1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 * Copyright (c) 2021 Allan Jude 35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 36 * Copyright (c) 2023, Klara Inc. 37 */ 38 39 #include <stdio.h> 40 #include <unistd.h> 41 #include <stdlib.h> 42 #include <ctype.h> 43 #include <getopt.h> 44 #include <openssl/evp.h> 45 #include <sys/zfs_context.h> 46 #include <sys/spa.h> 47 #include <sys/spa_impl.h> 48 #include <sys/dmu.h> 49 #include <sys/zap.h> 50 #include <sys/fs/zfs.h> 51 #include <sys/zfs_znode.h> 52 #include <sys/zfs_sa.h> 53 #include <sys/sa.h> 54 #include <sys/sa_impl.h> 55 #include <sys/vdev.h> 56 #include <sys/vdev_impl.h> 57 #include <sys/metaslab_impl.h> 58 #include <sys/dmu_objset.h> 59 #include <sys/dsl_dir.h> 60 #include <sys/dsl_dataset.h> 61 #include <sys/dsl_pool.h> 62 #include <sys/dsl_bookmark.h> 63 #include <sys/dbuf.h> 64 #include <sys/zil.h> 65 #include <sys/zil_impl.h> 66 #include <sys/stat.h> 67 #include <sys/resource.h> 68 #include <sys/dmu_send.h> 69 #include <sys/dmu_traverse.h> 70 #include <sys/zio_checksum.h> 71 #include <sys/zio_compress.h> 72 #include <sys/zfs_fuid.h> 73 #include <sys/arc.h> 74 #include <sys/arc_impl.h> 75 #include <sys/ddt.h> 76 #include <sys/zfeature.h> 77 #include <sys/abd.h> 78 #include <sys/blkptr.h> 79 #include <sys/dsl_crypt.h> 80 #include <sys/dsl_scan.h> 81 #include <sys/btree.h> 82 #include <sys/brt.h> 83 #include <zfs_comutil.h> 84 #include <sys/zstd/zstd.h> 85 86 #include <libnvpair.h> 87 #include <libzutil.h> 88 89 #include "zdb.h" 90 91 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 92 zio_compress_table[(idx)].ci_name : "UNKNOWN") 93 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 94 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 95 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 96 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 97 DMU_OT_ZAP_OTHER : \ 98 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 99 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 100 101 /* Some platforms require part of inode IDs to be remapped */ 102 #ifdef __APPLE__ 103 #define ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2) 104 #else 105 #define ZDB_MAP_OBJECT_ID(obj) (obj) 106 #endif 107 108 static const char * 109 zdb_ot_name(dmu_object_type_t type) 110 { 111 if (type < DMU_OT_NUMTYPES) 112 return (dmu_ot[type].ot_name); 113 else if ((type & DMU_OT_NEWTYPE) && 114 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 115 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 116 else 117 return ("UNKNOWN"); 118 } 119 120 extern int reference_tracking_enable; 121 extern int zfs_recover; 122 extern uint_t zfs_vdev_async_read_max_active; 123 extern boolean_t spa_load_verify_dryrun; 124 extern boolean_t spa_mode_readable_spacemaps; 125 extern uint_t zfs_reconstruct_indirect_combinations_max; 126 extern uint_t zfs_btree_verify_intensity; 127 128 static const char cmdname[] = "zdb"; 129 uint8_t dump_opt[256]; 130 131 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 132 133 static uint64_t *zopt_metaslab = NULL; 134 static unsigned zopt_metaslab_args = 0; 135 136 typedef struct zopt_object_range { 137 uint64_t zor_obj_start; 138 uint64_t zor_obj_end; 139 uint64_t zor_flags; 140 } zopt_object_range_t; 141 142 static zopt_object_range_t *zopt_object_ranges = NULL; 143 static unsigned zopt_object_args = 0; 144 145 static int flagbits[256]; 146 147 #define ZOR_FLAG_PLAIN_FILE 0x0001 148 #define ZOR_FLAG_DIRECTORY 0x0002 149 #define ZOR_FLAG_SPACE_MAP 0x0004 150 #define ZOR_FLAG_ZAP 0x0008 151 #define ZOR_FLAG_ALL_TYPES -1 152 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 153 ZOR_FLAG_DIRECTORY | \ 154 ZOR_FLAG_SPACE_MAP | \ 155 ZOR_FLAG_ZAP) 156 157 #define ZDB_FLAG_CHECKSUM 0x0001 158 #define ZDB_FLAG_DECOMPRESS 0x0002 159 #define ZDB_FLAG_BSWAP 0x0004 160 #define ZDB_FLAG_GBH 0x0008 161 #define ZDB_FLAG_INDIRECT 0x0010 162 #define ZDB_FLAG_RAW 0x0020 163 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 164 #define ZDB_FLAG_VERBOSE 0x0080 165 166 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 167 static int leaked_objects = 0; 168 static range_tree_t *mos_refd_objs; 169 170 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 171 boolean_t); 172 static void mos_obj_refd(uint64_t); 173 static void mos_obj_refd_multiple(uint64_t); 174 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 175 dmu_tx_t *tx); 176 177 typedef struct sublivelist_verify { 178 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 179 zfs_btree_t sv_pair; 180 181 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 182 zfs_btree_t sv_leftover; 183 } sublivelist_verify_t; 184 185 static int 186 livelist_compare(const void *larg, const void *rarg) 187 { 188 const blkptr_t *l = larg; 189 const blkptr_t *r = rarg; 190 191 /* Sort them according to dva[0] */ 192 uint64_t l_dva0_vdev, r_dva0_vdev; 193 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 194 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 195 if (l_dva0_vdev < r_dva0_vdev) 196 return (-1); 197 else if (l_dva0_vdev > r_dva0_vdev) 198 return (+1); 199 200 /* if vdevs are equal, sort by offsets. */ 201 uint64_t l_dva0_offset; 202 uint64_t r_dva0_offset; 203 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 204 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 205 if (l_dva0_offset < r_dva0_offset) { 206 return (-1); 207 } else if (l_dva0_offset > r_dva0_offset) { 208 return (+1); 209 } 210 211 /* 212 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 213 * it's possible the offsets are equal. In that case, sort by txg 214 */ 215 if (l->blk_birth < r->blk_birth) { 216 return (-1); 217 } else if (l->blk_birth > r->blk_birth) { 218 return (+1); 219 } 220 return (0); 221 } 222 223 typedef struct sublivelist_verify_block { 224 dva_t svb_dva; 225 226 /* 227 * We need this to check if the block marked as allocated 228 * in the livelist was freed (and potentially reallocated) 229 * in the metaslab spacemaps at a later TXG. 230 */ 231 uint64_t svb_allocated_txg; 232 } sublivelist_verify_block_t; 233 234 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 235 236 typedef struct sublivelist_verify_block_refcnt { 237 /* block pointer entry in livelist being verified */ 238 blkptr_t svbr_blk; 239 240 /* 241 * Refcount gets incremented to 1 when we encounter the first 242 * FREE entry for the svfbr block pointer and a node for it 243 * is created in our ZDB verification/tracking metadata. 244 * 245 * As we encounter more FREE entries we increment this counter 246 * and similarly decrement it whenever we find the respective 247 * ALLOC entries for this block. 248 * 249 * When the refcount gets to 0 it means that all the FREE and 250 * ALLOC entries of this block have paired up and we no longer 251 * need to track it in our verification logic (e.g. the node 252 * containing this struct in our verification data structure 253 * should be freed). 254 * 255 * [refer to sublivelist_verify_blkptr() for the actual code] 256 */ 257 uint32_t svbr_refcnt; 258 } sublivelist_verify_block_refcnt_t; 259 260 static int 261 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 262 { 263 const sublivelist_verify_block_refcnt_t *l = larg; 264 const sublivelist_verify_block_refcnt_t *r = rarg; 265 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 266 } 267 268 static int 269 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 270 dmu_tx_t *tx) 271 { 272 ASSERT3P(tx, ==, NULL); 273 struct sublivelist_verify *sv = arg; 274 sublivelist_verify_block_refcnt_t current = { 275 .svbr_blk = *bp, 276 277 /* 278 * Start with 1 in case this is the first free entry. 279 * This field is not used for our B-Tree comparisons 280 * anyway. 281 */ 282 .svbr_refcnt = 1, 283 }; 284 285 zfs_btree_index_t where; 286 sublivelist_verify_block_refcnt_t *pair = 287 zfs_btree_find(&sv->sv_pair, ¤t, &where); 288 if (free) { 289 if (pair == NULL) { 290 /* first free entry for this block pointer */ 291 zfs_btree_add(&sv->sv_pair, ¤t); 292 } else { 293 pair->svbr_refcnt++; 294 } 295 } else { 296 if (pair == NULL) { 297 /* block that is currently marked as allocated */ 298 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 299 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 300 break; 301 sublivelist_verify_block_t svb = { 302 .svb_dva = bp->blk_dva[i], 303 .svb_allocated_txg = bp->blk_birth 304 }; 305 306 if (zfs_btree_find(&sv->sv_leftover, &svb, 307 &where) == NULL) { 308 zfs_btree_add_idx(&sv->sv_leftover, 309 &svb, &where); 310 } 311 } 312 } else { 313 /* alloc matches a free entry */ 314 pair->svbr_refcnt--; 315 if (pair->svbr_refcnt == 0) { 316 /* all allocs and frees have been matched */ 317 zfs_btree_remove_idx(&sv->sv_pair, &where); 318 } 319 } 320 } 321 322 return (0); 323 } 324 325 static int 326 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 327 { 328 int err; 329 struct sublivelist_verify *sv = args; 330 331 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 332 sizeof (sublivelist_verify_block_refcnt_t)); 333 334 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 335 sv, NULL); 336 337 sublivelist_verify_block_refcnt_t *e; 338 zfs_btree_index_t *cookie = NULL; 339 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 340 char blkbuf[BP_SPRINTF_LEN]; 341 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 342 &e->svbr_blk, B_TRUE); 343 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 344 e->svbr_refcnt, blkbuf); 345 } 346 zfs_btree_destroy(&sv->sv_pair); 347 348 return (err); 349 } 350 351 static int 352 livelist_block_compare(const void *larg, const void *rarg) 353 { 354 const sublivelist_verify_block_t *l = larg; 355 const sublivelist_verify_block_t *r = rarg; 356 357 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 358 return (-1); 359 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 360 return (+1); 361 362 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 363 return (-1); 364 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 365 return (+1); 366 367 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 368 return (-1); 369 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 370 return (+1); 371 372 return (0); 373 } 374 375 /* 376 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 377 * sublivelist_verify_t: sv->sv_leftover 378 */ 379 static void 380 livelist_verify(dsl_deadlist_t *dl, void *arg) 381 { 382 sublivelist_verify_t *sv = arg; 383 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 384 } 385 386 /* 387 * Check for errors in the livelist entry and discard the intermediary 388 * data structures 389 */ 390 static int 391 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 392 { 393 (void) args; 394 sublivelist_verify_t sv; 395 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 396 sizeof (sublivelist_verify_block_t)); 397 int err = sublivelist_verify_func(&sv, dle); 398 zfs_btree_clear(&sv.sv_leftover); 399 zfs_btree_destroy(&sv.sv_leftover); 400 return (err); 401 } 402 403 typedef struct metaslab_verify { 404 /* 405 * Tree containing all the leftover ALLOCs from the livelists 406 * that are part of this metaslab. 407 */ 408 zfs_btree_t mv_livelist_allocs; 409 410 /* 411 * Metaslab information. 412 */ 413 uint64_t mv_vdid; 414 uint64_t mv_msid; 415 uint64_t mv_start; 416 uint64_t mv_end; 417 418 /* 419 * What's currently allocated for this metaslab. 420 */ 421 range_tree_t *mv_allocated; 422 } metaslab_verify_t; 423 424 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 425 426 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 427 void *arg); 428 429 typedef struct unflushed_iter_cb_arg { 430 spa_t *uic_spa; 431 uint64_t uic_txg; 432 void *uic_arg; 433 zdb_log_sm_cb_t uic_cb; 434 } unflushed_iter_cb_arg_t; 435 436 static int 437 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 438 { 439 unflushed_iter_cb_arg_t *uic = arg; 440 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 441 } 442 443 static void 444 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 445 { 446 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 447 return; 448 449 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 450 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 451 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 452 space_map_t *sm = NULL; 453 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 454 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 455 456 unflushed_iter_cb_arg_t uic = { 457 .uic_spa = spa, 458 .uic_txg = sls->sls_txg, 459 .uic_arg = arg, 460 .uic_cb = cb 461 }; 462 VERIFY0(space_map_iterate(sm, space_map_length(sm), 463 iterate_through_spacemap_logs_cb, &uic)); 464 space_map_close(sm); 465 } 466 spa_config_exit(spa, SCL_CONFIG, FTAG); 467 } 468 469 static void 470 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 471 uint64_t offset, uint64_t size) 472 { 473 sublivelist_verify_block_t svb = {{{0}}}; 474 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 475 DVA_SET_OFFSET(&svb.svb_dva, offset); 476 DVA_SET_ASIZE(&svb.svb_dva, size); 477 zfs_btree_index_t where; 478 uint64_t end_offset = offset + size; 479 480 /* 481 * Look for an exact match for spacemap entry in the livelist entries. 482 * Then, look for other livelist entries that fall within the range 483 * of the spacemap entry as it may have been condensed 484 */ 485 sublivelist_verify_block_t *found = 486 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 487 if (found == NULL) { 488 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 489 } 490 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 491 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 492 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 493 if (found->svb_allocated_txg <= txg) { 494 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 495 "from TXG %llx FREED at TXG %llx\n", 496 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 497 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 498 (u_longlong_t)found->svb_allocated_txg, 499 (u_longlong_t)txg); 500 } 501 } 502 } 503 504 static int 505 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 506 { 507 metaslab_verify_t *mv = arg; 508 uint64_t offset = sme->sme_offset; 509 uint64_t size = sme->sme_run; 510 uint64_t txg = sme->sme_txg; 511 512 if (sme->sme_type == SM_ALLOC) { 513 if (range_tree_contains(mv->mv_allocated, 514 offset, size)) { 515 (void) printf("ERROR: DOUBLE ALLOC: " 516 "%llu [%llx:%llx] " 517 "%llu:%llu LOG_SM\n", 518 (u_longlong_t)txg, (u_longlong_t)offset, 519 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 520 (u_longlong_t)mv->mv_msid); 521 } else { 522 range_tree_add(mv->mv_allocated, 523 offset, size); 524 } 525 } else { 526 if (!range_tree_contains(mv->mv_allocated, 527 offset, size)) { 528 (void) printf("ERROR: DOUBLE FREE: " 529 "%llu [%llx:%llx] " 530 "%llu:%llu LOG_SM\n", 531 (u_longlong_t)txg, (u_longlong_t)offset, 532 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 533 (u_longlong_t)mv->mv_msid); 534 } else { 535 range_tree_remove(mv->mv_allocated, 536 offset, size); 537 } 538 } 539 540 if (sme->sme_type != SM_ALLOC) { 541 /* 542 * If something is freed in the spacemap, verify that 543 * it is not listed as allocated in the livelist. 544 */ 545 verify_livelist_allocs(mv, txg, offset, size); 546 } 547 return (0); 548 } 549 550 static int 551 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 552 uint64_t txg, void *arg) 553 { 554 metaslab_verify_t *mv = arg; 555 uint64_t offset = sme->sme_offset; 556 uint64_t vdev_id = sme->sme_vdev; 557 558 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 559 560 /* skip indirect vdevs */ 561 if (!vdev_is_concrete(vd)) 562 return (0); 563 564 if (vdev_id != mv->mv_vdid) 565 return (0); 566 567 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 568 if (ms->ms_id != mv->mv_msid) 569 return (0); 570 571 if (txg < metaslab_unflushed_txg(ms)) 572 return (0); 573 574 575 ASSERT3U(txg, ==, sme->sme_txg); 576 return (metaslab_spacemap_validation_cb(sme, mv)); 577 } 578 579 static void 580 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 581 { 582 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 583 } 584 585 static void 586 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 587 { 588 if (sm == NULL) 589 return; 590 591 VERIFY0(space_map_iterate(sm, space_map_length(sm), 592 metaslab_spacemap_validation_cb, mv)); 593 } 594 595 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 596 597 /* 598 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 599 * they are part of that metaslab (mv_msid). 600 */ 601 static void 602 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 603 { 604 zfs_btree_index_t where; 605 sublivelist_verify_block_t *svb; 606 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 607 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 608 svb != NULL; 609 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 610 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 611 continue; 612 613 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 614 (DVA_GET_OFFSET(&svb->svb_dva) + 615 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 616 (void) printf("ERROR: Found block that crosses " 617 "metaslab boundary: <%llu:%llx:%llx>\n", 618 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 619 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 620 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 621 continue; 622 } 623 624 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 625 continue; 626 627 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 628 continue; 629 630 if ((DVA_GET_OFFSET(&svb->svb_dva) + 631 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 632 (void) printf("ERROR: Found block that crosses " 633 "metaslab boundary: <%llu:%llx:%llx>\n", 634 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 635 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 636 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 637 continue; 638 } 639 640 zfs_btree_add(&mv->mv_livelist_allocs, svb); 641 } 642 643 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 644 svb != NULL; 645 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 646 zfs_btree_remove(&sv->sv_leftover, svb); 647 } 648 } 649 650 /* 651 * [Livelist Check] 652 * Iterate through all the sublivelists and: 653 * - report leftover frees (**) 654 * - record leftover ALLOCs together with their TXG [see Cross Check] 655 * 656 * (**) Note: Double ALLOCs are valid in datasets that have dedup 657 * enabled. Similarly double FREEs are allowed as well but 658 * only if they pair up with a corresponding ALLOC entry once 659 * we our done with our sublivelist iteration. 660 * 661 * [Spacemap Check] 662 * for each metaslab: 663 * - iterate over spacemap and then the metaslab's entries in the 664 * spacemap log, then report any double FREEs and ALLOCs (do not 665 * blow up). 666 * 667 * [Cross Check] 668 * After finishing the Livelist Check phase and while being in the 669 * Spacemap Check phase, we find all the recorded leftover ALLOCs 670 * of the livelist check that are part of the metaslab that we are 671 * currently looking at in the Spacemap Check. We report any entries 672 * that are marked as ALLOCs in the livelists but have been actually 673 * freed (and potentially allocated again) after their TXG stamp in 674 * the spacemaps. Also report any ALLOCs from the livelists that 675 * belong to indirect vdevs (e.g. their vdev completed removal). 676 * 677 * Note that this will miss Log Spacemap entries that cancelled each other 678 * out before being flushed to the metaslab, so we are not guaranteed 679 * to match all erroneous ALLOCs. 680 */ 681 static void 682 livelist_metaslab_validate(spa_t *spa) 683 { 684 (void) printf("Verifying deleted livelist entries\n"); 685 686 sublivelist_verify_t sv; 687 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 688 sizeof (sublivelist_verify_block_t)); 689 iterate_deleted_livelists(spa, livelist_verify, &sv); 690 691 (void) printf("Verifying metaslab entries\n"); 692 vdev_t *rvd = spa->spa_root_vdev; 693 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 694 vdev_t *vd = rvd->vdev_child[c]; 695 696 if (!vdev_is_concrete(vd)) 697 continue; 698 699 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 700 metaslab_t *m = vd->vdev_ms[mid]; 701 702 (void) fprintf(stderr, 703 "\rverifying concrete vdev %llu, " 704 "metaslab %llu of %llu ...", 705 (longlong_t)vd->vdev_id, 706 (longlong_t)mid, 707 (longlong_t)vd->vdev_ms_count); 708 709 uint64_t shift, start; 710 range_seg_type_t type = 711 metaslab_calculate_range_tree_type(vd, m, 712 &start, &shift); 713 metaslab_verify_t mv; 714 mv.mv_allocated = range_tree_create(NULL, 715 type, NULL, start, shift); 716 mv.mv_vdid = vd->vdev_id; 717 mv.mv_msid = m->ms_id; 718 mv.mv_start = m->ms_start; 719 mv.mv_end = m->ms_start + m->ms_size; 720 zfs_btree_create(&mv.mv_livelist_allocs, 721 livelist_block_compare, NULL, 722 sizeof (sublivelist_verify_block_t)); 723 724 mv_populate_livelist_allocs(&mv, &sv); 725 726 spacemap_check_ms_sm(m->ms_sm, &mv); 727 spacemap_check_sm_log(spa, &mv); 728 729 range_tree_vacate(mv.mv_allocated, NULL, NULL); 730 range_tree_destroy(mv.mv_allocated); 731 zfs_btree_clear(&mv.mv_livelist_allocs); 732 zfs_btree_destroy(&mv.mv_livelist_allocs); 733 } 734 } 735 (void) fprintf(stderr, "\n"); 736 737 /* 738 * If there are any segments in the leftover tree after we walked 739 * through all the metaslabs in the concrete vdevs then this means 740 * that we have segments in the livelists that belong to indirect 741 * vdevs and are marked as allocated. 742 */ 743 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 744 zfs_btree_destroy(&sv.sv_leftover); 745 return; 746 } 747 (void) printf("ERROR: Found livelist blocks marked as allocated " 748 "for indirect vdevs:\n"); 749 750 zfs_btree_index_t *where = NULL; 751 sublivelist_verify_block_t *svb; 752 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 753 NULL) { 754 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 755 ASSERT3U(vdev_id, <, rvd->vdev_children); 756 vdev_t *vd = rvd->vdev_child[vdev_id]; 757 ASSERT(!vdev_is_concrete(vd)); 758 (void) printf("<%d:%llx:%llx> TXG %llx\n", 759 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 760 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 761 (u_longlong_t)svb->svb_allocated_txg); 762 } 763 (void) printf("\n"); 764 zfs_btree_destroy(&sv.sv_leftover); 765 } 766 767 /* 768 * These libumem hooks provide a reasonable set of defaults for the allocator's 769 * debugging facilities. 770 */ 771 const char * 772 _umem_debug_init(void) 773 { 774 return ("default,verbose"); /* $UMEM_DEBUG setting */ 775 } 776 777 const char * 778 _umem_logging_init(void) 779 { 780 return ("fail,contents"); /* $UMEM_LOGGING setting */ 781 } 782 783 static void 784 usage(void) 785 { 786 (void) fprintf(stderr, 787 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 788 "[-I <inflight I/Os>]\n" 789 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 790 "\t\t[-K <key>]\n" 791 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 792 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 793 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 794 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 795 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 796 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 797 "\t%s [-v] <bookmark>\n" 798 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 799 "\t%s -l [-Aqu] <device>\n" 800 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 801 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 802 "\t%s -O [-K <key>] <dataset> <path>\n" 803 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 804 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 805 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 806 "\t%s -E [-A] word0:word1:...:word15\n" 807 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 808 "<poolname>\n\n", 809 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 810 cmdname, cmdname, cmdname, cmdname, cmdname); 811 812 (void) fprintf(stderr, " Dataset name must include at least one " 813 "separator character '/' or '@'\n"); 814 (void) fprintf(stderr, " If dataset name is specified, only that " 815 "dataset is dumped\n"); 816 (void) fprintf(stderr, " If object numbers or object number " 817 "ranges are specified, only those\n" 818 " objects or ranges are dumped.\n\n"); 819 (void) fprintf(stderr, 820 " Object ranges take the form <start>:<end>[:<flags>]\n" 821 " start Starting object number\n" 822 " end Ending object number, or -1 for no upper bound\n" 823 " flags Optional flags to select object types:\n" 824 " A All objects (this is the default)\n" 825 " d ZFS directories\n" 826 " f ZFS files \n" 827 " m SPA space maps\n" 828 " z ZAPs\n" 829 " - Negate effect of next flag\n\n"); 830 (void) fprintf(stderr, " Options to control amount of output:\n"); 831 (void) fprintf(stderr, " -b --block-stats " 832 "block statistics\n"); 833 (void) fprintf(stderr, " -B --backup " 834 "backup stream\n"); 835 (void) fprintf(stderr, " -c --checksum " 836 "checksum all metadata (twice for all data) blocks\n"); 837 (void) fprintf(stderr, " -C --config " 838 "config (or cachefile if alone)\n"); 839 (void) fprintf(stderr, " -d --datasets " 840 "dataset(s)\n"); 841 (void) fprintf(stderr, " -D --dedup-stats " 842 "dedup statistics\n"); 843 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 844 " decode and display block " 845 "from an embedded block pointer\n"); 846 (void) fprintf(stderr, " -h --history " 847 "pool history\n"); 848 (void) fprintf(stderr, " -i --intent-logs " 849 "intent logs\n"); 850 (void) fprintf(stderr, " -l --label " 851 "read label contents\n"); 852 (void) fprintf(stderr, " -k --checkpointed-state " 853 "examine the checkpointed state of the pool\n"); 854 (void) fprintf(stderr, " -L --disable-leak-tracking " 855 "disable leak tracking (do not load spacemaps)\n"); 856 (void) fprintf(stderr, " -m --metaslabs " 857 "metaslabs\n"); 858 (void) fprintf(stderr, " -M --metaslab-groups " 859 "metaslab groups\n"); 860 (void) fprintf(stderr, " -O --object-lookups " 861 "perform object lookups by path\n"); 862 (void) fprintf(stderr, " -r --copy-object " 863 "copy an object by path to file\n"); 864 (void) fprintf(stderr, " -R --read-block " 865 "read and display block from a device\n"); 866 (void) fprintf(stderr, " -s --io-stats " 867 "report stats on zdb's I/O\n"); 868 (void) fprintf(stderr, " -S --simulate-dedup " 869 "simulate dedup to measure effect\n"); 870 (void) fprintf(stderr, " -v --verbose " 871 "verbose (applies to all others)\n"); 872 (void) fprintf(stderr, " -y --livelist " 873 "perform livelist and metaslab validation on any livelists being " 874 "deleted\n\n"); 875 (void) fprintf(stderr, " Below options are intended for use " 876 "with other options:\n"); 877 (void) fprintf(stderr, " -A --ignore-assertions " 878 "ignore assertions (-A), enable panic recovery (-AA) or both " 879 "(-AAA)\n"); 880 (void) fprintf(stderr, " -e --exported " 881 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 882 (void) fprintf(stderr, " -F --automatic-rewind " 883 "attempt automatic rewind within safe range of transaction " 884 "groups\n"); 885 (void) fprintf(stderr, " -G --dump-debug-msg " 886 "dump zfs_dbgmsg buffer before exiting\n"); 887 (void) fprintf(stderr, " -I --inflight=INTEGER " 888 "specify the maximum number of checksumming I/Os " 889 "[default is 200]\n"); 890 (void) fprintf(stderr, " -K --key=KEY " 891 "decryption key for encrypted dataset\n"); 892 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 893 "set global variable to an unsigned 32-bit integer\n"); 894 (void) fprintf(stderr, " -p --path==PATH " 895 "use one or more with -e to specify path to vdev dir\n"); 896 (void) fprintf(stderr, " -P --parseable " 897 "print numbers in parseable form\n"); 898 (void) fprintf(stderr, " -q --skip-label " 899 "don't print label contents\n"); 900 (void) fprintf(stderr, " -t --txg=INTEGER " 901 "highest txg to use when searching for uberblocks\n"); 902 (void) fprintf(stderr, " -u --uberblock " 903 "uberblock\n"); 904 (void) fprintf(stderr, " -U --cachefile=PATH " 905 "use alternate cachefile\n"); 906 (void) fprintf(stderr, " -V --verbatim " 907 "do verbatim import\n"); 908 (void) fprintf(stderr, " -x --dump-blocks=PATH " 909 "dump all read blocks into specified directory\n"); 910 (void) fprintf(stderr, " -X --extreme-rewind " 911 "attempt extreme rewind (does not work with dataset)\n"); 912 (void) fprintf(stderr, " -Y --all-reconstruction " 913 "attempt all reconstruction combinations for split blocks\n"); 914 (void) fprintf(stderr, " -Z --zstd-headers " 915 "show ZSTD headers \n"); 916 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 917 "to make only that option verbose\n"); 918 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 919 exit(1); 920 } 921 922 static void 923 dump_debug_buffer(void) 924 { 925 if (dump_opt['G']) { 926 (void) printf("\n"); 927 (void) fflush(stdout); 928 zfs_dbgmsg_print("zdb"); 929 } 930 } 931 932 /* 933 * Called for usage errors that are discovered after a call to spa_open(), 934 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 935 */ 936 937 static void 938 fatal(const char *fmt, ...) 939 { 940 va_list ap; 941 942 va_start(ap, fmt); 943 (void) fprintf(stderr, "%s: ", cmdname); 944 (void) vfprintf(stderr, fmt, ap); 945 va_end(ap); 946 (void) fprintf(stderr, "\n"); 947 948 dump_debug_buffer(); 949 950 exit(1); 951 } 952 953 static void 954 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 955 { 956 (void) size; 957 nvlist_t *nv; 958 size_t nvsize = *(uint64_t *)data; 959 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 960 961 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 962 963 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 964 965 umem_free(packed, nvsize); 966 967 dump_nvlist(nv, 8); 968 969 nvlist_free(nv); 970 } 971 972 static void 973 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 974 { 975 (void) os, (void) object, (void) size; 976 spa_history_phys_t *shp = data; 977 978 if (shp == NULL) 979 return; 980 981 (void) printf("\t\tpool_create_len = %llu\n", 982 (u_longlong_t)shp->sh_pool_create_len); 983 (void) printf("\t\tphys_max_off = %llu\n", 984 (u_longlong_t)shp->sh_phys_max_off); 985 (void) printf("\t\tbof = %llu\n", 986 (u_longlong_t)shp->sh_bof); 987 (void) printf("\t\teof = %llu\n", 988 (u_longlong_t)shp->sh_eof); 989 (void) printf("\t\trecords_lost = %llu\n", 990 (u_longlong_t)shp->sh_records_lost); 991 } 992 993 static void 994 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 995 { 996 if (dump_opt['P']) 997 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 998 else 999 nicenum(num, buf, buflen); 1000 } 1001 1002 static const char histo_stars[] = "****************************************"; 1003 static const uint64_t histo_width = sizeof (histo_stars) - 1; 1004 1005 static void 1006 dump_histogram(const uint64_t *histo, int size, int offset) 1007 { 1008 int i; 1009 int minidx = size - 1; 1010 int maxidx = 0; 1011 uint64_t max = 0; 1012 1013 for (i = 0; i < size; i++) { 1014 if (histo[i] == 0) 1015 continue; 1016 if (histo[i] > max) 1017 max = histo[i]; 1018 if (i > maxidx) 1019 maxidx = i; 1020 if (i < minidx) 1021 minidx = i; 1022 } 1023 1024 if (max < histo_width) 1025 max = histo_width; 1026 1027 for (i = minidx; i <= maxidx; i++) { 1028 (void) printf("\t\t\t%3u: %6llu %s\n", 1029 i + offset, (u_longlong_t)histo[i], 1030 &histo_stars[(max - histo[i]) * histo_width / max]); 1031 } 1032 } 1033 1034 static void 1035 dump_zap_stats(objset_t *os, uint64_t object) 1036 { 1037 int error; 1038 zap_stats_t zs; 1039 1040 error = zap_get_stats(os, object, &zs); 1041 if (error) 1042 return; 1043 1044 if (zs.zs_ptrtbl_len == 0) { 1045 ASSERT(zs.zs_num_blocks == 1); 1046 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 1047 (u_longlong_t)zs.zs_blocksize, 1048 (u_longlong_t)zs.zs_num_entries); 1049 return; 1050 } 1051 1052 (void) printf("\tFat ZAP stats:\n"); 1053 1054 (void) printf("\t\tPointer table:\n"); 1055 (void) printf("\t\t\t%llu elements\n", 1056 (u_longlong_t)zs.zs_ptrtbl_len); 1057 (void) printf("\t\t\tzt_blk: %llu\n", 1058 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1059 (void) printf("\t\t\tzt_numblks: %llu\n", 1060 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1061 (void) printf("\t\t\tzt_shift: %llu\n", 1062 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1063 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1064 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1065 (void) printf("\t\t\tzt_nextblk: %llu\n", 1066 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1067 1068 (void) printf("\t\tZAP entries: %llu\n", 1069 (u_longlong_t)zs.zs_num_entries); 1070 (void) printf("\t\tLeaf blocks: %llu\n", 1071 (u_longlong_t)zs.zs_num_leafs); 1072 (void) printf("\t\tTotal blocks: %llu\n", 1073 (u_longlong_t)zs.zs_num_blocks); 1074 (void) printf("\t\tzap_block_type: 0x%llx\n", 1075 (u_longlong_t)zs.zs_block_type); 1076 (void) printf("\t\tzap_magic: 0x%llx\n", 1077 (u_longlong_t)zs.zs_magic); 1078 (void) printf("\t\tzap_salt: 0x%llx\n", 1079 (u_longlong_t)zs.zs_salt); 1080 1081 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1082 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1083 1084 (void) printf("\t\tBlocks with n*5 entries:\n"); 1085 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1086 1087 (void) printf("\t\tBlocks n/10 full:\n"); 1088 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1089 1090 (void) printf("\t\tEntries with n chunks:\n"); 1091 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1092 1093 (void) printf("\t\tBuckets with n entries:\n"); 1094 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1095 } 1096 1097 static void 1098 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1099 { 1100 (void) os, (void) object, (void) data, (void) size; 1101 } 1102 1103 static void 1104 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1105 { 1106 (void) os, (void) object, (void) data, (void) size; 1107 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1108 } 1109 1110 static void 1111 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1112 { 1113 (void) os, (void) object, (void) data, (void) size; 1114 } 1115 1116 static void 1117 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1118 { 1119 uint64_t *arr; 1120 uint64_t oursize; 1121 if (dump_opt['d'] < 6) 1122 return; 1123 1124 if (data == NULL) { 1125 dmu_object_info_t doi; 1126 1127 VERIFY0(dmu_object_info(os, object, &doi)); 1128 size = doi.doi_max_offset; 1129 /* 1130 * We cap the size at 1 mebibyte here to prevent 1131 * allocation failures and nigh-infinite printing if the 1132 * object is extremely large. 1133 */ 1134 oursize = MIN(size, 1 << 20); 1135 arr = kmem_alloc(oursize, KM_SLEEP); 1136 1137 int err = dmu_read(os, object, 0, oursize, arr, 0); 1138 if (err != 0) { 1139 (void) printf("got error %u from dmu_read\n", err); 1140 kmem_free(arr, oursize); 1141 return; 1142 } 1143 } else { 1144 /* 1145 * Even though the allocation is already done in this code path, 1146 * we still cap the size to prevent excessive printing. 