xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision 35c87c070a2d04f06c56578b0a4b2e9c13f62be5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  */
37 
38 #include <stdio.h>
39 #include <unistd.h>
40 #include <stdlib.h>
41 #include <ctype.h>
42 #include <getopt.h>
43 #include <sys/zfs_context.h>
44 #include <sys/spa.h>
45 #include <sys/spa_impl.h>
46 #include <sys/dmu.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zfs_znode.h>
50 #include <sys/zfs_sa.h>
51 #include <sys/sa.h>
52 #include <sys/sa_impl.h>
53 #include <sys/vdev.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/metaslab_impl.h>
56 #include <sys/dmu_objset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_dataset.h>
59 #include <sys/dsl_pool.h>
60 #include <sys/dsl_bookmark.h>
61 #include <sys/dbuf.h>
62 #include <sys/zil.h>
63 #include <sys/zil_impl.h>
64 #include <sys/stat.h>
65 #include <sys/resource.h>
66 #include <sys/dmu_send.h>
67 #include <sys/dmu_traverse.h>
68 #include <sys/zio_checksum.h>
69 #include <sys/zio_compress.h>
70 #include <sys/zfs_fuid.h>
71 #include <sys/arc.h>
72 #include <sys/arc_impl.h>
73 #include <sys/ddt.h>
74 #include <sys/zfeature.h>
75 #include <sys/abd.h>
76 #include <sys/blkptr.h>
77 #include <sys/dsl_crypt.h>
78 #include <sys/dsl_scan.h>
79 #include <sys/btree.h>
80 #include <zfs_comutil.h>
81 #include <sys/zstd/zstd.h>
82 
83 #include <libnvpair.h>
84 #include <libzutil.h>
85 
86 #include "zdb.h"
87 
88 #define	ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ?	\
89 	zio_compress_table[(idx)].ci_name : "UNKNOWN")
90 #define	ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ?	\
91 	zio_checksum_table[(idx)].ci_name : "UNKNOWN")
92 #define	ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) :		\
93 	(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ?	\
94 	DMU_OT_ZAP_OTHER : \
95 	(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
96 	DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
97 
98 /* Some platforms require part of inode IDs to be remapped */
99 #ifdef __APPLE__
100 #define	ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
101 #else
102 #define	ZDB_MAP_OBJECT_ID(obj) (obj)
103 #endif
104 
105 static const char *
106 zdb_ot_name(dmu_object_type_t type)
107 {
108 	if (type < DMU_OT_NUMTYPES)
109 		return (dmu_ot[type].ot_name);
110 	else if ((type & DMU_OT_NEWTYPE) &&
111 	    ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
112 		return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
113 	else
114 		return ("UNKNOWN");
115 }
116 
117 extern int reference_tracking_enable;
118 extern int zfs_recover;
119 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit;
120 extern uint_t zfs_vdev_async_read_max_active;
121 extern boolean_t spa_load_verify_dryrun;
122 extern boolean_t spa_mode_readable_spacemaps;
123 extern uint_t zfs_reconstruct_indirect_combinations_max;
124 extern uint_t zfs_btree_verify_intensity;
125 
126 static const char cmdname[] = "zdb";
127 uint8_t dump_opt[256];
128 
129 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
130 
131 uint64_t *zopt_metaslab = NULL;
132 static unsigned zopt_metaslab_args = 0;
133 
134 typedef struct zopt_object_range {
135 	uint64_t zor_obj_start;
136 	uint64_t zor_obj_end;
137 	uint64_t zor_flags;
138 } zopt_object_range_t;
139 zopt_object_range_t *zopt_object_ranges = NULL;
140 static unsigned zopt_object_args = 0;
141 
142 static int flagbits[256];
143 
144 #define	ZOR_FLAG_PLAIN_FILE	0x0001
145 #define	ZOR_FLAG_DIRECTORY	0x0002
146 #define	ZOR_FLAG_SPACE_MAP	0x0004
147 #define	ZOR_FLAG_ZAP		0x0008
148 #define	ZOR_FLAG_ALL_TYPES	-1
149 #define	ZOR_SUPPORTED_FLAGS	(ZOR_FLAG_PLAIN_FILE	| \
150 				ZOR_FLAG_DIRECTORY	| \
151 				ZOR_FLAG_SPACE_MAP	| \
152 				ZOR_FLAG_ZAP)
153 
154 #define	ZDB_FLAG_CHECKSUM	0x0001
155 #define	ZDB_FLAG_DECOMPRESS	0x0002
156 #define	ZDB_FLAG_BSWAP		0x0004
157 #define	ZDB_FLAG_GBH		0x0008
158 #define	ZDB_FLAG_INDIRECT	0x0010
159 #define	ZDB_FLAG_RAW		0x0020
160 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
161 #define	ZDB_FLAG_VERBOSE	0x0080
162 
163 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
164 static int leaked_objects = 0;
165 static range_tree_t *mos_refd_objs;
166 
167 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
168     boolean_t);
169 static void mos_obj_refd(uint64_t);
170 static void mos_obj_refd_multiple(uint64_t);
171 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
172     dmu_tx_t *tx);
173 
174 typedef struct sublivelist_verify {
175 	/* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
176 	zfs_btree_t sv_pair;
177 
178 	/* ALLOC's without a matching FREE, accumulates across sub-livelists */
179 	zfs_btree_t sv_leftover;
180 } sublivelist_verify_t;
181 
182 static int
183 livelist_compare(const void *larg, const void *rarg)
184 {
185 	const blkptr_t *l = larg;
186 	const blkptr_t *r = rarg;
187 
188 	/* Sort them according to dva[0] */
189 	uint64_t l_dva0_vdev, r_dva0_vdev;
190 	l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
191 	r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
192 	if (l_dva0_vdev < r_dva0_vdev)
193 		return (-1);
194 	else if (l_dva0_vdev > r_dva0_vdev)
195 		return (+1);
196 
197 	/* if vdevs are equal, sort by offsets. */
198 	uint64_t l_dva0_offset;
199 	uint64_t r_dva0_offset;
200 	l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
201 	r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
202 	if (l_dva0_offset < r_dva0_offset) {
203 		return (-1);
204 	} else if (l_dva0_offset > r_dva0_offset) {
205 		return (+1);
206 	}
207 
208 	/*
209 	 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
210 	 * it's possible the offsets are equal. In that case, sort by txg
211 	 */
212 	if (l->blk_birth < r->blk_birth) {
213 		return (-1);
214 	} else if (l->blk_birth > r->blk_birth) {
215 		return (+1);
216 	}
217 	return (0);
218 }
219 
220 typedef struct sublivelist_verify_block {
221 	dva_t svb_dva;
222 
223 	/*
224 	 * We need this to check if the block marked as allocated
225 	 * in the livelist was freed (and potentially reallocated)
226 	 * in the metaslab spacemaps at a later TXG.
227 	 */
228 	uint64_t svb_allocated_txg;
229 } sublivelist_verify_block_t;
230 
231 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
232 
233 typedef struct sublivelist_verify_block_refcnt {
234 	/* block pointer entry in livelist being verified */
235 	blkptr_t svbr_blk;
236 
237 	/*
238 	 * Refcount gets incremented to 1 when we encounter the first
239 	 * FREE entry for the svfbr block pointer and a node for it
240 	 * is created in our ZDB verification/tracking metadata.
241 	 *
242 	 * As we encounter more FREE entries we increment this counter
243 	 * and similarly decrement it whenever we find the respective
244 	 * ALLOC entries for this block.
245 	 *
246 	 * When the refcount gets to 0 it means that all the FREE and
247 	 * ALLOC entries of this block have paired up and we no longer
248 	 * need to track it in our verification logic (e.g. the node
249 	 * containing this struct in our verification data structure
250 	 * should be freed).
251 	 *
252 	 * [refer to sublivelist_verify_blkptr() for the actual code]
253 	 */
254 	uint32_t svbr_refcnt;
255 } sublivelist_verify_block_refcnt_t;
256 
257 static int
258 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
259 {
260 	const sublivelist_verify_block_refcnt_t *l = larg;
261 	const sublivelist_verify_block_refcnt_t *r = rarg;
262 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
263 }
264 
265 static int
266 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
267     dmu_tx_t *tx)
268 {
269 	ASSERT3P(tx, ==, NULL);
270 	struct sublivelist_verify *sv = arg;
271 	sublivelist_verify_block_refcnt_t current = {
272 			.svbr_blk = *bp,
273 
274 			/*
275 			 * Start with 1 in case this is the first free entry.
276 			 * This field is not used for our B-Tree comparisons
277 			 * anyway.
278 			 */
279 			.svbr_refcnt = 1,
280 	};
281 
282 	zfs_btree_index_t where;
283 	sublivelist_verify_block_refcnt_t *pair =
284 	    zfs_btree_find(&sv->sv_pair, &current, &where);
285 	if (free) {
286 		if (pair == NULL) {
287 			/* first free entry for this block pointer */
288 			zfs_btree_add(&sv->sv_pair, &current);
289 		} else {
290 			pair->svbr_refcnt++;
291 		}
292 	} else {
293 		if (pair == NULL) {
294 			/* block that is currently marked as allocated */
295 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
296 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
297 					break;
298 				sublivelist_verify_block_t svb = {
299 				    .svb_dva = bp->blk_dva[i],
300 				    .svb_allocated_txg = bp->blk_birth
301 				};
302 
303 				if (zfs_btree_find(&sv->sv_leftover, &svb,
304 				    &where) == NULL) {
305 					zfs_btree_add_idx(&sv->sv_leftover,
306 					    &svb, &where);
307 				}
308 			}
309 		} else {
310 			/* alloc matches a free entry */
311 			pair->svbr_refcnt--;
312 			if (pair->svbr_refcnt == 0) {
313 				/* all allocs and frees have been matched */
314 				zfs_btree_remove_idx(&sv->sv_pair, &where);
315 			}
316 		}
317 	}
318 
319 	return (0);
320 }
321 
322 static int
323 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
324 {
325 	int err;
326 	struct sublivelist_verify *sv = args;
327 
328 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare,
329 	    sizeof (sublivelist_verify_block_refcnt_t));
330 
331 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
332 	    sv, NULL);
333 
334 	sublivelist_verify_block_refcnt_t *e;
335 	zfs_btree_index_t *cookie = NULL;
336 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
337 		char blkbuf[BP_SPRINTF_LEN];
338 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
339 		    &e->svbr_blk, B_TRUE);
340 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
341 		    e->svbr_refcnt, blkbuf);
342 	}
343 	zfs_btree_destroy(&sv->sv_pair);
344 
345 	return (err);
346 }
347 
348 static int
349 livelist_block_compare(const void *larg, const void *rarg)
350 {
351 	const sublivelist_verify_block_t *l = larg;
352 	const sublivelist_verify_block_t *r = rarg;
353 
354 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
355 		return (-1);
356 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
357 		return (+1);
358 
359 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
360 		return (-1);
361 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
362 		return (+1);
363 
364 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
365 		return (-1);
366 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
367 		return (+1);
368 
369 	return (0);
370 }
371 
372 /*
373  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
374  * sublivelist_verify_t: sv->sv_leftover
375  */
376 static void
377 livelist_verify(dsl_deadlist_t *dl, void *arg)
378 {
379 	sublivelist_verify_t *sv = arg;
380 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
381 }
382 
383 /*
384  * Check for errors in the livelist entry and discard the intermediary
385  * data structures
386  */
387 static int
388 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
389 {
390 	(void) args;
391 	sublivelist_verify_t sv;
392 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
393 	    sizeof (sublivelist_verify_block_t));
394 	int err = sublivelist_verify_func(&sv, dle);
395 	zfs_btree_clear(&sv.sv_leftover);
396 	zfs_btree_destroy(&sv.sv_leftover);
397 	return (err);
398 }
399 
400 typedef struct metaslab_verify {
401 	/*
402 	 * Tree containing all the leftover ALLOCs from the livelists
403 	 * that are part of this metaslab.
404 	 */
405 	zfs_btree_t mv_livelist_allocs;
406 
407 	/*
408 	 * Metaslab information.
409 	 */
410 	uint64_t mv_vdid;
411 	uint64_t mv_msid;
412 	uint64_t mv_start;
413 	uint64_t mv_end;
414 
415 	/*
416 	 * What's currently allocated for this metaslab.
417 	 */
418 	range_tree_t *mv_allocated;
419 } metaslab_verify_t;
420 
421 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
422 
423 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
424     void *arg);
425 
426 typedef struct unflushed_iter_cb_arg {
427 	spa_t *uic_spa;
428 	uint64_t uic_txg;
429 	void *uic_arg;
430 	zdb_log_sm_cb_t uic_cb;
431 } unflushed_iter_cb_arg_t;
432 
433 static int
434 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
435 {
436 	unflushed_iter_cb_arg_t *uic = arg;
437 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
438 }
439 
440 static void
441 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
442 {
443 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
444 		return;
445 
446 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
447 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
448 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
449 		space_map_t *sm = NULL;
450 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
451 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
452 
453 		unflushed_iter_cb_arg_t uic = {
454 			.uic_spa = spa,
455 			.uic_txg = sls->sls_txg,
456 			.uic_arg = arg,
457 			.uic_cb = cb
458 		};
459 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
460 		    iterate_through_spacemap_logs_cb, &uic));
461 		space_map_close(sm);
462 	}
463 	spa_config_exit(spa, SCL_CONFIG, FTAG);
464 }
465 
466 static void
467 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
468     uint64_t offset, uint64_t size)
469 {
470 	sublivelist_verify_block_t svb;
471 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
472 	DVA_SET_OFFSET(&svb.svb_dva, offset);
473 	DVA_SET_ASIZE(&svb.svb_dva, size);
474 	zfs_btree_index_t where;
475 	uint64_t end_offset = offset + size;
476 
477 	/*
478 	 *  Look for an exact match for spacemap entry in the livelist entries.
479 	 *  Then, look for other livelist entries that fall within the range
480 	 *  of the spacemap entry as it may have been condensed
481 	 */
482 	sublivelist_verify_block_t *found =
483 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
484 	if (found == NULL) {
485 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
486 	}
487 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
488 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
489 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
490 		if (found->svb_allocated_txg <= txg) {
491 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
492 			    "from TXG %llx FREED at TXG %llx\n",
493 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
494 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
495 			    (u_longlong_t)found->svb_allocated_txg,
496 			    (u_longlong_t)txg);
497 		}
498 	}
499 }
500 
501 static int
502 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
503 {
504 	metaslab_verify_t *mv = arg;
505 	uint64_t offset = sme->sme_offset;
506 	uint64_t size = sme->sme_run;
507 	uint64_t txg = sme->sme_txg;
508 
509 	if (sme->sme_type == SM_ALLOC) {
510 		if (range_tree_contains(mv->mv_allocated,
511 		    offset, size)) {
512 			(void) printf("ERROR: DOUBLE ALLOC: "
513 			    "%llu [%llx:%llx] "
514 			    "%llu:%llu LOG_SM\n",
515 			    (u_longlong_t)txg, (u_longlong_t)offset,
516 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
517 			    (u_longlong_t)mv->mv_msid);
518 		} else {
519 			range_tree_add(mv->mv_allocated,
520 			    offset, size);
521 		}
522 	} else {
523 		if (!range_tree_contains(mv->mv_allocated,
524 		    offset, size)) {
525 			(void) printf("ERROR: DOUBLE FREE: "
526 			    "%llu [%llx:%llx] "
527 			    "%llu:%llu LOG_SM\n",
528 			    (u_longlong_t)txg, (u_longlong_t)offset,
529 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
530 			    (u_longlong_t)mv->mv_msid);
531 		} else {
532 			range_tree_remove(mv->mv_allocated,
533 			    offset, size);
534 		}
535 	}
536 
537 	if (sme->sme_type != SM_ALLOC) {
538 		/*
539 		 * If something is freed in the spacemap, verify that
540 		 * it is not listed as allocated in the livelist.
541 		 */
542 		verify_livelist_allocs(mv, txg, offset, size);
543 	}
544 	return (0);
545 }
546 
547 static int
548 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
549     uint64_t txg, void *arg)
550 {
551 	metaslab_verify_t *mv = arg;
552 	uint64_t offset = sme->sme_offset;
553 	uint64_t vdev_id = sme->sme_vdev;
554 
555 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
556 
557 	/* skip indirect vdevs */
558 	if (!vdev_is_concrete(vd))
559 		return (0);
560 
561 	if (vdev_id != mv->mv_vdid)
562 		return (0);
563 
564 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
565 	if (ms->ms_id != mv->mv_msid)
566 		return (0);
567 
568 	if (txg < metaslab_unflushed_txg(ms))
569 		return (0);
570 
571 
572 	ASSERT3U(txg, ==, sme->sme_txg);
573 	return (metaslab_spacemap_validation_cb(sme, mv));
574 }
575 
576 static void
577 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
578 {
579 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
580 }
581 
582 static void
583 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
584 {
585 	if (sm == NULL)
586 		return;
587 
588 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
589 	    metaslab_spacemap_validation_cb, mv));
590 }
591 
592 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
593 
594 /*
595  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
596  * they are part of that metaslab (mv_msid).
597  */
598 static void
599 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
600 {
601 	zfs_btree_index_t where;
602 	sublivelist_verify_block_t *svb;
603 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
604 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
605 	    svb != NULL;
606 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
607 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
608 			continue;
609 
610 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
611 		    (DVA_GET_OFFSET(&svb->svb_dva) +
612 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
613 			(void) printf("ERROR: Found block that crosses "
614 			    "metaslab boundary: <%llu:%llx:%llx>\n",
615 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
616 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
617 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
618 			continue;
619 		}
620 
621 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
622 			continue;
623 
624 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
625 			continue;
626 
627 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
628 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
629 			(void) printf("ERROR: Found block that crosses "
630 			    "metaslab boundary: <%llu:%llx:%llx>\n",
631 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
632 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
633 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
634 			continue;
635 		}
636 
637 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
638 	}
639 
640 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
641 	    svb != NULL;
642 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
643 		zfs_btree_remove(&sv->sv_leftover, svb);
644 	}
645 }
646 
647 /*
648  * [Livelist Check]
649  * Iterate through all the sublivelists and:
650  * - report leftover frees (**)
651  * - record leftover ALLOCs together with their TXG [see Cross Check]
652  *
653  * (**) Note: Double ALLOCs are valid in datasets that have dedup
654  *      enabled. Similarly double FREEs are allowed as well but
655  *      only if they pair up with a corresponding ALLOC entry once
656  *      we our done with our sublivelist iteration.
657  *
658  * [Spacemap Check]
659  * for each metaslab:
660  * - iterate over spacemap and then the metaslab's entries in the
661  *   spacemap log, then report any double FREEs and ALLOCs (do not
662  *   blow up).
663  *
664  * [Cross Check]
665  * After finishing the Livelist Check phase and while being in the
666  * Spacemap Check phase, we find all the recorded leftover ALLOCs
667  * of the livelist check that are part of the metaslab that we are
668  * currently looking at in the Spacemap Check. We report any entries
669  * that are marked as ALLOCs in the livelists but have been actually
670  * freed (and potentially allocated again) after their TXG stamp in
671  * the spacemaps. Also report any ALLOCs from the livelists that
672  * belong to indirect vdevs (e.g. their vdev completed removal).
673  *
674  * Note that this will miss Log Spacemap entries that cancelled each other
675  * out before being flushed to the metaslab, so we are not guaranteed
676  * to match all erroneous ALLOCs.
677  */
678 static void
679 livelist_metaslab_validate(spa_t *spa)
680 {
681 	(void) printf("Verifying deleted livelist entries\n");
682 
683 	sublivelist_verify_t sv;
684 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare,
685 	    sizeof (sublivelist_verify_block_t));
686 	iterate_deleted_livelists(spa, livelist_verify, &sv);
687 
688 	(void) printf("Verifying metaslab entries\n");
689 	vdev_t *rvd = spa->spa_root_vdev;
690 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
691 		vdev_t *vd = rvd->vdev_child[c];
692 
693 		if (!vdev_is_concrete(vd))
694 			continue;
695 
696 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
697 			metaslab_t *m = vd->vdev_ms[mid];
698 
699 			(void) fprintf(stderr,
700 			    "\rverifying concrete vdev %llu, "
701 			    "metaslab %llu of %llu ...",
702 			    (longlong_t)vd->vdev_id,
703 			    (longlong_t)mid,
704 			    (longlong_t)vd->vdev_ms_count);
705 
706 			uint64_t shift, start;
707 			range_seg_type_t type =
708 			    metaslab_calculate_range_tree_type(vd, m,
709 			    &start, &shift);
710 			metaslab_verify_t mv;
711 			mv.mv_allocated = range_tree_create(NULL,
712 			    type, NULL, start, shift);
713 			mv.mv_vdid = vd->vdev_id;
714 			mv.mv_msid = m->ms_id;
715 			mv.mv_start = m->ms_start;
716 			mv.mv_end = m->ms_start + m->ms_size;
717 			zfs_btree_create(&mv.mv_livelist_allocs,
718 			    livelist_block_compare,
719 			    sizeof (sublivelist_verify_block_t));
720 
721 			mv_populate_livelist_allocs(&mv, &sv);
722 
723 			spacemap_check_ms_sm(m->ms_sm, &mv);
724 			spacemap_check_sm_log(spa, &mv);
725 
726 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
727 			range_tree_destroy(mv.mv_allocated);
728 			zfs_btree_clear(&mv.mv_livelist_allocs);
729 			zfs_btree_destroy(&mv.mv_livelist_allocs);
730 		}
731 	}
732 	(void) fprintf(stderr, "\n");
733 
734 	/*
735 	 * If there are any segments in the leftover tree after we walked
736 	 * through all the metaslabs in the concrete vdevs then this means
737 	 * that we have segments in the livelists that belong to indirect
738 	 * vdevs and are marked as allocated.
739 	 */
740 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
741 		zfs_btree_destroy(&sv.sv_leftover);
742 		return;
743 	}
744 	(void) printf("ERROR: Found livelist blocks marked as allocated "
745 	    "for indirect vdevs:\n");
746 
747 	zfs_btree_index_t *where = NULL;
748 	sublivelist_verify_block_t *svb;
749 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
750 	    NULL) {
751 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
752 		ASSERT3U(vdev_id, <, rvd->vdev_children);
753 		vdev_t *vd = rvd->vdev_child[vdev_id];
754 		ASSERT(!vdev_is_concrete(vd));
755 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
756 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
757 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
758 		    (u_longlong_t)svb->svb_allocated_txg);
759 	}
760 	(void) printf("\n");
761 	zfs_btree_destroy(&sv.sv_leftover);
762 }
763 
764 /*
765  * These libumem hooks provide a reasonable set of defaults for the allocator's
766  * debugging facilities.
767  */
768 const char *
769 _umem_debug_init(void)
770 {
771 	return ("default,verbose"); /* $UMEM_DEBUG setting */
772 }
773 
774 const char *
775 _umem_logging_init(void)
776 {
777 	return ("fail,contents"); /* $UMEM_LOGGING setting */
778 }
779 
780 static void
781 usage(void)
782 {
783 	(void) fprintf(stderr,
784 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
785 	    "[-I <inflight I/Os>]\n"
786 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
787 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
788 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
789 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
790 	    "\t%s [-v] <bookmark>\n"
791 	    "\t%s -C [-A] [-U <cache>]\n"
792 	    "\t%s -l [-Aqu] <device>\n"
793 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
794 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
795 	    "\t%s -O <dataset> <path>\n"
796 	    "\t%s -r <dataset> <path> <destination>\n"
797 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
798 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
799 	    "\t%s -E [-A] word0:word1:...:word15\n"
800 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
801 	    "<poolname>\n\n",
802 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
803 	    cmdname, cmdname, cmdname, cmdname);
804 
805 	(void) fprintf(stderr, "    Dataset name must include at least one "
806 	    "separator character '/' or '@'\n");
807 	(void) fprintf(stderr, "    If dataset name is specified, only that "
808 	    "dataset is dumped\n");
809 	(void) fprintf(stderr,  "    If object numbers or object number "
810 	    "ranges are specified, only those\n"
811 	    "    objects or ranges are dumped.\n\n");
812 	(void) fprintf(stderr,
813 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
814 	    "        start    Starting object number\n"
815 	    "        end      Ending object number, or -1 for no upper bound\n"
816 	    "        flags    Optional flags to select object types:\n"
817 	    "            A     All objects (this is the default)\n"
818 	    "            d     ZFS directories\n"
819 	    "            f     ZFS files \n"
820 	    "            m     SPA space maps\n"
821 	    "            z     ZAPs\n"
822 	    "            -     Negate effect of next flag\n\n");
823 	(void) fprintf(stderr, "    Options to control amount of output:\n");
824 	(void) fprintf(stderr, "        -b --block-stats             "
825 	    "block statistics\n");
826 	(void) fprintf(stderr, "        -c --checksum                "
827 	    "checksum all metadata (twice for all data) blocks\n");
828 	(void) fprintf(stderr, "        -C --config                  "
829 	    "config (or cachefile if alone)\n");
830 	(void) fprintf(stderr, "        -d --datasets                "
831 	    "dataset(s)\n");
832 	(void) fprintf(stderr, "        -D --dedup-stats             "
833 	    "dedup statistics\n");
834 	(void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
835 	    "                                     decode and display block "
836 	    "from an embedded block pointer\n");
837 	(void) fprintf(stderr, "        -h --history                 "
838 	    "pool history\n");
839 	(void) fprintf(stderr, "        -i --intent-logs             "
840 	    "intent logs\n");
841 	(void) fprintf(stderr, "        -l --label                   "
842 	    "read label contents\n");
843 	(void) fprintf(stderr, "        -k --checkpointed-state      "
844 	    "examine the checkpointed state of the pool\n");
845 	(void) fprintf(stderr, "        -L --disable-leak-tracking   "
846 	    "disable leak tracking (do not load spacemaps)\n");
847 	(void) fprintf(stderr, "        -m --metaslabs               "
848 	    "metaslabs\n");
849 	(void) fprintf(stderr, "        -M --metaslab-groups         "
850 	    "metaslab groups\n");
851 	(void) fprintf(stderr, "        -O --object-lookups          "
852 	    "perform object lookups by path\n");
853 	(void) fprintf(stderr, "        -r --copy-object             "
854 	    "copy an object by path to file\n");
855 	(void) fprintf(stderr, "        -R --read-block              "
856 	    "read and display block from a device\n");
857 	(void) fprintf(stderr, "        -s --io-stats                "
858 	    "report stats on zdb's I/O\n");
859 	(void) fprintf(stderr, "        -S --simulate-dedup          "
860 	    "simulate dedup to measure effect\n");
861 	(void) fprintf(stderr, "        -v --verbose                 "
862 	    "verbose (applies to all others)\n");
863 	(void) fprintf(stderr, "        -y --livelist                "
864 	    "perform livelist and metaslab validation on any livelists being "
865 	    "deleted\n\n");
866 	(void) fprintf(stderr, "    Below options are intended for use "
867 	    "with other options:\n");
868 	(void) fprintf(stderr, "        -A --ignore-assertions       "
869 	    "ignore assertions (-A), enable panic recovery (-AA) or both "
870 	    "(-AAA)\n");
871 	(void) fprintf(stderr, "        -e --exported                "
872 	    "pool is exported/destroyed/has altroot/not in a cachefile\n");
873 	(void) fprintf(stderr, "        -F --automatic-rewind        "
874 	    "attempt automatic rewind within safe range of transaction "
875 	    "groups\n");
876 	(void) fprintf(stderr, "        -G --dump-debug-msg          "
877 	    "dump zfs_dbgmsg buffer before exiting\n");
878 	(void) fprintf(stderr, "        -I --inflight=INTEGER        "
879 	    "specify the maximum number of checksumming I/Os "
880 	    "[default is 200]\n");
881 	(void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
882 	    "set global variable to an unsigned 32-bit integer\n");
883 	(void) fprintf(stderr, "        -p --path==PATH              "
884 	    "use one or more with -e to specify path to vdev dir\n");
885 	(void) fprintf(stderr, "        -P --parseable               "
886 	    "print numbers in parseable form\n");
887 	(void) fprintf(stderr, "        -q --skip-label              "
888 	    "don't print label contents\n");
889 	(void) fprintf(stderr, "        -t --txg=INTEGER             "
890 	    "highest txg to use when searching for uberblocks\n");
891 	(void) fprintf(stderr, "        -u --uberblock               "
892 	    "uberblock\n");
893 	(void) fprintf(stderr, "        -U --cachefile=PATH          "
894 	    "use alternate cachefile\n");
895 	(void) fprintf(stderr, "        -V --verbatim                "
896 	    "do verbatim import\n");
897 	(void) fprintf(stderr, "        -x --dump-blocks=PATH        "
898 	    "dump all read blocks into specified directory\n");
899 	(void) fprintf(stderr, "        -X --extreme-rewind          "
900 	    "attempt extreme rewind (does not work with dataset)\n");
901 	(void) fprintf(stderr, "        -Y --all-reconstruction      "
902 	    "attempt all reconstruction combinations for split blocks\n");
903 	(void) fprintf(stderr, "        -Z --zstd-headers            "
904 	    "show ZSTD headers \n");
905 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
906 	    "to make only that option verbose\n");
907 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
908 	exit(1);
909 }
910 
911 static void
912 dump_debug_buffer(void)
913 {
914 	if (dump_opt['G']) {
915 		(void) printf("\n");
916 		(void) fflush(stdout);
917 		zfs_dbgmsg_print("zdb");
918 	}
919 }
920 
921 /*
922  * Called for usage errors that are discovered after a call to spa_open(),
923  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
924  */
925 
926 static void
927 fatal(const char *fmt, ...)
928 {
929 	va_list ap;
930 
931 	va_start(ap, fmt);
932 	(void) fprintf(stderr, "%s: ", cmdname);
933 	(void) vfprintf(stderr, fmt, ap);
934 	va_end(ap);
935 	(void) fprintf(stderr, "\n");
936 
937 	dump_debug_buffer();
938 
939 	exit(1);
940 }
941 
942 static void
943 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
944 {
945 	(void) size;
946 	nvlist_t *nv;
947 	size_t nvsize = *(uint64_t *)data;
948 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
949 
950 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
951 
952 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
953 
954 	umem_free(packed, nvsize);
955 
956 	dump_nvlist(nv, 8);
957 
958 	nvlist_free(nv);
959 }
960 
961 static void
962 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
963 {
964 	(void) os, (void) object, (void) size;
965 	spa_history_phys_t *shp = data;
966 
967 	if (shp == NULL)
968 		return;
969 
970 	(void) printf("\t\tpool_create_len = %llu\n",
971 	    (u_longlong_t)shp->sh_pool_create_len);
972 	(void) printf("\t\tphys_max_off = %llu\n",
973 	    (u_longlong_t)shp->sh_phys_max_off);
974 	(void) printf("\t\tbof = %llu\n",
975 	    (u_longlong_t)shp->sh_bof);
976 	(void) printf("\t\teof = %llu\n",
977 	    (u_longlong_t)shp->sh_eof);
978 	(void) printf("\t\trecords_lost = %llu\n",
979 	    (u_longlong_t)shp->sh_records_lost);
980 }
981 
982 static void
983 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
984 {
985 	if (dump_opt['P'])
986 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
987 	else
988 		nicenum(num, buf, buflen);
989 }
990 
991 static const char histo_stars[] = "****************************************";
992 static const uint64_t histo_width = sizeof (histo_stars) - 1;
993 
994 static void
995 dump_histogram(const uint64_t *histo, int size, int offset)
996 {
997 	int i;
998 	int minidx = size - 1;
999 	int maxidx = 0;
1000 	uint64_t max = 0;
1001 
1002 	for (i = 0; i < size; i++) {
1003 		if (histo[i] > max)
1004 			max = histo[i];
1005 		if (histo[i] > 0 && i > maxidx)
1006 			maxidx = i;
1007 		if (histo[i] > 0 && i < minidx)
1008 			minidx = i;
1009 	}
1010 
1011 	if (max < histo_width)
1012 		max = histo_width;
1013 
1014 	for (i = minidx; i <= maxidx; i++) {
1015 		(void) printf("\t\t\t%3u: %6llu %s\n",
1016 		    i + offset, (u_longlong_t)histo[i],
1017 		    &histo_stars[(max - histo[i]) * histo_width / max]);
1018 	}
1019 }
1020 
1021 static void
1022 dump_zap_stats(objset_t *os, uint64_t object)
1023 {
1024 	int error;
1025 	zap_stats_t zs;
1026 
1027 	error = zap_get_stats(os, object, &zs);
1028 	if (error)
1029 		return;
1030 
1031 	if (zs.zs_ptrtbl_len == 0) {
1032 		ASSERT(zs.zs_num_blocks == 1);
1033 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1034 		    (u_longlong_t)zs.zs_blocksize,
1035 		    (u_longlong_t)zs.zs_num_entries);
1036 		return;
1037 	}
1038 
1039 	(void) printf("\tFat ZAP stats:\n");
1040 
1041 	(void) printf("\t\tPointer table:\n");
1042 	(void) printf("\t\t\t%llu elements\n",
1043 	    (u_longlong_t)zs.zs_ptrtbl_len);
1044 	(void) printf("\t\t\tzt_blk: %llu\n",
1045 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1046 	(void) printf("\t\t\tzt_numblks: %llu\n",
1047 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1048 	(void) printf("\t\t\tzt_shift: %llu\n",
1049 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1050 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1051 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1052 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1053 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1054 
1055 	(void) printf("\t\tZAP entries: %llu\n",
1056 	    (u_longlong_t)zs.zs_num_entries);
1057 	(void) printf("\t\tLeaf blocks: %llu\n",
1058 	    (u_longlong_t)zs.zs_num_leafs);
1059 	(void) printf("\t\tTotal blocks: %llu\n",
1060 	    (u_longlong_t)zs.zs_num_blocks);
1061 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1062 	    (u_longlong_t)zs.zs_block_type);
1063 	(void) printf("\t\tzap_magic: 0x%llx\n",
1064 	    (u_longlong_t)zs.zs_magic);
1065 	(void) printf("\t\tzap_salt: 0x%llx\n",
1066 	    (u_longlong_t)zs.zs_salt);
1067 
1068 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1069 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1070 
1071 	(void) printf("\t\tBlocks with n*5 entries:\n");
1072 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1073 
1074 	(void) printf("\t\tBlocks n/10 full:\n");
1075 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1076 
1077 	(void) printf("\t\tEntries with n chunks:\n");
1078 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1079 
1080 	(void) printf("\t\tBuckets with n entries:\n");
1081 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1082 }
1083 
1084 static void
1085 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1086 {
1087 	(void) os, (void) object, (void) data, (void) size;
1088 }
1089 
1090 static void
1091 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1092 {
1093 	(void) os, (void) object, (void) data, (void) size;
1094 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1095 }
1096 
1097 static void
1098 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1099 {
1100 	(void) os, (void) object, (void) data, (void) size;
1101 }
1102 
1103 static void
1104 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1105 {
1106 	uint64_t *arr;
1107 	uint64_t oursize;
1108 	if (dump_opt['d'] < 6)
1109 		return;
1110 
1111 	if (data == NULL) {
1112 		dmu_object_info_t doi;
1113 
1114 		VERIFY0(dmu_object_info(os, object, &doi));
1115 		size = doi.doi_max_offset;
1116 		/*
1117 		 * We cap the size at 1 mebibyte here to prevent
1118 		 * allocation failures and nigh-infinite printing if the
1119 		 * object is extremely large.
