1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 28 * Copyright (c) 2015, 2017, Intel Corporation. 29 * Copyright (c) 2020 Datto Inc. 30 * Copyright (c) 2020, The FreeBSD Foundation [1] 31 * 32 * [1] Portions of this software were developed by Allan Jude 33 * under sponsorship from the FreeBSD Foundation. 34 */ 35 36 #include <stdio.h> 37 #include <unistd.h> 38 #include <stdlib.h> 39 #include <ctype.h> 40 #include <sys/zfs_context.h> 41 #include <sys/spa.h> 42 #include <sys/spa_impl.h> 43 #include <sys/dmu.h> 44 #include <sys/zap.h> 45 #include <sys/fs/zfs.h> 46 #include <sys/zfs_znode.h> 47 #include <sys/zfs_sa.h> 48 #include <sys/sa.h> 49 #include <sys/sa_impl.h> 50 #include <sys/vdev.h> 51 #include <sys/vdev_impl.h> 52 #include <sys/metaslab_impl.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_dataset.h> 56 #include <sys/dsl_pool.h> 57 #include <sys/dsl_bookmark.h> 58 #include <sys/dbuf.h> 59 #include <sys/zil.h> 60 #include <sys/zil_impl.h> 61 #include <sys/stat.h> 62 #include <sys/resource.h> 63 #include <sys/dmu_send.h> 64 #include <sys/dmu_traverse.h> 65 #include <sys/zio_checksum.h> 66 #include <sys/zio_compress.h> 67 #include <sys/zfs_fuid.h> 68 #include <sys/arc.h> 69 #include <sys/arc_impl.h> 70 #include <sys/ddt.h> 71 #include <sys/zfeature.h> 72 #include <sys/abd.h> 73 #include <sys/blkptr.h> 74 #include <sys/dsl_crypt.h> 75 #include <sys/dsl_scan.h> 76 #include <sys/btree.h> 77 #include <zfs_comutil.h> 78 #include <sys/zstd/zstd.h> 79 80 #include <libnvpair.h> 81 #include <libzutil.h> 82 83 #include "zdb.h" 84 85 #define ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ? \ 86 zio_compress_table[(idx)].ci_name : "UNKNOWN") 87 #define ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ? \ 88 zio_checksum_table[(idx)].ci_name : "UNKNOWN") 89 #define ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) : \ 90 (idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ? \ 91 DMU_OT_ZAP_OTHER : \ 92 (idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \ 93 DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES) 94 95 static char * 96 zdb_ot_name(dmu_object_type_t type) 97 { 98 if (type < DMU_OT_NUMTYPES) 99 return (dmu_ot[type].ot_name); 100 else if ((type & DMU_OT_NEWTYPE) && 101 ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS)) 102 return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name); 103 else 104 return ("UNKNOWN"); 105 } 106 107 extern int reference_tracking_enable; 108 extern int zfs_recover; 109 extern unsigned long zfs_arc_meta_min, zfs_arc_meta_limit; 110 extern int zfs_vdev_async_read_max_active; 111 extern boolean_t spa_load_verify_dryrun; 112 extern int zfs_reconstruct_indirect_combinations_max; 113 extern int zfs_btree_verify_intensity; 114 115 static const char cmdname[] = "zdb"; 116 uint8_t dump_opt[256]; 117 118 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 119 120 uint64_t *zopt_metaslab = NULL; 121 static unsigned zopt_metaslab_args = 0; 122 123 typedef struct zopt_object_range { 124 uint64_t zor_obj_start; 125 uint64_t zor_obj_end; 126 uint64_t zor_flags; 127 } zopt_object_range_t; 128 zopt_object_range_t *zopt_object_ranges = NULL; 129 static unsigned zopt_object_args = 0; 130 131 static int flagbits[256]; 132 133 #define ZOR_FLAG_PLAIN_FILE 0x0001 134 #define ZOR_FLAG_DIRECTORY 0x0002 135 #define ZOR_FLAG_SPACE_MAP 0x0004 136 #define ZOR_FLAG_ZAP 0x0008 137 #define ZOR_FLAG_ALL_TYPES -1 138 #define ZOR_SUPPORTED_FLAGS (ZOR_FLAG_PLAIN_FILE | \ 139 ZOR_FLAG_DIRECTORY | \ 140 ZOR_FLAG_SPACE_MAP | \ 141 ZOR_FLAG_ZAP) 142 143 #define ZDB_FLAG_CHECKSUM 0x0001 144 #define ZDB_FLAG_DECOMPRESS 0x0002 145 #define ZDB_FLAG_BSWAP 0x0004 146 #define ZDB_FLAG_GBH 0x0008 147 #define ZDB_FLAG_INDIRECT 0x0010 148 #define ZDB_FLAG_RAW 0x0020 149 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 150 #define ZDB_FLAG_VERBOSE 0x0080 151 152 uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 153 static int leaked_objects = 0; 154 static range_tree_t *mos_refd_objs; 155 156 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 157 boolean_t); 158 static void mos_obj_refd(uint64_t); 159 static void mos_obj_refd_multiple(uint64_t); 160 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 161 dmu_tx_t *tx); 162 163 typedef struct sublivelist_verify { 164 /* all ALLOC'd blkptr_t in one sub-livelist */ 165 zfs_btree_t sv_all_allocs; 166 167 /* all FREE'd blkptr_t in one sub-livelist */ 168 zfs_btree_t sv_all_frees; 169 170 /* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */ 171 zfs_btree_t sv_pair; 172 173 /* ALLOC's without a matching FREE, accumulates across sub-livelists */ 174 zfs_btree_t sv_leftover; 175 } sublivelist_verify_t; 176 177 static int 178 livelist_compare(const void *larg, const void *rarg) 179 { 180 const blkptr_t *l = larg; 181 const blkptr_t *r = rarg; 182 183 /* Sort them according to dva[0] */ 184 uint64_t l_dva0_vdev, r_dva0_vdev; 185 l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]); 186 r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]); 187 if (l_dva0_vdev < r_dva0_vdev) 188 return (-1); 189 else if (l_dva0_vdev > r_dva0_vdev) 190 return (+1); 191 192 /* if vdevs are equal, sort by offsets. */ 193 uint64_t l_dva0_offset; 194 uint64_t r_dva0_offset; 195 l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]); 196 r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]); 197 if (l_dva0_offset < r_dva0_offset) { 198 return (-1); 199 } else if (l_dva0_offset > r_dva0_offset) { 200 return (+1); 201 } 202 203 /* 204 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs, 205 * it's possible the offsets are equal. In that case, sort by txg 206 */ 207 if (l->blk_birth < r->blk_birth) { 208 return (-1); 209 } else if (l->blk_birth > r->blk_birth) { 210 return (+1); 211 } 212 return (0); 213 } 214 215 typedef struct sublivelist_verify_block { 216 dva_t svb_dva; 217 218 /* 219 * We need this to check if the block marked as allocated 220 * in the livelist was freed (and potentially reallocated) 221 * in the metaslab spacemaps at a later TXG. 222 */ 223 uint64_t svb_allocated_txg; 224 } sublivelist_verify_block_t; 225 226 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 227 228 static int 229 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 230 dmu_tx_t *tx) 231 { 232 ASSERT3P(tx, ==, NULL); 233 struct sublivelist_verify *sv = arg; 234 char blkbuf[BP_SPRINTF_LEN]; 235 zfs_btree_index_t where; 236 if (free) { 237 zfs_btree_add(&sv->sv_pair, bp); 238 /* Check if the FREE is a duplicate */ 239 if (zfs_btree_find(&sv->sv_all_frees, bp, &where) != NULL) { 240 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 241 free); 242 (void) printf("\tERROR: Duplicate FREE: %s\n", blkbuf); 243 } else { 244 zfs_btree_add_idx(&sv->sv_all_frees, bp, &where); 245 } 246 } else { 247 /* Check if the ALLOC has been freed */ 248 if (zfs_btree_find(&sv->sv_pair, bp, &where) != NULL) { 249 zfs_btree_remove_idx(&sv->sv_pair, &where); 250 } else { 251 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 252 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 253 break; 254 sublivelist_verify_block_t svb = { 255 .svb_dva = bp->blk_dva[i], 256 .svb_allocated_txg = bp->blk_birth 257 }; 258 259 if (zfs_btree_find(&sv->sv_leftover, &svb, 260 &where) == NULL) { 261 zfs_btree_add_idx(&sv->sv_leftover, 262 &svb, &where); 263 } 264 } 265 } 266 /* Check if the ALLOC is a duplicate */ 267 if (zfs_btree_find(&sv->sv_all_allocs, bp, &where) != NULL) { 268 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, 269 free); 270 (void) printf("\tERROR: Duplicate ALLOC: %s\n", blkbuf); 271 } else { 272 zfs_btree_add_idx(&sv->sv_all_allocs, bp, &where); 273 } 274 } 275 return (0); 276 } 277 278 static int 279 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 280 { 281 int err; 282 char blkbuf[BP_SPRINTF_LEN]; 283 struct sublivelist_verify *sv = args; 284 285 zfs_btree_create(&sv->sv_all_allocs, livelist_compare, 286 sizeof (blkptr_t)); 287 288 zfs_btree_create(&sv->sv_all_frees, livelist_compare, 289 sizeof (blkptr_t)); 290 291 zfs_btree_create(&sv->sv_pair, livelist_compare, 292 sizeof (blkptr_t)); 293 294 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 295 sv, NULL); 296 297 zfs_btree_clear(&sv->sv_all_allocs); 298 zfs_btree_destroy(&sv->sv_all_allocs); 299 300 zfs_btree_clear(&sv->sv_all_frees); 301 zfs_btree_destroy(&sv->sv_all_frees); 302 303 blkptr_t *e; 304 zfs_btree_index_t *cookie = NULL; 305 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 306 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), e, B_TRUE); 307 (void) printf("\tERROR: Unmatched FREE: %s\n", blkbuf); 308 } 309 zfs_btree_destroy(&sv->sv_pair); 310 311 return (err); 312 } 313 314 static int 315 livelist_block_compare(const void *larg, const void *rarg) 316 { 317 const sublivelist_verify_block_t *l = larg; 318 const sublivelist_verify_block_t *r = rarg; 319 320 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 321 return (-1); 322 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 323 return (+1); 324 325 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 326 return (-1); 327 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 328 return (+1); 329 330 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 331 return (-1); 332 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 333 return (+1); 334 335 return (0); 336 } 337 338 /* 339 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 340 * sublivelist_verify_t: sv->sv_leftover 341 */ 342 static void 343 livelist_verify(dsl_deadlist_t *dl, void *arg) 344 { 345 sublivelist_verify_t *sv = arg; 346 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 347 } 348 349 /* 350 * Check for errors in the livelist entry and discard the intermediary 351 * data structures 352 */ 353 /* ARGSUSED */ 354 static int 355 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 356 { 357 sublivelist_verify_t sv; 358 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 359 sizeof (sublivelist_verify_block_t)); 360 int err = sublivelist_verify_func(&sv, dle); 361 zfs_btree_clear(&sv.sv_leftover); 362 zfs_btree_destroy(&sv.sv_leftover); 363 return (err); 364 } 365 366 typedef struct metaslab_verify { 367 /* 368 * Tree containing all the leftover ALLOCs from the livelists 369 * that are part of this metaslab. 370 */ 371 zfs_btree_t mv_livelist_allocs; 372 373 /* 374 * Metaslab information. 375 */ 376 uint64_t mv_vdid; 377 uint64_t mv_msid; 378 uint64_t mv_start; 379 uint64_t mv_end; 380 381 /* 382 * What's currently allocated for this metaslab. 383 */ 384 range_tree_t *mv_allocated; 385 } metaslab_verify_t; 386 387 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 388 389 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 390 void *arg); 391 392 typedef struct unflushed_iter_cb_arg { 393 spa_t *uic_spa; 394 uint64_t uic_txg; 395 void *uic_arg; 396 zdb_log_sm_cb_t uic_cb; 397 } unflushed_iter_cb_arg_t; 398 399 static int 400 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 401 { 402 unflushed_iter_cb_arg_t *uic = arg; 403 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 404 } 405 406 static void 407 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 408 { 409 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 410 return; 411 412 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 413 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 414 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 415 space_map_t *sm = NULL; 416 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 417 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 418 419 unflushed_iter_cb_arg_t uic = { 420 .uic_spa = spa, 421 .uic_txg = sls->sls_txg, 422 .uic_arg = arg, 423 .uic_cb = cb 424 }; 425 VERIFY0(space_map_iterate(sm, space_map_length(sm), 426 iterate_through_spacemap_logs_cb, &uic)); 427 space_map_close(sm); 428 } 429 spa_config_exit(spa, SCL_CONFIG, FTAG); 430 } 431 432 static void 433 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 434 uint64_t offset, uint64_t size) 435 { 436 sublivelist_verify_block_t svb; 437 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 438 DVA_SET_OFFSET(&svb.svb_dva, offset); 439 DVA_SET_ASIZE(&svb.svb_dva, size); 440 zfs_btree_index_t where; 441 uint64_t end_offset = offset + size; 442 443 /* 444 * Look for an exact match for spacemap entry in the livelist entries. 445 * Then, look for other livelist entries that fall within the range 446 * of the spacemap entry as it may have been condensed 447 */ 448 sublivelist_verify_block_t *found = 449 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 450 if (found == NULL) { 451 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 452 } 453 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 454 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 455 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 456 if (found->svb_allocated_txg <= txg) { 457 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 458 "from TXG %llx FREED at TXG %llx\n", 459 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 460 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 461 (u_longlong_t)found->svb_allocated_txg, 462 (u_longlong_t)txg); 463 } 464 } 465 } 466 467 static int 468 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 469 { 470 metaslab_verify_t *mv = arg; 471 uint64_t offset = sme->sme_offset; 472 uint64_t size = sme->sme_run; 473 uint64_t txg = sme->sme_txg; 474 475 if (sme->sme_type == SM_ALLOC) { 476 if (range_tree_contains(mv->mv_allocated, 477 offset, size)) { 478 (void) printf("ERROR: DOUBLE ALLOC: " 479 "%llu [%llx:%llx] " 480 "%llu:%llu LOG_SM\n", 481 (u_longlong_t)txg, (u_longlong_t)offset, 482 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 483 (u_longlong_t)mv->mv_msid); 484 } else { 485 range_tree_add(mv->mv_allocated, 486 offset, size); 487 } 488 } else { 489 if (!range_tree_contains(mv->mv_allocated, 490 offset, size)) { 491 (void) printf("ERROR: DOUBLE FREE: " 492 "%llu [%llx:%llx] " 493 "%llu:%llu LOG_SM\n", 494 (u_longlong_t)txg, (u_longlong_t)offset, 495 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 496 (u_longlong_t)mv->mv_msid); 497 } else { 498 range_tree_remove(mv->mv_allocated, 499 offset, size); 500 } 501 } 502 503 if (sme->sme_type != SM_ALLOC) { 504 /* 505 * If something is freed in the spacemap, verify that 506 * it is not listed as allocated in the livelist. 507 */ 508 verify_livelist_allocs(mv, txg, offset, size); 509 } 510 return (0); 511 } 512 513 static int 514 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 515 uint64_t txg, void *arg) 516 { 517 metaslab_verify_t *mv = arg; 518 uint64_t offset = sme->sme_offset; 519 uint64_t vdev_id = sme->sme_vdev; 520 521 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 522 523 /* skip indirect vdevs */ 524 if (!vdev_is_concrete(vd)) 525 return (0); 526 527 if (vdev_id != mv->mv_vdid) 528 return (0); 529 530 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 531 if (ms->ms_id != mv->mv_msid) 532 return (0); 533 534 if (txg < metaslab_unflushed_txg(ms)) 535 return (0); 536 537 538 ASSERT3U(txg, ==, sme->sme_txg); 539 return (metaslab_spacemap_validation_cb(sme, mv)); 540 } 541 542 static void 543 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 544 { 545 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 546 } 547 548 static void 549 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 550 { 551 if (sm == NULL) 552 return; 553 554 VERIFY0(space_map_iterate(sm, space_map_length(sm), 555 metaslab_spacemap_validation_cb, mv)); 556 } 557 558 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 559 560 /* 561 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 562 * they are part of that metaslab (mv_msid). 563 */ 564 static void 565 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 566 { 567 zfs_btree_index_t where; 568 sublivelist_verify_block_t *svb; 569 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 570 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 571 svb != NULL; 572 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 573 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 574 continue; 575 576 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 577 (DVA_GET_OFFSET(&svb->svb_dva) + 578 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 579 (void) printf("ERROR: Found block that crosses " 580 "metaslab boundary: <%llu:%llx:%llx>\n", 581 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 582 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 583 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 584 continue; 585 } 586 587 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 588 continue; 589 590 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 591 continue; 592 593 if ((DVA_GET_OFFSET(&svb->svb_dva) + 594 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 595 (void) printf("ERROR: Found block that crosses " 596 "metaslab boundary: <%llu:%llx:%llx>\n", 597 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 598 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 599 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 600 continue; 601 } 602 603 zfs_btree_add(&mv->mv_livelist_allocs, svb); 604 } 605 606 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 607 svb != NULL; 608 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 609 zfs_btree_remove(&sv->sv_leftover, svb); 610 } 611 } 612 613 /* 614 * [Livelist Check] 615 * Iterate through all the sublivelists and: 616 * - report leftover frees 617 * - report double ALLOCs/FREEs 618 * - record leftover ALLOCs together with their TXG [see Cross Check] 619 * 620 * [Spacemap Check] 621 * for each metaslab: 622 * - iterate over spacemap and then the metaslab's entries in the 623 * spacemap log, then report any double FREEs and ALLOCs (do not 624 * blow up). 625 * 626 * [Cross Check] 627 * After finishing the Livelist Check phase and while being in the 628 * Spacemap Check phase, we find all the recorded leftover ALLOCs 629 * of the livelist check that are part of the metaslab that we are 630 * currently looking at in the Spacemap Check. We report any entries 631 * that are marked as ALLOCs in the livelists but have been actually 632 * freed (and potentially allocated again) after their TXG stamp in 633 * the spacemaps. Also report any ALLOCs from the livelists that 634 * belong to indirect vdevs (e.g. their vdev completed removal). 635 * 636 * Note that this will miss Log Spacemap entries that cancelled each other 637 * out before being flushed to the metaslab, so we are not guaranteed 638 * to match all erroneous ALLOCs. 639 */ 640 static void 641 livelist_metaslab_validate(spa_t *spa) 642 { 643 (void) printf("Verifying deleted livelist entries\n"); 644 645 sublivelist_verify_t sv; 646 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, 647 sizeof (sublivelist_verify_block_t)); 648 iterate_deleted_livelists(spa, livelist_verify, &sv); 649 650 (void) printf("Verifying metaslab entries\n"); 651 vdev_t *rvd = spa->spa_root_vdev; 652 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 653 vdev_t *vd = rvd->vdev_child[c]; 654 655 if (!vdev_is_concrete(vd)) 656 continue; 657 658 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 659 metaslab_t *m = vd->vdev_ms[mid]; 660 661 (void) fprintf(stderr, 662 "\rverifying concrete vdev %llu, " 663 "metaslab %llu of %llu ...", 664 (longlong_t)vd->vdev_id, 665 (longlong_t)mid, 666 (longlong_t)vd->vdev_ms_count); 667 668 uint64_t shift, start; 669 range_seg_type_t type = 670 metaslab_calculate_range_tree_type(vd, m, 671 &start, &shift); 672 metaslab_verify_t mv; 673 mv.mv_allocated = range_tree_create(NULL, 674 type, NULL, start, shift); 675 mv.mv_vdid = vd->vdev_id; 676 mv.mv_msid = m->ms_id; 677 mv.mv_start = m->ms_start; 678 mv.mv_end = m->ms_start + m->ms_size; 679 zfs_btree_create(&mv.mv_livelist_allocs, 680 livelist_block_compare, 681 sizeof (sublivelist_verify_block_t)); 682 683 mv_populate_livelist_allocs(&mv, &sv); 684 685 spacemap_check_ms_sm(m->ms_sm, &mv); 686 spacemap_check_sm_log(spa, &mv); 687 688 range_tree_vacate(mv.mv_allocated, NULL, NULL); 689 range_tree_destroy(mv.mv_allocated); 690 zfs_btree_clear(&mv.mv_livelist_allocs); 691 zfs_btree_destroy(&mv.mv_livelist_allocs); 692 } 693 } 694 (void) fprintf(stderr, "\n"); 695 696 /* 697 * If there are any segments in the leftover tree after we walked 698 * through all the metaslabs in the concrete vdevs then this means 699 * that we have segments in the livelists that belong to indirect 700 * vdevs and are marked as allocated. 701 */ 702 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 703 zfs_btree_destroy(&sv.sv_leftover); 704 return; 705 } 706 (void) printf("ERROR: Found livelist blocks marked as allocated " 707 "for indirect vdevs:\n"); 708 709 zfs_btree_index_t *where = NULL; 710 sublivelist_verify_block_t *svb; 711 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 712 NULL) { 713 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 714 ASSERT3U(vdev_id, <, rvd->vdev_children); 715 vdev_t *vd = rvd->vdev_child[vdev_id]; 716 ASSERT(!vdev_is_concrete(vd)); 717 (void) printf("<%d:%llx:%llx> TXG %llx\n", 718 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 719 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 720 (u_longlong_t)svb->svb_allocated_txg); 721 } 722 (void) printf("\n"); 723 zfs_btree_destroy(&sv.sv_leftover); 724 } 725 726 /* 727 * These libumem hooks provide a reasonable set of defaults for the allocator's 728 * debugging facilities. 729 */ 730 const char * 731 _umem_debug_init(void) 732 { 733 return ("default,verbose"); /* $UMEM_DEBUG setting */ 734 } 735 736 const char * 737 _umem_logging_init(void) 738 { 739 return ("fail,contents"); /* $UMEM_LOGGING setting */ 740 } 741 742 static void 743 usage(void) 744 { 745 (void) fprintf(stderr, 746 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 747 "[-I <inflight I/Os>]\n" 748 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 749 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 750 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 751 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 752 "\t%s [-v] <bookmark>\n" 753 "\t%s -C [-A] [-U <cache>]\n" 754 "\t%s -l [-Aqu] <device>\n" 755 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 756 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 757 "\t%s -O <dataset> <path>\n" 758 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 759 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 760 "\t%s -E [-A] word0:word1:...:word15\n" 761 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 762 "<poolname>\n\n", 763 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 764 cmdname, cmdname, cmdname); 765 766 (void) fprintf(stderr, " Dataset name must include at least one " 767 "separator character '/' or '@'\n"); 768 (void) fprintf(stderr, " If dataset name is specified, only that " 769 "dataset is dumped\n"); 770 (void) fprintf(stderr, " If object numbers or object number " 771 "ranges are specified, only those\n" 772 " objects or ranges are dumped.\n\n"); 773 (void) fprintf(stderr, 774 " Object ranges take the form <start>:<end>[:<flags>]\n" 775 " start Starting object number\n" 776 " end Ending object number, or -1 for no upper bound\n" 777 " flags Optional flags to select object types:\n" 778 " A All objects (this is the default)\n" 779 " d ZFS directories\n" 780 " f ZFS files \n" 781 " m SPA space maps\n" 782 " z ZAPs\n" 783 " - Negate effect of next flag\n\n"); 784 (void) fprintf(stderr, " Options to control amount of output:\n"); 785 (void) fprintf(stderr, " -b block statistics\n"); 786 (void) fprintf(stderr, " -c checksum all metadata (twice for " 787 "all data) blocks\n"); 788 (void) fprintf(stderr, " -C config (or cachefile if alone)\n"); 789 (void) fprintf(stderr, " -d dataset(s)\n"); 790 (void) fprintf(stderr, " -D dedup statistics\n"); 791 (void) fprintf(stderr, " -E decode and display block from an " 792 "embedded block pointer\n"); 793 (void) fprintf(stderr, " -h pool history\n"); 794 (void) fprintf(stderr, " -i intent logs\n"); 795 (void) fprintf(stderr, " -l read label contents\n"); 796 (void) fprintf(stderr, " -k examine the checkpointed state " 797 "of the pool\n"); 798 (void) fprintf(stderr, " -L disable leak tracking (do not " 799 "load spacemaps)\n"); 800 (void) fprintf(stderr, " -m metaslabs\n"); 801 (void) fprintf(stderr, " -M metaslab groups\n"); 802 (void) fprintf(stderr, " -O perform object lookups by path\n"); 803 (void) fprintf(stderr, " -R read and display block from a " 804 "device\n"); 805 (void) fprintf(stderr, " -s report stats on zdb's I/O\n"); 806 (void) fprintf(stderr, " -S simulate dedup to measure effect\n"); 807 (void) fprintf(stderr, " -v verbose (applies to all " 808 "others)\n"); 809 (void) fprintf(stderr, " -y perform livelist and metaslab " 810 "validation on any livelists being deleted\n\n"); 811 (void) fprintf(stderr, " Below options are intended for use " 812 "with other options:\n"); 813 (void) fprintf(stderr, " -A ignore assertions (-A), enable " 814 "panic recovery (-AA) or both (-AAA)\n"); 815 (void) fprintf(stderr, " -e pool is exported/destroyed/" 816 "has altroot/not in a cachefile\n"); 817 (void) fprintf(stderr, " -F attempt automatic rewind within " 818 "safe range of transaction groups\n"); 819 (void) fprintf(stderr, " -G dump zfs_dbgmsg buffer before " 820 "exiting\n"); 821 (void) fprintf(stderr, " -I <number of inflight I/Os> -- " 822 "specify the maximum number of\n " 823 "checksumming I/Os [default is 200]\n"); 824 (void) fprintf(stderr, " -o <variable>=<value> set global " 825 "variable to an unsigned 32-bit integer\n"); 826 (void) fprintf(stderr, " -p <path> -- use one or more with " 827 "-e to specify path to vdev dir\n"); 828 (void) fprintf(stderr, " -P print numbers in parseable form\n"); 829 (void) fprintf(stderr, " -q don't print label contents\n"); 830 (void) fprintf(stderr, " -t <txg> -- highest txg to use when " 831 "searching for uberblocks\n"); 832 (void) fprintf(stderr, " -u uberblock\n"); 833 (void) fprintf(stderr, " -U <cachefile_path> -- use alternate " 834 "cachefile\n"); 835 (void) fprintf(stderr, " -V do verbatim import\n"); 836 (void) fprintf(stderr, " -x <dumpdir> -- " 837 "dump all read blocks into specified directory\n"); 838 (void) fprintf(stderr, " -X attempt extreme rewind (does not " 839 "work with dataset)\n"); 840 (void) fprintf(stderr, " -Y attempt all reconstruction " 841 "combinations for split blocks\n"); 842 (void) fprintf(stderr, " -Z show ZSTD headers \n"); 843 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 844 "to make only that option verbose\n"); 845 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 846 exit(1); 847 } 848 849 static void 850 dump_debug_buffer(void) 851 { 852 if (dump_opt['G']) { 853 (void) printf("\n"); 854 (void) fflush(stdout); 855 zfs_dbgmsg_print("zdb"); 856 } 857 } 858 859 /* 860 * Called for usage errors that are discovered after a call to spa_open(), 861 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 862 */ 863 864 static void 865 fatal(const char *fmt, ...) 866 { 867 va_list ap; 868 869 va_start(ap, fmt); 870 (void) fprintf(stderr, "%s: ", cmdname); 871 (void) vfprintf(stderr, fmt, ap); 872 va_end(ap); 873 (void) fprintf(stderr, "\n"); 874 875 dump_debug_buffer(); 876 877 exit(1); 878 } 879 880 /* ARGSUSED */ 881 static void 882 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 883 { 884 nvlist_t *nv; 885 size_t nvsize = *(uint64_t *)data; 886 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 887 888 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 889 890 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 891 892 umem_free(packed, nvsize); 893 894 dump_nvlist(nv, 8); 895 896 nvlist_free(nv); 897 } 898 899 /* ARGSUSED */ 900 static void 901 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 902 { 903 spa_history_phys_t *shp = data; 904 905 if (shp == NULL) 906 return; 907 908 (void) printf("\t\tpool_create_len = %llu\n", 909 (u_longlong_t)shp->sh_pool_create_len); 910 (void) printf("\t\tphys_max_off = %llu\n", 911 (u_longlong_t)shp->sh_phys_max_off); 912 (void) printf("\t\tbof = %llu\n", 913 (u_longlong_t)shp->sh_bof); 914 (void) printf("\t\teof = %llu\n", 915 (u_longlong_t)shp->sh_eof); 916 (void) printf("\t\trecords_lost = %llu\n", 917 (u_longlong_t)shp->sh_records_lost); 918 } 919 920 static void 921 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 922 { 923 if (dump_opt['P']) 924 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 925 else 926 nicenum(num, buf, sizeof (buf)); 927 } 928 929 static const char histo_stars[] = "****************************************"; 930 static const uint64_t histo_width = sizeof (histo_stars) - 1; 931 932 static void 933 dump_histogram(const uint64_t *histo, int size, int offset) 934 { 935 int i; 936 int minidx = size - 1; 937 int maxidx = 0; 938 uint64_t max = 0; 939 940 for (i = 0; i < size; i++) { 941 if (histo[i] > max) 942 max = histo[i]; 943 if (histo[i] > 0 && i > maxidx) 944 maxidx = i; 945 if (histo[i] > 0 && i < minidx) 946 minidx = i; 947 } 948 949 if (max < histo_width) 950 max = histo_width; 951 952 for (i = minidx; i <= maxidx; i++) { 953 (void) printf("\t\t\t%3u: %6llu %s\n", 954 i + offset, (u_longlong_t)histo[i], 955 &histo_stars[(max - histo[i]) * histo_width / max]); 956 } 957 } 958 959 static void 960 dump_zap_stats(objset_t *os, uint64_t object) 961 { 962 int error; 963 zap_stats_t zs; 964 965 error = zap_get_stats(os, object, &zs); 966 if (error) 967 return; 968 969 if (zs.zs_ptrtbl_len == 0) { 970 ASSERT(zs.zs_num_blocks == 1); 971 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 972 (u_longlong_t)zs.zs_blocksize, 973 (u_longlong_t)zs.zs_num_entries); 974 return; 975 } 976 977 (void) printf("\tFat ZAP stats:\n"); 978 979 (void) printf("\t\tPointer table:\n"); 980 (void) printf("\t\t\t%llu elements\n", 981 (u_longlong_t)zs.zs_ptrtbl_len); 982 (void) printf("\t\t\tzt_blk: %llu\n", 983 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 984 (void) printf("\t\t\tzt_numblks: %llu\n", 985 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 986 (void) printf("\t\t\tzt_shift: %llu\n", 987 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 988 (void) printf("\t\t\tzt_blks_copied: %llu\n", 989 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 990 (void) printf("\t\t\tzt_nextblk: %llu\n", 991 (u_longlong_t)zs.zs_ptrtbl_nextblk); 992 993 (void) printf("\t\tZAP entries: %llu\n", 994 (u_longlong_t)zs.zs_num_entries); 995 (void) printf("\t\tLeaf blocks: %llu\n", 996 (u_longlong_t)zs.zs_num_leafs); 997 (void) printf("\t\tTotal blocks: %llu\n", 998 (u_longlong_t)zs.zs_num_blocks); 999 (void) printf("\t\tzap_block_type: 0x%llx\n", 1000 (u_longlong_t)zs.zs_block_type); 1001 (void) printf("\t\tzap_magic: 0x%llx\n", 1002 (u_longlong_t)zs.zs_magic); 1003 (void) printf("\t\tzap_salt: 0x%llx\n", 1004 (u_longlong_t)zs.zs_salt); 1005 1006 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1007 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1008 1009 (void) printf("\t\tBlocks with n*5 entries:\n"); 1010 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1011 1012 (void) printf("\t\tBlocks n/10 full:\n"); 1013 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1014 1015 (void) printf("\t\tEntries with n chunks:\n"); 1016 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1017 1018 (void) printf("\t\tBuckets with n entries:\n"); 1019 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1020 } 1021 1022 /*ARGSUSED*/ 1023 static void 1024 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1025 { 1026 } 1027 1028 /*ARGSUSED*/ 1029 static void 1030 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1031 { 1032 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1033 } 1034 1035 /*ARGSUSED*/ 1036 static void 1037 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1038 { 1039 } 1040 1041 /*ARGSUSED*/ 1042 static void 1043 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1044 { 1045 uint64_t *arr; 1046 uint64_t oursize; 1047 if (dump_opt['d'] < 6) 1048 return; 1049 1050 if (data == NULL) { 1051 dmu_object_info_t doi; 1052 1053 VERIFY0(dmu_object_info(os, object, &doi)); 1054 size = doi.doi_max_offset; 1055 /* 1056 * We cap the size at 1 mebibyte here to prevent 1057 * allocation failures and nigh-infinite printing if the 1058 * object is extremely large. 