1147 */ 1148 oursize = MIN(size, 1 << 20); 1149 arr = data; 1150 } 1151 1152 if (size == 0) { 1153 if (data == NULL) 1154 kmem_free(arr, oursize); 1155 (void) printf("\t\t[]\n"); 1156 return; 1157 } 1158 1159 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1160 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1161 if (i % 4 != 0) 1162 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1163 else 1164 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1165 } 1166 if (oursize != size) 1167 (void) printf(", ... "); 1168 (void) printf("]\n"); 1169 1170 if (data == NULL) 1171 kmem_free(arr, oursize); 1172 } 1173 1174 static void 1175 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1176 { 1177 (void) data, (void) size; 1178 zap_cursor_t zc; 1179 zap_attribute_t attr; 1180 void *prop; 1181 unsigned i; 1182 1183 dump_zap_stats(os, object); 1184 (void) printf("\n"); 1185 1186 for (zap_cursor_init(&zc, os, object); 1187 zap_cursor_retrieve(&zc, &attr) == 0; 1188 zap_cursor_advance(&zc)) { 1189 (void) printf("\t\t%s = ", attr.za_name); 1190 if (attr.za_num_integers == 0) { 1191 (void) printf("\n"); 1192 continue; 1193 } 1194 prop = umem_zalloc(attr.za_num_integers * 1195 attr.za_integer_length, UMEM_NOFAIL); 1196 (void) zap_lookup(os, object, attr.za_name, 1197 attr.za_integer_length, attr.za_num_integers, prop); 1198 if (attr.za_integer_length == 1) { 1199 if (strcmp(attr.za_name, 1200 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1201 strcmp(attr.za_name, 1202 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1203 strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 || 1204 strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1205 strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) { 1206 uint8_t *u8 = prop; 1207 1208 for (i = 0; i < attr.za_num_integers; i++) { 1209 (void) printf("%02x", u8[i]); 1210 } 1211 } else { 1212 (void) printf("%s", (char *)prop); 1213 } 1214 } else { 1215 for (i = 0; i < attr.za_num_integers; i++) { 1216 switch (attr.za_integer_length) { 1217 case 2: 1218 (void) printf("%u ", 1219 ((uint16_t *)prop)[i]); 1220 break; 1221 case 4: 1222 (void) printf("%u ", 1223 ((uint32_t *)prop)[i]); 1224 break; 1225 case 8: 1226 (void) printf("%lld ", 1227 (u_longlong_t)((int64_t *)prop)[i]); 1228 break; 1229 } 1230 } 1231 } 1232 (void) printf("\n"); 1233 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1234 } 1235 zap_cursor_fini(&zc); 1236 } 1237 1238 static void 1239 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1240 { 1241 bpobj_phys_t *bpop = data; 1242 uint64_t i; 1243 char bytes[32], comp[32], uncomp[32]; 1244 1245 /* make sure the output won't get truncated */ 1246 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1247 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1248 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1249 1250 if (bpop == NULL) 1251 return; 1252 1253 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1254 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1255 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1256 1257 (void) printf("\t\tnum_blkptrs = %llu\n", 1258 (u_longlong_t)bpop->bpo_num_blkptrs); 1259 (void) printf("\t\tbytes = %s\n", bytes); 1260 if (size >= BPOBJ_SIZE_V1) { 1261 (void) printf("\t\tcomp = %s\n", comp); 1262 (void) printf("\t\tuncomp = %s\n", uncomp); 1263 } 1264 if (size >= BPOBJ_SIZE_V2) { 1265 (void) printf("\t\tsubobjs = %llu\n", 1266 (u_longlong_t)bpop->bpo_subobjs); 1267 (void) printf("\t\tnum_subobjs = %llu\n", 1268 (u_longlong_t)bpop->bpo_num_subobjs); 1269 } 1270 if (size >= sizeof (*bpop)) { 1271 (void) printf("\t\tnum_freed = %llu\n", 1272 (u_longlong_t)bpop->bpo_num_freed); 1273 } 1274 1275 if (dump_opt['d'] < 5) 1276 return; 1277 1278 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1279 char blkbuf[BP_SPRINTF_LEN]; 1280 blkptr_t bp; 1281 1282 int err = dmu_read(os, object, 1283 i * sizeof (bp), sizeof (bp), &bp, 0); 1284 if (err != 0) { 1285 (void) printf("got error %u from dmu_read\n", err); 1286 break; 1287 } 1288 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1289 BP_GET_FREE(&bp)); 1290 (void) printf("\t%s\n", blkbuf); 1291 } 1292 } 1293 1294 static void 1295 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1296 { 1297 (void) data, (void) size; 1298 dmu_object_info_t doi; 1299 int64_t i; 1300 1301 VERIFY0(dmu_object_info(os, object, &doi)); 1302 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1303 1304 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1305 if (err != 0) { 1306 (void) printf("got error %u from dmu_read\n", err); 1307 kmem_free(subobjs, doi.doi_max_offset); 1308 return; 1309 } 1310 1311 int64_t last_nonzero = -1; 1312 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1313 if (subobjs[i] != 0) 1314 last_nonzero = i; 1315 } 1316 1317 for (i = 0; i <= last_nonzero; i++) { 1318 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1319 } 1320 kmem_free(subobjs, doi.doi_max_offset); 1321 } 1322 1323 static void 1324 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1325 { 1326 (void) data, (void) size; 1327 dump_zap_stats(os, object); 1328 /* contents are printed elsewhere, properly decoded */ 1329 } 1330 1331 static void 1332 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1333 { 1334 (void) data, (void) size; 1335 zap_cursor_t zc; 1336 zap_attribute_t attr; 1337 1338 dump_zap_stats(os, object); 1339 (void) printf("\n"); 1340 1341 for (zap_cursor_init(&zc, os, object); 1342 zap_cursor_retrieve(&zc, &attr) == 0; 1343 zap_cursor_advance(&zc)) { 1344 (void) printf("\t\t%s = ", attr.za_name); 1345 if (attr.za_num_integers == 0) { 1346 (void) printf("\n"); 1347 continue; 1348 } 1349 (void) printf(" %llx : [%d:%d:%d]\n", 1350 (u_longlong_t)attr.za_first_integer, 1351 (int)ATTR_LENGTH(attr.za_first_integer), 1352 (int)ATTR_BSWAP(attr.za_first_integer), 1353 (int)ATTR_NUM(attr.za_first_integer)); 1354 } 1355 zap_cursor_fini(&zc); 1356 } 1357 1358 static void 1359 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1360 { 1361 (void) data, (void) size; 1362 zap_cursor_t zc; 1363 zap_attribute_t attr; 1364 uint16_t *layout_attrs; 1365 unsigned i; 1366 1367 dump_zap_stats(os, object); 1368 (void) printf("\n"); 1369 1370 for (zap_cursor_init(&zc, os, object); 1371 zap_cursor_retrieve(&zc, &attr) == 0; 1372 zap_cursor_advance(&zc)) { 1373 (void) printf("\t\t%s = [", attr.za_name); 1374 if (attr.za_num_integers == 0) { 1375 (void) printf("\n"); 1376 continue; 1377 } 1378 1379 VERIFY(attr.za_integer_length == 2); 1380 layout_attrs = umem_zalloc(attr.za_num_integers * 1381 attr.za_integer_length, UMEM_NOFAIL); 1382 1383 VERIFY(zap_lookup(os, object, attr.za_name, 1384 attr.za_integer_length, 1385 attr.za_num_integers, layout_attrs) == 0); 1386 1387 for (i = 0; i != attr.za_num_integers; i++) 1388 (void) printf(" %d ", (int)layout_attrs[i]); 1389 (void) printf("]\n"); 1390 umem_free(layout_attrs, 1391 attr.za_num_integers * attr.za_integer_length); 1392 } 1393 zap_cursor_fini(&zc); 1394 } 1395 1396 static void 1397 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1398 { 1399 (void) data, (void) size; 1400 zap_cursor_t zc; 1401 zap_attribute_t attr; 1402 const char *typenames[] = { 1403 /* 0 */ "not specified", 1404 /* 1 */ "FIFO", 1405 /* 2 */ "Character Device", 1406 /* 3 */ "3 (invalid)", 1407 /* 4 */ "Directory", 1408 /* 5 */ "5 (invalid)", 1409 /* 6 */ "Block Device", 1410 /* 7 */ "7 (invalid)", 1411 /* 8 */ "Regular File", 1412 /* 9 */ "9 (invalid)", 1413 /* 10 */ "Symbolic Link", 1414 /* 11 */ "11 (invalid)", 1415 /* 12 */ "Socket", 1416 /* 13 */ "Door", 1417 /* 14 */ "Event Port", 1418 /* 15 */ "15 (invalid)", 1419 }; 1420 1421 dump_zap_stats(os, object); 1422 (void) printf("\n"); 1423 1424 for (zap_cursor_init(&zc, os, object); 1425 zap_cursor_retrieve(&zc, &attr) == 0; 1426 zap_cursor_advance(&zc)) { 1427 (void) printf("\t\t%s = %lld (type: %s)\n", 1428 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1429 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1430 } 1431 zap_cursor_fini(&zc); 1432 } 1433 1434 static int 1435 get_dtl_refcount(vdev_t *vd) 1436 { 1437 int refcount = 0; 1438 1439 if (vd->vdev_ops->vdev_op_leaf) { 1440 space_map_t *sm = vd->vdev_dtl_sm; 1441 1442 if (sm != NULL && 1443 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1444 return (1); 1445 return (0); 1446 } 1447 1448 for (unsigned c = 0; c < vd->vdev_children; c++) 1449 refcount += get_dtl_refcount(vd->vdev_child[c]); 1450 return (refcount); 1451 } 1452 1453 static int 1454 get_metaslab_refcount(vdev_t *vd) 1455 { 1456 int refcount = 0; 1457 1458 if (vd->vdev_top == vd) { 1459 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1460 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1461 1462 if (sm != NULL && 1463 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1464 refcount++; 1465 } 1466 } 1467 for (unsigned c = 0; c < vd->vdev_children; c++) 1468 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1469 1470 return (refcount); 1471 } 1472 1473 static int 1474 get_obsolete_refcount(vdev_t *vd) 1475 { 1476 uint64_t obsolete_sm_object; 1477 int refcount = 0; 1478 1479 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1480 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1481 dmu_object_info_t doi; 1482 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1483 obsolete_sm_object, &doi)); 1484 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1485 refcount++; 1486 } 1487 } else { 1488 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1489 ASSERT3U(obsolete_sm_object, ==, 0); 1490 } 1491 for (unsigned c = 0; c < vd->vdev_children; c++) { 1492 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1493 } 1494 1495 return (refcount); 1496 } 1497 1498 static int 1499 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1500 { 1501 uint64_t prev_obj = 1502 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1503 if (prev_obj != 0) { 1504 dmu_object_info_t doi; 1505 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1506 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1507 return (1); 1508 } 1509 } 1510 return (0); 1511 } 1512 1513 static int 1514 get_checkpoint_refcount(vdev_t *vd) 1515 { 1516 int refcount = 0; 1517 1518 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1519 zap_contains(spa_meta_objset(vd->vdev_spa), 1520 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1521 refcount++; 1522 1523 for (uint64_t c = 0; c < vd->vdev_children; c++) 1524 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1525 1526 return (refcount); 1527 } 1528 1529 static int 1530 get_log_spacemap_refcount(spa_t *spa) 1531 { 1532 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1533 } 1534 1535 static int 1536 verify_spacemap_refcounts(spa_t *spa) 1537 { 1538 uint64_t expected_refcount = 0; 1539 uint64_t actual_refcount; 1540 1541 (void) feature_get_refcount(spa, 1542 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1543 &expected_refcount); 1544 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1545 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1546 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1547 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1548 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1549 actual_refcount += get_log_spacemap_refcount(spa); 1550 1551 if (expected_refcount != actual_refcount) { 1552 (void) printf("space map refcount mismatch: expected %lld != " 1553 "actual %lld\n", 1554 (longlong_t)expected_refcount, 1555 (longlong_t)actual_refcount); 1556 return (2); 1557 } 1558 return (0); 1559 } 1560 1561 static void 1562 dump_spacemap(objset_t *os, space_map_t *sm) 1563 { 1564 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1565 "INVALID", "INVALID", "INVALID", "INVALID" }; 1566 1567 if (sm == NULL) 1568 return; 1569 1570 (void) printf("space map object %llu:\n", 1571 (longlong_t)sm->sm_object); 1572 (void) printf(" smp_length = 0x%llx\n", 1573 (longlong_t)sm->sm_phys->smp_length); 1574 (void) printf(" smp_alloc = 0x%llx\n", 1575 (longlong_t)sm->sm_phys->smp_alloc); 1576 1577 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1578 return; 1579 1580 /* 1581 * Print out the freelist entries in both encoded and decoded form. 1582 */ 1583 uint8_t mapshift = sm->sm_shift; 1584 int64_t alloc = 0; 1585 uint64_t word, entry_id = 0; 1586 for (uint64_t offset = 0; offset < space_map_length(sm); 1587 offset += sizeof (word)) { 1588 1589 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1590 sizeof (word), &word, DMU_READ_PREFETCH)); 1591 1592 if (sm_entry_is_debug(word)) { 1593 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1594 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1595 if (de_txg == 0) { 1596 (void) printf( 1597 "\t [%6llu] PADDING\n", 1598 (u_longlong_t)entry_id); 1599 } else { 1600 (void) printf( 1601 "\t [%6llu] %s: txg %llu pass %llu\n", 1602 (u_longlong_t)entry_id, 1603 ddata[SM_DEBUG_ACTION_DECODE(word)], 1604 (u_longlong_t)de_txg, 1605 (u_longlong_t)de_sync_pass); 1606 } 1607 entry_id++; 1608 continue; 1609 } 1610 1611 uint8_t words; 1612 char entry_type; 1613 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1614 1615 if (sm_entry_is_single_word(word)) { 1616 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1617 'A' : 'F'; 1618 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1619 sm->sm_start; 1620 entry_run = SM_RUN_DECODE(word) << mapshift; 1621 words = 1; 1622 } else { 1623 /* it is a two-word entry so we read another word */ 1624 ASSERT(sm_entry_is_double_word(word)); 1625 1626 uint64_t extra_word; 1627 offset += sizeof (extra_word); 1628 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1629 sizeof (extra_word), &extra_word, 1630 DMU_READ_PREFETCH)); 1631 1632 ASSERT3U(offset, <=, space_map_length(sm)); 1633 1634 entry_run = SM2_RUN_DECODE(word) << mapshift; 1635 entry_vdev = SM2_VDEV_DECODE(word); 1636 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1637 'A' : 'F'; 1638 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1639 mapshift) + sm->sm_start; 1640 words = 2; 1641 } 1642 1643 (void) printf("\t [%6llu] %c range:" 1644 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1645 (u_longlong_t)entry_id, 1646 entry_type, (u_longlong_t)entry_off, 1647 (u_longlong_t)(entry_off + entry_run), 1648 (u_longlong_t)entry_run, 1649 (u_longlong_t)entry_vdev, words); 1650 1651 if (entry_type == 'A') 1652 alloc += entry_run; 1653 else 1654 alloc -= entry_run; 1655 entry_id++; 1656 } 1657 if (alloc != space_map_allocated(sm)) { 1658 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1659 "with space map summary (%lld)\n", 1660 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1661 } 1662 } 1663 1664 static void 1665 dump_metaslab_stats(metaslab_t *msp) 1666 { 1667 char maxbuf[32]; 1668 range_tree_t *rt = msp->ms_allocatable; 1669 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1670 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1671 1672 /* max sure nicenum has enough space */ 1673 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1674 1675 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1676 1677 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1678 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1679 "freepct", free_pct); 1680 (void) printf("\tIn-memory histogram:\n"); 1681 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1682 } 1683 1684 static void 1685 dump_metaslab(metaslab_t *msp) 1686 { 1687 vdev_t *vd = msp->ms_group->mg_vd; 1688 spa_t *spa = vd->vdev_spa; 1689 space_map_t *sm = msp->ms_sm; 1690 char freebuf[32]; 1691 1692 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1693 sizeof (freebuf)); 1694 1695 (void) printf( 1696 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1697 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1698 (u_longlong_t)space_map_object(sm), freebuf); 1699 1700 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1701 mutex_enter(&msp->ms_lock); 1702 VERIFY0(metaslab_load(msp)); 1703 range_tree_stat_verify(msp->ms_allocatable); 1704 dump_metaslab_stats(msp); 1705 metaslab_unload(msp); 1706 mutex_exit(&msp->ms_lock); 1707 } 1708 1709 if (dump_opt['m'] > 1 && sm != NULL && 1710 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1711 /* 1712 * The space map histogram represents free space in chunks 1713 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1714 */ 1715 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1716 (u_longlong_t)msp->ms_fragmentation); 1717 dump_histogram(sm->sm_phys->smp_histogram, 1718 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1719 } 1720 1721 if (vd->vdev_ops == &vdev_draid_ops) 1722 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1723 else 1724 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1725 1726 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1727 1728 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1729 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1730 (u_longlong_t)metaslab_unflushed_txg(msp)); 1731 } 1732 } 1733 1734 static void 1735 print_vdev_metaslab_header(vdev_t *vd) 1736 { 1737 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1738 const char *bias_str = ""; 1739 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1740 bias_str = VDEV_ALLOC_BIAS_LOG; 1741 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1742 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1743 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1744 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1745 } 1746 1747 uint64_t ms_flush_data_obj = 0; 1748 if (vd->vdev_top_zap != 0) { 1749 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1750 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1751 sizeof (uint64_t), 1, &ms_flush_data_obj); 1752 if (error != ENOENT) { 1753 ASSERT0(error); 1754 } 1755 } 1756 1757 (void) printf("\tvdev %10llu %s", 1758 (u_longlong_t)vd->vdev_id, bias_str); 1759 1760 if (ms_flush_data_obj != 0) { 1761 (void) printf(" ms_unflushed_phys object %llu", 1762 (u_longlong_t)ms_flush_data_obj); 1763 } 1764 1765 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1766 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1767 "offset", "spacemap", "free"); 1768 (void) printf("\t%15s %19s %15s %12s\n", 1769 "---------------", "-------------------", 1770 "---------------", "------------"); 1771 } 1772 1773 static void 1774 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1775 { 1776 vdev_t *rvd = spa->spa_root_vdev; 1777 metaslab_class_t *mc = spa_normal_class(spa); 1778 metaslab_class_t *smc = spa_special_class(spa); 1779 uint64_t fragmentation; 1780 1781 metaslab_class_histogram_verify(mc); 1782 1783 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1784 vdev_t *tvd = rvd->vdev_child[c]; 1785 metaslab_group_t *mg = tvd->vdev_mg; 1786 1787 if (mg == NULL || (mg->mg_class != mc && 1788 (!show_special || mg->mg_class != smc))) 1789 continue; 1790 1791 metaslab_group_histogram_verify(mg); 1792 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1793 1794 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1795 "fragmentation", 1796 (u_longlong_t)tvd->vdev_id, 1797 (u_longlong_t)tvd->vdev_ms_count); 1798 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1799 (void) printf("%3s\n", "-"); 1800 } else { 1801 (void) printf("%3llu%%\n", 1802 (u_longlong_t)mg->mg_fragmentation); 1803 } 1804 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1805 } 1806 1807 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1808 fragmentation = metaslab_class_fragmentation(mc); 1809 if (fragmentation == ZFS_FRAG_INVALID) 1810 (void) printf("\t%3s\n", "-"); 1811 else 1812 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1813 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1814 } 1815 1816 static void 1817 print_vdev_indirect(vdev_t *vd) 1818 { 1819 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1820 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1821 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1822 1823 if (vim == NULL) { 1824 ASSERT3P(vib, ==, NULL); 1825 return; 1826 } 1827 1828 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1829 vic->vic_mapping_object); 1830 ASSERT3U(vdev_indirect_births_object(vib), ==, 1831 vic->vic_births_object); 1832 1833 (void) printf("indirect births obj %llu:\n", 1834 (longlong_t)vic->vic_births_object); 1835 (void) printf(" vib_count = %llu\n", 1836 (longlong_t)vdev_indirect_births_count(vib)); 1837 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1838 vdev_indirect_birth_entry_phys_t *cur_vibe = 1839 &vib->vib_entries[i]; 1840 (void) printf("\toffset %llx -> txg %llu\n", 1841 (longlong_t)cur_vibe->vibe_offset, 1842 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1843 } 1844 (void) printf("\n"); 1845 1846 (void) printf("indirect mapping obj %llu:\n", 1847 (longlong_t)vic->vic_mapping_object); 1848 (void) printf(" vim_max_offset = 0x%llx\n", 1849 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1850 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1851 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1852 (void) printf(" vim_count = %llu\n", 1853 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1854 1855 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1856 return; 1857 1858 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1859 1860 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1861 vdev_indirect_mapping_entry_phys_t *vimep = 1862 &vim->vim_entries[i]; 1863 (void) printf("\t<%llx:%llx:%llx> -> " 1864 "<%llx:%llx:%llx> (%x obsolete)\n", 1865 (longlong_t)vd->vdev_id, 1866 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1867 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1868 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1869 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1870 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1871 counts[i]); 1872 } 1873 (void) printf("\n"); 1874 1875 uint64_t obsolete_sm_object; 1876 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1877 if (obsolete_sm_object != 0) { 1878 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1879 (void) printf("obsolete space map object %llu:\n", 1880 (u_longlong_t)obsolete_sm_object); 1881 ASSERT(vd->vdev_obsolete_sm != NULL); 1882 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1883 obsolete_sm_object); 1884 dump_spacemap(mos, vd->vdev_obsolete_sm); 1885 (void) printf("\n"); 1886 } 1887 } 1888 1889 static void 1890 dump_metaslabs(spa_t *spa) 1891 { 1892 vdev_t *vd, *rvd = spa->spa_root_vdev; 1893 uint64_t m, c = 0, children = rvd->vdev_children; 1894 1895 (void) printf("\nMetaslabs:\n"); 1896 1897 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1898 c = zopt_metaslab[0]; 1899 1900 if (c >= children) 1901 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1902 1903 if (zopt_metaslab_args > 1) { 1904 vd = rvd->vdev_child[c]; 1905 print_vdev_metaslab_header(vd); 1906 1907 for (m = 1; m < zopt_metaslab_args; m++) { 1908 if (zopt_metaslab[m] < vd->vdev_ms_count) 1909 dump_metaslab( 1910 vd->vdev_ms[zopt_metaslab[m]]); 1911 else 1912 (void) fprintf(stderr, "bad metaslab " 1913 "number %llu\n", 1914 (u_longlong_t)zopt_metaslab[m]); 1915 } 1916 (void) printf("\n"); 1917 return; 1918 } 1919 children = c + 1; 1920 } 1921 for (; c < children; c++) { 1922 vd = rvd->vdev_child[c]; 1923 print_vdev_metaslab_header(vd); 1924 1925 print_vdev_indirect(vd); 1926 1927 for (m = 0; m < vd->vdev_ms_count; m++) 1928 dump_metaslab(vd->vdev_ms[m]); 1929 (void) printf("\n"); 1930 } 1931 } 1932 1933 static void 1934 dump_log_spacemaps(spa_t *spa) 1935 { 1936 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1937 return; 1938 1939 (void) printf("\nLog Space Maps in Pool:\n"); 1940 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1941 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1942 space_map_t *sm = NULL; 1943 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1944 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1945 1946 (void) printf("Log Spacemap object %llu txg %llu\n", 1947 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1948 dump_spacemap(spa->spa_meta_objset, sm); 1949 space_map_close(sm); 1950 } 1951 (void) printf("\n"); 1952 } 1953 1954 static void 1955 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1956 { 1957 const ddt_phys_t *ddp = dde->dde_phys; 1958 const ddt_key_t *ddk = &dde->dde_key; 1959 const char *types[4] = { "ditto", "single", "double", "triple" }; 1960 char blkbuf[BP_SPRINTF_LEN]; 1961 blkptr_t blk; 1962 int p; 1963 1964 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1965 if (ddp->ddp_phys_birth == 0) 1966 continue; 1967 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1968 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1969 (void) printf("index %llx refcnt %llu %s %s\n", 1970 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1971 types[p], blkbuf); 1972 } 1973 } 1974 1975 static void 1976 dump_dedup_ratio(const ddt_stat_t *dds) 1977 { 1978 double rL, rP, rD, D, dedup, compress, copies; 1979 1980 if (dds->dds_blocks == 0) 1981 return; 1982 1983 rL = (double)dds->dds_ref_lsize; 1984 rP = (double)dds->dds_ref_psize; 1985 rD = (double)dds->dds_ref_dsize; 1986 D = (double)dds->dds_dsize; 1987 1988 dedup = rD / D; 1989 compress = rL / rP; 1990 copies = rD / rP; 1991 1992 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1993 "dedup * compress / copies = %.2f\n\n", 1994 dedup, compress, copies, dedup * compress / copies); 1995 } 1996 1997 static void 1998 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1999 { 2000 char name[DDT_NAMELEN]; 2001 ddt_entry_t dde; 2002 uint64_t walk = 0; 2003 dmu_object_info_t doi; 2004 uint64_t count, dspace, mspace; 2005 int error; 2006 2007 error = ddt_object_info(ddt, type, class, &doi); 2008 2009 if (error == ENOENT) 2010 return; 2011 ASSERT(error == 0); 2012 2013 error = ddt_object_count(ddt, type, class, &count); 2014 ASSERT(error == 0); 2015 if (count == 0) 2016 return; 2017 2018 dspace = doi.doi_physical_blocks_512 << 9; 2019 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2020 2021 ddt_object_name(ddt, type, class, name); 2022 2023 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 2024 name, 2025 (u_longlong_t)count, 2026 (u_longlong_t)(dspace / count), 2027 (u_longlong_t)(mspace / count)); 2028 2029 if (dump_opt['D'] < 3) 2030 return; 2031 2032 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2033 2034 if (dump_opt['D'] < 4) 2035 return; 2036 2037 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2038 return; 2039 2040 (void) printf("%s contents:\n\n", name); 2041 2042 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 2043 dump_dde(ddt, &dde, walk); 2044 2045 ASSERT3U(error, ==, ENOENT); 2046 2047 (void) printf("\n"); 2048 } 2049 2050 static void 2051 dump_all_ddts(spa_t *spa) 2052 { 2053 ddt_histogram_t ddh_total = {{{0}}}; 2054 ddt_stat_t dds_total = {0}; 2055 2056 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 2057 ddt_t *ddt = spa->spa_ddt[c]; 2058 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 2059 for (enum ddt_class class = 0; class < DDT_CLASSES; 2060 class++) { 2061 dump_ddt(ddt, type, class); 2062 } 2063 } 2064 } 2065 2066 ddt_get_dedup_stats(spa, &dds_total); 2067 2068 if (dds_total.dds_blocks == 0) { 2069 (void) printf("All DDTs are empty\n"); 2070 return; 2071 } 2072 2073 (void) printf("\n"); 2074 2075 if (dump_opt['D'] > 1) { 2076 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2077 ddt_get_dedup_histogram(spa, &ddh_total); 2078 zpool_dump_ddt(&dds_total, &ddh_total); 2079 } 2080 2081 dump_dedup_ratio(&dds_total); 2082 } 2083 2084 static void 2085 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2086 { 2087 char *prefix = arg; 2088 2089 (void) printf("%s [%llu,%llu) length %llu\n", 2090 prefix, 2091 (u_longlong_t)start, 2092 (u_longlong_t)(start + size), 2093 (u_longlong_t)(size)); 2094 } 2095 2096 static void 2097 dump_dtl(vdev_t *vd, int indent) 2098 { 2099 spa_t *spa = vd->vdev_spa; 2100 boolean_t required; 2101 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2102 "outage" }; 2103 char prefix[256]; 2104 2105 spa_vdev_state_enter(spa, SCL_NONE); 2106 required = vdev_dtl_required(vd); 2107 (void) spa_vdev_state_exit(spa, NULL, 0); 2108 2109 if (indent == 0) 2110 (void) printf("\nDirty time logs:\n\n"); 2111 2112 (void) printf("\t%*s%s [%s]\n", indent, "", 2113 vd->vdev_path ? vd->vdev_path : 2114 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2115 required ? "DTL-required" : "DTL-expendable"); 2116 2117 for (int t = 0; t < DTL_TYPES; t++) { 2118 range_tree_t *rt = vd->vdev_dtl[t]; 2119 if (range_tree_space(rt) == 0) 2120 continue; 2121 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2122 indent + 2, "", name[t]); 2123 range_tree_walk(rt, dump_dtl_seg, prefix); 2124 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2125 dump_spacemap(spa->spa_meta_objset, 2126 vd->vdev_dtl_sm); 2127 } 2128 2129 for (unsigned c = 0; c < vd->vdev_children; c++) 2130 dump_dtl(vd->vdev_child[c], indent + 4); 2131 } 2132 2133 static void 2134 dump_history(spa_t *spa) 2135 { 2136 nvlist_t **events = NULL; 2137 char *buf; 2138 uint64_t resid, len, off = 0; 2139 uint_t num = 0; 2140 int error; 2141 char tbuf[30]; 2142 2143 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2144 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2145 __func__); 2146 return; 2147 } 2148 2149 do { 2150 len = SPA_OLD_MAXBLOCKSIZE; 2151 2152 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2153 (void) fprintf(stderr, "Unable to read history: " 2154 "error %d\n", error); 2155 free(buf); 2156 return; 2157 } 2158 2159 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2160 break; 2161 2162 off -= resid; 2163 } while (len != 0); 2164 2165 (void) printf("\nHistory:\n"); 2166 for (unsigned i = 0; i < num; i++) { 2167 boolean_t printed = B_FALSE; 2168 2169 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2170 time_t tsec; 2171 struct tm t; 2172 2173 tsec = fnvlist_lookup_uint64(events[i], 2174 ZPOOL_HIST_TIME); 2175 (void) localtime_r(&tsec, &t); 2176 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2177 } else { 2178 tbuf[0] = '\0'; 2179 } 2180 2181 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2182 (void) printf("%s %s\n", tbuf, 2183 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2184 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2185 uint64_t ievent; 2186 2187 ievent = fnvlist_lookup_uint64(events[i], 2188 ZPOOL_HIST_INT_EVENT); 2189 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2190 goto next; 2191 2192 (void) printf(" %s [internal %s txg:%ju] %s\n", 2193 tbuf, 2194 zfs_history_event_names[ievent], 2195 fnvlist_lookup_uint64(events[i], 2196 ZPOOL_HIST_TXG), 2197 fnvlist_lookup_string(events[i], 2198 ZPOOL_HIST_INT_STR)); 2199 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2200 (void) printf("%s [txg:%ju] %s", tbuf, 2201 fnvlist_lookup_uint64(events[i], 2202 ZPOOL_HIST_TXG), 2203 fnvlist_lookup_string(events[i], 2204 ZPOOL_HIST_INT_NAME)); 2205 2206 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2207 (void) printf(" %s (%llu)", 2208 fnvlist_lookup_string(events[i], 2209 ZPOOL_HIST_DSNAME), 2210 (u_longlong_t)fnvlist_lookup_uint64( 2211 events[i], 2212 ZPOOL_HIST_DSID)); 2213 } 2214 2215 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2216 ZPOOL_HIST_INT_STR)); 2217 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2218 (void) printf("%s ioctl %s\n", tbuf, 2219 fnvlist_lookup_string(events[i], 2220 ZPOOL_HIST_IOCTL)); 2221 2222 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2223 (void) printf(" input:\n"); 2224 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2225 ZPOOL_HIST_INPUT_NVL), 8); 2226 } 2227 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2228 (void) printf(" output:\n"); 2229 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2230 ZPOOL_HIST_OUTPUT_NVL), 8); 2231 } 2232 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2233 (void) printf(" errno: %lld\n", 2234 (longlong_t)fnvlist_lookup_int64(events[i], 2235 ZPOOL_HIST_ERRNO)); 2236 } 2237 } else { 2238 goto next; 2239 } 2240 2241 printed = B_TRUE; 2242 next: 2243 if (dump_opt['h'] > 1) { 2244 if (!printed) 2245 (void) printf("unrecognized record:\n"); 2246 dump_nvlist(events[i], 2); 2247 } 2248 } 2249 free(buf); 2250 } 2251 2252 static void 2253 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2254 { 2255 (void) os, (void) object, (void) data, (void) size; 2256 } 2257 2258 static uint64_t 2259 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2260 const zbookmark_phys_t *zb) 2261 { 2262 if (dnp == NULL) { 2263 ASSERT(zb->zb_level < 0); 2264 if (zb->zb_object == 0) 2265 return (zb->zb_blkid); 2266 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2267 } 2268 2269 ASSERT(zb->zb_level >= 0); 2270 2271 return ((zb->zb_blkid << 2272 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2273 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2274 } 2275 2276 static void 2277 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2278 const blkptr_t *bp) 2279 { 2280 abd_t *pabd; 2281 void *buf; 2282 zio_t *zio; 2283 zfs_zstdhdr_t zstd_hdr; 2284 int error; 2285 2286 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2287 return; 2288 2289 if (BP_IS_HOLE(bp)) 2290 return; 2291 2292 if (BP_IS_EMBEDDED(bp)) { 2293 buf = malloc(SPA_MAXBLOCKSIZE); 2294 if (buf == NULL) { 2295 (void) fprintf(stderr, "out of memory\n"); 2296 exit(1); 2297 } 2298 decode_embedded_bp_compressed(bp, buf); 2299 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2300 free(buf); 2301 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2302 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2303 (void) snprintf(blkbuf + strlen(blkbuf), 2304 buflen - strlen(blkbuf), 2305 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2306 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2307 zfs_get_hdrlevel(&zstd_hdr)); 2308 return; 2309 } 2310 2311 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2312 zio = zio_root(spa, NULL, NULL, 0); 2313 2314 /* Decrypt but don't decompress so we can read the compression header */ 2315 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2316 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2317 NULL)); 2318 error = zio_wait(zio); 2319 if (error) { 2320 (void) fprintf(stderr, "read failed: %d\n", error); 2321 return; 2322 } 2323 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2324 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2325 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2326 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2327 2328 (void) snprintf(blkbuf + strlen(blkbuf), 2329 buflen - strlen(blkbuf), 2330 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2331 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2332 zfs_get_hdrlevel(&zstd_hdr)); 2333 2334 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2335 } 2336 2337 static void 2338 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2339 boolean_t bp_freed) 2340 { 2341 const dva_t *dva = bp->blk_dva; 2342 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2343 int i; 2344 2345 if (dump_opt['b'] >= 6) { 2346 snprintf_blkptr(blkbuf, buflen, bp); 2347 if (bp_freed) { 2348 (void) snprintf(blkbuf + strlen(blkbuf), 2349 buflen - strlen(blkbuf), " %s", "FREE"); 2350 } 2351 return; 2352 } 2353 2354 if (BP_IS_EMBEDDED(bp)) { 2355 (void) sprintf(blkbuf, 2356 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2357 (int)BPE_GET_ETYPE(bp), 2358 (u_longlong_t)BPE_GET_LSIZE(bp), 2359 (u_longlong_t)BPE_GET_PSIZE(bp), 2360 (u_longlong_t)bp->blk_birth); 2361 return; 2362 } 2363 2364 blkbuf[0] = '\0'; 2365 2366 for (i = 0; i < ndvas; i++) 2367 (void) snprintf(blkbuf + strlen(blkbuf), 2368 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2369 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2370 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2371 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2372 2373 if (BP_IS_HOLE(bp)) { 2374 (void) snprintf(blkbuf + strlen(blkbuf), 2375 buflen - strlen(blkbuf), 2376 "%llxL B=%llu", 2377 (u_longlong_t)BP_GET_LSIZE(bp), 2378 (u_longlong_t)bp->blk_birth); 2379 } else { 