1120 		 */
1121 		oursize = MIN(size, 1 << 20);
1122 		arr = kmem_alloc(oursize, KM_SLEEP);
1123 
1124 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1125 		if (err != 0) {
1126 			(void) printf("got error %u from dmu_read\n", err);
1127 			kmem_free(arr, oursize);
1128 			return;
1129 		}
1130 	} else {
1131 		/*
1132 		 * Even though the allocation is already done in this code path,
1133 		 * we still cap the size to prevent excessive printing.
1134 		 */
1135 		oursize = MIN(size, 1 << 20);
1136 		arr = data;
1137 	}
1138 
1139 	if (size == 0) {
1140 		if (data == NULL)
1141 			kmem_free(arr, oursize);
1142 		(void) printf("\t\t[]\n");
1143 		return;
1144 	}
1145 
1146 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1147 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1148 		if (i % 4 != 0)
1149 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1150 		else
1151 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1152 	}
1153 	if (oursize != size)
1154 		(void) printf(", ... ");
1155 	(void) printf("]\n");
1156 
1157 	if (data == NULL)
1158 		kmem_free(arr, oursize);
1159 }
1160 
1161 static void
1162 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1163 {
1164 	(void) data, (void) size;
1165 	zap_cursor_t zc;
1166 	zap_attribute_t attr;
1167 	void *prop;
1168 	unsigned i;
1169 
1170 	dump_zap_stats(os, object);
1171 	(void) printf("\n");
1172 
1173 	for (zap_cursor_init(&zc, os, object);
1174 	    zap_cursor_retrieve(&zc, &attr) == 0;
1175 	    zap_cursor_advance(&zc)) {
1176 		(void) printf("\t\t%s = ", attr.za_name);
1177 		if (attr.za_num_integers == 0) {
1178 			(void) printf("\n");
1179 			continue;
1180 		}
1181 		prop = umem_zalloc(attr.za_num_integers *
1182 		    attr.za_integer_length, UMEM_NOFAIL);
1183 		(void) zap_lookup(os, object, attr.za_name,
1184 		    attr.za_integer_length, attr.za_num_integers, prop);
1185 		if (attr.za_integer_length == 1) {
1186 			if (strcmp(attr.za_name,
1187 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1188 			    strcmp(attr.za_name,
1189 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1190 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1191 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1192 			    strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1193 				uint8_t *u8 = prop;
1194 
1195 				for (i = 0; i < attr.za_num_integers; i++) {
1196 					(void) printf("%02x", u8[i]);
1197 				}
1198 			} else {
1199 				(void) printf("%s", (char *)prop);
1200 			}
1201 		} else {
1202 			for (i = 0; i < attr.za_num_integers; i++) {
1203 				switch (attr.za_integer_length) {
1204 				case 2:
1205 					(void) printf("%u ",
1206 					    ((uint16_t *)prop)[i]);
1207 					break;
1208 				case 4:
1209 					(void) printf("%u ",
1210 					    ((uint32_t *)prop)[i]);
1211 					break;
1212 				case 8:
1213 					(void) printf("%lld ",
1214 					    (u_longlong_t)((int64_t *)prop)[i]);
1215 					break;
1216 				}
1217 			}
1218 		}
1219 		(void) printf("\n");
1220 		umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1221 	}
1222 	zap_cursor_fini(&zc);
1223 }
1224 
1225 static void
1226 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1227 {
1228 	bpobj_phys_t *bpop = data;
1229 	uint64_t i;
1230 	char bytes[32], comp[32], uncomp[32];
1231 
1232 	/* make sure the output won't get truncated */
1233 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1234 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1235 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1236 
1237 	if (bpop == NULL)
1238 		return;
1239 
1240 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1241 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1242 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1243 
1244 	(void) printf("\t\tnum_blkptrs = %llu\n",
1245 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1246 	(void) printf("\t\tbytes = %s\n", bytes);
1247 	if (size >= BPOBJ_SIZE_V1) {
1248 		(void) printf("\t\tcomp = %s\n", comp);
1249 		(void) printf("\t\tuncomp = %s\n", uncomp);
1250 	}
1251 	if (size >= BPOBJ_SIZE_V2) {
1252 		(void) printf("\t\tsubobjs = %llu\n",
1253 		    (u_longlong_t)bpop->bpo_subobjs);
1254 		(void) printf("\t\tnum_subobjs = %llu\n",
1255 		    (u_longlong_t)bpop->bpo_num_subobjs);
1256 	}
1257 	if (size >= sizeof (*bpop)) {
1258 		(void) printf("\t\tnum_freed = %llu\n",
1259 		    (u_longlong_t)bpop->bpo_num_freed);
1260 	}
1261 
1262 	if (dump_opt['d'] < 5)
1263 		return;
1264 
1265 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1266 		char blkbuf[BP_SPRINTF_LEN];
1267 		blkptr_t bp;
1268 
1269 		int err = dmu_read(os, object,
1270 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1271 		if (err != 0) {
1272 			(void) printf("got error %u from dmu_read\n", err);
1273 			break;
1274 		}
1275 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1276 		    BP_GET_FREE(&bp));
1277 		(void) printf("\t%s\n", blkbuf);
1278 	}
1279 }
1280 
1281 static void
1282 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1283 {
1284 	(void) data, (void) size;
1285 	dmu_object_info_t doi;
1286 	int64_t i;
1287 
1288 	VERIFY0(dmu_object_info(os, object, &doi));
1289 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1290 
1291 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1292 	if (err != 0) {
1293 		(void) printf("got error %u from dmu_read\n", err);
1294 		kmem_free(subobjs, doi.doi_max_offset);
1295 		return;
1296 	}
1297 
1298 	int64_t last_nonzero = -1;
1299 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1300 		if (subobjs[i] != 0)
1301 			last_nonzero = i;
1302 	}
1303 
1304 	for (i = 0; i <= last_nonzero; i++) {
1305 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1306 	}
1307 	kmem_free(subobjs, doi.doi_max_offset);
1308 }
1309 
1310 static void
1311 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1312 {
1313 	(void) data, (void) size;
1314 	dump_zap_stats(os, object);
1315 	/* contents are printed elsewhere, properly decoded */
1316 }
1317 
1318 static void
1319 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1320 {
1321 	(void) data, (void) size;
1322 	zap_cursor_t zc;
1323 	zap_attribute_t attr;
1324 
1325 	dump_zap_stats(os, object);
1326 	(void) printf("\n");
1327 
1328 	for (zap_cursor_init(&zc, os, object);
1329 	    zap_cursor_retrieve(&zc, &attr) == 0;
1330 	    zap_cursor_advance(&zc)) {
1331 		(void) printf("\t\t%s = ", attr.za_name);
1332 		if (attr.za_num_integers == 0) {
1333 			(void) printf("\n");
1334 			continue;
1335 		}
1336 		(void) printf(" %llx : [%d:%d:%d]\n",
1337 		    (u_longlong_t)attr.za_first_integer,
1338 		    (int)ATTR_LENGTH(attr.za_first_integer),
1339 		    (int)ATTR_BSWAP(attr.za_first_integer),
1340 		    (int)ATTR_NUM(attr.za_first_integer));
1341 	}
1342 	zap_cursor_fini(&zc);
1343 }
1344 
1345 static void
1346 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1347 {
1348 	(void) data, (void) size;
1349 	zap_cursor_t zc;
1350 	zap_attribute_t attr;
1351 	uint16_t *layout_attrs;
1352 	unsigned i;
1353 
1354 	dump_zap_stats(os, object);
1355 	(void) printf("\n");
1356 
1357 	for (zap_cursor_init(&zc, os, object);
1358 	    zap_cursor_retrieve(&zc, &attr) == 0;
1359 	    zap_cursor_advance(&zc)) {
1360 		(void) printf("\t\t%s = [", attr.za_name);
1361 		if (attr.za_num_integers == 0) {
1362 			(void) printf("\n");
1363 			continue;
1364 		}
1365 
1366 		VERIFY(attr.za_integer_length == 2);
1367 		layout_attrs = umem_zalloc(attr.za_num_integers *
1368 		    attr.za_integer_length, UMEM_NOFAIL);
1369 
1370 		VERIFY(zap_lookup(os, object, attr.za_name,
1371 		    attr.za_integer_length,
1372 		    attr.za_num_integers, layout_attrs) == 0);
1373 
1374 		for (i = 0; i != attr.za_num_integers; i++)
1375 			(void) printf(" %d ", (int)layout_attrs[i]);
1376 		(void) printf("]\n");
1377 		umem_free(layout_attrs,
1378 		    attr.za_num_integers * attr.za_integer_length);
1379 	}
1380 	zap_cursor_fini(&zc);
1381 }
1382 
1383 static void
1384 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1385 {
1386 	(void) data, (void) size;
1387 	zap_cursor_t zc;
1388 	zap_attribute_t attr;
1389 	const char *typenames[] = {
1390 		/* 0 */ "not specified",
1391 		/* 1 */ "FIFO",
1392 		/* 2 */ "Character Device",
1393 		/* 3 */ "3 (invalid)",
1394 		/* 4 */ "Directory",
1395 		/* 5 */ "5 (invalid)",
1396 		/* 6 */ "Block Device",
1397 		/* 7 */ "7 (invalid)",
1398 		/* 8 */ "Regular File",
1399 		/* 9 */ "9 (invalid)",
1400 		/* 10 */ "Symbolic Link",
1401 		/* 11 */ "11 (invalid)",
1402 		/* 12 */ "Socket",
1403 		/* 13 */ "Door",
1404 		/* 14 */ "Event Port",
1405 		/* 15 */ "15 (invalid)",
1406 	};
1407 
1408 	dump_zap_stats(os, object);
1409 	(void) printf("\n");
1410 
1411 	for (zap_cursor_init(&zc, os, object);
1412 	    zap_cursor_retrieve(&zc, &attr) == 0;
1413 	    zap_cursor_advance(&zc)) {
1414 		(void) printf("\t\t%s = %lld (type: %s)\n",
1415 		    attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1416 		    typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1417 	}
1418 	zap_cursor_fini(&zc);
1419 }
1420 
1421 static int
1422 get_dtl_refcount(vdev_t *vd)
1423 {
1424 	int refcount = 0;
1425 
1426 	if (vd->vdev_ops->vdev_op_leaf) {
1427 		space_map_t *sm = vd->vdev_dtl_sm;
1428 
1429 		if (sm != NULL &&
1430 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1431 			return (1);
1432 		return (0);
1433 	}
1434 
1435 	for (unsigned c = 0; c < vd->vdev_children; c++)
1436 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1437 	return (refcount);
1438 }
1439 
1440 static int
1441 get_metaslab_refcount(vdev_t *vd)
1442 {
1443 	int refcount = 0;
1444 
1445 	if (vd->vdev_top == vd) {
1446 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1447 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1448 
1449 			if (sm != NULL &&
1450 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1451 				refcount++;
1452 		}
1453 	}
1454 	for (unsigned c = 0; c < vd->vdev_children; c++)
1455 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1456 
1457 	return (refcount);
1458 }
1459 
1460 static int
1461 get_obsolete_refcount(vdev_t *vd)
1462 {
1463 	uint64_t obsolete_sm_object;
1464 	int refcount = 0;
1465 
1466 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1467 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1468 		dmu_object_info_t doi;
1469 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1470 		    obsolete_sm_object, &doi));
1471 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1472 			refcount++;
1473 		}
1474 	} else {
1475 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1476 		ASSERT3U(obsolete_sm_object, ==, 0);
1477 	}
1478 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1479 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1480 	}
1481 
1482 	return (refcount);
1483 }
1484 
1485 static int
1486 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1487 {
1488 	uint64_t prev_obj =
1489 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1490 	if (prev_obj != 0) {
1491 		dmu_object_info_t doi;
1492 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1493 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1494 			return (1);
1495 		}
1496 	}
1497 	return (0);
1498 }
1499 
1500 static int
1501 get_checkpoint_refcount(vdev_t *vd)
1502 {
1503 	int refcount = 0;
1504 
1505 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1506 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1507 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1508 		refcount++;
1509 
1510 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1511 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1512 
1513 	return (refcount);
1514 }
1515 
1516 static int
1517 get_log_spacemap_refcount(spa_t *spa)
1518 {
1519 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1520 }
1521 
1522 static int
1523 verify_spacemap_refcounts(spa_t *spa)
1524 {
1525 	uint64_t expected_refcount = 0;
1526 	uint64_t actual_refcount;
1527 
1528 	(void) feature_get_refcount(spa,
1529 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1530 	    &expected_refcount);
1531 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1532 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1533 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1534 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1535 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1536 	actual_refcount += get_log_spacemap_refcount(spa);
1537 
1538 	if (expected_refcount != actual_refcount) {
1539 		(void) printf("space map refcount mismatch: expected %lld != "
1540 		    "actual %lld\n",
1541 		    (longlong_t)expected_refcount,
1542 		    (longlong_t)actual_refcount);
1543 		return (2);
1544 	}
1545 	return (0);
1546 }
1547 
1548 static void
1549 dump_spacemap(objset_t *os, space_map_t *sm)
1550 {
1551 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1552 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1553 
1554 	if (sm == NULL)
1555 		return;
1556 
1557 	(void) printf("space map object %llu:\n",
1558 	    (longlong_t)sm->sm_object);
1559 	(void) printf("  smp_length = 0x%llx\n",
1560 	    (longlong_t)sm->sm_phys->smp_length);
1561 	(void) printf("  smp_alloc = 0x%llx\n",
1562 	    (longlong_t)sm->sm_phys->smp_alloc);
1563 
1564 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1565 		return;
1566 
1567 	/*
1568 	 * Print out the freelist entries in both encoded and decoded form.
1569 	 */
1570 	uint8_t mapshift = sm->sm_shift;
1571 	int64_t alloc = 0;
1572 	uint64_t word, entry_id = 0;
1573 	for (uint64_t offset = 0; offset < space_map_length(sm);
1574 	    offset += sizeof (word)) {
1575 
1576 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1577 		    sizeof (word), &word, DMU_READ_PREFETCH));
1578 
1579 		if (sm_entry_is_debug(word)) {
1580 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1581 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1582 			if (de_txg == 0) {
1583 				(void) printf(
1584 				    "\t    [%6llu] PADDING\n",
1585 				    (u_longlong_t)entry_id);
1586 			} else {
1587 				(void) printf(
1588 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1589 				    (u_longlong_t)entry_id,
1590 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1591 				    (u_longlong_t)de_txg,
1592 				    (u_longlong_t)de_sync_pass);
1593 			}
1594 			entry_id++;
1595 			continue;
1596 		}
1597 
1598 		uint8_t words;
1599 		char entry_type;
1600 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1601 
1602 		if (sm_entry_is_single_word(word)) {
1603 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1604 			    'A' : 'F';
1605 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1606 			    sm->sm_start;
1607 			entry_run = SM_RUN_DECODE(word) << mapshift;
1608 			words = 1;
1609 		} else {
1610 			/* it is a two-word entry so we read another word */
1611 			ASSERT(sm_entry_is_double_word(word));
1612 
1613 			uint64_t extra_word;
1614 			offset += sizeof (extra_word);
1615 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1616 			    sizeof (extra_word), &extra_word,
1617 			    DMU_READ_PREFETCH));
1618 
1619 			ASSERT3U(offset, <=, space_map_length(sm));
1620 
1621 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1622 			entry_vdev = SM2_VDEV_DECODE(word);
1623 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1624 			    'A' : 'F';
1625 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1626 			    mapshift) + sm->sm_start;
1627 			words = 2;
1628 		}
1629 
1630 		(void) printf("\t    [%6llu]    %c  range:"
1631 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1632 		    (u_longlong_t)entry_id,
1633 		    entry_type, (u_longlong_t)entry_off,
1634 		    (u_longlong_t)(entry_off + entry_run),
1635 		    (u_longlong_t)entry_run,
1636 		    (u_longlong_t)entry_vdev, words);
1637 
1638 		if (entry_type == 'A')
1639 			alloc += entry_run;
1640 		else
1641 			alloc -= entry_run;
1642 		entry_id++;
1643 	}
1644 	if (alloc != space_map_allocated(sm)) {
1645 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1646 		    "with space map summary (%lld)\n",
1647 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1648 	}
1649 }
1650 
1651 static void
1652 dump_metaslab_stats(metaslab_t *msp)
1653 {
1654 	char maxbuf[32];
1655 	range_tree_t *rt = msp->ms_allocatable;
1656 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1657 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1658 
1659 	/* max sure nicenum has enough space */
1660 	_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1661 
1662 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1663 
1664 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1665 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1666 	    "freepct", free_pct);
1667 	(void) printf("\tIn-memory histogram:\n");
1668 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1669 }
1670 
1671 static void
1672 dump_metaslab(metaslab_t *msp)
1673 {
1674 	vdev_t *vd = msp->ms_group->mg_vd;
1675 	spa_t *spa = vd->vdev_spa;
1676 	space_map_t *sm = msp->ms_sm;
1677 	char freebuf[32];
1678 
1679 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1680 	    sizeof (freebuf));
1681 
1682 	(void) printf(
1683 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1684 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1685 	    (u_longlong_t)space_map_object(sm), freebuf);
1686 
1687 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1688 		mutex_enter(&msp->ms_lock);
1689 		VERIFY0(metaslab_load(msp));
1690 		range_tree_stat_verify(msp->ms_allocatable);
1691 		dump_metaslab_stats(msp);
1692 		metaslab_unload(msp);
1693 		mutex_exit(&msp->ms_lock);
1694 	}
1695 
1696 	if (dump_opt['m'] > 1 && sm != NULL &&
1697 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1698 		/*
1699 		 * The space map histogram represents free space in chunks
1700 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1701 		 */
1702 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1703 		    (u_longlong_t)msp->ms_fragmentation);
1704 		dump_histogram(sm->sm_phys->smp_histogram,
1705 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1706 	}
1707 
1708 	if (vd->vdev_ops == &vdev_draid_ops)
1709 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1710 	else
1711 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1712 
1713 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1714 
1715 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1716 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1717 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1718 	}
1719 }
1720 
1721 static void
1722 print_vdev_metaslab_header(vdev_t *vd)
1723 {
1724 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1725 	const char *bias_str = "";
1726 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1727 		bias_str = VDEV_ALLOC_BIAS_LOG;
1728 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1729 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1730 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1731 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1732 	}
1733 
1734 	uint64_t ms_flush_data_obj = 0;
1735 	if (vd->vdev_top_zap != 0) {
1736 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1737 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1738 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1739 		if (error != ENOENT) {
1740 			ASSERT0(error);
1741 		}
1742 	}
1743 
1744 	(void) printf("\tvdev %10llu   %s",
1745 	    (u_longlong_t)vd->vdev_id, bias_str);
1746 
1747 	if (ms_flush_data_obj != 0) {
1748 		(void) printf("   ms_unflushed_phys object %llu",
1749 		    (u_longlong_t)ms_flush_data_obj);
1750 	}
1751 
1752 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1753 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1754 	    "offset", "spacemap", "free");
1755 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1756 	    "---------------", "-------------------",
1757 	    "---------------", "------------");
1758 }
1759 
1760 static void
1761 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1762 {
1763 	vdev_t *rvd = spa->spa_root_vdev;
1764 	metaslab_class_t *mc = spa_normal_class(spa);
1765 	metaslab_class_t *smc = spa_special_class(spa);
1766 	uint64_t fragmentation;
1767 
1768 	metaslab_class_histogram_verify(mc);
1769 
1770 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1771 		vdev_t *tvd = rvd->vdev_child[c];
1772 		metaslab_group_t *mg = tvd->vdev_mg;
1773 
1774 		if (mg == NULL || (mg->mg_class != mc &&
1775 		    (!show_special || mg->mg_class != smc)))
1776 			continue;
1777 
1778 		metaslab_group_histogram_verify(mg);
1779 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1780 
1781 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1782 		    "fragmentation",
1783 		    (u_longlong_t)tvd->vdev_id,
1784 		    (u_longlong_t)tvd->vdev_ms_count);
1785 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1786 			(void) printf("%3s\n", "-");
1787 		} else {
1788 			(void) printf("%3llu%%\n",
1789 			    (u_longlong_t)mg->mg_fragmentation);
1790 		}
1791 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1792 	}
1793 
1794 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1795 	fragmentation = metaslab_class_fragmentation(mc);
1796 	if (fragmentation == ZFS_FRAG_INVALID)
1797 		(void) printf("\t%3s\n", "-");
1798 	else
1799 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1800 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1801 }
1802 
1803 static void
1804 print_vdev_indirect(vdev_t *vd)
1805 {
1806 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1807 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1808 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1809 
1810 	if (vim == NULL) {
1811 		ASSERT3P(vib, ==, NULL);
1812 		return;
1813 	}
1814 
1815 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1816 	    vic->vic_mapping_object);
1817 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1818 	    vic->vic_births_object);
1819 
1820 	(void) printf("indirect births obj %llu:\n",
1821 	    (longlong_t)vic->vic_births_object);
1822 	(void) printf("    vib_count = %llu\n",
1823 	    (longlong_t)vdev_indirect_births_count(vib));
1824 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1825 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1826 		    &vib->vib_entries[i];
1827 		(void) printf("\toffset %llx -> txg %llu\n",
1828 		    (longlong_t)cur_vibe->vibe_offset,
1829 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1830 	}
1831 	(void) printf("\n");
1832 
1833 	(void) printf("indirect mapping obj %llu:\n",
1834 	    (longlong_t)vic->vic_mapping_object);
1835 	(void) printf("    vim_max_offset = 0x%llx\n",
1836 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1837 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1838 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1839 	(void) printf("    vim_count = %llu\n",
1840 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1841 
1842 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1843 		return;
1844 
1845 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1846 
1847 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1848 		vdev_indirect_mapping_entry_phys_t *vimep =
1849 		    &vim->vim_entries[i];
1850 		(void) printf("\t<%llx:%llx:%llx> -> "
1851 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1852 		    (longlong_t)vd->vdev_id,
1853 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1854 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1855 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1856 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1857 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1858 		    counts[i]);
1859 	}
1860 	(void) printf("\n");
1861 
1862 	uint64_t obsolete_sm_object;
1863 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1864 	if (obsolete_sm_object != 0) {
1865 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1866 		(void) printf("obsolete space map object %llu:\n",
1867 		    (u_longlong_t)obsolete_sm_object);
1868 		ASSERT(vd->vdev_obsolete_sm != NULL);
1869 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1870 		    obsolete_sm_object);
1871 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1872 		(void) printf("\n");
1873 	}
1874 }
1875 
1876 static void
1877 dump_metaslabs(spa_t *spa)
1878 {
1879 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1880 	uint64_t m, c = 0, children = rvd->vdev_children;
1881 
1882 	(void) printf("\nMetaslabs:\n");
1883 
1884 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1885 		c = zopt_metaslab[0];
1886 
1887 		if (c >= children)
1888 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1889 
1890 		if (zopt_metaslab_args > 1) {
1891 			vd = rvd->vdev_child[c];
1892 			print_vdev_metaslab_header(vd);
1893 
1894 			for (m = 1; m < zopt_metaslab_args; m++) {
1895 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1896 					dump_metaslab(
1897 					    vd->vdev_ms[zopt_metaslab[m]]);
1898 				else
1899 					(void) fprintf(stderr, "bad metaslab "
1900 					    "number %llu\n",
1901 					    (u_longlong_t)zopt_metaslab[m]);
1902 			}
1903 			(void) printf("\n");
1904 			return;
1905 		}
1906 		children = c + 1;
1907 	}
1908 	for (; c < children; c++) {
1909 		vd = rvd->vdev_child[c];
1910 		print_vdev_metaslab_header(vd);
1911 
1912 		print_vdev_indirect(vd);
1913 
1914 		for (m = 0; m < vd->vdev_ms_count; m++)
1915 			dump_metaslab(vd->vdev_ms[m]);
1916 		(void) printf("\n");
1917 	}
1918 }
1919 
1920 static void
1921 dump_log_spacemaps(spa_t *spa)
1922 {
1923 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1924 		return;
1925 
1926 	(void) printf("\nLog Space Maps in Pool:\n");
1927 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1928 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1929 		space_map_t *sm = NULL;
1930 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1931 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1932 
1933 		(void) printf("Log Spacemap object %llu txg %llu\n",
1934 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1935 		dump_spacemap(spa->spa_meta_objset, sm);
1936 		space_map_close(sm);
1937 	}
1938 	(void) printf("\n");
1939 }
1940 
1941 static void
1942 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1943 {
1944 	const ddt_phys_t *ddp = dde->dde_phys;
1945 	const ddt_key_t *ddk = &dde->dde_key;
1946 	const char *types[4] = { "ditto", "single", "double", "triple" };
1947 	char blkbuf[BP_SPRINTF_LEN];
1948 	blkptr_t blk;
1949 	int p;
1950 
1951 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1952 		if (ddp->ddp_phys_birth == 0)
1953 			continue;
1954 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1955 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1956 		(void) printf("index %llx refcnt %llu %s %s\n",
1957 		    (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1958 		    types[p], blkbuf);
1959 	}
1960 }
1961 
1962 static void
1963 dump_dedup_ratio(const ddt_stat_t *dds)
1964 {
1965 	double rL, rP, rD, D, dedup, compress, copies;
1966 
1967 	if (dds->dds_blocks == 0)
1968 		return;
1969 
1970 	rL = (double)dds->dds_ref_lsize;
1971 	rP = (double)dds->dds_ref_psize;
1972 	rD = (double)dds->dds_ref_dsize;
1973 	D = (double)dds->dds_dsize;
1974 
1975 	dedup = rD / D;
1976 	compress = rL / rP;
1977 	copies = rD / rP;
1978 
1979 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1980 	    "dedup * compress / copies = %.2f\n\n",
1981 	    dedup, compress, copies, dedup * compress / copies);
1982 }
1983 
1984 static void
1985 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
1986 {
1987 	char name[DDT_NAMELEN];
1988 	ddt_entry_t dde;
1989 	uint64_t walk = 0;
1990 	dmu_object_info_t doi;
1991 	uint64_t count, dspace, mspace;
1992 	int error;
1993 
1994 	error = ddt_object_info(ddt, type, class, &doi);
1995 
1996 	if (error == ENOENT)
1997 		return;
1998 	ASSERT(error == 0);
1999 
2000 	error = ddt_object_count(ddt, type, class, &count);
2001 	ASSERT(error == 0);
2002 	if (count == 0)
2003 		return;
2004 
2005 	dspace = doi.doi_physical_blocks_512 << 9;
2006 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
2007 
2008 	ddt_object_name(ddt, type, class, name);
2009 
2010 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2011 	    name,
2012 	    (u_longlong_t)count,
2013 	    (u_longlong_t)(dspace / count),
2014 	    (u_longlong_t)(mspace / count));
2015 
2016 	if (dump_opt['D'] < 3)
2017 		return;
2018 
2019 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2020 
2021 	if (dump_opt['D'] < 4)
2022 		return;
2023 
2024 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2025 		return;
2026 
2027 	(void) printf("%s contents:\n\n", name);
2028 
2029 	while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2030 		dump_dde(ddt, &dde, walk);
2031 
2032 	ASSERT3U(error, ==, ENOENT);
2033 
2034 	(void) printf("\n");
2035 }
2036 
2037 static void
2038 dump_all_ddts(spa_t *spa)
2039 {
2040 	ddt_histogram_t ddh_total = {{{0}}};
2041 	ddt_stat_t dds_total = {0};
2042 
2043 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2044 		ddt_t *ddt = spa->spa_ddt[c];
2045 		for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2046 			for (enum ddt_class class = 0; class < DDT_CLASSES;
2047 			    class++) {
2048 				dump_ddt(ddt, type, class);
2049 			}
2050 		}
2051 	}
2052 
2053 	ddt_get_dedup_stats(spa, &dds_total);
2054 
2055 	if (dds_total.dds_blocks == 0) {
2056 		(void) printf("All DDTs are empty\n");
2057 		return;
2058 	}
2059 
2060 	(void) printf("\n");
2061 
2062 	if (dump_opt['D'] > 1) {
2063 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2064 		ddt_get_dedup_histogram(spa, &ddh_total);
2065 		zpool_dump_ddt(&dds_total, &ddh_total);
2066 	}
2067 
2068 	dump_dedup_ratio(&dds_total);
2069 }
2070 
2071 static void
2072 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2073 {
2074 	char *prefix = arg;
2075 
2076 	(void) printf("%s [%llu,%llu) length %llu\n",
2077 	    prefix,
2078 	    (u_longlong_t)start,
2079 	    (u_longlong_t)(start + size),
2080 	    (u_longlong_t)(size));
2081 }
2082 
2083 static void
2084 dump_dtl(vdev_t *vd, int indent)
2085 {
2086 	spa_t *spa = vd->vdev_spa;
2087 	boolean_t required;
2088 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2089 		"outage" };
2090 	char prefix[256];
2091 
2092 	spa_vdev_state_enter(spa, SCL_NONE);
2093 	required = vdev_dtl_required(vd);
2094 	(void) spa_vdev_state_exit(spa, NULL, 0);
2095 
2096 	if (indent == 0)
2097 		(void) printf("\nDirty time logs:\n\n");
2098 
2099 	(void) printf("\t%*s%s [%s]\n", indent, "",
2100 	    vd->vdev_path ? vd->vdev_path :
2101 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2102 	    required ? "DTL-required" : "DTL-expendable");
2103 
2104 	for (int t = 0; t < DTL_TYPES; t++) {
2105 		range_tree_t *rt = vd->vdev_dtl[t];
2106 		if (range_tree_space(rt) == 0)
2107 			continue;
2108 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2109 		    indent + 2, "", name[t]);
2110 		range_tree_walk(rt, dump_dtl_seg, prefix);
2111 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2112 			dump_spacemap(spa->spa_meta_objset,
2113 			    vd->vdev_dtl_sm);
2114 	}
2115 
2116 	for (unsigned c = 0; c < vd->vdev_children; c++)
2117 		dump_dtl(vd->vdev_child[c], indent + 4);
2118 }
2119 
2120 static void
2121 dump_history(spa_t *spa)
2122 {
2123 	nvlist_t **events = NULL;
2124 	char *buf;
2125 	uint64_t resid, len, off = 0;
2126 	uint_t num = 0;
2127 	int error;
2128 	char tbuf[30];
2129 
2130 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2131 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2132 		    __func__);
2133 		return;
2134 	}
2135 
2136 	do {
2137 		len = SPA_OLD_MAXBLOCKSIZE;
2138 
2139 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2140 			(void) fprintf(stderr, "Unable to read history: "
2141 			    "error %d\n", error);
2142 			free(buf);
2143 			return;
2144 		}
2145 
2146 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2147 			break;
2148 
2149 		off -= resid;
2150 	} while (len != 0);
2151 
2152 	(void) printf("\nHistory:\n");
2153 	for (unsigned i = 0; i < num; i++) {
2154 		boolean_t printed = B_FALSE;
2155 
2156 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2157 			time_t tsec;
2158 			struct tm t;
2159 
2160 			tsec = fnvlist_lookup_uint64(events[i],
2161 			    ZPOOL_HIST_TIME);
2162 			(void) localtime_r(&tsec, &t);
2163 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2164 		} else {
2165 			tbuf[0] = '\0';
2166 		}
2167 
2168 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2169 			(void) printf("%s %s\n", tbuf,
2170 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2171 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2172 			uint64_t ievent;
2173 
2174 			ievent = fnvlist_lookup_uint64(events[i],
2175 			    ZPOOL_HIST_INT_EVENT);
2176 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2177 				goto next;
2178 
2179 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2180 			    tbuf,
2181 			    zfs_history_event_names[ievent],
2182 			    fnvlist_lookup_uint64(events[i],
2183 			    ZPOOL_HIST_TXG),
2184 			    fnvlist_lookup_string(events[i],
2185 			    ZPOOL_HIST_INT_STR));
2186 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2187 			(void) printf("%s [txg:%ju] %s", tbuf,
2188 			    fnvlist_lookup_uint64(events[i],
2189 			    ZPOOL_HIST_TXG),
2190 			    fnvlist_lookup_string(events[i],
2191 			    ZPOOL_HIST_INT_NAME));
2192 
2193 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2194 				(void) printf(" %s (%llu)",
2195 				    fnvlist_lookup_string(events[i],
2196 				    ZPOOL_HIST_DSNAME),
2197 				    (u_longlong_t)fnvlist_lookup_uint64(
2198 				    events[i],
2199 				    ZPOOL_HIST_DSID));
2200 			}
2201 
2202 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2203 			    ZPOOL_HIST_INT_STR));
2204 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2205 			(void) printf("%s ioctl %s\n", tbuf,
2206 			    fnvlist_lookup_string(events[i],
2207 			    ZPOOL_HIST_IOCTL));
2208 
2209 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2210 				(void) printf("    input:\n");
2211 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2212 				    ZPOOL_HIST_INPUT_NVL), 8);
2213 			}
2214 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2215 				(void) printf("    output:\n");
2216 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2217 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2218 			}
2219 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2220 				(void) printf("    errno: %lld\n",
2221 				    (longlong_t)fnvlist_lookup_int64(events[i],
2222 				    ZPOOL_HIST_ERRNO));
2223 			}
2224 		} else {
2225 			goto next;
2226 		}
2227 
2228 		printed = B_TRUE;
2229 next:
2230 		if (dump_opt['h'] > 1) {
2231 			if (!printed)
2232 				(void) printf("unrecognized record:\n");
2233 			dump_nvlist(events[i], 2);
2234 		}
2235 	}
2236 	free(buf);
2237 }
2238 
2239 static void
2240 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2241 {
2242 	(void) os, (void) object, (void) data, (void) size;
2243 }
2244 
2245 static uint64_t
2246 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2247     const zbookmark_phys_t *zb)
2248 {
2249 	if (dnp == NULL) {
2250 		ASSERT(zb->zb_level < 0);
2251 		if (zb->zb_object == 0)
2252 			return (zb->zb_blkid);
2253 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2254 	}
2255 
2256 	ASSERT(zb->zb_level >= 0);
2257 
2258 	return ((zb->zb_blkid <<
2259 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2260 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2261 }
2262 
2263 static void
2264 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2265     const blkptr_t *bp)
2266 {
2267 	abd_t *pabd;
2268 	void *buf;
2269 	zio_t *zio;
2270 	zfs_zstdhdr_t zstd_hdr;
2271 	int error;
2272 
2273 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2274 		return;
2275 
2276 	if (BP_IS_HOLE(bp))
2277 		return;
2278 
2279 	if (BP_IS_EMBEDDED(bp)) {
2280 		buf = malloc(SPA_MAXBLOCKSIZE);
2281 		if (buf == NULL) {
2282 			(void) fprintf(stderr, "out of memory\n");
2283 			exit(1);
2284 		}
2285 		decode_embedded_bp_compressed(bp, buf);
2286 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2287 		free(buf);
2288 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2289 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2290 		(void) snprintf(blkbuf + strlen(blkbuf),
2291 		    buflen - strlen(blkbuf),
2292 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2293 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2294 		    zfs_get_hdrlevel(&zstd_hdr));
2295 		return;
2296 	}
2297 
2298 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2299 	zio = zio_root(spa, NULL, NULL, 0);
2300 
2301 	/* Decrypt but don't decompress so we can read the compression header */
2302 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2303 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2304 	    NULL));
2305 	error = zio_wait(zio);
2306 	if (error) {
2307 		(void) fprintf(stderr, "read failed: %d\n", error);
2308 		return;
2309 	}
2310 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2311 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2312 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2313 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2314 
2315 	(void) snprintf(blkbuf + strlen(blkbuf),
2316 	    buflen - strlen(blkbuf),
2317 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2318 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2319 	    zfs_get_hdrlevel(&zstd_hdr));
2320 
2321 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2322 }
2323 
2324 static void
2325 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2326     boolean_t bp_freed)
2327 {
2328 	const dva_t *dva = bp->blk_dva;
