1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 38 */ 39 40 #include <stdio.h> 41 #include <unistd.h> 42 #include <stdlib.h> 43 #include <ctype.h> 44 #include <getopt.h> 45 #include <openssl/evp.h> 46 #include <sys/zfs_context.h> 47 #include <sys/spa.h> 48 #include <sys/spa_impl.h> 49 #include <sys/dmu.h> 50 #include <sys/zap.h> 51 #include <sys/zap_impl.h> 52 #include <sys/fs/zfs.h> 53 #include <sys/zfs_znode.h> 54 #include <sys/zfs_sa.h> 55 #include <sys/sa.h> 56 #include <sys/sa_impl.h> 57 #include <sys/vdev.h> 58 #include <sys/vdev_impl.h> 59 #include <sys/metaslab_impl.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/dsl_dir.h> 62 #include <sys/dsl_dataset.h> 63 #include <sys/dsl_pool.h> 64 #include <sys/dsl_bookmark.h> 65 #include <sys/dbuf.h> 66 #include <sys/zil.h> 67 #include <sys/zil_impl.h> 68 #include <sys/stat.h> 69 #include <sys/resource.h> 70 #include <sys/dmu_send.h> 71 #include <sys/dmu_traverse.h> 72 #include <sys/zio_checksum.h> 73 #include <sys/zio_compress.h> 74 #include <sys/zfs_fuid.h> 75 #include <sys/arc.h> 76 #include <sys/arc_impl.h> 77 #include <sys/ddt.h> 78 #include <sys/ddt_impl.h> 79 #include <sys/zfeature.h> 80 #include <sys/abd.h> 81 #include <sys/blkptr.h> 82 #include <sys/dsl_crypt.h> 83 #include <sys/dsl_scan.h> 84 #include <sys/btree.h> 85 #include <sys/brt.h> 86 #include <sys/brt_impl.h> 87 #include <zfs_comutil.h> 88 #include <sys/zstd/zstd.h> 89 #include <sys/backtrace.h> 90 91 #include <libnvpair.h> 92 #include <libzutil.h> 93 #include <libzfs_core.h> 94 95 #include <libzdb.h> 96 97 #include "zdb.h" 98 99 100 extern int reference_tracking_enable; 101 extern int zfs_recover; 102 extern uint_t zfs_vdev_async_read_max_active; 103 extern boolean_t spa_load_verify_dryrun; 104 extern boolean_t spa_mode_readable_spacemaps; 105 extern uint_t zfs_reconstruct_indirect_combinations_max; 106 extern uint_t zfs_btree_verify_intensity; 107 108 static const char cmdname[] = "zdb"; 109 uint8_t dump_opt[256]; 110 111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 112 113 static uint64_t *zopt_metaslab = NULL; 114 static unsigned zopt_metaslab_args = 0; 115 116 117 static zopt_object_range_t *zopt_object_ranges = NULL; 118 static unsigned zopt_object_args = 0; 119 120 static int flagbits[256]; 121 122 123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 124 static int leaked_objects = 0; 125 static range_tree_t *mos_refd_objs; 126 static spa_t *spa; 127 static objset_t *os; 128 static boolean_t kernel_init_done; 129 130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 131 boolean_t); 132 static void mos_obj_refd(uint64_t); 133 static void mos_obj_refd_multiple(uint64_t); 134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 135 dmu_tx_t *tx); 136 137 138 139 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 140 static void zdb_exit(int reason); 141 142 typedef struct sublivelist_verify_block_refcnt { 143 /* block pointer entry in livelist being verified */ 144 blkptr_t svbr_blk; 145 146 /* 147 * Refcount gets incremented to 1 when we encounter the first 148 * FREE entry for the svfbr block pointer and a node for it 149 * is created in our ZDB verification/tracking metadata. 150 * 151 * As we encounter more FREE entries we increment this counter 152 * and similarly decrement it whenever we find the respective 153 * ALLOC entries for this block. 154 * 155 * When the refcount gets to 0 it means that all the FREE and 156 * ALLOC entries of this block have paired up and we no longer 157 * need to track it in our verification logic (e.g. the node 158 * containing this struct in our verification data structure 159 * should be freed). 160 * 161 * [refer to sublivelist_verify_blkptr() for the actual code] 162 */ 163 uint32_t svbr_refcnt; 164 } sublivelist_verify_block_refcnt_t; 165 166 static int 167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 168 { 169 const sublivelist_verify_block_refcnt_t *l = larg; 170 const sublivelist_verify_block_refcnt_t *r = rarg; 171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 172 } 173 174 static int 175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 176 dmu_tx_t *tx) 177 { 178 ASSERT3P(tx, ==, NULL); 179 struct sublivelist_verify *sv = arg; 180 sublivelist_verify_block_refcnt_t current = { 181 .svbr_blk = *bp, 182 183 /* 184 * Start with 1 in case this is the first free entry. 185 * This field is not used for our B-Tree comparisons 186 * anyway. 187 */ 188 .svbr_refcnt = 1, 189 }; 190 191 zfs_btree_index_t where; 192 sublivelist_verify_block_refcnt_t *pair = 193 zfs_btree_find(&sv->sv_pair, ¤t, &where); 194 if (free) { 195 if (pair == NULL) { 196 /* first free entry for this block pointer */ 197 zfs_btree_add(&sv->sv_pair, ¤t); 198 } else { 199 pair->svbr_refcnt++; 200 } 201 } else { 202 if (pair == NULL) { 203 /* block that is currently marked as allocated */ 204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 205 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 206 break; 207 sublivelist_verify_block_t svb = { 208 .svb_dva = bp->blk_dva[i], 209 .svb_allocated_txg = 210 BP_GET_LOGICAL_BIRTH(bp) 211 }; 212 213 if (zfs_btree_find(&sv->sv_leftover, &svb, 214 &where) == NULL) { 215 zfs_btree_add_idx(&sv->sv_leftover, 216 &svb, &where); 217 } 218 } 219 } else { 220 /* alloc matches a free entry */ 221 pair->svbr_refcnt--; 222 if (pair->svbr_refcnt == 0) { 223 /* all allocs and frees have been matched */ 224 zfs_btree_remove_idx(&sv->sv_pair, &where); 225 } 226 } 227 } 228 229 return (0); 230 } 231 232 static int 233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 234 { 235 int err; 236 struct sublivelist_verify *sv = args; 237 238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 239 sizeof (sublivelist_verify_block_refcnt_t)); 240 241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 242 sv, NULL); 243 244 sublivelist_verify_block_refcnt_t *e; 245 zfs_btree_index_t *cookie = NULL; 246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 247 char blkbuf[BP_SPRINTF_LEN]; 248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 249 &e->svbr_blk, B_TRUE); 250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 251 e->svbr_refcnt, blkbuf); 252 } 253 zfs_btree_destroy(&sv->sv_pair); 254 255 return (err); 256 } 257 258 static int 259 livelist_block_compare(const void *larg, const void *rarg) 260 { 261 const sublivelist_verify_block_t *l = larg; 262 const sublivelist_verify_block_t *r = rarg; 263 264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 265 return (-1); 266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 267 return (+1); 268 269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 270 return (-1); 271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 272 return (+1); 273 274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 275 return (-1); 276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 277 return (+1); 278 279 return (0); 280 } 281 282 /* 283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 284 * sublivelist_verify_t: sv->sv_leftover 285 */ 286 static void 287 livelist_verify(dsl_deadlist_t *dl, void *arg) 288 { 289 sublivelist_verify_t *sv = arg; 290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 291 } 292 293 /* 294 * Check for errors in the livelist entry and discard the intermediary 295 * data structures 296 */ 297 static int 298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 299 { 300 (void) args; 301 sublivelist_verify_t sv; 302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 303 sizeof (sublivelist_verify_block_t)); 304 int err = sublivelist_verify_func(&sv, dle); 305 zfs_btree_clear(&sv.sv_leftover); 306 zfs_btree_destroy(&sv.sv_leftover); 307 return (err); 308 } 309 310 typedef struct metaslab_verify { 311 /* 312 * Tree containing all the leftover ALLOCs from the livelists 313 * that are part of this metaslab. 314 */ 315 zfs_btree_t mv_livelist_allocs; 316 317 /* 318 * Metaslab information. 319 */ 320 uint64_t mv_vdid; 321 uint64_t mv_msid; 322 uint64_t mv_start; 323 uint64_t mv_end; 324 325 /* 326 * What's currently allocated for this metaslab. 327 */ 328 range_tree_t *mv_allocated; 329 } metaslab_verify_t; 330 331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 332 333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 334 void *arg); 335 336 typedef struct unflushed_iter_cb_arg { 337 spa_t *uic_spa; 338 uint64_t uic_txg; 339 void *uic_arg; 340 zdb_log_sm_cb_t uic_cb; 341 } unflushed_iter_cb_arg_t; 342 343 static int 344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 345 { 346 unflushed_iter_cb_arg_t *uic = arg; 347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 348 } 349 350 static void 351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 352 { 353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 354 return; 355 356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 359 space_map_t *sm = NULL; 360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 362 363 unflushed_iter_cb_arg_t uic = { 364 .uic_spa = spa, 365 .uic_txg = sls->sls_txg, 366 .uic_arg = arg, 367 .uic_cb = cb 368 }; 369 VERIFY0(space_map_iterate(sm, space_map_length(sm), 370 iterate_through_spacemap_logs_cb, &uic)); 371 space_map_close(sm); 372 } 373 spa_config_exit(spa, SCL_CONFIG, FTAG); 374 } 375 376 static void 377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 378 uint64_t offset, uint64_t size) 379 { 380 sublivelist_verify_block_t svb = {{{0}}}; 381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 382 DVA_SET_OFFSET(&svb.svb_dva, offset); 383 DVA_SET_ASIZE(&svb.svb_dva, size); 384 zfs_btree_index_t where; 385 uint64_t end_offset = offset + size; 386 387 /* 388 * Look for an exact match for spacemap entry in the livelist entries. 389 * Then, look for other livelist entries that fall within the range 390 * of the spacemap entry as it may have been condensed 391 */ 392 sublivelist_verify_block_t *found = 393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 394 if (found == NULL) { 395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 396 } 397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 398 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 400 if (found->svb_allocated_txg <= txg) { 401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 402 "from TXG %llx FREED at TXG %llx\n", 403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 405 (u_longlong_t)found->svb_allocated_txg, 406 (u_longlong_t)txg); 407 } 408 } 409 } 410 411 static int 412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 413 { 414 metaslab_verify_t *mv = arg; 415 uint64_t offset = sme->sme_offset; 416 uint64_t size = sme->sme_run; 417 uint64_t txg = sme->sme_txg; 418 419 if (sme->sme_type == SM_ALLOC) { 420 if (range_tree_contains(mv->mv_allocated, 421 offset, size)) { 422 (void) printf("ERROR: DOUBLE ALLOC: " 423 "%llu [%llx:%llx] " 424 "%llu:%llu LOG_SM\n", 425 (u_longlong_t)txg, (u_longlong_t)offset, 426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 427 (u_longlong_t)mv->mv_msid); 428 } else { 429 range_tree_add(mv->mv_allocated, 430 offset, size); 431 } 432 } else { 433 if (!range_tree_contains(mv->mv_allocated, 434 offset, size)) { 435 (void) printf("ERROR: DOUBLE FREE: " 436 "%llu [%llx:%llx] " 437 "%llu:%llu LOG_SM\n", 438 (u_longlong_t)txg, (u_longlong_t)offset, 439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 440 (u_longlong_t)mv->mv_msid); 441 } else { 442 range_tree_remove(mv->mv_allocated, 443 offset, size); 444 } 445 } 446 447 if (sme->sme_type != SM_ALLOC) { 448 /* 449 * If something is freed in the spacemap, verify that 450 * it is not listed as allocated in the livelist. 451 */ 452 verify_livelist_allocs(mv, txg, offset, size); 453 } 454 return (0); 455 } 456 457 static int 458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 459 uint64_t txg, void *arg) 460 { 461 metaslab_verify_t *mv = arg; 462 uint64_t offset = sme->sme_offset; 463 uint64_t vdev_id = sme->sme_vdev; 464 465 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 466 467 /* skip indirect vdevs */ 468 if (!vdev_is_concrete(vd)) 469 return (0); 470 471 if (vdev_id != mv->mv_vdid) 472 return (0); 473 474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 475 if (ms->ms_id != mv->mv_msid) 476 return (0); 477 478 if (txg < metaslab_unflushed_txg(ms)) 479 return (0); 480 481 482 ASSERT3U(txg, ==, sme->sme_txg); 483 return (metaslab_spacemap_validation_cb(sme, mv)); 484 } 485 486 static void 487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 488 { 489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 490 } 491 492 static void 493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 494 { 495 if (sm == NULL) 496 return; 497 498 VERIFY0(space_map_iterate(sm, space_map_length(sm), 499 metaslab_spacemap_validation_cb, mv)); 500 } 501 502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 503 504 /* 505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 506 * they are part of that metaslab (mv_msid). 507 */ 508 static void 509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 510 { 511 zfs_btree_index_t where; 512 sublivelist_verify_block_t *svb; 513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 514 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 515 svb != NULL; 516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 518 continue; 519 520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 521 (DVA_GET_OFFSET(&svb->svb_dva) + 522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 523 (void) printf("ERROR: Found block that crosses " 524 "metaslab boundary: <%llu:%llx:%llx>\n", 525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 528 continue; 529 } 530 531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 532 continue; 533 534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 535 continue; 536 537 if ((DVA_GET_OFFSET(&svb->svb_dva) + 538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 539 (void) printf("ERROR: Found block that crosses " 540 "metaslab boundary: <%llu:%llx:%llx>\n", 541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 544 continue; 545 } 546 547 zfs_btree_add(&mv->mv_livelist_allocs, svb); 548 } 549 550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 551 svb != NULL; 552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 553 zfs_btree_remove(&sv->sv_leftover, svb); 554 } 555 } 556 557 /* 558 * [Livelist Check] 559 * Iterate through all the sublivelists and: 560 * - report leftover frees (**) 561 * - record leftover ALLOCs together with their TXG [see Cross Check] 562 * 563 * (**) Note: Double ALLOCs are valid in datasets that have dedup 564 * enabled. Similarly double FREEs are allowed as well but 565 * only if they pair up with a corresponding ALLOC entry once 566 * we our done with our sublivelist iteration. 567 * 568 * [Spacemap Check] 569 * for each metaslab: 570 * - iterate over spacemap and then the metaslab's entries in the 571 * spacemap log, then report any double FREEs and ALLOCs (do not 572 * blow up). 573 * 574 * [Cross Check] 575 * After finishing the Livelist Check phase and while being in the 576 * Spacemap Check phase, we find all the recorded leftover ALLOCs 577 * of the livelist check that are part of the metaslab that we are 578 * currently looking at in the Spacemap Check. We report any entries 579 * that are marked as ALLOCs in the livelists but have been actually 580 * freed (and potentially allocated again) after their TXG stamp in 581 * the spacemaps. Also report any ALLOCs from the livelists that 582 * belong to indirect vdevs (e.g. their vdev completed removal). 583 * 584 * Note that this will miss Log Spacemap entries that cancelled each other 585 * out before being flushed to the metaslab, so we are not guaranteed 586 * to match all erroneous ALLOCs. 587 */ 588 static void 589 livelist_metaslab_validate(spa_t *spa) 590 { 591 (void) printf("Verifying deleted livelist entries\n"); 592 593 sublivelist_verify_t sv; 594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 595 sizeof (sublivelist_verify_block_t)); 596 iterate_deleted_livelists(spa, livelist_verify, &sv); 597 598 (void) printf("Verifying metaslab entries\n"); 599 vdev_t *rvd = spa->spa_root_vdev; 600 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 601 vdev_t *vd = rvd->vdev_child[c]; 602 603 if (!vdev_is_concrete(vd)) 604 continue; 605 606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 607 metaslab_t *m = vd->vdev_ms[mid]; 608 609 (void) fprintf(stderr, 610 "\rverifying concrete vdev %llu, " 611 "metaslab %llu of %llu ...", 612 (longlong_t)vd->vdev_id, 613 (longlong_t)mid, 614 (longlong_t)vd->vdev_ms_count); 615 616 uint64_t shift, start; 617 range_seg_type_t type = 618 metaslab_calculate_range_tree_type(vd, m, 619 &start, &shift); 620 metaslab_verify_t mv; 621 mv.mv_allocated = range_tree_create(NULL, 622 type, NULL, start, shift); 623 mv.mv_vdid = vd->vdev_id; 624 mv.mv_msid = m->ms_id; 625 mv.mv_start = m->ms_start; 626 mv.mv_end = m->ms_start + m->ms_size; 627 zfs_btree_create(&mv.mv_livelist_allocs, 628 livelist_block_compare, NULL, 629 sizeof (sublivelist_verify_block_t)); 630 631 mv_populate_livelist_allocs(&mv, &sv); 632 633 spacemap_check_ms_sm(m->ms_sm, &mv); 634 spacemap_check_sm_log(spa, &mv); 635 636 range_tree_vacate(mv.mv_allocated, NULL, NULL); 637 range_tree_destroy(mv.mv_allocated); 638 zfs_btree_clear(&mv.mv_livelist_allocs); 639 zfs_btree_destroy(&mv.mv_livelist_allocs); 640 } 641 } 642 (void) fprintf(stderr, "\n"); 643 644 /* 645 * If there are any segments in the leftover tree after we walked 646 * through all the metaslabs in the concrete vdevs then this means 647 * that we have segments in the livelists that belong to indirect 648 * vdevs and are marked as allocated. 649 */ 650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 651 zfs_btree_destroy(&sv.sv_leftover); 652 return; 653 } 654 (void) printf("ERROR: Found livelist blocks marked as allocated " 655 "for indirect vdevs:\n"); 656 657 zfs_btree_index_t *where = NULL; 658 sublivelist_verify_block_t *svb; 659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 660 NULL) { 661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 662 ASSERT3U(vdev_id, <, rvd->vdev_children); 663 vdev_t *vd = rvd->vdev_child[vdev_id]; 664 ASSERT(!vdev_is_concrete(vd)); 665 (void) printf("<%d:%llx:%llx> TXG %llx\n", 666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 668 (u_longlong_t)svb->svb_allocated_txg); 669 } 670 (void) printf("\n"); 671 zfs_btree_destroy(&sv.sv_leftover); 672 } 673 674 /* 675 * These libumem hooks provide a reasonable set of defaults for the allocator's 676 * debugging facilities. 677 */ 678 const char * 679 _umem_debug_init(void) 680 { 681 return ("default,verbose"); /* $UMEM_DEBUG setting */ 682 } 683 684 const char * 685 _umem_logging_init(void) 686 { 687 return ("fail,contents"); /* $UMEM_LOGGING setting */ 688 } 689 690 static void 691 usage(void) 692 { 693 (void) fprintf(stderr, 694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 695 "[-I <inflight I/Os>]\n" 696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 697 "\t\t[-K <key>]\n" 698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 704 "\t%s [-v] <bookmark>\n" 705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 706 "\t%s -l [-Aqu] <device>\n" 707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 709 "\t%s -O [-K <key>] <dataset> <path>\n" 710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 713 "\t%s -E [-A] word0:word1:...:word15\n" 714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 715 "<poolname>\n\n", 716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 717 cmdname, cmdname, cmdname, cmdname, cmdname); 718 719 (void) fprintf(stderr, " Dataset name must include at least one " 720 "separator character '/' or '@'\n"); 721 (void) fprintf(stderr, " If dataset name is specified, only that " 722 "dataset is dumped\n"); 723 (void) fprintf(stderr, " If object numbers or object number " 724 "ranges are specified, only those\n" 725 " objects or ranges are dumped.\n\n"); 726 (void) fprintf(stderr, 727 " Object ranges take the form <start>:<end>[:<flags>]\n" 728 " start Starting object number\n" 729 " end Ending object number, or -1 for no upper bound\n" 730 " flags Optional flags to select object types:\n" 731 " A All objects (this is the default)\n" 732 " d ZFS directories\n" 733 " f ZFS files \n" 734 " m SPA space maps\n" 735 " z ZAPs\n" 736 " - Negate effect of next flag\n\n"); 737 (void) fprintf(stderr, " Options to control amount of output:\n"); 738 (void) fprintf(stderr, " -b --block-stats " 739 "block statistics\n"); 740 (void) fprintf(stderr, " -B --backup " 741 "backup stream\n"); 742 (void) fprintf(stderr, " -c --checksum " 743 "checksum all metadata (twice for all data) blocks\n"); 744 (void) fprintf(stderr, " -C --config " 745 "config (or cachefile if alone)\n"); 746 (void) fprintf(stderr, " -d --datasets " 747 "dataset(s)\n"); 748 (void) fprintf(stderr, " -D --dedup-stats " 749 "dedup statistics\n"); 750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 751 " decode and display block " 752 "from an embedded block pointer\n"); 753 (void) fprintf(stderr, " -h --history " 754 "pool history\n"); 755 (void) fprintf(stderr, " -i --intent-logs " 756 "intent logs\n"); 757 (void) fprintf(stderr, " -l --label " 758 "read label contents\n"); 759 (void) fprintf(stderr, " -k --checkpointed-state " 760 "examine the checkpointed state of the pool\n"); 761 (void) fprintf(stderr, " -L --disable-leak-tracking " 762 "disable leak tracking (do not load spacemaps)\n"); 763 (void) fprintf(stderr, " -m --metaslabs " 764 "metaslabs\n"); 765 (void) fprintf(stderr, " -M --metaslab-groups " 766 "metaslab groups\n"); 767 (void) fprintf(stderr, " -O --object-lookups " 768 "perform object lookups by path\n"); 769 (void) fprintf(stderr, " -r --copy-object " 770 "copy an object by path to file\n"); 771 (void) fprintf(stderr, " -R --read-block " 772 "read and display block from a device\n"); 773 (void) fprintf(stderr, " -s --io-stats " 774 "report stats on zdb's I/O\n"); 775 (void) fprintf(stderr, " -S --simulate-dedup " 776 "simulate dedup to measure effect\n"); 777 (void) fprintf(stderr, " -v --verbose " 778 "verbose (applies to all others)\n"); 779 (void) fprintf(stderr, " -y --livelist " 780 "perform livelist and metaslab validation on any livelists being " 781 "deleted\n\n"); 782 (void) fprintf(stderr, " Below options are intended for use " 783 "with other options:\n"); 784 (void) fprintf(stderr, " -A --ignore-assertions " 785 "ignore assertions (-A), enable panic recovery (-AA) or both " 786 "(-AAA)\n"); 787 (void) fprintf(stderr, " -e --exported " 788 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 789 (void) fprintf(stderr, " -F --automatic-rewind " 790 "attempt automatic rewind within safe range of transaction " 791 "groups\n"); 792 (void) fprintf(stderr, " -G --dump-debug-msg " 793 "dump zfs_dbgmsg buffer before exiting\n"); 794 (void) fprintf(stderr, " -I --inflight=INTEGER " 795 "specify the maximum number of checksumming I/Os " 796 "[default is 200]\n"); 797 (void) fprintf(stderr, " -K --key=KEY " 798 "decryption key for encrypted dataset\n"); 799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 800 "set global variable to an unsigned 32-bit integer\n"); 801 (void) fprintf(stderr, " -p --path==PATH " 802 "use one or more with -e to specify path to vdev dir\n"); 803 (void) fprintf(stderr, " -P --parseable " 804 "print numbers in parseable form\n"); 805 (void) fprintf(stderr, " -q --skip-label " 806 "don't print label contents\n"); 807 (void) fprintf(stderr, " -t --txg=INTEGER " 808 "highest txg to use when searching for uberblocks\n"); 809 (void) fprintf(stderr, " -T --brt-stats " 810 "BRT statistics\n"); 811 (void) fprintf(stderr, " -u --uberblock " 812 "uberblock\n"); 813 (void) fprintf(stderr, " -U --cachefile=PATH " 814 "use alternate cachefile\n"); 815 (void) fprintf(stderr, " -V --verbatim " 816 "do verbatim import\n"); 817 (void) fprintf(stderr, " -x --dump-blocks=PATH " 818 "dump all read blocks into specified directory\n"); 819 (void) fprintf(stderr, " -X --extreme-rewind " 820 "attempt extreme rewind (does not work with dataset)\n"); 821 (void) fprintf(stderr, " -Y --all-reconstruction " 822 "attempt all reconstruction combinations for split blocks\n"); 823 (void) fprintf(stderr, " -Z --zstd-headers " 824 "show ZSTD headers \n"); 825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 826 "to make only that option verbose\n"); 827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 828 zdb_exit(1); 829 } 830 831 static void 832 dump_debug_buffer(void) 833 { 834 ssize_t ret __attribute__((unused)); 835 836 if (!dump_opt['G']) 837 return; 838 /* 839 * We use write() instead of printf() so that this function 840 * is safe to call from a signal handler. 841 */ 842 ret = write(STDERR_FILENO, "\n", 1); 843 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 844 } 845 846 static void sig_handler(int signo) 847 { 848 struct sigaction action; 849 850 libspl_backtrace(STDERR_FILENO); 851 dump_debug_buffer(); 852 853 /* 854 * Restore default action and re-raise signal so SIGSEGV and 855 * SIGABRT can trigger a core dump. 856 */ 857 action.sa_handler = SIG_DFL; 858 sigemptyset(&action.sa_mask); 859 action.sa_flags = 0; 860 (void) sigaction(signo, &action, NULL); 861 raise(signo); 862 } 863 864 /* 865 * Called for usage errors that are discovered after a call to spa_open(), 866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 867 */ 868 869 static void 870 fatal(const char *fmt, ...) 871 { 872 va_list ap; 873 874 va_start(ap, fmt); 875 (void) fprintf(stderr, "%s: ", cmdname); 876 (void) vfprintf(stderr, fmt, ap); 877 va_end(ap); 878 (void) fprintf(stderr, "\n"); 879 880 dump_debug_buffer(); 881 882 zdb_exit(1); 883 } 884 885 static void 886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 887 { 888 (void) size; 889 nvlist_t *nv; 890 size_t nvsize = *(uint64_t *)data; 891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 892 893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 894 895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 896 897 umem_free(packed, nvsize); 898 899 dump_nvlist(nv, 8); 900 901 nvlist_free(nv); 902 } 903 904 static void 905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 906 { 907 (void) os, (void) object, (void) size; 908 spa_history_phys_t *shp = data; 909 910 if (shp == NULL) 911 return; 912 913 (void) printf("\t\tpool_create_len = %llu\n", 914 (u_longlong_t)shp->sh_pool_create_len); 915 (void) printf("\t\tphys_max_off = %llu\n", 916 (u_longlong_t)shp->sh_phys_max_off); 917 (void) printf("\t\tbof = %llu\n", 918 (u_longlong_t)shp->sh_bof); 919 (void) printf("\t\teof = %llu\n", 920 (u_longlong_t)shp->sh_eof); 921 (void) printf("\t\trecords_lost = %llu\n", 922 (u_longlong_t)shp->sh_records_lost); 923 } 924 925 static void 926 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 927 { 928 if (dump_opt['P']) 929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 930 else 931 nicenum(num, buf, buflen); 932 } 933 934 static void 935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 936 { 937 if (dump_opt['P']) 938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 939 else 940 zfs_nicebytes(bytes, buf, buflen); 941 } 942 943 static const char histo_stars[] = "****************************************"; 944 static const uint64_t histo_width = sizeof (histo_stars) - 1; 945 946 static void 947 dump_histogram(const uint64_t *histo, int size, int offset) 948 { 949 int i; 950 int minidx = size - 1; 951 int maxidx = 0; 952 uint64_t max = 0; 953 954 for (i = 0; i < size; i++) { 955 if (histo[i] == 0) 956 continue; 957 if (histo[i] > max) 958 max = histo[i]; 959 if (i > maxidx) 960 maxidx = i; 961 if (i < minidx) 962 minidx = i; 963 } 964 965 if (max < histo_width) 966 max = histo_width; 967 968 for (i = minidx; i <= maxidx; i++) { 969 (void) printf("\t\t\t%3u: %6llu %s\n", 970 i + offset, (u_longlong_t)histo[i], 971 &histo_stars[(max - histo[i]) * histo_width / max]); 972 } 973 } 974 975 static void 976 dump_zap_stats(objset_t *os, uint64_t object) 977 { 978 int error; 979 zap_stats_t zs; 980 981 error = zap_get_stats(os, object, &zs); 982 if (error) 983 return; 984 985 if (zs.zs_ptrtbl_len == 0) { 986 ASSERT(zs.zs_num_blocks == 1); 987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 988 (u_longlong_t)zs.zs_blocksize, 989 (u_longlong_t)zs.zs_num_entries); 990 return; 991 } 992 993 (void) printf("\tFat ZAP stats:\n"); 994 995 (void) printf("\t\tPointer table:\n"); 996 (void) printf("\t\t\t%llu elements\n", 997 (u_longlong_t)zs.zs_ptrtbl_len); 998 (void) printf("\t\t\tzt_blk: %llu\n", 999 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1000 (void) printf("\t\t\tzt_numblks: %llu\n", 1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1002 (void) printf("\t\t\tzt_shift: %llu\n", 1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1004 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1006 (void) printf("\t\t\tzt_nextblk: %llu\n", 1007 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1008 1009 (void) printf("\t\tZAP entries: %llu\n", 1010 (u_longlong_t)zs.zs_num_entries); 1011 (void) printf("\t\tLeaf blocks: %llu\n", 1012 (u_longlong_t)zs.zs_num_leafs); 1013 (void) printf("\t\tTotal blocks: %llu\n", 1014 (u_longlong_t)zs.zs_num_blocks); 1015 (void) printf("\t\tzap_block_type: 0x%llx\n", 1016 (u_longlong_t)zs.zs_block_type); 1017 (void) printf("\t\tzap_magic: 0x%llx\n", 1018 (u_longlong_t)zs.zs_magic); 1019 (void) printf("\t\tzap_salt: 0x%llx\n", 1020 (u_longlong_t)zs.zs_salt); 1021 1022 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1024 1025 (void) printf("\t\tBlocks with n*5 entries:\n"); 1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1027 1028 (void) printf("\t\tBlocks n/10 full:\n"); 1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1030 1031 (void) printf("\t\tEntries with n chunks:\n"); 1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1033 1034 (void) printf("\t\tBuckets with n entries:\n"); 1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1036 } 1037 1038 static void 1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1040 { 1041 (void) os, (void) object, (void) data, (void) size; 1042 } 1043 1044 static void 1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1046 { 1047 (void) os, (void) object, (void) data, (void) size; 1048 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1049 } 1050 1051 static void 1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1053 { 1054 (void) os, (void) object, (void) data, (void) size; 1055 } 1056 1057 static void 1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1059 { 1060 uint64_t *arr; 1061 uint64_t oursize; 1062 if (dump_opt['d'] < 6) 1063 return; 1064 1065 if (data == NULL) { 1066 dmu_object_info_t doi; 1067 1068 VERIFY0(dmu_object_info(os, object, &doi)); 1069 size = doi.doi_max_offset; 1070 /* 1071 * We cap the size at 1 mebibyte here to prevent 1072 * allocation failures and nigh-infinite printing if the 1073 * object is extremely large. 1074 */ 1075 oursize = MIN(size, 1 << 20); 1076 arr = kmem_alloc(oursize, KM_SLEEP); 1077 1078 int err = dmu_read(os, object, 0, oursize, arr, 0); 1079 if (err != 0) { 1080 (void) printf("got error %u from dmu_read\n", err); 1081 kmem_free(arr, oursize); 1082 return; 1083 } 1084 } else { 1085 /* 1086 * Even though the allocation is already done in this code path, 1087 * we still cap the size to prevent excessive printing. 