1059 */ 1060 oursize = MIN(size, 1 << 20); 1061 arr = kmem_alloc(oursize, KM_SLEEP); 1062 1063 int err = dmu_read(os, object, 0, oursize, arr, 0); 1064 if (err != 0) { 1065 (void) printf("got error %u from dmu_read\n", err); 1066 kmem_free(arr, oursize); 1067 return; 1068 } 1069 } else { 1070 /* 1071 * Even though the allocation is already done in this code path, 1072 * we still cap the size to prevent excessive printing. 1073 */ 1074 oursize = MIN(size, 1 << 20); 1075 arr = data; 1076 } 1077 1078 if (size == 0) { 1079 (void) printf("\t\t[]\n"); 1080 return; 1081 } 1082 1083 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1084 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1085 if (i % 4 != 0) 1086 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1087 else 1088 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1089 } 1090 if (oursize != size) 1091 (void) printf(", ... "); 1092 (void) printf("]\n"); 1093 1094 if (data == NULL) 1095 kmem_free(arr, oursize); 1096 } 1097 1098 /*ARGSUSED*/ 1099 static void 1100 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1101 { 1102 zap_cursor_t zc; 1103 zap_attribute_t attr; 1104 void *prop; 1105 unsigned i; 1106 1107 dump_zap_stats(os, object); 1108 (void) printf("\n"); 1109 1110 for (zap_cursor_init(&zc, os, object); 1111 zap_cursor_retrieve(&zc, &attr) == 0; 1112 zap_cursor_advance(&zc)) { 1113 (void) printf("\t\t%s = ", attr.za_name); 1114 if (attr.za_num_integers == 0) { 1115 (void) printf("\n"); 1116 continue; 1117 } 1118 prop = umem_zalloc(attr.za_num_integers * 1119 attr.za_integer_length, UMEM_NOFAIL); 1120 (void) zap_lookup(os, object, attr.za_name, 1121 attr.za_integer_length, attr.za_num_integers, prop); 1122 if (attr.za_integer_length == 1) { 1123 (void) printf("%s", (char *)prop); 1124 } else { 1125 for (i = 0; i < attr.za_num_integers; i++) { 1126 switch (attr.za_integer_length) { 1127 case 2: 1128 (void) printf("%u ", 1129 ((uint16_t *)prop)[i]); 1130 break; 1131 case 4: 1132 (void) printf("%u ", 1133 ((uint32_t *)prop)[i]); 1134 break; 1135 case 8: 1136 (void) printf("%lld ", 1137 (u_longlong_t)((int64_t *)prop)[i]); 1138 break; 1139 } 1140 } 1141 } 1142 (void) printf("\n"); 1143 umem_free(prop, attr.za_num_integers * attr.za_integer_length); 1144 } 1145 zap_cursor_fini(&zc); 1146 } 1147 1148 static void 1149 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1150 { 1151 bpobj_phys_t *bpop = data; 1152 uint64_t i; 1153 char bytes[32], comp[32], uncomp[32]; 1154 1155 /* make sure the output won't get truncated */ 1156 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 1157 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 1158 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 1159 1160 if (bpop == NULL) 1161 return; 1162 1163 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1164 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1165 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1166 1167 (void) printf("\t\tnum_blkptrs = %llu\n", 1168 (u_longlong_t)bpop->bpo_num_blkptrs); 1169 (void) printf("\t\tbytes = %s\n", bytes); 1170 if (size >= BPOBJ_SIZE_V1) { 1171 (void) printf("\t\tcomp = %s\n", comp); 1172 (void) printf("\t\tuncomp = %s\n", uncomp); 1173 } 1174 if (size >= BPOBJ_SIZE_V2) { 1175 (void) printf("\t\tsubobjs = %llu\n", 1176 (u_longlong_t)bpop->bpo_subobjs); 1177 (void) printf("\t\tnum_subobjs = %llu\n", 1178 (u_longlong_t)bpop->bpo_num_subobjs); 1179 } 1180 if (size >= sizeof (*bpop)) { 1181 (void) printf("\t\tnum_freed = %llu\n", 1182 (u_longlong_t)bpop->bpo_num_freed); 1183 } 1184 1185 if (dump_opt['d'] < 5) 1186 return; 1187 1188 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1189 char blkbuf[BP_SPRINTF_LEN]; 1190 blkptr_t bp; 1191 1192 int err = dmu_read(os, object, 1193 i * sizeof (bp), sizeof (bp), &bp, 0); 1194 if (err != 0) { 1195 (void) printf("got error %u from dmu_read\n", err); 1196 break; 1197 } 1198 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1199 BP_GET_FREE(&bp)); 1200 (void) printf("\t%s\n", blkbuf); 1201 } 1202 } 1203 1204 /* ARGSUSED */ 1205 static void 1206 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1207 { 1208 dmu_object_info_t doi; 1209 int64_t i; 1210 1211 VERIFY0(dmu_object_info(os, object, &doi)); 1212 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1213 1214 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1215 if (err != 0) { 1216 (void) printf("got error %u from dmu_read\n", err); 1217 kmem_free(subobjs, doi.doi_max_offset); 1218 return; 1219 } 1220 1221 int64_t last_nonzero = -1; 1222 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1223 if (subobjs[i] != 0) 1224 last_nonzero = i; 1225 } 1226 1227 for (i = 0; i <= last_nonzero; i++) { 1228 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1229 } 1230 kmem_free(subobjs, doi.doi_max_offset); 1231 } 1232 1233 /*ARGSUSED*/ 1234 static void 1235 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1236 { 1237 dump_zap_stats(os, object); 1238 /* contents are printed elsewhere, properly decoded */ 1239 } 1240 1241 /*ARGSUSED*/ 1242 static void 1243 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1244 { 1245 zap_cursor_t zc; 1246 zap_attribute_t attr; 1247 1248 dump_zap_stats(os, object); 1249 (void) printf("\n"); 1250 1251 for (zap_cursor_init(&zc, os, object); 1252 zap_cursor_retrieve(&zc, &attr) == 0; 1253 zap_cursor_advance(&zc)) { 1254 (void) printf("\t\t%s = ", attr.za_name); 1255 if (attr.za_num_integers == 0) { 1256 (void) printf("\n"); 1257 continue; 1258 } 1259 (void) printf(" %llx : [%d:%d:%d]\n", 1260 (u_longlong_t)attr.za_first_integer, 1261 (int)ATTR_LENGTH(attr.za_first_integer), 1262 (int)ATTR_BSWAP(attr.za_first_integer), 1263 (int)ATTR_NUM(attr.za_first_integer)); 1264 } 1265 zap_cursor_fini(&zc); 1266 } 1267 1268 /*ARGSUSED*/ 1269 static void 1270 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1271 { 1272 zap_cursor_t zc; 1273 zap_attribute_t attr; 1274 uint16_t *layout_attrs; 1275 unsigned i; 1276 1277 dump_zap_stats(os, object); 1278 (void) printf("\n"); 1279 1280 for (zap_cursor_init(&zc, os, object); 1281 zap_cursor_retrieve(&zc, &attr) == 0; 1282 zap_cursor_advance(&zc)) { 1283 (void) printf("\t\t%s = [", attr.za_name); 1284 if (attr.za_num_integers == 0) { 1285 (void) printf("\n"); 1286 continue; 1287 } 1288 1289 VERIFY(attr.za_integer_length == 2); 1290 layout_attrs = umem_zalloc(attr.za_num_integers * 1291 attr.za_integer_length, UMEM_NOFAIL); 1292 1293 VERIFY(zap_lookup(os, object, attr.za_name, 1294 attr.za_integer_length, 1295 attr.za_num_integers, layout_attrs) == 0); 1296 1297 for (i = 0; i != attr.za_num_integers; i++) 1298 (void) printf(" %d ", (int)layout_attrs[i]); 1299 (void) printf("]\n"); 1300 umem_free(layout_attrs, 1301 attr.za_num_integers * attr.za_integer_length); 1302 } 1303 zap_cursor_fini(&zc); 1304 } 1305 1306 /*ARGSUSED*/ 1307 static void 1308 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1309 { 1310 zap_cursor_t zc; 1311 zap_attribute_t attr; 1312 const char *typenames[] = { 1313 /* 0 */ "not specified", 1314 /* 1 */ "FIFO", 1315 /* 2 */ "Character Device", 1316 /* 3 */ "3 (invalid)", 1317 /* 4 */ "Directory", 1318 /* 5 */ "5 (invalid)", 1319 /* 6 */ "Block Device", 1320 /* 7 */ "7 (invalid)", 1321 /* 8 */ "Regular File", 1322 /* 9 */ "9 (invalid)", 1323 /* 10 */ "Symbolic Link", 1324 /* 11 */ "11 (invalid)", 1325 /* 12 */ "Socket", 1326 /* 13 */ "Door", 1327 /* 14 */ "Event Port", 1328 /* 15 */ "15 (invalid)", 1329 }; 1330 1331 dump_zap_stats(os, object); 1332 (void) printf("\n"); 1333 1334 for (zap_cursor_init(&zc, os, object); 1335 zap_cursor_retrieve(&zc, &attr) == 0; 1336 zap_cursor_advance(&zc)) { 1337 (void) printf("\t\t%s = %lld (type: %s)\n", 1338 attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer), 1339 typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]); 1340 } 1341 zap_cursor_fini(&zc); 1342 } 1343 1344 static int 1345 get_dtl_refcount(vdev_t *vd) 1346 { 1347 int refcount = 0; 1348 1349 if (vd->vdev_ops->vdev_op_leaf) { 1350 space_map_t *sm = vd->vdev_dtl_sm; 1351 1352 if (sm != NULL && 1353 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1354 return (1); 1355 return (0); 1356 } 1357 1358 for (unsigned c = 0; c < vd->vdev_children; c++) 1359 refcount += get_dtl_refcount(vd->vdev_child[c]); 1360 return (refcount); 1361 } 1362 1363 static int 1364 get_metaslab_refcount(vdev_t *vd) 1365 { 1366 int refcount = 0; 1367 1368 if (vd->vdev_top == vd) { 1369 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1370 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1371 1372 if (sm != NULL && 1373 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1374 refcount++; 1375 } 1376 } 1377 for (unsigned c = 0; c < vd->vdev_children; c++) 1378 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1379 1380 return (refcount); 1381 } 1382 1383 static int 1384 get_obsolete_refcount(vdev_t *vd) 1385 { 1386 uint64_t obsolete_sm_object; 1387 int refcount = 0; 1388 1389 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1390 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1391 dmu_object_info_t doi; 1392 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1393 obsolete_sm_object, &doi)); 1394 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1395 refcount++; 1396 } 1397 } else { 1398 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1399 ASSERT3U(obsolete_sm_object, ==, 0); 1400 } 1401 for (unsigned c = 0; c < vd->vdev_children; c++) { 1402 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1403 } 1404 1405 return (refcount); 1406 } 1407 1408 static int 1409 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1410 { 1411 uint64_t prev_obj = 1412 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1413 if (prev_obj != 0) { 1414 dmu_object_info_t doi; 1415 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1416 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1417 return (1); 1418 } 1419 } 1420 return (0); 1421 } 1422 1423 static int 1424 get_checkpoint_refcount(vdev_t *vd) 1425 { 1426 int refcount = 0; 1427 1428 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1429 zap_contains(spa_meta_objset(vd->vdev_spa), 1430 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1431 refcount++; 1432 1433 for (uint64_t c = 0; c < vd->vdev_children; c++) 1434 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1435 1436 return (refcount); 1437 } 1438 1439 static int 1440 get_log_spacemap_refcount(spa_t *spa) 1441 { 1442 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1443 } 1444 1445 static int 1446 verify_spacemap_refcounts(spa_t *spa) 1447 { 1448 uint64_t expected_refcount = 0; 1449 uint64_t actual_refcount; 1450 1451 (void) feature_get_refcount(spa, 1452 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1453 &expected_refcount); 1454 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1455 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1456 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1457 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1458 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1459 actual_refcount += get_log_spacemap_refcount(spa); 1460 1461 if (expected_refcount != actual_refcount) { 1462 (void) printf("space map refcount mismatch: expected %lld != " 1463 "actual %lld\n", 1464 (longlong_t)expected_refcount, 1465 (longlong_t)actual_refcount); 1466 return (2); 1467 } 1468 return (0); 1469 } 1470 1471 static void 1472 dump_spacemap(objset_t *os, space_map_t *sm) 1473 { 1474 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1475 "INVALID", "INVALID", "INVALID", "INVALID" }; 1476 1477 if (sm == NULL) 1478 return; 1479 1480 (void) printf("space map object %llu:\n", 1481 (longlong_t)sm->sm_object); 1482 (void) printf(" smp_length = 0x%llx\n", 1483 (longlong_t)sm->sm_phys->smp_length); 1484 (void) printf(" smp_alloc = 0x%llx\n", 1485 (longlong_t)sm->sm_phys->smp_alloc); 1486 1487 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1488 return; 1489 1490 /* 1491 * Print out the freelist entries in both encoded and decoded form. 1492 */ 1493 uint8_t mapshift = sm->sm_shift; 1494 int64_t alloc = 0; 1495 uint64_t word, entry_id = 0; 1496 for (uint64_t offset = 0; offset < space_map_length(sm); 1497 offset += sizeof (word)) { 1498 1499 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1500 sizeof (word), &word, DMU_READ_PREFETCH)); 1501 1502 if (sm_entry_is_debug(word)) { 1503 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1504 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1505 if (de_txg == 0) { 1506 (void) printf( 1507 "\t [%6llu] PADDING\n", 1508 (u_longlong_t)entry_id); 1509 } else { 1510 (void) printf( 1511 "\t [%6llu] %s: txg %llu pass %llu\n", 1512 (u_longlong_t)entry_id, 1513 ddata[SM_DEBUG_ACTION_DECODE(word)], 1514 (u_longlong_t)de_txg, 1515 (u_longlong_t)de_sync_pass); 1516 } 1517 entry_id++; 1518 continue; 1519 } 1520 1521 uint8_t words; 1522 char entry_type; 1523 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1524 1525 if (sm_entry_is_single_word(word)) { 1526 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1527 'A' : 'F'; 1528 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1529 sm->sm_start; 1530 entry_run = SM_RUN_DECODE(word) << mapshift; 1531 words = 1; 1532 } else { 1533 /* it is a two-word entry so we read another word */ 1534 ASSERT(sm_entry_is_double_word(word)); 1535 1536 uint64_t extra_word; 1537 offset += sizeof (extra_word); 1538 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1539 sizeof (extra_word), &extra_word, 1540 DMU_READ_PREFETCH)); 1541 1542 ASSERT3U(offset, <=, space_map_length(sm)); 1543 1544 entry_run = SM2_RUN_DECODE(word) << mapshift; 1545 entry_vdev = SM2_VDEV_DECODE(word); 1546 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1547 'A' : 'F'; 1548 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1549 mapshift) + sm->sm_start; 1550 words = 2; 1551 } 1552 1553 (void) printf("\t [%6llu] %c range:" 1554 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1555 (u_longlong_t)entry_id, 1556 entry_type, (u_longlong_t)entry_off, 1557 (u_longlong_t)(entry_off + entry_run), 1558 (u_longlong_t)entry_run, 1559 (u_longlong_t)entry_vdev, words); 1560 1561 if (entry_type == 'A') 1562 alloc += entry_run; 1563 else 1564 alloc -= entry_run; 1565 entry_id++; 1566 } 1567 if (alloc != space_map_allocated(sm)) { 1568 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1569 "with space map summary (%lld)\n", 1570 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1571 } 1572 } 1573 1574 static void 1575 dump_metaslab_stats(metaslab_t *msp) 1576 { 1577 char maxbuf[32]; 1578 range_tree_t *rt = msp->ms_allocatable; 1579 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1580 int free_pct = range_tree_space(rt) * 100 / msp->ms_size; 1581 1582 /* max sure nicenum has enough space */ 1583 CTASSERT(sizeof (maxbuf) >= NN_NUMBUF_SZ); 1584 1585 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1586 1587 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1588 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1589 "freepct", free_pct); 1590 (void) printf("\tIn-memory histogram:\n"); 1591 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1592 } 1593 1594 static void 1595 dump_metaslab(metaslab_t *msp) 1596 { 1597 vdev_t *vd = msp->ms_group->mg_vd; 1598 spa_t *spa = vd->vdev_spa; 1599 space_map_t *sm = msp->ms_sm; 1600 char freebuf[32]; 1601 1602 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1603 sizeof (freebuf)); 1604 1605 (void) printf( 1606 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1607 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1608 (u_longlong_t)space_map_object(sm), freebuf); 1609 1610 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1611 mutex_enter(&msp->ms_lock); 1612 VERIFY0(metaslab_load(msp)); 1613 range_tree_stat_verify(msp->ms_allocatable); 1614 dump_metaslab_stats(msp); 1615 metaslab_unload(msp); 1616 mutex_exit(&msp->ms_lock); 1617 } 1618 1619 if (dump_opt['m'] > 1 && sm != NULL && 1620 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1621 /* 1622 * The space map histogram represents free space in chunks 1623 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1624 */ 1625 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1626 (u_longlong_t)msp->ms_fragmentation); 1627 dump_histogram(sm->sm_phys->smp_histogram, 1628 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1629 } 1630 1631 ASSERT(msp->ms_size == (1ULL << vd->vdev_ms_shift)); 1632 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1633 1634 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1635 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1636 (u_longlong_t)metaslab_unflushed_txg(msp)); 1637 } 1638 } 1639 1640 static void 1641 print_vdev_metaslab_header(vdev_t *vd) 1642 { 1643 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1644 const char *bias_str = ""; 1645 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1646 bias_str = VDEV_ALLOC_BIAS_LOG; 1647 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1648 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1649 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1650 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1651 } 1652 1653 uint64_t ms_flush_data_obj = 0; 1654 if (vd->vdev_top_zap != 0) { 1655 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1656 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1657 sizeof (uint64_t), 1, &ms_flush_data_obj); 1658 if (error != ENOENT) { 1659 ASSERT0(error); 1660 } 1661 } 1662 1663 (void) printf("\tvdev %10llu %s", 1664 (u_longlong_t)vd->vdev_id, bias_str); 1665 1666 if (ms_flush_data_obj != 0) { 1667 (void) printf(" ms_unflushed_phys object %llu", 1668 (u_longlong_t)ms_flush_data_obj); 1669 } 1670 1671 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1672 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1673 "offset", "spacemap", "free"); 1674 (void) printf("\t%15s %19s %15s %12s\n", 1675 "---------------", "-------------------", 1676 "---------------", "------------"); 1677 } 1678 1679 static void 1680 dump_metaslab_groups(spa_t *spa) 1681 { 1682 vdev_t *rvd = spa->spa_root_vdev; 1683 metaslab_class_t *mc = spa_normal_class(spa); 1684 uint64_t fragmentation; 1685 1686 metaslab_class_histogram_verify(mc); 1687 1688 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1689 vdev_t *tvd = rvd->vdev_child[c]; 1690 metaslab_group_t *mg = tvd->vdev_mg; 1691 1692 if (mg == NULL || mg->mg_class != mc) 1693 continue; 1694 1695 metaslab_group_histogram_verify(mg); 1696 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1697 1698 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1699 "fragmentation", 1700 (u_longlong_t)tvd->vdev_id, 1701 (u_longlong_t)tvd->vdev_ms_count); 1702 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1703 (void) printf("%3s\n", "-"); 1704 } else { 1705 (void) printf("%3llu%%\n", 1706 (u_longlong_t)mg->mg_fragmentation); 1707 } 1708 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1709 } 1710 1711 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1712 fragmentation = metaslab_class_fragmentation(mc); 1713 if (fragmentation == ZFS_FRAG_INVALID) 1714 (void) printf("\t%3s\n", "-"); 1715 else 1716 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1717 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0); 1718 } 1719 1720 static void 1721 print_vdev_indirect(vdev_t *vd) 1722 { 1723 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1724 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1725 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1726 1727 if (vim == NULL) { 1728 ASSERT3P(vib, ==, NULL); 1729 return; 1730 } 1731 1732 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1733 vic->vic_mapping_object); 1734 ASSERT3U(vdev_indirect_births_object(vib), ==, 1735 vic->vic_births_object); 1736 1737 (void) printf("indirect births obj %llu:\n", 1738 (longlong_t)vic->vic_births_object); 1739 (void) printf(" vib_count = %llu\n", 1740 (longlong_t)vdev_indirect_births_count(vib)); 1741 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1742 vdev_indirect_birth_entry_phys_t *cur_vibe = 1743 &vib->vib_entries[i]; 1744 (void) printf("\toffset %llx -> txg %llu\n", 1745 (longlong_t)cur_vibe->vibe_offset, 1746 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1747 } 1748 (void) printf("\n"); 1749 1750 (void) printf("indirect mapping obj %llu:\n", 1751 (longlong_t)vic->vic_mapping_object); 1752 (void) printf(" vim_max_offset = 0x%llx\n", 1753 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1754 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1755 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1756 (void) printf(" vim_count = %llu\n", 1757 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1758 1759 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1760 return; 1761 1762 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1763 1764 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1765 vdev_indirect_mapping_entry_phys_t *vimep = 1766 &vim->vim_entries[i]; 1767 (void) printf("\t<%llx:%llx:%llx> -> " 1768 "<%llx:%llx:%llx> (%x obsolete)\n", 1769 (longlong_t)vd->vdev_id, 1770 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1771 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1772 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1773 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1774 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1775 counts[i]); 1776 } 1777 (void) printf("\n"); 1778 1779 uint64_t obsolete_sm_object; 1780 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1781 if (obsolete_sm_object != 0) { 1782 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1783 (void) printf("obsolete space map object %llu:\n", 1784 (u_longlong_t)obsolete_sm_object); 1785 ASSERT(vd->vdev_obsolete_sm != NULL); 1786 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1787 obsolete_sm_object); 1788 dump_spacemap(mos, vd->vdev_obsolete_sm); 1789 (void) printf("\n"); 1790 } 1791 } 1792 1793 static void 1794 dump_metaslabs(spa_t *spa) 1795 { 1796 vdev_t *vd, *rvd = spa->spa_root_vdev; 1797 uint64_t m, c = 0, children = rvd->vdev_children; 1798 1799 (void) printf("\nMetaslabs:\n"); 1800 1801 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1802 c = zopt_metaslab[0]; 1803 1804 if (c >= children) 1805 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1806 1807 if (zopt_metaslab_args > 1) { 1808 vd = rvd->vdev_child[c]; 1809 print_vdev_metaslab_header(vd); 1810 1811 for (m = 1; m < zopt_metaslab_args; m++) { 1812 if (zopt_metaslab[m] < vd->vdev_ms_count) 1813 dump_metaslab( 1814 vd->vdev_ms[zopt_metaslab[m]]); 1815 else 1816 (void) fprintf(stderr, "bad metaslab " 1817 "number %llu\n", 1818 (u_longlong_t)zopt_metaslab[m]); 1819 } 1820 (void) printf("\n"); 1821 return; 1822 } 1823 children = c + 1; 1824 } 1825 for (; c < children; c++) { 1826 vd = rvd->vdev_child[c]; 1827 print_vdev_metaslab_header(vd); 1828 1829 print_vdev_indirect(vd); 1830 1831 for (m = 0; m < vd->vdev_ms_count; m++) 1832 dump_metaslab(vd->vdev_ms[m]); 1833 (void) printf("\n"); 1834 } 1835 } 1836 1837 static void 1838 dump_log_spacemaps(spa_t *spa) 1839 { 1840 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1841 return; 1842 1843 (void) printf("\nLog Space Maps in Pool:\n"); 1844 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1845 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1846 space_map_t *sm = NULL; 1847 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1848 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1849 1850 (void) printf("Log Spacemap object %llu txg %llu\n", 1851 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1852 dump_spacemap(spa->spa_meta_objset, sm); 1853 space_map_close(sm); 1854 } 1855 (void) printf("\n"); 1856 } 1857 1858 static void 1859 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index) 1860 { 1861 const ddt_phys_t *ddp = dde->dde_phys; 1862 const ddt_key_t *ddk = &dde->dde_key; 1863 const char *types[4] = { "ditto", "single", "double", "triple" }; 1864 char blkbuf[BP_SPRINTF_LEN]; 1865 blkptr_t blk; 1866 int p; 1867 1868 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 1869 if (ddp->ddp_phys_birth == 0) 1870 continue; 1871 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk); 1872 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1873 (void) printf("index %llx refcnt %llu %s %s\n", 1874 (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt, 1875 types[p], blkbuf); 1876 } 1877 } 1878 1879 static void 1880 dump_dedup_ratio(const ddt_stat_t *dds) 1881 { 1882 double rL, rP, rD, D, dedup, compress, copies; 1883 1884 if (dds->dds_blocks == 0) 1885 return; 1886 1887 rL = (double)dds->dds_ref_lsize; 1888 rP = (double)dds->dds_ref_psize; 1889 rD = (double)dds->dds_ref_dsize; 1890 D = (double)dds->dds_dsize; 1891 1892 dedup = rD / D; 1893 compress = rL / rP; 1894 copies = rD / rP; 1895 1896 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1897 "dedup * compress / copies = %.2f\n\n", 1898 dedup, compress, copies, dedup * compress / copies); 1899 } 1900 1901 static void 1902 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class) 1903 { 1904 char name[DDT_NAMELEN]; 1905 ddt_entry_t dde; 1906 uint64_t walk = 0; 1907 dmu_object_info_t doi; 1908 uint64_t count, dspace, mspace; 1909 int error; 1910 1911 error = ddt_object_info(ddt, type, class, &doi); 1912 1913 if (error == ENOENT) 1914 return; 1915 ASSERT(error == 0); 1916 1917 error = ddt_object_count(ddt, type, class, &count); 1918 ASSERT(error == 0); 1919 if (count == 0) 1920 return; 1921 1922 dspace = doi.doi_physical_blocks_512 << 9; 1923 mspace = doi.doi_fill_count * doi.doi_data_block_size; 1924 1925 ddt_object_name(ddt, type, class, name); 1926 1927 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n", 1928 name, 1929 (u_longlong_t)count, 1930 (u_longlong_t)(dspace / count), 1931 (u_longlong_t)(mspace / count)); 1932 1933 if (dump_opt['D'] < 3) 1934 return; 1935 1936 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 1937 1938 if (dump_opt['D'] < 4) 1939 return; 1940 1941 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 1942 return; 1943 1944 (void) printf("%s contents:\n\n", name); 1945 1946 while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0) 1947 dump_dde(ddt, &dde, walk); 1948 1949 ASSERT3U(error, ==, ENOENT); 1950 1951 (void) printf("\n"); 1952 } 1953 1954 static void 1955 dump_all_ddts(spa_t *spa) 1956 { 1957 ddt_histogram_t ddh_total; 1958 ddt_stat_t dds_total; 1959 1960 bzero(&ddh_total, sizeof (ddh_total)); 1961 bzero(&dds_total, sizeof (dds_total)); 1962 1963 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 1964 ddt_t *ddt = spa->spa_ddt[c]; 1965 for (enum ddt_type type = 0; type < DDT_TYPES; type++) { 1966 for (enum ddt_class class = 0; class < DDT_CLASSES; 1967 class++) { 1968 dump_ddt(ddt, type, class); 1969 } 1970 } 1971 } 1972 1973 ddt_get_dedup_stats(spa, &dds_total); 1974 1975 if (dds_total.dds_blocks == 0) { 1976 (void) printf("All DDTs are empty\n"); 1977 return; 1978 } 1979 1980 (void) printf("\n"); 1981 1982 if (dump_opt['D'] > 1) { 1983 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 1984 ddt_get_dedup_histogram(spa, &ddh_total); 1985 zpool_dump_ddt(&dds_total, &ddh_total); 1986 } 1987 1988 dump_dedup_ratio(&dds_total); 1989 } 1990 1991 static void 1992 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 1993 { 1994 char *prefix = arg; 1995 1996 (void) printf("%s [%llu,%llu) length %llu\n", 1997 prefix, 1998 (u_longlong_t)start, 1999 (u_longlong_t)(start + size), 2000 (u_longlong_t)(size)); 2001 } 2002 2003 static void 2004 dump_dtl(vdev_t *vd, int indent) 2005 { 2006 spa_t *spa = vd->vdev_spa; 2007 boolean_t required; 2008 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2009 "outage" }; 2010 char prefix[256]; 2011 2012 spa_vdev_state_enter(spa, SCL_NONE); 2013 required = vdev_dtl_required(vd); 2014 (void) spa_vdev_state_exit(spa, NULL, 0); 2015 2016 if (indent == 0) 2017 (void) printf("\nDirty time logs:\n\n"); 2018 2019 (void) printf("\t%*s%s [%s]\n", indent, "", 2020 vd->vdev_path ? vd->vdev_path : 2021 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2022 required ? "DTL-required" : "DTL-expendable"); 2023 2024 for (int t = 0; t < DTL_TYPES; t++) { 2025 range_tree_t *rt = vd->vdev_dtl[t]; 2026 if (range_tree_space(rt) == 0) 2027 continue; 2028 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2029 indent + 2, "", name[t]); 2030 range_tree_walk(rt, dump_dtl_seg, prefix); 2031 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2032 dump_spacemap(spa->spa_meta_objset, 2033 vd->vdev_dtl_sm); 2034 } 2035 2036 for (unsigned c = 0; c < vd->vdev_children; c++) 2037 dump_dtl(vd->vdev_child[c], indent + 4); 2038 } 2039 2040 static void 2041 dump_history(spa_t *spa) 2042 { 2043 nvlist_t **events = NULL; 2044 char *buf; 2045 uint64_t resid, len, off = 0; 2046 uint_t num = 0; 2047 int error; 2048 time_t tsec; 2049 struct tm t; 2050 char tbuf[30]; 2051 char internalstr[MAXPATHLEN]; 2052 2053 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2054 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2055 __func__); 2056 return; 2057 } 2058 2059 do { 2060 len = SPA_OLD_MAXBLOCKSIZE; 2061 2062 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2063 (void) fprintf(stderr, "Unable to read history: " 2064 "error %d\n", error); 2065 free(buf); 2066 return; 2067 } 2068 2069 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2070 break; 2071 2072 off -= resid; 2073 } while (len != 0); 2074 2075 (void) printf("\nHistory:\n"); 2076 for (unsigned i = 0; i < num; i++) { 2077 uint64_t time, txg, ievent; 2078 char *cmd, *intstr; 2079 boolean_t printed = B_FALSE; 2080 2081 if (nvlist_lookup_uint64(events[i], ZPOOL_HIST_TIME, 2082 &time) != 0) 2083 goto next; 2084 if (nvlist_lookup_string(events[i], ZPOOL_HIST_CMD, 2085 &cmd) != 0) { 2086 if (nvlist_lookup_uint64(events[i], 2087 ZPOOL_HIST_INT_EVENT, &ievent) != 0) 2088 goto next; 2089 verify(nvlist_lookup_uint64(events[i], 2090 ZPOOL_HIST_TXG, &txg) == 0); 2091 verify(nvlist_lookup_string(events[i], 2092 ZPOOL_HIST_INT_STR, &intstr) == 0); 2093 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2094 goto next; 2095 2096 (void) snprintf(internalstr, 2097 sizeof (internalstr), 2098 "[internal %s txg:%lld] %s", 2099 zfs_history_event_names[ievent], 2100 (longlong_t)txg, intstr); 2101 cmd = internalstr; 2102 } 2103 tsec = time; 2104 (void) localtime_r(&tsec, &t); 2105 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2106 (void) printf("%s %s\n", tbuf, cmd); 2107 printed = B_TRUE; 2108 2109 next: 2110 if (dump_opt['h'] > 1) { 2111 if (!printed) 2112 (void) printf("unrecognized record:\n"); 2113 dump_nvlist(events[i], 2); 2114 } 2115 } 2116 free(buf); 2117 } 2118 2119 /*ARGSUSED*/ 2120 static void 2121 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2122 { 2123 } 2124 2125 static uint64_t 2126 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2127 const zbookmark_phys_t *zb) 2128 { 2129 if (dnp == NULL) { 2130 ASSERT(zb->zb_level < 0); 2131 if (zb->zb_object == 0) 2132 return (zb->zb_blkid); 2133 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2134 } 2135 2136 ASSERT(zb->zb_level >= 0); 2137 2138 return ((zb->zb_blkid << 2139 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2140 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2141 } 2142 2143 static void 2144 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2145 const blkptr_t *bp) 2146 { 2147 abd_t *pabd; 2148 void *buf; 2149 zio_t *zio; 2150 zfs_zstdhdr_t zstd_hdr; 2151 int error; 2152 2153 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2154 return; 2155 2156 if (BP_IS_HOLE(bp)) 2157 return; 2158 2159 if (BP_IS_EMBEDDED(bp)) { 2160 buf = malloc(SPA_MAXBLOCKSIZE); 2161 if (buf == NULL) { 2162 (void) fprintf(stderr, "out of memory\n"); 2163 exit(1); 2164 } 2165 decode_embedded_bp_compressed(bp, buf); 2166 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2167 free(buf); 2168 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2169 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2170 (void) snprintf(blkbuf + strlen(blkbuf), 2171 buflen - strlen(blkbuf), 2172 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2173 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2174 return; 2175 } 2176 2177 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2178 zio = zio_root(spa, NULL, NULL, 0); 2179 2180 /* Decrypt but don't decompress so we can read the compression header */ 2181 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2182 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2183 NULL)); 2184 error = zio_wait(zio); 2185 if (error) { 2186 (void) fprintf(stderr, "read failed: %d\n", error); 2187 return; 2188 } 2189 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2190 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2191 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2192 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2193 2194 (void) snprintf(blkbuf + strlen(blkbuf), 2195 buflen - strlen(blkbuf), 2196 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2197 zstd_hdr.c_len, zstd_hdr.version, zstd_hdr.level); 2198 2199 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2200 } 2201 2202 static void 2203 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2204 boolean_t bp_freed) 2205 { 2206 const dva_t *dva = bp->blk_dva; 2207 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2208 int i; 2209 2210 if (dump_opt['b'] >= 6) { 2211 snprintf_blkptr(blkbuf, buflen, bp); 2212 if (bp_freed) { 2213 (void) snprintf(blkbuf + strlen(blkbuf), 2214 buflen - strlen(blkbuf), " %s", "FREE"); 2215 } 2216 return; 2217 } 2218 2219 if (BP_IS_EMBEDDED(bp)) { 2220 (void) sprintf(blkbuf, 2221 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2222 (int)BPE_GET_ETYPE(bp), 2223 (u_longlong_t)BPE_GET_LSIZE(bp), 2224 (u_longlong_t)BPE_GET_PSIZE(bp), 2225 (u_longlong_t)bp->blk_birth); 2226 return; 2227 } 2228 2229 blkbuf[0] = '\0'; 2230 2231 for (i = 0; i < ndvas; i++) 2232 (void) snprintf(blkbuf + strlen(blkbuf), 2233 buflen - strlen(blkbuf), "%llu:%llx:%llx ", 2234 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2235 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2236 (u_longlong_t)DVA_GET_ASIZE(&dva[i])); 2237 2238 if (BP_IS_HOLE(bp)) { 2239 (void) snprintf(blkbuf + strlen(blkbuf), 2240 buflen - strlen(blkbuf), 2241 "%llxL B=%llu", 2242 (u_longlong_t)BP_GET_LSIZE(bp), 2243 (u_longlong_t)bp->blk_birth); 2244 } else { 2245 (void) snprintf(blkbuf + strlen(blkbuf), 2246 buflen - strlen(blkbuf), 2247 "%llxL/%llxP F=%llu B=%llu/%llu", 2248 (u_longlong_t)BP_GET_LSIZE(bp), 2249 (u_longlong_t)BP_GET_PSIZE(bp), 2250 (u_longlong_t)BP_GET_FILL(bp), 2251 (u_longlong_t)bp->blk_birth, 2252 (u_longlong_t)BP_PHYSICAL_BIRTH(bp)); 2253 if (bp_freed) 2254 (void) snprintf(blkbuf + strlen(blkbuf), 2255 buflen - strlen(blkbuf), " %s", "FREE"); 2256 (void) snprintf(blkbuf + strlen(blkbuf), 2257 buflen - strlen(blkbuf), " cksum=%llx:%llx:%llx:%llx", 2258 (u_longlong_t)bp->blk_cksum.zc_word[0], 2259 (u_longlong_t)bp->blk_cksum.zc_word[1], 2260 (u_longlong_t)bp->blk_cksum.zc_word[2], 2261 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2262 } 2263 } 2264 2265 static void 2266 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2267 const dnode_phys_t *dnp) 2268 { 2269 char blkbuf[BP_SPRINTF_LEN]; 2270 int l; 2271 2272 if (!BP_IS_EMBEDDED(bp)) { 2273 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2274 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2275 } 2276 2277 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2278 2279 ASSERT(zb->zb_level >= 0); 2280 2281 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2282 if (l == zb->zb_level) { 2283 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2284 } else { 2285 (void) printf(" "); 2286 } 2287 } 2288 2289 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2290 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2291 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2292 (void) printf("%s\n", blkbuf); 2293 } 2294 2295 static int 2296 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2297 blkptr_t *bp, const zbookmark_phys_t *zb) 2298 { 2299 int err = 0; 2300 2301 if (bp->blk_birth == 0) 2302 return (0); 2303 2304 print_indirect(spa, bp, zb, dnp); 2305 2306 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2307 arc_flags_t flags = ARC_FLAG_WAIT; 2308 int i; 2309 blkptr_t *cbp; 2310 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2311 arc_buf_t *buf; 2312 uint64_t fill = 0; 2313 ASSERT(!BP_IS_REDACTED(bp)); 2314 2315 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2316 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2317 if (err) 2318 return (err); 2319 ASSERT(buf->b_data); 2320 2321 /* recursively visit blocks below this */ 2322 cbp = buf->b_data; 2323 for (i = 0; i < epb; i++, cbp++) { 2324 zbookmark_phys_t czb; 2325 2326 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2327 zb->zb_level - 1, 2328 zb->zb_blkid * epb + i); 2329 err = visit_indirect(spa, dnp, cbp, &czb); 2330 if (err) 2331 break; 2332 fill += BP_GET_FILL(cbp); 2333 } 2334 if (!err) 2335 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2336 arc_buf_destroy(buf, &buf); 2337 } 2338 2339 return (err); 2340 } 2341 2342 /*ARGSUSED*/ 2343 static void 2344 dump_indirect(dnode_t *dn) 2345 { 2346 dnode_phys_t *dnp = dn->dn_phys; 2347 int j; 2348 zbookmark_phys_t czb; 2349 2350 (void) printf("Indirect blocks:\n"); 2351 2352 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2353 dn->dn_object, dnp->dn_nlevels - 1, 0); 2354 for (j = 0; j < dnp->dn_nblkptr; j++) { 2355 czb.zb_blkid = j; 2356 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2357 &dnp->dn_blkptr[j], &czb); 2358 } 2359 2360 (void) printf("\n"); 2361 } 2362 2363 /*ARGSUSED*/ 2364 static void 2365 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2366 { 2367 dsl_dir_phys_t *dd = data; 2368 time_t crtime; 2369 char nice[32]; 2370 2371 /* make sure nicenum has enough space */ 2372 CTASSERT(sizeof (nice) >= NN_NUMBUF_SZ); 2373 2374 if (dd == NULL) 2375 return; 2376 2377 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2378 2379 crtime = dd->dd_creation_time; 2380 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2381 (void) printf("\t\thead_dataset_obj = %llu\n", 2382 (u_longlong_t)dd->dd_head_dataset_obj); 2383 (void) printf("\t\tparent_dir_obj = %llu\n", 2384 (u_longlong_t)dd->dd_parent_obj); 2385 (void) printf("\t\torigin_obj = %llu\n", 2386 (u_longlong_t)dd->dd_origin_obj); 2387 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2388 (u_longlong_t)dd->dd_child_dir_zapobj); 2389 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2390 (void) printf("\t\tused_bytes = %s\n", nice); 2391 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2392 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2393 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2394 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2395 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2396 (void) printf("\t\tquota = %s\n", nice); 2397 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2398 (void) printf("\t\treserved = %s\n", nice); 2399 (void) printf("\t\tprops_zapobj = %llu\n", 2400 (u_longlong_t)dd->dd_props_zapobj); 2401 (void) printf("\t\tdeleg_zapobj = %llu\n", 2402 (u_longlong_t)dd->dd_deleg_zapobj); 2403 (void) printf("\t\tflags = %llx\n", 2404 (u_longlong_t)dd->dd_flags); 2405 2406 #define DO(which) \ 2407 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2408 sizeof (nice)); \ 2409 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2410 DO(HEAD); 2411 DO(SNAP); 2412 DO(CHILD); 2413 DO(CHILD_RSRV); 2414 DO(REFRSRV); 2415 #undef DO 2416 (void) printf("\t\tclones = %llu\n", 2417 (u_longlong_t)dd->dd_clones); 2418 } 2419 2420 /*ARGSUSED*/ 2421 static void 2422 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2423 { 2424 dsl_dataset_phys_t *ds = data; 2425 time_t crtime; 2426 char used[32], compressed[32], uncompressed[32], unique[32]; 2427 char blkbuf[BP_SPRINTF_LEN]; 2428 2429 /* make sure nicenum has enough space */ 2430 CTASSERT(sizeof (used) >= NN_NUMBUF_SZ); 2431 CTASSERT(sizeof (compressed) >= NN_NUMBUF_SZ); 2432 CTASSERT(sizeof (uncompressed) >= NN_NUMBUF_SZ); 2433 CTASSERT(sizeof (unique) >= NN_NUMBUF_SZ); 2434 2435 if (ds == NULL) 2436 return; 2437 2438 ASSERT(size == sizeof (*ds)); 2439 crtime = ds->ds_creation_time; 2440 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2441 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2442 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2443 sizeof (uncompressed)); 2444 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2445 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2446 2447 (void) printf("\t\tdir_obj = %llu\n", 2448 (u_longlong_t)ds->ds_dir_obj); 2449 (void) printf("\t\tprev_snap_obj = %llu\n", 2450 (u_longlong_t)ds->ds_prev_snap_obj); 2451 (void) printf("\t\tprev_snap_txg = %llu\n", 2452 (u_longlong_t)ds->ds_prev_snap_txg); 2453 (void) printf("\t\tnext_snap_obj = %llu\n", 2454 (u_longlong_t)ds->ds_next_snap_obj); 2455 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2456 (u_longlong_t)ds->ds_snapnames_zapobj); 2457 (void) printf("\t\tnum_children = %llu\n", 2458 (u_longlong_t)ds->ds_num_children); 2459 (void) printf("\t\tuserrefs_obj = %llu\n", 2460 (u_longlong_t)ds->ds_userrefs_obj); 2461 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2462 (void) printf("\t\tcreation_txg = %llu\n", 2463 (u_longlong_t)ds->ds_creation_txg); 2464 (void) printf("\t\tdeadlist_obj = %llu\n", 2465 (u_longlong_t)ds->ds_deadlist_obj); 2466 (void) printf("\t\tused_bytes = %s\n", used); 2467 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2468 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2469 (void) printf("\t\tunique = %s\n", unique); 2470 (void) printf("\t\tfsid_guid = %llu\n", 2471 (u_longlong_t)ds->ds_fsid_guid); 2472 (void) printf("\t\tguid = %llu\n", 2473 (u_longlong_t)ds->ds_guid); 2474 (void) printf("\t\tflags = %llx\n", 2475 (u_longlong_t)ds->ds_flags); 2476 (void) printf("\t\tnext_clones_obj = %llu\n", 2477 (u_longlong_t)ds->ds_next_clones_obj); 2478 (void) printf("\t\tprops_obj = %llu\n", 2479 (u_longlong_t)ds->ds_props_obj); 2480 (void) printf("\t\tbp = %s\n", blkbuf); 2481 } 2482 2483 /* ARGSUSED */ 2484 static int 2485 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2486 { 2487 char blkbuf[BP_SPRINTF_LEN]; 2488 2489 if (bp->blk_birth != 0) { 2490 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2491 (void) printf("\t%s\n", blkbuf); 2492 } 2493 return (0); 2494 } 2495 2496 static void 2497 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2498 { 2499 char bytes[32]; 2500 bptree_phys_t *bt; 2501 dmu_buf_t *db; 2502 2503 /* make sure nicenum has enough space */ 2504 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2505 2506 if (dump_opt['d'] < 3) 2507 return; 2508 2509 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2510 bt = db->db_data; 2511 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2512 (void) printf("\n %s: %llu datasets, %s\n", 2513 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2514 dmu_buf_rele(db, FTAG); 2515 2516 if (dump_opt['d'] < 5) 2517 return; 2518 2519 (void) printf("\n"); 2520 2521 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2522 } 2523 2524 /* ARGSUSED */ 2525 static int 2526 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2527 { 2528 char blkbuf[BP_SPRINTF_LEN]; 2529 2530 ASSERT(bp->blk_birth != 0); 2531 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2532 (void) printf("\t%s\n", blkbuf); 2533 return (0); 2534 } 2535 2536 static void 2537 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2538 { 2539 char bytes[32]; 2540 char comp[32]; 2541 char uncomp[32]; 2542 uint64_t i; 2543 2544 /* make sure nicenum has enough space */ 2545 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2546 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2547 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2548 2549 if (dump_opt['d'] < 3) 2550 return; 2551 2552 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2553 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2554 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2555 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2556 if (bpo->bpo_havefreed) { 2557 (void) printf(" %*s: object %llu, %llu local " 2558 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2559 "%s (%s/%s comp)\n", 2560 indent * 8, name, 2561 (u_longlong_t)bpo->bpo_object, 2562 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2563 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2564 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2565 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2566 bytes, comp, uncomp); 2567 } else { 2568 (void) printf(" %*s: object %llu, %llu local " 2569 "blkptrs, %llu subobjs in object %llu, " 2570 "%s (%s/%s comp)\n", 2571 indent * 8, name, 2572 (u_longlong_t)bpo->bpo_object, 2573 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2574 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2575 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2576 bytes, comp, uncomp); 2577 } 2578 2579 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2580 uint64_t subobj; 2581 bpobj_t subbpo; 2582 int error; 2583 VERIFY0(dmu_read(bpo->bpo_os, 2584 bpo->bpo_phys->bpo_subobjs, 2585 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2586 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2587 if (error != 0) { 2588 (void) printf("ERROR %u while trying to open " 2589 "subobj id %llu\n", 2590 error, (u_longlong_t)subobj); 2591 continue; 2592 } 2593 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2594 bpobj_close(&subbpo); 2595 } 2596 } else { 2597 if (bpo->bpo_havefreed) { 2598 (void) printf(" %*s: object %llu, %llu blkptrs, " 2599 "%llu freed, %s\n", 2600 indent * 8, name, 2601 (u_longlong_t)bpo->bpo_object, 2602 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2603 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2604 bytes); 2605 } else { 2606 (void) printf(" %*s: object %llu, %llu blkptrs, " 2607 "%s\n", 2608 indent * 8, name, 2609 (u_longlong_t)bpo->bpo_object, 2610 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2611 bytes); 2612 } 2613 } 2614 2615 if (dump_opt['d'] < 5) 2616 return; 2617 2618 2619 if (indent == 0) { 2620 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2621 (void) printf("\n"); 2622 } 2623 } 2624 2625 static int 2626 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2627 boolean_t print_list) 2628 { 2629 int err = 0; 2630 zfs_bookmark_phys_t prop; 2631 objset_t *mos = dp->dp_spa->spa_meta_objset; 2632 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2633 2634 if (err != 0) { 2635 return (err); 2636 } 2637 2638 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2639 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2640 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2641 (u_longlong_t)prop.zbm_creation_txg, 2642 (u_longlong_t)prop.zbm_creation_time, 2643 (u_longlong_t)prop.zbm_redaction_obj); 2644 2645 IMPLY(print_list, print_redact); 2646 if (!print_redact || prop.zbm_redaction_obj == 0) 2647 return (0); 2648 2649 redaction_list_t *rl; 2650 VERIFY0(dsl_redaction_list_hold_obj(dp, 2651 prop.zbm_redaction_obj, FTAG, &rl)); 2652 2653 redaction_list_phys_t *rlp = rl->rl_phys; 2654 (void) printf("\tRedacted:\n\t\tProgress: "); 2655 if (rlp->rlp_last_object != UINT64_MAX || 2656 rlp->rlp_last_blkid != UINT64_MAX) { 2657 (void) printf("%llu %llu (incomplete)\n", 2658 (u_longlong_t)rlp->rlp_last_object, 2659 (u_longlong_t)rlp->rlp_last_blkid); 2660 } else { 2661 (void) printf("complete\n"); 2662 } 2663 (void) printf("\t\tSnapshots: ["); 2664 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2665 if (i > 0) 2666 (void) printf(", "); 2667 (void) printf("%0llu", 2668 (u_longlong_t)rlp->rlp_snaps[i]); 2669 } 2670 (void) printf("]\n\t\tLength: %llu\n", 2671 (u_longlong_t)rlp->rlp_num_entries); 2672 2673 if (!print_list) { 2674 dsl_redaction_list_rele(rl, FTAG); 2675 return (0); 2676 } 2677 2678 if (rlp->rlp_num_entries == 0) { 2679 dsl_redaction_list_rele(rl, FTAG); 2680 (void) printf("\t\tRedaction List: []\n\n"); 2681 return (0); 2682 } 2683 2684 redact_block_phys_t *rbp_buf; 2685 uint64_t size; 2686 dmu_object_info_t doi; 2687 2688 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 2689 size = doi.doi_max_offset; 2690 rbp_buf = kmem_alloc(size, KM_SLEEP); 2691 2692 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 2693 rbp_buf, 0); 2694 if (err != 0) { 2695 dsl_redaction_list_rele(rl, FTAG); 2696 kmem_free(rbp_buf, size); 2697 return (err); 2698 } 2699 2700 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 2701 "%llx, blksz: %x, count: %llx}", 2702 (u_longlong_t)rbp_buf[0].rbp_object, 2703 (u_longlong_t)rbp_buf[0].rbp_blkid, 2704 (uint_t)(redact_block_get_size(&rbp_buf[0])), 2705 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 2706 2707 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 2708 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 2709 "blksz: %x, count: %llx}", 2710 (u_longlong_t)rbp_buf[i].rbp_object, 2711 (u_longlong_t)rbp_buf[i].rbp_blkid, 2712 (uint_t)(redact_block_get_size(&rbp_buf[i])), 2713 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 2714 } 2715 dsl_redaction_list_rele(rl, FTAG); 2716 kmem_free(rbp_buf, size); 2717 (void) printf("]\n\n"); 2718 return (0); 2719 } 2720 2721 static void 2722 dump_bookmarks(objset_t *os, int verbosity) 2723 { 2724 zap_cursor_t zc; 2725 zap_attribute_t attr; 2726 dsl_dataset_t *ds = dmu_objset_ds(os); 2727 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2728 objset_t *mos = os->os_spa->spa_meta_objset; 2729 if (verbosity < 4) 2730 return; 2731 dsl_pool_config_enter(dp, FTAG); 2732 2733 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 2734 zap_cursor_retrieve(&zc, &attr) == 0; 2735 zap_cursor_advance(&zc)) { 2736 char osname[ZFS_MAX_DATASET_NAME_LEN]; 2737 char buf[ZFS_MAX_DATASET_NAME_LEN]; 2738 dmu_objset_name(os, osname); 2739 VERIFY3S(0, <=, snprintf(buf, sizeof (buf), "%s#%s", osname, 2740 attr.za_name)); 2741 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 2742 } 2743 zap_cursor_fini(&zc); 2744 dsl_pool_config_exit(dp, FTAG); 2745 } 2746 2747 static void 2748 bpobj_count_refd(bpobj_t *bpo) 2749 { 2750 mos_obj_refd(bpo->bpo_object); 2751 2752 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2753 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 2754 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2755 uint64_t subobj; 2756 bpobj_t subbpo; 2757 int error; 2758 VERIFY0(dmu_read(bpo->bpo_os, 2759 bpo->bpo_phys->bpo_subobjs, 2760 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2761 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2762 if (error != 0) { 2763 (void) printf("ERROR %u while trying to open " 2764 "subobj id %llu\n", 2765 error, (u_longlong_t)subobj); 2766 continue; 2767 } 2768 bpobj_count_refd(&subbpo); 2769 bpobj_close(&subbpo); 2770 } 2771 } 2772 } 2773 2774 static int 2775 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 2776 { 2777 spa_t *spa = arg; 2778 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2779 if (dle->dle_bpobj.bpo_object != empty_bpobj) 2780 bpobj_count_refd(&dle->dle_bpobj); 2781 return (0); 2782 } 2783 2784 static int 2785 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 2786 { 2787 ASSERT(arg == NULL); 2788 if (dump_opt['d'] >= 5) { 2789 char buf[128]; 2790 (void) snprintf(buf, sizeof (buf), 2791 "mintxg %llu -> obj %llu", 2792 (longlong_t)dle->dle_mintxg, 2793 (longlong_t)dle->dle_bpobj.bpo_object); 2794 2795 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 2796 } else { 2797 (void) printf("mintxg %llu -> obj %llu\n", 2798 (longlong_t)dle->dle_mintxg, 2799 (longlong_t)dle->dle_bpobj.bpo_object); 2800 } 2801 return (0); 2802 } 2803 2804 static void 2805 dump_blkptr_list(dsl_deadlist_t *dl, char *name) 2806 { 2807 char bytes[32]; 2808 char comp[32]; 2809 char uncomp[32]; 2810 char entries[32]; 2811 spa_t *spa = dmu_objset_spa(dl->dl_os); 2812 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 2813 2814 if (dl->dl_oldfmt) { 2815 if (dl->dl_bpobj.bpo_object != empty_bpobj) 2816 bpobj_count_refd(&dl->dl_bpobj); 2817 } else { 2818 mos_obj_refd(dl->dl_object); 2819 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 2820 } 2821 2822 /* make sure nicenum has enough space */ 2823 CTASSERT(sizeof (bytes) >= NN_NUMBUF_SZ); 2824 CTASSERT(sizeof (comp) >= NN_NUMBUF_SZ); 2825 CTASSERT(sizeof (uncomp) >= NN_NUMBUF_SZ); 2826 CTASSERT(sizeof (entries) >= NN_NUMBUF_SZ); 2827 2828 if (dump_opt['d'] < 3) 2829 return; 2830 2831 if (dl->dl_oldfmt) { 2832 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 2833 return; 2834 } 2835 2836 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 2837 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 2838 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 2839 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 2840 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 2841 name, bytes, comp, uncomp, entries); 2842 2843 if (dump_opt['d'] < 4) 2844 return; 2845 2846 (void) printf("\n"); 2847 2848 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 2849 } 2850 2851 static int 2852 verify_dd_livelist(objset_t *os) 2853 { 2854 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 2855 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 2856 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 2857 2858 ASSERT(!dmu_objset_is_snapshot(os)); 2859 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 2860 return (0); 2861 2862 /* Iterate through the livelist to check for duplicates */ 2863 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 2864 NULL); 2865 2866 dsl_pool_config_enter(dp, FTAG); 2867 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 2868 &ll_comp, &ll_uncomp); 2869 2870 dsl_dataset_t *origin_ds; 2871 ASSERT(dsl_pool_config_held(dp)); 2872 VERIFY0(dsl_dataset_hold_obj(dp, 2873 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 2874 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 2875 &used, &comp, &uncomp)); 2876 dsl_dataset_rele(origin_ds, FTAG); 2877 dsl_pool_config_exit(dp, FTAG); 2878 /* 2879 * It's possible that the dataset's uncomp space is larger than the 2880 * livelist's because livelists do not track embedded block pointers 2881 */ 2882 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 2883 char nice_used[32], nice_comp[32], nice_uncomp[32]; 2884 (void) printf("Discrepancy in space accounting:\n"); 2885 zdb_nicenum(used, nice_used, sizeof (nice_used)); 2886 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 2887 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 2888 (void) printf("dir: used %s, comp %s, uncomp %s\n", 2889 nice_used, nice_comp, nice_uncomp); 2890 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 2891 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 2892 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 2893 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 2894 nice_used, nice_comp, nice_uncomp); 2895 return (1); 2896 } 2897 return (0); 2898 } 2899 2900 static avl_tree_t idx_tree; 2901 static avl_tree_t domain_tree; 2902 static boolean_t fuid_table_loaded; 2903 static objset_t *sa_os = NULL; 2904 static sa_attr_type_t *sa_attr_table = NULL; 2905 2906 static int 2907 open_objset(const char *path, void *tag, objset_t **osp) 2908 { 2909 int err; 2910 uint64_t sa_attrs = 0; 2911 uint64_t version = 0; 2912 2913 VERIFY3P(sa_os, ==, NULL); 2914 /* 2915 * We can't own an objset if it's redacted. Therefore, we do this 2916 * dance: hold the objset, then acquire a long hold on its dataset, then 2917 * release the pool (which is held as part of holding the objset). 2918 */ 2919 err = dmu_objset_hold(path, tag, osp); 2920 if (err != 0) { 2921 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 2922 path, strerror(err)); 2923 return (err); 2924 } 2925 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 2926 dsl_pool_rele(dmu_objset_pool(*osp), tag); 2927 2928 if (dmu_objset_type(*osp) == DMU_OST_ZFS && !(*osp)->os_encrypted) { 2929 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2930 8, 1, &version); 2931 if (version >= ZPL_VERSION_SA) { 2932 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 2933 8, 1, &sa_attrs); 2934 } 2935 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 2936 &sa_attr_table); 2937 if (err != 0) { 2938 (void) fprintf(stderr, "sa_setup failed: %s\n", 2939 strerror(err)); 2940 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 2941 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 2942 *osp = NULL; 2943 } 2944 } 2945 sa_os = *osp; 2946 2947 return (0); 2948 } 2949 2950 static void 2951 close_objset(objset_t *os, void *tag) 2952 { 2953 VERIFY3P(os, ==, sa_os); 2954 if (os->os_sa != NULL) 2955 sa_tear_down(os); 2956 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 2957 dsl_dataset_rele(dmu_objset_ds(os), tag); 2958 sa_attr_table = NULL; 2959 sa_os = NULL; 2960 } 2961 2962 static void 2963 fuid_table_destroy(void) 2964 { 2965 if (fuid_table_loaded) { 2966 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 2967 fuid_table_loaded = B_FALSE; 2968 } 2969 } 2970 2971 /* 2972 * print uid or gid information. 2973 * For normal POSIX id just the id is printed in decimal format. 2974 * For CIFS files with FUID the fuid is printed in hex followed by 2975 * the domain-rid string. 2976 */ 2977 static void 2978 print_idstr(uint64_t id, const char *id_type) 2979 { 2980 if (FUID_INDEX(id)) { 2981 char *domain; 2982 2983 domain = zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 2984 (void) printf("\t%s %llx [%s-%d]\n", id_type, 2985 (u_longlong_t)id, domain, (int)FUID_RID(id)); 2986 } else { 2987 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 2988 } 2989 2990 } 2991 2992 static void 2993 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 2994 { 2995 uint32_t uid_idx, gid_idx; 2996 2997 uid_idx = FUID_INDEX(uid); 2998 gid_idx = FUID_INDEX(gid); 2999 3000 /* Load domain table, if not already loaded */ 3001 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3002 uint64_t fuid_obj; 3003 3004 /* first find the fuid object. It lives in the master node */ 3005 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3006 8, 1, &fuid_obj) == 0); 3007 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3008 (void) zfs_fuid_table_load(os, fuid_obj, 3009 &idx_tree, &domain_tree); 3010 fuid_table_loaded = B_TRUE; 3011 } 3012 3013 print_idstr(uid, "uid"); 3014 print_idstr(gid, "gid"); 3015 } 3016 3017 static void 3018 dump_znode_sa_xattr(sa_handle_t *hdl) 3019 { 3020 nvlist_t *sa_xattr; 3021 nvpair_t *elem = NULL; 3022 int sa_xattr_size = 0; 3023 int sa_xattr_entries = 0; 3024 int error; 3025 char *sa_xattr_packed; 3026 3027 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3028 if (error || sa_xattr_size == 0) 3029 return; 3030 3031 sa_xattr_packed = malloc(sa_xattr_size); 3032 if (sa_xattr_packed == NULL) 3033 return; 3034 3035 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3036 sa_xattr_packed, sa_xattr_size); 3037 if (error) { 3038 free(sa_xattr_packed); 3039 return; 3040 } 3041 3042 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3043 if (error) { 3044 free(sa_xattr_packed); 3045 return; 3046 } 3047 3048 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3049 sa_xattr_entries++; 3050 3051 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3052 sa_xattr_size, sa_xattr_entries); 3053 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3054 uchar_t *value; 3055 uint_t cnt, idx; 3056 3057 (void) printf("\t\t%s = ", nvpair_name(elem)); 3058 nvpair_value_byte_array(elem, &value, &cnt); 3059 for (idx = 0; idx < cnt; ++idx) { 3060 if (isprint(value[idx])) 3061 (void) putchar(value[idx]); 3062 else 3063 (void) printf("\\%3.3o", value[idx]); 3064 } 3065 (void) putchar('\n'); 3066 } 3067 3068 nvlist_free(sa_xattr); 3069 free(sa_xattr_packed); 3070 } 3071 3072 static void 3073 dump_znode_symlink(sa_handle_t *hdl) 3074 { 3075 int sa_symlink_size = 0; 3076 char linktarget[MAXPATHLEN]; 3077 linktarget[0] = '\0'; 3078 int error; 3079 3080 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3081 if (error || sa_symlink_size == 0) { 3082 return; 3083 } 3084 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3085 &linktarget, sa_symlink_size) == 0) 3086 (void) printf("\ttarget %s\n", linktarget); 3087 } 3088 3089 /*ARGSUSED*/ 3090 static void 3091 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3092 { 3093 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3094 sa_handle_t *hdl; 3095 uint64_t xattr, rdev, gen; 3096 uint64_t uid, gid, mode, fsize, parent, links; 3097 uint64_t pflags; 3098 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3099 time_t z_crtime, z_atime, z_mtime, z_ctime; 3100 sa_bulk_attr_t bulk[12]; 3101 int idx = 0; 3102 int error; 3103 3104 VERIFY3P(os, ==, sa_os); 3105 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3106 (void) printf("Failed to get handle for SA znode\n"); 3107 return; 3108 } 3109 3110 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3111 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3112 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3113 &links, 8); 3114 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3115 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3116 &mode, 8); 3117 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3118 NULL, &parent, 8); 3119 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3120 &fsize, 8); 3121 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3122 acctm, 16); 3123 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3124 modtm, 16); 3125 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3126 crtm, 16); 3127 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3128 chgtm, 16); 3129 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3130 &pflags, 8); 3131 3132 if (sa_bulk_lookup(hdl, bulk, idx)) { 3133 (void) sa_handle_destroy(hdl); 3134 return; 3135 } 3136 3137 z_crtime = (time_t)crtm[0]; 3138 z_atime = (time_t)acctm[0]; 3139 z_mtime = (time_t)modtm[0]; 3140 z_ctime = (time_t)chgtm[0]; 3141 3142 if (dump_opt['d'] > 4) { 3143 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3144 if (error == ESTALE) { 3145 (void) snprintf(path, sizeof (path), "on delete queue"); 3146 } else if (error != 0) { 3147 leaked_objects++; 3148 (void) snprintf(path, sizeof (path), 3149 "path not found, possibly leaked"); 3150 } 3151 (void) printf("\tpath %s\n", path); 3152 } 3153 3154 if (S_ISLNK(mode)) 3155 dump_znode_symlink(hdl); 3156 dump_uidgid(os, uid, gid); 3157 (void) printf("\tatime %s", ctime(&z_atime)); 3158 (void) printf("\tmtime %s", ctime(&z_mtime)); 3159 (void) printf("\tctime %s", ctime(&z_ctime)); 3160 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3161 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3162 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3163 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3164 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3165 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3166 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3167 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3168 uint64_t projid; 3169 3170 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3171 sizeof (uint64_t)) == 0) 3172 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3173 } 3174 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3175 sizeof (uint64_t)) == 0) 3176 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3177 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3178 sizeof (uint64_t)) == 0) 3179 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3180 dump_znode_sa_xattr(hdl); 3181 sa_handle_destroy(hdl); 3182 } 3183 3184 /*ARGSUSED*/ 3185 static void 3186 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3187 { 3188 } 3189 3190 /*ARGSUSED*/ 3191 static void 3192 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3193 { 3194 } 3195 3196 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3197 dump_none, /* unallocated */ 3198 dump_zap, /* object directory */ 3199 dump_uint64, /* object array */ 3200 dump_none, /* packed nvlist */ 3201 dump_packed_nvlist, /* packed nvlist size */ 3202 dump_none, /* bpobj */ 3203 dump_bpobj, /* bpobj header */ 3204 dump_none, /* SPA space map header */ 3205 dump_none, /* SPA space map */ 3206 dump_none, /* ZIL intent log */ 3207 dump_dnode, /* DMU dnode */ 3208 dump_dmu_objset, /* DMU objset */ 3209 dump_dsl_dir, /* DSL directory */ 3210 dump_zap, /* DSL directory child map */ 3211 dump_zap, /* DSL dataset snap map */ 3212 dump_zap, /* DSL props */ 3213 dump_dsl_dataset, /* DSL dataset */ 3214 dump_znode, /* ZFS znode */ 3215 dump_acl, /* ZFS V0 ACL */ 3216 dump_uint8, /* ZFS plain file */ 3217 dump_zpldir, /* ZFS directory */ 3218 dump_zap, /* ZFS master node */ 3219 dump_zap, /* ZFS delete queue */ 3220 dump_uint8, /* zvol object */ 3221 dump_zap, /* zvol prop */ 3222 dump_uint8, /* other uint8[] */ 3223 dump_uint64, /* other uint64[] */ 3224 dump_zap, /* other ZAP */ 3225 dump_zap, /* persistent error log */ 3226 dump_uint8, /* SPA history */ 3227 dump_history_offsets, /* SPA history offsets */ 3228 dump_zap, /* Pool properties */ 3229 dump_zap, /* DSL permissions */ 3230 dump_acl, /* ZFS ACL */ 3231 dump_uint8, /* ZFS SYSACL */ 3232 dump_none, /* FUID nvlist */ 3233 dump_packed_nvlist, /* FUID nvlist size */ 3234 dump_zap, /* DSL dataset next clones */ 3235 dump_zap, /* DSL scrub queue */ 3236 dump_zap, /* ZFS user/group/project used */ 3237 dump_zap, /* ZFS user/group/project quota */ 3238 dump_zap, /* snapshot refcount tags */ 3239 dump_ddt_zap, /* DDT ZAP object */ 3240 dump_zap, /* DDT statistics */ 3241 dump_znode, /* SA object */ 3242 dump_zap, /* SA Master Node */ 3243 dump_sa_attrs, /* SA attribute registration */ 3244 dump_sa_layouts, /* SA attribute layouts */ 3245 dump_zap, /* DSL scrub translations */ 3246 dump_none, /* fake dedup BP */ 3247 dump_zap, /* deadlist */ 3248 dump_none, /* deadlist hdr */ 3249 dump_zap, /* dsl clones */ 3250 dump_bpobj_subobjs, /* bpobj subobjs */ 3251 dump_unknown, /* Unknown type, must be last */ 3252 }; 3253 3254 static boolean_t 3255 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3256 { 3257 boolean_t match = B_TRUE; 3258 3259 switch (obj_type) { 3260 case DMU_OT_DIRECTORY_CONTENTS: 3261 if (!