2329 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2330 	int i;
2331 
2332 	if (dump_opt['b'] >= 6) {
2333 		snprintf_blkptr(blkbuf, buflen, bp);
2334 		if (bp_freed) {
2335 			(void) snprintf(blkbuf + strlen(blkbuf),
2336 			    buflen - strlen(blkbuf), " %s", "FREE");
2337 		}
2338 		return;
2339 	}
2340 
2341 	if (BP_IS_EMBEDDED(bp)) {
2342 		(void) sprintf(blkbuf,
2343 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2344 		    (int)BPE_GET_ETYPE(bp),
2345 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2346 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2347 		    (u_longlong_t)bp->blk_birth);
2348 		return;
2349 	}
2350 
2351 	blkbuf[0] = '\0';
2352 
2353 	for (i = 0; i < ndvas; i++)
2354 		(void) snprintf(blkbuf + strlen(blkbuf),
2355 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2356 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2357 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2358 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2359 
2360 	if (BP_IS_HOLE(bp)) {
2361 		(void) snprintf(blkbuf + strlen(blkbuf),
2362 		    buflen - strlen(blkbuf),
2363 		    "%llxL B=%llu",
2364 		    (u_longlong_t)BP_GET_LSIZE(bp),
2365 		    (u_longlong_t)bp->blk_birth);
2366 	} else {
2367 		(void) snprintf(blkbuf + strlen(blkbuf),
2368 		    buflen - strlen(blkbuf),
2369 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2370 		    (u_longlong_t)BP_GET_LSIZE(bp),
2371 		    (u_longlong_t)BP_GET_PSIZE(bp),
2372 		    (u_longlong_t)BP_GET_FILL(bp),
2373 		    (u_longlong_t)bp->blk_birth,
2374 		    (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2375 		if (bp_freed)
2376 			(void) snprintf(blkbuf + strlen(blkbuf),
2377 			    buflen - strlen(blkbuf), " %s", "FREE");
2378 		(void) snprintf(blkbuf + strlen(blkbuf),
2379 		    buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx",
2380 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2381 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2382 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2383 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2384 	}
2385 }
2386 
2387 static void
2388 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2389     const dnode_phys_t *dnp)
2390 {
2391 	char blkbuf[BP_SPRINTF_LEN];
2392 	int l;
2393 
2394 	if (!BP_IS_EMBEDDED(bp)) {
2395 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2396 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2397 	}
2398 
2399 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2400 
2401 	ASSERT(zb->zb_level >= 0);
2402 
2403 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2404 		if (l == zb->zb_level) {
2405 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2406 		} else {
2407 			(void) printf(" ");
2408 		}
2409 	}
2410 
2411 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2412 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2413 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2414 	(void) printf("%s\n", blkbuf);
2415 }
2416 
2417 static int
2418 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2419     blkptr_t *bp, const zbookmark_phys_t *zb)
2420 {
2421 	int err = 0;
2422 
2423 	if (bp->blk_birth == 0)
2424 		return (0);
2425 
2426 	print_indirect(spa, bp, zb, dnp);
2427 
2428 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2429 		arc_flags_t flags = ARC_FLAG_WAIT;
2430 		int i;
2431 		blkptr_t *cbp;
2432 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2433 		arc_buf_t *buf;
2434 		uint64_t fill = 0;
2435 		ASSERT(!BP_IS_REDACTED(bp));
2436 
2437 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2438 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2439 		if (err)
2440 			return (err);
2441 		ASSERT(buf->b_data);
2442 
2443 		/* recursively visit blocks below this */
2444 		cbp = buf->b_data;
2445 		for (i = 0; i < epb; i++, cbp++) {
2446 			zbookmark_phys_t czb;
2447 
2448 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2449 			    zb->zb_level - 1,
2450 			    zb->zb_blkid * epb + i);
2451 			err = visit_indirect(spa, dnp, cbp, &czb);
2452 			if (err)
2453 				break;
2454 			fill += BP_GET_FILL(cbp);
2455 		}
2456 		if (!err)
2457 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2458 		arc_buf_destroy(buf, &buf);
2459 	}
2460 
2461 	return (err);
2462 }
2463 
2464 static void
2465 dump_indirect(dnode_t *dn)
2466 {
2467 	dnode_phys_t *dnp = dn->dn_phys;
2468 	zbookmark_phys_t czb;
2469 
2470 	(void) printf("Indirect blocks:\n");
2471 
2472 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2473 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2474 	for (int j = 0; j < dnp->dn_nblkptr; j++) {
2475 		czb.zb_blkid = j;
2476 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2477 		    &dnp->dn_blkptr[j], &czb);
2478 	}
2479 
2480 	(void) printf("\n");
2481 }
2482 
2483 static void
2484 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2485 {
2486 	(void) os, (void) object;
2487 	dsl_dir_phys_t *dd = data;
2488 	time_t crtime;
2489 	char nice[32];
2490 
2491 	/* make sure nicenum has enough space */
2492 	_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2493 
2494 	if (dd == NULL)
2495 		return;
2496 
2497 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2498 
2499 	crtime = dd->dd_creation_time;
2500 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2501 	(void) printf("\t\thead_dataset_obj = %llu\n",
2502 	    (u_longlong_t)dd->dd_head_dataset_obj);
2503 	(void) printf("\t\tparent_dir_obj = %llu\n",
2504 	    (u_longlong_t)dd->dd_parent_obj);
2505 	(void) printf("\t\torigin_obj = %llu\n",
2506 	    (u_longlong_t)dd->dd_origin_obj);
2507 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2508 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2509 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2510 	(void) printf("\t\tused_bytes = %s\n", nice);
2511 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2512 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2513 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2514 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2515 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2516 	(void) printf("\t\tquota = %s\n", nice);
2517 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2518 	(void) printf("\t\treserved = %s\n", nice);
2519 	(void) printf("\t\tprops_zapobj = %llu\n",
2520 	    (u_longlong_t)dd->dd_props_zapobj);
2521 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2522 	    (u_longlong_t)dd->dd_deleg_zapobj);
2523 	(void) printf("\t\tflags = %llx\n",
2524 	    (u_longlong_t)dd->dd_flags);
2525 
2526 #define	DO(which) \
2527 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2528 	    sizeof (nice)); \
2529 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2530 	DO(HEAD);
2531 	DO(SNAP);
2532 	DO(CHILD);
2533 	DO(CHILD_RSRV);
2534 	DO(REFRSRV);
2535 #undef DO
2536 	(void) printf("\t\tclones = %llu\n",
2537 	    (u_longlong_t)dd->dd_clones);
2538 }
2539 
2540 static void
2541 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2542 {
2543 	(void) os, (void) object;
2544 	dsl_dataset_phys_t *ds = data;
2545 	time_t crtime;
2546 	char used[32], compressed[32], uncompressed[32], unique[32];
2547 	char blkbuf[BP_SPRINTF_LEN];
2548 
2549 	/* make sure nicenum has enough space */
2550 	_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2551 	_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2552 	    "compressed truncated");
2553 	_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2554 	    "uncompressed truncated");
2555 	_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2556 
2557 	if (ds == NULL)
2558 		return;
2559 
2560 	ASSERT(size == sizeof (*ds));
2561 	crtime = ds->ds_creation_time;
2562 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2563 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2564 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2565 	    sizeof (uncompressed));
2566 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2567 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2568 
2569 	(void) printf("\t\tdir_obj = %llu\n",
2570 	    (u_longlong_t)ds->ds_dir_obj);
2571 	(void) printf("\t\tprev_snap_obj = %llu\n",
2572 	    (u_longlong_t)ds->ds_prev_snap_obj);
2573 	(void) printf("\t\tprev_snap_txg = %llu\n",
2574 	    (u_longlong_t)ds->ds_prev_snap_txg);
2575 	(void) printf("\t\tnext_snap_obj = %llu\n",
2576 	    (u_longlong_t)ds->ds_next_snap_obj);
2577 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2578 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2579 	(void) printf("\t\tnum_children = %llu\n",
2580 	    (u_longlong_t)ds->ds_num_children);
2581 	(void) printf("\t\tuserrefs_obj = %llu\n",
2582 	    (u_longlong_t)ds->ds_userrefs_obj);
2583 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2584 	(void) printf("\t\tcreation_txg = %llu\n",
2585 	    (u_longlong_t)ds->ds_creation_txg);
2586 	(void) printf("\t\tdeadlist_obj = %llu\n",
2587 	    (u_longlong_t)ds->ds_deadlist_obj);
2588 	(void) printf("\t\tused_bytes = %s\n", used);
2589 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2590 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2591 	(void) printf("\t\tunique = %s\n", unique);
2592 	(void) printf("\t\tfsid_guid = %llu\n",
2593 	    (u_longlong_t)ds->ds_fsid_guid);
2594 	(void) printf("\t\tguid = %llu\n",
2595 	    (u_longlong_t)ds->ds_guid);
2596 	(void) printf("\t\tflags = %llx\n",
2597 	    (u_longlong_t)ds->ds_flags);
2598 	(void) printf("\t\tnext_clones_obj = %llu\n",
2599 	    (u_longlong_t)ds->ds_next_clones_obj);
2600 	(void) printf("\t\tprops_obj = %llu\n",
2601 	    (u_longlong_t)ds->ds_props_obj);
2602 	(void) printf("\t\tbp = %s\n", blkbuf);
2603 }
2604 
2605 static int
2606 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2607 {
2608 	(void) arg, (void) tx;
2609 	char blkbuf[BP_SPRINTF_LEN];
2610 
2611 	if (bp->blk_birth != 0) {
2612 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2613 		(void) printf("\t%s\n", blkbuf);
2614 	}
2615 	return (0);
2616 }
2617 
2618 static void
2619 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2620 {
2621 	char bytes[32];
2622 	bptree_phys_t *bt;
2623 	dmu_buf_t *db;
2624 
2625 	/* make sure nicenum has enough space */
2626 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2627 
2628 	if (dump_opt['d'] < 3)
2629 		return;
2630 
2631 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2632 	bt = db->db_data;
2633 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2634 	(void) printf("\n    %s: %llu datasets, %s\n",
2635 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2636 	dmu_buf_rele(db, FTAG);
2637 
2638 	if (dump_opt['d'] < 5)
2639 		return;
2640 
2641 	(void) printf("\n");
2642 
2643 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2644 }
2645 
2646 static int
2647 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2648 {
2649 	(void) arg, (void) tx;
2650 	char blkbuf[BP_SPRINTF_LEN];
2651 
2652 	ASSERT(bp->blk_birth != 0);
2653 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2654 	(void) printf("\t%s\n", blkbuf);
2655 	return (0);
2656 }
2657 
2658 static void
2659 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2660 {
2661 	char bytes[32];
2662 	char comp[32];
2663 	char uncomp[32];
2664 	uint64_t i;
2665 
2666 	/* make sure nicenum has enough space */
2667 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2668 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2669 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2670 
2671 	if (dump_opt['d'] < 3)
2672 		return;
2673 
2674 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2675 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2676 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2677 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2678 		if (bpo->bpo_havefreed) {
2679 			(void) printf("    %*s: object %llu, %llu local "
2680 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2681 			    "%s (%s/%s comp)\n",
2682 			    indent * 8, name,
2683 			    (u_longlong_t)bpo->bpo_object,
2684 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2685 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2686 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2687 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2688 			    bytes, comp, uncomp);
2689 		} else {
2690 			(void) printf("    %*s: object %llu, %llu local "
2691 			    "blkptrs, %llu subobjs in object %llu, "
2692 			    "%s (%s/%s comp)\n",
2693 			    indent * 8, name,
2694 			    (u_longlong_t)bpo->bpo_object,
2695 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2696 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2697 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2698 			    bytes, comp, uncomp);
2699 		}
2700 
2701 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2702 			uint64_t subobj;
2703 			bpobj_t subbpo;
2704 			int error;
2705 			VERIFY0(dmu_read(bpo->bpo_os,
2706 			    bpo->bpo_phys->bpo_subobjs,
2707 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2708 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2709 			if (error != 0) {
2710 				(void) printf("ERROR %u while trying to open "
2711 				    "subobj id %llu\n",
2712 				    error, (u_longlong_t)subobj);
2713 				continue;
2714 			}
2715 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2716 			bpobj_close(&subbpo);
2717 		}
2718 	} else {
2719 		if (bpo->bpo_havefreed) {
2720 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2721 			    "%llu freed, %s\n",
2722 			    indent * 8, name,
2723 			    (u_longlong_t)bpo->bpo_object,
2724 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2725 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2726 			    bytes);
2727 		} else {
2728 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2729 			    "%s\n",
2730 			    indent * 8, name,
2731 			    (u_longlong_t)bpo->bpo_object,
2732 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2733 			    bytes);
2734 		}
2735 	}
2736 
2737 	if (dump_opt['d'] < 5)
2738 		return;
2739 
2740 
2741 	if (indent == 0) {
2742 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2743 		(void) printf("\n");
2744 	}
2745 }
2746 
2747 static int
2748 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2749     boolean_t print_list)
2750 {
2751 	int err = 0;
2752 	zfs_bookmark_phys_t prop;
2753 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2754 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2755 
2756 	if (err != 0) {
2757 		return (err);
2758 	}
2759 
2760 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2761 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2762 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2763 	    (u_longlong_t)prop.zbm_creation_txg,
2764 	    (u_longlong_t)prop.zbm_creation_time,
2765 	    (u_longlong_t)prop.zbm_redaction_obj);
2766 
2767 	IMPLY(print_list, print_redact);
2768 	if (!print_redact || prop.zbm_redaction_obj == 0)
2769 		return (0);
2770 
2771 	redaction_list_t *rl;
2772 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2773 	    prop.zbm_redaction_obj, FTAG, &rl));
2774 
2775 	redaction_list_phys_t *rlp = rl->rl_phys;
2776 	(void) printf("\tRedacted:\n\t\tProgress: ");
2777 	if (rlp->rlp_last_object != UINT64_MAX ||
2778 	    rlp->rlp_last_blkid != UINT64_MAX) {
2779 		(void) printf("%llu %llu (incomplete)\n",
2780 		    (u_longlong_t)rlp->rlp_last_object,
2781 		    (u_longlong_t)rlp->rlp_last_blkid);
2782 	} else {
2783 		(void) printf("complete\n");
2784 	}
2785 	(void) printf("\t\tSnapshots: [");
2786 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2787 		if (i > 0)
2788 			(void) printf(", ");
2789 		(void) printf("%0llu",
2790 		    (u_longlong_t)rlp->rlp_snaps[i]);
2791 	}
2792 	(void) printf("]\n\t\tLength: %llu\n",
2793 	    (u_longlong_t)rlp->rlp_num_entries);
2794 
2795 	if (!print_list) {
2796 		dsl_redaction_list_rele(rl, FTAG);
2797 		return (0);
2798 	}
2799 
2800 	if (rlp->rlp_num_entries == 0) {
2801 		dsl_redaction_list_rele(rl, FTAG);
2802 		(void) printf("\t\tRedaction List: []\n\n");
2803 		return (0);
2804 	}
2805 
2806 	redact_block_phys_t *rbp_buf;
2807 	uint64_t size;
2808 	dmu_object_info_t doi;
2809 
2810 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2811 	size = doi.doi_max_offset;
2812 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2813 
2814 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2815 	    rbp_buf, 0);
2816 	if (err != 0) {
2817 		dsl_redaction_list_rele(rl, FTAG);
2818 		kmem_free(rbp_buf, size);
2819 		return (err);
2820 	}
2821 
2822 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2823 	    "%llx, blksz: %x, count: %llx}",
2824 	    (u_longlong_t)rbp_buf[0].rbp_object,
2825 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2826 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2827 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2828 
2829 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2830 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2831 		    "blksz: %x, count: %llx}",
2832 		    (u_longlong_t)rbp_buf[i].rbp_object,
2833 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2834 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2835 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2836 	}
2837 	dsl_redaction_list_rele(rl, FTAG);
2838 	kmem_free(rbp_buf, size);
2839 	(void) printf("]\n\n");
2840 	return (0);
2841 }
2842 
2843 static void
2844 dump_bookmarks(objset_t *os, int verbosity)
2845 {
2846 	zap_cursor_t zc;
2847 	zap_attribute_t attr;
2848 	dsl_dataset_t *ds = dmu_objset_ds(os);
2849 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2850 	objset_t *mos = os->os_spa->spa_meta_objset;
2851 	if (verbosity < 4)
2852 		return;
2853 	dsl_pool_config_enter(dp, FTAG);
2854 
2855 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2856 	    zap_cursor_retrieve(&zc, &attr) == 0;
2857 	    zap_cursor_advance(&zc)) {
2858 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2859 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2860 		dmu_objset_name(os, osname);
2861 		VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname,
2862 		    attr.za_name));
2863 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2864 	}
2865 	zap_cursor_fini(&zc);
2866 	dsl_pool_config_exit(dp, FTAG);
2867 }
2868 
2869 static void
2870 bpobj_count_refd(bpobj_t *bpo)
2871 {
2872 	mos_obj_refd(bpo->bpo_object);
2873 
2874 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2875 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2876 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2877 			uint64_t subobj;
2878 			bpobj_t subbpo;
2879 			int error;
2880 			VERIFY0(dmu_read(bpo->bpo_os,
2881 			    bpo->bpo_phys->bpo_subobjs,
2882 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2883 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2884 			if (error != 0) {
2885 				(void) printf("ERROR %u while trying to open "
2886 				    "subobj id %llu\n",
2887 				    error, (u_longlong_t)subobj);
2888 				continue;
2889 			}
2890 			bpobj_count_refd(&subbpo);
2891 			bpobj_close(&subbpo);
2892 		}
2893 	}
2894 }
2895 
2896 static int
2897 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2898 {
2899 	spa_t *spa = arg;
2900 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2901 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
2902 		bpobj_count_refd(&dle->dle_bpobj);
2903 	return (0);
2904 }
2905 
2906 static int
2907 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
2908 {
2909 	ASSERT(arg == NULL);
2910 	if (dump_opt['d'] >= 5) {
2911 		char buf[128];
2912 		(void) snprintf(buf, sizeof (buf),
2913 		    "mintxg %llu -> obj %llu",
2914 		    (longlong_t)dle->dle_mintxg,
2915 		    (longlong_t)dle->dle_bpobj.bpo_object);
2916 
2917 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
2918 	} else {
2919 		(void) printf("mintxg %llu -> obj %llu\n",
2920 		    (longlong_t)dle->dle_mintxg,
2921 		    (longlong_t)dle->dle_bpobj.bpo_object);
2922 	}
2923 	return (0);
2924 }
2925 
2926 static void
2927 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
2928 {
2929 	char bytes[32];
2930 	char comp[32];
2931 	char uncomp[32];
2932 	char entries[32];
2933 	spa_t *spa = dmu_objset_spa(dl->dl_os);
2934 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
2935 
2936 	if (dl->dl_oldfmt) {
2937 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
2938 			bpobj_count_refd(&dl->dl_bpobj);
2939 	} else {
2940 		mos_obj_refd(dl->dl_object);
2941 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
2942 	}
2943 
2944 	/* make sure nicenum has enough space */
2945 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2946 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2947 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2948 	_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
2949 
2950 	if (dump_opt['d'] < 3)
2951 		return;
2952 
2953 	if (dl->dl_oldfmt) {
2954 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
2955 		return;
2956 	}
2957 
2958 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
2959 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
2960 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
2961 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
2962 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
2963 	    name, bytes, comp, uncomp, entries);
2964 
2965 	if (dump_opt['d'] < 4)
2966 		return;
2967 
2968 	(void) putchar('\n');
2969 
2970 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
2971 }
2972 
2973 static int
2974 verify_dd_livelist(objset_t *os)
2975 {
2976 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
2977 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2978 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
2979 
2980 	ASSERT(!dmu_objset_is_snapshot(os));
2981 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
2982 		return (0);
2983 
2984 	/* Iterate through the livelist to check for duplicates */
2985 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
2986 	    NULL);
2987 
2988 	dsl_pool_config_enter(dp, FTAG);
2989 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
2990 	    &ll_comp, &ll_uncomp);
2991 
2992 	dsl_dataset_t *origin_ds;
2993 	ASSERT(dsl_pool_config_held(dp));
2994 	VERIFY0(dsl_dataset_hold_obj(dp,
2995 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
2996 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
2997 	    &used, &comp, &uncomp));
2998 	dsl_dataset_rele(origin_ds, FTAG);
2999 	dsl_pool_config_exit(dp, FTAG);
3000 	/*
3001 	 *  It's possible that the dataset's uncomp space is larger than the
3002 	 *  livelist's because livelists do not track embedded block pointers
3003 	 */
3004 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3005 		char nice_used[32], nice_comp[32], nice_uncomp[32];
3006 		(void) printf("Discrepancy in space accounting:\n");
3007 		zdb_nicenum(used, nice_used, sizeof (nice_used));
3008 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3009 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3010 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
3011 		    nice_used, nice_comp, nice_uncomp);
3012 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3013 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3014 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3015 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3016 		    nice_used, nice_comp, nice_uncomp);
3017 		return (1);
3018 	}
3019 	return (0);
3020 }
3021 
3022 static avl_tree_t idx_tree;
3023 static avl_tree_t domain_tree;
3024 static boolean_t fuid_table_loaded;
3025 static objset_t *sa_os = NULL;
3026 static sa_attr_type_t *sa_attr_table = NULL;
3027 
3028 static int
3029 open_objset(const char *path, const void *tag, objset_t **osp)
3030 {
3031 	int err;
3032 	uint64_t sa_attrs = 0;
3033 	uint64_t version = 0;
3034 
3035 	VERIFY3P(sa_os, ==, NULL);
3036 	/*
3037 	 * We can't own an objset if it's redacted.  Therefore, we do this
3038 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3039 	 * release the pool (which is held as part of holding the objset).
3040 	 */
3041 	err = dmu_objset_hold(path, tag, osp);
3042 	if (err != 0) {
3043 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3044 		    path, strerror(err));
3045 		return (err);
3046 	}
3047 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3048 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3049 
3050 	if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) {
3051 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3052 		    8, 1, &version);
3053 		if (version >= ZPL_VERSION_SA) {
3054 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3055 			    8, 1, &sa_attrs);
3056 		}
3057 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3058 		    &sa_attr_table);
3059 		if (err != 0) {
3060 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3061 			    strerror(err));
3062 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3063 			dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3064 			*osp = NULL;
3065 		}
3066 	}
3067 	sa_os = *osp;
3068 
3069 	return (0);
3070 }
3071 
3072 static void
3073 close_objset(objset_t *os, const void *tag)
3074 {
3075 	VERIFY3P(os, ==, sa_os);
3076 	if (os->os_sa != NULL)
3077 		sa_tear_down(os);
3078 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3079 	dsl_dataset_rele(dmu_objset_ds(os), tag);
3080 	sa_attr_table = NULL;
3081 	sa_os = NULL;
3082 }
3083 
3084 static void
3085 fuid_table_destroy(void)
3086 {
3087 	if (fuid_table_loaded) {
3088 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3089 		fuid_table_loaded = B_FALSE;
3090 	}
3091 }
3092 
3093 /*
3094  * print uid or gid information.
3095  * For normal POSIX id just the id is printed in decimal format.
3096  * For CIFS files with FUID the fuid is printed in hex followed by
3097  * the domain-rid string.
3098  */
3099 static void
3100 print_idstr(uint64_t id, const char *id_type)
3101 {
3102 	if (FUID_INDEX(id)) {
3103 		const char *domain =
3104 		    zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3105 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3106 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3107 	} else {
3108 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3109 	}
3110 
3111 }
3112 
3113 static void
3114 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3115 {
3116 	uint32_t uid_idx, gid_idx;
3117 
3118 	uid_idx = FUID_INDEX(uid);
3119 	gid_idx = FUID_INDEX(gid);
3120 
3121 	/* Load domain table, if not already loaded */
3122 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3123 		uint64_t fuid_obj;
3124 
3125 		/* first find the fuid object.  It lives in the master node */
3126 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3127 		    8, 1, &fuid_obj) == 0);
3128 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3129 		(void) zfs_fuid_table_load(os, fuid_obj,
3130 		    &idx_tree, &domain_tree);
3131 		fuid_table_loaded = B_TRUE;
3132 	}
3133 
3134 	print_idstr(uid, "uid");
3135 	print_idstr(gid, "gid");
3136 }
3137 
3138 static void
3139 dump_znode_sa_xattr(sa_handle_t *hdl)
3140 {
3141 	nvlist_t *sa_xattr;
3142 	nvpair_t *elem = NULL;
3143 	int sa_xattr_size = 0;
3144 	int sa_xattr_entries = 0;
3145 	int error;
3146 	char *sa_xattr_packed;
3147 
3148 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3149 	if (error || sa_xattr_size == 0)
3150 		return;
3151 
3152 	sa_xattr_packed = malloc(sa_xattr_size);
3153 	if (sa_xattr_packed == NULL)
3154 		return;
3155 
3156 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3157 	    sa_xattr_packed, sa_xattr_size);
3158 	if (error) {
3159 		free(sa_xattr_packed);
3160 		return;
3161 	}
3162 
3163 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3164 	if (error) {
3165 		free(sa_xattr_packed);
3166 		return;
3167 	}
3168 
3169 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3170 		sa_xattr_entries++;
3171 
3172 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3173 	    sa_xattr_size, sa_xattr_entries);
3174 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3175 		uchar_t *value;
3176 		uint_t cnt, idx;
3177 
3178 		(void) printf("\t\t%s = ", nvpair_name(elem));
3179 		nvpair_value_byte_array(elem, &value, &cnt);
3180 		for (idx = 0; idx < cnt; ++idx) {
3181 			if (isprint(value[idx]))
3182 				(void) putchar(value[idx]);
3183 			else
3184 				(void) printf("\\%3.3o", value[idx]);
3185 		}
3186 		(void) putchar('\n');
3187 	}
3188 
3189 	nvlist_free(sa_xattr);
3190 	free(sa_xattr_packed);
3191 }
3192 
3193 static void
3194 dump_znode_symlink(sa_handle_t *hdl)
3195 {
3196 	int sa_symlink_size = 0;
3197 	char linktarget[MAXPATHLEN];
3198 	int error;
3199 
3200 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3201 	if (error || sa_symlink_size == 0) {
3202 		return;
3203 	}
3204 	if (sa_symlink_size >= sizeof (linktarget)) {
3205 		(void) printf("symlink size %d is too large\n",
3206 		    sa_symlink_size);
3207 		return;
3208 	}
3209 	linktarget[sa_symlink_size] = '\0';
3210 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3211 	    &linktarget, sa_symlink_size) == 0)
3212 		(void) printf("\ttarget	%s\n", linktarget);
3213 }
3214 
3215 static void
3216 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3217 {
3218 	(void) data, (void) size;
3219 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3220 	sa_handle_t *hdl;
3221 	uint64_t xattr, rdev, gen;
3222 	uint64_t uid, gid, mode, fsize, parent, links;
3223 	uint64_t pflags;
3224 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3225 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3226 	sa_bulk_attr_t bulk[12];
3227 	int idx = 0;
3228 	int error;
3229 
3230 	VERIFY3P(os, ==, sa_os);
3231 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3232 		(void) printf("Failed to get handle for SA znode\n");
3233 		return;
3234 	}
3235 
3236 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3237 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3238 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3239 	    &links, 8);
3240 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3241 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3242 	    &mode, 8);
3243 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3244 	    NULL, &parent, 8);
3245 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3246 	    &fsize, 8);
3247 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3248 	    acctm, 16);
3249 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3250 	    modtm, 16);
3251 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3252 	    crtm, 16);
3253 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3254 	    chgtm, 16);
3255 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3256 	    &pflags, 8);
3257 
3258 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3259 		(void) sa_handle_destroy(hdl);
3260 		return;
3261 	}
3262 
3263 	z_crtime = (time_t)crtm[0];
3264 	z_atime = (time_t)acctm[0];
3265 	z_mtime = (time_t)modtm[0];
3266 	z_ctime = (time_t)chgtm[0];
3267 
3268 	if (dump_opt['d'] > 4) {
3269 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3270 		if (error == ESTALE) {
3271 			(void) snprintf(path, sizeof (path), "on delete queue");
3272 		} else if (error != 0) {
3273 			leaked_objects++;
3274 			(void) snprintf(path, sizeof (path),
3275 			    "path not found, possibly leaked");
3276 		}
3277 		(void) printf("\tpath	%s\n", path);
3278 	}
3279 
3280 	if (S_ISLNK(mode))
3281 		dump_znode_symlink(hdl);
3282 	dump_uidgid(os, uid, gid);
3283 	(void) printf("\tatime	%s", ctime(&z_atime));
3284 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3285 	(void) printf("\tctime	%s", ctime(&z_ctime));
3286 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3287 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3288 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3289 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3290 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3291 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3292 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3293 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3294 		uint64_t projid;
3295 
3296 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3297 		    sizeof (uint64_t)) == 0)
3298 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3299 	}
3300 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3301 	    sizeof (uint64_t)) == 0)
3302 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3303 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3304 	    sizeof (uint64_t)) == 0)
3305 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3306 	dump_znode_sa_xattr(hdl);
3307 	sa_handle_destroy(hdl);
3308 }
3309 
3310 static void
3311 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3312 {
3313 	(void) os, (void) object, (void) data, (void) size;
3314 }
3315 
3316 static void
3317 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3318 {
3319 	(void) os, (void) object, (void) data, (void) size;
3320 }
3321 
3322 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3323 	dump_none,		/* unallocated			*/
3324 	dump_zap,		/* object directory		*/
3325 	dump_uint64,		/* object array			*/
3326 	dump_none,		/* packed nvlist		*/
3327 	dump_packed_nvlist,	/* packed nvlist size		*/
3328 	dump_none,		/* bpobj			*/
3329 	dump_bpobj,		/* bpobj header			*/
3330 	dump_none,		/* SPA space map header		*/
3331 	dump_none,		/* SPA space map		*/
3332 	dump_none,		/* ZIL intent log		*/
3333 	dump_dnode,		/* DMU dnode			*/
3334 	dump_dmu_objset,	/* DMU objset			*/
3335 	dump_dsl_dir,		/* DSL directory		*/
3336 	dump_zap,		/* DSL directory child map	*/
3337 	dump_zap,		/* DSL dataset snap map		*/
3338 	dump_zap,		/* DSL props			*/
3339 	dump_dsl_dataset,	/* DSL dataset			*/
3340 	dump_znode,		/* ZFS znode			*/
3341 	dump_acl,		/* ZFS V0 ACL			*/
3342 	dump_uint8,		/* ZFS plain file		*/
3343 	dump_zpldir,		/* ZFS directory		*/
3344 	dump_zap,		/* ZFS master node		*/
3345 	dump_zap,		/* ZFS delete queue		*/
3346 	dump_uint8,		/* zvol object			*/
3347 	dump_zap,		/* zvol prop			*/
3348 	dump_uint8,		/* other uint8[]		*/
3349 	dump_uint64,		/* other uint64[]		*/
3350 	dump_zap,		/* other ZAP			*/
3351 	dump_zap,		/* persistent error log		*/
3352 	dump_uint8,		/* SPA history			*/
3353 	dump_history_offsets,	/* SPA history offsets		*/
3354 	dump_zap,		/* Pool properties		*/
3355 	dump_zap,		/* DSL permissions		*/
3356 	dump_acl,		/* ZFS ACL			*/
3357 	dump_uint8,		/* ZFS SYSACL			*/
3358 	dump_none,		/* FUID nvlist			*/
3359 	dump_packed_nvlist,	/* FUID nvlist size		*/
3360 	dump_zap,		/* DSL dataset next clones	*/
3361 	dump_zap,		/* DSL scrub queue		*/
3362 	dump_zap,		/* ZFS user/group/project used	*/
3363 	dump_zap,		/* ZFS user/group/project quota	*/
3364 	dump_zap,		/* snapshot refcount tags	*/
3365 	dump_ddt_zap,		/* DDT ZAP object		*/
3366 	dump_zap,		/* DDT statistics		*/
3367 	dump_znode,		/* SA object			*/
3368 	dump_zap,		/* SA Master Node		*/
3369 	dump_sa_attrs,		/* SA attribute registration	*/
3370 	dump_sa_layouts,	/* SA attribute layouts		*/
3371 	dump_zap,		/* DSL scrub translations	*/
3372 	dump_none,		/* fake dedup BP		*/
3373 	dump_zap,		/* deadlist			*/
3374 	dump_none,		/* deadlist hdr			*/
3375 	dump_zap,		/* dsl clones			*/
3376 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3377 	dump_unknown,		/* Unknown type, must be last	*/
3378 };
3379 
3380 static boolean_t
3381 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3382 {
3383 	boolean_t match = B_TRUE;
3384 
3385 	switch (obj_type) {
3386 	case DMU_OT_DIRECTORY_CONTENTS:
3387 		if (!(flags & ZOR_FLAG_DIRECTORY))
3388 			match = B_FALSE;
3389 		break;
3390 	case DMU_OT_PLAIN_FILE_CONTENTS:
3391 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3392 			match = B_FALSE;
3393 		break;
3394 	case DMU_OT_SPACE_MAP:
3395 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3396 			match = B_FALSE;
3397 		break;
3398 	default:
3399 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3400 			if (!(flags & ZOR_FLAG_ZAP))
3401 				match = B_FALSE;
3402 			break;
3403 		}
3404 
3405 		/*
3406 		 * If all bits except some of the supported flags are
3407 		 * set, the user combined the all-types flag (A) with
3408 		 * a negated flag to exclude some types (e.g. A-f to
3409 		 * show all object types except plain files).
3410 		 */
3411 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3412 			match = B_FALSE;
3413 
3414 		break;
3415 	}
3416 
3417 	return (match);
3418 }
3419 
3420 static void
3421 dump_object(objset_t *os, uint64_t object, int verbosity,
3422     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3423 {
3424 	dmu_buf_t *db = NULL;
3425 	dmu_object_info_t doi;
3426 	dnode_t *dn;
3427 	boolean_t dnode_held = B_FALSE;
3428 	void *bonus = NULL;
3429 	size_t bsize = 0;
3430 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3431 	char bonus_size[32];
3432 	char aux[50];
3433 	int error;
3434 
3435 	/* make sure nicenum has enough space */
3436 	_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3437 	_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3438 	_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3439 	_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3440 	_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3441 	    "bonus_size truncated");
3442 
3443 	if (*print_header) {
3444 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3445 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3446 		    "lsize", "%full", "type");
3447 		*print_header = 0;
3448 	}
3449 
3450 	if (object == 0) {
3451 		dn = DMU_META_DNODE(os);
3452 		dmu_object_info_from_dnode(dn, &doi);
3453 	} else {
3454 		/*
3455 		 * Encrypted datasets will have sensitive bonus buffers
3456 		 * encrypted. Therefore we cannot hold the bonus buffer and
3457 		 * must hold the dnode itself instead.
