xref: /freebsd/sys/contrib/openzfs/cmd/zdb/zdb.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25  * Copyright (c) 2014 Integros [integros.com]
26  * Copyright 2016 Nexenta Systems, Inc.
27  * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28  * Copyright (c) 2015, 2017, Intel Corporation.
29  * Copyright (c) 2020 Datto Inc.
30  * Copyright (c) 2020, The FreeBSD Foundation [1]
31  *
32  * [1] Portions of this software were developed by Allan Jude
33  *     under sponsorship from the FreeBSD Foundation.
34  * Copyright (c) 2021 Allan Jude
35  * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36  * Copyright (c) 2023, Klara Inc.
37  * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
38  */
39 
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/zfs_znode.h>
53 #include <sys/zfs_sa.h>
54 #include <sys/sa.h>
55 #include <sys/sa_impl.h>
56 #include <sys/vdev.h>
57 #include <sys/vdev_impl.h>
58 #include <sys/metaslab_impl.h>
59 #include <sys/dmu_objset.h>
60 #include <sys/dsl_dir.h>
61 #include <sys/dsl_dataset.h>
62 #include <sys/dsl_pool.h>
63 #include <sys/dsl_bookmark.h>
64 #include <sys/dbuf.h>
65 #include <sys/zil.h>
66 #include <sys/zil_impl.h>
67 #include <sys/stat.h>
68 #include <sys/resource.h>
69 #include <sys/dmu_send.h>
70 #include <sys/dmu_traverse.h>
71 #include <sys/zio_checksum.h>
72 #include <sys/zio_compress.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/arc.h>
75 #include <sys/arc_impl.h>
76 #include <sys/ddt.h>
77 #include <sys/zfeature.h>
78 #include <sys/abd.h>
79 #include <sys/blkptr.h>
80 #include <sys/dsl_crypt.h>
81 #include <sys/dsl_scan.h>
82 #include <sys/btree.h>
83 #include <sys/brt.h>
84 #include <sys/brt_impl.h>
85 #include <zfs_comutil.h>
86 #include <sys/zstd/zstd.h>
87 
88 #include <libnvpair.h>
89 #include <libzutil.h>
90 
91 #include "zdb.h"
92 
93 #define	ZDB_COMPRESS_NAME(idx) ((idx) < ZIO_COMPRESS_FUNCTIONS ?	\
94 	zio_compress_table[(idx)].ci_name : "UNKNOWN")
95 #define	ZDB_CHECKSUM_NAME(idx) ((idx) < ZIO_CHECKSUM_FUNCTIONS ?	\
96 	zio_checksum_table[(idx)].ci_name : "UNKNOWN")
97 #define	ZDB_OT_TYPE(idx) ((idx) < DMU_OT_NUMTYPES ? (idx) :		\
98 	(idx) == DMU_OTN_ZAP_DATA || (idx) == DMU_OTN_ZAP_METADATA ?	\
99 	DMU_OT_ZAP_OTHER : \
100 	(idx) == DMU_OTN_UINT64_DATA || (idx) == DMU_OTN_UINT64_METADATA ? \
101 	DMU_OT_UINT64_OTHER : DMU_OT_NUMTYPES)
102 
103 /* Some platforms require part of inode IDs to be remapped */
104 #ifdef __APPLE__
105 #define	ZDB_MAP_OBJECT_ID(obj) INO_XNUTOZFS(obj, 2)
106 #else
107 #define	ZDB_MAP_OBJECT_ID(obj) (obj)
108 #endif
109 
110 static const char *
111 zdb_ot_name(dmu_object_type_t type)
112 {
113 	if (type < DMU_OT_NUMTYPES)
114 		return (dmu_ot[type].ot_name);
115 	else if ((type & DMU_OT_NEWTYPE) &&
116 	    ((type & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS))
117 		return (dmu_ot_byteswap[type & DMU_OT_BYTESWAP_MASK].ob_name);
118 	else
119 		return ("UNKNOWN");
120 }
121 
122 extern int reference_tracking_enable;
123 extern int zfs_recover;
124 extern uint_t zfs_vdev_async_read_max_active;
125 extern boolean_t spa_load_verify_dryrun;
126 extern boolean_t spa_mode_readable_spacemaps;
127 extern uint_t zfs_reconstruct_indirect_combinations_max;
128 extern uint_t zfs_btree_verify_intensity;
129 
130 static const char cmdname[] = "zdb";
131 uint8_t dump_opt[256];
132 
133 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
134 
135 static uint64_t *zopt_metaslab = NULL;
136 static unsigned zopt_metaslab_args = 0;
137 
138 typedef struct zopt_object_range {
139 	uint64_t zor_obj_start;
140 	uint64_t zor_obj_end;
141 	uint64_t zor_flags;
142 } zopt_object_range_t;
143 
144 static zopt_object_range_t *zopt_object_ranges = NULL;
145 static unsigned zopt_object_args = 0;
146 
147 static int flagbits[256];
148 
149 #define	ZOR_FLAG_PLAIN_FILE	0x0001
150 #define	ZOR_FLAG_DIRECTORY	0x0002
151 #define	ZOR_FLAG_SPACE_MAP	0x0004
152 #define	ZOR_FLAG_ZAP		0x0008
153 #define	ZOR_FLAG_ALL_TYPES	-1
154 #define	ZOR_SUPPORTED_FLAGS	(ZOR_FLAG_PLAIN_FILE	| \
155 				ZOR_FLAG_DIRECTORY	| \
156 				ZOR_FLAG_SPACE_MAP	| \
157 				ZOR_FLAG_ZAP)
158 
159 #define	ZDB_FLAG_CHECKSUM	0x0001
160 #define	ZDB_FLAG_DECOMPRESS	0x0002
161 #define	ZDB_FLAG_BSWAP		0x0004
162 #define	ZDB_FLAG_GBH		0x0008
163 #define	ZDB_FLAG_INDIRECT	0x0010
164 #define	ZDB_FLAG_RAW		0x0020
165 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
166 #define	ZDB_FLAG_VERBOSE	0x0080
167 
168 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
169 static int leaked_objects = 0;
170 static range_tree_t *mos_refd_objs;
171 
172 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
173     boolean_t);
174 static void mos_obj_refd(uint64_t);
175 static void mos_obj_refd_multiple(uint64_t);
176 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
177     dmu_tx_t *tx);
178 
179 typedef struct sublivelist_verify {
180 	/* FREE's that haven't yet matched to an ALLOC, in one sub-livelist */
181 	zfs_btree_t sv_pair;
182 
183 	/* ALLOC's without a matching FREE, accumulates across sub-livelists */
184 	zfs_btree_t sv_leftover;
185 } sublivelist_verify_t;
186 
187 static int
188 livelist_compare(const void *larg, const void *rarg)
189 {
190 	const blkptr_t *l = larg;
191 	const blkptr_t *r = rarg;
192 
193 	/* Sort them according to dva[0] */
194 	uint64_t l_dva0_vdev, r_dva0_vdev;
195 	l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
196 	r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
197 	if (l_dva0_vdev < r_dva0_vdev)
198 		return (-1);
199 	else if (l_dva0_vdev > r_dva0_vdev)
200 		return (+1);
201 
202 	/* if vdevs are equal, sort by offsets. */
203 	uint64_t l_dva0_offset;
204 	uint64_t r_dva0_offset;
205 	l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
206 	r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
207 	if (l_dva0_offset < r_dva0_offset) {
208 		return (-1);
209 	} else if (l_dva0_offset > r_dva0_offset) {
210 		return (+1);
211 	}
212 
213 	/*
214 	 * Since we're storing blkptrs without cancelling FREE/ALLOC pairs,
215 	 * it's possible the offsets are equal. In that case, sort by txg
216 	 */
217 	if (l->blk_birth < r->blk_birth) {
218 		return (-1);
219 	} else if (l->blk_birth > r->blk_birth) {
220 		return (+1);
221 	}
222 	return (0);
223 }
224 
225 typedef struct sublivelist_verify_block {
226 	dva_t svb_dva;
227 
228 	/*
229 	 * We need this to check if the block marked as allocated
230 	 * in the livelist was freed (and potentially reallocated)
231 	 * in the metaslab spacemaps at a later TXG.
232 	 */
233 	uint64_t svb_allocated_txg;
234 } sublivelist_verify_block_t;
235 
236 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
237 
238 typedef struct sublivelist_verify_block_refcnt {
239 	/* block pointer entry in livelist being verified */
240 	blkptr_t svbr_blk;
241 
242 	/*
243 	 * Refcount gets incremented to 1 when we encounter the first
244 	 * FREE entry for the svfbr block pointer and a node for it
245 	 * is created in our ZDB verification/tracking metadata.
246 	 *
247 	 * As we encounter more FREE entries we increment this counter
248 	 * and similarly decrement it whenever we find the respective
249 	 * ALLOC entries for this block.
250 	 *
251 	 * When the refcount gets to 0 it means that all the FREE and
252 	 * ALLOC entries of this block have paired up and we no longer
253 	 * need to track it in our verification logic (e.g. the node
254 	 * containing this struct in our verification data structure
255 	 * should be freed).
256 	 *
257 	 * [refer to sublivelist_verify_blkptr() for the actual code]
258 	 */
259 	uint32_t svbr_refcnt;
260 } sublivelist_verify_block_refcnt_t;
261 
262 static int
263 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
264 {
265 	const sublivelist_verify_block_refcnt_t *l = larg;
266 	const sublivelist_verify_block_refcnt_t *r = rarg;
267 	return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
268 }
269 
270 static int
271 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
272     dmu_tx_t *tx)
273 {
274 	ASSERT3P(tx, ==, NULL);
275 	struct sublivelist_verify *sv = arg;
276 	sublivelist_verify_block_refcnt_t current = {
277 			.svbr_blk = *bp,
278 
279 			/*
280 			 * Start with 1 in case this is the first free entry.
281 			 * This field is not used for our B-Tree comparisons
282 			 * anyway.
283 			 */
284 			.svbr_refcnt = 1,
285 	};
286 
287 	zfs_btree_index_t where;
288 	sublivelist_verify_block_refcnt_t *pair =
289 	    zfs_btree_find(&sv->sv_pair, &current, &where);
290 	if (free) {
291 		if (pair == NULL) {
292 			/* first free entry for this block pointer */
293 			zfs_btree_add(&sv->sv_pair, &current);
294 		} else {
295 			pair->svbr_refcnt++;
296 		}
297 	} else {
298 		if (pair == NULL) {
299 			/* block that is currently marked as allocated */
300 			for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
301 				if (DVA_IS_EMPTY(&bp->blk_dva[i]))
302 					break;
303 				sublivelist_verify_block_t svb = {
304 				    .svb_dva = bp->blk_dva[i],
305 				    .svb_allocated_txg = bp->blk_birth
306 				};
307 
308 				if (zfs_btree_find(&sv->sv_leftover, &svb,
309 				    &where) == NULL) {
310 					zfs_btree_add_idx(&sv->sv_leftover,
311 					    &svb, &where);
312 				}
313 			}
314 		} else {
315 			/* alloc matches a free entry */
316 			pair->svbr_refcnt--;
317 			if (pair->svbr_refcnt == 0) {
318 				/* all allocs and frees have been matched */
319 				zfs_btree_remove_idx(&sv->sv_pair, &where);
320 			}
321 		}
322 	}
323 
324 	return (0);
325 }
326 
327 static int
328 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
329 {
330 	int err;
331 	struct sublivelist_verify *sv = args;
332 
333 	zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
334 	    sizeof (sublivelist_verify_block_refcnt_t));
335 
336 	err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
337 	    sv, NULL);
338 
339 	sublivelist_verify_block_refcnt_t *e;
340 	zfs_btree_index_t *cookie = NULL;
341 	while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
342 		char blkbuf[BP_SPRINTF_LEN];
343 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
344 		    &e->svbr_blk, B_TRUE);
345 		(void) printf("\tERROR: %d unmatched FREE(s): %s\n",
346 		    e->svbr_refcnt, blkbuf);
347 	}
348 	zfs_btree_destroy(&sv->sv_pair);
349 
350 	return (err);
351 }
352 
353 static int
354 livelist_block_compare(const void *larg, const void *rarg)
355 {
356 	const sublivelist_verify_block_t *l = larg;
357 	const sublivelist_verify_block_t *r = rarg;
358 
359 	if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
360 		return (-1);
361 	else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
362 		return (+1);
363 
364 	if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
365 		return (-1);
366 	else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
367 		return (+1);
368 
369 	if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
370 		return (-1);
371 	else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
372 		return (+1);
373 
374 	return (0);
375 }
376 
377 /*
378  * Check for errors in a livelist while tracking all unfreed ALLOCs in the
379  * sublivelist_verify_t: sv->sv_leftover
380  */
381 static void
382 livelist_verify(dsl_deadlist_t *dl, void *arg)
383 {
384 	sublivelist_verify_t *sv = arg;
385 	dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
386 }
387 
388 /*
389  * Check for errors in the livelist entry and discard the intermediary
390  * data structures
391  */
392 static int
393 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
394 {
395 	(void) args;
396 	sublivelist_verify_t sv;
397 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
398 	    sizeof (sublivelist_verify_block_t));
399 	int err = sublivelist_verify_func(&sv, dle);
400 	zfs_btree_clear(&sv.sv_leftover);
401 	zfs_btree_destroy(&sv.sv_leftover);
402 	return (err);
403 }
404 
405 typedef struct metaslab_verify {
406 	/*
407 	 * Tree containing all the leftover ALLOCs from the livelists
408 	 * that are part of this metaslab.
409 	 */
410 	zfs_btree_t mv_livelist_allocs;
411 
412 	/*
413 	 * Metaslab information.
414 	 */
415 	uint64_t mv_vdid;
416 	uint64_t mv_msid;
417 	uint64_t mv_start;
418 	uint64_t mv_end;
419 
420 	/*
421 	 * What's currently allocated for this metaslab.
422 	 */
423 	range_tree_t *mv_allocated;
424 } metaslab_verify_t;
425 
426 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
427 
428 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
429     void *arg);
430 
431 typedef struct unflushed_iter_cb_arg {
432 	spa_t *uic_spa;
433 	uint64_t uic_txg;
434 	void *uic_arg;
435 	zdb_log_sm_cb_t uic_cb;
436 } unflushed_iter_cb_arg_t;
437 
438 static int
439 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
440 {
441 	unflushed_iter_cb_arg_t *uic = arg;
442 	return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
443 }
444 
445 static void
446 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
447 {
448 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
449 		return;
450 
451 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
452 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
453 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
454 		space_map_t *sm = NULL;
455 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
456 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
457 
458 		unflushed_iter_cb_arg_t uic = {
459 			.uic_spa = spa,
460 			.uic_txg = sls->sls_txg,
461 			.uic_arg = arg,
462 			.uic_cb = cb
463 		};
464 		VERIFY0(space_map_iterate(sm, space_map_length(sm),
465 		    iterate_through_spacemap_logs_cb, &uic));
466 		space_map_close(sm);
467 	}
468 	spa_config_exit(spa, SCL_CONFIG, FTAG);
469 }
470 
471 static void
472 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
473     uint64_t offset, uint64_t size)
474 {
475 	sublivelist_verify_block_t svb = {{{0}}};
476 	DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
477 	DVA_SET_OFFSET(&svb.svb_dva, offset);
478 	DVA_SET_ASIZE(&svb.svb_dva, size);
479 	zfs_btree_index_t where;
480 	uint64_t end_offset = offset + size;
481 
482 	/*
483 	 *  Look for an exact match for spacemap entry in the livelist entries.
484 	 *  Then, look for other livelist entries that fall within the range
485 	 *  of the spacemap entry as it may have been condensed
486 	 */
487 	sublivelist_verify_block_t *found =
488 	    zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
489 	if (found == NULL) {
490 		found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
491 	}
492 	for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
493 	    DVA_GET_OFFSET(&found->svb_dva) < end_offset;
494 	    found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
495 		if (found->svb_allocated_txg <= txg) {
496 			(void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
497 			    "from TXG %llx FREED at TXG %llx\n",
498 			    (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
499 			    (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
500 			    (u_longlong_t)found->svb_allocated_txg,
501 			    (u_longlong_t)txg);
502 		}
503 	}
504 }
505 
506 static int
507 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
508 {
509 	metaslab_verify_t *mv = arg;
510 	uint64_t offset = sme->sme_offset;
511 	uint64_t size = sme->sme_run;
512 	uint64_t txg = sme->sme_txg;
513 
514 	if (sme->sme_type == SM_ALLOC) {
515 		if (range_tree_contains(mv->mv_allocated,
516 		    offset, size)) {
517 			(void) printf("ERROR: DOUBLE ALLOC: "
518 			    "%llu [%llx:%llx] "
519 			    "%llu:%llu LOG_SM\n",
520 			    (u_longlong_t)txg, (u_longlong_t)offset,
521 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
522 			    (u_longlong_t)mv->mv_msid);
523 		} else {
524 			range_tree_add(mv->mv_allocated,
525 			    offset, size);
526 		}
527 	} else {
528 		if (!range_tree_contains(mv->mv_allocated,
529 		    offset, size)) {
530 			(void) printf("ERROR: DOUBLE FREE: "
531 			    "%llu [%llx:%llx] "
532 			    "%llu:%llu LOG_SM\n",
533 			    (u_longlong_t)txg, (u_longlong_t)offset,
534 			    (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
535 			    (u_longlong_t)mv->mv_msid);
536 		} else {
537 			range_tree_remove(mv->mv_allocated,
538 			    offset, size);
539 		}
540 	}
541 
542 	if (sme->sme_type != SM_ALLOC) {
543 		/*
544 		 * If something is freed in the spacemap, verify that
545 		 * it is not listed as allocated in the livelist.
546 		 */
547 		verify_livelist_allocs(mv, txg, offset, size);
548 	}
549 	return (0);
550 }
551 
552 static int
553 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
554     uint64_t txg, void *arg)
555 {
556 	metaslab_verify_t *mv = arg;
557 	uint64_t offset = sme->sme_offset;
558 	uint64_t vdev_id = sme->sme_vdev;
559 
560 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
561 
562 	/* skip indirect vdevs */
563 	if (!vdev_is_concrete(vd))
564 		return (0);
565 
566 	if (vdev_id != mv->mv_vdid)
567 		return (0);
568 
569 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
570 	if (ms->ms_id != mv->mv_msid)
571 		return (0);
572 
573 	if (txg < metaslab_unflushed_txg(ms))
574 		return (0);
575 
576 
577 	ASSERT3U(txg, ==, sme->sme_txg);
578 	return (metaslab_spacemap_validation_cb(sme, mv));
579 }
580 
581 static void
582 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
583 {
584 	iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
585 }
586 
587 static void
588 spacemap_check_ms_sm(space_map_t  *sm, metaslab_verify_t *mv)
589 {
590 	if (sm == NULL)
591 		return;
592 
593 	VERIFY0(space_map_iterate(sm, space_map_length(sm),
594 	    metaslab_spacemap_validation_cb, mv));
595 }
596 
597 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
598 
599 /*
600  * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
601  * they are part of that metaslab (mv_msid).
602  */
603 static void
604 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
605 {
606 	zfs_btree_index_t where;
607 	sublivelist_verify_block_t *svb;
608 	ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
609 	for (svb = zfs_btree_first(&sv->sv_leftover, &where);
610 	    svb != NULL;
611 	    svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
612 		if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
613 			continue;
614 
615 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
616 		    (DVA_GET_OFFSET(&svb->svb_dva) +
617 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
618 			(void) printf("ERROR: Found block that crosses "
619 			    "metaslab boundary: <%llu:%llx:%llx>\n",
620 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
621 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
622 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
623 			continue;
624 		}
625 
626 		if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
627 			continue;
628 
629 		if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
630 			continue;
631 
632 		if ((DVA_GET_OFFSET(&svb->svb_dva) +
633 		    DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
634 			(void) printf("ERROR: Found block that crosses "
635 			    "metaslab boundary: <%llu:%llx:%llx>\n",
636 			    (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
637 			    (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
638 			    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
639 			continue;
640 		}
641 
642 		zfs_btree_add(&mv->mv_livelist_allocs, svb);
643 	}
644 
645 	for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
646 	    svb != NULL;
647 	    svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
648 		zfs_btree_remove(&sv->sv_leftover, svb);
649 	}
650 }
651 
652 /*
653  * [Livelist Check]
654  * Iterate through all the sublivelists and:
655  * - report leftover frees (**)
656  * - record leftover ALLOCs together with their TXG [see Cross Check]
657  *
658  * (**) Note: Double ALLOCs are valid in datasets that have dedup
659  *      enabled. Similarly double FREEs are allowed as well but
660  *      only if they pair up with a corresponding ALLOC entry once
661  *      we our done with our sublivelist iteration.