(flags & ZOR_FLAG_DIRECTORY)) 3262 match = B_FALSE; 3263 break; 3264 case DMU_OT_PLAIN_FILE_CONTENTS: 3265 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3266 match = B_FALSE; 3267 break; 3268 case DMU_OT_SPACE_MAP: 3269 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3270 match = B_FALSE; 3271 break; 3272 default: 3273 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3274 if (!(flags & ZOR_FLAG_ZAP)) 3275 match = B_FALSE; 3276 break; 3277 } 3278 3279 /* 3280 * If all bits except some of the supported flags are 3281 * set, the user combined the all-types flag (A) with 3282 * a negated flag to exclude some types (e.g. A-f to 3283 * show all object types except plain files). 3284 */ 3285 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3286 match = B_FALSE; 3287 3288 break; 3289 } 3290 3291 return (match); 3292 } 3293 3294 static void 3295 dump_object(objset_t *os, uint64_t object, int verbosity, 3296 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3297 { 3298 dmu_buf_t *db = NULL; 3299 dmu_object_info_t doi; 3300 dnode_t *dn; 3301 boolean_t dnode_held = B_FALSE; 3302 void *bonus = NULL; 3303 size_t bsize = 0; 3304 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3305 char bonus_size[32]; 3306 char aux[50]; 3307 int error; 3308 3309 /* make sure nicenum has enough space */ 3310 CTASSERT(sizeof (iblk) >= NN_NUMBUF_SZ); 3311 CTASSERT(sizeof (dblk) >= NN_NUMBUF_SZ); 3312 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 3313 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 3314 CTASSERT(sizeof (bonus_size) >= NN_NUMBUF_SZ); 3315 3316 if (*print_header) { 3317 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3318 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3319 "lsize", "%full", "type"); 3320 *print_header = 0; 3321 } 3322 3323 if (object == 0) { 3324 dn = DMU_META_DNODE(os); 3325 dmu_object_info_from_dnode(dn, &doi); 3326 } else { 3327 /* 3328 * Encrypted datasets will have sensitive bonus buffers 3329 * encrypted. Therefore we cannot hold the bonus buffer and 3330 * must hold the dnode itself instead. 3331 */ 3332 error = dmu_object_info(os, object, &doi); 3333 if (error) 3334 fatal("dmu_object_info() failed, errno %u", error); 3335 3336 if (os->os_encrypted && 3337 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3338 error = dnode_hold(os, object, FTAG, &dn); 3339 if (error) 3340 fatal("dnode_hold() failed, errno %u", error); 3341 dnode_held = B_TRUE; 3342 } else { 3343 error = dmu_bonus_hold(os, object, FTAG, &db); 3344 if (error) 3345 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3346 object, error); 3347 bonus = db->db_data; 3348 bsize = db->db_size; 3349 dn = DB_DNODE((dmu_buf_impl_t *)db); 3350 } 3351 } 3352 3353 /* 3354 * Default to showing all object types if no flags were specified. 3355 */ 3356 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3357 !match_object_type(doi.doi_type, flags)) 3358 goto out; 3359 3360 if (dnode_slots_used) 3361 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3362 3363 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3364 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3365 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3366 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3367 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3368 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3369 (void) sprintf(fill, "%6.2f", 100.0 * doi.doi_fill_count * 3370 doi.doi_data_block_size / (object == 0 ? DNODES_PER_BLOCK : 1) / 3371 doi.doi_max_offset); 3372 3373 aux[0] = '\0'; 3374 3375 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3376 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3377 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3378 } 3379 3380 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3381 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3382 const char *compname = NULL; 3383 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3384 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3385 &compname) == 0) { 3386 (void) snprintf(aux + strlen(aux), 3387 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3388 compname); 3389 } else { 3390 (void) snprintf(aux + strlen(aux), 3391 sizeof (aux) - strlen(aux), 3392 " (Z=inherit=%s-unknown)", 3393 ZDB_COMPRESS_NAME(os->os_compress)); 3394 } 3395 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3396 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3397 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3398 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3399 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3400 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3401 } 3402 3403 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3404 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3405 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3406 3407 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3408 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3409 "", "", "", "", "", "", bonus_size, "bonus", 3410 zdb_ot_name(doi.doi_bonus_type)); 3411 } 3412 3413 if (verbosity >= 4) { 3414 (void) printf("\tdnode flags: %s%s%s%s\n", 3415 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3416 "USED_BYTES " : "", 3417 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3418 "USERUSED_ACCOUNTED " : "", 3419 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3420 "USEROBJUSED_ACCOUNTED " : "", 3421 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3422 "SPILL_BLKPTR" : ""); 3423 (void) printf("\tdnode maxblkid: %llu\n", 3424 (longlong_t)dn->dn_phys->dn_maxblkid); 3425 3426 if (!dnode_held) { 3427 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3428 object, bonus, bsize); 3429 } else { 3430 (void) printf("\t\t(bonus encrypted)\n"); 3431 } 3432 3433 if (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type)) { 3434 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3435 NULL, 0); 3436 } else { 3437 (void) printf("\t\t(object encrypted)\n"); 3438 } 3439 3440 *print_header = B_TRUE; 3441 } 3442 3443 if (verbosity >= 5) 3444 dump_indirect(dn); 3445 3446 if (verbosity >= 5) { 3447 /* 3448 * Report the list of segments that comprise the object. 3449 */ 3450 uint64_t start = 0; 3451 uint64_t end; 3452 uint64_t blkfill = 1; 3453 int minlvl = 1; 3454 3455 if (dn->dn_type == DMU_OT_DNODE) { 3456 minlvl = 0; 3457 blkfill = DNODES_PER_BLOCK; 3458 } 3459 3460 for (;;) { 3461 char segsize[32]; 3462 /* make sure nicenum has enough space */ 3463 CTASSERT(sizeof (segsize) >= NN_NUMBUF_SZ); 3464 error = dnode_next_offset(dn, 3465 0, &start, minlvl, blkfill, 0); 3466 if (error) 3467 break; 3468 end = start; 3469 error = dnode_next_offset(dn, 3470 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 3471 zdb_nicenum(end - start, segsize, sizeof (segsize)); 3472 (void) printf("\t\tsegment [%016llx, %016llx)" 3473 " size %5s\n", (u_longlong_t)start, 3474 (u_longlong_t)end, segsize); 3475 if (error) 3476 break; 3477 start = end; 3478 } 3479 } 3480 3481 out: 3482 if (db != NULL) 3483 dmu_buf_rele(db, FTAG); 3484 if (dnode_held) 3485 dnode_rele(dn, FTAG); 3486 } 3487 3488 static void 3489 count_dir_mos_objects(dsl_dir_t *dd) 3490 { 3491 mos_obj_refd(dd->dd_object); 3492 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 3493 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 3494 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 3495 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 3496 3497 /* 3498 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 3499 * Ignore the references after the first one. 3500 */ 3501 mos_obj_refd_multiple(dd->dd_crypto_obj); 3502 } 3503 3504 static void 3505 count_ds_mos_objects(dsl_dataset_t *ds) 3506 { 3507 mos_obj_refd(ds->ds_object); 3508 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 3509 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 3510 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 3511 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 3512 mos_obj_refd(ds->ds_bookmarks_obj); 3513 3514 if (!dsl_dataset_is_snapshot(ds)) { 3515 count_dir_mos_objects(ds->ds_dir); 3516 } 3517 } 3518 3519 static const char *objset_types[DMU_OST_NUMTYPES] = { 3520 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 3521 3522 /* 3523 * Parse a string denoting a range of object IDs of the form 3524 * <start>[:<end>[:flags]], and store the results in zor. 3525 * Return 0 on success. On error, return 1 and update the msg 3526 * pointer to point to a descriptive error message. 3527 */ 3528 static int 3529 parse_object_range(char *range, zopt_object_range_t *zor, char **msg) 3530 { 3531 uint64_t flags = 0; 3532 char *p, *s, *dup, *flagstr; 3533 size_t len; 3534 int i; 3535 int rc = 0; 3536 3537 if (strchr(range, ':') == NULL) { 3538 zor->zor_obj_start = strtoull(range, &p, 0); 3539 if (*p != '\0') { 3540 *msg = "Invalid characters in object ID"; 3541 rc = 1; 3542 } 3543 zor->zor_obj_end = zor->zor_obj_start; 3544 return (rc); 3545 } 3546 3547 if (strchr(range, ':') == range) { 3548 *msg = "Invalid leading colon"; 3549 rc = 1; 3550 return (rc); 3551 } 3552 3553 len = strlen(range); 3554 if (range[len - 1] == ':') { 3555 *msg = "Invalid trailing colon"; 3556 rc = 1; 3557 return (rc); 3558 } 3559 3560 dup = strdup(range); 3561 s = strtok(dup, ":"); 3562 zor->zor_obj_start = strtoull(s, &p, 0); 3563 3564 if (*p != '\0') { 3565 *msg = "Invalid characters in start object ID"; 3566 rc = 1; 3567 goto out; 3568 } 3569 3570 s = strtok(NULL, ":"); 3571 zor->zor_obj_end = strtoull(s, &p, 0); 3572 3573 if (*p != '\0') { 3574 *msg = "Invalid characters in end object ID"; 3575 rc = 1; 3576 goto out; 3577 } 3578 3579 if (zor->zor_obj_start > zor->zor_obj_end) { 3580 *msg = "Start object ID may not exceed end object ID"; 3581 rc = 1; 3582 goto out; 3583 } 3584 3585 s = strtok(NULL, ":"); 3586 if (s == NULL) { 3587 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 3588 goto out; 3589 } else if (strtok(NULL, ":") != NULL) { 3590 *msg = "Invalid colon-delimited field after flags"; 3591 rc = 1; 3592 goto out; 3593 } 3594 3595 flagstr = s; 3596 for (i = 0; flagstr[i]; i++) { 3597 int bit; 3598 boolean_t negation = (flagstr[i] == '-'); 3599 3600 if (negation) { 3601 i++; 3602 if (flagstr[i] == '\0') { 3603 *msg = "Invalid trailing negation operator"; 3604 rc = 1; 3605 goto out; 3606 } 3607 } 3608 bit = flagbits[(uchar_t)flagstr[i]]; 3609 if (bit == 0) { 3610 *msg = "Invalid flag"; 3611 rc = 1; 3612 goto out; 3613 } 3614 if (negation) 3615 flags &= ~bit; 3616 else 3617 flags |= bit; 3618 } 3619 zor->zor_flags = flags; 3620 3621 out: 3622 free(dup); 3623 return (rc); 3624 } 3625 3626 static void 3627 dump_objset(objset_t *os) 3628 { 3629 dmu_objset_stats_t dds = { 0 }; 3630 uint64_t object, object_count; 3631 uint64_t refdbytes, usedobjs, scratch; 3632 char numbuf[32]; 3633 char blkbuf[BP_SPRINTF_LEN + 20]; 3634 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3635 const char *type = "UNKNOWN"; 3636 int verbosity = dump_opt['d']; 3637 boolean_t print_header; 3638 unsigned i; 3639 int error; 3640 uint64_t total_slots_used = 0; 3641 uint64_t max_slot_used = 0; 3642 uint64_t dnode_slots; 3643 uint64_t obj_start; 3644 uint64_t obj_end; 3645 uint64_t flags; 3646 3647 /* make sure nicenum has enough space */ 3648 CTASSERT(sizeof (numbuf) >= NN_NUMBUF_SZ); 3649 3650 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 3651 dmu_objset_fast_stat(os, &dds); 3652 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 3653 3654 print_header = B_TRUE; 3655 3656 if (dds.dds_type < DMU_OST_NUMTYPES) 3657 type = objset_types[dds.dds_type]; 3658 3659 if (dds.dds_type == DMU_OST_META) { 3660 dds.dds_creation_txg = TXG_INITIAL; 3661 usedobjs = BP_GET_FILL(os->os_rootbp); 3662 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 3663 dd_used_bytes; 3664 } else { 3665 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 3666 } 3667 3668 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 3669 3670 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 3671 3672 if (verbosity >= 4) { 3673 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 3674 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 3675 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 3676 } else { 3677 blkbuf[0] = '\0'; 3678 } 3679 3680 dmu_objset_name(os, osname); 3681 3682 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 3683 "%s, %llu objects%s%s\n", 3684 osname, type, (u_longlong_t)dmu_objset_id(os), 3685 (u_longlong_t)dds.dds_creation_txg, 3686 numbuf, (u_longlong_t)usedobjs, blkbuf, 3687 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 3688 3689 for (i = 0; i < zopt_object_args; i++) { 3690 obj_start = zopt_object_ranges[i].zor_obj_start; 3691 obj_end = zopt_object_ranges[i].zor_obj_end; 3692 flags = zopt_object_ranges[i].zor_flags; 3693 3694 object = obj_start; 3695 if (object == 0 || obj_start == obj_end) 3696 dump_object(os, object, verbosity, &print_header, NULL, 3697 flags); 3698 else 3699 object--; 3700 3701 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 3702 object <= obj_end) { 3703 dump_object(os, object, verbosity, &print_header, NULL, 3704 flags); 3705 } 3706 } 3707 3708 if (zopt_object_args > 0) { 3709 (void) printf("\n"); 3710 return; 3711 } 3712 3713 if (dump_opt['i'] != 0 || verbosity >= 2) 3714 dump_intent_log(dmu_objset_zil(os)); 3715 3716 if (dmu_objset_ds(os) != NULL) { 3717 dsl_dataset_t *ds = dmu_objset_ds(os); 3718 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 3719 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 3720 !dmu_objset_is_snapshot(os)) { 3721 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 3722 if (verify_dd_livelist(os) != 0) 3723 fatal("livelist is incorrect"); 3724 } 3725 3726 if (dsl_dataset_remap_deadlist_exists(ds)) { 3727 (void) printf("ds_remap_deadlist:\n"); 3728 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 3729 } 3730 count_ds_mos_objects(ds); 3731 } 3732 3733 if (dmu_objset_ds(os) != NULL) 3734 dump_bookmarks(os, verbosity); 3735 3736 if (verbosity < 2) 3737 return; 3738 3739 if (BP_IS_HOLE(os->os_rootbp)) 3740 return; 3741 3742 dump_object(os, 0, verbosity, &print_header, NULL, 0); 3743 object_count = 0; 3744 if (DMU_USERUSED_DNODE(os) != NULL && 3745 DMU_USERUSED_DNODE(os)->dn_type != 0) { 3746 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 3747 NULL, 0); 3748 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 3749 NULL, 0); 3750 } 3751 3752 if (DMU_PROJECTUSED_DNODE(os) != NULL && 3753 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 3754 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 3755 &print_header, NULL, 0); 3756 3757 object = 0; 3758 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 3759 dump_object(os, object, verbosity, &print_header, &dnode_slots, 3760 0); 3761 object_count++; 3762 total_slots_used += dnode_slots; 3763 max_slot_used = object + dnode_slots - 1; 3764 } 3765 3766 (void) printf("\n"); 3767 3768 (void) printf(" Dnode slots:\n"); 3769 (void) printf("\tTotal used: %10llu\n", 3770 (u_longlong_t)total_slots_used); 3771 (void) printf("\tMax used: %10llu\n", 3772 (u_longlong_t)max_slot_used); 3773 (void) printf("\tPercent empty: %10lf\n", 3774 (double)(max_slot_used - total_slots_used)*100 / 3775 (double)max_slot_used); 3776 (void) printf("\n"); 3777 3778 if (error != ESRCH) { 3779 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 3780 abort(); 3781 } 3782 3783 ASSERT3U(object_count, ==, usedobjs); 3784 3785 if (leaked_objects != 0) { 3786 (void) printf("%d potentially leaked objects detected\n", 3787 leaked_objects); 3788 leaked_objects = 0; 3789 } 3790 } 3791 3792 static void 3793 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 3794 { 3795 time_t timestamp = ub->ub_timestamp; 3796 3797 (void) printf("%s", header ? header : ""); 3798 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 3799 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 3800 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 3801 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 3802 (void) printf("\ttimestamp = %llu UTC = %s", 3803 (u_longlong_t)ub->ub_timestamp, asctime(localtime(×tamp))); 3804 3805 (void) printf("\tmmp_magic = %016llx\n", 3806 (u_longlong_t)ub->ub_mmp_magic); 3807 if (MMP_VALID(ub)) { 3808 (void) printf("\tmmp_delay = %0llu\n", 3809 (u_longlong_t)ub->ub_mmp_delay); 3810 if (MMP_SEQ_VALID(ub)) 3811 (void) printf("\tmmp_seq = %u\n", 3812 (unsigned int) MMP_SEQ(ub)); 3813 if (MMP_FAIL_INT_VALID(ub)) 3814 (void) printf("\tmmp_fail = %u\n", 3815 (unsigned int) MMP_FAIL_INT(ub)); 3816 if (MMP_INTERVAL_VALID(ub)) 3817 (void) printf("\tmmp_write = %u\n", 3818 (unsigned int) MMP_INTERVAL(ub)); 3819 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 3820 (void) printf("\tmmp_valid = %x\n", 3821 (unsigned int) ub->ub_mmp_config & 0xFF); 3822 } 3823 3824 if (dump_opt['u'] >= 4) { 3825 char blkbuf[BP_SPRINTF_LEN]; 3826 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 3827 (void) printf("\trootbp = %s\n", blkbuf); 3828 } 3829 (void) printf("\tcheckpoint_txg = %llu\n", 3830 (u_longlong_t)ub->ub_checkpoint_txg); 3831 (void) printf("%s", footer ? footer : ""); 3832 } 3833 3834 static void 3835 dump_config(spa_t *spa) 3836 { 3837 dmu_buf_t *db; 3838 size_t nvsize = 0; 3839 int error = 0; 3840 3841 3842 error = dmu_bonus_hold(spa->spa_meta_objset, 3843 spa->spa_config_object, FTAG, &db); 3844 3845 if (error == 0) { 3846 nvsize = *(uint64_t *)db->db_data; 3847 dmu_buf_rele(db, FTAG); 3848 3849 (void) printf("\nMOS Configuration:\n"); 3850 dump_packed_nvlist(spa->spa_meta_objset, 3851 spa->spa_config_object, (void *)&nvsize, 1); 3852 } else { 3853 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 3854 (u_longlong_t)spa->spa_config_object, error); 3855 } 3856 } 3857 3858 static void 3859 dump_cachefile(const char *cachefile) 3860 { 3861 int fd; 3862 struct stat64 statbuf; 3863 char *buf; 3864 nvlist_t *config; 3865 3866 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 3867 (void) printf("cannot open '%s': %s\n", cachefile, 3868 strerror(errno)); 3869 exit(1); 3870 } 3871 3872 if (fstat64(fd, &statbuf) != 0) { 3873 (void) printf("failed to stat '%s': %s\n", cachefile, 3874 strerror(errno)); 3875 exit(1); 3876 } 3877 3878 if ((buf = malloc(statbuf.st_size)) == NULL) { 3879 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 3880 (u_longlong_t)statbuf.st_size); 3881 exit(1); 3882 } 3883 3884 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 3885 (void) fprintf(stderr, "failed to read %llu bytes\n", 3886 (u_longlong_t)statbuf.st_size); 3887 exit(1); 3888 } 3889 3890 (void) close(fd); 3891 3892 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 3893 (void) fprintf(stderr, "failed to unpack nvlist\n"); 3894 exit(1); 3895 } 3896 3897 free(buf); 3898 3899 dump_nvlist(config, 0); 3900 3901 nvlist_free(config); 3902 } 3903 3904 /* 3905 * ZFS label nvlist stats 3906 */ 3907 typedef struct zdb_nvl_stats { 3908 int zns_list_count; 3909 int zns_leaf_count; 3910 size_t zns_leaf_largest; 3911 size_t zns_leaf_total; 3912 nvlist_t *zns_string; 3913 nvlist_t *zns_uint64; 3914 nvlist_t *zns_boolean; 3915 } zdb_nvl_stats_t; 3916 3917 static void 3918 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 3919 { 3920 nvlist_t *list, **array; 3921 nvpair_t *nvp = NULL; 3922 char *name; 3923 uint_t i, items; 3924 3925 stats->zns_list_count++; 3926 3927 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 3928 name = nvpair_name(nvp); 3929 3930 switch (nvpair_type(nvp)) { 3931 case DATA_TYPE_STRING: 3932 fnvlist_add_string(stats->zns_string, name, 3933 fnvpair_value_string(nvp)); 3934 break; 3935 case DATA_TYPE_UINT64: 3936 fnvlist_add_uint64(stats->zns_uint64, name, 3937 fnvpair_value_uint64(nvp)); 3938 break; 3939 case DATA_TYPE_BOOLEAN: 3940 fnvlist_add_boolean(stats->zns_boolean, name); 3941 break; 3942 case DATA_TYPE_NVLIST: 3943 if (nvpair_value_nvlist(nvp, &list) == 0) 3944 collect_nvlist_stats(list, stats); 3945 break; 3946 case DATA_TYPE_NVLIST_ARRAY: 3947 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 3948 break; 3949 3950 for (i = 0; i < items; i++) { 3951 collect_nvlist_stats(array[i], stats); 3952 3953 /* collect stats on leaf vdev */ 3954 if (strcmp(name, "children") == 0) { 3955 size_t size; 3956 3957 (void) nvlist_size(array[i], &size, 3958 NV_ENCODE_XDR); 3959 stats->zns_leaf_total += size; 3960 if (size > stats->zns_leaf_largest) 3961 stats->zns_leaf_largest = size; 3962 stats->zns_leaf_count++; 3963 } 3964 } 3965 break; 3966 default: 3967 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 3968 } 3969 } 3970 } 3971 3972 static void 3973 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 3974 { 3975 zdb_nvl_stats_t stats = { 0 }; 3976 size_t size, sum = 0, total; 3977 size_t noise; 3978 3979 /* requires nvlist with non-unique names for stat collection */ 3980 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 3981 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 3982 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 3983 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 3984 3985 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 3986 3987 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 3988 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 3989 (int)total, (int)(cap - total), 100.0 * total / cap); 3990 3991 collect_nvlist_stats(nvl, &stats); 3992 3993 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 3994 size -= noise; 3995 sum += size; 3996 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 3997 (int)fnvlist_num_pairs(stats.zns_uint64), 3998 (int)size, 100.0 * size / total); 3999 4000 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4001 size -= noise; 4002 sum += size; 4003 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4004 (int)fnvlist_num_pairs(stats.zns_string), 4005 (int)size, 100.0 * size / total); 4006 4007 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4008 size -= noise; 4009 sum += size; 4010 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4011 (int)fnvlist_num_pairs(stats.zns_boolean), 4012 (int)size, 100.0 * size / total); 4013 4014 size = total - sum; /* treat remainder as nvlist overhead */ 4015 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4016 stats.zns_list_count, (int)size, 100.0 * size / total); 4017 4018 if (stats.zns_leaf_count > 0) { 4019 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4020 4021 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4022 stats.zns_leaf_count, (int)average); 4023 (void) printf("%24d bytes largest\n", 4024 (int)stats.zns_leaf_largest); 4025 4026 if (dump_opt['l'] >= 3 && average > 0) 4027 (void) printf(" space for %d additional leaf vdevs\n", 4028 (int)((cap - total) / average)); 4029 } 4030 (void) printf("\n"); 4031 4032 nvlist_free(stats.zns_string); 4033 nvlist_free(stats.zns_uint64); 4034 nvlist_free(stats.zns_boolean); 4035 } 4036 4037 typedef struct cksum_record { 4038 zio_cksum_t cksum; 4039 boolean_t labels[VDEV_LABELS]; 4040 avl_node_t link; 4041 } cksum_record_t; 4042 4043 static int 4044 cksum_record_compare(const void *x1, const void *x2) 4045 { 4046 const cksum_record_t *l = (cksum_record_t *)x1; 4047 const cksum_record_t *r = (cksum_record_t *)x2; 4048 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4049 int difference; 4050 4051 for (int i = 0; i < arraysize; i++) { 4052 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4053 if (difference) 4054 break; 4055 } 4056 4057 return (difference); 4058 } 4059 4060 static cksum_record_t * 4061 cksum_record_alloc(zio_cksum_t *cksum, int l) 4062 { 4063 cksum_record_t *rec; 4064 4065 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4066 rec->cksum = *cksum; 4067 rec->labels[l] = B_TRUE; 4068 4069 return (rec); 4070 } 4071 4072 static cksum_record_t * 4073 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4074 { 4075 cksum_record_t lookup = { .cksum = *cksum }; 4076 avl_index_t where; 4077 4078 return (avl_find(tree, &lookup, &where)); 4079 } 4080 4081 static cksum_record_t * 4082 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4083 { 4084 cksum_record_t *rec; 4085 4086 rec = cksum_record_lookup(tree, cksum); 4087 if (rec) { 4088 rec->labels[l] = B_TRUE; 4089 } else { 4090 rec = cksum_record_alloc(cksum, l); 4091 avl_add(tree, rec); 4092 } 4093 4094 return (rec); 4095 } 4096 4097 static int 4098 first_label(cksum_record_t *rec) 4099 { 4100 for (int i = 0; i < VDEV_LABELS; i++) 4101 if (rec->labels[i]) 4102 return (i); 4103 4104 return (-1); 4105 } 4106 4107 static void 4108 print_label_numbers(char *prefix, cksum_record_t *rec) 4109 { 4110 printf("%s", prefix); 4111 for (int i = 0; i < VDEV_LABELS; i++) 4112 if (rec->labels[i] == B_TRUE) 4113 printf("%d ", i); 4114 printf("\n"); 4115 } 4116 4117 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4118 4119 typedef struct zdb_label { 4120 vdev_label_t label; 4121 nvlist_t *config_nv; 4122 cksum_record_t *config; 4123 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4124 boolean_t header_printed; 4125 boolean_t read_failed; 4126 } zdb_label_t; 4127 4128 static void 4129 print_label_header(zdb_label_t *label, int l) 4130 { 4131 4132 if (dump_opt['q']) 4133 return; 4134 4135 if (label->header_printed == B_TRUE) 4136 return; 4137 4138 (void) printf("------------------------------------\n"); 4139 (void) printf("LABEL %d\n", l); 4140 (void) printf("------------------------------------\n"); 4141 4142 label->header_printed = B_TRUE; 4143 } 4144 4145 static void 4146 print_l2arc_header(void) 4147 { 4148 (void) printf("------------------------------------\n"); 4149 (void) printf("L2ARC device header\n"); 4150 (void) printf("------------------------------------\n"); 4151 } 4152 4153 static void 4154 print_l2arc_log_blocks(void) 4155 { 4156 (void) printf("------------------------------------\n"); 4157 (void) printf("L2ARC device log blocks\n"); 4158 (void) printf("------------------------------------\n"); 4159 } 4160 4161 static void 4162 dump_l2arc_log_entries(uint64_t log_entries, 4163 l2arc_log_ent_phys_t *le, uint64_t i) 4164 { 4165 for (int j = 0; j < log_entries; j++) { 4166 dva_t dva = le[j].le_dva; 4167 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4168 "vdev: %llu, offset: %llu\n", 4169 (u_longlong_t)i, j + 1, 4170 (u_longlong_t)DVA_GET_ASIZE(&dva), 4171 (u_longlong_t)DVA_GET_VDEV(&dva), 4172 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4173 (void) printf("|\t\t\t\tbirth: %llu\n", 4174 (u_longlong_t)le[j].le_birth); 4175 (void) printf("|\t\t\t\tlsize: %llu\n", 4176 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4177 (void) printf("|\t\t\t\tpsize: %llu\n", 4178 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4179 (void) printf("|\t\t\t\tcompr: %llu\n", 4180 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4181 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4182 (u_longlong_t)(&le[j])->le_complevel); 4183 (void) printf("|\t\t\t\ttype: %llu\n", 4184 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4185 (void) printf("|\t\t\t\tprotected: %llu\n", 4186 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4187 (void) printf("|\t\t\t\tprefetch: %llu\n", 4188 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4189 (void) printf("|\t\t\t\taddress: %llu\n", 4190 (u_longlong_t)le[j].le_daddr); 4191 (void) printf("|\n"); 4192 } 4193 (void) printf("\n"); 4194 } 4195 4196 static void 4197 dump_l2arc_log_blkptr(l2arc_log_blkptr_t lbps) 4198 { 4199 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps.lbp_daddr); 4200 (void) printf("|\t\tpayload_asize: %llu\n", 4201 (u_longlong_t)lbps.lbp_payload_asize); 4202 (void) printf("|\t\tpayload_start: %llu\n", 4203 (u_longlong_t)lbps.lbp_payload_start); 4204 (void) printf("|\t\tlsize: %llu\n", 4205 (u_longlong_t)L2BLK_GET_LSIZE((&lbps)->lbp_prop)); 4206 (void) printf("|\t\tasize: %llu\n", 4207 (u_longlong_t)L2BLK_GET_PSIZE((&lbps)->lbp_prop)); 4208 (void) printf("|\t\tcompralgo: %llu\n", 4209 (u_longlong_t)L2BLK_GET_COMPRESS((&lbps)->lbp_prop)); 4210 (void) printf("|\t\tcksumalgo: %llu\n", 4211 (u_longlong_t)L2BLK_GET_CHECKSUM((&lbps)->lbp_prop)); 4212 (void) printf("|\n\n"); 4213 } 4214 4215 static void 4216 dump_l2arc_log_blocks(int fd, l2arc_dev_hdr_phys_t l2dhdr, 4217 l2arc_dev_hdr_phys_t *rebuild) 4218 { 4219 l2arc_log_blk_phys_t this_lb; 4220 uint64_t asize; 4221 l2arc_log_blkptr_t lbps[2]; 4222 abd_t *abd; 4223 zio_cksum_t cksum; 4224 int failed = 0; 4225 l2arc_dev_t dev; 4226 4227 if (!dump_opt['q']) 4228 print_l2arc_log_blocks(); 4229 bcopy((&l2dhdr)->dh_start_lbps, lbps, sizeof (lbps)); 4230 4231 dev.l2ad_evict = l2dhdr.dh_evict; 4232 dev.l2ad_start = l2dhdr.dh_start; 4233 dev.l2ad_end = l2dhdr.dh_end; 4234 4235 if (l2dhdr.dh_start_lbps[0].lbp_daddr == 0) { 4236 /* no log blocks to read */ 4237 if (!dump_opt['q']) { 4238 (void) printf("No log blocks to read\n"); 4239 (void) printf("\n"); 4240 } 4241 return; 4242 } else { 4243 dev.l2ad_hand = lbps[0].lbp_daddr + 4244 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4245 } 4246 4247 dev.l2ad_first = !!