3458 		 */
3459 		error = dmu_object_info(os, object, &doi);
3460 		if (error)
3461 			fatal("dmu_object_info() failed, errno %u", error);
3462 
3463 		if (os->os_encrypted &&
3464 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3465 			error = dnode_hold(os, object, FTAG, &dn);
3466 			if (error)
3467 				fatal("dnode_hold() failed, errno %u", error);
3468 			dnode_held = B_TRUE;
3469 		} else {
3470 			error = dmu_bonus_hold(os, object, FTAG, &db);
3471 			if (error)
3472 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3473 				    object, error);
3474 			bonus = db->db_data;
3475 			bsize = db->db_size;
3476 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3477 		}
3478 	}
3479 
3480 	/*
3481 	 * Default to showing all object types if no flags were specified.
3482 	 */
3483 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3484 	    !match_object_type(doi.doi_type, flags))
3485 		goto out;
3486 
3487 	if (dnode_slots_used)
3488 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3489 
3490 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3491 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3492 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3493 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3494 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3495 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3496 	(void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count *
3497 	    doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) /
3498 	    doi.doi_max_offset);
3499 
3500 	aux[0] = '\0';
3501 
3502 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3503 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3504 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3505 	}
3506 
3507 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3508 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3509 		const char *compname = NULL;
3510 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3511 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3512 		    &compname) == 0) {
3513 			(void) snprintf(aux + strlen(aux),
3514 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3515 			    compname);
3516 		} else {
3517 			(void) snprintf(aux + strlen(aux),
3518 			    sizeof (aux) - strlen(aux),
3519 			    " (Z=inherit=%s-unknown)",
3520 			    ZDB_COMPRESS_NAME(os->os_compress));
3521 		}
3522 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3523 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3524 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3525 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3526 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3527 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3528 	}
3529 
3530 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3531 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3532 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3533 
3534 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3535 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3536 		    "", "", "", "", "", "", bonus_size, "bonus",
3537 		    zdb_ot_name(doi.doi_bonus_type));
3538 	}
3539 
3540 	if (verbosity >= 4) {
3541 		(void) printf("\tdnode flags: %s%s%s%s\n",
3542 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3543 		    "USED_BYTES " : "",
3544 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3545 		    "USERUSED_ACCOUNTED " : "",
3546 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3547 		    "USEROBJUSED_ACCOUNTED " : "",
3548 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3549 		    "SPILL_BLKPTR" : "");
3550 		(void) printf("\tdnode maxblkid: %llu\n",
3551 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3552 
3553 		if (!dnode_held) {
3554 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3555 			    object, bonus, bsize);
3556 		} else {
3557 			(void) printf("\t\t(bonus encrypted)\n");
3558 		}
3559 
3560 		if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) {
3561 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3562 			    NULL, 0);
3563 		} else {
3564 			(void) printf("\t\t(object encrypted)\n");
3565 		}
3566 
3567 		*print_header = B_TRUE;
3568 	}
3569 
3570 	if (verbosity >= 5) {
3571 		if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3572 			char blkbuf[BP_SPRINTF_LEN];
3573 			snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3574 			    DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3575 			(void) printf("\nSpill block: %s\n", blkbuf);
3576 		}
3577 		dump_indirect(dn);
3578 	}
3579 
3580 	if (verbosity >= 5) {
3581 		/*
3582 		 * Report the list of segments that comprise the object.
3583 		 */
3584 		uint64_t start = 0;
3585 		uint64_t end;
3586 		uint64_t blkfill = 1;
3587 		int minlvl = 1;
3588 
3589 		if (dn->dn_type == DMU_OT_DNODE) {
3590 			minlvl = 0;
3591 			blkfill = DNODES_PER_BLOCK;
3592 		}
3593 
3594 		for (;;) {
3595 			char segsize[32];
3596 			/* make sure nicenum has enough space */
3597 			_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3598 			    "segsize truncated");
3599 			error = dnode_next_offset(dn,
3600 			    0, &start, minlvl, blkfill, 0);
3601 			if (error)
3602 				break;
3603 			end = start;
3604 			error = dnode_next_offset(dn,
3605 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3606 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3607 			(void) printf("\t\tsegment [%016llx, %016llx)"
3608 			    " size %5s\n", (u_longlong_t)start,
3609 			    (u_longlong_t)end, segsize);
3610 			if (error)
3611 				break;
3612 			start = end;
3613 		}
3614 	}
3615 
3616 out:
3617 	if (db != NULL)
3618 		dmu_buf_rele(db, FTAG);
3619 	if (dnode_held)
3620 		dnode_rele(dn, FTAG);
3621 }
3622 
3623 static void
3624 count_dir_mos_objects(dsl_dir_t *dd)
3625 {
3626 	mos_obj_refd(dd->dd_object);
3627 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3628 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3629 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3630 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3631 
3632 	/*
3633 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3634 	 * Ignore the references after the first one.
3635 	 */
3636 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3637 }
3638 
3639 static void
3640 count_ds_mos_objects(dsl_dataset_t *ds)
3641 {
3642 	mos_obj_refd(ds->ds_object);
3643 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3644 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3645 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3646 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3647 	mos_obj_refd(ds->ds_bookmarks_obj);
3648 
3649 	if (!dsl_dataset_is_snapshot(ds)) {
3650 		count_dir_mos_objects(ds->ds_dir);
3651 	}
3652 }
3653 
3654 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3655 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3656 
3657 /*
3658  * Parse a string denoting a range of object IDs of the form
3659  * <start>[:<end>[:flags]], and store the results in zor.
3660  * Return 0 on success. On error, return 1 and update the msg
3661  * pointer to point to a descriptive error message.
3662  */
3663 static int
3664 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3665 {
3666 	uint64_t flags = 0;
3667 	char *p, *s, *dup, *flagstr, *tmp = NULL;
3668 	size_t len;
3669 	int i;
3670 	int rc = 0;
3671 
3672 	if (strchr(range, ':') == NULL) {
3673 		zor->zor_obj_start = strtoull(range, &p, 0);
3674 		if (*p != '\0') {
3675 			*msg = "Invalid characters in object ID";
3676 			rc = 1;
3677 		}
3678 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3679 		zor->zor_obj_end = zor->zor_obj_start;
3680 		return (rc);
3681 	}
3682 
3683 	if (strchr(range, ':') == range) {
3684 		*msg = "Invalid leading colon";
3685 		rc = 1;
3686 		return (rc);
3687 	}
3688 
3689 	len = strlen(range);
3690 	if (range[len - 1] == ':') {
3691 		*msg = "Invalid trailing colon";
3692 		rc = 1;
3693 		return (rc);
3694 	}
3695 
3696 	dup = strdup(range);
3697 	s = strtok_r(dup, ":", &tmp);
3698 	zor->zor_obj_start = strtoull(s, &p, 0);
3699 
3700 	if (*p != '\0') {
3701 		*msg = "Invalid characters in start object ID";
3702 		rc = 1;
3703 		goto out;
3704 	}
3705 
3706 	s = strtok_r(NULL, ":", &tmp);
3707 	zor->zor_obj_end = strtoull(s, &p, 0);
3708 
3709 	if (*p != '\0') {
3710 		*msg = "Invalid characters in end object ID";
3711 		rc = 1;
3712 		goto out;
3713 	}
3714 
3715 	if (zor->zor_obj_start > zor->zor_obj_end) {
3716 		*msg = "Start object ID may not exceed end object ID";
3717 		rc = 1;
3718 		goto out;
3719 	}
3720 
3721 	s = strtok_r(NULL, ":", &tmp);
3722 	if (s == NULL) {
3723 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3724 		goto out;
3725 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
3726 		*msg = "Invalid colon-delimited field after flags";
3727 		rc = 1;
3728 		goto out;
3729 	}
3730 
3731 	flagstr = s;
3732 	for (i = 0; flagstr[i]; i++) {
3733 		int bit;
3734 		boolean_t negation = (flagstr[i] == '-');
3735 
3736 		if (negation) {
3737 			i++;
3738 			if (flagstr[i] == '\0') {
3739 				*msg = "Invalid trailing negation operator";
3740 				rc = 1;
3741 				goto out;
3742 			}
3743 		}
3744 		bit = flagbits[(uchar_t)flagstr[i]];
3745 		if (bit == 0) {
3746 			*msg = "Invalid flag";
3747 			rc = 1;
3748 			goto out;
3749 		}
3750 		if (negation)
3751 			flags &= ~bit;
3752 		else
3753 			flags |= bit;
3754 	}
3755 	zor->zor_flags = flags;
3756 
3757 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3758 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
3759 
3760 out:
3761 	free(dup);
3762 	return (rc);
3763 }
3764 
3765 static void
3766 dump_objset(objset_t *os)
3767 {
3768 	dmu_objset_stats_t dds = { 0 };
3769 	uint64_t object, object_count;
3770 	uint64_t refdbytes, usedobjs, scratch;
3771 	char numbuf[32];
3772 	char blkbuf[BP_SPRINTF_LEN + 20];
3773 	char osname[ZFS_MAX_DATASET_NAME_LEN];
3774 	const char *type = "UNKNOWN";
3775 	int verbosity = dump_opt['d'];
3776 	boolean_t print_header;
3777 	unsigned i;
3778 	int error;
3779 	uint64_t total_slots_used = 0;
3780 	uint64_t max_slot_used = 0;
3781 	uint64_t dnode_slots;
3782 	uint64_t obj_start;
3783 	uint64_t obj_end;
3784 	uint64_t flags;
3785 
3786 	/* make sure nicenum has enough space */
3787 	_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
3788 
3789 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
3790 	dmu_objset_fast_stat(os, &dds);
3791 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
3792 
3793 	print_header = B_TRUE;
3794 
3795 	if (dds.dds_type < DMU_OST_NUMTYPES)
3796 		type = objset_types[dds.dds_type];
3797 
3798 	if (dds.dds_type == DMU_OST_META) {
3799 		dds.dds_creation_txg = TXG_INITIAL;
3800 		usedobjs = BP_GET_FILL(os->os_rootbp);
3801 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
3802 		    dd_used_bytes;
3803 	} else {
3804 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
3805 	}
3806 
3807 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
3808 
3809 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
3810 
3811 	if (verbosity >= 4) {
3812 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
3813 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
3814 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
3815 	} else {
3816 		blkbuf[0] = '\0';
3817 	}
3818 
3819 	dmu_objset_name(os, osname);
3820 
3821 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
3822 	    "%s, %llu objects%s%s\n",
3823 	    osname, type, (u_longlong_t)dmu_objset_id(os),
3824 	    (u_longlong_t)dds.dds_creation_txg,
3825 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
3826 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
3827 
3828 	for (i = 0; i < zopt_object_args; i++) {
3829 		obj_start = zopt_object_ranges[i].zor_obj_start;
3830 		obj_end = zopt_object_ranges[i].zor_obj_end;
3831 		flags = zopt_object_ranges[i].zor_flags;
3832 
3833 		object = obj_start;
3834 		if (object == 0 || obj_start == obj_end)
3835 			dump_object(os, object, verbosity, &print_header, NULL,
3836 			    flags);
3837 		else
3838 			object--;
3839 
3840 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
3841 		    object <= obj_end) {
3842 			dump_object(os, object, verbosity, &print_header, NULL,
3843 			    flags);
3844 		}
3845 	}
3846 
3847 	if (zopt_object_args > 0) {
3848 		(void) printf("\n");
3849 		return;
3850 	}
3851 
3852 	if (dump_opt['i'] != 0 || verbosity >= 2)
3853 		dump_intent_log(dmu_objset_zil(os));
3854 
3855 	if (dmu_objset_ds(os) != NULL) {
3856 		dsl_dataset_t *ds = dmu_objset_ds(os);
3857 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
3858 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
3859 		    !dmu_objset_is_snapshot(os)) {
3860 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
3861 			if (verify_dd_livelist(os) != 0)
3862 				fatal("livelist is incorrect");
3863 		}
3864 
3865 		if (dsl_dataset_remap_deadlist_exists(ds)) {
3866 			(void) printf("ds_remap_deadlist:\n");
3867 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
3868 		}
3869 		count_ds_mos_objects(ds);
3870 	}
3871 
3872 	if (dmu_objset_ds(os) != NULL)
3873 		dump_bookmarks(os, verbosity);
3874 
3875 	if (verbosity < 2)
3876 		return;
3877 
3878 	if (BP_IS_HOLE(os->os_rootbp))
3879 		return;
3880 
3881 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
3882 	object_count = 0;
3883 	if (DMU_USERUSED_DNODE(os) != NULL &&
3884 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
3885 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
3886 		    NULL, 0);
3887 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
3888 		    NULL, 0);
3889 	}
3890 
3891 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
3892 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
3893 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
3894 		    &print_header, NULL, 0);
3895 
3896 	object = 0;
3897 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
3898 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
3899 		    0);
3900 		object_count++;
3901 		total_slots_used += dnode_slots;
3902 		max_slot_used = object + dnode_slots - 1;
3903 	}
3904 
3905 	(void) printf("\n");
3906 
3907 	(void) printf("    Dnode slots:\n");
3908 	(void) printf("\tTotal used:    %10llu\n",
3909 	    (u_longlong_t)total_slots_used);
3910 	(void) printf("\tMax used:      %10llu\n",
3911 	    (u_longlong_t)max_slot_used);
3912 	(void) printf("\tPercent empty: %10lf\n",
3913 	    (double)(max_slot_used - total_slots_used)*100 /
3914 	    (double)max_slot_used);
3915 	(void) printf("\n");
3916 
3917 	if (error != ESRCH) {
3918 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
3919 		abort();
3920 	}
3921 
3922 	ASSERT3U(object_count, ==, usedobjs);
3923 
3924 	if (leaked_objects != 0) {
3925 		(void) printf("%d potentially leaked objects detected\n",
3926 		    leaked_objects);
3927 		leaked_objects = 0;
3928 	}
3929 }
3930 
3931 static void
3932 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
3933 {
3934 	time_t timestamp = ub->ub_timestamp;
3935 
3936 	(void) printf("%s", header ? header : "");
3937 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
3938 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
3939 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
3940 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
3941 	(void) printf("\ttimestamp = %llu UTC = %s",
3942 	    (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
3943 
3944 	(void) printf("\tmmp_magic = %016llx\n",
3945 	    (u_longlong_t)ub->ub_mmp_magic);
3946 	if (MMP_VALID(ub)) {
3947 		(void) printf("\tmmp_delay = %0llu\n",
3948 		    (u_longlong_t)ub->ub_mmp_delay);
3949 		if (MMP_SEQ_VALID(ub))
3950 			(void) printf("\tmmp_seq = %u\n",
3951 			    (unsigned int) MMP_SEQ(ub));
3952 		if (MMP_FAIL_INT_VALID(ub))
3953 			(void) printf("\tmmp_fail = %u\n",
3954 			    (unsigned int) MMP_FAIL_INT(ub));
3955 		if (MMP_INTERVAL_VALID(ub))
3956 			(void) printf("\tmmp_write = %u\n",
3957 			    (unsigned int) MMP_INTERVAL(ub));
3958 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
3959 		(void) printf("\tmmp_valid = %x\n",
3960 		    (unsigned int) ub->ub_mmp_config & 0xFF);
3961 	}
3962 
3963 	if (dump_opt['u'] >= 4) {
3964 		char blkbuf[BP_SPRINTF_LEN];
3965 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
3966 		(void) printf("\trootbp = %s\n", blkbuf);
3967 	}
3968 	(void) printf("\tcheckpoint_txg = %llu\n",
3969 	    (u_longlong_t)ub->ub_checkpoint_txg);
3970 	(void) printf("%s", footer ? footer : "");
3971 }
3972 
3973 static void
3974 dump_config(spa_t *spa)
3975 {
3976 	dmu_buf_t *db;
3977 	size_t nvsize = 0;
3978 	int error = 0;
3979 
3980 
3981 	error = dmu_bonus_hold(spa->spa_meta_objset,
3982 	    spa->spa_config_object, FTAG, &db);
3983 
3984 	if (error == 0) {
3985 		nvsize = *(uint64_t *)db->db_data;
3986 		dmu_buf_rele(db, FTAG);
3987 
3988 		(void) printf("\nMOS Configuration:\n");
3989 		dump_packed_nvlist(spa->spa_meta_objset,
3990 		    spa->spa_config_object, (void *)&nvsize, 1);
3991 	} else {
3992 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
3993 		    (u_longlong_t)spa->spa_config_object, error);
3994 	}
3995 }
3996 
3997 static void
3998 dump_cachefile(const char *cachefile)
3999 {
4000 	int fd;
4001 	struct stat64 statbuf;
4002 	char *buf;
4003 	nvlist_t *config;
4004 
4005 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4006 		(void) printf("cannot open '%s': %s\n", cachefile,
4007 		    strerror(errno));
4008 		exit(1);
4009 	}
4010 
4011 	if (fstat64(fd, &statbuf) != 0) {
4012 		(void) printf("failed to stat '%s': %s\n", cachefile,
4013 		    strerror(errno));
4014 		exit(1);
4015 	}
4016 
4017 	if ((buf = malloc(statbuf.st_size)) == NULL) {
4018 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4019 		    (u_longlong_t)statbuf.st_size);
4020 		exit(1);
4021 	}
4022 
4023 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4024 		(void) fprintf(stderr, "failed to read %llu bytes\n",
4025 		    (u_longlong_t)statbuf.st_size);
4026 		exit(1);
4027 	}
4028 
4029 	(void) close(fd);
4030 
4031 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4032 		(void) fprintf(stderr, "failed to unpack nvlist\n");
4033 		exit(1);
4034 	}
4035 
4036 	free(buf);
4037 
4038 	dump_nvlist(config, 0);
4039 
4040 	nvlist_free(config);
4041 }
4042 
4043 /*
4044  * ZFS label nvlist stats
4045  */
4046 typedef struct zdb_nvl_stats {
4047 	int		zns_list_count;
4048 	int		zns_leaf_count;
4049 	size_t		zns_leaf_largest;
4050 	size_t		zns_leaf_total;
4051 	nvlist_t	*zns_string;
4052 	nvlist_t	*zns_uint64;
4053 	nvlist_t	*zns_boolean;
4054 } zdb_nvl_stats_t;
4055 
4056 static void
4057 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4058 {
4059 	nvlist_t *list, **array;
4060 	nvpair_t *nvp = NULL;
4061 	char *name;
4062 	uint_t i, items;
4063 
4064 	stats->zns_list_count++;
4065 
4066 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4067 		name = nvpair_name(nvp);
4068 
4069 		switch (nvpair_type(nvp)) {
4070 		case DATA_TYPE_STRING:
4071 			fnvlist_add_string(stats->zns_string, name,
4072 			    fnvpair_value_string(nvp));
4073 			break;
4074 		case DATA_TYPE_UINT64:
4075 			fnvlist_add_uint64(stats->zns_uint64, name,
4076 			    fnvpair_value_uint64(nvp));
4077 			break;
4078 		case DATA_TYPE_BOOLEAN:
4079 			fnvlist_add_boolean(stats->zns_boolean, name);
4080 			break;
4081 		case DATA_TYPE_NVLIST:
4082 			if (nvpair_value_nvlist(nvp, &list) == 0)
4083 				collect_nvlist_stats(list, stats);
4084 			break;
4085 		case DATA_TYPE_NVLIST_ARRAY:
4086 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4087 				break;
4088 
4089 			for (i = 0; i < items; i++) {
4090 				collect_nvlist_stats(array[i], stats);
4091 
4092 				/* collect stats on leaf vdev */
4093 				if (strcmp(name, "children") == 0) {
4094 					size_t size;
4095 
4096 					(void) nvlist_size(array[i], &size,
4097 					    NV_ENCODE_XDR);
4098 					stats->zns_leaf_total += size;
4099 					if (size > stats->zns_leaf_largest)
4100 						stats->zns_leaf_largest = size;
4101 					stats->zns_leaf_count++;
4102 				}
4103 			}
4104 			break;
4105 		default:
4106 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4107 		}
4108 	}
4109 }
4110 
4111 static void
4112 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4113 {
4114 	zdb_nvl_stats_t stats = { 0 };
4115 	size_t size, sum = 0, total;
4116 	size_t noise;
4117 
4118 	/* requires nvlist with non-unique names for stat collection */
4119 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4120 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4121 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4122 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4123 
4124 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4125 
4126 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4127 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4128 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4129 
4130 	collect_nvlist_stats(nvl, &stats);
4131 
4132 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4133 	size -= noise;
4134 	sum += size;
4135 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4136 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4137 	    (int)size, 100.0 * size / total);
4138 
4139 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4140 	size -= noise;
4141 	sum += size;
4142 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4143 	    (int)fnvlist_num_pairs(stats.zns_string),
4144 	    (int)size, 100.0 * size / total);
4145 
4146 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4147 	size -= noise;
4148 	sum += size;
4149 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4150 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4151 	    (int)size, 100.0 * size / total);
4152 
4153 	size = total - sum;	/* treat remainder as nvlist overhead */
4154 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4155 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4156 
4157 	if (stats.zns_leaf_count > 0) {
4158 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4159 
4160 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4161 		    stats.zns_leaf_count, (int)average);
4162 		(void) printf("%24d bytes largest\n",
4163 		    (int)stats.zns_leaf_largest);
4164 
4165 		if (dump_opt['l'] >= 3 && average > 0)
4166 			(void) printf("  space for %d additional leaf vdevs\n",
4167 			    (int)((cap - total) / average));
4168 	}
4169 	(void) printf("\n");
4170 
4171 	nvlist_free(stats.zns_string);
4172 	nvlist_free(stats.zns_uint64);
4173 	nvlist_free(stats.zns_boolean);
4174 }
4175 
4176 typedef struct cksum_record {
4177 	zio_cksum_t cksum;
4178 	boolean_t labels[VDEV_LABELS];
4179 	avl_node_t link;
4180 } cksum_record_t;
4181 
4182 static int
4183 cksum_record_compare(const void *x1, const void *x2)
4184 {
4185 	const cksum_record_t *l = (cksum_record_t *)x1;
4186 	const cksum_record_t *r = (cksum_record_t *)x2;
4187 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4188 	int difference = 0;
4189 
4190 	for (int i = 0; i < arraysize; i++) {
4191 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4192 		if (difference)
4193 			break;
4194 	}
4195 
4196 	return (difference);
4197 }
4198 
4199 static cksum_record_t *
4200 cksum_record_alloc(zio_cksum_t *cksum, int l)
4201 {
4202 	cksum_record_t *rec;
4203 
4204 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4205 	rec->cksum = *cksum;
4206 	rec->labels[l] = B_TRUE;
4207 
4208 	return (rec);
4209 }
4210 
4211 static cksum_record_t *
4212 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4213 {
4214 	cksum_record_t lookup = { .cksum = *cksum };
4215 	avl_index_t where;
4216 
4217 	return (avl_find(tree, &lookup, &where));
4218 }
4219 
4220 static cksum_record_t *
4221 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4222 {
4223 	cksum_record_t *rec;
4224 
4225 	rec = cksum_record_lookup(tree, cksum);
4226 	if (rec) {
4227 		rec->labels[l] = B_TRUE;
4228 	} else {
4229 		rec = cksum_record_alloc(cksum, l);
4230 		avl_add(tree, rec);
4231 	}
4232 
4233 	return (rec);
4234 }
4235 
4236 static int
4237 first_label(cksum_record_t *rec)
4238 {
4239 	for (int i = 0; i < VDEV_LABELS; i++)
4240 		if (rec->labels[i])
4241 			return (i);
4242 
4243 	return (-1);
4244 }
4245 
4246 static void
4247 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4248 {
4249 	fputs(prefix, stdout);
4250 	for (int i = 0; i < VDEV_LABELS; i++)
4251 		if (rec->labels[i] == B_TRUE)
4252 			printf("%d ", i);
4253 	putchar('\n');
4254 }
4255 
4256 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4257 
4258 typedef struct zdb_label {
4259 	vdev_label_t label;
4260 	uint64_t label_offset;
4261 	nvlist_t *config_nv;
4262 	cksum_record_t *config;
4263 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4264 	boolean_t header_printed;
4265 	boolean_t read_failed;
4266 	boolean_t cksum_valid;
4267 } zdb_label_t;
4268 
4269 static void
4270 print_label_header(zdb_label_t *label, int l)
4271 {
4272 
4273 	if (dump_opt['q'])
4274 		return;
4275 
4276 	if (label->header_printed == B_TRUE)
4277 		return;
4278 
4279 	(void) printf("------------------------------------\n");
4280 	(void) printf("LABEL %d %s\n", l,
4281 	    label->cksum_valid ? "" : "(Bad label cksum)");
4282 	(void) printf("------------------------------------\n");
4283 
4284 	label->header_printed = B_TRUE;
4285 }
4286 
4287 static void
4288 print_l2arc_header(void)
4289 {
4290 	(void) printf("------------------------------------\n");
4291 	(void) printf("L2ARC device header\n");
4292 	(void) printf("------------------------------------\n");
4293 }
4294 
4295 static void
4296 print_l2arc_log_blocks(void)
4297 {
4298 	(void) printf("------------------------------------\n");
4299 	(void) printf("L2ARC device log blocks\n");
4300 	(void) printf("------------------------------------\n");
4301 }
4302 
4303 static void
4304 dump_l2arc_log_entries(uint64_t log_entries,
4305     l2arc_log_ent_phys_t *le, uint64_t i)
4306 {
4307 	for (int j = 0; j < log_entries; j++) {
4308 		dva_t dva = le[j].le_dva;
4309 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4310 		    "vdev: %llu, offset: %llu\n",
4311 		    (u_longlong_t)i, j + 1,
4312 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4313 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4314 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4315 		(void) printf("|\t\t\t\tbirth: %llu\n",
4316 		    (u_longlong_t)le[j].le_birth);
4317 		(void) printf("|\t\t\t\tlsize: %llu\n",
4318 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4319 		(void) printf("|\t\t\t\tpsize: %llu\n",
4320 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4321 		(void) printf("|\t\t\t\tcompr: %llu\n",
4322 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4323 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4324 		    (u_longlong_t)(&le[j])->le_complevel);
4325 		(void) printf("|\t\t\t\ttype: %llu\n",
4326 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4327 		(void) printf("|\t\t\t\tprotected: %llu\n",
4328 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4329 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4330 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4331 		(void) printf("|\t\t\t\taddress: %llu\n",
4332 		    (u_longlong_t)le[j].le_daddr);
4333 		(void) printf("|\t\t\t\tARC state: %llu\n",
4334 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4335 		(void) printf("|\n");
4336 	}
4337 	(void) printf("\n");
4338 }
4339 
4340 static void
4341 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps)
4342 {
4343 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr);
4344 	(void) printf("|\t\tpayload_asize: %llu\n",
4345 	    (u_longlong_t)lbps.lbp_payload_asize);
4346 	(void) printf("|\t\tpayload_start: %llu\n",
4347 	    (u_longlong_t)lbps.lbp_payload_start);
4348 	(void) printf("|\t\tlsize: %llu\n",
4349 	    (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop));
4350 	(void) printf("|\t\tasize: %llu\n",
4351 	    (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop));
4352 	(void) printf("|\t\tcompralgo: %llu\n",
4353 	    (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop));
4354 	(void) printf("|\t\tcksumalgo: %llu\n",
4355 	    (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop));
4356 	(void) printf("|\n\n");
4357 }
4358 
4359 static void
4360 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr,
4361     l2arc_dev_hdr_phys_t *rebuild)
4362 {
4363 	l2arc_log_blk_phys_t this_lb;
4364 	uint64_t asize;
4365 	l2arc_log_blkptr_t lbps[2];
4366 	abd_t *abd;
4367 	zio_cksum_t cksum;
4368 	int failed = 0;
4369 	l2arc_dev_t dev;
4370 
4371 	if (!dump_opt['q'])
4372 		print_l2arc_log_blocks();
4373 	memcpy(lbps, l2dhdr.dh_start_lbps, sizeof (lbps));
4374 
4375 	dev.l2ad_evict = l2dhdr.dh_evict;
4376 	dev.l2ad_start = l2dhdr.dh_start;
4377 	dev.l2ad_end = l2dhdr.dh_end;
4378 
4379 	if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) {
4380 		/* no log blocks to read */
4381 		if (!dump_opt['q']) {
4382 			(void) printf("No log blocks to read\n");
4383 			(void) printf("\n");
4384 		}
4385 		return;
4386 	} else {
4387 		dev.l2ad_hand = lbps[0].lbp_daddr +
4388 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4389 	}
4390 
4391 	dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4392 
4393 	for (;;) {
4394 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4395 			break;
4396 
4397 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4398 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4399 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4400 			if (!dump_opt['q']) {
4401 				(void) printf("Error while reading next log "
4402 				    "block\n\n");
4403 			}
4404 			break;
4405 		}
4406 
4407 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4408 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4409 			failed++;
4410 			if (!dump_opt['q']) {
4411 				(void) printf("Invalid cksum\n");
4412 				dump_l2arc_log_blkptr(lbps[0]);
4413 			}
4414 			break;
4415 		}
4416 
4417 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4418 		case ZIO_COMPRESS_OFF:
4419 			break;
4420 		default:
4421 			abd = abd_alloc_for_io(asize, B_TRUE);
4422 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4423 			if (zio_decompress_data(L2BLK_GET_COMPRESS(
4424 			    (&lbps[0])->lbp_prop), abd, &this_lb,
4425 			    asize, sizeof (this_lb), NULL) != 0) {
4426 				(void) printf("L2ARC block decompression "
4427 				    "failed\n");
4428 				abd_free(abd);
4429 				goto out;
4430 			}
4431 			abd_free(abd);
4432 			break;
4433 		}
4434 
4435 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4436 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4437 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4438 			if (!dump_opt['q'])
4439 				(void) printf("Invalid log block magic\n\n");
4440 			break;
4441 		}
4442 
4443 		rebuild->dh_lb_count++;
4444 		rebuild->dh_lb_asize += asize;
4445 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4446 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4447 			    (u_longlong_t)rebuild->dh_lb_count,
4448 			    (u_longlong_t)this_lb.lb_magic);
4449 			dump_l2arc_log_blkptr(lbps[0]);
4450 		}
4451 
4452 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4453 			dump_l2arc_log_entries(l2dhdr.dh_log_entries,
4454 			    this_lb.lb_entries,
4455 			    rebuild->dh_lb_count);
4456 
4457 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4458 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4459 		    !dev.l2ad_first)
4460 			break;
4461 
4462 		lbps[0] = lbps[1];
4463 		lbps[1] = this_lb.lb_prev_lbp;
4464 	}
4465 out:
4466 	if (!dump_opt['q']) {
4467 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4468 		    (u_longlong_t)rebuild->dh_lb_count);
4469 		(void) printf("\t\t %d with invalid cksum\n", failed);
4470 		(void) printf("log_blk_asize:\t %llu\n\n",
4471 		    (u_longlong_t)rebuild->dh_lb_asize);
4472 	}
4473 }
4474 
4475 static int
4476 dump_l2arc_header(int fd)
4477 {
4478 	l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4479 	int error = B_FALSE;
4480 
4481 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4482 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4483 		error = B_TRUE;
4484 	} else {
4485 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4486 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4487 
4488 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4489 			error = B_TRUE;
4490 	}
4491 
4492 	if (error) {
4493 		(void) printf("L2ARC device header not found\n\n");
4494 		/* Do not return an error here for backward compatibility */
4495 		return (0);
4496 	} else if (!dump_opt['q']) {
4497 		print_l2arc_header();
4498 
4499 		(void) printf("    magic: %llu\n",
4500 		    (u_longlong_t)l2dhdr.dh_magic);
4501 		(void) printf("    version: %llu\n",
4502 		    (u_longlong_t)l2dhdr.dh_version);
4503 		(void) printf("    pool_guid: %llu\n",
4504 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4505 		(void) printf("    flags: %llu\n",
4506 		    (u_longlong_t)l2dhdr.dh_flags);
4507 		(void) printf("    start_lbps[0]: %llu\n",
4508 		    (u_longlong_t)
4509 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4510 		(void) printf("    start_lbps[1]: %llu\n",
4511 		    (u_longlong_t)
4512 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4513 		(void) printf("    log_blk_ent: %llu\n",
4514 		    (u_longlong_t)l2dhdr.dh_log_entries);
4515 		(void) printf("    start: %llu\n",
4516 		    (u_longlong_t)l2dhdr.dh_start);
4517 		(void) printf("    end: %llu\n",
4518 		    (u_longlong_t)l2dhdr.dh_end);
4519 		(void) printf("    evict: %llu\n",
4520 		    (u_longlong_t)l2dhdr.dh_evict);
4521 		(void) printf("    lb_asize_refcount: %llu\n",
4522 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4523 		(void) printf("    lb_count_refcount: %llu\n",
4524 		    (u_longlong_t)l2dhdr.dh_lb_count);
4525 		(void) printf("    trim_action_time: %llu\n",
4526 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4527 		(void) printf("    trim_state: %llu\n\n",
4528 		    (u_longlong_t)l2dhdr.dh_trim_state);
4529 	}
4530 
4531 	dump_l2arc_log_blocks(fd, l2dhdr, &rebuild);
4532 	/*
4533 	 * The total aligned size of log blocks and the number of log blocks
4534 	 * reported in the header of the device may be less than what zdb
4535 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4536 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4537 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4538 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4539 	 * and dh_lb_count will be lower to begin with than what exists on the
4540 	 * device. This is normal and zdb should not exit with an error. The
4541 	 * opposite case should never happen though, the values reported in the
4542 	 * header should never be higher than what dump_l2arc_log_blocks() and
4543 	 * l2arc_rebuild() report. If this happens there is a leak in the
4544 	 * accounting of log blocks.
4545 	 */
4546 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4547 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4548 		return (1);
4549 
4550 	return (0);
4551 }
4552 
4553 static void
4554 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4555 {
4556 	if (dump_opt['q'])
4557 		return;
4558 
4559 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4560 		return;
4561 
4562 	print_label_header(label, l);
4563 	dump_nvlist(label->config_nv, 4);
4564 	print_label_numbers("    labels = ", label->config);
4565 
4566 	if (dump_opt['l'] >= 2)
4567 		dump_nvlist_stats(label->config_nv, buflen);
4568 }
4569 
4570 #define	ZDB_MAX_UB_HEADER_SIZE 32
4571 
4572 static void
4573 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4574 {
4575 
4576 	vdev_t vd;
4577 	char header[ZDB_MAX_UB_HEADER_SIZE];
4578 
4579 	vd.vdev_ashift = ashift;
4580 	vd.vdev_top = &vd;
4581 
4582 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4583 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4584 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4585 		cksum_record_t *rec = label->uberblocks[i];
4586 
4587 		if (rec == NULL) {
4588 			if (dump_opt['u'] >= 2) {
4589 				print_label_header(label, label_num);
4590 				(void) printf("    Uberblock[%d] invalid\n", i);
4591 			}
4592 			continue;
4593 		}
4594 
4595 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4596 			continue;
4597 
4598 		if ((dump_opt['u'] < 4) &&
4599 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4600 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4601 			continue;
4602 
4603 		print_label_header(label, label_num);
4604 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4605 		    "    Uberblock[%d]\n", i);
4606 		dump_uberblock(ub, header, "");
4607 		print_label_numbers("        labels = ", rec);
4608 	}
4609 }
4610 
4611 static char curpath[PATH_MAX];
4612 
4613 /*
4614  * Iterate through the path components, recursively passing
4615  * current one's obj and remaining path until we find the obj
4616  * for the last one.