662  *
663  * [Spacemap Check]
664  * for each metaslab:
665  * - iterate over spacemap and then the metaslab's entries in the
666  *   spacemap log, then report any double FREEs and ALLOCs (do not
667  *   blow up).
668  *
669  * [Cross Check]
670  * After finishing the Livelist Check phase and while being in the
671  * Spacemap Check phase, we find all the recorded leftover ALLOCs
672  * of the livelist check that are part of the metaslab that we are
673  * currently looking at in the Spacemap Check. We report any entries
674  * that are marked as ALLOCs in the livelists but have been actually
675  * freed (and potentially allocated again) after their TXG stamp in
676  * the spacemaps. Also report any ALLOCs from the livelists that
677  * belong to indirect vdevs (e.g. their vdev completed removal).
678  *
679  * Note that this will miss Log Spacemap entries that cancelled each other
680  * out before being flushed to the metaslab, so we are not guaranteed
681  * to match all erroneous ALLOCs.
682  */
683 static void
684 livelist_metaslab_validate(spa_t *spa)
685 {
686 	(void) printf("Verifying deleted livelist entries\n");
687 
688 	sublivelist_verify_t sv;
689 	zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
690 	    sizeof (sublivelist_verify_block_t));
691 	iterate_deleted_livelists(spa, livelist_verify, &sv);
692 
693 	(void) printf("Verifying metaslab entries\n");
694 	vdev_t *rvd = spa->spa_root_vdev;
695 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
696 		vdev_t *vd = rvd->vdev_child[c];
697 
698 		if (!vdev_is_concrete(vd))
699 			continue;
700 
701 		for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
702 			metaslab_t *m = vd->vdev_ms[mid];
703 
704 			(void) fprintf(stderr,
705 			    "\rverifying concrete vdev %llu, "
706 			    "metaslab %llu of %llu ...",
707 			    (longlong_t)vd->vdev_id,
708 			    (longlong_t)mid,
709 			    (longlong_t)vd->vdev_ms_count);
710 
711 			uint64_t shift, start;
712 			range_seg_type_t type =
713 			    metaslab_calculate_range_tree_type(vd, m,
714 			    &start, &shift);
715 			metaslab_verify_t mv;
716 			mv.mv_allocated = range_tree_create(NULL,
717 			    type, NULL, start, shift);
718 			mv.mv_vdid = vd->vdev_id;
719 			mv.mv_msid = m->ms_id;
720 			mv.mv_start = m->ms_start;
721 			mv.mv_end = m->ms_start + m->ms_size;
722 			zfs_btree_create(&mv.mv_livelist_allocs,
723 			    livelist_block_compare, NULL,
724 			    sizeof (sublivelist_verify_block_t));
725 
726 			mv_populate_livelist_allocs(&mv, &sv);
727 
728 			spacemap_check_ms_sm(m->ms_sm, &mv);
729 			spacemap_check_sm_log(spa, &mv);
730 
731 			range_tree_vacate(mv.mv_allocated, NULL, NULL);
732 			range_tree_destroy(mv.mv_allocated);
733 			zfs_btree_clear(&mv.mv_livelist_allocs);
734 			zfs_btree_destroy(&mv.mv_livelist_allocs);
735 		}
736 	}
737 	(void) fprintf(stderr, "\n");
738 
739 	/*
740 	 * If there are any segments in the leftover tree after we walked
741 	 * through all the metaslabs in the concrete vdevs then this means
742 	 * that we have segments in the livelists that belong to indirect
743 	 * vdevs and are marked as allocated.
744 	 */
745 	if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
746 		zfs_btree_destroy(&sv.sv_leftover);
747 		return;
748 	}
749 	(void) printf("ERROR: Found livelist blocks marked as allocated "
750 	    "for indirect vdevs:\n");
751 
752 	zfs_btree_index_t *where = NULL;
753 	sublivelist_verify_block_t *svb;
754 	while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
755 	    NULL) {
756 		int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
757 		ASSERT3U(vdev_id, <, rvd->vdev_children);
758 		vdev_t *vd = rvd->vdev_child[vdev_id];
759 		ASSERT(!vdev_is_concrete(vd));
760 		(void) printf("<%d:%llx:%llx> TXG %llx\n",
761 		    vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
762 		    (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
763 		    (u_longlong_t)svb->svb_allocated_txg);
764 	}
765 	(void) printf("\n");
766 	zfs_btree_destroy(&sv.sv_leftover);
767 }
768 
769 /*
770  * These libumem hooks provide a reasonable set of defaults for the allocator's
771  * debugging facilities.
772  */
773 const char *
774 _umem_debug_init(void)
775 {
776 	return ("default,verbose"); /* $UMEM_DEBUG setting */
777 }
778 
779 const char *
780 _umem_logging_init(void)
781 {
782 	return ("fail,contents"); /* $UMEM_LOGGING setting */
783 }
784 
785 static void
786 usage(void)
787 {
788 	(void) fprintf(stderr,
789 	    "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
790 	    "[-I <inflight I/Os>]\n"
791 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
792 	    "\t\t[-K <key>]\n"
793 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
794 	    "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
795 	    "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
796 	    "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
797 	    "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
798 	    "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
799 	    "\t%s [-v] <bookmark>\n"
800 	    "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
801 	    "\t%s -l [-Aqu] <device>\n"
802 	    "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
803 	    "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
804 	    "\t%s -O [-K <key>] <dataset> <path>\n"
805 	    "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
806 	    "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
807 	    "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
808 	    "\t%s -E [-A] word0:word1:...:word15\n"
809 	    "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
810 	    "<poolname>\n\n",
811 	    cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
812 	    cmdname, cmdname, cmdname, cmdname, cmdname);
813 
814 	(void) fprintf(stderr, "    Dataset name must include at least one "
815 	    "separator character '/' or '@'\n");
816 	(void) fprintf(stderr, "    If dataset name is specified, only that "
817 	    "dataset is dumped\n");
818 	(void) fprintf(stderr,  "    If object numbers or object number "
819 	    "ranges are specified, only those\n"
820 	    "    objects or ranges are dumped.\n\n");
821 	(void) fprintf(stderr,
822 	    "    Object ranges take the form <start>:<end>[:<flags>]\n"
823 	    "        start    Starting object number\n"
824 	    "        end      Ending object number, or -1 for no upper bound\n"
825 	    "        flags    Optional flags to select object types:\n"
826 	    "            A     All objects (this is the default)\n"
827 	    "            d     ZFS directories\n"
828 	    "            f     ZFS files \n"
829 	    "            m     SPA space maps\n"
830 	    "            z     ZAPs\n"
831 	    "            -     Negate effect of next flag\n\n");
832 	(void) fprintf(stderr, "    Options to control amount of output:\n");
833 	(void) fprintf(stderr, "        -b --block-stats             "
834 	    "block statistics\n");
835 	(void) fprintf(stderr, "        -B --backup                  "
836 	    "backup stream\n");
837 	(void) fprintf(stderr, "        -c --checksum                "
838 	    "checksum all metadata (twice for all data) blocks\n");
839 	(void) fprintf(stderr, "        -C --config                  "
840 	    "config (or cachefile if alone)\n");
841 	(void) fprintf(stderr, "        -d --datasets                "
842 	    "dataset(s)\n");
843 	(void) fprintf(stderr, "        -D --dedup-stats             "
844 	    "dedup statistics\n");
845 	(void) fprintf(stderr, "        -E --embedded-block-pointer=INTEGER\n"
846 	    "                                     decode and display block "
847 	    "from an embedded block pointer\n");
848 	(void) fprintf(stderr, "        -h --history                 "
849 	    "pool history\n");
850 	(void) fprintf(stderr, "        -i --intent-logs             "
851 	    "intent logs\n");
852 	(void) fprintf(stderr, "        -l --label                   "
853 	    "read label contents\n");
854 	(void) fprintf(stderr, "        -k --checkpointed-state      "
855 	    "examine the checkpointed state of the pool\n");
856 	(void) fprintf(stderr, "        -L --disable-leak-tracking   "
857 	    "disable leak tracking (do not load spacemaps)\n");
858 	(void) fprintf(stderr, "        -m --metaslabs               "
859 	    "metaslabs\n");
860 	(void) fprintf(stderr, "        -M --metaslab-groups         "
861 	    "metaslab groups\n");
862 	(void) fprintf(stderr, "        -O --object-lookups          "
863 	    "perform object lookups by path\n");
864 	(void) fprintf(stderr, "        -r --copy-object             "
865 	    "copy an object by path to file\n");
866 	(void) fprintf(stderr, "        -R --read-block              "
867 	    "read and display block from a device\n");
868 	(void) fprintf(stderr, "        -s --io-stats                "
869 	    "report stats on zdb's I/O\n");
870 	(void) fprintf(stderr, "        -S --simulate-dedup          "
871 	    "simulate dedup to measure effect\n");
872 	(void) fprintf(stderr, "        -v --verbose                 "
873 	    "verbose (applies to all others)\n");
874 	(void) fprintf(stderr, "        -y --livelist                "
875 	    "perform livelist and metaslab validation on any livelists being "
876 	    "deleted\n\n");
877 	(void) fprintf(stderr, "    Below options are intended for use "
878 	    "with other options:\n");
879 	(void) fprintf(stderr, "        -A --ignore-assertions       "
880 	    "ignore assertions (-A), enable panic recovery (-AA) or both "
881 	    "(-AAA)\n");
882 	(void) fprintf(stderr, "        -e --exported                "
883 	    "pool is exported/destroyed/has altroot/not in a cachefile\n");
884 	(void) fprintf(stderr, "        -F --automatic-rewind        "
885 	    "attempt automatic rewind within safe range of transaction "
886 	    "groups\n");
887 	(void) fprintf(stderr, "        -G --dump-debug-msg          "
888 	    "dump zfs_dbgmsg buffer before exiting\n");
889 	(void) fprintf(stderr, "        -I --inflight=INTEGER        "
890 	    "specify the maximum number of checksumming I/Os "
891 	    "[default is 200]\n");
892 	(void) fprintf(stderr, "        -K --key=KEY                 "
893 	    "decryption key for encrypted dataset\n");
894 	(void) fprintf(stderr, "        -o --option=\"OPTION=INTEGER\" "
895 	    "set global variable to an unsigned 32-bit integer\n");
896 	(void) fprintf(stderr, "        -p --path==PATH              "
897 	    "use one or more with -e to specify path to vdev dir\n");
898 	(void) fprintf(stderr, "        -P --parseable               "
899 	    "print numbers in parseable form\n");
900 	(void) fprintf(stderr, "        -q --skip-label              "
901 	    "don't print label contents\n");
902 	(void) fprintf(stderr, "        -t --txg=INTEGER             "
903 	    "highest txg to use when searching for uberblocks\n");
904 	(void) fprintf(stderr, "        -T --brt-stats               "
905 	    "BRT statistics\n");
906 	(void) fprintf(stderr, "        -u --uberblock               "
907 	    "uberblock\n");
908 	(void) fprintf(stderr, "        -U --cachefile=PATH          "
909 	    "use alternate cachefile\n");
910 	(void) fprintf(stderr, "        -V --verbatim                "
911 	    "do verbatim import\n");
912 	(void) fprintf(stderr, "        -x --dump-blocks=PATH        "
913 	    "dump all read blocks into specified directory\n");
914 	(void) fprintf(stderr, "        -X --extreme-rewind          "
915 	    "attempt extreme rewind (does not work with dataset)\n");
916 	(void) fprintf(stderr, "        -Y --all-reconstruction      "
917 	    "attempt all reconstruction combinations for split blocks\n");
918 	(void) fprintf(stderr, "        -Z --zstd-headers            "
919 	    "show ZSTD headers \n");
920 	(void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
921 	    "to make only that option verbose\n");
922 	(void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
923 	exit(1);
924 }
925 
926 static void
927 dump_debug_buffer(void)
928 {
929 	if (dump_opt['G']) {
930 		(void) printf("\n");
931 		(void) fflush(stdout);
932 		zfs_dbgmsg_print("zdb");
933 	}
934 }
935 
936 /*
937  * Called for usage errors that are discovered after a call to spa_open(),
938  * dmu_bonus_hold(), or pool_match().  abort() is called for other errors.
939  */
940 
941 static void
942 fatal(const char *fmt, ...)
943 {
944 	va_list ap;
945 
946 	va_start(ap, fmt);
947 	(void) fprintf(stderr, "%s: ", cmdname);
948 	(void) vfprintf(stderr, fmt, ap);
949 	va_end(ap);
950 	(void) fprintf(stderr, "\n");
951 
952 	dump_debug_buffer();
953 
954 	exit(1);
955 }
956 
957 static void
958 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
959 {
960 	(void) size;
961 	nvlist_t *nv;
962 	size_t nvsize = *(uint64_t *)data;
963 	char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
964 
965 	VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
966 
967 	VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
968 
969 	umem_free(packed, nvsize);
970 
971 	dump_nvlist(nv, 8);
972 
973 	nvlist_free(nv);
974 }
975 
976 static void
977 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
978 {
979 	(void) os, (void) object, (void) size;
980 	spa_history_phys_t *shp = data;
981 
982 	if (shp == NULL)
983 		return;
984 
985 	(void) printf("\t\tpool_create_len = %llu\n",
986 	    (u_longlong_t)shp->sh_pool_create_len);
987 	(void) printf("\t\tphys_max_off = %llu\n",
988 	    (u_longlong_t)shp->sh_phys_max_off);
989 	(void) printf("\t\tbof = %llu\n",
990 	    (u_longlong_t)shp->sh_bof);
991 	(void) printf("\t\teof = %llu\n",
992 	    (u_longlong_t)shp->sh_eof);
993 	(void) printf("\t\trecords_lost = %llu\n",
994 	    (u_longlong_t)shp->sh_records_lost);
995 }
996 
997 static void
998 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
999 {
1000 	if (dump_opt['P'])
1001 		(void) snprintf(buf, buflen, "%llu", (longlong_t)num);
1002 	else
1003 		nicenum(num, buf, buflen);
1004 }
1005 
1006 static void
1007 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
1008 {
1009 	if (dump_opt['P'])
1010 		(void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
1011 	else
1012 		zfs_nicebytes(bytes, buf, buflen);
1013 }
1014 
1015 static const char histo_stars[] = "****************************************";
1016 static const uint64_t histo_width = sizeof (histo_stars) - 1;
1017 
1018 static void
1019 dump_histogram(const uint64_t *histo, int size, int offset)
1020 {
1021 	int i;
1022 	int minidx = size - 1;
1023 	int maxidx = 0;
1024 	uint64_t max = 0;
1025 
1026 	for (i = 0; i < size; i++) {
1027 		if (histo[i] == 0)
1028 			continue;
1029 		if (histo[i] > max)
1030 			max = histo[i];
1031 		if (i > maxidx)
1032 			maxidx = i;
1033 		if (i < minidx)
1034 			minidx = i;
1035 	}
1036 
1037 	if (max < histo_width)
1038 		max = histo_width;
1039 
1040 	for (i = minidx; i <= maxidx; i++) {
1041 		(void) printf("\t\t\t%3u: %6llu %s\n",
1042 		    i + offset, (u_longlong_t)histo[i],
1043 		    &histo_stars[(max - histo[i]) * histo_width / max]);
1044 	}
1045 }
1046 
1047 static void
1048 dump_zap_stats(objset_t *os, uint64_t object)
1049 {
1050 	int error;
1051 	zap_stats_t zs;
1052 
1053 	error = zap_get_stats(os, object, &zs);
1054 	if (error)
1055 		return;
1056 
1057 	if (zs.zs_ptrtbl_len == 0) {
1058 		ASSERT(zs.zs_num_blocks == 1);
1059 		(void) printf("\tmicrozap: %llu bytes, %llu entries\n",
1060 		    (u_longlong_t)zs.zs_blocksize,
1061 		    (u_longlong_t)zs.zs_num_entries);
1062 		return;
1063 	}
1064 
1065 	(void) printf("\tFat ZAP stats:\n");
1066 
1067 	(void) printf("\t\tPointer table:\n");
1068 	(void) printf("\t\t\t%llu elements\n",
1069 	    (u_longlong_t)zs.zs_ptrtbl_len);
1070 	(void) printf("\t\t\tzt_blk: %llu\n",
1071 	    (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1072 	(void) printf("\t\t\tzt_numblks: %llu\n",
1073 	    (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1074 	(void) printf("\t\t\tzt_shift: %llu\n",
1075 	    (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1076 	(void) printf("\t\t\tzt_blks_copied: %llu\n",
1077 	    (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1078 	(void) printf("\t\t\tzt_nextblk: %llu\n",
1079 	    (u_longlong_t)zs.zs_ptrtbl_nextblk);
1080 
1081 	(void) printf("\t\tZAP entries: %llu\n",
1082 	    (u_longlong_t)zs.zs_num_entries);
1083 	(void) printf("\t\tLeaf blocks: %llu\n",
1084 	    (u_longlong_t)zs.zs_num_leafs);
1085 	(void) printf("\t\tTotal blocks: %llu\n",
1086 	    (u_longlong_t)zs.zs_num_blocks);
1087 	(void) printf("\t\tzap_block_type: 0x%llx\n",
1088 	    (u_longlong_t)zs.zs_block_type);
1089 	(void) printf("\t\tzap_magic: 0x%llx\n",
1090 	    (u_longlong_t)zs.zs_magic);
1091 	(void) printf("\t\tzap_salt: 0x%llx\n",
1092 	    (u_longlong_t)zs.zs_salt);
1093 
1094 	(void) printf("\t\tLeafs with 2^n pointers:\n");
1095 	dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1096 
1097 	(void) printf("\t\tBlocks with n*5 entries:\n");
1098 	dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1099 
1100 	(void) printf("\t\tBlocks n/10 full:\n");
1101 	dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1102 
1103 	(void) printf("\t\tEntries with n chunks:\n");
1104 	dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1105 
1106 	(void) printf("\t\tBuckets with n entries:\n");
1107 	dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1108 }
1109 
1110 static void
1111 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1112 {
1113 	(void) os, (void) object, (void) data, (void) size;
1114 }
1115 
1116 static void
1117 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1118 {
1119 	(void) os, (void) object, (void) data, (void) size;
1120 	(void) printf("\tUNKNOWN OBJECT TYPE\n");
1121 }
1122 
1123 static void
1124 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1125 {
1126 	(void) os, (void) object, (void) data, (void) size;
1127 }
1128 
1129 static void
1130 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1131 {
1132 	uint64_t *arr;
1133 	uint64_t oursize;
1134 	if (dump_opt['d'] < 6)
1135 		return;
1136 
1137 	if (data == NULL) {
1138 		dmu_object_info_t doi;
1139 
1140 		VERIFY0(dmu_object_info(os, object, &doi));
1141 		size = doi.doi_max_offset;
1142 		/*
1143 		 * We cap the size at 1 mebibyte here to prevent
1144 		 * allocation failures and nigh-infinite printing if the
1145 		 * object is extremely large.
1146 		 */
1147 		oursize = MIN(size, 1 << 20);
1148 		arr = kmem_alloc(oursize, KM_SLEEP);
1149 
1150 		int err = dmu_read(os, object, 0, oursize, arr, 0);
1151 		if (err != 0) {
1152 			(void) printf("got error %u from dmu_read\n", err);
1153 			kmem_free(arr, oursize);
1154 			return;
1155 		}
1156 	} else {
1157 		/*
1158 		 * Even though the allocation is already done in this code path,
1159 		 * we still cap the size to prevent excessive printing.