2380 (void) snprintf(blkbuf + strlen(blkbuf), 2381 buflen - strlen(blkbuf), 2382 "%llxL/%llxP F=%llu B=%llu/%llu", 2383 (u_longlong_t)BP_GET_LSIZE(bp), 2384 (u_longlong_t)BP_GET_PSIZE(bp), 2385 (u_longlong_t)BP_GET_FILL(bp), 2386 (u_longlong_t)bp->blk_birth, 2387 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2388 if (bp_freed) 2389 (void) snprintf(blkbuf + strlen(blkbuf), 2390 buflen - strlen(blkbuf), " %s", "FREE"); 2391 (void) snprintf(blkbuf + strlen(blkbuf), 2392 buflen - strlen(blkbuf), 2393 " cksum=%016llx:%016llx:%016llx:%016llx", 2394 (u_longlong_t)bp->blk_cksum.zc_word[0], 2395 (u_longlong_t)bp->blk_cksum.zc_word[1], 2396 (u_longlong_t)bp->blk_cksum.zc_word[2], 2397 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2398 } 2399 } 2400 2401 static void 2402 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2403 const dnode_phys_t *dnp) 2404 { 2405 char blkbuf[BP_SPRINTF_LEN]; 2406 int l; 2407 2408 if (!BP_IS_EMBEDDED(bp)) { 2409 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2410 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2411 } 2412 2413 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2414 2415 ASSERT(zb->zb_level >= 0); 2416 2417 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2418 if (l == zb->zb_level) { 2419 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2420 } else { 2421 (void) printf(" "); 2422 } 2423 } 2424 2425 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2426 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2427 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2428 (void) printf("%s\n", blkbuf); 2429 } 2430 2431 static int 2432 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2433 blkptr_t *bp, const zbookmark_phys_t *zb) 2434 { 2435 int err = 0; 2436 2437 if (bp->blk_birth == 0) 2438 return (0); 2439 2440 print_indirect(spa, bp, zb, dnp); 2441 2442 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2443 arc_flags_t flags = ARC_FLAG_WAIT; 2444 int i; 2445 blkptr_t *cbp; 2446 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2447 arc_buf_t *buf; 2448 uint64_t fill = 0; 2449 ASSERT(!BP_IS_REDACTED(bp)); 2450 2451 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2452 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2453 if (err) 2454 return (err); 2455 ASSERT(buf->b_data); 2456 2457 /* recursively visit blocks below this */ 2458 cbp = buf->b_data; 2459 for (i = 0; i < epb; i++, cbp++) { 2460 zbookmark_phys_t czb; 2461 2462 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2463 zb->zb_level - 1, 2464 zb->zb_blkid * epb + i); 2465 err = visit_indirect(spa, dnp, cbp, &czb); 2466 if (err) 2467 break; 2468 fill += BP_GET_FILL(cbp); 2469 } 2470 if (!err) 2471 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2472 arc_buf_destroy(buf, &buf); 2473 } 2474 2475 return (err); 2476 } 2477 2478 static void 2479 dump_indirect(dnode_t *dn) 2480 { 2481 dnode_phys_t *dnp = dn->dn_phys; 2482 zbookmark_phys_t czb; 2483 2484 (void) printf("Indirect blocks:\n"); 2485 2486 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2487 dn->dn_object, dnp->dn_nlevels - 1, 0); 2488 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2489 czb.zb_blkid = j; 2490 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2491 &dnp->dn_blkptr[j], &czb); 2492 } 2493 2494 (void) printf("\n"); 2495 } 2496 2497 static void 2498 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2499 { 2500 (void) os, (void) object; 2501 dsl_dir_phys_t *dd = data; 2502 time_t crtime; 2503 char nice[32]; 2504 2505 /* make sure nicenum has enough space */ 2506 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2507 2508 if (dd == NULL) 2509 return; 2510 2511 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2512 2513 crtime = dd->dd_creation_time; 2514 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2515 (void) printf("\t\thead_dataset_obj = %llu\n", 2516 (u_longlong_t)dd->dd_head_dataset_obj); 2517 (void) printf("\t\tparent_dir_obj = %llu\n", 2518 (u_longlong_t)dd->dd_parent_obj); 2519 (void) printf("\t\torigin_obj = %llu\n", 2520 (u_longlong_t)dd->dd_origin_obj); 2521 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2522 (u_longlong_t)dd->dd_child_dir_zapobj); 2523 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2524 (void) printf("\t\tused_bytes = %s\n", nice); 2525 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2526 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2527 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2528 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2529 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2530 (void) printf("\t\tquota = %s\n", nice); 2531 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2532 (void) printf("\t\treserved = %s\n", nice); 2533 (void) printf("\t\tprops_zapobj = %llu\n", 2534 (u_longlong_t)dd->dd_props_zapobj); 2535 (void) printf("\t\tdeleg_zapobj = %llu\n", 2536 (u_longlong_t)dd->dd_deleg_zapobj); 2537 (void) printf("\t\tflags = %llx\n", 2538 (u_longlong_t)dd->dd_flags); 2539 2540 #define DO(which) \ 2541 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2542 sizeof (nice)); \ 2543 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2544 DO(HEAD); 2545 DO(SNAP); 2546 DO(CHILD); 2547 DO(CHILD_RSRV); 2548 DO(REFRSRV); 2549 #undef DO 2550 (void) printf("\t\tclones = %llu\n", 2551 (u_longlong_t)dd->dd_clones); 2552 } 2553 2554 static void 2555 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2556 { 2557 (void) os, (void) object; 2558 dsl_dataset_phys_t *ds = data; 2559 time_t crtime; 2560 char used[32], compressed[32], uncompressed[32], unique[32]; 2561 char blkbuf[BP_SPRINTF_LEN]; 2562 2563 /* make sure nicenum has enough space */ 2564 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2565 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2566 "compressed truncated"); 2567 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2568 "uncompressed truncated"); 2569 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2570 2571 if (ds == NULL) 2572 return; 2573 2574 ASSERT(size == sizeof (*ds)); 2575 crtime = ds->ds_creation_time; 2576 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2577 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2578 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2579 sizeof (uncompressed)); 2580 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2581 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2582 2583 (void) printf("\t\tdir_obj = %llu\n", 2584 (u_longlong_t)ds->ds_dir_obj); 2585 (void) printf("\t\tprev_snap_obj = %llu\n", 2586 (u_longlong_t)ds->ds_prev_snap_obj); 2587 (void) printf("\t\tprev_snap_txg = %llu\n", 2588 (u_longlong_t)ds->ds_prev_snap_txg); 2589 (void) printf("\t\tnext_snap_obj = %llu\n", 2590 (u_longlong_t)ds->ds_next_snap_obj); 2591 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2592 (u_longlong_t)ds->ds_snapnames_zapobj); 2593 (void) printf("\t\tnum_children = %llu\n", 2594 (u_longlong_t)ds->ds_num_children); 2595 (void) printf("\t\tuserrefs_obj = %llu\n", 2596 (u_longlong_t)ds->ds_userrefs_obj); 2597 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2598 (void) printf("\t\tcreation_txg = %llu\n", 2599 (u_longlong_t)ds->ds_creation_txg); 2600 (void) printf("\t\tdeadlist_obj = %llu\n", 2601 (u_longlong_t)ds->ds_deadlist_obj); 2602 (void) printf("\t\tused_bytes = %s\n", used); 2603 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2604 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2605 (void) printf("\t\tunique = %s\n", unique); 2606 (void) printf("\t\tfsid_guid = %llu\n", 2607 (u_longlong_t)ds->ds_fsid_guid); 2608 (void) printf("\t\tguid = %llu\n", 2609 (u_longlong_t)ds->ds_guid); 2610 (void) printf("\t\tflags = %llx\n", 2611 (u_longlong_t)ds->ds_flags); 2612 (void) printf("\t\tnext_clones_obj = %llu\n", 2613 (u_longlong_t)ds->ds_next_clones_obj); 2614 (void) printf("\t\tprops_obj = %llu\n", 2615 (u_longlong_t)ds->ds_props_obj); 2616 (void) printf("\t\tbp = %s\n", blkbuf); 2617 } 2618 2619 static int 2620 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2621 { 2622 (void) arg, (void) tx; 2623 char blkbuf[BP_SPRINTF_LEN]; 2624 2625 if (bp->blk_birth != 0) { 2626 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2627 (void) printf("\t%s\n", blkbuf); 2628 } 2629 return (0); 2630 } 2631 2632 static void 2633 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2634 { 2635 char bytes[32]; 2636 bptree_phys_t *bt; 2637 dmu_buf_t *db; 2638 2639 /* make sure nicenum has enough space */ 2640 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2641 2642 if (dump_opt['d'] < 3) 2643 return; 2644 2645 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2646 bt = db->db_data; 2647 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2648 (void) printf("\n %s: %llu datasets, %s\n", 2649 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2650 dmu_buf_rele(db, FTAG); 2651 2652 if (dump_opt['d'] < 5) 2653 return; 2654 2655 (void) printf("\n"); 2656 2657 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2658 } 2659 2660 static int 2661 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2662 { 2663 (void) arg, (void) tx; 2664 char blkbuf[BP_SPRINTF_LEN]; 2665 2666 ASSERT(bp->blk_birth != 0); 2667 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2668 (void) printf("\t%s\n", blkbuf); 2669 return (0); 2670 } 2671 2672 static void 2673 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2674 { 2675 char bytes[32]; 2676 char comp[32]; 2677 char uncomp[32]; 2678 uint64_t i; 2679 2680 /* make sure nicenum has enough space */ 2681 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2682 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2683 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2684 2685 if (dump_opt['d'] < 3) 2686 return; 2687 2688 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2689 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2690 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2691 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2692 if (bpo->bpo_havefreed) { 2693 (void) printf(" %*s: object %llu, %llu local " 2694 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2695 "%s (%s/%s comp)\n", 2696 indent * 8, name, 2697 (u_longlong_t)bpo->bpo_object, 2698 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2699 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2700 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2701 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2702 bytes, comp, uncomp); 2703 } else { 2704 (void) printf(" %*s: object %llu, %llu local " 2705 "blkptrs, %llu subobjs in object %llu, " 2706 "%s (%s/%s comp)\n", 2707 indent * 8, name, 2708 (u_longlong_t)bpo->bpo_object, 2709 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2710 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2711 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2712 bytes, comp, uncomp); 2713 } 2714 2715 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2716 uint64_t subobj; 2717 bpobj_t subbpo; 2718 int error; 2719 VERIFY0(dmu_read(bpo->bpo_os, 2720 bpo->bpo_phys->bpo_subobjs, 2721 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2722 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2723 if (error != 0) { 2724 (void) printf("ERROR %u while trying to open " 2725 "subobj id %llu\n", 2726 error, (u_longlong_t)subobj); 2727 continue; 2728 } 2729 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2730 bpobj_close(&subbpo); 2731 } 2732 } else { 2733 if (bpo->bpo_havefreed) { 2734 (void) printf(" %*s: object %llu, %llu blkptrs, " 2735 "%llu freed, %s\n", 2736 indent * 8, name, 2737 (u_longlong_t)bpo->bpo_object, 2738 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2739 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2740 bytes); 2741 } else { 2742 (void) printf(" %*s: object %llu, %llu blkptrs, " 2743 "%s\n", 2744 indent * 8, name, 2745 (u_longlong_t)bpo->bpo_object, 2746 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2747 bytes); 2748 } 2749 } 2750 2751 if (dump_opt['d'] < 5) 2752 return; 2753 2754 2755 if (indent == 0) { 2756 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2757 (void) printf("\n"); 2758 } 2759 } 2760 2761 static int 2762 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2763 boolean_t print_list) 2764 { 2765 int err = 0; 2766 zfs_bookmark_phys_t prop; 2767 objset_t *mos = dp->dp_spa->spa_meta_objset; 2768 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2769 2770 if (err != 0) { 2771 return (err); 2772 } 2773 2774 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2775 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2776 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2777 (u_longlong_t)prop.zbm_creation_txg, 2778 (u_longlong_t)prop.zbm_creation_time, 2779 (u_longlong_t)prop.zbm_redaction_obj); 2780 2781 IMPLY(print_list, print_redact); 2782 if (!print_redact || prop.zbm_redaction_obj == 0) 2783 return (0); 2784 2785 redaction_list_t *rl; 2786 VERIFY0(dsl_redaction_list_hold_obj(dp, 2787 prop.zbm_redaction_obj, FTAG, &rl)); 2788 2789 redaction_list_phys_t *rlp = rl->rl_phys; 2790 (void) printf("\tRedacted:\n\t\tProgress: "); 2791 if (rlp->rlp_last_object != UINT64_MAX || 2792 rlp->rlp_last_blkid != UINT64_MAX) { 2793 (void) printf("%llu %llu (incomplete)\n", 2794 (u_longlong_t)rlp->rlp_last_object, 2795 (u_longlong_t)rlp->rlp_last_blkid); 2796 } else { 2797 (void) printf("complete\n"); 2798 } 2799 (void) printf("\t\tSnapshots: ["); 2800 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2801 if (i > 0) 2802 (void) printf(", "); 2803 (void) printf("%0llu", 2804 (u_longlong_t)rlp->rlp_snaps[i]); 2805 } 2806 (void) printf("]\n\t\tLength: %llu\n", 2807 (u_longlong_t)rlp->rlp_num_entries); 2808 2809 if (!print_list) { 2810 dsl_redaction_list_rele(rl, FTAG); 2811 return (0); 2812 } 2813 2814 if (rlp->rlp_num_entries == 0) { 2815 dsl_redaction_list_rele(rl, FTAG); 2816 (void) printf("\t\tRedaction List: []\n\n"); 2817 return (0); 2818 } 2819 2820 redact_block_phys_t *rbp_buf; 2821 uint64_t size; 2822 dmu_object_info_t doi; 2823 2824 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2825 size = doi.doi_max_offset; 2826 rbp_buf = kmem_alloc(size, KM_SLEEP); 2827 2828 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2829 rbp_buf, 0); 2830 if (err != 0) { 2831 dsl_redaction_list_rele(rl, FTAG); 2832 kmem_free(rbp_buf, size); 2833 return (err); 2834 } 2835 2836 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2837 "%llx, blksz: %x, count: %llx}", 2838 (u_longlong_t)rbp_buf[0].rbp_object, 2839 (u_longlong_t)rbp_buf[0].rbp_blkid, 2840 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2841 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2842 2843 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2844 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2845 "blksz: %x, count: %llx}", 2846 (u_longlong_t)rbp_buf[i].rbp_object, 2847 (u_longlong_t)rbp_buf[i].rbp_blkid, 2848 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2849 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2850 } 2851 dsl_redaction_list_rele(rl, FTAG); 2852 kmem_free(rbp_buf, size); 2853 (void) printf("]\n\n"); 2854 return (0); 2855 } 2856 2857 static void 2858 dump_bookmarks(objset_t *os, int verbosity) 2859 { 2860 zap_cursor_t zc; 2861 zap_attribute_t attr; 2862 dsl_dataset_t *ds = dmu_objset_ds(os); 2863 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2864 objset_t *mos = os->os_spa->spa_meta_objset; 2865 if (verbosity < 4) 2866 return; 2867 dsl_pool_config_enter(dp, FTAG); 2868 2869 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2870 zap_cursor_retrieve(&zc, &attr) == 0; 2871 zap_cursor_advance(&zc)) { 2872 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2873 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2874 int len; 2875 dmu_objset_name(os, osname); 2876 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 2877 attr.za_name); 2878 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 2879 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2880 } 2881 zap_cursor_fini(&zc); 2882 dsl_pool_config_exit(dp, FTAG); 2883 } 2884 2885 static void 2886 bpobj_count_refd(bpobj_t *bpo) 2887 { 2888 mos_obj_refd(bpo->bpo_object); 2889 2890 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2891 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2892 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2893 uint64_t subobj; 2894 bpobj_t subbpo; 2895 int error; 2896 VERIFY0(dmu_read(bpo->bpo_os, 2897 bpo->bpo_phys->bpo_subobjs, 2898 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2899 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2900 if (error != 0) { 2901 (void) printf("ERROR %u while trying to open " 2902 "subobj id %llu\n", 2903 error, (u_longlong_t)subobj); 2904 continue; 2905 } 2906 bpobj_count_refd(&subbpo); 2907 bpobj_close(&subbpo); 2908 } 2909 } 2910 } 2911 2912 static int 2913 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2914 { 2915 spa_t *spa = arg; 2916 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2917 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2918 bpobj_count_refd(&dle->dle_bpobj); 2919 return (0); 2920 } 2921 2922 static int 2923 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2924 { 2925 ASSERT(arg == NULL); 2926 if (dump_opt['d'] >= 5) { 2927 char buf[128]; 2928 (void) snprintf(buf, sizeof (buf), 2929 "mintxg %llu -> obj %llu", 2930 (longlong_t)dle->dle_mintxg, 2931 (longlong_t)dle->dle_bpobj.bpo_object); 2932 2933 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2934 } else { 2935 (void) printf("mintxg %llu -> obj %llu\n", 2936 (longlong_t)dle->dle_mintxg, 2937 (longlong_t)dle->dle_bpobj.bpo_object); 2938 } 2939 return (0); 2940 } 2941 2942 static void 2943 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 2944 { 2945 char bytes[32]; 2946 char comp[32]; 2947 char uncomp[32]; 2948 char entries[32]; 2949 spa_t *spa = dmu_objset_spa(dl->dl_os); 2950 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2951 2952 if (dl->dl_oldfmt) { 2953 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2954 bpobj_count_refd(&dl->dl_bpobj); 2955 } else { 2956 mos_obj_refd(dl->dl_object); 2957 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2958 } 2959 2960 /* make sure nicenum has enough space */ 2961 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2962 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2963 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2964 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 2965 2966 if (dump_opt['d'] < 3) 2967 return; 2968 2969 if (dl->dl_oldfmt) { 2970 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2971 return; 2972 } 2973 2974 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2975 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2976 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2977 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2978 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2979 name, bytes, comp, uncomp, entries); 2980 2981 if (dump_opt['d'] < 4) 2982 return; 2983 2984 (void) putchar('\n'); 2985 2986 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2987 } 2988 2989 static int 2990 verify_dd_livelist(objset_t *os) 2991 { 2992 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2993 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2994 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2995 2996 ASSERT(!dmu_objset_is_snapshot(os)); 2997 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2998 return (0); 2999 3000 /* Iterate through the livelist to check for duplicates */ 3001 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3002 NULL); 3003 3004 dsl_pool_config_enter(dp, FTAG); 3005 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3006 &ll_comp, &ll_uncomp); 3007 3008 dsl_dataset_t *origin_ds; 3009 ASSERT(dsl_pool_config_held(dp)); 3010 VERIFY0(dsl_dataset_hold_obj(dp, 3011 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3012 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3013 &used, &comp, &uncomp)); 3014 dsl_dataset_rele(origin_ds, FTAG); 3015 dsl_pool_config_exit(dp, FTAG); 3016 /* 3017 * It's possible that the dataset's uncomp space is larger than the 3018 * livelist's because livelists do not track embedded block pointers 3019 */ 3020 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3021 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3022 (void) printf("Discrepancy in space accounting:\n"); 3023 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3024 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3025 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3026 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3027 nice_used, nice_comp, nice_uncomp); 3028 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3029 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3030 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3031 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3032 nice_used, nice_comp, nice_uncomp); 3033 return (1); 3034 } 3035 return (0); 3036 } 3037 3038 static char *key_material = NULL; 3039 3040 static boolean_t 3041 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3042 { 3043 uint64_t keyformat, salt, iters; 3044 int i; 3045 unsigned char c; 3046 3047 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3048 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3049 1, &keyformat)); 3050 3051 switch (keyformat) { 3052 case ZFS_KEYFORMAT_HEX: 3053 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3054 if (!isxdigit(key_material[i]) || 3055 !isxdigit(key_material[i+1])) 3056 return (B_FALSE); 3057 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3058 return (B_FALSE); 3059 key_out[i / 2] = c; 3060 } 3061 break; 3062 3063 case ZFS_KEYFORMAT_PASSPHRASE: 3064 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3065 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3066 sizeof (uint64_t), 1, &salt)); 3067 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3068 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3069 sizeof (uint64_t), 1, &iters)); 3070 3071 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3072 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3073 WRAPPING_KEY_LEN, key_out) != 1) 3074 return (B_FALSE); 3075 3076 break; 3077 3078 default: 3079 fatal("no support for key format %u\n", 3080 (unsigned int) keyformat); 3081 } 3082 3083 return (B_TRUE); 3084 } 3085 3086 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3087 static boolean_t key_loaded = B_FALSE; 3088 3089 static void 3090 zdb_load_key(objset_t *os) 3091 { 3092 dsl_pool_t *dp; 3093 dsl_dir_t *dd, *rdd; 3094 uint8_t key[WRAPPING_KEY_LEN]; 3095 uint64_t rddobj; 3096 int err; 3097 3098 dp = spa_get_dsl(os->os_spa); 3099 dd = os->os_dsl_dataset->ds_dir; 3100 3101 dsl_pool_config_enter(dp, FTAG); 3102 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3103 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3104 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3105 dsl_dir_name(rdd, encroot); 3106 dsl_dir_rele(rdd, FTAG); 3107 3108 if (!zdb_derive_key(dd, key)) 3109 fatal("couldn't derive encryption key"); 3110 3111 dsl_pool_config_exit(dp, FTAG); 3112 3113 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3114 3115 dsl_crypto_params_t *dcp; 3116 nvlist_t *crypto_args; 3117 3118 crypto_args = fnvlist_alloc(); 3119 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3120 (uint8_t *)key, WRAPPING_KEY_LEN); 3121 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3122 NULL, crypto_args, &dcp)); 3123 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3124 3125 dsl_crypto_params_free(dcp, (err != 0)); 3126 fnvlist_free(crypto_args); 3127 3128 if (err != 0) 3129 fatal( 3130 "couldn't load encryption key for %s: %s", 3131 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3132 "crypto params not supported" : strerror(err)); 3133 3134 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3135 3136 printf("Unlocked encryption root: %s\n", encroot); 3137 key_loaded = B_TRUE; 3138 } 3139 3140 static void 3141 zdb_unload_key(void) 3142 { 3143 if (!key_loaded) 3144 return; 3145 3146 VERIFY0(spa_keystore_unload_wkey(encroot)); 3147 key_loaded = B_FALSE; 3148 } 3149 3150 static avl_tree_t idx_tree; 3151 static avl_tree_t domain_tree; 3152 static boolean_t fuid_table_loaded; 3153 static objset_t *sa_os = NULL; 3154 static sa_attr_type_t *sa_attr_table = NULL; 3155 3156 static int 3157 open_objset(const char *path, const void *tag, objset_t **osp) 3158 { 3159 int err; 3160 uint64_t sa_attrs = 0; 3161 uint64_t version = 0; 3162 3163 VERIFY3P(sa_os, ==, NULL); 3164 3165 /* 3166 * We can't own an objset if it's redacted. Therefore, we do this 3167 * dance: hold the objset, then acquire a long hold on its dataset, then 3168 * release the pool (which is held as part of holding the objset). 3169 */ 3170 3171 if (dump_opt['K']) { 3172 /* decryption requested, try to load keys */ 3173 err = dmu_objset_hold(path, tag, osp); 3174 if (err != 0) { 3175 (void) fprintf(stderr, "failed to hold dataset " 3176 "'%s': %s\n", 3177 path, strerror(err)); 3178 return (err); 3179 } 3180 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3181 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3182 3183 /* succeeds or dies */ 3184 zdb_load_key(*osp); 3185 3186 /* release it all */ 3187 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3188 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3189 } 3190 3191 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3192 3193 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3194 if (err != 0) { 3195 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3196 path, strerror(err)); 3197 return (err); 3198 } 3199 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3200 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3201 3202 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3203 (key_loaded || !(*osp)->os_encrypted)) { 3204 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3205 8, 1, &version); 3206 if (version >= ZPL_VERSION_SA) { 3207 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3208 8, 1, &sa_attrs); 3209 } 3210 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3211 &sa_attr_table); 3212 if (err != 0) { 3213 (void) fprintf(stderr, "sa_setup failed: %s\n", 3214 strerror(err)); 3215 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3216 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3217 ds_hold_flags, tag); 3218 *osp = NULL; 3219 } 3220 } 3221 sa_os = *osp; 3222 3223 return (err); 3224 } 3225 3226 static void 3227 close_objset(objset_t *os, const void *tag) 3228 { 3229 VERIFY3P(os, ==, sa_os); 3230 if (os->os_sa != NULL) 3231 sa_tear_down(os); 3232 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3233 dsl_dataset_rele_flags(dmu_objset_ds(os), 3234 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3235 sa_attr_table = NULL; 3236 sa_os = NULL; 3237 3238 zdb_unload_key(); 3239 } 3240 3241 static void 3242 fuid_table_destroy(void) 3243 { 3244 if (fuid_table_loaded) { 3245 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3246 fuid_table_loaded = B_FALSE; 3247 } 3248 } 3249 3250 /* 3251 * print uid or gid information. 3252 * For normal POSIX id just the id is printed in decimal format. 3253 * For CIFS files with FUID the fuid is printed in hex followed by 3254 * the domain-rid string. 3255 */ 3256 static void 3257 print_idstr(uint64_t id, const char *id_type) 3258 { 3259 if (FUID_INDEX(id)) { 3260 const char *domain = 3261 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3262 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3263 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3264 } else { 3265 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3266 } 3267 3268 } 3269 3270 static void 3271 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3272 { 3273 uint32_t uid_idx, gid_idx; 3274 3275 uid_idx = FUID_INDEX(uid); 3276 gid_idx = FUID_INDEX(gid); 3277 3278 /* Load domain table, if not already loaded */ 3279 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3280 uint64_t fuid_obj; 3281 3282 /* first find the fuid object. It lives in the master node */ 3283 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3284 8, 1, &fuid_obj) == 0); 3285 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3286 (void) zfs_fuid_table_load(os, fuid_obj, 3287 &idx_tree, &domain_tree); 3288 fuid_table_loaded = B_TRUE; 3289 } 3290 3291 print_idstr(uid, "uid"); 3292 print_idstr(gid, "gid"); 3293 } 3294 3295 static void 3296 dump_znode_sa_xattr(sa_handle_t *hdl) 3297 { 3298 nvlist_t *sa_xattr; 3299 nvpair_t *elem = NULL; 3300 int sa_xattr_size = 0; 3301 int sa_xattr_entries = 0; 3302 int error; 3303 char *sa_xattr_packed; 3304 3305 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3306 if (error || sa_xattr_size == 0) 3307 return; 3308 3309 sa_xattr_packed = malloc(sa_xattr_size); 3310 if (sa_xattr_packed == NULL) 3311 return; 3312 3313 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3314 sa_xattr_packed, sa_xattr_size); 3315 if (error) { 3316 free(sa_xattr_packed); 3317 return; 3318 } 3319 3320 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3321 if (error) { 3322 free(sa_xattr_packed); 3323 return; 3324 } 3325 3326 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3327 sa_xattr_entries++; 3328 3329 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3330 sa_xattr_size, sa_xattr_entries); 3331 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3332 boolean_t can_print = !dump_opt['P']; 3333 uchar_t *value; 3334 uint_t cnt, idx; 3335 3336 (void) printf("\t\t%s = ", nvpair_name(elem)); 3337 nvpair_value_byte_array(elem, &value, &cnt); 3338 3339 for (idx = 0; idx < cnt; ++idx) { 3340 if (!isprint(value[idx])) { 3341 can_print = B_FALSE; 3342 break; 3343 } 3344 } 3345 3346 for (idx = 0; idx < cnt; ++idx) { 3347 if (can_print) 3348 (void) putchar(value[idx]); 3349 else 3350 (void) printf("\\%3.3o", value[idx]); 3351 } 3352 (void) putchar('\n'); 3353 } 3354 3355 nvlist_free(sa_xattr); 3356 free(sa_xattr_packed); 3357 } 3358 3359 static void 3360 dump_znode_symlink(sa_handle_t *hdl) 3361 { 3362 int sa_symlink_size = 0; 3363 char linktarget[MAXPATHLEN]; 3364 int error; 3365 3366 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3367 if (error || sa_symlink_size == 0) { 3368 return; 3369 } 3370 if (sa_symlink_size >= sizeof (linktarget)) { 3371 (void) printf("symlink size %d is too large\n", 3372 sa_symlink_size); 3373 return; 3374 } 3375 linktarget[sa_symlink_size] = '\0'; 3376 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3377 &linktarget, sa_symlink_size) == 0) 3378 (void) printf("\ttarget %s\n", linktarget); 3379 } 3380 3381 static void 3382 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3383 { 3384 (void) data, (void) size; 3385 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3386 sa_handle_t *hdl; 3387 uint64_t xattr, rdev, gen; 3388 uint64_t uid, gid, mode, fsize, parent, links; 3389 uint64_t pflags; 3390 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3391 time_t z_crtime, z_atime, z_mtime, z_ctime; 3392 sa_bulk_attr_t bulk[12]; 3393 int idx = 0; 3394 int error; 3395 3396 VERIFY3P(os, ==, sa_os); 3397 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3398 (void) printf("Failed to get handle for SA znode\n"); 3399 return; 3400 } 3401 3402 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3403 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3404 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3405 &links, 8); 3406 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3407 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3408 &mode, 8); 3409 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3410 NULL, &parent, 8); 3411 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3412 &fsize, 8); 3413 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3414 acctm, 16); 3415 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3416 modtm, 16); 3417 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3418 crtm, 16); 3419 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3420 chgtm, 16); 3421 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3422 &pflags, 8); 3423 3424 if (sa_bulk_lookup(hdl, bulk, idx)) { 3425 (void) sa_handle_destroy(hdl); 3426 return; 3427 } 3428 3429 z_crtime = (time_t)crtm[0]; 3430 z_atime = (time_t)acctm[0]; 3431 z_mtime = (time_t)modtm[0]; 3432 z_ctime = (time_t)chgtm[0]; 3433 3434 if (dump_opt['d'] > 4) { 3435 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3436 if (error == ESTALE) { 3437 (void) snprintf(path, sizeof (path), "on delete queue"); 3438 } else if (error != 0) { 3439 leaked_objects++; 3440 (void) snprintf(path, sizeof (path), 3441 "path not found, possibly leaked"); 3442 } 3443 (void) printf("\tpath %s\n", path); 3444 } 3445 3446 if (S_ISLNK(mode)) 3447 dump_znode_symlink(hdl); 3448 dump_uidgid(os, uid, gid); 3449 (void) printf("\tatime %s", ctime(&z_atime)); 3450 (void) printf("\tmtime %s", ctime(&z_mtime)); 3451 (void) printf("\tctime %s", ctime(&z_ctime)); 3452 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3453 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3454 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3455 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3456 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3457 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3458 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3459 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3460 uint64_t projid; 3461 3462 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3463 sizeof (uint64_t)) == 0) 3464 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3465 } 3466 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3467 sizeof (uint64_t)) == 0) 3468 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3469 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3470 sizeof (uint64_t)) == 0) 3471 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3472 dump_znode_sa_xattr(hdl); 3473 sa_handle_destroy(hdl); 3474 } 3475 3476 static void 3477 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3478 { 3479 (void) os, (void) object, (void) data, (void) size; 3480 } 3481 3482 static void 3483 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3484 { 3485 (void) os, (void) object, (void) data, (void) size; 3486 } 3487 3488 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3489 dump_none, /* unallocated */ 3490 dump_zap, /* object directory */ 3491 dump_uint64, /* object array */ 3492 dump_none, /* packed nvlist */ 3493 dump_packed_nvlist, /* packed nvlist size */ 3494 dump_none, /* bpobj */ 3495 dump_bpobj, /* bpobj header */ 3496 dump_none, /* SPA space map header */ 3497 dump_none, /* SPA space map */ 3498 dump_none, /* ZIL intent log */ 3499 dump_dnode, /* DMU dnode */ 3500 dump_dmu_objset, /* DMU objset */ 3501 dump_dsl_dir, /* DSL directory */ 3502 dump_zap, /* DSL directory child map */ 3503 dump_zap, /* DSL dataset snap map */ 3504 dump_zap, /* DSL props */ 3505 dump_dsl_dataset, /* DSL dataset */ 3506 dump_znode, /* ZFS znode */ 3507 dump_acl, /* ZFS V0 ACL */ 3508 dump_uint8, /* ZFS plain file */ 3509 dump_zpldir, /* ZFS directory */ 3510 dump_zap, /* ZFS master node */ 3511 dump_zap, /* ZFS delete queue */ 3512 dump_uint8, /* zvol object */ 3513 dump_zap, /* zvol prop */ 3514 dump_uint8, /* other uint8[] */ 3515 dump_uint64, /* other uint64[] */ 3516 dump_zap, /* other ZAP */ 3517 dump_zap, /* persistent error log */ 3518 dump_uint8, /* SPA history */ 3519 dump_history_offsets, /* SPA history offsets */ 3520 dump_zap, /* Pool properties */ 3521 dump_zap, /* DSL permissions */ 3522 dump_acl, /* ZFS ACL */ 3523 dump_uint8, /* ZFS SYSACL */ 3524 dump_none, /* FUID nvlist */ 3525 dump_packed_nvlist, /* FUID nvlist size */ 3526 dump_zap, /* DSL dataset next clones */ 3527 dump_zap, /* DSL scrub queue */ 3528 dump_zap, /* ZFS user/group/project used */ 3529 dump_zap, /* ZFS user/group/project quota */ 3530 dump_zap, /* snapshot refcount tags */ 3531 dump_ddt_zap, /* DDT ZAP object */ 3532 dump_zap, /* DDT statistics */ 3533 dump_znode, /* SA object */ 3534 dump_zap, /* SA Master Node */ 3535 dump_sa_attrs, /* SA attribute registration */ 3536 dump_sa_layouts, /* SA attribute layouts */ 3537 dump_zap, /* DSL scrub translations */ 3538 dump_none, /* fake dedup BP */ 3539 dump_zap, /* deadlist */ 3540 dump_none, /* deadlist hdr */ 3541 dump_zap, /* dsl clones */ 3542 dump_bpobj_subobjs, /* bpobj subobjs */ 3543 dump_unknown, /* Unknown type, must be last */ 3544 }; 3545 3546 static boolean_t 3547 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3548 { 3549 boolean_t match = B_TRUE; 3550 3551 switch (obj_type) { 3552 case DMU_OT_DIRECTORY_CONTENTS: 3553 if (!