(l2dhdr.dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4248 4249 for (;;) { 4250 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4251 break; 4252 4253 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4254 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4255 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4256 if (!dump_opt['q']) { 4257 (void) printf("Error while reading next log " 4258 "block\n\n"); 4259 } 4260 break; 4261 } 4262 4263 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4264 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4265 failed++; 4266 if (!dump_opt['q']) { 4267 (void) printf("Invalid cksum\n"); 4268 dump_l2arc_log_blkptr(lbps[0]); 4269 } 4270 break; 4271 } 4272 4273 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4274 case ZIO_COMPRESS_OFF: 4275 break; 4276 default: 4277 abd = abd_alloc_for_io(asize, B_TRUE); 4278 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4279 zio_decompress_data(L2BLK_GET_COMPRESS( 4280 (&lbps[0])->lbp_prop), abd, &this_lb, 4281 asize, sizeof (this_lb), NULL); 4282 abd_free(abd); 4283 break; 4284 } 4285 4286 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4287 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4288 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4289 if (!dump_opt['q']) 4290 (void) printf("Invalid log block magic\n\n"); 4291 break; 4292 } 4293 4294 rebuild->dh_lb_count++; 4295 rebuild->dh_lb_asize += asize; 4296 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4297 (void) printf("lb[%4llu]\tmagic: %llu\n", 4298 (u_longlong_t)rebuild->dh_lb_count, 4299 (u_longlong_t)this_lb.lb_magic); 4300 dump_l2arc_log_blkptr(lbps[0]); 4301 } 4302 4303 if (dump_opt['l'] > 2 && !dump_opt['q']) 4304 dump_l2arc_log_entries(l2dhdr.dh_log_entries, 4305 this_lb.lb_entries, 4306 rebuild->dh_lb_count); 4307 4308 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4309 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4310 !dev.l2ad_first) 4311 break; 4312 4313 lbps[0] = lbps[1]; 4314 lbps[1] = this_lb.lb_prev_lbp; 4315 } 4316 4317 if (!dump_opt['q']) { 4318 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4319 (u_longlong_t)rebuild->dh_lb_count); 4320 (void) printf("\t\t %d with invalid cksum\n", failed); 4321 (void) printf("log_blk_asize:\t %llu\n\n", 4322 (u_longlong_t)rebuild->dh_lb_asize); 4323 } 4324 } 4325 4326 static int 4327 dump_l2arc_header(int fd) 4328 { 4329 l2arc_dev_hdr_phys_t l2dhdr, rebuild; 4330 int error = B_FALSE; 4331 4332 bzero(&l2dhdr, sizeof (l2dhdr)); 4333 bzero(&rebuild, sizeof (rebuild)); 4334 4335 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4336 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4337 error = B_TRUE; 4338 } else { 4339 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4340 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4341 4342 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4343 error = B_TRUE; 4344 } 4345 4346 if (error) { 4347 (void) printf("L2ARC device header not found\n\n"); 4348 /* Do not return an error here for backward compatibility */ 4349 return (0); 4350 } else if (!dump_opt['q']) { 4351 print_l2arc_header(); 4352 4353 (void) printf(" magic: %llu\n", 4354 (u_longlong_t)l2dhdr.dh_magic); 4355 (void) printf(" version: %llu\n", 4356 (u_longlong_t)l2dhdr.dh_version); 4357 (void) printf(" pool_guid: %llu\n", 4358 (u_longlong_t)l2dhdr.dh_spa_guid); 4359 (void) printf(" flags: %llu\n", 4360 (u_longlong_t)l2dhdr.dh_flags); 4361 (void) printf(" start_lbps[0]: %llu\n", 4362 (u_longlong_t) 4363 l2dhdr.dh_start_lbps[0].lbp_daddr); 4364 (void) printf(" start_lbps[1]: %llu\n", 4365 (u_longlong_t) 4366 l2dhdr.dh_start_lbps[1].lbp_daddr); 4367 (void) printf(" log_blk_ent: %llu\n", 4368 (u_longlong_t)l2dhdr.dh_log_entries); 4369 (void) printf(" start: %llu\n", 4370 (u_longlong_t)l2dhdr.dh_start); 4371 (void) printf(" end: %llu\n", 4372 (u_longlong_t)l2dhdr.dh_end); 4373 (void) printf(" evict: %llu\n", 4374 (u_longlong_t)l2dhdr.dh_evict); 4375 (void) printf(" lb_asize_refcount: %llu\n", 4376 (u_longlong_t)l2dhdr.dh_lb_asize); 4377 (void) printf(" lb_count_refcount: %llu\n", 4378 (u_longlong_t)l2dhdr.dh_lb_count); 4379 (void) printf(" trim_action_time: %llu\n", 4380 (u_longlong_t)l2dhdr.dh_trim_action_time); 4381 (void) printf(" trim_state: %llu\n\n", 4382 (u_longlong_t)l2dhdr.dh_trim_state); 4383 } 4384 4385 dump_l2arc_log_blocks(fd, l2dhdr, &rebuild); 4386 /* 4387 * The total aligned size of log blocks and the number of log blocks 4388 * reported in the header of the device may be less than what zdb 4389 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4390 * This happens because dump_l2arc_log_blocks() lacks the memory 4391 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4392 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4393 * and dh_lb_count will be lower to begin with than what exists on the 4394 * device. This is normal and zdb should not exit with an error. The 4395 * opposite case should never happen though, the values reported in the 4396 * header should never be higher than what dump_l2arc_log_blocks() and 4397 * l2arc_rebuild() report. If this happens there is a leak in the 4398 * accounting of log blocks. 4399 */ 4400 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4401 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4402 return (1); 4403 4404 return (0); 4405 } 4406 4407 static void 4408 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4409 { 4410 if (dump_opt['q']) 4411 return; 4412 4413 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4414 return; 4415 4416 print_label_header(label, l); 4417 dump_nvlist(label->config_nv, 4); 4418 print_label_numbers(" labels = ", label->config); 4419 4420 if (dump_opt['l'] >= 2) 4421 dump_nvlist_stats(label->config_nv, buflen); 4422 } 4423 4424 #define ZDB_MAX_UB_HEADER_SIZE 32 4425 4426 static void 4427 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4428 { 4429 4430 vdev_t vd; 4431 char header[ZDB_MAX_UB_HEADER_SIZE]; 4432 4433 vd.vdev_ashift = ashift; 4434 vd.vdev_top = &vd; 4435 4436 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4437 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4438 uberblock_t *ub = (void *)((char *)&label->label + uoff); 4439 cksum_record_t *rec = label->uberblocks[i]; 4440 4441 if (rec == NULL) { 4442 if (dump_opt['u'] >= 2) { 4443 print_label_header(label, label_num); 4444 (void) printf(" Uberblock[%d] invalid\n", i); 4445 } 4446 continue; 4447 } 4448 4449 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 4450 continue; 4451 4452 if ((dump_opt['u'] < 4) && 4453 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 4454 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 4455 continue; 4456 4457 print_label_header(label, label_num); 4458 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 4459 " Uberblock[%d]\n", i); 4460 dump_uberblock(ub, header, ""); 4461 print_label_numbers(" labels = ", rec); 4462 } 4463 } 4464 4465 static char curpath[PATH_MAX]; 4466 4467 /* 4468 * Iterate through the path components, recursively passing 4469 * current one's obj and remaining path until we find the obj 4470 * for the last one. 4471 */ 4472 static int 4473 dump_path_impl(objset_t *os, uint64_t obj, char *name) 4474 { 4475 int err; 4476 boolean_t header = B_TRUE; 4477 uint64_t child_obj; 4478 char *s; 4479 dmu_buf_t *db; 4480 dmu_object_info_t doi; 4481 4482 if ((s = strchr(name, '/')) != NULL) 4483 *s = '\0'; 4484 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 4485 4486 (void) strlcat(curpath, name, sizeof (curpath)); 4487 4488 if (err != 0) { 4489 (void) fprintf(stderr, "failed to lookup %s: %s\n", 4490 curpath, strerror(err)); 4491 return (err); 4492 } 4493 4494 child_obj = ZFS_DIRENT_OBJ(child_obj); 4495 err = sa_buf_hold(os, child_obj, FTAG, &db); 4496 if (err != 0) { 4497 (void) fprintf(stderr, 4498 "failed to get SA dbuf for obj %llu: %s\n", 4499 (u_longlong_t)child_obj, strerror(err)); 4500 return (EINVAL); 4501 } 4502 dmu_object_info_from_db(db, &doi); 4503 sa_buf_rele(db, FTAG); 4504 4505 if (doi.doi_bonus_type != DMU_OT_SA && 4506 doi.doi_bonus_type != DMU_OT_ZNODE) { 4507 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 4508 doi.doi_bonus_type, (u_longlong_t)child_obj); 4509 return (EINVAL); 4510 } 4511 4512 if (dump_opt['v'] > 6) { 4513 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 4514 (u_longlong_t)child_obj, curpath, doi.doi_type, 4515 doi.doi_bonus_type); 4516 } 4517 4518 (void) strlcat(curpath, "/", sizeof (curpath)); 4519 4520 switch (doi.doi_type) { 4521 case DMU_OT_DIRECTORY_CONTENTS: 4522 if (s != NULL && *(s + 1) != '\0') 4523 return (dump_path_impl(os, child_obj, s + 1)); 4524 /*FALLTHROUGH*/ 4525 case DMU_OT_PLAIN_FILE_CONTENTS: 4526 dump_object(os, child_obj, dump_opt['v'], &header, NULL, 0); 4527 return (0); 4528 default: 4529 (void) fprintf(stderr, "object %llu has non-file/directory " 4530 "type %d\n", (u_longlong_t)obj, doi.doi_type); 4531 break; 4532 } 4533 4534 return (EINVAL); 4535 } 4536 4537 /* 4538 * Dump the blocks for the object specified by path inside the dataset. 4539 */ 4540 static int 4541 dump_path(char *ds, char *path) 4542 { 4543 int err; 4544 objset_t *os; 4545 uint64_t root_obj; 4546 4547 err = open_objset(ds, FTAG, &os); 4548 if (err != 0) 4549 return (err); 4550 4551 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 4552 if (err != 0) { 4553 (void) fprintf(stderr, "can't lookup root znode: %s\n", 4554 strerror(err)); 4555 close_objset(os, FTAG); 4556 return (EINVAL); 4557 } 4558 4559 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 4560 4561 err = dump_path_impl(os, root_obj, path); 4562 4563 close_objset(os, FTAG); 4564 return (err); 4565 } 4566 4567 static int 4568 dump_label(const char *dev) 4569 { 4570 char path[MAXPATHLEN]; 4571 zdb_label_t labels[VDEV_LABELS]; 4572 uint64_t psize, ashift, l2cache; 4573 struct stat64 statbuf; 4574 boolean_t config_found = B_FALSE; 4575 boolean_t error = B_FALSE; 4576 boolean_t read_l2arc_header = B_FALSE; 4577 avl_tree_t config_tree; 4578 avl_tree_t uberblock_tree; 4579 void *node, *cookie; 4580 int fd; 4581 4582 bzero(labels, sizeof (labels)); 4583 4584 /* 4585 * Check if we were given absolute path and use it as is. 4586 * Otherwise if the provided vdev name doesn't point to a file, 4587 * try prepending expected disk paths and partition numbers. 4588 */ 4589 (void) strlcpy(path, dev, sizeof (path)); 4590 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 4591 int error; 4592 4593 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 4594 if (error == 0 && zfs_dev_is_whole_disk(path)) { 4595 if (zfs_append_partition(path, MAXPATHLEN) == -1) 4596 error = ENOENT; 4597 } 4598 4599 if (error || (stat64(path, &statbuf) != 0)) { 4600 (void) printf("failed to find device %s, try " 4601 "specifying absolute path instead\n", dev); 4602 return (1); 4603 } 4604 } 4605 4606 if ((fd = open64(path, O_RDONLY)) < 0) { 4607 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 4608 exit(1); 4609 } 4610 4611 if (fstat64_blk(fd, &statbuf) != 0) { 4612 (void) printf("failed to stat '%s': %s\n", path, 4613 strerror(errno)); 4614 (void) close(fd); 4615 exit(1); 4616 } 4617 4618 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 4619 (void) printf("failed to invalidate cache '%s' : %s\n", path, 4620 strerror(errno)); 4621 4622 avl_create(&config_tree, cksum_record_compare, 4623 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4624 avl_create(&uberblock_tree, cksum_record_compare, 4625 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 4626 4627 psize = statbuf.st_size; 4628 psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t)); 4629 ashift = SPA_MINBLOCKSHIFT; 4630 4631 /* 4632 * 1. Read the label from disk 4633 * 2. Unpack the configuration and insert in config tree. 4634 * 3. Traverse all uberblocks and insert in uberblock tree. 4635 */ 4636 for (int l = 0; l < VDEV_LABELS; l++) { 4637 zdb_label_t *label = &labels[l]; 4638 char *buf = label->label.vl_vdev_phys.vp_nvlist; 4639 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4640 nvlist_t *config; 4641 cksum_record_t *rec; 4642 zio_cksum_t cksum; 4643 vdev_t vd; 4644 4645 if (pread64(fd, &label->label, sizeof (label->label), 4646 vdev_label_offset(psize, l, 0)) != sizeof (label->label)) { 4647 if (!dump_opt['q']) 4648 (void) printf("failed to read label %d\n", l); 4649 label->read_failed = B_TRUE; 4650 error = B_TRUE; 4651 continue; 4652 } 4653 4654 label->read_failed = B_FALSE; 4655 4656 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 4657 nvlist_t *vdev_tree = NULL; 4658 size_t size; 4659 4660 if ((nvlist_lookup_nvlist(config, 4661 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 4662 (nvlist_lookup_uint64(vdev_tree, 4663 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 4664 ashift = SPA_MINBLOCKSHIFT; 4665 4666 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 4667 size = buflen; 4668 4669 /* If the device is a cache device clear the header. */ 4670 if (!read_l2arc_header) { 4671 if (nvlist_lookup_uint64(config, 4672 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 4673 l2cache == POOL_STATE_L2CACHE) { 4674 read_l2arc_header = B_TRUE; 4675 } 4676 } 4677 4678 fletcher_4_native_varsize(buf, size, &cksum); 4679 rec = cksum_record_insert(&config_tree, &cksum, l); 4680 4681 label->config = rec; 4682 label->config_nv = config; 4683 config_found = B_TRUE; 4684 } else { 4685 error = B_TRUE; 4686 } 4687 4688 vd.vdev_ashift = ashift; 4689 vd.vdev_top = &vd; 4690 4691 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 4692 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 4693 uberblock_t *ub = (void *)((char *)label + uoff); 4694 4695 if (uberblock_verify(ub)) 4696 continue; 4697 4698 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 4699 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 4700 4701 label->uberblocks[i] = rec; 4702 } 4703 } 4704 4705 /* 4706 * Dump the label and uberblocks. 4707 */ 4708 for (int l = 0; l < VDEV_LABELS; l++) { 4709 zdb_label_t *label = &labels[l]; 4710 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 4711 4712 if (label->read_failed == B_TRUE) 4713 continue; 4714 4715 if (label->config_nv) { 4716 dump_config_from_label(label, buflen, l); 4717 } else { 4718 if (!dump_opt['q']) 4719 (void) printf("failed to unpack label %d\n", l); 4720 } 4721 4722 if (dump_opt['u']) 4723 dump_label_uberblocks(label, ashift, l); 4724 4725 nvlist_free(label->config_nv); 4726 } 4727 4728 /* 4729 * Dump the L2ARC header, if existent. 4730 */ 4731 if (read_l2arc_header) 4732 error |= dump_l2arc_header(fd); 4733 4734 cookie = NULL; 4735 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 4736 umem_free(node, sizeof (cksum_record_t)); 4737 4738 cookie = NULL; 4739 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 4740 umem_free(node, sizeof (cksum_record_t)); 4741 4742 avl_destroy(&config_tree); 4743 avl_destroy(&uberblock_tree); 4744 4745 (void) close(fd); 4746 4747 return (config_found == B_FALSE ? 2 : 4748 (error == B_TRUE ? 1 : 0)); 4749 } 4750 4751 static uint64_t dataset_feature_count[SPA_FEATURES]; 4752 static uint64_t global_feature_count[SPA_FEATURES]; 4753 static uint64_t remap_deadlist_count = 0; 4754 4755 /*ARGSUSED*/ 4756 static int 4757 dump_one_objset(const char *dsname, void *arg) 4758 { 4759 int error; 4760 objset_t *os; 4761 spa_feature_t f; 4762 4763 error = open_objset(dsname, FTAG, &os); 4764 if (error != 0) 4765 return (0); 4766 4767 for (f = 0; f < SPA_FEATURES; f++) { 4768 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 4769 continue; 4770 ASSERT(spa_feature_table[f].fi_flags & 4771 ZFEATURE_FLAG_PER_DATASET); 4772 dataset_feature_count[f]++; 4773 } 4774 4775 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 4776 remap_deadlist_count++; 4777 } 4778 4779 for (dsl_bookmark_node_t *dbn = 4780 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 4781 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 4782 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 4783 if (dbn->dbn_phys.zbm_redaction_obj != 0) 4784 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS]++; 4785 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 4786 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 4787 } 4788 4789 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 4790 !dmu_objset_is_snapshot(os)) { 4791 global_feature_count[SPA_FEATURE_LIVELIST]++; 4792 } 4793 4794 dump_objset(os); 4795 close_objset(os, FTAG); 4796 fuid_table_destroy(); 4797 return (0); 4798 } 4799 4800 /* 4801 * Block statistics. 4802 */ 4803 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 4804 typedef struct zdb_blkstats { 4805 uint64_t zb_asize; 4806 uint64_t zb_lsize; 4807 uint64_t zb_psize; 4808 uint64_t zb_count; 4809 uint64_t zb_gangs; 4810 uint64_t zb_ditto_samevdev; 4811 uint64_t zb_ditto_same_ms; 4812 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 4813 } zdb_blkstats_t; 4814 4815 /* 4816 * Extended object types to report deferred frees and dedup auto-ditto blocks. 4817 */ 4818 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 4819 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 4820 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 4821 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 4822 4823 static const char *zdb_ot_extname[] = { 4824 "deferred free", 4825 "dedup ditto", 4826 "other", 4827 "Total", 4828 }; 4829 4830 #define ZB_TOTAL DN_MAX_LEVELS 4831 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 4832 4833 typedef struct zdb_cb { 4834 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 4835 uint64_t zcb_removing_size; 4836 uint64_t zcb_checkpoint_size; 4837 uint64_t zcb_dedup_asize; 4838 uint64_t zcb_dedup_blocks; 4839 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 4840 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 4841 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 4842 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 4843 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 4844 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 4845 uint64_t zcb_psize_total; 4846 uint64_t zcb_lsize_total; 4847 uint64_t zcb_asize_total; 4848 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 4849 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 4850 [BPE_PAYLOAD_SIZE + 1]; 4851 uint64_t zcb_start; 4852 hrtime_t zcb_lastprint; 4853 uint64_t zcb_totalasize; 4854 uint64_t zcb_errors[256]; 4855 int zcb_readfails; 4856 int zcb_haderrors; 4857 spa_t *zcb_spa; 4858 uint32_t **zcb_vd_obsolete_counts; 4859 } zdb_cb_t; 4860 4861 /* test if two DVA offsets from same vdev are within the same metaslab */ 4862 static boolean_t 4863 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 4864 { 4865 vdev_t *vd = vdev_lookup_top(spa, vdev); 4866 uint64_t ms_shift = vd->vdev_ms_shift; 4867 4868 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 4869 } 4870 4871 /* 4872 * Used to simplify reporting of the histogram data. 4873 */ 4874 typedef struct one_histo { 4875 char *name; 4876 uint64_t *count; 4877 uint64_t *len; 4878 uint64_t cumulative; 4879 } one_histo_t; 4880 4881 /* 4882 * The number of separate histograms processed for psize, lsize and asize. 4883 */ 4884 #define NUM_HISTO 3 4885 4886 /* 4887 * This routine will create a fixed column size output of three different 4888 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 4889 * the count, length and cumulative length of the psize, lsize and 4890 * asize blocks. 4891 * 4892 * All three types of blocks are listed on a single line 4893 * 4894 * By default the table is printed in nicenumber format (e.g. 123K) but 4895 * if the '-P' parameter is specified then the full raw number (parseable) 4896 * is printed out. 4897 */ 4898 static void 4899 dump_size_histograms(zdb_cb_t *zcb) 4900 { 4901 /* 4902 * A temporary buffer that allows us to convert a number into 4903 * a string using zdb_nicenumber to allow either raw or human 4904 * readable numbers to be output. 4905 */ 4906 char numbuf[32]; 4907 4908 /* 4909 * Define titles which are used in the headers of the tables 4910 * printed by this routine. 4911 */ 4912 const char blocksize_title1[] = "block"; 4913 const char blocksize_title2[] = "size"; 4914 const char count_title[] = "Count"; 4915 const char length_title[] = "Size"; 4916 const char cumulative_title[] = "Cum."; 4917 4918 /* 4919 * Setup the histogram arrays (psize, lsize, and asize). 4920 */ 4921 one_histo_t parm_histo[NUM_HISTO]; 4922 4923 parm_histo[0].name = "psize"; 4924 parm_histo[0].count = zcb->zcb_psize_count; 4925 parm_histo[0].len = zcb->zcb_psize_len; 4926 parm_histo[0].cumulative = 0; 4927 4928 parm_histo[1].name = "lsize"; 4929 parm_histo[1].count = zcb->zcb_lsize_count; 4930 parm_histo[1].len = zcb->zcb_lsize_len; 4931 parm_histo[1].cumulative = 0; 4932 4933 parm_histo[2].name = "asize"; 4934 parm_histo[2].count = zcb->zcb_asize_count; 4935 parm_histo[2].len = zcb->zcb_asize_len; 4936 parm_histo[2].cumulative = 0; 4937 4938 4939 (void) printf("\nBlock Size Histogram\n"); 4940 /* 4941 * Print the first line titles 4942 */ 4943 if (dump_opt['P']) 4944 (void) printf("\n%s\t", blocksize_title1); 4945 else 4946 (void) printf("\n%7s ", blocksize_title1); 4947 4948 for (int j = 0; j < NUM_HISTO; j++) { 4949 if (dump_opt['P']) { 4950 if (j < NUM_HISTO - 1) { 4951 (void) printf("%s\t\t\t", parm_histo[j].name); 4952 } else { 4953 /* Don't print trailing spaces */ 4954 (void) printf(" %s", parm_histo[j].name); 4955 } 4956 } else { 4957 if (j < NUM_HISTO - 1) { 4958 /* Left aligned strings in the output */ 4959 (void) printf("%-7s ", 4960 parm_histo[j].name); 4961 } else { 4962 /* Don't print trailing spaces */ 4963 (void) printf("%s", parm_histo[j].name); 4964 } 4965 } 4966 } 4967 (void) printf("\n"); 4968 4969 /* 4970 * Print the second line titles 4971 */ 4972 if (dump_opt['P']) { 4973 (void) printf("%s\t", blocksize_title2); 4974 } else { 4975 (void) printf("%7s ", blocksize_title2); 4976 } 4977 4978 for (int i = 0; i < NUM_HISTO; i++) { 4979 if (dump_opt['P']) { 4980 (void) printf("%s\t%s\t%s\t", 4981 count_title, length_title, cumulative_title); 4982 } else { 4983 (void) printf("%7s%7s%7s", 4984 count_title, length_title, cumulative_title); 4985 } 4986 } 4987 (void) printf("\n"); 4988 4989 /* 4990 * Print the rows 4991 */ 4992 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 4993 4994 /* 4995 * Print the first column showing the blocksize 4996 */ 4997 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 4998 4999 if (dump_opt['P']) { 5000 printf("%s", numbuf); 5001 } else { 5002 printf("%7s:", numbuf); 5003 } 5004 5005 /* 5006 * Print the remaining set of 3 columns per size: 5007 * for psize, lsize and asize 5008 */ 5009 for (int j = 0; j < NUM_HISTO; j++) { 5010 parm_histo[j].cumulative += parm_histo[j].len[i]; 5011 5012 zdb_nicenum(parm_histo[j].count[i], 5013 numbuf, sizeof (numbuf)); 5014 if (dump_opt['P']) 5015 (void) printf("\t%s", numbuf); 5016 else 5017 (void) printf("%7s", numbuf); 5018 5019 zdb_nicenum(parm_histo[j].len[i], 5020 numbuf, sizeof (numbuf)); 5021 if (dump_opt['P']) 5022 (void) printf("\t%s", numbuf); 5023 else 5024 (void) printf("%7s", numbuf); 5025 5026 zdb_nicenum(parm_histo[j].cumulative, 5027 numbuf, sizeof (numbuf)); 5028 if (dump_opt['P']) 5029 (void) printf("\t%s", numbuf); 5030 else 5031 (void) printf("%7s", numbuf); 5032 } 5033 (void) printf("\n"); 5034 } 5035 } 5036 5037 static void 5038 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5039 dmu_object_type_t type) 5040 { 5041 uint64_t refcnt = 0; 5042 int i; 5043 5044 ASSERT(type < ZDB_OT_TOTAL); 5045 5046 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5047 return; 5048 5049 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5050 5051 for (i = 0; i < 4; i++) { 5052 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5053 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5054 int equal; 5055 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5056 5057 zb->zb_asize += BP_GET_ASIZE(bp); 5058 zb->zb_lsize += BP_GET_LSIZE(bp); 5059 zb->zb_psize += BP_GET_PSIZE(bp); 5060 zb->zb_count++; 5061 5062 /* 5063 * The histogram is only big enough to record blocks up to 5064 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 5065 * "other", bucket. 5066 */ 5067 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 5068 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 5069 zb->zb_psize_histogram[idx]++; 5070 5071 zb->zb_gangs += BP_COUNT_GANG(bp); 5072 5073 switch (BP_GET_NDVAS(bp)) { 5074 case 2: 5075 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5076 DVA_GET_VDEV(&bp->blk_dva[1])) { 5077 zb->zb_ditto_samevdev++; 5078 5079 if (same_metaslab(zcb->zcb_spa, 5080 DVA_GET_VDEV(&bp->blk_dva[0]), 5081 DVA_GET_OFFSET(&bp->blk_dva[0]), 5082 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5083 zb->zb_ditto_same_ms++; 5084 } 5085 break; 5086 case 3: 5087 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 5088 DVA_GET_VDEV(&bp->blk_dva[1])) + 5089 (DVA_GET_VDEV(&bp->blk_dva[0]) == 5090 DVA_GET_VDEV(&bp->blk_dva[2])) + 5091 (DVA_GET_VDEV(&bp->blk_dva[1]) == 5092 DVA_GET_VDEV(&bp->blk_dva[2])); 5093 if (equal != 0) { 5094 zb->zb_ditto_samevdev++; 5095 5096 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5097 DVA_GET_VDEV(&bp->blk_dva[1]) && 5098 same_metaslab(zcb->zcb_spa, 5099 DVA_GET_VDEV(&bp->blk_dva[0]), 5100 DVA_GET_OFFSET(&bp->blk_dva[0]), 5101 DVA_GET_OFFSET(&bp->blk_dva[1]))) 5102 zb->zb_ditto_same_ms++; 5103 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 5104 DVA_GET_VDEV(&bp->blk_dva[2]) && 5105 same_metaslab(zcb->zcb_spa, 5106 DVA_GET_VDEV(&bp->blk_dva[0]), 5107 DVA_GET_OFFSET(&bp->blk_dva[0]), 5108 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5109 zb->zb_ditto_same_ms++; 5110 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 5111 DVA_GET_VDEV(&bp->blk_dva[2]) && 5112 same_metaslab(zcb->zcb_spa, 5113 DVA_GET_VDEV(&bp->blk_dva[1]), 5114 DVA_GET_OFFSET(&bp->blk_dva[1]), 5115 DVA_GET_OFFSET(&bp->blk_dva[2]))) 5116 zb->zb_ditto_same_ms++; 5117 } 5118 break; 5119 } 5120 } 5121 5122 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 5123 5124 if (BP_IS_EMBEDDED(bp)) { 5125 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 5126 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 5127 [BPE_GET_PSIZE(bp)]++; 5128 return; 5129 } 5130 /* 5131 * The binning histogram bins by powers of two up to 5132 * SPA_MAXBLOCKSIZE rather than creating bins for 5133 * every possible blocksize found in the pool. 5134 */ 5135 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 5136 5137 zcb->zcb_psize_count[bin]++; 5138 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 5139 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 5140 5141 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 5142 5143 zcb->zcb_lsize_count[bin]++; 5144 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 5145 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 5146 5147 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 5148 5149 zcb->zcb_asize_count[bin]++; 5150 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 5151 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 5152 5153 if (dump_opt['L']) 5154 return; 5155 5156 if (BP_GET_DEDUP(bp)) { 5157 ddt_t *ddt; 5158 ddt_entry_t *dde; 5159 5160 ddt = ddt_select(zcb->zcb_spa, bp); 5161 ddt_enter(ddt); 5162 dde = ddt_lookup(ddt, bp, B_FALSE); 5163 5164 if (dde == NULL) { 5165 refcnt = 0; 5166 } else { 5167 ddt_phys_t *ddp = ddt_phys_select(dde, bp); 5168 ddt_phys_decref(ddp); 5169 refcnt = ddp->ddp_refcnt; 5170 if (ddt_phys_total_refcnt(dde) == 0) 5171 ddt_remove(ddt, dde); 5172 } 5173 ddt_exit(ddt); 5174 } 5175 5176 VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa, 5177 refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa), 5178 bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0); 5179 } 5180 5181 static void 5182 zdb_blkptr_done(zio_t *zio) 5183 { 5184 spa_t *spa = zio->io_spa; 5185 blkptr_t *bp = zio->io_bp; 5186 int ioerr = zio->io_error; 5187 zdb_cb_t *zcb = zio->io_private; 5188 zbookmark_phys_t *zb = &zio->io_bookmark; 5189 5190 abd_free(zio->io_abd); 5191 5192 mutex_enter(&spa->spa_scrub_lock); 5193 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 5194 cv_broadcast(&spa->spa_scrub_io_cv); 5195 5196 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 5197 char blkbuf[BP_SPRINTF_LEN]; 5198 5199 zcb->zcb_haderrors = 1; 5200 zcb->zcb_errors[ioerr]++; 5201 5202 if (dump_opt['b'] >= 2) 5203 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5204 else 5205 blkbuf[0] = '\0'; 5206 5207 (void) printf("zdb_blkptr_cb: " 5208 "Got error %d reading " 5209 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 5210 ioerr, 5211 (u_longlong_t)zb->zb_objset, 5212 (u_longlong_t)zb->zb_object, 5213 (u_longlong_t)zb->zb_level, 5214 (u_longlong_t)zb->zb_blkid, 5215 blkbuf); 5216 } 5217 mutex_exit(&spa->spa_scrub_lock); 5218 } 5219 5220 static int 5221 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 5222 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 5223 { 5224 zdb_cb_t *zcb = arg; 5225 dmu_object_type_t type; 5226 boolean_t is_metadata; 5227 5228 if (zb->zb_level == ZB_DNODE_LEVEL) 5229 return (0); 5230 5231 if (dump_opt['b'] >= 5 && bp->blk_birth > 0) { 5232 char blkbuf[BP_SPRINTF_LEN]; 5233 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 5234 (void) printf("objset %llu object %llu " 5235 "level %lld offset 0x%llx %s\n", 5236 (u_longlong_t)zb->zb_objset, 5237 (u_longlong_t)zb->zb_object, 5238 (longlong_t)zb->zb_level, 5239 (u_longlong_t)blkid2offset(dnp, bp, zb), 5240 blkbuf); 5241 } 5242 5243 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 5244 return (0); 5245 5246 type = BP_GET_TYPE(bp); 5247 5248 zdb_count_block(zcb, zilog, bp, 5249 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 5250 5251 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 5252 5253 if (!BP_IS_EMBEDDED(bp) && 5254 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 5255 size_t size = BP_GET_PSIZE(bp); 5256 abd_t *abd = abd_alloc(size, B_FALSE); 5257 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 5258 5259 /* If it's an intent log block, failure is expected. */ 5260 if (zb->zb_level == ZB_ZIL_LEVEL) 5261 flags |= ZIO_FLAG_SPECULATIVE; 5262 5263 mutex_enter(&spa->spa_scrub_lock); 5264 while (spa->spa_load_verify_bytes > max_inflight_bytes) 5265 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5266 spa->spa_load_verify_bytes += size; 5267 mutex_exit(&spa->spa_scrub_lock); 5268 5269 zio_nowait(zio_read(NULL, spa, bp, abd, size, 5270 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 5271 } 5272 5273 zcb->zcb_readfails = 0; 5274 5275 /* only call gethrtime() every 100 blocks */ 5276 static int iters; 5277 if (++iters > 100) 5278 iters = 0; 5279 else 5280 return (0); 5281 5282 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 5283 uint64_t now = gethrtime(); 5284 char buf[10]; 5285 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 5286 int kb_per_sec = 5287 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 5288 int sec_remaining = 5289 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 5290 5291 /* make sure nicenum has enough space */ 5292 CTASSERT(sizeof (buf) >= NN_NUMBUF_SZ); 5293 5294 zfs_nicebytes(bytes, buf, sizeof (buf)); 5295 (void) fprintf(stderr, 5296 "\r%5s completed (%4dMB/s) " 5297 "estimated time remaining: %uhr %02umin %02usec ", 5298 buf, kb_per_sec / 1024, 5299 sec_remaining / 60 / 60, 5300 sec_remaining / 60 % 60, 5301 sec_remaining % 60); 5302 5303 zcb->zcb_lastprint = now; 5304 } 5305 5306 return (0); 5307 } 5308 5309 static void 5310 zdb_leak(void *arg, uint64_t start, uint64_t size) 5311 { 5312 vdev_t *vd = arg; 5313 5314 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 5315 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 5316 } 5317 5318 static metaslab_ops_t zdb_metaslab_ops = { 5319 NULL /* alloc */ 5320 }; 5321 5322 /* ARGSUSED */ 5323 static int 5324 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 5325 uint64_t txg, void *arg) 5326 { 5327 spa_vdev_removal_t *svr = arg; 5328 5329 uint64_t offset = sme->sme_offset; 5330 uint64_t size = sme->sme_run; 5331 5332 /* skip vdevs we don't care about */ 5333 if (sme->sme_vdev != svr->svr_vdev_id) 5334 return (0); 5335 5336 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 5337 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5338 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5339 5340 if (txg < metaslab_unflushed_txg(ms)) 5341 return (0); 5342 5343 if (sme->sme_type == SM_ALLOC) 5344 range_tree_add(svr->svr_allocd_segs, offset, size); 5345 else 5346 range_tree_remove(svr->svr_allocd_segs, offset, size); 5347 5348 return (0); 5349 } 5350 5351 /* ARGSUSED */ 5352 static void 5353 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 5354 uint64_t size, void *arg) 5355 { 5356 /* 5357 * This callback was called through a remap from 5358 * a device being removed. Therefore, the vdev that 5359 * this callback is applied to is a concrete 5360 * vdev. 5361 */ 5362 ASSERT(vdev_is_concrete(vd)); 5363 5364 VERIFY0(metaslab_claim_impl(vd, offset, size, 5365 spa_min_claim_txg(vd->vdev_spa))); 5366 } 5367 5368 static void 5369 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 5370 { 5371 vdev_t *vd = arg; 5372 5373 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 5374 claim_segment_impl_cb, NULL); 5375 } 5376 5377 /* 5378 * After accounting for all allocated blocks that are directly referenced, 5379 * we might have missed a reference to a block from a partially complete 5380 * (and thus unused) indirect mapping object. We perform a secondary pass 5381 * through the metaslabs we have already mapped and claim the destination 5382 * blocks. 