1160 		 */
1161 		oursize = MIN(size, 1 << 20);
1162 		arr = data;
1163 	}
1164 
1165 	if (size == 0) {
1166 		if (data == NULL)
1167 			kmem_free(arr, oursize);
1168 		(void) printf("\t\t[]\n");
1169 		return;
1170 	}
1171 
1172 	(void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1173 	for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1174 		if (i % 4 != 0)
1175 			(void) printf(", %0llx", (u_longlong_t)arr[i]);
1176 		else
1177 			(void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1178 	}
1179 	if (oursize != size)
1180 		(void) printf(", ... ");
1181 	(void) printf("]\n");
1182 
1183 	if (data == NULL)
1184 		kmem_free(arr, oursize);
1185 }
1186 
1187 static void
1188 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1189 {
1190 	(void) data, (void) size;
1191 	zap_cursor_t zc;
1192 	zap_attribute_t attr;
1193 	void *prop;
1194 	unsigned i;
1195 
1196 	dump_zap_stats(os, object);
1197 	(void) printf("\n");
1198 
1199 	for (zap_cursor_init(&zc, os, object);
1200 	    zap_cursor_retrieve(&zc, &attr) == 0;
1201 	    zap_cursor_advance(&zc)) {
1202 		(void) printf("\t\t%s = ", attr.za_name);
1203 		if (attr.za_num_integers == 0) {
1204 			(void) printf("\n");
1205 			continue;
1206 		}
1207 		prop = umem_zalloc(attr.za_num_integers *
1208 		    attr.za_integer_length, UMEM_NOFAIL);
1209 		(void) zap_lookup(os, object, attr.za_name,
1210 		    attr.za_integer_length, attr.za_num_integers, prop);
1211 		if (attr.za_integer_length == 1) {
1212 			if (strcmp(attr.za_name,
1213 			    DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1214 			    strcmp(attr.za_name,
1215 			    DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1216 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1217 			    strcmp(attr.za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1218 			    strcmp(attr.za_name, DMU_POOL_CHECKSUM_SALT) == 0) {
1219 				uint8_t *u8 = prop;
1220 
1221 				for (i = 0; i < attr.za_num_integers; i++) {
1222 					(void) printf("%02x", u8[i]);
1223 				}
1224 			} else {
1225 				(void) printf("%s", (char *)prop);
1226 			}
1227 		} else {
1228 			for (i = 0; i < attr.za_num_integers; i++) {
1229 				switch (attr.za_integer_length) {
1230 				case 2:
1231 					(void) printf("%u ",
1232 					    ((uint16_t *)prop)[i]);
1233 					break;
1234 				case 4:
1235 					(void) printf("%u ",
1236 					    ((uint32_t *)prop)[i]);
1237 					break;
1238 				case 8:
1239 					(void) printf("%lld ",
1240 					    (u_longlong_t)((int64_t *)prop)[i]);
1241 					break;
1242 				}
1243 			}
1244 		}
1245 		(void) printf("\n");
1246 		umem_free(prop, attr.za_num_integers * attr.za_integer_length);
1247 	}
1248 	zap_cursor_fini(&zc);
1249 }
1250 
1251 static void
1252 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1253 {
1254 	bpobj_phys_t *bpop = data;
1255 	uint64_t i;
1256 	char bytes[32], comp[32], uncomp[32];
1257 
1258 	/* make sure the output won't get truncated */
1259 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1260 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1261 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1262 
1263 	if (bpop == NULL)
1264 		return;
1265 
1266 	zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1267 	zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1268 	zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1269 
1270 	(void) printf("\t\tnum_blkptrs = %llu\n",
1271 	    (u_longlong_t)bpop->bpo_num_blkptrs);
1272 	(void) printf("\t\tbytes = %s\n", bytes);
1273 	if (size >= BPOBJ_SIZE_V1) {
1274 		(void) printf("\t\tcomp = %s\n", comp);
1275 		(void) printf("\t\tuncomp = %s\n", uncomp);
1276 	}
1277 	if (size >= BPOBJ_SIZE_V2) {
1278 		(void) printf("\t\tsubobjs = %llu\n",
1279 		    (u_longlong_t)bpop->bpo_subobjs);
1280 		(void) printf("\t\tnum_subobjs = %llu\n",
1281 		    (u_longlong_t)bpop->bpo_num_subobjs);
1282 	}
1283 	if (size >= sizeof (*bpop)) {
1284 		(void) printf("\t\tnum_freed = %llu\n",
1285 		    (u_longlong_t)bpop->bpo_num_freed);
1286 	}
1287 
1288 	if (dump_opt['d'] < 5)
1289 		return;
1290 
1291 	for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1292 		char blkbuf[BP_SPRINTF_LEN];
1293 		blkptr_t bp;
1294 
1295 		int err = dmu_read(os, object,
1296 		    i * sizeof (bp), sizeof (bp), &bp, 0);
1297 		if (err != 0) {
1298 			(void) printf("got error %u from dmu_read\n", err);
1299 			break;
1300 		}
1301 		snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1302 		    BP_GET_FREE(&bp));
1303 		(void) printf("\t%s\n", blkbuf);
1304 	}
1305 }
1306 
1307 static void
1308 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1309 {
1310 	(void) data, (void) size;
1311 	dmu_object_info_t doi;
1312 	int64_t i;
1313 
1314 	VERIFY0(dmu_object_info(os, object, &doi));
1315 	uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1316 
1317 	int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1318 	if (err != 0) {
1319 		(void) printf("got error %u from dmu_read\n", err);
1320 		kmem_free(subobjs, doi.doi_max_offset);
1321 		return;
1322 	}
1323 
1324 	int64_t last_nonzero = -1;
1325 	for (i = 0; i < doi.doi_max_offset / 8; i++) {
1326 		if (subobjs[i] != 0)
1327 			last_nonzero = i;
1328 	}
1329 
1330 	for (i = 0; i <= last_nonzero; i++) {
1331 		(void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1332 	}
1333 	kmem_free(subobjs, doi.doi_max_offset);
1334 }
1335 
1336 static void
1337 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1338 {
1339 	(void) data, (void) size;
1340 	dump_zap_stats(os, object);
1341 	/* contents are printed elsewhere, properly decoded */
1342 }
1343 
1344 static void
1345 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1346 {
1347 	(void) data, (void) size;
1348 	zap_cursor_t zc;
1349 	zap_attribute_t attr;
1350 
1351 	dump_zap_stats(os, object);
1352 	(void) printf("\n");
1353 
1354 	for (zap_cursor_init(&zc, os, object);
1355 	    zap_cursor_retrieve(&zc, &attr) == 0;
1356 	    zap_cursor_advance(&zc)) {
1357 		(void) printf("\t\t%s = ", attr.za_name);
1358 		if (attr.za_num_integers == 0) {
1359 			(void) printf("\n");
1360 			continue;
1361 		}
1362 		(void) printf(" %llx : [%d:%d:%d]\n",
1363 		    (u_longlong_t)attr.za_first_integer,
1364 		    (int)ATTR_LENGTH(attr.za_first_integer),
1365 		    (int)ATTR_BSWAP(attr.za_first_integer),
1366 		    (int)ATTR_NUM(attr.za_first_integer));
1367 	}
1368 	zap_cursor_fini(&zc);
1369 }
1370 
1371 static void
1372 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1373 {
1374 	(void) data, (void) size;
1375 	zap_cursor_t zc;
1376 	zap_attribute_t attr;
1377 	uint16_t *layout_attrs;
1378 	unsigned i;
1379 
1380 	dump_zap_stats(os, object);
1381 	(void) printf("\n");
1382 
1383 	for (zap_cursor_init(&zc, os, object);
1384 	    zap_cursor_retrieve(&zc, &attr) == 0;
1385 	    zap_cursor_advance(&zc)) {
1386 		(void) printf("\t\t%s = [", attr.za_name);
1387 		if (attr.za_num_integers == 0) {
1388 			(void) printf("\n");
1389 			continue;
1390 		}
1391 
1392 		VERIFY(attr.za_integer_length == 2);
1393 		layout_attrs = umem_zalloc(attr.za_num_integers *
1394 		    attr.za_integer_length, UMEM_NOFAIL);
1395 
1396 		VERIFY(zap_lookup(os, object, attr.za_name,
1397 		    attr.za_integer_length,
1398 		    attr.za_num_integers, layout_attrs) == 0);
1399 
1400 		for (i = 0; i != attr.za_num_integers; i++)
1401 			(void) printf(" %d ", (int)layout_attrs[i]);
1402 		(void) printf("]\n");
1403 		umem_free(layout_attrs,
1404 		    attr.za_num_integers * attr.za_integer_length);
1405 	}
1406 	zap_cursor_fini(&zc);
1407 }
1408 
1409 static void
1410 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1411 {
1412 	(void) data, (void) size;
1413 	zap_cursor_t zc;
1414 	zap_attribute_t attr;
1415 	const char *typenames[] = {
1416 		/* 0 */ "not specified",
1417 		/* 1 */ "FIFO",
1418 		/* 2 */ "Character Device",
1419 		/* 3 */ "3 (invalid)",
1420 		/* 4 */ "Directory",
1421 		/* 5 */ "5 (invalid)",
1422 		/* 6 */ "Block Device",
1423 		/* 7 */ "7 (invalid)",
1424 		/* 8 */ "Regular File",
1425 		/* 9 */ "9 (invalid)",
1426 		/* 10 */ "Symbolic Link",
1427 		/* 11 */ "11 (invalid)",
1428 		/* 12 */ "Socket",
1429 		/* 13 */ "Door",
1430 		/* 14 */ "Event Port",
1431 		/* 15 */ "15 (invalid)",
1432 	};
1433 
1434 	dump_zap_stats(os, object);
1435 	(void) printf("\n");
1436 
1437 	for (zap_cursor_init(&zc, os, object);
1438 	    zap_cursor_retrieve(&zc, &attr) == 0;
1439 	    zap_cursor_advance(&zc)) {
1440 		(void) printf("\t\t%s = %lld (type: %s)\n",
1441 		    attr.za_name, ZFS_DIRENT_OBJ(attr.za_first_integer),
1442 		    typenames[ZFS_DIRENT_TYPE(attr.za_first_integer)]);
1443 	}
1444 	zap_cursor_fini(&zc);
1445 }
1446 
1447 static int
1448 get_dtl_refcount(vdev_t *vd)
1449 {
1450 	int refcount = 0;
1451 
1452 	if (vd->vdev_ops->vdev_op_leaf) {
1453 		space_map_t *sm = vd->vdev_dtl_sm;
1454 
1455 		if (sm != NULL &&
1456 		    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1457 			return (1);
1458 		return (0);
1459 	}
1460 
1461 	for (unsigned c = 0; c < vd->vdev_children; c++)
1462 		refcount += get_dtl_refcount(vd->vdev_child[c]);
1463 	return (refcount);
1464 }
1465 
1466 static int
1467 get_metaslab_refcount(vdev_t *vd)
1468 {
1469 	int refcount = 0;
1470 
1471 	if (vd->vdev_top == vd) {
1472 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1473 			space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1474 
1475 			if (sm != NULL &&
1476 			    sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1477 				refcount++;
1478 		}
1479 	}
1480 	for (unsigned c = 0; c < vd->vdev_children; c++)
1481 		refcount += get_metaslab_refcount(vd->vdev_child[c]);
1482 
1483 	return (refcount);
1484 }
1485 
1486 static int
1487 get_obsolete_refcount(vdev_t *vd)
1488 {
1489 	uint64_t obsolete_sm_object;
1490 	int refcount = 0;
1491 
1492 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1493 	if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1494 		dmu_object_info_t doi;
1495 		VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1496 		    obsolete_sm_object, &doi));
1497 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1498 			refcount++;
1499 		}
1500 	} else {
1501 		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1502 		ASSERT3U(obsolete_sm_object, ==, 0);
1503 	}
1504 	for (unsigned c = 0; c < vd->vdev_children; c++) {
1505 		refcount += get_obsolete_refcount(vd->vdev_child[c]);
1506 	}
1507 
1508 	return (refcount);
1509 }
1510 
1511 static int
1512 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1513 {
1514 	uint64_t prev_obj =
1515 	    spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1516 	if (prev_obj != 0) {
1517 		dmu_object_info_t doi;
1518 		VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1519 		if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1520 			return (1);
1521 		}
1522 	}
1523 	return (0);
1524 }
1525 
1526 static int
1527 get_checkpoint_refcount(vdev_t *vd)
1528 {
1529 	int refcount = 0;
1530 
1531 	if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1532 	    zap_contains(spa_meta_objset(vd->vdev_spa),
1533 	    vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1534 		refcount++;
1535 
1536 	for (uint64_t c = 0; c < vd->vdev_children; c++)
1537 		refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1538 
1539 	return (refcount);
1540 }
1541 
1542 static int
1543 get_log_spacemap_refcount(spa_t *spa)
1544 {
1545 	return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1546 }
1547 
1548 static int
1549 verify_spacemap_refcounts(spa_t *spa)
1550 {
1551 	uint64_t expected_refcount = 0;
1552 	uint64_t actual_refcount;
1553 
1554 	(void) feature_get_refcount(spa,
1555 	    &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1556 	    &expected_refcount);
1557 	actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1558 	actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1559 	actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1560 	actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1561 	actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1562 	actual_refcount += get_log_spacemap_refcount(spa);
1563 
1564 	if (expected_refcount != actual_refcount) {
1565 		(void) printf("space map refcount mismatch: expected %lld != "
1566 		    "actual %lld\n",
1567 		    (longlong_t)expected_refcount,
1568 		    (longlong_t)actual_refcount);
1569 		return (2);
1570 	}
1571 	return (0);
1572 }
1573 
1574 static void
1575 dump_spacemap(objset_t *os, space_map_t *sm)
1576 {
1577 	const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1578 	    "INVALID", "INVALID", "INVALID", "INVALID" };
1579 
1580 	if (sm == NULL)
1581 		return;
1582 
1583 	(void) printf("space map object %llu:\n",
1584 	    (longlong_t)sm->sm_object);
1585 	(void) printf("  smp_length = 0x%llx\n",
1586 	    (longlong_t)sm->sm_phys->smp_length);
1587 	(void) printf("  smp_alloc = 0x%llx\n",
1588 	    (longlong_t)sm->sm_phys->smp_alloc);
1589 
1590 	if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1591 		return;
1592 
1593 	/*
1594 	 * Print out the freelist entries in both encoded and decoded form.
1595 	 */
1596 	uint8_t mapshift = sm->sm_shift;
1597 	int64_t alloc = 0;
1598 	uint64_t word, entry_id = 0;
1599 	for (uint64_t offset = 0; offset < space_map_length(sm);
1600 	    offset += sizeof (word)) {
1601 
1602 		VERIFY0(dmu_read(os, space_map_object(sm), offset,
1603 		    sizeof (word), &word, DMU_READ_PREFETCH));
1604 
1605 		if (sm_entry_is_debug(word)) {
1606 			uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1607 			uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1608 			if (de_txg == 0) {
1609 				(void) printf(
1610 				    "\t    [%6llu] PADDING\n",
1611 				    (u_longlong_t)entry_id);
1612 			} else {
1613 				(void) printf(
1614 				    "\t    [%6llu] %s: txg %llu pass %llu\n",
1615 				    (u_longlong_t)entry_id,
1616 				    ddata[SM_DEBUG_ACTION_DECODE(word)],
1617 				    (u_longlong_t)de_txg,
1618 				    (u_longlong_t)de_sync_pass);
1619 			}
1620 			entry_id++;
1621 			continue;
1622 		}
1623 
1624 		uint8_t words;
1625 		char entry_type;
1626 		uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1627 
1628 		if (sm_entry_is_single_word(word)) {
1629 			entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1630 			    'A' : 'F';
1631 			entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1632 			    sm->sm_start;
1633 			entry_run = SM_RUN_DECODE(word) << mapshift;
1634 			words = 1;
1635 		} else {
1636 			/* it is a two-word entry so we read another word */
1637 			ASSERT(sm_entry_is_double_word(word));
1638 
1639 			uint64_t extra_word;
1640 			offset += sizeof (extra_word);
1641 			VERIFY0(dmu_read(os, space_map_object(sm), offset,
1642 			    sizeof (extra_word), &extra_word,
1643 			    DMU_READ_PREFETCH));
1644 
1645 			ASSERT3U(offset, <=, space_map_length(sm));
1646 
1647 			entry_run = SM2_RUN_DECODE(word) << mapshift;
1648 			entry_vdev = SM2_VDEV_DECODE(word);
1649 			entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1650 			    'A' : 'F';
1651 			entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1652 			    mapshift) + sm->sm_start;
1653 			words = 2;
1654 		}
1655 
1656 		(void) printf("\t    [%6llu]    %c  range:"
1657 		    " %010llx-%010llx  size: %06llx vdev: %06llu words: %u\n",
1658 		    (u_longlong_t)entry_id,
1659 		    entry_type, (u_longlong_t)entry_off,
1660 		    (u_longlong_t)(entry_off + entry_run),
1661 		    (u_longlong_t)entry_run,
1662 		    (u_longlong_t)entry_vdev, words);
1663 
1664 		if (entry_type == 'A')
1665 			alloc += entry_run;
1666 		else
1667 			alloc -= entry_run;
1668 		entry_id++;
1669 	}
1670 	if (alloc != space_map_allocated(sm)) {
1671 		(void) printf("space_map_object alloc (%lld) INCONSISTENT "
1672 		    "with space map summary (%lld)\n",
1673 		    (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1674 	}
1675 }
1676 
1677 static void
1678 dump_metaslab_stats(metaslab_t *msp)
1679 {
1680 	char maxbuf[32];
1681 	range_tree_t *rt = msp->ms_allocatable;
1682 	zfs_btree_t *t = &msp->ms_allocatable_by_size;
1683 	int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1684 
1685 	/* max sure nicenum has enough space */
1686 	_Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1687 
1688 	zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1689 
1690 	(void) printf("\t %25s %10lu   %7s  %6s   %4s %4d%%\n",
1691 	    "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1692 	    "freepct", free_pct);
1693 	(void) printf("\tIn-memory histogram:\n");
1694 	dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1695 }
1696 
1697 static void
1698 dump_metaslab(metaslab_t *msp)
1699 {
1700 	vdev_t *vd = msp->ms_group->mg_vd;
1701 	spa_t *spa = vd->vdev_spa;
1702 	space_map_t *sm = msp->ms_sm;
1703 	char freebuf[32];
1704 
1705 	zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1706 	    sizeof (freebuf));
1707 
1708 	(void) printf(
1709 	    "\tmetaslab %6llu   offset %12llx   spacemap %6llu   free    %5s\n",
1710 	    (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1711 	    (u_longlong_t)space_map_object(sm), freebuf);
1712 
1713 	if (dump_opt['m'] > 2 && !dump_opt['L']) {
1714 		mutex_enter(&msp->ms_lock);
1715 		VERIFY0(metaslab_load(msp));
1716 		range_tree_stat_verify(msp->ms_allocatable);
1717 		dump_metaslab_stats(msp);
1718 		metaslab_unload(msp);
1719 		mutex_exit(&msp->ms_lock);
1720 	}
1721 
1722 	if (dump_opt['m'] > 1 && sm != NULL &&
1723 	    spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1724 		/*
1725 		 * The space map histogram represents free space in chunks
1726 		 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1727 		 */
1728 		(void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1729 		    (u_longlong_t)msp->ms_fragmentation);
1730 		dump_histogram(sm->sm_phys->smp_histogram,
1731 		    SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1732 	}
1733 
1734 	if (vd->vdev_ops == &vdev_draid_ops)
1735 		ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1736 	else
1737 		ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1738 
1739 	dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1740 
1741 	if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1742 		(void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1743 		    (u_longlong_t)metaslab_unflushed_txg(msp));
1744 	}
1745 }
1746 
1747 static void
1748 print_vdev_metaslab_header(vdev_t *vd)
1749 {
1750 	vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1751 	const char *bias_str = "";
1752 	if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1753 		bias_str = VDEV_ALLOC_BIAS_LOG;
1754 	} else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1755 		bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1756 	} else if (alloc_bias == VDEV_BIAS_DEDUP) {
1757 		bias_str = VDEV_ALLOC_BIAS_DEDUP;
1758 	}
1759 
1760 	uint64_t ms_flush_data_obj = 0;
1761 	if (vd->vdev_top_zap != 0) {
1762 		int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1763 		    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1764 		    sizeof (uint64_t), 1, &ms_flush_data_obj);
1765 		if (error != ENOENT) {
1766 			ASSERT0(error);
1767 		}
1768 	}
1769 
1770 	(void) printf("\tvdev %10llu   %s",
1771 	    (u_longlong_t)vd->vdev_id, bias_str);
1772 
1773 	if (ms_flush_data_obj != 0) {
1774 		(void) printf("   ms_unflushed_phys object %llu",
1775 		    (u_longlong_t)ms_flush_data_obj);
1776 	}
1777 
1778 	(void) printf("\n\t%-10s%5llu   %-19s   %-15s   %-12s\n",
1779 	    "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1780 	    "offset", "spacemap", "free");
1781 	(void) printf("\t%15s   %19s   %15s   %12s\n",
1782 	    "---------------", "-------------------",
1783 	    "---------------", "------------");
1784 }
1785 
1786 static void
1787 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1788 {
1789 	vdev_t *rvd = spa->spa_root_vdev;
1790 	metaslab_class_t *mc = spa_normal_class(spa);
1791 	metaslab_class_t *smc = spa_special_class(spa);
1792 	uint64_t fragmentation;
1793 
1794 	metaslab_class_histogram_verify(mc);
1795 
1796 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
1797 		vdev_t *tvd = rvd->vdev_child[c];
1798 		metaslab_group_t *mg = tvd->vdev_mg;
1799 
1800 		if (mg == NULL || (mg->mg_class != mc &&