1088 */ 1089 oursize = MIN(size, 1 << 20); 1090 arr = data; 1091 } 1092 1093 if (size == 0) { 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 (void) printf("\t\t[]\n"); 1097 return; 1098 } 1099 1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1102 if (i % 4 != 0) 1103 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1104 else 1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1106 } 1107 if (oursize != size) 1108 (void) printf(", ... "); 1109 (void) printf("]\n"); 1110 1111 if (data == NULL) 1112 kmem_free(arr, oursize); 1113 } 1114 1115 static void 1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1117 { 1118 (void) data, (void) size; 1119 zap_cursor_t zc; 1120 zap_attribute_t attr; 1121 void *prop; 1122 unsigned i; 1123 1124 dump_zap_stats(os, object); 1125 (void) printf("\n"); 1126 1127 for (zap_cursor_init(&zc, os, object); 1128 zap_cursor_retrieve(&zc, &attr) == 0; 1129 zap_cursor_advance(&zc)) { 1130 boolean_t key64 = 1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1132 1133 if (key64) 1134 (void) printf("\t\t0x%010llx = ", 1135 (u_longlong_t)*(uint64_t *)attr.za_name); 1136 else 1137 (void) printf("\t\t%s = ", attr.za_name); 1138 1139 if (attr.za_num_integers == 0) { 1140 (void) printf("\n"); 1141 continue; 1142 } 1143 prop = umem_zalloc(attr.za_num_integers * 1144 attr.za_integer_length, UMEM_NOFAIL); 1145 1146 if (key64) 1147 (void) zap_lookup_uint64(os, object, 1148 (const uint64_t *)attr.za_name, 1, 1149 attr.za_integer_length, attr.za_num_integers, 1150 prop); 1151 else 1152 (void) zap_lookup(os, object, attr.za_name, 1153 attr.za_integer_length, attr.za_num_integers, 1154 prop); 1155 1156 if (attr.za_integer_length == 1 && !key64) { 1157 if (strcmp(attr.za_name, 1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1159 strcmp(attr.za_name, 1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1161 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1162 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1163 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1164 uint8_t *u8 = prop; 1165 1166 for (i = 0; i < attr.za_num_integers; i++) { 1167 (void) printf("%02x", u8[i]); 1168 } 1169 } else { 1170 (void) printf("%s", (char *)prop); 1171 } 1172 } else { 1173 for (i = 0; i < attr.za_num_integers; i++) { 1174 switch (attr.za_integer_length) { 1175 case 1: 1176 (void) printf("%u ", 1177 ((uint8_t *)prop)[i]); 1178 break; 1179 case 2: 1180 (void) printf("%u ", 1181 ((uint16_t *)prop)[i]); 1182 break; 1183 case 4: 1184 (void) printf("%u ", 1185 ((uint32_t *)prop)[i]); 1186 break; 1187 case 8: 1188 (void) printf("%lld ", 1189 (u_longlong_t)((int64_t *)prop)[i]); 1190 break; 1191 } 1192 } 1193 } 1194 (void) printf("\n"); 1195 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1196 } 1197 zap_cursor_fini(&zc); 1198 } 1199 1200 static void 1201 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1202 { 1203 bpobj_phys_t *bpop = data; 1204 uint64_t i; 1205 char bytes[32], comp[32], uncomp[32]; 1206 1207 /* make sure the output won't get truncated */ 1208 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1209 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1210 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1211 1212 if (bpop == NULL) 1213 return; 1214 1215 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1216 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1217 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1218 1219 (void) printf("\t\tnum_blkptrs = %llu\n", 1220 (u_longlong_t)bpop->bpo_num_blkptrs); 1221 (void) printf("\t\tbytes = %s\n", bytes); 1222 if (size >= BPOBJ_SIZE_V1) { 1223 (void) printf("\t\tcomp = %s\n", comp); 1224 (void) printf("\t\tuncomp = %s\n", uncomp); 1225 } 1226 if (size >= BPOBJ_SIZE_V2) { 1227 (void) printf("\t\tsubobjs = %llu\n", 1228 (u_longlong_t)bpop->bpo_subobjs); 1229 (void) printf("\t\tnum_subobjs = %llu\n", 1230 (u_longlong_t)bpop->bpo_num_subobjs); 1231 } 1232 if (size >= sizeof (*bpop)) { 1233 (void) printf("\t\tnum_freed = %llu\n", 1234 (u_longlong_t)bpop->bpo_num_freed); 1235 } 1236 1237 if (dump_opt['d'] < 5) 1238 return; 1239 1240 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1241 char blkbuf[BP_SPRINTF_LEN]; 1242 blkptr_t bp; 1243 1244 int err = dmu_read(os, object, 1245 i * sizeof (bp), sizeof (bp), &bp, 0); 1246 if (err != 0) { 1247 (void) printf("got error %u from dmu_read\n", err); 1248 break; 1249 } 1250 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1251 BP_GET_FREE(&bp)); 1252 (void) printf("\t%s\n", blkbuf); 1253 } 1254 } 1255 1256 static void 1257 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1258 { 1259 (void) data, (void) size; 1260 dmu_object_info_t doi; 1261 int64_t i; 1262 1263 VERIFY0(dmu_object_info(os, object, &doi)); 1264 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1265 1266 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1267 if (err != 0) { 1268 (void) printf("got error %u from dmu_read\n", err); 1269 kmem_free(subobjs, doi.doi_max_offset); 1270 return; 1271 } 1272 1273 int64_t last_nonzero = -1; 1274 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1275 if (subobjs[i] != 0) 1276 last_nonzero = i; 1277 } 1278 1279 for (i = 0; i <= last_nonzero; i++) { 1280 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1281 } 1282 kmem_free(subobjs, doi.doi_max_offset); 1283 } 1284 1285 static void 1286 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1287 { 1288 (void) data, (void) size; 1289 dump_zap_stats(os, object); 1290 /* contents are printed elsewhere, properly decoded */ 1291 } 1292 1293 static void 1294 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1295 { 1296 (void) data, (void) size; 1297 zap_cursor_t zc; 1298 zap_attribute_t attr; 1299 1300 dump_zap_stats(os, object); 1301 (void) printf("\n"); 1302 1303 for (zap_cursor_init(&zc, os, object); 1304 zap_cursor_retrieve(&zc, &attr) == 0; 1305 zap_cursor_advance(&zc)) { 1306 (void) printf("\t\t%s = ", attr.za_name); 1307 if (attr.za_num_integers == 0) { 1308 (void) printf("\n"); 1309 continue; 1310 } 1311 (void) printf(" %llx : [%d:%d:%d]\n", 1312 (u_longlong_t)attr.za_first_integer, 1313 (int)ATTR_LENGTH(attr.za_first_integer), 1314 (int)ATTR_BSWAP(attr.za_first_integer), 1315 (int)ATTR_NUM(attr.za_first_integer)); 1316 } 1317 zap_cursor_fini(&zc); 1318 } 1319 1320 static void 1321 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1322 { 1323 (void) data, (void) size; 1324 zap_cursor_t zc; 1325 zap_attribute_t attr; 1326 uint16_t *layout_attrs; 1327 unsigned i; 1328 1329 dump_zap_stats(os, object); 1330 (void) printf("\n"); 1331 1332 for (zap_cursor_init(&zc, os, object); 1333 zap_cursor_retrieve(&zc, &attr) == 0; 1334 zap_cursor_advance(&zc)) { 1335 (void) printf("\t\t%s = [", attr.za_name); 1336 if (attr.za_num_integers == 0) { 1337 (void) printf("\n"); 1338 continue; 1339 } 1340 1341 VERIFY(attr.za_integer_length == 2); 1342 layout_attrs = umem_zalloc(attr.za_num_integers * 1343 attr.za_integer_length, UMEM_NOFAIL); 1344 1345 VERIFY(zap_lookup(os, object, attr.za_name, 1346 attr.za_integer_length, 1347 attr.za_num_integers, layout_attrs) == 0); 1348 1349 for (i = 0; i != attr.za_num_integers; i++) 1350 (void) printf(" %d ", (int)layout_attrs[i]); 1351 (void) printf("]\n"); 1352 umem_free(layout_attrs, 1353 attr.za_num_integers * attr.za_integer_length); 1354 } 1355 zap_cursor_fini(&zc); 1356 } 1357 1358 static void 1359 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1360 { 1361 (void) data, (void) size; 1362 zap_cursor_t zc; 1363 zap_attribute_t attr; 1364 const char *typenames[] = { 1365 /* 0 */ "not specified", 1366 /* 1 */ "FIFO", 1367 /* 2 */ "Character Device", 1368 /* 3 */ "3 (invalid)", 1369 /* 4 */ "Directory", 1370 /* 5 */ "5 (invalid)", 1371 /* 6 */ "Block Device", 1372 /* 7 */ "7 (invalid)", 1373 /* 8 */ "Regular File", 1374 /* 9 */ "9 (invalid)", 1375 /* 10 */ "Symbolic Link", 1376 /* 11 */ "11 (invalid)", 1377 /* 12 */ "Socket", 1378 /* 13 */ "Door", 1379 /* 14 */ "Event Port", 1380 /* 15 */ "15 (invalid)", 1381 }; 1382 1383 dump_zap_stats(os, object); 1384 (void) printf("\n"); 1385 1386 for (zap_cursor_init(&zc, os, object); 1387 zap_cursor_retrieve(&zc, &attr) == 0; 1388 zap_cursor_advance(&zc)) { 1389 (void) printf("\t\t%s = %lld (type: %s)\n", 1390 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1391 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1392 } 1393 zap_cursor_fini(&zc); 1394 } 1395 1396 static int 1397 get_dtl_refcount(vdev_t *vd) 1398 { 1399 int refcount = 0; 1400 1401 if (vd->vdev_ops->vdev_op_leaf) { 1402 space_map_t *sm = vd->vdev_dtl_sm; 1403 1404 if (sm != NULL && 1405 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1406 return (1); 1407 return (0); 1408 } 1409 1410 for (unsigned c = 0; c < vd->vdev_children; c++) 1411 refcount += get_dtl_refcount(vd->vdev_child[c]); 1412 return (refcount); 1413 } 1414 1415 static int 1416 get_metaslab_refcount(vdev_t *vd) 1417 { 1418 int refcount = 0; 1419 1420 if (vd->vdev_top == vd) { 1421 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1422 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1423 1424 if (sm != NULL && 1425 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1426 refcount++; 1427 } 1428 } 1429 for (unsigned c = 0; c < vd->vdev_children; c++) 1430 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1431 1432 return (refcount); 1433 } 1434 1435 static int 1436 get_obsolete_refcount(vdev_t *vd) 1437 { 1438 uint64_t obsolete_sm_object; 1439 int refcount = 0; 1440 1441 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1442 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1443 dmu_object_info_t doi; 1444 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1445 obsolete_sm_object, &doi)); 1446 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1447 refcount++; 1448 } 1449 } else { 1450 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1451 ASSERT3U(obsolete_sm_object, ==, 0); 1452 } 1453 for (unsigned c = 0; c < vd->vdev_children; c++) { 1454 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1455 } 1456 1457 return (refcount); 1458 } 1459 1460 static int 1461 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1462 { 1463 uint64_t prev_obj = 1464 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1465 if (prev_obj != 0) { 1466 dmu_object_info_t doi; 1467 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1468 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1469 return (1); 1470 } 1471 } 1472 return (0); 1473 } 1474 1475 static int 1476 get_checkpoint_refcount(vdev_t *vd) 1477 { 1478 int refcount = 0; 1479 1480 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1481 zap_contains(spa_meta_objset(vd->vdev_spa), 1482 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1483 refcount++; 1484 1485 for (uint64_t c = 0; c < vd->vdev_children; c++) 1486 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1487 1488 return (refcount); 1489 } 1490 1491 static int 1492 get_log_spacemap_refcount(spa_t *spa) 1493 { 1494 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1495 } 1496 1497 static int 1498 verify_spacemap_refcounts(spa_t *spa) 1499 { 1500 uint64_t expected_refcount = 0; 1501 uint64_t actual_refcount; 1502 1503 (void) feature_get_refcount(spa, 1504 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1505 &expected_refcount); 1506 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1507 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1508 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1509 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1510 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1511 actual_refcount += get_log_spacemap_refcount(spa); 1512 1513 if (expected_refcount != actual_refcount) { 1514 (void) printf("space map refcount mismatch: expected %lld != " 1515 "actual %lld\n", 1516 (longlong_t)expected_refcount, 1517 (longlong_t)actual_refcount); 1518 return (2); 1519 } 1520 return (0); 1521 } 1522 1523 static void 1524 dump_spacemap(objset_t *os, space_map_t *sm) 1525 { 1526 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1527 "INVALID", "INVALID", "INVALID", "INVALID" }; 1528 1529 if (sm == NULL) 1530 return; 1531 1532 (void) printf("space map object %llu:\n", 1533 (longlong_t)sm->sm_object); 1534 (void) printf(" smp_length = 0x%llx\n", 1535 (longlong_t)sm->sm_phys->smp_length); 1536 (void) printf(" smp_alloc = 0x%llx\n", 1537 (longlong_t)sm->sm_phys->smp_alloc); 1538 1539 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1540 return; 1541 1542 /* 1543 * Print out the freelist entries in both encoded and decoded form. 1544 */ 1545 uint8_t mapshift = sm->sm_shift; 1546 int64_t alloc = 0; 1547 uint64_t word, entry_id = 0; 1548 for (uint64_t offset = 0; offset < space_map_length(sm); 1549 offset += sizeof (word)) { 1550 1551 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1552 sizeof (word), &word, DMU_READ_PREFETCH)); 1553 1554 if (sm_entry_is_debug(word)) { 1555 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1556 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1557 if (de_txg == 0) { 1558 (void) printf( 1559 "\t [%6llu] PADDING\n", 1560 (u_longlong_t)entry_id); 1561 } else { 1562 (void) printf( 1563 "\t [%6llu] %s: txg %llu pass %llu\n", 1564 (u_longlong_t)entry_id, 1565 ddata[SM_DEBUG_ACTION_DECODE(word)], 1566 (u_longlong_t)de_txg, 1567 (u_longlong_t)de_sync_pass); 1568 } 1569 entry_id++; 1570 continue; 1571 } 1572 1573 uint8_t words; 1574 char entry_type; 1575 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1576 1577 if (sm_entry_is_single_word(word)) { 1578 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1579 'A' : 'F'; 1580 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1581 sm->sm_start; 1582 entry_run = SM_RUN_DECODE(word) << mapshift; 1583 words = 1; 1584 } else { 1585 /* it is a two-word entry so we read another word */ 1586 ASSERT(sm_entry_is_double_word(word)); 1587 1588 uint64_t extra_word; 1589 offset += sizeof (extra_word); 1590 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1591 sizeof (extra_word), &extra_word, 1592 DMU_READ_PREFETCH)); 1593 1594 ASSERT3U(offset, <=, space_map_length(sm)); 1595 1596 entry_run = SM2_RUN_DECODE(word) << mapshift; 1597 entry_vdev = SM2_VDEV_DECODE(word); 1598 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1599 'A' : 'F'; 1600 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1601 mapshift) + sm->sm_start; 1602 words = 2; 1603 } 1604 1605 (void) printf("\t [%6llu] %c range:" 1606 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1607 (u_longlong_t)entry_id, 1608 entry_type, (u_longlong_t)entry_off, 1609 (u_longlong_t)(entry_off + entry_run), 1610 (u_longlong_t)entry_run, 1611 (u_longlong_t)entry_vdev, words); 1612 1613 if (entry_type == 'A') 1614 alloc += entry_run; 1615 else 1616 alloc -= entry_run; 1617 entry_id++; 1618 } 1619 if (alloc != space_map_allocated(sm)) { 1620 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1621 "with space map summary (%lld)\n", 1622 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1623 } 1624 } 1625 1626 static void 1627 dump_metaslab_stats(metaslab_t *msp) 1628 { 1629 char maxbuf[32]; 1630 range_tree_t *rt = msp->ms_allocatable; 1631 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1632 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1633 1634 /* max sure nicenum has enough space */ 1635 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1636 1637 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1638 1639 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1640 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1641 "freepct", free_pct); 1642 (void) printf("\tIn-memory histogram:\n"); 1643 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1644 } 1645 1646 static void 1647 dump_metaslab(metaslab_t *msp) 1648 { 1649 vdev_t *vd = msp->ms_group->mg_vd; 1650 spa_t *spa = vd->vdev_spa; 1651 space_map_t *sm = msp->ms_sm; 1652 char freebuf[32]; 1653 1654 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1655 sizeof (freebuf)); 1656 1657 (void) printf( 1658 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1659 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1660 (u_longlong_t)space_map_object(sm), freebuf); 1661 1662 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1663 mutex_enter(&msp->ms_lock); 1664 VERIFY0(metaslab_load(msp)); 1665 range_tree_stat_verify(msp->ms_allocatable); 1666 dump_metaslab_stats(msp); 1667 metaslab_unload(msp); 1668 mutex_exit(&msp->ms_lock); 1669 } 1670 1671 if (dump_opt['m'] > 1 && sm != NULL && 1672 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1673 /* 1674 * The space map histogram represents free space in chunks 1675 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1676 */ 1677 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1678 (u_longlong_t)msp->ms_fragmentation); 1679 dump_histogram(sm->sm_phys->smp_histogram, 1680 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1681 } 1682 1683 if (vd->vdev_ops == &vdev_draid_ops) 1684 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1685 else 1686 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1687 1688 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1689 1690 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1691 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1692 (u_longlong_t)metaslab_unflushed_txg(msp)); 1693 } 1694 } 1695 1696 static void 1697 print_vdev_metaslab_header(vdev_t *vd) 1698 { 1699 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1700 const char *bias_str = ""; 1701 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1702 bias_str = VDEV_ALLOC_BIAS_LOG; 1703 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1704 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1705 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1706 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1707 } 1708 1709 uint64_t ms_flush_data_obj = 0; 1710 if (vd->vdev_top_zap != 0) { 1711 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1712 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1713 sizeof (uint64_t), 1, &ms_flush_data_obj); 1714 if (error != ENOENT) { 1715 ASSERT0(error); 1716 } 1717 } 1718 1719 (void) printf("\tvdev %10llu %s", 1720 (u_longlong_t)vd->vdev_id, bias_str); 1721 1722 if (ms_flush_data_obj != 0) { 1723 (void) printf(" ms_unflushed_phys object %llu", 1724 (u_longlong_t)ms_flush_data_obj); 1725 } 1726 1727 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1728 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1729 "offset", "spacemap", "free"); 1730 (void) printf("\t%15s %19s %15s %12s\n", 1731 "---------------", "-------------------", 1732 "---------------", "------------"); 1733 } 1734 1735 static void 1736 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1737 { 1738 vdev_t *rvd = spa->spa_root_vdev; 1739 metaslab_class_t *mc = spa_normal_class(spa); 1740 metaslab_class_t *smc = spa_special_class(spa); 1741 uint64_t fragmentation; 1742 1743 metaslab_class_histogram_verify(mc); 1744 1745 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1746 vdev_t *tvd = rvd->vdev_child[c]; 1747 metaslab_group_t *mg = tvd->vdev_mg; 1748 1749 if (mg == NULL || (mg->mg_class != mc && 1750 (!show_special || mg->mg_class != smc))) 1751 continue; 1752 1753 metaslab_group_histogram_verify(mg); 1754 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1755 1756 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1757 "fragmentation", 1758 (u_longlong_t)tvd->vdev_id, 1759 (u_longlong_t)tvd->vdev_ms_count); 1760 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1761 (void) printf("%3s\n", "-"); 1762 } else { 1763 (void) printf("%3llu%%\n", 1764 (u_longlong_t)mg->mg_fragmentation); 1765 } 1766 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1767 } 1768 1769 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1770 fragmentation = metaslab_class_fragmentation(mc); 1771 if (fragmentation == ZFS_FRAG_INVALID) 1772 (void) printf("\t%3s\n", "-"); 1773 else 1774 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1775 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1776 } 1777 1778 static void 1779 print_vdev_indirect(vdev_t *vd) 1780 { 1781 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1782 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1783 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1784 1785 if (vim == NULL) { 1786 ASSERT3P(vib, ==, NULL); 1787 return; 1788 } 1789 1790 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1791 vic->vic_mapping_object); 1792 ASSERT3U(vdev_indirect_births_object(vib), ==, 1793 vic->vic_births_object); 1794 1795 (void) printf("indirect births obj %llu:\n", 1796 (longlong_t)vic->vic_births_object); 1797 (void) printf(" vib_count = %llu\n", 1798 (longlong_t)vdev_indirect_births_count(vib)); 1799 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1800 vdev_indirect_birth_entry_phys_t *cur_vibe = 1801 &vib->vib_entries[i]; 1802 (void) printf("\toffset %llx -> txg %llu\n", 1803 (longlong_t)cur_vibe->vibe_offset, 1804 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1805 } 1806 (void) printf("\n"); 1807 1808 (void) printf("indirect mapping obj %llu:\n", 1809 (longlong_t)vic->vic_mapping_object); 1810 (void) printf(" vim_max_offset = 0x%llx\n", 1811 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1812 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1813 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1814 (void) printf(" vim_count = %llu\n", 1815 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1816 1817 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1818 return; 1819 1820 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1821 1822 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1823 vdev_indirect_mapping_entry_phys_t *vimep = 1824 &vim->vim_entries[i]; 1825 (void) printf("\t<%llx:%llx:%llx> -> " 1826 "<%llx:%llx:%llx> (%x obsolete)\n", 1827 (longlong_t)vd->vdev_id, 1828 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1829 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1830 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1831 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1832 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1833 counts[i]); 1834 } 1835 (void) printf("\n"); 1836 1837 uint64_t obsolete_sm_object; 1838 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1839 if (obsolete_sm_object != 0) { 1840 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1841 (void) printf("obsolete space map object %llu:\n", 1842 (u_longlong_t)obsolete_sm_object); 1843 ASSERT(vd->vdev_obsolete_sm != NULL); 1844 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1845 obsolete_sm_object); 1846 dump_spacemap(mos, vd->vdev_obsolete_sm); 1847 (void) printf("\n"); 1848 } 1849 } 1850 1851 static void 1852 dump_metaslabs(spa_t *spa) 1853 { 1854 vdev_t *vd, *rvd = spa->spa_root_vdev; 1855 uint64_t m, c = 0, children = rvd->vdev_children; 1856 1857 (void) printf("\nMetaslabs:\n"); 1858 1859 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1860 c = zopt_metaslab[0]; 1861 1862 if (c >= children) 1863 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1864 1865 if (zopt_metaslab_args > 1) { 1866 vd = rvd->vdev_child[c]; 1867 print_vdev_metaslab_header(vd); 1868 1869 for (m = 1; m < zopt_metaslab_args; m++) { 1870 if (zopt_metaslab[m] < vd->vdev_ms_count) 1871 dump_metaslab( 1872 vd->vdev_ms[zopt_metaslab[m]]); 1873 else 1874 (void) fprintf(stderr, "bad metaslab " 1875 "number %llu\n", 1876 (u_longlong_t)zopt_metaslab[m]); 1877 } 1878 (void) printf("\n"); 1879 return; 1880 } 1881 children = c + 1; 1882 } 1883 for (; c < children; c++) { 1884 vd = rvd->vdev_child[c]; 1885 print_vdev_metaslab_header(vd); 1886 1887 print_vdev_indirect(vd); 1888 1889 for (m = 0; m < vd->vdev_ms_count; m++) 1890 dump_metaslab(vd->vdev_ms[m]); 1891 (void) printf("\n"); 1892 } 1893 } 1894 1895 static void 1896 dump_log_spacemaps(spa_t *spa) 1897 { 1898 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1899 return; 1900 1901 (void) printf("\nLog Space Maps in Pool:\n"); 1902 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1903 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1904 space_map_t *sm = NULL; 1905 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1906 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1907 1908 (void) printf("Log Spacemap object %llu txg %llu\n", 1909 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1910 dump_spacemap(spa->spa_meta_objset, sm); 1911 space_map_close(sm); 1912 } 1913 (void) printf("\n"); 1914 } 1915 1916 static void 1917 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1918 { 1919 const ddt_phys_t *ddp = dde->dde_phys; 1920 const ddt_key_t *ddk = &dde->dde_key; 1921 const char *types[4] = { "ditto", "single", "double", "triple" }; 1922 char blkbuf[BP_SPRINTF_LEN]; 1923 blkptr_t blk; 1924 int p; 1925 1926 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1927 if (ddp->ddp_phys_birth == 0) 1928 continue; 1929 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1930 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1931 (void) printf("index %llx refcnt %llu %s %s\n", 1932 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1933 types[p], blkbuf); 1934 } 1935 } 1936 1937 static void 1938 dump_dedup_ratio(const ddt_stat_t *dds) 1939 { 1940 double rL, rP, rD, D, dedup, compress, copies; 1941 1942 if (dds->dds_blocks == 0) 1943 return; 1944 1945 rL = (double)dds->dds_ref_lsize; 1946 rP = (double)dds->dds_ref_psize; 1947 rD = (double)dds->dds_ref_dsize; 1948 D = (double)dds->dds_dsize; 1949 1950 dedup = rD / D; 1951 compress = rL / rP; 1952 copies = rD / rP; 1953 1954 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1955 "dedup * compress / copies = %.2f\n\n", 1956 dedup, compress, copies, dedup * compress / copies); 1957 } 1958 1959 static void 1960 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 1961 { 1962 char name[DDT_NAMELEN]; 1963 ddt_entry_t dde; 1964 uint64_t walk = 0; 1965 dmu_object_info_t doi; 1966 uint64_t count, dspace, mspace; 1967 int error; 1968 1969 error = ddt_object_info(ddt, type, class, &doi); 1970 1971 if (error == ENOENT) 1972 return; 1973 ASSERT(error == 0); 1974 1975 error = ddt_object_count(ddt, type, class, &count); 1976 ASSERT(error == 0); 1977 if (count == 0) 1978 return; 1979 1980 dspace = doi.doi_physical_blocks_512 << 9; 1981 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1982 1983 ddt_object_name(ddt, type, class, name); 1984 1985 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1986 name, 1987 (u_longlong_t)count, 1988 (u_longlong_t)(dspace / count), 1989 (u_longlong_t)(mspace / count)); 1990 1991 if (dump_opt['D'] < 3) 1992 return; 1993 1994 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1995 1996 if (dump_opt['D'] < 4) 1997 return; 1998 1999 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2000 return; 2001 2002 (void) printf("%s contents:\n\n", name); 2003 2004 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2005 dump_dde(ddt, &dde, walk); 2006 2007 ASSERT3U(error, ==, ENOENT); 2008 2009 (void) printf("\n"); 2010 } 2011 2012 static void 2013 dump_all_ddts(spa_t *spa) 2014 { 2015 ddt_histogram_t ddh_total = {{{0}}}; 2016 ddt_stat_t dds_total = {0}; 2017 2018 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2019 ddt_t *ddt = spa->spa_ddt[c]; 2020 if (!ddt) 2021 continue; 2022 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 2023 for (ddt_class_t class = 0; class < DDT_CLASSES; 2024 class++) { 2025 dump_ddt(ddt, type, class); 2026 } 2027 } 2028 } 2029 2030 ddt_get_dedup_stats(spa, &dds_total); 2031 2032 if (dds_total.dds_blocks == 0) { 2033 (void) printf("All DDTs are empty\n"); 2034 return; 2035 } 2036 2037 (void) printf("\n"); 2038 2039 if (dump_opt['D'] > 1) { 2040 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2041 ddt_get_dedup_histogram(spa, &ddh_total); 2042 zpool_dump_ddt(&dds_total, &ddh_total); 2043 } 2044 2045 dump_dedup_ratio(&dds_total); 2046 } 2047 2048 static void 2049 dump_brt(spa_t *spa) 2050 { 2051 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2052 printf("BRT: unsupported on this pool\n"); 2053 return; 2054 } 2055 2056 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2057 printf("BRT: empty\n"); 2058 return; 2059 } 2060 2061 brt_t *brt = spa->spa_brt; 2062 VERIFY(brt); 2063 2064 char count[32], used[32], saved[32]; 2065 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2066 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2067 uint64_t ratio = brt_get_ratio(spa); 2068 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2069 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2070 2071 if (dump_opt['T'] < 2) 2072 return; 2073 2074 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2075 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2076 if (brtvd == NULL) 2077 continue; 2078 2079 if (!brtvd->bv_initiated) { 2080 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2081 continue; 2082 } 2083 2084 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2085 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2086 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2087 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2088 vdevid, count, used, saved); 2089 } 2090 2091 if (dump_opt['T'] < 3) 2092 return; 2093 2094 char dva[64]; 2095 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2096 2097 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 2098 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 2099 if (brtvd == NULL || !brtvd->bv_initiated) 2100 continue; 2101 2102 zap_cursor_t zc; 2103 zap_attribute_t za; 2104 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries); 2105 zap_cursor_retrieve(&zc, &za) == 0; 2106 zap_cursor_advance(&zc)) { 2107 uint64_t offset = *(uint64_t *)za.za_name; 2108 uint64_t refcnt = za.za_first_integer; 2109 2110 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid, 2111 (u_longlong_t)offset); 2112 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt); 2113 } 2114 zap_cursor_fini(&zc); 2115 } 2116 } 2117 2118 static void 2119 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2120 { 2121 char *prefix = arg; 2122 2123 (void) printf("%s [%llu,%llu) length %llu\n", 2124 prefix, 2125 (u_longlong_t)start, 2126 (u_longlong_t)(start + size), 2127 (u_longlong_t)(size)); 2128 } 2129 2130 static void 2131 dump_dtl(vdev_t *vd, int indent) 2132 { 2133 spa_t *spa = vd->vdev_spa; 2134 boolean_t required; 2135 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2136 "outage" }; 2137 char prefix[256]; 2138 2139 spa_vdev_state_enter(spa, SCL_NONE); 2140 required = vdev_dtl_required(vd); 2141 (void) spa_vdev_state_exit(spa, NULL, 0); 2142 2143 if (indent == 0) 2144 (void) printf("\nDirty time logs:\n\n"); 2145 2146 (void) printf("\t%*s%s [%s]\n", indent, "", 2147 vd->vdev_path ? vd->vdev_path : 2148 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2149 required ? "DTL-required" : "DTL-expendable"); 2150 2151 for (int t = 0; t < DTL_TYPES; t++) { 2152 range_tree_t *rt = vd->vdev_dtl[t]; 2153 if (range_tree_space(rt) == 0) 2154 continue; 2155 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2156 indent + 2, "", name[t]); 2157 range_tree_walk(rt, dump_dtl_seg, prefix); 2158 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2159 dump_spacemap(spa->spa_meta_objset, 2160 vd->vdev_dtl_sm); 2161 } 2162 2163 for (unsigned c = 0; c < vd->vdev_children; c++) 2164 dump_dtl(vd->vdev_child[c], indent + 4); 2165 } 2166 2167 static void 2168 dump_history(spa_t *spa) 2169 { 2170 nvlist_t **events = NULL; 2171 char *buf; 2172 uint64_t resid, len, off = 0; 2173 uint_t num = 0; 2174 int error; 2175 char tbuf[30]; 2176 2177 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2178 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2179 __func__); 2180 return; 2181 } 2182 2183 do { 2184 len = SPA_OLD_MAXBLOCKSIZE; 2185 2186 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2187 (void) fprintf(stderr, "Unable to read history: " 2188 "error %d\n", error); 2189 free(buf); 2190 return; 2191 } 2192 2193 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2194 break; 2195 2196 off -= resid; 2197 } while (len != 0); 2198 2199 (void) printf("\nHistory:\n"); 2200 for (unsigned i = 0; i < num; i++) { 2201 boolean_t printed = B_FALSE; 2202 2203 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2204 time_t tsec; 2205 struct tm t; 2206 2207 tsec = fnvlist_lookup_uint64(events[i], 2208 ZPOOL_HIST_TIME); 2209 (void) localtime_r(&tsec, &t); 2210 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2211 } else { 2212 tbuf[0] = '\0'; 2213 } 2214 2215 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2216 (void) printf("%s %s\n", tbuf, 2217 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2218 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2219 uint64_t ievent; 2220 2221 ievent = fnvlist_lookup_uint64(events[i], 2222 ZPOOL_HIST_INT_EVENT); 2223 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2224 goto next; 2225 2226 (void) printf(" %s [internal %s txg:%ju] %s\n", 2227 tbuf, 2228 zfs_history_event_names[ievent], 2229 fnvlist_lookup_uint64(events[i], 2230 ZPOOL_HIST_TXG), 2231 fnvlist_lookup_string(events[i], 2232 ZPOOL_HIST_INT_STR)); 2233 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2234 (void) printf("%s [txg:%ju] %s", tbuf, 2235 fnvlist_lookup_uint64(events[i], 2236 ZPOOL_HIST_TXG), 2237 fnvlist_lookup_string(events[i], 2238 ZPOOL_HIST_INT_NAME)); 2239 2240 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2241 (void) printf(" %s (%llu)", 2242 fnvlist_lookup_string(events[i], 2243 ZPOOL_HIST_DSNAME), 2244 (u_longlong_t)fnvlist_lookup_uint64( 2245 events[i], 2246 ZPOOL_HIST_DSID)); 2247 } 2248 2249 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2250 ZPOOL_HIST_INT_STR)); 2251 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2252 (void) printf("%s ioctl %s\n", tbuf, 2253 fnvlist_lookup_string(events[i], 2254 ZPOOL_HIST_IOCTL)); 2255 2256 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2257 (void) printf(" input:\n"); 2258 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2259 ZPOOL_HIST_INPUT_NVL), 8); 2260 } 2261 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2262 (void) printf(" output:\n"); 2263 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2264 ZPOOL_HIST_OUTPUT_NVL), 8); 2265 } 2266 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2267 (void) printf(" errno: %lld\n", 2268 (longlong_t)fnvlist_lookup_int64(events[i], 2269 ZPOOL_HIST_ERRNO)); 2270 } 2271 } else { 2272 goto next; 2273 } 2274 2275 printed = B_TRUE; 2276 next: 2277 if (dump_opt['h'] > 1) { 2278 if (!printed) 2279 (void) printf("unrecognized record:\n"); 2280 dump_nvlist(events[i], 2); 2281 } 2282 } 2283 free(buf); 2284 } 2285 2286 static void 2287 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2288 { 2289 (void) os, (void) object, (void) data, (void) size; 2290 } 2291 2292 static uint64_t 2293 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2294 const zbookmark_phys_t *zb) 2295 { 2296 if (dnp == NULL) { 2297 ASSERT(zb->zb_level < 0); 2298 if (zb->zb_object == 0) 2299 return (zb->zb_blkid); 2300 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2301 } 2302 2303 ASSERT(zb->zb_level >= 0); 2304 2305 return ((zb->zb_blkid << 2306 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2307 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2308 } 2309 2310 static void 2311 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2312 const blkptr_t *bp) 2313 { 2314 static abd_t *pabd = NULL; 2315 void *buf; 2316 zio_t *zio; 2317 zfs_zstdhdr_t zstd_hdr; 2318 int error; 2319 2320 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2321 return; 2322 2323 if (BP_IS_HOLE(bp)) 2324 return; 2325 2326 if (BP_IS_EMBEDDED(bp)) { 2327 buf = malloc(SPA_MAXBLOCKSIZE); 2328 if (buf == NULL) { 2329 (void) fprintf(stderr, "out of memory\n"); 2330 zdb_exit(1); 2331 } 2332 decode_embedded_bp_compressed(bp, buf); 2333 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2334 free(buf); 2335 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2336 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2337 (void) snprintf(blkbuf + strlen(blkbuf), 2338 buflen - strlen(blkbuf), 2339 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2340 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2341 zfs_get_hdrlevel(&zstd_hdr)); 2342 return; 2343 } 2344 2345 if (!pabd) 2346 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2347 zio = zio_root(spa, NULL, NULL, 0); 2348 2349 /* Decrypt but don't decompress so we can read the compression header */ 2350 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2351 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2352 NULL)); 2353 error = zio_wait(zio); 2354 if (error) { 2355 (void) fprintf(stderr, "read failed: %d\n", error); 2356 return; 2357 } 2358 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2359 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2360 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2361 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2362 2363 (void) snprintf(blkbuf + strlen(blkbuf), 2364 buflen - strlen(blkbuf), 2365 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2366 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2367 zfs_get_hdrlevel(&zstd_hdr)); 2368 2369 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2370 } 2371 2372 static void 2373 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2374 boolean_t bp_freed) 2375 { 2376 const dva_t *dva = bp->blk_dva; 2377 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2378 int i; 2379 2380 if (dump_opt['b'] >= 6) { 2381 snprintf_blkptr(blkbuf, buflen, bp); 2382 if (bp_freed) { 2383 (void) snprintf(blkbuf + strlen(blkbuf), 2384 buflen - strlen(blkbuf), " %s", "FREE"); 2385 } 2386 return; 2387 } 2388 2389 if (BP_IS_EMBEDDED(bp)) { 2390 (void) sprintf(blkbuf, 2391 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2392 (int)BPE_GET_ETYPE(bp), 2393 (u_longlong_t)BPE_GET_LSIZE(bp), 2394 (u_longlong_t)BPE_GET_PSIZE(bp), 2395 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2396 return; 2397 } 2398 2399 blkbuf[0] = '\0'; 2400 2401 for (i = 0; i < ndvas; i++) 2402 (void) snprintf(blkbuf + strlen(blkbuf), 2403 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2404 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2405 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2406 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2407 2408 if (BP_IS_HOLE(bp)) { 2409 (void) snprintf(blkbuf + strlen(blkbuf), 2410 buflen - strlen(blkbuf), 2411 "%llxL B=%llu", 2412 (u_longlong_t)BP_GET_LSIZE(bp), 2413 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2414 } else { 2415 (void) snprintf(blkbuf + strlen(blkbuf), 2416 buflen - strlen(blkbuf), 2417 "%llxL/%llxP F=%llu B=%llu/%llu", 2418 (u_longlong_t)BP_GET_LSIZE(bp), 2419 (u_longlong_t)BP_GET_PSIZE(bp), 2420 (u_longlong_t)BP_GET_FILL(bp), 2421 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2422 (u_longlong_t)BP_GET_BIRTH(bp)); 2423 if (bp_freed) 2424 (void) snprintf(blkbuf + strlen(blkbuf), 2425 buflen - strlen(blkbuf), " %s", "FREE"); 2426 (void) snprintf(blkbuf + strlen(blkbuf), 2427 buflen - strlen(blkbuf), 2428 " cksum=%016llx:%016llx:%016llx:%016llx", 2429 (u_longlong_t)bp->blk_cksum.zc_word[0], 2430 (u_longlong_t)bp->blk_cksum.zc_word[1], 2431 (u_longlong_t)bp->blk_cksum.zc_word[2], 2432 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2433 } 2434 } 2435 2436 static void 2437 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2438 const dnode_phys_t *dnp) 2439 { 2440 char blkbuf[BP_SPRINTF_LEN]; 2441 int l; 2442 2443 if (!BP_IS_EMBEDDED(bp)) { 2444 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2445 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2446 } 2447 2448 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2449 2450 ASSERT(zb->zb_level >= 0); 2451 2452 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2453 if (l == zb->zb_level) { 2454 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2455 } else { 2456 (void) printf(" "); 2457 } 2458 } 2459 2460 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2461 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2462 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2463 (void) printf("%s\n", blkbuf); 2464 } 2465 2466 static int 2467 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2468 blkptr_t *bp, const zbookmark_phys_t *zb) 2469 { 2470 int err = 0; 2471 2472 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2473 return (0); 2474 2475 print_indirect(spa, bp, zb, dnp); 2476 2477 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2478 arc_flags_t flags = ARC_FLAG_WAIT; 2479 int i; 2480 blkptr_t *cbp; 2481 