(flags & ZOR_FLAG_DIRECTORY)) 3554 match = B_FALSE; 3555 break; 3556 case DMU_OT_PLAIN_FILE_CONTENTS: 3557 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3558 match = B_FALSE; 3559 break; 3560 case DMU_OT_SPACE_MAP: 3561 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3562 match = B_FALSE; 3563 break; 3564 default: 3565 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3566 if (!(flags & ZOR_FLAG_ZAP)) 3567 match = B_FALSE; 3568 break; 3569 } 3570 3571 /* 3572 * If all bits except some of the supported flags are 3573 * set, the user combined the all-types flag (A) with 3574 * a negated flag to exclude some types (e.g. A-f to 3575 * show all object types except plain files). 3576 */ 3577 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3578 match = B_FALSE; 3579 3580 break; 3581 } 3582 3583 return (match); 3584 } 3585 3586 static void 3587 dump_object(objset_t *os, uint64_t object, int verbosity, 3588 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3589 { 3590 dmu_buf_t *db = NULL; 3591 dmu_object_info_t doi; 3592 dnode_t *dn; 3593 boolean_t dnode_held = B_FALSE; 3594 void *bonus = NULL; 3595 size_t bsize = 0; 3596 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3597 char bonus_size[32]; 3598 char aux[50]; 3599 int error; 3600 3601 /* make sure nicenum has enough space */ 3602 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3603 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3604 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3605 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3606 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3607 "bonus_size truncated"); 3608 3609 if (*print_header) { 3610 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3611 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3612 "lsize", "%full", "type"); 3613 *print_header = 0; 3614 } 3615 3616 if (object == 0) { 3617 dn = DMU_META_DNODE(os); 3618 dmu_object_info_from_dnode(dn, &doi); 3619 } else { 3620 /* 3621 * Encrypted datasets will have sensitive bonus buffers 3622 * encrypted. Therefore we cannot hold the bonus buffer and 3623 * must hold the dnode itself instead. 3624 */ 3625 error = dmu_object_info(os, object, &doi); 3626 if (error) 3627 fatal("dmu_object_info() failed, errno %u", error); 3628 3629 if (!key_loaded && os->os_encrypted && 3630 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3631 error = dnode_hold(os, object, FTAG, &dn); 3632 if (error) 3633 fatal("dnode_hold() failed, errno %u", error); 3634 dnode_held = B_TRUE; 3635 } else { 3636 error = dmu_bonus_hold(os, object, FTAG, &db); 3637 if (error) 3638 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3639 object, error); 3640 bonus = db->db_data; 3641 bsize = db->db_size; 3642 dn = DB_DNODE((dmu_buf_impl_t *)db); 3643 } 3644 } 3645 3646 /* 3647 * Default to showing all object types if no flags were specified. 3648 */ 3649 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3650 !match_object_type(doi.doi_type, flags)) 3651 goto out; 3652 3653 if (dnode_slots_used) 3654 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3655 3656 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3657 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3658 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3659 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3660 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3661 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3662 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3663 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3664 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3665 3666 aux[0] = '\0'; 3667 3668 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3669 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3670 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3671 } 3672 3673 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3674 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3675 const char *compname = NULL; 3676 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3677 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3678 &compname) == 0) { 3679 (void) snprintf(aux + strlen(aux), 3680 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3681 compname); 3682 } else { 3683 (void) snprintf(aux + strlen(aux), 3684 sizeof (aux) - strlen(aux), 3685 " (Z=inherit=%s-unknown)", 3686 ZDB_COMPRESS_NAME(os->os_compress)); 3687 } 3688 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3689 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3690 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3691 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3692 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3693 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3694 } 3695 3696 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3697 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3698 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3699 3700 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3701 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3702 "", "", "", "", "", "", bonus_size, "bonus", 3703 zdb_ot_name(doi.doi_bonus_type)); 3704 } 3705 3706 if (verbosity >= 4) { 3707 (void) printf("\tdnode flags: %s%s%s%s\n", 3708 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3709 "USED_BYTES " : "", 3710 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3711 "USERUSED_ACCOUNTED " : "", 3712 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3713 "USEROBJUSED_ACCOUNTED " : "", 3714 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3715 "SPILL_BLKPTR" : ""); 3716 (void) printf("\tdnode maxblkid: %llu\n", 3717 (longlong_t)dn->dn_phys->dn_maxblkid); 3718 3719 if (!dnode_held) { 3720 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3721 object, bonus, bsize); 3722 } else { 3723 (void) printf("\t\t(bonus encrypted)\n"); 3724 } 3725 3726 if (key_loaded || 3727 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3728 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3729 NULL, 0); 3730 } else { 3731 (void) printf("\t\t(object encrypted)\n"); 3732 } 3733 3734 *print_header = B_TRUE; 3735 } 3736 3737 if (verbosity >= 5) { 3738 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3739 char blkbuf[BP_SPRINTF_LEN]; 3740 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3741 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3742 (void) printf("\nSpill block: %s\n", blkbuf); 3743 } 3744 dump_indirect(dn); 3745 } 3746 3747 if (verbosity >= 5) { 3748 /* 3749 * Report the list of segments that comprise the object. 3750 */ 3751 uint64_t start = 0; 3752 uint64_t end; 3753 uint64_t blkfill = 1; 3754 int minlvl = 1; 3755 3756 if (dn->dn_type == DMU_OT_DNODE) { 3757 minlvl = 0; 3758 blkfill = DNODES_PER_BLOCK; 3759 } 3760 3761 for (;;) { 3762 char segsize[32]; 3763 /* make sure nicenum has enough space */ 3764 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 3765 "segsize truncated"); 3766 error = dnode_next_offset(dn, 3767 0, &start, minlvl, blkfill, 0); 3768 if (error) 3769 break; 3770 end = start; 3771 error = dnode_next_offset(dn, 3772 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3773 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3774 (void) printf("\t\tsegment [%016llx, %016llx)" 3775 " size %5s\n", (u_longlong_t)start, 3776 (u_longlong_t)end, segsize); 3777 if (error) 3778 break; 3779 start = end; 3780 } 3781 } 3782 3783 out: 3784 if (db != NULL) 3785 dmu_buf_rele(db, FTAG); 3786 if (dnode_held) 3787 dnode_rele(dn, FTAG); 3788 } 3789 3790 static void 3791 count_dir_mos_objects(dsl_dir_t *dd) 3792 { 3793 mos_obj_refd(dd->dd_object); 3794 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3795 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3796 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3797 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3798 3799 /* 3800 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3801 * Ignore the references after the first one. 3802 */ 3803 mos_obj_refd_multiple(dd->dd_crypto_obj); 3804 } 3805 3806 static void 3807 count_ds_mos_objects(dsl_dataset_t *ds) 3808 { 3809 mos_obj_refd(ds->ds_object); 3810 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3811 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3812 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3813 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3814 mos_obj_refd(ds->ds_bookmarks_obj); 3815 3816 if (!dsl_dataset_is_snapshot(ds)) { 3817 count_dir_mos_objects(ds->ds_dir); 3818 } 3819 } 3820 3821 static const char *const objset_types[DMU_OST_NUMTYPES] = { 3822 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3823 3824 /* 3825 * Parse a string denoting a range of object IDs of the form 3826 * <start>[:<end>[:flags]], and store the results in zor. 3827 * Return 0 on success. On error, return 1 and update the msg 3828 * pointer to point to a descriptive error message. 3829 */ 3830 static int 3831 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 3832 { 3833 uint64_t flags = 0; 3834 char *p, *s, *dup, *flagstr, *tmp = NULL; 3835 size_t len; 3836 int i; 3837 int rc = 0; 3838 3839 if (strchr(range, ':') == NULL) { 3840 zor->zor_obj_start = strtoull(range, &p, 0); 3841 if (*p != '\0') { 3842 *msg = "Invalid characters in object ID"; 3843 rc = 1; 3844 } 3845 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3846 zor->zor_obj_end = zor->zor_obj_start; 3847 return (rc); 3848 } 3849 3850 if (strchr(range, ':') == range) { 3851 *msg = "Invalid leading colon"; 3852 rc = 1; 3853 return (rc); 3854 } 3855 3856 len = strlen(range); 3857 if (range[len - 1] == ':') { 3858 *msg = "Invalid trailing colon"; 3859 rc = 1; 3860 return (rc); 3861 } 3862 3863 dup = strdup(range); 3864 s = strtok_r(dup, ":", &tmp); 3865 zor->zor_obj_start = strtoull(s, &p, 0); 3866 3867 if (*p != '\0') { 3868 *msg = "Invalid characters in start object ID"; 3869 rc = 1; 3870 goto out; 3871 } 3872 3873 s = strtok_r(NULL, ":", &tmp); 3874 zor->zor_obj_end = strtoull(s, &p, 0); 3875 3876 if (*p != '\0') { 3877 *msg = "Invalid characters in end object ID"; 3878 rc = 1; 3879 goto out; 3880 } 3881 3882 if (zor->zor_obj_start > zor->zor_obj_end) { 3883 *msg = "Start object ID may not exceed end object ID"; 3884 rc = 1; 3885 goto out; 3886 } 3887 3888 s = strtok_r(NULL, ":", &tmp); 3889 if (s == NULL) { 3890 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3891 goto out; 3892 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 3893 *msg = "Invalid colon-delimited field after flags"; 3894 rc = 1; 3895 goto out; 3896 } 3897 3898 flagstr = s; 3899 for (i = 0; flagstr[i]; i++) { 3900 int bit; 3901 boolean_t negation = (flagstr[i] == '-'); 3902 3903 if (negation) { 3904 i++; 3905 if (flagstr[i] == '\0') { 3906 *msg = "Invalid trailing negation operator"; 3907 rc = 1; 3908 goto out; 3909 } 3910 } 3911 bit = flagbits[(uchar_t)flagstr[i]]; 3912 if (bit == 0) { 3913 *msg = "Invalid flag"; 3914 rc = 1; 3915 goto out; 3916 } 3917 if (negation) 3918 flags &= ~bit; 3919 else 3920 flags |= bit; 3921 } 3922 zor->zor_flags = flags; 3923 3924 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 3925 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 3926 3927 out: 3928 free(dup); 3929 return (rc); 3930 } 3931 3932 static void 3933 dump_objset(objset_t *os) 3934 { 3935 dmu_objset_stats_t dds = { 0 }; 3936 uint64_t object, object_count; 3937 uint64_t refdbytes, usedobjs, scratch; 3938 char numbuf[32]; 3939 char blkbuf[BP_SPRINTF_LEN + 20]; 3940 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3941 const char *type = "UNKNOWN"; 3942 int verbosity = dump_opt['d']; 3943 boolean_t print_header; 3944 unsigned i; 3945 int error; 3946 uint64_t total_slots_used = 0; 3947 uint64_t max_slot_used = 0; 3948 uint64_t dnode_slots; 3949 uint64_t obj_start; 3950 uint64_t obj_end; 3951 uint64_t flags; 3952 3953 /* make sure nicenum has enough space */ 3954 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 3955 3956 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3957 dmu_objset_fast_stat(os, &dds); 3958 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3959 3960 print_header = B_TRUE; 3961 3962 if (dds.dds_type < DMU_OST_NUMTYPES) 3963 type = objset_types[dds.dds_type]; 3964 3965 if (dds.dds_type == DMU_OST_META) { 3966 dds.dds_creation_txg = TXG_INITIAL; 3967 usedobjs = BP_GET_FILL(os->os_rootbp); 3968 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3969 dd_used_bytes; 3970 } else { 3971 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3972 } 3973 3974 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3975 3976 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3977 3978 if (verbosity >= 4) { 3979 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3980 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3981 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3982 } else { 3983 blkbuf[0] = '\0'; 3984 } 3985 3986 dmu_objset_name(os, osname); 3987 3988 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3989 "%s, %llu objects%s%s\n", 3990 osname, type, (u_longlong_t)dmu_objset_id(os), 3991 (u_longlong_t)dds.dds_creation_txg, 3992 numbuf, (u_longlong_t)usedobjs, blkbuf, 3993 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3994 3995 for (i = 0; i < zopt_object_args; i++) { 3996 obj_start = zopt_object_ranges[i].zor_obj_start; 3997 obj_end = zopt_object_ranges[i].zor_obj_end; 3998 flags = zopt_object_ranges[i].zor_flags; 3999 4000 object = obj_start; 4001 if (object == 0 || obj_start == obj_end) 4002 dump_object(os, object, verbosity, &print_header, NULL, 4003 flags); 4004 else 4005 object--; 4006 4007 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4008 object <= obj_end) { 4009 dump_object(os, object, verbosity, &print_header, NULL, 4010 flags); 4011 } 4012 } 4013 4014 if (zopt_object_args > 0) { 4015 (void) printf("\n"); 4016 return; 4017 } 4018 4019 if (dump_opt['i'] != 0 || verbosity >= 2) 4020 dump_intent_log(dmu_objset_zil(os)); 4021 4022 if (dmu_objset_ds(os) != NULL) { 4023 dsl_dataset_t *ds = dmu_objset_ds(os); 4024 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4025 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4026 !dmu_objset_is_snapshot(os)) { 4027 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4028 if (verify_dd_livelist(os) != 0) 4029 fatal("livelist is incorrect"); 4030 } 4031 4032 if (dsl_dataset_remap_deadlist_exists(ds)) { 4033 (void) printf("ds_remap_deadlist:\n"); 4034 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4035 } 4036 count_ds_mos_objects(ds); 4037 } 4038 4039 if (dmu_objset_ds(os) != NULL) 4040 dump_bookmarks(os, verbosity); 4041 4042 if (verbosity < 2) 4043 return; 4044 4045 if (BP_IS_HOLE(os->os_rootbp)) 4046 return; 4047 4048 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4049 object_count = 0; 4050 if (DMU_USERUSED_DNODE(os) != NULL && 4051 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4052 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4053 NULL, 0); 4054 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4055 NULL, 0); 4056 } 4057 4058 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4059 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4060 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4061 &print_header, NULL, 0); 4062 4063 object = 0; 4064 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4065 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4066 0); 4067 object_count++; 4068 total_slots_used += dnode_slots; 4069 max_slot_used = object + dnode_slots - 1; 4070 } 4071 4072 (void) printf("\n"); 4073 4074 (void) printf(" Dnode slots:\n"); 4075 (void) printf("\tTotal used: %10llu\n", 4076 (u_longlong_t)total_slots_used); 4077 (void) printf("\tMax used: %10llu\n", 4078 (u_longlong_t)max_slot_used); 4079 (void) printf("\tPercent empty: %10lf\n", 4080 (double)(max_slot_used - total_slots_used)*100 / 4081 (double)max_slot_used); 4082 (void) printf("\n"); 4083 4084 if (error != ESRCH) { 4085 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4086 abort(); 4087 } 4088 4089 ASSERT3U(object_count, ==, usedobjs); 4090 4091 if (leaked_objects != 0) { 4092 (void) printf("%d potentially leaked objects detected\n", 4093 leaked_objects); 4094 leaked_objects = 0; 4095 } 4096 } 4097 4098 static void 4099 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4100 { 4101 time_t timestamp = ub->ub_timestamp; 4102 4103 (void) printf("%s", header ? header : ""); 4104 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4105 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4106 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4107 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4108 (void) printf("\ttimestamp = %llu UTC = %s", 4109 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4110 4111 (void) printf("\tmmp_magic = %016llx\n", 4112 (u_longlong_t)ub->ub_mmp_magic); 4113 if (MMP_VALID(ub)) { 4114 (void) printf("\tmmp_delay = %0llu\n", 4115 (u_longlong_t)ub->ub_mmp_delay); 4116 if (MMP_SEQ_VALID(ub)) 4117 (void) printf("\tmmp_seq = %u\n", 4118 (unsigned int) MMP_SEQ(ub)); 4119 if (MMP_FAIL_INT_VALID(ub)) 4120 (void) printf("\tmmp_fail = %u\n", 4121 (unsigned int) MMP_FAIL_INT(ub)); 4122 if (MMP_INTERVAL_VALID(ub)) 4123 (void) printf("\tmmp_write = %u\n", 4124 (unsigned int) MMP_INTERVAL(ub)); 4125 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4126 (void) printf("\tmmp_valid = %x\n", 4127 (unsigned int) ub->ub_mmp_config & 0xFF); 4128 } 4129 4130 if (dump_opt['u'] >= 4) { 4131 char blkbuf[BP_SPRINTF_LEN]; 4132 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4133 (void) printf("\trootbp = %s\n", blkbuf); 4134 } 4135 (void) printf("\tcheckpoint_txg = %llu\n", 4136 (u_longlong_t)ub->ub_checkpoint_txg); 4137 (void) printf("%s", footer ? footer : ""); 4138 } 4139 4140 static void 4141 dump_config(spa_t *spa) 4142 { 4143 dmu_buf_t *db; 4144 size_t nvsize = 0; 4145 int error = 0; 4146 4147 4148 error = dmu_bonus_hold(spa->spa_meta_objset, 4149 spa->spa_config_object, FTAG, &db); 4150 4151 if (error == 0) { 4152 nvsize = *(uint64_t *)db->db_data; 4153 dmu_buf_rele(db, FTAG); 4154 4155 (void) printf("\nMOS Configuration:\n"); 4156 dump_packed_nvlist(spa->spa_meta_objset, 4157 spa->spa_config_object, (void *)&nvsize, 1); 4158 } else { 4159 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4160 (u_longlong_t)spa->spa_config_object, error); 4161 } 4162 } 4163 4164 static void 4165 dump_cachefile(const char *cachefile) 4166 { 4167 int fd; 4168 struct stat64 statbuf; 4169 char *buf; 4170 nvlist_t *config; 4171 4172 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4173 (void) printf("cannot open '%s': %s\n", cachefile, 4174 strerror(errno)); 4175 exit(1); 4176 } 4177 4178 if (fstat64(fd, &statbuf) != 0) { 4179 (void) printf("failed to stat '%s': %s\n", cachefile, 4180 strerror(errno)); 4181 exit(1); 4182 } 4183 4184 if ((buf = malloc(statbuf.st_size)) == NULL) { 4185 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4186 (u_longlong_t)statbuf.st_size); 4187 exit(1); 4188 } 4189 4190 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4191 (void) fprintf(stderr, "failed to read %llu bytes\n", 4192 (u_longlong_t)statbuf.st_size); 4193 exit(1); 4194 } 4195 4196 (void) close(fd); 4197 4198 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4199 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4200 exit(1); 4201 } 4202 4203 free(buf); 4204 4205 dump_nvlist(config, 0); 4206 4207 nvlist_free(config); 4208 } 4209 4210 /* 4211 * ZFS label nvlist stats 4212 */ 4213 typedef struct zdb_nvl_stats { 4214 int zns_list_count; 4215 int zns_leaf_count; 4216 size_t zns_leaf_largest; 4217 size_t zns_leaf_total; 4218 nvlist_t *zns_string; 4219 nvlist_t *zns_uint64; 4220 nvlist_t *zns_boolean; 4221 } zdb_nvl_stats_t; 4222 4223 static void 4224 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4225 { 4226 nvlist_t *list, **array; 4227 nvpair_t *nvp = NULL; 4228 const char *name; 4229 uint_t i, items; 4230 4231 stats->zns_list_count++; 4232 4233 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4234 name = nvpair_name(nvp); 4235 4236 switch (nvpair_type(nvp)) { 4237 case DATA_TYPE_STRING: 4238 fnvlist_add_string(stats->zns_string, name, 4239 fnvpair_value_string(nvp)); 4240 break; 4241 case DATA_TYPE_UINT64: 4242 fnvlist_add_uint64(stats->zns_uint64, name, 4243 fnvpair_value_uint64(nvp)); 4244 break; 4245 case DATA_TYPE_BOOLEAN: 4246 fnvlist_add_boolean(stats->zns_boolean, name); 4247 break; 4248 case DATA_TYPE_NVLIST: 4249 if (nvpair_value_nvlist(nvp, &list) == 0) 4250 collect_nvlist_stats(list, stats); 4251 break; 4252 case DATA_TYPE_NVLIST_ARRAY: 4253 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4254 break; 4255 4256 for (i = 0; i < items; i++) { 4257 collect_nvlist_stats(array[i], stats); 4258 4259 /* collect stats on leaf vdev */ 4260 if (strcmp(name, "children") == 0) { 4261 size_t size; 4262 4263 (void) nvlist_size(array[i], &size, 4264 NV_ENCODE_XDR); 4265 stats->zns_leaf_total += size; 4266 if (size > stats->zns_leaf_largest) 4267 stats->zns_leaf_largest = size; 4268 stats->zns_leaf_count++; 4269 } 4270 } 4271 break; 4272 default: 4273 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4274 } 4275 } 4276 } 4277 4278 static void 4279 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4280 { 4281 zdb_nvl_stats_t stats = { 0 }; 4282 size_t size, sum = 0, total; 4283 size_t noise; 4284 4285 /* requires nvlist with non-unique names for stat collection */ 4286 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4287 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4288 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4289 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4290 4291 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4292 4293 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4294 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4295 (int)total, (int)(cap - total), 100.0 * total / cap); 4296 4297 collect_nvlist_stats(nvl, &stats); 4298 4299 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4300 size -= noise; 4301 sum += size; 4302 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4303 (int)fnvlist_num_pairs(stats.zns_uint64), 4304 (int)size, 100.0 * size / total); 4305 4306 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4307 size -= noise; 4308 sum += size; 4309 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4310 (int)fnvlist_num_pairs(stats.zns_string), 4311 (int)size, 100.0 * size / total); 4312 4313 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4314 size -= noise; 4315 sum += size; 4316 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4317 (int)fnvlist_num_pairs(stats.zns_boolean), 4318 (int)size, 100.0 * size / total); 4319 4320 size = total - sum; /* treat remainder as nvlist overhead */ 4321 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4322 stats.zns_list_count, (int)size, 100.0 * size / total); 4323 4324 if (stats.zns_leaf_count > 0) { 4325 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4326 4327 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4328 stats.zns_leaf_count, (int)average); 4329 (void) printf("%24d bytes largest\n", 4330 (int)stats.zns_leaf_largest); 4331 4332 if (dump_opt['l'] >= 3 && average > 0) 4333 (void) printf(" space for %d additional leaf vdevs\n", 4334 (int)((cap - total) / average)); 4335 } 4336 (void) printf("\n"); 4337 4338 nvlist_free(stats.zns_string); 4339 nvlist_free(stats.zns_uint64); 4340 nvlist_free(stats.zns_boolean); 4341 } 4342 4343 typedef struct cksum_record { 4344 zio_cksum_t cksum; 4345 boolean_t labels[VDEV_LABELS]; 4346 avl_node_t link; 4347 } cksum_record_t; 4348 4349 static int 4350 cksum_record_compare(const void *x1, const void *x2) 4351 { 4352 const cksum_record_t *l = (cksum_record_t *)x1; 4353 const cksum_record_t *r = (cksum_record_t *)x2; 4354 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4355 int difference = 0; 4356 4357 for (int i = 0; i < arraysize; i++) { 4358 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4359 if (difference) 4360 break; 4361 } 4362 4363 return (difference); 4364 } 4365 4366 static cksum_record_t * 4367 cksum_record_alloc(zio_cksum_t *cksum, int l) 4368 { 4369 cksum_record_t *rec; 4370 4371 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4372 rec->cksum = *cksum; 4373 rec->labels[l] = B_TRUE; 4374 4375 return (rec); 4376 } 4377 4378 static cksum_record_t * 4379 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4380 { 4381 cksum_record_t lookup = { .cksum = *cksum }; 4382 avl_index_t where; 4383 4384 return (avl_find(tree, &lookup, &where)); 4385 } 4386 4387 static cksum_record_t * 4388 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4389 { 4390 cksum_record_t *rec; 4391 4392 rec = cksum_record_lookup(tree, cksum); 4393 if (rec) { 4394 rec->labels[l] = B_TRUE; 4395 } else { 4396 rec = cksum_record_alloc(cksum, l); 4397 avl_add(tree, rec); 4398 } 4399 4400 return (rec); 4401 } 4402 4403 static int 4404 first_label(cksum_record_t *rec) 4405 { 4406 for (int i = 0; i < VDEV_LABELS; i++) 4407 if (rec->labels[i]) 4408 return (i); 4409 4410 return (-1); 4411 } 4412 4413 static void 4414 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4415 { 4416 fputs(prefix, stdout); 4417 for (int i = 0; i < VDEV_LABELS; i++) 4418 if (rec->labels[i] == B_TRUE) 4419 printf("%d ", i); 4420 putchar('\n'); 4421 } 4422 4423 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4424 4425 typedef struct zdb_label { 4426 vdev_label_t label; 4427 uint64_t label_offset; 4428 nvlist_t *config_nv; 4429 cksum_record_t *config; 4430 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4431 boolean_t header_printed; 4432 boolean_t read_failed; 4433 boolean_t cksum_valid; 4434 } zdb_label_t; 4435 4436 static void 4437 print_label_header(zdb_label_t *label, int l) 4438 { 4439 4440 if (dump_opt['q']) 4441 return; 4442 4443 if (label->header_printed == B_TRUE) 4444 return; 4445 4446 (void) printf("------------------------------------\n"); 4447 (void) printf("LABEL %d %s\n", l, 4448 label->cksum_valid ? "" : "(Bad label cksum)"); 4449 (void) printf("------------------------------------\n"); 4450 4451 label->header_printed = B_TRUE; 4452 } 4453 4454 static void 4455 print_l2arc_header(void) 4456 { 4457 (void) printf("------------------------------------\n"); 4458 (void) printf("L2ARC device header\n"); 4459 (void) printf("------------------------------------\n"); 4460 } 4461 4462 static void 4463 print_l2arc_log_blocks(void) 4464 { 4465 (void) printf("------------------------------------\n"); 4466 (void) printf("L2ARC device log blocks\n"); 4467 (void) printf("------------------------------------\n"); 4468 } 4469 4470 static void 4471 dump_l2arc_log_entries(uint64_t log_entries, 4472 l2arc_log_ent_phys_t *le, uint64_t i) 4473 { 4474 for (int j = 0; j < log_entries; j++) { 4475 dva_t dva = le[j].le_dva; 4476 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4477 "vdev: %llu, offset: %llu\n", 4478 (u_longlong_t)i, j + 1, 4479 (u_longlong_t)DVA_GET_ASIZE(&dva), 4480 (u_longlong_t)DVA_GET_VDEV(&dva), 4481 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4482 (void) printf("|\t\t\t\tbirth: %llu\n", 4483 (u_longlong_t)le[j].le_birth); 4484 (void) printf("|\t\t\t\tlsize: %llu\n", 4485 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4486 (void) printf("|\t\t\t\tpsize: %llu\n", 4487 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4488 (void) printf("|\t\t\t\tcompr: %llu\n", 4489 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4490 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4491 (u_longlong_t)(&le[j])->le_complevel); 4492 (void) printf("|\t\t\t\ttype: %llu\n", 4493 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4494 (void) printf("|\t\t\t\tprotected: %llu\n", 4495 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4496 (void) printf("|\t\t\t\tprefetch: %llu\n", 4497 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4498 (void) printf("|\t\t\t\taddress: %llu\n", 4499 (u_longlong_t)le[j].le_daddr); 4500 (void) printf("|\t\t\t\tARC state: %llu\n", 4501 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4502 (void) printf("|\n"); 4503 } 4504 (void) printf("\n"); 4505 } 4506 4507 static void 4508 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4509 { 4510 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4511 (void) printf("|\t\tpayload_asize: %llu\n", 4512 (u_longlong_t)lbps->lbp_payload_asize); 4513 (void) printf("|\t\tpayload_start: %llu\n", 4514 (u_longlong_t)lbps->lbp_payload_start); 4515 (void) printf("|\t\tlsize: %llu\n", 4516 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4517 (void) printf("|\t\tasize: %llu\n", 4518 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4519 (void) printf("|\t\tcompralgo: %llu\n", 4520 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4521 (void) printf("|\t\tcksumalgo: %llu\n", 4522 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4523 (void) printf("|\n\n"); 4524 } 4525 4526 static void 4527 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4528 l2arc_dev_hdr_phys_t *rebuild) 4529 { 4530 l2arc_log_blk_phys_t this_lb; 4531 uint64_t asize; 4532 l2arc_log_blkptr_t lbps[2]; 4533 abd_t *abd; 4534 zio_cksum_t cksum; 4535 int failed = 0; 4536 l2arc_dev_t dev; 4537 4538 if (!dump_opt['q']) 4539 print_l2arc_log_blocks(); 4540 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4541 4542 dev.l2ad_evict = l2dhdr->dh_evict; 4543 dev.l2ad_start = l2dhdr->dh_start; 4544 dev.l2ad_end = l2dhdr->dh_end; 4545 4546 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4547 /* no log blocks to read */ 4548 if (!dump_opt['q']) { 4549 (void) printf("No log blocks to read\n"); 4550 (void) printf("\n"); 4551 } 4552 return; 4553 } else { 4554 dev.l2ad_hand = lbps[0].lbp_daddr + 4555 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4556 } 4557 4558 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4559 4560 for (;;) { 4561 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4562 break; 4563 4564 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4565 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4566 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4567 if (!dump_opt['q']) { 4568 (void) printf("Error while reading next log " 4569 "block\n\n"); 4570 } 4571 break; 4572 } 4573 4574 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4575 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4576 failed++; 4577 if (!dump_opt['q']) { 4578 (void) printf("Invalid cksum\n"); 4579 dump_l2arc_log_blkptr(&lbps[0]); 4580 } 4581 break; 4582 } 4583 4584 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4585 case ZIO_COMPRESS_OFF: 4586 break; 4587 default: 4588 abd = abd_alloc_for_io(asize, B_TRUE); 4589 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4590 if (zio_decompress_data(L2BLK_GET_COMPRESS( 4591 (&lbps[0])->lbp_prop), abd, &this_lb, 4592 asize, sizeof (this_lb), NULL) != 0) { 4593 (void) printf("L2ARC block decompression " 4594 "failed\n"); 4595 abd_free(abd); 4596 goto out; 4597 } 4598 abd_free(abd); 4599 break; 4600 } 4601 4602 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4603 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4604 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4605 if (!dump_opt['q']) 4606 (void) printf("Invalid log block magic\n\n"); 4607 break; 4608 } 4609 4610 rebuild->dh_lb_count++; 4611 rebuild->dh_lb_asize += asize; 4612 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4613 (void) printf("lb[%4llu]\tmagic: %llu\n", 4614 (u_longlong_t)rebuild->dh_lb_count, 4615 (u_longlong_t)this_lb.lb_magic); 4616 dump_l2arc_log_blkptr(&lbps[0]); 4617 } 4618 4619 if (dump_opt['l'] > 2 && !dump_opt['q']) 4620 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4621 this_lb.lb_entries, 4622 rebuild->dh_lb_count); 4623 4624 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4625 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4626 !dev.l2ad_first) 4627 break; 4628 4629 lbps[0] = lbps[1]; 4630 lbps[1] = this_lb.lb_prev_lbp; 4631 } 4632 out: 4633 if (!dump_opt['q']) { 4634 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4635 (u_longlong_t)rebuild->dh_lb_count); 4636 (void) printf("\t\t %d with invalid cksum\n", failed); 4637 (void) printf("log_blk_asize:\t %llu\n\n", 4638 (u_longlong_t)rebuild->dh_lb_asize); 4639 } 4640 } 4641 4642 static int 4643 dump_l2arc_header(int fd) 4644 { 4645 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4646 int error = B_FALSE; 4647 4648 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4649 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4650 error = B_TRUE; 4651 } else { 4652 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4653 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4654 4655 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4656 error = B_TRUE; 4657 } 4658 4659 if (error) { 4660 (void) printf("L2ARC device header not found\n\n"); 4661 /* Do not return an error here for backward compatibility */ 4662 return (0); 4663 } else if (!dump_opt['q']) { 4664 print_l2arc_header(); 4665 4666 (void) printf(" magic: %llu\n", 4667 (u_longlong_t)l2dhdr.dh_magic); 4668 (void) printf(" version: %llu\n", 4669 (u_longlong_t)l2dhdr.dh_version); 4670 (void) printf(" pool_guid: %llu\n", 4671 (u_longlong_t)l2dhdr.dh_spa_guid); 4672 (void) printf(" flags: %llu\n", 4673 (u_longlong_t)l2dhdr.dh_flags); 4674 (void) printf(" start_lbps[0]: %llu\n", 4675 (u_longlong_t) 4676 l2dhdr.dh_start_lbps[0].lbp_daddr); 4677 (void) printf(" start_lbps[1]: %llu\n", 4678 (u_longlong_t) 4679 l2dhdr.dh_start_lbps[1].lbp_daddr); 4680 (void) printf(" log_blk_ent: %llu\n", 4681 (u_longlong_t)l2dhdr.dh_log_entries); 4682 (void) printf(" start: %llu\n", 4683 (u_longlong_t)l2dhdr.dh_start); 4684 (void) printf(" end: %llu\n", 4685 (u_longlong_t)l2dhdr.dh_end); 4686 (void) printf(" evict: %llu\n", 4687 (u_longlong_t)l2dhdr.dh_evict); 4688 (void) printf(" lb_asize_refcount: %llu\n", 4689 (u_longlong_t)l2dhdr.dh_lb_asize); 4690 (void) printf(" lb_count_refcount: %llu\n", 4691 (u_longlong_t)l2dhdr.dh_lb_count); 4692 (void) printf(" trim_action_time: %llu\n", 4693 (u_longlong_t)l2dhdr.dh_trim_action_time); 4694 (void) printf(" trim_state: %llu\n\n", 4695 (u_longlong_t)l2dhdr.dh_trim_state); 4696 } 4697 4698 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4699 /* 4700 * The total aligned size of log blocks and the number of log blocks 4701 * reported in the header of the device may be less than what zdb 4702 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4703 * This happens because dump_l2arc_log_blocks() lacks the memory 4704 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4705 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4706 * and dh_lb_count will be lower to begin with than what exists on the 4707 * device. This is normal and zdb should not exit with an error. The 4708 * opposite case should never happen though, the values reported in the 4709 * header should never be higher than what dump_l2arc_log_blocks() and 4710 * l2arc_rebuild() report. If this happens there is a leak in the 4711 * accounting of log blocks. 