za_num_integers *
1144 		    attrp->za_integer_length, UMEM_NOFAIL);
1145 
1146 		if (key64)
1147 			(void) zap_lookup_uint64(os, object,
1148 			    (const uint64_t *)attrp->za_name, 1,
1149 			    attrp->za_integer_length, attrp->za_num_integers,
1150 			    prop);
1151 		else
1152 			(void) zap_lookup(os, object, attrp->za_name,
1153 			    attrp->za_integer_length, attrp->za_num_integers,
1154 			    prop);
1155 
1156 		if (attrp->za_integer_length == 1 && !key64) {
1157 			if (strcmp(attrp->za_name,
1158 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1159 			    strcmp(attrp->za_name,
1160 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1161 			    strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1162 			    strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1163 			    strcmp(attrp->za_name,
1164 			    DMU_POOL_CHECKSUM_SALT) == 0) {
1165 				uint8_t *u8 = prop;
1166 
1167 				for (i = 0; i < attrp->za_num_integers; i++) {
1168 					(void) printf("%02x", u8[i]);
1169 				}
1170 			} else {
1171 				(void) printf("%s", (char *)prop);
1172 			}
1173 		} else {
1174 			for (i = 0; i < attrp->za_num_integers; i++) {
1175 				switch (attrp->za_integer_length) {
1176 				case 1:
1177 					(void) printf("%u ",
1178 					    ((uint8_t *)prop)[i]);
1179 					break;
1180 				case 2:
1181 					(void) printf("%u ",
1182 					    ((uint16_t *)prop)[i]);
1183 					break;
1184 				case 4:
1185 					(void) printf("%u ",
1186 					    ((uint32_t *)prop)[i]);
1187 					break;
1188 				case 8:
1189 					(void) printf("%lld ",
1190 					    (u_longlong_t)((int64_t *)prop)[i]);
1191 					break;
1192 				}
1193 			}
1194 		}
1195 		(void) printf("\n");
1196 		umem_free(prop,
1197 		    attrp->za_num_integers * attrp->za_integer_length);
1198 	}
1199 	zap_cursor_fini(&zc);
1200 	zap_attribute_free(attrp);
1201 }
1202 
1203 static void
1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1205 {
1206 	bpobj_phys_t *bpop = data;
1207 	uint64_t i;
1208 	char bytes[32], comp[32], uncomp[32];
1209 
1210 	/* make sure the output won't get truncated */
1211 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1212 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1213 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1214 
1215 	if (bpop == NULL)
1216 		return;
1217 
1218 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1219 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1220 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1221 
1222 	(void) printf("\t\tnum_blkptrs = %llu\n",
1223 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1224 	(void) printf("\t\tbytes = %s\n", bytes);
1225 	if (size >= BPOBJ_SIZE_V1) {
1226 		(void) printf("\t\tcomp = %s\n", comp);
1227 		(void) printf("\t\tuncomp = %s\n", uncomp);
1228 	}
1229 	if (size >= BPOBJ_SIZE_V2) {
1230 		(void) printf("\t\tsubobjs = %llu\n",
1231 		    (u_longlong_t)bpop->bpo_subobjs);
1232 		(void) printf("\t\tnum_subobjs = %llu\n",
1233 		    (u_longlong_t)bpop->bpo_num_subobjs);
1234 	}
1235 	if (size >= sizeof (*bpop)) {
1236 		(void) printf("\t\tnum_freed = %llu\n",
1237 		    (u_longlong_t)bpop->bpo_num_freed);
1238 	}
1239 
1240 	if (dump_opt['d'] < 5)
1241 		return;
1242 
1243 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1244 		char blkbuf[BP_SPRINTF_LEN];
1245 		blkptr_t bp;
1246 
1247 		int err = dmu_read(os, object,
1248 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1249 		if (err != 0) {
1250 			(void) printf("got error %u from dmu_read\n", err);
1251 			break;
1252 		}
1253 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1254 		    BP_GET_FREE(&bp));
1255 		(void) printf("\t%s\n", blkbuf);
1256 	}
1257 }
1258 
1259 static void
1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1261 {
1262 	(void) data, (void) size;
1263 	dmu_object_info_t doi;
1264 	int64_t i;
1265 
1266 	VERIFY0(dmu_object_info(os, object, &doi));
1267 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1268 
1269 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1270 	if (err != 0) {
1271 		(void) printf("got error %u from dmu_read\n", err);
1272 		kmem_free(subobjs, doi.doi_max_offset);
1273 		return;
1274 	}
1275 
1276 	int64_t last_nonzero = -1;
1277 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1278 		if (subobjs[i] != 0)
1279 			last_nonzero = i;
1280 	}
1281 
1282 	for (i = 0; i <= last_nonzero; i++) {
1283 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1284 	}
1285 	kmem_free(subobjs, doi.doi_max_offset);
1286 }
1287 
1288 static void
1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1290 {
1291 	(void) data, (void) size;
1292 	dump_zap_stats(os, object);
1293 	/* contents are printed elsewhere, properly decoded */
1294 }
1295 
1296 static void
1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1298 {
1299 	(void) data, (void) size;
1300 	zap_cursor_t zc;
1301 	zap_attribute_t *attrp = zap_attribute_alloc();
1302 
1303 	dump_zap_stats(os, object);
1304 	(void) printf("\n");
1305 
1306 	for (zap_cursor_init(&zc, os, object);
1307 	    zap_cursor_retrieve(&zc, attrp) == 0;
1308 	    zap_cursor_advance(&zc)) {
1309 		(void) printf("\t\t%s = ", attrp->za_name);
1310 		if (attrp->za_num_integers == 0) {
1311 			(void) printf("\n");
1312 			continue;
1313 		}
1314 		(void) printf(" %llx : [%d:%d:%d]\n",
1315 		    (u_longlong_t)attrp->za_first_integer,
1316 		    (int)ATTR_LENGTH(attrp->za_first_integer),
1317 		    (int)ATTR_BSWAP(attrp->za_first_integer),
1318 		    (int)ATTR_NUM(attrp->za_first_integer));
1319 	}
1320 	zap_cursor_fini(&zc);
1321 	zap_attribute_free(attrp);
1322 }
1323 
1324 static void
1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1326 {
1327 	(void) data, (void) size;
1328 	zap_cursor_t zc;
1329 	zap_attribute_t *attrp = zap_attribute_alloc();
1330 	uint16_t *layout_attrs;
1331 	unsigned i;
1332 
1333 	dump_zap_stats(os, object);
1334 	(void) printf("\n");
1335 
1336 	for (zap_cursor_init(&zc, os, object);
1337 	    zap_cursor_retrieve(&zc, attrp) == 0;
1338 	    zap_cursor_advance(&zc)) {
1339 		(void) printf("\t\t%s = [", attrp->za_name);
1340 		if (attrp->za_num_integers == 0) {
1341 			(void) printf("\n");
1342 			continue;
1343 		}
1344 
1345 		VERIFY(attrp->za_integer_length == 2);
1346 		layout_attrs = umem_zalloc(attrp->za_num_integers *
1347 		    attrp->za_integer_length, UMEM_NOFAIL);
1348 
1349 		VERIFY(zap_lookup(os, object, attrp->za_name,
1350 		    attrp->za_integer_length,
1351 		    attrp->za_num_integers, layout_attrs) == 0);
1352 
1353 		for (i = 0; i != attrp->za_num_integers; i++)
1354 			(void) printf(" %d ", (int)layout_attrs[i]);
1355 		(void) printf("]\n");
1356 		umem_free(layout_attrs,
1357 		    attrp->za_num_integers * attrp->za_integer_length);
1358 	}
1359 	zap_cursor_fini(&zc);
1360 	zap_attribute_free(attrp);
1361 }
1362 
1363 static void
1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1365 {
1366 	(void) data, (void) size;
1367 	zap_cursor_t zc;
1368 	zap_attribute_t *attrp = zap_attribute_long_alloc();
1369 	const char *typenames[] = {
1370 		/* 0 */ "not specified",
1371 		/* 1 */ "FIFO",
1372 		/* 2 */ "Character Device",
1373 		/* 3 */ "3 (invalid)",
1374 		/* 4 */ "Directory",
1375 		/* 5 */ "5 (invalid)",
1376 		/* 6 */ "Block Device",
1377 		/* 7 */ "7 (invalid)",
1378 		/* 8 */ "Regular File",
1379 		/* 9 */ "9 (invalid)",
1380 		/* 10 */ "Symbolic Link",
1381 		/* 11 */ "11 (invalid)",
1382 		/* 12 */ "Socket",
1383 		/* 13 */ "Door",
1384 		/* 14 */ "Event Port",
1385 		/* 15 */ "15 (invalid)",
1386 	};
1387 
1388 	dump_zap_stats(os, object);
1389 	(void) printf("\n");
1390 
1391 	for (zap_cursor_init(&zc, os, object);
1392 	    zap_cursor_retrieve(&zc, attrp) == 0;
1393 	    zap_cursor_advance(&zc)) {
1394 		(void) printf("\t\t%s = %lld (type: %s)\n",
1395 		    attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1396 		    typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1397 	}
1398 	zap_cursor_fini(&zc);
1399 	zap_attribute_free(attrp);
1400 }
1401 
1402 static int
1403 get_dtl_refcount(vdev_t *vd)
1404 {
1405 	int refcount = 0;
1406 
1407 	if (vd->vdev_ops->vdev_op_leaf) {
1408 		space_map_t *sm = vd->vdev_dtl_sm;
1409 
1410 		if (sm != NULL &&
1411 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1412 			return (1);
1413 		return (0);
1414 	}
1415 
1416 	for (unsigned c = 0; c < vd->vdev_children; c++)
1417 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1418 	return (refcount);
1419 }
1420 
1421 static int
1422 get_metaslab_refcount(vdev_t *vd)
1423 {
1424 	int refcount = 0;
1425 
1426 	if (vd->vdev_top == vd) {
1427 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1428 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1429 
1430 			if (sm != NULL &&
1431 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1432 				refcount++;
1433 		}
1434 	}
1435 	for (unsigned c = 0; c < vd->vdev_children; c++)
1436 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1437 
1438 	return (refcount);
1439 }
1440 
1441 static int
1442 get_obsolete_refcount(vdev_t *vd)
1443 {
1444 	uint64_t obsolete_sm_object;
1445 	int refcount = 0;
1446 
1447 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1448 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1449 		dmu_object_info_t doi;
1450 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1451 		    obsolete_sm_object, &doi));
1452 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1453 			refcount++;
1454 		}
1455 	} else {
1456 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1457 		ASSERT3U(obsolete_sm_object, ==, 0);
1458 	}
1459 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1460 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1461 	}
1462 
1463 	return (refcount);
1464 }
1465 
1466 static int
1467 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1468 {
1469 	uint64_t prev_obj =
1470 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1471 	if (prev_obj != 0) {
1472 		dmu_object_info_t doi;
1473 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1474 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1475 			return (1);
1476 		}
1477 	}
1478 	return (0);
1479 }
1480 
1481 static int
1482 get_checkpoint_refcount(vdev_t *vd)
1483 {
1484 	int refcount = 0;
1485 
1486 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1487 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1488 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1489 		refcount++;
1490 
1491 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1492 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1493 
1494 	return (refcount);
1495 }
1496 
1497 static int
1498 get_log_spacemap_refcount(spa_t *spa)
1499 {
1500 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1501 }
1502 
1503 static int
1504 verify_spacemap_refcounts(spa_t *spa)
1505 {
1506 	uint64_t expected_refcount = 0;
1507 	uint64_t actual_refcount;
1508 
1509 	(void) feature_get_refcount(spa,
1510 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1511 	    &expected_refcount);
1512 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1513 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1514 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1515 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1516 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1517 	actual_refcount += get_log_spacemap_refcount(spa);
1518 
1519 	if (expected_refcount != actual_refcount) {
1520 		(void) printf("space map refcount mismatch: expected %lld != "
1521 		    "actual %lld\n",
1522 		    (longlong_t)expected_refcount,
1523 		    (longlong_t)actual_refcount);
1524 		return (2);
1525 	}
1526 	return (0);
1527 }
1528 
1529 static void
1530 dump_spacemap(objset_t *os, space_map_t *sm)
1531 {
1532 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1534 
1535 	if (sm == NULL)
1536 		return;
1537 
1538 	(void) printf("space map object %llu:\n",
1539 	    (longlong_t)sm->sm_object);
1540 	(void) printf("  smp_length = 0x%llx\n",
1541 	    (longlong_t)sm->sm_phys->smp_length);
1542 	(void) printf("  smp_alloc = 0x%llx\n",
1543 	    (longlong_t)sm->sm_phys->smp_alloc);
1544 
1545 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1546 		return;
1547 
1548 	/*
1549 	 * Print out the freelist entries in both encoded and decoded form.
1550 	 */
1551 	uint8_t mapshift = sm->sm_shift;
1552 	int64_t alloc = 0;
1553 	uint64_t word, entry_id = 0;
1554 	for (uint64_t offset = 0; offset < space_map_length(sm);
1555 	    offset += sizeof (word)) {
1556 
1557 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1558 		    sizeof (word), &word, DMU_READ_PREFETCH));
1559 
1560 		if (sm_entry_is_debug(word)) {
1561 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1562 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1563 			if (de_txg == 0) {
1564 				(void) printf(
1565 				    "\t    [%6llu] PADDING\n",
1566 				    (u_longlong_t)entry_id);
1567 			} else {
1568 				(void) printf(
1569 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1570 				    (u_longlong_t)entry_id,
1571 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1572 				    (u_longlong_t)de_txg,
1573 				    (u_longlong_t)de_sync_pass);
1574 			}
1575 			entry_id++;
1576 			continue;
1577 		}
1578 
1579 		uint8_t words;
1580 		char entry_type;
1581 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1582 
1583 		if (sm_entry_is_single_word(word)) {
1584 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1585 			    'A' : 'F';
1586 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1587 			    sm->sm_start;
1588 			entry_run = SM_RUN_DECODE(word) << mapshift;
1589 			words = 1;
1590 		} else {
1591 			/* it is a two-word entry so we read another word */
1592 			ASSERT(sm_entry_is_double_word(word));
1593 
1594 			uint64_t extra_word;
1595 			offset += sizeof (extra_word);
1596 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1597 			    sizeof (extra_word), &extra_word,
1598 			    DMU_READ_PREFETCH));
1599 
1600 			ASSERT3U(offset, <=, space_map_length(sm));
1601 
1602 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1603 			entry_vdev = SM2_VDEV_DECODE(word);
1604 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1605 			    'A' : 'F';
1606 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1607 			    mapshift) + sm->sm_start;
1608 			words = 2;
1609 		}
1610 
1611 		(void) printf("\t    [%6llu]    %c  range:"
1612 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1613 		    (u_longlong_t)entry_id,
1614 		    entry_type, (u_longlong_t)entry_off,
1615 		    (u_longlong_t)(entry_off + entry_run),
1616 		    (u_longlong_t)entry_run,
1617 		    (u_longlong_t)entry_vdev, words);
1618 
1619 		if (entry_type == 'A')
1620 			alloc += entry_run;
1621 		else
1622 			alloc -= entry_run;
1623 		entry_id++;
1624 	}
1625 	if (alloc != space_map_allocated(sm)) {
1626 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 		    "with space map summary (%lld)\n",
1628 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1629 	}
1630 }
1631 
1632 static void
1633 dump_metaslab_stats(metaslab_t *msp)
1634 {
1635 	char maxbuf[32];
1636 	range_tree_t *rt = msp->ms_allocatable;
1637 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1638 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1639 
1640 	/* max sure nicenum has enough space */
1641 	_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1642 
1643 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1644 
1645 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1646 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1647 	    "freepct", free_pct);
1648 	(void) printf("\tIn-memory histogram:\n");
1649 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1650 }
1651 
1652 static void
1653 dump_metaslab(metaslab_t *msp)
1654 {
1655 	vdev_t *vd = msp->ms_group->mg_vd;
1656 	spa_t *spa = vd->vdev_spa;
1657 	space_map_t *sm = msp->ms_sm;
1658 	char freebuf[32];
1659 
1660 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1661 	    sizeof (freebuf));
1662 
1663 	(void) printf(
1664 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1665 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1666 	    (u_longlong_t)space_map_object(sm), freebuf);
1667 
1668 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1669 		mutex_enter(&msp->ms_lock);
1670 		VERIFY0(metaslab_load(msp));
1671 		range_tree_stat_verify(msp->ms_allocatable);
1672 		dump_metaslab_stats(msp);
1673 		metaslab_unload(msp);
1674 		mutex_exit(&msp->ms_lock);
1675 	}
1676 
1677 	if (dump_opt['m'] > 1 && sm != NULL &&
1678 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1679 		/*
1680 		 * The space map histogram represents free space in chunks
1681 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1682 		 */
1683 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 		    (u_longlong_t)msp->ms_fragmentation);
1685 		dump_histogram(sm->sm_phys->smp_histogram,
1686 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1687 	}
1688 
1689 	if (vd->vdev_ops == &vdev_draid_ops)
1690 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1691 	else
1692 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1693 
1694 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1695 
1696 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1697 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1699 	}
1700 }
1701 
1702 static void
1703 print_vdev_metaslab_header(vdev_t *vd)
1704 {
1705 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1706 	const char *bias_str = "";
1707 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1708 		bias_str = VDEV_ALLOC_BIAS_LOG;
1709 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1710 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1711 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1712 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1713 	}
1714 
1715 	uint64_t ms_flush_data_obj = 0;
1716 	if (vd->vdev_top_zap != 0) {
1717 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1718 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1719 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1720 		if (error != ENOENT) {
1721 			ASSERT0(error);
1722 		}
1723 	}
1724 
1725 	(void) printf("\tvdev %10llu   %s",
1726 	    (u_longlong_t)vd->vdev_id, bias_str);
1727 
1728 	if (ms_flush_data_obj != 0) {
1729 		(void) printf("   ms_unflushed_phys object %llu",
1730 		    (u_longlong_t)ms_flush_data_obj);
1731 	}
1732 
1733 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1734 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1735 	    "offset", "spacemap", "free");
1736 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1737 	    "---------------", "-------------------",
1738 	    "---------------", "------------");
1739 }
1740 
1741 static void
1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1743 {
1744 	vdev_t *rvd = spa->spa_root_vdev;
1745 	metaslab_class_t *mc = spa_normal_class(spa);
1746 	metaslab_class_t *smc = spa_special_class(spa);
1747 	uint64_t fragmentation;
1748 
1749 	metaslab_class_histogram_verify(mc);
1750 
1751 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1752 		vdev_t *tvd = rvd->vdev_child[c];
1753 		metaslab_group_t *mg = tvd->vdev_mg;
1754 
1755 		if (mg == NULL || (mg->mg_class != mc &&
1756 		    (!show_special || mg->mg_class != smc)))
1757 			continue;
1758 
1759 		metaslab_group_histogram_verify(mg);
1760 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1761 
1762 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1763 		    "fragmentation",
1764 		    (u_longlong_t)tvd->vdev_id,
1765 		    (u_longlong_t)tvd->vdev_ms_count);
1766 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1767 			(void) printf("%3s\n", "-");
1768 		} else {
1769 			(void) printf("%3llu%%\n",
1770 			    (u_longlong_t)mg->mg_fragmentation);
1771 		}
1772 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1773 	}
1774 
1775 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1776 	fragmentation = metaslab_class_fragmentation(mc);
1777 	if (fragmentation == ZFS_FRAG_INVALID)
1778 		(void) printf("\t%3s\n", "-");
1779 	else
1780 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1781 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1782 }
1783 
1784 static void
1785 print_vdev_indirect(vdev_t *vd)
1786 {
1787 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1788 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1789 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1790 
1791 	if (vim == NULL) {
1792 		ASSERT3P(vib, ==, NULL);
1793 		return;
1794 	}
1795 
1796 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1797 	    vic->vic_mapping_object);
1798 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1799 	    vic->vic_births_object);
1800 
1801 	(void) printf("indirect births obj %llu:\n",
1802 	    (longlong_t)vic->vic_births_object);
1803 	(void) printf("    vib_count = %llu\n",
1804 	    (longlong_t)vdev_indirect_births_count(vib));
1805 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1806 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1807 		    &vib->vib_entries[i];
1808 		(void) printf("\toffset %llx -> txg %llu\n",
1809 		    (longlong_t)cur_vibe->vibe_offset,
1810 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1811 	}
1812 	(void) printf("\n");
1813 
1814 	(void) printf("indirect mapping obj %llu:\n",
1815 	    (longlong_t)vic->vic_mapping_object);
1816 	(void) printf("    vim_max_offset = 0x%llx\n",
1817 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1818 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1819 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1820 	(void) printf("    vim_count = %llu\n",
1821 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1822 
1823 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1824 		return;
1825 
1826 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1827 
1828 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1829 		vdev_indirect_mapping_entry_phys_t *vimep =
1830 		    &vim->vim_entries[i];
1831 		(void) printf("\t<%llx:%llx:%llx> -> "
1832 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1833 		    (longlong_t)vd->vdev_id,
1834 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1835 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1836 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1837 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1838 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1839 		    counts[i]);
1840 	}
1841 	(void) printf("\n");
1842 
1843 	uint64_t obsolete_sm_object;
1844 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1845 	if (obsolete_sm_object != 0) {
1846 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1847 		(void) printf("obsolete space map object %llu:\n",
1848 		    (u_longlong_t)obsolete_sm_object);
1849 		ASSERT(vd->vdev_obsolete_sm != NULL);
1850 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1851 		    obsolete_sm_object);
1852 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1853 		(void) printf("\n");
1854 	}
1855 }
1856 
1857 static void
1858 dump_metaslabs(spa_t *spa)
1859 {
1860 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1861 	uint64_t m, c = 0, children = rvd->vdev_children;
1862 
1863 	(void) printf("\nMetaslabs:\n");
1864 
1865 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1866 		c = zopt_metaslab[0];
1867 
1868 		if (c >= children)
1869 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1870 
1871 		if (zopt_metaslab_args > 1) {
1872 			vd = rvd->vdev_child[c];
1873 			print_vdev_metaslab_header(vd);
1874 
1875 			for (m = 1; m < zopt_metaslab_args; m++) {
1876 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1877 					dump_metaslab(
1878 					    vd->vdev_ms[zopt_metaslab[m]]);
1879 				else
1880 					(void) fprintf(stderr, "bad metaslab "
1881 					    "number %llu\n",
1882 					    (u_longlong_t)zopt_metaslab[m]);
1883 			}
1884 			(void) printf("\n");
1885 			return;
1886 		}
1887 		children = c + 1;
1888 	}
1889 	for (; c < children; c++) {
1890 		vd = rvd->vdev_child[c];
1891 		print_vdev_metaslab_header(vd);
1892 
1893 		print_vdev_indirect(vd);
1894 
1895 		for (m = 0; m < vd->vdev_ms_count; m++)
1896 			dump_metaslab(vd->vdev_ms[m]);
1897 		(void) printf("\n");
1898 	}
1899 }
1900 
1901 static void
1902 dump_log_spacemaps(spa_t *spa)
1903 {
1904 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1905 		return;
1906 
1907 	(void) printf("\nLog Space Maps in Pool:\n");
1908 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1909 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1910 		space_map_t *sm = NULL;
1911 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1912 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1913 
1914 		(void) printf("Log Spacemap object %llu txg %llu\n",
1915 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1916 		dump_spacemap(spa->spa_meta_objset, sm);
1917 		space_map_close(sm);
1918 	}
1919 	(void) printf("\n");
1920 }
1921 
1922 static void
1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1924     uint64_t index)
1925 {
1926 	const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1927 	char blkbuf[BP_SPRINTF_LEN];
1928 	blkptr_t blk;
1929 	int p;
1930 
1931 	for (p = 0; p < DDT_NPHYS(ddt); p++) {
1932 		const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1933 		ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1934 
1935 		if (ddt_phys_birth(ddp, v) == 0)
1936 			continue;
1937 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1938 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1939 		(void) printf("index %llx refcnt %llu phys %d %s\n",
1940 		    (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1941 		    p, blkbuf);
1942 	}
1943 }
1944 
1945 static void
1946 dump_dedup_ratio(const ddt_stat_t *dds)
1947 {
1948 	double rL, rP, rD, D, dedup, compress, copies;
1949 
1950 	if (dds->dds_blocks == 0)
1951 		return;
1952 
1953 	rL = (double)dds->dds_ref_lsize;
1954 	rP = (double)dds->dds_ref_psize;
1955 	rD = (double)dds->dds_ref_dsize;
1956 	D = (double)dds->dds_dsize;
1957 
1958 	dedup = rD / D;
1959 	compress = rL / rP;
1960 	copies = rD / rP;
1961 
1962 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 	    "dedup * compress / copies = %.2f\n\n",
1964 	    dedup, compress, copies, dedup * compress / copies);
1965 }
1966 
1967 static void
1968 dump_ddt_log(ddt_t *ddt)
1969 {
1970 	for (int n = 0; n < 2; n++) {
1971 		ddt_log_t *ddl = &ddt->ddt_log[n];
1972 
1973 		uint64_t count = avl_numnodes(&ddl->ddl_tree);
1974 		if (count == 0)
1975 			continue;
1976 
1977 		printf(DMU_POOL_DDT_LOG ": %" PRIu64 " log entries\n",
1978 		    zio_checksum_table[ddt->ddt_checksum].ci_name, n, count);
1979 
1980 		if (dump_opt['D'] < 4)
1981 			continue;
1982 
1983 		ddt_lightweight_entry_t ddlwe;
1984 		uint64_t index = 0;
1985 		for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
1986 		    ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
1987 			DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
1988 			dump_ddt_entry(ddt, &ddlwe, index++);
1989 		}
1990 	}
1991 }
1992 
1993 static void
1994 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
1995 {
1996 	char name[DDT_NAMELEN];
1997 	ddt_lightweight_entry_t ddlwe;
1998 	uint64_t walk = 0;
1999 	dmu_object_info_t doi;
2000 	uint64_t count, dspace, mspace;
2001 	int error;
2002 
2003 	error = ddt_object_info(ddt, type, class, &doi);
2004 
2005 	if (error == ENOENT)
2006 		return;
2007 	ASSERT(error == 0);
2008 
2009 	error = ddt_object_count(ddt, type, class, &count);
2010 	ASSERT(error == 0);
2011 	if (count == 0)
2012 		return;
2013 
2014 	dspace = doi.doi_physical_blocks_512 << 9;
2015 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
2016 
2017 	ddt_object_name(ddt, type, class, name);
2018 
2019 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2020 	    name,
2021 	    (u_longlong_t)count,
2022 	    (u_longlong_t)dspace,
2023 	    (u_longlong_t)mspace);
2024 
2025 	if (dump_opt['D'] < 3)
2026 		return;
2027 
2028 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2029 
2030 	if (dump_opt['D'] < 4)
2031 		return;
2032 
2033 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2034 		return;
2035 
2036 	(void) printf("%s contents:\n\n", name);
2037 
2038 	while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2039 		dump_ddt_entry(ddt, &ddlwe, walk);
2040 
2041 	ASSERT3U(error, ==, ENOENT);
2042 
2043 	(void) printf("\n");
2044 }
2045 
2046 static void
2047 dump_all_ddts(spa_t *spa)
2048 {
2049 	ddt_histogram_t ddh_total = {{{0}}};
2050 	ddt_stat_t dds_total = {0};
2051 
2052 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2053 		ddt_t *ddt = spa->spa_ddt[c];
2054 		if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2055 			continue;
2056 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2057 			for (ddt_class_t class = 0; class < DDT_CLASSES;
2058 			    class++) {
2059 				dump_ddt(ddt, type, class);
2060 			}
2061 		}
2062 		dump_ddt_log(ddt);
2063 	}
2064 
2065 	ddt_get_dedup_stats(spa, &dds_total);
2066 
2067 	if (dds_total.dds_blocks == 0) {
2068 		(void) printf("All DDTs are empty\n");
2069 		return;
2070 	}
2071 
2072 	(void) printf("\n");
2073 
2074 	if (dump_opt['D'] > 1) {
2075 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 		ddt_get_dedup_histogram(spa, &ddh_total);
2077 		zpool_dump_ddt(&dds_total, &ddh_total);
2078 	}
2079 
2080 	dump_dedup_ratio(&dds_total);
2081 
2082 	/*
2083 	 * Dump a histogram of unique class entry age
2084 	 */
2085 	if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2086 		ddt_age_histo_t histogram;
2087 
2088 		(void) printf("DDT walk unique, building age histogram...\n");
2089 		ddt_prune_walk(spa, 0, &histogram);
2090 
2091 		/*
2092 		 * print out histogram for unique entry class birth
2093 		 */
2094 		if (histogram.dah_entries > 0) {
2095 			(void) printf("%5s  %9s  %4s\n",
2096 			    "age", "blocks", "amnt");
2097 			(void) printf("%5s  %9s  %4s\n",
2098 			    "-----", "---------", "----");
2099 			for (int i = 0; i < HIST_BINS; i++) {
2100 				(void) printf("%5d  %9d %4d%%\n", 1 << i,
2101 				    (int)histogram.dah_age_histo[i],
2102 				    (int)((histogram.dah_age_histo[i] * 100) /
2103 				    histogram.dah_entries));
2104 			}
2105 		}
2106 	}
2107 }
2108 
2109 static void
2110 dump_brt(spa_t *spa)
2111 {
2112 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2113 		printf("BRT: unsupported on this pool\n");
2114 		return;
2115 	}
2116 
2117 	if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2118 		printf("BRT: empty\n");
2119 		return;
2120 	}
2121 
2122 	brt_t *brt = spa->spa_brt;
2123 	VERIFY(brt);
2124 
2125 	char count[32], used[32], saved[32];
2126 	zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2127 	zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2128 	uint64_t ratio = brt_get_ratio(spa);
2129 	printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2130 	    (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2131 
2132 	if (dump_opt['T'] < 2)
2133 		return;
2134 
2135 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2136 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2137 		if (brtvd == NULL)
2138 			continue;
2139 
2140 		if (!brtvd->bv_initiated) {
2141 			printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2142 			continue;
2143 		}
2144 
2145 		zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2146 		zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2147 		zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2148 		printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2149 		    vdevid, count, used, saved);
2150 	}
2151 
2152 	if (dump_opt['T'] < 3)
2153 		return;
2154 
2155 	char dva[64];
2156 	printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2157 
2158 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2159 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2160 		if (brtvd == NULL || !brtvd->bv_initiated)
2161 			continue;
2162 
2163 		zap_cursor_t zc;
2164 		zap_attribute_t *za = zap_attribute_alloc();
2165 		for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries);
2166 		    zap_cursor_retrieve(&zc, za) == 0;
2167 		    zap_cursor_advance(&zc)) {
2168 			uint64_t refcnt;
2169 			VERIFY0(zap_lookup_uint64(brt->brt_mos,
2170 			    brtvd->bv_mos_entries,
2171 			    (const uint64_t *)za->za_name, 1,
2172 			    za->za_integer_length, za->za_num_integers,
2173 			    &refcnt));
2174 
2175 			uint64_t offset = *(const uint64_t *)za->za_name;
2176 
2177 			snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid,
2178 			    (u_longlong_t)offset);
2179 			printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt);
2180 		}
2181 		zap_cursor_fini(&zc);
2182 		zap_attribute_free(za);
2183 	}
2184 }
2185 
2186 static void
2187 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2188 {
2189 	char *prefix = arg;
2190 
2191 	(void) printf("%s [%llu,%llu) length %llu\n",
2192 	    prefix,
2193 	    (u_longlong_t)start,
2194 	    (u_longlong_t)(start + size),
2195 	    (u_longlong_t)(size));
2196 }
2197 
2198 static void
2199 dump_dtl(vdev_t *vd, int indent)
2200 {
2201 	spa_t *spa = vd->vdev_spa;
2202 	boolean_t required;
2203 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2204 		"outage" };
2205 	char prefix[256];
2206 
2207 	spa_vdev_state_enter(spa, SCL_NONE);
2208 	required = vdev_dtl_required(vd);
2209 	(void) spa_vdev_state_exit(spa, NULL, 0);
2210 
2211 	if (indent == 0)
2212 		(void) printf("\nDirty time logs:\n\n");
2213 
2214 	(void) printf("\t%*s%s [%s]\n", indent, "",
2215 	    vd->vdev_path ? vd->vdev_path :
2216 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2217 	    required ? "DTL-required" : "DTL-expendable");
2218 
2219 	for (int t = 0; t < DTL_TYPES; t++) {
2220 		range_tree_t *rt = vd->vdev_dtl[t];
2221 		if (range_tree_space(rt) == 0)
2222 			continue;
2223 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2224 		    indent + 2, "", name[t]);
2225 		range_tree_walk(rt, dump_dtl_seg, prefix);
2226 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2227 			dump_spacemap(spa->spa_meta_objset,
2228 			    vd->vdev_dtl_sm);
2229 	}
2230 
2231 	for (unsigned c = 0; c < vd->vdev_children; c++)
2232 		dump_dtl(vd->vdev_child[c], indent + 4);
2233 }
2234 
2235 static void
2236 dump_history(spa_t *spa)
2237 {
2238 	nvlist_t **events = NULL;
2239 	char *buf;
2240 	uint64_t resid, len, off = 0;
2241 	uint_t num = 0;
2242 	int error;
2243 	char tbuf[30];
2244 
2245 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2246 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2247 		    __func__);
2248 		return;
2249 	}
2250 
2251 	do {
2252 		len = SPA_OLD_MAXBLOCKSIZE;
2253 
2254 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2255 			(void) fprintf(stderr, "Unable to read history: "
2256 			    "error %d\n", error);
2257 			free(buf);
2258 			return;
2259 		}
2260 
2261 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2262 			break;
2263 
2264 		off -= resid;
2265 	} while (len != 0);
2266 
2267 	(void) printf("\nHistory:\n");
2268 	for (unsigned i = 0; i < num; i++) {
2269 		boolean_t printed = B_FALSE;
2270 
2271 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2272 			time_t tsec;
2273 			struct tm t;
2274 
2275 			tsec = fnvlist_lookup_uint64(events[i],
2276 			    ZPOOL_HIST_TIME);
2277 			(void) localtime_r(&tsec, &t);
2278 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2279 		} else {
2280 			tbuf[0] = '\0';
2281 		}
2282 
2283 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2284 			(void) printf("%s %s\n", tbuf,
2285 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2286 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2287 			uint64_t ievent;
2288 
2289 			ievent = fnvlist_lookup_uint64(events[i],
2290 			    ZPOOL_HIST_INT_EVENT);
2291 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2292 				goto next;
2293 
2294 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2295 			    tbuf,
2296 			    zfs_history_event_names[ievent],
2297 			    fnvlist_lookup_uint64(events[i],
2298 			    ZPOOL_HIST_TXG),
2299 			    fnvlist_lookup_string(events[i],
2300 			    ZPOOL_HIST_INT_STR));
2301 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2302 			(void) printf("%s [txg:%ju] %s", tbuf,
2303 			    fnvlist_lookup_uint64(events[i],