1801 		    (!show_special || mg->mg_class != smc)))
1802 			continue;
1803 
1804 		metaslab_group_histogram_verify(mg);
1805 		mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1806 
1807 		(void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1808 		    "fragmentation",
1809 		    (u_longlong_t)tvd->vdev_id,
1810 		    (u_longlong_t)tvd->vdev_ms_count);
1811 		if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1812 			(void) printf("%3s\n", "-");
1813 		} else {
1814 			(void) printf("%3llu%%\n",
1815 			    (u_longlong_t)mg->mg_fragmentation);
1816 		}
1817 		dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1818 	}
1819 
1820 	(void) printf("\tpool %s\tfragmentation", spa_name(spa));
1821 	fragmentation = metaslab_class_fragmentation(mc);
1822 	if (fragmentation == ZFS_FRAG_INVALID)
1823 		(void) printf("\t%3s\n", "-");
1824 	else
1825 		(void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1826 	dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1827 }
1828 
1829 static void
1830 print_vdev_indirect(vdev_t *vd)
1831 {
1832 	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1833 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1834 	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1835 
1836 	if (vim == NULL) {
1837 		ASSERT3P(vib, ==, NULL);
1838 		return;
1839 	}
1840 
1841 	ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1842 	    vic->vic_mapping_object);
1843 	ASSERT3U(vdev_indirect_births_object(vib), ==,
1844 	    vic->vic_births_object);
1845 
1846 	(void) printf("indirect births obj %llu:\n",
1847 	    (longlong_t)vic->vic_births_object);
1848 	(void) printf("    vib_count = %llu\n",
1849 	    (longlong_t)vdev_indirect_births_count(vib));
1850 	for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1851 		vdev_indirect_birth_entry_phys_t *cur_vibe =
1852 		    &vib->vib_entries[i];
1853 		(void) printf("\toffset %llx -> txg %llu\n",
1854 		    (longlong_t)cur_vibe->vibe_offset,
1855 		    (longlong_t)cur_vibe->vibe_phys_birth_txg);
1856 	}
1857 	(void) printf("\n");
1858 
1859 	(void) printf("indirect mapping obj %llu:\n",
1860 	    (longlong_t)vic->vic_mapping_object);
1861 	(void) printf("    vim_max_offset = 0x%llx\n",
1862 	    (longlong_t)vdev_indirect_mapping_max_offset(vim));
1863 	(void) printf("    vim_bytes_mapped = 0x%llx\n",
1864 	    (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1865 	(void) printf("    vim_count = %llu\n",
1866 	    (longlong_t)vdev_indirect_mapping_num_entries(vim));
1867 
1868 	if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1869 		return;
1870 
1871 	uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1872 
1873 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1874 		vdev_indirect_mapping_entry_phys_t *vimep =
1875 		    &vim->vim_entries[i];
1876 		(void) printf("\t<%llx:%llx:%llx> -> "
1877 		    "<%llx:%llx:%llx> (%x obsolete)\n",
1878 		    (longlong_t)vd->vdev_id,
1879 		    (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1880 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1881 		    (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1882 		    (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1883 		    (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1884 		    counts[i]);
1885 	}
1886 	(void) printf("\n");
1887 
1888 	uint64_t obsolete_sm_object;
1889 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1890 	if (obsolete_sm_object != 0) {
1891 		objset_t *mos = vd->vdev_spa->spa_meta_objset;
1892 		(void) printf("obsolete space map object %llu:\n",
1893 		    (u_longlong_t)obsolete_sm_object);
1894 		ASSERT(vd->vdev_obsolete_sm != NULL);
1895 		ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1896 		    obsolete_sm_object);
1897 		dump_spacemap(mos, vd->vdev_obsolete_sm);
1898 		(void) printf("\n");
1899 	}
1900 }
1901 
1902 static void
1903 dump_metaslabs(spa_t *spa)
1904 {
1905 	vdev_t *vd, *rvd = spa->spa_root_vdev;
1906 	uint64_t m, c = 0, children = rvd->vdev_children;
1907 
1908 	(void) printf("\nMetaslabs:\n");
1909 
1910 	if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1911 		c = zopt_metaslab[0];
1912 
1913 		if (c >= children)
1914 			(void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1915 
1916 		if (zopt_metaslab_args > 1) {
1917 			vd = rvd->vdev_child[c];
1918 			print_vdev_metaslab_header(vd);
1919 
1920 			for (m = 1; m < zopt_metaslab_args; m++) {
1921 				if (zopt_metaslab[m] < vd->vdev_ms_count)
1922 					dump_metaslab(
1923 					    vd->vdev_ms[zopt_metaslab[m]]);
1924 				else
1925 					(void) fprintf(stderr, "bad metaslab "
1926 					    "number %llu\n",
1927 					    (u_longlong_t)zopt_metaslab[m]);
1928 			}
1929 			(void) printf("\n");
1930 			return;
1931 		}
1932 		children = c + 1;
1933 	}
1934 	for (; c < children; c++) {
1935 		vd = rvd->vdev_child[c];
1936 		print_vdev_metaslab_header(vd);
1937 
1938 		print_vdev_indirect(vd);
1939 
1940 		for (m = 0; m < vd->vdev_ms_count; m++)
1941 			dump_metaslab(vd->vdev_ms[m]);
1942 		(void) printf("\n");
1943 	}
1944 }
1945 
1946 static void
1947 dump_log_spacemaps(spa_t *spa)
1948 {
1949 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1950 		return;
1951 
1952 	(void) printf("\nLog Space Maps in Pool:\n");
1953 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1954 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1955 		space_map_t *sm = NULL;
1956 		VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1957 		    sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1958 
1959 		(void) printf("Log Spacemap object %llu txg %llu\n",
1960 		    (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1961 		dump_spacemap(spa->spa_meta_objset, sm);
1962 		space_map_close(sm);
1963 	}
1964 	(void) printf("\n");
1965 }
1966 
1967 static void
1968 dump_dde(const ddt_t *ddt, const ddt_entry_t *dde, uint64_t index)
1969 {
1970 	const ddt_phys_t *ddp = dde->dde_phys;
1971 	const ddt_key_t *ddk = &dde->dde_key;
1972 	const char *types[4] = { "ditto", "single", "double", "triple" };
1973 	char blkbuf[BP_SPRINTF_LEN];
1974 	blkptr_t blk;
1975 	int p;
1976 
1977 	for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1978 		if (ddp->ddp_phys_birth == 0)
1979 			continue;
1980 		ddt_bp_create(ddt->ddt_checksum, ddk, ddp, &blk);
1981 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1982 		(void) printf("index %llx refcnt %llu %s %s\n",
1983 		    (u_longlong_t)index, (u_longlong_t)ddp->ddp_refcnt,
1984 		    types[p], blkbuf);
1985 	}
1986 }
1987 
1988 static void
1989 dump_dedup_ratio(const ddt_stat_t *dds)
1990 {
1991 	double rL, rP, rD, D, dedup, compress, copies;
1992 
1993 	if (dds->dds_blocks == 0)
1994 		return;
1995 
1996 	rL = (double)dds->dds_ref_lsize;
1997 	rP = (double)dds->dds_ref_psize;
1998 	rD = (double)dds->dds_ref_dsize;
1999 	D = (double)dds->dds_dsize;
2000 
2001 	dedup = rD / D;
2002 	compress = rL / rP;
2003 	copies = rD / rP;
2004 
2005 	(void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
2006 	    "dedup * compress / copies = %.2f\n\n",
2007 	    dedup, compress, copies, dedup * compress / copies);
2008 }
2009 
2010 static void
2011 dump_ddt(ddt_t *ddt, enum ddt_type type, enum ddt_class class)
2012 {
2013 	char name[DDT_NAMELEN];
2014 	ddt_entry_t dde;
2015 	uint64_t walk = 0;
2016 	dmu_object_info_t doi;
2017 	uint64_t count, dspace, mspace;
2018 	int error;
2019 
2020 	error = ddt_object_info(ddt, type, class, &doi);
2021 
2022 	if (error == ENOENT)
2023 		return;
2024 	ASSERT(error == 0);
2025 
2026 	error = ddt_object_count(ddt, type, class, &count);
2027 	ASSERT(error == 0);
2028 	if (count == 0)
2029 		return;
2030 
2031 	dspace = doi.doi_physical_blocks_512 << 9;
2032 	mspace = doi.doi_fill_count * doi.doi_data_block_size;
2033 
2034 	ddt_object_name(ddt, type, class, name);
2035 
2036 	(void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2037 	    name,
2038 	    (u_longlong_t)count,
2039 	    (u_longlong_t)(dspace / count),
2040 	    (u_longlong_t)(mspace / count));
2041 
2042 	if (dump_opt['D'] < 3)
2043 		return;
2044 
2045 	zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2046 
2047 	if (dump_opt['D'] < 4)
2048 		return;
2049 
2050 	if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2051 		return;
2052 
2053 	(void) printf("%s contents:\n\n", name);
2054 
2055 	while ((error = ddt_object_walk(ddt, type, class, &walk, &dde)) == 0)
2056 		dump_dde(ddt, &dde, walk);
2057 
2058 	ASSERT3U(error, ==, ENOENT);
2059 
2060 	(void) printf("\n");
2061 }
2062 
2063 static void
2064 dump_all_ddts(spa_t *spa)
2065 {
2066 	ddt_histogram_t ddh_total = {{{0}}};
2067 	ddt_stat_t dds_total = {0};
2068 
2069 	for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2070 		ddt_t *ddt = spa->spa_ddt[c];
2071 		for (enum ddt_type type = 0; type < DDT_TYPES; type++) {
2072 			for (enum ddt_class class = 0; class < DDT_CLASSES;
2073 			    class++) {
2074 				dump_ddt(ddt, type, class);
2075 			}
2076 		}
2077 	}
2078 
2079 	ddt_get_dedup_stats(spa, &dds_total);
2080 
2081 	if (dds_total.dds_blocks == 0) {
2082 		(void) printf("All DDTs are empty\n");
2083 		return;
2084 	}
2085 
2086 	(void) printf("\n");
2087 
2088 	if (dump_opt['D'] > 1) {
2089 		(void) printf("DDT histogram (aggregated over all DDTs):\n");
2090 		ddt_get_dedup_histogram(spa, &ddh_total);
2091 		zpool_dump_ddt(&dds_total, &ddh_total);
2092 	}
2093 
2094 	dump_dedup_ratio(&dds_total);
2095 }
2096 
2097 static void
2098 dump_brt(spa_t *spa)
2099 {
2100 	if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2101 		printf("BRT: unsupported on this pool\n");
2102 		return;
2103 	}
2104 
2105 	if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2106 		printf("BRT: empty\n");
2107 		return;
2108 	}
2109 
2110 	brt_t *brt = spa->spa_brt;
2111 	VERIFY(brt);
2112 
2113 	char count[32], used[32], saved[32];
2114 	zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2115 	zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2116 	uint64_t ratio = brt_get_ratio(spa);
2117 	printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2118 	    (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2119 
2120 	if (dump_opt['T'] < 2)
2121 		return;
2122 
2123 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2124 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2125 		if (brtvd == NULL)
2126 			continue;
2127 
2128 		if (!brtvd->bv_initiated) {
2129 			printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2130 			continue;
2131 		}
2132 
2133 		zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2134 		zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2135 		zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2136 		printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2137 		    vdevid, count, used, saved);
2138 	}
2139 
2140 	if (dump_opt['T'] < 3)
2141 		return;
2142 
2143 	char dva[64];
2144 	printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2145 
2146 	for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2147 		brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2148 		if (brtvd == NULL || !brtvd->bv_initiated)
2149 			continue;
2150 
2151 		zap_cursor_t zc;
2152 		zap_attribute_t za;
2153 		for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries);
2154 		    zap_cursor_retrieve(&zc, &za) == 0;
2155 		    zap_cursor_advance(&zc)) {
2156 			uint64_t offset = *(uint64_t *)za.za_name;
2157 			uint64_t refcnt = za.za_first_integer;
2158 
2159 			snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid,
2160 			    (u_longlong_t)offset);
2161 			printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt);
2162 		}
2163 		zap_cursor_fini(&zc);
2164 	}
2165 }
2166 
2167 static void
2168 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2169 {
2170 	char *prefix = arg;
2171 
2172 	(void) printf("%s [%llu,%llu) length %llu\n",
2173 	    prefix,
2174 	    (u_longlong_t)start,
2175 	    (u_longlong_t)(start + size),
2176 	    (u_longlong_t)(size));
2177 }
2178 
2179 static void
2180 dump_dtl(vdev_t *vd, int indent)
2181 {
2182 	spa_t *spa = vd->vdev_spa;
2183 	boolean_t required;
2184 	const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2185 		"outage" };
2186 	char prefix[256];
2187 
2188 	spa_vdev_state_enter(spa, SCL_NONE);
2189 	required = vdev_dtl_required(vd);
2190 	(void) spa_vdev_state_exit(spa, NULL, 0);
2191 
2192 	if (indent == 0)
2193 		(void) printf("\nDirty time logs:\n\n");
2194 
2195 	(void) printf("\t%*s%s [%s]\n", indent, "",
2196 	    vd->vdev_path ? vd->vdev_path :
2197 	    vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2198 	    required ? "DTL-required" : "DTL-expendable");
2199 
2200 	for (int t = 0; t < DTL_TYPES; t++) {
2201 		range_tree_t *rt = vd->vdev_dtl[t];
2202 		if (range_tree_space(rt) == 0)
2203 			continue;
2204 		(void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2205 		    indent + 2, "", name[t]);
2206 		range_tree_walk(rt, dump_dtl_seg, prefix);
2207 		if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2208 			dump_spacemap(spa->spa_meta_objset,
2209 			    vd->vdev_dtl_sm);
2210 	}
2211 
2212 	for (unsigned c = 0; c < vd->vdev_children; c++)
2213 		dump_dtl(vd->vdev_child[c], indent + 4);
2214 }
2215 
2216 static void
2217 dump_history(spa_t *spa)
2218 {
2219 	nvlist_t **events = NULL;
2220 	char *buf;
2221 	uint64_t resid, len, off = 0;
2222 	uint_t num = 0;
2223 	int error;
2224 	char tbuf[30];
2225 
2226 	if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2227 		(void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2228 		    __func__);
2229 		return;
2230 	}
2231 
2232 	do {
2233 		len = SPA_OLD_MAXBLOCKSIZE;
2234 
2235 		if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2236 			(void) fprintf(stderr, "Unable to read history: "
2237 			    "error %d\n", error);
2238 			free(buf);
2239 			return;
2240 		}
2241 
2242 		if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2243 			break;
2244 
2245 		off -= resid;
2246 	} while (len != 0);
2247 
2248 	(void) printf("\nHistory:\n");
2249 	for (unsigned i = 0; i < num; i++) {
2250 		boolean_t printed = B_FALSE;
2251 
2252 		if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2253 			time_t tsec;
2254 			struct tm t;
2255 
2256 			tsec = fnvlist_lookup_uint64(events[i],
2257 			    ZPOOL_HIST_TIME);
2258 			(void) localtime_r(&tsec, &t);
2259 			(void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2260 		} else {
2261 			tbuf[0] = '\0';
2262 		}
2263 
2264 		if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2265 			(void) printf("%s %s\n", tbuf,
2266 			    fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2267 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2268 			uint64_t ievent;
2269 
2270 			ievent = fnvlist_lookup_uint64(events[i],
2271 			    ZPOOL_HIST_INT_EVENT);
2272 			if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2273 				goto next;
2274 
2275 			(void) printf(" %s [internal %s txg:%ju] %s\n",
2276 			    tbuf,
2277 			    zfs_history_event_names[ievent],
2278 			    fnvlist_lookup_uint64(events[i],
2279 			    ZPOOL_HIST_TXG),
2280 			    fnvlist_lookup_string(events[i],
2281 			    ZPOOL_HIST_INT_STR));
2282 		} else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2283 			(void) printf("%s [txg:%ju] %s", tbuf,
2284 			    fnvlist_lookup_uint64(events[i],
2285 			    ZPOOL_HIST_TXG),
2286 			    fnvlist_lookup_string(events[i],
2287 			    ZPOOL_HIST_INT_NAME));
2288 
2289 			if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2290 				(void) printf(" %s (%llu)",
2291 				    fnvlist_lookup_string(events[i],
2292 				    ZPOOL_HIST_DSNAME),
2293 				    (u_longlong_t)fnvlist_lookup_uint64(
2294 				    events[i],
2295 				    ZPOOL_HIST_DSID));
2296 			}
2297 
2298 			(void) printf(" %s\n", fnvlist_lookup_string(events[i],
2299 			    ZPOOL_HIST_INT_STR));
2300 		} else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2301 			(void) printf("%s ioctl %s\n", tbuf,
2302 			    fnvlist_lookup_string(events[i],
2303 			    ZPOOL_HIST_IOCTL));
2304 
2305 			if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2306 				(void) printf("    input:\n");
2307 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2308 				    ZPOOL_HIST_INPUT_NVL), 8);
2309 			}
2310 			if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2311 				(void) printf("    output:\n");
2312 				dump_nvlist(fnvlist_lookup_nvlist(events[i],
2313 				    ZPOOL_HIST_OUTPUT_NVL), 8);
2314 			}
2315 			if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2316 				(void) printf("    errno: %lld\n",
2317 				    (longlong_t)fnvlist_lookup_int64(events[i],
2318 				    ZPOOL_HIST_ERRNO));
2319 			}
2320 		} else {
2321 			goto next;
2322 		}
2323 
2324 		printed = B_TRUE;
2325 next:
2326 		if (dump_opt['h'] > 1) {
2327 			if (!printed)
2328 				(void) printf("unrecognized record:\n");
2329 			dump_nvlist(events[i], 2);
2330 		}
2331 	}
2332 	free(buf);
2333 }
2334 
2335 static void
2336 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2337 {
2338 	(void) os, (void) object, (void) data, (void) size;
2339 }
2340 
2341 static uint64_t
2342 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2343     const zbookmark_phys_t *zb)
2344 {
2345 	if (dnp == NULL) {
2346 		ASSERT(zb->zb_level < 0);
2347 		if (zb->zb_object == 0)
2348 			return (zb->zb_blkid);
2349 		return (zb->zb_blkid * BP_GET_LSIZE(bp));
2350 	}
2351 
2352 	ASSERT(zb->zb_level >= 0);
2353 
2354 	return ((zb->zb_blkid <<
2355 	    (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2356 	    dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2357 }
2358 
2359 static void
2360 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2361     const blkptr_t *bp)
2362 {
2363 	abd_t *pabd;
2364 	void *buf;
2365 	zio_t *zio;
2366 	zfs_zstdhdr_t zstd_hdr;
2367 	int error;
2368 
2369 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2370 		return;
2371 
2372 	if (BP_IS_HOLE(bp))
2373 		return;
2374 
2375 	if (BP_IS_EMBEDDED(bp)) {
2376 		buf = malloc(SPA_MAXBLOCKSIZE);
2377 		if (buf == NULL) {
2378 			(void) fprintf(stderr, "out of memory\n");
2379 			exit(1);
2380 		}
2381 		decode_embedded_bp_compressed(bp, buf);
2382 		memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2383 		free(buf);
2384 		zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2385 		zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2386 		(void) snprintf(blkbuf + strlen(blkbuf),
2387 		    buflen - strlen(blkbuf),
2388 		    " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2389 		    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2390 		    zfs_get_hdrlevel(&zstd_hdr));
2391 		return;
2392 	}
2393 
2394 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2395 	zio = zio_root(spa, NULL, NULL, 0);
2396 
2397 	/* Decrypt but don't decompress so we can read the compression header */
2398 	zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2399 	    ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2400 	    NULL));
2401 	error = zio_wait(zio);
2402 	if (error) {
2403 		(void) fprintf(stderr, "read failed: %d\n", error);
2404 		return;
2405 	}
2406 	buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2407 	memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2408 	zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2409 	zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2410 
2411 	(void) snprintf(blkbuf + strlen(blkbuf),
2412 	    buflen - strlen(blkbuf),
2413 	    " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2414 	    zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2415 	    zfs_get_hdrlevel(&zstd_hdr));
2416 
2417 	abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2418 }
2419 
2420 static void
2421 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2422     boolean_t bp_freed)
2423 {
2424 	const dva_t *dva = bp->blk_dva;
2425 	int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2426 	int i;
2427 
2428 	if (dump_opt['b'] >= 6) {
2429 		snprintf_blkptr(blkbuf, buflen, bp);
2430 		if (bp_freed) {
2431 			(void) snprintf(blkbuf + strlen(blkbuf),
2432 			    buflen - strlen(blkbuf), " %s", "FREE");
2433 		}
2434 		return;
2435 	}
2436 
2437 	if (BP_IS_EMBEDDED(bp)) {
2438 		(void) sprintf(blkbuf,
2439 		    "EMBEDDED et=%u %llxL/%llxP B=%llu",
2440 		    (int)BPE_GET_ETYPE(bp),
2441 		    (u_longlong_t)BPE_GET_LSIZE(bp),