4712 */ 4713 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4714 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4715 return (1); 4716 4717 return (0); 4718 } 4719 4720 static void 4721 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4722 { 4723 if (dump_opt['q']) 4724 return; 4725 4726 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4727 return; 4728 4729 print_label_header(label, l); 4730 dump_nvlist(label->config_nv, 4); 4731 print_label_numbers(" labels = ", label->config); 4732 4733 if (dump_opt['l'] >= 2) 4734 dump_nvlist_stats(label->config_nv, buflen); 4735 } 4736 4737 #define ZDB_MAX_UB_HEADER_SIZE 32 4738 4739 static void 4740 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4741 { 4742 4743 vdev_t vd; 4744 char header[ZDB_MAX_UB_HEADER_SIZE]; 4745 4746 vd.vdev_ashift = ashift; 4747 vd.vdev_top = &vd; 4748 4749 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4750 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4751 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4752 cksum_record_t *rec = label->uberblocks[i]; 4753 4754 if (rec == NULL) { 4755 if (dump_opt['u'] >= 2) { 4756 print_label_header(label, label_num); 4757 (void) printf(" Uberblock[%d] invalid\n", i); 4758 } 4759 continue; 4760 } 4761 4762 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4763 continue; 4764 4765 if ((dump_opt['u'] < 4) && 4766 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4767 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4768 continue; 4769 4770 print_label_header(label, label_num); 4771 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4772 " Uberblock[%d]\n", i); 4773 dump_uberblock(ub, header, ""); 4774 print_label_numbers(" labels = ", rec); 4775 } 4776 } 4777 4778 static char curpath[PATH_MAX]; 4779 4780 /* 4781 * Iterate through the path components, recursively passing 4782 * current one's obj and remaining path until we find the obj 4783 * for the last one. 4784 */ 4785 static int 4786 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 4787 { 4788 int err; 4789 boolean_t header = B_TRUE; 4790 uint64_t child_obj; 4791 char *s; 4792 dmu_buf_t *db; 4793 dmu_object_info_t doi; 4794 4795 if ((s = strchr(name, '/')) != NULL) 4796 *s = '\0'; 4797 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4798 4799 (void) strlcat(curpath, name, sizeof (curpath)); 4800 4801 if (err != 0) { 4802 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4803 curpath, strerror(err)); 4804 return (err); 4805 } 4806 4807 child_obj = ZFS_DIRENT_OBJ(child_obj); 4808 err = sa_buf_hold(os, child_obj, FTAG, &db); 4809 if (err != 0) { 4810 (void) fprintf(stderr, 4811 "failed to get SA dbuf for obj %llu: %s\n", 4812 (u_longlong_t)child_obj, strerror(err)); 4813 return (EINVAL); 4814 } 4815 dmu_object_info_from_db(db, &doi); 4816 sa_buf_rele(db, FTAG); 4817 4818 if (doi.doi_bonus_type != DMU_OT_SA && 4819 doi.doi_bonus_type != DMU_OT_ZNODE) { 4820 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4821 doi.doi_bonus_type, (u_longlong_t)child_obj); 4822 return (EINVAL); 4823 } 4824 4825 if (dump_opt['v'] > 6) { 4826 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4827 (u_longlong_t)child_obj, curpath, doi.doi_type, 4828 doi.doi_bonus_type); 4829 } 4830 4831 (void) strlcat(curpath, "/", sizeof (curpath)); 4832 4833 switch (doi.doi_type) { 4834 case DMU_OT_DIRECTORY_CONTENTS: 4835 if (s != NULL && *(s + 1) != '\0') 4836 return (dump_path_impl(os, child_obj, s + 1, retobj)); 4837 zfs_fallthrough; 4838 case DMU_OT_PLAIN_FILE_CONTENTS: 4839 if (retobj != NULL) { 4840 *retobj = child_obj; 4841 } else { 4842 dump_object(os, child_obj, dump_opt['v'], &header, 4843 NULL, 0); 4844 } 4845 return (0); 4846 default: 4847 (void) fprintf(stderr, "object %llu has non-file/directory " 4848 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4849 break; 4850 } 4851 4852 return (EINVAL); 4853 } 4854 4855 /* 4856 * Dump the blocks for the object specified by path inside the dataset. 4857 */ 4858 static int 4859 dump_path(char *ds, char *path, uint64_t *retobj) 4860 { 4861 int err; 4862 objset_t *os; 4863 uint64_t root_obj; 4864 4865 err = open_objset(ds, FTAG, &os); 4866 if (err != 0) 4867 return (err); 4868 4869 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4870 if (err != 0) { 4871 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4872 strerror(err)); 4873 close_objset(os, FTAG); 4874 return (EINVAL); 4875 } 4876 4877 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4878 4879 err = dump_path_impl(os, root_obj, path, retobj); 4880 4881 close_objset(os, FTAG); 4882 return (err); 4883 } 4884 4885 static int 4886 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 4887 { 4888 const char *p = (const char *)buf; 4889 ssize_t nwritten; 4890 4891 (void) os; 4892 (void) arg; 4893 4894 /* Write the data out, handling short writes and signals. */ 4895 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 4896 if (nwritten < 0) { 4897 if (errno == EINTR) 4898 continue; 4899 return (errno); 4900 } 4901 p += nwritten; 4902 len -= nwritten; 4903 } 4904 4905 return (0); 4906 } 4907 4908 static void 4909 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 4910 { 4911 boolean_t embed = B_FALSE; 4912 boolean_t large_block = B_FALSE; 4913 boolean_t compress = B_FALSE; 4914 boolean_t raw = B_FALSE; 4915 4916 const char *c; 4917 for (c = flagstr; c != NULL && *c != '\0'; c++) { 4918 switch (*c) { 4919 case 'e': 4920 embed = B_TRUE; 4921 break; 4922 case 'L': 4923 large_block = B_TRUE; 4924 break; 4925 case 'c': 4926 compress = B_TRUE; 4927 break; 4928 case 'w': 4929 raw = B_TRUE; 4930 break; 4931 default: 4932 fprintf(stderr, "dump_backup: invalid flag " 4933 "'%c'\n", *c); 4934 return; 4935 } 4936 } 4937 4938 if (isatty(STDOUT_FILENO)) { 4939 fprintf(stderr, "dump_backup: stream cannot be written " 4940 "to a terminal\n"); 4941 return; 4942 } 4943 4944 offset_t off = 0; 4945 dmu_send_outparams_t out = { 4946 .dso_outfunc = dump_backup_bytes, 4947 .dso_dryrun = B_FALSE, 4948 }; 4949 4950 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 4951 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 4952 &off, &out); 4953 if (err != 0) { 4954 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 4955 strerror(err)); 4956 return; 4957 } 4958 } 4959 4960 static int 4961 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 4962 { 4963 int err = 0; 4964 uint64_t size, readsize, oursize, offset; 4965 ssize_t writesize; 4966 sa_handle_t *hdl; 4967 4968 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 4969 destfile); 4970 4971 VERIFY3P(os, ==, sa_os); 4972 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 4973 (void) printf("Failed to get handle for SA znode\n"); 4974 return (err); 4975 } 4976 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 4977 (void) sa_handle_destroy(hdl); 4978 return (err); 4979 } 4980 (void) sa_handle_destroy(hdl); 4981 4982 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 4983 size); 4984 if (size == 0) { 4985 return (EINVAL); 4986 } 4987 4988 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 4989 if (fd == -1) 4990 return (errno); 4991 /* 4992 * We cap the size at 1 mebibyte here to prevent 4993 * allocation failures and nigh-infinite printing if the 4994 * object is extremely large. 4995 */ 4996 oursize = MIN(size, 1 << 20); 4997 offset = 0; 4998 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 4999 if (buf == NULL) { 5000 (void) close(fd); 5001 return (ENOMEM); 5002 } 5003 5004 while (offset < size) { 5005 readsize = MIN(size - offset, 1 << 20); 5006 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5007 if (err != 0) { 5008 (void) printf("got error %u from dmu_read\n", err); 5009 kmem_free(buf, oursize); 5010 (void) close(fd); 5011 return (err); 5012 } 5013 if (dump_opt['v'] > 3) { 5014 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5015 " error=%d\n", offset, readsize, err); 5016 } 5017 5018 writesize = write(fd, buf, readsize); 5019 if (writesize < 0) { 5020 err = errno; 5021 break; 5022 } else if (writesize != readsize) { 5023 /* Incomplete write */ 5024 (void) fprintf(stderr, "Short write, only wrote %llu of" 5025 " %" PRIu64 " bytes, exiting...\n", 5026 (u_longlong_t)writesize, readsize); 5027 break; 5028 } 5029 5030 offset += readsize; 5031 } 5032 5033 (void) close(fd); 5034 5035 if (buf != NULL) 5036 kmem_free(buf, oursize); 5037 5038 return (err); 5039 } 5040 5041 static boolean_t 5042 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5043 { 5044 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5045 zio_cksum_t expected_cksum; 5046 zio_cksum_t actual_cksum; 5047 zio_cksum_t verifier; 5048 zio_eck_t *eck; 5049 int byteswap; 5050 5051 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5052 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5053 5054 offset += offsetof(vdev_label_t, vl_vdev_phys); 5055 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5056 5057 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5058 if (byteswap) 5059 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5060 5061 expected_cksum = eck->zec_cksum; 5062 eck->zec_cksum = verifier; 5063 5064 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5065 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5066 abd_free(abd); 5067 5068 if (byteswap) 5069 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5070 5071 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5072 return (B_TRUE); 5073 5074 return (B_FALSE); 5075 } 5076 5077 static int 5078 dump_label(const char *dev) 5079 { 5080 char path[MAXPATHLEN]; 5081 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5082 uint64_t psize, ashift, l2cache; 5083 struct stat64 statbuf; 5084 boolean_t config_found = B_FALSE; 5085 boolean_t error = B_FALSE; 5086 boolean_t read_l2arc_header = B_FALSE; 5087 avl_tree_t config_tree; 5088 avl_tree_t uberblock_tree; 5089 void *node, *cookie; 5090 int fd; 5091 5092 /* 5093 * Check if we were given absolute path and use it as is. 5094 * Otherwise if the provided vdev name doesn't point to a file, 5095 * try prepending expected disk paths and partition numbers. 5096 */ 5097 (void) strlcpy(path, dev, sizeof (path)); 5098 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5099 int error; 5100 5101 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5102 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5103 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5104 error = ENOENT; 5105 } 5106 5107 if (error || (stat64(path, &statbuf) != 0)) { 5108 (void) printf("failed to find device %s, try " 5109 "specifying absolute path instead\n", dev); 5110 return (1); 5111 } 5112 } 5113 5114 if ((fd = open64(path, O_RDONLY)) < 0) { 5115 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5116 exit(1); 5117 } 5118 5119 if (fstat64_blk(fd, &statbuf) != 0) { 5120 (void) printf("failed to stat '%s': %s\n", path, 5121 strerror(errno)); 5122 (void) close(fd); 5123 exit(1); 5124 } 5125 5126 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5127 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5128 strerror(errno)); 5129 5130 avl_create(&config_tree, cksum_record_compare, 5131 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5132 avl_create(&uberblock_tree, cksum_record_compare, 5133 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5134 5135 psize = statbuf.st_size; 5136 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 5137 ashift = SPA_MINBLOCKSHIFT; 5138 5139 /* 5140 * 1. Read the label from disk 5141 * 2. Verify label cksum 5142 * 3. Unpack the configuration and insert in config tree. 5143 * 4. Traverse all uberblocks and insert in uberblock tree. 5144 */ 5145 for (int l = 0; l < VDEV_LABELS; l++) { 5146 zdb_label_t *label = &labels[l]; 5147 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5148 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5149 nvlist_t *config; 5150 cksum_record_t *rec; 5151 zio_cksum_t cksum; 5152 vdev_t vd; 5153 5154 label->label_offset = vdev_label_offset(psize, l, 0); 5155 5156 if (pread64(fd, &label->label, sizeof (label->label), 5157 label->label_offset) != sizeof (label->label)) { 5158 if (!dump_opt['q']) 5159 (void) printf("failed to read label %d\n", l); 5160 label->read_failed = B_TRUE; 5161 error = B_TRUE; 5162 continue; 5163 } 5164 5165 label->read_failed = B_FALSE; 5166 label->cksum_valid = label_cksum_valid(&label->label, 5167 label->label_offset); 5168 5169 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5170 nvlist_t *vdev_tree = NULL; 5171 size_t size; 5172 5173 if ((nvlist_lookup_nvlist(config, 5174 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5175 (nvlist_lookup_uint64(vdev_tree, 5176 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5177 ashift = SPA_MINBLOCKSHIFT; 5178 5179 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5180 size = buflen; 5181 5182 /* If the device is a cache device clear the header. */ 5183 if (!read_l2arc_header) { 5184 if (nvlist_lookup_uint64(config, 5185 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5186 l2cache == POOL_STATE_L2CACHE) { 5187 read_l2arc_header = B_TRUE; 5188 } 5189 } 5190 5191 fletcher_4_native_varsize(buf, size, &cksum); 5192 rec = cksum_record_insert(&config_tree, &cksum, l); 5193 5194 label->config = rec; 5195 label->config_nv = config; 5196 config_found = B_TRUE; 5197 } else { 5198 error = B_TRUE; 5199 } 5200 5201 vd.vdev_ashift = ashift; 5202 vd.vdev_top = &vd; 5203 5204 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5205 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5206 uberblock_t *ub = (void *)((char *)label + uoff); 5207 5208 if (uberblock_verify(ub)) 5209 continue; 5210 5211 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5212 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5213 5214 label->uberblocks[i] = rec; 5215 } 5216 } 5217 5218 /* 5219 * Dump the label and uberblocks. 5220 */ 5221 for (int l = 0; l < VDEV_LABELS; l++) { 5222 zdb_label_t *label = &labels[l]; 5223 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5224 5225 if (label->read_failed == B_TRUE) 5226 continue; 5227 5228 if (label->config_nv) { 5229 dump_config_from_label(label, buflen, l); 5230 } else { 5231 if (!dump_opt['q']) 5232 (void) printf("failed to unpack label %d\n", l); 5233 } 5234 5235 if (dump_opt['u']) 5236 dump_label_uberblocks(label, ashift, l); 5237 5238 nvlist_free(label->config_nv); 5239 } 5240 5241 /* 5242 * Dump the L2ARC header, if existent. 5243 */ 5244 if (read_l2arc_header) 5245 error |= dump_l2arc_header(fd); 5246 5247 cookie = NULL; 5248 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5249 umem_free(node, sizeof (cksum_record_t)); 5250 5251 cookie = NULL; 5252 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5253 umem_free(node, sizeof (cksum_record_t)); 5254 5255 avl_destroy(&config_tree); 5256 avl_destroy(&uberblock_tree); 5257 5258 (void) close(fd); 5259 5260 return (config_found == B_FALSE ? 2 : 5261 (error == B_TRUE ? 1 : 0)); 5262 } 5263 5264 static uint64_t dataset_feature_count[SPA_FEATURES]; 5265 static uint64_t global_feature_count[SPA_FEATURES]; 5266 static uint64_t remap_deadlist_count = 0; 5267 5268 static int 5269 dump_one_objset(const char *dsname, void *arg) 5270 { 5271 (void) arg; 5272 int error; 5273 objset_t *os; 5274 spa_feature_t f; 5275 5276 error = open_objset(dsname, FTAG, &os); 5277 if (error != 0) 5278 return (0); 5279 5280 for (f = 0; f < SPA_FEATURES; f++) { 5281 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5282 continue; 5283 ASSERT(spa_feature_table[f].fi_flags & 5284 ZFEATURE_FLAG_PER_DATASET); 5285 dataset_feature_count[f]++; 5286 } 5287 5288 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5289 remap_deadlist_count++; 5290 } 5291 5292 for (dsl_bookmark_node_t *dbn = 5293 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5294 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5295 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5296 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5297 global_feature_count[ 5298 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5299 objset_t *mos = os->os_spa->spa_meta_objset; 5300 dnode_t *rl; 5301 VERIFY0(dnode_hold(mos, 5302 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5303 if (rl->dn_have_spill) { 5304 global_feature_count[ 5305 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5306 } 5307 } 5308 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5309 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5310 } 5311 5312 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5313 !dmu_objset_is_snapshot(os)) { 5314 global_feature_count[SPA_FEATURE_LIVELIST]++; 5315 } 5316 5317 dump_objset(os); 5318 close_objset(os, FTAG); 5319 fuid_table_destroy(); 5320 return (0); 5321 } 5322 5323 /* 5324 * Block statistics. 5325 */ 5326 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5327 typedef struct zdb_blkstats { 5328 uint64_t zb_asize; 5329 uint64_t zb_lsize; 5330 uint64_t zb_psize; 5331 uint64_t zb_count; 5332 uint64_t zb_gangs; 5333 uint64_t zb_ditto_samevdev; 5334 uint64_t zb_ditto_same_ms; 5335 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5336 } zdb_blkstats_t; 5337 5338 /* 5339 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5340 */ 5341 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5342 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5343 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5344 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5345 5346 static const char *zdb_ot_extname[] = { 5347 "deferred free", 5348 "dedup ditto", 5349 "other", 5350 "Total", 5351 }; 5352 5353 #define ZB_TOTAL DN_MAX_LEVELS 5354 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5355 5356 typedef struct zdb_brt_entry { 5357 dva_t zbre_dva; 5358 uint64_t zbre_refcount; 5359 avl_node_t zbre_node; 5360 } zdb_brt_entry_t; 5361 5362 typedef struct zdb_cb { 5363 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5364 uint64_t zcb_removing_size; 5365 uint64_t zcb_checkpoint_size; 5366 uint64_t zcb_dedup_asize; 5367 uint64_t zcb_dedup_blocks; 5368 uint64_t zcb_clone_asize; 5369 uint64_t zcb_clone_blocks; 5370 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5371 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5372 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5373 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5374 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5375 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5376 uint64_t zcb_psize_total; 5377 uint64_t zcb_lsize_total; 5378 uint64_t zcb_asize_total; 5379 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5380 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5381 [BPE_PAYLOAD_SIZE + 1]; 5382 uint64_t zcb_start; 5383 hrtime_t zcb_lastprint; 5384 uint64_t zcb_totalasize; 5385 uint64_t zcb_errors[256]; 5386 int zcb_readfails; 5387 int zcb_haderrors; 5388 spa_t *zcb_spa; 5389 uint32_t **zcb_vd_obsolete_counts; 5390 avl_tree_t zcb_brt; 5391 boolean_t zcb_brt_is_active; 5392 } zdb_cb_t; 5393 5394 /* test if two DVA offsets from same vdev are within the same metaslab */ 5395 static boolean_t 5396 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5397 { 5398 vdev_t *vd = vdev_lookup_top(spa, vdev); 5399 uint64_t ms_shift = vd->vdev_ms_shift; 5400 5401 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5402 } 5403 5404 /* 5405 * Used to simplify reporting of the histogram data. 5406 */ 5407 typedef struct one_histo { 5408 const char *name; 5409 uint64_t *count; 5410 uint64_t *len; 5411 uint64_t cumulative; 5412 } one_histo_t; 5413 5414 /* 5415 * The number of separate histograms processed for psize, lsize and asize. 5416 */ 5417 #define NUM_HISTO 3 5418 5419 /* 5420 * This routine will create a fixed column size output of three different 5421 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5422 * the count, length and cumulative length of the psize, lsize and 5423 * asize blocks. 5424 * 5425 * All three types of blocks are listed on a single line 5426 * 5427 * By default the table is printed in nicenumber format (e.g. 123K) but 5428 * if the '-P' parameter is specified then the full raw number (parseable) 5429 * is printed out. 5430 */ 5431 static void 5432 dump_size_histograms(zdb_cb_t *zcb) 5433 { 5434 /* 5435 * A temporary buffer that allows us to convert a number into 5436 * a string using zdb_nicenumber to allow either raw or human 5437 * readable numbers to be output. 5438 */ 5439 char numbuf[32]; 5440 5441 /* 5442 * Define titles which are used in the headers of the tables 5443 * printed by this routine. 5444 */ 5445 const char blocksize_title1[] = "block"; 5446 const char blocksize_title2[] = "size"; 5447 const char count_title[] = "Count"; 5448 const char length_title[] = "Size"; 5449 const char cumulative_title[] = "Cum."; 5450 5451 /* 5452 * Setup the histogram arrays (psize, lsize, and asize). 5453 */ 5454 one_histo_t parm_histo[NUM_HISTO]; 5455 5456 parm_histo[0].name = "psize"; 5457 parm_histo[0].count = zcb->zcb_psize_count; 5458 parm_histo[0].len = zcb->zcb_psize_len; 5459 parm_histo[0].cumulative = 0; 5460 5461 parm_histo[1].name = "lsize"; 5462 parm_histo[1].count = zcb->zcb_lsize_count; 5463 parm_histo[1].len = zcb->zcb_lsize_len; 5464 parm_histo[1].cumulative = 0; 5465 5466 parm_histo[2].name = "asize"; 5467 parm_histo[2].count = zcb->zcb_asize_count; 5468 parm_histo[2].len = zcb->zcb_asize_len; 5469 parm_histo[2].cumulative = 0; 5470 5471 5472 (void) printf("\nBlock Size Histogram\n"); 5473 /* 5474 * Print the first line titles 5475 */ 5476 if (dump_opt['P']) 5477 (void) printf("\n%s\t", blocksize_title1); 5478 else 5479 (void) printf("\n%7s ", blocksize_title1); 5480 5481 for (int j = 0; j < NUM_HISTO; j++) { 5482 if (dump_opt['P']) { 5483 if (j < NUM_HISTO - 1) { 5484 (void) printf("%s\t\t\t", parm_histo[j].name); 5485 } else { 5486 /* Don't print trailing spaces */ 5487 (void) printf(" %s", parm_histo[j].name); 5488 } 5489 } else { 5490 if (j < NUM_HISTO - 1) { 5491 /* Left aligned strings in the output */ 5492 (void) printf("%-7s ", 5493 parm_histo[j].name); 5494 } else { 5495 /* Don't print trailing spaces */ 5496 (void) printf("%s", parm_histo[j].name); 5497 } 5498 } 5499 } 5500 (void) printf("\n"); 5501 5502 /* 5503 * Print the second line titles 5504 */ 5505 if (dump_opt['P']) { 5506 (void) printf("%s\t", blocksize_title2); 5507 } else { 5508 (void) printf("%7s ", blocksize_title2); 5509 } 5510 5511 for (int i = 0; i < NUM_HISTO; i++) { 5512 if (dump_opt['P']) { 5513 (void) printf("%s\t%s\t%s\t", 5514 count_title, length_title, cumulative_title); 5515 } else { 5516 (void) printf("%7s%7s%7s", 5517 count_title, length_title, cumulative_title); 5518 } 5519 } 5520 (void) printf("\n"); 5521 5522 /* 5523 * Print the rows 5524 */ 5525 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5526 5527 /* 5528 * Print the first column showing the blocksize 5529 */ 5530 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5531 5532 if (dump_opt['P']) { 5533 printf("%s", numbuf); 5534 } else { 5535 printf("%7s:", numbuf); 5536 } 5537 5538 /* 5539 * Print the remaining set of 3 columns per size: 5540 * for psize, lsize and asize 5541 */ 5542 for (int j = 0; j < NUM_HISTO; j++) { 5543 parm_histo[j].cumulative += parm_histo[j].len[i]; 5544 5545 zdb_nicenum(parm_histo[j].count[i], 5546 numbuf, sizeof (numbuf)); 5547 if (dump_opt['P']) 5548 (void) printf("\t%s", numbuf); 5549 else 5550 (void) printf("%7s", numbuf); 5551 5552 zdb_nicenum(parm_histo[j].len[i], 5553 numbuf, sizeof (numbuf)); 5554 if (dump_opt['P']) 5555 (void) printf("\t%s", numbuf); 5556 else 5557 (void) printf("%7s", numbuf); 5558 5559 zdb_nicenum(parm_histo[j].cumulative, 5560 numbuf, sizeof (numbuf)); 5561 if (dump_opt['P']) 5562 (void) printf("\t%s", numbuf); 5563 else 5564 (void) printf("%7s", numbuf); 5565 } 5566 (void) printf("\n"); 5567 } 5568 } 5569 5570 static void 5571 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5572 dmu_object_type_t type) 5573 { 5574 uint64_t refcnt = 0; 5575 int i; 5576 5577 ASSERT(type < ZDB_OT_TOTAL); 5578 5579 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5580 return; 5581 5582 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5583 5584 for (i = 0; i < 4; i++) { 5585 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5586 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5587 int equal; 5588 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5589 5590 zb->zb_asize += BP_GET_ASIZE(bp); 5591 zb->zb_lsize += BP_GET_LSIZE(bp); 5592 zb->zb_psize += BP_GET_PSIZE(bp); 5593 zb->zb_count++; 5594 5595 /* 5596 * The histogram is only big enough to record blocks up to 5597 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5598 * "other", bucket. 5599 */ 5600 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5601 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5602 zb->zb_psize_histogram[idx]++; 5603 5604 zb->zb_gangs += BP_COUNT_GANG(bp); 5605 5606 switch (BP_GET_NDVAS(bp)) { 5607 case 2: 5608 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5609 DVA_GET_VDEV(&bp->blk_dva[1])) { 5610 zb->zb_ditto_samevdev++; 5611 5612 if (same_metaslab(zcb->zcb_spa, 5613 DVA_GET_VDEV(&bp->blk_dva[0]), 5614 DVA_GET_OFFSET(&bp->blk_dva[0]), 5615 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5616 zb->zb_ditto_same_ms++; 5617 } 5618 break; 5619 case 3: 5620 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5621 DVA_GET_VDEV(&bp->blk_dva[1])) + 5622 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5623 DVA_GET_VDEV(&bp->blk_dva[2])) + 5624 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5625 DVA_GET_VDEV(&bp->blk_dva[2])); 5626 if (equal != 0) { 5627 zb->zb_ditto_samevdev++; 5628 5629 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5630 DVA_GET_VDEV(&bp->blk_dva[1]) && 5631 same_metaslab(zcb->zcb_spa, 5632 DVA_GET_VDEV(&bp->blk_dva[0]), 5633 DVA_GET_OFFSET(&bp->blk_dva[0]), 5634 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5635 zb->zb_ditto_same_ms++; 5636 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5637 DVA_GET_VDEV(&bp->blk_dva[2]) && 5638 same_metaslab(zcb->zcb_spa, 5639 DVA_GET_VDEV(&bp->blk_dva[0]), 5640 DVA_GET_OFFSET(&bp->blk_dva[0]), 5641 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5642 zb->zb_ditto_same_ms++; 5643 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5644 DVA_GET_VDEV(&bp->blk_dva[2]) && 5645 same_metaslab(zcb->zcb_spa, 5646 DVA_GET_VDEV(&bp->blk_dva[1]), 5647 DVA_GET_OFFSET(&bp->blk_dva[1]), 5648 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5649 zb->zb_ditto_same_ms++; 5650 } 5651 break; 5652 } 5653 } 5654 5655 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5656 5657 if (BP_IS_EMBEDDED(bp)) { 5658 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5659 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5660 [BPE_GET_PSIZE(bp)]++; 5661 return; 5662 } 5663 /* 5664 * The binning histogram bins by powers of two up to 5665 * SPA_MAXBLOCKSIZE rather than creating bins for 5666 * every possible blocksize found in the pool. 5667 */ 5668 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5669 5670 zcb->zcb_psize_count[bin]++; 5671 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5672 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5673 5674 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5675 5676 zcb->zcb_lsize_count[bin]++; 5677 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5678 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5679 5680 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5681 5682 zcb->zcb_asize_count[bin]++; 5683 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5684 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5685 5686 if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) { 5687 /* 5688 * Cloned blocks are special. We need to count them, so we can 5689 * later uncount them when reporting leaked space, and we must 5690 * only claim them them once. 5691 * 5692 * To do this, we keep our own in-memory BRT. For each block 5693 * we haven't seen before, we look it up in the real BRT and 5694 * if its there, we note it and its refcount then proceed as 5695 * normal. If we see the block again, we count it as a clone 5696 * and then give it no further consideration. 5697 */ 5698 zdb_brt_entry_t zbre_search, *zbre; 5699 avl_index_t where; 5700 5701 zbre_search.zbre_dva = bp->blk_dva[0]; 5702 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5703 if (zbre != NULL) { 5704 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5705 zcb->zcb_clone_blocks++; 5706 5707 zbre->zbre_refcount--; 5708 if (zbre->zbre_refcount == 0) { 5709 avl_remove(&zcb->zcb_brt, zbre); 5710 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5711 } 5712 return; 5713 } 5714 5715 uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp); 5716 if (crefcnt > 0) { 5717 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5718 UMEM_NOFAIL); 5719 zbre->zbre_dva = bp->blk_dva[0]; 5720 zbre->zbre_refcount = crefcnt; 5721 avl_insert(&zcb->zcb_brt, zbre, where); 5722 } 5723 } 5724 5725 if (dump_opt['L']) 5726 return; 5727 5728 if (BP_GET_DEDUP(bp)) { 5729 ddt_t *ddt; 5730 ddt_entry_t *dde; 5731 5732 ddt = ddt_select(zcb->zcb_spa, bp); 5733 ddt_enter(ddt); 5734 dde = ddt_lookup(ddt, bp, B_FALSE); 5735 5736 if (dde == NULL) { 5737 refcnt = 0; 5738 } else { 5739 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5740 ddt_phys_decref(ddp); 5741 refcnt = ddp->ddp_refcnt; 5742 if (ddt_phys_total_refcnt(dde) == 0) 5743 ddt_remove(ddt, dde); 5744 } 5745 ddt_exit(ddt); 5746 } 5747 5748 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5749 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5750 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5751 } 5752 5753 static void 5754 zdb_blkptr_done(zio_t *zio) 5755 { 5756 spa_t *spa = zio->io_spa; 5757 blkptr_t *bp = zio->io_bp; 5758 int ioerr = zio->io_error; 5759 zdb_cb_t *zcb = zio->io_private; 5760 zbookmark_phys_t *zb = &zio->io_bookmark; 5761 5762 mutex_enter(&spa->spa_scrub_lock); 5763 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5764 cv_broadcast(&spa->spa_scrub_io_cv); 5765 5766 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5767 char blkbuf[BP_SPRINTF_LEN]; 5768 5769 zcb->zcb_haderrors = 1; 5770 zcb->zcb_errors[ioerr]++; 5771 5772 if (dump_opt['b'] >= 2) 5773 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5774 else 5775 blkbuf[0] = '\0'; 5776 5777 (void) printf("zdb_blkptr_cb: " 5778 "Got error %d reading " 5779 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5780 ioerr, 5781 (u_longlong_t)zb->zb_objset, 5782 (u_longlong_t)zb->zb_object, 5783 (u_longlong_t)zb->zb_level, 5784 (u_longlong_t)zb->zb_blkid, 5785 blkbuf); 5786 } 5787 mutex_exit(&spa->spa_scrub_lock); 5788 5789 abd_free(zio->io_abd); 5790 } 5791 5792 static int 5793 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5794 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5795 { 5796 zdb_cb_t *zcb = arg; 5797 dmu_object_type_t type; 5798 boolean_t is_metadata; 5799 5800 if (zb->zb_level == ZB_DNODE_LEVEL) 5801 return (0); 5802 5803 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5804 char blkbuf[BP_SPRINTF_LEN]; 5805 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5806 (void) printf("objset %llu object %llu " 5807 "level %lld offset 0x%llx %s\n", 5808 (u_longlong_t)zb->zb_objset, 5809 (u_longlong_t)zb->zb_object, 5810 (longlong_t)zb->zb_level, 5811 (u_longlong_t)blkid2offset(dnp, bp, zb), 5812 blkbuf); 5813 } 5814 5815 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5816 return (0); 5817 5818 type = BP_GET_TYPE(bp); 5819 5820 zdb_count_block(zcb, zilog, bp, 5821 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5822 5823 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5824 5825 if (!BP_IS_EMBEDDED(bp) && 5826 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5827 size_t size = BP_GET_PSIZE(bp); 5828 abd_t *abd = abd_alloc(size, B_FALSE); 5829 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5830 5831 /* If it's an intent log block, failure is expected. */ 5832 if (zb->zb_level == ZB_ZIL_LEVEL) 5833 flags |= ZIO_FLAG_SPECULATIVE; 5834 5835 mutex_enter(&spa->spa_scrub_lock); 5836 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5837 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5838 spa->spa_load_verify_bytes += size; 5839 mutex_exit(&spa->spa_scrub_lock); 5840 5841 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5842 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5843 } 5844 5845 zcb->zcb_readfails = 0; 5846 5847 /* only call gethrtime() every 100 blocks */ 5848 static int iters; 5849 if (++iters > 100) 5850 iters = 0; 5851 else 5852 return (0); 5853 5854 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5855 uint64_t now = gethrtime(); 5856 char buf[10]; 5857 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5858 uint64_t kb_per_sec = 5859 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5860 uint64_t sec_remaining = 5861 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5862 5863 /* make sure nicenum has enough space */ 5864 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 5865 5866 zfs_nicebytes(bytes, buf, sizeof (buf)); 5867 (void) fprintf(stderr, 5868 "\r%5s completed (%4"PRIu64"MB/s) " 5869 "estimated time remaining: " 5870 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 5871 buf, kb_per_sec / 1024, 5872 sec_remaining / 60 / 60, 5873 sec_remaining / 60 % 60, 5874 sec_remaining % 60); 5875 5876 zcb->zcb_lastprint = now; 5877 } 5878 5879 return (0); 5880 } 5881 5882 static void 5883 zdb_leak(void *arg, uint64_t start, uint64_t size) 5884 { 5885 vdev_t *vd = arg; 5886 5887 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5888 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5889 } 5890 5891 static metaslab_ops_t zdb_metaslab_ops = { 5892 NULL /* alloc */ 5893 }; 5894 5895 static int 5896 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5897 uint64_t txg, void *arg) 5898 { 5899 spa_vdev_removal_t *svr = arg; 5900 5901 uint64_t offset = sme->sme_offset; 5902 uint64_t size = sme->sme_run; 5903 5904 /* skip vdevs we don't care about */ 5905 if (sme->sme_vdev != svr->svr_vdev_id) 5906 return (0); 5907 5908 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5909 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5910 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5911 5912 if (txg < metaslab_unflushed_txg(ms)) 5913 return (0); 5914 5915 if (sme->sme_type == SM_ALLOC) 5916 range_tree_add(svr->svr_allocd_segs, offset, size); 5917 else 5918 range_tree_remove(svr->svr_allocd_segs, offset, size); 5919 5920 return (0); 5921 } 5922 5923 static void 5924 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5925 uint64_t size, void *arg) 5926 { 5927 (void) inner_offset, (void) arg; 5928 5929 /* 5930 * This callback was called through a remap from 5931 * a device being removed. Therefore, the vdev that 5932 * this callback is applied to is a concrete 5933 * vdev. 5934 */ 5935 ASSERT(vdev_is_concrete(vd)); 5936 5937 VERIFY0(metaslab_claim_impl(vd, offset, size, 5938 spa_min_claim_txg(vd->vdev_spa))); 5939 } 5940 5941 static void 5942 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5943 { 5944 vdev_t *vd = arg; 5945 5946 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5947 claim_segment_impl_cb, NULL); 5948 } 5949 5950 /* 5951 * After accounting for all allocated blocks that are directly referenced, 5952 * we might have missed a reference to a block from a partially complete 5953 * (and thus unused) indirect mapping object. We perform a secondary pass 5954 * through the metaslabs we have already mapped and claim the destination 5955 * blocks. 