2304 			    ZPOOL_HIST_TXG),
2305 			    fnvlist_lookup_string(events[i],
2306 			    ZPOOL_HIST_INT_NAME));
2307 
2308 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2309 				(void) printf(" %s (%llu)",
2310 				    fnvlist_lookup_string(events[i],
2311 				    ZPOOL_HIST_DSNAME),
2312 				    (u_longlong_t)fnvlist_lookup_uint64(
2313 				    events[i],
2314 				    ZPOOL_HIST_DSID));
2315 			}
2316 
2317 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2318 			    ZPOOL_HIST_INT_STR));
2319 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2320 			(void) printf("%s ioctl %s\n", tbuf,
2321 			    fnvlist_lookup_string(events[i],
2322 			    ZPOOL_HIST_IOCTL));
2323 
2324 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2325 				(void) printf("    input:\n");
2326 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2327 				    ZPOOL_HIST_INPUT_NVL), 8);
2328 			}
2329 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2330 				(void) printf("    output:\n");
2331 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2332 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2333 			}
2334 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2335 				(void) printf("    errno: %lld\n",
2336 				    (longlong_t)fnvlist_lookup_int64(events[i],
2337 				    ZPOOL_HIST_ERRNO));
2338 			}
2339 		} else {
2340 			goto next;
2341 		}
2342 
2343 		printed = B_TRUE;
2344 next:
2345 		if (dump_opt['h'] > 1) {
2346 			if (!printed)
2347 				(void) printf("unrecognized record:\n");
2348 			dump_nvlist(events[i], 2);
2349 		}
2350 	}
2351 	free(buf);
2352 }
2353 
2354 static void
2355 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2356 {
2357 	(void) os, (void) object, (void) data, (void) size;
2358 }
2359 
2360 static uint64_t
2361 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2362     const zbookmark_phys_t *zb)
2363 {
2364 	if (dnp == NULL) {
2365 		ASSERT(zb->zb_level < 0);
2366 		if (zb->zb_object == 0)
2367 			return (zb->zb_blkid);
2368 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2369 	}
2370 
2371 	ASSERT(zb->zb_level >= 0);
2372 
2373 	return ((zb->zb_blkid <<
2374 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2375 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2376 }
2377 
2378 static void
2379 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2380     const blkptr_t *bp)
2381 {
2382 	static abd_t *pabd = NULL;
2383 	void *buf;
2384 	zio_t *zio;
2385 	zfs_zstdhdr_t zstd_hdr;
2386 	int error;
2387 
2388 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2389 		return;
2390 
2391 	if (BP_IS_HOLE(bp))
2392 		return;
2393 
2394 	if (BP_IS_EMBEDDED(bp)) {
2395 		buf = malloc(SPA_MAXBLOCKSIZE);
2396 		if (buf == NULL) {
2397 			(void) fprintf(stderr, "out of memory\n");
2398 			zdb_exit(1);
2399 		}
2400 		decode_embedded_bp_compressed(bp, buf);
2401 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2402 		free(buf);
2403 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2404 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2405 		(void) snprintf(blkbuf + strlen(blkbuf),
2406 		    buflen - strlen(blkbuf),
2407 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2408 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2409 		    zfs_get_hdrlevel(&zstd_hdr));
2410 		return;
2411 	}
2412 
2413 	if (!pabd)
2414 		pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2415 	zio = zio_root(spa, NULL, NULL, 0);
2416 
2417 	/* Decrypt but don't decompress so we can read the compression header */
2418 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2419 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2420 	    NULL));
2421 	error = zio_wait(zio);
2422 	if (error) {
2423 		(void) fprintf(stderr, "read failed: %d\n", error);
2424 		return;
2425 	}
2426 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2427 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2428 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2429 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2430 
2431 	(void) snprintf(blkbuf + strlen(blkbuf),
2432 	    buflen - strlen(blkbuf),
2433 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2434 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2435 	    zfs_get_hdrlevel(&zstd_hdr));
2436 
2437 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2438 }
2439 
2440 static void
2441 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2442     boolean_t bp_freed)
2443 {
2444 	const dva_t *dva = bp->blk_dva;
2445 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2446 	int i;
2447 
2448 	if (dump_opt['b'] >= 6) {
2449 		snprintf_blkptr(blkbuf, buflen, bp);
2450 		if (bp_freed) {
2451 			(void) snprintf(blkbuf + strlen(blkbuf),
2452 			    buflen - strlen(blkbuf), " %s", "FREE");
2453 		}
2454 		return;
2455 	}
2456 
2457 	if (BP_IS_EMBEDDED(bp)) {
2458 		(void) sprintf(blkbuf,
2459 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2460 		    (int)BPE_GET_ETYPE(bp),
2461 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2462 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2463 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2464 		return;
2465 	}
2466 
2467 	blkbuf[0] = '\0';
2468 
2469 	for (i = 0; i < ndvas; i++)
2470 		(void) snprintf(blkbuf + strlen(blkbuf),
2471 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2472 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2473 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2474 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2475 
2476 	if (BP_IS_HOLE(bp)) {
2477 		(void) snprintf(blkbuf + strlen(blkbuf),
2478 		    buflen - strlen(blkbuf),
2479 		    "%llxL B=%llu",
2480 		    (u_longlong_t)BP_GET_LSIZE(bp),
2481 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2482 	} else {
2483 		(void) snprintf(blkbuf + strlen(blkbuf),
2484 		    buflen - strlen(blkbuf),
2485 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2486 		    (u_longlong_t)BP_GET_LSIZE(bp),
2487 		    (u_longlong_t)BP_GET_PSIZE(bp),
2488 		    (u_longlong_t)BP_GET_FILL(bp),
2489 		    (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2490 		    (u_longlong_t)BP_GET_BIRTH(bp));
2491 		if (bp_freed)
2492 			(void) snprintf(blkbuf + strlen(blkbuf),
2493 			    buflen - strlen(blkbuf), " %s", "FREE");
2494 		(void) snprintf(blkbuf + strlen(blkbuf),
2495 		    buflen - strlen(blkbuf),
2496 		    " cksum=%016llx:%016llx:%016llx:%016llx",
2497 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2498 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2499 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2500 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2501 	}
2502 }
2503 
2504 static void
2505 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2506     const dnode_phys_t *dnp)
2507 {
2508 	char blkbuf[BP_SPRINTF_LEN];
2509 	int l;
2510 
2511 	if (!BP_IS_EMBEDDED(bp)) {
2512 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2513 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2514 	}
2515 
2516 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2517 
2518 	ASSERT(zb->zb_level >= 0);
2519 
2520 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2521 		if (l == zb->zb_level) {
2522 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2523 		} else {
2524 			(void) printf(" ");
2525 		}
2526 	}
2527 
2528 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2529 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2530 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2531 	(void) printf("%s\n", blkbuf);
2532 }
2533 
2534 static int
2535 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2536     blkptr_t *bp, const zbookmark_phys_t *zb)
2537 {
2538 	int err = 0;
2539 
2540 	if (BP_GET_LOGICAL_BIRTH(bp) == 0)
2541 		return (0);
2542 
2543 	print_indirect(spa, bp, zb, dnp);
2544 
2545 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2546 		arc_flags_t flags = ARC_FLAG_WAIT;
2547 		int i;
2548 		blkptr_t *cbp;
2549 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2550 		arc_buf_t *buf;
2551 		uint64_t fill = 0;
2552 		ASSERT(!BP_IS_REDACTED(bp));
2553 
2554 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2555 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2556 		if (err)
2557 			return (err);
2558 		ASSERT(buf->b_data);
2559 
2560 		/* recursively visit blocks below this */
2561 		cbp = buf->b_data;
2562 		for (i = 0; i < epb; i++, cbp++) {
2563 			zbookmark_phys_t czb;
2564 
2565 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2566 			    zb->zb_level - 1,
2567 			    zb->zb_blkid * epb + i);
2568 			err = visit_indirect(spa, dnp, cbp, &czb);
2569 			if (err)
2570 				break;
2571 			fill += BP_GET_FILL(cbp);
2572 		}
2573 		if (!err)
2574 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2575 		arc_buf_destroy(buf, &buf);
2576 	}
2577 
2578 	return (err);
2579 }
2580 
2581 static void
2582 dump_indirect(dnode_t *dn)
2583 {
2584 	dnode_phys_t *dnp = dn->dn_phys;
2585 	zbookmark_phys_t czb;
2586 
2587 	(void) printf("Indirect blocks:\n");
2588 
2589 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2590 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2591 	for (int j = 0; j < dnp->dn_nblkptr; j++) {
2592 		czb.zb_blkid = j;
2593 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2594 		    &dnp->dn_blkptr[j], &czb);
2595 	}
2596 
2597 	(void) printf("\n");
2598 }
2599 
2600 static void
2601 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2602 {
2603 	(void) os, (void) object;
2604 	dsl_dir_phys_t *dd = data;
2605 	time_t crtime;
2606 	char nice[32];
2607 
2608 	/* make sure nicenum has enough space */
2609 	_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2610 
2611 	if (dd == NULL)
2612 		return;
2613 
2614 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2615 
2616 	crtime = dd->dd_creation_time;
2617 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2618 	(void) printf("\t\thead_dataset_obj = %llu\n",
2619 	    (u_longlong_t)dd->dd_head_dataset_obj);
2620 	(void) printf("\t\tparent_dir_obj = %llu\n",
2621 	    (u_longlong_t)dd->dd_parent_obj);
2622 	(void) printf("\t\torigin_obj = %llu\n",
2623 	    (u_longlong_t)dd->dd_origin_obj);
2624 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2625 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2626 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2627 	(void) printf("\t\tused_bytes = %s\n", nice);
2628 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2629 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2630 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2631 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2632 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2633 	(void) printf("\t\tquota = %s\n", nice);
2634 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2635 	(void) printf("\t\treserved = %s\n", nice);
2636 	(void) printf("\t\tprops_zapobj = %llu\n",
2637 	    (u_longlong_t)dd->dd_props_zapobj);
2638 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2639 	    (u_longlong_t)dd->dd_deleg_zapobj);
2640 	(void) printf("\t\tflags = %llx\n",
2641 	    (u_longlong_t)dd->dd_flags);
2642 
2643 #define	DO(which) \
2644 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2645 	    sizeof (nice)); \
2646 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2647 	DO(HEAD);
2648 	DO(SNAP);
2649 	DO(CHILD);
2650 	DO(CHILD_RSRV);
2651 	DO(REFRSRV);
2652 #undef DO
2653 	(void) printf("\t\tclones = %llu\n",
2654 	    (u_longlong_t)dd->dd_clones);
2655 }
2656 
2657 static void
2658 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2659 {
2660 	(void) os, (void) object;
2661 	dsl_dataset_phys_t *ds = data;
2662 	time_t crtime;
2663 	char used[32], compressed[32], uncompressed[32], unique[32];
2664 	char blkbuf[BP_SPRINTF_LEN];
2665 
2666 	/* make sure nicenum has enough space */
2667 	_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2668 	_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2669 	    "compressed truncated");
2670 	_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2671 	    "uncompressed truncated");
2672 	_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2673 
2674 	if (ds == NULL)
2675 		return;
2676 
2677 	ASSERT(size == sizeof (*ds));
2678 	crtime = ds->ds_creation_time;
2679 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2680 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2681 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2682 	    sizeof (uncompressed));
2683 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2684 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2685 
2686 	(void) printf("\t\tdir_obj = %llu\n",
2687 	    (u_longlong_t)ds->ds_dir_obj);
2688 	(void) printf("\t\tprev_snap_obj = %llu\n",
2689 	    (u_longlong_t)ds->ds_prev_snap_obj);
2690 	(void) printf("\t\tprev_snap_txg = %llu\n",
2691 	    (u_longlong_t)ds->ds_prev_snap_txg);
2692 	(void) printf("\t\tnext_snap_obj = %llu\n",
2693 	    (u_longlong_t)ds->ds_next_snap_obj);
2694 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2695 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2696 	(void) printf("\t\tnum_children = %llu\n",
2697 	    (u_longlong_t)ds->ds_num_children);
2698 	(void) printf("\t\tuserrefs_obj = %llu\n",
2699 	    (u_longlong_t)ds->ds_userrefs_obj);
2700 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2701 	(void) printf("\t\tcreation_txg = %llu\n",
2702 	    (u_longlong_t)ds->ds_creation_txg);
2703 	(void) printf("\t\tdeadlist_obj = %llu\n",
2704 	    (u_longlong_t)ds->ds_deadlist_obj);
2705 	(void) printf("\t\tused_bytes = %s\n", used);
2706 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2707 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2708 	(void) printf("\t\tunique = %s\n", unique);
2709 	(void) printf("\t\tfsid_guid = %llu\n",
2710 	    (u_longlong_t)ds->ds_fsid_guid);
2711 	(void) printf("\t\tguid = %llu\n",
2712 	    (u_longlong_t)ds->ds_guid);
2713 	(void) printf("\t\tflags = %llx\n",
2714 	    (u_longlong_t)ds->ds_flags);
2715 	(void) printf("\t\tnext_clones_obj = %llu\n",
2716 	    (u_longlong_t)ds->ds_next_clones_obj);
2717 	(void) printf("\t\tprops_obj = %llu\n",
2718 	    (u_longlong_t)ds->ds_props_obj);
2719 	(void) printf("\t\tbp = %s\n", blkbuf);
2720 }
2721 
2722 static int
2723 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2724 {
2725 	(void) arg, (void) tx;
2726 	char blkbuf[BP_SPRINTF_LEN];
2727 
2728 	if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
2729 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2730 		(void) printf("\t%s\n", blkbuf);
2731 	}
2732 	return (0);
2733 }
2734 
2735 static void
2736 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2737 {
2738 	char bytes[32];
2739 	bptree_phys_t *bt;
2740 	dmu_buf_t *db;
2741 
2742 	/* make sure nicenum has enough space */
2743 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2744 
2745 	if (dump_opt['d'] < 3)
2746 		return;
2747 
2748 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2749 	bt = db->db_data;
2750 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2751 	(void) printf("\n    %s: %llu datasets, %s\n",
2752 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2753 	dmu_buf_rele(db, FTAG);
2754 
2755 	if (dump_opt['d'] < 5)
2756 		return;
2757 
2758 	(void) printf("\n");
2759 
2760 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2761 }
2762 
2763 static int
2764 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2765 {
2766 	(void) arg, (void) tx;
2767 	char blkbuf[BP_SPRINTF_LEN];
2768 
2769 	ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0);
2770 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2771 	(void) printf("\t%s\n", blkbuf);
2772 	return (0);
2773 }
2774 
2775 static void
2776 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2777 {
2778 	char bytes[32];
2779 	char comp[32];
2780 	char uncomp[32];
2781 	uint64_t i;
2782 
2783 	/* make sure nicenum has enough space */
2784 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2785 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2786 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2787 
2788 	if (dump_opt['d'] < 3)
2789 		return;
2790 
2791 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2792 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2793 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2794 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2795 		if (bpo->bpo_havefreed) {
2796 			(void) printf("    %*s: object %llu, %llu local "
2797 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2798 			    "%s (%s/%s comp)\n",
2799 			    indent * 8, name,
2800 			    (u_longlong_t)bpo->bpo_object,
2801 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2802 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2803 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2804 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2805 			    bytes, comp, uncomp);
2806 		} else {
2807 			(void) printf("    %*s: object %llu, %llu local "
2808 			    "blkptrs, %llu subobjs in object %llu, "
2809 			    "%s (%s/%s comp)\n",
2810 			    indent * 8, name,
2811 			    (u_longlong_t)bpo->bpo_object,
2812 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2813 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2814 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2815 			    bytes, comp, uncomp);
2816 		}
2817 
2818 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2819 			uint64_t subobj;
2820 			bpobj_t subbpo;
2821 			int error;
2822 			VERIFY0(dmu_read(bpo->bpo_os,
2823 			    bpo->bpo_phys->bpo_subobjs,
2824 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2825 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2826 			if (error != 0) {
2827 				(void) printf("ERROR %u while trying to open "
2828 				    "subobj id %llu\n",
2829 				    error, (u_longlong_t)subobj);
2830 				continue;
2831 			}
2832 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2833 			bpobj_close(&subbpo);
2834 		}
2835 	} else {
2836 		if (bpo->bpo_havefreed) {
2837 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2838 			    "%llu freed, %s\n",
2839 			    indent * 8, name,
2840 			    (u_longlong_t)bpo->bpo_object,
2841 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2842 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2843 			    bytes);
2844 		} else {
2845 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2846 			    "%s\n",
2847 			    indent * 8, name,
2848 			    (u_longlong_t)bpo->bpo_object,
2849 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2850 			    bytes);
2851 		}
2852 	}
2853 
2854 	if (dump_opt['d'] < 5)
2855 		return;
2856 
2857 
2858 	if (indent == 0) {
2859 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2860 		(void) printf("\n");
2861 	}
2862 }
2863 
2864 static int
2865 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2866     boolean_t print_list)
2867 {
2868 	int err = 0;
2869 	zfs_bookmark_phys_t prop;
2870 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2871 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2872 
2873 	if (err != 0) {
2874 		return (err);
2875 	}
2876 
2877 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2878 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2879 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2880 	    (u_longlong_t)prop.zbm_creation_txg,
2881 	    (u_longlong_t)prop.zbm_creation_time,
2882 	    (u_longlong_t)prop.zbm_redaction_obj);
2883 
2884 	IMPLY(print_list, print_redact);
2885 	if (!print_redact || prop.zbm_redaction_obj == 0)
2886 		return (0);
2887 
2888 	redaction_list_t *rl;
2889 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2890 	    prop.zbm_redaction_obj, FTAG, &rl));
2891 
2892 	redaction_list_phys_t *rlp = rl->rl_phys;
2893 	(void) printf("\tRedacted:\n\t\tProgress: ");
2894 	if (rlp->rlp_last_object != UINT64_MAX ||
2895 	    rlp->rlp_last_blkid != UINT64_MAX) {
2896 		(void) printf("%llu %llu (incomplete)\n",
2897 		    (u_longlong_t)rlp->rlp_last_object,
2898 		    (u_longlong_t)rlp->rlp_last_blkid);
2899 	} else {
2900 		(void) printf("complete\n");
2901 	}
2902 	(void) printf("\t\tSnapshots: [");
2903 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2904 		if (i > 0)
2905 			(void) printf(", ");
2906 		(void) printf("%0llu",
2907 		    (u_longlong_t)rlp->rlp_snaps[i]);
2908 	}
2909 	(void) printf("]\n\t\tLength: %llu\n",
2910 	    (u_longlong_t)rlp->rlp_num_entries);
2911 
2912 	if (!print_list) {
2913 		dsl_redaction_list_rele(rl, FTAG);
2914 		return (0);
2915 	}
2916 
2917 	if (rlp->rlp_num_entries == 0) {
2918 		dsl_redaction_list_rele(rl, FTAG);
2919 		(void) printf("\t\tRedaction List: []\n\n");
2920 		return (0);
2921 	}
2922 
2923 	redact_block_phys_t *rbp_buf;
2924 	uint64_t size;
2925 	dmu_object_info_t doi;
2926 
2927 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2928 	size = doi.doi_max_offset;
2929 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2930 
2931 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2932 	    rbp_buf, 0);
2933 	if (err != 0) {
2934 		dsl_redaction_list_rele(rl, FTAG);
2935 		kmem_free(rbp_buf, size);
2936 		return (err);
2937 	}
2938 
2939 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2940 	    "%llx, blksz: %x, count: %llx}",
2941 	    (u_longlong_t)rbp_buf[0].rbp_object,
2942 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2943 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2944 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2945 
2946 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2947 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2948 		    "blksz: %x, count: %llx}",
2949 		    (u_longlong_t)rbp_buf[i].rbp_object,
2950 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2951 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2952 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2953 	}
2954 	dsl_redaction_list_rele(rl, FTAG);
2955 	kmem_free(rbp_buf, size);
2956 	(void) printf("]\n\n");
2957 	return (0);
2958 }
2959 
2960 static void
2961 dump_bookmarks(objset_t *os, int verbosity)
2962 {
2963 	zap_cursor_t zc;
2964 	zap_attribute_t *attrp;
2965 	dsl_dataset_t *ds = dmu_objset_ds(os);
2966 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2967 	objset_t *mos = os->os_spa->spa_meta_objset;
2968 	if (verbosity < 4)
2969 		return;
2970 	attrp = zap_attribute_alloc();
2971 	dsl_pool_config_enter(dp, FTAG);
2972 
2973 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2974 	    zap_cursor_retrieve(&zc, attrp) == 0;
2975 	    zap_cursor_advance(&zc)) {
2976 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2977 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2978 		int len;
2979 		dmu_objset_name(os, osname);
2980 		len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2981 		    attrp->za_name);
2982 		VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2983 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2984 	}
2985 	zap_cursor_fini(&zc);
2986 	dsl_pool_config_exit(dp, FTAG);
2987 	zap_attribute_free(attrp);
2988 }
2989 
2990 static void
2991 bpobj_count_refd(bpobj_t *bpo)
2992 {
2993 	mos_obj_refd(bpo->bpo_object);
2994 
2995 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2996 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2997 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2998 			uint64_t subobj;
2999 			bpobj_t subbpo;
3000 			int error;
3001 			VERIFY0(dmu_read(bpo->bpo_os,
3002 			    bpo->bpo_phys->bpo_subobjs,
3003 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3004 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3005 			if (error != 0) {
3006 				(void) printf("ERROR %u while trying to open "
3007 				    "subobj id %llu\n",
3008 				    error, (u_longlong_t)subobj);
3009 				continue;
3010 			}
3011 			bpobj_count_refd(&subbpo);
3012 			bpobj_close(&subbpo);
3013 		}
3014 	}
3015 }
3016 
3017 static int
3018 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3019 {
3020 	spa_t *spa = arg;
3021 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3022 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
3023 		bpobj_count_refd(&dle->dle_bpobj);
3024 	return (0);
3025 }
3026 
3027 static int
3028 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3029 {
3030 	ASSERT(arg == NULL);
3031 	if (dump_opt['d'] >= 5) {
3032 		char buf[128];
3033 		(void) snprintf(buf, sizeof (buf),
3034 		    "mintxg %llu -> obj %llu",
3035 		    (longlong_t)dle->dle_mintxg,
3036 		    (longlong_t)dle->dle_bpobj.bpo_object);
3037 
3038 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3039 	} else {
3040 		(void) printf("mintxg %llu -> obj %llu\n",
3041 		    (longlong_t)dle->dle_mintxg,
3042 		    (longlong_t)dle->dle_bpobj.bpo_object);
3043 	}
3044 	return (0);
3045 }
3046 
3047 static void
3048 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3049 {
3050 	char bytes[32];
3051 	char comp[32];
3052 	char uncomp[32];
3053 	char entries[32];
3054 	spa_t *spa = dmu_objset_spa(dl->dl_os);
3055 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3056 
3057 	if (dl->dl_oldfmt) {
3058 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
3059 			bpobj_count_refd(&dl->dl_bpobj);
3060 	} else {
3061 		mos_obj_refd(dl->dl_object);
3062 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3063 	}
3064 
3065 	/* make sure nicenum has enough space */
3066 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3067 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3068 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3069 	_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3070 
3071 	if (dump_opt['d'] < 3)
3072 		return;
3073 
3074 	if (dl->dl_oldfmt) {
3075 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3076 		return;
3077 	}
3078 
3079 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3080 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3081 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3082 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3083 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
3084 	    name, bytes, comp, uncomp, entries);
3085 
3086 	if (dump_opt['d'] < 4)
3087 		return;
3088 
3089 	(void) putchar('\n');
3090 
3091 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3092 }
3093 
3094 static int
3095 verify_dd_livelist(objset_t *os)
3096 {
3097 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3098 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3099 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
3100 
3101 	ASSERT(!dmu_objset_is_snapshot(os));
3102 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
3103 		return (0);
3104 
3105 	/* Iterate through the livelist to check for duplicates */
3106 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3107 	    NULL);
3108 
3109 	dsl_pool_config_enter(dp, FTAG);
3110 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3111 	    &ll_comp, &ll_uncomp);
3112 
3113 	dsl_dataset_t *origin_ds;
3114 	ASSERT(dsl_pool_config_held(dp));
3115 	VERIFY0(dsl_dataset_hold_obj(dp,
3116 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3117 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3118 	    &used, &comp, &uncomp));
3119 	dsl_dataset_rele(origin_ds, FTAG);
3120 	dsl_pool_config_exit(dp, FTAG);
3121 	/*
3122 	 *  It's possible that the dataset's uncomp space is larger than the
3123 	 *  livelist's because livelists do not track embedded block pointers
3124 	 */
3125 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3126 		char nice_used[32], nice_comp[32], nice_uncomp[32];
3127 		(void) printf("Discrepancy in space accounting:\n");
3128 		zdb_nicenum(used, nice_used, sizeof (nice_used));
3129 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3130 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3131 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
3132 		    nice_used, nice_comp, nice_uncomp);
3133 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3134 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3135 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3136 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3137 		    nice_used, nice_comp, nice_uncomp);
3138 		return (1);
3139 	}
3140 	return (0);
3141 }
3142 
3143 static char *key_material = NULL;
3144 
3145 static boolean_t
3146 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3147 {
3148 	uint64_t keyformat, salt, iters;
3149 	int i;
3150 	unsigned char c;
3151 
3152 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3153 	    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3154 	    1, &keyformat));
3155 
3156 	switch (keyformat) {
3157 	case ZFS_KEYFORMAT_HEX:
3158 		for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3159 			if (!isxdigit(key_material[i]) ||
3160 			    !isxdigit(key_material[i+1]))
3161 				return (B_FALSE);
3162 			if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3163 				return (B_FALSE);
3164 			key_out[i / 2] = c;
3165 		}
3166 		break;
3167 
3168 	case ZFS_KEYFORMAT_PASSPHRASE:
3169 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3170 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3171 		    sizeof (uint64_t), 1, &salt));
3172 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3173 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3174 		    sizeof (uint64_t), 1, &iters));
3175 
3176 		if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3177 		    ((uint8_t *)&salt), sizeof (uint64_t), iters,
3178 		    WRAPPING_KEY_LEN, key_out) != 1)
3179 			return (B_FALSE);
3180 
3181 		break;
3182 
3183 	default:
3184 		fatal("no support for key format %u\n",
3185 		    (unsigned int) keyformat);
3186 	}
3187 
3188 	return (B_TRUE);
3189 }
3190 
3191 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3192 static boolean_t key_loaded = B_FALSE;
3193 
3194 static void
3195 zdb_load_key(objset_t *os)
3196 {
3197 	dsl_pool_t *dp;
3198 	dsl_dir_t *dd, *rdd;
3199 	uint8_t key[WRAPPING_KEY_LEN];
3200 	uint64_t rddobj;
3201 	int err;
3202 
3203 	dp = spa_get_dsl(os->os_spa);
3204 	dd = os->os_dsl_dataset->ds_dir;
3205 
3206 	dsl_pool_config_enter(dp, FTAG);
3207 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3208 	    DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3209 	VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3210 	dsl_dir_name(rdd, encroot);
3211 	dsl_dir_rele(rdd, FTAG);
3212 
3213 	if (!zdb_derive_key(dd, key))
3214 		fatal("couldn't derive encryption key");
3215 
3216 	dsl_pool_config_exit(dp, FTAG);
3217 
3218 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3219 
3220 	dsl_crypto_params_t *dcp;
3221 	nvlist_t *crypto_args;
3222 
3223 	crypto_args = fnvlist_alloc();
3224 	fnvlist_add_uint8_array(crypto_args, "wkeydata",
3225 	    (uint8_t *)key, WRAPPING_KEY_LEN);
3226 	VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3227 	    NULL, crypto_args, &dcp));
3228 	err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3229 
3230 	dsl_crypto_params_free(dcp, (err != 0));
3231 	fnvlist_free(crypto_args);
3232 
3233 	if (err != 0)
3234 		fatal(
3235 		    "couldn't load encryption key for %s: %s",
3236 		    encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3237 		    "crypto params not supported" : strerror(err));
3238 
3239 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3240 
3241 	printf("Unlocked encryption root: %s\n", encroot);
3242 	key_loaded = B_TRUE;
3243 }
3244 
3245 static void
3246 zdb_unload_key(void)
3247 {
3248 	if (!key_loaded)
3249 		return;
3250 
3251 	VERIFY0(spa_keystore_unload_wkey(encroot));
3252 	key_loaded = B_FALSE;
3253 }
3254 
3255 static avl_tree_t idx_tree;
3256 static avl_tree_t domain_tree;
3257 static boolean_t fuid_table_loaded;
3258 static objset_t *sa_os = NULL;
3259 static sa_attr_type_t *sa_attr_table = NULL;
3260 
3261 static int
3262 open_objset(const char *path, const void *tag, objset_t **osp)
3263 {
3264 	int err;
3265 	uint64_t sa_attrs = 0;
3266 	uint64_t version = 0;
3267 
3268 	VERIFY3P(sa_os, ==, NULL);
3269 
3270 	/*
3271 	 * We can't own an objset if it's redacted.  Therefore, we do this
3272 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3273 	 * release the pool (which is held as part of holding the objset).
3274 	 */
3275 
3276 	if (dump_opt['K']) {
3277 		/* decryption requested, try to load keys */
3278 		err = dmu_objset_hold(path, tag, osp);
3279 		if (err != 0) {
3280 			(void) fprintf(stderr, "failed to hold dataset "
3281 			    "'%s': %s\n",
3282 			    path, strerror(err));
3283 			return (err);
3284 		}
3285 		dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3286 		dsl_pool_rele(dmu_objset_pool(*osp), tag);
3287 
3288 		/* succeeds or dies */
3289 		zdb_load_key(*osp);
3290 
3291 		/* release it all */
3292 		dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3293 		dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3294 	}
3295 
3296 	int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3297 
3298 	err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3299 	if (err != 0) {
3300 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3301 		    path, strerror(err));
3302 		return (err);
3303 	}
3304 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3305 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3306 
3307 	if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3308 	    (key_loaded || !(*osp)->os_encrypted)) {
3309 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3310 		    8, 1, &version);
3311 		if (version >= ZPL_VERSION_SA) {
3312 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3313 			    8, 1, &sa_attrs);
3314 		}
3315 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3316 		    &sa_attr_table);
3317 		if (err != 0) {
3318 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3319 			    strerror(err));
3320 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3321 			dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3322 			    ds_hold_flags, tag);
3323 			*osp = NULL;
3324 		}
3325 	}
3326 	sa_os = *osp;
3327 
3328 	return (err);
3329 }
3330 
3331 static void
3332 close_objset(objset_t *os, const void *tag)
3333 {
3334 	VERIFY3P(os, ==, sa_os);
3335 	if (os->os_sa != NULL)
3336 		sa_tear_down(os);
3337 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3338 	dsl_dataset_rele_flags(dmu_objset_ds(os),
3339 	    key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3340 	sa_attr_table = NULL;
3341 	sa_os = NULL;
3342 
3343 	zdb_unload_key();
3344 }
3345 
3346 static void
3347 fuid_table_destroy(void)
3348 {
3349 	if (fuid_table_loaded) {
3350 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3351 		fuid_table_loaded = B_FALSE;
3352 	}
3353 }
3354 
3355 /*
3356  * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3357  * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3358  * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3359  * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3360  *
3361  * Note that this is not a particularly efficient way to do this, but
3362  * ddt_remove() is the only public method that can do the work we need, and it
3363  * requires the right locks and etc to do the job. This is only ever called
3364  * during zdb shutdown so efficiency is not especially important.
3365  */
3366 static void
3367 zdb_ddt_cleanup(spa_t *spa)
3368 {
3369 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3370 		ddt_t *ddt = spa->spa_ddt[c];
3371 		if (!ddt)
3372 			continue;
3373 
3374 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3375 		ddt_enter(ddt);
3376 		ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3377 		while (dde) {
3378 			next = AVL_NEXT(&ddt->ddt_tree, dde);
3379 			dde->dde_io = NULL;
3380 			ddt_remove(ddt, dde);
3381 			dde = next;
3382 		}
3383 		ddt_exit(ddt);
3384 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3385 	}
3386 }
3387 
3388 static void
3389 zdb_exit(int reason)
3390 {
3391 	if (spa != NULL)
3392 		zdb_ddt_cleanup(spa);
3393 
3394 	if (os != NULL) {
3395 		close_objset(os, FTAG);
3396 	} else if (spa != NULL) {
3397 		spa_close(spa, FTAG);
3398 	}
3399 
3400 	fuid_table_destroy();
3401 
3402 	if (kernel_init_done)
3403 		kernel_fini();
3404 
3405 	exit(reason);
3406 }
3407 
3408 /*
3409  * print uid or gid information.
3410  * For normal POSIX id just the id is printed in decimal format.
3411  * For CIFS files with FUID the fuid is printed in hex followed by
3412  * the domain-rid string.