2442 		    (u_longlong_t)BPE_GET_PSIZE(bp),
2443 		    (u_longlong_t)bp->blk_birth);
2444 		return;
2445 	}
2446 
2447 	blkbuf[0] = '\0';
2448 
2449 	for (i = 0; i < ndvas; i++)
2450 		(void) snprintf(blkbuf + strlen(blkbuf),
2451 		    buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2452 		    (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2453 		    (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2454 		    (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2455 
2456 	if (BP_IS_HOLE(bp)) {
2457 		(void) snprintf(blkbuf + strlen(blkbuf),
2458 		    buflen - strlen(blkbuf),
2459 		    "%llxL B=%llu",
2460 		    (u_longlong_t)BP_GET_LSIZE(bp),
2461 		    (u_longlong_t)bp->blk_birth);
2462 	} else {
2463 		(void) snprintf(blkbuf + strlen(blkbuf),
2464 		    buflen - strlen(blkbuf),
2465 		    "%llxL/%llxP F=%llu B=%llu/%llu",
2466 		    (u_longlong_t)BP_GET_LSIZE(bp),
2467 		    (u_longlong_t)BP_GET_PSIZE(bp),
2468 		    (u_longlong_t)BP_GET_FILL(bp),
2469 		    (u_longlong_t)bp->blk_birth,
2470 		    (u_longlong_t)BP_PHYSICAL_BIRTH(bp));
2471 		if (bp_freed)
2472 			(void) snprintf(blkbuf + strlen(blkbuf),
2473 			    buflen - strlen(blkbuf), " %s", "FREE");
2474 		(void) snprintf(blkbuf + strlen(blkbuf),
2475 		    buflen - strlen(blkbuf),
2476 		    " cksum=%016llx:%016llx:%016llx:%016llx",
2477 		    (u_longlong_t)bp->blk_cksum.zc_word[0],
2478 		    (u_longlong_t)bp->blk_cksum.zc_word[1],
2479 		    (u_longlong_t)bp->blk_cksum.zc_word[2],
2480 		    (u_longlong_t)bp->blk_cksum.zc_word[3]);
2481 	}
2482 }
2483 
2484 static void
2485 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2486     const dnode_phys_t *dnp)
2487 {
2488 	char blkbuf[BP_SPRINTF_LEN];
2489 	int l;
2490 
2491 	if (!BP_IS_EMBEDDED(bp)) {
2492 		ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2493 		ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2494 	}
2495 
2496 	(void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2497 
2498 	ASSERT(zb->zb_level >= 0);
2499 
2500 	for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2501 		if (l == zb->zb_level) {
2502 			(void) printf("L%llx", (u_longlong_t)zb->zb_level);
2503 		} else {
2504 			(void) printf(" ");
2505 		}
2506 	}
2507 
2508 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2509 	if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2510 		snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2511 	(void) printf("%s\n", blkbuf);
2512 }
2513 
2514 static int
2515 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2516     blkptr_t *bp, const zbookmark_phys_t *zb)
2517 {
2518 	int err = 0;
2519 
2520 	if (bp->blk_birth == 0)
2521 		return (0);
2522 
2523 	print_indirect(spa, bp, zb, dnp);
2524 
2525 	if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2526 		arc_flags_t flags = ARC_FLAG_WAIT;
2527 		int i;
2528 		blkptr_t *cbp;
2529 		int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2530 		arc_buf_t *buf;
2531 		uint64_t fill = 0;
2532 		ASSERT(!BP_IS_REDACTED(bp));
2533 
2534 		err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2535 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2536 		if (err)
2537 			return (err);
2538 		ASSERT(buf->b_data);
2539 
2540 		/* recursively visit blocks below this */
2541 		cbp = buf->b_data;
2542 		for (i = 0; i < epb; i++, cbp++) {
2543 			zbookmark_phys_t czb;
2544 
2545 			SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2546 			    zb->zb_level - 1,
2547 			    zb->zb_blkid * epb + i);
2548 			err = visit_indirect(spa, dnp, cbp, &czb);
2549 			if (err)
2550 				break;
2551 			fill += BP_GET_FILL(cbp);
2552 		}
2553 		if (!err)
2554 			ASSERT3U(fill, ==, BP_GET_FILL(bp));
2555 		arc_buf_destroy(buf, &buf);
2556 	}
2557 
2558 	return (err);
2559 }
2560 
2561 static void
2562 dump_indirect(dnode_t *dn)
2563 {
2564 	dnode_phys_t *dnp = dn->dn_phys;
2565 	zbookmark_phys_t czb;
2566 
2567 	(void) printf("Indirect blocks:\n");
2568 
2569 	SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2570 	    dn->dn_object, dnp->dn_nlevels - 1, 0);
2571 	for (int j = 0; j < dnp->dn_nblkptr; j++) {
2572 		czb.zb_blkid = j;
2573 		(void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2574 		    &dnp->dn_blkptr[j], &czb);
2575 	}
2576 
2577 	(void) printf("\n");
2578 }
2579 
2580 static void
2581 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2582 {
2583 	(void) os, (void) object;
2584 	dsl_dir_phys_t *dd = data;
2585 	time_t crtime;
2586 	char nice[32];
2587 
2588 	/* make sure nicenum has enough space */
2589 	_Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2590 
2591 	if (dd == NULL)
2592 		return;
2593 
2594 	ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2595 
2596 	crtime = dd->dd_creation_time;
2597 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2598 	(void) printf("\t\thead_dataset_obj = %llu\n",
2599 	    (u_longlong_t)dd->dd_head_dataset_obj);
2600 	(void) printf("\t\tparent_dir_obj = %llu\n",
2601 	    (u_longlong_t)dd->dd_parent_obj);
2602 	(void) printf("\t\torigin_obj = %llu\n",
2603 	    (u_longlong_t)dd->dd_origin_obj);
2604 	(void) printf("\t\tchild_dir_zapobj = %llu\n",
2605 	    (u_longlong_t)dd->dd_child_dir_zapobj);
2606 	zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2607 	(void) printf("\t\tused_bytes = %s\n", nice);
2608 	zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2609 	(void) printf("\t\tcompressed_bytes = %s\n", nice);
2610 	zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2611 	(void) printf("\t\tuncompressed_bytes = %s\n", nice);
2612 	zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2613 	(void) printf("\t\tquota = %s\n", nice);
2614 	zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2615 	(void) printf("\t\treserved = %s\n", nice);
2616 	(void) printf("\t\tprops_zapobj = %llu\n",
2617 	    (u_longlong_t)dd->dd_props_zapobj);
2618 	(void) printf("\t\tdeleg_zapobj = %llu\n",
2619 	    (u_longlong_t)dd->dd_deleg_zapobj);
2620 	(void) printf("\t\tflags = %llx\n",
2621 	    (u_longlong_t)dd->dd_flags);
2622 
2623 #define	DO(which) \
2624 	zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2625 	    sizeof (nice)); \
2626 	(void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2627 	DO(HEAD);
2628 	DO(SNAP);
2629 	DO(CHILD);
2630 	DO(CHILD_RSRV);
2631 	DO(REFRSRV);
2632 #undef DO
2633 	(void) printf("\t\tclones = %llu\n",
2634 	    (u_longlong_t)dd->dd_clones);
2635 }
2636 
2637 static void
2638 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2639 {
2640 	(void) os, (void) object;
2641 	dsl_dataset_phys_t *ds = data;
2642 	time_t crtime;
2643 	char used[32], compressed[32], uncompressed[32], unique[32];
2644 	char blkbuf[BP_SPRINTF_LEN];
2645 
2646 	/* make sure nicenum has enough space */
2647 	_Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2648 	_Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2649 	    "compressed truncated");
2650 	_Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2651 	    "uncompressed truncated");
2652 	_Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2653 
2654 	if (ds == NULL)
2655 		return;
2656 
2657 	ASSERT(size == sizeof (*ds));
2658 	crtime = ds->ds_creation_time;
2659 	zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2660 	zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2661 	zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2662 	    sizeof (uncompressed));
2663 	zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2664 	snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2665 
2666 	(void) printf("\t\tdir_obj = %llu\n",
2667 	    (u_longlong_t)ds->ds_dir_obj);
2668 	(void) printf("\t\tprev_snap_obj = %llu\n",
2669 	    (u_longlong_t)ds->ds_prev_snap_obj);
2670 	(void) printf("\t\tprev_snap_txg = %llu\n",
2671 	    (u_longlong_t)ds->ds_prev_snap_txg);
2672 	(void) printf("\t\tnext_snap_obj = %llu\n",
2673 	    (u_longlong_t)ds->ds_next_snap_obj);
2674 	(void) printf("\t\tsnapnames_zapobj = %llu\n",
2675 	    (u_longlong_t)ds->ds_snapnames_zapobj);
2676 	(void) printf("\t\tnum_children = %llu\n",
2677 	    (u_longlong_t)ds->ds_num_children);
2678 	(void) printf("\t\tuserrefs_obj = %llu\n",
2679 	    (u_longlong_t)ds->ds_userrefs_obj);
2680 	(void) printf("\t\tcreation_time = %s", ctime(&crtime));
2681 	(void) printf("\t\tcreation_txg = %llu\n",
2682 	    (u_longlong_t)ds->ds_creation_txg);
2683 	(void) printf("\t\tdeadlist_obj = %llu\n",
2684 	    (u_longlong_t)ds->ds_deadlist_obj);
2685 	(void) printf("\t\tused_bytes = %s\n", used);
2686 	(void) printf("\t\tcompressed_bytes = %s\n", compressed);
2687 	(void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2688 	(void) printf("\t\tunique = %s\n", unique);
2689 	(void) printf("\t\tfsid_guid = %llu\n",
2690 	    (u_longlong_t)ds->ds_fsid_guid);
2691 	(void) printf("\t\tguid = %llu\n",
2692 	    (u_longlong_t)ds->ds_guid);
2693 	(void) printf("\t\tflags = %llx\n",
2694 	    (u_longlong_t)ds->ds_flags);
2695 	(void) printf("\t\tnext_clones_obj = %llu\n",
2696 	    (u_longlong_t)ds->ds_next_clones_obj);
2697 	(void) printf("\t\tprops_obj = %llu\n",
2698 	    (u_longlong_t)ds->ds_props_obj);
2699 	(void) printf("\t\tbp = %s\n", blkbuf);
2700 }
2701 
2702 static int
2703 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2704 {
2705 	(void) arg, (void) tx;
2706 	char blkbuf[BP_SPRINTF_LEN];
2707 
2708 	if (bp->blk_birth != 0) {
2709 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2710 		(void) printf("\t%s\n", blkbuf);
2711 	}
2712 	return (0);
2713 }
2714 
2715 static void
2716 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2717 {
2718 	char bytes[32];
2719 	bptree_phys_t *bt;
2720 	dmu_buf_t *db;
2721 
2722 	/* make sure nicenum has enough space */
2723 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2724 
2725 	if (dump_opt['d'] < 3)
2726 		return;
2727 
2728 	VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2729 	bt = db->db_data;
2730 	zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2731 	(void) printf("\n    %s: %llu datasets, %s\n",
2732 	    name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2733 	dmu_buf_rele(db, FTAG);
2734 
2735 	if (dump_opt['d'] < 5)
2736 		return;
2737 
2738 	(void) printf("\n");
2739 
2740 	(void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2741 }
2742 
2743 static int
2744 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2745 {
2746 	(void) arg, (void) tx;
2747 	char blkbuf[BP_SPRINTF_LEN];
2748 
2749 	ASSERT(bp->blk_birth != 0);
2750 	snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2751 	(void) printf("\t%s\n", blkbuf);
2752 	return (0);
2753 }
2754 
2755 static void
2756 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2757 {
2758 	char bytes[32];
2759 	char comp[32];
2760 	char uncomp[32];
2761 	uint64_t i;
2762 
2763 	/* make sure nicenum has enough space */
2764 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2765 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2766 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2767 
2768 	if (dump_opt['d'] < 3)
2769 		return;
2770 
2771 	zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2772 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2773 		zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2774 		zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2775 		if (bpo->bpo_havefreed) {
2776 			(void) printf("    %*s: object %llu, %llu local "
2777 			    "blkptrs, %llu freed, %llu subobjs in object %llu, "
2778 			    "%s (%s/%s comp)\n",
2779 			    indent * 8, name,
2780 			    (u_longlong_t)bpo->bpo_object,
2781 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2782 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2783 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2784 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2785 			    bytes, comp, uncomp);
2786 		} else {
2787 			(void) printf("    %*s: object %llu, %llu local "
2788 			    "blkptrs, %llu subobjs in object %llu, "
2789 			    "%s (%s/%s comp)\n",
2790 			    indent * 8, name,
2791 			    (u_longlong_t)bpo->bpo_object,
2792 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2793 			    (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2794 			    (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2795 			    bytes, comp, uncomp);
2796 		}
2797 
2798 		for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2799 			uint64_t subobj;
2800 			bpobj_t subbpo;
2801 			int error;
2802 			VERIFY0(dmu_read(bpo->bpo_os,
2803 			    bpo->bpo_phys->bpo_subobjs,
2804 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2805 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2806 			if (error != 0) {
2807 				(void) printf("ERROR %u while trying to open "
2808 				    "subobj id %llu\n",
2809 				    error, (u_longlong_t)subobj);
2810 				continue;
2811 			}
2812 			dump_full_bpobj(&subbpo, "subobj", indent + 1);
2813 			bpobj_close(&subbpo);
2814 		}
2815 	} else {
2816 		if (bpo->bpo_havefreed) {
2817 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2818 			    "%llu freed, %s\n",
2819 			    indent * 8, name,
2820 			    (u_longlong_t)bpo->bpo_object,
2821 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2822 			    (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2823 			    bytes);
2824 		} else {
2825 			(void) printf("    %*s: object %llu, %llu blkptrs, "
2826 			    "%s\n",
2827 			    indent * 8, name,
2828 			    (u_longlong_t)bpo->bpo_object,
2829 			    (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2830 			    bytes);
2831 		}
2832 	}
2833 
2834 	if (dump_opt['d'] < 5)
2835 		return;
2836 
2837 
2838 	if (indent == 0) {
2839 		(void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2840 		(void) printf("\n");
2841 	}
2842 }
2843 
2844 static int
2845 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2846     boolean_t print_list)
2847 {
2848 	int err = 0;
2849 	zfs_bookmark_phys_t prop;
2850 	objset_t *mos = dp->dp_spa->spa_meta_objset;
2851 	err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2852 
2853 	if (err != 0) {
2854 		return (err);
2855 	}
2856 
2857 	(void) printf("\t#%s: ", strchr(name, '#') + 1);
2858 	(void) printf("{guid: %llx creation_txg: %llu creation_time: "
2859 	    "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2860 	    (u_longlong_t)prop.zbm_creation_txg,
2861 	    (u_longlong_t)prop.zbm_creation_time,
2862 	    (u_longlong_t)prop.zbm_redaction_obj);
2863 
2864 	IMPLY(print_list, print_redact);
2865 	if (!print_redact || prop.zbm_redaction_obj == 0)
2866 		return (0);
2867 
2868 	redaction_list_t *rl;
2869 	VERIFY0(dsl_redaction_list_hold_obj(dp,
2870 	    prop.zbm_redaction_obj, FTAG, &rl));
2871 
2872 	redaction_list_phys_t *rlp = rl->rl_phys;
2873 	(void) printf("\tRedacted:\n\t\tProgress: ");
2874 	if (rlp->rlp_last_object != UINT64_MAX ||
2875 	    rlp->rlp_last_blkid != UINT64_MAX) {
2876 		(void) printf("%llu %llu (incomplete)\n",
2877 		    (u_longlong_t)rlp->rlp_last_object,
2878 		    (u_longlong_t)rlp->rlp_last_blkid);
2879 	} else {
2880 		(void) printf("complete\n");
2881 	}
2882 	(void) printf("\t\tSnapshots: [");
2883 	for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2884 		if (i > 0)
2885 			(void) printf(", ");
2886 		(void) printf("%0llu",
2887 		    (u_longlong_t)rlp->rlp_snaps[i]);
2888 	}
2889 	(void) printf("]\n\t\tLength: %llu\n",
2890 	    (u_longlong_t)rlp->rlp_num_entries);
2891 
2892 	if (!print_list) {
2893 		dsl_redaction_list_rele(rl, FTAG);
2894 		return (0);
2895 	}
2896 
2897 	if (rlp->rlp_num_entries == 0) {
2898 		dsl_redaction_list_rele(rl, FTAG);
2899 		(void) printf("\t\tRedaction List: []\n\n");
2900 		return (0);
2901 	}
2902 
2903 	redact_block_phys_t *rbp_buf;
2904 	uint64_t size;
2905 	dmu_object_info_t doi;
2906 
2907 	VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2908 	size = doi.doi_max_offset;
2909 	rbp_buf = kmem_alloc(size, KM_SLEEP);
2910 
2911 	err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2912 	    rbp_buf, 0);
2913 	if (err != 0) {
2914 		dsl_redaction_list_rele(rl, FTAG);
2915 		kmem_free(rbp_buf, size);
2916 		return (err);
2917 	}
2918 
2919 	(void) printf("\t\tRedaction List: [{object: %llx, offset: "
2920 	    "%llx, blksz: %x, count: %llx}",
2921 	    (u_longlong_t)rbp_buf[0].rbp_object,
2922 	    (u_longlong_t)rbp_buf[0].rbp_blkid,
2923 	    (uint_t)(redact_block_get_size(&rbp_buf[0])),
2924 	    (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2925 
2926 	for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2927 		(void) printf(",\n\t\t{object: %llx, offset: %llx, "
2928 		    "blksz: %x, count: %llx}",
2929 		    (u_longlong_t)rbp_buf[i].rbp_object,
2930 		    (u_longlong_t)rbp_buf[i].rbp_blkid,
2931 		    (uint_t)(redact_block_get_size(&rbp_buf[i])),
2932 		    (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2933 	}
2934 	dsl_redaction_list_rele(rl, FTAG);
2935 	kmem_free(rbp_buf, size);
2936 	(void) printf("]\n\n");
2937 	return (0);
2938 }
2939 
2940 static void
2941 dump_bookmarks(objset_t *os, int verbosity)
2942 {
2943 	zap_cursor_t zc;
2944 	zap_attribute_t attr;
2945 	dsl_dataset_t *ds = dmu_objset_ds(os);
2946 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2947 	objset_t *mos = os->os_spa->spa_meta_objset;
2948 	if (verbosity < 4)
2949 		return;
2950 	dsl_pool_config_enter(dp, FTAG);
2951 
2952 	for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2953 	    zap_cursor_retrieve(&zc, &attr) == 0;
2954 	    zap_cursor_advance(&zc)) {
2955 		char osname[ZFS_MAX_DATASET_NAME_LEN];
2956 		char buf[ZFS_MAX_DATASET_NAME_LEN];
2957 		int len;
2958 		dmu_objset_name(os, osname);
2959 		len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2960 		    attr.za_name);
2961 		VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2962 		(void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2963 	}
2964 	zap_cursor_fini(&zc);
2965 	dsl_pool_config_exit(dp, FTAG);
2966 }
2967 
2968 static void
2969 bpobj_count_refd(bpobj_t *bpo)
2970 {
2971 	mos_obj_refd(bpo->bpo_object);
2972 
2973 	if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2974 		mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2975 		for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2976 			uint64_t subobj;
2977 			bpobj_t subbpo;
2978 			int error;
2979 			VERIFY0(dmu_read(bpo->bpo_os,
2980 			    bpo->bpo_phys->bpo_subobjs,
2981 			    i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2982 			error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2983 			if (error != 0) {
2984 				(void) printf("ERROR %u while trying to open "
2985 				    "subobj id %llu\n",
2986 				    error, (u_longlong_t)subobj);
2987 				continue;
2988 			}
2989 			bpobj_count_refd(&subbpo);
2990 			bpobj_close(&subbpo);
2991 		}
2992 	}
2993 }
2994 
2995 static int
2996 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
2997 {
2998 	spa_t *spa = arg;
2999 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3000 	if (dle->dle_bpobj.bpo_object != empty_bpobj)
3001 		bpobj_count_refd(&dle->dle_bpobj);
3002 	return (0);
3003 }
3004 
3005 static int
3006 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3007 {
3008 	ASSERT(arg == NULL);
3009 	if (dump_opt['d'] >= 5) {
3010 		char buf[128];
3011 		(void) snprintf(buf, sizeof (buf),
3012 		    "mintxg %llu -> obj %llu",
3013 		    (longlong_t)dle->dle_mintxg,
3014 		    (longlong_t)dle->dle_bpobj.bpo_object);
3015 
3016 		dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3017 	} else {
3018 		(void) printf("mintxg %llu -> obj %llu\n",
3019 		    (longlong_t)dle->dle_mintxg,
3020 		    (longlong_t)dle->dle_bpobj.bpo_object);
3021 	}
3022 	return (0);
3023 }
3024 
3025 static void
3026 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3027 {
3028 	char bytes[32];
3029 	char comp[32];
3030 	char uncomp[32];
3031 	char entries[32];
3032 	spa_t *spa = dmu_objset_spa(dl->dl_os);
3033 	uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3034 
3035 	if (dl->dl_oldfmt) {
3036 		if (dl->dl_bpobj.bpo_object != empty_bpobj)
3037 			bpobj_count_refd(&dl->dl_bpobj);
3038 	} else {
3039 		mos_obj_refd(dl->dl_object);
3040 		dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3041 	}
3042 
3043 	/* make sure nicenum has enough space */