5956 */ 5957 static void 5958 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5959 { 5960 if (dump_opt['L']) 5961 return; 5962 5963 if (spa->spa_vdev_removal == NULL) 5964 return; 5965 5966 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5967 5968 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5969 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5970 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5971 5972 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5973 5974 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5975 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5976 metaslab_t *msp = vd->vdev_ms[msi]; 5977 5978 ASSERT0(range_tree_space(allocs)); 5979 if (msp->ms_sm != NULL) 5980 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5981 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5982 } 5983 range_tree_destroy(allocs); 5984 5985 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5986 5987 /* 5988 * Clear everything past what has been synced, 5989 * because we have not allocated mappings for 5990 * it yet. 5991 */ 5992 range_tree_clear(svr->svr_allocd_segs, 5993 vdev_indirect_mapping_max_offset(vim), 5994 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5995 5996 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5997 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5998 5999 spa_config_exit(spa, SCL_CONFIG, FTAG); 6000 } 6001 6002 static int 6003 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6004 dmu_tx_t *tx) 6005 { 6006 (void) tx; 6007 zdb_cb_t *zcb = arg; 6008 spa_t *spa = zcb->zcb_spa; 6009 vdev_t *vd; 6010 const dva_t *dva = &bp->blk_dva[0]; 6011 6012 ASSERT(!bp_freed); 6013 ASSERT(!dump_opt['L']); 6014 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6015 6016 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6017 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6018 ASSERT3P(vd, !=, NULL); 6019 spa_config_exit(spa, SCL_VDEV, FTAG); 6020 6021 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6022 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6023 6024 vdev_indirect_mapping_increment_obsolete_count( 6025 vd->vdev_indirect_mapping, 6026 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6027 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6028 6029 return (0); 6030 } 6031 6032 static uint32_t * 6033 zdb_load_obsolete_counts(vdev_t *vd) 6034 { 6035 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6036 spa_t *spa = vd->vdev_spa; 6037 spa_condensing_indirect_phys_t *scip = 6038 &spa->spa_condensing_indirect_phys; 6039 uint64_t obsolete_sm_object; 6040 uint32_t *counts; 6041 6042 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6043 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6044 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6045 if (vd->vdev_obsolete_sm != NULL) { 6046 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6047 vd->vdev_obsolete_sm); 6048 } 6049 if (scip->scip_vdev == vd->vdev_id && 6050 scip->scip_prev_obsolete_sm_object != 0) { 6051 space_map_t *prev_obsolete_sm = NULL; 6052 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6053 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6054 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6055 prev_obsolete_sm); 6056 space_map_close(prev_obsolete_sm); 6057 } 6058 return (counts); 6059 } 6060 6061 static void 6062 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 6063 { 6064 ddt_bookmark_t ddb = {0}; 6065 ddt_entry_t dde; 6066 int error; 6067 int p; 6068 6069 ASSERT(!dump_opt['L']); 6070 6071 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 6072 blkptr_t blk; 6073 ddt_phys_t *ddp = dde.dde_phys; 6074 6075 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 6076 return; 6077 6078 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 6079 6080 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 6081 if (ddp->ddp_phys_birth == 0) 6082 continue; 6083 ddt_bp_create(ddb.ddb_checksum, 6084 &dde.dde_key, ddp, &blk); 6085 if (p == DDT_PHYS_DITTO) { 6086 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 6087 } else { 6088 zcb->zcb_dedup_asize += 6089 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 6090 zcb->zcb_dedup_blocks++; 6091 } 6092 } 6093 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 6094 ddt_enter(ddt); 6095 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 6096 ddt_exit(ddt); 6097 } 6098 6099 ASSERT(error == ENOENT); 6100 } 6101 6102 typedef struct checkpoint_sm_exclude_entry_arg { 6103 vdev_t *cseea_vd; 6104 uint64_t cseea_checkpoint_size; 6105 } checkpoint_sm_exclude_entry_arg_t; 6106 6107 static int 6108 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6109 { 6110 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6111 vdev_t *vd = cseea->cseea_vd; 6112 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6113 uint64_t end = sme->sme_offset + sme->sme_run; 6114 6115 ASSERT(sme->sme_type == SM_FREE); 6116 6117 /* 6118 * Since the vdev_checkpoint_sm exists in the vdev level 6119 * and the ms_sm space maps exist in the metaslab level, 6120 * an entry in the checkpoint space map could theoretically 6121 * cross the boundaries of the metaslab that it belongs. 6122 * 6123 * In reality, because of the way that we populate and 6124 * manipulate the checkpoint's space maps currently, 6125 * there shouldn't be any entries that cross metaslabs. 6126 * Hence the assertion below. 6127 * 6128 * That said, there is no fundamental requirement that 6129 * the checkpoint's space map entries should not cross 6130 * metaslab boundaries. So if needed we could add code 6131 * that handles metaslab-crossing segments in the future. 6132 */ 6133 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6134 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6135 6136 /* 6137 * By removing the entry from the allocated segments we 6138 * also verify that the entry is there to begin with. 6139 */ 6140 mutex_enter(&ms->ms_lock); 6141 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 6142 mutex_exit(&ms->ms_lock); 6143 6144 cseea->cseea_checkpoint_size += sme->sme_run; 6145 return (0); 6146 } 6147 6148 static void 6149 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6150 { 6151 spa_t *spa = vd->vdev_spa; 6152 space_map_t *checkpoint_sm = NULL; 6153 uint64_t checkpoint_sm_obj; 6154 6155 /* 6156 * If there is no vdev_top_zap, we are in a pool whose 6157 * version predates the pool checkpoint feature. 6158 */ 6159 if (vd->vdev_top_zap == 0) 6160 return; 6161 6162 /* 6163 * If there is no reference of the vdev_checkpoint_sm in 6164 * the vdev_top_zap, then one of the following scenarios 6165 * is true: 6166 * 6167 * 1] There is no checkpoint 6168 * 2] There is a checkpoint, but no checkpointed blocks 6169 * have been freed yet 6170 * 3] The current vdev is indirect 6171 * 6172 * In these cases we return immediately. 6173 */ 6174 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6175 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6176 return; 6177 6178 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6179 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6180 &checkpoint_sm_obj)); 6181 6182 checkpoint_sm_exclude_entry_arg_t cseea; 6183 cseea.cseea_vd = vd; 6184 cseea.cseea_checkpoint_size = 0; 6185 6186 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6187 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6188 6189 VERIFY0(space_map_iterate(checkpoint_sm, 6190 space_map_length(checkpoint_sm), 6191 checkpoint_sm_exclude_entry_cb, &cseea)); 6192 space_map_close(checkpoint_sm); 6193 6194 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6195 } 6196 6197 static void 6198 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6199 { 6200 ASSERT(!dump_opt['L']); 6201 6202 vdev_t *rvd = spa->spa_root_vdev; 6203 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6204 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6205 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6206 } 6207 } 6208 6209 static int 6210 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6211 uint64_t txg, void *arg) 6212 { 6213 int64_t *ualloc_space = arg; 6214 6215 uint64_t offset = sme->sme_offset; 6216 uint64_t vdev_id = sme->sme_vdev; 6217 6218 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6219 if (!vdev_is_concrete(vd)) 6220 return (0); 6221 6222 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6223 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6224 6225 if (txg < metaslab_unflushed_txg(ms)) 6226 return (0); 6227 6228 if (sme->sme_type == SM_ALLOC) 6229 *ualloc_space += sme->sme_run; 6230 else 6231 *ualloc_space -= sme->sme_run; 6232 6233 return (0); 6234 } 6235 6236 static int64_t 6237 get_unflushed_alloc_space(spa_t *spa) 6238 { 6239 if (dump_opt['L']) 6240 return (0); 6241 6242 int64_t ualloc_space = 0; 6243 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6244 &ualloc_space); 6245 return (ualloc_space); 6246 } 6247 6248 static int 6249 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6250 { 6251 maptype_t *uic_maptype = arg; 6252 6253 uint64_t offset = sme->sme_offset; 6254 uint64_t size = sme->sme_run; 6255 uint64_t vdev_id = sme->sme_vdev; 6256 6257 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6258 6259 /* skip indirect vdevs */ 6260 if (!vdev_is_concrete(vd)) 6261 return (0); 6262 6263 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6264 6265 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6266 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6267 6268 if (txg < metaslab_unflushed_txg(ms)) 6269 return (0); 6270 6271 if (*uic_maptype == sme->sme_type) 6272 range_tree_add(ms->ms_allocatable, offset, size); 6273 else 6274 range_tree_remove(ms->ms_allocatable, offset, size); 6275 6276 return (0); 6277 } 6278 6279 static void 6280 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6281 { 6282 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6283 } 6284 6285 static void 6286 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6287 { 6288 vdev_t *rvd = spa->spa_root_vdev; 6289 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6290 vdev_t *vd = rvd->vdev_child[i]; 6291 6292 ASSERT3U(i, ==, vd->vdev_id); 6293 6294 if (vd->vdev_ops == &vdev_indirect_ops) 6295 continue; 6296 6297 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6298 metaslab_t *msp = vd->vdev_ms[m]; 6299 6300 (void) fprintf(stderr, 6301 "\rloading concrete vdev %llu, " 6302 "metaslab %llu of %llu ...", 6303 (longlong_t)vd->vdev_id, 6304 (longlong_t)msp->ms_id, 6305 (longlong_t)vd->vdev_ms_count); 6306 6307 mutex_enter(&msp->ms_lock); 6308 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6309 6310 /* 6311 * We don't want to spend the CPU manipulating the 6312 * size-ordered tree, so clear the range_tree ops. 6313 */ 6314 msp->ms_allocatable->rt_ops = NULL; 6315 6316 if (msp->ms_sm != NULL) { 6317 VERIFY0(space_map_load(msp->ms_sm, 6318 msp->ms_allocatable, maptype)); 6319 } 6320 if (!msp->ms_loaded) 6321 msp->ms_loaded = B_TRUE; 6322 mutex_exit(&msp->ms_lock); 6323 } 6324 } 6325 6326 load_unflushed_to_ms_allocatables(spa, maptype); 6327 } 6328 6329 /* 6330 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6331 * index in vim_entries that has the first entry in this metaslab. 6332 * On return, it will be set to the first entry after this metaslab. 6333 */ 6334 static void 6335 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6336 uint64_t *vim_idxp) 6337 { 6338 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6339 6340 mutex_enter(&msp->ms_lock); 6341 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6342 6343 /* 6344 * We don't want to spend the CPU manipulating the 6345 * size-ordered tree, so clear the range_tree ops. 6346 */ 6347 msp->ms_allocatable->rt_ops = NULL; 6348 6349 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6350 (*vim_idxp)++) { 6351 vdev_indirect_mapping_entry_phys_t *vimep = 6352 &vim->vim_entries[*vim_idxp]; 6353 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6354 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6355 ASSERT3U(ent_offset, >=, msp->ms_start); 6356 if (ent_offset >= msp->ms_start + msp->ms_size) 6357 break; 6358 6359 /* 6360 * Mappings do not cross metaslab boundaries, 6361 * because we create them by walking the metaslabs. 6362 */ 6363 ASSERT3U(ent_offset + ent_len, <=, 6364 msp->ms_start + msp->ms_size); 6365 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6366 } 6367 6368 if (!msp->ms_loaded) 6369 msp->ms_loaded = B_TRUE; 6370 mutex_exit(&msp->ms_lock); 6371 } 6372 6373 static void 6374 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6375 { 6376 ASSERT(!dump_opt['L']); 6377 6378 vdev_t *rvd = spa->spa_root_vdev; 6379 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6380 vdev_t *vd = rvd->vdev_child[c]; 6381 6382 ASSERT3U(c, ==, vd->vdev_id); 6383 6384 if (vd->vdev_ops != &vdev_indirect_ops) 6385 continue; 6386 6387 /* 6388 * Note: we don't check for mapping leaks on 6389 * removing vdevs because their ms_allocatable's 6390 * are used to look for leaks in allocated space. 6391 */ 6392 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6393 6394 /* 6395 * Normally, indirect vdevs don't have any 6396 * metaslabs. We want to set them up for 6397 * zio_claim(). 6398 */ 6399 vdev_metaslab_group_create(vd); 6400 VERIFY0(vdev_metaslab_init(vd, 0)); 6401 6402 vdev_indirect_mapping_t *vim __maybe_unused = 6403 vd->vdev_indirect_mapping; 6404 uint64_t vim_idx = 0; 6405 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6406 6407 (void) fprintf(stderr, 6408 "\rloading indirect vdev %llu, " 6409 "metaslab %llu of %llu ...", 6410 (longlong_t)vd->vdev_id, 6411 (longlong_t)vd->vdev_ms[m]->ms_id, 6412 (longlong_t)vd->vdev_ms_count); 6413 6414 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6415 &vim_idx); 6416 } 6417 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6418 } 6419 } 6420 6421 static void 6422 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6423 { 6424 zcb->zcb_spa = spa; 6425 6426 if (dump_opt['L']) 6427 return; 6428 6429 dsl_pool_t *dp = spa->spa_dsl_pool; 6430 vdev_t *rvd = spa->spa_root_vdev; 6431 6432 /* 6433 * We are going to be changing the meaning of the metaslab's 6434 * ms_allocatable. Ensure that the allocator doesn't try to 6435 * use the tree. 6436 */ 6437 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6438 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6439 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6440 6441 zcb->zcb_vd_obsolete_counts = 6442 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6443 UMEM_NOFAIL); 6444 6445 /* 6446 * For leak detection, we overload the ms_allocatable trees 6447 * to contain allocated segments instead of free segments. 6448 * As a result, we can't use the normal metaslab_load/unload 6449 * interfaces. 6450 */ 6451 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6452 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6453 6454 /* 6455 * On load_concrete_ms_allocatable_trees() we loaded all the 6456 * allocated entries from the ms_sm to the ms_allocatable for 6457 * each metaslab. If the pool has a checkpoint or is in the 6458 * middle of discarding a checkpoint, some of these blocks 6459 * may have been freed but their ms_sm may not have been 6460 * updated because they are referenced by the checkpoint. In 6461 * order to avoid false-positives during leak-detection, we 6462 * go through the vdev's checkpoint space map and exclude all 6463 * its entries from their relevant ms_allocatable. 6464 * 6465 * We also aggregate the space held by the checkpoint and add 6466 * it to zcb_checkpoint_size. 6467 * 6468 * Note that at this point we are also verifying that all the 6469 * entries on the checkpoint_sm are marked as allocated in 6470 * the ms_sm of their relevant metaslab. 6471 * [see comment in checkpoint_sm_exclude_entry_cb()] 6472 */ 6473 zdb_leak_init_exclude_checkpoint(spa, zcb); 6474 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6475 6476 /* for cleaner progress output */ 6477 (void) fprintf(stderr, "\n"); 6478 6479 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6480 ASSERT(spa_feature_is_enabled(spa, 6481 SPA_FEATURE_DEVICE_REMOVAL)); 6482 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6483 increment_indirect_mapping_cb, zcb, NULL); 6484 } 6485 6486 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6487 zdb_ddt_leak_init(spa, zcb); 6488 spa_config_exit(spa, SCL_CONFIG, FTAG); 6489 } 6490 6491 static boolean_t 6492 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6493 { 6494 boolean_t leaks = B_FALSE; 6495 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6496 uint64_t total_leaked = 0; 6497 boolean_t are_precise = B_FALSE; 6498 6499 ASSERT(vim != NULL); 6500 6501 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6502 vdev_indirect_mapping_entry_phys_t *vimep = 6503 &vim->vim_entries[i]; 6504 uint64_t obsolete_bytes = 0; 6505 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6506 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6507 6508 /* 6509 * This is not very efficient but it's easy to 6510 * verify correctness. 6511 */ 6512 for (uint64_t inner_offset = 0; 6513 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6514 inner_offset += 1ULL << vd->vdev_ashift) { 6515 if (range_tree_contains(msp->ms_allocatable, 6516 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6517 obsolete_bytes += 1ULL << vd->vdev_ashift; 6518 } 6519 } 6520 6521 int64_t bytes_leaked = obsolete_bytes - 6522 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6523 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6524 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6525 6526 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6527 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6528 (void) printf("obsolete indirect mapping count " 6529 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6530 (u_longlong_t)vd->vdev_id, 6531 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6532 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6533 (u_longlong_t)bytes_leaked); 6534 } 6535 total_leaked += ABS(bytes_leaked); 6536 } 6537 6538 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6539 if (!are_precise && total_leaked > 0) { 6540 int pct_leaked = total_leaked * 100 / 6541 vdev_indirect_mapping_bytes_mapped(vim); 6542 (void) printf("cannot verify obsolete indirect mapping " 6543 "counts of vdev %llu because precise feature was not " 6544 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6545 "unreferenced\n", 6546 (u_longlong_t)vd->vdev_id, pct_leaked, 6547 (u_longlong_t)total_leaked); 6548 } else if (total_leaked > 0) { 6549 (void) printf("obsolete indirect mapping count mismatch " 6550 "for vdev %llu -- %llx total bytes mismatched\n", 6551 (u_longlong_t)vd->vdev_id, 6552 (u_longlong_t)total_leaked); 6553 leaks |= B_TRUE; 6554 } 6555 6556 vdev_indirect_mapping_free_obsolete_counts(vim, 6557 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6558 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6559 6560 return (leaks); 6561 } 6562 6563 static boolean_t 6564 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6565 { 6566 if (dump_opt['L']) 6567 return (B_FALSE); 6568 6569 boolean_t leaks = B_FALSE; 6570 vdev_t *rvd = spa->spa_root_vdev; 6571 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6572 vdev_t *vd = rvd->vdev_child[c]; 6573 6574 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6575 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6576 } 6577 6578 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6579 metaslab_t *msp = vd->vdev_ms[m]; 6580 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6581 spa_embedded_log_class(spa)) ? 6582 vd->vdev_log_mg : vd->vdev_mg); 6583 6584 /* 6585 * ms_allocatable has been overloaded 6586 * to contain allocated segments. Now that 6587 * we finished traversing all blocks, any 6588 * block that remains in the ms_allocatable 6589 * represents an allocated block that we 6590 * did not claim during the traversal. 6591 * Claimed blocks would have been removed 6592 * from the ms_allocatable. For indirect 6593 * vdevs, space remaining in the tree 6594 * represents parts of the mapping that are 6595 * not referenced, which is not a bug. 6596 */ 6597 if (vd->vdev_ops == &vdev_indirect_ops) { 6598 range_tree_vacate(msp->ms_allocatable, 6599 NULL, NULL); 6600 } else { 6601 range_tree_vacate(msp->ms_allocatable, 6602 zdb_leak, vd); 6603 } 6604 if (msp->ms_loaded) { 6605 msp->ms_loaded = B_FALSE; 6606 } 6607 } 6608 } 6609 6610 umem_free(zcb->zcb_vd_obsolete_counts, 6611 rvd->vdev_children * sizeof (uint32_t *)); 6612 zcb->zcb_vd_obsolete_counts = NULL; 6613 6614 return (leaks); 6615 } 6616 6617 static int 6618 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6619 { 6620 (void) tx; 6621 zdb_cb_t *zcb = arg; 6622 6623 if (dump_opt['b'] >= 5) { 6624 char blkbuf[BP_SPRINTF_LEN]; 6625 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6626 (void) printf("[%s] %s\n", 6627 "deferred free", blkbuf); 6628 } 6629 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6630 return (0); 6631 } 6632 6633 /* 6634 * Iterate over livelists which have been destroyed by the user but 6635 * are still present in the MOS, waiting to be freed 6636 */ 6637 static void 6638 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6639 { 6640 objset_t *mos = spa->spa_meta_objset; 6641 uint64_t zap_obj; 6642 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6643 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6644 if (err == ENOENT) 6645 return; 6646 ASSERT0(err); 6647 6648 zap_cursor_t zc; 6649 zap_attribute_t attr; 6650 dsl_deadlist_t ll; 6651 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6652 ll.dl_os = NULL; 6653 for (zap_cursor_init(&zc, mos, zap_obj); 6654 zap_cursor_retrieve(&zc, &attr) == 0; 6655 (void) zap_cursor_advance(&zc)) { 6656 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6657 func(&ll, arg); 6658 dsl_deadlist_close(&ll); 6659 } 6660 zap_cursor_fini(&zc); 6661 } 6662 6663 static int 6664 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6665 dmu_tx_t *tx) 6666 { 6667 ASSERT(!bp_freed); 6668 return (count_block_cb(arg, bp, tx)); 6669 } 6670 6671 static int 6672 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6673 { 6674 zdb_cb_t *zbc = args; 6675 bplist_t blks; 6676 bplist_create(&blks); 6677 /* determine which blocks have been alloc'd but not freed */ 6678 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6679 /* count those blocks */ 6680 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6681 bplist_destroy(&blks); 6682 return (0); 6683 } 6684 6685 static void 6686 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6687 { 6688 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6689 } 6690 6691 /* 6692 * Count the blocks in the livelists that have been destroyed by the user 6693 * but haven't yet been freed. 6694 */ 6695 static void 6696 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6697 { 6698 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6699 } 6700 6701 static void 6702 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6703 { 6704 ASSERT3P(arg, ==, NULL); 6705 global_feature_count[SPA_FEATURE_LIVELIST]++; 6706 dump_blkptr_list(ll, "Deleted Livelist"); 6707 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6708 } 6709 6710 /* 6711 * Print out, register object references to, and increment feature counts for 6712 * livelists that have been destroyed by the user but haven't yet been freed. 6713 */ 6714 static void 6715 deleted_livelists_dump_mos(spa_t *spa) 6716 { 6717 uint64_t zap_obj; 6718 objset_t *mos = spa->spa_meta_objset; 6719 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6720 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6721 if (err == ENOENT) 6722 return; 6723 mos_obj_refd(zap_obj); 6724 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6725 } 6726 6727 static int 6728 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 6729 { 6730 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 6731 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 6732 int cmp; 6733 6734 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 6735 if (cmp == 0) 6736 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 6737 6738 return (cmp); 6739 } 6740 6741 static int 6742 dump_block_stats(spa_t *spa) 6743 { 6744 zdb_cb_t *zcb; 6745 zdb_blkstats_t *zb, *tzb; 6746 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6747 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6748 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6749 boolean_t leaks = B_FALSE; 6750 int e, c, err; 6751 bp_embedded_type_t i; 6752 6753 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 6754 6755 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 6756 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 6757 sizeof (zdb_brt_entry_t), 6758 offsetof(zdb_brt_entry_t, zbre_node)); 6759 zcb->zcb_brt_is_active = B_TRUE; 6760 } 6761 6762 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6763 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6764 (dump_opt['c'] == 1) ? "metadata " : "", 6765 dump_opt['c'] ? "checksums " : "", 6766 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6767 !dump_opt['L'] ? "nothing leaked " : ""); 6768 6769 /* 6770 * When leak detection is enabled we load all space maps as SM_ALLOC 6771 * maps, then traverse the pool claiming each block we discover. If 6772 * the pool is perfectly consistent, the segment trees will be empty 6773 * when we're done. Anything left over is a leak; any block we can't 6774 * claim (because it's not part of any space map) is a double 6775 * allocation, reference to a freed block, or an unclaimed log block. 6776 * 6777 * When leak detection is disabled (-L option) we still traverse the 6778 * pool claiming each block we discover, but we skip opening any space 6779 * maps. 6780 */ 6781 zdb_leak_init(spa, zcb); 6782 6783 /* 6784 * If there's a deferred-free bplist, process that first. 6785 */ 6786 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6787 bpobj_count_block_cb, zcb, NULL); 6788 6789 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6790 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6791 bpobj_count_block_cb, zcb, NULL); 6792 } 6793 6794 zdb_claim_removing(spa, zcb); 6795 6796 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6797 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6798 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6799 zcb, NULL)); 6800 } 6801 6802 deleted_livelists_count_blocks(spa, zcb); 6803 6804 if (dump_opt['c'] > 1) 6805 flags |= TRAVERSE_PREFETCH_DATA; 6806 6807 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6808 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6809 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6810 zcb->zcb_totalasize += 6811 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 6812 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 6813 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 6814 6815 /* 6816 * If we've traversed the data blocks then we need to wait for those 6817 * I/Os to complete. We leverage "The Godfather" zio to wait on 6818 * all async I/Os to complete. 6819 */ 6820 if (dump_opt['c']) { 6821 for (c = 0; c < max_ncpus; c++) { 6822 (void) zio_wait(spa->spa_async_zio_root[c]); 6823 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6824 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6825 ZIO_FLAG_GODFATHER); 6826 } 6827 } 6828 ASSERT0(spa->spa_load_verify_bytes); 6829 6830 /* 6831 * Done after zio_wait() since zcb_haderrors is modified in 6832 * zdb_blkptr_done() 6833 */ 6834 zcb->zcb_haderrors |= err; 6835 6836 if (zcb->zcb_haderrors) { 6837 (void) printf("\nError counts:\n\n"); 6838 (void) printf("\t%5s %s\n", "errno", "count"); 6839 for (e = 0; e < 256; e++) { 6840 if (zcb->zcb_errors[e] != 0) { 6841 (void) printf("\t%5d %llu\n", 6842 e, (u_longlong_t)zcb->zcb_errors[e]); 6843 } 6844 } 6845 } 6846 6847 /* 6848 * Report any leaked segments. 6849 */ 6850 leaks |= zdb_leak_fini(spa, zcb); 6851 6852 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6853 6854 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6855 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6856 6857 total_alloc = norm_alloc + 6858 metaslab_class_get_alloc(spa_log_class(spa)) + 6859 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 6860 metaslab_class_get_alloc(spa_special_class(spa)) + 6861 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6862 get_unflushed_alloc_space(spa); 6863 total_found = 6864 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 6865 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 6866 6867 if (total_found == total_alloc && !dump_opt['L']) { 6868 (void) printf("\n\tNo leaks (block sum matches space" 6869 " maps exactly)\n"); 6870 } else if (!dump_opt['L']) { 6871 (void) printf("block traversal size %llu != alloc %llu " 6872 "(%s %lld)\n", 6873 (u_longlong_t)total_found, 6874 (u_longlong_t)total_alloc, 6875 (dump_opt['L']) ? "unreachable" : "leaked", 6876 (longlong_t)(total_alloc - total_found)); 6877 leaks = B_TRUE; 6878 } 6879 6880 if (tzb->zb_count == 0) { 6881 umem_free(zcb, sizeof (zdb_cb_t)); 6882 return (2); 6883 } 6884 6885 (void) printf("\n"); 6886 (void) printf("\t%-16s %14llu\n", "bp count:", 6887 (u_longlong_t)tzb->zb_count); 6888 (void) printf("\t%-16s %14llu\n", "ganged count:", 6889 (longlong_t)tzb->zb_gangs); 6890 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6891 (u_longlong_t)tzb->zb_lsize, 6892 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6893 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6894 "bp physical:", (u_longlong_t)tzb->zb_psize, 6895 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6896 (double)tzb->zb_lsize / tzb->zb_psize); 6897 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6898 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6899 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6900 (double)tzb->zb_lsize / tzb->zb_asize); 6901 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6902 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 6903 (u_longlong_t)zcb->zcb_dedup_blocks, 6904 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 6905 (void) printf("\t%-16s %14llu count: %6llu\n", 6906 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 6907 (u_longlong_t)zcb->zcb_clone_blocks); 6908 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6909 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6910 6911 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6912 uint64_t alloc = metaslab_class_get_alloc( 6913 spa_special_class(spa)); 6914 uint64_t space = metaslab_class_get_space( 6915 spa_special_class(spa)); 6916 6917 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6918 "Special class", (u_longlong_t)alloc, 6919 100.0 * alloc / space); 6920 } 6921 6922 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6923 uint64_t alloc = metaslab_class_get_alloc( 6924 spa_dedup_class(spa)); 6925 uint64_t space = metaslab_class_get_space( 6926 spa_dedup_class(spa)); 6927 6928 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6929 "Dedup class", (u_longlong_t)alloc, 6930 100.0 * alloc / space); 6931 } 6932 6933 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 6934 uint64_t alloc = metaslab_class_get_alloc( 6935 spa_embedded_log_class(spa)); 6936 uint64_t space = metaslab_class_get_space( 6937 spa_embedded_log_class(spa)); 6938 6939 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6940 "Embedded log class", (u_longlong_t)alloc, 6941 100.0 * alloc / space); 6942 } 6943 6944 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6945 if (zcb->zcb_embedded_blocks[i] == 0) 6946 continue; 6947 (void) printf("\n"); 6948 (void) printf("\tadditional, non-pointer bps of type %u: " 6949 "%10llu\n", 6950 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 6951 6952 if (dump_opt['b'] >= 3) { 6953 (void) printf("\t number of (compressed) bytes: " 6954 "number of bps\n"); 6955 dump_histogram(zcb->zcb_embedded_histogram[i], 6956 sizeof (zcb->zcb_embedded_histogram[i]) / 6957 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 6958 } 6959 } 6960 6961 if (tzb->zb_ditto_samevdev != 0) { 6962 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6963 (longlong_t)tzb->zb_ditto_samevdev); 6964 } 6965 if (tzb->zb_ditto_same_ms != 0) { 6966 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6967 (longlong_t)tzb->zb_ditto_same_ms); 6968 } 6969 6970 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6971 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6972 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6973 6974 if (vim == NULL) { 6975 continue; 6976 } 6977 6978 char mem[32]; 6979 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6980 mem, vdev_indirect_mapping_size(vim)); 6981 6982 (void) printf("\tindirect vdev id %llu has %llu segments " 6983 "(%s in memory)\n", 6984 (longlong_t)vd->vdev_id, 6985 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6986 } 6987 6988 if (dump_opt['b'] >= 2) { 6989 int l, t, level; 6990 char csize[32], lsize[32], psize[32], asize[32]; 6991 char avg[32], gang[32]; 6992 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6993 "\t avg\t comp\t%%Total\tType\n"); 6994 6995 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 6996 UMEM_NOFAIL); 6997 6998 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6999 const char *typename; 7000 7001 /* make sure nicenum has enough space */ 7002 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7003 "csize truncated"); 7004 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7005 "lsize truncated"); 7006 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7007 "psize truncated"); 7008 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7009 "asize truncated"); 7010 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7011 "avg truncated"); 7012 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7013 "gang truncated"); 7014 7015 if (t < DMU_OT_NUMTYPES) 7016 typename = dmu_ot[t].ot_name; 7017 else 7018 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7019 7020 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7021 (void) printf("%6s\t%5s\t%5s\t%5s" 7022 "\t%5s\t%5s\t%6s\t%s\n", 7023 "-", 7024 "-", 7025 "-", 7026 "-", 7027 "-", 7028 "-", 7029 "-", 7030 typename); 7031 continue; 7032 } 7033 7034 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7035 level = (l == -1 ? ZB_TOTAL : l); 7036 zb = &zcb->zcb_type[level][t]; 7037 7038 if (zb->zb_asize == 0) 7039 continue; 7040 7041 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7042 (level > 0 || DMU_OT_IS_METADATA(t))) { 7043 mdstats->zb_count += zb->zb_count; 7044 mdstats->zb_lsize += zb->zb_lsize; 7045 mdstats->zb_psize += zb->zb_psize; 7046 mdstats->zb_asize += zb->zb_asize; 7047 mdstats->zb_gangs += zb->zb_gangs; 7048 } 7049 7050 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7051 continue; 7052 7053 if (level == 0 && zb->zb_asize == 7054 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7055 continue; 7056 7057 zdb_nicenum(zb->zb_count, csize, 7058 sizeof (csize)); 7059 zdb_nicenum(zb->zb_lsize, lsize, 7060 sizeof (lsize)); 7061 zdb_nicenum(zb->zb_psize, psize, 7062 sizeof (psize)); 7063 