3413  */
3414 static void
3415 print_idstr(uint64_t id, const char *id_type)
3416 {
3417 	if (FUID_INDEX(id)) {
3418 		const char *domain =
3419 		    zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3420 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3421 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3422 	} else {
3423 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3424 	}
3425 
3426 }
3427 
3428 static void
3429 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3430 {
3431 	uint32_t uid_idx, gid_idx;
3432 
3433 	uid_idx = FUID_INDEX(uid);
3434 	gid_idx = FUID_INDEX(gid);
3435 
3436 	/* Load domain table, if not already loaded */
3437 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3438 		uint64_t fuid_obj;
3439 
3440 		/* first find the fuid object.  It lives in the master node */
3441 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3442 		    8, 1, &fuid_obj) == 0);
3443 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3444 		(void) zfs_fuid_table_load(os, fuid_obj,
3445 		    &idx_tree, &domain_tree);
3446 		fuid_table_loaded = B_TRUE;
3447 	}
3448 
3449 	print_idstr(uid, "uid");
3450 	print_idstr(gid, "gid");
3451 }
3452 
3453 static void
3454 dump_znode_sa_xattr(sa_handle_t *hdl)
3455 {
3456 	nvlist_t *sa_xattr;
3457 	nvpair_t *elem = NULL;
3458 	int sa_xattr_size = 0;
3459 	int sa_xattr_entries = 0;
3460 	int error;
3461 	char *sa_xattr_packed;
3462 
3463 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3464 	if (error || sa_xattr_size == 0)
3465 		return;
3466 
3467 	sa_xattr_packed = malloc(sa_xattr_size);
3468 	if (sa_xattr_packed == NULL)
3469 		return;
3470 
3471 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3472 	    sa_xattr_packed, sa_xattr_size);
3473 	if (error) {
3474 		free(sa_xattr_packed);
3475 		return;
3476 	}
3477 
3478 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3479 	if (error) {
3480 		free(sa_xattr_packed);
3481 		return;
3482 	}
3483 
3484 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3485 		sa_xattr_entries++;
3486 
3487 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3488 	    sa_xattr_size, sa_xattr_entries);
3489 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3490 		boolean_t can_print = !dump_opt['P'];
3491 		uchar_t *value;
3492 		uint_t cnt, idx;
3493 
3494 		(void) printf("\t\t%s = ", nvpair_name(elem));
3495 		nvpair_value_byte_array(elem, &value, &cnt);
3496 
3497 		for (idx = 0; idx < cnt; ++idx) {
3498 			if (!isprint(value[idx])) {
3499 				can_print = B_FALSE;
3500 				break;
3501 			}
3502 		}
3503 
3504 		for (idx = 0; idx < cnt; ++idx) {
3505 			if (can_print)
3506 				(void) putchar(value[idx]);
3507 			else
3508 				(void) printf("\\%3.3o", value[idx]);
3509 		}
3510 		(void) putchar('\n');
3511 	}
3512 
3513 	nvlist_free(sa_xattr);
3514 	free(sa_xattr_packed);
3515 }
3516 
3517 static void
3518 dump_znode_symlink(sa_handle_t *hdl)
3519 {
3520 	int sa_symlink_size = 0;
3521 	char linktarget[MAXPATHLEN];
3522 	int error;
3523 
3524 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3525 	if (error || sa_symlink_size == 0) {
3526 		return;
3527 	}
3528 	if (sa_symlink_size >= sizeof (linktarget)) {
3529 		(void) printf("symlink size %d is too large\n",
3530 		    sa_symlink_size);
3531 		return;
3532 	}
3533 	linktarget[sa_symlink_size] = '\0';
3534 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3535 	    &linktarget, sa_symlink_size) == 0)
3536 		(void) printf("\ttarget	%s\n", linktarget);
3537 }
3538 
3539 static void
3540 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3541 {
3542 	(void) data, (void) size;
3543 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3544 	sa_handle_t *hdl;
3545 	uint64_t xattr, rdev, gen;
3546 	uint64_t uid, gid, mode, fsize, parent, links;
3547 	uint64_t pflags;
3548 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3549 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3550 	sa_bulk_attr_t bulk[12];
3551 	int idx = 0;
3552 	int error;
3553 
3554 	VERIFY3P(os, ==, sa_os);
3555 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3556 		(void) printf("Failed to get handle for SA znode\n");
3557 		return;
3558 	}
3559 
3560 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3561 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3562 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3563 	    &links, 8);
3564 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3565 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3566 	    &mode, 8);
3567 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3568 	    NULL, &parent, 8);
3569 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3570 	    &fsize, 8);
3571 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3572 	    acctm, 16);
3573 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3574 	    modtm, 16);
3575 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3576 	    crtm, 16);
3577 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3578 	    chgtm, 16);
3579 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3580 	    &pflags, 8);
3581 
3582 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3583 		(void) sa_handle_destroy(hdl);
3584 		return;
3585 	}
3586 
3587 	z_crtime = (time_t)crtm[0];
3588 	z_atime = (time_t)acctm[0];
3589 	z_mtime = (time_t)modtm[0];
3590 	z_ctime = (time_t)chgtm[0];
3591 
3592 	if (dump_opt['d'] > 4) {
3593 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3594 		if (error == ESTALE) {
3595 			(void) snprintf(path, sizeof (path), "on delete queue");
3596 		} else if (error != 0) {
3597 			leaked_objects++;
3598 			(void) snprintf(path, sizeof (path),
3599 			    "path not found, possibly leaked");
3600 		}
3601 		(void) printf("\tpath	%s\n", path);
3602 	}
3603 
3604 	if (S_ISLNK(mode))
3605 		dump_znode_symlink(hdl);
3606 	dump_uidgid(os, uid, gid);
3607 	(void) printf("\tatime	%s", ctime(&z_atime));
3608 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3609 	(void) printf("\tctime	%s", ctime(&z_ctime));
3610 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3611 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3612 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3613 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3614 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3615 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3616 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3617 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3618 		uint64_t projid;
3619 
3620 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3621 		    sizeof (uint64_t)) == 0)
3622 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3623 	}
3624 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3625 	    sizeof (uint64_t)) == 0)
3626 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3627 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3628 	    sizeof (uint64_t)) == 0)
3629 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3630 	dump_znode_sa_xattr(hdl);
3631 	sa_handle_destroy(hdl);
3632 }
3633 
3634 static void
3635 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3636 {
3637 	(void) os, (void) object, (void) data, (void) size;
3638 }
3639 
3640 static void
3641 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3642 {
3643 	(void) os, (void) object, (void) data, (void) size;
3644 }
3645 
3646 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3647 	dump_none,		/* unallocated			*/
3648 	dump_zap,		/* object directory		*/
3649 	dump_uint64,		/* object array			*/
3650 	dump_none,		/* packed nvlist		*/
3651 	dump_packed_nvlist,	/* packed nvlist size		*/
3652 	dump_none,		/* bpobj			*/
3653 	dump_bpobj,		/* bpobj header			*/
3654 	dump_none,		/* SPA space map header		*/
3655 	dump_none,		/* SPA space map		*/
3656 	dump_none,		/* ZIL intent log		*/
3657 	dump_dnode,		/* DMU dnode			*/
3658 	dump_dmu_objset,	/* DMU objset			*/
3659 	dump_dsl_dir,		/* DSL directory		*/
3660 	dump_zap,		/* DSL directory child map	*/
3661 	dump_zap,		/* DSL dataset snap map		*/
3662 	dump_zap,		/* DSL props			*/
3663 	dump_dsl_dataset,	/* DSL dataset			*/
3664 	dump_znode,		/* ZFS znode			*/
3665 	dump_acl,		/* ZFS V0 ACL			*/
3666 	dump_uint8,		/* ZFS plain file		*/
3667 	dump_zpldir,		/* ZFS directory		*/
3668 	dump_zap,		/* ZFS master node		*/
3669 	dump_zap,		/* ZFS delete queue		*/
3670 	dump_uint8,		/* zvol object			*/
3671 	dump_zap,		/* zvol prop			*/
3672 	dump_uint8,		/* other uint8[]		*/
3673 	dump_uint64,		/* other uint64[]		*/
3674 	dump_zap,		/* other ZAP			*/
3675 	dump_zap,		/* persistent error log		*/
3676 	dump_uint8,		/* SPA history			*/
3677 	dump_history_offsets,	/* SPA history offsets		*/
3678 	dump_zap,		/* Pool properties		*/
3679 	dump_zap,		/* DSL permissions		*/
3680 	dump_acl,		/* ZFS ACL			*/
3681 	dump_uint8,		/* ZFS SYSACL			*/
3682 	dump_none,		/* FUID nvlist			*/
3683 	dump_packed_nvlist,	/* FUID nvlist size		*/
3684 	dump_zap,		/* DSL dataset next clones	*/
3685 	dump_zap,		/* DSL scrub queue		*/
3686 	dump_zap,		/* ZFS user/group/project used	*/
3687 	dump_zap,		/* ZFS user/group/project quota	*/
3688 	dump_zap,		/* snapshot refcount tags	*/
3689 	dump_ddt_zap,		/* DDT ZAP object		*/
3690 	dump_zap,		/* DDT statistics		*/
3691 	dump_znode,		/* SA object			*/
3692 	dump_zap,		/* SA Master Node		*/
3693 	dump_sa_attrs,		/* SA attribute registration	*/
3694 	dump_sa_layouts,	/* SA attribute layouts		*/
3695 	dump_zap,		/* DSL scrub translations	*/
3696 	dump_none,		/* fake dedup BP		*/
3697 	dump_zap,		/* deadlist			*/
3698 	dump_none,		/* deadlist hdr			*/
3699 	dump_zap,		/* dsl clones			*/
3700 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3701 	dump_unknown,		/* Unknown type, must be last	*/
3702 };
3703 
3704 static boolean_t
3705 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3706 {
3707 	boolean_t match = B_TRUE;
3708 
3709 	switch (obj_type) {
3710 	case DMU_OT_DIRECTORY_CONTENTS:
3711 		if (!(flags & ZOR_FLAG_DIRECTORY))
3712 			match = B_FALSE;
3713 		break;
3714 	case DMU_OT_PLAIN_FILE_CONTENTS:
3715 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3716 			match = B_FALSE;
3717 		break;
3718 	case DMU_OT_SPACE_MAP:
3719 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3720 			match = B_FALSE;
3721 		break;
3722 	default:
3723 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3724 			if (!(flags & ZOR_FLAG_ZAP))
3725 				match = B_FALSE;
3726 			break;
3727 		}
3728 
3729 		/*
3730 		 * If all bits except some of the supported flags are
3731 		 * set, the user combined the all-types flag (A) with
3732 		 * a negated flag to exclude some types (e.g. A-f to
3733 		 * show all object types except plain files).
3734 		 */
3735 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3736 			match = B_FALSE;
3737 
3738 		break;
3739 	}
3740 
3741 	return (match);
3742 }
3743 
3744 static void
3745 dump_object(objset_t *os, uint64_t object, int verbosity,
3746     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3747 {
3748 	dmu_buf_t *db = NULL;
3749 	dmu_object_info_t doi;
3750 	dnode_t *dn;
3751 	boolean_t dnode_held = B_FALSE;
3752 	void *bonus = NULL;
3753 	size_t bsize = 0;
3754 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3755 	char bonus_size[32];
3756 	char aux[50];
3757 	int error;
3758 
3759 	/* make sure nicenum has enough space */
3760 	_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3761 	_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3762 	_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3763 	_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3764 	_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3765 	    "bonus_size truncated");
3766 
3767 	if (*print_header) {
3768 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3769 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3770 		    "lsize", "%full", "type");
3771 		*print_header = 0;
3772 	}
3773 
3774 	if (object == 0) {
3775 		dn = DMU_META_DNODE(os);
3776 		dmu_object_info_from_dnode(dn, &doi);
3777 	} else {
3778 		/*
3779 		 * Encrypted datasets will have sensitive bonus buffers
3780 		 * encrypted. Therefore we cannot hold the bonus buffer and
3781 		 * must hold the dnode itself instead.
3782 		 */
3783 		error = dmu_object_info(os, object, &doi);
3784 		if (error)
3785 			fatal("dmu_object_info() failed, errno %u", error);
3786 
3787 		if (!key_loaded && os->os_encrypted &&
3788 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3789 			error = dnode_hold(os, object, FTAG, &dn);
3790 			if (error)
3791 				fatal("dnode_hold() failed, errno %u", error);
3792 			dnode_held = B_TRUE;
3793 		} else {
3794 			error = dmu_bonus_hold(os, object, FTAG, &db);
3795 			if (error)
3796 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3797 				    object, error);
3798 			bonus = db->db_data;
3799 			bsize = db->db_size;
3800 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3801 		}
3802 	}
3803 
3804 	/*
3805 	 * Default to showing all object types if no flags were specified.
3806 	 */
3807 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3808 	    !match_object_type(doi.doi_type, flags))
3809 		goto out;
3810 
3811 	if (dnode_slots_used)
3812 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3813 
3814 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3815 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3816 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3817 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3818 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3819 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3820 	(void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3821 	    doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3822 	    DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3823 
3824 	aux[0] = '\0';
3825 
3826 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3827 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3828 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3829 	}
3830 
3831 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3832 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3833 		const char *compname = NULL;
3834 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3835 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3836 		    &compname) == 0) {
3837 			(void) snprintf(aux + strlen(aux),
3838 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3839 			    compname);
3840 		} else {
3841 			(void) snprintf(aux + strlen(aux),
3842 			    sizeof (aux) - strlen(aux),
3843 			    " (Z=inherit=%s-unknown)",
3844 			    ZDB_COMPRESS_NAME(os->os_compress));
3845 		}
3846 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3847 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3848 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3849 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3850 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3851 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3852 	}
3853 
3854 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3855 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3856 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3857 
3858 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3859 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3860 		    "", "", "", "", "", "", bonus_size, "bonus",
3861 		    zdb_ot_name(doi.doi_bonus_type));
3862 	}
3863 
3864 	if (verbosity >= 4) {
3865 		(void) printf("\tdnode flags: %s%s%s%s\n",
3866 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3867 		    "USED_BYTES " : "",
3868 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3869 		    "USERUSED_ACCOUNTED " : "",
3870 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3871 		    "USEROBJUSED_ACCOUNTED " : "",
3872 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3873 		    "SPILL_BLKPTR" : "");
3874 		(void) printf("\tdnode maxblkid: %llu\n",
3875 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3876 
3877 		if (!dnode_held) {
3878 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3879 			    object, bonus, bsize);
3880 		} else {
3881 			(void) printf("\t\t(bonus encrypted)\n");
3882 		}
3883 
3884 		if (key_loaded ||
3885 		    (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3886 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3887 			    NULL, 0);
3888 		} else {
3889 			(void) printf("\t\t(object encrypted)\n");
3890 		}
3891 
3892 		*print_header = B_TRUE;
3893 	}
3894 
3895 	if (verbosity >= 5) {
3896 		if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3897 			char blkbuf[BP_SPRINTF_LEN];
3898 			snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3899 			    DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3900 			(void) printf("\nSpill block: %s\n", blkbuf);
3901 		}
3902 		dump_indirect(dn);
3903 	}
3904 
3905 	if (verbosity >= 5) {
3906 		/*
3907 		 * Report the list of segments that comprise the object.
3908 		 */
3909 		uint64_t start = 0;
3910 		uint64_t end;
3911 		uint64_t blkfill = 1;
3912 		int minlvl = 1;
3913 
3914 		if (dn->dn_type == DMU_OT_DNODE) {
3915 			minlvl = 0;
3916 			blkfill = DNODES_PER_BLOCK;
3917 		}
3918 
3919 		for (;;) {
3920 			char segsize[32];
3921 			/* make sure nicenum has enough space */
3922 			_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3923 			    "segsize truncated");
3924 			error = dnode_next_offset(dn,
3925 			    0, &start, minlvl, blkfill, 0);
3926 			if (error)
3927 				break;
3928 			end = start;
3929 			error = dnode_next_offset(dn,
3930 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3931 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3932 			(void) printf("\t\tsegment [%016llx, %016llx)"
3933 			    " size %5s\n", (u_longlong_t)start,
3934 			    (u_longlong_t)end, segsize);
3935 			if (error)
3936 				break;
3937 			start = end;
3938 		}
3939 	}
3940 
3941 out:
3942 	if (db != NULL)
3943 		dmu_buf_rele(db, FTAG);
3944 	if (dnode_held)
3945 		dnode_rele(dn, FTAG);
3946 }
3947 
3948 static void
3949 count_dir_mos_objects(dsl_dir_t *dd)
3950 {
3951 	mos_obj_refd(dd->dd_object);
3952 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3953 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3954 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3955 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3956 
3957 	/*
3958 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3959 	 * Ignore the references after the first one.
3960 	 */
3961 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3962 }
3963 
3964 static void
3965 count_ds_mos_objects(dsl_dataset_t *ds)
3966 {
3967 	mos_obj_refd(ds->ds_object);
3968 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3969 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3970 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3971 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3972 	mos_obj_refd(ds->ds_bookmarks_obj);
3973 
3974 	if (!dsl_dataset_is_snapshot(ds)) {
3975 		count_dir_mos_objects(ds->ds_dir);
3976 	}
3977 }
3978 
3979 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3980 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3981 
3982 /*
3983  * Parse a string denoting a range of object IDs of the form
3984  * <start>[:<end>[:flags]], and store the results in zor.
3985  * Return 0 on success. On error, return 1 and update the msg
3986  * pointer to point to a descriptive error message.
3987  */
3988 static int
3989 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3990 {
3991 	uint64_t flags = 0;
3992 	char *p, *s, *dup, *flagstr, *tmp = NULL;
3993 	size_t len;
3994 	int i;
3995 	int rc = 0;
3996 
3997 	if (strchr(range, ':') == NULL) {
3998 		zor->zor_obj_start = strtoull(range, &p, 0);
3999 		if (*p != '\0') {
4000 			*msg = "Invalid characters in object ID";
4001 			rc = 1;
4002 		}
4003 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4004 		zor->zor_obj_end = zor->zor_obj_start;
4005 		return (rc);
4006 	}
4007 
4008 	if (strchr(range, ':') == range) {
4009 		*msg = "Invalid leading colon";
4010 		rc = 1;
4011 		return (rc);
4012 	}
4013 
4014 	len = strlen(range);
4015 	if (range[len - 1] == ':') {
4016 		*msg = "Invalid trailing colon";
4017 		rc = 1;
4018 		return (rc);
4019 	}
4020 
4021 	dup = strdup(range);
4022 	s = strtok_r(dup, ":", &tmp);
4023 	zor->zor_obj_start = strtoull(s, &p, 0);
4024 
4025 	if (*p != '\0') {
4026 		*msg = "Invalid characters in start object ID";
4027 		rc = 1;
4028 		goto out;
4029 	}
4030 
4031 	s = strtok_r(NULL, ":", &tmp);
4032 	zor->zor_obj_end = strtoull(s, &p, 0);
4033 
4034 	if (*p != '\0') {
4035 		*msg = "Invalid characters in end object ID";
4036 		rc = 1;
4037 		goto out;
4038 	}
4039 
4040 	if (zor->zor_obj_start > zor->zor_obj_end) {
4041 		*msg = "Start object ID may not exceed end object ID";
4042 		rc = 1;
4043 		goto out;
4044 	}
4045 
4046 	s = strtok_r(NULL, ":", &tmp);
4047 	if (s == NULL) {
4048 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4049 		goto out;
4050 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
4051 		*msg = "Invalid colon-delimited field after flags";
4052 		rc = 1;
4053 		goto out;
4054 	}
4055 
4056 	flagstr = s;
4057 	for (i = 0; flagstr[i]; i++) {
4058 		int bit;
4059 		boolean_t negation = (flagstr[i] == '-');
4060 
4061 		if (negation) {
4062 			i++;
4063 			if (flagstr[i] == '\0') {
4064 				*msg = "Invalid trailing negation operator";
4065 				rc = 1;
4066 				goto out;
4067 			}
4068 		}
4069 		bit = flagbits[(uchar_t)flagstr[i]];
4070 		if (bit == 0) {
4071 			*msg = "Invalid flag";
4072 			rc = 1;
4073 			goto out;
4074 		}
4075 		if (negation)
4076 			flags &= ~bit;
4077 		else
4078 			flags |= bit;
4079 	}
4080 	zor->zor_flags = flags;
4081 
4082 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4083 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4084 
4085 out:
4086 	free(dup);
4087 	return (rc);
4088 }
4089 
4090 static void
4091 dump_objset(objset_t *os)
4092 {
4093 	dmu_objset_stats_t dds = { 0 };
4094 	uint64_t object, object_count;
4095 	uint64_t refdbytes, usedobjs, scratch;
4096 	char numbuf[32];
4097 	char blkbuf[BP_SPRINTF_LEN + 20];
4098 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4099 	const char *type = "UNKNOWN";
4100 	int verbosity = dump_opt['d'];
4101 	boolean_t print_header;
4102 	unsigned i;
4103 	int error;
4104 	uint64_t total_slots_used = 0;
4105 	uint64_t max_slot_used = 0;
4106 	uint64_t dnode_slots;
4107 	uint64_t obj_start;
4108 	uint64_t obj_end;
4109 	uint64_t flags;
4110 
4111 	/* make sure nicenum has enough space */
4112 	_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4113 
4114 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4115 	dmu_objset_fast_stat(os, &dds);
4116 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4117 
4118 	print_header = B_TRUE;
4119 
4120 	if (dds.dds_type < DMU_OST_NUMTYPES)
4121 		type = objset_types[dds.dds_type];
4122 
4123 	if (dds.dds_type == DMU_OST_META) {
4124 		dds.dds_creation_txg = TXG_INITIAL;
4125 		usedobjs = BP_GET_FILL(os->os_rootbp);
4126 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4127 		    dd_used_bytes;
4128 	} else {
4129 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4130 	}
4131 
4132 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4133 
4134 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4135 
4136 	if (verbosity >= 4) {
4137 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4138 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4139 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4140 	} else {
4141 		blkbuf[0] = '\0';
4142 	}
4143 
4144 	dmu_objset_name(os, osname);
4145 
4146 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4147 	    "%s, %llu objects%s%s\n",
4148 	    osname, type, (u_longlong_t)dmu_objset_id(os),
4149 	    (u_longlong_t)dds.dds_creation_txg,
4150 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
4151 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
4152 
4153 	for (i = 0; i < zopt_object_args; i++) {
4154 		obj_start = zopt_object_ranges[i].zor_obj_start;
4155 		obj_end = zopt_object_ranges[i].zor_obj_end;
4156 		flags = zopt_object_ranges[i].zor_flags;
4157 
4158 		object = obj_start;
4159 		if (object == 0 || obj_start == obj_end)
4160 			dump_object(os, object, verbosity, &print_header, NULL,
4161 			    flags);
4162 		else
4163 			object--;
4164 
4165 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4166 		    object <= obj_end) {
4167 			dump_object(os, object, verbosity, &print_header, NULL,
4168 			    flags);
4169 		}
4170 	}
4171 
4172 	if (zopt_object_args > 0) {
4173 		(void) printf("\n");
4174 		return;
4175 	}
4176 
4177 	if (dump_opt['i'] != 0 || verbosity >= 2)
4178 		dump_intent_log(dmu_objset_zil(os));
4179 
4180 	if (dmu_objset_ds(os) != NULL) {
4181 		dsl_dataset_t *ds = dmu_objset_ds(os);
4182 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4183 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4184 		    !dmu_objset_is_snapshot(os)) {
4185 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4186 			if (verify_dd_livelist(os) != 0)
4187 				fatal("livelist is incorrect");
4188 		}
4189 
4190 		if (dsl_dataset_remap_deadlist_exists(ds)) {
4191 			(void) printf("ds_remap_deadlist:\n");
4192 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4193 		}
4194 		count_ds_mos_objects(ds);
4195 	}
4196 
4197 	if (dmu_objset_ds(os) != NULL)
4198 		dump_bookmarks(os, verbosity);
4199 
4200 	if (verbosity < 2)
4201 		return;
4202 
4203 	if (BP_IS_HOLE(os->os_rootbp))
4204 		return;
4205 
4206 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
4207 	object_count = 0;
4208 	if (DMU_USERUSED_DNODE(os) != NULL &&
4209 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
4210 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4211 		    NULL, 0);
4212 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4213 		    NULL, 0);
4214 	}
4215 
4216 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4217 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4218 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4219 		    &print_header, NULL, 0);
4220 
4221 	object = 0;
4222 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4223 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
4224 		    0);
4225 		object_count++;
4226 		total_slots_used += dnode_slots;
4227 		max_slot_used = object + dnode_slots - 1;
4228 	}
4229 
4230 	(void) printf("\n");
4231 
4232 	(void) printf("    Dnode slots:\n");
4233 	(void) printf("\tTotal used:    %10llu\n",
4234 	    (u_longlong_t)total_slots_used);
4235 	(void) printf("\tMax used:      %10llu\n",
4236 	    (u_longlong_t)max_slot_used);
4237 	(void) printf("\tPercent empty: %10lf\n",
4238 	    (double)(max_slot_used - total_slots_used)*100 /
4239 	    (double)max_slot_used);
4240 	(void) printf("\n");
4241 
4242 	if (error != ESRCH) {
4243 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4244 		abort();
4245 	}
4246 
4247 	ASSERT3U(object_count, ==, usedobjs);
4248 
4249 	if (leaked_objects != 0) {
4250 		(void) printf("%d potentially leaked objects detected\n",
4251 		    leaked_objects);
4252 		leaked_objects = 0;
4253 	}
4254 }
4255 
4256 static void
4257 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4258 {
4259 	time_t timestamp = ub->ub_timestamp;
4260 
4261 	(void) printf("%s", header ? header : "");
4262 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4263 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4264 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4265 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4266 	(void) printf("\ttimestamp = %llu UTC = %s",
4267 	    (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4268 
4269 	char blkbuf[BP_SPRINTF_LEN];
4270 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4271 	(void) printf("\tbp = %s\n", blkbuf);
4272 
4273 	(void) printf("\tmmp_magic = %016llx\n",
4274 	    (u_longlong_t)ub->ub_mmp_magic);
4275 	if (MMP_VALID(ub)) {
4276 		(void) printf("\tmmp_delay = %0llu\n",
4277 		    (u_longlong_t)ub->ub_mmp_delay);
4278 		if (MMP_SEQ_VALID(ub))
4279 			(void) printf("\tmmp_seq = %u\n",
4280 			    (unsigned int) MMP_SEQ(ub));
4281 		if (MMP_FAIL_INT_VALID(ub))
4282 			(void) printf("\tmmp_fail = %u\n",
4283 			    (unsigned int) MMP_FAIL_INT(ub));
4284 		if (MMP_INTERVAL_VALID(ub))
4285 			(void) printf("\tmmp_write = %u\n",
4286 			    (unsigned int) MMP_INTERVAL(ub));
4287 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
4288 		(void) printf("\tmmp_valid = %x\n",
4289 		    (unsigned int) ub->ub_mmp_config & 0xFF);
4290 	}
4291 
4292 	if (dump_opt['u'] >= 4) {
4293 		char blkbuf[BP_SPRINTF_LEN];
4294 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4295 		(void) printf("\trootbp = %s\n", blkbuf);
4296 	}
4297 	(void) printf("\tcheckpoint_txg = %llu\n",
4298 	    (u_longlong_t)ub->ub_checkpoint_txg);
4299 
4300 	(void) printf("\traidz_reflow state=%u off=%llu\n",
4301 	    (int)RRSS_GET_STATE(ub),
4302 	    (u_longlong_t)RRSS_GET_OFFSET(ub));
4303 
4304 	(void) printf("%s", footer ? footer : "");
4305 }
4306 
4307 static void
4308 dump_config(spa_t *spa)
4309 {
4310 	dmu_buf_t *db;
4311 	size_t nvsize = 0;
4312 	int error = 0;
4313 
4314 
4315 	error = dmu_bonus_hold(spa->spa_meta_objset,
4316 	    spa->spa_config_object, FTAG, &db);
4317 
4318 	if (error == 0) {
4319 		nvsize = *(uint64_t *)db->db_data;
4320 		dmu_buf_rele(db, FTAG);
4321 
4322 		(void) printf("\nMOS Configuration:\n");
4323 		dump_packed_nvlist(spa->spa_meta_objset,
4324 		    spa->spa_config_object, (void *)&nvsize, 1);
4325 	} else {
4326 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4327 		    (u_longlong_t)spa->spa_config_object, error);
4328 	}
4329 }
4330 
4331 static void
4332 dump_cachefile(const char *cachefile)
4333 {
4334 	int fd;
4335 	struct stat64 statbuf;
4336 	char *buf;
4337 	nvlist_t *config;
4338 
4339 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4340 		(void) printf("cannot open '%s': %s\n", cachefile,
4341 		    strerror(errno));
4342 		zdb_exit(1);
4343 	}
4344 
4345 	if (fstat64(fd, &statbuf) != 0) {
4346 		(void) printf("failed to stat '%s': %s\n", cachefile,
4347 		    strerror(errno));
4348 		zdb_exit(1);
4349 	}
4350 
4351 	if ((buf = malloc(statbuf.st_size)) == NULL) {
4352 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4353 		    (u_longlong_t)statbuf.st_size);
4354 		zdb_exit(1);
4355 	}
4356 
4357 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4358 		(void) fprintf(stderr, "failed to read %llu bytes\n",
4359 		    (u_longlong_t)statbuf.st_size);
4360 		zdb_exit(1);
4361 	}
4362 
4363 	(void) close(fd);
4364 
4365 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4366 		(void) fprintf(stderr, "failed to unpack nvlist\n");
4367 		zdb_exit(1);
4368 	}
4369 
4370 	free(buf);
4371 
4372 	dump_nvlist(config, 0);
4373 
4374 	nvlist_free(config);
4375 }
4376 
4377 /*
4378  * ZFS label nvlist stats
4379  */
4380 typedef struct zdb_nvl_stats {
4381 	int		zns_list_count;
4382 	int		zns_leaf_count;
4383 	size_t		zns_leaf_largest;
4384 	size_t		zns_leaf_total;
4385 	nvlist_t	*zns_string;
4386 	nvlist_t	*zns_uint64;
4387 	nvlist_t	*zns_boolean;
4388 } zdb_nvl_stats_t;
4389 
4390 static void
4391 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4392 {
4393 	nvlist_t *list, **array;
4394 	nvpair_t *nvp = NULL;
4395 	const char *name;
4396 	uint_t i, items;
4397 
4398 	stats->zns_list_count++;
4399 
4400 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4401 		name = nvpair_name(nvp);
4402 
4403 		switch (nvpair_type(nvp)) {
4404 		case DATA_TYPE_STRING:
4405 			fnvlist_add_string(stats->zns_string, name,
4406 			    fnvpair_value_string(nvp));
4407 			break;
4408 		case DATA_TYPE_UINT64:
4409 			fnvlist_add_uint64(stats->zns_uint64, name,
4410 			    fnvpair_value_uint64(nvp));
4411 			break;
4412 		case DATA_TYPE_BOOLEAN:
4413 			fnvlist_add_boolean(stats->zns_boolean, name);
4414 			break;
4415 		case DATA_TYPE_NVLIST:
4416 			if (nvpair_value_nvlist(nvp, &list) == 0)
4417 				collect_nvlist_stats(list, stats);
4418 			break;
4419 		case DATA_TYPE_NVLIST_ARRAY:
4420 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4421 				break;
4422 
4423 			for (i = 0; i < items; i++) {
4424 				collect_nvlist_stats(array[i], stats);
4425 
4426 				/* collect stats on leaf vdev */
4427 				if (strcmp(name, "children") == 0) {
4428 					size_t size;
4429 
4430 					(void) nvlist_size(array[i], &size,
4431 					    NV_ENCODE_XDR);
4432 					stats->zns_leaf_total += size;
4433 					if (size > stats->zns_leaf_largest)
4434 						stats->zns_leaf_largest = size;
4435 					stats->zns_leaf_count++;
4436 				}
4437 			}
4438 			break;
4439 		default:
4440 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4441 		}
4442 	}
4443 }
4444 
4445 static void
4446 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4447 {
4448 	zdb_nvl_stats_t stats = { 0 };
4449 	size_t size, sum = 0, total;
4450 	size_t noise;
4451 
4452 	/* requires nvlist with non-unique names for stat collection */
4453 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4454 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4455 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4456 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4457 
4458 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4459 
4460 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4461 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4462 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4463 
4464 	collect_nvlist_stats(nvl, &stats);
4465 
4466 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4467 	size -= noise;
4468 	sum += size;
4469 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4470 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4471 	    (int)size, 100.0 * size / total);
4472 
4473 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4474 	size -= noise;
4475 	sum += size;
4476 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4477 	    (int)fnvlist_num_pairs(stats.zns_string),
4478 	    (int)size, 100.0 * size / total);
4479 
4480 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4481 	size -= noise;
4482 	sum += size;
4483 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4484 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4485 	    (int)size, 100.0 * size / total);
4486 
4487 	size = total - sum;	/* treat remainder as nvlist overhead */
4488 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4489 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4490 
4491 	if (stats.zns_leaf_count > 0) {
4492 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4493 
4494 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4495 		    stats.zns_leaf_count, (int)average);
4496 		(void) printf("%24d bytes largest\n",
4497 		    (int)stats.zns_leaf_largest);
4498 