5383 */ 5384 static void 5385 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 5386 { 5387 if (dump_opt['L']) 5388 return; 5389 5390 if (spa->spa_vdev_removal == NULL) 5391 return; 5392 5393 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5394 5395 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 5396 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 5397 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5398 5399 ASSERT0(range_tree_space(svr->svr_allocd_segs)); 5400 5401 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); 5402 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 5403 metaslab_t *msp = vd->vdev_ms[msi]; 5404 5405 ASSERT0(range_tree_space(allocs)); 5406 if (msp->ms_sm != NULL) 5407 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 5408 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs); 5409 } 5410 range_tree_destroy(allocs); 5411 5412 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 5413 5414 /* 5415 * Clear everything past what has been synced, 5416 * because we have not allocated mappings for 5417 * it yet. 5418 */ 5419 range_tree_clear(svr->svr_allocd_segs, 5420 vdev_indirect_mapping_max_offset(vim), 5421 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 5422 5423 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs); 5424 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 5425 5426 spa_config_exit(spa, SCL_CONFIG, FTAG); 5427 } 5428 5429 /* ARGSUSED */ 5430 static int 5431 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 5432 dmu_tx_t *tx) 5433 { 5434 zdb_cb_t *zcb = arg; 5435 spa_t *spa = zcb->zcb_spa; 5436 vdev_t *vd; 5437 const dva_t *dva = &bp->blk_dva[0]; 5438 5439 ASSERT(!bp_freed); 5440 ASSERT(!dump_opt['L']); 5441 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 5442 5443 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 5444 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 5445 ASSERT3P(vd, !=, NULL); 5446 spa_config_exit(spa, SCL_VDEV, FTAG); 5447 5448 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 5449 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 5450 5451 vdev_indirect_mapping_increment_obsolete_count( 5452 vd->vdev_indirect_mapping, 5453 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 5454 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5455 5456 return (0); 5457 } 5458 5459 static uint32_t * 5460 zdb_load_obsolete_counts(vdev_t *vd) 5461 { 5462 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5463 spa_t *spa = vd->vdev_spa; 5464 spa_condensing_indirect_phys_t *scip = 5465 &spa->spa_condensing_indirect_phys; 5466 uint64_t obsolete_sm_object; 5467 uint32_t *counts; 5468 5469 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 5470 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 5471 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 5472 if (vd->vdev_obsolete_sm != NULL) { 5473 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5474 vd->vdev_obsolete_sm); 5475 } 5476 if (scip->scip_vdev == vd->vdev_id && 5477 scip->scip_prev_obsolete_sm_object != 0) { 5478 space_map_t *prev_obsolete_sm = NULL; 5479 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 5480 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 5481 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 5482 prev_obsolete_sm); 5483 space_map_close(prev_obsolete_sm); 5484 } 5485 return (counts); 5486 } 5487 5488 static void 5489 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb) 5490 { 5491 ddt_bookmark_t ddb; 5492 ddt_entry_t dde; 5493 int error; 5494 int p; 5495 5496 ASSERT(!dump_opt['L']); 5497 5498 bzero(&ddb, sizeof (ddb)); 5499 while ((error = ddt_walk(spa, &ddb, &dde)) == 0) { 5500 blkptr_t blk; 5501 ddt_phys_t *ddp = dde.dde_phys; 5502 5503 if (ddb.ddb_class == DDT_CLASS_UNIQUE) 5504 return; 5505 5506 ASSERT(ddt_phys_total_refcnt(&dde) > 1); 5507 5508 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) { 5509 if (ddp->ddp_phys_birth == 0) 5510 continue; 5511 ddt_bp_create(ddb.ddb_checksum, 5512 &dde.dde_key, ddp, &blk); 5513 if (p == DDT_PHYS_DITTO) { 5514 zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO); 5515 } else { 5516 zcb->zcb_dedup_asize += 5517 BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1); 5518 zcb->zcb_dedup_blocks++; 5519 } 5520 } 5521 ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum]; 5522 ddt_enter(ddt); 5523 VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL); 5524 ddt_exit(ddt); 5525 } 5526 5527 ASSERT(error == ENOENT); 5528 } 5529 5530 typedef struct checkpoint_sm_exclude_entry_arg { 5531 vdev_t *cseea_vd; 5532 uint64_t cseea_checkpoint_size; 5533 } checkpoint_sm_exclude_entry_arg_t; 5534 5535 static int 5536 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 5537 { 5538 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 5539 vdev_t *vd = cseea->cseea_vd; 5540 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 5541 uint64_t end = sme->sme_offset + sme->sme_run; 5542 5543 ASSERT(sme->sme_type == SM_FREE); 5544 5545 /* 5546 * Since the vdev_checkpoint_sm exists in the vdev level 5547 * and the ms_sm space maps exist in the metaslab level, 5548 * an entry in the checkpoint space map could theoretically 5549 * cross the boundaries of the metaslab that it belongs. 5550 * 5551 * In reality, because of the way that we populate and 5552 * manipulate the checkpoint's space maps currently, 5553 * there shouldn't be any entries that cross metaslabs. 5554 * Hence the assertion below. 5555 * 5556 * That said, there is no fundamental requirement that 5557 * the checkpoint's space map entries should not cross 5558 * metaslab boundaries. So if needed we could add code 5559 * that handles metaslab-crossing segments in the future. 5560 */ 5561 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 5562 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 5563 5564 /* 5565 * By removing the entry from the allocated segments we 5566 * also verify that the entry is there to begin with. 5567 */ 5568 mutex_enter(&ms->ms_lock); 5569 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run); 5570 mutex_exit(&ms->ms_lock); 5571 5572 cseea->cseea_checkpoint_size += sme->sme_run; 5573 return (0); 5574 } 5575 5576 static void 5577 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 5578 { 5579 spa_t *spa = vd->vdev_spa; 5580 space_map_t *checkpoint_sm = NULL; 5581 uint64_t checkpoint_sm_obj; 5582 5583 /* 5584 * If there is no vdev_top_zap, we are in a pool whose 5585 * version predates the pool checkpoint feature. 5586 */ 5587 if (vd->vdev_top_zap == 0) 5588 return; 5589 5590 /* 5591 * If there is no reference of the vdev_checkpoint_sm in 5592 * the vdev_top_zap, then one of the following scenarios 5593 * is true: 5594 * 5595 * 1] There is no checkpoint 5596 * 2] There is a checkpoint, but no checkpointed blocks 5597 * have been freed yet 5598 * 3] The current vdev is indirect 5599 * 5600 * In these cases we return immediately. 5601 */ 5602 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 5603 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 5604 return; 5605 5606 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 5607 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 5608 &checkpoint_sm_obj)); 5609 5610 checkpoint_sm_exclude_entry_arg_t cseea; 5611 cseea.cseea_vd = vd; 5612 cseea.cseea_checkpoint_size = 0; 5613 5614 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 5615 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 5616 5617 VERIFY0(space_map_iterate(checkpoint_sm, 5618 space_map_length(checkpoint_sm), 5619 checkpoint_sm_exclude_entry_cb, &cseea)); 5620 space_map_close(checkpoint_sm); 5621 5622 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 5623 } 5624 5625 static void 5626 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 5627 { 5628 ASSERT(!dump_opt['L']); 5629 5630 vdev_t *rvd = spa->spa_root_vdev; 5631 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5632 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 5633 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 5634 } 5635 } 5636 5637 static int 5638 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 5639 uint64_t txg, void *arg) 5640 { 5641 int64_t *ualloc_space = arg; 5642 5643 uint64_t offset = sme->sme_offset; 5644 uint64_t vdev_id = sme->sme_vdev; 5645 5646 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5647 if (!vdev_is_concrete(vd)) 5648 return (0); 5649 5650 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5651 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5652 5653 if (txg < metaslab_unflushed_txg(ms)) 5654 return (0); 5655 5656 if (sme->sme_type == SM_ALLOC) 5657 *ualloc_space += sme->sme_run; 5658 else 5659 *ualloc_space -= sme->sme_run; 5660 5661 return (0); 5662 } 5663 5664 static int64_t 5665 get_unflushed_alloc_space(spa_t *spa) 5666 { 5667 if (dump_opt['L']) 5668 return (0); 5669 5670 int64_t ualloc_space = 0; 5671 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 5672 &ualloc_space); 5673 return (ualloc_space); 5674 } 5675 5676 static int 5677 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 5678 { 5679 maptype_t *uic_maptype = arg; 5680 5681 uint64_t offset = sme->sme_offset; 5682 uint64_t size = sme->sme_run; 5683 uint64_t vdev_id = sme->sme_vdev; 5684 5685 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 5686 5687 /* skip indirect vdevs */ 5688 if (!vdev_is_concrete(vd)) 5689 return (0); 5690 5691 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5692 5693 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 5694 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 5695 5696 if (txg < metaslab_unflushed_txg(ms)) 5697 return (0); 5698 5699 if (*uic_maptype == sme->sme_type) 5700 range_tree_add(ms->ms_allocatable, offset, size); 5701 else 5702 range_tree_remove(ms->ms_allocatable, offset, size); 5703 5704 return (0); 5705 } 5706 5707 static void 5708 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 5709 { 5710 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 5711 } 5712 5713 static void 5714 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 5715 { 5716 vdev_t *rvd = spa->spa_root_vdev; 5717 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 5718 vdev_t *vd = rvd->vdev_child[i]; 5719 5720 ASSERT3U(i, ==, vd->vdev_id); 5721 5722 if (vd->vdev_ops == &vdev_indirect_ops) 5723 continue; 5724 5725 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5726 metaslab_t *msp = vd->vdev_ms[m]; 5727 5728 (void) fprintf(stderr, 5729 "\rloading concrete vdev %llu, " 5730 "metaslab %llu of %llu ...", 5731 (longlong_t)vd->vdev_id, 5732 (longlong_t)msp->ms_id, 5733 (longlong_t)vd->vdev_ms_count); 5734 5735 mutex_enter(&msp->ms_lock); 5736 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5737 5738 /* 5739 * We don't want to spend the CPU manipulating the 5740 * size-ordered tree, so clear the range_tree ops. 5741 */ 5742 msp->ms_allocatable->rt_ops = NULL; 5743 5744 if (msp->ms_sm != NULL) { 5745 VERIFY0(space_map_load(msp->ms_sm, 5746 msp->ms_allocatable, maptype)); 5747 } 5748 if (!msp->ms_loaded) 5749 msp->ms_loaded = B_TRUE; 5750 mutex_exit(&msp->ms_lock); 5751 } 5752 } 5753 5754 load_unflushed_to_ms_allocatables(spa, maptype); 5755 } 5756 5757 /* 5758 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 5759 * index in vim_entries that has the first entry in this metaslab. 5760 * On return, it will be set to the first entry after this metaslab. 5761 */ 5762 static void 5763 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 5764 uint64_t *vim_idxp) 5765 { 5766 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5767 5768 mutex_enter(&msp->ms_lock); 5769 range_tree_vacate(msp->ms_allocatable, NULL, NULL); 5770 5771 /* 5772 * We don't want to spend the CPU manipulating the 5773 * size-ordered tree, so clear the range_tree ops. 5774 */ 5775 msp->ms_allocatable->rt_ops = NULL; 5776 5777 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 5778 (*vim_idxp)++) { 5779 vdev_indirect_mapping_entry_phys_t *vimep = 5780 &vim->vim_entries[*vim_idxp]; 5781 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 5782 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 5783 ASSERT3U(ent_offset, >=, msp->ms_start); 5784 if (ent_offset >= msp->ms_start + msp->ms_size) 5785 break; 5786 5787 /* 5788 * Mappings do not cross metaslab boundaries, 5789 * because we create them by walking the metaslabs. 5790 */ 5791 ASSERT3U(ent_offset + ent_len, <=, 5792 msp->ms_start + msp->ms_size); 5793 range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 5794 } 5795 5796 if (!msp->ms_loaded) 5797 msp->ms_loaded = B_TRUE; 5798 mutex_exit(&msp->ms_lock); 5799 } 5800 5801 static void 5802 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 5803 { 5804 ASSERT(!dump_opt['L']); 5805 5806 vdev_t *rvd = spa->spa_root_vdev; 5807 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 5808 vdev_t *vd = rvd->vdev_child[c]; 5809 5810 ASSERT3U(c, ==, vd->vdev_id); 5811 5812 if (vd->vdev_ops != &vdev_indirect_ops) 5813 continue; 5814 5815 /* 5816 * Note: we don't check for mapping leaks on 5817 * removing vdevs because their ms_allocatable's 5818 * are used to look for leaks in allocated space. 5819 */ 5820 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 5821 5822 /* 5823 * Normally, indirect vdevs don't have any 5824 * metaslabs. We want to set them up for 5825 * zio_claim(). 5826 */ 5827 VERIFY0(vdev_metaslab_init(vd, 0)); 5828 5829 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5830 uint64_t vim_idx = 0; 5831 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 5832 5833 (void) fprintf(stderr, 5834 "\rloading indirect vdev %llu, " 5835 "metaslab %llu of %llu ...", 5836 (longlong_t)vd->vdev_id, 5837 (longlong_t)vd->vdev_ms[m]->ms_id, 5838 (longlong_t)vd->vdev_ms_count); 5839 5840 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 5841 &vim_idx); 5842 } 5843 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 5844 } 5845 } 5846 5847 static void 5848 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 5849 { 5850 zcb->zcb_spa = spa; 5851 5852 if (dump_opt['L']) 5853 return; 5854 5855 dsl_pool_t *dp = spa->spa_dsl_pool; 5856 vdev_t *rvd = spa->spa_root_vdev; 5857 5858 /* 5859 * We are going to be changing the meaning of the metaslab's 5860 * ms_allocatable. Ensure that the allocator doesn't try to 5861 * use the tree. 5862 */ 5863 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 5864 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 5865 5866 zcb->zcb_vd_obsolete_counts = 5867 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 5868 UMEM_NOFAIL); 5869 5870 /* 5871 * For leak detection, we overload the ms_allocatable trees 5872 * to contain allocated segments instead of free segments. 5873 * As a result, we can't use the normal metaslab_load/unload 5874 * interfaces. 5875 */ 5876 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 5877 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 5878 5879 /* 5880 * On load_concrete_ms_allocatable_trees() we loaded all the 5881 * allocated entries from the ms_sm to the ms_allocatable for 5882 * each metaslab. If the pool has a checkpoint or is in the 5883 * middle of discarding a checkpoint, some of these blocks 5884 * may have been freed but their ms_sm may not have been 5885 * updated because they are referenced by the checkpoint. In 5886 * order to avoid false-positives during leak-detection, we 5887 * go through the vdev's checkpoint space map and exclude all 5888 * its entries from their relevant ms_allocatable. 5889 * 5890 * We also aggregate the space held by the checkpoint and add 5891 * it to zcb_checkpoint_size. 5892 * 5893 * Note that at this point we are also verifying that all the 5894 * entries on the checkpoint_sm are marked as allocated in 5895 * the ms_sm of their relevant metaslab. 5896 * [see comment in checkpoint_sm_exclude_entry_cb()] 5897 */ 5898 zdb_leak_init_exclude_checkpoint(spa, zcb); 5899 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 5900 5901 /* for cleaner progress output */ 5902 (void) fprintf(stderr, "\n"); 5903 5904 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 5905 ASSERT(spa_feature_is_enabled(spa, 5906 SPA_FEATURE_DEVICE_REMOVAL)); 5907 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 5908 increment_indirect_mapping_cb, zcb, NULL); 5909 } 5910 5911 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5912 zdb_ddt_leak_init(spa, zcb); 5913 spa_config_exit(spa, SCL_CONFIG, FTAG); 5914 } 5915 5916 static boolean_t 5917 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 5918 { 5919 boolean_t leaks = B_FALSE; 5920 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 5921 uint64_t total_leaked = 0; 5922 boolean_t are_precise = B_FALSE; 5923 5924 ASSERT(vim != NULL); 5925 5926 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 5927 vdev_indirect_mapping_entry_phys_t *vimep = 5928 &vim->vim_entries[i]; 5929 uint64_t obsolete_bytes = 0; 5930 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 5931 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 5932 5933 /* 5934 * This is not very efficient but it's easy to 5935 * verify correctness. 5936 */ 5937 for (uint64_t inner_offset = 0; 5938 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 5939 inner_offset += 1 << vd->vdev_ashift) { 5940 if (range_tree_contains(msp->ms_allocatable, 5941 offset + inner_offset, 1 << vd->vdev_ashift)) { 5942 obsolete_bytes += 1 << vd->vdev_ashift; 5943 } 5944 } 5945 5946 int64_t bytes_leaked = obsolete_bytes - 5947 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 5948 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 5949 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 5950 5951 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 5952 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 5953 (void) printf("obsolete indirect mapping count " 5954 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 5955 (u_longlong_t)vd->vdev_id, 5956 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 5957 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 5958 (u_longlong_t)bytes_leaked); 5959 } 5960 total_leaked += ABS(bytes_leaked); 5961 } 5962 5963 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 5964 if (!are_precise && total_leaked > 0) { 5965 int pct_leaked = total_leaked * 100 / 5966 vdev_indirect_mapping_bytes_mapped(vim); 5967 (void) printf("cannot verify obsolete indirect mapping " 5968 "counts of vdev %llu because precise feature was not " 5969 "enabled when it was removed: %d%% (%llx bytes) of mapping" 5970 "unreferenced\n", 5971 (u_longlong_t)vd->vdev_id, pct_leaked, 5972 (u_longlong_t)total_leaked); 5973 } else if (total_leaked > 0) { 5974 (void) printf("obsolete indirect mapping count mismatch " 5975 "for vdev %llu -- %llx total bytes mismatched\n", 5976 (u_longlong_t)vd->vdev_id, 5977 (u_longlong_t)total_leaked); 5978 leaks |= B_TRUE; 5979 } 5980 5981 vdev_indirect_mapping_free_obsolete_counts(vim, 5982 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 5983 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 5984 5985 return (leaks); 5986 } 5987 5988 static boolean_t 5989 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 5990 { 5991 if (dump_opt['L']) 5992 return (B_FALSE); 5993 5994 boolean_t leaks = B_FALSE; 5995 vdev_t *rvd = spa->spa_root_vdev; 5996 for (unsigned c = 0; c < rvd->vdev_children; c++) { 5997 vdev_t *vd = rvd->vdev_child[c]; 5998 metaslab_group_t *mg __maybe_unused = vd->vdev_mg; 5999 6000 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6001 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6002 } 6003 6004 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6005 metaslab_t *msp = vd->vdev_ms[m]; 6006 ASSERT3P(mg, ==, msp->ms_group); 6007 6008 /* 6009 * ms_allocatable has been overloaded 6010 * to contain allocated segments. Now that 6011 * we finished traversing all blocks, any 6012 * block that remains in the ms_allocatable 6013 * represents an allocated block that we 6014 * did not claim during the traversal. 6015 * Claimed blocks would have been removed 6016 * from the ms_allocatable. For indirect 6017 * vdevs, space remaining in the tree 6018 * represents parts of the mapping that are 6019 * not referenced, which is not a bug. 6020 */ 6021 if (vd->vdev_ops == &vdev_indirect_ops) { 6022 range_tree_vacate(msp->ms_allocatable, 6023 NULL, NULL); 6024 } else { 6025 range_tree_vacate(msp->ms_allocatable, 6026 zdb_leak, vd); 6027 } 6028 if (msp->ms_loaded) { 6029 msp->ms_loaded = B_FALSE; 6030 } 6031 } 6032 } 6033 6034 umem_free(zcb->zcb_vd_obsolete_counts, 6035 rvd->vdev_children * sizeof (uint32_t *)); 6036 zcb->zcb_vd_obsolete_counts = NULL; 6037 6038 return (leaks); 6039 } 6040 6041 /* ARGSUSED */ 6042 static int 6043 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6044 { 6045 zdb_cb_t *zcb = arg; 6046 6047 if (dump_opt['b'] >= 5) { 6048 char blkbuf[BP_SPRINTF_LEN]; 6049 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6050 (void) printf("[%s] %s\n", 6051 "deferred free", blkbuf); 6052 } 6053 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6054 return (0); 6055 } 6056 6057 /* 6058 * Iterate over livelists which have been destroyed by the user but 6059 * are still present in the MOS, waiting to be freed 6060 */ 6061 static void 6062 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6063 { 6064 objset_t *mos = spa->spa_meta_objset; 6065 uint64_t zap_obj; 6066 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6067 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6068 if (err == ENOENT) 6069 return; 6070 ASSERT0(err); 6071 6072 zap_cursor_t zc; 6073 zap_attribute_t attr; 6074 dsl_deadlist_t ll; 6075 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6076 ll.dl_os = NULL; 6077 for (zap_cursor_init(&zc, mos, zap_obj); 6078 zap_cursor_retrieve(&zc, &attr) == 0; 6079 (void) zap_cursor_advance(&zc)) { 6080 dsl_deadlist_open(&ll, mos, attr.za_first_integer); 6081 func(&ll, arg); 6082 dsl_deadlist_close(&ll); 6083 } 6084 zap_cursor_fini(&zc); 6085 } 6086 6087 static int 6088 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6089 dmu_tx_t *tx) 6090 { 6091 ASSERT(!bp_freed); 6092 return (count_block_cb(arg, bp, tx)); 6093 } 6094 6095 static int 6096 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6097 { 6098 zdb_cb_t *zbc = args; 6099 bplist_t blks; 6100 bplist_create(&blks); 6101 /* determine which blocks have been alloc'd but not freed */ 6102 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6103 /* count those blocks */ 6104 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6105 bplist_destroy(&blks); 6106 return (0); 6107 } 6108 6109 static void 6110 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6111 { 6112 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6113 } 6114 6115 /* 6116 * Count the blocks in the livelists that have been destroyed by the user 6117 * but haven't yet been freed. 6118 */ 6119 static void 6120 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 6121 { 6122 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 6123 } 6124 6125 static void 6126 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 6127 { 6128 ASSERT3P(arg, ==, NULL); 6129 global_feature_count[SPA_FEATURE_LIVELIST]++; 6130 dump_blkptr_list(ll, "Deleted Livelist"); 6131 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 6132 } 6133 6134 /* 6135 * Print out, register object references to, and increment feature counts for 6136 * livelists that have been destroyed by the user but haven't yet been freed. 6137 */ 6138 static void 6139 deleted_livelists_dump_mos(spa_t *spa) 6140 { 6141 uint64_t zap_obj; 6142 objset_t *mos = spa->spa_meta_objset; 6143 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6144 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6145 if (err == ENOENT) 6146 return; 6147 mos_obj_refd(zap_obj); 6148 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 6149 } 6150 6151 static int 6152 dump_block_stats(spa_t *spa) 6153 { 6154 zdb_cb_t zcb; 6155 zdb_blkstats_t *zb, *tzb; 6156 uint64_t norm_alloc, norm_space, total_alloc, total_found; 6157 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6158 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 6159 boolean_t leaks = B_FALSE; 6160 int e, c, err; 6161 bp_embedded_type_t i; 6162 6163 bzero(&zcb, sizeof (zcb)); 6164 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 6165 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 6166 (dump_opt['c'] == 1) ? "metadata " : "", 6167 dump_opt['c'] ? "checksums " : "", 6168 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 6169 !dump_opt['L'] ? "nothing leaked " : ""); 6170 6171 /* 6172 * When leak detection is enabled we load all space maps as SM_ALLOC 6173 * maps, then traverse the pool claiming each block we discover. If 6174 * the pool is perfectly consistent, the segment trees will be empty 6175 * when we're done. Anything left over is a leak; any block we can't 6176 * claim (because it's not part of any space map) is a double 6177 * allocation, reference to a freed block, or an unclaimed log block. 6178 * 6179 * When leak detection is disabled (-L option) we still traverse the 6180 * pool claiming each block we discover, but we skip opening any space 6181 * maps. 6182 */ 6183 bzero(&zcb, sizeof (zdb_cb_t)); 6184 zdb_leak_init(spa, &zcb); 6185 6186 /* 6187 * If there's a deferred-free bplist, process that first. 6188 */ 6189 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 6190 bpobj_count_block_cb, &zcb, NULL); 6191 6192 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 6193 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 6194 bpobj_count_block_cb, &zcb, NULL); 6195 } 6196 6197 zdb_claim_removing(spa, &zcb); 6198 6199 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 6200 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 6201 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 6202 &zcb, NULL)); 6203 } 6204 6205 deleted_livelists_count_blocks(spa, &zcb); 6206 6207 if (dump_opt['c'] > 1) 6208 flags |= TRAVERSE_PREFETCH_DATA; 6209 6210 zcb.zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 6211 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 6212 zcb.zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 6213 zcb.zcb_start = zcb.zcb_lastprint = gethrtime(); 6214 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, &zcb); 6215 6216 /* 6217 * If we've traversed the data blocks then we need to wait for those 6218 * I/Os to complete. We leverage "The Godfather" zio to wait on 6219 * all async I/Os to complete. 6220 */ 6221 if (dump_opt['c']) { 6222 for (c = 0; c < max_ncpus; c++) { 6223 (void) zio_wait(spa->spa_async_zio_root[c]); 6224 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 6225 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 6226 ZIO_FLAG_GODFATHER); 6227 } 6228 } 6229 ASSERT0(spa->spa_load_verify_bytes); 6230 6231 /* 6232 * Done after zio_wait() since zcb_haderrors is modified in 6233 * zdb_blkptr_done() 6234 */ 6235 zcb.zcb_haderrors |= err; 6236 6237 if (zcb.zcb_haderrors) { 6238 (void) printf("\nError counts:\n\n"); 6239 (void) printf("\t%5s %s\n", "errno", "count"); 6240 for (e = 0; e < 256; e++) { 6241 if (zcb.zcb_errors[e] != 0) { 6242 (void) printf("\t%5d %llu\n", 6243 e, (u_longlong_t)zcb.zcb_errors[e]); 6244 } 6245 } 6246 } 6247 6248 /* 6249 * Report any leaked segments. 6250 */ 6251 leaks |= zdb_leak_fini(spa, &zcb); 6252 6253 tzb = &zcb.zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 6254 6255 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 6256 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 6257 6258 total_alloc = norm_alloc + 6259 metaslab_class_get_alloc(spa_log_class(spa)) + 6260 metaslab_class_get_alloc(spa_special_class(spa)) + 6261 metaslab_class_get_alloc(spa_dedup_class(spa)) + 6262 get_unflushed_alloc_space(spa); 6263 total_found = tzb->zb_asize - zcb.zcb_dedup_asize + 6264 zcb.zcb_removing_size + zcb.zcb_checkpoint_size; 6265 6266 if (total_found == total_alloc && !dump_opt['L']) { 6267 (void) printf("\n\tNo leaks (block sum matches space" 6268 " maps exactly)\n"); 6269 } else if (!dump_opt['L']) { 6270 (void) printf("block traversal size %llu != alloc %llu " 6271 "(%s %lld)\n", 6272 (u_longlong_t)total_found, 6273 (u_longlong_t)total_alloc, 6274 (dump_opt['L']) ? "unreachable" : "leaked", 6275 (longlong_t)(total_alloc - total_found)); 6276 leaks = B_TRUE; 6277 } 6278 6279 if (tzb->zb_count == 0) 6280 return (2); 6281 6282 (void) printf("\n"); 6283 (void) printf("\t%-16s %14llu\n", "bp count:", 6284 (u_longlong_t)tzb->zb_count); 6285 (void) printf("\t%-16s %14llu\n", "ganged count:", 6286 (longlong_t)tzb->zb_gangs); 6287 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 6288 (u_longlong_t)tzb->zb_lsize, 6289 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 6290 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6291 "bp physical:", (u_longlong_t)tzb->zb_psize, 6292 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 6293 (double)tzb->zb_lsize / tzb->zb_psize); 6294 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 6295 "bp allocated:", (u_longlong_t)tzb->zb_asize, 6296 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 6297 (double)tzb->zb_lsize / tzb->zb_asize); 6298 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 6299 "bp deduped:", (u_longlong_t)zcb.zcb_dedup_asize, 6300 (u_longlong_t)zcb.zcb_dedup_blocks, 6301 (double)zcb.zcb_dedup_asize / tzb->zb_asize + 1.0); 6302 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 6303 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 6304 6305 if (spa_special_class(spa)->mc_rotor != NULL) { 6306 uint64_t alloc = metaslab_class_get_alloc( 6307 spa_special_class(spa)); 6308 uint64_t space = metaslab_class_get_space( 6309 spa_special_class(spa)); 6310 6311 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6312 "Special class", (u_longlong_t)alloc, 6313 100.0 * alloc / space); 6314 } 6315 6316 if (spa_dedup_class(spa)->mc_rotor != NULL) { 6317 uint64_t alloc = metaslab_class_get_alloc( 6318 spa_dedup_class(spa)); 6319 uint64_t space = metaslab_class_get_space( 6320 spa_dedup_class(spa)); 6321 6322 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 6323 "Dedup class", (u_longlong_t)alloc, 6324 100.0 * alloc / space); 6325 } 6326 6327 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 6328 if (zcb.zcb_embedded_blocks[i] == 0) 6329 continue; 6330 (void) printf("\n"); 6331 (void) printf("\tadditional, non-pointer bps of type %u: " 6332 "%10llu\n", 6333 i, (u_longlong_t)zcb.zcb_embedded_blocks[i]); 6334 6335 if (dump_opt['b'] >= 3) { 6336 (void) printf("\t number of (compressed) bytes: " 6337 "number of bps\n"); 6338 dump_histogram(zcb.zcb_embedded_histogram[i], 6339 sizeof (zcb.zcb_embedded_histogram[i]) / 6340 sizeof (zcb.zcb_embedded_histogram[i][0]), 0); 6341 } 6342 } 6343 6344 if (tzb->zb_ditto_samevdev != 0) { 6345 (void) printf("\tDittoed blocks on same vdev: %llu\n", 6346 (longlong_t)tzb->zb_ditto_samevdev); 6347 } 6348 if (tzb->zb_ditto_same_ms != 0) { 6349 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 6350 (longlong_t)tzb->zb_ditto_same_ms); 6351 } 6352 6353 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 6354 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 6355 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6356 6357 if (vim == NULL) { 6358 continue; 6359 } 6360 6361 char mem[32]; 6362 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 6363 mem, vdev_indirect_mapping_size(vim)); 6364 6365 (void) printf("\tindirect vdev id %llu has %llu segments " 6366 "(%s in memory)\n", 6367 (longlong_t)vd->vdev_id, 6368 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 6369 } 6370 6371 if (dump_opt['b'] >= 2) { 6372 int l, t, level; 6373 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 6374 "\t avg\t comp\t%%Total\tType\n"); 6375 6376 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 6377 char csize[32], lsize[32], psize[32], asize[32]; 6378 char avg[32], gang[32]; 6379 const char *typename; 6380 6381 /* make sure nicenum has enough space */ 6382 CTASSERT(sizeof (csize) >= NN_NUMBUF_SZ); 6383 CTASSERT(sizeof (lsize) >= NN_NUMBUF_SZ); 6384 CTASSERT(sizeof (psize) >= NN_NUMBUF_SZ); 6385 CTASSERT(sizeof (asize) >= NN_NUMBUF_SZ); 6386 CTASSERT(sizeof (avg) >= NN_NUMBUF_SZ); 6387 CTASSERT(sizeof (gang) >= NN_NUMBUF_SZ); 6388 6389 if (t < DMU_OT_NUMTYPES) 6390 typename = dmu_ot[t].ot_name; 6391 else 6392 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 6393 6394 if (zcb.zcb_type[ZB_TOTAL][t].zb_asize == 0) { 6395 (void) printf("%6s\t%5s\t%5s\t%5s" 6396 "\t%5s\t%5s\t%6s\t%s\n", 6397 "-", 6398 "-", 6399 "-", 6400 "-", 6401 "-", 6402 "-", 6403 "-", 6404 typename); 6405 continue; 6406 } 6407 6408 for (l = ZB_TOTAL - 1; l >= -1; l--) { 6409 level = (l == -1 ? ZB_TOTAL : l); 6410 zb = &zcb.zcb_type[level][t]; 6411 6412 if (zb->zb_asize == 0) 6413 continue; 6414 6415 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 6416 continue; 6417 6418 if (level == 0 && zb->zb_asize == 6419 zcb.zcb_type[ZB_TOTAL][t].zb_asize) 6420 continue; 6421 6422 zdb_nicenum(zb->zb_count, csize, 6423 sizeof (csize)); 6424 zdb_nicenum(zb->zb_lsize, lsize, 6425 sizeof (lsize)); 6426 zdb_nicenum(zb->zb_psize, psize, 6427 sizeof (psize)); 6428 zdb_nicenum(zb->zb_asize, asize, 6429 sizeof (asize)); 6430 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 6431 sizeof (avg)); 6432 