zdb_nicenum(zb->zb_asize, asize, 7064 sizeof (asize)); 7065 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7066 sizeof (avg)); 7067 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7068 7069 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7070 "\t%5.2f\t%6.2f\t", 7071 csize, lsize, psize, asize, avg, 7072 (double)zb->zb_lsize / zb->zb_psize, 7073 100.0 * zb->zb_asize / tzb->zb_asize); 7074 7075 if (level == ZB_TOTAL) 7076 (void) printf("%s\n", typename); 7077 else 7078 (void) printf(" L%d %s\n", 7079 level, typename); 7080 7081 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7082 (void) printf("\t number of ganged " 7083 "blocks: %s\n", gang); 7084 } 7085 7086 if (dump_opt['b'] >= 4) { 7087 (void) printf("psize " 7088 "(in 512-byte sectors): " 7089 "number of blocks\n"); 7090 dump_histogram(zb->zb_psize_histogram, 7091 PSIZE_HISTO_SIZE, 0); 7092 } 7093 } 7094 } 7095 zdb_nicenum(mdstats->zb_count, csize, 7096 sizeof (csize)); 7097 zdb_nicenum(mdstats->zb_lsize, lsize, 7098 sizeof (lsize)); 7099 zdb_nicenum(mdstats->zb_psize, psize, 7100 sizeof (psize)); 7101 zdb_nicenum(mdstats->zb_asize, asize, 7102 sizeof (asize)); 7103 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7104 sizeof (avg)); 7105 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7106 7107 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7108 "\t%5.2f\t%6.2f\t", 7109 csize, lsize, psize, asize, avg, 7110 (double)mdstats->zb_lsize / mdstats->zb_psize, 7111 100.0 * mdstats->zb_asize / tzb->zb_asize); 7112 (void) printf("%s\n", "Metadata Total"); 7113 7114 /* Output a table summarizing block sizes in the pool */ 7115 if (dump_opt['b'] >= 2) { 7116 dump_size_histograms(zcb); 7117 } 7118 7119 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7120 } 7121 7122 (void) printf("\n"); 7123 7124 if (leaks) { 7125 umem_free(zcb, sizeof (zdb_cb_t)); 7126 return (2); 7127 } 7128 7129 if (zcb->zcb_haderrors) { 7130 umem_free(zcb, sizeof (zdb_cb_t)); 7131 return (3); 7132 } 7133 7134 umem_free(zcb, sizeof (zdb_cb_t)); 7135 return (0); 7136 } 7137 7138 typedef struct zdb_ddt_entry { 7139 ddt_key_t zdde_key; 7140 uint64_t zdde_ref_blocks; 7141 uint64_t zdde_ref_lsize; 7142 uint64_t zdde_ref_psize; 7143 uint64_t zdde_ref_dsize; 7144 avl_node_t zdde_node; 7145 } zdb_ddt_entry_t; 7146 7147 static int 7148 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7149 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7150 { 7151 (void) zilog, (void) dnp; 7152 avl_tree_t *t = arg; 7153 avl_index_t where; 7154 zdb_ddt_entry_t *zdde, zdde_search; 7155 7156 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7157 BP_IS_EMBEDDED(bp)) 7158 return (0); 7159 7160 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7161 (void) printf("traversing objset %llu, %llu objects, " 7162 "%lu blocks so far\n", 7163 (u_longlong_t)zb->zb_objset, 7164 (u_longlong_t)BP_GET_FILL(bp), 7165 avl_numnodes(t)); 7166 } 7167 7168 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7169 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7170 return (0); 7171 7172 ddt_key_fill(&zdde_search.zdde_key, bp); 7173 7174 zdde = avl_find(t, &zdde_search, &where); 7175 7176 if (zdde == NULL) { 7177 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7178 zdde->zdde_key = zdde_search.zdde_key; 7179 avl_insert(t, zdde, where); 7180 } 7181 7182 zdde->zdde_ref_blocks += 1; 7183 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7184 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7185 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7186 7187 return (0); 7188 } 7189 7190 static void 7191 dump_simulated_ddt(spa_t *spa) 7192 { 7193 avl_tree_t t; 7194 void *cookie = NULL; 7195 zdb_ddt_entry_t *zdde; 7196 ddt_histogram_t ddh_total = {{{0}}}; 7197 ddt_stat_t dds_total = {0}; 7198 7199 avl_create(&t, ddt_entry_compare, 7200 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7201 7202 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7203 7204 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7205 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7206 7207 spa_config_exit(spa, SCL_CONFIG, FTAG); 7208 7209 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7210 ddt_stat_t dds; 7211 uint64_t refcnt = zdde->zdde_ref_blocks; 7212 ASSERT(refcnt != 0); 7213 7214 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 7215 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 7216 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 7217 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 7218 7219 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 7220 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 7221 dds.dds_ref_psize = zdde->zdde_ref_psize; 7222 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 7223 7224 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 7225 &dds, 0); 7226 7227 umem_free(zdde, sizeof (*zdde)); 7228 } 7229 7230 avl_destroy(&t); 7231 7232 ddt_histogram_stat(&dds_total, &ddh_total); 7233 7234 (void) printf("Simulated DDT histogram:\n"); 7235 7236 zpool_dump_ddt(&dds_total, &ddh_total); 7237 7238 dump_dedup_ratio(&dds_total); 7239 } 7240 7241 static int 7242 verify_device_removal_feature_counts(spa_t *spa) 7243 { 7244 uint64_t dr_feature_refcount = 0; 7245 uint64_t oc_feature_refcount = 0; 7246 uint64_t indirect_vdev_count = 0; 7247 uint64_t precise_vdev_count = 0; 7248 uint64_t obsolete_counts_object_count = 0; 7249 uint64_t obsolete_sm_count = 0; 7250 uint64_t obsolete_counts_count = 0; 7251 uint64_t scip_count = 0; 7252 uint64_t obsolete_bpobj_count = 0; 7253 int ret = 0; 7254 7255 spa_condensing_indirect_phys_t *scip = 7256 &spa->spa_condensing_indirect_phys; 7257 if (scip->scip_next_mapping_object != 0) { 7258 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7259 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7260 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7261 7262 (void) printf("Condensing indirect vdev %llu: new mapping " 7263 "object %llu, prev obsolete sm %llu\n", 7264 (u_longlong_t)scip->scip_vdev, 7265 (u_longlong_t)scip->scip_next_mapping_object, 7266 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7267 if (scip->scip_prev_obsolete_sm_object != 0) { 7268 space_map_t *prev_obsolete_sm = NULL; 7269 VERIFY0(space_map_open(&prev_obsolete_sm, 7270 spa->spa_meta_objset, 7271 scip->scip_prev_obsolete_sm_object, 7272 0, vd->vdev_asize, 0)); 7273 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7274 (void) printf("\n"); 7275 space_map_close(prev_obsolete_sm); 7276 } 7277 7278 scip_count += 2; 7279 } 7280 7281 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7282 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7283 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7284 7285 if (vic->vic_mapping_object != 0) { 7286 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7287 vd->vdev_removing); 7288 indirect_vdev_count++; 7289 7290 if (vd->vdev_indirect_mapping->vim_havecounts) { 7291 obsolete_counts_count++; 7292 } 7293 } 7294 7295 boolean_t are_precise; 7296 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7297 if (are_precise) { 7298 ASSERT(vic->vic_mapping_object != 0); 7299 precise_vdev_count++; 7300 } 7301 7302 uint64_t obsolete_sm_object; 7303 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7304 if (obsolete_sm_object != 0) { 7305 ASSERT(vic->vic_mapping_object != 0); 7306 obsolete_sm_count++; 7307 } 7308 } 7309 7310 (void) feature_get_refcount(spa, 7311 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7312 &dr_feature_refcount); 7313 (void) feature_get_refcount(spa, 7314 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7315 &oc_feature_refcount); 7316 7317 if (dr_feature_refcount != indirect_vdev_count) { 7318 ret = 1; 7319 (void) printf("Number of indirect vdevs (%llu) " \ 7320 "does not match feature count (%llu)\n", 7321 (u_longlong_t)indirect_vdev_count, 7322 (u_longlong_t)dr_feature_refcount); 7323 } else { 7324 (void) printf("Verified device_removal feature refcount " \ 7325 "of %llu is correct\n", 7326 (u_longlong_t)dr_feature_refcount); 7327 } 7328 7329 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7330 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7331 obsolete_bpobj_count++; 7332 } 7333 7334 7335 obsolete_counts_object_count = precise_vdev_count; 7336 obsolete_counts_object_count += obsolete_sm_count; 7337 obsolete_counts_object_count += obsolete_counts_count; 7338 obsolete_counts_object_count += scip_count; 7339 obsolete_counts_object_count += obsolete_bpobj_count; 7340 obsolete_counts_object_count += remap_deadlist_count; 7341 7342 if (oc_feature_refcount != obsolete_counts_object_count) { 7343 ret = 1; 7344 (void) printf("Number of obsolete counts objects (%llu) " \ 7345 "does not match feature count (%llu)\n", 7346 (u_longlong_t)obsolete_counts_object_count, 7347 (u_longlong_t)oc_feature_refcount); 7348 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7349 "ob:%llu rd:%llu\n", 7350 (u_longlong_t)precise_vdev_count, 7351 (u_longlong_t)obsolete_sm_count, 7352 (u_longlong_t)obsolete_counts_count, 7353 (u_longlong_t)scip_count, 7354 (u_longlong_t)obsolete_bpobj_count, 7355 (u_longlong_t)remap_deadlist_count); 7356 } else { 7357 (void) printf("Verified indirect_refcount feature refcount " \ 7358 "of %llu is correct\n", 7359 (u_longlong_t)oc_feature_refcount); 7360 } 7361 return (ret); 7362 } 7363 7364 static void 7365 zdb_set_skip_mmp(char *target) 7366 { 7367 spa_t *spa; 7368 7369 /* 7370 * Disable the activity check to allow examination of 7371 * active pools. 7372 */ 7373 mutex_enter(&spa_namespace_lock); 7374 if ((spa = spa_lookup(target)) != NULL) { 7375 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7376 } 7377 mutex_exit(&spa_namespace_lock); 7378 } 7379 7380 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7381 /* 7382 * Import the checkpointed state of the pool specified by the target 7383 * parameter as readonly. The function also accepts a pool config 7384 * as an optional parameter, else it attempts to infer the config by 7385 * the name of the target pool. 7386 * 7387 * Note that the checkpointed state's pool name will be the name of 7388 * the original pool with the above suffix appended to it. In addition, 7389 * if the target is not a pool name (e.g. a path to a dataset) then 7390 * the new_path parameter is populated with the updated path to 7391 * reflect the fact that we are looking into the checkpointed state. 7392 * 7393 * The function returns a newly-allocated copy of the name of the 7394 * pool containing the checkpointed state. When this copy is no 7395 * longer needed it should be freed with free(3C). Same thing 7396 * applies to the new_path parameter if allocated. 7397 */ 7398 static char * 7399 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7400 { 7401 int error = 0; 7402 char *poolname, *bogus_name = NULL; 7403 boolean_t freecfg = B_FALSE; 7404 7405 /* If the target is not a pool, the extract the pool name */ 7406 char *path_start = strchr(target, '/'); 7407 if (path_start != NULL) { 7408 size_t poolname_len = path_start - target; 7409 poolname = strndup(target, poolname_len); 7410 } else { 7411 poolname = target; 7412 } 7413 7414 if (cfg == NULL) { 7415 zdb_set_skip_mmp(poolname); 7416 error = spa_get_stats(poolname, &cfg, NULL, 0); 7417 if (error != 0) { 7418 fatal("Tried to read config of pool \"%s\" but " 7419 "spa_get_stats() failed with error %d\n", 7420 poolname, error); 7421 } 7422 freecfg = B_TRUE; 7423 } 7424 7425 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7426 if (target != poolname) 7427 free(poolname); 7428 return (NULL); 7429 } 7430 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7431 7432 error = spa_import(bogus_name, cfg, NULL, 7433 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7434 ZFS_IMPORT_SKIP_MMP); 7435 if (freecfg) 7436 nvlist_free(cfg); 7437 if (error != 0) { 7438 fatal("Tried to import pool \"%s\" but spa_import() failed " 7439 "with error %d\n", bogus_name, error); 7440 } 7441 7442 if (new_path != NULL && path_start != NULL) { 7443 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7444 free(bogus_name); 7445 if (path_start != NULL) 7446 free(poolname); 7447 return (NULL); 7448 } 7449 } 7450 7451 if (target != poolname) 7452 free(poolname); 7453 7454 return (bogus_name); 7455 } 7456 7457 typedef struct verify_checkpoint_sm_entry_cb_arg { 7458 vdev_t *vcsec_vd; 7459 7460 /* the following fields are only used for printing progress */ 7461 uint64_t vcsec_entryid; 7462 uint64_t vcsec_num_entries; 7463 } verify_checkpoint_sm_entry_cb_arg_t; 7464 7465 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7466 7467 static int 7468 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7469 { 7470 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7471 vdev_t *vd = vcsec->vcsec_vd; 7472 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7473 uint64_t end = sme->sme_offset + sme->sme_run; 7474 7475 ASSERT(sme->sme_type == SM_FREE); 7476 7477 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7478 (void) fprintf(stderr, 7479 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7480 (longlong_t)vd->vdev_id, 7481 (longlong_t)vcsec->vcsec_entryid, 7482 (longlong_t)vcsec->vcsec_num_entries); 7483 } 7484 vcsec->vcsec_entryid++; 7485 7486 /* 7487 * See comment in checkpoint_sm_exclude_entry_cb() 7488 */ 7489 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7490 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7491 7492 /* 7493 * The entries in the vdev_checkpoint_sm should be marked as 7494 * allocated in the checkpointed state of the pool, therefore 7495 * their respective ms_allocateable trees should not contain them. 7496 */ 7497 mutex_enter(&ms->ms_lock); 7498 range_tree_verify_not_present(ms->ms_allocatable, 7499 sme->sme_offset, sme->sme_run); 7500 mutex_exit(&ms->ms_lock); 7501 7502 return (0); 7503 } 7504 7505 /* 7506 * Verify that all segments in the vdev_checkpoint_sm are allocated 7507 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7508 * ms_allocatable). 7509 * 7510 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7511 * each vdev in the current state of the pool to the metaslab space maps 7512 * (ms_sm) of the checkpointed state of the pool. 7513 * 7514 * Note that the function changes the state of the ms_allocatable 7515 * trees of the current spa_t. The entries of these ms_allocatable 7516 * trees are cleared out and then repopulated from with the free 7517 * entries of their respective ms_sm space maps. 7518 */ 7519 static void 7520 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7521 { 7522 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7523 vdev_t *current_rvd = current->spa_root_vdev; 7524 7525 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7526 7527 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7528 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7529 vdev_t *current_vd = current_rvd->vdev_child[c]; 7530 7531 space_map_t *checkpoint_sm = NULL; 7532 uint64_t checkpoint_sm_obj; 7533 7534 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7535 /* 7536 * Since we don't allow device removal in a pool 7537 * that has a checkpoint, we expect that all removed 7538 * vdevs were removed from the pool before the 7539 * checkpoint. 7540 */ 7541 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7542 continue; 7543 } 7544 7545 /* 7546 * If the checkpoint space map doesn't exist, then nothing 7547 * here is checkpointed so there's nothing to verify. 7548 */ 7549 if (current_vd->vdev_top_zap == 0 || 7550 zap_contains(spa_meta_objset(current), 7551 current_vd->vdev_top_zap, 7552 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7553 continue; 7554 7555 VERIFY0(zap_lookup(spa_meta_objset(current), 7556 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7557 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7558 7559 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7560 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7561 current_vd->vdev_ashift)); 7562 7563 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7564 vcsec.vcsec_vd = ckpoint_vd; 7565 vcsec.vcsec_entryid = 0; 7566 vcsec.vcsec_num_entries = 7567 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7568 VERIFY0(space_map_iterate(checkpoint_sm, 7569 space_map_length(checkpoint_sm), 7570 verify_checkpoint_sm_entry_cb, &vcsec)); 7571 if (dump_opt['m'] > 3) 7572 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7573 space_map_close(checkpoint_sm); 7574 } 7575 7576 /* 7577 * If we've added vdevs since we took the checkpoint, ensure 7578 * that their checkpoint space maps are empty. 7579 */ 7580 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7581 for (uint64_t c = ckpoint_rvd->vdev_children; 7582 c < current_rvd->vdev_children; c++) { 7583 vdev_t *current_vd = current_rvd->vdev_child[c]; 7584 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7585 } 7586 } 7587 7588 /* for cleaner progress output */ 7589 (void) fprintf(stderr, "\n"); 7590 } 7591 7592 /* 7593 * Verifies that all space that's allocated in the checkpoint is 7594 * still allocated in the current version, by checking that everything 7595 * in checkpoint's ms_allocatable (which is actually allocated, not 7596 * allocatable/free) is not present in current's ms_allocatable. 7597 * 7598 * Note that the function changes the state of the ms_allocatable 7599 * trees of both spas when called. The entries of all ms_allocatable 7600 * trees are cleared out and then repopulated from their respective 7601 * ms_sm space maps. In the checkpointed state we load the allocated 7602 * entries, and in the current state we load the free entries. 7603 */ 7604 static void 7605 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7606 { 7607 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7608 vdev_t *current_rvd = current->spa_root_vdev; 7609 7610 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7611 load_concrete_ms_allocatable_trees(current, SM_FREE); 7612 7613 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7614 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7615 vdev_t *current_vd = current_rvd->vdev_child[i]; 7616 7617 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7618 /* 7619 * See comment in verify_checkpoint_vdev_spacemaps() 7620 */ 7621 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7622 continue; 7623 } 7624 7625 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7626 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7627 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7628 7629 (void) fprintf(stderr, 7630 "\rverifying vdev %llu of %llu, " 7631 "metaslab %llu of %llu ...", 7632 (longlong_t)current_vd->vdev_id, 7633 (longlong_t)current_rvd->vdev_children, 7634 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7635 (longlong_t)current_vd->vdev_ms_count); 7636 7637 /* 7638 * We walk through the ms_allocatable trees that 7639 * are loaded with the allocated blocks from the 7640 * ms_sm spacemaps of the checkpoint. For each 7641 * one of these ranges we ensure that none of them 7642 * exists in the ms_allocatable trees of the 7643 * current state which are loaded with the ranges 7644 * that are currently free. 7645 * 7646 * This way we ensure that none of the blocks that 7647 * are part of the checkpoint were freed by mistake. 7648 */ 7649 range_tree_walk(ckpoint_msp->ms_allocatable, 7650 (range_tree_func_t *)range_tree_verify_not_present, 7651 current_msp->ms_allocatable); 7652 } 7653 } 7654 7655 /* for cleaner progress output */ 7656 (void) fprintf(stderr, "\n"); 7657 } 7658 7659 static void 7660 verify_checkpoint_blocks(spa_t *spa) 7661 { 7662 ASSERT(!dump_opt['L']); 7663 7664 spa_t *checkpoint_spa; 7665 char *checkpoint_pool; 7666 int error = 0; 7667 7668 /* 7669 * We import the checkpointed state of the pool (under a different 7670 * name) so we can do verification on it against the current state 7671 * of the pool. 7672 */ 7673 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7674 NULL); 7675 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7676 7677 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7678 if (error != 0) { 7679 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7680 "error %d\n", checkpoint_pool, error); 7681 } 7682 7683 /* 7684 * Ensure that ranges in the checkpoint space maps of each vdev 7685 * are allocated according to the checkpointed state's metaslab 7686 * space maps. 7687 */ 7688 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7689 7690 /* 7691 * Ensure that allocated ranges in the checkpoint's metaslab 7692 * space maps remain allocated in the metaslab space maps of 7693 * the current state. 7694 */ 7695 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7696 7697 /* 7698 * Once we are done, we get rid of the checkpointed state. 7699 */ 7700 spa_close(checkpoint_spa, FTAG); 7701 free(checkpoint_pool); 7702 } 7703 7704 static void 7705 dump_leftover_checkpoint_blocks(spa_t *spa) 7706 { 7707 vdev_t *rvd = spa->spa_root_vdev; 7708 7709 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7710 vdev_t *vd = rvd->vdev_child[i]; 7711 7712 space_map_t *checkpoint_sm = NULL; 7713 uint64_t checkpoint_sm_obj; 7714 7715 if (vd->vdev_top_zap == 0) 7716 continue; 7717 7718 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7719 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7720 continue; 7721 7722 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7723 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7724 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7725 7726 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7727 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7728 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7729 space_map_close(checkpoint_sm); 7730 } 7731 } 7732 7733 static int 7734 verify_checkpoint(spa_t *spa) 7735 { 7736 uberblock_t checkpoint; 7737 int error; 7738 7739 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7740 return (0); 7741 7742 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7743 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7744 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7745 7746 if (error == ENOENT && !dump_opt['L']) { 7747 /* 7748 * If the feature is active but the uberblock is missing 7749 * then we must be in the middle of discarding the 7750 * checkpoint. 7751 */ 7752 (void) printf("\nPartially discarded checkpoint " 7753 "state found:\n"); 7754 if (dump_opt['m'] > 3) 7755 dump_leftover_checkpoint_blocks(spa); 7756 return (0); 7757 } else if (error != 0) { 7758 (void) printf("lookup error %d when looking for " 7759 "checkpointed uberblock in MOS\n", error); 7760 return (error); 7761 } 7762 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7763 7764 if (checkpoint.ub_checkpoint_txg == 0) { 7765 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7766 "uberblock\n"); 7767 error = 3; 7768 } 7769 7770 if (error == 0 && !dump_opt['L']) 7771 verify_checkpoint_blocks(spa); 7772 7773 return (error); 7774 } 7775 7776 static void 7777 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7778 { 7779 (void) arg; 7780 for (uint64_t i = start; i < size; i++) { 7781 (void) printf("MOS object %llu referenced but not allocated\n", 7782 (u_longlong_t)i); 7783 } 7784 } 7785 7786 static void 7787 mos_obj_refd(uint64_t obj) 7788 { 7789 if (obj != 0 && mos_refd_objs != NULL) 7790 range_tree_add(mos_refd_objs, obj, 1); 7791 } 7792 7793 /* 7794 * Call on a MOS object that may already have been referenced. 7795 */ 7796 static void 7797 mos_obj_refd_multiple(uint64_t obj) 7798 { 7799 if (obj != 0 && mos_refd_objs != NULL && 7800 !range_tree_contains(mos_refd_objs, obj, 1)) 7801 range_tree_add(mos_refd_objs, obj, 1); 7802 } 7803 7804 static void 7805 mos_leak_vdev_top_zap(vdev_t *vd) 7806 { 7807 uint64_t ms_flush_data_obj; 7808 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7809 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7810 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7811 if (error == ENOENT) 7812 return; 7813 ASSERT0(error); 7814 7815 mos_obj_refd(ms_flush_data_obj); 7816 } 7817 7818 static void 7819 mos_leak_vdev(vdev_t *vd) 7820 { 7821 mos_obj_refd(vd->vdev_dtl_object); 7822 mos_obj_refd(vd->vdev_ms_array); 7823 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7824 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7825 mos_obj_refd(vd->vdev_leaf_zap); 7826 if (vd->vdev_checkpoint_sm != NULL) 7827 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7828 if (vd->vdev_indirect_mapping != NULL) { 7829 mos_obj_refd(vd->vdev_indirect_mapping-> 7830 vim_phys->vimp_counts_object); 7831 } 7832 if (vd->vdev_obsolete_sm != NULL) 7833 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7834 7835 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7836 metaslab_t *ms = vd->vdev_ms[m]; 7837 mos_obj_refd(space_map_object(ms->ms_sm)); 7838 } 7839 7840 if (vd->vdev_root_zap != 0) 7841 mos_obj_refd(vd->vdev_root_zap); 7842 7843 if (vd->vdev_top_zap != 0) { 7844 mos_obj_refd(vd->vdev_top_zap); 7845 mos_leak_vdev_top_zap(vd); 7846 } 7847 7848 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7849 mos_leak_vdev(vd->vdev_child[c]); 7850 } 7851 } 7852 7853 static void 7854 mos_leak_log_spacemaps(spa_t *spa) 7855 { 7856 uint64_t spacemap_zap; 7857 int error = zap_lookup(spa_meta_objset(spa), 7858 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7859 sizeof (spacemap_zap), 1, &spacemap_zap); 7860 if (error == ENOENT) 7861 return; 7862 ASSERT0(error); 7863 7864 mos_obj_refd(spacemap_zap); 7865 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7866 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7867 mos_obj_refd(sls->sls_sm_obj); 7868 } 7869 7870 static void 7871 errorlog_count_refd(objset_t *mos, uint64_t errlog) 7872 { 7873 zap_cursor_t zc; 7874 zap_attribute_t za; 7875 for (zap_cursor_init(&zc, mos, errlog); 7876 zap_cursor_retrieve(&zc, &za) == 0; 7877 zap_cursor_advance(&zc)) { 7878 mos_obj_refd(za.za_first_integer); 7879 } 7880 zap_cursor_fini(&zc); 7881 } 7882 7883 static int 7884 dump_mos_leaks(spa_t *spa) 7885 { 7886 int rv = 0; 7887 objset_t *mos = spa->spa_meta_objset; 7888 dsl_pool_t *dp = spa->spa_dsl_pool; 7889 7890 /* Visit and mark all referenced objects in the MOS */ 7891 7892 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7893 mos_obj_refd(spa->spa_pool_props_object); 7894 mos_obj_refd(spa->spa_config_object); 7895 mos_obj_refd(spa->spa_ddt_stat_object); 7896 mos_obj_refd(spa->spa_feat_desc_obj); 7897 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7898 mos_obj_refd(spa->spa_feat_for_read_obj); 7899 mos_obj_refd(spa->spa_feat_for_write_obj); 7900 mos_obj_refd(spa->spa_history); 7901 mos_obj_refd(spa->spa_errlog_last); 7902 mos_obj_refd(spa->spa_errlog_scrub); 7903 7904 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 7905 errorlog_count_refd(mos, spa->spa_errlog_last); 7906 errorlog_count_refd(mos, spa->spa_errlog_scrub); 7907 } 7908 7909 mos_obj_refd(spa->spa_all_vdev_zaps); 7910 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7911 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7912 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7913 bpobj_count_refd(&spa->spa_deferred_bpobj); 7914 mos_obj_refd(dp->dp_empty_bpobj); 7915 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7916 bpobj_count_refd(&dp->dp_free_bpobj); 7917 mos_obj_refd(spa->spa_l2cache.sav_object); 7918 mos_obj_refd(spa->spa_spares.sav_object); 7919 7920 if (spa->spa_syncing_log_sm != NULL) 7921 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7922 mos_leak_log_spacemaps(spa); 7923 7924 mos_obj_refd(spa->spa_condensing_indirect_phys. 7925 scip_next_mapping_object); 7926 mos_obj_refd(spa->spa_condensing_indirect_phys. 7927 scip_prev_obsolete_sm_object); 7928 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7929 vdev_indirect_mapping_t *vim = 7930 vdev_indirect_mapping_open(mos, 7931 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7932 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7933 vdev_indirect_mapping_close(vim); 7934 } 7935 deleted_livelists_dump_mos(spa); 7936 7937 if (dp->dp_origin_snap != NULL) { 7938 dsl_dataset_t *ds; 7939 7940 dsl_pool_config_enter(dp, FTAG); 7941 VERIFY0(dsl_dataset_hold_obj(dp, 7942 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7943 FTAG, &ds)); 7944 count_ds_mos_objects(ds); 7945 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7946 dsl_dataset_rele(ds, FTAG); 7947 dsl_pool_config_exit(dp, FTAG); 7948 7949 count_ds_mos_objects(dp->dp_origin_snap); 7950 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7951 } 7952 count_dir_mos_objects(dp->dp_mos_dir); 7953 if (dp->dp_free_dir != NULL) 7954 count_dir_mos_objects(dp->dp_free_dir); 7955 if (dp->dp_leak_dir != NULL) 7956 count_dir_mos_objects(dp->dp_leak_dir); 7957 7958 mos_leak_vdev(spa->spa_root_vdev); 7959 7960 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7961 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7962 for (uint64_t cksum = 0; 7963 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7964 ddt_t *ddt = spa->spa_ddt[cksum]; 7965 mos_obj_refd(ddt->ddt_object[type][class]); 7966 } 7967 } 7968 } 7969 7970 /* 7971 * Visit all allocated objects and make sure they are referenced. 7972 */ 7973 uint64_t object = 0; 7974 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7975 if (range_tree_contains(mos_refd_objs, object, 1)) { 7976 range_tree_remove(mos_refd_objs, object, 1); 7977 } else { 7978 dmu_object_info_t doi; 7979 const char *name; 7980 VERIFY0(dmu_object_info(mos, object, &doi)); 7981 if (doi.doi_type & DMU_OT_NEWTYPE) { 7982 dmu_object_byteswap_t bswap = 7983 DMU_OT_BYTESWAP(doi.doi_type); 7984 name = dmu_ot_byteswap[bswap].ob_name; 7985 } else { 7986 name = dmu_ot[doi.doi_type].ot_name; 7987 } 7988 7989 (void) printf("MOS object %llu (%s) leaked\n", 7990 (u_longlong_t)object, name); 7991 rv = 2; 7992 } 7993 } 7994 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7995 if (!range_tree_is_empty(mos_refd_objs)) 7996 rv = 2; 7997 range_tree_vacate(mos_refd_objs, NULL, NULL); 7998 range_tree_destroy(mos_refd_objs); 7999 return (rv); 8000 } 8001 8002 typedef struct log_sm_obsolete_stats_arg { 8003 uint64_t lsos_current_txg; 8004 8005 uint64_t lsos_total_entries; 8006 uint64_t lsos_valid_entries; 8007 8008 uint64_t lsos_sm_entries; 8009 uint64_t lsos_valid_sm_entries; 8010 } log_sm_obsolete_stats_arg_t; 8011 8012 static int 8013 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8014 uint64_t txg, void *arg) 8015 { 8016 log_sm_obsolete_stats_arg_t *lsos = arg; 8017 8018 uint64_t offset = sme->sme_offset; 8019 uint64_t vdev_id = sme->sme_vdev; 8020 8021 if (lsos->lsos_current_txg == 0) { 8022 /* this is the first log */ 8023 lsos->lsos_current_txg = txg; 8024 } else if (lsos->lsos_current_txg < txg) { 8025 /* we just changed log - print stats and reset */ 8026 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8027 (u_longlong_t)lsos->lsos_valid_sm_entries, 8028 (u_longlong_t)lsos->lsos_sm_entries, 8029 (u_longlong_t)lsos->lsos_current_txg); 8030 lsos->lsos_valid_sm_entries = 0; 8031 lsos->lsos_sm_entries = 0; 8032 lsos->lsos_current_txg = txg; 8033 } 8034 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8035 8036 lsos->lsos_sm_entries++; 8037 lsos->lsos_total_entries++; 8038 8039 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8040 if (!vdev_is_concrete(vd)) 8041 return (0); 8042 8043 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8044 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8045 8046 if (txg < metaslab_unflushed_txg(ms)) 8047 return (0); 8048 lsos->lsos_valid_sm_entries++; 8049 lsos->lsos_valid_entries++; 8050 return (0); 8051 } 8052 8053 static void 8054 dump_log_spacemap_obsolete_stats(spa_t *spa) 8055 { 8056 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8057 return; 8058 8059 log_sm_obsolete_stats_arg_t lsos = {0}; 8060 8061 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8062 8063 iterate_through_spacemap_logs(spa, 8064 log_spacemap_obsolete_stats_cb, &lsos); 8065 8066 /* print stats for latest log */ 8067 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8068 (u_longlong_t)lsos.lsos_valid_sm_entries, 8069 (u_longlong_t)lsos.lsos_sm_entries, 8070 (u_longlong_t)lsos.lsos_current_txg); 8071 8072 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8073 (u_longlong_t)lsos.lsos_valid_entries, 8074 (u_longlong_t)lsos.lsos_total_entries); 8075 } 8076 8077 static void 8078 dump_zpool(spa_t *spa) 8079 { 8080 dsl_pool_t *dp = spa_get_dsl(spa); 8081 int rc = 0; 8082 8083 if (dump_opt['y']) { 8084 livelist_metaslab_validate(spa); 8085 } 8086 8087 if (dump_opt['S']) { 8088 dump_simulated_ddt(spa); 8089 return; 8090 } 8091 8092 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8093 (void) printf("\nCached configuration:\n"); 8094 dump_nvlist(spa->spa_config, 8); 8095 } 8096 8097 if (dump_opt['C']) 8098 dump_config(spa); 8099 8100 if (dump_opt['u']) 8101 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8102 8103 if (dump_opt['D']) 8104 dump_all_ddts(spa); 8105 8106 if (dump_opt['d'] > 2 || dump_opt['m']) 8107 dump_metaslabs(spa); 8108 if (dump_opt['M']) 8109 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8110 if (dump_opt['d'] > 2 || dump_opt['m']) { 8111 dump_log_spacemaps(spa); 8112 dump_log_spacemap_obsolete_stats(spa); 8113 } 8114 8115 if (dump_opt['d'] || dump_opt['i']) { 8116 spa_feature_t f; 8117 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 8118 0); 8119 dump_objset(dp->dp_meta_objset); 8120 8121 if (dump_opt['d'] >= 3) { 8122 dsl_pool_t *dp = spa->spa_dsl_pool; 8123 dump_full_bpobj(&spa->spa_deferred_bpobj, 8124 "Deferred frees", 0); 8125 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8126 dump_full_bpobj(&dp->dp_free_bpobj, 8127 "Pool snapshot frees", 0); 8128 } 8129 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8130 ASSERT(spa_feature_is_enabled(spa, 8131 SPA_FEATURE_DEVICE_REMOVAL)); 8132 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8133 "Pool obsolete blocks", 0); 8134 } 8135 8136 if (spa_feature_is_active(spa, 8137 SPA_FEATURE_ASYNC_DESTROY)) { 8138 dump_bptree(spa->spa_meta_objset, 8139 dp->dp_bptree_obj, 8140 "Pool dataset frees"); 8141 } 8142 dump_dtl(spa->spa_root_vdev, 0); 8143 } 8144 8145 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8146 global_feature_count[f] = UINT64_MAX; 8147 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8148 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8149 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8150 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8151 8152 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8153 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8154 8155 if (rc == 0 && !dump_opt['L']) 8156 rc = dump_mos_leaks(spa); 8157 8158 for (f = 0; f < SPA_FEATURES; f++) { 8159 uint64_t refcount; 8160 8161 uint64_t *arr; 8162 if (!