4499 		if (dump_opt['l'] >= 3 && average > 0)
4500 			(void) printf("  space for %d additional leaf vdevs\n",
4501 			    (int)((cap - total) / average));
4502 	}
4503 	(void) printf("\n");
4504 
4505 	nvlist_free(stats.zns_string);
4506 	nvlist_free(stats.zns_uint64);
4507 	nvlist_free(stats.zns_boolean);
4508 }
4509 
4510 typedef struct cksum_record {
4511 	zio_cksum_t cksum;
4512 	boolean_t labels[VDEV_LABELS];
4513 	avl_node_t link;
4514 } cksum_record_t;
4515 
4516 static int
4517 cksum_record_compare(const void *x1, const void *x2)
4518 {
4519 	const cksum_record_t *l = (cksum_record_t *)x1;
4520 	const cksum_record_t *r = (cksum_record_t *)x2;
4521 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4522 	int difference = 0;
4523 
4524 	for (int i = 0; i < arraysize; i++) {
4525 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4526 		if (difference)
4527 			break;
4528 	}
4529 
4530 	return (difference);
4531 }
4532 
4533 static cksum_record_t *
4534 cksum_record_alloc(zio_cksum_t *cksum, int l)
4535 {
4536 	cksum_record_t *rec;
4537 
4538 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4539 	rec->cksum = *cksum;
4540 	rec->labels[l] = B_TRUE;
4541 
4542 	return (rec);
4543 }
4544 
4545 static cksum_record_t *
4546 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4547 {
4548 	cksum_record_t lookup = { .cksum = *cksum };
4549 	avl_index_t where;
4550 
4551 	return (avl_find(tree, &lookup, &where));
4552 }
4553 
4554 static cksum_record_t *
4555 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4556 {
4557 	cksum_record_t *rec;
4558 
4559 	rec = cksum_record_lookup(tree, cksum);
4560 	if (rec) {
4561 		rec->labels[l] = B_TRUE;
4562 	} else {
4563 		rec = cksum_record_alloc(cksum, l);
4564 		avl_add(tree, rec);
4565 	}
4566 
4567 	return (rec);
4568 }
4569 
4570 static int
4571 first_label(cksum_record_t *rec)
4572 {
4573 	for (int i = 0; i < VDEV_LABELS; i++)
4574 		if (rec->labels[i])
4575 			return (i);
4576 
4577 	return (-1);
4578 }
4579 
4580 static void
4581 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4582 {
4583 	fputs(prefix, stdout);
4584 	for (int i = 0; i < VDEV_LABELS; i++)
4585 		if (rec->labels[i] == B_TRUE)
4586 			printf("%d ", i);
4587 	putchar('\n');
4588 }
4589 
4590 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4591 
4592 typedef struct zdb_label {
4593 	vdev_label_t label;
4594 	uint64_t label_offset;
4595 	nvlist_t *config_nv;
4596 	cksum_record_t *config;
4597 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4598 	boolean_t header_printed;
4599 	boolean_t read_failed;
4600 	boolean_t cksum_valid;
4601 } zdb_label_t;
4602 
4603 static void
4604 print_label_header(zdb_label_t *label, int l)
4605 {
4606 
4607 	if (dump_opt['q'])
4608 		return;
4609 
4610 	if (label->header_printed == B_TRUE)
4611 		return;
4612 
4613 	(void) printf("------------------------------------\n");
4614 	(void) printf("LABEL %d %s\n", l,
4615 	    label->cksum_valid ? "" : "(Bad label cksum)");
4616 	(void) printf("------------------------------------\n");
4617 
4618 	label->header_printed = B_TRUE;
4619 }
4620 
4621 static void
4622 print_l2arc_header(void)
4623 {
4624 	(void) printf("------------------------------------\n");
4625 	(void) printf("L2ARC device header\n");
4626 	(void) printf("------------------------------------\n");
4627 }
4628 
4629 static void
4630 print_l2arc_log_blocks(void)
4631 {
4632 	(void) printf("------------------------------------\n");
4633 	(void) printf("L2ARC device log blocks\n");
4634 	(void) printf("------------------------------------\n");
4635 }
4636 
4637 static void
4638 dump_l2arc_log_entries(uint64_t log_entries,
4639     l2arc_log_ent_phys_t *le, uint64_t i)
4640 {
4641 	for (int j = 0; j < log_entries; j++) {
4642 		dva_t dva = le[j].le_dva;
4643 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4644 		    "vdev: %llu, offset: %llu\n",
4645 		    (u_longlong_t)i, j + 1,
4646 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4647 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4648 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4649 		(void) printf("|\t\t\t\tbirth: %llu\n",
4650 		    (u_longlong_t)le[j].le_birth);
4651 		(void) printf("|\t\t\t\tlsize: %llu\n",
4652 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4653 		(void) printf("|\t\t\t\tpsize: %llu\n",
4654 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4655 		(void) printf("|\t\t\t\tcompr: %llu\n",
4656 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4657 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4658 		    (u_longlong_t)(&le[j])->le_complevel);
4659 		(void) printf("|\t\t\t\ttype: %llu\n",
4660 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4661 		(void) printf("|\t\t\t\tprotected: %llu\n",
4662 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4663 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4664 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4665 		(void) printf("|\t\t\t\taddress: %llu\n",
4666 		    (u_longlong_t)le[j].le_daddr);
4667 		(void) printf("|\t\t\t\tARC state: %llu\n",
4668 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4669 		(void) printf("|\n");
4670 	}
4671 	(void) printf("\n");
4672 }
4673 
4674 static void
4675 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4676 {
4677 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4678 	(void) printf("|\t\tpayload_asize: %llu\n",
4679 	    (u_longlong_t)lbps->lbp_payload_asize);
4680 	(void) printf("|\t\tpayload_start: %llu\n",
4681 	    (u_longlong_t)lbps->lbp_payload_start);
4682 	(void) printf("|\t\tlsize: %llu\n",
4683 	    (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4684 	(void) printf("|\t\tasize: %llu\n",
4685 	    (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4686 	(void) printf("|\t\tcompralgo: %llu\n",
4687 	    (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4688 	(void) printf("|\t\tcksumalgo: %llu\n",
4689 	    (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4690 	(void) printf("|\n\n");
4691 }
4692 
4693 static void
4694 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4695     l2arc_dev_hdr_phys_t *rebuild)
4696 {
4697 	l2arc_log_blk_phys_t this_lb;
4698 	uint64_t asize;
4699 	l2arc_log_blkptr_t lbps[2];
4700 	zio_cksum_t cksum;
4701 	int failed = 0;
4702 	l2arc_dev_t dev;
4703 
4704 	if (!dump_opt['q'])
4705 		print_l2arc_log_blocks();
4706 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4707 
4708 	dev.l2ad_evict = l2dhdr->dh_evict;
4709 	dev.l2ad_start = l2dhdr->dh_start;
4710 	dev.l2ad_end = l2dhdr->dh_end;
4711 
4712 	if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4713 		/* no log blocks to read */
4714 		if (!dump_opt['q']) {
4715 			(void) printf("No log blocks to read\n");
4716 			(void) printf("\n");
4717 		}
4718 		return;
4719 	} else {
4720 		dev.l2ad_hand = lbps[0].lbp_daddr +
4721 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4722 	}
4723 
4724 	dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4725 
4726 	for (;;) {
4727 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4728 			break;
4729 
4730 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4731 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4732 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4733 			if (!dump_opt['q']) {
4734 				(void) printf("Error while reading next log "
4735 				    "block\n\n");
4736 			}
4737 			break;
4738 		}
4739 
4740 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4741 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4742 			failed++;
4743 			if (!dump_opt['q']) {
4744 				(void) printf("Invalid cksum\n");
4745 				dump_l2arc_log_blkptr(&lbps[0]);
4746 			}
4747 			break;
4748 		}
4749 
4750 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4751 		case ZIO_COMPRESS_OFF:
4752 			break;
4753 		default: {
4754 			abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4755 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4756 			abd_t dabd;
4757 			abd_get_from_buf_struct(&dabd, &this_lb,
4758 			    sizeof (this_lb));
4759 			int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4760 			    (&lbps[0])->lbp_prop), abd, &dabd,
4761 			    asize, sizeof (this_lb), NULL);
4762 			abd_free(&dabd);
4763 			abd_free(abd);
4764 			if (err != 0) {
4765 				(void) printf("L2ARC block decompression "
4766 				    "failed\n");
4767 				goto out;
4768 			}
4769 			break;
4770 		}
4771 		}
4772 
4773 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4774 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4775 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4776 			if (!dump_opt['q'])
4777 				(void) printf("Invalid log block magic\n\n");
4778 			break;
4779 		}
4780 
4781 		rebuild->dh_lb_count++;
4782 		rebuild->dh_lb_asize += asize;
4783 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4784 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4785 			    (u_longlong_t)rebuild->dh_lb_count,
4786 			    (u_longlong_t)this_lb.lb_magic);
4787 			dump_l2arc_log_blkptr(&lbps[0]);
4788 		}
4789 
4790 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4791 			dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4792 			    this_lb.lb_entries,
4793 			    rebuild->dh_lb_count);
4794 
4795 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4796 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4797 		    !dev.l2ad_first)
4798 			break;
4799 
4800 		lbps[0] = lbps[1];
4801 		lbps[1] = this_lb.lb_prev_lbp;
4802 	}
4803 out:
4804 	if (!dump_opt['q']) {
4805 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4806 		    (u_longlong_t)rebuild->dh_lb_count);
4807 		(void) printf("\t\t %d with invalid cksum\n", failed);
4808 		(void) printf("log_blk_asize:\t %llu\n\n",
4809 		    (u_longlong_t)rebuild->dh_lb_asize);
4810 	}
4811 }
4812 
4813 static int
4814 dump_l2arc_header(int fd)
4815 {
4816 	l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4817 	int error = B_FALSE;
4818 
4819 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4820 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4821 		error = B_TRUE;
4822 	} else {
4823 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4824 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4825 
4826 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4827 			error = B_TRUE;
4828 	}
4829 
4830 	if (error) {
4831 		(void) printf("L2ARC device header not found\n\n");
4832 		/* Do not return an error here for backward compatibility */
4833 		return (0);
4834 	} else if (!dump_opt['q']) {
4835 		print_l2arc_header();
4836 
4837 		(void) printf("    magic: %llu\n",
4838 		    (u_longlong_t)l2dhdr.dh_magic);
4839 		(void) printf("    version: %llu\n",
4840 		    (u_longlong_t)l2dhdr.dh_version);
4841 		(void) printf("    pool_guid: %llu\n",
4842 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4843 		(void) printf("    flags: %llu\n",
4844 		    (u_longlong_t)l2dhdr.dh_flags);
4845 		(void) printf("    start_lbps[0]: %llu\n",
4846 		    (u_longlong_t)
4847 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4848 		(void) printf("    start_lbps[1]: %llu\n",
4849 		    (u_longlong_t)
4850 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4851 		(void) printf("    log_blk_ent: %llu\n",
4852 		    (u_longlong_t)l2dhdr.dh_log_entries);
4853 		(void) printf("    start: %llu\n",
4854 		    (u_longlong_t)l2dhdr.dh_start);
4855 		(void) printf("    end: %llu\n",
4856 		    (u_longlong_t)l2dhdr.dh_end);
4857 		(void) printf("    evict: %llu\n",
4858 		    (u_longlong_t)l2dhdr.dh_evict);
4859 		(void) printf("    lb_asize_refcount: %llu\n",
4860 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4861 		(void) printf("    lb_count_refcount: %llu\n",
4862 		    (u_longlong_t)l2dhdr.dh_lb_count);
4863 		(void) printf("    trim_action_time: %llu\n",
4864 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4865 		(void) printf("    trim_state: %llu\n\n",
4866 		    (u_longlong_t)l2dhdr.dh_trim_state);
4867 	}
4868 
4869 	dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4870 	/*
4871 	 * The total aligned size of log blocks and the number of log blocks
4872 	 * reported in the header of the device may be less than what zdb
4873 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4874 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4875 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4876 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4877 	 * and dh_lb_count will be lower to begin with than what exists on the
4878 	 * device. This is normal and zdb should not exit with an error. The
4879 	 * opposite case should never happen though, the values reported in the
4880 	 * header should never be higher than what dump_l2arc_log_blocks() and
4881 	 * l2arc_rebuild() report. If this happens there is a leak in the
4882 	 * accounting of log blocks.
4883 	 */
4884 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4885 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4886 		return (1);
4887 
4888 	return (0);
4889 }
4890 
4891 static void
4892 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4893 {
4894 	if (dump_opt['q'])
4895 		return;
4896 
4897 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4898 		return;
4899 
4900 	print_label_header(label, l);
4901 	dump_nvlist(label->config_nv, 4);
4902 	print_label_numbers("    labels = ", label->config);
4903 
4904 	if (dump_opt['l'] >= 2)
4905 		dump_nvlist_stats(label->config_nv, buflen);
4906 }
4907 
4908 #define	ZDB_MAX_UB_HEADER_SIZE 32
4909 
4910 static void
4911 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4912 {
4913 
4914 	vdev_t vd;
4915 	char header[ZDB_MAX_UB_HEADER_SIZE];
4916 
4917 	vd.vdev_ashift = ashift;
4918 	vd.vdev_top = &vd;
4919 
4920 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4921 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4922 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4923 		cksum_record_t *rec = label->uberblocks[i];
4924 
4925 		if (rec == NULL) {
4926 			if (dump_opt['u'] >= 2) {
4927 				print_label_header(label, label_num);
4928 				(void) printf("    Uberblock[%d] invalid\n", i);
4929 			}
4930 			continue;
4931 		}
4932 
4933 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4934 			continue;
4935 
4936 		if ((dump_opt['u'] < 4) &&
4937 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4938 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4939 			continue;
4940 
4941 		print_label_header(label, label_num);
4942 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4943 		    "    Uberblock[%d]\n", i);
4944 		dump_uberblock(ub, header, "");
4945 		print_label_numbers("        labels = ", rec);
4946 	}
4947 }
4948 
4949 static char curpath[PATH_MAX];
4950 
4951 /*
4952  * Iterate through the path components, recursively passing
4953  * current one's obj and remaining path until we find the obj
4954  * for the last one.
4955  */
4956 static int
4957 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4958 {
4959 	int err;
4960 	boolean_t header = B_TRUE;
4961 	uint64_t child_obj;
4962 	char *s;
4963 	dmu_buf_t *db;
4964 	dmu_object_info_t doi;
4965 
4966 	if ((s = strchr(name, '/')) != NULL)
4967 		*s = '\0';
4968 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4969 
4970 	(void) strlcat(curpath, name, sizeof (curpath));
4971 
4972 	if (err != 0) {
4973 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4974 		    curpath, strerror(err));
4975 		return (err);
4976 	}
4977 
4978 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4979 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4980 	if (err != 0) {
4981 		(void) fprintf(stderr,
4982 		    "failed to get SA dbuf for obj %llu: %s\n",
4983 		    (u_longlong_t)child_obj, strerror(err));
4984 		return (EINVAL);
4985 	}
4986 	dmu_object_info_from_db(db, &doi);
4987 	sa_buf_rele(db, FTAG);
4988 
4989 	if (doi.doi_bonus_type != DMU_OT_SA &&
4990 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
4991 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4992 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
4993 		return (EINVAL);
4994 	}
4995 
4996 	if (dump_opt['v'] > 6) {
4997 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
4998 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
4999 		    doi.doi_bonus_type);
5000 	}
5001 
5002 	(void) strlcat(curpath, "/", sizeof (curpath));
5003 
5004 	switch (doi.doi_type) {
5005 	case DMU_OT_DIRECTORY_CONTENTS:
5006 		if (s != NULL && *(s + 1) != '\0')
5007 			return (dump_path_impl(os, child_obj, s + 1, retobj));
5008 		zfs_fallthrough;
5009 	case DMU_OT_PLAIN_FILE_CONTENTS:
5010 		if (retobj != NULL) {
5011 			*retobj = child_obj;
5012 		} else {
5013 			dump_object(os, child_obj, dump_opt['v'], &header,
5014 			    NULL, 0);
5015 		}
5016 		return (0);
5017 	default:
5018 		(void) fprintf(stderr, "object %llu has non-file/directory "
5019 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
5020 		break;
5021 	}
5022 
5023 	return (EINVAL);
5024 }
5025 
5026 /*
5027  * Dump the blocks for the object specified by path inside the dataset.
5028  */
5029 static int
5030 dump_path(char *ds, char *path, uint64_t *retobj)
5031 {
5032 	int err;
5033 	objset_t *os;
5034 	uint64_t root_obj;
5035 
5036 	err = open_objset(ds, FTAG, &os);
5037 	if (err != 0)
5038 		return (err);
5039 
5040 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5041 	if (err != 0) {
5042 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
5043 		    strerror(err));
5044 		close_objset(os, FTAG);
5045 		return (EINVAL);
5046 	}
5047 
5048 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5049 
5050 	err = dump_path_impl(os, root_obj, path, retobj);
5051 
5052 	close_objset(os, FTAG);
5053 	return (err);
5054 }
5055 
5056 static int
5057 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5058 {
5059 	const char *p = (const char *)buf;
5060 	ssize_t nwritten;
5061 
5062 	(void) os;
5063 	(void) arg;
5064 
5065 	/* Write the data out, handling short writes and signals. */
5066 	while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5067 		if (nwritten < 0) {
5068 			if (errno == EINTR)
5069 				continue;
5070 			return (errno);
5071 		}
5072 		p += nwritten;
5073 		len -= nwritten;
5074 	}
5075 
5076 	return (0);
5077 }
5078 
5079 static void
5080 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5081 {
5082 	boolean_t embed = B_FALSE;
5083 	boolean_t large_block = B_FALSE;
5084 	boolean_t compress = B_FALSE;
5085 	boolean_t raw = B_FALSE;
5086 
5087 	const char *c;
5088 	for (c = flagstr; c != NULL && *c != '\0'; c++) {
5089 		switch (*c) {
5090 			case 'e':
5091 				embed = B_TRUE;
5092 				break;
5093 			case 'L':
5094 				large_block = B_TRUE;
5095 				break;
5096 			case 'c':
5097 				compress = B_TRUE;
5098 				break;
5099 			case 'w':
5100 				raw = B_TRUE;
5101 				break;
5102 			default:
5103 				fprintf(stderr, "dump_backup: invalid flag "
5104 				    "'%c'\n", *c);
5105 				return;
5106 		}
5107 	}
5108 
5109 	if (isatty(STDOUT_FILENO)) {
5110 		fprintf(stderr, "dump_backup: stream cannot be written "
5111 		    "to a terminal\n");
5112 		return;
5113 	}
5114 
5115 	offset_t off = 0;
5116 	dmu_send_outparams_t out = {
5117 	    .dso_outfunc = dump_backup_bytes,
5118 	    .dso_dryrun  = B_FALSE,
5119 	};
5120 
5121 	int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5122 	    large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5123 	    &off, &out);
5124 	if (err != 0) {
5125 		fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5126 		    strerror(err));
5127 		return;
5128 	}
5129 }
5130 
5131 static int
5132 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5133 {
5134 	int err = 0;
5135 	uint64_t size, readsize, oursize, offset;
5136 	ssize_t writesize;
5137 	sa_handle_t *hdl;
5138 
5139 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5140 	    destfile);
5141 
5142 	VERIFY3P(os, ==, sa_os);
5143 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5144 		(void) printf("Failed to get handle for SA znode\n");
5145 		return (err);
5146 	}
5147 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5148 		(void) sa_handle_destroy(hdl);
5149 		return (err);
5150 	}
5151 	(void) sa_handle_destroy(hdl);
5152 
5153 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5154 	    size);
5155 	if (size == 0) {
5156 		return (EINVAL);
5157 	}
5158 
5159 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5160 	if (fd == -1)
5161 		return (errno);
5162 	/*
5163 	 * We cap the size at 1 mebibyte here to prevent
5164 	 * allocation failures and nigh-infinite printing if the
5165 	 * object is extremely large.
5166 	 */
5167 	oursize = MIN(size, 1 << 20);
5168 	offset = 0;
5169 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5170 	if (buf == NULL) {
5171 		(void) close(fd);
5172 		return (ENOMEM);
5173 	}
5174 
5175 	while (offset < size) {
5176 		readsize = MIN(size - offset, 1 << 20);
5177 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5178 		if (err != 0) {
5179 			(void) printf("got error %u from dmu_read\n", err);
5180 			kmem_free(buf, oursize);
5181 			(void) close(fd);
5182 			return (err);
5183 		}
5184 		if (dump_opt['v'] > 3) {
5185 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5186 			    " error=%d\n", offset, readsize, err);
5187 		}
5188 
5189 		writesize = write(fd, buf, readsize);
5190 		if (writesize < 0) {
5191 			err = errno;
5192 			break;
5193 		} else if (writesize != readsize) {
5194 			/* Incomplete write */
5195 			(void) fprintf(stderr, "Short write, only wrote %llu of"
5196 			    " %" PRIu64 " bytes, exiting...\n",
5197 			    (u_longlong_t)writesize, readsize);
5198 			break;
5199 		}
5200 
5201 		offset += readsize;
5202 	}
5203 
5204 	(void) close(fd);
5205 
5206 	if (buf != NULL)
5207 		kmem_free(buf, oursize);
5208 
5209 	return (err);
5210 }
5211 
5212 static boolean_t
5213 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5214 {
5215 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5216 	zio_cksum_t expected_cksum;
5217 	zio_cksum_t actual_cksum;
5218 	zio_cksum_t verifier;
5219 	zio_eck_t *eck;
5220 	int byteswap;
5221 
5222 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5223 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5224 
5225 	offset += offsetof(vdev_label_t, vl_vdev_phys);
5226 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5227 
5228 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5229 	if (byteswap)
5230 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5231 
5232 	expected_cksum = eck->zec_cksum;
5233 	eck->zec_cksum = verifier;
5234 
5235 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5236 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5237 	abd_free(abd);
5238 
5239 	if (byteswap)
5240 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5241 
5242 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5243 		return (B_TRUE);
5244 
5245 	return (B_FALSE);
5246 }
5247 
5248 static int
5249 dump_label(const char *dev)
5250 {
5251 	char path[MAXPATHLEN];
5252 	zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5253 	uint64_t psize, ashift, l2cache;
5254 	struct stat64 statbuf;
5255 	boolean_t config_found = B_FALSE;
5256 	boolean_t error = B_FALSE;
5257 	boolean_t read_l2arc_header = B_FALSE;
5258 	avl_tree_t config_tree;
5259 	avl_tree_t uberblock_tree;
5260 	void *node, *cookie;
5261 	int fd;
5262 
5263 	/*
5264 	 * Check if we were given absolute path and use it as is.
5265 	 * Otherwise if the provided vdev name doesn't point to a file,
5266 	 * try prepending expected disk paths and partition numbers.
5267 	 */
5268 	(void) strlcpy(path, dev, sizeof (path));
5269 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5270 		int error;
5271 
5272 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5273 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
5274 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
5275 				error = ENOENT;
5276 		}
5277 
5278 		if (error || (stat64(path, &statbuf) != 0)) {
5279 			(void) printf("failed to find device %s, try "
5280 			    "specifying absolute path instead\n", dev);
5281 			return (1);
5282 		}
5283 	}
5284 
5285 	if ((fd = open64(path, O_RDONLY)) < 0) {
5286 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
5287 		zdb_exit(1);
5288 	}
5289 
5290 	if (fstat64_blk(fd, &statbuf) != 0) {
5291 		(void) printf("failed to stat '%s': %s\n", path,
5292 		    strerror(errno));
5293 		(void) close(fd);
5294 		zdb_exit(1);
5295 	}
5296 
5297 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5298 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
5299 		    strerror(errno));
5300 
5301 	avl_create(&config_tree, cksum_record_compare,
5302 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5303 	avl_create(&uberblock_tree, cksum_record_compare,
5304 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5305 
5306 	psize = statbuf.st_size;
5307 	psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5308 	ashift = SPA_MINBLOCKSHIFT;
5309 
5310 	/*
5311 	 * 1. Read the label from disk
5312 	 * 2. Verify label cksum
5313 	 * 3. Unpack the configuration and insert in config tree.
5314 	 * 4. Traverse all uberblocks and insert in uberblock tree.
5315 	 */
5316 	for (int l = 0; l < VDEV_LABELS; l++) {
5317 		zdb_label_t *label = &labels[l];
5318 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
5319 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5320 		nvlist_t *config;
5321 		cksum_record_t *rec;
5322 		zio_cksum_t cksum;
5323 		vdev_t vd;
5324 
5325 		label->label_offset = vdev_label_offset(psize, l, 0);
5326 
5327 		if (pread64(fd, &label->label, sizeof (label->label),
5328 		    label->label_offset) != sizeof (label->label)) {
5329 			if (!dump_opt['q'])
5330 				(void) printf("failed to read label %d\n", l);
5331 			label->read_failed = B_TRUE;
5332 			error = B_TRUE;
5333 			continue;
5334 		}
5335 
5336 		label->read_failed = B_FALSE;
5337 		label->cksum_valid = label_cksum_valid(&label->label,
5338 		    label->label_offset);
5339 
5340 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5341 			nvlist_t *vdev_tree = NULL;
5342 			size_t size;
5343 
5344 			if ((nvlist_lookup_nvlist(config,
5345 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5346 			    (nvlist_lookup_uint64(vdev_tree,
5347 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5348 				ashift = SPA_MINBLOCKSHIFT;
5349 
5350 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5351 				size = buflen;
5352 
5353 			/* If the device is a cache device read the header. */
5354 			if (!read_l2arc_header) {
5355 				if (nvlist_lookup_uint64(config,
5356 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5357 				    l2cache == POOL_STATE_L2CACHE) {
5358 					read_l2arc_header = B_TRUE;
5359 				}
5360 			}
5361 
5362 			fletcher_4_native_varsize(buf, size, &cksum);
5363 			rec = cksum_record_insert(&config_tree, &cksum, l);
5364 
5365 			label->config = rec;
5366 			label->config_nv = config;
5367 			config_found = B_TRUE;
5368 		} else {
5369 			error = B_TRUE;
5370 		}
5371 
5372 		vd.vdev_ashift = ashift;
5373 		vd.vdev_top = &vd;
5374 
5375 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5376 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5377 			uberblock_t *ub = (void *)((char *)label + uoff);
5378 
5379 			if (uberblock_verify(ub))
5380 				continue;
5381 
5382 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5383 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5384 
5385 			label->uberblocks[i] = rec;
5386 		}
5387 	}
5388 
5389 	/*
5390 	 * Dump the label and uberblocks.
5391 	 */
5392 	for (int l = 0; l < VDEV_LABELS; l++) {
5393 		zdb_label_t *label = &labels[l];
5394 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5395 
5396 		if (label->read_failed == B_TRUE)
5397 			continue;
5398 
5399 		if (label->config_nv) {
5400 			dump_config_from_label(label, buflen, l);
5401 		} else {
5402 			if (!dump_opt['q'])
5403 				(void) printf("failed to unpack label %d\n", l);
5404 		}
5405 
5406 		if (dump_opt['u'])
5407 			dump_label_uberblocks(label, ashift, l);
5408 
5409 		nvlist_free(label->config_nv);
5410 	}
5411 
5412 	/*
5413 	 * Dump the L2ARC header, if existent.
5414 	 */
5415 	if (read_l2arc_header)
5416 		error |= dump_l2arc_header(fd);
5417 
5418 	cookie = NULL;
5419 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5420 		umem_free(node, sizeof (cksum_record_t));
5421 
5422 	cookie = NULL;
5423 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5424 		umem_free(node, sizeof (cksum_record_t));
5425 
5426 	avl_destroy(&config_tree);
5427 	avl_destroy(&uberblock_tree);
5428 
5429 	(void) close(fd);
5430 
5431 	return (config_found == B_FALSE ? 2 :
5432 	    (error == B_TRUE ? 1 : 0));
5433 }
5434 
5435 static uint64_t dataset_feature_count[SPA_FEATURES];
5436 static uint64_t global_feature_count[SPA_FEATURES];
5437 static uint64_t remap_deadlist_count = 0;
5438 
5439 static int
5440 dump_one_objset(const char *dsname, void *arg)
5441 {
5442 	(void) arg;
5443 	int error;
5444 	objset_t *os;
5445 	spa_feature_t f;
5446 
5447 	error = open_objset(dsname, FTAG, &os);
5448 	if (error != 0)
5449 		return (0);
5450 
5451 	for (f = 0; f < SPA_FEATURES; f++) {
5452 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5453 			continue;
5454 		ASSERT(spa_feature_table[f].fi_flags &
5455 		    ZFEATURE_FLAG_PER_DATASET);
5456 		dataset_feature_count[f]++;
5457 	}
5458 
5459 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5460 		remap_deadlist_count++;
5461 	}
5462 
5463 	for (dsl_bookmark_node_t *dbn =
5464 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5465 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5466 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5467 		if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5468 			global_feature_count[
5469 			    SPA_FEATURE_REDACTION_BOOKMARKS]++;
5470 			objset_t *mos = os->os_spa->spa_meta_objset;
5471 			dnode_t *rl;
5472 			VERIFY0(dnode_hold(mos,
5473 			    dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5474 			if (rl->dn_have_spill) {
5475 				global_feature_count[
5476 				    SPA_FEATURE_REDACTION_LIST_SPILL]++;
5477 			}
5478 		}
5479 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5480 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5481 	}
5482 
5483 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5484 	    !dmu_objset_is_snapshot(os)) {
5485 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5486 	}
5487 
5488 	dump_objset(os);
5489 	close_objset(os, FTAG);
5490 	fuid_table_destroy();
5491 	return (0);
5492 }
5493 
5494 /*
5495  * Block statistics.
5496  */
5497 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5498 typedef struct zdb_blkstats {
5499 	uint64_t zb_asize;
5500 	uint64_t zb_lsize;
5501 	uint64_t zb_psize;
5502 	uint64_t zb_count;
5503 	uint64_t zb_gangs;
5504 	uint64_t zb_ditto_samevdev;
5505 	uint64_t zb_ditto_same_ms;
5506 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5507 } zdb_blkstats_t;
5508 
5509 /*
5510  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5511  */
5512 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5513 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5514 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5515 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5516 
5517 static const char *zdb_ot_extname[] = {
5518 	"deferred free",
5519 	"dedup ditto",
5520 	"other",
5521 	"Total",
5522 };
5523 
5524 #define	ZB_TOTAL	DN_MAX_LEVELS
5525 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5526 
5527 typedef struct zdb_brt_entry {
5528 	dva_t		zbre_dva;
5529 	uint64_t	zbre_refcount;
5530 	avl_node_t	zbre_node;
5531 } zdb_brt_entry_t;
5532 
5533 typedef struct zdb_cb {
5534 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5535 	uint64_t	zcb_removing_size;
5536 	uint64_t	zcb_checkpoint_size;
5537 	uint64_t	zcb_dedup_asize;
5538 	uint64_t	zcb_dedup_blocks;
5539 	uint64_t	zcb_clone_asize;
5540 	uint64_t	zcb_clone_blocks;
5541 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5542 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5543 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5544 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5545 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5546 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5547 	uint64_t	zcb_psize_total;
5548 	uint64_t	zcb_lsize_total;
5549 	uint64_t	zcb_asize_total;
5550 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5551 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5552 	    [BPE_PAYLOAD_SIZE + 1];
5553 	uint64_t	zcb_start;
5554 	hrtime_t	zcb_lastprint;
5555 	uint64_t	zcb_totalasize;
5556 	uint64_t	zcb_errors[256];
5557 	int		zcb_readfails;
5558 	int		zcb_haderrors;
5559 	spa_t		*zcb_spa;
5560 	uint32_t	**zcb_vd_obsolete_counts;
5561 	avl_tree_t	zcb_brt;
5562 	boolean_t	zcb_brt_is_active;
5563 } zdb_cb_t;
5564 
5565 /* test if two DVA offsets from same vdev are within the same metaslab */
5566 static boolean_t
5567 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5568 {
5569 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5570 	uint64_t ms_shift = vd->vdev_ms_shift;
5571 
5572 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5573 }
5574 
5575 /*
5576  * Used to simplify reporting of the histogram data.
5577  */
5578 typedef struct one_histo {
5579 	const char *name;
5580 	uint64_t *count;
5581 	uint64_t *len;
5582 	uint64_t cumulative;
5583 } one_histo_t;
5584 
5585 /*
5586  * The number of separate histograms processed for psize, lsize and asize.
5587  */
5588 #define	NUM_HISTO 3
5589 
5590 /*
5591  * This routine will create a fixed column size output of three different
5592  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5593  * the count, length and cumulative length of the psize, lsize and
5594  * asize blocks.
5595  *
5596  * All three types of blocks are listed on a single line
5597  *
5598  * By default the table is printed in nicenumber format (e.g. 123K) but
5599  * if the '-P' parameter is specified then the full raw number (parseable)
5600  * is printed out.
5601  */
5602 static void
5603 dump_size_histograms(zdb_cb_t *zcb)
5604 {
5605 	/*
5606 	 * A temporary buffer that allows us to convert a number into
5607 	 * a string using zdb_nicenumber to allow either raw or human
5608 	 * readable numbers to be output.
5609 	 */
5610 	char numbuf[32];
5611 
5612 	/*
5613 	 * Define titles which are used in the headers of the tables
5614 	 * printed by this routine.
5615 	 */
5616 	const char blocksize_title1[] = "block";
5617 	const char blocksize_title2[] = "size";
5618 	const char count_title[] = "Count";
5619 	const char length_title[] = "Size";
5620 	const char cumulative_title[] = "Cum.";
5621 
5622 	/*
5623 	 * Setup the histogram arrays (psize, lsize, and asize).