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2482 arc_buf_t *buf; 2483 uint64_t fill = 0; 2484 ASSERT(!BP_IS_REDACTED(bp)); 2485 2486 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2487 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2488 if (err) 2489 return (err); 2490 ASSERT(buf->b_data); 2491 2492 /* recursively visit blocks below this */ 2493 cbp = buf->b_data; 2494 for (i = 0; i < epb; i++, cbp++) { 2495 zbookmark_phys_t czb; 2496 2497 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2498 zb->zb_level - 1, 2499 zb->zb_blkid * epb + i); 2500 err = visit_indirect(spa, dnp, cbp, &czb); 2501 if (err) 2502 break; 2503 fill += BP_GET_FILL(cbp); 2504 } 2505 if (!err) 2506 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2507 arc_buf_destroy(buf, &buf); 2508 } 2509 2510 return (err); 2511 } 2512 2513 static void 2514 dump_indirect(dnode_t *dn) 2515 { 2516 dnode_phys_t *dnp = dn->dn_phys; 2517 zbookmark_phys_t czb; 2518 2519 (void) printf("Indirect blocks:\n"); 2520 2521 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2522 dn->dn_object, dnp->dn_nlevels - 1, 0); 2523 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2524 czb.zb_blkid = j; 2525 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2526 &dnp->dn_blkptr[j], &czb); 2527 } 2528 2529 (void) printf("\n"); 2530 } 2531 2532 static void 2533 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2534 { 2535 (void) os, (void) object; 2536 dsl_dir_phys_t *dd = data; 2537 time_t crtime; 2538 char nice[32]; 2539 2540 /* make sure nicenum has enough space */ 2541 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2542 2543 if (dd == NULL) 2544 return; 2545 2546 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2547 2548 crtime = dd->dd_creation_time; 2549 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2550 (void) printf("\t\thead_dataset_obj = %llu\n", 2551 (u_longlong_t)dd->dd_head_dataset_obj); 2552 (void) printf("\t\tparent_dir_obj = %llu\n", 2553 (u_longlong_t)dd->dd_parent_obj); 2554 (void) printf("\t\torigin_obj = %llu\n", 2555 (u_longlong_t)dd->dd_origin_obj); 2556 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2557 (u_longlong_t)dd->dd_child_dir_zapobj); 2558 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2559 (void) printf("\t\tused_bytes = %s\n", nice); 2560 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2561 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2562 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2563 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2564 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2565 (void) printf("\t\tquota = %s\n", nice); 2566 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2567 (void) printf("\t\treserved = %s\n", nice); 2568 (void) printf("\t\tprops_zapobj = %llu\n", 2569 (u_longlong_t)dd->dd_props_zapobj); 2570 (void) printf("\t\tdeleg_zapobj = %llu\n", 2571 (u_longlong_t)dd->dd_deleg_zapobj); 2572 (void) printf("\t\tflags = %llx\n", 2573 (u_longlong_t)dd->dd_flags); 2574 2575 #define DO(which) \ 2576 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2577 sizeof (nice)); \ 2578 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2579 DO(HEAD); 2580 DO(SNAP); 2581 DO(CHILD); 2582 DO(CHILD_RSRV); 2583 DO(REFRSRV); 2584 #undef DO 2585 (void) printf("\t\tclones = %llu\n", 2586 (u_longlong_t)dd->dd_clones); 2587 } 2588 2589 static void 2590 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2591 { 2592 (void) os, (void) object; 2593 dsl_dataset_phys_t *ds = data; 2594 time_t crtime; 2595 char used[32], compressed[32], uncompressed[32], unique[32]; 2596 char blkbuf[BP_SPRINTF_LEN]; 2597 2598 /* make sure nicenum has enough space */ 2599 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2600 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2601 "compressed truncated"); 2602 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2603 "uncompressed truncated"); 2604 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2605 2606 if (ds == NULL) 2607 return; 2608 2609 ASSERT(size == sizeof (*ds)); 2610 crtime = ds->ds_creation_time; 2611 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2612 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2613 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2614 sizeof (uncompressed)); 2615 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2616 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2617 2618 (void) printf("\t\tdir_obj = %llu\n", 2619 (u_longlong_t)ds->ds_dir_obj); 2620 (void) printf("\t\tprev_snap_obj = %llu\n", 2621 (u_longlong_t)ds->ds_prev_snap_obj); 2622 (void) printf("\t\tprev_snap_txg = %llu\n", 2623 (u_longlong_t)ds->ds_prev_snap_txg); 2624 (void) printf("\t\tnext_snap_obj = %llu\n", 2625 (u_longlong_t)ds->ds_next_snap_obj); 2626 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2627 (u_longlong_t)ds->ds_snapnames_zapobj); 2628 (void) printf("\t\tnum_children = %llu\n", 2629 (u_longlong_t)ds->ds_num_children); 2630 (void) printf("\t\tuserrefs_obj = %llu\n", 2631 (u_longlong_t)ds->ds_userrefs_obj); 2632 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2633 (void) printf("\t\tcreation_txg = %llu\n", 2634 (u_longlong_t)ds->ds_creation_txg); 2635 (void) printf("\t\tdeadlist_obj = %llu\n", 2636 (u_longlong_t)ds->ds_deadlist_obj); 2637 (void) printf("\t\tused_bytes = %s\n", used); 2638 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2639 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2640 (void) printf("\t\tunique = %s\n", unique); 2641 (void) printf("\t\tfsid_guid = %llu\n", 2642 (u_longlong_t)ds->ds_fsid_guid); 2643 (void) printf("\t\tguid = %llu\n", 2644 (u_longlong_t)ds->ds_guid); 2645 (void) printf("\t\tflags = %llx\n", 2646 (u_longlong_t)ds->ds_flags); 2647 (void) printf("\t\tnext_clones_obj = %llu\n", 2648 (u_longlong_t)ds->ds_next_clones_obj); 2649 (void) printf("\t\tprops_obj = %llu\n", 2650 (u_longlong_t)ds->ds_props_obj); 2651 (void) printf("\t\tbp = %s\n", blkbuf); 2652 } 2653 2654 static int 2655 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2656 { 2657 (void) arg, (void) tx; 2658 char blkbuf[BP_SPRINTF_LEN]; 2659 2660 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2661 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2662 (void) printf("\t%s\n", blkbuf); 2663 } 2664 return (0); 2665 } 2666 2667 static void 2668 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2669 { 2670 char bytes[32]; 2671 bptree_phys_t *bt; 2672 dmu_buf_t *db; 2673 2674 /* make sure nicenum has enough space */ 2675 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2676 2677 if (dump_opt['d'] < 3) 2678 return; 2679 2680 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2681 bt = db->db_data; 2682 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2683 (void) printf("\n %s: %llu datasets, %s\n", 2684 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2685 dmu_buf_rele(db, FTAG); 2686 2687 if (dump_opt['d'] < 5) 2688 return; 2689 2690 (void) printf("\n"); 2691 2692 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2693 } 2694 2695 static int 2696 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2697 { 2698 (void) arg, (void) tx; 2699 char blkbuf[BP_SPRINTF_LEN]; 2700 2701 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2702 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2703 (void) printf("\t%s\n", blkbuf); 2704 return (0); 2705 } 2706 2707 static void 2708 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2709 { 2710 char bytes[32]; 2711 char comp[32]; 2712 char uncomp[32]; 2713 uint64_t i; 2714 2715 /* make sure nicenum has enough space */ 2716 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2717 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2718 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2719 2720 if (dump_opt['d'] < 3) 2721 return; 2722 2723 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2724 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2725 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2726 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2727 if (bpo->bpo_havefreed) { 2728 (void) printf(" %*s: object %llu, %llu local " 2729 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2730 "%s (%s/%s comp)\n", 2731 indent * 8, name, 2732 (u_longlong_t)bpo->bpo_object, 2733 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2734 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2735 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2736 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2737 bytes, comp, uncomp); 2738 } else { 2739 (void) printf(" %*s: object %llu, %llu local " 2740 "blkptrs, %llu subobjs in object %llu, " 2741 "%s (%s/%s comp)\n", 2742 indent * 8, name, 2743 (u_longlong_t)bpo->bpo_object, 2744 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2745 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2746 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2747 bytes, comp, uncomp); 2748 } 2749 2750 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2751 uint64_t subobj; 2752 bpobj_t subbpo; 2753 int error; 2754 VERIFY0(dmu_read(bpo->bpo_os, 2755 bpo->bpo_phys->bpo_subobjs, 2756 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2757 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2758 if (error != 0) { 2759 (void) printf("ERROR %u while trying to open " 2760 "subobj id %llu\n", 2761 error, (u_longlong_t)subobj); 2762 continue; 2763 } 2764 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2765 bpobj_close(&subbpo); 2766 } 2767 } else { 2768 if (bpo->bpo_havefreed) { 2769 (void) printf(" %*s: object %llu, %llu blkptrs, " 2770 "%llu freed, %s\n", 2771 indent * 8, name, 2772 (u_longlong_t)bpo->bpo_object, 2773 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2774 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2775 bytes); 2776 } else { 2777 (void) printf(" %*s: object %llu, %llu blkptrs, " 2778 "%s\n", 2779 indent * 8, name, 2780 (u_longlong_t)bpo->bpo_object, 2781 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2782 bytes); 2783 } 2784 } 2785 2786 if (dump_opt['d'] < 5) 2787 return; 2788 2789 2790 if (indent == 0) { 2791 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2792 (void) printf("\n"); 2793 } 2794 } 2795 2796 static int 2797 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2798 boolean_t print_list) 2799 { 2800 int err = 0; 2801 zfs_bookmark_phys_t prop; 2802 objset_t *mos = dp->dp_spa->spa_meta_objset; 2803 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2804 2805 if (err != 0) { 2806 return (err); 2807 } 2808 2809 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2810 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2811 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2812 (u_longlong_t)prop.zbm_creation_txg, 2813 (u_longlong_t)prop.zbm_creation_time, 2814 (u_longlong_t)prop.zbm_redaction_obj); 2815 2816 IMPLY(print_list, print_redact); 2817 if (!print_redact || prop.zbm_redaction_obj == 0) 2818 return (0); 2819 2820 redaction_list_t *rl; 2821 VERIFY0(dsl_redaction_list_hold_obj(dp, 2822 prop.zbm_redaction_obj, FTAG, &rl)); 2823 2824 redaction_list_phys_t *rlp = rl->rl_phys; 2825 (void) printf("\tRedacted:\n\t\tProgress: "); 2826 if (rlp->rlp_last_object != UINT64_MAX || 2827 rlp->rlp_last_blkid != UINT64_MAX) { 2828 (void) printf("%llu %llu (incomplete)\n", 2829 (u_longlong_t)rlp->rlp_last_object, 2830 (u_longlong_t)rlp->rlp_last_blkid); 2831 } else { 2832 (void) printf("complete\n"); 2833 } 2834 (void) printf("\t\tSnapshots: ["); 2835 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2836 if (i > 0) 2837 (void) printf(", "); 2838 (void) printf("%0llu", 2839 (u_longlong_t)rlp->rlp_snaps[i]); 2840 } 2841 (void) printf("]\n\t\tLength: %llu\n", 2842 (u_longlong_t)rlp->rlp_num_entries); 2843 2844 if (!print_list) { 2845 dsl_redaction_list_rele(rl, FTAG); 2846 return (0); 2847 } 2848 2849 if (rlp->rlp_num_entries == 0) { 2850 dsl_redaction_list_rele(rl, FTAG); 2851 (void) printf("\t\tRedaction List: []\n\n"); 2852 return (0); 2853 } 2854 2855 redact_block_phys_t *rbp_buf; 2856 uint64_t size; 2857 dmu_object_info_t doi; 2858 2859 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2860 size = doi.doi_max_offset; 2861 rbp_buf = kmem_alloc(size, KM_SLEEP); 2862 2863 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2864 rbp_buf, 0); 2865 if (err != 0) { 2866 dsl_redaction_list_rele(rl, FTAG); 2867 kmem_free(rbp_buf, size); 2868 return (err); 2869 } 2870 2871 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2872 "%llx, blksz: %x, count: %llx}", 2873 (u_longlong_t)rbp_buf[0].rbp_object, 2874 (u_longlong_t)rbp_buf[0].rbp_blkid, 2875 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2876 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2877 2878 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2879 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2880 "blksz: %x, count: %llx}", 2881 (u_longlong_t)rbp_buf[i].rbp_object, 2882 (u_longlong_t)rbp_buf[i].rbp_blkid, 2883 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2884 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2885 } 2886 dsl_redaction_list_rele(rl, FTAG); 2887 kmem_free(rbp_buf, size); 2888 (void) printf("]\n\n"); 2889 return (0); 2890 } 2891 2892 static void 2893 dump_bookmarks(objset_t *os, int verbosity) 2894 { 2895 zap_cursor_t zc; 2896 zap_attribute_t attr; 2897 dsl_dataset_t *ds = dmu_objset_ds(os); 2898 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2899 objset_t *mos = os->os_spa->spa_meta_objset; 2900 if (verbosity < 4) 2901 return; 2902 dsl_pool_config_enter(dp, FTAG); 2903 2904 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2905 zap_cursor_retrieve(&zc, &attr) == 0; 2906 zap_cursor_advance(&zc)) { 2907 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2908 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2909 int len; 2910 dmu_objset_name(os, osname); 2911 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2912 attr.za_name); 2913 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2914 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2915 } 2916 zap_cursor_fini(&zc); 2917 dsl_pool_config_exit(dp, FTAG); 2918 } 2919 2920 static void 2921 bpobj_count_refd(bpobj_t *bpo) 2922 { 2923 mos_obj_refd(bpo->bpo_object); 2924 2925 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2926 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2927 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2928 uint64_t subobj; 2929 bpobj_t subbpo; 2930 int error; 2931 VERIFY0(dmu_read(bpo->bpo_os, 2932 bpo->bpo_phys->bpo_subobjs, 2933 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2934 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2935 if (error != 0) { 2936 (void) printf("ERROR %u while trying to open " 2937 "subobj id %llu\n", 2938 error, (u_longlong_t)subobj); 2939 continue; 2940 } 2941 bpobj_count_refd(&subbpo); 2942 bpobj_close(&subbpo); 2943 } 2944 } 2945 } 2946 2947 static int 2948 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2949 { 2950 spa_t *spa = arg; 2951 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2952 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2953 bpobj_count_refd(&dle->dle_bpobj); 2954 return (0); 2955 } 2956 2957 static int 2958 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2959 { 2960 ASSERT(arg == NULL); 2961 if (dump_opt['d'] >= 5) { 2962 char buf[128]; 2963 (void) snprintf(buf, sizeof (buf), 2964 "mintxg %llu -> obj %llu", 2965 (longlong_t)dle->dle_mintxg, 2966 (longlong_t)dle->dle_bpobj.bpo_object); 2967 2968 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2969 } else { 2970 (void) printf("mintxg %llu -> obj %llu\n", 2971 (longlong_t)dle->dle_mintxg, 2972 (longlong_t)dle->dle_bpobj.bpo_object); 2973 } 2974 return (0); 2975 } 2976 2977 static void 2978 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2979 { 2980 char bytes[32]; 2981 char comp[32]; 2982 char uncomp[32]; 2983 char entries[32]; 2984 spa_t *spa = dmu_objset_spa(dl->dl_os); 2985 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2986 2987 if (dl->dl_oldfmt) { 2988 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2989 bpobj_count_refd(&dl->dl_bpobj); 2990 } else { 2991 mos_obj_refd(dl->dl_object); 2992 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2993 } 2994 2995 /* make sure nicenum has enough space */ 2996 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2997 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2998 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2999 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3000 3001 if (dump_opt['d'] < 3) 3002 return; 3003 3004 if (dl->dl_oldfmt) { 3005 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3006 return; 3007 } 3008 3009 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3010 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3011 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3012 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3013 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3014 name, bytes, comp, uncomp, entries); 3015 3016 if (dump_opt['d'] < 4) 3017 return; 3018 3019 (void) putchar('\n'); 3020 3021 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3022 } 3023 3024 static int 3025 verify_dd_livelist(objset_t *os) 3026 { 3027 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3028 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3029 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3030 3031 ASSERT(!dmu_objset_is_snapshot(os)); 3032 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3033 return (0); 3034 3035 /* Iterate through the livelist to check for duplicates */ 3036 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3037 NULL); 3038 3039 dsl_pool_config_enter(dp, FTAG); 3040 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3041 &ll_comp, &ll_uncomp); 3042 3043 dsl_dataset_t *origin_ds; 3044 ASSERT(dsl_pool_config_held(dp)); 3045 VERIFY0(dsl_dataset_hold_obj(dp, 3046 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3047 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3048 &used, &comp, &uncomp)); 3049 dsl_dataset_rele(origin_ds, FTAG); 3050 dsl_pool_config_exit(dp, FTAG); 3051 /* 3052 * It's possible that the dataset's uncomp space is larger than the 3053 * livelist's because livelists do not track embedded block pointers 3054 */ 3055 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3056 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3057 (void) printf("Discrepancy in space accounting:\n"); 3058 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3059 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3060 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3061 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3062 nice_used, nice_comp, nice_uncomp); 3063 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3064 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3065 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3066 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3067 nice_used, nice_comp, nice_uncomp); 3068 return (1); 3069 } 3070 return (0); 3071 } 3072 3073 static char *key_material = NULL; 3074 3075 static boolean_t 3076 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3077 { 3078 uint64_t keyformat, salt, iters; 3079 int i; 3080 unsigned char c; 3081 3082 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3083 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3084 1, &keyformat)); 3085 3086 switch (keyformat) { 3087 case ZFS_KEYFORMAT_HEX: 3088 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3089 if (!isxdigit(key_material[i]) || 3090 !isxdigit(key_material[i+1])) 3091 return (B_FALSE); 3092 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3093 return (B_FALSE); 3094 key_out[i / 2] = c; 3095 } 3096 break; 3097 3098 case ZFS_KEYFORMAT_PASSPHRASE: 3099 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3100 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3101 sizeof (uint64_t), 1, &salt)); 3102 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3103 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3104 sizeof (uint64_t), 1, &iters)); 3105 3106 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3107 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3108 WRAPPING_KEY_LEN, key_out) != 1) 3109 return (B_FALSE); 3110 3111 break; 3112 3113 default: 3114 fatal("no support for key format %u\n", 3115 (unsigned int) keyformat); 3116 } 3117 3118 return (B_TRUE); 3119 } 3120 3121 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3122 static boolean_t key_loaded = B_FALSE; 3123 3124 static void 3125 zdb_load_key(objset_t *os) 3126 { 3127 dsl_pool_t *dp; 3128 dsl_dir_t *dd, *rdd; 3129 uint8_t key[WRAPPING_KEY_LEN]; 3130 uint64_t rddobj; 3131 int err; 3132 3133 dp = spa_get_dsl(os->os_spa); 3134 dd = os->os_dsl_dataset->ds_dir; 3135 3136 dsl_pool_config_enter(dp, FTAG); 3137 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3138 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3139 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3140 dsl_dir_name(rdd, encroot); 3141 dsl_dir_rele(rdd, FTAG); 3142 3143 if (!zdb_derive_key(dd, key)) 3144 fatal("couldn't derive encryption key"); 3145 3146 dsl_pool_config_exit(dp, FTAG); 3147 3148 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3149 3150 dsl_crypto_params_t *dcp; 3151 nvlist_t *crypto_args; 3152 3153 crypto_args = fnvlist_alloc(); 3154 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3155 (uint8_t *)key, WRAPPING_KEY_LEN); 3156 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3157 NULL, crypto_args, &dcp)); 3158 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3159 3160 dsl_crypto_params_free(dcp, (err != 0)); 3161 fnvlist_free(crypto_args); 3162 3163 if (err != 0) 3164 fatal( 3165 "couldn't load encryption key for %s: %s", 3166 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3167 "crypto params not supported" : strerror(err)); 3168 3169 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3170 3171 printf("Unlocked encryption root: %s\n", encroot); 3172 key_loaded = B_TRUE; 3173 } 3174 3175 static void 3176 zdb_unload_key(void) 3177 { 3178 if (!key_loaded) 3179 return; 3180 3181 VERIFY0(spa_keystore_unload_wkey(encroot)); 3182 key_loaded = B_FALSE; 3183 } 3184 3185 static avl_tree_t idx_tree; 3186 static avl_tree_t domain_tree; 3187 static boolean_t fuid_table_loaded; 3188 static objset_t *sa_os = NULL; 3189 static sa_attr_type_t *sa_attr_table = NULL; 3190 3191 static int 3192 open_objset(const char *path, const void *tag, objset_t **osp) 3193 { 3194 int err; 3195 uint64_t sa_attrs = 0; 3196 uint64_t version = 0; 3197 3198 VERIFY3P(sa_os, ==, NULL); 3199 3200 /* 3201 * We can't own an objset if it's redacted. Therefore, we do this 3202 * dance: hold the objset, then acquire a long hold on its dataset, then 3203 * release the pool (which is held as part of holding the objset). 3204 */ 3205 3206 if (dump_opt['K']) { 3207 /* decryption requested, try to load keys */ 3208 err = dmu_objset_hold(path, tag, osp); 3209 if (err != 0) { 3210 (void) fprintf(stderr, "failed to hold dataset " 3211 "'%s': %s\n", 3212 path, strerror(err)); 3213 return (err); 3214 } 3215 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3216 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3217 3218 /* succeeds or dies */ 3219 zdb_load_key(*osp); 3220 3221 /* release it all */ 3222 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3223 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3224 } 3225 3226 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3227 3228 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3229 if (err != 0) { 3230 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3231 path, strerror(err)); 3232 return (err); 3233 } 3234 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3235 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3236 3237 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3238 (key_loaded || !(*osp)->os_encrypted)) { 3239 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3240 8, 1, &version); 3241 if (version >= ZPL_VERSION_SA) { 3242 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3243 8, 1, &sa_attrs); 3244 } 3245 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3246 &sa_attr_table); 3247 if (err != 0) { 3248 (void) fprintf(stderr, "sa_setup failed: %s\n", 3249 strerror(err)); 3250 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3251 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3252 ds_hold_flags, tag); 3253 *osp = NULL; 3254 } 3255 } 3256 sa_os = *osp; 3257 3258 return (err); 3259 } 3260 3261 static void 3262 close_objset(objset_t *os, const void *tag) 3263 { 3264 VERIFY3P(os, ==, sa_os); 3265 if (os->os_sa != NULL) 3266 sa_tear_down(os); 3267 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3268 dsl_dataset_rele_flags(dmu_objset_ds(os), 3269 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3270 sa_attr_table = NULL; 3271 sa_os = NULL; 3272 3273 zdb_unload_key(); 3274 } 3275 3276 static void 3277 fuid_table_destroy(void) 3278 { 3279 if (fuid_table_loaded) { 3280 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3281 fuid_table_loaded = B_FALSE; 3282 } 3283 } 3284 3285 static void 3286 zdb_exit(int reason) 3287 { 3288 if (os != NULL) { 3289 close_objset(os, FTAG); 3290 } else if (spa != NULL) { 3291 spa_close(spa, FTAG); 3292 } 3293 3294 fuid_table_destroy(); 3295 3296 if (kernel_init_done) 3297 kernel_fini(); 3298 3299 exit(reason); 3300 } 3301 3302 /* 3303 * print uid or gid information. 3304 * For normal POSIX id just the id is printed in decimal format. 3305 * For CIFS files with FUID the fuid is printed in hex followed by 3306 * the domain-rid string. 3307 */ 3308 static void 3309 print_idstr(uint64_t id, const char *id_type) 3310 { 3311 if (FUID_INDEX(id)) { 3312 const char *domain = 3313 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3314 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3315 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3316 } else { 3317 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3318 } 3319 3320 } 3321 3322 static void 3323 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3324 { 3325 uint32_t uid_idx, gid_idx; 3326 3327 uid_idx = FUID_INDEX(uid); 3328 gid_idx = FUID_INDEX(gid); 3329 3330 /* Load domain table, if not already loaded */ 3331 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3332 uint64_t fuid_obj; 3333 3334 /* first find the fuid object. It lives in the master node */ 3335 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3336 8, 1, &fuid_obj) == 0); 3337 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3338 (void) zfs_fuid_table_load(os, fuid_obj, 3339 &idx_tree, &domain_tree); 3340 fuid_table_loaded = B_TRUE; 3341 } 3342 3343 print_idstr(uid, "uid"); 3344 print_idstr(gid, "gid"); 3345 } 3346 3347 static void 3348 dump_znode_sa_xattr(sa_handle_t *hdl) 3349 { 3350 nvlist_t *sa_xattr; 3351 nvpair_t *elem = NULL; 3352 int sa_xattr_size = 0; 3353 int sa_xattr_entries = 0; 3354 int error; 3355 char *sa_xattr_packed; 3356 3357 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3358 if (error || sa_xattr_size == 0) 3359 return; 3360 3361 sa_xattr_packed = malloc(sa_xattr_size); 3362 if (sa_xattr_packed == NULL) 3363 return; 3364 3365 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3366 sa_xattr_packed, sa_xattr_size); 3367 if (error) { 3368 free(sa_xattr_packed); 3369 return; 3370 } 3371 3372 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3373 if (error) { 3374 free(sa_xattr_packed); 3375 return; 3376 } 3377 3378 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3379 sa_xattr_entries++; 3380 3381 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3382 sa_xattr_size, sa_xattr_entries); 3383 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3384 boolean_t can_print = !dump_opt['P']; 3385 uchar_t *value; 3386 uint_t cnt, idx; 3387 3388 (void) printf("\t\t%s = ", nvpair_name(elem)); 3389 nvpair_value_byte_array(elem, &value, &cnt); 3390 3391 for (idx = 0; idx < cnt; ++idx) { 3392 if (!isprint(value[idx])) { 3393 can_print = B_FALSE; 3394 break; 3395 } 3396 } 3397 3398 for (idx = 0; idx < cnt; ++idx) { 3399 if (can_print) 3400 (void) putchar(value[idx]); 3401 else 3402 (void) printf("\\%3.3o", value[idx]); 3403 } 3404 (void) putchar('\n'); 3405 } 3406 3407 nvlist_free(sa_xattr); 3408 free(sa_xattr_packed); 3409 } 3410 3411 static void 3412 dump_znode_symlink(sa_handle_t *hdl) 3413 { 3414 int sa_symlink_size = 0; 3415 char linktarget[MAXPATHLEN]; 3416 int error; 3417 3418 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3419 if (error || sa_symlink_size == 0) { 3420 return; 3421 } 3422 if (sa_symlink_size >= sizeof (linktarget)) { 3423 (void) printf("symlink size %d is too large\n", 3424 sa_symlink_size); 3425 return; 3426 } 3427 linktarget[sa_symlink_size] = '\0'; 3428 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3429 &linktarget, sa_symlink_size) == 0) 3430 (void) printf("\ttarget %s\n", linktarget); 3431 } 3432 3433 static void 3434 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3435 { 3436 (void) data, (void) size; 3437 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3438 sa_handle_t *hdl; 3439 uint64_t xattr, rdev, gen; 3440 uint64_t uid, gid, mode, fsize, parent, links; 3441 uint64_t pflags; 3442 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3443 time_t z_crtime, z_atime, z_mtime, z_ctime; 3444 sa_bulk_attr_t bulk[12]; 3445 int idx = 0; 3446 int error; 3447 3448 VERIFY3P(os, ==, sa_os); 3449 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3450 (void) printf("Failed to get handle for SA znode\n"); 3451 return; 3452 } 3453 3454 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3455 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3456 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3457 &links, 8); 3458 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3459 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3460 &mode, 8); 3461 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3462 NULL, &parent, 8); 3463 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3464 &fsize, 8); 3465 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3466 acctm, 16); 3467 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3468 modtm, 16); 3469 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3470 crtm, 16); 3471 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3472 chgtm, 16); 3473 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3474 &pflags, 8); 3475 3476 if (sa_bulk_lookup(hdl, bulk, idx)) { 3477 (void) sa_handle_destroy(hdl); 3478 return; 3479 } 3480 3481 z_crtime = (time_t)crtm[0]; 3482 z_atime = (time_t)acctm[0]; 3483 z_mtime = (time_t)modtm[0]; 3484 z_ctime = (time_t)chgtm[0]; 3485 3486 if (dump_opt['d'] > 4) { 3487 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3488 if (error == ESTALE) { 3489 (void) snprintf(path, sizeof (path), "on delete queue"); 3490 } else if (error != 0) { 3491 leaked_objects++; 3492 (void) snprintf(path, sizeof (path), 3493 "path not found, possibly leaked"); 3494 } 3495 (void) printf("\tpath %s\n", path); 3496 } 3497 3498 if (S_ISLNK(mode)) 3499 dump_znode_symlink(hdl); 3500 dump_uidgid(os, uid, gid); 3501 (void) printf("\tatime %s", ctime(&z_atime)); 3502 (void) printf("\tmtime %s", ctime(&z_mtime)); 3503 (void) printf("\tctime %s", ctime(&z_ctime)); 3504 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3505 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3506 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3507 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3508 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3509 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3510 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3511 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3512 uint64_t projid; 3513 3514 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3515 sizeof (uint64_t)) == 0) 3516 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3517 } 3518 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3519 sizeof (uint64_t)) == 0) 3520 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3521 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3522 sizeof (uint64_t)) == 0) 3523 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3524 dump_znode_sa_xattr(hdl); 3525 sa_handle_destroy(hdl); 3526 } 3527 3528 static void 3529 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3530 { 3531 (void) os, (void) object, (void) data, (void) size; 3532 } 3533 3534 static void 3535 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3536 { 3537 (void) os, (void) object, (void) data, (void) size; 3538 } 3539 3540 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3541 dump_none, /* unallocated */ 3542 dump_zap, /* object directory */ 3543 dump_uint64, /* object array */ 3544 dump_none, /* packed nvlist */ 3545 dump_packed_nvlist, /* packed nvlist size */ 3546 dump_none, /* bpobj */ 3547 dump_bpobj, /* bpobj header */ 3548 dump_none, /* SPA space map header */ 3549 dump_none, /* SPA space map */ 3550 dump_none, /* ZIL intent log */ 3551 dump_dnode, /* DMU dnode */ 3552 dump_dmu_objset, /* DMU objset */ 3553 dump_dsl_dir, /* DSL directory */ 3554 dump_zap, /* DSL directory child map */ 3555 dump_zap, /* DSL dataset snap map */ 3556 dump_zap, /* DSL props */ 3557 dump_dsl_dataset, /* DSL dataset */ 3558 dump_znode, /* ZFS znode */ 3559 dump_acl, /* ZFS V0 ACL */ 3560 dump_uint8, /* ZFS plain file */ 3561 dump_zpldir, /* ZFS directory */ 3562 dump_zap, /* ZFS master node */ 3563 dump_zap, /* ZFS delete queue */ 3564 dump_uint8, /* zvol object */ 3565 dump_zap, /* zvol prop */ 3566 dump_uint8, /* other uint8[] */ 3567 dump_uint64, /* other uint64[] */ 3568 dump_zap, /* other ZAP */ 3569 dump_zap, /* persistent error log */ 3570 dump_uint8, /* SPA history */ 3571 dump_history_offsets, /* SPA history offsets */ 3572 dump_zap, /* Pool properties */ 3573 dump_zap, /* DSL permissions */ 3574 dump_acl, /* ZFS ACL */ 3575 dump_uint8, /* ZFS SYSACL */ 3576 dump_none, /* FUID nvlist */ 3577 dump_packed_nvlist, /* FUID nvlist size */ 3578 dump_zap, /* DSL dataset next clones */ 3579 dump_zap, /* DSL scrub queue */ 3580 dump_zap, /* ZFS user/group/project used */ 3581 dump_zap, /* ZFS user/group/project quota */ 3582 dump_zap, /* snapshot refcount tags */ 3583 dump_ddt_zap, /* DDT ZAP object */ 3584 dump_zap, /* DDT statistics */ 3585 dump_znode, /* SA object */ 3586 dump_zap, /* SA Master Node */ 3587 dump_sa_attrs, /* SA attribute registration */ 3588 dump_sa_layouts, /* SA attribute layouts */ 3589 dump_zap, /* DSL scrub translations */ 3590 dump_none, /* fake dedup BP */ 3591 dump_zap, /* deadlist */ 3592 dump_none, /* deadlist hdr */ 3593 dump_zap, /* dsl clones */ 3594 dump_bpobj_subobjs, /* bpobj subobjs */ 3595 dump_unknown, /* Unknown type, must be last */ 3596 }; 3597 3598 static boolean_t 3599 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3600 { 3601 boolean_t match = B_TRUE; 3602 3603 switch (obj_type) { 3604 case DMU_OT_DIRECTORY_CONTENTS: 3605 if (!(flags & ZOR_FLAG_DIRECTORY)) 3606 match = B_FALSE; 3607 break; 3608 case DMU_OT_PLAIN_FILE_CONTENTS: 3609 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3610 match = B_FALSE; 3611 break; 3612 case DMU_OT_SPACE_MAP: 3613 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3614 match = B_FALSE; 3615 break; 3616 default: 3617 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3618 if (!(flags & ZOR_FLAG_ZAP)) 3619 match = B_FALSE; 3620 break; 3621 } 3622 3623 /* 3624 * If all bits except some of the supported flags are 3625 * set, the user combined the all-types flag (A) with 3626 * a negated flag to exclude some types (e.g. A-f to 3627 * show all object types except plain files). 