(spa_feature_table[f].fi_flags & 8163 ZFEATURE_FLAG_PER_DATASET)) { 8164 if (global_feature_count[f] == UINT64_MAX) 8165 continue; 8166 if (!spa_feature_is_enabled(spa, f)) { 8167 ASSERT0(global_feature_count[f]); 8168 continue; 8169 } 8170 arr = global_feature_count; 8171 } else { 8172 if (!spa_feature_is_enabled(spa, f)) { 8173 ASSERT0(dataset_feature_count[f]); 8174 continue; 8175 } 8176 arr = dataset_feature_count; 8177 } 8178 if (feature_get_refcount(spa, &spa_feature_table[f], 8179 &refcount) == ENOTSUP) 8180 continue; 8181 if (arr[f] != refcount) { 8182 (void) printf("%s feature refcount mismatch: " 8183 "%lld consumers != %lld refcount\n", 8184 spa_feature_table[f].fi_uname, 8185 (longlong_t)arr[f], (longlong_t)refcount); 8186 rc = 2; 8187 } else { 8188 (void) printf("Verified %s feature refcount " 8189 "of %llu is correct\n", 8190 spa_feature_table[f].fi_uname, 8191 (longlong_t)refcount); 8192 } 8193 } 8194 8195 if (rc == 0) 8196 rc = verify_device_removal_feature_counts(spa); 8197 } 8198 8199 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8200 rc = dump_block_stats(spa); 8201 8202 if (rc == 0) 8203 rc = verify_spacemap_refcounts(spa); 8204 8205 if (dump_opt['s']) 8206 show_pool_stats(spa); 8207 8208 if (dump_opt['h']) 8209 dump_history(spa); 8210 8211 if (rc == 0) 8212 rc = verify_checkpoint(spa); 8213 8214 if (rc != 0) { 8215 dump_debug_buffer(); 8216 exit(rc); 8217 } 8218 } 8219 8220 #define ZDB_FLAG_CHECKSUM 0x0001 8221 #define ZDB_FLAG_DECOMPRESS 0x0002 8222 #define ZDB_FLAG_BSWAP 0x0004 8223 #define ZDB_FLAG_GBH 0x0008 8224 #define ZDB_FLAG_INDIRECT 0x0010 8225 #define ZDB_FLAG_RAW 0x0020 8226 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8227 #define ZDB_FLAG_VERBOSE 0x0080 8228 8229 static int flagbits[256]; 8230 static char flagbitstr[16]; 8231 8232 static void 8233 zdb_print_blkptr(const blkptr_t *bp, int flags) 8234 { 8235 char blkbuf[BP_SPRINTF_LEN]; 8236 8237 if (flags & ZDB_FLAG_BSWAP) 8238 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8239 8240 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8241 (void) printf("%s\n", blkbuf); 8242 } 8243 8244 static void 8245 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8246 { 8247 int i; 8248 8249 for (i = 0; i < nbps; i++) 8250 zdb_print_blkptr(&bp[i], flags); 8251 } 8252 8253 static void 8254 zdb_dump_gbh(void *buf, int flags) 8255 { 8256 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8257 } 8258 8259 static void 8260 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8261 { 8262 if (flags & ZDB_FLAG_BSWAP) 8263 byteswap_uint64_array(buf, size); 8264 VERIFY(write(fileno(stdout), buf, size) == size); 8265 } 8266 8267 static void 8268 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8269 { 8270 uint64_t *d = (uint64_t *)buf; 8271 unsigned nwords = size / sizeof (uint64_t); 8272 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8273 unsigned i, j; 8274 const char *hdr; 8275 char *c; 8276 8277 8278 if (do_bswap) 8279 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8280 else 8281 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8282 8283 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8284 8285 #ifdef _LITTLE_ENDIAN 8286 /* correct the endianness */ 8287 do_bswap = !do_bswap; 8288 #endif 8289 for (i = 0; i < nwords; i += 2) { 8290 (void) printf("%06llx: %016llx %016llx ", 8291 (u_longlong_t)(i * sizeof (uint64_t)), 8292 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8293 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8294 8295 c = (char *)&d[i]; 8296 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8297 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8298 (void) printf("\n"); 8299 } 8300 } 8301 8302 /* 8303 * There are two acceptable formats: 8304 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8305 * child[.child]* - For example: 0.1.1 8306 * 8307 * The second form can be used to specify arbitrary vdevs anywhere 8308 * in the hierarchy. For example, in a pool with a mirror of 8309 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8310 */ 8311 static vdev_t * 8312 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8313 { 8314 char *s, *p, *q; 8315 unsigned i; 8316 8317 if (vdev == NULL) 8318 return (NULL); 8319 8320 /* First, assume the x.x.x.x format */ 8321 i = strtoul(path, &s, 10); 8322 if (s == path || (s && *s != '.' && *s != '\0')) 8323 goto name; 8324 if (i >= vdev->vdev_children) 8325 return (NULL); 8326 8327 vdev = vdev->vdev_child[i]; 8328 if (s && *s == '\0') 8329 return (vdev); 8330 return (zdb_vdev_lookup(vdev, s+1)); 8331 8332 name: 8333 for (i = 0; i < vdev->vdev_children; i++) { 8334 vdev_t *vc = vdev->vdev_child[i]; 8335 8336 if (vc->vdev_path == NULL) { 8337 vc = zdb_vdev_lookup(vc, path); 8338 if (vc == NULL) 8339 continue; 8340 else 8341 return (vc); 8342 } 8343 8344 p = strrchr(vc->vdev_path, '/'); 8345 p = p ? p + 1 : vc->vdev_path; 8346 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8347 8348 if (strcmp(vc->vdev_path, path) == 0) 8349 return (vc); 8350 if (strcmp(p, path) == 0) 8351 return (vc); 8352 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8353 return (vc); 8354 } 8355 8356 return (NULL); 8357 } 8358 8359 static int 8360 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8361 { 8362 dsl_dataset_t *ds; 8363 8364 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8365 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8366 NULL, &ds); 8367 if (error != 0) { 8368 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8369 (u_longlong_t)objset_id, strerror(error)); 8370 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8371 return (error); 8372 } 8373 dsl_dataset_name(ds, outstr); 8374 dsl_dataset_rele(ds, NULL); 8375 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8376 return (0); 8377 } 8378 8379 static boolean_t 8380 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8381 { 8382 char *s0, *s1, *tmp = NULL; 8383 8384 if (sizes == NULL) 8385 return (B_FALSE); 8386 8387 s0 = strtok_r(sizes, "/", &tmp); 8388 if (s0 == NULL) 8389 return (B_FALSE); 8390 s1 = strtok_r(NULL, "/", &tmp); 8391 *lsize = strtoull(s0, NULL, 16); 8392 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8393 return (*lsize >= *psize && *psize > 0); 8394 } 8395 8396 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8397 8398 static boolean_t 8399 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8400 uint64_t psize, int flags) 8401 { 8402 (void) buf; 8403 boolean_t exceeded = B_FALSE; 8404 /* 8405 * We don't know how the data was compressed, so just try 8406 * every decompress function at every inflated blocksize. 8407 */ 8408 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8409 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8410 int *cfuncp = cfuncs; 8411 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8412 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8413 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8414 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 8415 *cfuncp++ = ZIO_COMPRESS_LZ4; 8416 *cfuncp++ = ZIO_COMPRESS_LZJB; 8417 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8418 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8419 if (((1ULL << c) & mask) == 0) 8420 *cfuncp++ = c; 8421 8422 /* 8423 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8424 * could take a while and we should let the user know 8425 * we are not stuck. On the other hand, printing progress 8426 * info gets old after a while. User can specify 'v' flag 8427 * to see the progression. 8428 */ 8429 if (lsize == psize) 8430 lsize += SPA_MINBLOCKSIZE; 8431 else 8432 maxlsize = lsize; 8433 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8434 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8435 if (flags & ZDB_FLAG_VERBOSE) { 8436 (void) fprintf(stderr, 8437 "Trying %05llx -> %05llx (%s)\n", 8438 (u_longlong_t)psize, 8439 (u_longlong_t)lsize, 8440 zio_compress_table[*cfuncp].\ 8441 ci_name); 8442 } 8443 8444 /* 8445 * We randomize lbuf2, and decompress to both 8446 * lbuf and lbuf2. This way, we will know if 8447 * decompression fill exactly to lsize. 8448 */ 8449 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 8450 8451 if (zio_decompress_data(*cfuncp, pabd, 8452 lbuf, psize, lsize, NULL) == 0 && 8453 zio_decompress_data(*cfuncp, pabd, 8454 lbuf2, psize, lsize, NULL) == 0 && 8455 memcmp(lbuf, lbuf2, lsize) == 0) 8456 break; 8457 } 8458 if (*cfuncp != 0) 8459 break; 8460 } 8461 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8462 8463 if (lsize > maxlsize) { 8464 exceeded = B_TRUE; 8465 } 8466 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8467 printf("\nZLE decompression was selected. If you " 8468 "suspect the results are wrong,\ntry avoiding ZLE " 8469 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8470 } 8471 8472 return (exceeded); 8473 } 8474 8475 /* 8476 * Read a block from a pool and print it out. The syntax of the 8477 * block descriptor is: 8478 * 8479 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8480 * 8481 * pool - The name of the pool you wish to read from 8482 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8483 * offset - offset, in hex, in bytes 8484 * size - Amount of data to read, in hex, in bytes 8485 * flags - A string of characters specifying options 8486 * b: Decode a blkptr at given offset within block 8487 * c: Calculate and display checksums 8488 * d: Decompress data before dumping 8489 * e: Byteswap data before dumping 8490 * g: Display data as a gang block header 8491 * i: Display as an indirect block 8492 * r: Dump raw data to stdout 8493 * v: Verbose 8494 * 8495 */ 8496 static void 8497 zdb_read_block(char *thing, spa_t *spa) 8498 { 8499 blkptr_t blk, *bp = &blk; 8500 dva_t *dva = bp->blk_dva; 8501 int flags = 0; 8502 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8503 zio_t *zio; 8504 vdev_t *vd; 8505 abd_t *pabd; 8506 void *lbuf, *buf; 8507 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8508 const char *vdev, *errmsg = NULL; 8509 int i, error; 8510 boolean_t borrowed = B_FALSE, found = B_FALSE; 8511 8512 dup = strdup(thing); 8513 s = strtok_r(dup, ":", &tmp); 8514 vdev = s ?: ""; 8515 s = strtok_r(NULL, ":", &tmp); 8516 offset = strtoull(s ? s : "", NULL, 16); 8517 sizes = strtok_r(NULL, ":", &tmp); 8518 s = strtok_r(NULL, ":", &tmp); 8519 flagstr = strdup(s ?: ""); 8520 8521 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8522 errmsg = "invalid size(s)"; 8523 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8524 errmsg = "size must be a multiple of sector size"; 8525 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8526 errmsg = "offset must be a multiple of sector size"; 8527 if (errmsg) { 8528 (void) printf("Invalid block specifier: %s - %s\n", 8529 thing, errmsg); 8530 goto done; 8531 } 8532 8533 tmp = NULL; 8534 for (s = strtok_r(flagstr, ":", &tmp); 8535 s != NULL; 8536 s = strtok_r(NULL, ":", &tmp)) { 8537 for (i = 0; i < strlen(flagstr); i++) { 8538 int bit = flagbits[(uchar_t)flagstr[i]]; 8539 8540 if (bit == 0) { 8541 (void) printf("***Ignoring flag: %c\n", 8542 (uchar_t)flagstr[i]); 8543 continue; 8544 } 8545 found = B_TRUE; 8546 flags |= bit; 8547 8548 p = &flagstr[i + 1]; 8549 if (*p != ':' && *p != '\0') { 8550 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8551 char *end, offstr[8] = { 0 }; 8552 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8553 (nextbit == 0)) { 8554 /* look ahead to isolate the offset */ 8555 while (nextbit == 0 && 8556 strchr(flagbitstr, *p) == NULL) { 8557 offstr[j] = *p; 8558 j++; 8559 if (i + j > strlen(flagstr)) 8560 break; 8561 p++; 8562 nextbit = flagbits[(uchar_t)*p]; 8563 } 8564 blkptr_offset = strtoull(offstr, &end, 8565 16); 8566 i += j; 8567 } else if (nextbit == 0) { 8568 (void) printf("***Ignoring flag arg:" 8569 " '%c'\n", (uchar_t)*p); 8570 } 8571 } 8572 } 8573 } 8574 if (blkptr_offset % sizeof (blkptr_t)) { 8575 printf("Block pointer offset 0x%llx " 8576 "must be divisible by 0x%x\n", 8577 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8578 goto done; 8579 } 8580 if (found == B_FALSE && strlen(flagstr) > 0) { 8581 printf("Invalid flag arg: '%s'\n", flagstr); 8582 goto done; 8583 } 8584 8585 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8586 if (vd == NULL) { 8587 (void) printf("***Invalid vdev: %s\n", vdev); 8588 goto done; 8589 } else { 8590 if (vd->vdev_path) 8591 (void) fprintf(stderr, "Found vdev: %s\n", 8592 vd->vdev_path); 8593 else 8594 (void) fprintf(stderr, "Found vdev type: %s\n", 8595 vd->vdev_ops->vdev_op_type); 8596 } 8597 8598 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8599 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8600 8601 BP_ZERO(bp); 8602 8603 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8604 DVA_SET_OFFSET(&dva[0], offset); 8605 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 8606 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8607 8608 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8609 8610 BP_SET_LSIZE(bp, lsize); 8611 BP_SET_PSIZE(bp, psize); 8612 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8613 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8614 BP_SET_TYPE(bp, DMU_OT_NONE); 8615 BP_SET_LEVEL(bp, 0); 8616 BP_SET_DEDUP(bp, 0); 8617 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8618 8619 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8620 zio = zio_root(spa, NULL, NULL, 0); 8621 8622 if (vd == vd->vdev_top) { 8623 /* 8624 * Treat this as a normal block read. 8625 */ 8626 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 8627 ZIO_PRIORITY_SYNC_READ, 8628 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 8629 } else { 8630 /* 8631 * Treat this as a vdev child I/O. 8632 */ 8633 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 8634 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 8635 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 8636 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 8637 NULL, NULL)); 8638 } 8639 8640 error = zio_wait(zio); 8641 spa_config_exit(spa, SCL_STATE, FTAG); 8642 8643 if (error) { 8644 (void) printf("Read of %s failed, error: %d\n", thing, error); 8645 goto out; 8646 } 8647 8648 uint64_t orig_lsize = lsize; 8649 buf = lbuf; 8650 if (flags & ZDB_FLAG_DECOMPRESS) { 8651 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 8652 lsize, psize, flags); 8653 if (failed) { 8654 (void) printf("Decompress of %s failed\n", thing); 8655 goto out; 8656 } 8657 } else { 8658 buf = abd_borrow_buf_copy(pabd, lsize); 8659 borrowed = B_TRUE; 8660 } 8661 /* 8662 * Try to detect invalid block pointer. If invalid, try 8663 * decompressing. 8664 */ 8665 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 8666 !(flags & ZDB_FLAG_DECOMPRESS)) { 8667 const blkptr_t *b = (const blkptr_t *)(void *) 8668 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8669 if (zfs_blkptr_verify(spa, b, 8670 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) { 8671 abd_return_buf_copy(pabd, buf, lsize); 8672 borrowed = B_FALSE; 8673 buf = lbuf; 8674 boolean_t failed = zdb_decompress_block(pabd, buf, 8675 lbuf, lsize, psize, flags); 8676 b = (const blkptr_t *)(void *) 8677 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 8678 if (failed || zfs_blkptr_verify(spa, b, 8679 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) { 8680 printf("invalid block pointer at this DVA\n"); 8681 goto out; 8682 } 8683 } 8684 } 8685 8686 if (flags & ZDB_FLAG_PRINT_BLKPTR) 8687 zdb_print_blkptr((blkptr_t *)(void *) 8688 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 8689 else if (flags & ZDB_FLAG_RAW) 8690 zdb_dump_block_raw(buf, lsize, flags); 8691 else if (flags & ZDB_FLAG_INDIRECT) 8692 zdb_dump_indirect((blkptr_t *)buf, 8693 orig_lsize / sizeof (blkptr_t), flags); 8694 else if (flags & ZDB_FLAG_GBH) 8695 zdb_dump_gbh(buf, flags); 8696 else 8697 zdb_dump_block(thing, buf, lsize, flags); 8698 8699 /* 8700 * If :c was specified, iterate through the checksum table to 8701 * calculate and display each checksum for our specified 8702 * DVA and length. 8703 */ 8704 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8705 !(flags & ZDB_FLAG_GBH)) { 8706 zio_t *czio; 8707 (void) printf("\n"); 8708 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8709 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8710 8711 if ((zio_checksum_table[ck].ci_flags & 8712 ZCHECKSUM_FLAG_EMBEDDED) || 8713 ck == ZIO_CHECKSUM_NOPARITY) { 8714 continue; 8715 } 8716 BP_SET_CHECKSUM(bp, ck); 8717 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8718 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8719 czio->io_bp = bp; 8720 8721 if (vd == vd->vdev_top) { 8722 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8723 NULL, NULL, 8724 ZIO_PRIORITY_SYNC_READ, 8725 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8726 ZIO_FLAG_DONT_RETRY, NULL)); 8727 } else { 8728 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8729 offset, pabd, psize, ZIO_TYPE_READ, 8730 ZIO_PRIORITY_SYNC_READ, 8731 ZIO_FLAG_DONT_PROPAGATE | 8732 ZIO_FLAG_DONT_RETRY | 8733 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8734 ZIO_FLAG_SPECULATIVE | 8735 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8736 } 8737 error = zio_wait(czio); 8738 if (error == 0 || error == ECKSUM) { 8739 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8740 ck_zio->io_offset = 8741 DVA_GET_OFFSET(&bp->blk_dva[0]); 8742 ck_zio->io_bp = bp; 8743 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8744 printf( 8745 "%12s\t" 8746 "cksum=%016llx:%016llx:%016llx:%016llx\n", 8747 zio_checksum_table[ck].ci_name, 8748 (u_longlong_t)bp->blk_cksum.zc_word[0], 8749 (u_longlong_t)bp->blk_cksum.zc_word[1], 8750 (u_longlong_t)bp->blk_cksum.zc_word[2], 8751 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8752 zio_wait(ck_zio); 8753 } else { 8754 printf("error %d reading block\n", error); 8755 } 8756 spa_config_exit(spa, SCL_STATE, FTAG); 8757 } 8758 } 8759 8760 if (borrowed) 8761 abd_return_buf_copy(pabd, buf, lsize); 8762 8763 out: 8764 abd_free(pabd); 8765 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8766 done: 8767 free(flagstr); 8768 free(dup); 8769 } 8770 8771 static void 8772 zdb_embedded_block(char *thing) 8773 { 8774 blkptr_t bp = {{{{0}}}}; 8775 unsigned long long *words = (void *)&bp; 8776 char *buf; 8777 int err; 8778 8779 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8780 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8781 words + 0, words + 1, words + 2, words + 3, 8782 words + 4, words + 5, words + 6, words + 7, 8783 words + 8, words + 9, words + 10, words + 11, 8784 words + 12, words + 13, words + 14, words + 15); 8785 if (err != 16) { 8786 (void) fprintf(stderr, "invalid input format\n"); 8787 exit(1); 8788 } 8789 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8790 buf = malloc(SPA_MAXBLOCKSIZE); 8791 if (buf == NULL) { 8792 (void) fprintf(stderr, "out of memory\n"); 8793 exit(1); 8794 } 8795 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8796 if (err != 0) { 8797 (void) fprintf(stderr, "decode failed: %u\n", err); 8798 exit(1); 8799 } 8800 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8801 free(buf); 8802 } 8803 8804 /* check for valid hex or decimal numeric string */ 8805 static boolean_t 8806 zdb_numeric(char *str) 8807 { 8808 int i = 0; 8809 8810 if (strlen(str) == 0) 8811 return (B_FALSE); 8812 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 8813 i = 2; 8814 for (; i < strlen(str); i++) { 8815 if (!isxdigit(str[i])) 8816 return (B_FALSE); 8817 } 8818 return (B_TRUE); 8819 } 8820 8821 int 8822 main(int argc, char **argv) 8823 { 8824 int c; 8825 spa_t *spa = NULL; 8826 objset_t *os = NULL; 8827 int dump_all = 1; 8828 int verbose = 0; 8829 int error = 0; 8830 char **searchdirs = NULL; 8831 int nsearch = 0; 8832 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8833 nvlist_t *policy = NULL; 8834 uint64_t max_txg = UINT64_MAX; 8835 int64_t objset_id = -1; 8836 uint64_t object; 8837 int flags = ZFS_IMPORT_MISSING_LOG; 8838 int rewind = ZPOOL_NEVER_REWIND; 8839 char *spa_config_path_env, *objset_str; 8840 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8841 nvlist_t *cfg = NULL; 8842 8843 dprintf_setup(&argc, argv); 8844 8845 /* 8846 * If there is an environment variable SPA_CONFIG_PATH it overrides 8847 * default spa_config_path setting. If -U flag is specified it will 8848 * override this environment variable settings once again. 8849 */ 8850 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8851 if (spa_config_path_env != NULL) 8852 spa_config_path = spa_config_path_env; 8853 8854 /* 8855 * For performance reasons, we set this tunable down. We do so before 8856 * the arg parsing section so that the user can override this value if 8857 * they choose. 8858 */ 8859 zfs_btree_verify_intensity = 3; 8860 8861 struct option long_options[] = { 8862 {"ignore-assertions", no_argument, NULL, 'A'}, 8863 {"block-stats", no_argument, NULL, 'b'}, 8864 {"backup", no_argument, NULL, 'B'}, 8865 {"checksum", no_argument, NULL, 'c'}, 8866 {"config", no_argument, NULL, 'C'}, 8867 {"datasets", no_argument, NULL, 'd'}, 8868 {"dedup-stats", no_argument, NULL, 'D'}, 8869 {"exported", no_argument, NULL, 'e'}, 8870 {"embedded-block-pointer", no_argument, NULL, 'E'}, 8871 {"automatic-rewind", no_argument, NULL, 'F'}, 8872 {"dump-debug-msg", no_argument, NULL, 'G'}, 8873 {"history", no_argument, NULL, 'h'}, 8874 {"intent-logs", no_argument, NULL, 'i'}, 8875 {"inflight", required_argument, NULL, 'I'}, 8876 {"checkpointed-state", no_argument, NULL, 'k'}, 8877 {"key", required_argument, NULL, 'K'}, 8878 {"label", no_argument, NULL, 'l'}, 8879 {"disable-leak-tracking", no_argument, NULL, 'L'}, 8880 {"metaslabs", no_argument, NULL, 'm'}, 8881 {"metaslab-groups", no_argument, NULL, 'M'}, 8882 {"numeric", no_argument, NULL, 'N'}, 8883 {"option", required_argument, NULL, 'o'}, 8884 {"object-lookups", no_argument, NULL, 'O'}, 8885 {"path", required_argument, NULL, 'p'}, 8886 {"parseable", no_argument, NULL, 'P'}, 8887 {"skip-label", no_argument, NULL, 'q'}, 8888 {"copy-object", no_argument, NULL, 'r'}, 8889 {"read-block", no_argument, NULL, 'R'}, 8890 {"io-stats", no_argument, NULL, 's'}, 8891 {"simulate-dedup", no_argument, NULL, 'S'}, 8892 {"txg", required_argument, NULL, 't'}, 8893 {"uberblock", no_argument, NULL, 'u'}, 8894 {"cachefile", required_argument, NULL, 'U'}, 8895 {"verbose", no_argument, NULL, 'v'}, 8896 {"verbatim", no_argument, NULL, 'V'}, 8897 {"dump-blocks", required_argument, NULL, 'x'}, 8898 {"extreme-rewind", no_argument, NULL, 'X'}, 8899 {"all-reconstruction", no_argument, NULL, 'Y'}, 8900 {"livelist", no_argument, NULL, 'y'}, 8901 {"zstd-headers", no_argument, NULL, 'Z'}, 8902 {0, 0, 0, 0} 8903 }; 8904 8905 while ((c = getopt_long(argc, argv, 8906 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:uU:vVx:XYyZ", 8907 long_options, NULL)) != -1) { 8908 switch (c) { 8909 case 'b': 8910 case 'B': 8911 case 'c': 8912 case 'C': 8913 case 'd': 8914 case 'D': 8915 case 'E': 8916 case 'G': 8917 case 'h': 8918 case 'i': 8919 case 'l': 8920 case 'm': 8921 case 'M': 8922 case 'N': 8923 case 'O': 8924 case 'r': 8925 case 'R': 8926 case 's': 8927 case 'S': 8928 case 'u': 8929 case 'y': 8930 case 'Z': 8931 dump_opt[c]++; 8932 dump_all = 0; 8933 break; 8934 case 'A': 8935 case 'e': 8936 case 'F': 8937 case 'k': 8938 case 'L': 8939 case 'P': 8940 case 'q': 8941 case 'X': 8942 dump_opt[c]++; 8943 break; 8944 case 'Y': 8945 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8946 zfs_deadman_enabled = 0; 8947 break; 8948 /* NB: Sort single match options below. */ 8949 case 'I': 8950 max_inflight_bytes = strtoull(optarg, NULL, 0); 8951 if (max_inflight_bytes == 0) { 8952 (void) fprintf(stderr, "maximum number " 8953 "of inflight bytes must be greater " 8954 "than 0\n"); 8955 usage(); 8956 } 8957 break; 8958 case 'K': 8959 dump_opt[c]++; 8960 key_material = strdup(optarg); 8961 /* redact key material in process table */ 8962 while (*optarg != '\0') { *optarg++ = '*'; } 8963 break; 8964 case 'o': 8965 error = set_global_var(optarg); 8966 if (error != 0) 8967 usage(); 8968 break; 8969 case 'p': 8970 if (searchdirs == NULL) { 8971 searchdirs = umem_alloc(sizeof (char *), 8972 UMEM_NOFAIL); 8973 } else { 8974 char **tmp = umem_alloc((nsearch + 1) * 8975 sizeof (char *), UMEM_NOFAIL); 8976 memcpy(tmp, searchdirs, nsearch * 8977 sizeof (char *)); 8978 umem_free(searchdirs, 8979 nsearch * sizeof (char *)); 8980 searchdirs = tmp; 8981 } 8982 searchdirs[nsearch++] = optarg; 8983 break; 8984 case 't': 8985 max_txg = strtoull(optarg, NULL, 0); 8986 if (max_txg < TXG_INITIAL) { 8987 (void) fprintf(stderr, "incorrect txg " 8988 "specified: %s\n", optarg); 8989 usage(); 8990 } 8991 break; 8992 case 'U': 8993 spa_config_path = optarg; 8994 if (spa_config_path[0] != '/') { 8995 (void) fprintf(stderr, 8996 "cachefile must be an absolute path " 8997 "(i.e. start with a slash)\n"); 8998 usage(); 8999 } 9000 break; 9001 case 'v': 9002 verbose++; 9003 break; 9004 case 'V': 9005 flags = ZFS_IMPORT_VERBATIM; 9006 break; 9007 case 'x': 9008 vn_dumpdir = optarg; 9009 break; 9010 default: 9011 usage(); 9012 break; 9013 } 9014 } 9015 9016 if (!dump_opt['e'] && searchdirs != NULL) { 9017 (void) fprintf(stderr, "-p option requires use of -e\n"); 9018 usage(); 9019 } 9020 #if defined(_LP64) 9021 /* 9022 * ZDB does not typically re-read blocks; therefore limit the ARC 9023 * to 256 MB, which can be used entirely for metadata. 9024 */ 9025 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9026 zfs_arc_max = 256 * 1024 * 1024; 9027 #endif 9028 9029 /* 9030 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9031 * "zdb -b" uses traversal prefetch which uses async reads. 9032 * For good performance, let several of them be active at once. 9033 */ 9034 zfs_vdev_async_read_max_active = 10; 9035 9036 /* 9037 * Disable reference tracking for better performance. 9038 */ 9039 reference_tracking_enable = B_FALSE; 9040 9041 /* 9042 * Do not fail spa_load when spa_load_verify fails. This is needed 9043 * to load non-idle pools. 9044 */ 9045 spa_load_verify_dryrun = B_TRUE; 9046 9047 /* 9048 * ZDB should have ability to read spacemaps. 9049 */ 9050 spa_mode_readable_spacemaps = B_TRUE; 9051 9052 kernel_init(SPA_MODE_READ); 9053 9054 if (dump_all) 9055 verbose = MAX(verbose, 1); 9056 9057 for (c = 0; c < 256; c++) { 9058 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9059 dump_opt[c] = 1; 9060 if (dump_opt[c]) 9061 dump_opt[c] += verbose; 9062 } 9063 9064 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9065 zfs_recover = (dump_opt['A'] > 1); 9066 9067 argc -= optind; 9068 argv += optind; 9069 if (argc < 2 && dump_opt['R']) 9070 usage(); 9071 9072 if (dump_opt['E']) { 9073 if (argc != 1) 9074 usage(); 9075 zdb_embedded_block(argv[0]); 9076 return (0); 9077 } 9078 9079 if (argc < 1) { 9080 if (!dump_opt['e'] && dump_opt['C']) { 9081 dump_cachefile(spa_config_path); 9082 return (0); 9083 } 9084 usage(); 9085 } 9086 9087 if (dump_opt['l']) 9088 return (dump_label(argv[0])); 9089 9090 if (dump_opt['O']) { 9091 if (argc != 2) 9092 usage(); 9093 dump_opt['v'] = verbose + 3; 9094 return (dump_path(argv[0], argv[1], NULL)); 9095 } 9096 if (dump_opt['r']) { 9097 target_is_spa = B_FALSE; 9098 if (argc != 3) 9099 usage(); 9100 dump_opt['v'] = verbose; 9101 error = dump_path(argv[0], argv[1], &object); 9102 if (error != 0) 9103 fatal("internal error: %s", strerror(error)); 9104 } 9105 9106 if (dump_opt['X'] || dump_opt['F']) 9107 rewind = ZPOOL_DO_REWIND | 9108 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9109 9110 /* -N implies -d */ 9111 if (dump_opt['N'] && dump_opt['d'] == 0) 9112 dump_opt['d'] = dump_opt['N']; 9113 9114 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9115 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9116 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9117 fatal("internal error: %s", strerror(ENOMEM)); 9118 9119 error = 0; 9120 target = argv[0]; 9121 9122 if (strpbrk(target, "/@") != NULL) { 9123 size_t targetlen; 9124 9125 target_pool = strdup(target); 9126 *strpbrk(target_pool, "/@") = '\0'; 9127 9128 target_is_spa = B_FALSE; 9129 targetlen = strlen(target); 9130 if (targetlen && target[targetlen - 1] == '/') 9131 target[targetlen - 1] = '\0'; 9132 9133 /* 9134 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9135 * To disambiguate tank/100, consider the 100 as objsetID 9136 * if -N was given, otherwise 100 is an objsetID iff 9137 * tank/100 as a named dataset fails on lookup. 9138 */ 9139 objset_str = strchr(target, '/'); 9140 if (objset_str && strlen(objset_str) > 1 && 9141 zdb_numeric(objset_str + 1)) { 9142 char *endptr; 9143 errno = 0; 9144 objset_str++; 9145 objset_id = strtoull(objset_str, &endptr, 0); 9146 /* dataset 0 is the same as opening the pool */ 9147 if (errno == 0 && endptr != objset_str && 9148 objset_id != 0) { 9149 if (dump_opt['N']) 9150 dataset_lookup = B_TRUE; 9151 } 9152 /* normal dataset name not an objset ID */ 9153 if (endptr == objset_str) { 9154 objset_id = -1; 9155 } 9156 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9157 dump_opt['N']) { 9158 printf("Supply a numeric objset ID with -N\n"); 9159 exit(1); 9160 } 9161 } else { 9162 target_pool = target; 9163 } 9164 9165 if (dump_opt['e']) { 9166 importargs_t args = { 0 }; 9167 9168 args.paths = nsearch; 9169 args.path = searchdirs; 9170 args.can_be_active = B_TRUE; 9171 9172 libpc_handle_t lpch = { 9173 .lpc_lib_handle = NULL, 9174 .lpc_ops = &libzpool_config_ops, 9175 .lpc_printerr = B_TRUE 9176 }; 9177 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9178 9179 if (error == 0) { 9180 9181 if (nvlist_add_nvlist(cfg, 9182 ZPOOL_LOAD_POLICY, policy) != 0) { 9183 fatal("can't open '%s': %s", 9184 target, strerror(ENOMEM)); 9185 } 9186 9187 if (dump_opt['C'] > 1) { 9188 (void) printf("\nConfiguration for import:\n"); 9189 dump_nvlist(cfg, 8); 9190 } 9191 9192 /* 9193 * Disable the activity check to allow examination of 9194 * active pools. 9195 */ 9196 error = spa_import(target_pool, cfg, NULL, 9197 flags | ZFS_IMPORT_SKIP_MMP); 9198 } 9199 } 9200 9201 if (searchdirs != NULL) { 9202 umem_free(searchdirs, nsearch * sizeof (char *)); 9203 searchdirs = NULL; 9204 } 9205 9206 /* 9207 * import_checkpointed_state makes the assumption that the 9208 * target pool that we pass it is already part of the spa 9209 * namespace. Because of that we need to make sure to call 9210 * it always after the -e option has been processed, which 9211 * imports the pool to the namespace if it's not in the 9212 * cachefile. 9213 */ 9214 char *checkpoint_pool = NULL; 9215 char *checkpoint_target = NULL; 9216 if (dump_opt['k']) { 9217 checkpoint_pool = import_checkpointed_state(target, cfg, 9218 &checkpoint_target); 9219 9220 if (checkpoint_target != NULL) 9221 target = checkpoint_target; 9222 } 9223 9224 if (cfg != NULL) { 9225 nvlist_free(cfg); 9226 cfg = NULL; 9227 } 9228 9229 if (target_pool != target) 9230 free(target_pool); 9231 9232 if (error == 0) { 9233 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9234 ASSERT(checkpoint_pool != NULL); 9235 ASSERT(checkpoint_target == NULL); 9236 9237 error = spa_open(checkpoint_pool, &spa, FTAG); 9238 if (error != 0) { 9239 fatal("Tried to open pool \"%s\" but " 9240 "spa_open() failed with error %d\n", 9241 checkpoint_pool, error); 9242 } 9243 9244 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9245 objset_id == 0) { 9246 zdb_set_skip_mmp(target); 9247 error = spa_open_rewind(target, &spa, FTAG, policy, 9248 NULL); 9249 if (error) { 9250 /* 9251 * If we're missing the log device then 9252 * try opening the pool after clearing the 9253 * log state. 9254 */ 9255 mutex_enter(&spa_namespace_lock); 9256 if ((spa = spa_lookup(target)) != NULL && 9257 spa->spa_log_state == SPA_LOG_MISSING) { 9258 spa->spa_log_state = SPA_LOG_CLEAR; 9259 error = 0; 9260 } 9261 mutex_exit(&spa_namespace_lock); 9262 9263 if (!error) { 9264 error = spa_open_rewind(target, &spa, 9265 FTAG, policy, NULL); 9266 } 9267 } 9268 } else if (strpbrk(target, "#") != NULL) { 9269 dsl_pool_t *dp; 9270 error = dsl_pool_hold(target, FTAG, &dp); 9271 if (error != 0) { 9272 fatal("can't dump '%s': %s", target, 9273 strerror(error)); 9274 } 9275 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9276 dsl_pool_rele(dp, FTAG); 9277 if (error != 0) { 9278 fatal("can't dump '%s': %s", target, 9279 strerror(error)); 9280 } 9281 return (error); 9282 } else { 9283 target_pool = strdup(target); 9284 if (strpbrk(target, "/@") != NULL) 9285 *strpbrk(target_pool, "/@") = '\0'; 9286 9287 zdb_set_skip_mmp(target); 9288 /* 9289 * If -N was supplied, the user has indicated that 9290 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9291 * we first assume that the dataset string is the 9292 * dataset name. If dmu_objset_hold fails with the 9293 * dataset string, and we have an objset_id, retry the 9294 * lookup with the objsetID. 9295 */ 9296 boolean_t retry = B_TRUE; 9297 retry_lookup: 9298 if (dataset_lookup == B_TRUE) { 9299 /* 9300 * Use the supplied id to get the name 9301 * for open_objset. 9302 */ 9303 error = spa_open(target_pool, &spa, FTAG); 9304 if (error == 0) { 9305 error = name_from_objset_id(spa, 9306 objset_id, dsname); 9307 spa_close(spa, FTAG); 9308 if (error == 0) 9309 target = dsname; 9310 } 9311 } 9312 if (error == 0) { 9313 if (objset_id > 0 && retry) { 9314 int err = dmu_objset_hold(target, FTAG, 9315 &os); 9316 if (err) { 9317 dataset_lookup = B_TRUE; 9318 retry = B_FALSE; 9319 goto retry_lookup; 9320 } else { 9321 dmu_objset_rele(os, FTAG); 9322 } 9323 } 9324 error = open_objset(target, FTAG, &os); 9325 } 9326 if (error == 0) 9327 spa = dmu_objset_spa(os); 9328 free(target_pool); 9329 } 9330 } 9331 nvlist_free(policy); 9332 9333 if (error) 9334 fatal("can't open '%s': %s", target, strerror(error)); 9335 9336 /* 9337 * Set the pool failure mode to panic in order to prevent the pool 9338 * from suspending. A suspended I/O will have no way to resume and 9339 * can prevent the zdb(8) command from terminating as expected. 9340 */ 9341 if (spa != NULL) 9342 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9343 9344 argv++; 9345 argc--; 9346 if (dump_opt['r']) { 9347 error = zdb_copy_object(os, object, argv[1]); 9348 } else if (!dump_opt['R']) { 9349 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9350 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9351 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9352 flagbits['z'] = ZOR_FLAG_ZAP; 9353 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9354 9355 if (argc > 0 && dump_opt['d']) { 9356 zopt_object_args = argc; 9357 zopt_object_ranges = calloc(zopt_object_args, 9358 sizeof (zopt_object_range_t)); 9359 for (unsigned i = 0; i < zopt_object_args; i++) { 9360 int err; 9361 const char *msg = NULL; 9362 9363 err = parse_object_range(argv[i], 9364 &zopt_object_ranges[i], &msg); 9365 if (err != 0) 9366 fatal("Bad object or range: '%s': %s\n", 9367 argv[i], msg ?: ""); 9368 } 9369 } else if (argc > 0 && dump_opt['m']) { 9370 zopt_metaslab_args = argc; 9371 zopt_metaslab = calloc(zopt_metaslab_args, 9372 sizeof (uint64_t)); 9373 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9374 errno = 0; 9375 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9376 if (zopt_metaslab[i] == 0 && errno != 0) 9377 fatal("bad number %s: %s", argv[i], 9378 strerror(errno)); 9379 } 9380 } 9381 if (dump_opt['B']) { 9382 dump_backup(target, objset_id, 9383 argc > 0 ? argv[0] : NULL); 9384 } else if (os != NULL) { 9385 dump_objset(os); 9386 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9387 dump_objset(spa->spa_meta_objset); 9388 } else { 9389 dump_zpool(spa); 9390 } 9391 } else { 9392 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9393 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9394 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9395 flagbits['e'] = ZDB_FLAG_BSWAP; 9396 flagbits['g'] = ZDB_FLAG_GBH; 9397 flagbits['i'] = ZDB_FLAG_INDIRECT; 9398 flagbits['r'] = ZDB_FLAG_RAW; 9399 flagbits['v'] = ZDB_FLAG_VERBOSE; 9400 9401 for (int i = 0; i < argc; i++) 9402 zdb_read_block(argv[i], spa); 9403 } 9404 9405 if (dump_opt['k']) { 9406 free(checkpoint_pool); 9407 if (!target_is_spa) 9408 free(checkpoint_target); 9409 } 9410 9411 if (os != NULL) { 9412 close_objset(os, FTAG); 9413 } else { 9414 spa_close(spa, FTAG); 9415 } 9416 9417 fuid_table_destroy(); 9418 9419 dump_debug_buffer(); 9420 9421 kernel_fini(); 9422 9423 return (error); 9424 } 9425