5624 	 */
5625 	one_histo_t parm_histo[NUM_HISTO];
5626 
5627 	parm_histo[0].name = "psize";
5628 	parm_histo[0].count = zcb->zcb_psize_count;
5629 	parm_histo[0].len = zcb->zcb_psize_len;
5630 	parm_histo[0].cumulative = 0;
5631 
5632 	parm_histo[1].name = "lsize";
5633 	parm_histo[1].count = zcb->zcb_lsize_count;
5634 	parm_histo[1].len = zcb->zcb_lsize_len;
5635 	parm_histo[1].cumulative = 0;
5636 
5637 	parm_histo[2].name = "asize";
5638 	parm_histo[2].count = zcb->zcb_asize_count;
5639 	parm_histo[2].len = zcb->zcb_asize_len;
5640 	parm_histo[2].cumulative = 0;
5641 
5642 
5643 	(void) printf("\nBlock Size Histogram\n");
5644 	/*
5645 	 * Print the first line titles
5646 	 */
5647 	if (dump_opt['P'])
5648 		(void) printf("\n%s\t", blocksize_title1);
5649 	else
5650 		(void) printf("\n%7s   ", blocksize_title1);
5651 
5652 	for (int j = 0; j < NUM_HISTO; j++) {
5653 		if (dump_opt['P']) {
5654 			if (j < NUM_HISTO - 1) {
5655 				(void) printf("%s\t\t\t", parm_histo[j].name);
5656 			} else {
5657 				/* Don't print trailing spaces */
5658 				(void) printf("  %s", parm_histo[j].name);
5659 			}
5660 		} else {
5661 			if (j < NUM_HISTO - 1) {
5662 				/* Left aligned strings in the output */
5663 				(void) printf("%-7s              ",
5664 				    parm_histo[j].name);
5665 			} else {
5666 				/* Don't print trailing spaces */
5667 				(void) printf("%s", parm_histo[j].name);
5668 			}
5669 		}
5670 	}
5671 	(void) printf("\n");
5672 
5673 	/*
5674 	 * Print the second line titles
5675 	 */
5676 	if (dump_opt['P']) {
5677 		(void) printf("%s\t", blocksize_title2);
5678 	} else {
5679 		(void) printf("%7s ", blocksize_title2);
5680 	}
5681 
5682 	for (int i = 0; i < NUM_HISTO; i++) {
5683 		if (dump_opt['P']) {
5684 			(void) printf("%s\t%s\t%s\t",
5685 			    count_title, length_title, cumulative_title);
5686 		} else {
5687 			(void) printf("%7s%7s%7s",
5688 			    count_title, length_title, cumulative_title);
5689 		}
5690 	}
5691 	(void) printf("\n");
5692 
5693 	/*
5694 	 * Print the rows
5695 	 */
5696 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5697 
5698 		/*
5699 		 * Print the first column showing the blocksize
5700 		 */
5701 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5702 
5703 		if (dump_opt['P']) {
5704 			printf("%s", numbuf);
5705 		} else {
5706 			printf("%7s:", numbuf);
5707 		}
5708 
5709 		/*
5710 		 * Print the remaining set of 3 columns per size:
5711 		 * for psize, lsize and asize
5712 		 */
5713 		for (int j = 0; j < NUM_HISTO; j++) {
5714 			parm_histo[j].cumulative += parm_histo[j].len[i];
5715 
5716 			zdb_nicenum(parm_histo[j].count[i],
5717 			    numbuf, sizeof (numbuf));
5718 			if (dump_opt['P'])
5719 				(void) printf("\t%s", numbuf);
5720 			else
5721 				(void) printf("%7s", numbuf);
5722 
5723 			zdb_nicenum(parm_histo[j].len[i],
5724 			    numbuf, sizeof (numbuf));
5725 			if (dump_opt['P'])
5726 				(void) printf("\t%s", numbuf);
5727 			else
5728 				(void) printf("%7s", numbuf);
5729 
5730 			zdb_nicenum(parm_histo[j].cumulative,
5731 			    numbuf, sizeof (numbuf));
5732 			if (dump_opt['P'])
5733 				(void) printf("\t%s", numbuf);
5734 			else
5735 				(void) printf("%7s", numbuf);
5736 		}
5737 		(void) printf("\n");
5738 	}
5739 }
5740 
5741 static void
5742 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5743     dmu_object_type_t type)
5744 {
5745 	int i;
5746 
5747 	ASSERT(type < ZDB_OT_TOTAL);
5748 
5749 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5750 		return;
5751 
5752 	/*
5753 	 * This flag controls if we will issue a claim for the block while
5754 	 * counting it, to ensure that all blocks are referenced in space maps.
5755 	 * We don't issue claims if we're not doing leak tracking, because it's
5756 	 * expensive if the user isn't interested. We also don't claim the
5757 	 * second or later occurences of cloned or dedup'd blocks, because we
5758 	 * already claimed them the first time.
5759 	 */
5760 	boolean_t do_claim = !dump_opt['L'];
5761 
5762 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5763 
5764 	blkptr_t tempbp;
5765 	if (BP_GET_DEDUP(bp)) {
5766 		/*
5767 		 * Dedup'd blocks are special. We need to count them, so we can
5768 		 * later uncount them when reporting leaked space, and we must
5769 		 * only claim them once.
5770 		 *
5771 		 * We use the existing dedup system to track what we've seen.
5772 		 * The first time we see a block, we do a ddt_lookup() to see
5773 		 * if it exists in the DDT. If we're doing leak tracking, we
5774 		 * claim the block at this time.
5775 		 *
5776 		 * Each time we see a block, we reduce the refcount in the
5777 		 * entry by one, and add to the size and count of dedup'd
5778 		 * blocks to report at the end.
5779 		 */
5780 
5781 		ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5782 
5783 		ddt_enter(ddt);
5784 
5785 		/*
5786 		 * Find the block. This will create the entry in memory, but
5787 		 * we'll know if that happened by its refcount.
5788 		 */
5789 		ddt_entry_t *dde = ddt_lookup(ddt, bp);
5790 
5791 		/*
5792 		 * ddt_lookup() can return NULL if this block didn't exist
5793 		 * in the DDT and creating it would take the DDT over its
5794 		 * quota. Since we got the block from disk, it must exist in
5795 		 * the DDT, so this can't happen. However, when unique entries
5796 		 * are pruned, the dedup bit can be set with no corresponding
5797 		 * entry in the DDT.
5798 		 */
5799 		if (dde == NULL) {
5800 			ddt_exit(ddt);
5801 			goto skipped;
5802 		}
5803 
5804 		/* Get the phys for this variant */
5805 		ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5806 
5807 		/*
5808 		 * This entry may have multiple sets of DVAs. We must claim
5809 		 * each set the first time we see them in a real block on disk,
5810 		 * or count them on subsequent occurences. We don't have a
5811 		 * convenient way to track the first time we see each variant,
5812 		 * so we repurpose dde_io as a set of "seen" flag bits. We can
5813 		 * do this safely in zdb because it never writes, so it will
5814 		 * never have a writing zio for this block in that pointer.
5815 		 */
5816 		boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5817 		if (!seen)
5818 			dde->dde_io =
5819 			    (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5820 
5821 		/* Consume a reference for this block. */
5822 		if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5823 			ddt_phys_decref(dde->dde_phys, v);
5824 
5825 		/*
5826 		 * If this entry has a single flat phys, it may have been
5827 		 * extended with additional DVAs at some time in its life.
5828 		 * This block might be from before it was fully extended, and
5829 		 * so have fewer DVAs.
5830 		 *
5831 		 * If this is the first time we've seen this block, and we
5832 		 * claimed it as-is, then we would miss the claim on some
5833 		 * number of DVAs, which would then be seen as leaked.
5834 		 *
5835 		 * In all cases, if we've had fewer DVAs, then the asize would
5836 		 * be too small, and would lead to the pool apparently using
5837 		 * more space than allocated.
5838 		 *
5839 		 * To handle this, we copy the canonical set of DVAs from the
5840 		 * entry back to the block pointer before we claim it.
5841 		 */
5842 		if (v == DDT_PHYS_FLAT) {
5843 			ASSERT3U(BP_GET_BIRTH(bp), ==,
5844 			    ddt_phys_birth(dde->dde_phys, v));
5845 			tempbp = *bp;
5846 			ddt_bp_fill(dde->dde_phys, v, &tempbp,
5847 			    BP_GET_BIRTH(bp));
5848 			bp = &tempbp;
5849 		}
5850 
5851 		if (seen) {
5852 			/*
5853 			 * The second or later time we see this block,
5854 			 * it's a duplicate and we count it.
5855 			 */
5856 			zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
5857 			zcb->zcb_dedup_blocks++;
5858 
5859 			/* Already claimed, don't do it again. */
5860 			do_claim = B_FALSE;
5861 		}
5862 
5863 		ddt_exit(ddt);
5864 	} else if (zcb->zcb_brt_is_active &&
5865 	    brt_maybe_exists(zcb->zcb_spa, bp)) {
5866 		/*
5867 		 * Cloned blocks are special. We need to count them, so we can
5868 		 * later uncount them when reporting leaked space, and we must
5869 		 * only claim them once.
5870 		 *
5871 		 * To do this, we keep our own in-memory BRT. For each block
5872 		 * we haven't seen before, we look it up in the real BRT and
5873 		 * if its there, we note it and its refcount then proceed as
5874 		 * normal. If we see the block again, we count it as a clone
5875 		 * and then give it no further consideration.
5876 		 */
5877 		zdb_brt_entry_t zbre_search, *zbre;
5878 		avl_index_t where;
5879 
5880 		zbre_search.zbre_dva = bp->blk_dva[0];
5881 		zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5882 		if (zbre == NULL) {
5883 			/* Not seen before; track it */
5884 			uint64_t refcnt =
5885 			    brt_entry_get_refcount(zcb->zcb_spa, bp);
5886 			if (refcnt > 0) {
5887 				zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5888 				    UMEM_NOFAIL);
5889 				zbre->zbre_dva = bp->blk_dva[0];
5890 				zbre->zbre_refcount = refcnt;
5891 				avl_insert(&zcb->zcb_brt, zbre, where);
5892 			}
5893 		} else  {
5894 			/*
5895 			 * Second or later occurrence, count it and take a
5896 			 * refcount.
5897 			 */
5898 			zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5899 			zcb->zcb_clone_blocks++;
5900 
5901 			zbre->zbre_refcount--;
5902 			if (zbre->zbre_refcount == 0) {
5903 				avl_remove(&zcb->zcb_brt, zbre);
5904 				umem_free(zbre, sizeof (zdb_brt_entry_t));
5905 			}
5906 
5907 			/* Already claimed, don't do it again. */
5908 			do_claim = B_FALSE;
5909 		}
5910 	}
5911 
5912 skipped:
5913 	for (i = 0; i < 4; i++) {
5914 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5915 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5916 		int equal;
5917 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5918 
5919 		zb->zb_asize += BP_GET_ASIZE(bp);
5920 		zb->zb_lsize += BP_GET_LSIZE(bp);
5921 		zb->zb_psize += BP_GET_PSIZE(bp);
5922 		zb->zb_count++;
5923 
5924 		/*
5925 		 * The histogram is only big enough to record blocks up to
5926 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5927 		 * "other", bucket.
5928 		 */
5929 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5930 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5931 		zb->zb_psize_histogram[idx]++;
5932 
5933 		zb->zb_gangs += BP_COUNT_GANG(bp);
5934 
5935 		switch (BP_GET_NDVAS(bp)) {
5936 		case 2:
5937 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5938 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5939 				zb->zb_ditto_samevdev++;
5940 
5941 				if (same_metaslab(zcb->zcb_spa,
5942 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5943 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5944 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5945 					zb->zb_ditto_same_ms++;
5946 			}
5947 			break;
5948 		case 3:
5949 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5950 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5951 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5952 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5953 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5954 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5955 			if (equal != 0) {
5956 				zb->zb_ditto_samevdev++;
5957 
5958 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5959 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5960 				    same_metaslab(zcb->zcb_spa,
5961 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5962 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5963 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5964 					zb->zb_ditto_same_ms++;
5965 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5966 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5967 				    same_metaslab(zcb->zcb_spa,
5968 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5969 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5970 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5971 					zb->zb_ditto_same_ms++;
5972 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5973 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5974 				    same_metaslab(zcb->zcb_spa,
5975 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5976 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5977 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5978 					zb->zb_ditto_same_ms++;
5979 			}
5980 			break;
5981 		}
5982 	}
5983 
5984 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5985 
5986 	if (BP_IS_EMBEDDED(bp)) {
5987 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5988 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5989 		    [BPE_GET_PSIZE(bp)]++;
5990 		return;
5991 	}
5992 	/*
5993 	 * The binning histogram bins by powers of two up to
5994 	 * SPA_MAXBLOCKSIZE rather than creating bins for
5995 	 * every possible blocksize found in the pool.
5996 	 */
5997 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5998 
5999 	zcb->zcb_psize_count[bin]++;
6000 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
6001 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
6002 
6003 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6004 
6005 	zcb->zcb_lsize_count[bin]++;
6006 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6007 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6008 
6009 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6010 
6011 	zcb->zcb_asize_count[bin]++;
6012 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6013 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6014 
6015 	if (!do_claim)
6016 		return;
6017 
6018 	VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6019 	    spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6020 	    ZIO_FLAG_CANFAIL)));
6021 }
6022 
6023 static void
6024 zdb_blkptr_done(zio_t *zio)
6025 {
6026 	spa_t *spa = zio->io_spa;
6027 	blkptr_t *bp = zio->io_bp;
6028 	int ioerr = zio->io_error;
6029 	zdb_cb_t *zcb = zio->io_private;
6030 	zbookmark_phys_t *zb = &zio->io_bookmark;
6031 
6032 	mutex_enter(&spa->spa_scrub_lock);
6033 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6034 	cv_broadcast(&spa->spa_scrub_io_cv);
6035 
6036 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6037 		char blkbuf[BP_SPRINTF_LEN];
6038 
6039 		zcb->zcb_haderrors = 1;
6040 		zcb->zcb_errors[ioerr]++;
6041 
6042 		if (dump_opt['b'] >= 2)
6043 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6044 		else
6045 			blkbuf[0] = '\0';
6046 
6047 		(void) printf("zdb_blkptr_cb: "
6048 		    "Got error %d reading "
6049 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6050 		    ioerr,
6051 		    (u_longlong_t)zb->zb_objset,
6052 		    (u_longlong_t)zb->zb_object,
6053 		    (u_longlong_t)zb->zb_level,
6054 		    (u_longlong_t)zb->zb_blkid,
6055 		    blkbuf);
6056 	}
6057 	mutex_exit(&spa->spa_scrub_lock);
6058 
6059 	abd_free(zio->io_abd);
6060 }
6061 
6062 static int
6063 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6064     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6065 {
6066 	zdb_cb_t *zcb = arg;
6067 	dmu_object_type_t type;
6068 	boolean_t is_metadata;
6069 
6070 	if (zb->zb_level == ZB_DNODE_LEVEL)
6071 		return (0);
6072 
6073 	if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) {
6074 		char blkbuf[BP_SPRINTF_LEN];
6075 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6076 		(void) printf("objset %llu object %llu "
6077 		    "level %lld offset 0x%llx %s\n",
6078 		    (u_longlong_t)zb->zb_objset,
6079 		    (u_longlong_t)zb->zb_object,
6080 		    (longlong_t)zb->zb_level,
6081 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
6082 		    blkbuf);
6083 	}
6084 
6085 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6086 		return (0);
6087 
6088 	type = BP_GET_TYPE(bp);
6089 
6090 	zdb_count_block(zcb, zilog, bp,
6091 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6092 
6093 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6094 
6095 	if (!BP_IS_EMBEDDED(bp) &&
6096 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6097 		size_t size = BP_GET_PSIZE(bp);
6098 		abd_t *abd = abd_alloc(size, B_FALSE);
6099 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6100 
6101 		/* If it's an intent log block, failure is expected. */
6102 		if (zb->zb_level == ZB_ZIL_LEVEL)
6103 			flags |= ZIO_FLAG_SPECULATIVE;
6104 
6105 		mutex_enter(&spa->spa_scrub_lock);
6106 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
6107 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6108 		spa->spa_load_verify_bytes += size;
6109 		mutex_exit(&spa->spa_scrub_lock);
6110 
6111 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
6112 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6113 	}
6114 
6115 	zcb->zcb_readfails = 0;
6116 
6117 	/* only call gethrtime() every 100 blocks */
6118 	static int iters;
6119 	if (++iters > 100)
6120 		iters = 0;
6121 	else
6122 		return (0);
6123 
6124 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6125 		uint64_t now = gethrtime();
6126 		char buf[10];
6127 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6128 		uint64_t kb_per_sec =
6129 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6130 		uint64_t sec_remaining =
6131 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6132 
6133 		/* make sure nicenum has enough space */
6134 		_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6135 
6136 		zfs_nicebytes(bytes, buf, sizeof (buf));
6137 		(void) fprintf(stderr,
6138 		    "\r%5s completed (%4"PRIu64"MB/s) "
6139 		    "estimated time remaining: "
6140 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
6141 		    buf, kb_per_sec / 1024,
6142 		    sec_remaining / 60 / 60,
6143 		    sec_remaining / 60 % 60,
6144 		    sec_remaining % 60);
6145 
6146 		zcb->zcb_lastprint = now;
6147 	}
6148 
6149 	return (0);
6150 }
6151 
6152 static void
6153 zdb_leak(void *arg, uint64_t start, uint64_t size)
6154 {
6155 	vdev_t *vd = arg;
6156 
6157 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6158 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6159 }
6160 
6161 static metaslab_ops_t zdb_metaslab_ops = {
6162 	NULL	/* alloc */
6163 };
6164 
6165 static int
6166 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6167     uint64_t txg, void *arg)
6168 {
6169 	spa_vdev_removal_t *svr = arg;
6170 
6171 	uint64_t offset = sme->sme_offset;
6172 	uint64_t size = sme->sme_run;
6173 
6174 	/* skip vdevs we don't care about */
6175 	if (sme->sme_vdev != svr->svr_vdev_id)
6176 		return (0);
6177 
6178 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6179 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6180 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6181 
6182 	if (txg < metaslab_unflushed_txg(ms))
6183 		return (0);
6184 
6185 	if (sme->sme_type == SM_ALLOC)
6186 		range_tree_add(svr->svr_allocd_segs, offset, size);
6187 	else
6188 		range_tree_remove(svr->svr_allocd_segs, offset, size);
6189 
6190 	return (0);
6191 }
6192 
6193 static void
6194 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6195     uint64_t size, void *arg)
6196 {
6197 	(void) inner_offset, (void) arg;
6198 
6199 	/*
6200 	 * This callback was called through a remap from
6201 	 * a device being removed. Therefore, the vdev that
6202 	 * this callback is applied to is a concrete
6203 	 * vdev.
6204 	 */
6205 	ASSERT(vdev_is_concrete(vd));
6206 
6207 	VERIFY0(metaslab_claim_impl(vd, offset, size,
6208 	    spa_min_claim_txg(vd->vdev_spa)));
6209 }
6210 
6211 static void
6212 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6213 {
6214 	vdev_t *vd = arg;
6215 
6216 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6217 	    claim_segment_impl_cb, NULL);
6218 }
6219 
6220 /*
6221  * After accounting for all allocated blocks that are directly referenced,
6222  * we might have missed a reference to a block from a partially complete
6223  * (and thus unused) indirect mapping object. We perform a secondary pass
6224  * through the metaslabs we have already mapped and claim the destination
6225  * blocks.
6226  */
6227 static void
6228 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6229 {
6230 	if (dump_opt['L'])
6231 		return;
6232 
6233 	if (spa->spa_vdev_removal == NULL)
6234 		return;
6235 
6236 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6237 
6238 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6239 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6240 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6241 
6242 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
6243 
6244 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
6245 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6246 		metaslab_t *msp = vd->vdev_ms[msi];
6247 
6248 		ASSERT0(range_tree_space(allocs));
6249 		if (msp->ms_sm != NULL)
6250 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6251 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
6252 	}
6253 	range_tree_destroy(allocs);
6254 
6255 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6256 
6257 	/*
6258 	 * Clear everything past what has been synced,
6259 	 * because we have not allocated mappings for
6260 	 * it yet.
6261 	 */
6262 	range_tree_clear(svr->svr_allocd_segs,
6263 	    vdev_indirect_mapping_max_offset(vim),
6264 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6265 
6266 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
6267 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6268 
6269 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6270 }
6271 
6272 static int
6273 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6274     dmu_tx_t *tx)
6275 {
6276 	(void) tx;
6277 	zdb_cb_t *zcb = arg;
6278 	spa_t *spa = zcb->zcb_spa;
6279 	vdev_t *vd;
6280 	const dva_t *dva = &bp->blk_dva[0];
6281 
6282 	ASSERT(!bp_freed);
6283 	ASSERT(!dump_opt['L']);
6284 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6285 
6286 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6287 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6288 	ASSERT3P(vd, !=, NULL);
6289 	spa_config_exit(spa, SCL_VDEV, FTAG);
6290 
6291 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6292 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6293 
6294 	vdev_indirect_mapping_increment_obsolete_count(
6295 	    vd->vdev_indirect_mapping,
6296 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6297 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6298 
6299 	return (0);
6300 }
6301 
6302 static uint32_t *
6303 zdb_load_obsolete_counts(vdev_t *vd)
6304 {
6305 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6306 	spa_t *spa = vd->vdev_spa;
6307 	spa_condensing_indirect_phys_t *scip =
6308 	    &spa->spa_condensing_indirect_phys;
6309 	uint64_t obsolete_sm_object;
6310 	uint32_t *counts;
6311 
6312 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6313 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6314 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6315 	if (vd->vdev_obsolete_sm != NULL) {
6316 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6317 		    vd->vdev_obsolete_sm);
6318 	}
6319 	if (scip->scip_vdev == vd->vdev_id &&
6320 	    scip->scip_prev_obsolete_sm_object != 0) {
6321 		space_map_t *prev_obsolete_sm = NULL;
6322 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6323 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6324 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6325 		    prev_obsolete_sm);
6326 		space_map_close(prev_obsolete_sm);
6327 	}
6328 	return (counts);
6329 }
6330 
6331 typedef struct checkpoint_sm_exclude_entry_arg {
6332 	vdev_t *cseea_vd;
6333 	uint64_t cseea_checkpoint_size;
6334 } checkpoint_sm_exclude_entry_arg_t;
6335 
6336 static int
6337 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6338 {
6339 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6340 	vdev_t *vd = cseea->cseea_vd;
6341 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6342 	uint64_t end = sme->sme_offset + sme->sme_run;
6343 
6344 	ASSERT(sme->sme_type == SM_FREE);
6345 
6346 	/*
6347 	 * Since the vdev_checkpoint_sm exists in the vdev level
6348 	 * and the ms_sm space maps exist in the metaslab level,
6349 	 * an entry in the checkpoint space map could theoretically
6350 	 * cross the boundaries of the metaslab that it belongs.
6351 	 *
6352 	 * In reality, because of the way that we populate and
6353 	 * manipulate the checkpoint's space maps currently,
6354 	 * there shouldn't be any entries that cross metaslabs.
6355 	 * Hence the assertion below.
6356 	 *
6357 	 * That said, there is no fundamental requirement that
6358 	 * the checkpoint's space map entries should not cross
6359 	 * metaslab boundaries. So if needed we could add code
6360 	 * that handles metaslab-crossing segments in the future.
6361 	 */
6362 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6363 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6364 
6365 	/*
6366 	 * By removing the entry from the allocated segments we
6367 	 * also verify that the entry is there to begin with.
6368 	 */
6369 	mutex_enter(&ms->ms_lock);
6370 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6371 	mutex_exit(&ms->ms_lock);
6372 
6373 	cseea->cseea_checkpoint_size += sme->sme_run;
6374 	return (0);
6375 }
6376 
6377 static void
6378 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6379 {
6380 	spa_t *spa = vd->vdev_spa;
6381 	space_map_t *checkpoint_sm = NULL;
6382 	uint64_t checkpoint_sm_obj;
6383 
6384 	/*
6385 	 * If there is no vdev_top_zap, we are in a pool whose
6386 	 * version predates the pool checkpoint feature.
6387 	 */
6388 	if (vd->vdev_top_zap == 0)
6389 		return;
6390 
6391 	/*
6392 	 * If there is no reference of the vdev_checkpoint_sm in
6393 	 * the vdev_top_zap, then one of the following scenarios
6394 	 * is true:
6395 	 *
6396 	 * 1] There is no checkpoint
6397 	 * 2] There is a checkpoint, but no checkpointed blocks
6398 	 *    have been freed yet
6399 	 * 3] The current vdev is indirect
6400 	 *
6401 	 * In these cases we return immediately.
6402 	 */
6403 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6404 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6405 		return;
6406 
6407 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6408 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6409 	    &checkpoint_sm_obj));
6410 
6411 	checkpoint_sm_exclude_entry_arg_t cseea;
6412 	cseea.cseea_vd = vd;
6413 	cseea.cseea_checkpoint_size = 0;
6414 
6415 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6416 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6417 
6418 	VERIFY0(space_map_iterate(checkpoint_sm,
6419 	    space_map_length(checkpoint_sm),
6420 	    checkpoint_sm_exclude_entry_cb, &cseea));
6421 	space_map_close(checkpoint_sm);
6422 
6423 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6424 }
6425 
6426 static void
6427 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6428 {
6429 	ASSERT(!dump_opt['L']);
6430 
6431 	vdev_t *rvd = spa->spa_root_vdev;
6432 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6433 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6434 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6435 	}
6436 }
6437 
6438 static int
6439 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6440     uint64_t txg, void *arg)
6441 {
6442 	int64_t *ualloc_space = arg;
6443 
6444 	uint64_t offset = sme->sme_offset;
6445 	uint64_t vdev_id = sme->sme_vdev;
6446 
6447 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6448 	if (!vdev_is_concrete(vd))
6449 		return (0);
6450 
6451 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6452 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6453 
6454 	if (txg < metaslab_unflushed_txg(ms))
6455 		return (0);
6456 
6457 	if (sme->sme_type == SM_ALLOC)
6458 		*ualloc_space += sme->sme_run;
6459 	else
6460 		*ualloc_space -= sme->sme_run;
6461 
6462 	return (0);
6463 }
6464 
6465 static int64_t
6466 get_unflushed_alloc_space(spa_t *spa)
6467 {
6468 	if (dump_opt['L'])
6469 		return (0);
6470 
6471 	int64_t ualloc_space = 0;
6472 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6473 	    &ualloc_space);
6474 	return (ualloc_space);
6475 }
6476 
6477 static int
6478 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6479 {
6480 	maptype_t *uic_maptype = arg;
6481 
6482 	uint64_t offset = sme->sme_offset;
6483 	uint64_t size = sme->sme_run;
6484 	uint64_t vdev_id = sme->sme_vdev;
6485 
6486 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6487 
6488 	/* skip indirect vdevs */
6489 	if (!vdev_is_concrete(vd))
6490 		return (0);
6491 
6492 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6493 
6494 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6495 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6496 
6497 	if (txg < metaslab_unflushed_txg(ms))
6498 		return (0);
6499 
6500 	if (*uic_maptype == sme->sme_type)
6501 		range_tree_add(ms->ms_allocatable, offset, size);
6502 	else
6503 		range_tree_remove(ms->ms_allocatable, offset, size);
6504 
6505 	return (0);
6506 }
6507 
6508 static void
6509 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6510 {
6511 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6512 }
6513 
6514 static void
6515 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6516 {
6517 	vdev_t *rvd = spa->spa_root_vdev;
6518 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6519 		vdev_t *vd = rvd->vdev_child[i];
6520 
6521 		ASSERT3U(i, ==, vd->vdev_id);
6522 
6523 		if (vd->vdev_ops == &vdev_indirect_ops)
6524 			continue;
6525 
6526 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6527 			metaslab_t *msp = vd->vdev_ms[m];
6528 
6529 			(void) fprintf(stderr,
6530 			    "\rloading concrete vdev %llu, "
6531 			    "metaslab %llu of %llu ...",
6532 			    (longlong_t)vd->vdev_id,
6533 			    (longlong_t)msp->ms_id,
6534 			    (longlong_t)vd->vdev_ms_count);
6535 
6536 			mutex_enter(&msp->ms_lock);
6537 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6538 
6539 			/*
6540 			 * We don't want to spend the CPU manipulating the
6541 			 * size-ordered tree, so clear the range_tree ops.
6542 			 */
6543 			msp->ms_allocatable->rt_ops = NULL;
6544 
6545 			if (msp->ms_sm != NULL) {
6546 				VERIFY0(space_map_load(msp->ms_sm,
6547 				    msp->ms_allocatable, maptype));
6548 			}
6549 			if (!msp->ms_loaded)
6550 				msp->ms_loaded = B_TRUE;
6551 			mutex_exit(&msp->ms_lock);
6552 		}
6553 	}
6554 
6555 	load_unflushed_to_ms_allocatables(spa, maptype);
6556 }
6557 
6558 /*
6559  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6560  * index in vim_entries that has the first entry in this metaslab.
6561  * On return, it will be set to the first entry after this metaslab.
6562  */
6563 static void
6564 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6565     uint64_t *vim_idxp)
6566 {
6567 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6568 
6569 	mutex_enter(&msp->ms_lock);
6570 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6571 
6572 	/*
6573 	 * We don't want to spend the CPU manipulating the
6574 	 * size-ordered tree, so clear the range_tree ops.
6575 	 */
6576 	msp->ms_allocatable->rt_ops = NULL;
6577 
6578 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6579 	    (*vim_idxp)++) {
6580 		vdev_indirect_mapping_entry_phys_t *vimep =
6581 		    &vim->vim_entries[*vim_idxp];
6582 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6583 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6584 		ASSERT3U(ent_offset, >=, msp->ms_start);
6585 		if (ent_offset >= msp->ms_start + msp->ms_size)
6586 			break;
6587 
6588 		/*
6589 		 * Mappings do not cross metaslab boundaries,
6590 		 * because we create them by walking the metaslabs.
6591 		 */
6592 		ASSERT3U(ent_offset + ent_len, <=,
6593 		    msp->ms_start + msp->ms_size);
6594 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6595 	}
6596 
6597 	if (!msp->ms_loaded)
6598 		msp->ms_loaded = B_TRUE;
6599 	mutex_exit(&msp->ms_lock);
6600 }
6601 
6602 static void
6603 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6604 {
6605 	ASSERT(!dump_opt['L']);
6606 
6607 	vdev_t *rvd = spa->spa_root_vdev;
6608 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6609 		vdev_t *vd = rvd->vdev_child[c];
6610 
6611 		ASSERT3U(c, ==, vd->vdev_id);
6612 
6613 		if (vd->vdev_ops != &vdev_indirect_ops)
6614 			continue;
6615 
6616 		/*
6617 		 * Note: we don't check for mapping leaks on
6618 		 * removing vdevs because their ms_allocatable's
6619 		 * are used to look for leaks in allocated space.
6620 		 */
6621 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6622 
6623 		/*
6624 		 * Normally, indirect vdevs don't have any
6625 		 * metaslabs.  We want to set them up for
6626 		 * zio_claim().
6627 		 */
6628 		vdev_metaslab_group_create(vd);
6629 		VERIFY0(vdev_metaslab_init(vd, 0));
6630 
6631 		vdev_indirect_mapping_t *vim __maybe_unused =
6632 		    vd->vdev_indirect_mapping;
6633 		uint64_t vim_idx = 0;
6634 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6635 
6636 			(void) fprintf(stderr,
6637 			    "\rloading indirect vdev %llu, "
6638 			    "metaslab %llu of %llu ...",
6639 			    (longlong_t)vd->vdev_id,
6640 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6641 			    (longlong_t)vd->vdev_ms_count);
6642 
6643 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6644 			    &vim_idx);
6645 		}
6646 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6647 	}
6648 }
6649 
6650 static void
6651 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6652 {
6653 	zcb->zcb_spa = spa;
6654 
6655 	if (dump_opt['L'])
6656 		return;
6657 
6658 	dsl_pool_t *dp = spa->spa_dsl_pool;
6659 	vdev_t *rvd = spa->spa_root_vdev;
6660 
6661 	/*
6662 	 * We are going to be changing the meaning of the metaslab's
6663 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6664 	 * use the tree.
6665 	 */
6666 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6667 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6668 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6669 
6670 	zcb->zcb_vd_obsolete_counts =
6671 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6672 	    UMEM_NOFAIL);
6673 
6674 	/*
6675 	 * For leak detection, we overload the ms_allocatable trees
6676 	 * to contain allocated segments instead of free segments.
6677 	 * As a result, we can't use the normal metaslab_load/unload
6678 	 * interfaces.
6679 	 */
6680 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6681 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6682 
6683 	/*
6684 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6685 	 * allocated entries from the ms_sm to the ms_allocatable for
6686 	 * each metaslab. If the pool has a checkpoint or is in the
6687 	 * middle of discarding a checkpoint, some of these blocks
6688 	 * may have been freed but their ms_sm may not have been
6689 	 * updated because they are referenced by the checkpoint. In
6690 	 * order to avoid false-positives during leak-detection, we
6691 	 * go through the vdev's checkpoint space map and exclude all
6692 	 * its entries from their relevant ms_allocatable.
6693 	 *
6694 	 * We also aggregate the space held by the checkpoint and add
6695 	 * it to zcb_checkpoint_size.
6696 	 *
6697 	 * Note that at this point we are also verifying that all the
6698 	 * entries on the checkpoint_sm are marked as allocated in
6699 	 * the ms_sm of their relevant metaslab.
6700 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6701 	 */
6702 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6703 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6704 
6705 	/* for cleaner progress output */
6706 	(void) fprintf(stderr, "\n");
6707 
6708 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6709 		ASSERT(spa_feature_is_enabled(spa,
6710 		    SPA_FEATURE_DEVICE_REMOVAL));
6711 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6712 		    increment_indirect_mapping_cb, zcb, NULL);
6713 	}
6714 }
6715 
6716 static boolean_t
6717 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6718 {
6719 	boolean_t leaks = B_FALSE;
6720 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6721 	uint64_t total_leaked = 0;
6722 	boolean_t are_precise = B_FALSE;
6723 
6724 	ASSERT(vim != NULL);
6725 
6726 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6727 		vdev_indirect_mapping_entry_phys_t *vimep =
6728 		    &vim->vim_entries[i];
6729 		uint64_t obsolete_bytes = 0;
6730 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6731 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6732 
6733 		/*
6734 		 * This is not very efficient but it's easy to
6735 		 * verify correctness.