4617  */
4618 static int
4619 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4620 {
4621 	int err;
4622 	boolean_t header = B_TRUE;
4623 	uint64_t child_obj;
4624 	char *s;
4625 	dmu_buf_t *db;
4626 	dmu_object_info_t doi;
4627 
4628 	if ((s = strchr(name, '/')) != NULL)
4629 		*s = '\0';
4630 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4631 
4632 	(void) strlcat(curpath, name, sizeof (curpath));
4633 
4634 	if (err != 0) {
4635 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4636 		    curpath, strerror(err));
4637 		return (err);
4638 	}
4639 
4640 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4641 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4642 	if (err != 0) {
4643 		(void) fprintf(stderr,
4644 		    "failed to get SA dbuf for obj %llu: %s\n",
4645 		    (u_longlong_t)child_obj, strerror(err));
4646 		return (EINVAL);
4647 	}
4648 	dmu_object_info_from_db(db, &doi);
4649 	sa_buf_rele(db, FTAG);
4650 
4651 	if (doi.doi_bonus_type != DMU_OT_SA &&
4652 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
4653 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4654 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
4655 		return (EINVAL);
4656 	}
4657 
4658 	if (dump_opt['v'] > 6) {
4659 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
4660 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
4661 		    doi.doi_bonus_type);
4662 	}
4663 
4664 	(void) strlcat(curpath, "/", sizeof (curpath));
4665 
4666 	switch (doi.doi_type) {
4667 	case DMU_OT_DIRECTORY_CONTENTS:
4668 		if (s != NULL && *(s + 1) != '\0')
4669 			return (dump_path_impl(os, child_obj, s + 1, retobj));
4670 		zfs_fallthrough;
4671 	case DMU_OT_PLAIN_FILE_CONTENTS:
4672 		if (retobj != NULL) {
4673 			*retobj = child_obj;
4674 		} else {
4675 			dump_object(os, child_obj, dump_opt['v'], &header,
4676 			    NULL, 0);
4677 		}
4678 		return (0);
4679 	default:
4680 		(void) fprintf(stderr, "object %llu has non-file/directory "
4681 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
4682 		break;
4683 	}
4684 
4685 	return (EINVAL);
4686 }
4687 
4688 /*
4689  * Dump the blocks for the object specified by path inside the dataset.
4690  */
4691 static int
4692 dump_path(char *ds, char *path, uint64_t *retobj)
4693 {
4694 	int err;
4695 	objset_t *os;
4696 	uint64_t root_obj;
4697 
4698 	err = open_objset(ds, FTAG, &os);
4699 	if (err != 0)
4700 		return (err);
4701 
4702 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4703 	if (err != 0) {
4704 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
4705 		    strerror(err));
4706 		close_objset(os, FTAG);
4707 		return (EINVAL);
4708 	}
4709 
4710 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4711 
4712 	err = dump_path_impl(os, root_obj, path, retobj);
4713 
4714 	close_objset(os, FTAG);
4715 	return (err);
4716 }
4717 
4718 static int
4719 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
4720 {
4721 	int err = 0;
4722 	uint64_t size, readsize, oursize, offset;
4723 	ssize_t writesize;
4724 	sa_handle_t *hdl;
4725 
4726 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
4727 	    destfile);
4728 
4729 	VERIFY3P(os, ==, sa_os);
4730 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
4731 		(void) printf("Failed to get handle for SA znode\n");
4732 		return (err);
4733 	}
4734 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
4735 		(void) sa_handle_destroy(hdl);
4736 		return (err);
4737 	}
4738 	(void) sa_handle_destroy(hdl);
4739 
4740 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
4741 	    size);
4742 	if (size == 0) {
4743 		return (EINVAL);
4744 	}
4745 
4746 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
4747 	if (fd == -1)
4748 		return (errno);
4749 	/*
4750 	 * We cap the size at 1 mebibyte here to prevent
4751 	 * allocation failures and nigh-infinite printing if the
4752 	 * object is extremely large.
4753 	 */
4754 	oursize = MIN(size, 1 << 20);
4755 	offset = 0;
4756 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
4757 	if (buf == NULL) {
4758 		(void) close(fd);
4759 		return (ENOMEM);
4760 	}
4761 
4762 	while (offset < size) {
4763 		readsize = MIN(size - offset, 1 << 20);
4764 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
4765 		if (err != 0) {
4766 			(void) printf("got error %u from dmu_read\n", err);
4767 			kmem_free(buf, oursize);
4768 			(void) close(fd);
4769 			return (err);
4770 		}
4771 		if (dump_opt['v'] > 3) {
4772 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
4773 			    " error=%d\n", offset, readsize, err);
4774 		}
4775 
4776 		writesize = write(fd, buf, readsize);
4777 		if (writesize < 0) {
4778 			err = errno;
4779 			break;
4780 		} else if (writesize != readsize) {
4781 			/* Incomplete write */
4782 			(void) fprintf(stderr, "Short write, only wrote %llu of"
4783 			    " %" PRIu64 " bytes, exiting...\n",
4784 			    (u_longlong_t)writesize, readsize);
4785 			break;
4786 		}
4787 
4788 		offset += readsize;
4789 	}
4790 
4791 	(void) close(fd);
4792 
4793 	if (buf != NULL)
4794 		kmem_free(buf, oursize);
4795 
4796 	return (err);
4797 }
4798 
4799 static boolean_t
4800 label_cksum_valid(vdev_label_t *label, uint64_t offset)
4801 {
4802 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
4803 	zio_cksum_t expected_cksum;
4804 	zio_cksum_t actual_cksum;
4805 	zio_cksum_t verifier;
4806 	zio_eck_t *eck;
4807 	int byteswap;
4808 
4809 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
4810 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
4811 
4812 	offset += offsetof(vdev_label_t, vl_vdev_phys);
4813 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
4814 
4815 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
4816 	if (byteswap)
4817 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
4818 
4819 	expected_cksum = eck->zec_cksum;
4820 	eck->zec_cksum = verifier;
4821 
4822 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
4823 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
4824 	abd_free(abd);
4825 
4826 	if (byteswap)
4827 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
4828 
4829 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
4830 		return (B_TRUE);
4831 
4832 	return (B_FALSE);
4833 }
4834 
4835 static int
4836 dump_label(const char *dev)
4837 {
4838 	char path[MAXPATHLEN];
4839 	zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
4840 	uint64_t psize, ashift, l2cache;
4841 	struct stat64 statbuf;
4842 	boolean_t config_found = B_FALSE;
4843 	boolean_t error = B_FALSE;
4844 	boolean_t read_l2arc_header = B_FALSE;
4845 	avl_tree_t config_tree;
4846 	avl_tree_t uberblock_tree;
4847 	void *node, *cookie;
4848 	int fd;
4849 
4850 	/*
4851 	 * Check if we were given absolute path and use it as is.
4852 	 * Otherwise if the provided vdev name doesn't point to a file,
4853 	 * try prepending expected disk paths and partition numbers.
4854 	 */
4855 	(void) strlcpy(path, dev, sizeof (path));
4856 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
4857 		int error;
4858 
4859 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
4860 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
4861 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
4862 				error = ENOENT;
4863 		}
4864 
4865 		if (error || (stat64(path, &statbuf) != 0)) {
4866 			(void) printf("failed to find device %s, try "
4867 			    "specifying absolute path instead\n", dev);
4868 			return (1);
4869 		}
4870 	}
4871 
4872 	if ((fd = open64(path, O_RDONLY)) < 0) {
4873 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
4874 		exit(1);
4875 	}
4876 
4877 	if (fstat64_blk(fd, &statbuf) != 0) {
4878 		(void) printf("failed to stat '%s': %s\n", path,
4879 		    strerror(errno));
4880 		(void) close(fd);
4881 		exit(1);
4882 	}
4883 
4884 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
4885 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
4886 		    strerror(errno));
4887 
4888 	avl_create(&config_tree, cksum_record_compare,
4889 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4890 	avl_create(&uberblock_tree, cksum_record_compare,
4891 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
4892 
4893 	psize = statbuf.st_size;
4894 	psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
4895 	ashift = SPA_MINBLOCKSHIFT;
4896 
4897 	/*
4898 	 * 1. Read the label from disk
4899 	 * 2. Verify label cksum
4900 	 * 3. Unpack the configuration and insert in config tree.
4901 	 * 4. Traverse all uberblocks and insert in uberblock tree.
4902 	 */
4903 	for (int l = 0; l < VDEV_LABELS; l++) {
4904 		zdb_label_t *label = &labels[l];
4905 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
4906 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4907 		nvlist_t *config;
4908 		cksum_record_t *rec;
4909 		zio_cksum_t cksum;
4910 		vdev_t vd;
4911 
4912 		label->label_offset = vdev_label_offset(psize, l, 0);
4913 
4914 		if (pread64(fd, &label->label, sizeof (label->label),
4915 		    label->label_offset) != sizeof (label->label)) {
4916 			if (!dump_opt['q'])
4917 				(void) printf("failed to read label %d\n", l);
4918 			label->read_failed = B_TRUE;
4919 			error = B_TRUE;
4920 			continue;
4921 		}
4922 
4923 		label->read_failed = B_FALSE;
4924 		label->cksum_valid = label_cksum_valid(&label->label,
4925 		    label->label_offset);
4926 
4927 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
4928 			nvlist_t *vdev_tree = NULL;
4929 			size_t size;
4930 
4931 			if ((nvlist_lookup_nvlist(config,
4932 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
4933 			    (nvlist_lookup_uint64(vdev_tree,
4934 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
4935 				ashift = SPA_MINBLOCKSHIFT;
4936 
4937 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
4938 				size = buflen;
4939 
4940 			/* If the device is a cache device clear the header. */
4941 			if (!read_l2arc_header) {
4942 				if (nvlist_lookup_uint64(config,
4943 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
4944 				    l2cache == POOL_STATE_L2CACHE) {
4945 					read_l2arc_header = B_TRUE;
4946 				}
4947 			}
4948 
4949 			fletcher_4_native_varsize(buf, size, &cksum);
4950 			rec = cksum_record_insert(&config_tree, &cksum, l);
4951 
4952 			label->config = rec;
4953 			label->config_nv = config;
4954 			config_found = B_TRUE;
4955 		} else {
4956 			error = B_TRUE;
4957 		}
4958 
4959 		vd.vdev_ashift = ashift;
4960 		vd.vdev_top = &vd;
4961 
4962 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4963 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4964 			uberblock_t *ub = (void *)((char *)label + uoff);
4965 
4966 			if (uberblock_verify(ub))
4967 				continue;
4968 
4969 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
4970 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
4971 
4972 			label->uberblocks[i] = rec;
4973 		}
4974 	}
4975 
4976 	/*
4977 	 * Dump the label and uberblocks.
4978 	 */
4979 	for (int l = 0; l < VDEV_LABELS; l++) {
4980 		zdb_label_t *label = &labels[l];
4981 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
4982 
4983 		if (label->read_failed == B_TRUE)
4984 			continue;
4985 
4986 		if (label->config_nv) {
4987 			dump_config_from_label(label, buflen, l);
4988 		} else {
4989 			if (!dump_opt['q'])
4990 				(void) printf("failed to unpack label %d\n", l);
4991 		}
4992 
4993 		if (dump_opt['u'])
4994 			dump_label_uberblocks(label, ashift, l);
4995 
4996 		nvlist_free(label->config_nv);
4997 	}
4998 
4999 	/*
5000 	 * Dump the L2ARC header, if existent.
5001 	 */
5002 	if (read_l2arc_header)
5003 		error |= dump_l2arc_header(fd);
5004 
5005 	cookie = NULL;
5006 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5007 		umem_free(node, sizeof (cksum_record_t));
5008 
5009 	cookie = NULL;
5010 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5011 		umem_free(node, sizeof (cksum_record_t));
5012 
5013 	avl_destroy(&config_tree);
5014 	avl_destroy(&uberblock_tree);
5015 
5016 	(void) close(fd);
5017 
5018 	return (config_found == B_FALSE ? 2 :
5019 	    (error == B_TRUE ? 1 : 0));
5020 }
5021 
5022 static uint64_t dataset_feature_count[SPA_FEATURES];
5023 static uint64_t global_feature_count[SPA_FEATURES];
5024 static uint64_t remap_deadlist_count = 0;
5025 
5026 static int
5027 dump_one_objset(const char *dsname, void *arg)
5028 {
5029 	(void) arg;
5030 	int error;
5031 	objset_t *os;
5032 	spa_feature_t f;
5033 
5034 	error = open_objset(dsname, FTAG, &os);
5035 	if (error != 0)
5036 		return (0);
5037 
5038 	for (f = 0; f < SPA_FEATURES; f++) {
5039 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5040 			continue;
5041 		ASSERT(spa_feature_table[f].fi_flags &
5042 		    ZFEATURE_FLAG_PER_DATASET);
5043 		dataset_feature_count[f]++;
5044 	}
5045 
5046 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5047 		remap_deadlist_count++;
5048 	}
5049 
5050 	for (dsl_bookmark_node_t *dbn =
5051 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5052 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5053 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5054 		if (dbn->dbn_phys.zbm_redaction_obj != 0)
5055 			global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++;
5056 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5057 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5058 	}
5059 
5060 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5061 	    !dmu_objset_is_snapshot(os)) {
5062 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5063 	}
5064 
5065 	dump_objset(os);
5066 	close_objset(os, FTAG);
5067 	fuid_table_destroy();
5068 	return (0);
5069 }
5070 
5071 /*
5072  * Block statistics.
5073  */
5074 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5075 typedef struct zdb_blkstats {
5076 	uint64_t zb_asize;
5077 	uint64_t zb_lsize;
5078 	uint64_t zb_psize;
5079 	uint64_t zb_count;
5080 	uint64_t zb_gangs;
5081 	uint64_t zb_ditto_samevdev;
5082 	uint64_t zb_ditto_same_ms;
5083 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5084 } zdb_blkstats_t;
5085 
5086 /*
5087  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5088  */
5089 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5090 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5091 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5092 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5093 
5094 static const char *zdb_ot_extname[] = {
5095 	"deferred free",
5096 	"dedup ditto",
5097 	"other",
5098 	"Total",
5099 };
5100 
5101 #define	ZB_TOTAL	DN_MAX_LEVELS
5102 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5103 
5104 typedef struct zdb_cb {
5105 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5106 	uint64_t	zcb_removing_size;
5107 	uint64_t	zcb_checkpoint_size;
5108 	uint64_t	zcb_dedup_asize;
5109 	uint64_t	zcb_dedup_blocks;
5110 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5111 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5112 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5113 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5114 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5115 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5116 	uint64_t	zcb_psize_total;
5117 	uint64_t	zcb_lsize_total;
5118 	uint64_t	zcb_asize_total;
5119 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5120 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5121 	    [BPE_PAYLOAD_SIZE + 1];
5122 	uint64_t	zcb_start;
5123 	hrtime_t	zcb_lastprint;
5124 	uint64_t	zcb_totalasize;
5125 	uint64_t	zcb_errors[256];
5126 	int		zcb_readfails;
5127 	int		zcb_haderrors;
5128 	spa_t		*zcb_spa;
5129 	uint32_t	**zcb_vd_obsolete_counts;
5130 } zdb_cb_t;
5131 
5132 /* test if two DVA offsets from same vdev are within the same metaslab */
5133 static boolean_t
5134 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5135 {
5136 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5137 	uint64_t ms_shift = vd->vdev_ms_shift;
5138 
5139 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5140 }
5141 
5142 /*
5143  * Used to simplify reporting of the histogram data.
5144  */
5145 typedef struct one_histo {
5146 	const char *name;
5147 	uint64_t *count;
5148 	uint64_t *len;
5149 	uint64_t cumulative;
5150 } one_histo_t;
5151 
5152 /*
5153  * The number of separate histograms processed for psize, lsize and asize.
5154  */
5155 #define	NUM_HISTO 3
5156 
5157 /*
5158  * This routine will create a fixed column size output of three different
5159  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5160  * the count, length and cumulative length of the psize, lsize and
5161  * asize blocks.
5162  *
5163  * All three types of blocks are listed on a single line
5164  *
5165  * By default the table is printed in nicenumber format (e.g. 123K) but
5166  * if the '-P' parameter is specified then the full raw number (parseable)
5167  * is printed out.
5168  */
5169 static void
5170 dump_size_histograms(zdb_cb_t *zcb)
5171 {
5172 	/*
5173 	 * A temporary buffer that allows us to convert a number into
5174 	 * a string using zdb_nicenumber to allow either raw or human
5175 	 * readable numbers to be output.
5176 	 */
5177 	char numbuf[32];
5178 
5179 	/*
5180 	 * Define titles which are used in the headers of the tables
5181 	 * printed by this routine.
5182 	 */
5183 	const char blocksize_title1[] = "block";
5184 	const char blocksize_title2[] = "size";
5185 	const char count_title[] = "Count";
5186 	const char length_title[] = "Size";
5187 	const char cumulative_title[] = "Cum.";
5188 
5189 	/*
5190 	 * Setup the histogram arrays (psize, lsize, and asize).
5191 	 */
5192 	one_histo_t parm_histo[NUM_HISTO];
5193 
5194 	parm_histo[0].name = "psize";
5195 	parm_histo[0].count = zcb->zcb_psize_count;
5196 	parm_histo[0].len = zcb->zcb_psize_len;
5197 	parm_histo[0].cumulative = 0;
5198 
5199 	parm_histo[1].name = "lsize";
5200 	parm_histo[1].count = zcb->zcb_lsize_count;
5201 	parm_histo[1].len = zcb->zcb_lsize_len;
5202 	parm_histo[1].cumulative = 0;
5203 
5204 	parm_histo[2].name = "asize";
5205 	parm_histo[2].count = zcb->zcb_asize_count;
5206 	parm_histo[2].len = zcb->zcb_asize_len;
5207 	parm_histo[2].cumulative = 0;
5208 
5209 
5210 	(void) printf("\nBlock Size Histogram\n");
5211 	/*
5212 	 * Print the first line titles
5213 	 */
5214 	if (dump_opt['P'])
5215 		(void) printf("\n%s\t", blocksize_title1);
5216 	else
5217 		(void) printf("\n%7s   ", blocksize_title1);
5218 
5219 	for (int j = 0; j < NUM_HISTO; j++) {
5220 		if (dump_opt['P']) {
5221 			if (j < NUM_HISTO - 1) {
5222 				(void) printf("%s\t\t\t", parm_histo[j].name);
5223 			} else {
5224 				/* Don't print trailing spaces */
5225 				(void) printf("  %s", parm_histo[j].name);
5226 			}
5227 		} else {
5228 			if (j < NUM_HISTO - 1) {
5229 				/* Left aligned strings in the output */
5230 				(void) printf("%-7s              ",
5231 				    parm_histo[j].name);
5232 			} else {
5233 				/* Don't print trailing spaces */
5234 				(void) printf("%s", parm_histo[j].name);
5235 			}
5236 		}
5237 	}
5238 	(void) printf("\n");
5239 
5240 	/*
5241 	 * Print the second line titles
5242 	 */
5243 	if (dump_opt['P']) {
5244 		(void) printf("%s\t", blocksize_title2);
5245 	} else {
5246 		(void) printf("%7s ", blocksize_title2);
5247 	}
5248 
5249 	for (int i = 0; i < NUM_HISTO; i++) {
5250 		if (dump_opt['P']) {
5251 			(void) printf("%s\t%s\t%s\t",
5252 			    count_title, length_title, cumulative_title);
5253 		} else {
5254 			(void) printf("%7s%7s%7s",
5255 			    count_title, length_title, cumulative_title);
5256 		}
5257 	}
5258 	(void) printf("\n");
5259 
5260 	/*
5261 	 * Print the rows
5262 	 */
5263 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5264 
5265 		/*
5266 		 * Print the first column showing the blocksize
5267 		 */
5268 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5269 
5270 		if (dump_opt['P']) {
5271 			printf("%s", numbuf);
5272 		} else {
5273 			printf("%7s:", numbuf);
5274 		}
5275 
5276 		/*
5277 		 * Print the remaining set of 3 columns per size:
5278 		 * for psize, lsize and asize
5279 		 */
5280 		for (int j = 0; j < NUM_HISTO; j++) {
5281 			parm_histo[j].cumulative += parm_histo[j].len[i];
5282 
5283 			zdb_nicenum(parm_histo[j].count[i],
5284 			    numbuf, sizeof (numbuf));
5285 			if (dump_opt['P'])
5286 				(void) printf("\t%s", numbuf);
5287 			else
5288 				(void) printf("%7s", numbuf);
5289 
5290 			zdb_nicenum(parm_histo[j].len[i],
5291 			    numbuf, sizeof (numbuf));
5292 			if (dump_opt['P'])
5293 				(void) printf("\t%s", numbuf);
5294 			else
5295 				(void) printf("%7s", numbuf);
5296 
5297 			zdb_nicenum(parm_histo[j].cumulative,
5298 			    numbuf, sizeof (numbuf));
5299 			if (dump_opt['P'])
5300 				(void) printf("\t%s", numbuf);
5301 			else
5302 				(void) printf("%7s", numbuf);
5303 		}
5304 		(void) printf("\n");
5305 	}
5306 }
5307 
5308 static void
5309 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5310     dmu_object_type_t type)
5311 {
5312 	uint64_t refcnt = 0;
5313 	int i;
5314 
5315 	ASSERT(type < ZDB_OT_TOTAL);
5316 
5317 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5318 		return;
5319 
5320 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5321 
5322 	for (i = 0; i < 4; i++) {
5323 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5324 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5325 		int equal;
5326 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5327 
5328 		zb->zb_asize += BP_GET_ASIZE(bp);
5329 		zb->zb_lsize += BP_GET_LSIZE(bp);
5330 		zb->zb_psize += BP_GET_PSIZE(bp);
5331 		zb->zb_count++;
5332 
5333 		/*
5334 		 * The histogram is only big enough to record blocks up to
5335 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5336 		 * "other", bucket.
5337 		 */
5338 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5339 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5340 		zb->zb_psize_histogram[idx]++;
5341 
5342 		zb->zb_gangs += BP_COUNT_GANG(bp);
5343 
5344 		switch (BP_GET_NDVAS(bp)) {
5345 		case 2:
5346 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5347 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5348 				zb->zb_ditto_samevdev++;
5349 
5350 				if (same_metaslab(zcb->zcb_spa,
5351 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5352 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5353 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5354 					zb->zb_ditto_same_ms++;
5355 			}
5356 			break;
5357 		case 3:
5358 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5359 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5360 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5361 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5362 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5363 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5364 			if (equal != 0) {
5365 				zb->zb_ditto_samevdev++;
5366 
5367 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5368 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5369 				    same_metaslab(zcb->zcb_spa,
5370 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5371 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5372 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5373 					zb->zb_ditto_same_ms++;
5374 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5375 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5376 				    same_metaslab(zcb->zcb_spa,
5377 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5378 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5379 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5380 					zb->zb_ditto_same_ms++;
5381 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5382 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5383 				    same_metaslab(zcb->zcb_spa,
5384 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5385 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5386 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5387 					zb->zb_ditto_same_ms++;
5388 			}
5389 			break;
5390 		}
5391 	}
5392 
5393 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5394 
5395 	if (BP_IS_EMBEDDED(bp)) {
5396 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5397 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5398 		    [BPE_GET_PSIZE(bp)]++;
5399 		return;
5400 	}
5401 	/*
5402 	 * The binning histogram bins by powers of two up to
5403 	 * SPA_MAXBLOCKSIZE rather than creating bins for
5404 	 * every possible blocksize found in the pool.
5405 	 */
5406 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5407 
5408 	zcb->zcb_psize_count[bin]++;
5409 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5410 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5411 
5412 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5413 
5414 	zcb->zcb_lsize_count[bin]++;
5415 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5416 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5417 
5418 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5419 
5420 	zcb->zcb_asize_count[bin]++;
5421 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5422 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5423 
5424 	if (dump_opt['L'])
5425 		return;
5426 
5427 	if (BP_GET_DEDUP(bp)) {
5428 		ddt_t *ddt;
5429 		ddt_entry_t *dde;
5430 
5431 		ddt = ddt_select(zcb->zcb_spa, bp);
5432 		ddt_enter(ddt);
5433 		dde = ddt_lookup(ddt, bp, B_FALSE);
5434 
5435 		if (dde == NULL) {
5436 			refcnt = 0;
5437 		} else {
5438 			ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5439 			ddt_phys_decref(ddp);
5440 			refcnt = ddp->ddp_refcnt;
5441 			if (ddt_phys_total_refcnt(dde) == 0)
5442 				ddt_remove(ddt, dde);
5443 		}
5444 		ddt_exit(ddt);
5445 	}
5446 
5447 	VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5448 	    refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5449 	    bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5450 }
5451 
5452 static void
5453 zdb_blkptr_done(zio_t *zio)
5454 {
5455 	spa_t *spa = zio->io_spa;
5456 	blkptr_t *bp = zio->io_bp;
5457 	int ioerr = zio->io_error;
5458 	zdb_cb_t *zcb = zio->io_private;
5459 	zbookmark_phys_t *zb = &zio->io_bookmark;
5460 
5461 	mutex_enter(&spa->spa_scrub_lock);
5462 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5463 	cv_broadcast(&spa->spa_scrub_io_cv);
5464 
5465 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5466 		char blkbuf[BP_SPRINTF_LEN];
5467 
5468 		zcb->zcb_haderrors = 1;
5469 		zcb->zcb_errors[ioerr]++;
5470 
5471 		if (dump_opt['b'] >= 2)
5472 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5473 		else
5474 			blkbuf[0] = '\0';
5475 
5476 		(void) printf("zdb_blkptr_cb: "
5477 		    "Got error %d reading "
5478 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5479 		    ioerr,
5480 		    (u_longlong_t)zb->zb_objset,
5481 		    (u_longlong_t)zb->zb_object,
5482 		    (u_longlong_t)zb->zb_level,
5483 		    (u_longlong_t)zb->zb_blkid,
5484 		    blkbuf);
5485 	}
5486 	mutex_exit(&spa->spa_scrub_lock);
5487 
5488 	abd_free(zio->io_abd);
5489 }
5490 
5491 static int
5492 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5493     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5494 {
5495 	zdb_cb_t *zcb = arg;
5496 	dmu_object_type_t type;
5497 	boolean_t is_metadata;
5498 
5499 	if (zb->zb_level == ZB_DNODE_LEVEL)
5500 		return (0);
5501 
5502 	if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5503 		char blkbuf[BP_SPRINTF_LEN];
5504 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5505 		(void) printf("objset %llu object %llu "
5506 		    "level %lld offset 0x%llx %s\n",
5507 		    (u_longlong_t)zb->zb_objset,
5508 		    (u_longlong_t)zb->zb_object,
5509 		    (longlong_t)zb->zb_level,
5510 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
5511 		    blkbuf);
5512 	}
5513 
5514 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5515 		return (0);
5516 
5517 	type = BP_GET_TYPE(bp);
5518 
5519 	zdb_count_block(zcb, zilog, bp,
5520 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5521 
5522 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5523 
5524 	if (!BP_IS_EMBEDDED(bp) &&
5525 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5526 		size_t size = BP_GET_PSIZE(bp);
5527 		abd_t *abd = abd_alloc(size, B_FALSE);
5528 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5529 
5530 		/* If it's an intent log block, failure is expected. */
5531 		if (zb->zb_level == ZB_ZIL_LEVEL)
5532 			flags |= ZIO_FLAG_SPECULATIVE;
5533 
5534 		mutex_enter(&spa->spa_scrub_lock);
5535 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
5536 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5537 		spa->spa_load_verify_bytes += size;
5538 		mutex_exit(&spa->spa_scrub_lock);
5539 
5540 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
5541 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5542 	}
5543 
5544 	zcb->zcb_readfails = 0;
5545 
5546 	/* only call gethrtime() every 100 blocks */
5547 	static int iters;
5548 	if (++iters > 100)
5549 		iters = 0;
5550 	else
5551 		return (0);
5552 
5553 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5554 		uint64_t now = gethrtime();
5555 		char buf[10];
5556 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5557 		uint64_t kb_per_sec =
5558 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5559 		uint64_t sec_remaining =
5560 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5561 
5562 		/* make sure nicenum has enough space */
5563 		_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5564 
5565 		zfs_nicebytes(bytes, buf, sizeof (buf));
5566 		(void) fprintf(stderr,
5567 		    "\r%5s completed (%4"PRIu64"MB/s) "
5568 		    "estimated time remaining: "
5569 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
5570 		    buf, kb_per_sec / 1024,
5571 		    sec_remaining / 60 / 60,
5572 		    sec_remaining / 60 % 60,
5573 		    sec_remaining % 60);
5574 
5575 		zcb->zcb_lastprint = now;
5576 	}
5577 
5578 	return (0);
5579 }
5580 
5581 static void
5582 zdb_leak(void *arg, uint64_t start, uint64_t size)
5583 {
5584 	vdev_t *vd = arg;
5585 
5586 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5587 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5588 }
5589 
5590 static metaslab_ops_t zdb_metaslab_ops = {
5591 	NULL	/* alloc */
5592 };
5593 
5594 static int
5595 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5596     uint64_t txg, void *arg)
5597 {
5598 	spa_vdev_removal_t *svr = arg;
5599 
5600 	uint64_t offset = sme->sme_offset;
5601 	uint64_t size = sme->sme_run;
5602 
5603 	/* skip vdevs we don't care about */
5604 	if (sme->sme_vdev != svr->svr_vdev_id)
5605 		return (0);
5606 
5607 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5608 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5609 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5610 
5611 	if (txg < metaslab_unflushed_txg(ms))
5612 		return (0);
5613 
5614 	if (sme->sme_type == SM_ALLOC)
5615 		range_tree_add(svr->svr_allocd_segs, offset, size);
5616 	else
5617 		range_tree_remove(svr->svr_allocd_segs, offset, size);
5618 
5619 	return (0);
5620 }
5621 
5622 static void
5623 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5624     uint64_t size, void *arg)
5625 {
5626 	(void) inner_offset, (void) arg;
5627 
5628 	/*
5629 	 * This callback was called through a remap from
5630 	 * a device being removed. Therefore, the vdev that
5631 	 * this callback is applied to is a concrete
5632 	 * vdev.
5633 	 */
5634 	ASSERT(vdev_is_concrete(vd));
5635 
5636 	VERIFY0(metaslab_claim_impl(vd, offset, size,
5637 	    spa_min_claim_txg(vd->vdev_spa)));
5638 }
5639 
5640 static void
5641 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
5642 {
5643 	vdev_t *vd = arg;
5644 
5645 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
5646 	    claim_segment_impl_cb, NULL);
5647 }
5648 
5649 /*
5650  * After accounting for all allocated blocks that are directly referenced,
5651  * we might have missed a reference to a block from a partially complete
5652  * (and thus unused) indirect mapping object. We perform a secondary pass
5653  * through the metaslabs we have already mapped and claim the destination
5654  * blocks.
5655  */
5656 static void
5657 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
5658 {
5659 	if (dump_opt['L'])
5660 		return;
5661 
5662 	if (spa->spa_vdev_removal == NULL)
5663 		return;
5664 
5665 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5666 
5667 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
5668 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
5669 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5670 
5671 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
5672 
5673 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
5674 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
5675 		metaslab_t *msp = vd->vdev_ms[msi];
5676 
5677 		ASSERT0(range_tree_space(allocs));
5678 		if (msp->ms_sm != NULL)
5679 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
5680 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
5681 	}
5682 	range_tree_destroy(allocs);
5683 
5684 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
5685 
5686 	/*
5687 	 * Clear everything past what has been synced,
5688 	 * because we have not allocated mappings for
5689 	 * it yet.
5690 	 */
5691 	range_tree_clear(svr->svr_allocd_segs,
5692 	    vdev_indirect_mapping_max_offset(vim),
5693 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
5694 
5695 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
5696 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
5697 
5698 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5699 }
5700 
5701 static int
5702 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
5703     dmu_tx_t *tx)
5704 {
5705 	(void) tx;
5706 	zdb_cb_t *zcb = arg;
5707 	spa_t *spa = zcb->zcb_spa;
5708 	vdev_t *vd;
5709 	const dva_t *dva = &bp->blk_dva[0];
5710 
5711 	ASSERT(!bp_freed);
5712 	ASSERT(!dump_opt['L']);
5713 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
5714 
5715 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
5716 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
5717 	ASSERT3P(vd, !=, NULL);
5718 	spa_config_exit(spa, SCL_VDEV, FTAG);
5719 
5720 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
5721 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
5722 
5723 	vdev_indirect_mapping_increment_obsolete_count(
5724 	    vd->vdev_indirect_mapping,
5725 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
5726 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
5727 
5728 	return (0);
5729 }
5730 
5731 static uint32_t *
5732 zdb_load_obsolete_counts(vdev_t *vd)
5733 {
5734 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
5735 	spa_t *spa = vd->vdev_spa;
5736 	spa_condensing_indirect_phys_t *scip =
5737 	    &spa->spa_condensing_indirect_phys;
5738 	uint64_t obsolete_sm_object;
5739 	uint32_t *counts;
5740 
5741 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
5742 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
5743 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
5744 	if (vd->vdev_obsolete_sm != NULL) {
5745 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5746 		    vd->vdev_obsolete_sm);
5747 	}
5748 	if (scip->scip_vdev == vd->vdev_id &&
5749 	    scip->scip_prev_obsolete_sm_object != 0) {
5750 		space_map_t *prev_obsolete_sm = NULL;
5751 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
5752 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
5753 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
5754 		    prev_obsolete_sm);
5755 		space_map_close(prev_obsolete_sm);
5756 	}
5757 	return (counts);
5758 }
5759 
5760 static void
5761 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
5762 {
5763 	ddt_bookmark_t ddb = {0};
5764 	ddt_entry_t dde;
5765 	int error;
5766 	int p;
5767 
5768 	ASSERT(!dump_opt['L']);
5769 
5770 	while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
5771 		blkptr_t blk;
5772 		ddt_phys_t *ddp = dde.dde_phys;
5773 
5774 		if (ddb.ddb_class == DDT_CLASS_UNIQUE)
5775 			return;
5776 
5777 		ASSERT(ddt_phys_total_refcnt(&dde) > 1);
5778 
5779 		for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
5780 			if (ddp->ddp_phys_birth == 0)
5781 				continue;
5782 			ddt_bp_create(ddb.ddb_checksum,
5783 			    &dde.dde_key, ddp, &blk);
5784 			if (p == DDT_PHYS_DITTO) {
5785 				zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
5786 			} else {
5787 				zcb->zcb_dedup_asize +=
5788 				    BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
5789 				zcb->zcb_dedup_blocks++;
5790 			}
5791 		}
5792 		ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
5793 		ddt_enter(ddt);
5794 		VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
5795 		ddt_exit(ddt);
5796 	}
5797 
5798 	ASSERT(error == ENOENT);
5799 }
5800 
5801 typedef struct checkpoint_sm_exclude_entry_arg {
5802 	vdev_t *cseea_vd;
5803 	uint64_t cseea_checkpoint_size;
5804 } checkpoint_sm_exclude_entry_arg_t;
5805 
5806 static int
5807 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
5808 {
5809 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
5810 	vdev_t *vd = cseea->cseea_vd;
5811 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
5812 	uint64_t end = sme->sme_offset + sme->sme_run;
5813 
5814 	ASSERT(sme->sme_type == SM_FREE);
5815 
5816 	/*
5817 	 * Since the vdev_checkpoint_sm exists in the vdev level
5818 	 * and the ms_sm space maps exist in the metaslab level,
5819 	 * an entry in the checkpoint space map could theoretically
5820 	 * cross the boundaries of the metaslab that it belongs.