3044 	_Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3045 	_Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3046 	_Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3047 	_Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3048 
3049 	if (dump_opt['d'] < 3)
3050 		return;
3051 
3052 	if (dl->dl_oldfmt) {
3053 		dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3054 		return;
3055 	}
3056 
3057 	zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3058 	zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3059 	zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3060 	zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3061 	(void) printf("\n    %s: %s (%s/%s comp), %s entries\n",
3062 	    name, bytes, comp, uncomp, entries);
3063 
3064 	if (dump_opt['d'] < 4)
3065 		return;
3066 
3067 	(void) putchar('\n');
3068 
3069 	dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3070 }
3071 
3072 static int
3073 verify_dd_livelist(objset_t *os)
3074 {
3075 	uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3076 	dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3077 	dsl_dir_t  *dd = os->os_dsl_dataset->ds_dir;
3078 
3079 	ASSERT(!dmu_objset_is_snapshot(os));
3080 	if (!dsl_deadlist_is_open(&dd->dd_livelist))
3081 		return (0);
3082 
3083 	/* Iterate through the livelist to check for duplicates */
3084 	dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3085 	    NULL);
3086 
3087 	dsl_pool_config_enter(dp, FTAG);
3088 	dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3089 	    &ll_comp, &ll_uncomp);
3090 
3091 	dsl_dataset_t *origin_ds;
3092 	ASSERT(dsl_pool_config_held(dp));
3093 	VERIFY0(dsl_dataset_hold_obj(dp,
3094 	    dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3095 	VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3096 	    &used, &comp, &uncomp));
3097 	dsl_dataset_rele(origin_ds, FTAG);
3098 	dsl_pool_config_exit(dp, FTAG);
3099 	/*
3100 	 *  It's possible that the dataset's uncomp space is larger than the
3101 	 *  livelist's because livelists do not track embedded block pointers
3102 	 */
3103 	if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3104 		char nice_used[32], nice_comp[32], nice_uncomp[32];
3105 		(void) printf("Discrepancy in space accounting:\n");
3106 		zdb_nicenum(used, nice_used, sizeof (nice_used));
3107 		zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3108 		zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3109 		(void) printf("dir: used %s, comp %s, uncomp %s\n",
3110 		    nice_used, nice_comp, nice_uncomp);
3111 		zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3112 		zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3113 		zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3114 		(void) printf("livelist: used %s, comp %s, uncomp %s\n",
3115 		    nice_used, nice_comp, nice_uncomp);
3116 		return (1);
3117 	}
3118 	return (0);
3119 }
3120 
3121 static char *key_material = NULL;
3122 
3123 static boolean_t
3124 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3125 {
3126 	uint64_t keyformat, salt, iters;
3127 	int i;
3128 	unsigned char c;
3129 
3130 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3131 	    zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3132 	    1, &keyformat));
3133 
3134 	switch (keyformat) {
3135 	case ZFS_KEYFORMAT_HEX:
3136 		for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3137 			if (!isxdigit(key_material[i]) ||
3138 			    !isxdigit(key_material[i+1]))
3139 				return (B_FALSE);
3140 			if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3141 				return (B_FALSE);
3142 			key_out[i / 2] = c;
3143 		}
3144 		break;
3145 
3146 	case ZFS_KEYFORMAT_PASSPHRASE:
3147 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3148 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3149 		    sizeof (uint64_t), 1, &salt));
3150 		VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3151 		    dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3152 		    sizeof (uint64_t), 1, &iters));
3153 
3154 		if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3155 		    ((uint8_t *)&salt), sizeof (uint64_t), iters,
3156 		    WRAPPING_KEY_LEN, key_out) != 1)
3157 			return (B_FALSE);
3158 
3159 		break;
3160 
3161 	default:
3162 		fatal("no support for key format %u\n",
3163 		    (unsigned int) keyformat);
3164 	}
3165 
3166 	return (B_TRUE);
3167 }
3168 
3169 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3170 static boolean_t key_loaded = B_FALSE;
3171 
3172 static void
3173 zdb_load_key(objset_t *os)
3174 {
3175 	dsl_pool_t *dp;
3176 	dsl_dir_t *dd, *rdd;
3177 	uint8_t key[WRAPPING_KEY_LEN];
3178 	uint64_t rddobj;
3179 	int err;
3180 
3181 	dp = spa_get_dsl(os->os_spa);
3182 	dd = os->os_dsl_dataset->ds_dir;
3183 
3184 	dsl_pool_config_enter(dp, FTAG);
3185 	VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3186 	    DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3187 	VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3188 	dsl_dir_name(rdd, encroot);
3189 	dsl_dir_rele(rdd, FTAG);
3190 
3191 	if (!zdb_derive_key(dd, key))
3192 		fatal("couldn't derive encryption key");
3193 
3194 	dsl_pool_config_exit(dp, FTAG);
3195 
3196 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3197 
3198 	dsl_crypto_params_t *dcp;
3199 	nvlist_t *crypto_args;
3200 
3201 	crypto_args = fnvlist_alloc();
3202 	fnvlist_add_uint8_array(crypto_args, "wkeydata",
3203 	    (uint8_t *)key, WRAPPING_KEY_LEN);
3204 	VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3205 	    NULL, crypto_args, &dcp));
3206 	err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3207 
3208 	dsl_crypto_params_free(dcp, (err != 0));
3209 	fnvlist_free(crypto_args);
3210 
3211 	if (err != 0)
3212 		fatal(
3213 		    "couldn't load encryption key for %s: %s",
3214 		    encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3215 		    "crypto params not supported" : strerror(err));
3216 
3217 	ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3218 
3219 	printf("Unlocked encryption root: %s\n", encroot);
3220 	key_loaded = B_TRUE;
3221 }
3222 
3223 static void
3224 zdb_unload_key(void)
3225 {
3226 	if (!key_loaded)
3227 		return;
3228 
3229 	VERIFY0(spa_keystore_unload_wkey(encroot));
3230 	key_loaded = B_FALSE;
3231 }
3232 
3233 static avl_tree_t idx_tree;
3234 static avl_tree_t domain_tree;
3235 static boolean_t fuid_table_loaded;
3236 static objset_t *sa_os = NULL;
3237 static sa_attr_type_t *sa_attr_table = NULL;
3238 
3239 static int
3240 open_objset(const char *path, const void *tag, objset_t **osp)
3241 {
3242 	int err;
3243 	uint64_t sa_attrs = 0;
3244 	uint64_t version = 0;
3245 
3246 	VERIFY3P(sa_os, ==, NULL);
3247 
3248 	/*
3249 	 * We can't own an objset if it's redacted.  Therefore, we do this
3250 	 * dance: hold the objset, then acquire a long hold on its dataset, then
3251 	 * release the pool (which is held as part of holding the objset).
3252 	 */
3253 
3254 	if (dump_opt['K']) {
3255 		/* decryption requested, try to load keys */
3256 		err = dmu_objset_hold(path, tag, osp);
3257 		if (err != 0) {
3258 			(void) fprintf(stderr, "failed to hold dataset "
3259 			    "'%s': %s\n",
3260 			    path, strerror(err));
3261 			return (err);
3262 		}
3263 		dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3264 		dsl_pool_rele(dmu_objset_pool(*osp), tag);
3265 
3266 		/* succeeds or dies */
3267 		zdb_load_key(*osp);
3268 
3269 		/* release it all */
3270 		dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3271 		dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3272 	}
3273 
3274 	int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3275 
3276 	err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3277 	if (err != 0) {
3278 		(void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3279 		    path, strerror(err));
3280 		return (err);
3281 	}
3282 	dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3283 	dsl_pool_rele(dmu_objset_pool(*osp), tag);
3284 
3285 	if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3286 	    (key_loaded || !(*osp)->os_encrypted)) {
3287 		(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3288 		    8, 1, &version);
3289 		if (version >= ZPL_VERSION_SA) {
3290 			(void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3291 			    8, 1, &sa_attrs);
3292 		}
3293 		err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3294 		    &sa_attr_table);
3295 		if (err != 0) {
3296 			(void) fprintf(stderr, "sa_setup failed: %s\n",
3297 			    strerror(err));
3298 			dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3299 			dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3300 			    ds_hold_flags, tag);
3301 			*osp = NULL;
3302 		}
3303 	}
3304 	sa_os = *osp;
3305 
3306 	return (err);
3307 }
3308 
3309 static void
3310 close_objset(objset_t *os, const void *tag)
3311 {
3312 	VERIFY3P(os, ==, sa_os);
3313 	if (os->os_sa != NULL)
3314 		sa_tear_down(os);
3315 	dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3316 	dsl_dataset_rele_flags(dmu_objset_ds(os),
3317 	    key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3318 	sa_attr_table = NULL;
3319 	sa_os = NULL;
3320 
3321 	zdb_unload_key();
3322 }
3323 
3324 static void
3325 fuid_table_destroy(void)
3326 {
3327 	if (fuid_table_loaded) {
3328 		zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3329 		fuid_table_loaded = B_FALSE;
3330 	}
3331 }
3332 
3333 /*
3334  * print uid or gid information.
3335  * For normal POSIX id just the id is printed in decimal format.
3336  * For CIFS files with FUID the fuid is printed in hex followed by
3337  * the domain-rid string.
3338  */
3339 static void
3340 print_idstr(uint64_t id, const char *id_type)
3341 {
3342 	if (FUID_INDEX(id)) {
3343 		const char *domain =
3344 		    zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3345 		(void) printf("\t%s     %llx [%s-%d]\n", id_type,
3346 		    (u_longlong_t)id, domain, (int)FUID_RID(id));
3347 	} else {
3348 		(void) printf("\t%s     %llu\n", id_type, (u_longlong_t)id);
3349 	}
3350 
3351 }
3352 
3353 static void
3354 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3355 {
3356 	uint32_t uid_idx, gid_idx;
3357 
3358 	uid_idx = FUID_INDEX(uid);
3359 	gid_idx = FUID_INDEX(gid);
3360 
3361 	/* Load domain table, if not already loaded */
3362 	if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3363 		uint64_t fuid_obj;
3364 
3365 		/* first find the fuid object.  It lives in the master node */
3366 		VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3367 		    8, 1, &fuid_obj) == 0);
3368 		zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3369 		(void) zfs_fuid_table_load(os, fuid_obj,
3370 		    &idx_tree, &domain_tree);
3371 		fuid_table_loaded = B_TRUE;
3372 	}
3373 
3374 	print_idstr(uid, "uid");
3375 	print_idstr(gid, "gid");
3376 }
3377 
3378 static void
3379 dump_znode_sa_xattr(sa_handle_t *hdl)
3380 {
3381 	nvlist_t *sa_xattr;
3382 	nvpair_t *elem = NULL;
3383 	int sa_xattr_size = 0;
3384 	int sa_xattr_entries = 0;
3385 	int error;
3386 	char *sa_xattr_packed;
3387 
3388 	error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3389 	if (error || sa_xattr_size == 0)
3390 		return;
3391 
3392 	sa_xattr_packed = malloc(sa_xattr_size);
3393 	if (sa_xattr_packed == NULL)
3394 		return;
3395 
3396 	error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3397 	    sa_xattr_packed, sa_xattr_size);
3398 	if (error) {
3399 		free(sa_xattr_packed);
3400 		return;
3401 	}
3402 
3403 	error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3404 	if (error) {
3405 		free(sa_xattr_packed);
3406 		return;
3407 	}
3408 
3409 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3410 		sa_xattr_entries++;
3411 
3412 	(void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3413 	    sa_xattr_size, sa_xattr_entries);
3414 	while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3415 		boolean_t can_print = !dump_opt['P'];
3416 		uchar_t *value;
3417 		uint_t cnt, idx;
3418 
3419 		(void) printf("\t\t%s = ", nvpair_name(elem));
3420 		nvpair_value_byte_array(elem, &value, &cnt);
3421 
3422 		for (idx = 0; idx < cnt; ++idx) {
3423 			if (!isprint(value[idx])) {
3424 				can_print = B_FALSE;
3425 				break;
3426 			}
3427 		}
3428 
3429 		for (idx = 0; idx < cnt; ++idx) {
3430 			if (can_print)
3431 				(void) putchar(value[idx]);
3432 			else
3433 				(void) printf("\\%3.3o", value[idx]);
3434 		}
3435 		(void) putchar('\n');
3436 	}
3437 
3438 	nvlist_free(sa_xattr);
3439 	free(sa_xattr_packed);
3440 }
3441 
3442 static void
3443 dump_znode_symlink(sa_handle_t *hdl)
3444 {
3445 	int sa_symlink_size = 0;
3446 	char linktarget[MAXPATHLEN];
3447 	int error;
3448 
3449 	error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3450 	if (error || sa_symlink_size == 0) {
3451 		return;
3452 	}
3453 	if (sa_symlink_size >= sizeof (linktarget)) {
3454 		(void) printf("symlink size %d is too large\n",
3455 		    sa_symlink_size);
3456 		return;
3457 	}
3458 	linktarget[sa_symlink_size] = '\0';
3459 	if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3460 	    &linktarget, sa_symlink_size) == 0)
3461 		(void) printf("\ttarget	%s\n", linktarget);
3462 }
3463 
3464 static void
3465 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3466 {
3467 	(void) data, (void) size;
3468 	char path[MAXPATHLEN * 2];	/* allow for xattr and failure prefix */
3469 	sa_handle_t *hdl;
3470 	uint64_t xattr, rdev, gen;
3471 	uint64_t uid, gid, mode, fsize, parent, links;
3472 	uint64_t pflags;
3473 	uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3474 	time_t z_crtime, z_atime, z_mtime, z_ctime;
3475 	sa_bulk_attr_t bulk[12];
3476 	int idx = 0;
3477 	int error;
3478 
3479 	VERIFY3P(os, ==, sa_os);
3480 	if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3481 		(void) printf("Failed to get handle for SA znode\n");
3482 		return;
3483 	}
3484 
3485 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3486 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3487 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3488 	    &links, 8);
3489 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3490 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3491 	    &mode, 8);
3492 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3493 	    NULL, &parent, 8);
3494 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3495 	    &fsize, 8);
3496 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3497 	    acctm, 16);
3498 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3499 	    modtm, 16);
3500 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3501 	    crtm, 16);
3502 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3503 	    chgtm, 16);
3504 	SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3505 	    &pflags, 8);
3506 
3507 	if (sa_bulk_lookup(hdl, bulk, idx)) {
3508 		(void) sa_handle_destroy(hdl);
3509 		return;
3510 	}
3511 
3512 	z_crtime = (time_t)crtm[0];
3513 	z_atime = (time_t)acctm[0];
3514 	z_mtime = (time_t)modtm[0];
3515 	z_ctime = (time_t)chgtm[0];
3516 
3517 	if (dump_opt['d'] > 4) {
3518 		error = zfs_obj_to_path(os, object, path, sizeof (path));
3519 		if (error == ESTALE) {
3520 			(void) snprintf(path, sizeof (path), "on delete queue");
3521 		} else if (error != 0) {
3522 			leaked_objects++;
3523 			(void) snprintf(path, sizeof (path),
3524 			    "path not found, possibly leaked");
3525 		}
3526 		(void) printf("\tpath	%s\n", path);
3527 	}
3528 
3529 	if (S_ISLNK(mode))
3530 		dump_znode_symlink(hdl);
3531 	dump_uidgid(os, uid, gid);
3532 	(void) printf("\tatime	%s", ctime(&z_atime));
3533 	(void) printf("\tmtime	%s", ctime(&z_mtime));
3534 	(void) printf("\tctime	%s", ctime(&z_ctime));
3535 	(void) printf("\tcrtime	%s", ctime(&z_crtime));
3536 	(void) printf("\tgen	%llu\n", (u_longlong_t)gen);
3537 	(void) printf("\tmode	%llo\n", (u_longlong_t)mode);
3538 	(void) printf("\tsize	%llu\n", (u_longlong_t)fsize);
3539 	(void) printf("\tparent	%llu\n", (u_longlong_t)parent);
3540 	(void) printf("\tlinks	%llu\n", (u_longlong_t)links);
3541 	(void) printf("\tpflags	%llx\n", (u_longlong_t)pflags);
3542 	if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3543 		uint64_t projid;
3544 
3545 		if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3546 		    sizeof (uint64_t)) == 0)
3547 			(void) printf("\tprojid	%llu\n", (u_longlong_t)projid);
3548 	}
3549 	if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3550 	    sizeof (uint64_t)) == 0)
3551 		(void) printf("\txattr	%llu\n", (u_longlong_t)xattr);
3552 	if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3553 	    sizeof (uint64_t)) == 0)
3554 		(void) printf("\trdev	0x%016llx\n", (u_longlong_t)rdev);
3555 	dump_znode_sa_xattr(hdl);
3556 	sa_handle_destroy(hdl);
3557 }
3558 
3559 static void
3560 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3561 {
3562 	(void) os, (void) object, (void) data, (void) size;
3563 }
3564 
3565 static void
3566 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3567 {
3568 	(void) os, (void) object, (void) data, (void) size;
3569 }
3570 
3571 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3572 	dump_none,		/* unallocated			*/
3573 	dump_zap,		/* object directory		*/
3574 	dump_uint64,		/* object array			*/
3575 	dump_none,		/* packed nvlist		*/
3576 	dump_packed_nvlist,	/* packed nvlist size		*/
3577 	dump_none,		/* bpobj			*/
3578 	dump_bpobj,		/* bpobj header			*/
3579 	dump_none,		/* SPA space map header		*/
3580 	dump_none,		/* SPA space map		*/
3581 	dump_none,		/* ZIL intent log		*/
3582 	dump_dnode,		/* DMU dnode			*/
3583 	dump_dmu_objset,	/* DMU objset			*/
3584 	dump_dsl_dir,		/* DSL directory		*/
3585 	dump_zap,		/* DSL directory child map	*/
3586 	dump_zap,		/* DSL dataset snap map		*/
3587 	dump_zap,		/* DSL props			*/
3588 	dump_dsl_dataset,	/* DSL dataset			*/
3589 	dump_znode,		/* ZFS znode			*/
3590 	dump_acl,		/* ZFS V0 ACL			*/
3591 	dump_uint8,		/* ZFS plain file		*/
3592 	dump_zpldir,		/* ZFS directory		*/
3593 	dump_zap,		/* ZFS master node		*/
3594 	dump_zap,		/* ZFS delete queue		*/
3595 	dump_uint8,		/* zvol object			*/
3596 	dump_zap,		/* zvol prop			*/
3597 	dump_uint8,		/* other uint8[]		*/
3598 	dump_uint64,		/* other uint64[]		*/
3599 	dump_zap,		/* other ZAP			*/
3600 	dump_zap,		/* persistent error log		*/
3601 	dump_uint8,		/* SPA history			*/
3602 	dump_history_offsets,	/* SPA history offsets		*/
3603 	dump_zap,		/* Pool properties		*/
3604 	dump_zap,		/* DSL permissions		*/
3605 	dump_acl,		/* ZFS ACL			*/
3606 	dump_uint8,		/* ZFS SYSACL			*/
3607 	dump_none,		/* FUID nvlist			*/
3608 	dump_packed_nvlist,	/* FUID nvlist size		*/
3609 	dump_zap,		/* DSL dataset next clones	*/
3610 	dump_zap,		/* DSL scrub queue		*/
3611 	dump_zap,		/* ZFS user/group/project used	*/
3612 	dump_zap,		/* ZFS user/group/project quota	*/
3613 	dump_zap,		/* snapshot refcount tags	*/
3614 	dump_ddt_zap,		/* DDT ZAP object		*/
3615 	dump_zap,		/* DDT statistics		*/
3616 	dump_znode,		/* SA object			*/
3617 	dump_zap,		/* SA Master Node		*/
3618 	dump_sa_attrs,		/* SA attribute registration	*/
3619 	dump_sa_layouts,	/* SA attribute layouts		*/
3620 	dump_zap,		/* DSL scrub translations	*/
3621 	dump_none,		/* fake dedup BP		*/
3622 	dump_zap,		/* deadlist			*/
3623 	dump_none,		/* deadlist hdr			*/
3624 	dump_zap,		/* dsl clones			*/
3625 	dump_bpobj_subobjs,	/* bpobj subobjs		*/
3626 	dump_unknown,		/* Unknown type, must be last	*/
3627 };
3628 
3629 static boolean_t
3630 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3631 {
3632 	boolean_t match = B_TRUE;
3633 
3634 	switch (obj_type) {
3635 	case DMU_OT_DIRECTORY_CONTENTS:
3636 		if (!(flags & ZOR_FLAG_DIRECTORY))
3637 			match = B_FALSE;
3638 		break;
3639 	case DMU_OT_PLAIN_FILE_CONTENTS:
3640 		if (!(flags & ZOR_FLAG_PLAIN_FILE))
3641 			match = B_FALSE;
3642 		break;
3643 	case DMU_OT_SPACE_MAP:
3644 		if (!(flags & ZOR_FLAG_SPACE_MAP))
3645 			match = B_FALSE;
3646 		break;
3647 	default:
3648 		if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3649 			if (!(flags & ZOR_FLAG_ZAP))
3650 				match = B_FALSE;
3651 			break;
3652 		}
3653 
3654 		/*
3655 		 * If all bits except some of the supported flags are
3656 		 * set, the user combined the all-types flag (A) with
3657 		 * a negated flag to exclude some types (e.g. A-f to
3658 		 * show all object types except plain files).