6736 		 */
6737 		for (uint64_t inner_offset = 0;
6738 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6739 		    inner_offset += 1ULL << vd->vdev_ashift) {
6740 			if (range_tree_contains(msp->ms_allocatable,
6741 			    offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6742 				obsolete_bytes += 1ULL << vd->vdev_ashift;
6743 			}
6744 		}
6745 
6746 		int64_t bytes_leaked = obsolete_bytes -
6747 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6748 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6749 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6750 
6751 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6752 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6753 			(void) printf("obsolete indirect mapping count "
6754 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6755 			    (u_longlong_t)vd->vdev_id,
6756 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6757 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6758 			    (u_longlong_t)bytes_leaked);
6759 		}
6760 		total_leaked += ABS(bytes_leaked);
6761 	}
6762 
6763 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6764 	if (!are_precise && total_leaked > 0) {
6765 		int pct_leaked = total_leaked * 100 /
6766 		    vdev_indirect_mapping_bytes_mapped(vim);
6767 		(void) printf("cannot verify obsolete indirect mapping "
6768 		    "counts of vdev %llu because precise feature was not "
6769 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6770 		    "unreferenced\n",
6771 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6772 		    (u_longlong_t)total_leaked);
6773 	} else if (total_leaked > 0) {
6774 		(void) printf("obsolete indirect mapping count mismatch "
6775 		    "for vdev %llu -- %llx total bytes mismatched\n",
6776 		    (u_longlong_t)vd->vdev_id,
6777 		    (u_longlong_t)total_leaked);
6778 		leaks |= B_TRUE;
6779 	}
6780 
6781 	vdev_indirect_mapping_free_obsolete_counts(vim,
6782 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6783 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6784 
6785 	return (leaks);
6786 }
6787 
6788 static boolean_t
6789 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6790 {
6791 	if (dump_opt['L'])
6792 		return (B_FALSE);
6793 
6794 	boolean_t leaks = B_FALSE;
6795 	vdev_t *rvd = spa->spa_root_vdev;
6796 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6797 		vdev_t *vd = rvd->vdev_child[c];
6798 
6799 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6800 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6801 		}
6802 
6803 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6804 			metaslab_t *msp = vd->vdev_ms[m];
6805 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6806 			    spa_embedded_log_class(spa)) ?
6807 			    vd->vdev_log_mg : vd->vdev_mg);
6808 
6809 			/*
6810 			 * ms_allocatable has been overloaded
6811 			 * to contain allocated segments. Now that
6812 			 * we finished traversing all blocks, any
6813 			 * block that remains in the ms_allocatable
6814 			 * represents an allocated block that we
6815 			 * did not claim during the traversal.
6816 			 * Claimed blocks would have been removed
6817 			 * from the ms_allocatable.  For indirect
6818 			 * vdevs, space remaining in the tree
6819 			 * represents parts of the mapping that are
6820 			 * not referenced, which is not a bug.
6821 			 */
6822 			if (vd->vdev_ops == &vdev_indirect_ops) {
6823 				range_tree_vacate(msp->ms_allocatable,
6824 				    NULL, NULL);
6825 			} else {
6826 				range_tree_vacate(msp->ms_allocatable,
6827 				    zdb_leak, vd);
6828 			}
6829 			if (msp->ms_loaded) {
6830 				msp->ms_loaded = B_FALSE;
6831 			}
6832 		}
6833 	}
6834 
6835 	umem_free(zcb->zcb_vd_obsolete_counts,
6836 	    rvd->vdev_children * sizeof (uint32_t *));
6837 	zcb->zcb_vd_obsolete_counts = NULL;
6838 
6839 	return (leaks);
6840 }
6841 
6842 static int
6843 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6844 {
6845 	(void) tx;
6846 	zdb_cb_t *zcb = arg;
6847 
6848 	if (dump_opt['b'] >= 5) {
6849 		char blkbuf[BP_SPRINTF_LEN];
6850 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6851 		(void) printf("[%s] %s\n",
6852 		    "deferred free", blkbuf);
6853 	}
6854 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6855 	return (0);
6856 }
6857 
6858 /*
6859  * Iterate over livelists which have been destroyed by the user but
6860  * are still present in the MOS, waiting to be freed
6861  */
6862 static void
6863 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6864 {
6865 	objset_t *mos = spa->spa_meta_objset;
6866 	uint64_t zap_obj;
6867 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6868 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6869 	if (err == ENOENT)
6870 		return;
6871 	ASSERT0(err);
6872 
6873 	zap_cursor_t zc;
6874 	zap_attribute_t *attrp = zap_attribute_alloc();
6875 	dsl_deadlist_t ll;
6876 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6877 	ll.dl_os = NULL;
6878 	for (zap_cursor_init(&zc, mos, zap_obj);
6879 	    zap_cursor_retrieve(&zc, attrp) == 0;
6880 	    (void) zap_cursor_advance(&zc)) {
6881 		dsl_deadlist_open(&ll, mos, attrp->za_first_integer);
6882 		func(&ll, arg);
6883 		dsl_deadlist_close(&ll);
6884 	}
6885 	zap_cursor_fini(&zc);
6886 	zap_attribute_free(attrp);
6887 }
6888 
6889 static int
6890 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6891     dmu_tx_t *tx)
6892 {
6893 	ASSERT(!bp_freed);
6894 	return (count_block_cb(arg, bp, tx));
6895 }
6896 
6897 static int
6898 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6899 {
6900 	zdb_cb_t *zbc = args;
6901 	bplist_t blks;
6902 	bplist_create(&blks);
6903 	/* determine which blocks have been alloc'd but not freed */
6904 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6905 	/* count those blocks */
6906 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6907 	bplist_destroy(&blks);
6908 	return (0);
6909 }
6910 
6911 static void
6912 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6913 {
6914 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6915 }
6916 
6917 /*
6918  * Count the blocks in the livelists that have been destroyed by the user
6919  * but haven't yet been freed.
6920  */
6921 static void
6922 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6923 {
6924 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6925 }
6926 
6927 static void
6928 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6929 {
6930 	ASSERT3P(arg, ==, NULL);
6931 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6932 	dump_blkptr_list(ll, "Deleted Livelist");
6933 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6934 }
6935 
6936 /*
6937  * Print out, register object references to, and increment feature counts for
6938  * livelists that have been destroyed by the user but haven't yet been freed.
6939  */
6940 static void
6941 deleted_livelists_dump_mos(spa_t *spa)
6942 {
6943 	uint64_t zap_obj;
6944 	objset_t *mos = spa->spa_meta_objset;
6945 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6946 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6947 	if (err == ENOENT)
6948 		return;
6949 	mos_obj_refd(zap_obj);
6950 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6951 }
6952 
6953 static int
6954 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
6955 {
6956 	const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
6957 	const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
6958 	int cmp;
6959 
6960 	cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
6961 	if (cmp == 0)
6962 		cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
6963 
6964 	return (cmp);
6965 }
6966 
6967 static int
6968 dump_block_stats(spa_t *spa)
6969 {
6970 	zdb_cb_t *zcb;
6971 	zdb_blkstats_t *zb, *tzb;
6972 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6973 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6974 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6975 	boolean_t leaks = B_FALSE;
6976 	int e, c, err;
6977 	bp_embedded_type_t i;
6978 
6979 	ddt_prefetch_all(spa);
6980 
6981 	zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6982 
6983 	if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
6984 		avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
6985 		    sizeof (zdb_brt_entry_t),
6986 		    offsetof(zdb_brt_entry_t, zbre_node));
6987 		zcb->zcb_brt_is_active = B_TRUE;
6988 	}
6989 
6990 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6991 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6992 	    (dump_opt['c'] == 1) ? "metadata " : "",
6993 	    dump_opt['c'] ? "checksums " : "",
6994 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6995 	    !dump_opt['L'] ? "nothing leaked " : "");
6996 
6997 	/*
6998 	 * When leak detection is enabled we load all space maps as SM_ALLOC
6999 	 * maps, then traverse the pool claiming each block we discover. If
7000 	 * the pool is perfectly consistent, the segment trees will be empty
7001 	 * when we're done. Anything left over is a leak; any block we can't
7002 	 * claim (because it's not part of any space map) is a double
7003 	 * allocation, reference to a freed block, or an unclaimed log block.
7004 	 *
7005 	 * When leak detection is disabled (-L option) we still traverse the
7006 	 * pool claiming each block we discover, but we skip opening any space
7007 	 * maps.
7008 	 */
7009 	zdb_leak_init(spa, zcb);
7010 
7011 	/*
7012 	 * If there's a deferred-free bplist, process that first.
7013 	 */
7014 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7015 	    bpobj_count_block_cb, zcb, NULL);
7016 
7017 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7018 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7019 		    bpobj_count_block_cb, zcb, NULL);
7020 	}
7021 
7022 	zdb_claim_removing(spa, zcb);
7023 
7024 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7025 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7026 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7027 		    zcb, NULL));
7028 	}
7029 
7030 	deleted_livelists_count_blocks(spa, zcb);
7031 
7032 	if (dump_opt['c'] > 1)
7033 		flags |= TRAVERSE_PREFETCH_DATA;
7034 
7035 	zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7036 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7037 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7038 	zcb->zcb_totalasize +=
7039 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
7040 	zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7041 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7042 
7043 	/*
7044 	 * If we've traversed the data blocks then we need to wait for those
7045 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
7046 	 * all async I/Os to complete.
7047 	 */
7048 	if (dump_opt['c']) {
7049 		for (c = 0; c < max_ncpus; c++) {
7050 			(void) zio_wait(spa->spa_async_zio_root[c]);
7051 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7052 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7053 			    ZIO_FLAG_GODFATHER);
7054 		}
7055 	}
7056 	ASSERT0(spa->spa_load_verify_bytes);
7057 
7058 	/*
7059 	 * Done after zio_wait() since zcb_haderrors is modified in
7060 	 * zdb_blkptr_done()
7061 	 */
7062 	zcb->zcb_haderrors |= err;
7063 
7064 	if (zcb->zcb_haderrors) {
7065 		(void) printf("\nError counts:\n\n");
7066 		(void) printf("\t%5s  %s\n", "errno", "count");
7067 		for (e = 0; e < 256; e++) {
7068 			if (zcb->zcb_errors[e] != 0) {
7069 				(void) printf("\t%5d  %llu\n",
7070 				    e, (u_longlong_t)zcb->zcb_errors[e]);
7071 			}
7072 		}
7073 	}
7074 
7075 	/*
7076 	 * Report any leaked segments.
7077 	 */
7078 	leaks |= zdb_leak_fini(spa, zcb);
7079 
7080 	tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7081 
7082 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7083 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
7084 
7085 	total_alloc = norm_alloc +
7086 	    metaslab_class_get_alloc(spa_log_class(spa)) +
7087 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7088 	    metaslab_class_get_alloc(spa_special_class(spa)) +
7089 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
7090 	    get_unflushed_alloc_space(spa);
7091 	total_found =
7092 	    tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7093 	    zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7094 
7095 	if (total_found == total_alloc && !dump_opt['L']) {
7096 		(void) printf("\n\tNo leaks (block sum matches space"
7097 		    " maps exactly)\n");
7098 	} else if (!dump_opt['L']) {
7099 		(void) printf("block traversal size %llu != alloc %llu "
7100 		    "(%s %lld)\n",
7101 		    (u_longlong_t)total_found,
7102 		    (u_longlong_t)total_alloc,
7103 		    (dump_opt['L']) ? "unreachable" : "leaked",
7104 		    (longlong_t)(total_alloc - total_found));
7105 	}
7106 
7107 	if (tzb->zb_count == 0) {
7108 		umem_free(zcb, sizeof (zdb_cb_t));
7109 		return (2);
7110 	}
7111 
7112 	(void) printf("\n");
7113 	(void) printf("\t%-16s %14llu\n", "bp count:",
7114 	    (u_longlong_t)tzb->zb_count);
7115 	(void) printf("\t%-16s %14llu\n", "ganged count:",
7116 	    (longlong_t)tzb->zb_gangs);
7117 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
7118 	    (u_longlong_t)tzb->zb_lsize,
7119 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7120 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
7121 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
7122 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7123 	    (double)tzb->zb_lsize / tzb->zb_psize);
7124 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
7125 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
7126 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7127 	    (double)tzb->zb_lsize / tzb->zb_asize);
7128 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
7129 	    "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7130 	    (u_longlong_t)zcb->zcb_dedup_blocks,
7131 	    (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7132 	(void) printf("\t%-16s %14llu    count: %6llu\n",
7133 	    "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7134 	    (u_longlong_t)zcb->zcb_clone_blocks);
7135 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
7136 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7137 
7138 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7139 		uint64_t alloc = metaslab_class_get_alloc(
7140 		    spa_special_class(spa));
7141 		uint64_t space = metaslab_class_get_space(
7142 		    spa_special_class(spa));
7143 
7144 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7145 		    "Special class", (u_longlong_t)alloc,
7146 		    100.0 * alloc / space);
7147 	}
7148 
7149 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7150 		uint64_t alloc = metaslab_class_get_alloc(
7151 		    spa_dedup_class(spa));
7152 		uint64_t space = metaslab_class_get_space(
7153 		    spa_dedup_class(spa));
7154 
7155 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7156 		    "Dedup class", (u_longlong_t)alloc,
7157 		    100.0 * alloc / space);
7158 	}
7159 
7160 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7161 		uint64_t alloc = metaslab_class_get_alloc(
7162 		    spa_embedded_log_class(spa));
7163 		uint64_t space = metaslab_class_get_space(
7164 		    spa_embedded_log_class(spa));
7165 
7166 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7167 		    "Embedded log class", (u_longlong_t)alloc,
7168 		    100.0 * alloc / space);
7169 	}
7170 
7171 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7172 		if (zcb->zcb_embedded_blocks[i] == 0)
7173 			continue;
7174 		(void) printf("\n");
7175 		(void) printf("\tadditional, non-pointer bps of type %u: "
7176 		    "%10llu\n",
7177 		    i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7178 
7179 		if (dump_opt['b'] >= 3) {
7180 			(void) printf("\t number of (compressed) bytes:  "
7181 			    "number of bps\n");
7182 			dump_histogram(zcb->zcb_embedded_histogram[i],
7183 			    sizeof (zcb->zcb_embedded_histogram[i]) /
7184 			    sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7185 		}
7186 	}
7187 
7188 	if (tzb->zb_ditto_samevdev != 0) {
7189 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
7190 		    (longlong_t)tzb->zb_ditto_samevdev);
7191 	}
7192 	if (tzb->zb_ditto_same_ms != 0) {
7193 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
7194 		    (longlong_t)tzb->zb_ditto_same_ms);
7195 	}
7196 
7197 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7198 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7199 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7200 
7201 		if (vim == NULL) {
7202 			continue;
7203 		}
7204 
7205 		char mem[32];
7206 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7207 		    mem, vdev_indirect_mapping_size(vim));
7208 
7209 		(void) printf("\tindirect vdev id %llu has %llu segments "
7210 		    "(%s in memory)\n",
7211 		    (longlong_t)vd->vdev_id,
7212 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7213 	}
7214 
7215 	if (dump_opt['b'] >= 2) {
7216 		int l, t, level;
7217 		char csize[32], lsize[32], psize[32], asize[32];
7218 		char avg[32], gang[32];
7219 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7220 		    "\t  avg\t comp\t%%Total\tType\n");
7221 
7222 		zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7223 		    UMEM_NOFAIL);
7224 
7225 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7226 			const char *typename;
7227 
7228 			/* make sure nicenum has enough space */
7229 			_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7230 			    "csize truncated");
7231 			_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7232 			    "lsize truncated");
7233 			_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7234 			    "psize truncated");
7235 			_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7236 			    "asize truncated");
7237 			_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7238 			    "avg truncated");
7239 			_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7240 			    "gang truncated");
7241 
7242 			if (t < DMU_OT_NUMTYPES)
7243 				typename = dmu_ot[t].ot_name;
7244 			else
7245 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7246 
7247 			if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7248 				(void) printf("%6s\t%5s\t%5s\t%5s"
7249 				    "\t%5s\t%5s\t%6s\t%s\n",
7250 				    "-",
7251 				    "-",
7252 				    "-",
7253 				    "-",
7254 				    "-",
7255 				    "-",
7256 				    "-",
7257 				    typename);
7258 				continue;
7259 			}
7260 
7261 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
7262 				level = (l == -1 ? ZB_TOTAL : l);
7263 				zb = &zcb->zcb_type[level][t];
7264 
7265 				if (zb->zb_asize == 0)
7266 					continue;
7267 
7268 				if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7269 				    (level > 0 || DMU_OT_IS_METADATA(t))) {
7270 					mdstats->zb_count += zb->zb_count;
7271 					mdstats->zb_lsize += zb->zb_lsize;
7272 					mdstats->zb_psize += zb->zb_psize;
7273 					mdstats->zb_asize += zb->zb_asize;
7274 					mdstats->zb_gangs += zb->zb_gangs;
7275 				}
7276 
7277 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7278 					continue;
7279 
7280 				if (level == 0 && zb->zb_asize ==
7281 				    zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7282 					continue;
7283 
7284 				zdb_nicenum(zb->zb_count, csize,
7285 				    sizeof (csize));
7286 				zdb_nicenum(zb->zb_lsize, lsize,
7287 				    sizeof (lsize));
7288 				zdb_nicenum(zb->zb_psize, psize,
7289 				    sizeof (psize));
7290 				zdb_nicenum(zb->zb_asize, asize,
7291 				    sizeof (asize));
7292 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7293 				    sizeof (avg));
7294 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7295 
7296 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7297 				    "\t%5.2f\t%6.2f\t",
7298 				    csize, lsize, psize, asize, avg,
7299 				    (double)zb->zb_lsize / zb->zb_psize,
7300 				    100.0 * zb->zb_asize / tzb->zb_asize);
7301 
7302 				if (level == ZB_TOTAL)
7303 					(void) printf("%s\n", typename);
7304 				else
7305 					(void) printf("    L%d %s\n",
7306 					    level, typename);
7307 
7308 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7309 					(void) printf("\t number of ganged "
7310 					    "blocks: %s\n", gang);
7311 				}
7312 
7313 				if (dump_opt['b'] >= 4) {
7314 					(void) printf("psize "
7315 					    "(in 512-byte sectors): "
7316 					    "number of blocks\n");
7317 					dump_histogram(zb->zb_psize_histogram,
7318 					    PSIZE_HISTO_SIZE, 0);
7319 				}
7320 			}
7321 		}
7322 		zdb_nicenum(mdstats->zb_count, csize,
7323 		    sizeof (csize));
7324 		zdb_nicenum(mdstats->zb_lsize, lsize,
7325 		    sizeof (lsize));
7326 		zdb_nicenum(mdstats->zb_psize, psize,
7327 		    sizeof (psize));
7328 		zdb_nicenum(mdstats->zb_asize, asize,
7329 		    sizeof (asize));
7330 		zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7331 		    sizeof (avg));
7332 		zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7333 
7334 		(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7335 		    "\t%5.2f\t%6.2f\t",
7336 		    csize, lsize, psize, asize, avg,
7337 		    (double)mdstats->zb_lsize / mdstats->zb_psize,
7338 		    100.0 * mdstats->zb_asize / tzb->zb_asize);
7339 		(void) printf("%s\n", "Metadata Total");
7340 
7341 		/* Output a table summarizing block sizes in the pool */
7342 		if (dump_opt['b'] >= 2) {
7343 			dump_size_histograms(zcb);
7344 		}
7345 
7346 		umem_free(mdstats, sizeof (zfs_blkstat_t));
7347 	}
7348 
7349 	(void) printf("\n");
7350 
7351 	if (leaks) {
7352 		umem_free(zcb, sizeof (zdb_cb_t));
7353 		return (2);
7354 	}
7355 
7356 	if (zcb->zcb_haderrors) {
7357 		umem_free(zcb, sizeof (zdb_cb_t));
7358 		return (3);
7359 	}
7360 
7361 	umem_free(zcb, sizeof (zdb_cb_t));
7362 	return (0);
7363 }
7364 
7365 typedef struct zdb_ddt_entry {
7366 	/* key must be first for ddt_key_compare */
7367 	ddt_key_t	zdde_key;
7368 	uint64_t	zdde_ref_blocks;
7369 	uint64_t	zdde_ref_lsize;
7370 	uint64_t	zdde_ref_psize;
7371 	uint64_t	zdde_ref_dsize;
7372 	avl_node_t	zdde_node;
7373 } zdb_ddt_entry_t;
7374 
7375 static int
7376 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7377     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7378 {
7379 	(void) zilog, (void) dnp;
7380 	avl_tree_t *t = arg;
7381 	avl_index_t where;
7382 	zdb_ddt_entry_t *zdde, zdde_search;
7383 
7384 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7385 	    BP_IS_EMBEDDED(bp))
7386 		return (0);
7387 
7388 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7389 		(void) printf("traversing objset %llu, %llu objects, "
7390 		    "%lu blocks so far\n",
7391 		    (u_longlong_t)zb->zb_objset,
7392 		    (u_longlong_t)BP_GET_FILL(bp),
7393 		    avl_numnodes(t));
7394 	}
7395 
7396 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7397 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7398 		return (0);
7399 
7400 	ddt_key_fill(&zdde_search.zdde_key, bp);
7401 
7402 	zdde = avl_find(t, &zdde_search, &where);
7403 
7404 	if (zdde == NULL) {
7405 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7406 		zdde->zdde_key = zdde_search.zdde_key;
7407 		avl_insert(t, zdde, where);
7408 	}
7409 
7410 	zdde->zdde_ref_blocks += 1;
7411 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7412 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7413 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7414 
7415 	return (0);
7416 }
7417 
7418 static void
7419 dump_simulated_ddt(spa_t *spa)
7420 {
7421 	avl_tree_t t;
7422 	void *cookie = NULL;
7423 	zdb_ddt_entry_t *zdde;
7424 	ddt_histogram_t ddh_total = {{{0}}};
7425 	ddt_stat_t dds_total = {0};
7426 
7427 	avl_create(&t, ddt_key_compare,
7428 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7429 
7430 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7431 
7432 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7433 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7434 
7435 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7436 
7437 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7438 		uint64_t refcnt = zdde->zdde_ref_blocks;
7439 		ASSERT(refcnt != 0);
7440 
7441 		ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7442 
7443 		dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7444 		dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7445 		dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7446 		dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7447 
7448 		dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7449 		dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7450 		dds->dds_ref_psize += zdde->zdde_ref_psize;
7451 		dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7452 
7453 		umem_free(zdde, sizeof (*zdde));
7454 	}
7455 
7456 	avl_destroy(&t);
7457 
7458 	ddt_histogram_total(&dds_total, &ddh_total);
7459 
7460 	(void) printf("Simulated DDT histogram:\n");
7461 
7462 	zpool_dump_ddt(&dds_total, &ddh_total);
7463 
7464 	dump_dedup_ratio(&dds_total);
7465 }
7466 
7467 static int
7468 verify_device_removal_feature_counts(spa_t *spa)
7469 {
7470 	uint64_t dr_feature_refcount = 0;
7471 	uint64_t oc_feature_refcount = 0;
7472 	uint64_t indirect_vdev_count = 0;
7473 	uint64_t precise_vdev_count = 0;
7474 	uint64_t obsolete_counts_object_count = 0;
7475 	uint64_t obsolete_sm_count = 0;
7476 	uint64_t obsolete_counts_count = 0;
7477 	uint64_t scip_count = 0;
7478 	uint64_t obsolete_bpobj_count = 0;
7479 	int ret = 0;
7480 
7481 	spa_condensing_indirect_phys_t *scip =
7482 	    &spa->spa_condensing_indirect_phys;
7483 	if (scip->scip_next_mapping_object != 0) {
7484 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7485 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7486 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7487 
7488 		(void) printf("Condensing indirect vdev %llu: new mapping "
7489 		    "object %llu, prev obsolete sm %llu\n",
7490 		    (u_longlong_t)scip->scip_vdev,
7491 		    (u_longlong_t)scip->scip_next_mapping_object,
7492 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7493 		if (scip->scip_prev_obsolete_sm_object != 0) {
7494 			space_map_t *prev_obsolete_sm = NULL;
7495 			VERIFY0(space_map_open(&prev_obsolete_sm,
7496 			    spa->spa_meta_objset,
7497 			    scip->scip_prev_obsolete_sm_object,
7498 			    0, vd->vdev_asize, 0));
7499 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7500 			(void) printf("\n");
7501 			space_map_close(prev_obsolete_sm);
7502 		}
7503 
7504 		scip_count += 2;
7505 	}
7506 
7507 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7508 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7509 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7510 
7511 		if (vic->vic_mapping_object != 0) {
7512 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7513 			    vd->vdev_removing);
7514 			indirect_vdev_count++;
7515 
7516 			if (vd->vdev_indirect_mapping->vim_havecounts) {
7517 				obsolete_counts_count++;
7518 			}
7519 		}
7520 
7521 		boolean_t are_precise;
7522 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7523 		if (are_precise) {
7524 			ASSERT(vic->vic_mapping_object != 0);
7525 			precise_vdev_count++;
7526 		}
7527 
7528 		uint64_t obsolete_sm_object;
7529 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7530 		if (obsolete_sm_object != 0) {
7531 			ASSERT(vic->vic_mapping_object != 0);
7532 			obsolete_sm_count++;
7533 		}
7534 	}
7535 
7536 	(void) feature_get_refcount(spa,
7537 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7538 	    &dr_feature_refcount);
7539 	(void) feature_get_refcount(spa,
7540 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7541 	    &oc_feature_refcount);
7542 
7543 	if (dr_feature_refcount != indirect_vdev_count) {
7544 		ret = 1;
7545 		(void) printf("Number of indirect vdevs (%llu) " \
7546 		    "does not match feature count (%llu)\n",
7547 		    (u_longlong_t)indirect_vdev_count,
7548 		    (u_longlong_t)dr_feature_refcount);
7549 	} else {
7550 		(void) printf("Verified device_removal feature refcount " \
7551 		    "of %llu is correct\n",
7552 		    (u_longlong_t)dr_feature_refcount);
7553 	}
7554 
7555 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7556 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7557 		obsolete_bpobj_count++;
7558 	}
7559 
7560 
7561 	obsolete_counts_object_count = precise_vdev_count;
7562 	obsolete_counts_object_count += obsolete_sm_count;
7563 	obsolete_counts_object_count += obsolete_counts_count;
7564 	obsolete_counts_object_count += scip_count;
7565 	obsolete_counts_object_count += obsolete_bpobj_count;
7566 	obsolete_counts_object_count += remap_deadlist_count;
7567 
7568 	if (oc_feature_refcount != obsolete_counts_object_count) {
7569 		ret = 1;
7570 		(void) printf("Number of obsolete counts objects (%llu) " \
7571 		    "does not match feature count (%llu)\n",
7572 		    (u_longlong_t)obsolete_counts_object_count,
7573 		    (u_longlong_t)oc_feature_refcount);
7574 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7575 		    "ob:%llu rd:%llu\n",
7576 		    (u_longlong_t)precise_vdev_count,
7577 		    (u_longlong_t)obsolete_sm_count,
7578 		    (u_longlong_t)obsolete_counts_count,
7579 		    (u_longlong_t)scip_count,
7580 		    (u_longlong_t)obsolete_bpobj_count,
7581 		    (u_longlong_t)remap_deadlist_count);
7582 	} else {
7583 		(void) printf("Verified indirect_refcount feature refcount " \
7584 		    "of %llu is correct\n",
7585 		    (u_longlong_t)oc_feature_refcount);
7586 	}
7587 	return (ret);
7588 }
7589 
7590 static void
7591 zdb_set_skip_mmp(char *target)
7592 {
7593 	spa_t *spa;
7594 
7595 	/*
7596 	 * Disable the activity check to allow examination of
7597 	 * active pools.
7598 	 */
7599 	mutex_enter(&spa_namespace_lock);
7600 	if ((spa = spa_lookup(target)) != NULL) {
7601 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7602 	}
7603 	mutex_exit(&spa_namespace_lock);
7604 }
7605 
7606 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7607 /*
7608  * Import the checkpointed state of the pool specified by the target
7609  * parameter as readonly. The function also accepts a pool config
7610  * as an optional parameter, else it attempts to infer the config by
7611  * the name of the target pool.
7612  *
7613  * Note that the checkpointed state's pool name will be the name of
7614  * the original pool with the above suffix appended to it. In addition,
7615  * if the target is not a pool name (e.g. a path to a dataset) then
7616  * the new_path parameter is populated with the updated path to
7617  * reflect the fact that we are looking into the checkpointed state.
7618  *
7619  * The function returns a newly-allocated copy of the name of the
7620  * pool containing the checkpointed state. When this copy is no
7621  * longer needed it should be freed with free(3C). Same thing
7622  * applies to the new_path parameter if allocated.
7623  */
7624 static char *
7625 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7626 {
7627 	int error = 0;
7628 	char *poolname, *bogus_name = NULL;
7629 	boolean_t freecfg = B_FALSE;
7630 
7631 	/* If the target is not a pool, the extract the pool name */
7632 	char *path_start = strchr(target, '/');
7633 	if (path_start != NULL) {
7634 		size_t poolname_len = path_start - target;
7635 		poolname = strndup(target, poolname_len);
7636 	} else {
7637 		poolname = target;
7638 	}
7639 
7640 	if (cfg == NULL) {
7641 		zdb_set_skip_mmp(poolname);
7642 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7643 		if (error != 0) {
7644 			fatal("Tried to read config of pool \"%s\" but "
7645 			    "spa_get_stats() failed with error %d\n",
7646 			    poolname, error);
7647 		}
7648 		freecfg = B_TRUE;
7649 	}
7650 
7651 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7652 		if (target != poolname)
7653 			free(poolname);
7654 		return (NULL);
7655 	}
7656 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7657 
7658 	error = spa_import(bogus_name, cfg, NULL,
7659 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7660 	    ZFS_IMPORT_SKIP_MMP);
7661 	if (freecfg)
7662 		nvlist_free(cfg);
7663 	if (error != 0) {
7664 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7665 		    "with error %d\n", bogus_name, error);
7666 	}
7667 
7668 	if (new_path != NULL && path_start != NULL) {
7669 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7670 			free(bogus_name);
7671 			if (path_start != NULL)
7672 				free(poolname);
7673 			return (NULL);
7674 		}
7675 	}
7676 
7677 	if (target != poolname)
7678 		free(poolname);
7679 
7680 	return (bogus_name);
7681 }
7682 
7683 typedef struct verify_checkpoint_sm_entry_cb_arg {
7684 	vdev_t *vcsec_vd;
7685 
7686 	/* the following fields are only used for printing progress */
7687 	uint64_t vcsec_entryid;
7688 	uint64_t vcsec_num_entries;
7689 } verify_checkpoint_sm_entry_cb_arg_t;
7690 
7691 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7692 
7693 static int
7694 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7695 {
7696 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7697 	vdev_t *vd = vcsec->vcsec_vd;
7698 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7699 	uint64_t end = sme->sme_offset + sme->sme_run;
7700 
7701 	ASSERT(sme->sme_type == SM_FREE);
7702 
7703 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7704 		(void) fprintf(stderr,
7705 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7706 		    (longlong_t)vd->vdev_id,
7707 		    (longlong_t)vcsec->vcsec_entryid,
7708 		    (longlong_t)vcsec->vcsec_num_entries);
7709 	}
7710 	vcsec->vcsec_entryid++;
7711 
7712 	/*
7713 	 * See comment in checkpoint_sm_exclude_entry_cb()
7714 	 */
7715 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7716 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7717 
7718 	/*
7719 	 * The entries in the vdev_checkpoint_sm should be marked as
7720 	 * allocated in the checkpointed state of the pool, therefore
7721 	 * their respective ms_allocateable trees should not contain them.
7722 	 */
7723 	mutex_enter(&ms->ms_lock);
7724 	range_tree_verify_not_present(ms->ms_allocatable,
7725 	    sme->sme_offset, sme->sme_run);
7726 	mutex_exit(&ms->ms_lock);
7727 
7728 	return (0);
7729 }
7730 
7731 /*
7732  * Verify that all segments in the vdev_checkpoint_sm are allocated
7733  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7734  * ms_allocatable).
7735  *
7736  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7737  * each vdev in the current state of the pool to the metaslab space maps
7738  * (ms_sm) of the checkpointed state of the pool.
7739  *
7740  * Note that the function changes the state of the ms_allocatable
7741  * trees of the current spa_t. The entries of these ms_allocatable
7742  * trees are cleared out and then repopulated from with the free
7743  * entries of their respective ms_sm space maps.
7744  */
7745 static void
7746 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7747 {
7748 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7749 	vdev_t *current_rvd = current->spa_root_vdev;
7750 
7751 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7752 
7753 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7754 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7755 		vdev_t *current_vd = current_rvd->vdev_child[c];
7756 
7757 		space_map_t *checkpoint_sm = NULL;
7758 		uint64_t checkpoint_sm_obj;
7759 
7760 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7761 			/*
7762 			 * Since we don't allow device removal in a pool
7763 			 * that has a checkpoint, we expect that all removed
7764 			 * vdevs were removed from the pool before the
7765 			 * checkpoint.
7766 			 */
7767 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7768 			continue;
7769 		}
7770 
7771 		/*
7772 		 * If the checkpoint space map doesn't exist, then nothing
7773 		 * here is checkpointed so there's nothing to verify.
7774 		 */
7775 		if (current_vd->vdev_top_zap == 0 ||
7776 		    zap_contains(spa_meta_objset(current),
7777 		    current_vd->vdev_top_zap,
7778 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7779 			continue;
7780 
7781 		VERIFY0(zap_lookup(spa_meta_objset(current),
7782 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7783 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7784 
7785 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7786 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7787 		    current_vd->vdev_ashift));
7788 
7789 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7790 		vcsec.vcsec_vd = ckpoint_vd;
7791 		vcsec.vcsec_entryid = 0;
7792 		vcsec.vcsec_num_entries =
7793 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7794 		VERIFY0(space_map_iterate(checkpoint_sm,
7795 		    space_map_length(checkpoint_sm),
7796 		    verify_checkpoint_sm_entry_cb, &vcsec));
7797 		if (dump_opt['m'] > 3)
7798 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7799 		space_map_close(checkpoint_sm);
7800 	}
7801 
7802 	/*
7803 	 * If we've added vdevs since we took the checkpoint, ensure
7804 	 * that their checkpoint space maps are empty.