5821 	 *
5822 	 * In reality, because of the way that we populate and
5823 	 * manipulate the checkpoint's space maps currently,
5824 	 * there shouldn't be any entries that cross metaslabs.
5825 	 * Hence the assertion below.
5826 	 *
5827 	 * That said, there is no fundamental requirement that
5828 	 * the checkpoint's space map entries should not cross
5829 	 * metaslab boundaries. So if needed we could add code
5830 	 * that handles metaslab-crossing segments in the future.
5831 	 */
5832 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
5833 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
5834 
5835 	/*
5836 	 * By removing the entry from the allocated segments we
5837 	 * also verify that the entry is there to begin with.
5838 	 */
5839 	mutex_enter(&ms->ms_lock);
5840 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
5841 	mutex_exit(&ms->ms_lock);
5842 
5843 	cseea->cseea_checkpoint_size += sme->sme_run;
5844 	return (0);
5845 }
5846 
5847 static void
5848 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
5849 {
5850 	spa_t *spa = vd->vdev_spa;
5851 	space_map_t *checkpoint_sm = NULL;
5852 	uint64_t checkpoint_sm_obj;
5853 
5854 	/*
5855 	 * If there is no vdev_top_zap, we are in a pool whose
5856 	 * version predates the pool checkpoint feature.
5857 	 */
5858 	if (vd->vdev_top_zap == 0)
5859 		return;
5860 
5861 	/*
5862 	 * If there is no reference of the vdev_checkpoint_sm in
5863 	 * the vdev_top_zap, then one of the following scenarios
5864 	 * is true:
5865 	 *
5866 	 * 1] There is no checkpoint
5867 	 * 2] There is a checkpoint, but no checkpointed blocks
5868 	 *    have been freed yet
5869 	 * 3] The current vdev is indirect
5870 	 *
5871 	 * In these cases we return immediately.
5872 	 */
5873 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
5874 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
5875 		return;
5876 
5877 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
5878 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
5879 	    &checkpoint_sm_obj));
5880 
5881 	checkpoint_sm_exclude_entry_arg_t cseea;
5882 	cseea.cseea_vd = vd;
5883 	cseea.cseea_checkpoint_size = 0;
5884 
5885 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
5886 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
5887 
5888 	VERIFY0(space_map_iterate(checkpoint_sm,
5889 	    space_map_length(checkpoint_sm),
5890 	    checkpoint_sm_exclude_entry_cb, &cseea));
5891 	space_map_close(checkpoint_sm);
5892 
5893 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
5894 }
5895 
5896 static void
5897 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
5898 {
5899 	ASSERT(!dump_opt['L']);
5900 
5901 	vdev_t *rvd = spa->spa_root_vdev;
5902 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
5903 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
5904 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
5905 	}
5906 }
5907 
5908 static int
5909 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
5910     uint64_t txg, void *arg)
5911 {
5912 	int64_t *ualloc_space = arg;
5913 
5914 	uint64_t offset = sme->sme_offset;
5915 	uint64_t vdev_id = sme->sme_vdev;
5916 
5917 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5918 	if (!vdev_is_concrete(vd))
5919 		return (0);
5920 
5921 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5922 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5923 
5924 	if (txg < metaslab_unflushed_txg(ms))
5925 		return (0);
5926 
5927 	if (sme->sme_type == SM_ALLOC)
5928 		*ualloc_space += sme->sme_run;
5929 	else
5930 		*ualloc_space -= sme->sme_run;
5931 
5932 	return (0);
5933 }
5934 
5935 static int64_t
5936 get_unflushed_alloc_space(spa_t *spa)
5937 {
5938 	if (dump_opt['L'])
5939 		return (0);
5940 
5941 	int64_t ualloc_space = 0;
5942 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
5943 	    &ualloc_space);
5944 	return (ualloc_space);
5945 }
5946 
5947 static int
5948 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
5949 {
5950 	maptype_t *uic_maptype = arg;
5951 
5952 	uint64_t offset = sme->sme_offset;
5953 	uint64_t size = sme->sme_run;
5954 	uint64_t vdev_id = sme->sme_vdev;
5955 
5956 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
5957 
5958 	/* skip indirect vdevs */
5959 	if (!vdev_is_concrete(vd))
5960 		return (0);
5961 
5962 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5963 
5964 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5965 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
5966 
5967 	if (txg < metaslab_unflushed_txg(ms))
5968 		return (0);
5969 
5970 	if (*uic_maptype == sme->sme_type)
5971 		range_tree_add(ms->ms_allocatable, offset, size);
5972 	else
5973 		range_tree_remove(ms->ms_allocatable, offset, size);
5974 
5975 	return (0);
5976 }
5977 
5978 static void
5979 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
5980 {
5981 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
5982 }
5983 
5984 static void
5985 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
5986 {
5987 	vdev_t *rvd = spa->spa_root_vdev;
5988 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5989 		vdev_t *vd = rvd->vdev_child[i];
5990 
5991 		ASSERT3U(i, ==, vd->vdev_id);
5992 
5993 		if (vd->vdev_ops == &vdev_indirect_ops)
5994 			continue;
5995 
5996 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
5997 			metaslab_t *msp = vd->vdev_ms[m];
5998 
5999 			(void) fprintf(stderr,
6000 			    "\rloading concrete vdev %llu, "
6001 			    "metaslab %llu of %llu ...",
6002 			    (longlong_t)vd->vdev_id,
6003 			    (longlong_t)msp->ms_id,
6004 			    (longlong_t)vd->vdev_ms_count);
6005 
6006 			mutex_enter(&msp->ms_lock);
6007 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6008 
6009 			/*
6010 			 * We don't want to spend the CPU manipulating the
6011 			 * size-ordered tree, so clear the range_tree ops.
6012 			 */
6013 			msp->ms_allocatable->rt_ops = NULL;
6014 
6015 			if (msp->ms_sm != NULL) {
6016 				VERIFY0(space_map_load(msp->ms_sm,
6017 				    msp->ms_allocatable, maptype));
6018 			}
6019 			if (!msp->ms_loaded)
6020 				msp->ms_loaded = B_TRUE;
6021 			mutex_exit(&msp->ms_lock);
6022 		}
6023 	}
6024 
6025 	load_unflushed_to_ms_allocatables(spa, maptype);
6026 }
6027 
6028 /*
6029  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6030  * index in vim_entries that has the first entry in this metaslab.
6031  * On return, it will be set to the first entry after this metaslab.
6032  */
6033 static void
6034 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6035     uint64_t *vim_idxp)
6036 {
6037 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6038 
6039 	mutex_enter(&msp->ms_lock);
6040 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6041 
6042 	/*
6043 	 * We don't want to spend the CPU manipulating the
6044 	 * size-ordered tree, so clear the range_tree ops.
6045 	 */
6046 	msp->ms_allocatable->rt_ops = NULL;
6047 
6048 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6049 	    (*vim_idxp)++) {
6050 		vdev_indirect_mapping_entry_phys_t *vimep =
6051 		    &vim->vim_entries[*vim_idxp];
6052 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6053 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6054 		ASSERT3U(ent_offset, >=, msp->ms_start);
6055 		if (ent_offset >= msp->ms_start + msp->ms_size)
6056 			break;
6057 
6058 		/*
6059 		 * Mappings do not cross metaslab boundaries,
6060 		 * because we create them by walking the metaslabs.
6061 		 */
6062 		ASSERT3U(ent_offset + ent_len, <=,
6063 		    msp->ms_start + msp->ms_size);
6064 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6065 	}
6066 
6067 	if (!msp->ms_loaded)
6068 		msp->ms_loaded = B_TRUE;
6069 	mutex_exit(&msp->ms_lock);
6070 }
6071 
6072 static void
6073 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6074 {
6075 	ASSERT(!dump_opt['L']);
6076 
6077 	vdev_t *rvd = spa->spa_root_vdev;
6078 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6079 		vdev_t *vd = rvd->vdev_child[c];
6080 
6081 		ASSERT3U(c, ==, vd->vdev_id);
6082 
6083 		if (vd->vdev_ops != &vdev_indirect_ops)
6084 			continue;
6085 
6086 		/*
6087 		 * Note: we don't check for mapping leaks on
6088 		 * removing vdevs because their ms_allocatable's
6089 		 * are used to look for leaks in allocated space.
6090 		 */
6091 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6092 
6093 		/*
6094 		 * Normally, indirect vdevs don't have any
6095 		 * metaslabs.  We want to set them up for
6096 		 * zio_claim().
6097 		 */
6098 		vdev_metaslab_group_create(vd);
6099 		VERIFY0(vdev_metaslab_init(vd, 0));
6100 
6101 		vdev_indirect_mapping_t *vim __maybe_unused =
6102 		    vd->vdev_indirect_mapping;
6103 		uint64_t vim_idx = 0;
6104 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6105 
6106 			(void) fprintf(stderr,
6107 			    "\rloading indirect vdev %llu, "
6108 			    "metaslab %llu of %llu ...",
6109 			    (longlong_t)vd->vdev_id,
6110 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6111 			    (longlong_t)vd->vdev_ms_count);
6112 
6113 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6114 			    &vim_idx);
6115 		}
6116 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6117 	}
6118 }
6119 
6120 static void
6121 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6122 {
6123 	zcb->zcb_spa = spa;
6124 
6125 	if (dump_opt['L'])
6126 		return;
6127 
6128 	dsl_pool_t *dp = spa->spa_dsl_pool;
6129 	vdev_t *rvd = spa->spa_root_vdev;
6130 
6131 	/*
6132 	 * We are going to be changing the meaning of the metaslab's
6133 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6134 	 * use the tree.
6135 	 */
6136 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6137 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6138 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6139 
6140 	zcb->zcb_vd_obsolete_counts =
6141 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6142 	    UMEM_NOFAIL);
6143 
6144 	/*
6145 	 * For leak detection, we overload the ms_allocatable trees
6146 	 * to contain allocated segments instead of free segments.
6147 	 * As a result, we can't use the normal metaslab_load/unload
6148 	 * interfaces.
6149 	 */
6150 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6151 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6152 
6153 	/*
6154 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6155 	 * allocated entries from the ms_sm to the ms_allocatable for
6156 	 * each metaslab. If the pool has a checkpoint or is in the
6157 	 * middle of discarding a checkpoint, some of these blocks
6158 	 * may have been freed but their ms_sm may not have been
6159 	 * updated because they are referenced by the checkpoint. In
6160 	 * order to avoid false-positives during leak-detection, we
6161 	 * go through the vdev's checkpoint space map and exclude all
6162 	 * its entries from their relevant ms_allocatable.
6163 	 *
6164 	 * We also aggregate the space held by the checkpoint and add
6165 	 * it to zcb_checkpoint_size.
6166 	 *
6167 	 * Note that at this point we are also verifying that all the
6168 	 * entries on the checkpoint_sm are marked as allocated in
6169 	 * the ms_sm of their relevant metaslab.
6170 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6171 	 */
6172 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6173 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6174 
6175 	/* for cleaner progress output */
6176 	(void) fprintf(stderr, "\n");
6177 
6178 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6179 		ASSERT(spa_feature_is_enabled(spa,
6180 		    SPA_FEATURE_DEVICE_REMOVAL));
6181 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6182 		    increment_indirect_mapping_cb, zcb, NULL);
6183 	}
6184 
6185 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6186 	zdb_ddt_leak_init(spa, zcb);
6187 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6188 }
6189 
6190 static boolean_t
6191 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6192 {
6193 	boolean_t leaks = B_FALSE;
6194 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6195 	uint64_t total_leaked = 0;
6196 	boolean_t are_precise = B_FALSE;
6197 
6198 	ASSERT(vim != NULL);
6199 
6200 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6201 		vdev_indirect_mapping_entry_phys_t *vimep =
6202 		    &vim->vim_entries[i];
6203 		uint64_t obsolete_bytes = 0;
6204 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6205 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6206 
6207 		/*
6208 		 * This is not very efficient but it's easy to
6209 		 * verify correctness.
6210 		 */
6211 		for (uint64_t inner_offset = 0;
6212 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6213 		    inner_offset += 1ULL << vd->vdev_ashift) {
6214 			if (range_tree_contains(msp->ms_allocatable,
6215 			    offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6216 				obsolete_bytes += 1ULL << vd->vdev_ashift;
6217 			}
6218 		}
6219 
6220 		int64_t bytes_leaked = obsolete_bytes -
6221 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6222 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6223 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6224 
6225 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6226 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6227 			(void) printf("obsolete indirect mapping count "
6228 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6229 			    (u_longlong_t)vd->vdev_id,
6230 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6231 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6232 			    (u_longlong_t)bytes_leaked);
6233 		}
6234 		total_leaked += ABS(bytes_leaked);
6235 	}
6236 
6237 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6238 	if (!are_precise && total_leaked > 0) {
6239 		int pct_leaked = total_leaked * 100 /
6240 		    vdev_indirect_mapping_bytes_mapped(vim);
6241 		(void) printf("cannot verify obsolete indirect mapping "
6242 		    "counts of vdev %llu because precise feature was not "
6243 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6244 		    "unreferenced\n",
6245 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6246 		    (u_longlong_t)total_leaked);
6247 	} else if (total_leaked > 0) {
6248 		(void) printf("obsolete indirect mapping count mismatch "
6249 		    "for vdev %llu -- %llx total bytes mismatched\n",
6250 		    (u_longlong_t)vd->vdev_id,
6251 		    (u_longlong_t)total_leaked);
6252 		leaks |= B_TRUE;
6253 	}
6254 
6255 	vdev_indirect_mapping_free_obsolete_counts(vim,
6256 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6257 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6258 
6259 	return (leaks);
6260 }
6261 
6262 static boolean_t
6263 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6264 {
6265 	if (dump_opt['L'])
6266 		return (B_FALSE);
6267 
6268 	boolean_t leaks = B_FALSE;
6269 	vdev_t *rvd = spa->spa_root_vdev;
6270 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6271 		vdev_t *vd = rvd->vdev_child[c];
6272 
6273 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6274 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6275 		}
6276 
6277 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6278 			metaslab_t *msp = vd->vdev_ms[m];
6279 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6280 			    spa_embedded_log_class(spa)) ?
6281 			    vd->vdev_log_mg : vd->vdev_mg);
6282 
6283 			/*
6284 			 * ms_allocatable has been overloaded
6285 			 * to contain allocated segments. Now that
6286 			 * we finished traversing all blocks, any
6287 			 * block that remains in the ms_allocatable
6288 			 * represents an allocated block that we
6289 			 * did not claim during the traversal.
6290 			 * Claimed blocks would have been removed
6291 			 * from the ms_allocatable.  For indirect
6292 			 * vdevs, space remaining in the tree
6293 			 * represents parts of the mapping that are
6294 			 * not referenced, which is not a bug.
6295 			 */
6296 			if (vd->vdev_ops == &vdev_indirect_ops) {
6297 				range_tree_vacate(msp->ms_allocatable,
6298 				    NULL, NULL);
6299 			} else {
6300 				range_tree_vacate(msp->ms_allocatable,
6301 				    zdb_leak, vd);
6302 			}
6303 			if (msp->ms_loaded) {
6304 				msp->ms_loaded = B_FALSE;
6305 			}
6306 		}
6307 	}
6308 
6309 	umem_free(zcb->zcb_vd_obsolete_counts,
6310 	    rvd->vdev_children * sizeof (uint32_t *));
6311 	zcb->zcb_vd_obsolete_counts = NULL;
6312 
6313 	return (leaks);
6314 }
6315 
6316 static int
6317 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6318 {
6319 	(void) tx;
6320 	zdb_cb_t *zcb = arg;
6321 
6322 	if (dump_opt['b'] >= 5) {
6323 		char blkbuf[BP_SPRINTF_LEN];
6324 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6325 		(void) printf("[%s] %s\n",
6326 		    "deferred free", blkbuf);
6327 	}
6328 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6329 	return (0);
6330 }
6331 
6332 /*
6333  * Iterate over livelists which have been destroyed by the user but
6334  * are still present in the MOS, waiting to be freed
6335  */
6336 static void
6337 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6338 {
6339 	objset_t *mos = spa->spa_meta_objset;
6340 	uint64_t zap_obj;
6341 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6342 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6343 	if (err == ENOENT)
6344 		return;
6345 	ASSERT0(err);
6346 
6347 	zap_cursor_t zc;
6348 	zap_attribute_t attr;
6349 	dsl_deadlist_t ll;
6350 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6351 	ll.dl_os = NULL;
6352 	for (zap_cursor_init(&zc, mos, zap_obj);
6353 	    zap_cursor_retrieve(&zc, &attr) == 0;
6354 	    (void) zap_cursor_advance(&zc)) {
6355 		dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6356 		func(&ll, arg);
6357 		dsl_deadlist_close(&ll);
6358 	}
6359 	zap_cursor_fini(&zc);
6360 }
6361 
6362 static int
6363 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6364     dmu_tx_t *tx)
6365 {
6366 	ASSERT(!bp_freed);
6367 	return (count_block_cb(arg, bp, tx));
6368 }
6369 
6370 static int
6371 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6372 {
6373 	zdb_cb_t *zbc = args;
6374 	bplist_t blks;
6375 	bplist_create(&blks);
6376 	/* determine which blocks have been alloc'd but not freed */
6377 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6378 	/* count those blocks */
6379 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6380 	bplist_destroy(&blks);
6381 	return (0);
6382 }
6383 
6384 static void
6385 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6386 {
6387 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6388 }
6389 
6390 /*
6391  * Count the blocks in the livelists that have been destroyed by the user
6392  * but haven't yet been freed.
6393  */
6394 static void
6395 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6396 {
6397 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6398 }
6399 
6400 static void
6401 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6402 {
6403 	ASSERT3P(arg, ==, NULL);
6404 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6405 	dump_blkptr_list(ll, "Deleted Livelist");
6406 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6407 }
6408 
6409 /*
6410  * Print out, register object references to, and increment feature counts for
6411  * livelists that have been destroyed by the user but haven't yet been freed.
6412  */
6413 static void
6414 deleted_livelists_dump_mos(spa_t *spa)
6415 {
6416 	uint64_t zap_obj;
6417 	objset_t *mos = spa->spa_meta_objset;
6418 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6419 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6420 	if (err == ENOENT)
6421 		return;
6422 	mos_obj_refd(zap_obj);
6423 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6424 }
6425 
6426 static int
6427 dump_block_stats(spa_t *spa)
6428 {
6429 	zdb_cb_t *zcb;
6430 	zdb_blkstats_t *zb, *tzb;
6431 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6432 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6433 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6434 	boolean_t leaks = B_FALSE;
6435 	int e, c, err;
6436 	bp_embedded_type_t i;
6437 
6438 	zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6439 
6440 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6441 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6442 	    (dump_opt['c'] == 1) ? "metadata " : "",
6443 	    dump_opt['c'] ? "checksums " : "",
6444 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6445 	    !dump_opt['L'] ? "nothing leaked " : "");
6446 
6447 	/*
6448 	 * When leak detection is enabled we load all space maps as SM_ALLOC
6449 	 * maps, then traverse the pool claiming each block we discover. If
6450 	 * the pool is perfectly consistent, the segment trees will be empty
6451 	 * when we're done. Anything left over is a leak; any block we can't
6452 	 * claim (because it's not part of any space map) is a double
6453 	 * allocation, reference to a freed block, or an unclaimed log block.
6454 	 *
6455 	 * When leak detection is disabled (-L option) we still traverse the
6456 	 * pool claiming each block we discover, but we skip opening any space
6457 	 * maps.
6458 	 */
6459 	zdb_leak_init(spa, zcb);
6460 
6461 	/*
6462 	 * If there's a deferred-free bplist, process that first.
6463 	 */
6464 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6465 	    bpobj_count_block_cb, zcb, NULL);
6466 
6467 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6468 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6469 		    bpobj_count_block_cb, zcb, NULL);
6470 	}
6471 
6472 	zdb_claim_removing(spa, zcb);
6473 
6474 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6475 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6476 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6477 		    zcb, NULL));
6478 	}
6479 
6480 	deleted_livelists_count_blocks(spa, zcb);
6481 
6482 	if (dump_opt['c'] > 1)
6483 		flags |= TRAVERSE_PREFETCH_DATA;
6484 
6485 	zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6486 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6487 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6488 	zcb->zcb_totalasize +=
6489 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
6490 	zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6491 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6492 
6493 	/*
6494 	 * If we've traversed the data blocks then we need to wait for those
6495 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
6496 	 * all async I/Os to complete.
6497 	 */
6498 	if (dump_opt['c']) {
6499 		for (c = 0; c < max_ncpus; c++) {
6500 			(void) zio_wait(spa->spa_async_zio_root[c]);
6501 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6502 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6503 			    ZIO_FLAG_GODFATHER);
6504 		}
6505 	}
6506 	ASSERT0(spa->spa_load_verify_bytes);
6507 
6508 	/*
6509 	 * Done after zio_wait() since zcb_haderrors is modified in
6510 	 * zdb_blkptr_done()
6511 	 */
6512 	zcb->zcb_haderrors |= err;
6513 
6514 	if (zcb->zcb_haderrors) {
6515 		(void) printf("\nError counts:\n\n");
6516 		(void) printf("\t%5s  %s\n", "errno", "count");
6517 		for (e = 0; e < 256; e++) {
6518 			if (zcb->zcb_errors[e] != 0) {
6519 				(void) printf("\t%5d  %llu\n",
6520 				    e, (u_longlong_t)zcb->zcb_errors[e]);
6521 			}
6522 		}
6523 	}
6524 
6525 	/*
6526 	 * Report any leaked segments.
6527 	 */
6528 	leaks |= zdb_leak_fini(spa, zcb);
6529 
6530 	tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6531 
6532 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6533 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
6534 
6535 	total_alloc = norm_alloc +
6536 	    metaslab_class_get_alloc(spa_log_class(spa)) +
6537 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6538 	    metaslab_class_get_alloc(spa_special_class(spa)) +
6539 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
6540 	    get_unflushed_alloc_space(spa);
6541 	total_found = tzb->zb_asize - zcb->zcb_dedup_asize +
6542 	    zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6543 
6544 	if (total_found == total_alloc && !dump_opt['L']) {
6545 		(void) printf("\n\tNo leaks (block sum matches space"
6546 		    " maps exactly)\n");
6547 	} else if (!dump_opt['L']) {
6548 		(void) printf("block traversal size %llu != alloc %llu "
6549 		    "(%s %lld)\n",
6550 		    (u_longlong_t)total_found,
6551 		    (u_longlong_t)total_alloc,
6552 		    (dump_opt['L']) ? "unreachable" : "leaked",
6553 		    (longlong_t)(total_alloc - total_found));
6554 		leaks = B_TRUE;
6555 	}
6556 
6557 	if (tzb->zb_count == 0) {
6558 		umem_free(zcb, sizeof (zdb_cb_t));
6559 		return (2);
6560 	}
6561 
6562 	(void) printf("\n");
6563 	(void) printf("\t%-16s %14llu\n", "bp count:",
6564 	    (u_longlong_t)tzb->zb_count);
6565 	(void) printf("\t%-16s %14llu\n", "ganged count:",
6566 	    (longlong_t)tzb->zb_gangs);
6567 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
6568 	    (u_longlong_t)tzb->zb_lsize,
6569 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6570 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6571 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
6572 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6573 	    (double)tzb->zb_lsize / tzb->zb_psize);
6574 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6575 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
6576 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6577 	    (double)tzb->zb_lsize / tzb->zb_asize);
6578 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
6579 	    "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6580 	    (u_longlong_t)zcb->zcb_dedup_blocks,
6581 	    (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6582 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
6583 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6584 
6585 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6586 		uint64_t alloc = metaslab_class_get_alloc(
6587 		    spa_special_class(spa));
6588 		uint64_t space = metaslab_class_get_space(
6589 		    spa_special_class(spa));
6590 
6591 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6592 		    "Special class", (u_longlong_t)alloc,
6593 		    100.0 * alloc / space);
6594 	}
6595 
6596 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6597 		uint64_t alloc = metaslab_class_get_alloc(
6598 		    spa_dedup_class(spa));
6599 		uint64_t space = metaslab_class_get_space(
6600 		    spa_dedup_class(spa));
6601 
6602 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6603 		    "Dedup class", (u_longlong_t)alloc,
6604 		    100.0 * alloc / space);
6605 	}
6606 
6607 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
6608 		uint64_t alloc = metaslab_class_get_alloc(
6609 		    spa_embedded_log_class(spa));
6610 		uint64_t space = metaslab_class_get_space(
6611 		    spa_embedded_log_class(spa));
6612 
6613 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
6614 		    "Embedded log class", (u_longlong_t)alloc,
6615 		    100.0 * alloc / space);
6616 	}
6617 
6618 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
6619 		if (zcb->zcb_embedded_blocks[i] == 0)
6620 			continue;
6621 		(void) printf("\n");
6622 		(void) printf("\tadditional, non-pointer bps of type %u: "
6623 		    "%10llu\n",
6624 		    i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
6625 
6626 		if (dump_opt['b'] >= 3) {
6627 			(void) printf("\t number of (compressed) bytes:  "
6628 			    "number of bps\n");
6629 			dump_histogram(zcb->zcb_embedded_histogram[i],
6630 			    sizeof (zcb->zcb_embedded_histogram[i]) /
6631 			    sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
6632 		}
6633 	}
6634 
6635 	if (tzb->zb_ditto_samevdev != 0) {
6636 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
6637 		    (longlong_t)tzb->zb_ditto_samevdev);
6638 	}
6639 	if (tzb->zb_ditto_same_ms != 0) {
6640 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
6641 		    (longlong_t)tzb->zb_ditto_same_ms);
6642 	}
6643 
6644 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
6645 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
6646 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6647 
6648 		if (vim == NULL) {
6649 			continue;
6650 		}
6651 
6652 		char mem[32];
6653 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
6654 		    mem, vdev_indirect_mapping_size(vim));
6655 
6656 		(void) printf("\tindirect vdev id %llu has %llu segments "
6657 		    "(%s in memory)\n",
6658 		    (longlong_t)vd->vdev_id,
6659 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
6660 	}
6661 
6662 	if (dump_opt['b'] >= 2) {
6663 		int l, t, level;
6664 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
6665 		    "\t  avg\t comp\t%%Total\tType\n");
6666 
6667 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
6668 			char csize[32], lsize[32], psize[32], asize[32];
6669 			char avg[32], gang[32];
6670 			const char *typename;
6671 
6672 			/* make sure nicenum has enough space */
6673 			_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
6674 			    "csize truncated");
6675 			_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
6676 			    "lsize truncated");
6677 			_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
6678 			    "psize truncated");
6679 			_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
6680 			    "asize truncated");
6681 			_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
6682 			    "avg truncated");
6683 			_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
6684 			    "gang truncated");
6685 
6686 			if (t < DMU_OT_NUMTYPES)
6687 				typename = dmu_ot[t].ot_name;
6688 			else
6689 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
6690 
6691 			if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
6692 				(void) printf("%6s\t%5s\t%5s\t%5s"
6693 				    "\t%5s\t%5s\t%6s\t%s\n",
6694 				    "-",
6695 				    "-",
6696 				    "-",
6697 				    "-",
6698 				    "-",
6699 				    "-",
6700 				    "-",
6701 				    typename);
6702 				continue;
6703 			}
6704 
6705 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
6706 				level = (l == -1 ? ZB_TOTAL : l);
6707 				zb = &zcb->zcb_type[level][t];
6708 
6709 				if (zb->zb_asize == 0)
6710 					continue;
6711 
6712 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
6713 					continue;
6714 
6715 				if (level == 0 && zb->zb_asize ==
6716 				    zcb->zcb_type[ZB_TOTAL][t].zb_asize)
6717 					continue;
6718 
6719 				zdb_nicenum(zb->zb_count, csize,
6720 				    sizeof (csize));
6721 				zdb_nicenum(zb->zb_lsize, lsize,
6722 				    sizeof (lsize));
6723 				zdb_nicenum(zb->zb_psize, psize,
6724 				    sizeof (psize));
6725 				zdb_nicenum(zb->zb_asize, asize,
6726 				    sizeof (asize));
6727 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
6728 				    sizeof (avg));
6729 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
6730 
6731 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
6732 				    "\t%5.2f\t%6.2f\t",
6733 				    csize, lsize, psize, asize, avg,
6734 				    (double)zb->zb_lsize / zb->zb_psize,
6735 				    100.0 * zb->zb_asize / tzb->zb_asize);
6736 
6737 				if (level == ZB_TOTAL)
6738 					(void) printf("%s\n", typename);
6739 				else
6740 					(void) printf("    L%d %s\n",
6741 					    level, typename);
6742 
6743 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
6744 					(void) printf("\t number of ganged "
6745 					    "blocks: %s\n", gang);
6746 				}
6747 
6748 				if (dump_opt['b'] >= 4) {
6749 					(void) printf("psize "
6750 					    "(in 512-byte sectors): "
6751 					    "number of blocks\n");
6752 					dump_histogram(zb->zb_psize_histogram,
6753 					    PSIZE_HISTO_SIZE, 0);
6754 				}
6755 			}
6756 		}
6757 
6758 		/* Output a table summarizing block sizes in the pool */
6759 		if (dump_opt['b'] >= 2) {
6760 			dump_size_histograms(zcb);
6761 		}
6762 	}
6763 
6764 	(void) printf("\n");
6765 
6766 	if (leaks) {
6767 		umem_free(zcb, sizeof (zdb_cb_t));
6768 		return (2);
6769 	}
6770 
6771 	if (zcb->zcb_haderrors) {
6772 		umem_free(zcb, sizeof (zdb_cb_t));
6773 		return (3);
6774 	}
6775 
6776 	umem_free(zcb, sizeof (zdb_cb_t));
6777 	return (0);
6778 }
6779 
6780 typedef struct zdb_ddt_entry {
6781 	ddt_key_t	zdde_key;
6782 	uint64_t	zdde_ref_blocks;
6783 	uint64_t	zdde_ref_lsize;
6784 	uint64_t	zdde_ref_psize;
6785 	uint64_t	zdde_ref_dsize;
6786 	avl_node_t	zdde_node;
6787 } zdb_ddt_entry_t;
6788 
6789 static int
6790 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6791     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6792 {
6793 	(void) zilog, (void) dnp;
6794 	avl_tree_t *t = arg;
6795 	avl_index_t where;
6796 	zdb_ddt_entry_t *zdde, zdde_search;
6797 
6798 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
6799 	    BP_IS_EMBEDDED(bp))
6800 		return (0);
6801 
6802 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
6803 		(void) printf("traversing objset %llu, %llu objects, "
6804 		    "%lu blocks so far\n",
6805 		    (u_longlong_t)zb->zb_objset,
6806 		    (u_longlong_t)BP_GET_FILL(bp),
6807 		    avl_numnodes(t));
6808 	}
6809 
6810 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
6811 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
6812 		return (0);
6813 
6814 	ddt_key_fill(&zdde_search.zdde_key, bp);
6815 
6816 	zdde = avl_find(t, &zdde_search, &where);
6817 
6818 	if (zdde == NULL) {
6819 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
6820 		zdde->zdde_key = zdde_search.zdde_key;
6821 		avl_insert(t, zdde, where);
6822 	}
6823 
6824 	zdde->zdde_ref_blocks += 1;
6825 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
6826 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
6827 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
6828 
6829 	return (0);
6830 }
6831 
6832 static void
6833 dump_simulated_ddt(spa_t *spa)
6834 {
6835 	avl_tree_t t;
6836 	void *cookie = NULL;
6837 	zdb_ddt_entry_t *zdde;
6838 	ddt_histogram_t ddh_total = {{{0}}};
6839 	ddt_stat_t dds_total = {0};
6840 
6841 	avl_create(&t, ddt_entry_compare,
6842 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
6843 
6844 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6845 
6846 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6847 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
6848 
6849 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6850 
6851 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
6852 		ddt_stat_t dds;
6853 		uint64_t refcnt = zdde->zdde_ref_blocks;
6854 		ASSERT(refcnt != 0);
6855 
6856 		dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
6857 		dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
6858 		dds.dds_psize = zdde->zdde_ref_psize / refcnt;
6859 		dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
6860 
6861 		dds.dds_ref_blocks = zdde->zdde_ref_blocks;
6862 		dds.dds_ref_lsize = zdde->zdde_ref_lsize;
6863 		dds.dds_ref_psize = zdde->zdde_ref_psize;
6864 		dds.dds_ref_dsize = zdde->zdde_ref_dsize;
6865 
6866 		ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
6867 		    &dds, 0);
6868 
6869 		umem_free(zdde, sizeof (*zdde));
6870 	}
6871 
6872 	avl_destroy(&t);
6873 
6874 	ddt_histogram_stat(&dds_total, &ddh_total);
6875 
6876 	(void) printf("Simulated DDT histogram:\n");
6877 
6878 	zpool_dump_ddt(&dds_total, &ddh_total);
6879 
6880 	dump_dedup_ratio(&dds_total);
6881 }
6882 
6883 static int
6884 verify_device_removal_feature_counts(spa_t *spa)
6885 {
6886 	uint64_t dr_feature_refcount = 0;
6887 	uint64_t oc_feature_refcount = 0;
6888 	uint64_t indirect_vdev_count = 0;
6889 	uint64_t precise_vdev_count = 0;
6890 	uint64_t obsolete_counts_object_count = 0;
6891 	uint64_t obsolete_sm_count = 0;
6892 	uint64_t obsolete_counts_count = 0;
6893 	uint64_t scip_count = 0;
6894 	uint64_t obsolete_bpobj_count = 0;
6895 	int ret = 0;
6896 
6897 	spa_condensing_indirect_phys_t *scip =
6898 	    &spa->spa_condensing_indirect_phys;
6899 	if (scip->scip_next_mapping_object != 0) {
6900 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
6901 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
6902 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
6903 
6904 		(void) printf("Condensing indirect vdev %llu: new mapping "
6905 		    "object %llu, prev obsolete sm %llu\n",
6906 		    (u_longlong_t)scip->scip_vdev,
6907 		    (u_longlong_t)scip->scip_next_mapping_object,
6908 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
6909 		if (scip->scip_prev_obsolete_sm_object != 0) {
6910 			space_map_t *prev_obsolete_sm = NULL;
6911 			VERIFY0(space_map_open(&prev_obsolete_sm,
6912 			    spa->spa_meta_objset,
6913 			    scip->scip_prev_obsolete_sm_object,
6914 			    0, vd->vdev_asize, 0));
6915 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
6916 			(void) printf("\n");
6917 			space_map_close(prev_obsolete_sm);
6918 		}
6919 
6920 		scip_count += 2;
6921 	}
6922 
6923 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
6924 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
6925 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
6926 
6927 		if (vic->vic_mapping_object != 0) {
6928 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
6929 			    vd->vdev_removing);
6930 			indirect_vdev_count++;
6931 
6932 			if (vd->vdev_indirect_mapping->vim_havecounts) {
6933 				obsolete_counts_count++;
6934 			}
6935 		}
6936 
6937 		boolean_t are_precise;
6938 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6939 		if (are_precise) {
6940 			ASSERT(vic->vic_mapping_object != 0);
6941 			precise_vdev_count++;
6942 		}
6943 
6944 		uint64_t obsolete_sm_object;
6945 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6946 		if (obsolete_sm_object != 0) {
6947 			ASSERT(vic->vic_mapping_object != 0);
6948 			obsolete_sm_count++;
6949 		}
6950 	}
6951 
6952 	(void) feature_get_refcount(spa,
6953 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
6954 	    &dr_feature_refcount);
6955 	(void) feature_get_refcount(spa,
6956 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
6957 	    &oc_feature_refcount);
6958 
6959 	if (dr_feature_refcount != indirect_vdev_count) {
6960 		ret = 1;
6961 		(void) printf("Number of indirect vdevs (%llu) " \
6962 		    "does not match feature count (%llu)\n",
6963 		    (u_longlong_t)indirect_vdev_count,
6964 		    (u_longlong_t)dr_feature_refcount);
6965 	} else {
6966 		(void) printf("Verified device_removal feature refcount " \
6967 		    "of %llu is correct\n",
6968 		    (u_longlong_t)dr_feature_refcount);
6969 	}
6970 
6971 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
6972 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
6973 		obsolete_bpobj_count++;
6974 	}
6975 
6976 
6977 	obsolete_counts_object_count = precise_vdev_count;
6978 	obsolete_counts_object_count += obsolete_sm_count;
6979 	obsolete_counts_object_count += obsolete_counts_count;
6980 	obsolete_counts_object_count += scip_count;
6981 	obsolete_counts_object_count += obsolete_bpobj_count;
6982 	obsolete_counts_object_count += remap_deadlist_count;
6983 
6984 	if (oc_feature_refcount != obsolete_counts_object_count) {
6985 		ret = 1;
6986 		(void) printf("Number of obsolete counts objects (%llu) " \
6987 		    "does not match feature count (%llu)\n",
6988 		    (u_longlong_t)obsolete_counts_object_count,
6989 		    (u_longlong_t)oc_feature_refcount);
6990 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
6991 		    "ob:%llu rd:%llu\n",
6992 		    (u_longlong_t)precise_vdev_count,
6993 		    (u_longlong_t)obsolete_sm_count,
6994 		    (u_longlong_t)obsolete_counts_count,
6995 		    (u_longlong_t)scip_count,
6996 		    (u_longlong_t)obsolete_bpobj_count,
6997 		    (u_longlong_t)remap_deadlist_count);
6998 	} else {
6999 		(void) printf("Verified indirect_refcount feature refcount " \
7000 		    "of %llu is correct\n",
7001 		    (u_longlong_t)oc_feature_refcount);
7002 	}
7003 	return (ret);
7004 }
7005 
7006 static void
7007 zdb_set_skip_mmp(char *target)
7008 {
7009 	spa_t *spa;
7010 
7011 	/*
7012 	 * Disable the activity check to allow examination of
7013 	 * active pools.