3628 */ 3629 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3630 match = B_FALSE; 3631 3632 break; 3633 } 3634 3635 return (match); 3636 } 3637 3638 static void 3639 dump_object(objset_t *os, uint64_t object, int verbosity, 3640 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3641 { 3642 dmu_buf_t *db = NULL; 3643 dmu_object_info_t doi; 3644 dnode_t *dn; 3645 boolean_t dnode_held = B_FALSE; 3646 void *bonus = NULL; 3647 size_t bsize = 0; 3648 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3649 char bonus_size[32]; 3650 char aux[50]; 3651 int error; 3652 3653 /* make sure nicenum has enough space */ 3654 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3655 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3656 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3657 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3658 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3659 "bonus_size truncated"); 3660 3661 if (*print_header) { 3662 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3663 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3664 "lsize", "%full", "type"); 3665 *print_header = 0; 3666 } 3667 3668 if (object == 0) { 3669 dn = DMU_META_DNODE(os); 3670 dmu_object_info_from_dnode(dn, &doi); 3671 } else { 3672 /* 3673 * Encrypted datasets will have sensitive bonus buffers 3674 * encrypted. Therefore we cannot hold the bonus buffer and 3675 * must hold the dnode itself instead. 3676 */ 3677 error = dmu_object_info(os, object, &doi); 3678 if (error) 3679 fatal("dmu_object_info() failed, errno %u", error); 3680 3681 if (!key_loaded && os->os_encrypted && 3682 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3683 error = dnode_hold(os, object, FTAG, &dn); 3684 if (error) 3685 fatal("dnode_hold() failed, errno %u", error); 3686 dnode_held = B_TRUE; 3687 } else { 3688 error = dmu_bonus_hold(os, object, FTAG, &db); 3689 if (error) 3690 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3691 object, error); 3692 bonus = db->db_data; 3693 bsize = db->db_size; 3694 dn = DB_DNODE((dmu_buf_impl_t *)db); 3695 } 3696 } 3697 3698 /* 3699 * Default to showing all object types if no flags were specified. 3700 */ 3701 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3702 !match_object_type(doi.doi_type, flags)) 3703 goto out; 3704 3705 if (dnode_slots_used) 3706 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3707 3708 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3709 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3710 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3711 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3712 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3713 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3714 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3715 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3716 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3717 3718 aux[0] = '\0'; 3719 3720 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3721 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3722 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3723 } 3724 3725 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3726 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3727 const char *compname = NULL; 3728 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3729 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3730 &compname) == 0) { 3731 (void) snprintf(aux + strlen(aux), 3732 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3733 compname); 3734 } else { 3735 (void) snprintf(aux + strlen(aux), 3736 sizeof (aux) - strlen(aux), 3737 " (Z=inherit=%s-unknown)", 3738 ZDB_COMPRESS_NAME(os->os_compress)); 3739 } 3740 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3741 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3742 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3743 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3744 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3745 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3746 } 3747 3748 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3749 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3750 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3751 3752 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3753 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3754 "", "", "", "", "", "", bonus_size, "bonus", 3755 zdb_ot_name(doi.doi_bonus_type)); 3756 } 3757 3758 if (verbosity >= 4) { 3759 (void) printf("\tdnode flags: %s%s%s%s\n", 3760 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3761 "USED_BYTES " : "", 3762 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3763 "USERUSED_ACCOUNTED " : "", 3764 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3765 "USEROBJUSED_ACCOUNTED " : "", 3766 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3767 "SPILL_BLKPTR" : ""); 3768 (void) printf("\tdnode maxblkid: %llu\n", 3769 (longlong_t)dn->dn_phys->dn_maxblkid); 3770 3771 if (!dnode_held) { 3772 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3773 object, bonus, bsize); 3774 } else { 3775 (void) printf("\t\t(bonus encrypted)\n"); 3776 } 3777 3778 if (key_loaded || 3779 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3780 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3781 NULL, 0); 3782 } else { 3783 (void) printf("\t\t(object encrypted)\n"); 3784 } 3785 3786 *print_header = B_TRUE; 3787 } 3788 3789 if (verbosity >= 5) { 3790 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3791 char blkbuf[BP_SPRINTF_LEN]; 3792 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3793 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3794 (void) printf("\nSpill block: %s\n", blkbuf); 3795 } 3796 dump_indirect(dn); 3797 } 3798 3799 if (verbosity >= 5) { 3800 /* 3801 * Report the list of segments that comprise the object. 3802 */ 3803 uint64_t start = 0; 3804 uint64_t end; 3805 uint64_t blkfill = 1; 3806 int minlvl = 1; 3807 3808 if (dn->dn_type == DMU_OT_DNODE) { 3809 minlvl = 0; 3810 blkfill = DNODES_PER_BLOCK; 3811 } 3812 3813 for (;;) { 3814 char segsize[32]; 3815 /* make sure nicenum has enough space */ 3816 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3817 "segsize truncated"); 3818 error = dnode_next_offset(dn, 3819 0, &start, minlvl, blkfill, 0); 3820 if (error) 3821 break; 3822 end = start; 3823 error = dnode_next_offset(dn, 3824 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3825 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3826 (void) printf("\t\tsegment [%016llx, %016llx)" 3827 " size %5s\n", (u_longlong_t)start, 3828 (u_longlong_t)end, segsize); 3829 if (error) 3830 break; 3831 start = end; 3832 } 3833 } 3834 3835 out: 3836 if (db != NULL) 3837 dmu_buf_rele(db, FTAG); 3838 if (dnode_held) 3839 dnode_rele(dn, FTAG); 3840 } 3841 3842 static void 3843 count_dir_mos_objects(dsl_dir_t *dd) 3844 { 3845 mos_obj_refd(dd->dd_object); 3846 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3847 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3848 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3849 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3850 3851 /* 3852 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3853 * Ignore the references after the first one. 3854 */ 3855 mos_obj_refd_multiple(dd->dd_crypto_obj); 3856 } 3857 3858 static void 3859 count_ds_mos_objects(dsl_dataset_t *ds) 3860 { 3861 mos_obj_refd(ds->ds_object); 3862 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3863 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3864 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3865 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3866 mos_obj_refd(ds->ds_bookmarks_obj); 3867 3868 if (!dsl_dataset_is_snapshot(ds)) { 3869 count_dir_mos_objects(ds->ds_dir); 3870 } 3871 } 3872 3873 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3874 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3875 3876 /* 3877 * Parse a string denoting a range of object IDs of the form 3878 * <start>[:<end>[:flags]], and store the results in zor. 3879 * Return 0 on success. On error, return 1 and update the msg 3880 * pointer to point to a descriptive error message. 3881 */ 3882 static int 3883 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3884 { 3885 uint64_t flags = 0; 3886 char *p, *s, *dup, *flagstr, *tmp = NULL; 3887 size_t len; 3888 int i; 3889 int rc = 0; 3890 3891 if (strchr(range, ':') == NULL) { 3892 zor->zor_obj_start = strtoull(range, &p, 0); 3893 if (*p != '\0') { 3894 *msg = "Invalid characters in object ID"; 3895 rc = 1; 3896 } 3897 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3898 zor->zor_obj_end = zor->zor_obj_start; 3899 return (rc); 3900 } 3901 3902 if (strchr(range, ':') == range) { 3903 *msg = "Invalid leading colon"; 3904 rc = 1; 3905 return (rc); 3906 } 3907 3908 len = strlen(range); 3909 if (range[len - 1] == ':') { 3910 *msg = "Invalid trailing colon"; 3911 rc = 1; 3912 return (rc); 3913 } 3914 3915 dup = strdup(range); 3916 s = strtok_r(dup, ":", &tmp); 3917 zor->zor_obj_start = strtoull(s, &p, 0); 3918 3919 if (*p != '\0') { 3920 *msg = "Invalid characters in start object ID"; 3921 rc = 1; 3922 goto out; 3923 } 3924 3925 s = strtok_r(NULL, ":", &tmp); 3926 zor->zor_obj_end = strtoull(s, &p, 0); 3927 3928 if (*p != '\0') { 3929 *msg = "Invalid characters in end object ID"; 3930 rc = 1; 3931 goto out; 3932 } 3933 3934 if (zor->zor_obj_start > zor->zor_obj_end) { 3935 *msg = "Start object ID may not exceed end object ID"; 3936 rc = 1; 3937 goto out; 3938 } 3939 3940 s = strtok_r(NULL, ":", &tmp); 3941 if (s == NULL) { 3942 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3943 goto out; 3944 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3945 *msg = "Invalid colon-delimited field after flags"; 3946 rc = 1; 3947 goto out; 3948 } 3949 3950 flagstr = s; 3951 for (i = 0; flagstr[i]; i++) { 3952 int bit; 3953 boolean_t negation = (flagstr[i] == '-'); 3954 3955 if (negation) { 3956 i++; 3957 if (flagstr[i] == '\0') { 3958 *msg = "Invalid trailing negation operator"; 3959 rc = 1; 3960 goto out; 3961 } 3962 } 3963 bit = flagbits[(uchar_t)flagstr[i]]; 3964 if (bit == 0) { 3965 *msg = "Invalid flag"; 3966 rc = 1; 3967 goto out; 3968 } 3969 if (negation) 3970 flags &= ~bit; 3971 else 3972 flags |= bit; 3973 } 3974 zor->zor_flags = flags; 3975 3976 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3977 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3978 3979 out: 3980 free(dup); 3981 return (rc); 3982 } 3983 3984 static void 3985 dump_objset(objset_t *os) 3986 { 3987 dmu_objset_stats_t dds = { 0 }; 3988 uint64_t object, object_count; 3989 uint64_t refdbytes, usedobjs, scratch; 3990 char numbuf[32]; 3991 char blkbuf[BP_SPRINTF_LEN + 20]; 3992 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3993 const char *type = "UNKNOWN"; 3994 int verbosity = dump_opt['d']; 3995 boolean_t print_header; 3996 unsigned i; 3997 int error; 3998 uint64_t total_slots_used = 0; 3999 uint64_t max_slot_used = 0; 4000 uint64_t dnode_slots; 4001 uint64_t obj_start; 4002 uint64_t obj_end; 4003 uint64_t flags; 4004 4005 /* make sure nicenum has enough space */ 4006 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4007 4008 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4009 dmu_objset_fast_stat(os, &dds); 4010 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4011 4012 print_header = B_TRUE; 4013 4014 if (dds.dds_type < DMU_OST_NUMTYPES) 4015 type = objset_types[dds.dds_type]; 4016 4017 if (dds.dds_type == DMU_OST_META) { 4018 dds.dds_creation_txg = TXG_INITIAL; 4019 usedobjs = BP_GET_FILL(os->os_rootbp); 4020 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4021 dd_used_bytes; 4022 } else { 4023 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4024 } 4025 4026 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4027 4028 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4029 4030 if (verbosity >= 4) { 4031 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4032 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4033 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4034 } else { 4035 blkbuf[0] = '\0'; 4036 } 4037 4038 dmu_objset_name(os, osname); 4039 4040 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4041 "%s, %llu objects%s%s\n", 4042 osname, type, (u_longlong_t)dmu_objset_id(os), 4043 (u_longlong_t)dds.dds_creation_txg, 4044 numbuf, (u_longlong_t)usedobjs, blkbuf, 4045 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4046 4047 for (i = 0; i < zopt_object_args; i++) { 4048 obj_start = zopt_object_ranges[i].zor_obj_start; 4049 obj_end = zopt_object_ranges[i].zor_obj_end; 4050 flags = zopt_object_ranges[i].zor_flags; 4051 4052 object = obj_start; 4053 if (object == 0 || obj_start == obj_end) 4054 dump_object(os, object, verbosity, &print_header, NULL, 4055 flags); 4056 else 4057 object--; 4058 4059 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4060 object <= obj_end) { 4061 dump_object(os, object, verbosity, &print_header, NULL, 4062 flags); 4063 } 4064 } 4065 4066 if (zopt_object_args > 0) { 4067 (void) printf("\n"); 4068 return; 4069 } 4070 4071 if (dump_opt['i'] != 0 || verbosity >= 2) 4072 dump_intent_log(dmu_objset_zil(os)); 4073 4074 if (dmu_objset_ds(os) != NULL) { 4075 dsl_dataset_t *ds = dmu_objset_ds(os); 4076 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4077 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4078 !dmu_objset_is_snapshot(os)) { 4079 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4080 if (verify_dd_livelist(os) != 0) 4081 fatal("livelist is incorrect"); 4082 } 4083 4084 if (dsl_dataset_remap_deadlist_exists(ds)) { 4085 (void) printf("ds_remap_deadlist:\n"); 4086 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4087 } 4088 count_ds_mos_objects(ds); 4089 } 4090 4091 if (dmu_objset_ds(os) != NULL) 4092 dump_bookmarks(os, verbosity); 4093 4094 if (verbosity < 2) 4095 return; 4096 4097 if (BP_IS_HOLE(os->os_rootbp)) 4098 return; 4099 4100 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4101 object_count = 0; 4102 if (DMU_USERUSED_DNODE(os) != NULL && 4103 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4104 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4105 NULL, 0); 4106 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4107 NULL, 0); 4108 } 4109 4110 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4111 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4112 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4113 &print_header, NULL, 0); 4114 4115 object = 0; 4116 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4117 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4118 0); 4119 object_count++; 4120 total_slots_used += dnode_slots; 4121 max_slot_used = object + dnode_slots - 1; 4122 } 4123 4124 (void) printf("\n"); 4125 4126 (void) printf(" Dnode slots:\n"); 4127 (void) printf("\tTotal used: %10llu\n", 4128 (u_longlong_t)total_slots_used); 4129 (void) printf("\tMax used: %10llu\n", 4130 (u_longlong_t)max_slot_used); 4131 (void) printf("\tPercent empty: %10lf\n", 4132 (double)(max_slot_used - total_slots_used)*100 / 4133 (double)max_slot_used); 4134 (void) printf("\n"); 4135 4136 if (error != ESRCH) { 4137 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4138 abort(); 4139 } 4140 4141 ASSERT3U(object_count, ==, usedobjs); 4142 4143 if (leaked_objects != 0) { 4144 (void) printf("%d potentially leaked objects detected\n", 4145 leaked_objects); 4146 leaked_objects = 0; 4147 } 4148 } 4149 4150 static void 4151 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4152 { 4153 time_t timestamp = ub->ub_timestamp; 4154 4155 (void) printf("%s", header ? header : ""); 4156 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4157 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4158 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4159 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4160 (void) printf("\ttimestamp = %llu UTC = %s", 4161 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4162 4163 (void) printf("\tmmp_magic = %016llx\n", 4164 (u_longlong_t)ub->ub_mmp_magic); 4165 if (MMP_VALID(ub)) { 4166 (void) printf("\tmmp_delay = %0llu\n", 4167 (u_longlong_t)ub->ub_mmp_delay); 4168 if (MMP_SEQ_VALID(ub)) 4169 (void) printf("\tmmp_seq = %u\n", 4170 (unsigned int) MMP_SEQ(ub)); 4171 if (MMP_FAIL_INT_VALID(ub)) 4172 (void) printf("\tmmp_fail = %u\n", 4173 (unsigned int) MMP_FAIL_INT(ub)); 4174 if (MMP_INTERVAL_VALID(ub)) 4175 (void) printf("\tmmp_write = %u\n", 4176 (unsigned int) MMP_INTERVAL(ub)); 4177 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4178 (void) printf("\tmmp_valid = %x\n", 4179 (unsigned int) ub->ub_mmp_config & 0xFF); 4180 } 4181 4182 if (dump_opt['u'] >= 4) { 4183 char blkbuf[BP_SPRINTF_LEN]; 4184 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4185 (void) printf("\trootbp = %s\n", blkbuf); 4186 } 4187 (void) printf("\tcheckpoint_txg = %llu\n", 4188 (u_longlong_t)ub->ub_checkpoint_txg); 4189 4190 (void) printf("\traidz_reflow state=%u off=%llu\n", 4191 (int)RRSS_GET_STATE(ub), 4192 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4193 4194 (void) printf("%s", footer ? footer : ""); 4195 } 4196 4197 static void 4198 dump_config(spa_t *spa) 4199 { 4200 dmu_buf_t *db; 4201 size_t nvsize = 0; 4202 int error = 0; 4203 4204 4205 error = dmu_bonus_hold(spa->spa_meta_objset, 4206 spa->spa_config_object, FTAG, &db); 4207 4208 if (error == 0) { 4209 nvsize = *(uint64_t *)db->db_data; 4210 dmu_buf_rele(db, FTAG); 4211 4212 (void) printf("\nMOS Configuration:\n"); 4213 dump_packed_nvlist(spa->spa_meta_objset, 4214 spa->spa_config_object, (void *)&nvsize, 1); 4215 } else { 4216 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4217 (u_longlong_t)spa->spa_config_object, error); 4218 } 4219 } 4220 4221 static void 4222 dump_cachefile(const char *cachefile) 4223 { 4224 int fd; 4225 struct stat64 statbuf; 4226 char *buf; 4227 nvlist_t *config; 4228 4229 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4230 (void) printf("cannot open '%s': %s\n", cachefile, 4231 strerror(errno)); 4232 zdb_exit(1); 4233 } 4234 4235 if (fstat64(fd, &statbuf) != 0) { 4236 (void) printf("failed to stat '%s': %s\n", cachefile, 4237 strerror(errno)); 4238 zdb_exit(1); 4239 } 4240 4241 if ((buf = malloc(statbuf.st_size)) == NULL) { 4242 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4243 (u_longlong_t)statbuf.st_size); 4244 zdb_exit(1); 4245 } 4246 4247 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4248 (void) fprintf(stderr, "failed to read %llu bytes\n", 4249 (u_longlong_t)statbuf.st_size); 4250 zdb_exit(1); 4251 } 4252 4253 (void) close(fd); 4254 4255 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4256 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4257 zdb_exit(1); 4258 } 4259 4260 free(buf); 4261 4262 dump_nvlist(config, 0); 4263 4264 nvlist_free(config); 4265 } 4266 4267 /* 4268 * ZFS label nvlist stats 4269 */ 4270 typedef struct zdb_nvl_stats { 4271 int zns_list_count; 4272 int zns_leaf_count; 4273 size_t zns_leaf_largest; 4274 size_t zns_leaf_total; 4275 nvlist_t *zns_string; 4276 nvlist_t *zns_uint64; 4277 nvlist_t *zns_boolean; 4278 } zdb_nvl_stats_t; 4279 4280 static void 4281 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4282 { 4283 nvlist_t *list, **array; 4284 nvpair_t *nvp = NULL; 4285 const char *name; 4286 uint_t i, items; 4287 4288 stats->zns_list_count++; 4289 4290 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4291 name = nvpair_name(nvp); 4292 4293 switch (nvpair_type(nvp)) { 4294 case DATA_TYPE_STRING: 4295 fnvlist_add_string(stats->zns_string, name, 4296 fnvpair_value_string(nvp)); 4297 break; 4298 case DATA_TYPE_UINT64: 4299 fnvlist_add_uint64(stats->zns_uint64, name, 4300 fnvpair_value_uint64(nvp)); 4301 break; 4302 case DATA_TYPE_BOOLEAN: 4303 fnvlist_add_boolean(stats->zns_boolean, name); 4304 break; 4305 case DATA_TYPE_NVLIST: 4306 if (nvpair_value_nvlist(nvp, &list) == 0) 4307 collect_nvlist_stats(list, stats); 4308 break; 4309 case DATA_TYPE_NVLIST_ARRAY: 4310 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4311 break; 4312 4313 for (i = 0; i < items; i++) { 4314 collect_nvlist_stats(array[i], stats); 4315 4316 /* collect stats on leaf vdev */ 4317 if (strcmp(name, "children") == 0) { 4318 size_t size; 4319 4320 (void) nvlist_size(array[i], &size, 4321 NV_ENCODE_XDR); 4322 stats->zns_leaf_total += size; 4323 if (size > stats->zns_leaf_largest) 4324 stats->zns_leaf_largest = size; 4325 stats->zns_leaf_count++; 4326 } 4327 } 4328 break; 4329 default: 4330 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4331 } 4332 } 4333 } 4334 4335 static void 4336 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4337 { 4338 zdb_nvl_stats_t stats = { 0 }; 4339 size_t size, sum = 0, total; 4340 size_t noise; 4341 4342 /* requires nvlist with non-unique names for stat collection */ 4343 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4344 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4345 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4346 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4347 4348 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4349 4350 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4351 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4352 (int)total, (int)(cap - total), 100.0 * total / cap); 4353 4354 collect_nvlist_stats(nvl, &stats); 4355 4356 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4357 size -= noise; 4358 sum += size; 4359 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4360 (int)fnvlist_num_pairs(stats.zns_uint64), 4361 (int)size, 100.0 * size / total); 4362 4363 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4364 size -= noise; 4365 sum += size; 4366 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4367 (int)fnvlist_num_pairs(stats.zns_string), 4368 (int)size, 100.0 * size / total); 4369 4370 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4371 size -= noise; 4372 sum += size; 4373 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4374 (int)fnvlist_num_pairs(stats.zns_boolean), 4375 (int)size, 100.0 * size / total); 4376 4377 size = total - sum; /* treat remainder as nvlist overhead */ 4378 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4379 stats.zns_list_count, (int)size, 100.0 * size / total); 4380 4381 if (stats.zns_leaf_count > 0) { 4382 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4383 4384 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4385 stats.zns_leaf_count, (int)average); 4386 (void) printf("%24d bytes largest\n", 4387 (int)stats.zns_leaf_largest); 4388 4389 if (dump_opt['l'] >= 3 && average > 0) 4390 (void) printf(" space for %d additional leaf vdevs\n", 4391 (int)((cap - total) / average)); 4392 } 4393 (void) printf("\n"); 4394 4395 nvlist_free(stats.zns_string); 4396 nvlist_free(stats.zns_uint64); 4397 nvlist_free(stats.zns_boolean); 4398 } 4399 4400 typedef struct cksum_record { 4401 zio_cksum_t cksum; 4402 boolean_t labels[VDEV_LABELS]; 4403 avl_node_t link; 4404 } cksum_record_t; 4405 4406 static int 4407 cksum_record_compare(const void *x1, const void *x2) 4408 { 4409 const cksum_record_t *l = (cksum_record_t *)x1; 4410 const cksum_record_t *r = (cksum_record_t *)x2; 4411 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4412 int difference = 0; 4413 4414 for (int i = 0; i < arraysize; i++) { 4415 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4416 if (difference) 4417 break; 4418 } 4419 4420 return (difference); 4421 } 4422 4423 static cksum_record_t * 4424 cksum_record_alloc(zio_cksum_t *cksum, int l) 4425 { 4426 cksum_record_t *rec; 4427 4428 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4429 rec->cksum = *cksum; 4430 rec->labels[l] = B_TRUE; 4431 4432 return (rec); 4433 } 4434 4435 static cksum_record_t * 4436 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4437 { 4438 cksum_record_t lookup = { .cksum = *cksum }; 4439 avl_index_t where; 4440 4441 return (avl_find(tree, &lookup, &where)); 4442 } 4443 4444 static cksum_record_t * 4445 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4446 { 4447 cksum_record_t *rec; 4448 4449 rec = cksum_record_lookup(tree, cksum); 4450 if (rec) { 4451 rec->labels[l] = B_TRUE; 4452 } else { 4453 rec = cksum_record_alloc(cksum, l); 4454 avl_add(tree, rec); 4455 } 4456 4457 return (rec); 4458 } 4459 4460 static int 4461 first_label(cksum_record_t *rec) 4462 { 4463 for (int i = 0; i < VDEV_LABELS; i++) 4464 if (rec->labels[i]) 4465 return (i); 4466 4467 return (-1); 4468 } 4469 4470 static void 4471 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4472 { 4473 fputs(prefix, stdout); 4474 for (int i = 0; i < VDEV_LABELS; i++) 4475 if (rec->labels[i] == B_TRUE) 4476 printf("%d ", i); 4477 putchar('\n'); 4478 } 4479 4480 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4481 4482 typedef struct zdb_label { 4483 vdev_label_t label; 4484 uint64_t label_offset; 4485 nvlist_t *config_nv; 4486 cksum_record_t *config; 4487 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4488 boolean_t header_printed; 4489 boolean_t read_failed; 4490 boolean_t cksum_valid; 4491 } zdb_label_t; 4492 4493 static void 4494 print_label_header(zdb_label_t *label, int l) 4495 { 4496 4497 if (dump_opt['q']) 4498 return; 4499 4500 if (label->header_printed == B_TRUE) 4501 return; 4502 4503 (void) printf("------------------------------------\n"); 4504 (void) printf("LABEL %d %s\n", l, 4505 label->cksum_valid ? "" : "(Bad label cksum)"); 4506 (void) printf("------------------------------------\n"); 4507 4508 label->header_printed = B_TRUE; 4509 } 4510 4511 static void 4512 print_l2arc_header(void) 4513 { 4514 (void) printf("------------------------------------\n"); 4515 (void) printf("L2ARC device header\n"); 4516 (void) printf("------------------------------------\n"); 4517 } 4518 4519 static void 4520 print_l2arc_log_blocks(void) 4521 { 4522 (void) printf("------------------------------------\n"); 4523 (void) printf("L2ARC device log blocks\n"); 4524 (void) printf("------------------------------------\n"); 4525 } 4526 4527 static void 4528 dump_l2arc_log_entries(uint64_t log_entries, 4529 l2arc_log_ent_phys_t *le, uint64_t i) 4530 { 4531 for (int j = 0; j < log_entries; j++) { 4532 dva_t dva = le[j].le_dva; 4533 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4534 "vdev: %llu, offset: %llu\n", 4535 (u_longlong_t)i, j + 1, 4536 (u_longlong_t)DVA_GET_ASIZE(&dva), 4537 (u_longlong_t)DVA_GET_VDEV(&dva), 4538 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4539 (void) printf("|\t\t\t\tbirth: %llu\n", 4540 (u_longlong_t)le[j].le_birth); 4541 (void) printf("|\t\t\t\tlsize: %llu\n", 4542 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4543 (void) printf("|\t\t\t\tpsize: %llu\n", 4544 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4545 (void) printf("|\t\t\t\tcompr: %llu\n", 4546 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4547 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4548 (u_longlong_t)(&le[j])->le_complevel); 4549 (void) printf("|\t\t\t\ttype: %llu\n", 4550 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4551 (void) printf("|\t\t\t\tprotected: %llu\n", 4552 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4553 (void) printf("|\t\t\t\tprefetch: %llu\n", 4554 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4555 (void) printf("|\t\t\t\taddress: %llu\n", 4556 (u_longlong_t)le[j].le_daddr); 4557 (void) printf("|\t\t\t\tARC state: %llu\n", 4558 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4559 (void) printf("|\n"); 4560 } 4561 (void) printf("\n"); 4562 } 4563 4564 static void 4565 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4566 { 4567 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4568 (void) printf("|\t\tpayload_asize: %llu\n", 4569 (u_longlong_t)lbps->lbp_payload_asize); 4570 (void) printf("|\t\tpayload_start: %llu\n", 4571 (u_longlong_t)lbps->lbp_payload_start); 4572 (void) printf("|\t\tlsize: %llu\n", 4573 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4574 (void) printf("|\t\tasize: %llu\n", 4575 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4576 (void) printf("|\t\tcompralgo: %llu\n", 4577 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4578 (void) printf("|\t\tcksumalgo: %llu\n", 4579 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4580 (void) printf("|\n\n"); 4581 } 4582 4583 static void 4584 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4585 l2arc_dev_hdr_phys_t *rebuild) 4586 { 4587 l2arc_log_blk_phys_t this_lb; 4588 uint64_t asize; 4589 l2arc_log_blkptr_t lbps[2]; 4590 abd_t *abd; 4591 zio_cksum_t cksum; 4592 int failed = 0; 4593 l2arc_dev_t dev; 4594 4595 if (!dump_opt['q']) 4596 print_l2arc_log_blocks(); 4597 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4598 4599 dev.l2ad_evict = l2dhdr->dh_evict; 4600 dev.l2ad_start = l2dhdr->dh_start; 4601 dev.l2ad_end = l2dhdr->dh_end; 4602 4603 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4604 /* no log blocks to read */ 4605 if (!dump_opt['q']) { 4606 (void) printf("No log blocks to read\n"); 4607 (void) printf("\n"); 4608 } 4609 return; 4610 } else { 4611 dev.l2ad_hand = lbps[0].lbp_daddr + 4612 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4613 } 4614 4615 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4616 4617 for (;;) { 4618 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4619 break; 4620 4621 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4622 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4623 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4624 if (!dump_opt['q']) { 4625 (void) printf("Error while reading next log " 4626 "block\n\n"); 4627 } 4628 break; 4629 } 4630 4631 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4632 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4633 failed++; 4634 if (!dump_opt['q']) { 4635 (void) printf("Invalid cksum\n"); 4636 dump_l2arc_log_blkptr(&lbps[0]); 4637 } 4638 break; 4639 } 4640 4641 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4642 case ZIO_COMPRESS_OFF: 4643 break; 4644 default: 4645 abd = abd_alloc_for_io(asize, B_TRUE); 4646 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4647 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4648 (&lbps[0])->lbp_prop), abd, &this_lb, 4649 asize, sizeof (this_lb), NULL) != 0) { 4650 (void) printf("L2ARC block decompression " 4651 "failed\n"); 4652 abd_free(abd); 4653 goto out; 4654 } 4655 abd_free(abd); 4656 break; 4657 } 4658 4659 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4660 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4661 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4662 if (!dump_opt['q']) 4663 (void) printf("Invalid log block magic\n\n"); 4664 break; 4665 } 4666 4667 rebuild->dh_lb_count++; 4668 rebuild->dh_lb_asize += asize; 4669 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4670 (void) printf("lb[%4llu]\tmagic: %llu\n", 4671 (u_longlong_t)rebuild->dh_lb_count, 4672 (u_longlong_t)this_lb.lb_magic); 4673 dump_l2arc_log_blkptr(&lbps[0]); 4674 } 4675 4676 if (dump_opt['l'] > 2 && !dump_opt['q']) 4677 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4678 this_lb.lb_entries, 4679 rebuild->dh_lb_count); 4680 4681 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4682 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4683 !dev.l2ad_first) 4684 break; 4685 4686 lbps[0] = lbps[1]; 4687 lbps[1] = this_lb.lb_prev_lbp; 4688 } 4689 out: 4690 if (!dump_opt['q']) { 4691 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4692 (u_longlong_t)rebuild->dh_lb_count); 4693 (void) printf("\t\t %d with invalid cksum\n", failed); 4694 (void) printf("log_blk_asize:\t %llu\n\n", 4695 (u_longlong_t)rebuild->dh_lb_asize); 4696 } 4697 } 4698 4699 static int 4700 dump_l2arc_header(int fd) 4701 { 4702 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4703 int error = B_FALSE; 4704 4705 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4706 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4707 error = B_TRUE; 4708 } else { 4709 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4710 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4711 4712 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4713 error = B_TRUE; 4714 } 4715 4716 if (error) { 4717 (void) printf("L2ARC device header not found\n\n"); 4718 /* Do not return an error here for backward compatibility */ 4719 return (0); 4720 } else if (!dump_opt['q']) { 4721 print_l2arc_header(); 4722 4723 (void) printf(" magic: %llu\n", 4724 (u_longlong_t)l2dhdr.dh_magic); 4725 (void) printf(" version: %llu\n", 4726 (u_longlong_t)l2dhdr.dh_version); 4727 (void) printf(" pool_guid: %llu\n", 4728 (u_longlong_t)l2dhdr.dh_spa_guid); 4729 (void) printf(" flags: %llu\n", 4730 (u_longlong_t)l2dhdr.dh_flags); 4731 (void) printf(" start_lbps[0]: %llu\n", 4732 (u_longlong_t) 4733 l2dhdr.dh_start_lbps[0].lbp_daddr); 4734 (void) printf(" start_lbps[1]: %llu\n", 4735 (u_longlong_t) 4736 l2dhdr.dh_start_lbps[1].lbp_daddr); 4737 (void) printf(" log_blk_ent: %llu\n", 4738 (u_longlong_t)l2dhdr.dh_log_entries); 4739 (void) printf(" start: %llu\n", 4740 (u_longlong_t)l2dhdr.dh_start); 4741 (void) printf(" end: %llu\n", 4742 (u_longlong_t)l2dhdr.dh_end); 4743 (void) printf(" evict: %llu\n", 4744 (u_longlong_t)l2dhdr.dh_evict); 4745 (void) printf(" lb_asize_refcount: %llu\n", 4746 (u_longlong_t)l2dhdr.dh_lb_asize); 4747 (void) printf(" lb_count_refcount: %llu\n", 4748 (u_longlong_t)l2dhdr.dh_lb_count); 4749 (void) printf(" trim_action_time: %llu\n", 4750 (u_longlong_t)l2dhdr.dh_trim_action_time); 4751 (void) printf(" trim_state: %llu\n\n", 4752 (u_longlong_t)l2dhdr.dh_trim_state); 4753 } 4754 4755 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4756 /* 4757 * The total aligned size of log blocks and the number of log blocks 4758 * reported in the header of the device may be less than what zdb 4759 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4760 * This happens because dump_l2arc_log_blocks() lacks the memory 4761 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4762 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4763 * and dh_lb_count will be lower to begin with than what exists on the 4764 * device. This is normal and zdb should not exit with an error. The 4765 * opposite case should never happen though, the values reported in the 4766 * header should never be higher than what dump_l2arc_log_blocks() and 4767 * l2arc_rebuild() report. If this happens there is a leak in the 4768 * accounting of log blocks. 