7805 	 */
7806 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7807 		for (uint64_t c = ckpoint_rvd->vdev_children;
7808 		    c < current_rvd->vdev_children; c++) {
7809 			vdev_t *current_vd = current_rvd->vdev_child[c];
7810 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7811 		}
7812 	}
7813 
7814 	/* for cleaner progress output */
7815 	(void) fprintf(stderr, "\n");
7816 }
7817 
7818 /*
7819  * Verifies that all space that's allocated in the checkpoint is
7820  * still allocated in the current version, by checking that everything
7821  * in checkpoint's ms_allocatable (which is actually allocated, not
7822  * allocatable/free) is not present in current's ms_allocatable.
7823  *
7824  * Note that the function changes the state of the ms_allocatable
7825  * trees of both spas when called. The entries of all ms_allocatable
7826  * trees are cleared out and then repopulated from their respective
7827  * ms_sm space maps. In the checkpointed state we load the allocated
7828  * entries, and in the current state we load the free entries.
7829  */
7830 static void
7831 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7832 {
7833 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7834 	vdev_t *current_rvd = current->spa_root_vdev;
7835 
7836 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7837 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7838 
7839 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7840 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7841 		vdev_t *current_vd = current_rvd->vdev_child[i];
7842 
7843 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7844 			/*
7845 			 * See comment in verify_checkpoint_vdev_spacemaps()
7846 			 */
7847 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7848 			continue;
7849 		}
7850 
7851 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7852 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7853 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7854 
7855 			(void) fprintf(stderr,
7856 			    "\rverifying vdev %llu of %llu, "
7857 			    "metaslab %llu of %llu ...",
7858 			    (longlong_t)current_vd->vdev_id,
7859 			    (longlong_t)current_rvd->vdev_children,
7860 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7861 			    (longlong_t)current_vd->vdev_ms_count);
7862 
7863 			/*
7864 			 * We walk through the ms_allocatable trees that
7865 			 * are loaded with the allocated blocks from the
7866 			 * ms_sm spacemaps of the checkpoint. For each
7867 			 * one of these ranges we ensure that none of them
7868 			 * exists in the ms_allocatable trees of the
7869 			 * current state which are loaded with the ranges
7870 			 * that are currently free.
7871 			 *
7872 			 * This way we ensure that none of the blocks that
7873 			 * are part of the checkpoint were freed by mistake.
7874 			 */
7875 			range_tree_walk(ckpoint_msp->ms_allocatable,
7876 			    (range_tree_func_t *)range_tree_verify_not_present,
7877 			    current_msp->ms_allocatable);
7878 		}
7879 	}
7880 
7881 	/* for cleaner progress output */
7882 	(void) fprintf(stderr, "\n");
7883 }
7884 
7885 static void
7886 verify_checkpoint_blocks(spa_t *spa)
7887 {
7888 	ASSERT(!dump_opt['L']);
7889 
7890 	spa_t *checkpoint_spa;
7891 	char *checkpoint_pool;
7892 	int error = 0;
7893 
7894 	/*
7895 	 * We import the checkpointed state of the pool (under a different
7896 	 * name) so we can do verification on it against the current state
7897 	 * of the pool.
7898 	 */
7899 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7900 	    NULL);
7901 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7902 
7903 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7904 	if (error != 0) {
7905 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7906 		    "error %d\n", checkpoint_pool, error);
7907 	}
7908 
7909 	/*
7910 	 * Ensure that ranges in the checkpoint space maps of each vdev
7911 	 * are allocated according to the checkpointed state's metaslab
7912 	 * space maps.
7913 	 */
7914 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7915 
7916 	/*
7917 	 * Ensure that allocated ranges in the checkpoint's metaslab
7918 	 * space maps remain allocated in the metaslab space maps of
7919 	 * the current state.
7920 	 */
7921 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7922 
7923 	/*
7924 	 * Once we are done, we get rid of the checkpointed state.
7925 	 */
7926 	spa_close(checkpoint_spa, FTAG);
7927 	free(checkpoint_pool);
7928 }
7929 
7930 static void
7931 dump_leftover_checkpoint_blocks(spa_t *spa)
7932 {
7933 	vdev_t *rvd = spa->spa_root_vdev;
7934 
7935 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7936 		vdev_t *vd = rvd->vdev_child[i];
7937 
7938 		space_map_t *checkpoint_sm = NULL;
7939 		uint64_t checkpoint_sm_obj;
7940 
7941 		if (vd->vdev_top_zap == 0)
7942 			continue;
7943 
7944 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7945 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7946 			continue;
7947 
7948 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7949 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7950 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7951 
7952 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7953 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7954 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7955 		space_map_close(checkpoint_sm);
7956 	}
7957 }
7958 
7959 static int
7960 verify_checkpoint(spa_t *spa)
7961 {
7962 	uberblock_t checkpoint;
7963 	int error;
7964 
7965 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7966 		return (0);
7967 
7968 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7969 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7970 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7971 
7972 	if (error == ENOENT && !dump_opt['L']) {
7973 		/*
7974 		 * If the feature is active but the uberblock is missing
7975 		 * then we must be in the middle of discarding the
7976 		 * checkpoint.
7977 		 */
7978 		(void) printf("\nPartially discarded checkpoint "
7979 		    "state found:\n");
7980 		if (dump_opt['m'] > 3)
7981 			dump_leftover_checkpoint_blocks(spa);
7982 		return (0);
7983 	} else if (error != 0) {
7984 		(void) printf("lookup error %d when looking for "
7985 		    "checkpointed uberblock in MOS\n", error);
7986 		return (error);
7987 	}
7988 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7989 
7990 	if (checkpoint.ub_checkpoint_txg == 0) {
7991 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
7992 		    "uberblock\n");
7993 		error = 3;
7994 	}
7995 
7996 	if (error == 0 && !dump_opt['L'])
7997 		verify_checkpoint_blocks(spa);
7998 
7999 	return (error);
8000 }
8001 
8002 static void
8003 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8004 {
8005 	(void) arg;
8006 	for (uint64_t i = start; i < size; i++) {
8007 		(void) printf("MOS object %llu referenced but not allocated\n",
8008 		    (u_longlong_t)i);
8009 	}
8010 }
8011 
8012 static void
8013 mos_obj_refd(uint64_t obj)
8014 {
8015 	if (obj != 0 && mos_refd_objs != NULL)
8016 		range_tree_add(mos_refd_objs, obj, 1);
8017 }
8018 
8019 /*
8020  * Call on a MOS object that may already have been referenced.
8021  */
8022 static void
8023 mos_obj_refd_multiple(uint64_t obj)
8024 {
8025 	if (obj != 0 && mos_refd_objs != NULL &&
8026 	    !range_tree_contains(mos_refd_objs, obj, 1))
8027 		range_tree_add(mos_refd_objs, obj, 1);
8028 }
8029 
8030 static void
8031 mos_leak_vdev_top_zap(vdev_t *vd)
8032 {
8033 	uint64_t ms_flush_data_obj;
8034 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8035 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8036 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8037 	if (error == ENOENT)
8038 		return;
8039 	ASSERT0(error);
8040 
8041 	mos_obj_refd(ms_flush_data_obj);
8042 }
8043 
8044 static void
8045 mos_leak_vdev(vdev_t *vd)
8046 {
8047 	mos_obj_refd(vd->vdev_dtl_object);
8048 	mos_obj_refd(vd->vdev_ms_array);
8049 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8050 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8051 	mos_obj_refd(vd->vdev_leaf_zap);
8052 	if (vd->vdev_checkpoint_sm != NULL)
8053 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8054 	if (vd->vdev_indirect_mapping != NULL) {
8055 		mos_obj_refd(vd->vdev_indirect_mapping->
8056 		    vim_phys->vimp_counts_object);
8057 	}
8058 	if (vd->vdev_obsolete_sm != NULL)
8059 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8060 
8061 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8062 		metaslab_t *ms = vd->vdev_ms[m];
8063 		mos_obj_refd(space_map_object(ms->ms_sm));
8064 	}
8065 
8066 	if (vd->vdev_root_zap != 0)
8067 		mos_obj_refd(vd->vdev_root_zap);
8068 
8069 	if (vd->vdev_top_zap != 0) {
8070 		mos_obj_refd(vd->vdev_top_zap);
8071 		mos_leak_vdev_top_zap(vd);
8072 	}
8073 
8074 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
8075 		mos_leak_vdev(vd->vdev_child[c]);
8076 	}
8077 }
8078 
8079 static void
8080 mos_leak_log_spacemaps(spa_t *spa)
8081 {
8082 	uint64_t spacemap_zap;
8083 	int error = zap_lookup(spa_meta_objset(spa),
8084 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8085 	    sizeof (spacemap_zap), 1, &spacemap_zap);
8086 	if (error == ENOENT)
8087 		return;
8088 	ASSERT0(error);
8089 
8090 	mos_obj_refd(spacemap_zap);
8091 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8092 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8093 		mos_obj_refd(sls->sls_sm_obj);
8094 }
8095 
8096 static void
8097 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8098 {
8099 	zap_cursor_t zc;
8100 	zap_attribute_t *za = zap_attribute_alloc();
8101 	for (zap_cursor_init(&zc, mos, errlog);
8102 	    zap_cursor_retrieve(&zc, za) == 0;
8103 	    zap_cursor_advance(&zc)) {
8104 		mos_obj_refd(za->za_first_integer);
8105 	}
8106 	zap_cursor_fini(&zc);
8107 	zap_attribute_free(za);
8108 }
8109 
8110 static int
8111 dump_mos_leaks(spa_t *spa)
8112 {
8113 	int rv = 0;
8114 	objset_t *mos = spa->spa_meta_objset;
8115 	dsl_pool_t *dp = spa->spa_dsl_pool;
8116 
8117 	/* Visit and mark all referenced objects in the MOS */
8118 
8119 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8120 	mos_obj_refd(spa->spa_pool_props_object);
8121 	mos_obj_refd(spa->spa_config_object);
8122 	mos_obj_refd(spa->spa_ddt_stat_object);
8123 	mos_obj_refd(spa->spa_feat_desc_obj);
8124 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8125 	mos_obj_refd(spa->spa_feat_for_read_obj);
8126 	mos_obj_refd(spa->spa_feat_for_write_obj);
8127 	mos_obj_refd(spa->spa_history);
8128 	mos_obj_refd(spa->spa_errlog_last);
8129 	mos_obj_refd(spa->spa_errlog_scrub);
8130 
8131 	if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8132 		errorlog_count_refd(mos, spa->spa_errlog_last);
8133 		errorlog_count_refd(mos, spa->spa_errlog_scrub);
8134 	}
8135 
8136 	mos_obj_refd(spa->spa_all_vdev_zaps);
8137 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8138 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8139 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8140 	bpobj_count_refd(&spa->spa_deferred_bpobj);
8141 	mos_obj_refd(dp->dp_empty_bpobj);
8142 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
8143 	bpobj_count_refd(&dp->dp_free_bpobj);
8144 	mos_obj_refd(spa->spa_l2cache.sav_object);
8145 	mos_obj_refd(spa->spa_spares.sav_object);
8146 
8147 	if (spa->spa_syncing_log_sm != NULL)
8148 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8149 	mos_leak_log_spacemaps(spa);
8150 
8151 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8152 	    scip_next_mapping_object);
8153 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8154 	    scip_prev_obsolete_sm_object);
8155 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8156 		vdev_indirect_mapping_t *vim =
8157 		    vdev_indirect_mapping_open(mos,
8158 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8159 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
8160 		vdev_indirect_mapping_close(vim);
8161 	}
8162 	deleted_livelists_dump_mos(spa);
8163 
8164 	if (dp->dp_origin_snap != NULL) {
8165 		dsl_dataset_t *ds;
8166 
8167 		dsl_pool_config_enter(dp, FTAG);
8168 		VERIFY0(dsl_dataset_hold_obj(dp,
8169 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8170 		    FTAG, &ds));
8171 		count_ds_mos_objects(ds);
8172 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8173 		dsl_dataset_rele(ds, FTAG);
8174 		dsl_pool_config_exit(dp, FTAG);
8175 
8176 		count_ds_mos_objects(dp->dp_origin_snap);
8177 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8178 	}
8179 	count_dir_mos_objects(dp->dp_mos_dir);
8180 	if (dp->dp_free_dir != NULL)
8181 		count_dir_mos_objects(dp->dp_free_dir);
8182 	if (dp->dp_leak_dir != NULL)
8183 		count_dir_mos_objects(dp->dp_leak_dir);
8184 
8185 	mos_leak_vdev(spa->spa_root_vdev);
8186 
8187 	for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8188 		ddt_t *ddt = spa->spa_ddt[c];
8189 		if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8190 			continue;
8191 
8192 		/* DDT store objects */
8193 		for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8194 			for (ddt_class_t class = 0; class < DDT_CLASSES;
8195 			    class++) {
8196 				mos_obj_refd(ddt->ddt_object[type][class]);
8197 			}
8198 		}
8199 
8200 		/* FDT container */
8201 		if (ddt->ddt_version == DDT_VERSION_FDT)
8202 			mos_obj_refd(ddt->ddt_dir_object);
8203 
8204 		/* FDT log objects */
8205 		if (ddt->ddt_flags & DDT_FLAG_LOG) {
8206 			mos_obj_refd(ddt->ddt_log[0].ddl_object);
8207 			mos_obj_refd(ddt->ddt_log[1].ddl_object);
8208 		}
8209 	}
8210 
8211 	if (spa->spa_brt != NULL) {
8212 		brt_t *brt = spa->spa_brt;
8213 		for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
8214 			brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
8215 			if (brtvd != NULL && brtvd->bv_initiated) {
8216 				mos_obj_refd(brtvd->bv_mos_brtvdev);
8217 				mos_obj_refd(brtvd->bv_mos_entries);
8218 			}
8219 		}
8220 	}
8221 
8222 	/*
8223 	 * Visit all allocated objects and make sure they are referenced.
8224 	 */
8225 	uint64_t object = 0;
8226 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8227 		if (range_tree_contains(mos_refd_objs, object, 1)) {
8228 			range_tree_remove(mos_refd_objs, object, 1);
8229 		} else {
8230 			dmu_object_info_t doi;
8231 			const char *name;
8232 			VERIFY0(dmu_object_info(mos, object, &doi));
8233 			if (doi.doi_type & DMU_OT_NEWTYPE) {
8234 				dmu_object_byteswap_t bswap =
8235 				    DMU_OT_BYTESWAP(doi.doi_type);
8236 				name = dmu_ot_byteswap[bswap].ob_name;
8237 			} else {
8238 				name = dmu_ot[doi.doi_type].ot_name;
8239 			}
8240 
8241 			(void) printf("MOS object %llu (%s) leaked\n",
8242 			    (u_longlong_t)object, name);
8243 			rv = 2;
8244 		}
8245 	}
8246 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8247 	if (!range_tree_is_empty(mos_refd_objs))
8248 		rv = 2;
8249 	range_tree_vacate(mos_refd_objs, NULL, NULL);
8250 	range_tree_destroy(mos_refd_objs);
8251 	return (rv);
8252 }
8253 
8254 typedef struct log_sm_obsolete_stats_arg {
8255 	uint64_t lsos_current_txg;
8256 
8257 	uint64_t lsos_total_entries;
8258 	uint64_t lsos_valid_entries;
8259 
8260 	uint64_t lsos_sm_entries;
8261 	uint64_t lsos_valid_sm_entries;
8262 } log_sm_obsolete_stats_arg_t;
8263 
8264 static int
8265 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8266     uint64_t txg, void *arg)
8267 {
8268 	log_sm_obsolete_stats_arg_t *lsos = arg;
8269 
8270 	uint64_t offset = sme->sme_offset;
8271 	uint64_t vdev_id = sme->sme_vdev;
8272 
8273 	if (lsos->lsos_current_txg == 0) {
8274 		/* this is the first log */
8275 		lsos->lsos_current_txg = txg;
8276 	} else if (lsos->lsos_current_txg < txg) {
8277 		/* we just changed log - print stats and reset */
8278 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8279 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
8280 		    (u_longlong_t)lsos->lsos_sm_entries,
8281 		    (u_longlong_t)lsos->lsos_current_txg);
8282 		lsos->lsos_valid_sm_entries = 0;
8283 		lsos->lsos_sm_entries = 0;
8284 		lsos->lsos_current_txg = txg;
8285 	}
8286 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
8287 
8288 	lsos->lsos_sm_entries++;
8289 	lsos->lsos_total_entries++;
8290 
8291 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8292 	if (!vdev_is_concrete(vd))
8293 		return (0);
8294 
8295 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8296 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8297 
8298 	if (txg < metaslab_unflushed_txg(ms))
8299 		return (0);
8300 	lsos->lsos_valid_sm_entries++;
8301 	lsos->lsos_valid_entries++;
8302 	return (0);
8303 }
8304 
8305 static void
8306 dump_log_spacemap_obsolete_stats(spa_t *spa)
8307 {
8308 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8309 		return;
8310 
8311 	log_sm_obsolete_stats_arg_t lsos = {0};
8312 
8313 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
8314 
8315 	iterate_through_spacemap_logs(spa,
8316 	    log_spacemap_obsolete_stats_cb, &lsos);
8317 
8318 	/* print stats for latest log */
8319 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8320 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
8321 	    (u_longlong_t)lsos.lsos_sm_entries,
8322 	    (u_longlong_t)lsos.lsos_current_txg);
8323 
8324 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8325 	    (u_longlong_t)lsos.lsos_valid_entries,
8326 	    (u_longlong_t)lsos.lsos_total_entries);
8327 }
8328 
8329 static void
8330 dump_zpool(spa_t *spa)
8331 {
8332 	dsl_pool_t *dp = spa_get_dsl(spa);
8333 	int rc = 0;
8334 
8335 	if (dump_opt['y']) {
8336 		livelist_metaslab_validate(spa);
8337 	}
8338 
8339 	if (dump_opt['S']) {
8340 		dump_simulated_ddt(spa);
8341 		return;
8342 	}
8343 
8344 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
8345 		(void) printf("\nCached configuration:\n");
8346 		dump_nvlist(spa->spa_config, 8);
8347 	}
8348 
8349 	if (dump_opt['C'])
8350 		dump_config(spa);
8351 
8352 	if (dump_opt['u'])
8353 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8354 
8355 	if (dump_opt['D'])
8356 		dump_all_ddts(spa);
8357 
8358 	if (dump_opt['T'])
8359 		dump_brt(spa);
8360 
8361 	if (dump_opt['d'] > 2 || dump_opt['m'])
8362 		dump_metaslabs(spa);
8363 	if (dump_opt['M'])
8364 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
8365 	if (dump_opt['d'] > 2 || dump_opt['m']) {
8366 		dump_log_spacemaps(spa);
8367 		dump_log_spacemap_obsolete_stats(spa);
8368 	}
8369 
8370 	if (dump_opt['d'] || dump_opt['i']) {
8371 		spa_feature_t f;
8372 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8373 		    0);
8374 		dump_objset(dp->dp_meta_objset);
8375 
8376 		if (dump_opt['d'] >= 3) {
8377 			dsl_pool_t *dp = spa->spa_dsl_pool;
8378 			dump_full_bpobj(&spa->spa_deferred_bpobj,
8379 			    "Deferred frees", 0);
8380 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8381 				dump_full_bpobj(&dp->dp_free_bpobj,
8382 				    "Pool snapshot frees", 0);
8383 			}
8384 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8385 				ASSERT(spa_feature_is_enabled(spa,
8386 				    SPA_FEATURE_DEVICE_REMOVAL));
8387 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
8388 				    "Pool obsolete blocks", 0);
8389 			}
8390 
8391 			if (spa_feature_is_active(spa,
8392 			    SPA_FEATURE_ASYNC_DESTROY)) {
8393 				dump_bptree(spa->spa_meta_objset,
8394 				    dp->dp_bptree_obj,
8395 				    "Pool dataset frees");
8396 			}
8397 			dump_dtl(spa->spa_root_vdev, 0);
8398 		}
8399 
8400 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8401 			global_feature_count[f] = UINT64_MAX;
8402 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8403 		global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8404 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8405 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8406 
8407 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
8408 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8409 
8410 		if (rc == 0 && !dump_opt['L'])
8411 			rc = dump_mos_leaks(spa);
8412 
8413 		for (f = 0; f < SPA_FEATURES; f++) {
8414 			uint64_t refcount;
8415 
8416 			uint64_t *arr;
8417 			if (!(spa_feature_table[f].fi_flags &
8418 			    ZFEATURE_FLAG_PER_DATASET)) {
8419 				if (global_feature_count[f] == UINT64_MAX)
8420 					continue;
8421 				if (!spa_feature_is_enabled(spa, f)) {
8422 					ASSERT0(global_feature_count[f]);
8423 					continue;
8424 				}
8425 				arr = global_feature_count;
8426 			} else {
8427 				if (!spa_feature_is_enabled(spa, f)) {
8428 					ASSERT0(dataset_feature_count[f]);
8429 					continue;
8430 				}
8431 				arr = dataset_feature_count;
8432 			}
8433 			if (feature_get_refcount(spa, &spa_feature_table[f],
8434 			    &refcount) == ENOTSUP)
8435 				continue;
8436 			if (arr[f] != refcount) {
8437 				(void) printf("%s feature refcount mismatch: "
8438 				    "%lld consumers != %lld refcount\n",
8439 				    spa_feature_table[f].fi_uname,
8440 				    (longlong_t)arr[f], (longlong_t)refcount);
8441 				rc = 2;
8442 			} else {
8443 				(void) printf("Verified %s feature refcount "
8444 				    "of %llu is correct\n",
8445 				    spa_feature_table[f].fi_uname,
8446 				    (longlong_t)refcount);
8447 			}
8448 		}
8449 
8450 		if (rc == 0)
8451 			rc = verify_device_removal_feature_counts(spa);
8452 	}
8453 
8454 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8455 		rc = dump_block_stats(spa);
8456 
8457 	if (rc == 0)
8458 		rc = verify_spacemap_refcounts(spa);
8459 
8460 	if (dump_opt['s'])
8461 		show_pool_stats(spa);
8462 
8463 	if (dump_opt['h'])
8464 		dump_history(spa);
8465 
8466 	if (rc == 0)
8467 		rc = verify_checkpoint(spa);
8468 
8469 	if (rc != 0) {
8470 		dump_debug_buffer();
8471 		zdb_exit(rc);
8472 	}
8473 }
8474 
8475 #define	ZDB_FLAG_CHECKSUM	0x0001
8476 #define	ZDB_FLAG_DECOMPRESS	0x0002
8477 #define	ZDB_FLAG_BSWAP		0x0004
8478 #define	ZDB_FLAG_GBH		0x0008
8479 #define	ZDB_FLAG_INDIRECT	0x0010
8480 #define	ZDB_FLAG_RAW		0x0020
8481 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
8482 #define	ZDB_FLAG_VERBOSE	0x0080
8483 
8484 static int flagbits[256];
8485 static char flagbitstr[16];
8486 
8487 static void
8488 zdb_print_blkptr(const blkptr_t *bp, int flags)
8489 {
8490 	char blkbuf[BP_SPRINTF_LEN];
8491 
8492 	if (flags & ZDB_FLAG_BSWAP)
8493 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8494 
8495 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8496 	(void) printf("%s\n", blkbuf);
8497 }
8498 
8499 static void
8500 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8501 {
8502 	int i;
8503 
8504 	for (i = 0; i < nbps; i++)
8505 		zdb_print_blkptr(&bp[i], flags);
8506 }
8507 
8508 static void
8509 zdb_dump_gbh(void *buf, int flags)
8510 {
8511 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8512 }
8513 
8514 static void
8515 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8516 {
8517 	if (flags & ZDB_FLAG_BSWAP)
8518 		byteswap_uint64_array(buf, size);
8519 	VERIFY(write(fileno(stdout), buf, size) == size);
8520 }
8521 
8522 static void
8523 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8524 {
8525 	uint64_t *d = (uint64_t *)buf;
8526 	unsigned nwords = size / sizeof (uint64_t);
8527 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8528 	unsigned i, j;
8529 	const char *hdr;
8530 	char *c;
8531 
8532 
8533 	if (do_bswap)
8534 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
8535 	else
8536 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
8537 
8538 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
8539 
8540 #ifdef _ZFS_LITTLE_ENDIAN
8541 	/* correct the endianness */
8542 	do_bswap = !do_bswap;
8543 #endif
8544 	for (i = 0; i < nwords; i += 2) {
8545 		(void) printf("%06llx:  %016llx  %016llx  ",
8546 		    (u_longlong_t)(i * sizeof (uint64_t)),
8547 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8548 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8549 
8550 		c = (char *)&d[i];
8551 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
8552 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
8553 		(void) printf("\n");
8554 	}
8555 }
8556 
8557 /*
8558  * There are two acceptable formats:
8559  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
8560  *	child[.child]*    - For example: 0.1.1
8561  *
8562  * The second form can be used to specify arbitrary vdevs anywhere
8563  * in the hierarchy.  For example, in a pool with a mirror of
8564  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8565  */
8566 static vdev_t *
8567 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8568 {
8569 	char *s, *p, *q;
8570 	unsigned i;
8571 
8572 	if (vdev == NULL)
8573 		return (NULL);
8574 
8575 	/* First, assume the x.x.x.x format */
8576 	i = strtoul(path, &s, 10);
8577 	if (s == path || (s && *s != '.' && *s != '\0'))
8578 		goto name;
8579 	if (i >= vdev->vdev_children)
8580 		return (NULL);
8581 
8582 	vdev = vdev->vdev_child[i];
8583 	if (s && *s == '\0')
8584 		return (vdev);
8585 	return (zdb_vdev_lookup(vdev, s+1));
8586 
8587 name:
8588 	for (i = 0; i < vdev->vdev_children; i++) {
8589 		vdev_t *vc = vdev->vdev_child[i];
8590 
8591 		if (vc->vdev_path == NULL) {
8592 			vc = zdb_vdev_lookup(vc, path);
8593 			if (vc == NULL)
8594 				continue;
8595 			else
8596 				return (vc);
8597 		}
8598 
8599 		p = strrchr(vc->vdev_path, '/');
8600 		p = p ? p + 1 : vc->vdev_path;
8601 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8602 
8603 		if (strcmp(vc->vdev_path, path) == 0)
8604 			return (vc);
8605 		if (strcmp(p, path) == 0)
8606 			return (vc);
8607 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8608 			return (vc);
8609 	}
8610 
8611 	return (NULL);
8612 }
8613 
8614 static int
8615 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8616 {
8617 	dsl_dataset_t *ds;
8618 
8619 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8620 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8621 	    NULL, &ds);
8622 	if (error != 0) {
8623 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8624 		    (u_longlong_t)objset_id, strerror(error));
8625 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8626 		return (error);
8627 	}
8628 	dsl_dataset_name(ds, outstr);
8629 	dsl_dataset_rele(ds, NULL);
8630 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8631 	return (0);
8632 }
8633 
8634 static boolean_t
8635 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8636 {
8637 	char *s0, *s1, *tmp = NULL;
8638 
8639 	if (sizes == NULL)
8640 		return (B_FALSE);
8641 
8642 	s0 = strtok_r(sizes, "/", &tmp);
8643 	if (s0 == NULL)
8644 		return (B_FALSE);
8645 	s1 = strtok_r(NULL, "/", &tmp);
8646 	*lsize = strtoull(s0, NULL, 16);
8647 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8648 	return (*lsize >= *psize && *psize > 0);
8649 }
8650 
8651 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
8652 
8653 static boolean_t
8654 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8655     int flags, int cfunc, void *lbuf, void *lbuf2)
8656 {
8657 	if (flags & ZDB_FLAG_VERBOSE) {
8658 		(void) fprintf(stderr,
8659 		    "Trying %05llx -> %05llx (%s)\n",
8660 		    (u_longlong_t)psize,
8661 		    (u_longlong_t)lsize,
8662 		    zio_compress_table[cfunc].ci_name);
8663 	}
8664 
8665 	/*
8666 	 * We set lbuf to all zeros and lbuf2 to all
8667 	 * ones, then decompress to both buffers and
8668 	 * compare their contents. This way we can
8669 	 * know if decompression filled exactly to
8670 	 * lsize or if it left some bytes unwritten.
8671 	 */
8672 
8673 	memset(lbuf, 0x00, lsize);
8674 	memset(lbuf2, 0xff, lsize);
8675 
8676 	abd_t labd, labd2;
8677 	abd_get_from_buf_struct(&labd, lbuf, lsize);
8678 	abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8679 
8680 	boolean_t ret = B_FALSE;
8681 	if (zio_decompress_data(cfunc, pabd,
8682 	    &labd, psize, lsize, NULL) == 0 &&
8683 	    zio_decompress_data(cfunc, pabd,
8684 	    &labd2, psize, lsize, NULL) == 0 &&
8685 	    memcmp(lbuf, lbuf2, lsize) == 0)
8686 		ret = B_TRUE;
8687 
8688 	abd_free(&labd2);
8689 	abd_free(&labd);
8690 
8691 	return (ret);
8692 }
8693 
8694 static uint64_t
8695 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8696     uint64_t psize, int flags)
8697 {
8698 	(void) buf;
8699 	uint64_t orig_lsize = lsize;
8700 	boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8701 	boolean_t found = B_FALSE;
8702 	/*
8703 	 * We don't know how the data was compressed, so just try
8704 	 * every decompress function at every inflated blocksize.
8705 	 */
8706 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8707 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8708 	int *cfuncp = cfuncs;
8709 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8710 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8711 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8712 	    ZIO_COMPRESS_MASK(ZLE);
8713 	*cfuncp++ = ZIO_COMPRESS_LZ4;
8714 	*cfuncp++ = ZIO_COMPRESS_LZJB;
8715 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8716 	/*
8717 	 * Every gzip level has the same decompressor, no need to
8718 	 * run it 9 times per bruteforce attempt.
8719 	 */
8720 	mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8721 	mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8722 	mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8723 	mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8724 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8725 		if (((1ULL << c) & mask) == 0)
8726 			*cfuncp++ = c;
8727 
8728 	/*
8729 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8730 	 * could take a while and we should let the user know
8731 	 * we are not stuck.  On the other hand, printing progress
8732 	 * info gets old after a while.  User can specify 'v' flag
8733 	 * to see the progression.
8734 	 */
8735 	if (lsize == psize)
8736 		lsize += SPA_MINBLOCKSIZE;
8737 	else
8738 		maxlsize = lsize;
8739 
8740 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8741 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8742 			if (try_decompress_block(pabd, lsize, psize, flags,
8743 			    *cfuncp, lbuf, lbuf2)) {
8744 				found = B_TRUE;
8745 				break;
8746 			}
8747 		}
8748 		if (*cfuncp != 0)
8749 			break;
8750 	}
8751 	if (!found && tryzle) {
8752 		for (lsize = orig_lsize; lsize <= maxlsize;
8753 		    lsize += SPA_MINBLOCKSIZE) {
8754 			if (try_decompress_block(pabd, lsize, psize, flags,
8755 			    ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8756 				*cfuncp = ZIO_COMPRESS_ZLE;
8757 				found = B_TRUE;
8758 				break;
8759 			}
8760 		}
8761 	}
8762 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8763 
8764 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8765 		printf("\nZLE decompression was selected. If you "
8766 		    "suspect the results are wrong,\ntry avoiding ZLE "
8767 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8768 	}
8769 
8770 	return (lsize > maxlsize ? -1 : lsize);
8771 }
8772 
8773 /*
8774  * Read a block from a pool and print it out.  The syntax of the
8775  * block descriptor is:
8776  *
8777  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8778  *
8779  *	pool           - The name of the pool you wish to read from
8780  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8781  *	offset         - offset, in hex, in bytes
8782  *	size           - Amount of data to read, in hex, in bytes
8783  *	flags          - A string of characters specifying options
8784  *		 b: Decode a blkptr at given offset within block
8785  *		 c: Calculate and display checksums
8786  *		 d: Decompress data before dumping
8787  *		 e: Byteswap data before dumping
8788  *		 g: Display data as a gang block header
8789  *		 i: Display as an indirect block
8790  *		 r: Dump raw data to stdout
8791  *		 v: Verbose
8792  *
8793  */
8794 static void
8795 zdb_read_block(char *thing, spa_t *spa)
8796 {
8797 	blkptr_t blk, *bp = &blk;
8798 	dva_t *dva = bp->blk_dva;
8799 	int flags = 0;
8800 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8801 	zio_t *zio;
8802 	vdev_t *vd;
8803 	abd_t *pabd;
8804 	void *lbuf, *buf;
8805 	char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8806 	const char *vdev, *errmsg = NULL;
8807 	int i, len, error;
8808 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8809 
8810 	dup = strdup(thing);
8811 	s = strtok_r(dup, ":", &tmp);
8812 	vdev = s ?: "";
8813 	s = strtok_r(NULL, ":", &tmp);
8814 	offset = strtoull(s ? s : "", NULL, 16);
8815 	sizes = strtok_r(NULL, ":", &tmp);
8816 	s = strtok_r(NULL, ":", &tmp);
8817 	flagstr = strdup(s ?: "");
8818 
8819 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8820 		errmsg = "invalid size(s)";
8821 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8822 		errmsg = "size must be a multiple of sector size";
8823 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8824 		errmsg = "offset must be a multiple of sector size";
8825 	if (errmsg) {
8826 		(void) printf("Invalid block specifier: %s  - %s\n",
8827 		    thing, errmsg);
8828 		goto done;
8829 	}
8830 
8831 	tmp = NULL;
8832 	for (s = strtok_r(flagstr, ":", &tmp);
8833 	    s != NULL;
8834 	    s = strtok_r(NULL, ":", &tmp)) {
8835 		len = strlen(flagstr);
8836 		for (i = 0; i < len; i++) {
8837 			int bit = flagbits[(uchar_t)flagstr[i]];
8838 
8839 			if (bit == 0) {
8840 				(void) printf("***Ignoring flag: %c\n",
8841 				    (uchar_t)flagstr[i]);
8842 				continue;
8843 			}
8844 			found = B_TRUE;
8845 			flags |= bit;
8846 
8847 			p = &flagstr[i + 1];
8848 			if (*p != ':' && *p != '\0') {
8849 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8850 				char *end, offstr[8] = { 0 };
8851 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8852 				    (nextbit == 0)) {
8853 					/* look ahead to isolate the offset */
8854 					while (nextbit == 0 &&
8855 					    strchr(flagbitstr, *p) == NULL) {
8856 						offstr[j] = *p;
8857 						j++;
8858 						if (i + j > strlen(flagstr))
8859 							break;
8860 						p++;
8861 						nextbit = flagbits[(uchar_t)*p];
8862 					}
8863 					blkptr_offset = strtoull(offstr, &end,
8864 					    16);
8865 					i += j;
8866 				} else if (nextbit == 0) {
8867 					(void) printf("***Ignoring flag arg:"
8868 					    " '%c'\n", (uchar_t)*p);
8869 				}
8870 			}
8871 		}
8872 	}
8873 	if (blkptr_offset % sizeof (blkptr_t)) {
8874 		printf("Block pointer offset 0x%llx "
8875 		    "must be divisible by 0x%x\n",
8876 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8877 		goto done;
8878 	}
8879 	if (found == B_FALSE && strlen(flagstr) > 0) {
8880 		printf("Invalid flag arg: '%s'\n", flagstr);
8881 		goto done;
8882 	}
8883 
8884 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8885 	if (vd == NULL) {
8886 		(void) printf("***Invalid vdev: %s\n", vdev);
8887 		goto done;
8888 	} else {
8889 		if (vd->vdev_path)
8890 			(void) fprintf(stderr, "Found vdev: %s\n",
8891 			    vd->vdev_path);
8892 		else
8893 			(void) fprintf(stderr, "Found vdev type: %s\n",
8894 			    vd->vdev_ops->vdev_op_type);
8895 	}
8896 
8897 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8898 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8899 
8900 	BP_ZERO(bp);
8901 
8902 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8903 	DVA_SET_OFFSET(&dva[0], offset);
8904 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8905 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8906 
8907 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8908 
8909 	BP_SET_LSIZE(bp, lsize);
8910 	BP_SET_PSIZE(bp, psize);
8911 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8912 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8913 	BP_SET_TYPE(bp, DMU_OT_NONE);
8914 	BP_SET_LEVEL(bp, 0);
8915 	BP_SET_DEDUP(bp, 0);
8916 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8917 
8918 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8919 	zio = zio_root(spa, NULL, NULL, 0);
8920 
8921 	if (vd == vd->vdev_top) {
8922 		/*
8923 		 * Treat this as a normal block read.