7014 	 */
7015 	mutex_enter(&spa_namespace_lock);
7016 	if ((spa = spa_lookup(target)) != NULL) {
7017 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7018 	}
7019 	mutex_exit(&spa_namespace_lock);
7020 }
7021 
7022 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7023 /*
7024  * Import the checkpointed state of the pool specified by the target
7025  * parameter as readonly. The function also accepts a pool config
7026  * as an optional parameter, else it attempts to infer the config by
7027  * the name of the target pool.
7028  *
7029  * Note that the checkpointed state's pool name will be the name of
7030  * the original pool with the above suffix appended to it. In addition,
7031  * if the target is not a pool name (e.g. a path to a dataset) then
7032  * the new_path parameter is populated with the updated path to
7033  * reflect the fact that we are looking into the checkpointed state.
7034  *
7035  * The function returns a newly-allocated copy of the name of the
7036  * pool containing the checkpointed state. When this copy is no
7037  * longer needed it should be freed with free(3C). Same thing
7038  * applies to the new_path parameter if allocated.
7039  */
7040 static char *
7041 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7042 {
7043 	int error = 0;
7044 	char *poolname, *bogus_name = NULL;
7045 	boolean_t freecfg = B_FALSE;
7046 
7047 	/* If the target is not a pool, the extract the pool name */
7048 	char *path_start = strchr(target, '/');
7049 	if (path_start != NULL) {
7050 		size_t poolname_len = path_start - target;
7051 		poolname = strndup(target, poolname_len);
7052 	} else {
7053 		poolname = target;
7054 	}
7055 
7056 	if (cfg == NULL) {
7057 		zdb_set_skip_mmp(poolname);
7058 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7059 		if (error != 0) {
7060 			fatal("Tried to read config of pool \"%s\" but "
7061 			    "spa_get_stats() failed with error %d\n",
7062 			    poolname, error);
7063 		}
7064 		freecfg = B_TRUE;
7065 	}
7066 
7067 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7068 		if (target != poolname)
7069 			free(poolname);
7070 		return (NULL);
7071 	}
7072 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7073 
7074 	error = spa_import(bogus_name, cfg, NULL,
7075 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7076 	    ZFS_IMPORT_SKIP_MMP);
7077 	if (freecfg)
7078 		nvlist_free(cfg);
7079 	if (error != 0) {
7080 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7081 		    "with error %d\n", bogus_name, error);
7082 	}
7083 
7084 	if (new_path != NULL && path_start != NULL) {
7085 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7086 			free(bogus_name);
7087 			if (path_start != NULL)
7088 				free(poolname);
7089 			return (NULL);
7090 		}
7091 	}
7092 
7093 	if (target != poolname)
7094 		free(poolname);
7095 
7096 	return (bogus_name);
7097 }
7098 
7099 typedef struct verify_checkpoint_sm_entry_cb_arg {
7100 	vdev_t *vcsec_vd;
7101 
7102 	/* the following fields are only used for printing progress */
7103 	uint64_t vcsec_entryid;
7104 	uint64_t vcsec_num_entries;
7105 } verify_checkpoint_sm_entry_cb_arg_t;
7106 
7107 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7108 
7109 static int
7110 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7111 {
7112 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7113 	vdev_t *vd = vcsec->vcsec_vd;
7114 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7115 	uint64_t end = sme->sme_offset + sme->sme_run;
7116 
7117 	ASSERT(sme->sme_type == SM_FREE);
7118 
7119 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7120 		(void) fprintf(stderr,
7121 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7122 		    (longlong_t)vd->vdev_id,
7123 		    (longlong_t)vcsec->vcsec_entryid,
7124 		    (longlong_t)vcsec->vcsec_num_entries);
7125 	}
7126 	vcsec->vcsec_entryid++;
7127 
7128 	/*
7129 	 * See comment in checkpoint_sm_exclude_entry_cb()
7130 	 */
7131 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7132 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7133 
7134 	/*
7135 	 * The entries in the vdev_checkpoint_sm should be marked as
7136 	 * allocated in the checkpointed state of the pool, therefore
7137 	 * their respective ms_allocateable trees should not contain them.
7138 	 */
7139 	mutex_enter(&ms->ms_lock);
7140 	range_tree_verify_not_present(ms->ms_allocatable,
7141 	    sme->sme_offset, sme->sme_run);
7142 	mutex_exit(&ms->ms_lock);
7143 
7144 	return (0);
7145 }
7146 
7147 /*
7148  * Verify that all segments in the vdev_checkpoint_sm are allocated
7149  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7150  * ms_allocatable).
7151  *
7152  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7153  * each vdev in the current state of the pool to the metaslab space maps
7154  * (ms_sm) of the checkpointed state of the pool.
7155  *
7156  * Note that the function changes the state of the ms_allocatable
7157  * trees of the current spa_t. The entries of these ms_allocatable
7158  * trees are cleared out and then repopulated from with the free
7159  * entries of their respective ms_sm space maps.
7160  */
7161 static void
7162 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7163 {
7164 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7165 	vdev_t *current_rvd = current->spa_root_vdev;
7166 
7167 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7168 
7169 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7170 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7171 		vdev_t *current_vd = current_rvd->vdev_child[c];
7172 
7173 		space_map_t *checkpoint_sm = NULL;
7174 		uint64_t checkpoint_sm_obj;
7175 
7176 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7177 			/*
7178 			 * Since we don't allow device removal in a pool
7179 			 * that has a checkpoint, we expect that all removed
7180 			 * vdevs were removed from the pool before the
7181 			 * checkpoint.
7182 			 */
7183 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7184 			continue;
7185 		}
7186 
7187 		/*
7188 		 * If the checkpoint space map doesn't exist, then nothing
7189 		 * here is checkpointed so there's nothing to verify.
7190 		 */
7191 		if (current_vd->vdev_top_zap == 0 ||
7192 		    zap_contains(spa_meta_objset(current),
7193 		    current_vd->vdev_top_zap,
7194 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7195 			continue;
7196 
7197 		VERIFY0(zap_lookup(spa_meta_objset(current),
7198 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7199 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7200 
7201 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7202 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7203 		    current_vd->vdev_ashift));
7204 
7205 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7206 		vcsec.vcsec_vd = ckpoint_vd;
7207 		vcsec.vcsec_entryid = 0;
7208 		vcsec.vcsec_num_entries =
7209 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7210 		VERIFY0(space_map_iterate(checkpoint_sm,
7211 		    space_map_length(checkpoint_sm),
7212 		    verify_checkpoint_sm_entry_cb, &vcsec));
7213 		if (dump_opt['m'] > 3)
7214 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7215 		space_map_close(checkpoint_sm);
7216 	}
7217 
7218 	/*
7219 	 * If we've added vdevs since we took the checkpoint, ensure
7220 	 * that their checkpoint space maps are empty.
7221 	 */
7222 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7223 		for (uint64_t c = ckpoint_rvd->vdev_children;
7224 		    c < current_rvd->vdev_children; c++) {
7225 			vdev_t *current_vd = current_rvd->vdev_child[c];
7226 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7227 		}
7228 	}
7229 
7230 	/* for cleaner progress output */
7231 	(void) fprintf(stderr, "\n");
7232 }
7233 
7234 /*
7235  * Verifies that all space that's allocated in the checkpoint is
7236  * still allocated in the current version, by checking that everything
7237  * in checkpoint's ms_allocatable (which is actually allocated, not
7238  * allocatable/free) is not present in current's ms_allocatable.
7239  *
7240  * Note that the function changes the state of the ms_allocatable
7241  * trees of both spas when called. The entries of all ms_allocatable
7242  * trees are cleared out and then repopulated from their respective
7243  * ms_sm space maps. In the checkpointed state we load the allocated
7244  * entries, and in the current state we load the free entries.
7245  */
7246 static void
7247 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7248 {
7249 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7250 	vdev_t *current_rvd = current->spa_root_vdev;
7251 
7252 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7253 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7254 
7255 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7256 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7257 		vdev_t *current_vd = current_rvd->vdev_child[i];
7258 
7259 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7260 			/*
7261 			 * See comment in verify_checkpoint_vdev_spacemaps()
7262 			 */
7263 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7264 			continue;
7265 		}
7266 
7267 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7268 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7269 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7270 
7271 			(void) fprintf(stderr,
7272 			    "\rverifying vdev %llu of %llu, "
7273 			    "metaslab %llu of %llu ...",
7274 			    (longlong_t)current_vd->vdev_id,
7275 			    (longlong_t)current_rvd->vdev_children,
7276 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7277 			    (longlong_t)current_vd->vdev_ms_count);
7278 
7279 			/*
7280 			 * We walk through the ms_allocatable trees that
7281 			 * are loaded with the allocated blocks from the
7282 			 * ms_sm spacemaps of the checkpoint. For each
7283 			 * one of these ranges we ensure that none of them
7284 			 * exists in the ms_allocatable trees of the
7285 			 * current state which are loaded with the ranges
7286 			 * that are currently free.
7287 			 *
7288 			 * This way we ensure that none of the blocks that
7289 			 * are part of the checkpoint were freed by mistake.
7290 			 */
7291 			range_tree_walk(ckpoint_msp->ms_allocatable,
7292 			    (range_tree_func_t *)range_tree_verify_not_present,
7293 			    current_msp->ms_allocatable);
7294 		}
7295 	}
7296 
7297 	/* for cleaner progress output */
7298 	(void) fprintf(stderr, "\n");
7299 }
7300 
7301 static void
7302 verify_checkpoint_blocks(spa_t *spa)
7303 {
7304 	ASSERT(!dump_opt['L']);
7305 
7306 	spa_t *checkpoint_spa;
7307 	char *checkpoint_pool;
7308 	int error = 0;
7309 
7310 	/*
7311 	 * We import the checkpointed state of the pool (under a different
7312 	 * name) so we can do verification on it against the current state
7313 	 * of the pool.
7314 	 */
7315 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7316 	    NULL);
7317 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7318 
7319 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7320 	if (error != 0) {
7321 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7322 		    "error %d\n", checkpoint_pool, error);
7323 	}
7324 
7325 	/*
7326 	 * Ensure that ranges in the checkpoint space maps of each vdev
7327 	 * are allocated according to the checkpointed state's metaslab
7328 	 * space maps.
7329 	 */
7330 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7331 
7332 	/*
7333 	 * Ensure that allocated ranges in the checkpoint's metaslab
7334 	 * space maps remain allocated in the metaslab space maps of
7335 	 * the current state.
7336 	 */
7337 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7338 
7339 	/*
7340 	 * Once we are done, we get rid of the checkpointed state.
7341 	 */
7342 	spa_close(checkpoint_spa, FTAG);
7343 	free(checkpoint_pool);
7344 }
7345 
7346 static void
7347 dump_leftover_checkpoint_blocks(spa_t *spa)
7348 {
7349 	vdev_t *rvd = spa->spa_root_vdev;
7350 
7351 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7352 		vdev_t *vd = rvd->vdev_child[i];
7353 
7354 		space_map_t *checkpoint_sm = NULL;
7355 		uint64_t checkpoint_sm_obj;
7356 
7357 		if (vd->vdev_top_zap == 0)
7358 			continue;
7359 
7360 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7361 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7362 			continue;
7363 
7364 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7365 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7366 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7367 
7368 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7369 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7370 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7371 		space_map_close(checkpoint_sm);
7372 	}
7373 }
7374 
7375 static int
7376 verify_checkpoint(spa_t *spa)
7377 {
7378 	uberblock_t checkpoint;
7379 	int error;
7380 
7381 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7382 		return (0);
7383 
7384 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7385 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7386 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7387 
7388 	if (error == ENOENT && !dump_opt['L']) {
7389 		/*
7390 		 * If the feature is active but the uberblock is missing
7391 		 * then we must be in the middle of discarding the
7392 		 * checkpoint.
7393 		 */
7394 		(void) printf("\nPartially discarded checkpoint "
7395 		    "state found:\n");
7396 		if (dump_opt['m'] > 3)
7397 			dump_leftover_checkpoint_blocks(spa);
7398 		return (0);
7399 	} else if (error != 0) {
7400 		(void) printf("lookup error %d when looking for "
7401 		    "checkpointed uberblock in MOS\n", error);
7402 		return (error);
7403 	}
7404 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7405 
7406 	if (checkpoint.ub_checkpoint_txg == 0) {
7407 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
7408 		    "uberblock\n");
7409 		error = 3;
7410 	}
7411 
7412 	if (error == 0 && !dump_opt['L'])
7413 		verify_checkpoint_blocks(spa);
7414 
7415 	return (error);
7416 }
7417 
7418 static void
7419 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7420 {
7421 	(void) arg;
7422 	for (uint64_t i = start; i < size; i++) {
7423 		(void) printf("MOS object %llu referenced but not allocated\n",
7424 		    (u_longlong_t)i);
7425 	}
7426 }
7427 
7428 static void
7429 mos_obj_refd(uint64_t obj)
7430 {
7431 	if (obj != 0 && mos_refd_objs != NULL)
7432 		range_tree_add(mos_refd_objs, obj, 1);
7433 }
7434 
7435 /*
7436  * Call on a MOS object that may already have been referenced.
7437  */
7438 static void
7439 mos_obj_refd_multiple(uint64_t obj)
7440 {
7441 	if (obj != 0 && mos_refd_objs != NULL &&
7442 	    !range_tree_contains(mos_refd_objs, obj, 1))
7443 		range_tree_add(mos_refd_objs, obj, 1);
7444 }
7445 
7446 static void
7447 mos_leak_vdev_top_zap(vdev_t *vd)
7448 {
7449 	uint64_t ms_flush_data_obj;
7450 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7451 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7452 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7453 	if (error == ENOENT)
7454 		return;
7455 	ASSERT0(error);
7456 
7457 	mos_obj_refd(ms_flush_data_obj);
7458 }
7459 
7460 static void
7461 mos_leak_vdev(vdev_t *vd)
7462 {
7463 	mos_obj_refd(vd->vdev_dtl_object);
7464 	mos_obj_refd(vd->vdev_ms_array);
7465 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7466 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7467 	mos_obj_refd(vd->vdev_leaf_zap);
7468 	if (vd->vdev_checkpoint_sm != NULL)
7469 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7470 	if (vd->vdev_indirect_mapping != NULL) {
7471 		mos_obj_refd(vd->vdev_indirect_mapping->
7472 		    vim_phys->vimp_counts_object);
7473 	}
7474 	if (vd->vdev_obsolete_sm != NULL)
7475 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7476 
7477 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7478 		metaslab_t *ms = vd->vdev_ms[m];
7479 		mos_obj_refd(space_map_object(ms->ms_sm));
7480 	}
7481 
7482 	if (vd->vdev_top_zap != 0) {
7483 		mos_obj_refd(vd->vdev_top_zap);
7484 		mos_leak_vdev_top_zap(vd);
7485 	}
7486 
7487 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
7488 		mos_leak_vdev(vd->vdev_child[c]);
7489 	}
7490 }
7491 
7492 static void
7493 mos_leak_log_spacemaps(spa_t *spa)
7494 {
7495 	uint64_t spacemap_zap;
7496 	int error = zap_lookup(spa_meta_objset(spa),
7497 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7498 	    sizeof (spacemap_zap), 1, &spacemap_zap);
7499 	if (error == ENOENT)
7500 		return;
7501 	ASSERT0(error);
7502 
7503 	mos_obj_refd(spacemap_zap);
7504 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7505 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7506 		mos_obj_refd(sls->sls_sm_obj);
7507 }
7508 
7509 static int
7510 dump_mos_leaks(spa_t *spa)
7511 {
7512 	int rv = 0;
7513 	objset_t *mos = spa->spa_meta_objset;
7514 	dsl_pool_t *dp = spa->spa_dsl_pool;
7515 
7516 	/* Visit and mark all referenced objects in the MOS */
7517 
7518 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7519 	mos_obj_refd(spa->spa_pool_props_object);
7520 	mos_obj_refd(spa->spa_config_object);
7521 	mos_obj_refd(spa->spa_ddt_stat_object);
7522 	mos_obj_refd(spa->spa_feat_desc_obj);
7523 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7524 	mos_obj_refd(spa->spa_feat_for_read_obj);
7525 	mos_obj_refd(spa->spa_feat_for_write_obj);
7526 	mos_obj_refd(spa->spa_history);
7527 	mos_obj_refd(spa->spa_errlog_last);
7528 	mos_obj_refd(spa->spa_errlog_scrub);
7529 	mos_obj_refd(spa->spa_all_vdev_zaps);
7530 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7531 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
7532 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
7533 	bpobj_count_refd(&spa->spa_deferred_bpobj);
7534 	mos_obj_refd(dp->dp_empty_bpobj);
7535 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
7536 	bpobj_count_refd(&dp->dp_free_bpobj);
7537 	mos_obj_refd(spa->spa_l2cache.sav_object);
7538 	mos_obj_refd(spa->spa_spares.sav_object);
7539 
7540 	if (spa->spa_syncing_log_sm != NULL)
7541 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
7542 	mos_leak_log_spacemaps(spa);
7543 
7544 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7545 	    scip_next_mapping_object);
7546 	mos_obj_refd(spa->spa_condensing_indirect_phys.
7547 	    scip_prev_obsolete_sm_object);
7548 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
7549 		vdev_indirect_mapping_t *vim =
7550 		    vdev_indirect_mapping_open(mos,
7551 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
7552 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
7553 		vdev_indirect_mapping_close(vim);
7554 	}
7555 	deleted_livelists_dump_mos(spa);
7556 
7557 	if (dp->dp_origin_snap != NULL) {
7558 		dsl_dataset_t *ds;
7559 
7560 		dsl_pool_config_enter(dp, FTAG);
7561 		VERIFY0(dsl_dataset_hold_obj(dp,
7562 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
7563 		    FTAG, &ds));
7564 		count_ds_mos_objects(ds);
7565 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
7566 		dsl_dataset_rele(ds, FTAG);
7567 		dsl_pool_config_exit(dp, FTAG);
7568 
7569 		count_ds_mos_objects(dp->dp_origin_snap);
7570 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
7571 	}
7572 	count_dir_mos_objects(dp->dp_mos_dir);
7573 	if (dp->dp_free_dir != NULL)
7574 		count_dir_mos_objects(dp->dp_free_dir);
7575 	if (dp->dp_leak_dir != NULL)
7576 		count_dir_mos_objects(dp->dp_leak_dir);
7577 
7578 	mos_leak_vdev(spa->spa_root_vdev);
7579 
7580 	for (uint64_t class = 0; class < DDT_CLASSES; class++) {
7581 		for (uint64_t type = 0; type < DDT_TYPES; type++) {
7582 			for (uint64_t cksum = 0;
7583 			    cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
7584 				ddt_t *ddt = spa->spa_ddt[cksum];
7585 				mos_obj_refd(ddt->ddt_object[type][class]);
7586 			}
7587 		}
7588 	}
7589 
7590 	/*
7591 	 * Visit all allocated objects and make sure they are referenced.
7592 	 */
7593 	uint64_t object = 0;
7594 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
7595 		if (range_tree_contains(mos_refd_objs, object, 1)) {
7596 			range_tree_remove(mos_refd_objs, object, 1);
7597 		} else {
7598 			dmu_object_info_t doi;
7599 			const char *name;
7600 			VERIFY0(dmu_object_info(mos, object, &doi));
7601 			if (doi.doi_type & DMU_OT_NEWTYPE) {
7602 				dmu_object_byteswap_t bswap =
7603 				    DMU_OT_BYTESWAP(doi.doi_type);
7604 				name = dmu_ot_byteswap[bswap].ob_name;
7605 			} else {
7606 				name = dmu_ot[doi.doi_type].ot_name;
7607 			}
7608 
7609 			(void) printf("MOS object %llu (%s) leaked\n",
7610 			    (u_longlong_t)object, name);
7611 			rv = 2;
7612 		}
7613 	}
7614 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
7615 	if (!range_tree_is_empty(mos_refd_objs))
7616 		rv = 2;
7617 	range_tree_vacate(mos_refd_objs, NULL, NULL);
7618 	range_tree_destroy(mos_refd_objs);
7619 	return (rv);
7620 }
7621 
7622 typedef struct log_sm_obsolete_stats_arg {
7623 	uint64_t lsos_current_txg;
7624 
7625 	uint64_t lsos_total_entries;
7626 	uint64_t lsos_valid_entries;
7627 
7628 	uint64_t lsos_sm_entries;
7629 	uint64_t lsos_valid_sm_entries;
7630 } log_sm_obsolete_stats_arg_t;
7631 
7632 static int
7633 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
7634     uint64_t txg, void *arg)
7635 {
7636 	log_sm_obsolete_stats_arg_t *lsos = arg;
7637 
7638 	uint64_t offset = sme->sme_offset;
7639 	uint64_t vdev_id = sme->sme_vdev;
7640 
7641 	if (lsos->lsos_current_txg == 0) {
7642 		/* this is the first log */
7643 		lsos->lsos_current_txg = txg;
7644 	} else if (lsos->lsos_current_txg < txg) {
7645 		/* we just changed log - print stats and reset */
7646 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7647 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
7648 		    (u_longlong_t)lsos->lsos_sm_entries,
7649 		    (u_longlong_t)lsos->lsos_current_txg);
7650 		lsos->lsos_valid_sm_entries = 0;
7651 		lsos->lsos_sm_entries = 0;
7652 		lsos->lsos_current_txg = txg;
7653 	}
7654 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
7655 
7656 	lsos->lsos_sm_entries++;
7657 	lsos->lsos_total_entries++;
7658 
7659 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
7660 	if (!vdev_is_concrete(vd))
7661 		return (0);
7662 
7663 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
7664 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
7665 
7666 	if (txg < metaslab_unflushed_txg(ms))
7667 		return (0);
7668 	lsos->lsos_valid_sm_entries++;
7669 	lsos->lsos_valid_entries++;
7670 	return (0);
7671 }
7672 
7673 static void
7674 dump_log_spacemap_obsolete_stats(spa_t *spa)
7675 {
7676 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
7677 		return;
7678 
7679 	log_sm_obsolete_stats_arg_t lsos = {0};
7680 
7681 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
7682 
7683 	iterate_through_spacemap_logs(spa,
7684 	    log_spacemap_obsolete_stats_cb, &lsos);
7685 
7686 	/* print stats for latest log */
7687 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
7688 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
7689 	    (u_longlong_t)lsos.lsos_sm_entries,
7690 	    (u_longlong_t)lsos.lsos_current_txg);
7691 
7692 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
7693 	    (u_longlong_t)lsos.lsos_valid_entries,
7694 	    (u_longlong_t)lsos.lsos_total_entries);
7695 }
7696 
7697 static void
7698 dump_zpool(spa_t *spa)
7699 {
7700 	dsl_pool_t *dp = spa_get_dsl(spa);
7701 	int rc = 0;
7702 
7703 	if (dump_opt['y']) {
7704 		livelist_metaslab_validate(spa);
7705 	}
7706 
7707 	if (dump_opt['S']) {
7708 		dump_simulated_ddt(spa);
7709 		return;
7710 	}
7711 
7712 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
7713 		(void) printf("\nCached configuration:\n");
7714 		dump_nvlist(spa->spa_config, 8);
7715 	}
7716 
7717 	if (dump_opt['C'])
7718 		dump_config(spa);
7719 
7720 	if (dump_opt['u'])
7721 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
7722 
7723 	if (dump_opt['D'])
7724 		dump_all_ddts(spa);
7725 
7726 	if (dump_opt['d'] > 2 || dump_opt['m'])
7727 		dump_metaslabs(spa);
7728 	if (dump_opt['M'])
7729 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
7730 	if (dump_opt['d'] > 2 || dump_opt['m']) {
7731 		dump_log_spacemaps(spa);
7732 		dump_log_spacemap_obsolete_stats(spa);
7733 	}
7734 
7735 	if (dump_opt['d'] || dump_opt['i']) {
7736 		spa_feature_t f;
7737 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
7738 		    0);
7739 		dump_objset(dp->dp_meta_objset);
7740 
7741 		if (dump_opt['d'] >= 3) {
7742 			dsl_pool_t *dp = spa->spa_dsl_pool;
7743 			dump_full_bpobj(&spa->spa_deferred_bpobj,
7744 			    "Deferred frees", 0);
7745 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7746 				dump_full_bpobj(&dp->dp_free_bpobj,
7747 				    "Pool snapshot frees", 0);
7748 			}
7749 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
7750 				ASSERT(spa_feature_is_enabled(spa,
7751 				    SPA_FEATURE_DEVICE_REMOVAL));
7752 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
7753 				    "Pool obsolete blocks", 0);
7754 			}
7755 
7756 			if (spa_feature_is_active(spa,
7757 			    SPA_FEATURE_ASYNC_DESTROY)) {
7758 				dump_bptree(spa->spa_meta_objset,
7759 				    dp->dp_bptree_obj,
7760 				    "Pool dataset frees");
7761 			}
7762 			dump_dtl(spa->spa_root_vdev, 0);
7763 		}
7764 
7765 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
7766 			global_feature_count[f] = UINT64_MAX;
7767 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
7768 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
7769 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
7770 
7771 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
7772 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7773 
7774 		if (rc == 0 && !dump_opt['L'])
7775 			rc = dump_mos_leaks(spa);
7776 
7777 		for (f = 0; f < SPA_FEATURES; f++) {
7778 			uint64_t refcount;
7779 
7780 			uint64_t *arr;
7781 			if (!(spa_feature_table[f].fi_flags &
7782 			    ZFEATURE_FLAG_PER_DATASET)) {
7783 				if (global_feature_count[f] == UINT64_MAX)
7784 					continue;
7785 				if (!spa_feature_is_enabled(spa, f)) {
7786 					ASSERT0(global_feature_count[f]);
7787 					continue;
7788 				}
7789 				arr = global_feature_count;
7790 			} else {
7791 				if (!spa_feature_is_enabled(spa, f)) {
7792 					ASSERT0(dataset_feature_count[f]);
7793 					continue;
7794 				}
7795 				arr = dataset_feature_count;
7796 			}
7797 			if (feature_get_refcount(spa, &spa_feature_table[f],
7798 			    &refcount) == ENOTSUP)
7799 				continue;
7800 			if (arr[f] != refcount) {
7801 				(void) printf("%s feature refcount mismatch: "
7802 				    "%lld consumers != %lld refcount\n",
7803 				    spa_feature_table[f].fi_uname,
7804 				    (longlong_t)arr[f], (longlong_t)refcount);
7805 				rc = 2;
7806 			} else {
7807 				(void) printf("Verified %s feature refcount "
7808 				    "of %llu is correct\n",
7809 				    spa_feature_table[f].fi_uname,
7810 				    (longlong_t)refcount);
7811 			}
7812 		}
7813 
7814 		if (rc == 0)
7815 			rc = verify_device_removal_feature_counts(spa);
7816 	}
7817 
7818 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
7819 		rc = dump_block_stats(spa);
7820 
7821 	if (rc == 0)
7822 		rc = verify_spacemap_refcounts(spa);
7823 
7824 	if (dump_opt['s'])
7825 		show_pool_stats(spa);
7826 
7827 	if (dump_opt['h'])
7828 		dump_history(spa);
7829 
7830 	if (rc == 0)
7831 		rc = verify_checkpoint(spa);
7832 
7833 	if (rc != 0) {
7834 		dump_debug_buffer();
7835 		exit(rc);
7836 	}
7837 }
7838 
7839 #define	ZDB_FLAG_CHECKSUM	0x0001
7840 #define	ZDB_FLAG_DECOMPRESS	0x0002
7841 #define	ZDB_FLAG_BSWAP		0x0004
7842 #define	ZDB_FLAG_GBH		0x0008
7843 #define	ZDB_FLAG_INDIRECT	0x0010
7844 #define	ZDB_FLAG_RAW		0x0020
7845 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
7846 #define	ZDB_FLAG_VERBOSE	0x0080
7847 
7848 static int flagbits[256];
7849 static char flagbitstr[16];
7850 
7851 static void
7852 zdb_print_blkptr(const blkptr_t *bp, int flags)
7853 {
7854 	char blkbuf[BP_SPRINTF_LEN];
7855 
7856 	if (flags & ZDB_FLAG_BSWAP)
7857 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
7858 
7859 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
7860 	(void) printf("%s\n", blkbuf);
7861 }
7862 
7863 static void
7864 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
7865 {
7866 	int i;
7867 
7868 	for (i = 0; i < nbps; i++)
7869 		zdb_print_blkptr(&bp[i], flags);
7870 }
7871 
7872 static void
7873 zdb_dump_gbh(void *buf, int flags)
7874 {
7875 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
7876 }
7877 
7878 static void
7879 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
7880 {
7881 	if (flags & ZDB_FLAG_BSWAP)
7882 		byteswap_uint64_array(buf, size);
7883 	VERIFY(write(fileno(stdout), buf, size) == size);
7884 }
7885 
7886 static void
7887 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
7888 {
7889 	uint64_t *d = (uint64_t *)buf;
7890 	unsigned nwords = size / sizeof (uint64_t);
7891 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
7892 	unsigned i, j;
7893 	const char *hdr;
7894 	char *c;
7895 
7896 
7897 	if (do_bswap)
7898 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
7899 	else
7900 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
7901 
7902 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
7903 
7904 #ifdef _LITTLE_ENDIAN
7905 	/* correct the endianness */
7906 	do_bswap = !do_bswap;
7907 #endif
7908 	for (i = 0; i < nwords; i += 2) {
7909 		(void) printf("%06llx:  %016llx  %016llx  ",
7910 		    (u_longlong_t)(i * sizeof (uint64_t)),
7911 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
7912 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
7913 
7914 		c = (char *)&d[i];
7915 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
7916 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
7917 		(void) printf("\n");
7918 	}
7919 }
7920 
7921 /*
7922  * There are two acceptable formats:
7923  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
7924  *	child[.child]*    - For example: 0.1.1
7925  *
7926  * The second form can be used to specify arbitrary vdevs anywhere
7927  * in the hierarchy.  For example, in a pool with a mirror of
7928  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
7929  */
7930 static vdev_t *
7931 zdb_vdev_lookup(vdev_t *vdev, const char *path)
7932 {
7933 	char *s, *p, *q;
7934 	unsigned i;
7935 
7936 	if (vdev == NULL)
7937 		return (NULL);
7938 
7939 	/* First, assume the x.x.x.x format */
7940 	i = strtoul(path, &s, 10);
7941 	if (s == path || (s && *s != '.' && *s != '\0'))
7942 		goto name;
7943 	if (i >= vdev->vdev_children)
7944 		return (NULL);
7945 
7946 	vdev = vdev->vdev_child[i];
7947 	if (s && *s == '\0')
7948 		return (vdev);
7949 	return (zdb_vdev_lookup(vdev, s+1));
7950 
7951 name:
7952 	for (i = 0; i < vdev->vdev_children; i++) {
7953 		vdev_t *vc = vdev->vdev_child[i];
7954 
7955 		if (vc->vdev_path == NULL) {
7956 			vc = zdb_vdev_lookup(vc, path);
7957 			if (vc == NULL)
7958 				continue;
7959 			else
7960 				return (vc);
7961 		}
7962 
7963 		p = strrchr(vc->vdev_path, '/');
7964 		p = p ? p + 1 : vc->vdev_path;
7965 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
7966 
7967 		if (strcmp(vc->vdev_path, path) == 0)
7968 			return (vc);
7969 		if (strcmp(p, path) == 0)
7970 			return (vc);
7971 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
7972 			return (vc);
7973 	}
7974 
7975 	return (NULL);
7976 }
7977 
7978 static int
7979 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
7980 {
7981 	dsl_dataset_t *ds;
7982 
7983 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
7984 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
7985 	    NULL, &ds);
7986 	if (error != 0) {
7987 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
7988 		    (u_longlong_t)objset_id, strerror(error));
7989 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7990 		return (error);
7991 	}
7992 	dsl_dataset_name(ds, outstr);
7993 	dsl_dataset_rele(ds, NULL);
7994 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
7995 	return (0);
7996 }
7997 
7998 static boolean_t
7999 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8000 {
8001 	char *s0, *s1, *tmp = NULL;
8002 
8003 	if (sizes == NULL)
8004 		return (B_FALSE);
8005 
8006 	s0 = strtok_r(sizes, "/", &tmp);
8007 	if (s0 == NULL)
8008 		return (B_FALSE);
8009 	s1 = strtok_r(NULL, "/", &tmp);
8010 	*lsize = strtoull(s0, NULL, 16);
8011 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8012 	return (*lsize >= *psize && *psize > 0);
8013 }
8014 
8015 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
8016 
8017 static boolean_t
8018 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8019     uint64_t psize, int flags)
8020 {
8021 	(void) buf;
8022 	boolean_t exceeded = B_FALSE;
8023 	/*
8024 	 * We don't know how the data was compressed, so just try
8025 	 * every decompress function at every inflated blocksize.