4769 */ 4770 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4771 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4772 return (1); 4773 4774 return (0); 4775 } 4776 4777 static void 4778 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4779 { 4780 if (dump_opt['q']) 4781 return; 4782 4783 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4784 return; 4785 4786 print_label_header(label, l); 4787 dump_nvlist(label->config_nv, 4); 4788 print_label_numbers(" labels = ", label->config); 4789 4790 if (dump_opt['l'] >= 2) 4791 dump_nvlist_stats(label->config_nv, buflen); 4792 } 4793 4794 #define ZDB_MAX_UB_HEADER_SIZE 32 4795 4796 static void 4797 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4798 { 4799 4800 vdev_t vd; 4801 char header[ZDB_MAX_UB_HEADER_SIZE]; 4802 4803 vd.vdev_ashift = ashift; 4804 vd.vdev_top = &vd; 4805 4806 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4807 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4808 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4809 cksum_record_t *rec = label->uberblocks[i]; 4810 4811 if (rec == NULL) { 4812 if (dump_opt['u'] >= 2) { 4813 print_label_header(label, label_num); 4814 (void) printf(" Uberblock[%d] invalid\n", i); 4815 } 4816 continue; 4817 } 4818 4819 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4820 continue; 4821 4822 if ((dump_opt['u'] < 4) && 4823 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4824 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4825 continue; 4826 4827 print_label_header(label, label_num); 4828 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4829 " Uberblock[%d]\n", i); 4830 dump_uberblock(ub, header, ""); 4831 print_label_numbers(" labels = ", rec); 4832 } 4833 } 4834 4835 static char curpath[PATH_MAX]; 4836 4837 /* 4838 * Iterate through the path components, recursively passing 4839 * current one's obj and remaining path until we find the obj 4840 * for the last one. 4841 */ 4842 static int 4843 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4844 { 4845 int err; 4846 boolean_t header = B_TRUE; 4847 uint64_t child_obj; 4848 char *s; 4849 dmu_buf_t *db; 4850 dmu_object_info_t doi; 4851 4852 if ((s = strchr(name, '/')) != NULL) 4853 *s = '\0'; 4854 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4855 4856 (void) strlcat(curpath, name, sizeof (curpath)); 4857 4858 if (err != 0) { 4859 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4860 curpath, strerror(err)); 4861 return (err); 4862 } 4863 4864 child_obj = ZFS_DIRENT_OBJ(child_obj); 4865 err = sa_buf_hold(os, child_obj, FTAG, &db); 4866 if (err != 0) { 4867 (void) fprintf(stderr, 4868 "failed to get SA dbuf for obj %llu: %s\n", 4869 (u_longlong_t)child_obj, strerror(err)); 4870 return (EINVAL); 4871 } 4872 dmu_object_info_from_db(db, &doi); 4873 sa_buf_rele(db, FTAG); 4874 4875 if (doi.doi_bonus_type != DMU_OT_SA && 4876 doi.doi_bonus_type != DMU_OT_ZNODE) { 4877 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4878 doi.doi_bonus_type, (u_longlong_t)child_obj); 4879 return (EINVAL); 4880 } 4881 4882 if (dump_opt['v'] > 6) { 4883 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4884 (u_longlong_t)child_obj, curpath, doi.doi_type, 4885 doi.doi_bonus_type); 4886 } 4887 4888 (void) strlcat(curpath, "/", sizeof (curpath)); 4889 4890 switch (doi.doi_type) { 4891 case DMU_OT_DIRECTORY_CONTENTS: 4892 if (s != NULL && *(s + 1) != '\0') 4893 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4894 zfs_fallthrough; 4895 case DMU_OT_PLAIN_FILE_CONTENTS: 4896 if (retobj != NULL) { 4897 *retobj = child_obj; 4898 } else { 4899 dump_object(os, child_obj, dump_opt['v'], &header, 4900 NULL, 0); 4901 } 4902 return (0); 4903 default: 4904 (void) fprintf(stderr, "object %llu has non-file/directory " 4905 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4906 break; 4907 } 4908 4909 return (EINVAL); 4910 } 4911 4912 /* 4913 * Dump the blocks for the object specified by path inside the dataset. 4914 */ 4915 static int 4916 dump_path(char *ds, char *path, uint64_t *retobj) 4917 { 4918 int err; 4919 objset_t *os; 4920 uint64_t root_obj; 4921 4922 err = open_objset(ds, FTAG, &os); 4923 if (err != 0) 4924 return (err); 4925 4926 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4927 if (err != 0) { 4928 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4929 strerror(err)); 4930 close_objset(os, FTAG); 4931 return (EINVAL); 4932 } 4933 4934 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4935 4936 err = dump_path_impl(os, root_obj, path, retobj); 4937 4938 close_objset(os, FTAG); 4939 return (err); 4940 } 4941 4942 static int 4943 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4944 { 4945 const char *p = (const char *)buf; 4946 ssize_t nwritten; 4947 4948 (void) os; 4949 (void) arg; 4950 4951 /* Write the data out, handling short writes and signals. */ 4952 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4953 if (nwritten < 0) { 4954 if (errno == EINTR) 4955 continue; 4956 return (errno); 4957 } 4958 p += nwritten; 4959 len -= nwritten; 4960 } 4961 4962 return (0); 4963 } 4964 4965 static void 4966 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4967 { 4968 boolean_t embed = B_FALSE; 4969 boolean_t large_block = B_FALSE; 4970 boolean_t compress = B_FALSE; 4971 boolean_t raw = B_FALSE; 4972 4973 const char *c; 4974 for (c = flagstr; c != NULL && *c != '\0'; c++) { 4975 switch (*c) { 4976 case 'e': 4977 embed = B_TRUE; 4978 break; 4979 case 'L': 4980 large_block = B_TRUE; 4981 break; 4982 case 'c': 4983 compress = B_TRUE; 4984 break; 4985 case 'w': 4986 raw = B_TRUE; 4987 break; 4988 default: 4989 fprintf(stderr, "dump_backup: invalid flag " 4990 "'%c'\n", *c); 4991 return; 4992 } 4993 } 4994 4995 if (isatty(STDOUT_FILENO)) { 4996 fprintf(stderr, "dump_backup: stream cannot be written " 4997 "to a terminal\n"); 4998 return; 4999 } 5000 5001 offset_t off = 0; 5002 dmu_send_outparams_t out = { 5003 .dso_outfunc = dump_backup_bytes, 5004 .dso_dryrun = B_FALSE, 5005 }; 5006 5007 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5008 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5009 &off, &out); 5010 if (err != 0) { 5011 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5012 strerror(err)); 5013 return; 5014 } 5015 } 5016 5017 static int 5018 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5019 { 5020 int err = 0; 5021 uint64_t size, readsize, oursize, offset; 5022 ssize_t writesize; 5023 sa_handle_t *hdl; 5024 5025 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5026 destfile); 5027 5028 VERIFY3P(os, ==, sa_os); 5029 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5030 (void) printf("Failed to get handle for SA znode\n"); 5031 return (err); 5032 } 5033 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5034 (void) sa_handle_destroy(hdl); 5035 return (err); 5036 } 5037 (void) sa_handle_destroy(hdl); 5038 5039 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5040 size); 5041 if (size == 0) { 5042 return (EINVAL); 5043 } 5044 5045 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5046 if (fd == -1) 5047 return (errno); 5048 /* 5049 * We cap the size at 1 mebibyte here to prevent 5050 * allocation failures and nigh-infinite printing if the 5051 * object is extremely large. 5052 */ 5053 oursize = MIN(size, 1 << 20); 5054 offset = 0; 5055 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5056 if (buf == NULL) { 5057 (void) close(fd); 5058 return (ENOMEM); 5059 } 5060 5061 while (offset < size) { 5062 readsize = MIN(size - offset, 1 << 20); 5063 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5064 if (err != 0) { 5065 (void) printf("got error %u from dmu_read\n", err); 5066 kmem_free(buf, oursize); 5067 (void) close(fd); 5068 return (err); 5069 } 5070 if (dump_opt['v'] > 3) { 5071 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5072 " error=%d\n", offset, readsize, err); 5073 } 5074 5075 writesize = write(fd, buf, readsize); 5076 if (writesize < 0) { 5077 err = errno; 5078 break; 5079 } else if (writesize != readsize) { 5080 /* Incomplete write */ 5081 (void) fprintf(stderr, "Short write, only wrote %llu of" 5082 " %" PRIu64 " bytes, exiting...\n", 5083 (u_longlong_t)writesize, readsize); 5084 break; 5085 } 5086 5087 offset += readsize; 5088 } 5089 5090 (void) close(fd); 5091 5092 if (buf != NULL) 5093 kmem_free(buf, oursize); 5094 5095 return (err); 5096 } 5097 5098 static boolean_t 5099 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5100 { 5101 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5102 zio_cksum_t expected_cksum; 5103 zio_cksum_t actual_cksum; 5104 zio_cksum_t verifier; 5105 zio_eck_t *eck; 5106 int byteswap; 5107 5108 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5109 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5110 5111 offset += offsetof(vdev_label_t, vl_vdev_phys); 5112 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5113 5114 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5115 if (byteswap) 5116 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5117 5118 expected_cksum = eck->zec_cksum; 5119 eck->zec_cksum = verifier; 5120 5121 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5122 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5123 abd_free(abd); 5124 5125 if (byteswap) 5126 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5127 5128 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5129 return (B_TRUE); 5130 5131 return (B_FALSE); 5132 } 5133 5134 static int 5135 dump_label(const char *dev) 5136 { 5137 char path[MAXPATHLEN]; 5138 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5139 uint64_t psize, ashift, l2cache; 5140 struct stat64 statbuf; 5141 boolean_t config_found = B_FALSE; 5142 boolean_t error = B_FALSE; 5143 boolean_t read_l2arc_header = B_FALSE; 5144 avl_tree_t config_tree; 5145 avl_tree_t uberblock_tree; 5146 void *node, *cookie; 5147 int fd; 5148 5149 /* 5150 * Check if we were given absolute path and use it as is. 5151 * Otherwise if the provided vdev name doesn't point to a file, 5152 * try prepending expected disk paths and partition numbers. 5153 */ 5154 (void) strlcpy(path, dev, sizeof (path)); 5155 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5156 int error; 5157 5158 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5159 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5160 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5161 error = ENOENT; 5162 } 5163 5164 if (error || (stat64(path, &statbuf) != 0)) { 5165 (void) printf("failed to find device %s, try " 5166 "specifying absolute path instead\n", dev); 5167 return (1); 5168 } 5169 } 5170 5171 if ((fd = open64(path, O_RDONLY)) < 0) { 5172 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5173 zdb_exit(1); 5174 } 5175 5176 if (fstat64_blk(fd, &statbuf) != 0) { 5177 (void) printf("failed to stat '%s': %s\n", path, 5178 strerror(errno)); 5179 (void) close(fd); 5180 zdb_exit(1); 5181 } 5182 5183 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5184 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5185 strerror(errno)); 5186 5187 avl_create(&config_tree, cksum_record_compare, 5188 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5189 avl_create(&uberblock_tree, cksum_record_compare, 5190 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5191 5192 psize = statbuf.st_size; 5193 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5194 ashift = SPA_MINBLOCKSHIFT; 5195 5196 /* 5197 * 1. Read the label from disk 5198 * 2. Verify label cksum 5199 * 3. Unpack the configuration and insert in config tree. 5200 * 4. Traverse all uberblocks and insert in uberblock tree. 5201 */ 5202 for (int l = 0; l < VDEV_LABELS; l++) { 5203 zdb_label_t *label = &labels[l]; 5204 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5205 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5206 nvlist_t *config; 5207 cksum_record_t *rec; 5208 zio_cksum_t cksum; 5209 vdev_t vd; 5210 5211 label->label_offset = vdev_label_offset(psize, l, 0); 5212 5213 if (pread64(fd, &label->label, sizeof (label->label), 5214 label->label_offset) != sizeof (label->label)) { 5215 if (!dump_opt['q']) 5216 (void) printf("failed to read label %d\n", l); 5217 label->read_failed = B_TRUE; 5218 error = B_TRUE; 5219 continue; 5220 } 5221 5222 label->read_failed = B_FALSE; 5223 label->cksum_valid = label_cksum_valid(&label->label, 5224 label->label_offset); 5225 5226 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5227 nvlist_t *vdev_tree = NULL; 5228 size_t size; 5229 5230 if ((nvlist_lookup_nvlist(config, 5231 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5232 (nvlist_lookup_uint64(vdev_tree, 5233 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5234 ashift = SPA_MINBLOCKSHIFT; 5235 5236 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5237 size = buflen; 5238 5239 /* If the device is a cache device read the header. */ 5240 if (!read_l2arc_header) { 5241 if (nvlist_lookup_uint64(config, 5242 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5243 l2cache == POOL_STATE_L2CACHE) { 5244 read_l2arc_header = B_TRUE; 5245 } 5246 } 5247 5248 fletcher_4_native_varsize(buf, size, &cksum); 5249 rec = cksum_record_insert(&config_tree, &cksum, l); 5250 5251 label->config = rec; 5252 label->config_nv = config; 5253 config_found = B_TRUE; 5254 } else { 5255 error = B_TRUE; 5256 } 5257 5258 vd.vdev_ashift = ashift; 5259 vd.vdev_top = &vd; 5260 5261 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5262 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5263 uberblock_t *ub = (void *)((char *)label + uoff); 5264 5265 if (uberblock_verify(ub)) 5266 continue; 5267 5268 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5269 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5270 5271 label->uberblocks[i] = rec; 5272 } 5273 } 5274 5275 /* 5276 * Dump the label and uberblocks. 5277 */ 5278 for (int l = 0; l < VDEV_LABELS; l++) { 5279 zdb_label_t *label = &labels[l]; 5280 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5281 5282 if (label->read_failed == B_TRUE) 5283 continue; 5284 5285 if (label->config_nv) { 5286 dump_config_from_label(label, buflen, l); 5287 } else { 5288 if (!dump_opt['q']) 5289 (void) printf("failed to unpack label %d\n", l); 5290 } 5291 5292 if (dump_opt['u']) 5293 dump_label_uberblocks(label, ashift, l); 5294 5295 nvlist_free(label->config_nv); 5296 } 5297 5298 /* 5299 * Dump the L2ARC header, if existent. 5300 */ 5301 if (read_l2arc_header) 5302 error |= dump_l2arc_header(fd); 5303 5304 cookie = NULL; 5305 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5306 umem_free(node, sizeof (cksum_record_t)); 5307 5308 cookie = NULL; 5309 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5310 umem_free(node, sizeof (cksum_record_t)); 5311 5312 avl_destroy(&config_tree); 5313 avl_destroy(&uberblock_tree); 5314 5315 (void) close(fd); 5316 5317 return (config_found == B_FALSE ? 2 : 5318 (error == B_TRUE ? 1 : 0)); 5319 } 5320 5321 static uint64_t dataset_feature_count[SPA_FEATURES]; 5322 static uint64_t global_feature_count[SPA_FEATURES]; 5323 static uint64_t remap_deadlist_count = 0; 5324 5325 static int 5326 dump_one_objset(const char *dsname, void *arg) 5327 { 5328 (void) arg; 5329 int error; 5330 objset_t *os; 5331 spa_feature_t f; 5332 5333 error = open_objset(dsname, FTAG, &os); 5334 if (error != 0) 5335 return (0); 5336 5337 for (f = 0; f < SPA_FEATURES; f++) { 5338 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5339 continue; 5340 ASSERT(spa_feature_table[f].fi_flags & 5341 ZFEATURE_FLAG_PER_DATASET); 5342 dataset_feature_count[f]++; 5343 } 5344 5345 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5346 remap_deadlist_count++; 5347 } 5348 5349 for (dsl_bookmark_node_t *dbn = 5350 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5351 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5352 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5353 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5354 global_feature_count[ 5355 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5356 objset_t *mos = os->os_spa->spa_meta_objset; 5357 dnode_t *rl; 5358 VERIFY0(dnode_hold(mos, 5359 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5360 if (rl->dn_have_spill) { 5361 global_feature_count[ 5362 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5363 } 5364 } 5365 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5366 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5367 } 5368 5369 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5370 !dmu_objset_is_snapshot(os)) { 5371 global_feature_count[SPA_FEATURE_LIVELIST]++; 5372 } 5373 5374 dump_objset(os); 5375 close_objset(os, FTAG); 5376 fuid_table_destroy(); 5377 return (0); 5378 } 5379 5380 /* 5381 * Block statistics. 5382 */ 5383 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5384 typedef struct zdb_blkstats { 5385 uint64_t zb_asize; 5386 uint64_t zb_lsize; 5387 uint64_t zb_psize; 5388 uint64_t zb_count; 5389 uint64_t zb_gangs; 5390 uint64_t zb_ditto_samevdev; 5391 uint64_t zb_ditto_same_ms; 5392 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5393 } zdb_blkstats_t; 5394 5395 /* 5396 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5397 */ 5398 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5399 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5400 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5401 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5402 5403 static const char *zdb_ot_extname[] = { 5404 "deferred free", 5405 "dedup ditto", 5406 "other", 5407 "Total", 5408 }; 5409 5410 #define ZB_TOTAL DN_MAX_LEVELS 5411 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5412 5413 typedef struct zdb_brt_entry { 5414 dva_t zbre_dva; 5415 uint64_t zbre_refcount; 5416 avl_node_t zbre_node; 5417 } zdb_brt_entry_t; 5418 5419 typedef struct zdb_cb { 5420 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5421 uint64_t zcb_removing_size; 5422 uint64_t zcb_checkpoint_size; 5423 uint64_t zcb_dedup_asize; 5424 uint64_t zcb_dedup_blocks; 5425 uint64_t zcb_clone_asize; 5426 uint64_t zcb_clone_blocks; 5427 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5428 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5429 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5430 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5431 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5432 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5433 uint64_t zcb_psize_total; 5434 uint64_t zcb_lsize_total; 5435 uint64_t zcb_asize_total; 5436 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5437 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5438 [BPE_PAYLOAD_SIZE + 1]; 5439 uint64_t zcb_start; 5440 hrtime_t zcb_lastprint; 5441 uint64_t zcb_totalasize; 5442 uint64_t zcb_errors[256]; 5443 int zcb_readfails; 5444 int zcb_haderrors; 5445 spa_t *zcb_spa; 5446 uint32_t **zcb_vd_obsolete_counts; 5447 avl_tree_t zcb_brt; 5448 boolean_t zcb_brt_is_active; 5449 } zdb_cb_t; 5450 5451 /* test if two DVA offsets from same vdev are within the same metaslab */ 5452 static boolean_t 5453 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5454 { 5455 vdev_t *vd = vdev_lookup_top(spa, vdev); 5456 uint64_t ms_shift = vd->vdev_ms_shift; 5457 5458 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5459 } 5460 5461 /* 5462 * Used to simplify reporting of the histogram data. 5463 */ 5464 typedef struct one_histo { 5465 const char *name; 5466 uint64_t *count; 5467 uint64_t *len; 5468 uint64_t cumulative; 5469 } one_histo_t; 5470 5471 /* 5472 * The number of separate histograms processed for psize, lsize and asize. 5473 */ 5474 #define NUM_HISTO 3 5475 5476 /* 5477 * This routine will create a fixed column size output of three different 5478 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5479 * the count, length and cumulative length of the psize, lsize and 5480 * asize blocks. 5481 * 5482 * All three types of blocks are listed on a single line 5483 * 5484 * By default the table is printed in nicenumber format (e.g. 123K) but 5485 * if the '-P' parameter is specified then the full raw number (parseable) 5486 * is printed out. 5487 */ 5488 static void 5489 dump_size_histograms(zdb_cb_t *zcb) 5490 { 5491 /* 5492 * A temporary buffer that allows us to convert a number into 5493 * a string using zdb_nicenumber to allow either raw or human 5494 * readable numbers to be output. 5495 */ 5496 char numbuf[32]; 5497 5498 /* 5499 * Define titles which are used in the headers of the tables 5500 * printed by this routine. 5501 */ 5502 const char blocksize_title1[] = "block"; 5503 const char blocksize_title2[] = "size"; 5504 const char count_title[] = "Count"; 5505 const char length_title[] = "Size"; 5506 const char cumulative_title[] = "Cum."; 5507 5508 /* 5509 * Setup the histogram arrays (psize, lsize, and asize). 5510 */ 5511 one_histo_t parm_histo[NUM_HISTO]; 5512 5513 parm_histo[0].name = "psize"; 5514 parm_histo[0].count = zcb->zcb_psize_count; 5515 parm_histo[0].len = zcb->zcb_psize_len; 5516 parm_histo[0].cumulative = 0; 5517 5518 parm_histo[1].name = "lsize"; 5519 parm_histo[1].count = zcb->zcb_lsize_count; 5520 parm_histo[1].len = zcb->zcb_lsize_len; 5521 parm_histo[1].cumulative = 0; 5522 5523 parm_histo[2].name = "asize"; 5524 parm_histo[2].count = zcb->zcb_asize_count; 5525 parm_histo[2].len = zcb->zcb_asize_len; 5526 parm_histo[2].cumulative = 0; 5527 5528 5529 (void) printf("\nBlock Size Histogram\n"); 5530 /* 5531 * Print the first line titles 5532 */ 5533 if (dump_opt['P']) 5534 (void) printf("\n%s\t", blocksize_title1); 5535 else 5536 (void) printf("\n%7s ", blocksize_title1); 5537 5538 for (int j = 0; j < NUM_HISTO; j++) { 5539 if (dump_opt['P']) { 5540 if (j < NUM_HISTO - 1) { 5541 (void) printf("%s\t\t\t", parm_histo[j].name); 5542 } else { 5543 /* Don't print trailing spaces */ 5544 (void) printf(" %s", parm_histo[j].name); 5545 } 5546 } else { 5547 if (j < NUM_HISTO - 1) { 5548 /* Left aligned strings in the output */ 5549 (void) printf("%-7s ", 5550 parm_histo[j].name); 5551 } else { 5552 /* Don't print trailing spaces */ 5553 (void) printf("%s", parm_histo[j].name); 5554 } 5555 } 5556 } 5557 (void) printf("\n"); 5558 5559 /* 5560 * Print the second line titles 5561 */ 5562 if (dump_opt['P']) { 5563 (void) printf("%s\t", blocksize_title2); 5564 } else { 5565 (void) printf("%7s ", blocksize_title2); 5566 } 5567 5568 for (int i = 0; i < NUM_HISTO; i++) { 5569 if (dump_opt['P']) { 5570 (void) printf("%s\t%s\t%s\t", 5571 count_title, length_title, cumulative_title); 5572 } else { 5573 (void) printf("%7s%7s%7s", 5574 count_title, length_title, cumulative_title); 5575 } 5576 } 5577 (void) printf("\n"); 5578 5579 /* 5580 * Print the rows 5581 */ 5582 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5583 5584 /* 5585 * Print the first column showing the blocksize 5586 */ 5587 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5588 5589 if (dump_opt['P']) { 5590 printf("%s", numbuf); 5591 } else { 5592 printf("%7s:", numbuf); 5593 } 5594 5595 /* 5596 * Print the remaining set of 3 columns per size: 5597 * for psize, lsize and asize 5598 */ 5599 for (int j = 0; j < NUM_HISTO; j++) { 5600 parm_histo[j].cumulative += parm_histo[j].len[i]; 5601 5602 zdb_nicenum(parm_histo[j].count[i], 5603 numbuf, sizeof (numbuf)); 5604 if (dump_opt['P']) 5605 (void) printf("\t%s", numbuf); 5606 else 5607 (void) printf("%7s", numbuf); 5608 5609 zdb_nicenum(parm_histo[j].len[i], 5610 numbuf, sizeof (numbuf)); 5611 if (dump_opt['P']) 5612 (void) printf("\t%s", numbuf); 5613 else 5614 (void) printf("%7s", numbuf); 5615 5616 zdb_nicenum(parm_histo[j].cumulative, 5617 numbuf, sizeof (numbuf)); 5618 if (dump_opt['P']) 5619 (void) printf("\t%s", numbuf); 5620 else 5621 (void) printf("%7s", numbuf); 5622 } 5623 (void) printf("\n"); 5624 } 5625 } 5626 5627 static void 5628 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5629 dmu_object_type_t type) 5630 { 5631 uint64_t refcnt = 0; 5632 int i; 5633 5634 ASSERT(type < ZDB_OT_TOTAL); 5635 5636 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5637 return; 5638 5639 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5640 5641 for (i = 0; i < 4; i++) { 5642 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5643 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5644 int equal; 5645 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5646 5647 zb->zb_asize += BP_GET_ASIZE(bp); 5648 zb->zb_lsize += BP_GET_LSIZE(bp); 5649 zb->zb_psize += BP_GET_PSIZE(bp); 5650 zb->zb_count++; 5651 5652 /* 5653 * The histogram is only big enough to record blocks up to 5654 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5655 * "other", bucket. 5656 */ 5657 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5658 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5659 zb->zb_psize_histogram[idx]++; 5660 5661 zb->zb_gangs += BP_COUNT_GANG(bp); 5662 5663 switch (BP_GET_NDVAS(bp)) { 5664 case 2: 5665 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5666 DVA_GET_VDEV(&bp->blk_dva[1])) { 5667 zb->zb_ditto_samevdev++; 5668 5669 if (same_metaslab(zcb->zcb_spa, 5670 DVA_GET_VDEV(&bp->blk_dva[0]), 5671 DVA_GET_OFFSET(&bp->blk_dva[0]), 5672 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5673 zb->zb_ditto_same_ms++; 5674 } 5675 break; 5676 case 3: 5677 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5678 DVA_GET_VDEV(&bp->blk_dva[1])) + 5679 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5680 DVA_GET_VDEV(&bp->blk_dva[2])) + 5681 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5682 DVA_GET_VDEV(&bp->blk_dva[2])); 5683 if (equal != 0) { 5684 zb->zb_ditto_samevdev++; 5685 5686 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5687 DVA_GET_VDEV(&bp->blk_dva[1]) && 5688 same_metaslab(zcb->zcb_spa, 5689 DVA_GET_VDEV(&bp->blk_dva[0]), 5690 DVA_GET_OFFSET(&bp->blk_dva[0]), 5691 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5692 zb->zb_ditto_same_ms++; 5693 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5694 DVA_GET_VDEV(&bp->blk_dva[2]) && 5695 same_metaslab(zcb->zcb_spa, 5696 DVA_GET_VDEV(&bp->blk_dva[0]), 5697 DVA_GET_OFFSET(&bp->blk_dva[0]), 5698 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5699 zb->zb_ditto_same_ms++; 5700 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5701 DVA_GET_VDEV(&bp->blk_dva[2]) && 5702 same_metaslab(zcb->zcb_spa, 5703 DVA_GET_VDEV(&bp->blk_dva[1]), 5704 DVA_GET_OFFSET(&bp->blk_dva[1]), 5705 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5706 zb->zb_ditto_same_ms++; 5707 } 5708 break; 5709 } 5710 } 5711 5712 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5713 5714 if (BP_IS_EMBEDDED(bp)) { 5715 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5716 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5717 [BPE_GET_PSIZE(bp)]++; 5718 return; 5719 } 5720 /* 5721 * The binning histogram bins by powers of two up to 5722 * SPA_MAXBLOCKSIZE rather than creating bins for 5723 * every possible blocksize found in the pool. 5724 */ 5725 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5726 5727 zcb->zcb_psize_count[bin]++; 5728 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5729 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5730 5731 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5732 5733 zcb->zcb_lsize_count[bin]++; 5734 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5735 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5736 5737 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5738 5739 zcb->zcb_asize_count[bin]++; 5740 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5741 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5742 5743 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5744 /* 5745 * Cloned blocks are special. We need to count them, so we can 5746 * later uncount them when reporting leaked space, and we must 5747 * only claim them them once. 5748 * 5749 * To do this, we keep our own in-memory BRT. For each block 5750 * we haven't seen before, we look it up in the real BRT and 5751 * if its there, we note it and its refcount then proceed as 5752 * normal. If we see the block again, we count it as a clone 5753 * and then give it no further consideration. 5754 */ 5755 zdb_brt_entry_t zbre_search, *zbre; 5756 avl_index_t where; 5757 5758 zbre_search.zbre_dva = bp->blk_dva[0]; 5759 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5760 if (zbre != NULL) { 5761 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5762 zcb->zcb_clone_blocks++; 5763 5764 zbre->zbre_refcount--; 5765 if (zbre->zbre_refcount == 0) { 5766 avl_remove(&zcb->zcb_brt, zbre); 5767 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5768 } 5769 return; 5770 } 5771 5772 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5773 if (crefcnt > 0) { 5774 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5775 UMEM_NOFAIL); 5776 zbre->zbre_dva = bp->blk_dva[0]; 5777 zbre->zbre_refcount = crefcnt; 5778 avl_insert(&zcb->zcb_brt, zbre, where); 5779 } 5780 } 5781 5782 if (dump_opt['L']) 5783 return; 5784 5785 if (BP_GET_DEDUP(bp)) { 5786 ddt_t *ddt; 5787 ddt_entry_t *dde; 5788 5789 ddt = ddt_select(zcb->zcb_spa, bp); 5790 ddt_enter(ddt); 5791 dde = ddt_lookup(ddt, bp, B_FALSE); 5792 5793 if (dde == NULL) { 5794 refcnt = 0; 5795 } else { 5796 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5797 ddt_phys_decref(ddp); 5798 refcnt = ddp->ddp_refcnt; 5799 if (ddt_phys_total_refcnt(dde) == 0) 5800 ddt_remove(ddt, dde); 5801 } 5802 ddt_exit(ddt); 5803 } 5804 5805 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5806 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5807 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5808 } 5809 5810 static void 5811 zdb_blkptr_done(zio_t *zio) 5812 { 5813 spa_t *spa = zio->io_spa; 5814 blkptr_t *bp = zio->io_bp; 5815 int ioerr = zio->io_error; 5816 zdb_cb_t *zcb = zio->io_private; 5817 zbookmark_phys_t *zb = &zio->io_bookmark; 5818 5819 mutex_enter(&spa->spa_scrub_lock); 5820 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5821 cv_broadcast(&spa->spa_scrub_io_cv); 5822 5823 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5824 char blkbuf[BP_SPRINTF_LEN]; 5825 5826 zcb->zcb_haderrors = 1; 5827 zcb->zcb_errors[ioerr]++; 5828 5829 if (dump_opt['b'] >= 2) 5830 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5831 else 5832 blkbuf[0] = '\0'; 5833 5834 (void) printf("zdb_blkptr_cb: " 5835 "Got error %d reading " 5836 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5837 ioerr, 5838 (u_longlong_t)zb->zb_objset, 5839 (u_longlong_t)zb->zb_object, 5840 (u_longlong_t)zb->zb_level, 5841 (u_longlong_t)zb->zb_blkid, 5842 blkbuf); 5843 } 5844 mutex_exit(&spa->spa_scrub_lock); 5845 5846 abd_free(zio->io_abd); 5847 } 5848 5849 static int 5850 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5851 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5852 { 5853 zdb_cb_t *zcb = arg; 5854 dmu_object_type_t type; 5855 boolean_t is_metadata; 5856 5857 if (zb->zb_level == ZB_DNODE_LEVEL) 5858 return (0); 5859 5860 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 5861 char blkbuf[BP_SPRINTF_LEN]; 5862 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5863 (void) printf("objset %llu object %llu " 5864 "level %lld offset 0x%llx %s\n", 5865 (u_longlong_t)zb->zb_objset, 5866 (u_longlong_t)zb->zb_object, 5867 (longlong_t)zb->zb_level, 5868 (u_longlong_t)blkid2offset(dnp, bp, zb), 5869 blkbuf); 5870 } 5871 5872 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5873 return (0); 5874 5875 type = BP_GET_TYPE(bp); 5876 5877 zdb_count_block(zcb, zilog, bp, 5878 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5879 5880 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5881 5882 if (!BP_IS_EMBEDDED(bp) && 5883 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5884 size_t size = BP_GET_PSIZE(bp); 5885 abd_t *abd = abd_alloc(size, B_FALSE); 5886 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5887 5888 /* If it's an intent log block, failure is expected. */ 5889 if (zb->zb_level == ZB_ZIL_LEVEL) 5890 flags |= ZIO_FLAG_SPECULATIVE; 5891 5892 mutex_enter(&spa->spa_scrub_lock); 5893 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5894 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5895 spa->spa_load_verify_bytes += size; 5896 mutex_exit(&spa->spa_scrub_lock); 5897 5898 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5899 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5900 } 5901 5902 zcb->zcb_readfails = 0; 5903 5904 /* only call gethrtime() every 100 blocks */ 5905 static int iters; 5906 if (++iters > 100) 5907 iters = 0; 5908 else 5909 return (0); 5910 5911 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5912 uint64_t now = gethrtime(); 5913 char buf[10]; 5914 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5915 uint64_t kb_per_sec = 5916 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5917 uint64_t sec_remaining = 5918 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5919 5920 /* make sure nicenum has enough space */ 5921 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5922 5923 zfs_nicebytes(bytes, buf, sizeof (buf)); 5924 (void) fprintf(stderr, 5925 "\r%5s completed (%4"PRIu64"MB/s) " 5926 "estimated time remaining: " 5927 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5928 buf, kb_per_sec / 1024, 5929 sec_remaining / 60 / 60, 5930 sec_remaining / 60 % 60, 5931 sec_remaining % 60); 5932 5933 zcb->zcb_lastprint = now; 5934 } 5935 5936 return (0); 5937 } 5938 5939 static void 5940 zdb_leak(void *arg, uint64_t start, uint64_t size) 5941 { 5942 vdev_t *vd = arg; 5943 5944 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5945 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5946 } 5947 5948 static metaslab_ops_t zdb_metaslab_ops = { 5949 NULL /* alloc */ 5950 }; 5951 5952 static int 5953 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5954 uint64_t txg, void *arg) 5955 { 5956 spa_vdev_removal_t *svr = arg; 5957 5958 uint64_t offset = sme->sme_offset; 5959 uint64_t size = sme->sme_run; 5960 5961 /* skip vdevs we don't care about */ 5962 if (sme->sme_vdev != svr->svr_vdev_id) 5963 return (0); 5964 5965 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5966 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5967 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5968 5969 if (txg < metaslab_unflushed_txg(ms)) 5970 return (0); 5971 5972 if (sme->sme_type == SM_ALLOC) 5973 range_tree_add(svr->svr_allocd_segs, offset, size); 5974 else 5975 range_tree_remove(svr->svr_allocd_segs, offset, size); 5976 5977 return (0); 5978 } 5979 5980 static void 5981 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5982 uint64_t size, void *arg) 5983 { 5984 (void) inner_offset, (void) arg; 5985 5986 /* 5987 * This callback was called through a remap from 5988 * a device being removed. Therefore, the vdev that 5989 * this callback is applied to is a concrete 5990 * vdev. 5991 */ 5992 ASSERT(vdev_is_concrete(vd)); 5993 5994 VERIFY0(metaslab_claim_impl(vd, offset, size, 5995 spa_min_claim_txg(vd->vdev_spa))); 5996 } 5997 5998 static void 5999 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6000 { 6001 vdev_t *vd = arg; 6002 6003 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6004 claim_segment_impl_cb, NULL); 6005 } 6006 6007 /* 6008 * After accounting for all allocated blocks that are directly referenced, 6009 * we might have missed a reference to a block from a partially complete 6010 * (and thus unused) indirect mapping object. We perform a secondary pass 6011 * through the metaslabs we have already mapped and claim the destination 6012 * blocks. 6013 */ 6014 static void 6015 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6016 { 6017 if (dump_opt['L']) 6018 return; 6019 6020 if (spa->spa_vdev_removal == NULL) 6021 return; 6022 6023 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6024 6025 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6026 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6027 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6028 6029 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 6030 6031 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 6032 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6033 metaslab_t *msp = vd->vdev_ms[msi]; 6034 6035 ASSERT0(range_tree_space(allocs)); 6036 if (msp->ms_sm != NULL) 6037 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6038 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 6039 } 6040 range_tree_destroy(allocs); 6041 6042 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6043 6044 /* 6045 * Clear everything past what has been synced, 6046 * because we have not allocated mappings for 6047 * it yet. 6048 */ 6049 range_tree_clear(svr->svr_allocd_segs, 6050 vdev_indirect_mapping_max_offset(vim), 6051 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6052 6053 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 6054 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6055 6056 spa_config_exit(spa, SCL_CONFIG, FTAG); 6057 } 6058 6059 static int 6060 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6061 dmu_tx_t *tx) 6062 { 6063 (void) tx; 6064 zdb_cb_t *zcb = arg; 6065 spa_t *spa = zcb->zcb_spa; 6066 vdev_t *vd; 6067 const dva_t *dva = &bp->blk_dva[0]; 6068 6069 ASSERT(!bp_freed); 6070 ASSERT(!dump_opt['L']); 6071 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6072 6073 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6074 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6075 ASSERT3P(vd, !