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 6433 6434 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 6435 "\t%5.2f\t%6.2f\t", 6436 csize, lsize, psize, asize, avg, 6437 (double)zb->zb_lsize / zb->zb_psize, 6438 100.0 * zb->zb_asize / tzb->zb_asize); 6439 6440 if (level == ZB_TOTAL) 6441 (void) printf("%s\n", typename); 6442 else 6443 (void) printf(" L%d %s\n", 6444 level, typename); 6445 6446 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 6447 (void) printf("\t number of ganged " 6448 "blocks: %s\n", gang); 6449 } 6450 6451 if (dump_opt['b'] >= 4) { 6452 (void) printf("psize " 6453 "(in 512-byte sectors): " 6454 "number of blocks\n"); 6455 dump_histogram(zb->zb_psize_histogram, 6456 PSIZE_HISTO_SIZE, 0); 6457 } 6458 } 6459 } 6460 6461 /* Output a table summarizing block sizes in the pool */ 6462 if (dump_opt['b'] >= 2) { 6463 dump_size_histograms(&zcb); 6464 } 6465 } 6466 6467 (void) printf("\n"); 6468 6469 if (leaks) 6470 return (2); 6471 6472 if (zcb.zcb_haderrors) 6473 return (3); 6474 6475 return (0); 6476 } 6477 6478 typedef struct zdb_ddt_entry { 6479 ddt_key_t zdde_key; 6480 uint64_t zdde_ref_blocks; 6481 uint64_t zdde_ref_lsize; 6482 uint64_t zdde_ref_psize; 6483 uint64_t zdde_ref_dsize; 6484 avl_node_t zdde_node; 6485 } zdb_ddt_entry_t; 6486 6487 /* ARGSUSED */ 6488 static int 6489 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6490 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6491 { 6492 avl_tree_t *t = arg; 6493 avl_index_t where; 6494 zdb_ddt_entry_t *zdde, zdde_search; 6495 6496 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 6497 BP_IS_EMBEDDED(bp)) 6498 return (0); 6499 6500 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 6501 (void) printf("traversing objset %llu, %llu objects, " 6502 "%lu blocks so far\n", 6503 (u_longlong_t)zb->zb_objset, 6504 (u_longlong_t)BP_GET_FILL(bp), 6505 avl_numnodes(t)); 6506 } 6507 6508 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 6509 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 6510 return (0); 6511 6512 ddt_key_fill(&zdde_search.zdde_key, bp); 6513 6514 zdde = avl_find(t, &zdde_search, &where); 6515 6516 if (zdde == NULL) { 6517 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 6518 zdde->zdde_key = zdde_search.zdde_key; 6519 avl_insert(t, zdde, where); 6520 } 6521 6522 zdde->zdde_ref_blocks += 1; 6523 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 6524 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 6525 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 6526 6527 return (0); 6528 } 6529 6530 static void 6531 dump_simulated_ddt(spa_t *spa) 6532 { 6533 avl_tree_t t; 6534 void *cookie = NULL; 6535 zdb_ddt_entry_t *zdde; 6536 ddt_histogram_t ddh_total; 6537 ddt_stat_t dds_total; 6538 6539 bzero(&ddh_total, sizeof (ddh_total)); 6540 bzero(&dds_total, sizeof (dds_total)); 6541 avl_create(&t, ddt_entry_compare, 6542 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 6543 6544 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6545 6546 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 6547 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 6548 6549 spa_config_exit(spa, SCL_CONFIG, FTAG); 6550 6551 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 6552 ddt_stat_t dds; 6553 uint64_t refcnt = zdde->zdde_ref_blocks; 6554 ASSERT(refcnt != 0); 6555 6556 dds.dds_blocks = zdde->zdde_ref_blocks / refcnt; 6557 dds.dds_lsize = zdde->zdde_ref_lsize / refcnt; 6558 dds.dds_psize = zdde->zdde_ref_psize / refcnt; 6559 dds.dds_dsize = zdde->zdde_ref_dsize / refcnt; 6560 6561 dds.dds_ref_blocks = zdde->zdde_ref_blocks; 6562 dds.dds_ref_lsize = zdde->zdde_ref_lsize; 6563 dds.dds_ref_psize = zdde->zdde_ref_psize; 6564 dds.dds_ref_dsize = zdde->zdde_ref_dsize; 6565 6566 ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1], 6567 &dds, 0); 6568 6569 umem_free(zdde, sizeof (*zdde)); 6570 } 6571 6572 avl_destroy(&t); 6573 6574 ddt_histogram_stat(&dds_total, &ddh_total); 6575 6576 (void) printf("Simulated DDT histogram:\n"); 6577 6578 zpool_dump_ddt(&dds_total, &ddh_total); 6579 6580 dump_dedup_ratio(&dds_total); 6581 } 6582 6583 static int 6584 verify_device_removal_feature_counts(spa_t *spa) 6585 { 6586 uint64_t dr_feature_refcount = 0; 6587 uint64_t oc_feature_refcount = 0; 6588 uint64_t indirect_vdev_count = 0; 6589 uint64_t precise_vdev_count = 0; 6590 uint64_t obsolete_counts_object_count = 0; 6591 uint64_t obsolete_sm_count = 0; 6592 uint64_t obsolete_counts_count = 0; 6593 uint64_t scip_count = 0; 6594 uint64_t obsolete_bpobj_count = 0; 6595 int ret = 0; 6596 6597 spa_condensing_indirect_phys_t *scip = 6598 &spa->spa_condensing_indirect_phys; 6599 if (scip->scip_next_mapping_object != 0) { 6600 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 6601 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 6602 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 6603 6604 (void) printf("Condensing indirect vdev %llu: new mapping " 6605 "object %llu, prev obsolete sm %llu\n", 6606 (u_longlong_t)scip->scip_vdev, 6607 (u_longlong_t)scip->scip_next_mapping_object, 6608 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 6609 if (scip->scip_prev_obsolete_sm_object != 0) { 6610 space_map_t *prev_obsolete_sm = NULL; 6611 VERIFY0(space_map_open(&prev_obsolete_sm, 6612 spa->spa_meta_objset, 6613 scip->scip_prev_obsolete_sm_object, 6614 0, vd->vdev_asize, 0)); 6615 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 6616 (void) printf("\n"); 6617 space_map_close(prev_obsolete_sm); 6618 } 6619 6620 scip_count += 2; 6621 } 6622 6623 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 6624 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 6625 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 6626 6627 if (vic->vic_mapping_object != 0) { 6628 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 6629 vd->vdev_removing); 6630 indirect_vdev_count++; 6631 6632 if (vd->vdev_indirect_mapping->vim_havecounts) { 6633 obsolete_counts_count++; 6634 } 6635 } 6636 6637 boolean_t are_precise; 6638 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6639 if (are_precise) { 6640 ASSERT(vic->vic_mapping_object != 0); 6641 precise_vdev_count++; 6642 } 6643 6644 uint64_t obsolete_sm_object; 6645 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6646 if (obsolete_sm_object != 0) { 6647 ASSERT(vic->vic_mapping_object != 0); 6648 obsolete_sm_count++; 6649 } 6650 } 6651 6652 (void) feature_get_refcount(spa, 6653 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 6654 &dr_feature_refcount); 6655 (void) feature_get_refcount(spa, 6656 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 6657 &oc_feature_refcount); 6658 6659 if (dr_feature_refcount != indirect_vdev_count) { 6660 ret = 1; 6661 (void) printf("Number of indirect vdevs (%llu) " \ 6662 "does not match feature count (%llu)\n", 6663 (u_longlong_t)indirect_vdev_count, 6664 (u_longlong_t)dr_feature_refcount); 6665 } else { 6666 (void) printf("Verified device_removal feature refcount " \ 6667 "of %llu is correct\n", 6668 (u_longlong_t)dr_feature_refcount); 6669 } 6670 6671 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 6672 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 6673 obsolete_bpobj_count++; 6674 } 6675 6676 6677 obsolete_counts_object_count = precise_vdev_count; 6678 obsolete_counts_object_count += obsolete_sm_count; 6679 obsolete_counts_object_count += obsolete_counts_count; 6680 obsolete_counts_object_count += scip_count; 6681 obsolete_counts_object_count += obsolete_bpobj_count; 6682 obsolete_counts_object_count += remap_deadlist_count; 6683 6684 if (oc_feature_refcount != obsolete_counts_object_count) { 6685 ret = 1; 6686 (void) printf("Number of obsolete counts objects (%llu) " \ 6687 "does not match feature count (%llu)\n", 6688 (u_longlong_t)obsolete_counts_object_count, 6689 (u_longlong_t)oc_feature_refcount); 6690 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 6691 "ob:%llu rd:%llu\n", 6692 (u_longlong_t)precise_vdev_count, 6693 (u_longlong_t)obsolete_sm_count, 6694 (u_longlong_t)obsolete_counts_count, 6695 (u_longlong_t)scip_count, 6696 (u_longlong_t)obsolete_bpobj_count, 6697 (u_longlong_t)remap_deadlist_count); 6698 } else { 6699 (void) printf("Verified indirect_refcount feature refcount " \ 6700 "of %llu is correct\n", 6701 (u_longlong_t)oc_feature_refcount); 6702 } 6703 return (ret); 6704 } 6705 6706 static void 6707 zdb_set_skip_mmp(char *target) 6708 { 6709 spa_t *spa; 6710 6711 /* 6712 * Disable the activity check to allow examination of 6713 * active pools. 6714 */ 6715 mutex_enter(&spa_namespace_lock); 6716 if ((spa = spa_lookup(target)) != NULL) { 6717 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 6718 } 6719 mutex_exit(&spa_namespace_lock); 6720 } 6721 6722 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 6723 /* 6724 * Import the checkpointed state of the pool specified by the target 6725 * parameter as readonly. The function also accepts a pool config 6726 * as an optional parameter, else it attempts to infer the config by 6727 * the name of the target pool. 6728 * 6729 * Note that the checkpointed state's pool name will be the name of 6730 * the original pool with the above suffix appended to it. In addition, 6731 * if the target is not a pool name (e.g. a path to a dataset) then 6732 * the new_path parameter is populated with the updated path to 6733 * reflect the fact that we are looking into the checkpointed state. 6734 * 6735 * The function returns a newly-allocated copy of the name of the 6736 * pool containing the checkpointed state. When this copy is no 6737 * longer needed it should be freed with free(3C). Same thing 6738 * applies to the new_path parameter if allocated. 6739 */ 6740 static char * 6741 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 6742 { 6743 int error = 0; 6744 char *poolname, *bogus_name = NULL; 6745 6746 /* If the target is not a pool, the extract the pool name */ 6747 char *path_start = strchr(target, '/'); 6748 if (path_start != NULL) { 6749 size_t poolname_len = path_start - target; 6750 poolname = strndup(target, poolname_len); 6751 } else { 6752 poolname = target; 6753 } 6754 6755 if (cfg == NULL) { 6756 zdb_set_skip_mmp(poolname); 6757 error = spa_get_stats(poolname, &cfg, NULL, 0); 6758 if (error != 0) { 6759 fatal("Tried to read config of pool \"%s\" but " 6760 "spa_get_stats() failed with error %d\n", 6761 poolname, error); 6762 } 6763 } 6764 6765 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) 6766 return (NULL); 6767 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 6768 6769 error = spa_import(bogus_name, cfg, NULL, 6770 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 6771 ZFS_IMPORT_SKIP_MMP); 6772 if (error != 0) { 6773 fatal("Tried to import pool \"%s\" but spa_import() failed " 6774 "with error %d\n", bogus_name, error); 6775 } 6776 6777 if (new_path != NULL && path_start != NULL) { 6778 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 6779 if (path_start != NULL) 6780 free(poolname); 6781 return (NULL); 6782 } 6783 } 6784 6785 if (target != poolname) 6786 free(poolname); 6787 6788 return (bogus_name); 6789 } 6790 6791 typedef struct verify_checkpoint_sm_entry_cb_arg { 6792 vdev_t *vcsec_vd; 6793 6794 /* the following fields are only used for printing progress */ 6795 uint64_t vcsec_entryid; 6796 uint64_t vcsec_num_entries; 6797 } verify_checkpoint_sm_entry_cb_arg_t; 6798 6799 #define ENTRIES_PER_PROGRESS_UPDATE 10000 6800 6801 static int 6802 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 6803 { 6804 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 6805 vdev_t *vd = vcsec->vcsec_vd; 6806 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6807 uint64_t end = sme->sme_offset + sme->sme_run; 6808 6809 ASSERT(sme->sme_type == SM_FREE); 6810 6811 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 6812 (void) fprintf(stderr, 6813 "\rverifying vdev %llu, space map entry %llu of %llu ...", 6814 (longlong_t)vd->vdev_id, 6815 (longlong_t)vcsec->vcsec_entryid, 6816 (longlong_t)vcsec->vcsec_num_entries); 6817 } 6818 vcsec->vcsec_entryid++; 6819 6820 /* 6821 * See comment in checkpoint_sm_exclude_entry_cb() 6822 */ 6823 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6824 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6825 6826 /* 6827 * The entries in the vdev_checkpoint_sm should be marked as 6828 * allocated in the checkpointed state of the pool, therefore 6829 * their respective ms_allocateable trees should not contain them. 6830 */ 6831 mutex_enter(&ms->ms_lock); 6832 range_tree_verify_not_present(ms->ms_allocatable, 6833 sme->sme_offset, sme->sme_run); 6834 mutex_exit(&ms->ms_lock); 6835 6836 return (0); 6837 } 6838 6839 /* 6840 * Verify that all segments in the vdev_checkpoint_sm are allocated 6841 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 6842 * ms_allocatable). 6843 * 6844 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 6845 * each vdev in the current state of the pool to the metaslab space maps 6846 * (ms_sm) of the checkpointed state of the pool. 6847 * 6848 * Note that the function changes the state of the ms_allocatable 6849 * trees of the current spa_t. The entries of these ms_allocatable 6850 * trees are cleared out and then repopulated from with the free 6851 * entries of their respective ms_sm space maps. 6852 */ 6853 static void 6854 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 6855 { 6856 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 6857 vdev_t *current_rvd = current->spa_root_vdev; 6858 6859 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 6860 6861 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 6862 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 6863 vdev_t *current_vd = current_rvd->vdev_child[c]; 6864 6865 space_map_t *checkpoint_sm = NULL; 6866 uint64_t checkpoint_sm_obj; 6867 6868 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 6869 /* 6870 * Since we don't allow device removal in a pool 6871 * that has a checkpoint, we expect that all removed 6872 * vdevs were removed from the pool before the 6873 * checkpoint. 6874 */ 6875 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 6876 continue; 6877 } 6878 6879 /* 6880 * If the checkpoint space map doesn't exist, then nothing 6881 * here is checkpointed so there's nothing to verify. 6882 */ 6883 if (current_vd->vdev_top_zap == 0 || 6884 zap_contains(spa_meta_objset(current), 6885 current_vd->vdev_top_zap, 6886 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6887 continue; 6888 6889 VERIFY0(zap_lookup(spa_meta_objset(current), 6890 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 6891 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 6892 6893 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 6894 checkpoint_sm_obj, 0, current_vd->vdev_asize, 6895 current_vd->vdev_ashift)); 6896 6897 verify_checkpoint_sm_entry_cb_arg_t vcsec; 6898 vcsec.vcsec_vd = ckpoint_vd; 6899 vcsec.vcsec_entryid = 0; 6900 vcsec.vcsec_num_entries = 6901 space_map_length(checkpoint_sm) / sizeof (uint64_t); 6902 VERIFY0(space_map_iterate(checkpoint_sm, 6903 space_map_length(checkpoint_sm), 6904 verify_checkpoint_sm_entry_cb, &vcsec)); 6905 if (dump_opt['m'] > 3) 6906 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 6907 space_map_close(checkpoint_sm); 6908 } 6909 6910 /* 6911 * If we've added vdevs since we took the checkpoint, ensure 6912 * that their checkpoint space maps are empty. 6913 */ 6914 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 6915 for (uint64_t c = ckpoint_rvd->vdev_children; 6916 c < current_rvd->vdev_children; c++) { 6917 vdev_t *current_vd = current_rvd->vdev_child[c]; 6918 ASSERT3P(current_vd->vdev_checkpoint_sm, ==, NULL); 6919 } 6920 } 6921 6922 /* for cleaner progress output */ 6923 (void) fprintf(stderr, "\n"); 6924 } 6925 6926 /* 6927 * Verifies that all space that's allocated in the checkpoint is 6928 * still allocated in the current version, by checking that everything 6929 * in checkpoint's ms_allocatable (which is actually allocated, not 6930 * allocatable/free) is not present in current's ms_allocatable. 6931 * 6932 * Note that the function changes the state of the ms_allocatable 6933 * trees of both spas when called. The entries of all ms_allocatable 6934 * trees are cleared out and then repopulated from their respective 6935 * ms_sm space maps. In the checkpointed state we load the allocated 6936 * entries, and in the current state we load the free entries. 6937 */ 6938 static void 6939 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 6940 { 6941 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 6942 vdev_t *current_rvd = current->spa_root_vdev; 6943 6944 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 6945 load_concrete_ms_allocatable_trees(current, SM_FREE); 6946 6947 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 6948 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 6949 vdev_t *current_vd = current_rvd->vdev_child[i]; 6950 6951 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 6952 /* 6953 * See comment in verify_checkpoint_vdev_spacemaps() 6954 */ 6955 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 6956 continue; 6957 } 6958 6959 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 6960 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 6961 metaslab_t *current_msp = current_vd->vdev_ms[m]; 6962 6963 (void) fprintf(stderr, 6964 "\rverifying vdev %llu of %llu, " 6965 "metaslab %llu of %llu ...", 6966 (longlong_t)current_vd->vdev_id, 6967 (longlong_t)current_rvd->vdev_children, 6968 (longlong_t)current_vd->vdev_ms[m]->ms_id, 6969 (longlong_t)current_vd->vdev_ms_count); 6970 6971 /* 6972 * We walk through the ms_allocatable trees that 6973 * are loaded with the allocated blocks from the 6974 * ms_sm spacemaps of the checkpoint. For each 6975 * one of these ranges we ensure that none of them 6976 * exists in the ms_allocatable trees of the 6977 * current state which are loaded with the ranges 6978 * that are currently free. 6979 * 6980 * This way we ensure that none of the blocks that 6981 * are part of the checkpoint were freed by mistake. 6982 */ 6983 range_tree_walk(ckpoint_msp->ms_allocatable, 6984 (range_tree_func_t *)range_tree_verify_not_present, 6985 current_msp->ms_allocatable); 6986 } 6987 } 6988 6989 /* for cleaner progress output */ 6990 (void) fprintf(stderr, "\n"); 6991 } 6992 6993 static void 6994 verify_checkpoint_blocks(spa_t *spa) 6995 { 6996 ASSERT(!dump_opt['L']); 6997 6998 spa_t *checkpoint_spa; 6999 char *checkpoint_pool; 7000 nvlist_t *config = NULL; 7001 int error = 0; 7002 7003 /* 7004 * We import the checkpointed state of the pool (under a different 7005 * name) so we can do verification on it against the current state 7006 * of the pool. 7007 */ 7008 checkpoint_pool = import_checkpointed_state(spa->spa_name, config, 7009 NULL); 7010 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7011 7012 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7013 if (error != 0) { 7014 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7015 "error %d\n", checkpoint_pool, error); 7016 } 7017 7018 /* 7019 * Ensure that ranges in the checkpoint space maps of each vdev 7020 * are allocated according to the checkpointed state's metaslab 7021 * space maps. 7022 */ 7023 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 7024 7025 /* 7026 * Ensure that allocated ranges in the checkpoint's metaslab 7027 * space maps remain allocated in the metaslab space maps of 7028 * the current state. 7029 */ 7030 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 7031 7032 /* 7033 * Once we are done, we get rid of the checkpointed state. 7034 */ 7035 spa_close(checkpoint_spa, FTAG); 7036 free(checkpoint_pool); 7037 } 7038 7039 static void 7040 dump_leftover_checkpoint_blocks(spa_t *spa) 7041 { 7042 vdev_t *rvd = spa->spa_root_vdev; 7043 7044 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 7045 vdev_t *vd = rvd->vdev_child[i]; 7046 7047 space_map_t *checkpoint_sm = NULL; 7048 uint64_t checkpoint_sm_obj; 7049 7050 if (vd->vdev_top_zap == 0) 7051 continue; 7052 7053 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 7054 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7055 continue; 7056 7057 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 7058 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7059 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7060 7061 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 7062 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 7063 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 7064 space_map_close(checkpoint_sm); 7065 } 7066 } 7067 7068 static int 7069 verify_checkpoint(spa_t *spa) 7070 { 7071 uberblock_t checkpoint; 7072 int error; 7073 7074 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 7075 return (0); 7076 7077 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 7078 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 7079 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 7080 7081 if (error == ENOENT && !dump_opt['L']) { 7082 /* 7083 * If the feature is active but the uberblock is missing 7084 * then we must be in the middle of discarding the 7085 * checkpoint. 7086 */ 7087 (void) printf("\nPartially discarded checkpoint " 7088 "state found:\n"); 7089 if (dump_opt['m'] > 3) 7090 dump_leftover_checkpoint_blocks(spa); 7091 return (0); 7092 } else if (error != 0) { 7093 (void) printf("lookup error %d when looking for " 7094 "checkpointed uberblock in MOS\n", error); 7095 return (error); 7096 } 7097 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 7098 7099 if (checkpoint.ub_checkpoint_txg == 0) { 7100 (void) printf("\nub_checkpoint_txg not set in checkpointed " 7101 "uberblock\n"); 7102 error = 3; 7103 } 7104 7105 if (error == 0 && !dump_opt['L']) 7106 verify_checkpoint_blocks(spa); 7107 7108 return (error); 7109 } 7110 7111 /* ARGSUSED */ 7112 static void 7113 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 7114 { 7115 for (uint64_t i = start; i < size; i++) { 7116 (void) printf("MOS object %llu referenced but not allocated\n", 7117 (u_longlong_t)i); 7118 } 7119 } 7120 7121 static void 7122 mos_obj_refd(uint64_t obj) 7123 { 7124 if (obj != 0 && mos_refd_objs != NULL) 7125 range_tree_add(mos_refd_objs, obj, 1); 7126 } 7127 7128 /* 7129 * Call on a MOS object that may already have been referenced. 7130 */ 7131 static void 7132 mos_obj_refd_multiple(uint64_t obj) 7133 { 7134 if (obj != 0 && mos_refd_objs != NULL && 7135 !range_tree_contains(mos_refd_objs, obj, 1)) 7136 range_tree_add(mos_refd_objs, obj, 1); 7137 } 7138 7139 static void 7140 mos_leak_vdev_top_zap(vdev_t *vd) 7141 { 7142 uint64_t ms_flush_data_obj; 7143 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 7144 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 7145 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 7146 if (error == ENOENT) 7147 return; 7148 ASSERT0(error); 7149 7150 mos_obj_refd(ms_flush_data_obj); 7151 } 7152 7153 static void 7154 mos_leak_vdev(vdev_t *vd) 7155 { 7156 mos_obj_refd(vd->vdev_dtl_object); 7157 mos_obj_refd(vd->vdev_ms_array); 7158 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 7159 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 7160 mos_obj_refd(vd->vdev_leaf_zap); 7161 if (vd->vdev_checkpoint_sm != NULL) 7162 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 7163 if (vd->vdev_indirect_mapping != NULL) { 7164 mos_obj_refd(vd->vdev_indirect_mapping-> 7165 vim_phys->vimp_counts_object); 7166 } 7167 if (vd->vdev_obsolete_sm != NULL) 7168 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 7169 7170 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 7171 metaslab_t *ms = vd->vdev_ms[m]; 7172 mos_obj_refd(space_map_object(ms->ms_sm)); 7173 } 7174 7175 if (vd->vdev_top_zap != 0) { 7176 mos_obj_refd(vd->vdev_top_zap); 7177 mos_leak_vdev_top_zap(vd); 7178 } 7179 7180 for (uint64_t c = 0; c < vd->vdev_children; c++) { 7181 mos_leak_vdev(vd->vdev_child[c]); 7182 } 7183 } 7184 7185 static void 7186 mos_leak_log_spacemaps(spa_t *spa) 7187 { 7188 uint64_t spacemap_zap; 7189 int error = zap_lookup(spa_meta_objset(spa), 7190 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 7191 sizeof (spacemap_zap), 1, &spacemap_zap); 7192 if (error == ENOENT) 7193 return; 7194 ASSERT0(error); 7195 7196 mos_obj_refd(spacemap_zap); 7197 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 7198 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 7199 mos_obj_refd(sls->sls_sm_obj); 7200 } 7201 7202 static int 7203 dump_mos_leaks(spa_t *spa) 7204 { 7205 int rv = 0; 7206 objset_t *mos = spa->spa_meta_objset; 7207 dsl_pool_t *dp = spa->spa_dsl_pool; 7208 7209 /* Visit and mark all referenced objects in the MOS */ 7210 7211 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 7212 mos_obj_refd(spa->spa_pool_props_object); 7213 mos_obj_refd(spa->spa_config_object); 7214 mos_obj_refd(spa->spa_ddt_stat_object); 7215 mos_obj_refd(spa->spa_feat_desc_obj); 7216 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 7217 mos_obj_refd(spa->spa_feat_for_read_obj); 7218 mos_obj_refd(spa->spa_feat_for_write_obj); 7219 mos_obj_refd(spa->spa_history); 7220 mos_obj_refd(spa->spa_errlog_last); 7221 mos_obj_refd(spa->spa_errlog_scrub); 7222 mos_obj_refd(spa->spa_all_vdev_zaps); 7223 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 7224 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 7225 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 7226 bpobj_count_refd(&spa->spa_deferred_bpobj); 7227 mos_obj_refd(dp->dp_empty_bpobj); 7228 bpobj_count_refd(&dp->dp_obsolete_bpobj); 7229 bpobj_count_refd(&dp->dp_free_bpobj); 7230 mos_obj_refd(spa->spa_l2cache.sav_object); 7231 mos_obj_refd(spa->spa_spares.sav_object); 7232 7233 if (spa->spa_syncing_log_sm != NULL) 7234 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 7235 mos_leak_log_spacemaps(spa); 7236 7237 mos_obj_refd(spa->spa_condensing_indirect_phys. 7238 scip_next_mapping_object); 7239 mos_obj_refd(spa->spa_condensing_indirect_phys. 7240 scip_prev_obsolete_sm_object); 7241 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 7242 vdev_indirect_mapping_t *vim = 7243 vdev_indirect_mapping_open(mos, 7244 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 7245 mos_obj_refd(vim->vim_phys->vimp_counts_object); 7246 vdev_indirect_mapping_close(vim); 7247 } 7248 deleted_livelists_dump_mos(spa); 7249 7250 if (dp->dp_origin_snap != NULL) { 7251 dsl_dataset_t *ds; 7252 7253 dsl_pool_config_enter(dp, FTAG); 7254 VERIFY0(dsl_dataset_hold_obj(dp, 7255 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 7256 FTAG, &ds)); 7257 count_ds_mos_objects(ds); 7258 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 7259 dsl_dataset_rele(ds, FTAG); 7260 dsl_pool_config_exit(dp, FTAG); 7261 7262 count_ds_mos_objects(dp->dp_origin_snap); 7263 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 7264 } 7265 count_dir_mos_objects(dp->dp_mos_dir); 7266 if (dp->dp_free_dir != NULL) 7267 count_dir_mos_objects(dp->dp_free_dir); 7268 if (dp->dp_leak_dir != NULL) 7269 count_dir_mos_objects(dp->dp_leak_dir); 7270 7271 mos_leak_vdev(spa->spa_root_vdev); 7272 7273 for (uint64_t class = 0; class < DDT_CLASSES; class++) { 7274 for (uint64_t type = 0; type < DDT_TYPES; type++) { 7275 for (uint64_t cksum = 0; 7276 cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) { 7277 ddt_t *ddt = spa->spa_ddt[cksum]; 7278 mos_obj_refd(ddt->ddt_object[type][class]); 7279 } 7280 } 7281 } 7282 7283 /* 7284 * Visit all allocated objects and make sure they are referenced. 7285 */ 7286 uint64_t object = 0; 7287 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 7288 if (range_tree_contains(mos_refd_objs, object, 1)) { 7289 range_tree_remove(mos_refd_objs, object, 1); 7290 } else { 7291 dmu_object_info_t doi; 7292 const char *name; 7293 dmu_object_info(mos, object, &doi); 7294 if (doi.doi_type & DMU_OT_NEWTYPE) { 7295 dmu_object_byteswap_t bswap = 7296 DMU_OT_BYTESWAP(doi.doi_type); 7297 name = dmu_ot_byteswap[bswap].ob_name; 7298 } else { 7299 name = dmu_ot[doi.doi_type].ot_name; 7300 } 7301 7302 (void) printf("MOS object %llu (%s) leaked\n", 7303 (u_longlong_t)object, name); 7304 rv = 2; 7305 } 7306 } 7307 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 7308 if (!range_tree_is_empty(mos_refd_objs)) 7309 rv = 2; 7310 range_tree_vacate(mos_refd_objs, NULL, NULL); 7311 range_tree_destroy(mos_refd_objs); 7312 return (rv); 7313 } 7314 7315 typedef struct log_sm_obsolete_stats_arg { 7316 uint64_t lsos_current_txg; 7317 7318 uint64_t lsos_total_entries; 7319 uint64_t lsos_valid_entries; 7320 7321 uint64_t lsos_sm_entries; 7322 uint64_t lsos_valid_sm_entries; 7323 } log_sm_obsolete_stats_arg_t; 7324 7325 static int 7326 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 7327 uint64_t txg, void *arg) 7328 { 7329 log_sm_obsolete_stats_arg_t *lsos = arg; 7330 7331 uint64_t offset = sme->sme_offset; 7332 uint64_t vdev_id = sme->sme_vdev; 7333 7334 if (lsos->lsos_current_txg == 0) { 7335 /* this is the first log */ 7336 lsos->lsos_current_txg = txg; 7337 } else if (lsos->lsos_current_txg < txg) { 7338 /* we just changed log - print stats and reset */ 7339 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7340 (u_longlong_t)lsos->lsos_valid_sm_entries, 7341 (u_longlong_t)lsos->lsos_sm_entries, 7342 (u_longlong_t)lsos->lsos_current_txg); 7343 lsos->lsos_valid_sm_entries = 0; 7344 lsos->lsos_sm_entries = 0; 7345 lsos->lsos_current_txg = txg; 7346 } 7347 ASSERT3U(lsos->lsos_current_txg, ==, txg); 7348 7349 lsos->lsos_sm_entries++; 7350 lsos->lsos_total_entries++; 7351 7352 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 7353 if (!vdev_is_concrete(vd)) 7354 return (0); 7355 7356 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 7357 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 7358 7359 if (txg < metaslab_unflushed_txg(ms)) 7360 return (0); 7361 lsos->lsos_valid_sm_entries++; 7362 lsos->lsos_valid_entries++; 7363 return (0); 7364 } 7365 7366 static void 7367 dump_log_spacemap_obsolete_stats(spa_t *spa) 7368 { 7369 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 7370 return; 7371 7372 log_sm_obsolete_stats_arg_t lsos; 7373 bzero(&lsos, sizeof (lsos)); 7374 7375 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 7376 7377 iterate_through_spacemap_logs(spa, 7378 log_spacemap_obsolete_stats_cb, &lsos); 7379 7380 /* print stats for latest log */ 7381 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 7382 (u_longlong_t)lsos.lsos_valid_sm_entries, 7383 (u_longlong_t)lsos.lsos_sm_entries, 7384 (u_longlong_t)lsos.lsos_current_txg); 7385 7386 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 7387 (u_longlong_t)lsos.lsos_valid_entries, 7388 (u_longlong_t)lsos.lsos_total_entries); 7389 } 7390 7391 static void 7392 dump_zpool(spa_t *spa) 7393 { 7394 dsl_pool_t *dp = spa_get_dsl(spa); 7395 int rc = 0; 7396 7397 if (dump_opt['y']) { 7398 livelist_metaslab_validate(spa); 7399 } 7400 7401 if (dump_opt['S']) { 7402 dump_simulated_ddt(spa); 7403 return; 7404 } 7405 7406 if (!dump_opt['e'] && dump_opt['C'] > 1) { 7407 (void) printf("\nCached configuration:\n"); 7408 dump_nvlist(spa->spa_config, 8); 7409 } 7410 7411 if (dump_opt['C']) 7412 dump_config(spa); 7413 7414 if (dump_opt['u']) 7415 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 7416 7417 if (dump_opt['D']) 7418 dump_all_ddts(spa); 7419 7420 if (dump_opt['d'] > 2 || dump_opt['m']) 7421 dump_metaslabs(spa); 7422 if (dump_opt['M']) 7423 dump_metaslab_groups(spa); 7424 if (dump_opt['d'] > 2 || dump_opt['m']) { 7425 dump_log_spacemaps(spa); 7426 dump_log_spacemap_obsolete_stats(spa); 7427 } 7428 7429 if (dump_opt['d'] || dump_opt['i']) { 7430 spa_feature_t f; 7431 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 7432 0); 7433 dump_objset(dp->dp_meta_objset); 7434 7435 if (dump_opt['d'] >= 3) { 7436 dsl_pool_t *dp = spa->spa_dsl_pool; 7437 dump_full_bpobj(&spa->spa_deferred_bpobj, 7438 "Deferred frees", 0); 7439 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7440 dump_full_bpobj(&dp->dp_free_bpobj, 7441 "Pool snapshot frees", 0); 7442 } 7443 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 7444 ASSERT(spa_feature_is_enabled(spa, 7445 SPA_FEATURE_DEVICE_REMOVAL)); 7446 dump_full_bpobj(&dp->dp_obsolete_bpobj, 7447 "Pool obsolete blocks", 0); 7448 } 7449 7450 if (spa_feature_is_active(spa, 7451 SPA_FEATURE_ASYNC_DESTROY)) { 7452 dump_bptree(spa->spa_meta_objset, 7453 dp->dp_bptree_obj, 7454 "Pool dataset frees"); 7455 } 7456 dump_dtl(spa->spa_root_vdev, 0); 7457 } 7458 7459 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 7460 global_feature_count[f] = UINT64_MAX; 7461 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 7462 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 7463 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 7464 7465 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 7466 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 7467 7468 if (rc == 0 && !dump_opt['L']) 7469 rc = dump_mos_leaks(spa); 7470 7471 for (f = 0; f < SPA_FEATURES; f++) { 7472 uint64_t refcount; 7473 7474 uint64_t *arr; 7475 if (!