3659 		 */
3660 		if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3661 			match = B_FALSE;
3662 
3663 		break;
3664 	}
3665 
3666 	return (match);
3667 }
3668 
3669 static void
3670 dump_object(objset_t *os, uint64_t object, int verbosity,
3671     boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3672 {
3673 	dmu_buf_t *db = NULL;
3674 	dmu_object_info_t doi;
3675 	dnode_t *dn;
3676 	boolean_t dnode_held = B_FALSE;
3677 	void *bonus = NULL;
3678 	size_t bsize = 0;
3679 	char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3680 	char bonus_size[32];
3681 	char aux[50];
3682 	int error;
3683 
3684 	/* make sure nicenum has enough space */
3685 	_Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3686 	_Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3687 	_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3688 	_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3689 	_Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3690 	    "bonus_size truncated");
3691 
3692 	if (*print_header) {
3693 		(void) printf("\n%10s  %3s  %5s  %5s  %5s  %6s  %5s  %6s  %s\n",
3694 		    "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3695 		    "lsize", "%full", "type");
3696 		*print_header = 0;
3697 	}
3698 
3699 	if (object == 0) {
3700 		dn = DMU_META_DNODE(os);
3701 		dmu_object_info_from_dnode(dn, &doi);
3702 	} else {
3703 		/*
3704 		 * Encrypted datasets will have sensitive bonus buffers
3705 		 * encrypted. Therefore we cannot hold the bonus buffer and
3706 		 * must hold the dnode itself instead.
3707 		 */
3708 		error = dmu_object_info(os, object, &doi);
3709 		if (error)
3710 			fatal("dmu_object_info() failed, errno %u", error);
3711 
3712 		if (!key_loaded && os->os_encrypted &&
3713 		    DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3714 			error = dnode_hold(os, object, FTAG, &dn);
3715 			if (error)
3716 				fatal("dnode_hold() failed, errno %u", error);
3717 			dnode_held = B_TRUE;
3718 		} else {
3719 			error = dmu_bonus_hold(os, object, FTAG, &db);
3720 			if (error)
3721 				fatal("dmu_bonus_hold(%llu) failed, errno %u",
3722 				    object, error);
3723 			bonus = db->db_data;
3724 			bsize = db->db_size;
3725 			dn = DB_DNODE((dmu_buf_impl_t *)db);
3726 		}
3727 	}
3728 
3729 	/*
3730 	 * Default to showing all object types if no flags were specified.
3731 	 */
3732 	if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3733 	    !match_object_type(doi.doi_type, flags))
3734 		goto out;
3735 
3736 	if (dnode_slots_used)
3737 		*dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3738 
3739 	zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3740 	zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3741 	zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3742 	zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3743 	zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3744 	zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3745 	(void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3746 	    doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3747 	    DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3748 
3749 	aux[0] = '\0';
3750 
3751 	if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3752 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3753 		    " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3754 	}
3755 
3756 	if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3757 	    ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3758 		const char *compname = NULL;
3759 		if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3760 		    ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3761 		    &compname) == 0) {
3762 			(void) snprintf(aux + strlen(aux),
3763 			    sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3764 			    compname);
3765 		} else {
3766 			(void) snprintf(aux + strlen(aux),
3767 			    sizeof (aux) - strlen(aux),
3768 			    " (Z=inherit=%s-unknown)",
3769 			    ZDB_COMPRESS_NAME(os->os_compress));
3770 		}
3771 	} else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3772 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3773 		    " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3774 	} else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3775 		(void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3776 		    " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3777 	}
3778 
3779 	(void) printf("%10lld  %3u  %5s  %5s  %5s  %6s  %5s  %6s  %s%s\n",
3780 	    (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3781 	    asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3782 
3783 	if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3784 		(void) printf("%10s  %3s  %5s  %5s  %5s  %5s  %5s  %6s  %s\n",
3785 		    "", "", "", "", "", "", bonus_size, "bonus",
3786 		    zdb_ot_name(doi.doi_bonus_type));
3787 	}
3788 
3789 	if (verbosity >= 4) {
3790 		(void) printf("\tdnode flags: %s%s%s%s\n",
3791 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3792 		    "USED_BYTES " : "",
3793 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3794 		    "USERUSED_ACCOUNTED " : "",
3795 		    (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3796 		    "USEROBJUSED_ACCOUNTED " : "",
3797 		    (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3798 		    "SPILL_BLKPTR" : "");
3799 		(void) printf("\tdnode maxblkid: %llu\n",
3800 		    (longlong_t)dn->dn_phys->dn_maxblkid);
3801 
3802 		if (!dnode_held) {
3803 			object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3804 			    object, bonus, bsize);
3805 		} else {
3806 			(void) printf("\t\t(bonus encrypted)\n");
3807 		}
3808 
3809 		if (key_loaded ||
3810 		    (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3811 			object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3812 			    NULL, 0);
3813 		} else {
3814 			(void) printf("\t\t(object encrypted)\n");
3815 		}
3816 
3817 		*print_header = B_TRUE;
3818 	}
3819 
3820 	if (verbosity >= 5) {
3821 		if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3822 			char blkbuf[BP_SPRINTF_LEN];
3823 			snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3824 			    DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3825 			(void) printf("\nSpill block: %s\n", blkbuf);
3826 		}
3827 		dump_indirect(dn);
3828 	}
3829 
3830 	if (verbosity >= 5) {
3831 		/*
3832 		 * Report the list of segments that comprise the object.
3833 		 */
3834 		uint64_t start = 0;
3835 		uint64_t end;
3836 		uint64_t blkfill = 1;
3837 		int minlvl = 1;
3838 
3839 		if (dn->dn_type == DMU_OT_DNODE) {
3840 			minlvl = 0;
3841 			blkfill = DNODES_PER_BLOCK;
3842 		}
3843 
3844 		for (;;) {
3845 			char segsize[32];
3846 			/* make sure nicenum has enough space */
3847 			_Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3848 			    "segsize truncated");
3849 			error = dnode_next_offset(dn,
3850 			    0, &start, minlvl, blkfill, 0);
3851 			if (error)
3852 				break;
3853 			end = start;
3854 			error = dnode_next_offset(dn,
3855 			    DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3856 			zdb_nicenum(end - start, segsize, sizeof (segsize));
3857 			(void) printf("\t\tsegment [%016llx, %016llx)"
3858 			    " size %5s\n", (u_longlong_t)start,
3859 			    (u_longlong_t)end, segsize);
3860 			if (error)
3861 				break;
3862 			start = end;
3863 		}
3864 	}
3865 
3866 out:
3867 	if (db != NULL)
3868 		dmu_buf_rele(db, FTAG);
3869 	if (dnode_held)
3870 		dnode_rele(dn, FTAG);
3871 }
3872 
3873 static void
3874 count_dir_mos_objects(dsl_dir_t *dd)
3875 {
3876 	mos_obj_refd(dd->dd_object);
3877 	mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3878 	mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3879 	mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3880 	mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3881 
3882 	/*
3883 	 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3884 	 * Ignore the references after the first one.
3885 	 */
3886 	mos_obj_refd_multiple(dd->dd_crypto_obj);
3887 }
3888 
3889 static void
3890 count_ds_mos_objects(dsl_dataset_t *ds)
3891 {
3892 	mos_obj_refd(ds->ds_object);
3893 	mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3894 	mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3895 	mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3896 	mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3897 	mos_obj_refd(ds->ds_bookmarks_obj);
3898 
3899 	if (!dsl_dataset_is_snapshot(ds)) {
3900 		count_dir_mos_objects(ds->ds_dir);
3901 	}
3902 }
3903 
3904 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3905 	"NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3906 
3907 /*
3908  * Parse a string denoting a range of object IDs of the form
3909  * <start>[:<end>[:flags]], and store the results in zor.
3910  * Return 0 on success. On error, return 1 and update the msg
3911  * pointer to point to a descriptive error message.
3912  */
3913 static int
3914 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3915 {
3916 	uint64_t flags = 0;
3917 	char *p, *s, *dup, *flagstr, *tmp = NULL;
3918 	size_t len;
3919 	int i;
3920 	int rc = 0;
3921 
3922 	if (strchr(range, ':') == NULL) {
3923 		zor->zor_obj_start = strtoull(range, &p, 0);
3924 		if (*p != '\0') {
3925 			*msg = "Invalid characters in object ID";
3926 			rc = 1;
3927 		}
3928 		zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
3929 		zor->zor_obj_end = zor->zor_obj_start;
3930 		return (rc);
3931 	}
3932 
3933 	if (strchr(range, ':') == range) {
3934 		*msg = "Invalid leading colon";
3935 		rc = 1;
3936 		return (rc);
3937 	}
3938 
3939 	len = strlen(range);
3940 	if (range[len - 1] == ':') {
3941 		*msg = "Invalid trailing colon";
3942 		rc = 1;
3943 		return (rc);
3944 	}
3945 
3946 	dup = strdup(range);
3947 	s = strtok_r(dup, ":", &tmp);
3948 	zor->zor_obj_start = strtoull(s, &p, 0);
3949 
3950 	if (*p != '\0') {
3951 		*msg = "Invalid characters in start object ID";
3952 		rc = 1;
3953 		goto out;
3954 	}
3955 
3956 	s = strtok_r(NULL, ":", &tmp);
3957 	zor->zor_obj_end = strtoull(s, &p, 0);
3958 
3959 	if (*p != '\0') {
3960 		*msg = "Invalid characters in end object ID";
3961 		rc = 1;
3962 		goto out;
3963 	}
3964 
3965 	if (zor->zor_obj_start > zor->zor_obj_end) {
3966 		*msg = "Start object ID may not exceed end object ID";
3967 		rc = 1;
3968 		goto out;
3969 	}
3970 
3971 	s = strtok_r(NULL, ":", &tmp);
3972 	if (s == NULL) {
3973 		zor->zor_flags = ZOR_FLAG_ALL_TYPES;
3974 		goto out;
3975 	} else if (strtok_r(NULL, ":", &tmp) != NULL) {
3976 		*msg = "Invalid colon-delimited field after flags";
3977 		rc = 1;
3978 		goto out;
3979 	}
3980 
3981 	flagstr = s;
3982 	for (i = 0; flagstr[i]; i++) {
3983 		int bit;
3984 		boolean_t negation = (flagstr[i] == '-');
3985 
3986 		if (negation) {
3987 			i++;
3988 			if (flagstr[i] == '\0') {
3989 				*msg = "Invalid trailing negation operator";
3990 				rc = 1;
3991 				goto out;
3992 			}
3993 		}
3994 		bit = flagbits[(uchar_t)flagstr[i]];
3995 		if (bit == 0) {
3996 			*msg = "Invalid flag";
3997 			rc = 1;
3998 			goto out;
3999 		}
4000 		if (negation)
4001 			flags &= ~bit;
4002 		else
4003 			flags |= bit;
4004 	}
4005 	zor->zor_flags = flags;
4006 
4007 	zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4008 	zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4009 
4010 out:
4011 	free(dup);
4012 	return (rc);
4013 }
4014 
4015 static void
4016 dump_objset(objset_t *os)
4017 {
4018 	dmu_objset_stats_t dds = { 0 };
4019 	uint64_t object, object_count;
4020 	uint64_t refdbytes, usedobjs, scratch;
4021 	char numbuf[32];
4022 	char blkbuf[BP_SPRINTF_LEN + 20];
4023 	char osname[ZFS_MAX_DATASET_NAME_LEN];
4024 	const char *type = "UNKNOWN";
4025 	int verbosity = dump_opt['d'];
4026 	boolean_t print_header;
4027 	unsigned i;
4028 	int error;
4029 	uint64_t total_slots_used = 0;
4030 	uint64_t max_slot_used = 0;
4031 	uint64_t dnode_slots;
4032 	uint64_t obj_start;
4033 	uint64_t obj_end;
4034 	uint64_t flags;
4035 
4036 	/* make sure nicenum has enough space */
4037 	_Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4038 
4039 	dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4040 	dmu_objset_fast_stat(os, &dds);
4041 	dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4042 
4043 	print_header = B_TRUE;
4044 
4045 	if (dds.dds_type < DMU_OST_NUMTYPES)
4046 		type = objset_types[dds.dds_type];
4047 
4048 	if (dds.dds_type == DMU_OST_META) {
4049 		dds.dds_creation_txg = TXG_INITIAL;
4050 		usedobjs = BP_GET_FILL(os->os_rootbp);
4051 		refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4052 		    dd_used_bytes;
4053 	} else {
4054 		dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4055 	}
4056 
4057 	ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4058 
4059 	zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4060 
4061 	if (verbosity >= 4) {
4062 		(void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4063 		(void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4064 		    sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4065 	} else {
4066 		blkbuf[0] = '\0';
4067 	}
4068 
4069 	dmu_objset_name(os, osname);
4070 
4071 	(void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4072 	    "%s, %llu objects%s%s\n",
4073 	    osname, type, (u_longlong_t)dmu_objset_id(os),
4074 	    (u_longlong_t)dds.dds_creation_txg,
4075 	    numbuf, (u_longlong_t)usedobjs, blkbuf,
4076 	    (dds.dds_inconsistent) ? " (inconsistent)" : "");
4077 
4078 	for (i = 0; i < zopt_object_args; i++) {
4079 		obj_start = zopt_object_ranges[i].zor_obj_start;
4080 		obj_end = zopt_object_ranges[i].zor_obj_end;
4081 		flags = zopt_object_ranges[i].zor_flags;
4082 
4083 		object = obj_start;
4084 		if (object == 0 || obj_start == obj_end)
4085 			dump_object(os, object, verbosity, &print_header, NULL,
4086 			    flags);
4087 		else
4088 			object--;
4089 
4090 		while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4091 		    object <= obj_end) {
4092 			dump_object(os, object, verbosity, &print_header, NULL,
4093 			    flags);
4094 		}
4095 	}
4096 
4097 	if (zopt_object_args > 0) {
4098 		(void) printf("\n");
4099 		return;
4100 	}
4101 
4102 	if (dump_opt['i'] != 0 || verbosity >= 2)
4103 		dump_intent_log(dmu_objset_zil(os));
4104 
4105 	if (dmu_objset_ds(os) != NULL) {
4106 		dsl_dataset_t *ds = dmu_objset_ds(os);
4107 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4108 		if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4109 		    !dmu_objset_is_snapshot(os)) {
4110 			dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4111 			if (verify_dd_livelist(os) != 0)
4112 				fatal("livelist is incorrect");
4113 		}
4114 
4115 		if (dsl_dataset_remap_deadlist_exists(ds)) {
4116 			(void) printf("ds_remap_deadlist:\n");
4117 			dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4118 		}
4119 		count_ds_mos_objects(ds);
4120 	}
4121 
4122 	if (dmu_objset_ds(os) != NULL)
4123 		dump_bookmarks(os, verbosity);
4124 
4125 	if (verbosity < 2)
4126 		return;
4127 
4128 	if (BP_IS_HOLE(os->os_rootbp))
4129 		return;
4130 
4131 	dump_object(os, 0, verbosity, &print_header, NULL, 0);
4132 	object_count = 0;
4133 	if (DMU_USERUSED_DNODE(os) != NULL &&
4134 	    DMU_USERUSED_DNODE(os)->dn_type != 0) {
4135 		dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4136 		    NULL, 0);
4137 		dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4138 		    NULL, 0);
4139 	}
4140 
4141 	if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4142 	    DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4143 		dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4144 		    &print_header, NULL, 0);
4145 
4146 	object = 0;
4147 	while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4148 		dump_object(os, object, verbosity, &print_header, &dnode_slots,
4149 		    0);
4150 		object_count++;
4151 		total_slots_used += dnode_slots;
4152 		max_slot_used = object + dnode_slots - 1;
4153 	}
4154 
4155 	(void) printf("\n");
4156 
4157 	(void) printf("    Dnode slots:\n");
4158 	(void) printf("\tTotal used:    %10llu\n",
4159 	    (u_longlong_t)total_slots_used);
4160 	(void) printf("\tMax used:      %10llu\n",
4161 	    (u_longlong_t)max_slot_used);
4162 	(void) printf("\tPercent empty: %10lf\n",
4163 	    (double)(max_slot_used - total_slots_used)*100 /
4164 	    (double)max_slot_used);
4165 	(void) printf("\n");
4166 
4167 	if (error != ESRCH) {
4168 		(void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4169 		abort();
4170 	}
4171 
4172 	ASSERT3U(object_count, ==, usedobjs);
4173 
4174 	if (leaked_objects != 0) {
4175 		(void) printf("%d potentially leaked objects detected\n",
4176 		    leaked_objects);
4177 		leaked_objects = 0;
4178 	}
4179 }
4180 
4181 static void
4182 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4183 {
4184 	time_t timestamp = ub->ub_timestamp;
4185 
4186 	(void) printf("%s", header ? header : "");
4187 	(void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4188 	(void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4189 	(void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4190 	(void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4191 	(void) printf("\ttimestamp = %llu UTC = %s",
4192 	    (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4193 
4194 	(void) printf("\tmmp_magic = %016llx\n",
4195 	    (u_longlong_t)ub->ub_mmp_magic);
4196 	if (MMP_VALID(ub)) {
4197 		(void) printf("\tmmp_delay = %0llu\n",
4198 		    (u_longlong_t)ub->ub_mmp_delay);
4199 		if (MMP_SEQ_VALID(ub))
4200 			(void) printf("\tmmp_seq = %u\n",
4201 			    (unsigned int) MMP_SEQ(ub));
4202 		if (MMP_FAIL_INT_VALID(ub))
4203 			(void) printf("\tmmp_fail = %u\n",
4204 			    (unsigned int) MMP_FAIL_INT(ub));
4205 		if (MMP_INTERVAL_VALID(ub))