8026 	 */
8027 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8028 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8029 	int *cfuncp = cfuncs;
8030 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8031 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8032 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8033 	    (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8034 	*cfuncp++ = ZIO_COMPRESS_LZ4;
8035 	*cfuncp++ = ZIO_COMPRESS_LZJB;
8036 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8037 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8038 		if (((1ULL << c) & mask) == 0)
8039 			*cfuncp++ = c;
8040 
8041 	/*
8042 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8043 	 * could take a while and we should let the user know
8044 	 * we are not stuck.  On the other hand, printing progress
8045 	 * info gets old after a while.  User can specify 'v' flag
8046 	 * to see the progression.
8047 	 */
8048 	if (lsize == psize)
8049 		lsize += SPA_MINBLOCKSIZE;
8050 	else
8051 		maxlsize = lsize;
8052 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8053 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8054 			if (flags & ZDB_FLAG_VERBOSE) {
8055 				(void) fprintf(stderr,
8056 				    "Trying %05llx -> %05llx (%s)\n",
8057 				    (u_longlong_t)psize,
8058 				    (u_longlong_t)lsize,
8059 				    zio_compress_table[*cfuncp].\
8060 				    ci_name);
8061 			}
8062 
8063 			/*
8064 			 * We randomize lbuf2, and decompress to both
8065 			 * lbuf and lbuf2. This way, we will know if
8066 			 * decompression fill exactly to lsize.
8067 			 */
8068 			VERIFY0(random_get_pseudo_bytes(lbuf2, lsize));
8069 
8070 			if (zio_decompress_data(*cfuncp, pabd,
8071 			    lbuf, psize, lsize, NULL) == 0 &&
8072 			    zio_decompress_data(*cfuncp, pabd,
8073 			    lbuf2, psize, lsize, NULL) == 0 &&
8074 			    memcmp(lbuf, lbuf2, lsize) == 0)
8075 				break;
8076 		}
8077 		if (*cfuncp != 0)
8078 			break;
8079 	}
8080 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8081 
8082 	if (lsize > maxlsize) {
8083 		exceeded = B_TRUE;
8084 	}
8085 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8086 		printf("\nZLE decompression was selected. If you "
8087 		    "suspect the results are wrong,\ntry avoiding ZLE "
8088 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8089 	}
8090 
8091 	return (exceeded);
8092 }
8093 
8094 /*
8095  * Read a block from a pool and print it out.  The syntax of the
8096  * block descriptor is:
8097  *
8098  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8099  *
8100  *	pool           - The name of the pool you wish to read from
8101  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8102  *	offset         - offset, in hex, in bytes
8103  *	size           - Amount of data to read, in hex, in bytes
8104  *	flags          - A string of characters specifying options
8105  *		 b: Decode a blkptr at given offset within block
8106  *		 c: Calculate and display checksums
8107  *		 d: Decompress data before dumping
8108  *		 e: Byteswap data before dumping
8109  *		 g: Display data as a gang block header
8110  *		 i: Display as an indirect block
8111  *		 r: Dump raw data to stdout
8112  *		 v: Verbose
8113  *
8114  */
8115 static void
8116 zdb_read_block(char *thing, spa_t *spa)
8117 {
8118 	blkptr_t blk, *bp = &blk;
8119 	dva_t *dva = bp->blk_dva;
8120 	int flags = 0;
8121 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8122 	zio_t *zio;
8123 	vdev_t *vd;
8124 	abd_t *pabd;
8125 	void *lbuf, *buf;
8126 	char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8127 	const char *vdev, *errmsg = NULL;
8128 	int i, error;
8129 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8130 
8131 	dup = strdup(thing);
8132 	s = strtok_r(dup, ":", &tmp);
8133 	vdev = s ?: "";
8134 	s = strtok_r(NULL, ":", &tmp);
8135 	offset = strtoull(s ? s : "", NULL, 16);
8136 	sizes = strtok_r(NULL, ":", &tmp);
8137 	s = strtok_r(NULL, ":", &tmp);
8138 	flagstr = strdup(s ?: "");
8139 
8140 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8141 		errmsg = "invalid size(s)";
8142 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8143 		errmsg = "size must be a multiple of sector size";
8144 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8145 		errmsg = "offset must be a multiple of sector size";
8146 	if (errmsg) {
8147 		(void) printf("Invalid block specifier: %s  - %s\n",
8148 		    thing, errmsg);
8149 		goto done;
8150 	}
8151 
8152 	tmp = NULL;
8153 	for (s = strtok_r(flagstr, ":", &tmp);
8154 	    s != NULL;
8155 	    s = strtok_r(NULL, ":", &tmp)) {
8156 		for (i = 0; i < strlen(flagstr); i++) {
8157 			int bit = flagbits[(uchar_t)flagstr[i]];
8158 
8159 			if (bit == 0) {
8160 				(void) printf("***Ignoring flag: %c\n",
8161 				    (uchar_t)flagstr[i]);
8162 				continue;
8163 			}
8164 			found = B_TRUE;
8165 			flags |= bit;
8166 
8167 			p = &flagstr[i + 1];
8168 			if (*p != ':' && *p != '\0') {
8169 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8170 				char *end, offstr[8] = { 0 };
8171 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8172 				    (nextbit == 0)) {
8173 					/* look ahead to isolate the offset */
8174 					while (nextbit == 0 &&
8175 					    strchr(flagbitstr, *p) == NULL) {
8176 						offstr[j] = *p;
8177 						j++;
8178 						if (i + j > strlen(flagstr))
8179 							break;
8180 						p++;
8181 						nextbit = flagbits[(uchar_t)*p];
8182 					}
8183 					blkptr_offset = strtoull(offstr, &end,
8184 					    16);
8185 					i += j;
8186 				} else if (nextbit == 0) {
8187 					(void) printf("***Ignoring flag arg:"
8188 					    " '%c'\n", (uchar_t)*p);
8189 				}
8190 			}
8191 		}
8192 	}
8193 	if (blkptr_offset % sizeof (blkptr_t)) {
8194 		printf("Block pointer offset 0x%llx "
8195 		    "must be divisible by 0x%x\n",
8196 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8197 		goto done;
8198 	}
8199 	if (found == B_FALSE && strlen(flagstr) > 0) {
8200 		printf("Invalid flag arg: '%s'\n", flagstr);
8201 		goto done;
8202 	}
8203 
8204 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8205 	if (vd == NULL) {
8206 		(void) printf("***Invalid vdev: %s\n", vdev);
8207 		goto done;
8208 	} else {
8209 		if (vd->vdev_path)
8210 			(void) fprintf(stderr, "Found vdev: %s\n",
8211 			    vd->vdev_path);
8212 		else
8213 			(void) fprintf(stderr, "Found vdev type: %s\n",
8214 			    vd->vdev_ops->vdev_op_type);
8215 	}
8216 
8217 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8218 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8219 
8220 	BP_ZERO(bp);
8221 
8222 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8223 	DVA_SET_OFFSET(&dva[0], offset);
8224 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8225 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8226 
8227 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8228 
8229 	BP_SET_LSIZE(bp, lsize);
8230 	BP_SET_PSIZE(bp, psize);
8231 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8232 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8233 	BP_SET_TYPE(bp, DMU_OT_NONE);
8234 	BP_SET_LEVEL(bp, 0);
8235 	BP_SET_DEDUP(bp, 0);
8236 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8237 
8238 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8239 	zio = zio_root(spa, NULL, NULL, 0);
8240 
8241 	if (vd == vd->vdev_top) {
8242 		/*
8243 		 * Treat this as a normal block read.
8244 		 */
8245 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8246 		    ZIO_PRIORITY_SYNC_READ,
8247 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8248 	} else {
8249 		/*
8250 		 * Treat this as a vdev child I/O.
8251 		 */
8252 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8253 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8254 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
8255 		    ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8256 		    ZIO_FLAG_OPTIONAL, NULL, NULL));
8257 	}
8258 
8259 	error = zio_wait(zio);
8260 	spa_config_exit(spa, SCL_STATE, FTAG);
8261 
8262 	if (error) {
8263 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8264 		goto out;
8265 	}
8266 
8267 	uint64_t orig_lsize = lsize;
8268 	buf = lbuf;
8269 	if (flags & ZDB_FLAG_DECOMPRESS) {
8270 		boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8271 		    lsize, psize, flags);
8272 		if (failed) {
8273 			(void) printf("Decompress of %s failed\n", thing);
8274 			goto out;
8275 		}
8276 	} else {
8277 		buf = abd_borrow_buf_copy(pabd, lsize);
8278 		borrowed = B_TRUE;
8279 	}
8280 	/*
8281 	 * Try to detect invalid block pointer.  If invalid, try
8282 	 * decompressing.
8283 	 */
8284 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8285 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8286 		const blkptr_t *b = (const blkptr_t *)(void *)
8287 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8288 		if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) ==
8289 		    B_FALSE) {
8290 			abd_return_buf_copy(pabd, buf, lsize);
8291 			borrowed = B_FALSE;
8292 			buf = lbuf;
8293 			boolean_t failed = zdb_decompress_block(pabd, buf,
8294 			    lbuf, lsize, psize, flags);
8295 			b = (const blkptr_t *)(void *)
8296 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8297 			if (failed || zfs_blkptr_verify(spa, b, B_FALSE,
8298 			    BLK_VERIFY_LOG) == B_FALSE) {
8299 				printf("invalid block pointer at this DVA\n");
8300 				goto out;
8301 			}
8302 		}
8303 	}
8304 
8305 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
8306 		zdb_print_blkptr((blkptr_t *)(void *)
8307 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8308 	else if (flags & ZDB_FLAG_RAW)
8309 		zdb_dump_block_raw(buf, lsize, flags);
8310 	else if (flags & ZDB_FLAG_INDIRECT)
8311 		zdb_dump_indirect((blkptr_t *)buf,
8312 		    orig_lsize / sizeof (blkptr_t), flags);
8313 	else if (flags & ZDB_FLAG_GBH)
8314 		zdb_dump_gbh(buf, flags);
8315 	else
8316 		zdb_dump_block(thing, buf, lsize, flags);
8317 
8318 	/*
8319 	 * If :c was specified, iterate through the checksum table to
8320 	 * calculate and display each checksum for our specified
8321 	 * DVA and length.
8322 	 */
8323 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8324 	    !(flags & ZDB_FLAG_GBH)) {
8325 		zio_t *czio;
8326 		(void) printf("\n");
8327 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8328 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8329 
8330 			if ((zio_checksum_table[ck].ci_flags &
8331 			    ZCHECKSUM_FLAG_EMBEDDED) ||
8332 			    ck == ZIO_CHECKSUM_NOPARITY) {
8333 				continue;
8334 			}
8335 			BP_SET_CHECKSUM(bp, ck);
8336 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8337 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8338 			czio->io_bp = bp;
8339 
8340 			if (vd == vd->vdev_top) {
8341 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8342 				    NULL, NULL,
8343 				    ZIO_PRIORITY_SYNC_READ,
8344 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8345 				    ZIO_FLAG_DONT_RETRY, NULL));
8346 			} else {
8347 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
8348 				    offset, pabd, psize, ZIO_TYPE_READ,
8349 				    ZIO_PRIORITY_SYNC_READ,
8350 				    ZIO_FLAG_DONT_CACHE |
8351 				    ZIO_FLAG_DONT_PROPAGATE |
8352 				    ZIO_FLAG_DONT_RETRY |
8353 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8354 				    ZIO_FLAG_SPECULATIVE |
8355 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
8356 			}
8357 			error = zio_wait(czio);
8358 			if (error == 0 || error == ECKSUM) {
8359 				zio_t *ck_zio = zio_root(spa, NULL, NULL, 0);
8360 				ck_zio->io_offset =
8361 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
8362 				ck_zio->io_bp = bp;
8363 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
8364 				printf("%12s\tcksum=%llx:%llx:%llx:%llx\n",
8365 				    zio_checksum_table[ck].ci_name,
8366 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
8367 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
8368 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
8369 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
8370 				zio_wait(ck_zio);
8371 			} else {
8372 				printf("error %d reading block\n", error);
8373 			}
8374 			spa_config_exit(spa, SCL_STATE, FTAG);
8375 		}
8376 	}
8377 
8378 	if (borrowed)
8379 		abd_return_buf_copy(pabd, buf, lsize);
8380 
8381 out:
8382 	abd_free(pabd);
8383 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
8384 done:
8385 	free(flagstr);
8386 	free(dup);
8387 }
8388 
8389 static void
8390 zdb_embedded_block(char *thing)
8391 {
8392 	blkptr_t bp = {{{{0}}}};
8393 	unsigned long long *words = (void *)&bp;
8394 	char *buf;
8395 	int err;
8396 
8397 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8398 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8399 	    words + 0, words + 1, words + 2, words + 3,
8400 	    words + 4, words + 5, words + 6, words + 7,
8401 	    words + 8, words + 9, words + 10, words + 11,
8402 	    words + 12, words + 13, words + 14, words + 15);
8403 	if (err != 16) {
8404 		(void) fprintf(stderr, "invalid input format\n");
8405 		exit(1);
8406 	}
8407 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8408 	buf = malloc(SPA_MAXBLOCKSIZE);
8409 	if (buf == NULL) {
8410 		(void) fprintf(stderr, "out of memory\n");
8411 		exit(1);
8412 	}
8413 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8414 	if (err != 0) {
8415 		(void) fprintf(stderr, "decode failed: %u\n", err);
8416 		exit(1);
8417 	}
8418 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8419 	free(buf);
8420 }
8421 
8422 /* check for valid hex or decimal numeric string */
8423 static boolean_t
8424 zdb_numeric(char *str)
8425 {
8426 	int i = 0;
8427 
8428 	if (strlen(str) == 0)
8429 		return (B_FALSE);
8430 	if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8431 		i = 2;
8432 	for (; i < strlen(str); i++) {
8433 		if (!isxdigit(str[i]))
8434 			return (B_FALSE);
8435 	}
8436 	return (B_TRUE);
8437 }
8438 
8439 int
8440 main(int argc, char **argv)
8441 {
8442 	int c;
8443 	spa_t *spa = NULL;
8444 	objset_t *os = NULL;
8445 	int dump_all = 1;
8446 	int verbose = 0;
8447 	int error = 0;
8448 	char **searchdirs = NULL;
8449 	int nsearch = 0;
8450 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8451 	nvlist_t *policy = NULL;
8452 	uint64_t max_txg = UINT64_MAX;
8453 	int64_t objset_id = -1;
8454 	uint64_t object;
8455 	int flags = ZFS_IMPORT_MISSING_LOG;
8456 	int rewind = ZPOOL_NEVER_REWIND;
8457 	char *spa_config_path_env, *objset_str;
8458 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8459 	nvlist_t *cfg = NULL;
8460 
8461 	dprintf_setup(&argc, argv);
8462 
8463 	/*
8464 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
8465 	 * default spa_config_path setting. If -U flag is specified it will
8466 	 * override this environment variable settings once again.
8467 	 */
8468 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
8469 	if (spa_config_path_env != NULL)
8470 		spa_config_path = spa_config_path_env;
8471 
8472 	/*
8473 	 * For performance reasons, we set this tunable down. We do so before
8474 	 * the arg parsing section so that the user can override this value if
8475 	 * they choose.
8476 	 */
8477 	zfs_btree_verify_intensity = 3;
8478 
8479 	struct option long_options[] = {
8480 		{"ignore-assertions",	no_argument,		NULL, 'A'},
8481 		{"block-stats",		no_argument,		NULL, 'b'},
8482 		{"checksum",		no_argument,		NULL, 'c'},
8483 		{"config",		no_argument,		NULL, 'C'},
8484 		{"datasets",		no_argument,		NULL, 'd'},
8485 		{"dedup-stats",		no_argument,		NULL, 'D'},
8486 		{"exported",		no_argument,		NULL, 'e'},
8487 		{"embedded-block-pointer",	no_argument,	NULL, 'E'},
8488 		{"automatic-rewind",	no_argument,		NULL, 'F'},
8489 		{"dump-debug-msg",	no_argument,		NULL, 'G'},
8490 		{"history",		no_argument,		NULL, 'h'},
8491 		{"intent-logs",		no_argument,		NULL, 'i'},
8492 		{"inflight",		required_argument,	NULL, 'I'},
8493 		{"checkpointed-state",	no_argument,		NULL, 'k'},
8494 		{"label",		no_argument,		NULL, 'l'},
8495 		{"disable-leak-tracking",	no_argument,	NULL, 'L'},
8496 		{"metaslabs",		no_argument,		NULL, 'm'},
8497 		{"metaslab-groups",	no_argument,		NULL, 'M'},
8498 		{"numeric",		no_argument,		NULL, 'N'},
8499 		{"option",		required_argument,	NULL, 'o'},
8500 		{"object-lookups",	no_argument,		NULL, 'O'},
8501 		{"path",		required_argument,	NULL, 'p'},
8502 		{"parseable",		no_argument,		NULL, 'P'},
8503 		{"skip-label",		no_argument,		NULL, 'q'},
8504 		{"copy-object",		no_argument,		NULL, 'r'},
8505 		{"read-block",		no_argument,		NULL, 'R'},
8506 		{"io-stats",		no_argument,		NULL, 's'},
8507 		{"simulate-dedup",	no_argument,		NULL, 'S'},
8508 		{"txg",			required_argument,	NULL, 't'},
8509 		{"uberblock",		no_argument,		NULL, 'u'},
8510 		{"cachefile",		required_argument,	NULL, 'U'},
8511 		{"verbose",		no_argument,		NULL, 'v'},
8512 		{"verbatim",		no_argument,		NULL, 'V'},
8513 		{"dump-blocks",		required_argument,	NULL, 'x'},
8514 		{"extreme-rewind",	no_argument,		NULL, 'X'},
8515 		{"all-reconstruction",	no_argument,		NULL, 'Y'},
8516 		{"livelist",		no_argument,		NULL, 'y'},
8517 		{"zstd-headers",	no_argument,		NULL, 'Z'},
8518 		{0, 0, 0, 0}
8519 	};
8520 
8521 	while ((c = getopt_long(argc, argv,
8522 	    "AbcCdDeEFGhiI:klLmMNo:Op:PqrRsSt:uU:vVx:XYyZ",
8523 	    long_options, NULL)) != -1) {
8524 		switch (c) {
8525 		case 'b':
8526 		case 'c':
8527 		case 'C':
8528 		case 'd':
8529 		case 'D':
8530 		case 'E':
8531 		case 'G':
8532 		case 'h':
8533 		case 'i':
8534 		case 'l':
8535 		case 'm':
8536 		case 'M':
8537 		case 'N':
8538 		case 'O':
8539 		case 'r':
8540 		case 'R':
8541 		case 's':
8542 		case 'S':
8543 		case 'u':
8544 		case 'y':
8545 		case 'Z':
8546 			dump_opt[c]++;
8547 			dump_all = 0;
8548 			break;
8549 		case 'A':
8550 		case 'e':
8551 		case 'F':
8552 		case 'k':
8553 		case 'L':
8554 		case 'P':
8555 		case 'q':
8556 		case 'X':
8557 			dump_opt[c]++;
8558 			break;
8559 		case 'Y':
8560 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
8561 			zfs_deadman_enabled = 0;
8562 			break;
8563 		/* NB: Sort single match options below. */
8564 		case 'I':
8565 			max_inflight_bytes = strtoull(optarg, NULL, 0);
8566 			if (max_inflight_bytes == 0) {
8567 				(void) fprintf(stderr, "maximum number "
8568 				    "of inflight bytes must be greater "
8569 				    "than 0\n");
8570 				usage();
8571 			}
8572 			break;
8573 		case 'o':
8574 			error = set_global_var(optarg);
8575 			if (error != 0)
8576 				usage();
8577 			break;
8578 		case 'p':
8579 			if (searchdirs == NULL) {
8580 				searchdirs = umem_alloc(sizeof (char *),
8581 				    UMEM_NOFAIL);
8582 			} else {
8583 				char **tmp = umem_alloc((nsearch + 1) *
8584 				    sizeof (char *), UMEM_NOFAIL);
8585 				memcpy(tmp, searchdirs, nsearch *
8586 				    sizeof (char *));
8587 				umem_free(searchdirs,
8588 				    nsearch * sizeof (char *));
8589 				searchdirs = tmp;
8590 			}
8591 			searchdirs[nsearch++] = optarg;
8592 			break;
8593 		case 't':
8594 			max_txg = strtoull(optarg, NULL, 0);
8595 			if (max_txg < TXG_INITIAL) {
8596 				(void) fprintf(stderr, "incorrect txg "
8597 				    "specified: %s\n", optarg);
8598 				usage();
8599 			}
8600 			break;
8601 		case 'U':
8602 			spa_config_path = optarg;
8603 			if (spa_config_path[0] != '/') {
8604 				(void) fprintf(stderr,
8605 				    "cachefile must be an absolute path "
8606 				    "(i.e. start with a slash)\n");
8607 				usage();
8608 			}
8609 			break;
8610 		case 'v':
8611 			verbose++;
8612 			break;
8613 		case 'V':
8614 			flags = ZFS_IMPORT_VERBATIM;
8615 			break;
8616 		case 'x':
8617 			vn_dumpdir = optarg;
8618 			break;
8619 		default:
8620 			usage();
8621 			break;
8622 		}
8623 	}
8624 
8625 	if (!dump_opt['e'] && searchdirs != NULL) {
8626 		(void) fprintf(stderr, "-p option requires use of -e\n");
8627 		usage();
8628 	}
8629 #if defined(_LP64)
8630 	/*
8631 	 * ZDB does not typically re-read blocks; therefore limit the ARC
8632 	 * to 256 MB, which can be used entirely for metadata.
8633 	 */
8634 	zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT;
8635 	zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024;
8636 #endif
8637 
8638 	/*
8639 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
8640 	 * "zdb -b" uses traversal prefetch which uses async reads.
8641 	 * For good performance, let several of them be active at once.
8642 	 */
8643 	zfs_vdev_async_read_max_active = 10;
8644 
8645 	/*
8646 	 * Disable reference tracking for better performance.
8647 	 */
8648 	reference_tracking_enable = B_FALSE;
8649 
8650 	/*
8651 	 * Do not fail spa_load when spa_load_verify fails. This is needed
8652 	 * to load non-idle pools.
8653 	 */
8654 	spa_load_verify_dryrun = B_TRUE;
8655 
8656 	/*
8657 	 * ZDB should have ability to read spacemaps.
8658 	 */
8659 	spa_mode_readable_spacemaps = B_TRUE;
8660 
8661 	kernel_init(SPA_MODE_READ);
8662 
8663 	if (dump_all)
8664 		verbose = MAX(verbose, 1);
8665 
8666 	for (c = 0; c < 256; c++) {
8667 		if (dump_all && strchr("AeEFklLNOPrRSXy", c) == NULL)
8668 			dump_opt[c] = 1;
8669 		if (dump_opt[c])
8670 			dump_opt[c] += verbose;
8671 	}
8672 
8673 	libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
8674 	zfs_recover = (dump_opt['A'] > 1);
8675 
8676 	argc -= optind;
8677 	argv += optind;
8678 	if (argc < 2 && dump_opt['R'])
8679 		usage();
8680 
8681 	if (dump_opt['E']) {
8682 		if (argc != 1)
8683 			usage();
8684 		zdb_embedded_block(argv[0]);
8685 		return (0);
8686 	}
8687 
8688 	if (argc < 1) {
8689 		if (!dump_opt['e'] && dump_opt['C']) {
8690 			dump_cachefile(spa_config_path);
8691 			return (0);
8692 		}
8693 		usage();
8694 	}
8695 
8696 	if (dump_opt['l'])
8697 		return (dump_label(argv[0]));
8698 
8699 	if (dump_opt['O']) {
8700 		if (argc != 2)
8701 			usage();
8702 		dump_opt['v'] = verbose + 3;
8703 		return (dump_path(argv[0], argv[1], NULL));
8704 	}
8705 	if (dump_opt['r']) {
8706 		target_is_spa = B_FALSE;
8707 		if (argc != 3)
8708 			usage();
8709 		dump_opt['v'] = verbose;
8710 		error = dump_path(argv[0], argv[1], &object);
8711 		if (error != 0)
8712 			fatal("internal error: %s", strerror(error));
8713 	}
8714 
8715 	if (dump_opt['X'] || dump_opt['F'])
8716 		rewind = ZPOOL_DO_REWIND |
8717 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
8718 
8719 	/* -N implies -d */
8720 	if (dump_opt['N'] && dump_opt['d'] == 0)
8721 		dump_opt['d'] = dump_opt['N'];
8722 
8723 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
8724 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
8725 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
8726 		fatal("internal error: %s", strerror(ENOMEM));
8727 
8728 	error = 0;
8729 	target = argv[0];
8730 
8731 	if (strpbrk(target, "/@") != NULL) {
8732 		size_t targetlen;
8733 
8734 		target_pool = strdup(target);
8735 		*strpbrk(target_pool, "/@") = '\0';
8736 
8737 		target_is_spa = B_FALSE;
8738 		targetlen = strlen(target);
8739 		if (targetlen && target[targetlen - 1] == '/')
8740 			target[targetlen - 1] = '\0';
8741 
8742 		/*
8743 		 * See if an objset ID was supplied (-d <pool>/<objset ID>).
8744 		 * To disambiguate tank/100, consider the 100 as objsetID
8745 		 * if -N was given, otherwise 100 is an objsetID iff
8746 		 * tank/100 as a named dataset fails on lookup.
8747 		 */
8748 		objset_str = strchr(target, '/');
8749 		if (objset_str && strlen(objset_str) > 1 &&
8750 		    zdb_numeric(objset_str + 1)) {
8751 			char *endptr;
8752 			errno = 0;
8753 			objset_str++;
8754 			objset_id = strtoull(objset_str, &endptr, 0);
8755 			/* dataset 0 is the same as opening the pool */
8756 			if (errno == 0 && endptr != objset_str &&
8757 			    objset_id != 0) {
8758 				if (dump_opt['N'])
8759 					dataset_lookup = B_TRUE;
8760 			}
8761 			/* normal dataset name not an objset ID */
8762 			if (endptr == objset_str) {
8763 				objset_id = -1;
8764 			}
8765 		} else if (objset_str && !zdb_numeric(objset_str + 1) &&
8766 		    dump_opt['N']) {
8767 			printf("Supply a numeric objset ID with -N\n");
8768 			exit(1);
8769 		}
8770 	} else {
8771 		target_pool = target;
8772 	}
8773 
8774 	if (dump_opt['e']) {
8775 		importargs_t args = { 0 };
8776 
8777 		args.paths = nsearch;
8778 		args.path = searchdirs;
8779 		args.can_be_active = B_TRUE;
8780 
8781 		error = zpool_find_config(NULL, target_pool, &cfg, &args,
8782 		    &libzpool_config_ops);
8783 
8784 		if (error == 0) {
8785 
8786 			if (nvlist_add_nvlist(cfg,
8787 			    ZPOOL_LOAD_POLICY, policy) != 0) {
8788 				fatal("can't open '%s': %s",
8789 				    target, strerror(ENOMEM));
8790 			}
8791 
8792 			if (dump_opt['C'] > 1) {
8793 				(void) printf("\nConfiguration for import:\n");
8794 				dump_nvlist(cfg, 8);
8795 			}
8796 
8797 			/*
8798 			 * Disable the activity check to allow examination of
8799 			 * active pools.
8800 			 */
8801 			error = spa_import(target_pool, cfg, NULL,
8802 			    flags | ZFS_IMPORT_SKIP_MMP);
8803 		}
8804 	}
8805 
8806 	if (searchdirs != NULL) {
8807 		umem_free(searchdirs, nsearch * sizeof (char *));
8808 		searchdirs = NULL;
8809 	}
8810 
8811 	/*
8812 	 * import_checkpointed_state makes the assumption that the
8813 	 * target pool that we pass it is already part of the spa
8814 	 * namespace. Because of that we need to make sure to call
8815 	 * it always after the -e option has been processed, which
8816 	 * imports the pool to the namespace if it's not in the
8817 	 * cachefile.
8818 	 */
8819 	char *checkpoint_pool = NULL;
8820 	char *checkpoint_target = NULL;
8821 	if (dump_opt['k']) {
8822 		checkpoint_pool = import_checkpointed_state(target, cfg,
8823 		    &checkpoint_target);
8824 
8825 		if (checkpoint_target != NULL)
8826 			target = checkpoint_target;
8827 	}
8828 
8829 	if (cfg != NULL) {
8830 		nvlist_free(cfg);
8831 		cfg = NULL;
8832 	}
8833 
8834 	if (target_pool != target)
8835 		free(target_pool);
8836 
8837 	if (error == 0) {
8838 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
8839 			ASSERT(checkpoint_pool != NULL);
8840 			ASSERT(checkpoint_target == NULL);
8841 
8842 			error = spa_open(checkpoint_pool, &spa, FTAG);
8843 			if (error != 0) {
8844 				fatal("Tried to open pool \"%s\" but "
8845 				    "spa_open() failed with error %d\n",
8846 				    checkpoint_pool, error);
8847 			}
8848 
8849 		} else if (target_is_spa || dump_opt['R'] || objset_id == 0) {
8850 			zdb_set_skip_mmp(target);
8851 			error = spa_open_rewind(target, &spa, FTAG, policy,
8852 			    NULL);
8853 			if (error) {
8854 				/*
8855 				 * If we're missing the log device then
8856 				 * try opening the pool after clearing the
8857 				 * log state.
8858 				 */
8859 				mutex_enter(&spa_namespace_lock);
8860 				if ((spa = spa_lookup(target)) != NULL &&
8861 				    spa->spa_log_state == SPA_LOG_MISSING) {
8862 					spa->spa_log_state = SPA_LOG_CLEAR;
8863 					error = 0;
8864 				}
8865 				mutex_exit(&spa_namespace_lock);
8866 
8867 				if (!error) {
8868 					error = spa_open_rewind(target, &spa,
8869 					    FTAG, policy, NULL);
8870 				}
8871 			}
8872 		} else if (strpbrk(target, "#") != NULL) {
8873 			dsl_pool_t *dp;
8874 			error = dsl_pool_hold(target, FTAG, &dp);
8875 			if (error != 0) {
8876 				fatal("can't dump '%s': %s", target,
8877 				    strerror(error));
8878 			}
8879 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
8880 			dsl_pool_rele(dp, FTAG);
8881 			if (error != 0) {
8882 				fatal("can't dump '%s': %s", target,
8883 				    strerror(error));
8884 			}
8885 			return (error);
8886 		} else {
8887 			target_pool = strdup(target);
8888 			if (strpbrk(target, "/@") != NULL)
8889 				*strpbrk(target_pool, "/@") = '\0';
8890 
8891 			zdb_set_skip_mmp(target);
8892 			/*
8893 			 * If -N was supplied, the user has indicated that
8894 			 * zdb -d <pool>/<objsetID> is in effect.  Otherwise
8895 			 * we first assume that the dataset string is the
8896 			 * dataset name.  If dmu_objset_hold fails with the
8897 			 * dataset string, and we have an objset_id, retry the
8898 			 * lookup with the objsetID.
8899 			 */
8900 			boolean_t retry = B_TRUE;
8901 retry_lookup:
8902 			if (dataset_lookup == B_TRUE) {
8903 				/*
8904 				 * Use the supplied id to get the name
8905 				 * for open_objset.
8906 				 */
8907 				error = spa_open(target_pool, &spa, FTAG);
8908 				if (error == 0) {
8909 					error = name_from_objset_id(spa,
8910 					    objset_id, dsname);
8911 					spa_close(spa, FTAG);
8912 					if (error == 0)
8913 						target = dsname;
8914 				}
8915 			}
8916 			if (error == 0) {
8917 				if (objset_id > 0 && retry) {
8918 					int err = dmu_objset_hold(target, FTAG,
8919 					    &os);
8920 					if (err) {
8921 						dataset_lookup = B_TRUE;
8922 						retry = B_FALSE;
8923 						goto retry_lookup;
8924 					} else {
8925 						dmu_objset_rele(os, FTAG);
8926 					}
8927 				}
8928 				error = open_objset(target, FTAG, &os);
8929 			}
8930 			if (error == 0)
8931 				spa = dmu_objset_spa(os);
8932 			free(target_pool);
8933 		}
8934 	}
8935 	nvlist_free(policy);
8936 
8937 	if (error)
8938 		fatal("can't open '%s': %s", target, strerror(error));
8939 
8940 	/*
8941 	 * Set the pool failure mode to panic in order to prevent the pool
8942 	 * from suspending.  A suspended I/O will have no way to resume and
8943 	 * can prevent the zdb(8) command from terminating as expected.
8944 	 */
8945 	if (spa != NULL)
8946 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
8947 
8948 	argv++;
8949 	argc--;
8950 	if (dump_opt['r']) {
8951 		error = zdb_copy_object(os, object, argv[1]);
8952 	} else if (!dump_opt['R']) {
8953 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
8954 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
8955 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
8956 		flagbits['z'] = ZOR_FLAG_ZAP;
8957 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
8958 
8959 		if (argc > 0 && dump_opt['d']) {
8960 			zopt_object_args = argc;
8961 			zopt_object_ranges = calloc(zopt_object_args,
8962 			    sizeof (zopt_object_range_t));
8963 			for (unsigned i = 0; i < zopt_object_args; i++) {
8964 				int err;
8965 				const char *msg = NULL;
8966 
8967 				err = parse_object_range(argv[i],
8968 				    &zopt_object_ranges[i], &msg);
8969 				if (err != 0)
8970 					fatal("Bad object or range: '%s': %s\n",
8971 					    argv[i], msg ?: "");
8972 			}
8973 		} else if (argc > 0 && dump_opt['m']) {
8974 			zopt_metaslab_args = argc;
8975 			zopt_metaslab = calloc(zopt_metaslab_args,
8976 			    sizeof (uint64_t));
8977 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
8978 				errno = 0;
8979 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
8980 				if (zopt_metaslab[i] == 0 && errno != 0)
8981 					fatal("bad number %s: %s", argv[i],
8982 					    strerror(errno));
8983 			}
8984 		}
8985 		if (os != NULL) {
8986 			dump_objset(os);
8987 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
8988 			dump_objset(spa->spa_meta_objset);
8989 		} else {
8990 			dump_zpool(spa);
8991 		}
8992 	} else {
8993 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
8994 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
8995 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
8996 		flagbits['e'] = ZDB_FLAG_BSWAP;
8997 		flagbits['g'] = ZDB_FLAG_GBH;
8998 		flagbits['i'] = ZDB_FLAG_INDIRECT;
8999 		flagbits['r'] = ZDB_FLAG_RAW;
9000 		flagbits['v'] = ZDB_FLAG_VERBOSE;
9001 
9002 		for (int i = 0; i < argc; i++)
9003 			zdb_read_block(argv[i], spa);
9004 	}
9005 
9006 	if (dump_opt['k']) {
9007 		free(checkpoint_pool);
9008 		if (!target_is_spa)
9009 			free(checkpoint_target);
9010 	}
9011 
9012 	if (os != NULL) {
9013 		close_objset(os, FTAG);
9014 	} else {
9015 		spa_close(spa, FTAG);
9016 	}
9017 
9018 	fuid_table_destroy();
9019 
9020 	dump_debug_buffer();
9021 
9022 	kernel_fini();
9023 
9024 	return (error);
9025 }
9026