=, NULL); 6076 spa_config_exit(spa, SCL_VDEV, FTAG); 6077 6078 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6079 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6080 6081 vdev_indirect_mapping_increment_obsolete_count( 6082 vd->vdev_indirect_mapping, 6083 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6084 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6085 6086 return (0); 6087 } 6088 6089 static uint32_t * 6090 zdb_load_obsolete_counts(vdev_t *vd) 6091 { 6092 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6093 spa_t *spa = vd->vdev_spa; 6094 spa_condensing_indirect_phys_t *scip = 6095 &spa->spa_condensing_indirect_phys; 6096 uint64_t obsolete_sm_object; 6097 uint32_t *counts; 6098 6099 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6100 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6101 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6102 if (vd->vdev_obsolete_sm != NULL) { 6103 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6104 vd->vdev_obsolete_sm); 6105 } 6106 if (scip->scip_vdev == vd->vdev_id && 6107 scip->scip_prev_obsolete_sm_object != 0) { 6108 space_map_t *prev_obsolete_sm = NULL; 6109 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6110 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6111 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6112 prev_obsolete_sm); 6113 space_map_close(prev_obsolete_sm); 6114 } 6115 return (counts); 6116 } 6117 6118 static void 6119 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6120 { 6121 ddt_bookmark_t ddb = {0}; 6122 ddt_entry_t dde; 6123 int error; 6124 int p; 6125 6126 ASSERT(!dump_opt['L']); 6127 6128 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6129 blkptr_t blk; 6130 ddt_phys_t *ddp = dde.dde_phys; 6131 6132 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6133 return; 6134 6135 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6136 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6137 VERIFY(ddt); 6138 6139 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6140 if (ddp->ddp_phys_birth == 0) 6141 continue; 6142 ddt_bp_create(ddb.ddb_checksum, 6143 &dde.dde_key, ddp, &blk); 6144 if (p == DDT_PHYS_DITTO) { 6145 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6146 } else { 6147 zcb->zcb_dedup_asize += 6148 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6149 zcb->zcb_dedup_blocks++; 6150 } 6151 } 6152 6153 ddt_enter(ddt); 6154 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6155 ddt_exit(ddt); 6156 } 6157 6158 ASSERT(error == ENOENT); 6159 } 6160 6161 typedef struct checkpoint_sm_exclude_entry_arg { 6162 vdev_t *cseea_vd; 6163 uint64_t cseea_checkpoint_size; 6164 } checkpoint_sm_exclude_entry_arg_t; 6165 6166 static int 6167 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6168 { 6169 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6170 vdev_t *vd = cseea->cseea_vd; 6171 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6172 uint64_t end = sme->sme_offset + sme->sme_run; 6173 6174 ASSERT(sme->sme_type == SM_FREE); 6175 6176 /* 6177 * Since the vdev_checkpoint_sm exists in the vdev level 6178 * and the ms_sm space maps exist in the metaslab level, 6179 * an entry in the checkpoint space map could theoretically 6180 * cross the boundaries of the metaslab that it belongs. 6181 * 6182 * In reality, because of the way that we populate and 6183 * manipulate the checkpoint's space maps currently, 6184 * there shouldn't be any entries that cross metaslabs. 6185 * Hence the assertion below. 6186 * 6187 * That said, there is no fundamental requirement that 6188 * the checkpoint's space map entries should not cross 6189 * metaslab boundaries. So if needed we could add code 6190 * that handles metaslab-crossing segments in the future. 6191 */ 6192 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6193 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6194 6195 /* 6196 * By removing the entry from the allocated segments we 6197 * also verify that the entry is there to begin with. 6198 */ 6199 mutex_enter(&ms->ms_lock); 6200 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6201 mutex_exit(&ms->ms_lock); 6202 6203 cseea->cseea_checkpoint_size += sme->sme_run; 6204 return (0); 6205 } 6206 6207 static void 6208 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6209 { 6210 spa_t *spa = vd->vdev_spa; 6211 space_map_t *checkpoint_sm = NULL; 6212 uint64_t checkpoint_sm_obj; 6213 6214 /* 6215 * If there is no vdev_top_zap, we are in a pool whose 6216 * version predates the pool checkpoint feature. 6217 */ 6218 if (vd->vdev_top_zap == 0) 6219 return; 6220 6221 /* 6222 * If there is no reference of the vdev_checkpoint_sm in 6223 * the vdev_top_zap, then one of the following scenarios 6224 * is true: 6225 * 6226 * 1] There is no checkpoint 6227 * 2] There is a checkpoint, but no checkpointed blocks 6228 * have been freed yet 6229 * 3] The current vdev is indirect 6230 * 6231 * In these cases we return immediately. 6232 */ 6233 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6234 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6235 return; 6236 6237 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6238 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6239 &checkpoint_sm_obj)); 6240 6241 checkpoint_sm_exclude_entry_arg_t cseea; 6242 cseea.cseea_vd = vd; 6243 cseea.cseea_checkpoint_size = 0; 6244 6245 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6246 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6247 6248 VERIFY0(space_map_iterate(checkpoint_sm, 6249 space_map_length(checkpoint_sm), 6250 checkpoint_sm_exclude_entry_cb, &cseea)); 6251 space_map_close(checkpoint_sm); 6252 6253 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6254 } 6255 6256 static void 6257 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6258 { 6259 ASSERT(!dump_opt['L']); 6260 6261 vdev_t *rvd = spa->spa_root_vdev; 6262 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6263 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6264 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6265 } 6266 } 6267 6268 static int 6269 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6270 uint64_t txg, void *arg) 6271 { 6272 int64_t *ualloc_space = arg; 6273 6274 uint64_t offset = sme->sme_offset; 6275 uint64_t vdev_id = sme->sme_vdev; 6276 6277 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6278 if (!vdev_is_concrete(vd)) 6279 return (0); 6280 6281 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6282 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6283 6284 if (txg < metaslab_unflushed_txg(ms)) 6285 return (0); 6286 6287 if (sme->sme_type == SM_ALLOC) 6288 *ualloc_space += sme->sme_run; 6289 else 6290 *ualloc_space -= sme->sme_run; 6291 6292 return (0); 6293 } 6294 6295 static int64_t 6296 get_unflushed_alloc_space(spa_t *spa) 6297 { 6298 if (dump_opt['L']) 6299 return (0); 6300 6301 int64_t ualloc_space = 0; 6302 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6303 &ualloc_space); 6304 return (ualloc_space); 6305 } 6306 6307 static int 6308 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6309 { 6310 maptype_t *uic_maptype = arg; 6311 6312 uint64_t offset = sme->sme_offset; 6313 uint64_t size = sme->sme_run; 6314 uint64_t vdev_id = sme->sme_vdev; 6315 6316 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6317 6318 /* skip indirect vdevs */ 6319 if (!vdev_is_concrete(vd)) 6320 return (0); 6321 6322 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6323 6324 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6325 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6326 6327 if (txg < metaslab_unflushed_txg(ms)) 6328 return (0); 6329 6330 if (*uic_maptype == sme->sme_type) 6331 range_tree_add(ms->ms_allocatable, offset, size); 6332 else 6333 range_tree_remove(ms->ms_allocatable, offset, size); 6334 6335 return (0); 6336 } 6337 6338 static void 6339 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6340 { 6341 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6342 } 6343 6344 static void 6345 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6346 { 6347 vdev_t *rvd = spa->spa_root_vdev; 6348 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6349 vdev_t *vd = rvd->vdev_child[i]; 6350 6351 ASSERT3U(i, ==, vd->vdev_id); 6352 6353 if (vd->vdev_ops == &vdev_indirect_ops) 6354 continue; 6355 6356 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6357 metaslab_t *msp = vd->vdev_ms[m]; 6358 6359 (void) fprintf(stderr, 6360 "\rloading concrete vdev %llu, " 6361 "metaslab %llu of %llu ...", 6362 (longlong_t)vd->vdev_id, 6363 (longlong_t)msp->ms_id, 6364 (longlong_t)vd->vdev_ms_count); 6365 6366 mutex_enter(&msp->ms_lock); 6367 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6368 6369 /* 6370 * We don't want to spend the CPU manipulating the 6371 * size-ordered tree, so clear the range_tree ops. 6372 */ 6373 msp->ms_allocatable->rt_ops = NULL; 6374 6375 if (msp->ms_sm != NULL) { 6376 VERIFY0(space_map_load(msp->ms_sm, 6377 msp->ms_allocatable, maptype)); 6378 } 6379 if (!msp->ms_loaded) 6380 msp->ms_loaded = B_TRUE; 6381 mutex_exit(&msp->ms_lock); 6382 } 6383 } 6384 6385 load_unflushed_to_ms_allocatables(spa, maptype); 6386 } 6387 6388 /* 6389 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6390 * index in vim_entries that has the first entry in this metaslab. 6391 * On return, it will be set to the first entry after this metaslab. 6392 */ 6393 static void 6394 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6395 uint64_t *vim_idxp) 6396 { 6397 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6398 6399 mutex_enter(&msp->ms_lock); 6400 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6401 6402 /* 6403 * We don't want to spend the CPU manipulating the 6404 * size-ordered tree, so clear the range_tree ops. 6405 */ 6406 msp->ms_allocatable->rt_ops = NULL; 6407 6408 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6409 (*vim_idxp)++) { 6410 vdev_indirect_mapping_entry_phys_t *vimep = 6411 &vim->vim_entries[*vim_idxp]; 6412 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6413 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6414 ASSERT3U(ent_offset, >=, msp->ms_start); 6415 if (ent_offset >= msp->ms_start + msp->ms_size) 6416 break; 6417 6418 /* 6419 * Mappings do not cross metaslab boundaries, 6420 * because we create them by walking the metaslabs. 6421 */ 6422 ASSERT3U(ent_offset + ent_len, <=, 6423 msp->ms_start + msp->ms_size); 6424 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6425 } 6426 6427 if (!msp->ms_loaded) 6428 msp->ms_loaded = B_TRUE; 6429 mutex_exit(&msp->ms_lock); 6430 } 6431 6432 static void 6433 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6434 { 6435 ASSERT(!dump_opt['L']); 6436 6437 vdev_t *rvd = spa->spa_root_vdev; 6438 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6439 vdev_t *vd = rvd->vdev_child[c]; 6440 6441 ASSERT3U(c, ==, vd->vdev_id); 6442 6443 if (vd->vdev_ops != &vdev_indirect_ops) 6444 continue; 6445 6446 /* 6447 * Note: we don't check for mapping leaks on 6448 * removing vdevs because their ms_allocatable's 6449 * are used to look for leaks in allocated space. 6450 */ 6451 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6452 6453 /* 6454 * Normally, indirect vdevs don't have any 6455 * metaslabs. We want to set them up for 6456 * zio_claim(). 6457 */ 6458 vdev_metaslab_group_create(vd); 6459 VERIFY0(vdev_metaslab_init(vd, 0)); 6460 6461 vdev_indirect_mapping_t *vim __maybe_unused = 6462 vd->vdev_indirect_mapping; 6463 uint64_t vim_idx = 0; 6464 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6465 6466 (void) fprintf(stderr, 6467 "\rloading indirect vdev %llu, " 6468 "metaslab %llu of %llu ...", 6469 (longlong_t)vd->vdev_id, 6470 (longlong_t)vd->vdev_ms[m]->ms_id, 6471 (longlong_t)vd->vdev_ms_count); 6472 6473 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6474 &vim_idx); 6475 } 6476 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6477 } 6478 } 6479 6480 static void 6481 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6482 { 6483 zcb->zcb_spa = spa; 6484 6485 if (dump_opt['L']) 6486 return; 6487 6488 dsl_pool_t *dp = spa->spa_dsl_pool; 6489 vdev_t *rvd = spa->spa_root_vdev; 6490 6491 /* 6492 * We are going to be changing the meaning of the metaslab's 6493 * ms_allocatable. Ensure that the allocator doesn't try to 6494 * use the tree. 6495 */ 6496 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6497 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6498 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6499 6500 zcb->zcb_vd_obsolete_counts = 6501 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6502 UMEM_NOFAIL); 6503 6504 /* 6505 * For leak detection, we overload the ms_allocatable trees 6506 * to contain allocated segments instead of free segments. 6507 * As a result, we can't use the normal metaslab_load/unload 6508 * interfaces. 6509 */ 6510 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6511 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6512 6513 /* 6514 * On load_concrete_ms_allocatable_trees() we loaded all the 6515 * allocated entries from the ms_sm to the ms_allocatable for 6516 * each metaslab. If the pool has a checkpoint or is in the 6517 * middle of discarding a checkpoint, some of these blocks 6518 * may have been freed but their ms_sm may not have been 6519 * updated because they are referenced by the checkpoint. In 6520 * order to avoid false-positives during leak-detection, we 6521 * go through the vdev's checkpoint space map and exclude all 6522 * its entries from their relevant ms_allocatable. 6523 * 6524 * We also aggregate the space held by the checkpoint and add 6525 * it to zcb_checkpoint_size. 6526 * 6527 * Note that at this point we are also verifying that all the 6528 * entries on the checkpoint_sm are marked as allocated in 6529 * the ms_sm of their relevant metaslab. 6530 * [see comment in checkpoint_sm_exclude_entry_cb()] 6531 */ 6532 zdb_leak_init_exclude_checkpoint(spa, zcb); 6533 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6534 6535 /* for cleaner progress output */ 6536 (void) fprintf(stderr, "\n"); 6537 6538 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6539 ASSERT(spa_feature_is_enabled(spa, 6540 SPA_FEATURE_DEVICE_REMOVAL)); 6541 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6542 increment_indirect_mapping_cb, zcb, NULL); 6543 } 6544 6545 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6546 zdb_ddt_leak_init(spa, zcb); 6547 spa_config_exit(spa, SCL_CONFIG, FTAG); 6548 } 6549 6550 static boolean_t 6551 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6552 { 6553 boolean_t leaks = B_FALSE; 6554 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6555 uint64_t total_leaked = 0; 6556 boolean_t are_precise = B_FALSE; 6557 6558 ASSERT(vim != NULL); 6559 6560 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6561 vdev_indirect_mapping_entry_phys_t *vimep = 6562 &vim->vim_entries[i]; 6563 uint64_t obsolete_bytes = 0; 6564 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6565 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6566 6567 /* 6568 * This is not very efficient but it's easy to 6569 * verify correctness. 6570 */ 6571 for (uint64_t inner_offset = 0; 6572 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6573 inner_offset += 1ULL << vd->vdev_ashift) { 6574 if (range_tree_contains(msp->ms_allocatable, 6575 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6576 obsolete_bytes += 1ULL << vd->vdev_ashift; 6577 } 6578 } 6579 6580 int64_t bytes_leaked = obsolete_bytes - 6581 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6582 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6583 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6584 6585 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6586 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6587 (void) printf("obsolete indirect mapping count " 6588 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6589 (u_longlong_t)vd->vdev_id, 6590 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6591 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6592 (u_longlong_t)bytes_leaked); 6593 } 6594 total_leaked += ABS(bytes_leaked); 6595 } 6596 6597 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6598 if (!are_precise && total_leaked > 0) { 6599 int pct_leaked = total_leaked * 100 / 6600 vdev_indirect_mapping_bytes_mapped(vim); 6601 (void) printf("cannot verify obsolete indirect mapping " 6602 "counts of vdev %llu because precise feature was not " 6603 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6604 "unreferenced\n", 6605 (u_longlong_t)vd->vdev_id, pct_leaked, 6606 (u_longlong_t)total_leaked); 6607 } else if (total_leaked > 0) { 6608 (void) printf("obsolete indirect mapping count mismatch " 6609 "for vdev %llu -- %llx total bytes mismatched\n", 6610 (u_longlong_t)vd->vdev_id, 6611 (u_longlong_t)total_leaked); 6612 leaks |= B_TRUE; 6613 } 6614 6615 vdev_indirect_mapping_free_obsolete_counts(vim, 6616 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6617 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6618 6619 return (leaks); 6620 } 6621 6622 static boolean_t 6623 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6624 { 6625 if (dump_opt['L']) 6626 return (B_FALSE); 6627 6628 boolean_t leaks = B_FALSE; 6629 vdev_t *rvd = spa->spa_root_vdev; 6630 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6631 vdev_t *vd = rvd->vdev_child[c]; 6632 6633 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6634 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6635 } 6636 6637 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6638 metaslab_t *msp = vd->vdev_ms[m]; 6639 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6640 spa_embedded_log_class(spa)) ? 6641 vd->vdev_log_mg : vd->vdev_mg); 6642 6643 /* 6644 * ms_allocatable has been overloaded 6645 * to contain allocated segments. Now that 6646 * we finished traversing all blocks, any 6647 * block that remains in the ms_allocatable 6648 * represents an allocated block that we 6649 * did not claim during the traversal. 6650 * Claimed blocks would have been removed 6651 * from the ms_allocatable. For indirect 6652 * vdevs, space remaining in the tree 6653 * represents parts of the mapping that are 6654 * not referenced, which is not a bug. 6655 */ 6656 if (vd->vdev_ops == &vdev_indirect_ops) { 6657 range_tree_vacate(msp->ms_allocatable, 6658 NULL, NULL); 6659 } else { 6660 range_tree_vacate(msp->ms_allocatable, 6661 zdb_leak, vd); 6662 } 6663 if (msp->ms_loaded) { 6664 msp->ms_loaded = B_FALSE; 6665 } 6666 } 6667 } 6668 6669 umem_free(zcb->zcb_vd_obsolete_counts, 6670 rvd->vdev_children * sizeof (uint32_t *)); 6671 zcb->zcb_vd_obsolete_counts = NULL; 6672 6673 return (leaks); 6674 } 6675 6676 static int 6677 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6678 { 6679 (void) tx; 6680 zdb_cb_t *zcb = arg; 6681 6682 if (dump_opt['b'] >= 5) { 6683 char blkbuf[BP_SPRINTF_LEN]; 6684 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6685 (void) printf("[%s] %s\n", 6686 "deferred free", blkbuf); 6687 } 6688 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6689 return (0); 6690 } 6691 6692 /* 6693 * Iterate over livelists which have been destroyed by the user but 6694 * are still present in the MOS, waiting to be freed 6695 */ 6696 static void 6697 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6698 { 6699 objset_t *mos = spa->spa_meta_objset; 6700 uint64_t zap_obj; 6701 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6702 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6703 if (err == ENOENT) 6704 return; 6705 ASSERT0(err); 6706 6707 zap_cursor_t zc; 6708 zap_attribute_t attr; 6709 dsl_deadlist_t ll; 6710 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6711 ll.dl_os = NULL; 6712 for (zap_cursor_init(&zc, mos, zap_obj); 6713 zap_cursor_retrieve(&zc, &attr) == 0; 6714 (void) zap_cursor_advance(&zc)) { 6715 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6716 func(&ll, arg); 6717 dsl_deadlist_close(&ll); 6718 } 6719 zap_cursor_fini(&zc); 6720 } 6721 6722 static int 6723 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6724 dmu_tx_t *tx) 6725 { 6726 ASSERT(!bp_freed); 6727 return (count_block_cb(arg, bp, tx)); 6728 } 6729 6730 static int 6731 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6732 { 6733 zdb_cb_t *zbc = args; 6734 bplist_t blks; 6735 bplist_create(&blks); 6736 /* determine which blocks have been alloc'd but not freed */ 6737 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6738 /* count those blocks */ 6739 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6740 bplist_destroy(&blks); 6741 return (0); 6742 } 6743 6744 static void 6745 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6746 { 6747 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6748 } 6749 6750 /* 6751 * Count the blocks in the livelists that have been destroyed by the user 6752 * but haven't yet been freed. 6753 */ 6754 static void 6755 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6756 { 6757 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6758 } 6759 6760 static void 6761 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6762 { 6763 ASSERT3P(arg, ==, NULL); 6764 global_feature_count[SPA_FEATURE_LIVELIST]++; 6765 dump_blkptr_list(ll, "Deleted Livelist"); 6766 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6767 } 6768 6769 /* 6770 * Print out, register object references to, and increment feature counts for 6771 * livelists that have been destroyed by the user but haven't yet been freed. 6772 */ 6773 static void 6774 deleted_livelists_dump_mos(spa_t *spa) 6775 { 6776 uint64_t zap_obj; 6777 objset_t *mos = spa->spa_meta_objset; 6778 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6779 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6780 if (err == ENOENT) 6781 return; 6782 mos_obj_refd(zap_obj); 6783 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6784 } 6785 6786 static int 6787 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6788 { 6789 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6790 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6791 int cmp; 6792 6793 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6794 if (cmp == 0) 6795 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6796 6797 return (cmp); 6798 } 6799 6800 static int 6801 dump_block_stats(spa_t *spa) 6802 { 6803 zdb_cb_t *zcb; 6804 zdb_blkstats_t *zb, *tzb; 6805 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6806 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6807 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6808 boolean_t leaks = B_FALSE; 6809 int e, c, err; 6810 bp_embedded_type_t i; 6811 6812 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6813 6814 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6815 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6816 sizeof (zdb_brt_entry_t), 6817 offsetof(zdb_brt_entry_t, zbre_node)); 6818 zcb->zcb_brt_is_active = B_TRUE; 6819 } 6820 6821 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6822 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6823 (dump_opt['c'] == 1) ? "metadata " : "", 6824 dump_opt['c'] ? "checksums " : "", 6825 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6826 !dump_opt['L'] ? "nothing leaked " : ""); 6827 6828 /* 6829 * When leak detection is enabled we load all space maps as SM_ALLOC 6830 * maps, then traverse the pool claiming each block we discover. If 6831 * the pool is perfectly consistent, the segment trees will be empty 6832 * when we're done. Anything left over is a leak; any block we can't 6833 * claim (because it's not part of any space map) is a double 6834 * allocation, reference to a freed block, or an unclaimed log block. 6835 * 6836 * When leak detection is disabled (-L option) we still traverse the 6837 * pool claiming each block we discover, but we skip opening any space 6838 * maps. 6839 */ 6840 zdb_leak_init(spa, zcb); 6841 6842 /* 6843 * If there's a deferred-free bplist, process that first. 6844 */ 6845 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6846 bpobj_count_block_cb, zcb, NULL); 6847 6848 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6849 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6850 bpobj_count_block_cb, zcb, NULL); 6851 } 6852 6853 zdb_claim_removing(spa, zcb); 6854 6855 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6856 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6857 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6858 zcb, NULL)); 6859 } 6860 6861 deleted_livelists_count_blocks(spa, zcb); 6862 6863 if (dump_opt['c'] > 1) 6864 flags |= TRAVERSE_PREFETCH_DATA; 6865 6866 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6867 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6868 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6869 zcb->zcb_totalasize += 6870 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6871 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6872 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6873 6874 /* 6875 * If we've traversed the data blocks then we need to wait for those 6876 * I/Os to complete. We leverage "The Godfather" zio to wait on 6877 * all async I/Os to complete. 6878 */ 6879 if (dump_opt['c']) { 6880 for (c = 0; c < max_ncpus; c++) { 6881 (void) zio_wait(spa->spa_async_zio_root[c]); 6882 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6883 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6884 ZIO_FLAG_GODFATHER); 6885 } 6886 } 6887 ASSERT0(spa->spa_load_verify_bytes); 6888 6889 /* 6890 * Done after zio_wait() since zcb_haderrors is modified in 6891 * zdb_blkptr_done() 6892 */ 6893 zcb->zcb_haderrors |= err; 6894 6895 if (zcb->zcb_haderrors) { 6896 (void) printf("\nError counts:\n\n"); 6897 (void) printf("\t%5s %s\n", "errno", "count"); 6898 for (e = 0; e < 256; e++) { 6899 if (zcb->zcb_errors[e] != 0) { 6900 (void) printf("\t%5d %llu\n", 6901 e, (u_longlong_t)zcb->zcb_errors[e]); 6902 } 6903 } 6904 } 6905 6906 /* 6907 * Report any leaked segments. 6908 */ 6909 leaks |= zdb_leak_fini(spa, zcb); 6910 6911 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6912 6913 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6914 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6915 6916 total_alloc = norm_alloc + 6917 metaslab_class_get_alloc(spa_log_class(spa)) + 6918 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6919 metaslab_class_get_alloc(spa_special_class(spa)) + 6920 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6921 get_unflushed_alloc_space(spa); 6922 total_found = 6923 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6924 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6925 6926 if (total_found == total_alloc && !dump_opt['L']) { 6927 (void) printf("\n\tNo leaks (block sum matches space" 6928 " maps exactly)\n"); 6929 } else if (!dump_opt['L']) { 6930 (void) printf("block traversal size %llu != alloc %llu " 6931 "(%s %lld)\n", 6932 (u_longlong_t)total_found, 6933 (u_longlong_t)total_alloc, 6934 (dump_opt['L']) ? "unreachable" : "leaked", 6935 (longlong_t)(total_alloc - total_found)); 6936 leaks = B_TRUE; 6937 } 6938 6939 if (tzb->zb_count == 0) { 6940 umem_free(zcb, sizeof (zdb_cb_t)); 6941 return (2); 6942 } 6943 6944 (void) printf("\n"); 6945 (void) printf("\t%-16s %14llu\n", "bp count:", 6946 (u_longlong_t)tzb->zb_count); 6947 (void) printf("\t%-16s %14llu\n", "ganged count:", 6948 (longlong_t)tzb->zb_gangs); 6949 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6950 (u_longlong_t)tzb->zb_lsize, 6951 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6952 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6953 "bp physical:", (u_longlong_t)tzb->zb_psize, 6954 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6955 (double)tzb->zb_lsize / tzb->zb_psize); 6956 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6957 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6958 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6959 (double)tzb->zb_lsize / tzb->zb_asize); 6960 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6961 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6962 (u_longlong_t)zcb->zcb_dedup_blocks, 6963 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6964 (void) printf("\t%-16s %14llu count: %6llu\n", 6965 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6966 (u_longlong_t)zcb->zcb_clone_blocks); 6967 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6968 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6969 6970 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6971 uint64_t alloc = metaslab_class_get_alloc( 6972 spa_special_class(spa)); 6973 uint64_t space = metaslab_class_get_space( 6974 spa_special_class(spa)); 6975 6976 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6977 "Special class", (u_longlong_t)alloc, 6978 100.0 * alloc / space); 6979 } 6980 6981 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6982 uint64_t alloc = metaslab_class_get_alloc( 6983 spa_dedup_class(spa)); 6984 uint64_t space = metaslab_class_get_space( 6985 spa_dedup_class(spa)); 6986 6987 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6988 "Dedup class", (u_longlong_t)alloc, 6989 100.0 * alloc / space); 6990 } 6991 6992 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6993 uint64_t alloc = metaslab_class_get_alloc( 6994 spa_embedded_log_class(spa)); 6995 uint64_t space = metaslab_class_get_space( 6996 spa_embedded_log_class(spa)); 6997 6998 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6999 "Embedded log class", (u_longlong_t)alloc, 7000 100.0 * alloc / space); 7001 } 7002 7003 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7004 if (zcb->zcb_embedded_blocks[i] == 0) 7005 continue; 7006 (void) printf("\n"); 7007 (void) printf("\tadditional, non-pointer bps of type %u: " 7008 "%10llu\n", 7009 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7010 7011 if (dump_opt['b'] >= 3) { 7012 (void) printf("\t number of (compressed) bytes: " 7013 "number of bps\n"); 7014 dump_histogram(zcb->zcb_embedded_histogram[i], 7015 sizeof (zcb->zcb_embedded_histogram[i]) / 7016 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7017 } 7018 } 7019 7020 if (tzb->zb_ditto_samevdev != 0) { 7021 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7022 (longlong_t)tzb->zb_ditto_samevdev); 7023 } 7024 if (tzb->zb_ditto_same_ms != 0) { 7025 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7026 (longlong_t)tzb->zb_ditto_same_ms); 7027 } 7028 7029 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7030 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7031 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7032 7033 if (vim == NULL) { 7034 continue; 7035 } 7036 7037 char mem[32]; 7038 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7039 mem, vdev_indirect_mapping_size(vim)); 7040 7041 (void) printf("\tindirect vdev id %llu has %llu segments " 7042 "(%s in memory)\n", 7043 (longlong_t)vd->vdev_id, 7044 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7045 } 7046 7047 if (dump_opt['b'] >= 2) { 7048 int l, t, level; 7049 char csize[32], lsize[32], psize[32], asize[32]; 7050 char avg[32], gang[32]; 7051 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7052 "\t avg\t comp\t%%Total\tType\n"); 7053 7054 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7055 UMEM_NOFAIL); 7056 7057 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7058 const char *typename; 7059 7060 /* make sure nicenum has enough space */ 7061 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7062 "csize truncated"); 7063 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7064 "lsize truncated"); 7065 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7066 "psize truncated"); 7067 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7068 "asize truncated"); 7069 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7070 "avg truncated"); 7071 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7072 "gang truncated"); 7073 7074 if (t < DMU_OT_NUMTYPES) 7075 typename = dmu_ot[t].ot_name; 7076 else 7077 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7078 7079 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7080 (void) printf("%6s\t%5s\t%5s\t%5s" 7081 "\t%5s\t%5s\t%6s\t%s\n", 7082 "-", 7083 "-", 7084 "-", 7085 "-", 7086 "-", 7087 "-", 7088 "-", 7089 typename); 7090 continue; 7091 } 7092 7093 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7094 level = (l == -1 ? ZB_TOTAL : l); 7095 zb = &zcb->zcb_type[level][t]; 7096 7097 if (zb->zb_asize == 0) 7098 continue; 7099 7100 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7101 (level > 0 || DMU_OT_IS_METADATA(t))) { 7102 mdstats->zb_count += zb->zb_count; 7103 mdstats->zb_lsize += zb->zb_lsize; 7104 mdstats->zb_psize += zb->zb_psize; 7105 mdstats->zb_asize += zb->zb_asize; 7106 mdstats->zb_gangs += zb->zb_gangs; 7107 } 7108 7109 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7110 continue; 7111 7112 if (level == 0 && zb->zb_asize == 7113 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7114 continue; 7115 7116 zdb_nicenum(zb->zb_count, csize, 7117 sizeof (csize)); 7118 zdb_nicenum(zb->zb_lsize, lsize, 7119 sizeof (lsize)); 7120 zdb_nicenum(zb->zb_psize, psize, 7121 sizeof (psize)); 7122 zdb_nicenum(zb->zb_asize, asize, 7123 sizeof (asize)); 7124 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7125 sizeof (avg)); 7126 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7127 7128 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7129 "\t%5.2f\t%6.2f\t", 7130 csize, lsize, psize, asize, avg, 7131 (double)zb->zb_lsize / zb->zb_psize, 7132 100.0 * zb->zb_asize / tzb->zb_asize); 7133 7134 if (level == ZB_TOTAL) 7135 (void) printf("%s\n", typename); 7136 else 7137 (void) printf(" L%d %s\n", 7138 level, typename); 7139 7140 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7141 (void) printf("\t number of ganged " 7142 "blocks: %s\n", gang); 7143 } 7144 7145 if (dump_opt['b'] >= 4) { 7146 (void) printf("psize " 7147 "(in 512-byte sectors): " 7148 "number of blocks\n"); 7149 dump_histogram(zb->zb_psize_histogram, 7150 PSIZE_HISTO_SIZE, 0); 7151 } 7152 } 7153 } 7154 zdb_nicenum(mdstats->zb_count, csize, 7155 sizeof (csize)); 7156 zdb_nicenum(mdstats->zb_lsize, lsize, 7157 sizeof (lsize)); 7158 zdb_nicenum(mdstats->zb_psize, psize, 7159 sizeof (psize)); 7160 zdb_nicenum(mdstats->zb_asize, asize, 7161 sizeof (asize)); 7162 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7163 sizeof (avg)); 7164 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7165 7166 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7167 "\t%5.2f\t%6.2f\t", 7168 csize, lsize, psize, asize, avg, 7169 (double)mdstats->zb_lsize / mdstats->zb_psize, 7170 100.0 * mdstats->zb_asize / tzb->zb_asize); 7171 (void) printf("%s\n", "Metadata Total"); 7172 7173 /* Output a table summarizing block sizes in the pool */ 7174 if (dump_opt['b'] >= 2) { 7175 dump_size_histograms(zcb); 7176 } 7177 7178 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7179 } 7180 7181 (void) printf("\n"); 7182 7183 if (leaks) { 7184 umem_free(zcb, sizeof (zdb_cb_t)); 7185 return (2); 7186 } 7187 7188 if (zcb->zcb_haderrors) { 7189 umem_free(zcb, sizeof (zdb_cb_t)); 7190 return (3); 7191 } 7192 7193 umem_free(zcb, sizeof (zdb_cb_t)); 7194 return (0); 7195 } 7196 7197 typedef struct zdb_ddt_entry { 7198 /* key must be first for ddt_key_compare */ 7199 ddt_key_t zdde_key; 7200 uint64_t zdde_ref_blocks; 7201 uint64_t zdde_ref_lsize; 7202 uint64_t zdde_ref_psize; 7203 uint64_t zdde_ref_dsize; 7204 avl_node_t zdde_node; 7205 } zdb_ddt_entry_t; 7206 7207 static int 7208 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7209 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7210 { 7211 (void) zilog, (void) dnp; 7212 avl_tree_t *t = arg; 7213 avl_index_t where; 7214 zdb_ddt_entry_t *zdde, zdde_search; 7215 7216 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7217 BP_IS_EMBEDDED(bp)) 7218 return (0); 7219 7220 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7221 (void) printf("traversing objset %llu, %llu objects, " 7222 "%lu blocks so far\n", 7223 (u_longlong_t)zb->zb_objset, 7224 (u_longlong_t)BP_GET_FILL(bp), 7225 avl_numnodes(t)); 7226 } 7227 7228 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7229 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7230 return (0); 7231 7232 ddt_key_fill(&zdde_search.zdde_key, bp); 7233 7234 zdde = avl_find(t, &zdde_search, &where); 