(spa_feature_table[f].fi_flags & 7476 ZFEATURE_FLAG_PER_DATASET)) { 7477 if (global_feature_count[f] == UINT64_MAX) 7478 continue; 7479 if (!spa_feature_is_enabled(spa, f)) { 7480 ASSERT0(global_feature_count[f]); 7481 continue; 7482 } 7483 arr = global_feature_count; 7484 } else { 7485 if (!spa_feature_is_enabled(spa, f)) { 7486 ASSERT0(dataset_feature_count[f]); 7487 continue; 7488 } 7489 arr = dataset_feature_count; 7490 } 7491 if (feature_get_refcount(spa, &spa_feature_table[f], 7492 &refcount) == ENOTSUP) 7493 continue; 7494 if (arr[f] != refcount) { 7495 (void) printf("%s feature refcount mismatch: " 7496 "%lld consumers != %lld refcount\n", 7497 spa_feature_table[f].fi_uname, 7498 (longlong_t)arr[f], (longlong_t)refcount); 7499 rc = 2; 7500 } else { 7501 (void) printf("Verified %s feature refcount " 7502 "of %llu is correct\n", 7503 spa_feature_table[f].fi_uname, 7504 (longlong_t)refcount); 7505 } 7506 } 7507 7508 if (rc == 0) 7509 rc = verify_device_removal_feature_counts(spa); 7510 } 7511 7512 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 7513 rc = dump_block_stats(spa); 7514 7515 if (rc == 0) 7516 rc = verify_spacemap_refcounts(spa); 7517 7518 if (dump_opt['s']) 7519 show_pool_stats(spa); 7520 7521 if (dump_opt['h']) 7522 dump_history(spa); 7523 7524 if (rc == 0) 7525 rc = verify_checkpoint(spa); 7526 7527 if (rc != 0) { 7528 dump_debug_buffer(); 7529 exit(rc); 7530 } 7531 } 7532 7533 #define ZDB_FLAG_CHECKSUM 0x0001 7534 #define ZDB_FLAG_DECOMPRESS 0x0002 7535 #define ZDB_FLAG_BSWAP 0x0004 7536 #define ZDB_FLAG_GBH 0x0008 7537 #define ZDB_FLAG_INDIRECT 0x0010 7538 #define ZDB_FLAG_RAW 0x0020 7539 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 7540 #define ZDB_FLAG_VERBOSE 0x0080 7541 7542 static int flagbits[256]; 7543 static char flagbitstr[16]; 7544 7545 static void 7546 zdb_print_blkptr(const blkptr_t *bp, int flags) 7547 { 7548 char blkbuf[BP_SPRINTF_LEN]; 7549 7550 if (flags & ZDB_FLAG_BSWAP) 7551 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 7552 7553 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 7554 (void) printf("%s\n", blkbuf); 7555 } 7556 7557 static void 7558 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 7559 { 7560 int i; 7561 7562 for (i = 0; i < nbps; i++) 7563 zdb_print_blkptr(&bp[i], flags); 7564 } 7565 7566 static void 7567 zdb_dump_gbh(void *buf, int flags) 7568 { 7569 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 7570 } 7571 7572 static void 7573 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 7574 { 7575 if (flags & ZDB_FLAG_BSWAP) 7576 byteswap_uint64_array(buf, size); 7577 VERIFY(write(fileno(stdout), buf, size) == size); 7578 } 7579 7580 static void 7581 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 7582 { 7583 uint64_t *d = (uint64_t *)buf; 7584 unsigned nwords = size / sizeof (uint64_t); 7585 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 7586 unsigned i, j; 7587 const char *hdr; 7588 char *c; 7589 7590 7591 if (do_bswap) 7592 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 7593 else 7594 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 7595 7596 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 7597 7598 #ifdef _LITTLE_ENDIAN 7599 /* correct the endianness */ 7600 do_bswap = !do_bswap; 7601 #endif 7602 for (i = 0; i < nwords; i += 2) { 7603 (void) printf("%06llx: %016llx %016llx ", 7604 (u_longlong_t)(i * sizeof (uint64_t)), 7605 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 7606 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 7607 7608 c = (char *)&d[i]; 7609 for (j = 0; j < 2 * sizeof (uint64_t); j++) 7610 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 7611 (void) printf("\n"); 7612 } 7613 } 7614 7615 /* 7616 * There are two acceptable formats: 7617 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 7618 * child[.child]* - For example: 0.1.1 7619 * 7620 * The second form can be used to specify arbitrary vdevs anywhere 7621 * in the hierarchy. For example, in a pool with a mirror of 7622 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 7623 */ 7624 static vdev_t * 7625 zdb_vdev_lookup(vdev_t *vdev, const char *path) 7626 { 7627 char *s, *p, *q; 7628 unsigned i; 7629 7630 if (vdev == NULL) 7631 return (NULL); 7632 7633 /* First, assume the x.x.x.x format */ 7634 i = strtoul(path, &s, 10); 7635 if (s == path || (s && *s != '.' && *s != '\0')) 7636 goto name; 7637 if (i >= vdev->vdev_children) 7638 return (NULL); 7639 7640 vdev = vdev->vdev_child[i]; 7641 if (s && *s == '\0') 7642 return (vdev); 7643 return (zdb_vdev_lookup(vdev, s+1)); 7644 7645 name: 7646 for (i = 0; i < vdev->vdev_children; i++) { 7647 vdev_t *vc = vdev->vdev_child[i]; 7648 7649 if (vc->vdev_path == NULL) { 7650 vc = zdb_vdev_lookup(vc, path); 7651 if (vc == NULL) 7652 continue; 7653 else 7654 return (vc); 7655 } 7656 7657 p = strrchr(vc->vdev_path, '/'); 7658 p = p ? p + 1 : vc->vdev_path; 7659 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 7660 7661 if (strcmp(vc->vdev_path, path) == 0) 7662 return (vc); 7663 if (strcmp(p, path) == 0) 7664 return (vc); 7665 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 7666 return (vc); 7667 } 7668 7669 return (NULL); 7670 } 7671 7672 static int 7673 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 7674 { 7675 dsl_dataset_t *ds; 7676 7677 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 7678 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 7679 NULL, &ds); 7680 if (error != 0) { 7681 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 7682 (u_longlong_t)objset_id, strerror(error)); 7683 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7684 return (error); 7685 } 7686 dsl_dataset_name(ds, outstr); 7687 dsl_dataset_rele(ds, NULL); 7688 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 7689 return (0); 7690 } 7691 7692 static boolean_t 7693 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 7694 { 7695 char *s0, *s1; 7696 7697 if (sizes == NULL) 7698 return (B_FALSE); 7699 7700 s0 = strtok(sizes, "/"); 7701 if (s0 == NULL) 7702 return (B_FALSE); 7703 s1 = strtok(NULL, "/"); 7704 *lsize = strtoull(s0, NULL, 16); 7705 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 7706 return (*lsize >= *psize && *psize > 0); 7707 } 7708 7709 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 7710 7711 static boolean_t 7712 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 7713 uint64_t psize, int flags) 7714 { 7715 boolean_t exceeded = B_FALSE; 7716 /* 7717 * We don't know how the data was compressed, so just try 7718 * every decompress function at every inflated blocksize. 7719 */ 7720 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 7721 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 7722 int *cfuncp = cfuncs; 7723 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 7724 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 7725 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 7726 (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0); 7727 *cfuncp++ = ZIO_COMPRESS_LZ4; 7728 *cfuncp++ = ZIO_COMPRESS_LZJB; 7729 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 7730 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 7731 if (((1ULL << c) & mask) == 0) 7732 *cfuncp++ = c; 7733 7734 /* 7735 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 7736 * could take a while and we should let the user know 7737 * we are not stuck. On the other hand, printing progress 7738 * info gets old after a while. User can specify 'v' flag 7739 * to see the progression. 7740 */ 7741 if (lsize == psize) 7742 lsize += SPA_MINBLOCKSIZE; 7743 else 7744 maxlsize = lsize; 7745 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 7746 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 7747 if (flags & ZDB_FLAG_VERBOSE) { 7748 (void) fprintf(stderr, 7749 "Trying %05llx -> %05llx (%s)\n", 7750 (u_longlong_t)psize, 7751 (u_longlong_t)lsize, 7752 zio_compress_table[*cfuncp].\ 7753 ci_name); 7754 } 7755 7756 /* 7757 * We randomize lbuf2, and decompress to both 7758 * lbuf and lbuf2. This way, we will know if 7759 * decompression fill exactly to lsize. 7760 */ 7761 VERIFY0(random_get_pseudo_bytes(lbuf2, lsize)); 7762 7763 if (zio_decompress_data(*cfuncp, pabd, 7764 lbuf, psize, lsize, NULL) == 0 && 7765 zio_decompress_data(*cfuncp, pabd, 7766 lbuf2, psize, lsize, NULL) == 0 && 7767 bcmp(lbuf, lbuf2, lsize) == 0) 7768 break; 7769 } 7770 if (*cfuncp != 0) 7771 break; 7772 } 7773 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 7774 7775 if (lsize > maxlsize) { 7776 exceeded = B_TRUE; 7777 } 7778 buf = lbuf; 7779 if (*cfuncp == ZIO_COMPRESS_ZLE) { 7780 printf("\nZLE decompression was selected. If you " 7781 "suspect the results are wrong,\ntry avoiding ZLE " 7782 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 7783 } 7784 7785 return (exceeded); 7786 } 7787 7788 /* 7789 * Read a block from a pool and print it out. The syntax of the 7790 * block descriptor is: 7791 * 7792 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 7793 * 7794 * pool - The name of the pool you wish to read from 7795 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 7796 * offset - offset, in hex, in bytes 7797 * size - Amount of data to read, in hex, in bytes 7798 * flags - A string of characters specifying options 7799 * b: Decode a blkptr at given offset within block 7800 * c: Calculate and display checksums 7801 * d: Decompress data before dumping 7802 * e: Byteswap data before dumping 7803 * g: Display data as a gang block header 7804 * i: Display as an indirect block 7805 * r: Dump raw data to stdout 7806 * v: Verbose 7807 * 7808 */ 7809 static void 7810 zdb_read_block(char *thing, spa_t *spa) 7811 { 7812 blkptr_t blk, *bp = &blk; 7813 dva_t *dva = bp->blk_dva; 7814 int flags = 0; 7815 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 7816 zio_t *zio; 7817 vdev_t *vd; 7818 abd_t *pabd; 7819 void *lbuf, *buf; 7820 char *s, *p, *dup, *vdev, *flagstr, *sizes; 7821 int i, error; 7822 boolean_t borrowed = B_FALSE, found = B_FALSE; 7823 7824 dup = strdup(thing); 7825 s = strtok(dup, ":"); 7826 vdev = s ? s : ""; 7827 s = strtok(NULL, ":"); 7828 offset = strtoull(s ? s : "", NULL, 16); 7829 sizes = strtok(NULL, ":"); 7830 s = strtok(NULL, ":"); 7831 flagstr = strdup(s ? s : ""); 7832 7833 s = NULL; 7834 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 7835 s = "invalid size(s)"; 7836 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 7837 s = "size must be a multiple of sector size"; 7838 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 7839 s = "offset must be a multiple of sector size"; 7840 if (s) { 7841 (void) printf("Invalid block specifier: %s - %s\n", thing, s); 7842 goto done; 7843 } 7844 7845 for (s = strtok(flagstr, ":"); s; s = strtok(NULL, ":")) { 7846 for (i = 0; i < strlen(flagstr); i++) { 7847 int bit = flagbits[(uchar_t)flagstr[i]]; 7848 7849 if (bit == 0) { 7850 (void) printf("***Ignoring flag: %c\n", 7851 (uchar_t)flagstr[i]); 7852 continue; 7853 } 7854 found = B_TRUE; 7855 flags |= bit; 7856 7857 p = &flagstr[i + 1]; 7858 if (*p != ':' && *p != '\0') { 7859 int j = 0, nextbit = flagbits[(uchar_t)*p]; 7860 char *end, offstr[8] = { 0 }; 7861 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 7862 (nextbit == 0)) { 7863 /* look ahead to isolate the offset */ 7864 while (nextbit == 0 && 7865 strchr(flagbitstr, *p) == NULL) { 7866 offstr[j] = *p; 7867 j++; 7868 if (i + j > strlen(flagstr)) 7869 break; 7870 p++; 7871 nextbit = flagbits[(uchar_t)*p]; 7872 } 7873 blkptr_offset = strtoull(offstr, &end, 7874 16); 7875 i += j; 7876 } else if (nextbit == 0) { 7877 (void) printf("***Ignoring flag arg:" 7878 " '%c'\n", (uchar_t)*p); 7879 } 7880 } 7881 } 7882 } 7883 if (blkptr_offset % sizeof (blkptr_t)) { 7884 printf("Block pointer offset 0x%llx " 7885 "must be divisible by 0x%x\n", 7886 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 7887 goto done; 7888 } 7889 if (found == B_FALSE && strlen(flagstr) > 0) { 7890 printf("Invalid flag arg: '%s'\n", flagstr); 7891 goto done; 7892 } 7893 7894 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 7895 if (vd == NULL) { 7896 (void) printf("***Invalid vdev: %s\n", vdev); 7897 free(dup); 7898 return; 7899 } else { 7900 if (vd->vdev_path) 7901 (void) fprintf(stderr, "Found vdev: %s\n", 7902 vd->vdev_path); 7903 else 7904 (void) fprintf(stderr, "Found vdev type: %s\n", 7905 vd->vdev_ops->vdev_op_type); 7906 } 7907 7908 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 7909 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 7910 7911 BP_ZERO(bp); 7912 7913 DVA_SET_VDEV(&dva[0], vd->vdev_id); 7914 DVA_SET_OFFSET(&dva[0], offset); 7915 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH)); 7916 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 7917 7918 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 7919 7920 BP_SET_LSIZE(bp, lsize); 7921 BP_SET_PSIZE(bp, psize); 7922 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 7923 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 7924 BP_SET_TYPE(bp, DMU_OT_NONE); 7925 BP_SET_LEVEL(bp, 0); 7926 BP_SET_DEDUP(bp, 0); 7927 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 7928 7929 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 7930 zio = zio_root(spa, NULL, NULL, 0); 7931 7932 if (vd == vd->vdev_top) { 7933 /* 7934 * Treat this as a normal block read. 7935 */ 7936 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 7937 ZIO_PRIORITY_SYNC_READ, 7938 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 7939 } else { 7940 /* 7941 * Treat this as a vdev child I/O. 7942 */ 7943 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 7944 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 7945 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE | 7946 ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 7947 ZIO_FLAG_OPTIONAL, NULL, NULL)); 7948 } 7949 7950 error = zio_wait(zio); 7951 spa_config_exit(spa, SCL_STATE, FTAG); 7952 7953 if (error) { 7954 (void) printf("Read of %s failed, error: %d\n", thing, error); 7955 goto out; 7956 } 7957 7958 uint64_t orig_lsize = lsize; 7959 buf = lbuf; 7960 if (flags & ZDB_FLAG_DECOMPRESS) { 7961 boolean_t failed = zdb_decompress_block(pabd, buf, lbuf, 7962 lsize, psize, flags); 7963 if (failed) { 7964 (void) printf("Decompress of %s failed\n", thing); 7965 goto out; 7966 } 7967 } else { 7968 buf = abd_borrow_buf_copy(pabd, lsize); 7969 borrowed = B_TRUE; 7970 } 7971 /* 7972 * Try to detect invalid block pointer. If invalid, try 7973 * decompressing. 7974 */ 7975 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 7976 !(flags & ZDB_FLAG_DECOMPRESS)) { 7977 const blkptr_t *b = (const blkptr_t *)(void *) 7978 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 7979 if (zfs_blkptr_verify(spa, b, B_FALSE, BLK_VERIFY_ONLY) == 7980 B_FALSE) { 7981 abd_return_buf_copy(pabd, buf, lsize); 7982 borrowed = B_FALSE; 7983 buf = lbuf; 7984 boolean_t failed = zdb_decompress_block(pabd, buf, 7985 lbuf, lsize, psize, flags); 7986 b = (const blkptr_t *)(void *) 7987 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 7988 if (failed || zfs_blkptr_verify(spa, b, B_FALSE, 7989 BLK_VERIFY_LOG) == B_FALSE) { 7990 printf("invalid block pointer at this DVA\n"); 7991 goto out; 7992 } 7993 } 7994 } 7995 7996 if (flags & ZDB_FLAG_PRINT_BLKPTR) 7997 zdb_print_blkptr((blkptr_t *)(void *) 7998 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 7999 else if (flags & ZDB_FLAG_RAW) 8000 zdb_dump_block_raw(buf, lsize, flags); 8001 else if (flags & ZDB_FLAG_INDIRECT) 8002 zdb_dump_indirect((blkptr_t *)buf, 8003 orig_lsize / sizeof (blkptr_t), flags); 8004 else if (flags & ZDB_FLAG_GBH) 8005 zdb_dump_gbh(buf, flags); 8006 else 8007 zdb_dump_block(thing, buf, lsize, flags); 8008 8009 /* 8010 * If :c was specified, iterate through the checksum table to 8011 * calculate and display each checksum for our specified 8012 * DVA and length. 8013 */ 8014 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 8015 !(flags & ZDB_FLAG_GBH)) { 8016 zio_t *czio; 8017 (void) printf("\n"); 8018 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 8019 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 8020 8021 if ((zio_checksum_table[ck].ci_flags & 8022 ZCHECKSUM_FLAG_EMBEDDED) || 8023 ck == ZIO_CHECKSUM_NOPARITY) { 8024 continue; 8025 } 8026 BP_SET_CHECKSUM(bp, ck); 8027 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 8028 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 8029 czio->io_bp = bp; 8030 8031 if (vd == vd->vdev_top) { 8032 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 8033 NULL, NULL, 8034 ZIO_PRIORITY_SYNC_READ, 8035 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8036 ZIO_FLAG_DONT_RETRY, NULL)); 8037 } else { 8038 zio_nowait(zio_vdev_child_io(czio, bp, vd, 8039 offset, pabd, psize, ZIO_TYPE_READ, 8040 ZIO_PRIORITY_SYNC_READ, 8041 ZIO_FLAG_DONT_CACHE | 8042 ZIO_FLAG_DONT_PROPAGATE | 8043 ZIO_FLAG_DONT_RETRY | 8044 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 8045 ZIO_FLAG_SPECULATIVE | 8046 ZIO_FLAG_OPTIONAL, NULL, NULL)); 8047 } 8048 error = zio_wait(czio); 8049 if (error == 0 || error == ECKSUM) { 8050 zio_t *ck_zio = zio_root(spa, NULL, NULL, 0); 8051 ck_zio->io_offset = 8052 DVA_GET_OFFSET(&bp->blk_dva[0]); 8053 ck_zio->io_bp = bp; 8054 zio_checksum_compute(ck_zio, ck, pabd, lsize); 8055 printf("%12s\tcksum=%llx:%llx:%llx:%llx\n", 8056 zio_checksum_table[ck].ci_name, 8057 (u_longlong_t)bp->blk_cksum.zc_word[0], 8058 (u_longlong_t)bp->blk_cksum.zc_word[1], 8059 (u_longlong_t)bp->blk_cksum.zc_word[2], 8060 (u_longlong_t)bp->blk_cksum.zc_word[3]); 8061 zio_wait(ck_zio); 8062 } else { 8063 printf("error %d reading block\n", error); 8064 } 8065 spa_config_exit(spa, SCL_STATE, FTAG); 8066 } 8067 } 8068 8069 if (borrowed) 8070 abd_return_buf_copy(pabd, buf, lsize); 8071 8072 out: 8073 abd_free(pabd); 8074 umem_free(lbuf, SPA_MAXBLOCKSIZE); 8075 done: 8076 free(flagstr); 8077 free(dup); 8078 } 8079 8080 static void 8081 zdb_embedded_block(char *thing) 8082 { 8083 blkptr_t bp; 8084 unsigned long long *words = (void *)&bp; 8085 char *buf; 8086 int err; 8087 8088 bzero(&bp, sizeof (bp)); 8089 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 8090 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 8091 words + 0, words + 1, words + 2, words + 3, 8092 words + 4, words + 5, words + 6, words + 7, 8093 words + 8, words + 9, words + 10, words + 11, 8094 words + 12, words + 13, words + 14, words + 15); 8095 if (err != 16) { 8096 (void) fprintf(stderr, "invalid input format\n"); 8097 exit(1); 8098 } 8099 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 8100 buf = malloc(SPA_MAXBLOCKSIZE); 8101 if (buf == NULL) { 8102 (void) fprintf(stderr, "out of memory\n"); 8103 exit(1); 8104 } 8105 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 8106 if (err != 0) { 8107 (void) fprintf(stderr, "decode failed: %u\n", err); 8108 exit(1); 8109 } 8110 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 8111 free(buf); 8112 } 8113 8114 int 8115 main(int argc, char **argv) 8116 { 8117 int c; 8118 struct rlimit rl = { 1024, 1024 }; 8119 spa_t *spa = NULL; 8120 objset_t *os = NULL; 8121 int dump_all = 1; 8122 int verbose = 0; 8123 int error = 0; 8124 char **searchdirs = NULL; 8125 int nsearch = 0; 8126 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 8127 nvlist_t *policy = NULL; 8128 uint64_t max_txg = UINT64_MAX; 8129 int64_t objset_id = -1; 8130 int flags = ZFS_IMPORT_MISSING_LOG; 8131 int rewind = ZPOOL_NEVER_REWIND; 8132 char *spa_config_path_env, *objset_str; 8133 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 8134 nvlist_t *cfg = NULL; 8135 8136 (void) setrlimit(RLIMIT_NOFILE, &rl); 8137 (void) enable_extended_FILE_stdio(-1, -1); 8138 8139 dprintf_setup(&argc, argv); 8140 8141 /* 8142 * If there is an environment variable SPA_CONFIG_PATH it overrides 8143 * default spa_config_path setting. If -U flag is specified it will 8144 * override this environment variable settings once again. 8145 */ 8146 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 8147 if (spa_config_path_env != NULL) 8148 spa_config_path = spa_config_path_env; 8149 8150 /* 8151 * For performance reasons, we set this tunable down. We do so before 8152 * the arg parsing section so that the user can override this value if 8153 * they choose. 8154 */ 8155 zfs_btree_verify_intensity = 3; 8156 8157 while ((c = getopt(argc, argv, 8158 "AbcCdDeEFGhiI:klLmMo:Op:PqRsSt:uU:vVx:XYyZ")) != -1) { 8159 switch (c) { 8160 case 'b': 8161 case 'c': 8162 case 'C': 8163 case 'd': 8164 case 'D': 8165 case 'E': 8166 case 'G': 8167 case 'h': 8168 case 'i': 8169 case 'l': 8170 case 'm': 8171 case 'M': 8172 case 'O': 8173 case 'R': 8174 case 's': 8175 case 'S': 8176 case 'u': 8177 case 'y': 8178 case 'Z': 8179 dump_opt[c]++; 8180 dump_all = 0; 8181 break; 8182 case 'A': 8183 case 'e': 8184 case 'F': 8185 case 'k': 8186 case 'L': 8187 case 'P': 8188 case 'q': 8189 case 'X': 8190 dump_opt[c]++; 8191 break; 8192 case 'Y': 8193 zfs_reconstruct_indirect_combinations_max = INT_MAX; 8194 zfs_deadman_enabled = 0; 8195 break; 8196 /* NB: Sort single match options below. */ 8197 case 'I': 8198 max_inflight_bytes = strtoull(optarg, NULL, 0); 8199 if (max_inflight_bytes == 0) { 8200 (void) fprintf(stderr, "maximum number " 8201 "of inflight bytes must be greater " 8202 "than 0\n"); 8203 usage(); 8204 } 8205 break; 8206 case 'o': 8207 error = set_global_var(optarg); 8208 if (error != 0) 8209 usage(); 8210 break; 8211 case 'p': 8212 if (searchdirs == NULL) { 8213 searchdirs = umem_alloc(sizeof (char *), 8214 UMEM_NOFAIL); 8215 } else { 8216 char **tmp = umem_alloc((nsearch + 1) * 8217 sizeof (char *), UMEM_NOFAIL); 8218 bcopy(searchdirs, tmp, nsearch * 8219 sizeof (char *)); 8220 umem_free(searchdirs, 8221 nsearch * sizeof (char *)); 8222 searchdirs = tmp; 8223 } 8224 searchdirs[nsearch++] = optarg; 8225 break; 8226 case 't': 8227 max_txg = strtoull(optarg, NULL, 0); 8228 if (max_txg < TXG_INITIAL) { 8229 (void) fprintf(stderr, "incorrect txg " 8230 "specified: %s\n", optarg); 8231 usage(); 8232 } 8233 break; 8234 case 'U': 8235 spa_config_path = optarg; 8236 if (spa_config_path[0] != '/') { 8237 (void) fprintf(stderr, 8238 "cachefile must be an absolute path " 8239 "(i.e. start with a slash)\n"); 8240 usage(); 8241 } 8242 break; 8243 case 'v': 8244 verbose++; 8245 break; 8246 case 'V': 8247 flags = ZFS_IMPORT_VERBATIM; 8248 break; 8249 case 'x': 8250 vn_dumpdir = optarg; 8251 break; 8252 default: 8253 usage(); 8254 break; 8255 } 8256 } 8257 8258 if (!dump_opt['e'] && searchdirs != NULL) { 8259 (void) fprintf(stderr, "-p option requires use of -e\n"); 8260 usage(); 8261 } 8262 if (dump_opt['d']) { 8263 /* <pool>[/<dataset | objset id> is accepted */ 8264 if (argv[2] && (objset_str = strchr(argv[2], '/')) != NULL && 8265 objset_str++ != NULL) { 8266 char *endptr; 8267 errno = 0; 8268 objset_id = strtoull(objset_str, &endptr, 0); 8269 /* dataset 0 is the same as opening the pool */ 8270 if (errno == 0 && endptr != objset_str && 8271 objset_id != 0) { 8272 target_is_spa = B_FALSE; 8273 dataset_lookup = B_TRUE; 8274 } else if (objset_id != 0) { 8275 printf("failed to open objset %s " 8276 "%llu %s", objset_str, 8277 (u_longlong_t)objset_id, 8278 strerror(errno)); 8279 exit(1); 8280 } 8281 /* normal dataset name not an objset ID */ 8282 if (endptr == objset_str) { 8283 objset_id = -1; 8284 } 8285 } 8286 } 8287 8288 #if defined(_LP64) 8289 /* 8290 * ZDB does not typically re-read blocks; therefore limit the ARC 8291 * to 256 MB, which can be used entirely for metadata. 8292 */ 8293 zfs_arc_min = zfs_arc_meta_min = 2ULL << SPA_MAXBLOCKSHIFT; 8294 zfs_arc_max = zfs_arc_meta_limit = 256 * 1024 * 1024; 8295 #endif 8296 8297 /* 8298 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 8299 * "zdb -b" uses traversal prefetch which uses async reads. 8300 * For good performance, let several of them be active at once. 8301 */ 8302 zfs_vdev_async_read_max_active = 10; 8303 8304 /* 8305 * Disable reference tracking for better performance. 8306 */ 8307 reference_tracking_enable = B_FALSE; 8308 8309 /* 8310 * Do not fail spa_load when spa_load_verify fails. This is needed 8311 * to load non-idle pools. 8312 */ 8313 spa_load_verify_dryrun = B_TRUE; 8314 8315 kernel_init(SPA_MODE_READ); 8316 8317 if (dump_all) 8318 verbose = MAX(verbose, 1); 8319 8320 for (c = 0; c < 256; c++) { 8321 if (dump_all && strchr("AeEFklLOPRSXy", c) == NULL) 8322 dump_opt[c] = 1; 8323 if (dump_opt[c]) 8324 dump_opt[c] += verbose; 8325 } 8326 8327 aok = (dump_opt['A'] == 1) || (dump_opt['A'] > 2); 8328 zfs_recover = (dump_opt['A'] > 1); 8329 8330 argc -= optind; 8331 argv += optind; 8332 if (argc < 2 && dump_opt['R']) 8333 usage(); 8334 8335 if (dump_opt['E']) { 8336 if (argc != 1) 8337 usage(); 8338 zdb_embedded_block(argv[0]); 8339 return (0); 8340 } 8341 8342 if (argc < 1) { 8343 if (!dump_opt['e'] && dump_opt['C']) { 8344 dump_cachefile(spa_config_path); 8345 return (0); 8346 } 8347 usage(); 8348 } 8349 8350 if (dump_opt['l']) 8351 return (dump_label(argv[0])); 8352 8353 if (dump_opt['O']) { 8354 if (argc != 2) 8355 usage(); 8356 dump_opt['v'] = verbose + 3; 8357 return (dump_path(argv[0], argv[1])); 8358 } 8359 8360 if (dump_opt['X'] || dump_opt['F']) 8361 rewind = ZPOOL_DO_REWIND | 8362 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 8363 8364 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 8365 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 8366 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 8367 fatal("internal error: %s", strerror(ENOMEM)); 8368 8369 error = 0; 8370 target = argv[0]; 8371 8372 if (strpbrk(target, "/@") != NULL) { 8373 size_t targetlen; 8374 8375 target_pool = strdup(target); 8376 *strpbrk(target_pool, "/@") = '\0'; 8377 8378 target_is_spa = B_FALSE; 8379 targetlen = strlen(target); 8380 if (targetlen && target[targetlen - 1] == '/') 8381 target[targetlen - 1] = '\0'; 8382 } else { 8383 target_pool = target; 8384 } 8385 8386 if (dump_opt['e']) { 8387 importargs_t args = { 0 }; 8388 8389 args.paths = nsearch; 8390 args.path = searchdirs; 8391 args.can_be_active = B_TRUE; 8392 8393 error = zpool_find_config(NULL, target_pool, &cfg, &args, 8394 &libzpool_config_ops); 8395 8396 if (error == 0) { 8397 8398 if (nvlist_add_nvlist(cfg, 8399 ZPOOL_LOAD_POLICY, policy) != 0) { 8400 fatal("can't open '%s': %s", 8401 target, strerror(ENOMEM)); 8402 } 8403 8404 if (dump_opt['C'] > 1) { 8405 (void) printf("\nConfiguration for import:\n"); 8406 dump_nvlist(cfg, 8); 8407 } 8408 8409 /* 8410 * Disable the activity check to allow examination of 8411 * active pools. 8412 */ 8413 error = spa_import(target_pool, cfg, NULL, 8414 flags | ZFS_IMPORT_SKIP_MMP); 8415 } 8416 } 8417 8418 /* 8419 * import_checkpointed_state makes the assumption that the 8420 * target pool that we pass it is already part of the spa 8421 * namespace. Because of that we need to make sure to call 8422 * it always after the -e option has been processed, which 8423 * imports the pool to the namespace if it's not in the 8424 * cachefile. 8425 */ 8426 char *checkpoint_pool = NULL; 8427 char *checkpoint_target = NULL; 8428 if (dump_opt['k']) { 8429 checkpoint_pool = import_checkpointed_state(target, cfg, 8430 &checkpoint_target); 8431 8432 if (checkpoint_target != NULL) 8433 target = checkpoint_target; 8434 } 8435 8436 if (target_pool != target) 8437 free(target_pool); 8438 8439 if (error == 0) { 8440 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 8441 ASSERT(checkpoint_pool != NULL); 8442 ASSERT(checkpoint_target == NULL); 8443 8444 error = spa_open(checkpoint_pool, &spa, FTAG); 8445 if (error != 0) { 8446 fatal("Tried to open pool \"%s\" but " 8447 "spa_open() failed with error %d\n", 8448 checkpoint_pool, error); 8449 } 8450 8451 } else if (target_is_spa || dump_opt['R'] || objset_id == 0) { 8452 zdb_set_skip_mmp(target); 8453 error = spa_open_rewind(target, &spa, FTAG, policy, 8454 NULL); 8455 if (error) { 8456 /* 8457 * If we're missing the log device then 8458 * try opening the pool after clearing the 8459 * log state. 8460 */ 8461 mutex_enter(&spa_namespace_lock); 8462 if ((spa = spa_lookup(target)) != NULL && 8463 spa->spa_log_state == SPA_LOG_MISSING) { 8464 spa->spa_log_state = SPA_LOG_CLEAR; 8465 error = 0; 8466 } 8467 mutex_exit(&spa_namespace_lock); 8468 8469 if (!error) { 8470 error = spa_open_rewind(target, &spa, 8471 FTAG, policy, NULL); 8472 } 8473 } 8474 } else if (strpbrk(target, "#") != NULL) { 8475 dsl_pool_t *dp; 8476 error = dsl_pool_hold(target, FTAG, &dp); 8477 if (error != 0) { 8478 fatal("can't dump '%s': %s", target, 8479 strerror(error)); 8480 } 8481 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 8482 dsl_pool_rele(dp, FTAG); 8483 if (error != 0) { 8484 fatal("can't dump '%s': %s", target, 8485 strerror(error)); 8486 } 8487 return (error); 8488 } else { 8489 zdb_set_skip_mmp(target); 8490 if (dataset_lookup == B_TRUE) { 8491 /* 8492 * Use the supplied id to get the name 8493 * for open_objset. 8494 */ 8495 error = spa_open(target, &spa, FTAG); 8496 if (error == 0) { 8497 error = name_from_objset_id(spa, 8498 objset_id, dsname); 8499 spa_close(spa, FTAG); 8500 if (error == 0) 8501 target = dsname; 8502 } 8503 } 8504 if (error == 0) 8505 error = open_objset(target, FTAG, &os); 8506 if (error == 0) 8507 spa = dmu_objset_spa(os); 8508 } 8509 } 8510 nvlist_free(policy); 8511 8512 if (error) 8513 fatal("can't open '%s': %s", target, strerror(error)); 8514 8515 /* 8516 * Set the pool failure mode to panic in order to prevent the pool 8517 * from suspending. A suspended I/O will have no way to resume and 8518 * can prevent the zdb(8) command from terminating as expected. 8519 */ 8520 if (spa != NULL) 8521 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 8522 8523 argv++; 8524 argc--; 8525 if (!dump_opt['R']) { 8526 flagbits['d'] = ZOR_FLAG_DIRECTORY; 8527 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 8528 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 8529 flagbits['z'] = ZOR_FLAG_ZAP; 8530 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 8531 8532 if (argc > 0 && dump_opt['d']) { 8533 zopt_object_args = argc; 8534 zopt_object_ranges = calloc(zopt_object_args, 8535 sizeof (zopt_object_range_t)); 8536 for (unsigned i = 0; i < zopt_object_args; i++) { 8537 int err; 8538 char *msg = NULL; 8539 8540 err = parse_object_range(argv[i], 8541 &zopt_object_ranges[i], &msg); 8542 if (err != 0) 8543 fatal("Bad object or range: '%s': %s\n", 8544 argv[i], msg ? msg : ""); 8545 } 8546 } else if (argc > 0 && dump_opt['m']) { 8547 zopt_metaslab_args = argc; 8548 zopt_metaslab = calloc(zopt_metaslab_args, 8549 sizeof (uint64_t)); 8550 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 8551 errno = 0; 8552 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 8553 if (zopt_metaslab[i] == 0 && errno != 0) 8554 fatal("bad number %s: %s", argv[i], 8555 strerror(errno)); 8556 } 8557 } 8558 if (os != NULL) { 8559 dump_objset(os); 8560 } else if (zopt_object_args > 0 && !dump_opt['m']) { 8561 dump_objset(spa->spa_meta_objset); 8562 } else { 8563 dump_zpool(spa); 8564 } 8565 } else { 8566 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 8567 flagbits['c'] = ZDB_FLAG_CHECKSUM; 8568 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 8569 flagbits['e'] = ZDB_FLAG_BSWAP; 8570 flagbits['g'] = ZDB_FLAG_GBH; 8571 flagbits['i'] = ZDB_FLAG_INDIRECT; 8572 flagbits['r'] = ZDB_FLAG_RAW; 8573 flagbits['v'] = ZDB_FLAG_VERBOSE; 8574 8575 for (int i = 0; i < argc; i++) 8576 zdb_read_block(argv[i], spa); 8577 } 8578 8579 if (dump_opt['k']) { 8580 free(checkpoint_pool); 8581 if (!target_is_spa) 8582 free(checkpoint_target); 8583 } 8584 8585 if (os != NULL) { 8586 close_objset(os, FTAG); 8587 } else { 8588 spa_close(spa, FTAG); 8589 } 8590 8591 fuid_table_destroy(); 8592 8593 dump_debug_buffer(); 8594 8595 kernel_fini(); 8596 8597 return (error); 8598 } 8599