8924 		 */
8925 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8926 		    ZIO_PRIORITY_SYNC_READ,
8927 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8928 	} else {
8929 		/*
8930 		 * Treat this as a vdev child I/O.
8931 		 */
8932 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8933 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8934 		    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8935 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8936 		    NULL, NULL));
8937 	}
8938 
8939 	error = zio_wait(zio);
8940 	spa_config_exit(spa, SCL_STATE, FTAG);
8941 
8942 	if (error) {
8943 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8944 		goto out;
8945 	}
8946 
8947 	uint64_t orig_lsize = lsize;
8948 	buf = lbuf;
8949 	if (flags & ZDB_FLAG_DECOMPRESS) {
8950 		lsize = zdb_decompress_block(pabd, buf, lbuf,
8951 		    lsize, psize, flags);
8952 		if (lsize == -1) {
8953 			(void) printf("Decompress of %s failed\n", thing);
8954 			goto out;
8955 		}
8956 	} else {
8957 		buf = abd_borrow_buf_copy(pabd, lsize);
8958 		borrowed = B_TRUE;
8959 	}
8960 	/*
8961 	 * Try to detect invalid block pointer.  If invalid, try
8962 	 * decompressing.
8963 	 */
8964 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8965 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8966 		const blkptr_t *b = (const blkptr_t *)(void *)
8967 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8968 		if (zfs_blkptr_verify(spa, b,
8969 		    BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8970 			abd_return_buf_copy(pabd, buf, lsize);
8971 			borrowed = B_FALSE;
8972 			buf = lbuf;
8973 			lsize = zdb_decompress_block(pabd, buf,
8974 			    lbuf, lsize, psize, flags);
8975 			b = (const blkptr_t *)(void *)
8976 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8977 			if (lsize == -1 || zfs_blkptr_verify(spa, b,
8978 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8979 				printf("invalid block pointer at this DVA\n");
8980 				goto out;
8981 			}
8982 		}
8983 	}
8984 
8985 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
8986 		zdb_print_blkptr((blkptr_t *)(void *)
8987 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8988 	else if (flags & ZDB_FLAG_RAW)
8989 		zdb_dump_block_raw(buf, lsize, flags);
8990 	else if (flags & ZDB_FLAG_INDIRECT)
8991 		zdb_dump_indirect((blkptr_t *)buf,
8992 		    orig_lsize / sizeof (blkptr_t), flags);
8993 	else if (flags & ZDB_FLAG_GBH)
8994 		zdb_dump_gbh(buf, flags);
8995 	else
8996 		zdb_dump_block(thing, buf, lsize, flags);
8997 
8998 	/*
8999 	 * If :c was specified, iterate through the checksum table to
9000 	 * calculate and display each checksum for our specified
9001 	 * DVA and length.
9002 	 */
9003 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9004 	    !(flags & ZDB_FLAG_GBH)) {
9005 		zio_t *czio;
9006 		(void) printf("\n");
9007 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9008 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9009 
9010 			if ((zio_checksum_table[ck].ci_flags &
9011 			    ZCHECKSUM_FLAG_EMBEDDED) ||
9012 			    ck == ZIO_CHECKSUM_NOPARITY) {
9013 				continue;
9014 			}
9015 			BP_SET_CHECKSUM(bp, ck);
9016 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9017 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9018 			if (vd == vd->vdev_top) {
9019 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9020 				    NULL, NULL,
9021 				    ZIO_PRIORITY_SYNC_READ,
9022 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9023 				    ZIO_FLAG_DONT_RETRY, NULL));
9024 			} else {
9025 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
9026 				    offset, pabd, psize, ZIO_TYPE_READ,
9027 				    ZIO_PRIORITY_SYNC_READ,
9028 				    ZIO_FLAG_DONT_PROPAGATE |
9029 				    ZIO_FLAG_DONT_RETRY |
9030 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9031 				    ZIO_FLAG_SPECULATIVE |
9032 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
9033 			}
9034 			error = zio_wait(czio);
9035 			if (error == 0 || error == ECKSUM) {
9036 				zio_t *ck_zio = zio_null(NULL, spa, NULL,
9037 				    NULL, NULL, 0);
9038 				ck_zio->io_offset =
9039 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
9040 				ck_zio->io_bp = bp;
9041 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
9042 				printf(
9043 				    "%12s\t"
9044 				    "cksum=%016llx:%016llx:%016llx:%016llx\n",
9045 				    zio_checksum_table[ck].ci_name,
9046 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
9047 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
9048 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
9049 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
9050 				zio_wait(ck_zio);
9051 			} else {
9052 				printf("error %d reading block\n", error);
9053 			}
9054 			spa_config_exit(spa, SCL_STATE, FTAG);
9055 		}
9056 	}
9057 
9058 	if (borrowed)
9059 		abd_return_buf_copy(pabd, buf, lsize);
9060 
9061 out:
9062 	abd_free(pabd);
9063 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
9064 done:
9065 	free(flagstr);
9066 	free(dup);
9067 }
9068 
9069 static void
9070 zdb_embedded_block(char *thing)
9071 {
9072 	blkptr_t bp = {{{{0}}}};
9073 	unsigned long long *words = (void *)&bp;
9074 	char *buf;
9075 	int err;
9076 
9077 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9078 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9079 	    words + 0, words + 1, words + 2, words + 3,
9080 	    words + 4, words + 5, words + 6, words + 7,
9081 	    words + 8, words + 9, words + 10, words + 11,
9082 	    words + 12, words + 13, words + 14, words + 15);
9083 	if (err != 16) {
9084 		(void) fprintf(stderr, "invalid input format\n");
9085 		zdb_exit(1);
9086 	}
9087 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9088 	buf = malloc(SPA_MAXBLOCKSIZE);
9089 	if (buf == NULL) {
9090 		(void) fprintf(stderr, "out of memory\n");
9091 		zdb_exit(1);
9092 	}
9093 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9094 	if (err != 0) {
9095 		(void) fprintf(stderr, "decode failed: %u\n", err);
9096 		zdb_exit(1);
9097 	}
9098 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9099 	free(buf);
9100 }
9101 
9102 /* check for valid hex or decimal numeric string */
9103 static boolean_t
9104 zdb_numeric(char *str)
9105 {
9106 	int i = 0, len;
9107 
9108 	len = strlen(str);
9109 	if (len == 0)
9110 		return (B_FALSE);
9111 	if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9112 		i = 2;
9113 	for (; i < len; i++) {
9114 		if (!isxdigit(str[i]))
9115 			return (B_FALSE);
9116 	}
9117 	return (B_TRUE);
9118 }
9119 
9120 static int
9121 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9122     zfs_file_info_t *zoi)
9123 {
9124 	(void) data, (void) zoi;
9125 
9126 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9127 		return (ENOENT);
9128 
9129 	(void) fprintf(stderr, "dummy_get_file_info: not implemented");
9130 	abort();
9131 }
9132 
9133 int
9134 main(int argc, char **argv)
9135 {
9136 	int c;
9137 	int dump_all = 1;
9138 	int verbose = 0;
9139 	int error = 0;
9140 	char **searchdirs = NULL;
9141 	int nsearch = 0;
9142 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9143 	nvlist_t *policy = NULL;
9144 	uint64_t max_txg = UINT64_MAX;
9145 	int64_t objset_id = -1;
9146 	uint64_t object;
9147 	int flags = ZFS_IMPORT_MISSING_LOG;
9148 	int rewind = ZPOOL_NEVER_REWIND;
9149 	char *spa_config_path_env, *objset_str;
9150 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9151 	nvlist_t *cfg = NULL;
9152 	struct sigaction action;
9153 	boolean_t force_import = B_FALSE;
9154 	boolean_t config_path_console = B_FALSE;
9155 	char pbuf[MAXPATHLEN];
9156 
9157 	dprintf_setup(&argc, argv);
9158 
9159 	/*
9160 	 * Set up signal handlers, so if we crash due to bad on-disk data we
9161 	 * can get more info. Unlike ztest, we don't bail out if we can't set
9162 	 * up signal handlers, because zdb is very useful without them.
9163 	 */
9164 	action.sa_handler = sig_handler;
9165 	sigemptyset(&action.sa_mask);
9166 	action.sa_flags = 0;
9167 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
9168 		(void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9169 		    strerror(errno));
9170 	}
9171 	if (sigaction(SIGABRT, &action, NULL) < 0) {
9172 		(void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9173 		    strerror(errno));
9174 	}
9175 
9176 	/*
9177 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
9178 	 * default spa_config_path setting. If -U flag is specified it will
9179 	 * override this environment variable settings once again.
9180 	 */
9181 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
9182 	if (spa_config_path_env != NULL)
9183 		spa_config_path = spa_config_path_env;
9184 
9185 	/*
9186 	 * For performance reasons, we set this tunable down. We do so before
9187 	 * the arg parsing section so that the user can override this value if
9188 	 * they choose.
9189 	 */
9190 	zfs_btree_verify_intensity = 3;
9191 
9192 	struct option long_options[] = {
9193 		{"ignore-assertions",	no_argument,		NULL, 'A'},
9194 		{"block-stats",		no_argument,		NULL, 'b'},
9195 		{"backup",		no_argument,		NULL, 'B'},
9196 		{"checksum",		no_argument,		NULL, 'c'},
9197 		{"config",		no_argument,		NULL, 'C'},
9198 		{"datasets",		no_argument,		NULL, 'd'},
9199 		{"dedup-stats",		no_argument,		NULL, 'D'},
9200 		{"exported",		no_argument,		NULL, 'e'},
9201 		{"embedded-block-pointer",	no_argument,	NULL, 'E'},
9202 		{"automatic-rewind",	no_argument,		NULL, 'F'},
9203 		{"dump-debug-msg",	no_argument,		NULL, 'G'},
9204 		{"history",		no_argument,		NULL, 'h'},
9205 		{"intent-logs",		no_argument,		NULL, 'i'},
9206 		{"inflight",		required_argument,	NULL, 'I'},
9207 		{"checkpointed-state",	no_argument,		NULL, 'k'},
9208 		{"key",			required_argument,	NULL, 'K'},
9209 		{"label",		no_argument,		NULL, 'l'},
9210 		{"disable-leak-tracking",	no_argument,	NULL, 'L'},
9211 		{"metaslabs",		no_argument,		NULL, 'm'},
9212 		{"metaslab-groups",	no_argument,		NULL, 'M'},
9213 		{"numeric",		no_argument,		NULL, 'N'},
9214 		{"option",		required_argument,	NULL, 'o'},
9215 		{"object-lookups",	no_argument,		NULL, 'O'},
9216 		{"path",		required_argument,	NULL, 'p'},
9217 		{"parseable",		no_argument,		NULL, 'P'},
9218 		{"skip-label",		no_argument,		NULL, 'q'},
9219 		{"copy-object",		no_argument,		NULL, 'r'},
9220 		{"read-block",		no_argument,		NULL, 'R'},
9221 		{"io-stats",		no_argument,		NULL, 's'},
9222 		{"simulate-dedup",	no_argument,		NULL, 'S'},
9223 		{"txg",			required_argument,	NULL, 't'},
9224 		{"brt-stats",		no_argument,		NULL, 'T'},
9225 		{"uberblock",		no_argument,		NULL, 'u'},
9226 		{"cachefile",		required_argument,	NULL, 'U'},
9227 		{"verbose",		no_argument,		NULL, 'v'},
9228 		{"verbatim",		no_argument,		NULL, 'V'},
9229 		{"dump-blocks",		required_argument,	NULL, 'x'},
9230 		{"extreme-rewind",	no_argument,		NULL, 'X'},
9231 		{"all-reconstruction",	no_argument,		NULL, 'Y'},
9232 		{"livelist",		no_argument,		NULL, 'y'},
9233 		{"zstd-headers",	no_argument,		NULL, 'Z'},
9234 		{0, 0, 0, 0}
9235 	};
9236 
9237 	while ((c = getopt_long(argc, argv,
9238 	    "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9239 	    long_options, NULL)) != -1) {
9240 		switch (c) {
9241 		case 'b':
9242 		case 'B':
9243 		case 'c':
9244 		case 'C':
9245 		case 'd':
9246 		case 'D':
9247 		case 'E':
9248 		case 'G':
9249 		case 'h':
9250 		case 'i':
9251 		case 'l':
9252 		case 'm':
9253 		case 'M':
9254 		case 'N':
9255 		case 'O':
9256 		case 'r':
9257 		case 'R':
9258 		case 's':
9259 		case 'S':
9260 		case 'T':
9261 		case 'u':
9262 		case 'y':
9263 		case 'Z':
9264 			dump_opt[c]++;
9265 			dump_all = 0;
9266 			break;
9267 		case 'A':
9268 		case 'e':
9269 		case 'F':
9270 		case 'k':
9271 		case 'L':
9272 		case 'P':
9273 		case 'q':
9274 		case 'X':
9275 			dump_opt[c]++;
9276 			break;
9277 		case 'Y':
9278 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
9279 			zfs_deadman_enabled = 0;
9280 			break;
9281 		/* NB: Sort single match options below. */
9282 		case 'I':
9283 			max_inflight_bytes = strtoull(optarg, NULL, 0);
9284 			if (max_inflight_bytes == 0) {
9285 				(void) fprintf(stderr, "maximum number "
9286 				    "of inflight bytes must be greater "
9287 				    "than 0\n");
9288 				usage();
9289 			}
9290 			break;
9291 		case 'K':
9292 			dump_opt[c]++;
9293 			key_material = strdup(optarg);
9294 			/* redact key material in process table */
9295 			while (*optarg != '\0') { *optarg++ = '*'; }
9296 			break;
9297 		case 'o':
9298 			error = set_global_var(optarg);
9299 			if (error != 0)
9300 				usage();
9301 			break;
9302 		case 'p':
9303 			if (searchdirs == NULL) {
9304 				searchdirs = umem_alloc(sizeof (char *),
9305 				    UMEM_NOFAIL);
9306 			} else {
9307 				char **tmp = umem_alloc((nsearch + 1) *
9308 				    sizeof (char *), UMEM_NOFAIL);
9309 				memcpy(tmp, searchdirs, nsearch *
9310 				    sizeof (char *));
9311 				umem_free(searchdirs,
9312 				    nsearch * sizeof (char *));
9313 				searchdirs = tmp;
9314 			}
9315 			searchdirs[nsearch++] = optarg;
9316 			break;
9317 		case 't':
9318 			max_txg = strtoull(optarg, NULL, 0);
9319 			if (max_txg < TXG_INITIAL) {
9320 				(void) fprintf(stderr, "incorrect txg "
9321 				    "specified: %s\n", optarg);
9322 				usage();
9323 			}
9324 			break;
9325 		case 'U':
9326 			config_path_console = B_TRUE;
9327 			spa_config_path = optarg;
9328 			if (spa_config_path[0] != '/') {
9329 				(void) fprintf(stderr,
9330 				    "cachefile must be an absolute path "
9331 				    "(i.e. start with a slash)\n");
9332 				usage();
9333 			}
9334 			break;
9335 		case 'v':
9336 			verbose++;
9337 			break;
9338 		case 'V':
9339 			flags = ZFS_IMPORT_VERBATIM;
9340 			break;
9341 		case 'x':
9342 			vn_dumpdir = optarg;
9343 			break;
9344 		default:
9345 			usage();
9346 			break;
9347 		}
9348 	}
9349 
9350 	if (!dump_opt['e'] && searchdirs != NULL) {
9351 		(void) fprintf(stderr, "-p option requires use of -e\n");
9352 		usage();
9353 	}
9354 #if defined(_LP64)
9355 	/*
9356 	 * ZDB does not typically re-read blocks; therefore limit the ARC
9357 	 * to 256 MB, which can be used entirely for metadata.
9358 	 */
9359 	zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9360 	zfs_arc_max = 256 * 1024 * 1024;
9361 #endif
9362 
9363 	/*
9364 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9365 	 * "zdb -b" uses traversal prefetch which uses async reads.
9366 	 * For good performance, let several of them be active at once.
9367 	 */
9368 	zfs_vdev_async_read_max_active = 10;
9369 
9370 	/*
9371 	 * Disable reference tracking for better performance.
9372 	 */
9373 	reference_tracking_enable = B_FALSE;
9374 
9375 	/*
9376 	 * Do not fail spa_load when spa_load_verify fails. This is needed
9377 	 * to load non-idle pools.
9378 	 */
9379 	spa_load_verify_dryrun = B_TRUE;
9380 
9381 	/*
9382 	 * ZDB should have ability to read spacemaps.
9383 	 */
9384 	spa_mode_readable_spacemaps = B_TRUE;
9385 
9386 	if (dump_all)
9387 		verbose = MAX(verbose, 1);
9388 
9389 	for (c = 0; c < 256; c++) {
9390 		if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9391 			dump_opt[c] = 1;
9392 		if (dump_opt[c])
9393 			dump_opt[c] += verbose;
9394 	}
9395 
9396 	libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9397 	zfs_recover = (dump_opt['A'] > 1);
9398 
9399 	argc -= optind;
9400 	argv += optind;
9401 	if (argc < 2 && dump_opt['R'])
9402 		usage();
9403 
9404 	target = argv[0];
9405 
9406 	/*
9407 	 * Automate cachefile
9408 	 */
9409 	if (!spa_config_path_env && !config_path_console && target &&
9410 	    libzfs_core_init() == 0) {
9411 		char *pname = strdup(target);
9412 		const char *value;
9413 		nvlist_t *pnvl = NULL;
9414 		nvlist_t *vnvl = NULL;
9415 
9416 		if (strpbrk(pname, "/@") != NULL)
9417 			*strpbrk(pname, "/@") = '\0';
9418 
9419 		if (pname && lzc_get_props(pname, &pnvl) == 0) {
9420 			if (nvlist_lookup_nvlist(pnvl, "cachefile",
9421 			    &vnvl) == 0) {
9422 				value = fnvlist_lookup_string(vnvl,
9423 				    ZPROP_VALUE);
9424 			} else {
9425 				value = "-";
9426 			}
9427 			strlcpy(pbuf, value, sizeof (pbuf));
9428 			if (pbuf[0] != '\0') {
9429 				if (pbuf[0] == '/') {
9430 					if (access(pbuf, F_OK) == 0)
9431 						spa_config_path = pbuf;
9432 					else
9433 						force_import = B_TRUE;
9434 				} else if ((strcmp(pbuf, "-") == 0 &&
9435 				    access(ZPOOL_CACHE, F_OK) != 0) ||
9436 				    strcmp(pbuf, "none") == 0) {
9437 					force_import = B_TRUE;
9438 				}
9439 			}
9440 			nvlist_free(vnvl);
9441 		}
9442 
9443 		free(pname);
9444 		nvlist_free(pnvl);
9445 		libzfs_core_fini();
9446 	}
9447 
9448 	dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9449 	kernel_init(SPA_MODE_READ);
9450 	kernel_init_done = B_TRUE;
9451 
9452 	if (dump_opt['E']) {
9453 		if (argc != 1)
9454 			usage();
9455 		zdb_embedded_block(argv[0]);
9456 		error = 0;
9457 		goto fini;
9458 	}
9459 
9460 	if (argc < 1) {
9461 		if (!dump_opt['e'] && dump_opt['C']) {
9462 			dump_cachefile(spa_config_path);
9463 			error = 0;
9464 			goto fini;
9465 		}
9466 		usage();
9467 	}
9468 
9469 	if (dump_opt['l']) {
9470 		error = dump_label(argv[0]);
9471 		goto fini;
9472 	}
9473 
9474 	if (dump_opt['X'] || dump_opt['F'])
9475 		rewind = ZPOOL_DO_REWIND |
9476 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9477 
9478 	/* -N implies -d */
9479 	if (dump_opt['N'] && dump_opt['d'] == 0)
9480 		dump_opt['d'] = dump_opt['N'];
9481 
9482 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9483 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9484 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9485 		fatal("internal error: %s", strerror(ENOMEM));
9486 
9487 	error = 0;
9488 
9489 	if (strpbrk(target, "/@") != NULL) {
9490 		size_t targetlen;
9491 
9492 		target_pool = strdup(target);
9493 		*strpbrk(target_pool, "/@") = '\0';
9494 
9495 		target_is_spa = B_FALSE;
9496 		targetlen = strlen(target);
9497 		if (targetlen && target[targetlen - 1] == '/')
9498 			target[targetlen - 1] = '\0';
9499 
9500 		/*
9501 		 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9502 		 * To disambiguate tank/100, consider the 100 as objsetID
9503 		 * if -N was given, otherwise 100 is an objsetID iff
9504 		 * tank/100 as a named dataset fails on lookup.
9505 		 */
9506 		objset_str = strchr(target, '/');
9507 		if (objset_str && strlen(objset_str) > 1 &&
9508 		    zdb_numeric(objset_str + 1)) {
9509 			char *endptr;
9510 			errno = 0;
9511 			objset_str++;
9512 			objset_id = strtoull(objset_str, &endptr, 0);
9513 			/* dataset 0 is the same as opening the pool */
9514 			if (errno == 0 && endptr != objset_str &&
9515 			    objset_id != 0) {
9516 				if (dump_opt['N'])
9517 					dataset_lookup = B_TRUE;
9518 			}
9519 			/* normal dataset name not an objset ID */
9520 			if (endptr == objset_str) {
9521 				objset_id = -1;
9522 			}
9523 		} else if (objset_str && !zdb_numeric(objset_str + 1) &&
9524 		    dump_opt['N']) {
9525 			printf("Supply a numeric objset ID with -N\n");
9526 			error = 1;
9527 			goto fini;
9528 		}
9529 	} else {
9530 		target_pool = target;
9531 	}
9532 
9533 	if (dump_opt['e'] || force_import) {
9534 		importargs_t args = { 0 };
9535 
9536 		/*
9537 		 * If path is not provided, search in /dev
9538 		 */
9539 		if (searchdirs == NULL) {
9540 			searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9541 			searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9542 		}
9543 
9544 		args.paths = nsearch;
9545 		args.path = searchdirs;
9546 		args.can_be_active = B_TRUE;
9547 
9548 		libpc_handle_t lpch = {
9549 			.lpc_lib_handle = NULL,
9550 			.lpc_ops = &libzpool_config_ops,
9551 			.lpc_printerr = B_TRUE
9552 		};
9553 		error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9554 
9555 		if (error == 0) {
9556 
9557 			if (nvlist_add_nvlist(cfg,
9558 			    ZPOOL_LOAD_POLICY, policy) != 0) {
9559 				fatal("can't open '%s': %s",
9560 				    target, strerror(ENOMEM));
9561 			}
9562 
9563 			if (dump_opt['C'] > 1) {
9564 				(void) printf("\nConfiguration for import:\n");
9565 				dump_nvlist(cfg, 8);
9566 			}
9567 
9568 			/*
9569 			 * Disable the activity check to allow examination of
9570 			 * active pools.
9571 			 */
9572 			error = spa_import(target_pool, cfg, NULL,
9573 			    flags | ZFS_IMPORT_SKIP_MMP);
9574 		}
9575 	}
9576 
9577 	if (searchdirs != NULL) {
9578 		umem_free(searchdirs, nsearch * sizeof (char *));
9579 		searchdirs = NULL;
9580 	}
9581 
9582 	/*
9583 	 * We need to make sure to process -O option or call
9584 	 * dump_path after the -e option has been processed,
9585 	 * which imports the pool to the namespace if it's
9586 	 * not in the cachefile.
9587 	 */
9588 	if (dump_opt['O']) {
9589 		if (argc != 2)
9590 			usage();
9591 		dump_opt['v'] = verbose + 3;
9592 		error = dump_path(argv[0], argv[1], NULL);
9593 		goto fini;
9594 	}
9595 
9596 	if (dump_opt['r']) {
9597 		target_is_spa = B_FALSE;
9598 		if (argc != 3)
9599 			usage();
9600 		dump_opt['v'] = verbose;
9601 		error = dump_path(argv[0], argv[1], &object);
9602 		if (error != 0)
9603 			fatal("internal error: %s", strerror(error));
9604 	}
9605 
9606 	/*
9607 	 * import_checkpointed_state makes the assumption that the
9608 	 * target pool that we pass it is already part of the spa
9609 	 * namespace. Because of that we need to make sure to call
9610 	 * it always after the -e option has been processed, which
9611 	 * imports the pool to the namespace if it's not in the
9612 	 * cachefile.
9613 	 */
9614 	char *checkpoint_pool = NULL;
9615 	char *checkpoint_target = NULL;
9616 	if (dump_opt['k']) {
9617 		checkpoint_pool = import_checkpointed_state(target, cfg,
9618 		    &checkpoint_target);
9619 
9620 		if (checkpoint_target != NULL)
9621 			target = checkpoint_target;
9622 	}
9623 
9624 	if (cfg != NULL) {
9625 		nvlist_free(cfg);
9626 		cfg = NULL;
9627 	}
9628 
9629 	if (target_pool != target)
9630 		free(target_pool);
9631 
9632 	if (error == 0) {
9633 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9634 			ASSERT(checkpoint_pool != NULL);
9635 			ASSERT(checkpoint_target == NULL);
9636 
9637 			error = spa_open(checkpoint_pool, &spa, FTAG);
9638 			if (error != 0) {
9639 				fatal("Tried to open pool \"%s\" but "
9640 				    "spa_open() failed with error %d\n",
9641 				    checkpoint_pool, error);
9642 			}
9643 
9644 		} else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9645 		    objset_id == 0) {
9646 			zdb_set_skip_mmp(target);
9647 			error = spa_open_rewind(target, &spa, FTAG, policy,
9648 			    NULL);
9649 			if (error) {
9650 				/*
9651 				 * If we're missing the log device then
9652 				 * try opening the pool after clearing the
9653 				 * log state.
9654 				 */
9655 				mutex_enter(&spa_namespace_lock);
9656 				if ((spa = spa_lookup(target)) != NULL &&
9657 				    spa->spa_log_state == SPA_LOG_MISSING) {
9658 					spa->spa_log_state = SPA_LOG_CLEAR;
9659 					error = 0;
9660 				}
9661 				mutex_exit(&spa_namespace_lock);
9662 
9663 				if (!error) {
9664 					error = spa_open_rewind(target, &spa,
9665 					    FTAG, policy, NULL);
9666 				}
9667 			}
9668 		} else if (strpbrk(target, "#") != NULL) {
9669 			dsl_pool_t *dp;
9670 			error = dsl_pool_hold(target, FTAG, &dp);
9671 			if (error != 0) {
9672 				fatal("can't dump '%s': %s", target,
9673 				    strerror(error));
9674 			}
9675 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9676 			dsl_pool_rele(dp, FTAG);
9677 			if (error != 0) {
9678 				fatal("can't dump '%s': %s", target,
9679 				    strerror(error));
9680 			}
9681 			goto fini;
9682 		} else {
9683 			target_pool = strdup(target);
9684 			if (strpbrk(target, "/@") != NULL)
9685 				*strpbrk(target_pool, "/@") = '\0';
9686 
9687 			zdb_set_skip_mmp(target);
9688 			/*
9689 			 * If -N was supplied, the user has indicated that
9690 			 * zdb -d <pool>/<objsetID> is in effect.  Otherwise
9691 			 * we first assume that the dataset string is the
9692 			 * dataset name.  If dmu_objset_hold fails with the
9693 			 * dataset string, and we have an objset_id, retry the
9694 			 * lookup with the objsetID.
9695 			 */
9696 			boolean_t retry = B_TRUE;
9697 retry_lookup:
9698 			if (dataset_lookup == B_TRUE) {
9699 				/*
9700 				 * Use the supplied id to get the name
9701 				 * for open_objset.
9702 				 */
9703 				error = spa_open(target_pool, &spa, FTAG);
9704 				if (error == 0) {
9705 					error = name_from_objset_id(spa,
9706 					    objset_id, dsname);
9707 					spa_close(spa, FTAG);
9708 					if (error == 0)
9709 						target = dsname;
9710 				}
9711 			}
9712 			if (error == 0) {
9713 				if (objset_id > 0 && retry) {
9714 					int err = dmu_objset_hold(target, FTAG,
9715 					    &os);
9716 					if (err) {
9717 						dataset_lookup = B_TRUE;
9718 						retry = B_FALSE;
9719 						goto retry_lookup;
9720 					} else {
9721 						dmu_objset_rele(os, FTAG);
9722 					}
9723 				}
9724 				error = open_objset(target, FTAG, &os);
9725 			}
9726 			if (error == 0)
9727 				spa = dmu_objset_spa(os);
9728 			free(target_pool);
9729 		}
9730 	}
9731 	nvlist_free(policy);
9732 
9733 	if (error)
9734 		fatal("can't open '%s': %s", target, strerror(error));
9735 
9736 	/*
9737 	 * Set the pool failure mode to panic in order to prevent the pool
9738 	 * from suspending.  A suspended I/O will have no way to resume and
9739 	 * can prevent the zdb(8) command from terminating as expected.
9740 	 */
9741 	if (spa != NULL)
9742 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9743 
9744 	argv++;
9745 	argc--;
9746 	if (dump_opt['r']) {
9747 		error = zdb_copy_object(os, object, argv[1]);
9748 	} else if (!dump_opt['R']) {
9749 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
9750 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9751 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9752 		flagbits['z'] = ZOR_FLAG_ZAP;
9753 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9754 
9755 		if (argc > 0 && dump_opt['d']) {
9756 			zopt_object_args = argc;
9757 			zopt_object_ranges = calloc(zopt_object_args,
9758 			    sizeof (zopt_object_range_t));
9759 			for (unsigned i = 0; i < zopt_object_args; i++) {
9760 				int err;
9761 				const char *msg = NULL;
9762 
9763 				err = parse_object_range(argv[i],
9764 				    &zopt_object_ranges[i], &msg);
9765 				if (err != 0)
9766 					fatal("Bad object or range: '%s': %s\n",
9767 					    argv[i], msg ?: "");
9768 			}
9769 		} else if (argc > 0 && dump_opt['m']) {
9770 			zopt_metaslab_args = argc;
9771 			zopt_metaslab = calloc(zopt_metaslab_args,
9772 			    sizeof (uint64_t));
9773 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9774 				errno = 0;
9775 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9776 				if (zopt_metaslab[i] == 0 && errno != 0)
9777 					fatal("bad number %s: %s", argv[i],
9778 					    strerror(errno));
9779 			}
9780 		}
9781 		if (dump_opt['B']) {
9782 			dump_backup(target, objset_id,
9783 			    argc > 0 ? argv[0] : NULL);
9784 		} else if (os != NULL) {
9785 			dump_objset(os);
9786 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
9787 			dump_objset(spa->spa_meta_objset);
9788 		} else {
9789 			dump_zpool(spa);
9790 		}
9791 	} else {
9792 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9793 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
9794 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9795 		flagbits['e'] = ZDB_FLAG_BSWAP;
9796 		flagbits['g'] = ZDB_FLAG_GBH;
9797 		flagbits['i'] = ZDB_FLAG_INDIRECT;
9798 		flagbits['r'] = ZDB_FLAG_RAW;
9799 		flagbits['v'] = ZDB_FLAG_VERBOSE;
9800 
9801 		for (int i = 0; i < argc; i++)
9802 			zdb_read_block(argv[i], spa);
9803 	}
9804 
9805 	if (dump_opt['k']) {
9806 		free(checkpoint_pool);
9807 		if (!target_is_spa)
9808 			free(checkpoint_target);
9809 	}
9810 
9811 fini:
9812 	if (spa != NULL)
9813 		zdb_ddt_cleanup(spa);
9814 
9815 	if (os != NULL) {
9816 		close_objset(os, FTAG);
9817 	} else if (spa != NULL) {
9818 		spa_close(spa, FTAG);
9819 	}
9820 
9821 	fuid_table_destroy();
9822 
9823 	dump_debug_buffer();
9824 
9825 	if (kernel_init_done)
9826 		kernel_fini();
9827 
9828 	return (error);
9829 }
9830