7235 7236 if (zdde == NULL) { 7237 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7238 zdde->zdde_key = zdde_search.zdde_key; 7239 avl_insert(t, zdde, where); 7240 } 7241 7242 zdde->zdde_ref_blocks += 1; 7243 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7244 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7245 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7246 7247 return (0); 7248 } 7249 7250 static void 7251 dump_simulated_ddt(spa_t *spa) 7252 { 7253 avl_tree_t t; 7254 void *cookie = NULL; 7255 zdb_ddt_entry_t *zdde; 7256 ddt_histogram_t ddh_total = {{{0}}}; 7257 ddt_stat_t dds_total = {0}; 7258 7259 avl_create(&t, ddt_key_compare, 7260 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7261 7262 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7263 7264 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7265 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7266 7267 spa_config_exit(spa, SCL_CONFIG, FTAG); 7268 7269 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7270 ddt_stat_t dds; 7271 uint64_t refcnt = zdde->zdde_ref_blocks; 7272 ASSERT(refcnt != 0); 7273 7274 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7275 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7276 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7277 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7278 7279 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7280 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7281 dds.dds_ref_psize = zdde->zdde_ref_psize; 7282 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7283 7284 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7285 &dds, 0); 7286 7287 umem_free(zdde, sizeof (*zdde)); 7288 } 7289 7290 avl_destroy(&t); 7291 7292 ddt_histogram_stat(&dds_total, &ddh_total); 7293 7294 (void) printf("Simulated DDT histogram:\n"); 7295 7296 zpool_dump_ddt(&dds_total, &ddh_total); 7297 7298 dump_dedup_ratio(&dds_total); 7299 } 7300 7301 static int 7302 verify_device_removal_feature_counts(spa_t *spa) 7303 { 7304 uint64_t dr_feature_refcount = 0; 7305 uint64_t oc_feature_refcount = 0; 7306 uint64_t indirect_vdev_count = 0; 7307 uint64_t precise_vdev_count = 0; 7308 uint64_t obsolete_counts_object_count = 0; 7309 uint64_t obsolete_sm_count = 0; 7310 uint64_t obsolete_counts_count = 0; 7311 uint64_t scip_count = 0; 7312 uint64_t obsolete_bpobj_count = 0; 7313 int ret = 0; 7314 7315 spa_condensing_indirect_phys_t *scip = 7316 &spa->spa_condensing_indirect_phys; 7317 if (scip->scip_next_mapping_object != 0) { 7318 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7319 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7320 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7321 7322 (void) printf("Condensing indirect vdev %llu: new mapping " 7323 "object %llu, prev obsolete sm %llu\n", 7324 (u_longlong_t)scip->scip_vdev, 7325 (u_longlong_t)scip->scip_next_mapping_object, 7326 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7327 if (scip->scip_prev_obsolete_sm_object != 0) { 7328 space_map_t *prev_obsolete_sm = NULL; 7329 VERIFY0(space_map_open(&prev_obsolete_sm, 7330 spa->spa_meta_objset, 7331 scip->scip_prev_obsolete_sm_object, 7332 0, vd->vdev_asize, 0)); 7333 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7334 (void) printf("\n"); 7335 space_map_close(prev_obsolete_sm); 7336 } 7337 7338 scip_count += 2; 7339 } 7340 7341 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7342 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7343 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7344 7345 if (vic->vic_mapping_object != 0) { 7346 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7347 vd->vdev_removing); 7348 indirect_vdev_count++; 7349 7350 if (vd->vdev_indirect_mapping->vim_havecounts) { 7351 obsolete_counts_count++; 7352 } 7353 } 7354 7355 boolean_t are_precise; 7356 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7357 if (are_precise) { 7358 ASSERT(vic->vic_mapping_object != 0); 7359 precise_vdev_count++; 7360 } 7361 7362 uint64_t obsolete_sm_object; 7363 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7364 if (obsolete_sm_object != 0) { 7365 ASSERT(vic->vic_mapping_object != 0); 7366 obsolete_sm_count++; 7367 } 7368 } 7369 7370 (void) feature_get_refcount(spa, 7371 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7372 &dr_feature_refcount); 7373 (void) feature_get_refcount(spa, 7374 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7375 &oc_feature_refcount); 7376 7377 if (dr_feature_refcount != indirect_vdev_count) { 7378 ret = 1; 7379 (void) printf("Number of indirect vdevs (%llu) " \ 7380 "does not match feature count (%llu)\n", 7381 (u_longlong_t)indirect_vdev_count, 7382 (u_longlong_t)dr_feature_refcount); 7383 } else { 7384 (void) printf("Verified device_removal feature refcount " \ 7385 "of %llu is correct\n", 7386 (u_longlong_t)dr_feature_refcount); 7387 } 7388 7389 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7390 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7391 obsolete_bpobj_count++; 7392 } 7393 7394 7395 obsolete_counts_object_count = precise_vdev_count; 7396 obsolete_counts_object_count += obsolete_sm_count; 7397 obsolete_counts_object_count += obsolete_counts_count; 7398 obsolete_counts_object_count += scip_count; 7399 obsolete_counts_object_count += obsolete_bpobj_count; 7400 obsolete_counts_object_count += remap_deadlist_count; 7401 7402 if (oc_feature_refcount != obsolete_counts_object_count) { 7403 ret = 1; 7404 (void) printf("Number of obsolete counts objects (%llu) " \ 7405 "does not match feature count (%llu)\n", 7406 (u_longlong_t)obsolete_counts_object_count, 7407 (u_longlong_t)oc_feature_refcount); 7408 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7409 "ob:%llu rd:%llu\n", 7410 (u_longlong_t)precise_vdev_count, 7411 (u_longlong_t)obsolete_sm_count, 7412 (u_longlong_t)obsolete_counts_count, 7413 (u_longlong_t)scip_count, 7414 (u_longlong_t)obsolete_bpobj_count, 7415 (u_longlong_t)remap_deadlist_count); 7416 } else { 7417 (void) printf("Verified indirect_refcount feature refcount " \ 7418 "of %llu is correct\n", 7419 (u_longlong_t)oc_feature_refcount); 7420 } 7421 return (ret); 7422 } 7423 7424 static void 7425 zdb_set_skip_mmp(char *target) 7426 { 7427 spa_t *spa; 7428 7429 /* 7430 * Disable the activity check to allow examination of 7431 * active pools. 7432 */ 7433 mutex_enter(&spa_namespace_lock); 7434 if ((spa = spa_lookup(target)) != NULL) { 7435 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7436 } 7437 mutex_exit(&spa_namespace_lock); 7438 } 7439 7440 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7441 /* 7442 * Import the checkpointed state of the pool specified by the target 7443 * parameter as readonly. The function also accepts a pool config 7444 * as an optional parameter, else it attempts to infer the config by 7445 * the name of the target pool. 7446 * 7447 * Note that the checkpointed state's pool name will be the name of 7448 * the original pool with the above suffix appended to it. In addition, 7449 * if the target is not a pool name (e.g. a path to a dataset) then 7450 * the new_path parameter is populated with the updated path to 7451 * reflect the fact that we are looking into the checkpointed state. 7452 * 7453 * The function returns a newly-allocated copy of the name of the 7454 * pool containing the checkpointed state. When this copy is no 7455 * longer needed it should be freed with free(3C). Same thing 7456 * applies to the new_path parameter if allocated. 7457 */ 7458 static char * 7459 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7460 { 7461 int error = 0; 7462 char *poolname, *bogus_name = NULL; 7463 boolean_t freecfg = B_FALSE; 7464 7465 /* If the target is not a pool, the extract the pool name */ 7466 char *path_start = strchr(target, '/'); 7467 if (path_start != NULL) { 7468 size_t poolname_len = path_start - target; 7469 poolname = strndup(target, poolname_len); 7470 } else { 7471 poolname = target; 7472 } 7473 7474 if (cfg == NULL) { 7475 zdb_set_skip_mmp(poolname); 7476 error = spa_get_stats(poolname, &cfg, NULL, 0); 7477 if (error != 0) { 7478 fatal("Tried to read config of pool \"%s\" but " 7479 "spa_get_stats() failed with error %d\n", 7480 poolname, error); 7481 } 7482 freecfg = B_TRUE; 7483 } 7484 7485 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7486 if (target != poolname) 7487 free(poolname); 7488 return (NULL); 7489 } 7490 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7491 7492 error = spa_import(bogus_name, cfg, NULL, 7493 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7494 ZFS_IMPORT_SKIP_MMP); 7495 if (freecfg) 7496 nvlist_free(cfg); 7497 if (error != 0) { 7498 fatal("Tried to import pool \"%s\" but spa_import() failed " 7499 "with error %d\n", bogus_name, error); 7500 } 7501 7502 if (new_path != NULL && path_start != NULL) { 7503 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7504 free(bogus_name); 7505 if (path_start != NULL) 7506 free(poolname); 7507 return (NULL); 7508 } 7509 } 7510 7511 if (target != poolname) 7512 free(poolname); 7513 7514 return (bogus_name); 7515 } 7516 7517 typedef struct verify_checkpoint_sm_entry_cb_arg { 7518 vdev_t *vcsec_vd; 7519 7520 /* the following fields are only used for printing progress */ 7521 uint64_t vcsec_entryid; 7522 uint64_t vcsec_num_entries; 7523 } verify_checkpoint_sm_entry_cb_arg_t; 7524 7525 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7526 7527 static int 7528 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7529 { 7530 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7531 vdev_t *vd = vcsec->vcsec_vd; 7532 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7533 uint64_t end = sme->sme_offset + sme->sme_run; 7534 7535 ASSERT(sme->sme_type == SM_FREE); 7536 7537 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7538 (void) fprintf(stderr, 7539 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7540 (longlong_t)vd->vdev_id, 7541 (longlong_t)vcsec->vcsec_entryid, 7542 (longlong_t)vcsec->vcsec_num_entries); 7543 } 7544 vcsec->vcsec_entryid++; 7545 7546 /* 7547 * See comment in checkpoint_sm_exclude_entry_cb() 7548 */ 7549 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7550 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7551 7552 /* 7553 * The entries in the vdev_checkpoint_sm should be marked as 7554 * allocated in the checkpointed state of the pool, therefore 7555 * their respective ms_allocateable trees should not contain them. 7556 */ 7557 mutex_enter(&ms->ms_lock); 7558 range_tree_verify_not_present(ms->ms_allocatable, 7559 sme->sme_offset, sme->sme_run); 7560 mutex_exit(&ms->ms_lock); 7561 7562 return (0); 7563 } 7564 7565 /* 7566 * Verify that all segments in the vdev_checkpoint_sm are allocated 7567 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7568 * ms_allocatable). 7569 * 7570 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7571 * each vdev in the current state of the pool to the metaslab space maps 7572 * (ms_sm) of the checkpointed state of the pool. 7573 * 7574 * Note that the function changes the state of the ms_allocatable 7575 * trees of the current spa_t. The entries of these ms_allocatable 7576 * trees are cleared out and then repopulated from with the free 7577 * entries of their respective ms_sm space maps. 7578 */ 7579 static void 7580 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7581 { 7582 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7583 vdev_t *current_rvd = current->spa_root_vdev; 7584 7585 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7586 7587 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7588 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7589 vdev_t *current_vd = current_rvd->vdev_child[c]; 7590 7591 space_map_t *checkpoint_sm = NULL; 7592 uint64_t checkpoint_sm_obj; 7593 7594 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7595 /* 7596 * Since we don't allow device removal in a pool 7597 * that has a checkpoint, we expect that all removed 7598 * vdevs were removed from the pool before the 7599 * checkpoint. 7600 */ 7601 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7602 continue; 7603 } 7604 7605 /* 7606 * If the checkpoint space map doesn't exist, then nothing 7607 * here is checkpointed so there's nothing to verify. 7608 */ 7609 if (current_vd->vdev_top_zap == 0 || 7610 zap_contains(spa_meta_objset(current), 7611 current_vd->vdev_top_zap, 7612 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7613 continue; 7614 7615 VERIFY0(zap_lookup(spa_meta_objset(current), 7616 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7617 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7618 7619 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7620 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7621 current_vd->vdev_ashift)); 7622 7623 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7624 vcsec.vcsec_vd = ckpoint_vd; 7625 vcsec.vcsec_entryid = 0; 7626 vcsec.vcsec_num_entries = 7627 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7628 VERIFY0(space_map_iterate(checkpoint_sm, 7629 space_map_length(checkpoint_sm), 7630 verify_checkpoint_sm_entry_cb, &vcsec)); 7631 if (dump_opt['m'] > 3) 7632 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7633 space_map_close(checkpoint_sm); 7634 } 7635 7636 /* 7637 * If we've added vdevs since we took the checkpoint, ensure 7638 * that their checkpoint space maps are empty. 7639 */ 7640 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7641 for (uint64_t c = ckpoint_rvd->vdev_children; 7642 c < current_rvd->vdev_children; c++) { 7643 vdev_t *current_vd = current_rvd->vdev_child[c]; 7644 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7645 } 7646 } 7647 7648 /* for cleaner progress output */ 7649 (void) fprintf(stderr, "\n"); 7650 } 7651 7652 /* 7653 * Verifies that all space that's allocated in the checkpoint is 7654 * still allocated in the current version, by checking that everything 7655 * in checkpoint's ms_allocatable (which is actually allocated, not 7656 * allocatable/free) is not present in current's ms_allocatable. 7657 * 7658 * Note that the function changes the state of the ms_allocatable 7659 * trees of both spas when called. The entries of all ms_allocatable 7660 * trees are cleared out and then repopulated from their respective 7661 * ms_sm space maps. In the checkpointed state we load the allocated 7662 * entries, and in the current state we load the free entries. 7663 */ 7664 static void 7665 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7666 { 7667 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7668 vdev_t *current_rvd = current->spa_root_vdev; 7669 7670 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7671 load_concrete_ms_allocatable_trees(current, SM_FREE); 7672 7673 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7674 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7675 vdev_t *current_vd = current_rvd->vdev_child[i]; 7676 7677 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7678 /* 7679 * See comment in verify_checkpoint_vdev_spacemaps() 7680 */ 7681 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7682 continue; 7683 } 7684 7685 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7686 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7687 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7688 7689 (void) fprintf(stderr, 7690 "\rverifying vdev %llu of %llu, " 7691 "metaslab %llu of %llu ...", 7692 (longlong_t)current_vd->vdev_id, 7693 (longlong_t)current_rvd->vdev_children, 7694 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7695 (longlong_t)current_vd->vdev_ms_count); 7696 7697 /* 7698 * We walk through the ms_allocatable trees that 7699 * are loaded with the allocated blocks from the 7700 * ms_sm spacemaps of the checkpoint. For each 7701 * one of these ranges we ensure that none of them 7702 * exists in the ms_allocatable trees of the 7703 * current state which are loaded with the ranges 7704 * that are currently free. 7705 * 7706 * This way we ensure that none of the blocks that 7707 * are part of the checkpoint were freed by mistake. 7708 */ 7709 range_tree_walk(ckpoint_msp->ms_allocatable, 7710 (range_tree_func_t *)range_tree_verify_not_present, 7711 current_msp->ms_allocatable); 7712 } 7713 } 7714 7715 /* for cleaner progress output */ 7716 (void) fprintf(stderr, "\n"); 7717 } 7718 7719 static void 7720 verify_checkpoint_blocks(spa_t *spa) 7721 { 7722 ASSERT(!dump_opt['L']); 7723 7724 spa_t *checkpoint_spa; 7725 char *checkpoint_pool; 7726 int error = 0; 7727 7728 /* 7729 * We import the checkpointed state of the pool (under a different 7730 * name) so we can do verification on it against the current state 7731 * of the pool. 7732 */ 7733 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7734 NULL); 7735 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7736 7737 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7738 if (error != 0) { 7739 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7740 "error %d\n", checkpoint_pool, error); 7741 } 7742 7743 /* 7744 * Ensure that ranges in the checkpoint space maps of each vdev 7745 * are allocated according to the checkpointed state's metaslab 7746 * space maps. 7747 */ 7748 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7749 7750 /* 7751 * Ensure that allocated ranges in the checkpoint's metaslab 7752 * space maps remain allocated in the metaslab space maps of 7753 * the current state. 7754 */ 7755 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7756 7757 /* 7758 * Once we are done, we get rid of the checkpointed state. 7759 */ 7760 spa_close(checkpoint_spa, FTAG); 7761 free(checkpoint_pool); 7762 } 7763 7764 static void 7765 dump_leftover_checkpoint_blocks(spa_t *spa) 7766 { 7767 vdev_t *rvd = spa->spa_root_vdev; 7768 7769 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7770 vdev_t *vd = rvd->vdev_child[i]; 7771 7772 space_map_t *checkpoint_sm = NULL; 7773 uint64_t checkpoint_sm_obj; 7774 7775 if (vd->vdev_top_zap == 0) 7776 continue; 7777 7778 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7779 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7780 continue; 7781 7782 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7783 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7784 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7785 7786 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7787 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7788 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7789 space_map_close(checkpoint_sm); 7790 } 7791 } 7792 7793 static int 7794 verify_checkpoint(spa_t *spa) 7795 { 7796 uberblock_t checkpoint; 7797 int error; 7798 7799 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7800 return (0); 7801 7802 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7803 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7804 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7805 7806 if (error == ENOENT && !dump_opt['L']) { 7807 /* 7808 * If the feature is active but the uberblock is missing 7809 * then we must be in the middle of discarding the 7810 * checkpoint. 7811 */ 7812 (void) printf("\nPartially discarded checkpoint " 7813 "state found:\n"); 7814 if (dump_opt['m'] > 3) 7815 dump_leftover_checkpoint_blocks(spa); 7816 return (0); 7817 } else if (error != 0) { 7818 (void) printf("lookup error %d when looking for " 7819 "checkpointed uberblock in MOS\n", error); 7820 return (error); 7821 } 7822 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7823 7824 if (checkpoint.ub_checkpoint_txg == 0) { 7825 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7826 "uberblock\n"); 7827 error = 3; 7828 } 7829 7830 if (error == 0 && !dump_opt['L']) 7831 verify_checkpoint_blocks(spa); 7832 7833 return (error); 7834 } 7835 7836 static void 7837 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7838 { 7839 (void) arg; 7840 for (uint64_t i = start; i < size; i++) { 7841 (void) printf("MOS object %llu referenced but not allocated\n", 7842 (u_longlong_t)i); 7843 } 7844 } 7845 7846 static void 7847 mos_obj_refd(uint64_t obj) 7848 { 7849 if (obj != 0 && mos_refd_objs != NULL) 7850 range_tree_add(mos_refd_objs, obj, 1); 7851 } 7852 7853 /* 7854 * Call on a MOS object that may already have been referenced. 7855 */ 7856 static void 7857 mos_obj_refd_multiple(uint64_t obj) 7858 { 7859 if (obj != 0 && mos_refd_objs != NULL && 7860 !range_tree_contains(mos_refd_objs, obj, 1)) 7861 range_tree_add(mos_refd_objs, obj, 1); 7862 } 7863 7864 static void 7865 mos_leak_vdev_top_zap(vdev_t *vd) 7866 { 7867 uint64_t ms_flush_data_obj; 7868 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7869 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7870 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7871 if (error == ENOENT) 7872 return; 7873 ASSERT0(error); 7874 7875 mos_obj_refd(ms_flush_data_obj); 7876 } 7877 7878 static void 7879 mos_leak_vdev(vdev_t *vd) 7880 { 7881 mos_obj_refd(vd->vdev_dtl_object); 7882 mos_obj_refd(vd->vdev_ms_array); 7883 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7884 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7885 mos_obj_refd(vd->vdev_leaf_zap); 7886 if (vd->vdev_checkpoint_sm != NULL) 7887 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7888 if (vd->vdev_indirect_mapping != NULL) { 7889 mos_obj_refd(vd->vdev_indirect_mapping-> 7890 vim_phys->vimp_counts_object); 7891 } 7892 if (vd->vdev_obsolete_sm != NULL) 7893 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7894 7895 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7896 metaslab_t *ms = vd->vdev_ms[m]; 7897 mos_obj_refd(space_map_object(ms->ms_sm)); 7898 } 7899 7900 if (vd->vdev_root_zap != 0) 7901 mos_obj_refd(vd->vdev_root_zap); 7902 7903 if (vd->vdev_top_zap != 0) { 7904 mos_obj_refd(vd->vdev_top_zap); 7905 mos_leak_vdev_top_zap(vd); 7906 } 7907 7908 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7909 mos_leak_vdev(vd->vdev_child[c]); 7910 } 7911 } 7912 7913 static void 7914 mos_leak_log_spacemaps(spa_t *spa) 7915 { 7916 uint64_t spacemap_zap; 7917 int error = zap_lookup(spa_meta_objset(spa), 7918 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7919 sizeof (spacemap_zap), 1, &spacemap_zap); 7920 if (error == ENOENT) 7921 return; 7922 ASSERT0(error); 7923 7924 mos_obj_refd(spacemap_zap); 7925 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7926 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7927 mos_obj_refd(sls->sls_sm_obj); 7928 } 7929 7930 static void 7931 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7932 { 7933 zap_cursor_t zc; 7934 zap_attribute_t za; 7935 for (zap_cursor_init(&zc, mos, errlog); 7936 zap_cursor_retrieve(&zc, &za) == 0; 7937 zap_cursor_advance(&zc)) { 7938 mos_obj_refd(za.za_first_integer); 7939 } 7940 zap_cursor_fini(&zc); 7941 } 7942 7943 static int 7944 dump_mos_leaks(spa_t *spa) 7945 { 7946 int rv = 0; 7947 objset_t *mos = spa->spa_meta_objset; 7948 dsl_pool_t *dp = spa->spa_dsl_pool; 7949 7950 /* Visit and mark all referenced objects in the MOS */ 7951 7952 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7953 mos_obj_refd(spa->spa_pool_props_object); 7954 mos_obj_refd(spa->spa_config_object); 7955 mos_obj_refd(spa->spa_ddt_stat_object); 7956 mos_obj_refd(spa->spa_feat_desc_obj); 7957 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7958 mos_obj_refd(spa->spa_feat_for_read_obj); 7959 mos_obj_refd(spa->spa_feat_for_write_obj); 7960 mos_obj_refd(spa->spa_history); 7961 mos_obj_refd(spa->spa_errlog_last); 7962 mos_obj_refd(spa->spa_errlog_scrub); 7963 7964 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7965 errorlog_count_refd(mos, spa->spa_errlog_last); 7966 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7967 } 7968 7969 mos_obj_refd(spa->spa_all_vdev_zaps); 7970 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7971 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7972 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7973 bpobj_count_refd(&spa->spa_deferred_bpobj); 7974 mos_obj_refd(dp->dp_empty_bpobj); 7975 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7976 bpobj_count_refd(&dp->dp_free_bpobj); 7977 mos_obj_refd(spa->spa_l2cache.sav_object); 7978 mos_obj_refd(spa->spa_spares.sav_object); 7979 7980 if (spa->spa_syncing_log_sm != NULL) 7981 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7982 mos_leak_log_spacemaps(spa); 7983 7984 mos_obj_refd(spa->spa_condensing_indirect_phys. 7985 scip_next_mapping_object); 7986 mos_obj_refd(spa->spa_condensing_indirect_phys. 7987 scip_prev_obsolete_sm_object); 7988 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7989 vdev_indirect_mapping_t *vim = 7990 vdev_indirect_mapping_open(mos, 7991 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7992 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7993 vdev_indirect_mapping_close(vim); 7994 } 7995 deleted_livelists_dump_mos(spa); 7996 7997 if (dp->dp_origin_snap != NULL) { 7998 dsl_dataset_t *ds; 7999 8000 dsl_pool_config_enter(dp, FTAG); 8001 VERIFY0(dsl_dataset_hold_obj(dp, 8002 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8003 FTAG, &ds)); 8004 count_ds_mos_objects(ds); 8005 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8006 dsl_dataset_rele(ds, FTAG); 8007 dsl_pool_config_exit(dp, FTAG); 8008 8009 count_ds_mos_objects(dp->dp_origin_snap); 8010 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8011 } 8012 count_dir_mos_objects(dp->dp_mos_dir); 8013 if (dp->dp_free_dir != NULL) 8014 count_dir_mos_objects(dp->dp_free_dir); 8015 if (dp->dp_leak_dir != NULL) 8016 count_dir_mos_objects(dp->dp_leak_dir); 8017 8018 mos_leak_vdev(spa->spa_root_vdev); 8019 8020 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 8021 for (uint64_t type = 0; type < DDT_TYPES; type++) { 8022 for (uint64_t cksum = 0; 8023 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 8024 ddt_t *ddt = spa->spa_ddt[cksum]; 8025 if (!ddt) 8026 continue; 8027 mos_obj_refd(ddt->ddt_object[type][class]); 8028 } 8029 } 8030 } 8031 8032 if (spa->spa_brt != NULL) { 8033 brt_t *brt = spa->spa_brt; 8034 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) { 8035 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid]; 8036 if (brtvd != NULL && brtvd->bv_initiated) { 8037 mos_obj_refd(brtvd->bv_mos_brtvdev); 8038 mos_obj_refd(brtvd->bv_mos_entries); 8039 } 8040 } 8041 } 8042 8043 /* 8044 * Visit all allocated objects and make sure they are referenced. 8045 */ 8046 uint64_t object = 0; 8047 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8048 if (range_tree_contains(mos_refd_objs, object, 1)) { 8049 range_tree_remove(mos_refd_objs, object, 1); 8050 } else { 8051 dmu_object_info_t doi; 8052 const char *name; 8053 VERIFY0(dmu_object_info(mos, object, &doi)); 8054 if (doi.doi_type & DMU_OT_NEWTYPE) { 8055 dmu_object_byteswap_t bswap = 8056 DMU_OT_BYTESWAP(doi.doi_type); 8057 name = dmu_ot_byteswap[bswap].ob_name; 8058 } else { 8059 name = dmu_ot[doi.doi_type].ot_name; 8060 } 8061 8062 (void) printf("MOS object %llu (%s) leaked\n", 8063 (u_longlong_t)object, name); 8064 rv = 2; 8065 } 8066 } 8067 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8068 if (!range_tree_is_empty(mos_refd_objs)) 8069 rv = 2; 8070 range_tree_vacate(mos_refd_objs, NULL, NULL); 8071 range_tree_destroy(mos_refd_objs); 8072 return (rv); 8073 } 8074 8075 typedef struct log_sm_obsolete_stats_arg { 8076 uint64_t lsos_current_txg; 8077 8078 uint64_t lsos_total_entries; 8079 uint64_t lsos_valid_entries; 8080 8081 uint64_t lsos_sm_entries; 8082 uint64_t lsos_valid_sm_entries; 8083 } log_sm_obsolete_stats_arg_t; 8084 8085 static int 8086 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8087 uint64_t txg, void *arg) 8088 { 8089 log_sm_obsolete_stats_arg_t *lsos = arg; 8090 8091 uint64_t offset = sme->sme_offset; 8092 uint64_t vdev_id = sme->sme_vdev; 8093 8094 if (lsos->lsos_current_txg == 0) { 8095 /* this is the first log */ 8096 lsos->lsos_current_txg = txg; 8097 } else if (lsos->lsos_current_txg < txg) { 8098 /* we just changed log - print stats and reset */ 8099 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8100 (u_longlong_t)lsos->lsos_valid_sm_entries, 8101 (u_longlong_t)lsos->lsos_sm_entries, 8102 (u_longlong_t)lsos->lsos_current_txg); 8103 lsos->lsos_valid_sm_entries = 0; 8104 lsos->lsos_sm_entries = 0; 8105 lsos->lsos_current_txg = txg; 8106 } 8107 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8108 8109 lsos->lsos_sm_entries++; 8110 lsos->lsos_total_entries++; 8111 8112 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8113 if (!vdev_is_concrete(vd)) 8114 return (0); 8115 8116 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8117 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8118 8119 if (txg < metaslab_unflushed_txg(ms)) 8120 return (0); 8121 lsos->lsos_valid_sm_entries++; 8122 lsos->lsos_valid_entries++; 8123 return (0); 8124 } 8125 8126 static void 8127 dump_log_spacemap_obsolete_stats(spa_t *spa) 8128 { 8129 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8130 return; 8131 8132 log_sm_obsolete_stats_arg_t lsos = {0}; 8133 8134 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8135 8136 iterate_through_spacemap_logs(spa, 8137 log_spacemap_obsolete_stats_cb, &lsos); 8138 8139 /* print stats for latest log */ 8140 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8141 (u_longlong_t)lsos.lsos_valid_sm_entries, 8142 (u_longlong_t)lsos.lsos_sm_entries, 8143 (u_longlong_t)lsos.lsos_current_txg); 8144 8145 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8146 (u_longlong_t)lsos.lsos_valid_entries, 8147 (u_longlong_t)lsos.lsos_total_entries); 8148 } 8149 8150 static void 8151 dump_zpool(spa_t *spa) 8152 { 8153 dsl_pool_t *dp = spa_get_dsl(spa); 8154 int rc = 0; 8155 8156 if (dump_opt['y']) { 8157 livelist_metaslab_validate(spa); 8158 } 8159 8160 if (dump_opt['S']) { 8161 dump_simulated_ddt(spa); 8162 return; 8163 } 8164 8165 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8166 (void) printf("\nCached configuration:\n"); 8167 dump_nvlist(spa->spa_config, 8); 8168 } 8169 8170 if (dump_opt['C']) 8171 dump_config(spa); 8172 8173 if (dump_opt['u']) 8174 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8175 8176 if (dump_opt['D']) 8177 dump_all_ddts(spa); 8178 8179 if (dump_opt['T']) 8180 dump_brt(spa); 8181 8182 if (dump_opt['d'] > 2 || dump_opt['m']) 8183 dump_metaslabs(spa); 8184 if (dump_opt['M']) 8185 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8186 if (dump_opt['d'] > 2 || dump_opt['m']) { 8187 dump_log_spacemaps(spa); 8188 dump_log_spacemap_obsolete_stats(spa); 8189 } 8190 8191 if (dump_opt['d'] || dump_opt['i']) { 8192 spa_feature_t f; 8193 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8194 0); 8195 dump_objset(dp->dp_meta_objset); 8196 8197 if (dump_opt['d'] >= 3) { 8198 dsl_pool_t *dp = spa->spa_dsl_pool; 8199 dump_full_bpobj(&spa->spa_deferred_bpobj, 8200 "Deferred frees", 0); 8201 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8202 dump_full_bpobj(&dp->dp_free_bpobj, 8203 "Pool snapshot frees", 0); 8204 } 8205 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8206 ASSERT(spa_feature_is_enabled(spa, 8207 SPA_FEATURE_DEVICE_REMOVAL)); 8208 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8209 "Pool obsolete blocks", 0); 8210 } 8211 8212 if (spa_feature_is_active(spa, 8213 SPA_FEATURE_ASYNC_DESTROY)) { 8214 dump_bptree(spa->spa_meta_objset, 8215 dp->dp_bptree_obj, 8216 "Pool dataset frees"); 8217 } 8218 dump_dtl(spa->spa_root_vdev, 0); 8219 } 8220 8221 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8222 global_feature_count[f] = UINT64_MAX; 8223 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8224 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8225 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8226 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8227 8228 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8229 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8230 8231 if (rc == 0 && !dump_opt['L']) 8232 rc = dump_mos_leaks(spa); 8233 8234 for (f = 0; f < SPA_FEATURES; f++) { 8235 uint64_t refcount; 8236 8237 uint64_t *arr; 8238 if (!(spa_feature_table[f].fi_flags & 8239 ZFEATURE_FLAG_PER_DATASET)) { 8240 if (global_feature_count[f] == UINT64_MAX) 8241 continue; 8242 if (!spa_feature_is_enabled(spa, f)) { 8243 ASSERT0(global_feature_count[f]); 8244 continue; 8245 } 8246 arr = global_feature_count; 8247 } else { 8248 if (!spa_feature_is_enabled(spa, f)) { 8249 ASSERT0(dataset_feature_count[f]); 8250 continue; 8251 } 8252 arr = dataset_feature_count; 8253 } 8254 if (feature_get_refcount(spa, &spa_feature_table[f], 8255 &refcount) == ENOTSUP) 8256 continue; 8257 if (arr[f] != refcount) { 8258 (void) printf("%s feature refcount mismatch: " 8259 "%lld consumers != %lld refcount\n", 8260 spa_feature_table[f].fi_uname, 8261 (longlong_t)arr[f], (longlong_t)refcount); 8262 rc = 2; 8263 } else { 8264 (void) printf("Verified %s feature refcount " 8265 "of %llu is correct\n", 8266 spa_feature_table[f].fi_uname, 8267 (longlong_t)refcount); 8268 } 8269 } 8270 8271 if (rc == 0) 8272 rc = verify_device_removal_feature_counts(spa); 8273 } 8274 8275 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8276 rc = dump_block_stats(spa); 8277 8278 if (rc == 0) 8279 rc = verify_spacemap_refcounts(spa); 8280 8281 if (dump_opt['s']) 8282 show_pool_stats(spa); 8283 8284 if (dump_opt['h']) 8285 dump_history(spa); 8286 8287 if (rc == 0) 8288 rc = verify_checkpoint(spa); 8289 8290 if (rc != 0) { 8291 dump_debug_buffer(); 8292 zdb_exit(rc); 8293 } 8294 } 8295 8296 #define ZDB_FLAG_CHECKSUM 0x0001 8297 #define ZDB_FLAG_DECOMPRESS 0x0002 8298 #define ZDB_FLAG_BSWAP 0x0004 8299 #define ZDB_FLAG_GBH 0x0008 8300 #define ZDB_FLAG_INDIRECT 0x0010 8301 #define ZDB_FLAG_RAW 0x0020 8302 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8303 #define ZDB_FLAG_VERBOSE 0x0080 8304 8305 static int flagbits[256]; 8306 static char flagbitstr[16]; 8307 8308 static void 8309 zdb_print_blkptr(const blkptr_t *bp, int flags) 8310 { 8311 char blkbuf[BP_SPRINTF_LEN]; 8312 8313 if (flags & ZDB_FLAG_BSWAP) 8314 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8315 8316 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8317 (void) printf("%s\n", blkbuf); 8318 } 8319 8320 static void 8321 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8322 { 8323 int i; 8324 8325 for (i = 0; i < nbps; i++) 8326 zdb_print_blkptr(&bp[i], flags); 8327 } 8328 8329 static void 8330 zdb_dump_gbh(void *buf, int flags) 8331 { 8332 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8333 } 8334 8335 static void 8336 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8337 { 8338 if (flags & ZDB_FLAG_BSWAP) 8339 byteswap_uint64_array(buf, size); 8340 VERIFY(write(fileno(stdout), buf, size) == size); 8341 } 8342 8343 static void 8344 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8345 { 8346 uint64_t *d = (uint64_t *)buf; 8347 unsigned nwords = size / sizeof (uint64_t); 8348 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8349 unsigned i, j; 8350 const char *hdr; 8351 char *c; 8352 8353 8354 if (do_bswap) 8355 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8356 else 8357 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8358 8359 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8360 8361 #ifdef _LITTLE_ENDIAN 8362 /* correct the endianness */ 8363 do_bswap = !do_bswap; 8364 #endif 8365 for (i = 0; i < nwords; i += 2) { 8366 (void) printf("%06llx: %016llx %016llx ", 8367 (u_longlong_t)(i * sizeof (uint64_t)), 8368 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8369 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8370 8371 c = (char *)&d[i]; 8372 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8373 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8374 (void) printf("\n"); 8375 } 8376 } 8377 8378 /* 8379 * There are two acceptable formats: 8380 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8381 * child[.child]* - For example: 0.1.1 8382 * 8383 * The second form can be used to specify arbitrary vdevs anywhere 8384 * in the hierarchy. For example, in a pool with a mirror of 8385 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8386 */ 8387 static vdev_t * 8388 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8389 { 8390 char *s, *p, *q; 8391 unsigned i; 8392 8393 if (vdev == NULL) 8394 return (NULL); 8395 8396 /* First, assume the x.x.x.x format */ 8397 i = strtoul(path, &s, 10); 8398 if (s == path || (s && *s != '.' && *s != '\0')) 8399 goto name; 8400 if (i >= vdev->vdev_children) 8401 return (NULL); 8402 8403 vdev = vdev->vdev_child[i]; 8404 if (s && *s == '\0') 8405 return (vdev); 8406 return (zdb_vdev_lookup(vdev, s+1)); 8407 8408 name: 8409 for (i = 0; i < vdev->vdev_children; i++) { 8410 vdev_t *vc = vdev->vdev_child[i]; 8411 8412 if (vc->vdev_path == NULL) { 8413 vc = zdb_vdev_lookup(vc, path); 8414 if (vc == NULL) 8415 continue; 8416 else 8417 return (vc); 8418 } 8419 8420 p = strrchr(vc->vdev_path, '/'); 8421 p = p ? p + 1 : vc->vdev_path; 8422 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8423 8424 if (strcmp(vc->vdev_path, path) == 0) 8425 return (vc); 8426 if (strcmp(p, path) == 0) 8427 return (vc); 8428 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8429 return (vc); 8430 } 8431 8432 return (NULL); 8433 } 8434 8435 static int 8436 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8437 { 8438 dsl_dataset_t *ds; 8439 8440 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8441 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8442 NULL, &ds); 8443 if (error != 0) { 8444 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8445 (u_longlong_t)objset_id, strerror(error)); 8446 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8447 return (error); 8448 } 8449 dsl_dataset_name(ds, outstr); 8450 dsl_dataset_rele(ds, NULL); 8451 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8452 return (0); 8453 } 8454 8455 static boolean_t 8456 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8457 { 8458 char *s0, *s1, *tmp = NULL; 8459 8460 if (sizes == NULL) 8461 return (B_FALSE); 8462 8463 s0 = strtok_r(sizes, "/", &tmp); 8464 if (s0 == NULL) 8465 return (B_FALSE); 8466 s1 = strtok_r(NULL, "/", &tmp); 8467 *lsize = strtoull(s0, NULL, 16); 8468 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8469 return (*lsize >= *psize && *psize > 0); 8470 } 8471 8472 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8473 8474 static boolean_t 8475 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8476 int flags, int cfunc, void *lbuf, void *lbuf2) 8477 { 8478 if (flags & ZDB_FLAG_VERBOSE) { 8479 (void) fprintf(stderr, 8480 "Trying %05llx -> %05llx (%s)\n", 8481 (u_longlong_t)psize, 8482 (u_longlong_t)lsize, 8483 zio_compress_table[cfunc].ci_name); 8484 } 8485 8486 /* 8487 * We set lbuf to all zeros and lbuf2 to all 8488 * ones, then decompress to both buffers and 8489 * compare their contents. This way we can 8490 * know if decompression filled exactly to 8491 * lsize or if it left some bytes unwritten. 8492 */ 8493 8494 memset(lbuf, 0x00, lsize); 8495 memset(lbuf2, 0xff, lsize); 8496 8497 if (zio_decompress_data(cfunc, pabd, 8498 lbuf, psize, lsize, NULL) == 0 && 8499 zio_decompress_data(cfunc, pabd, 8500 lbuf2, psize, lsize, NULL) == 0 && 8501 memcmp(lbuf, lbuf2, lsize) == 0) 8502 return (B_TRUE); 8503 return (B_FALSE); 8504 } 8505 8506 static uint64_t 8507 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8508 uint64_t psize, int flags) 8509 { 8510 (void) buf; 8511 uint64_t orig_lsize = lsize; 8512 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8513 boolean_t found = B_FALSE; 8514 /* 8515 * We don't know how the data was compressed, so just try 8516 * every decompress function at every inflated blocksize. 8517 */ 8518 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8519 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8520 int *cfuncp = cfuncs; 8521 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8522 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8523 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8524 ZIO_COMPRESS_MASK(ZLE); 8525 *cfuncp++ = ZIO_COMPRESS_LZ4; 8526 *cfuncp++ = ZIO_COMPRESS_LZJB; 8527 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8528 /* 8529 * Every gzip level has the same decompressor, no need to 8530 * run it 9 times per bruteforce attempt. 8531 */ 8532 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8533 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8534 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8535 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8536 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8537 if (((1ULL << c) & mask) == 0) 8538 *cfuncp++ = c; 8539 8540 /* 8541 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8542 * could take a while and we should let the user know 8543 * we are not stuck. On the other hand, printing progress 8544 * info gets old after a while. User can specify 'v' flag 8545 * to see the progression. 8546 */ 8547 if (lsize == psize) 8548 lsize += SPA_MINBLOCKSIZE; 8549 else 8550 maxlsize = lsize; 8551 8552 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8553 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8554 if (try_decompress_block(pabd, lsize, psize, flags, 8555 *cfuncp, lbuf, lbuf2)) { 8556 found = B_TRUE; 8557 break; 8558 } 8559 } 8560 if (*cfuncp != 0) 8561 break; 8562 } 8563 if (!found && tryzle) { 8564 for (lsize = orig_lsize; lsize <= maxlsize; 8565 lsize += SPA_MINBLOCKSIZE) { 8566 if (try_decompress_block(pabd, lsize, psize, flags, 8567 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8568 *cfuncp = ZIO_COMPRESS_ZLE; 8569 found = B_TRUE; 8570 break; 8571 } 8572 } 8573 } 8574 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8575 8576 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8577 printf("\nZLE decompression was selected. If you " 8578 "suspect the results are wrong,\ntry avoiding ZLE " 8579 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8580 } 8581 8582 return (lsize > maxlsize ? -1 : lsize); 8583 } 8584 8585 /* 8586 * Read a block from a pool and print it out. The syntax of the 8587 * block descriptor is: 8588 * 8589 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8590 * 8591 * pool - The name of the pool you wish to read from 8592 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8593 * offset - offset, in hex, in bytes 8594 * size - Amount of data to read, in hex, in bytes 8595 * flags - A string of characters specifying options 8596 * b: Decode a blkptr at given offset within block 8597 * c: Calculate and display checksums 8598 * d: Decompress data before dumping 8599 * e: Byteswap data before dumping 8600 * g: Display data as a gang block header 8601 * i: Display as an indirect block 8602 * r: Dump raw data to stdout 8603 * v: Verbose 8604 * 8605 */ 8606 static void 8607 zdb_read_block(char *thing, spa_t *spa) 8608 { 8609 blkptr_t blk, *bp = &blk; 8610 dva_t *dva = bp->blk_dva; 8611 int flags = 0; 8612 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8613 zio_t *zio; 8614 vdev_t *vd; 8615 abd_t *pabd; 8616 void *lbuf, *buf; 8617 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8618 const char *vdev, *errmsg = NULL; 8619 int i, error; 8620 boolean_t borrowed = B_FALSE, found = B_FALSE; 8621 8622 dup = strdup(thing); 8623 s = strtok_r(dup, ":", &tmp); 8624 vdev = s ?: ""; 8625 s = strtok_r(NULL, ":", &tmp); 8626 offset = strtoull(s ? s : "", NULL, 16); 8627 sizes = strtok_r(NULL, ":", &tmp); 8628 s = strtok_r(NULL, ":", &tmp); 8629 flagstr = strdup(s ?: ""); 8630 8631 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8632 errmsg = "invalid size(s)"; 8633 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8634 errmsg = "size must be a multiple of sector size"; 8635 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8636 errmsg = "offset must be a multiple of sector size"; 8637 if (errmsg) { 8638 (void) printf("Invalid block specifier: %s - %s\n", 8639 thing, errmsg); 8640 goto done; 8641 } 8642 8643 tmp = NULL; 8644 for (s = strtok_r(flagstr, ":", &tmp); 8645 s != NULL; 8646 s = strtok_r(NULL, ":", &tmp)) { 8647 for (i = 0; i < strlen(flagstr); i++) { 8648 int bit = flagbits[(uchar_t)flagstr[i]]; 8649 8650 if (bit == 0) { 8651 (void) printf("***Ignoring flag: %c\n", 8652 (uchar_t)flagstr[i]); 8653 continue; 8654 } 8655 found = B_TRUE; 8656 flags |= bit; 8657 8658 p = &flagstr[i + 1]; 8659 if (*p != ':' && *p != '\0') { 8660 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8661 char *end, offstr[8] = { 0 }; 8662 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8663 (nextbit == 0)) { 8664 /* look ahead to isolate the offset */ 8665 while (nextbit == 0 && 8666 strchr(flagbitstr, *p) == NULL) { 8667 offstr[j] = *p; 8668 j++; 8669 if (i + j > strlen(flagstr)) 8670 break; 8671 p++; 8672 nextbit = flagbits[(uchar_t)*p]; 8673 } 8674 blkptr_offset = strtoull(offstr, &end, 8675 16); 8676 i += j; 8677 } else if (nextbit == 0) { 8678 (void) printf("***Ignoring flag arg:" 8679 " '%c'\n", (uchar_t)*p); 8680 } 8681 } 8682 } 8683 } 8684 if (blkptr_offset % sizeof (blkptr_t)) { 8685 printf("Block pointer offset 0x%llx " 8686 "must be divisible by 0x%x\n", 8687 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8688 goto done; 8689 } 8690 if (found == B_FALSE && strlen(flagstr) > 0) { 8691 printf("Invalid flag arg: '%s'\n", flagstr); 8692 goto done; 8693 } 8694 8695 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8696 if (vd == NULL) { 8697 (void) printf("***Invalid vdev: %s\n", vdev); 8698 goto done; 8699 } else { 8700 if (vd->vdev_path) 8701 (void) fprintf(stderr, "Found vdev: %s\n", 8702 vd->vdev_path); 8703 else 8704 (void) fprintf(stderr, "Found vdev type: %s\n", 8705 vd->vdev_ops->vdev_op_type); 8706 } 8707 8708 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8709 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8710 8711 BP_ZERO(bp); 8712 8713 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8714 DVA_SET_OFFSET(&dva[0], offset); 8715 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8716 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8717 8718 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8719 8720 BP_SET_LSIZE(bp, lsize); 8721 BP_SET_PSIZE(bp, psize); 8722 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8723 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8724 BP_SET_TYPE(bp, DMU_OT_NONE); 8725 BP_SET_LEVEL(bp, 0); 8726 BP_SET_DEDUP(bp, 0); 8727 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8728 8729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8730 zio = zio_root(spa, NULL, NULL, 0); 8731 8732 if (vd == vd->vdev_top) { 8733 /* 8734 * Treat this as a normal block read. 8735 */ 8736 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8737 ZIO_PRIORITY_SYNC_READ, 8738 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8739 } else { 8740 /* 8741 * Treat this as a vdev child I/O. 8742 */ 8743 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8744 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8745 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8746 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8747 NULL, NULL)); 8748 } 8749 8750 error = zio_wait(zio); 8751 spa_config_exit(spa, SCL_STATE, FTAG); 8752 8753 if (error) { 8754 (void) printf("Read of %s failed, error: %d\n", thing, error); 8755 goto out; 8756 } 8757 8758 uint64_t orig_lsize = lsize; 8759 buf = lbuf; 8760 if (flags & ZDB_FLAG_DECOMPRESS) { 8761 lsize = zdb_decompress_block(pabd, buf, lbuf, 8762 lsize, psize, flags); 8763 if (lsize == -1) { 8764 (void) printf("Decompress of %s failed\n", thing); 8765 goto out; 8766 } 8767 } else { 8768 buf = abd_borrow_buf_copy(pabd, lsize); 8769 borrowed = B_TRUE; 8770 } 8771 /* 8772 * Try to detect invalid block pointer. If invalid, try 8773 * decompressing. 8774 */ 8775 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8776 !(flags & ZDB_FLAG_DECOMPRESS)) { 8777 const blkptr_t *b = (const blkptr_t *)(void *) 8778 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8779 if (zfs_blkptr_verify(spa, b, 8780 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8781 abd_return_buf_copy(pabd, buf, lsize); 8782 borrowed = B_FALSE; 8783 buf = lbuf; 8784 lsize = zdb_decompress_block(pabd, buf, 8785 lbuf, lsize, psize, flags); 8786 b = (const blkptr_t *)(void *) 8787 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8788 if (lsize == -1 || zfs_blkptr_verify(spa, b, 8789 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8790 printf("invalid block pointer at this DVA\n"); 8791 goto out; 8792 } 8793 } 8794 } 8795 8796 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8797 zdb_print_blkptr((blkptr_t *)(void *) 8798 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8799 else if (flags & ZDB_FLAG_RAW) 8800 zdb_dump_block_raw(buf, lsize, flags); 8801 else if (flags & ZDB_FLAG_INDIRECT) 8802 zdb_dump_indirect((blkptr_t *)buf, 8803 orig_lsize / sizeof (blkptr_t), flags); 8804 else if (flags & ZDB_FLAG_GBH) 8805 zdb_dump_gbh(buf, flags); 8806 else 8807 zdb_dump_block(thing, buf, lsize, flags); 8808 8809 /* 8810 * If :c was specified, iterate through the checksum table to 8811 * calculate and display each checksum for our specified 8812 * DVA and length. 8813 */ 8814 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8815 !(flags & ZDB_FLAG_GBH)) { 8816 zio_t *czio; 8817 (void) printf("\n"); 8818 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8819 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8820 8821 if ((zio_checksum_table[ck].ci_flags & 8822 ZCHECKSUM_FLAG_EMBEDDED) || 8823 ck == ZIO_CHECKSUM_NOPARITY) { 8824 continue; 8825 } 8826 BP_SET_CHECKSUM(bp, ck); 8827 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8828 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8829 if (vd == vd->vdev_top) { 8830 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8831 NULL, NULL, 8832 ZIO_PRIORITY_SYNC_READ, 8833 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8834 ZIO_FLAG_DONT_RETRY, NULL)); 8835 } else { 8836 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8837 offset, pabd, psize, ZIO_TYPE_READ, 8838 ZIO_PRIORITY_SYNC_READ, 8839 ZIO_FLAG_DONT_PROPAGATE | 8840 ZIO_FLAG_DONT_RETRY | 8841 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8842 ZIO_FLAG_SPECULATIVE | 8843 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8844 } 8845 error = zio_wait(czio); 8846 if (error == 0 || error == ECKSUM) { 8847 zio_t *ck_zio = zio_null(NULL, spa, NULL, 8848 NULL, NULL, 0); 8849 ck_zio->io_offset = 8850 DVA_GET_OFFSET(&bp->blk_dva[0]); 8851 ck_zio->io_bp = bp; 8852 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8853 printf( 8854 "%12s\t" 8855 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8856 zio_checksum_table[ck].ci_name, 8857 (u_longlong_t)bp->blk_cksum.zc_word[0], 8858 (u_longlong_t)bp->blk_cksum.zc_word[1], 8859 (u_longlong_t)bp->blk_cksum.zc_word[2], 8860 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8861 zio_wait(ck_zio); 8862 } else { 8863 printf("error %d reading block\n", error); 8864 } 8865 spa_config_exit(spa, SCL_STATE, FTAG); 8866 } 8867 } 8868 8869 if (borrowed) 8870 abd_return_buf_copy(pabd, buf, lsize); 8871 8872 out: 8873 abd_free(pabd); 8874 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8875 done: 8876 free(flagstr); 8877 free(dup); 8878 } 8879 8880 static void 8881 zdb_embedded_block(char *thing) 8882 { 8883 blkptr_t bp = {{{{0}}}}; 8884 unsigned long long *words = (void *)&bp; 8885 char *buf; 8886 int err; 8887 8888 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8889 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8890 words + 0, words + 1, words + 2, words + 3, 8891 words + 4, words + 5, words + 6, words + 7, 8892 words + 8, words + 9, words + 10, words + 11, 8893 words + 12, words + 13, words + 14, words + 15); 8894 if (err != 16) { 8895 (void) fprintf(stderr, "invalid input format\n"); 8896 zdb_exit(1); 8897 } 8898 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8899 buf = malloc(SPA_MAXBLOCKSIZE); 8900 if (buf == NULL) { 8901 (void) fprintf(stderr, "out of memory\n"); 8902 zdb_exit(1); 8903 } 8904 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8905 if (err != 0) { 8906 (void) fprintf(stderr, "decode failed: %u\n", err); 8907 zdb_exit(1); 8908 } 8909 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8910 free(buf); 8911 } 8912 8913 /* check for valid hex or decimal numeric string */ 8914 static boolean_t 8915 zdb_numeric(char *str) 8916 { 8917 int i = 0; 8918 8919 if (strlen(str) == 0) 8920 return (B_FALSE); 8921 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8922 i = 2; 8923 for (; i < strlen(str); i++) { 8924 if (!isxdigit(str[i])) 8925 return (B_FALSE); 8926 } 8927 return (B_TRUE); 8928 } 8929 8930 int 8931 main(int argc, char **argv) 8932 { 8933 int c; 8934 int dump_all = 1; 8935 int verbose = 0; 8936 int error = 0; 8937 char **searchdirs = NULL; 8938 int nsearch = 0; 8939 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8940 nvlist_t *policy = NULL; 8941 uint64_t max_txg = UINT64_MAX; 8942 int64_t objset_id = -1; 8943 uint64_t object; 8944 int flags = ZFS_IMPORT_MISSING_LOG; 8945 int rewind = ZPOOL_NEVER_REWIND; 8946 char *spa_config_path_env, *objset_str; 8947 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8948 nvlist_t *cfg = NULL; 8949 struct sigaction action; 8950 boolean_t force_import = B_FALSE; 8951 boolean_t config_path_console = B_FALSE; 8952 char pbuf[MAXPATHLEN]; 8953 8954 dprintf_setup(&argc, argv); 8955 8956 /* 8957 * Set up signal handlers, so if we crash due to bad on-disk data we 8958 * can get more info. Unlike ztest, we don't bail out if we can't set 8959 * up signal handlers, because zdb is very useful without them. 8960 */ 8961 action.sa_handler = sig_handler; 8962 sigemptyset(&action.sa_mask); 8963 action.sa_flags = 0; 8964 if (sigaction(SIGSEGV, &action, NULL) < 0) { 8965 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 8966 strerror(errno)); 8967 } 8968 if (sigaction(SIGABRT, &action, NULL) < 0) { 8969 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 8970 strerror(errno)); 8971 } 8972 8973 /* 8974 * If there is an environment variable SPA_CONFIG_PATH it overrides 8975 * default spa_config_path setting. If -U flag is specified it will 8976 * override this environment variable settings once again. 8977 */ 8978 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8979 if (spa_config_path_env != NULL) 8980 spa_config_path = spa_config_path_env; 8981 8982 /* 8983 * For performance reasons, we set this tunable down. We do so before 8984 * the arg parsing section so that the user can override this value if 8985 * they choose. 8986 */ 8987 zfs_btree_verify_intensity = 3; 8988 8989 struct option long_options[] = { 8990 {"ignore-assertions", no_argument, NULL, 'A'}, 8991 {"block-stats", no_argument, NULL, 'b'}, 8992 {"backup", no_argument, NULL, 'B'}, 8993 {"checksum", no_argument, NULL, 'c'}, 8994 {"config", no_argument, NULL, 'C'}, 8995 {"datasets", no_argument, NULL, 'd'}, 8996 {"dedup-stats", no_argument, NULL, 'D'}, 8997 {"exported", no_argument, NULL, 'e'}, 8998 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8999 {"automatic-rewind", no_argument, NULL, 'F'}, 9000 {"dump-debug-msg", no_argument, NULL, 'G'}, 9001 {"history", no_argument, NULL, 'h'}, 9002 {"intent-logs", no_argument, NULL, 'i'}, 9003 {"inflight", required_argument, NULL, 'I'}, 9004 {"checkpointed-state", no_argument, NULL, 'k'}, 9005 {"key", required_argument, NULL, 'K'}, 9006 {"label", no_argument, NULL, 'l'}, 9007 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9008 {"metaslabs", no_argument, NULL, 'm'}, 9009 {"metaslab-groups", no_argument, NULL, 'M'}, 9010 {"numeric", no_argument, NULL, 'N'}, 9011 {"option", required_argument, NULL, 'o'}, 9012 {"object-lookups", no_argument, NULL, 'O'}, 9013 {"path", required_argument, NULL, 'p'}, 9014 {"parseable", no_argument, NULL, 'P'}, 9015 {"skip-label", no_argument, NULL, 'q'}, 9016 {"copy-object", no_argument, NULL, 'r'}, 9017 {"read-block", no_argument, NULL, 'R'}, 9018 {"io-stats", no_argument, NULL, 's'}, 9019 {"simulate-dedup", no_argument, NULL, 'S'}, 9020 {"txg", required_argument, NULL, 't'}, 9021 {"brt-stats", no_argument, NULL, 'T'}, 9022 {"uberblock", no_argument, NULL, 'u'}, 9023 {"cachefile", required_argument, NULL, 'U'}, 9024 {"verbose", no_argument, NULL, 'v'}, 9025 {"verbatim", no_argument, NULL, 'V'}, 9026 {"dump-blocks", required_argument, NULL, 'x'}, 9027 {"extreme-rewind", no_argument, NULL, 'X'}, 9028 {"all-reconstruction", no_argument, NULL, 'Y'}, 9029 {"livelist", no_argument, NULL, 'y'}, 9030 {"zstd-headers", no_argument, NULL, 'Z'}, 9031 {0, 0, 0, 0} 9032 }; 9033 9034 while ((c = getopt_long(argc, argv, 9035 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9036 long_options, NULL)) != -1) { 9037 switch (c) { 9038 case 'b': 9039 case 'B': 9040 case 'c': 9041 case 'C': 9042 case 'd': 9043 case 'D': 9044 case 'E': 9045 case 'G': 9046 case 'h': 9047 case 'i': 9048 case 'l': 9049 case 'm': 9050 case 'M': 9051 case 'N': 9052 case 'O': 9053 case 'r': 9054 case 'R': 9055 case 's': 9056 case 'S': 9057 case 'T': 9058 case 'u': 9059 case 'y': 9060 case 'Z': 9061 dump_opt[c]++; 9062 dump_all = 0; 9063 break; 9064 case 'A': 9065 case 'e': 9066 case 'F': 9067 case 'k': 9068 case 'L': 9069 case 'P': 9070 case 'q': 9071 case 'X': 9072 dump_opt[c]++; 9073 break; 9074 case 'Y': 9075 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9076 zfs_deadman_enabled = 0; 9077 break; 9078 /* NB: Sort single match options below. */ 9079 case 'I': 9080 max_inflight_bytes = strtoull(optarg, NULL, 0); 9081 if (max_inflight_bytes == 0) { 9082 (void) fprintf(stderr, "maximum number " 9083 "of inflight bytes must be greater " 9084 "than 0\n"); 9085 usage(); 9086 } 9087 break; 9088 case 'K': 9089 dump_opt[c]++; 9090 key_material = strdup(optarg); 9091 /* redact key material in process table */ 9092 while (*optarg != '\0') { *optarg++ = '*'; } 9093 break; 9094 case 'o': 9095 error = set_global_var(optarg); 9096 if (error != 0) 9097 usage(); 9098 break; 9099 case 'p': 9100 if (searchdirs == NULL) { 9101 searchdirs = umem_alloc(sizeof (char *), 9102 UMEM_NOFAIL); 9103 } else { 9104 char **tmp = umem_alloc((nsearch + 1) * 9105 sizeof (char *), UMEM_NOFAIL); 9106 memcpy(tmp, searchdirs, nsearch * 9107 sizeof (char *)); 9108 umem_free(searchdirs, 9109 nsearch * sizeof (char *)); 9110 searchdirs = tmp; 9111 } 9112 searchdirs[nsearch++] = optarg; 9113 break; 9114 case 't': 9115 max_txg = strtoull(optarg, NULL, 0); 9116 if (max_txg < TXG_INITIAL) { 9117 (void) fprintf(stderr, "incorrect txg " 9118 "specified: %s\n", optarg); 9119 usage(); 9120 } 9121 break; 9122 case 'U': 9123 config_path_console = B_TRUE; 9124 spa_config_path = optarg; 9125 if (spa_config_path[0] != '/') { 9126 (void) fprintf(stderr, 9127 "cachefile must be an absolute path " 9128 "(i.e. start with a slash)\n"); 9129 usage(); 9130 } 9131 break; 9132 case 'v': 9133 verbose++; 9134 break; 9135 case 'V': 9136 flags = ZFS_IMPORT_VERBATIM; 9137 break; 9138 case 'x': 9139 vn_dumpdir = optarg; 9140 break; 9141 default: 9142 usage(); 9143 break; 9144 } 9145 } 9146 9147 if (!dump_opt['e'] && searchdirs != NULL) { 9148 (void) fprintf(stderr, "-p option requires use of -e\n"); 9149 usage(); 9150 } 9151 #if defined(_LP64) 9152 /* 9153 * ZDB does not typically re-read blocks; therefore limit the ARC 9154 * to 256 MB, which can be used entirely for metadata. 9155 */ 9156 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9157 zfs_arc_max = 256 * 1024 * 1024; 9158 #endif 9159 9160 /* 9161 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9162 * "zdb -b" uses traversal prefetch which uses async reads. 9163 * For good performance, let several of them be active at once. 9164 */ 9165 zfs_vdev_async_read_max_active = 10; 9166 9167 /* 9168 * Disable reference tracking for better performance. 9169 */ 9170 reference_tracking_enable = B_FALSE; 9171 9172 /* 9173 * Do not fail spa_load when spa_load_verify fails. This is needed 9174 * to load non-idle pools. 9175 */ 9176 spa_load_verify_dryrun = B_TRUE; 9177 9178 /* 9179 * ZDB should have ability to read spacemaps. 9180 */ 9181 spa_mode_readable_spacemaps = B_TRUE; 9182 9183 if (dump_all) 9184 verbose = MAX(verbose, 1); 9185 9186 for (c = 0; c < 256; c++) { 9187 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9188 dump_opt[c] = 1; 9189 if (dump_opt[c]) 9190 dump_opt[c] += verbose; 9191 } 9192 9193 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9194 zfs_recover = (dump_opt['A'] > 1); 9195 9196 argc -= optind; 9197 argv += optind; 9198 if (argc < 2 && dump_opt['R']) 9199 usage(); 9200 9201 target = argv[0]; 9202 9203 /* 9204 * Automate cachefile 9205 */ 9206 if (!spa_config_path_env && !config_path_console && target && 9207 libzfs_core_init() == 0) { 9208 char *pname = strdup(target); 9209 const char *value; 9210 nvlist_t *pnvl = NULL; 9211 nvlist_t *vnvl = NULL; 9212 9213 if (strpbrk(pname, "/@") != NULL) 9214 *strpbrk(pname, "/@") = '\0'; 9215 9216 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9217 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9218 &vnvl) == 0) { 9219 value = fnvlist_lookup_string(vnvl, 9220 ZPROP_VALUE); 9221 } else { 9222 value = "-"; 9223 } 9224 strlcpy(pbuf, value, sizeof (pbuf)); 9225 if (pbuf[0] != '\0') { 9226 if (pbuf[0] == '/') { 9227 if (access(pbuf, F_OK) == 0) 9228 spa_config_path = pbuf; 9229 else 9230 force_import = B_TRUE; 9231 } else if ((strcmp(pbuf, "-") == 0 && 9232 access(ZPOOL_CACHE, F_OK) != 0) || 9233 strcmp(pbuf, "none") == 0) { 9234 force_import = B_TRUE; 9235 } 9236 } 9237 nvlist_free(vnvl); 9238 } 9239 9240 free(pname); 9241 nvlist_free(pnvl); 9242 libzfs_core_fini(); 9243 } 9244 9245 kernel_init(SPA_MODE_READ); 9246 kernel_init_done = B_TRUE; 9247 9248 if (dump_opt['E']) { 9249 if (argc != 1) 9250 usage(); 9251 zdb_embedded_block(argv[0]); 9252 error = 0; 9253 goto fini; 9254 } 9255 9256 if (argc < 1) { 9257 if (!dump_opt['e'] && dump_opt['C']) { 9258 dump_cachefile(spa_config_path); 9259 error = 0; 9260 goto fini; 9261 } 9262 usage(); 9263 } 9264 9265 if (dump_opt['l']) { 9266 error = dump_label(argv[0]); 9267 goto fini; 9268 } 9269 9270 if (dump_opt['X'] || dump_opt['F']) 9271 rewind = ZPOOL_DO_REWIND | 9272 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9273 9274 /* -N implies -d */ 9275 if (dump_opt['N'] && dump_opt['d'] == 0) 9276 dump_opt['d'] = dump_opt['N']; 9277 9278 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9279 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9280 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9281 fatal("internal error: %s", strerror(ENOMEM)); 9282 9283 error = 0; 9284 9285 if (strpbrk(target, "/@") != NULL) { 9286 size_t targetlen; 9287 9288 target_pool = strdup(target); 9289 *strpbrk(target_pool, "/@") = '\0'; 9290 9291 target_is_spa = B_FALSE; 9292 targetlen = strlen(target); 9293 if (targetlen && target[targetlen - 1] == '/') 9294 target[targetlen - 1] = '\0'; 9295 9296 /* 9297 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9298 * To disambiguate tank/100, consider the 100 as objsetID 9299 * if -N was given, otherwise 100 is an objsetID iff 9300 * tank/100 as a named dataset fails on lookup. 9301 */ 9302 objset_str = strchr(target, '/'); 9303 if (objset_str && strlen(objset_str) > 1 && 9304 zdb_numeric(objset_str + 1)) { 9305 char *endptr; 9306 errno = 0; 9307 objset_str++; 9308 objset_id = strtoull(objset_str, &endptr, 0); 9309 /* dataset 0 is the same as opening the pool */ 9310 if (errno == 0 && endptr != objset_str && 9311 objset_id != 0) { 9312 if (dump_opt['N']) 9313 dataset_lookup = B_TRUE; 9314 } 9315 /* normal dataset name not an objset ID */ 9316 if (endptr == objset_str) { 9317 objset_id = -1; 9318 } 9319 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9320 dump_opt['N']) { 9321 printf("Supply a numeric objset ID with -N\n"); 9322 error = 1; 9323 goto fini; 9324 } 9325 } else { 9326 target_pool = target; 9327 } 9328 9329 if (dump_opt['e'] || force_import) { 9330 importargs_t args = { 0 }; 9331 9332 /* 9333 * If path is not provided, search in /dev 9334 */ 9335 if (searchdirs == NULL) { 9336 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9337 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9338 } 9339 9340 args.paths = nsearch; 9341 args.path = searchdirs; 9342 args.can_be_active = B_TRUE; 9343 9344 libpc_handle_t lpch = { 9345 .lpc_lib_handle = NULL, 9346 .lpc_ops = &libzpool_config_ops, 9347 .lpc_printerr = B_TRUE 9348 }; 9349 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9350 9351 if (error == 0) { 9352 9353 if (nvlist_add_nvlist(cfg, 9354 ZPOOL_LOAD_POLICY, policy) != 0) { 9355 fatal("can't open '%s': %s", 9356 target, strerror(ENOMEM)); 9357 } 9358 9359 if (dump_opt['C'] > 1) { 9360 (void) printf("\nConfiguration for import:\n"); 9361 dump_nvlist(cfg, 8); 9362 } 9363 9364 /* 9365 * Disable the activity check to allow examination of 9366 * active pools. 9367 */ 9368 error = spa_import(target_pool, cfg, NULL, 9369 flags | ZFS_IMPORT_SKIP_MMP); 9370 } 9371 } 9372 9373 if (searchdirs != NULL) { 9374 umem_free(searchdirs, nsearch * sizeof (char *)); 9375 searchdirs = NULL; 9376 } 9377 9378 /* 9379 * We need to make sure to process -O option or call 9380 * dump_path after the -e option has been processed, 9381 * which imports the pool to the namespace if it's 9382 * not in the cachefile. 9383 */ 9384 if (dump_opt['O']) { 9385 if (argc != 2) 9386 usage(); 9387 dump_opt['v'] = verbose + 3; 9388 error = dump_path(argv[0], argv[1], NULL); 9389 goto fini; 9390 } 9391 9392 if (dump_opt['r']) { 9393 target_is_spa = B_FALSE; 9394 if (argc != 3) 9395 usage(); 9396 dump_opt['v'] = verbose; 9397 error = dump_path(argv[0], argv[1], &object); 9398 if (error != 0) 9399 fatal("internal error: %s", strerror(error)); 9400 } 9401 9402 /* 9403 * import_checkpointed_state makes the assumption that the 9404 * target pool that we pass it is already part of the spa 9405 * namespace. Because of that we need to make sure to call 9406 * it always after the -e option has been processed, which 9407 * imports the pool to the namespace if it's not in the 9408 * cachefile. 9409 */ 9410 char *checkpoint_pool = NULL; 9411 char *checkpoint_target = NULL; 9412 if (dump_opt['k']) { 9413 checkpoint_pool = import_checkpointed_state(target, cfg, 9414 &checkpoint_target); 9415 9416 if (checkpoint_target != NULL) 9417 target = checkpoint_target; 9418 } 9419 9420 if (cfg != NULL) { 9421 nvlist_free(cfg); 9422 cfg = NULL; 9423 } 9424 9425 if (target_pool != target) 9426 free(target_pool); 9427 9428 if (error == 0) { 9429 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9430 ASSERT(checkpoint_pool != NULL); 9431 ASSERT(checkpoint_target == NULL); 9432 9433 error = spa_open(checkpoint_pool, &spa, FTAG); 9434 if (error != 0) { 9435 fatal("Tried to open pool \"%s\" but " 9436 "spa_open() failed with error %d\n", 9437 checkpoint_pool, error); 9438 } 9439 9440 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9441 objset_id == 0) { 9442 zdb_set_skip_mmp(target); 9443 error = spa_open_rewind(target, &spa, FTAG, policy, 9444 NULL); 9445 if (error) { 9446 /* 9447 * If we're missing the log device then 9448 * try opening the pool after clearing the 9449 * log state. 9450 */ 9451 mutex_enter(&spa_namespace_lock); 9452 if ((spa = spa_lookup(target)) != NULL && 9453 spa->spa_log_state == SPA_LOG_MISSING) { 9454 spa->spa_log_state = SPA_LOG_CLEAR; 9455 error = 0; 9456 } 9457 mutex_exit(&spa_namespace_lock); 9458 9459 if (!error) { 9460 error = spa_open_rewind(target, &spa, 9461 FTAG, policy, NULL); 9462 } 9463 } 9464 } else if (strpbrk(target, "#") != NULL) { 9465 dsl_pool_t *dp; 9466 error = dsl_pool_hold(target, FTAG, &dp); 9467 if (error != 0) { 9468 fatal("can't dump '%s': %s", target, 9469 strerror(error)); 9470 } 9471 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9472 dsl_pool_rele(dp, FTAG); 9473 if (error != 0) { 9474 fatal("can't dump '%s': %s", target, 9475 strerror(error)); 9476 } 9477 goto fini; 9478 } else { 9479 target_pool = strdup(target); 9480 if (strpbrk(target, "/@") != NULL) 9481 *strpbrk(target_pool, "/@") = '\0'; 9482 9483 zdb_set_skip_mmp(target); 9484 /* 9485 * If -N was supplied, the user has indicated that 9486 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9487 * we first assume that the dataset string is the 9488 * dataset name. If dmu_objset_hold fails with the 9489 * dataset string, and we have an objset_id, retry the 9490 * lookup with the objsetID. 9491 */ 9492 boolean_t retry = B_TRUE; 9493 retry_lookup: 9494 if (dataset_lookup == B_TRUE) { 9495 /* 9496 * Use the supplied id to get the name 9497 * for open_objset. 9498 */ 9499 error = spa_open(target_pool, &spa, FTAG); 9500 if (error == 0) { 9501 error = name_from_objset_id(spa, 9502 objset_id, dsname); 9503 spa_close(spa, FTAG); 9504 if (error == 0) 9505 target = dsname; 9506 } 9507 } 9508 if (error == 0) { 9509 if (objset_id > 0 && retry) { 9510 int err = dmu_objset_hold(target, FTAG, 9511 &os); 9512 if (err) { 9513 dataset_lookup = B_TRUE; 9514 retry = B_FALSE; 9515 goto retry_lookup; 9516 } else { 9517 dmu_objset_rele(os, FTAG); 9518 } 9519 } 9520 error = open_objset(target, FTAG, &os); 9521 } 9522 if (error == 0) 9523 spa = dmu_objset_spa(os); 9524 free(target_pool); 9525 } 9526 } 9527 nvlist_free(policy); 9528 9529 if (error) 9530 fatal("can't open '%s': %s", target, strerror(error)); 9531 9532 /* 9533 * Set the pool failure mode to panic in order to prevent the pool 9534 * from suspending. A suspended I/O will have no way to resume and 9535 * can prevent the zdb(8) command from terminating as expected. 9536 */ 9537 if (spa != NULL) 9538 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9539 9540 argv++; 9541 argc--; 9542 if (dump_opt['r']) { 9543 error = zdb_copy_object(os, object, argv[1]); 9544 } else if (!dump_opt['R']) { 9545 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9546 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9547 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9548 flagbits['z'] = ZOR_FLAG_ZAP; 9549 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9550 9551 if (argc > 0 && dump_opt['d']) { 9552 zopt_object_args = argc; 9553 zopt_object_ranges = calloc(zopt_object_args, 9554 sizeof (zopt_object_range_t)); 9555 for (unsigned i = 0; i < zopt_object_args; i++) { 9556 int err; 9557 const char *msg = NULL; 9558 9559 err = parse_object_range(argv[i], 9560 &zopt_object_ranges[i], &msg); 9561 if (err != 0) 9562 fatal("Bad object or range: '%s': %s\n", 9563 argv[i], msg ?: ""); 9564 } 9565 } else if (argc > 0 && dump_opt['m']) { 9566 zopt_metaslab_args = argc; 9567 zopt_metaslab = calloc(zopt_metaslab_args, 9568 sizeof (uint64_t)); 9569 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9570 errno = 0; 9571 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9572 if (zopt_metaslab[i] == 0 && errno != 0) 9573 fatal("bad number %s: %s", argv[i], 9574 strerror(errno)); 9575 } 9576 } 9577 if (dump_opt['B']) { 9578 dump_backup(target, objset_id, 9579 argc > 0 ? argv[0] : NULL); 9580 } else if (os != NULL) { 9581 dump_objset(os); 9582 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9583 dump_objset(spa->spa_meta_objset); 9584 } else { 9585 dump_zpool(spa); 9586 } 9587 } else { 9588 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9589 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9590 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9591 flagbits['e'] = ZDB_FLAG_BSWAP; 9592 flagbits['g'] = ZDB_FLAG_GBH; 9593 flagbits['i'] = ZDB_FLAG_INDIRECT; 9594 flagbits['r'] = ZDB_FLAG_RAW; 9595 flagbits['v'] = ZDB_FLAG_VERBOSE; 9596 9597 for (int i = 0; i < argc; i++) 9598 zdb_read_block(argv[i], spa); 9599 } 9600 9601 if (dump_opt['k']) { 9602 free(checkpoint_pool); 9603 if (!target_is_spa) 9604 free(checkpoint_target); 9605 } 9606 9607 fini: 9608 if (os != NULL) { 9609 close_objset(os, FTAG); 9610 } else if (spa != NULL) { 9611 spa_close(spa, FTAG); 9612 } 9613 9614 fuid_table_destroy(); 9615 9616 dump_debug_buffer(); 9617 9618 if (kernel_init_done) 9619 kernel_fini(); 9620 9621 return (error); 9622 } 9623