4206 			(void) printf("\tmmp_write = %u\n",
4207 			    (unsigned int) MMP_INTERVAL(ub));
4208 		/* After MMP_* to make summarize_uberblock_mmp cleaner */
4209 		(void) printf("\tmmp_valid = %x\n",
4210 		    (unsigned int) ub->ub_mmp_config & 0xFF);
4211 	}
4212 
4213 	if (dump_opt['u'] >= 4) {
4214 		char blkbuf[BP_SPRINTF_LEN];
4215 		snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4216 		(void) printf("\trootbp = %s\n", blkbuf);
4217 	}
4218 	(void) printf("\tcheckpoint_txg = %llu\n",
4219 	    (u_longlong_t)ub->ub_checkpoint_txg);
4220 
4221 	(void) printf("\traidz_reflow state=%u off=%llu\n",
4222 	    (int)RRSS_GET_STATE(ub),
4223 	    (u_longlong_t)RRSS_GET_OFFSET(ub));
4224 
4225 	(void) printf("%s", footer ? footer : "");
4226 }
4227 
4228 static void
4229 dump_config(spa_t *spa)
4230 {
4231 	dmu_buf_t *db;
4232 	size_t nvsize = 0;
4233 	int error = 0;
4234 
4235 
4236 	error = dmu_bonus_hold(spa->spa_meta_objset,
4237 	    spa->spa_config_object, FTAG, &db);
4238 
4239 	if (error == 0) {
4240 		nvsize = *(uint64_t *)db->db_data;
4241 		dmu_buf_rele(db, FTAG);
4242 
4243 		(void) printf("\nMOS Configuration:\n");
4244 		dump_packed_nvlist(spa->spa_meta_objset,
4245 		    spa->spa_config_object, (void *)&nvsize, 1);
4246 	} else {
4247 		(void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4248 		    (u_longlong_t)spa->spa_config_object, error);
4249 	}
4250 }
4251 
4252 static void
4253 dump_cachefile(const char *cachefile)
4254 {
4255 	int fd;
4256 	struct stat64 statbuf;
4257 	char *buf;
4258 	nvlist_t *config;
4259 
4260 	if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4261 		(void) printf("cannot open '%s': %s\n", cachefile,
4262 		    strerror(errno));
4263 		exit(1);
4264 	}
4265 
4266 	if (fstat64(fd, &statbuf) != 0) {
4267 		(void) printf("failed to stat '%s': %s\n", cachefile,
4268 		    strerror(errno));
4269 		exit(1);
4270 	}
4271 
4272 	if ((buf = malloc(statbuf.st_size)) == NULL) {
4273 		(void) fprintf(stderr, "failed to allocate %llu bytes\n",
4274 		    (u_longlong_t)statbuf.st_size);
4275 		exit(1);
4276 	}
4277 
4278 	if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4279 		(void) fprintf(stderr, "failed to read %llu bytes\n",
4280 		    (u_longlong_t)statbuf.st_size);
4281 		exit(1);
4282 	}
4283 
4284 	(void) close(fd);
4285 
4286 	if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4287 		(void) fprintf(stderr, "failed to unpack nvlist\n");
4288 		exit(1);
4289 	}
4290 
4291 	free(buf);
4292 
4293 	dump_nvlist(config, 0);
4294 
4295 	nvlist_free(config);
4296 }
4297 
4298 /*
4299  * ZFS label nvlist stats
4300  */
4301 typedef struct zdb_nvl_stats {
4302 	int		zns_list_count;
4303 	int		zns_leaf_count;
4304 	size_t		zns_leaf_largest;
4305 	size_t		zns_leaf_total;
4306 	nvlist_t	*zns_string;
4307 	nvlist_t	*zns_uint64;
4308 	nvlist_t	*zns_boolean;
4309 } zdb_nvl_stats_t;
4310 
4311 static void
4312 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4313 {
4314 	nvlist_t *list, **array;
4315 	nvpair_t *nvp = NULL;
4316 	const char *name;
4317 	uint_t i, items;
4318 
4319 	stats->zns_list_count++;
4320 
4321 	while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4322 		name = nvpair_name(nvp);
4323 
4324 		switch (nvpair_type(nvp)) {
4325 		case DATA_TYPE_STRING:
4326 			fnvlist_add_string(stats->zns_string, name,
4327 			    fnvpair_value_string(nvp));
4328 			break;
4329 		case DATA_TYPE_UINT64:
4330 			fnvlist_add_uint64(stats->zns_uint64, name,
4331 			    fnvpair_value_uint64(nvp));
4332 			break;
4333 		case DATA_TYPE_BOOLEAN:
4334 			fnvlist_add_boolean(stats->zns_boolean, name);
4335 			break;
4336 		case DATA_TYPE_NVLIST:
4337 			if (nvpair_value_nvlist(nvp, &list) == 0)
4338 				collect_nvlist_stats(list, stats);
4339 			break;
4340 		case DATA_TYPE_NVLIST_ARRAY:
4341 			if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4342 				break;
4343 
4344 			for (i = 0; i < items; i++) {
4345 				collect_nvlist_stats(array[i], stats);
4346 
4347 				/* collect stats on leaf vdev */
4348 				if (strcmp(name, "children") == 0) {
4349 					size_t size;
4350 
4351 					(void) nvlist_size(array[i], &size,
4352 					    NV_ENCODE_XDR);
4353 					stats->zns_leaf_total += size;
4354 					if (size > stats->zns_leaf_largest)
4355 						stats->zns_leaf_largest = size;
4356 					stats->zns_leaf_count++;
4357 				}
4358 			}
4359 			break;
4360 		default:
4361 			(void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4362 		}
4363 	}
4364 }
4365 
4366 static void
4367 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4368 {
4369 	zdb_nvl_stats_t stats = { 0 };
4370 	size_t size, sum = 0, total;
4371 	size_t noise;
4372 
4373 	/* requires nvlist with non-unique names for stat collection */
4374 	VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4375 	VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4376 	VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4377 	VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4378 
4379 	(void) printf("\n\nZFS Label NVList Config Stats:\n");
4380 
4381 	VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4382 	(void) printf("  %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4383 	    (int)total, (int)(cap - total), 100.0 * total / cap);
4384 
4385 	collect_nvlist_stats(nvl, &stats);
4386 
4387 	VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4388 	size -= noise;
4389 	sum += size;
4390 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4391 	    (int)fnvlist_num_pairs(stats.zns_uint64),
4392 	    (int)size, 100.0 * size / total);
4393 
4394 	VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4395 	size -= noise;
4396 	sum += size;
4397 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4398 	    (int)fnvlist_num_pairs(stats.zns_string),
4399 	    (int)size, 100.0 * size / total);
4400 
4401 	VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4402 	size -= noise;
4403 	sum += size;
4404 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4405 	    (int)fnvlist_num_pairs(stats.zns_boolean),
4406 	    (int)size, 100.0 * size / total);
4407 
4408 	size = total - sum;	/* treat remainder as nvlist overhead */
4409 	(void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4410 	    stats.zns_list_count, (int)size, 100.0 * size / total);
4411 
4412 	if (stats.zns_leaf_count > 0) {
4413 		size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4414 
4415 		(void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4416 		    stats.zns_leaf_count, (int)average);
4417 		(void) printf("%24d bytes largest\n",
4418 		    (int)stats.zns_leaf_largest);
4419 
4420 		if (dump_opt['l'] >= 3 && average > 0)
4421 			(void) printf("  space for %d additional leaf vdevs\n",
4422 			    (int)((cap - total) / average));
4423 	}
4424 	(void) printf("\n");
4425 
4426 	nvlist_free(stats.zns_string);
4427 	nvlist_free(stats.zns_uint64);
4428 	nvlist_free(stats.zns_boolean);
4429 }
4430 
4431 typedef struct cksum_record {
4432 	zio_cksum_t cksum;
4433 	boolean_t labels[VDEV_LABELS];
4434 	avl_node_t link;
4435 } cksum_record_t;
4436 
4437 static int
4438 cksum_record_compare(const void *x1, const void *x2)
4439 {
4440 	const cksum_record_t *l = (cksum_record_t *)x1;
4441 	const cksum_record_t *r = (cksum_record_t *)x2;
4442 	int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4443 	int difference = 0;
4444 
4445 	for (int i = 0; i < arraysize; i++) {
4446 		difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4447 		if (difference)
4448 			break;
4449 	}
4450 
4451 	return (difference);
4452 }
4453 
4454 static cksum_record_t *
4455 cksum_record_alloc(zio_cksum_t *cksum, int l)
4456 {
4457 	cksum_record_t *rec;
4458 
4459 	rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4460 	rec->cksum = *cksum;
4461 	rec->labels[l] = B_TRUE;
4462 
4463 	return (rec);
4464 }
4465 
4466 static cksum_record_t *
4467 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4468 {
4469 	cksum_record_t lookup = { .cksum = *cksum };
4470 	avl_index_t where;
4471 
4472 	return (avl_find(tree, &lookup, &where));
4473 }
4474 
4475 static cksum_record_t *
4476 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4477 {
4478 	cksum_record_t *rec;
4479 
4480 	rec = cksum_record_lookup(tree, cksum);
4481 	if (rec) {
4482 		rec->labels[l] = B_TRUE;
4483 	} else {
4484 		rec = cksum_record_alloc(cksum, l);
4485 		avl_add(tree, rec);
4486 	}
4487 
4488 	return (rec);
4489 }
4490 
4491 static int
4492 first_label(cksum_record_t *rec)
4493 {
4494 	for (int i = 0; i < VDEV_LABELS; i++)
4495 		if (rec->labels[i])
4496 			return (i);
4497 
4498 	return (-1);
4499 }
4500 
4501 static void
4502 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4503 {
4504 	fputs(prefix, stdout);
4505 	for (int i = 0; i < VDEV_LABELS; i++)
4506 		if (rec->labels[i] == B_TRUE)
4507 			printf("%d ", i);
4508 	putchar('\n');
4509 }
4510 
4511 #define	MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4512 
4513 typedef struct zdb_label {
4514 	vdev_label_t label;
4515 	uint64_t label_offset;
4516 	nvlist_t *config_nv;
4517 	cksum_record_t *config;
4518 	cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4519 	boolean_t header_printed;
4520 	boolean_t read_failed;
4521 	boolean_t cksum_valid;
4522 } zdb_label_t;
4523 
4524 static void
4525 print_label_header(zdb_label_t *label, int l)
4526 {
4527 
4528 	if (dump_opt['q'])
4529 		return;
4530 
4531 	if (label->header_printed == B_TRUE)
4532 		return;
4533 
4534 	(void) printf("------------------------------------\n");
4535 	(void) printf("LABEL %d %s\n", l,
4536 	    label->cksum_valid ? "" : "(Bad label cksum)");
4537 	(void) printf("------------------------------------\n");
4538 
4539 	label->header_printed = B_TRUE;
4540 }
4541 
4542 static void
4543 print_l2arc_header(void)
4544 {
4545 	(void) printf("------------------------------------\n");
4546 	(void) printf("L2ARC device header\n");
4547 	(void) printf("------------------------------------\n");
4548 }
4549 
4550 static void
4551 print_l2arc_log_blocks(void)
4552 {
4553 	(void) printf("------------------------------------\n");
4554 	(void) printf("L2ARC device log blocks\n");
4555 	(void) printf("------------------------------------\n");
4556 }
4557 
4558 static void
4559 dump_l2arc_log_entries(uint64_t log_entries,
4560     l2arc_log_ent_phys_t *le, uint64_t i)
4561 {
4562 	for (int j = 0; j < log_entries; j++) {
4563 		dva_t dva = le[j].le_dva;
4564 		(void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4565 		    "vdev: %llu, offset: %llu\n",
4566 		    (u_longlong_t)i, j + 1,
4567 		    (u_longlong_t)DVA_GET_ASIZE(&dva),
4568 		    (u_longlong_t)DVA_GET_VDEV(&dva),
4569 		    (u_longlong_t)DVA_GET_OFFSET(&dva));
4570 		(void) printf("|\t\t\t\tbirth: %llu\n",
4571 		    (u_longlong_t)le[j].le_birth);
4572 		(void) printf("|\t\t\t\tlsize: %llu\n",
4573 		    (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4574 		(void) printf("|\t\t\t\tpsize: %llu\n",
4575 		    (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4576 		(void) printf("|\t\t\t\tcompr: %llu\n",
4577 		    (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4578 		(void) printf("|\t\t\t\tcomplevel: %llu\n",
4579 		    (u_longlong_t)(&le[j])->le_complevel);
4580 		(void) printf("|\t\t\t\ttype: %llu\n",
4581 		    (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4582 		(void) printf("|\t\t\t\tprotected: %llu\n",
4583 		    (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4584 		(void) printf("|\t\t\t\tprefetch: %llu\n",
4585 		    (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4586 		(void) printf("|\t\t\t\taddress: %llu\n",
4587 		    (u_longlong_t)le[j].le_daddr);
4588 		(void) printf("|\t\t\t\tARC state: %llu\n",
4589 		    (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4590 		(void) printf("|\n");
4591 	}
4592 	(void) printf("\n");
4593 }
4594 
4595 static void
4596 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4597 {
4598 	(void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4599 	(void) printf("|\t\tpayload_asize: %llu\n",
4600 	    (u_longlong_t)lbps->lbp_payload_asize);
4601 	(void) printf("|\t\tpayload_start: %llu\n",
4602 	    (u_longlong_t)lbps->lbp_payload_start);
4603 	(void) printf("|\t\tlsize: %llu\n",
4604 	    (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4605 	(void) printf("|\t\tasize: %llu\n",
4606 	    (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4607 	(void) printf("|\t\tcompralgo: %llu\n",
4608 	    (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4609 	(void) printf("|\t\tcksumalgo: %llu\n",
4610 	    (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4611 	(void) printf("|\n\n");
4612 }
4613 
4614 static void
4615 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4616     l2arc_dev_hdr_phys_t *rebuild)
4617 {
4618 	l2arc_log_blk_phys_t this_lb;
4619 	uint64_t asize;
4620 	l2arc_log_blkptr_t lbps[2];
4621 	abd_t *abd;
4622 	zio_cksum_t cksum;
4623 	int failed = 0;
4624 	l2arc_dev_t dev;
4625 
4626 	if (!dump_opt['q'])
4627 		print_l2arc_log_blocks();
4628 	memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4629 
4630 	dev.l2ad_evict = l2dhdr->dh_evict;
4631 	dev.l2ad_start = l2dhdr->dh_start;
4632 	dev.l2ad_end = l2dhdr->dh_end;
4633 
4634 	if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4635 		/* no log blocks to read */
4636 		if (!dump_opt['q']) {
4637 			(void) printf("No log blocks to read\n");
4638 			(void) printf("\n");
4639 		}
4640 		return;
4641 	} else {
4642 		dev.l2ad_hand = lbps[0].lbp_daddr +
4643 		    L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4644 	}
4645 
4646 	dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4647 
4648 	for (;;) {
4649 		if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4650 			break;
4651 
4652 		/* L2BLK_GET_PSIZE returns aligned size for log blocks */
4653 		asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4654 		if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4655 			if (!dump_opt['q']) {
4656 				(void) printf("Error while reading next log "
4657 				    "block\n\n");
4658 			}
4659 			break;
4660 		}
4661 
4662 		fletcher_4_native_varsize(&this_lb, asize, &cksum);
4663 		if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4664 			failed++;
4665 			if (!dump_opt['q']) {
4666 				(void) printf("Invalid cksum\n");
4667 				dump_l2arc_log_blkptr(&lbps[0]);
4668 			}
4669 			break;
4670 		}
4671 
4672 		switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4673 		case ZIO_COMPRESS_OFF:
4674 			break;
4675 		default:
4676 			abd = abd_alloc_for_io(asize, B_TRUE);
4677 			abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4678 			if (zio_decompress_data(L2BLK_GET_COMPRESS(
4679 			    (&lbps[0])->lbp_prop), abd, &this_lb,
4680 			    asize, sizeof (this_lb), NULL) != 0) {
4681 				(void) printf("L2ARC block decompression "
4682 				    "failed\n");
4683 				abd_free(abd);
4684 				goto out;
4685 			}
4686 			abd_free(abd);
4687 			break;
4688 		}
4689 
4690 		if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4691 			byteswap_uint64_array(&this_lb, sizeof (this_lb));
4692 		if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4693 			if (!dump_opt['q'])
4694 				(void) printf("Invalid log block magic\n\n");
4695 			break;
4696 		}
4697 
4698 		rebuild->dh_lb_count++;
4699 		rebuild->dh_lb_asize += asize;
4700 		if (dump_opt['l'] > 1 && !dump_opt['q']) {
4701 			(void) printf("lb[%4llu]\tmagic: %llu\n",
4702 			    (u_longlong_t)rebuild->dh_lb_count,
4703 			    (u_longlong_t)this_lb.lb_magic);
4704 			dump_l2arc_log_blkptr(&lbps[0]);
4705 		}
4706 
4707 		if (dump_opt['l'] > 2 && !dump_opt['q'])
4708 			dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4709 			    this_lb.lb_entries,
4710 			    rebuild->dh_lb_count);
4711 
4712 		if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4713 		    lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4714 		    !dev.l2ad_first)
4715 			break;
4716 
4717 		lbps[0] = lbps[1];
4718 		lbps[1] = this_lb.lb_prev_lbp;
4719 	}
4720 out:
4721 	if (!dump_opt['q']) {
4722 		(void) printf("log_blk_count:\t %llu with valid cksum\n",
4723 		    (u_longlong_t)rebuild->dh_lb_count);
4724 		(void) printf("\t\t %d with invalid cksum\n", failed);
4725 		(void) printf("log_blk_asize:\t %llu\n\n",
4726 		    (u_longlong_t)rebuild->dh_lb_asize);
4727 	}
4728 }
4729 
4730 static int
4731 dump_l2arc_header(int fd)
4732 {
4733 	l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4734 	int error = B_FALSE;
4735 
4736 	if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4737 	    VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4738 		error = B_TRUE;
4739 	} else {
4740 		if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4741 			byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4742 
4743 		if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4744 			error = B_TRUE;
4745 	}
4746 
4747 	if (error) {
4748 		(void) printf("L2ARC device header not found\n\n");
4749 		/* Do not return an error here for backward compatibility */
4750 		return (0);
4751 	} else if (!dump_opt['q']) {
4752 		print_l2arc_header();
4753 
4754 		(void) printf("    magic: %llu\n",
4755 		    (u_longlong_t)l2dhdr.dh_magic);
4756 		(void) printf("    version: %llu\n",
4757 		    (u_longlong_t)l2dhdr.dh_version);
4758 		(void) printf("    pool_guid: %llu\n",
4759 		    (u_longlong_t)l2dhdr.dh_spa_guid);
4760 		(void) printf("    flags: %llu\n",
4761 		    (u_longlong_t)l2dhdr.dh_flags);
4762 		(void) printf("    start_lbps[0]: %llu\n",
4763 		    (u_longlong_t)
4764 		    l2dhdr.dh_start_lbps[0].lbp_daddr);
4765 		(void) printf("    start_lbps[1]: %llu\n",
4766 		    (u_longlong_t)
4767 		    l2dhdr.dh_start_lbps[1].lbp_daddr);
4768 		(void) printf("    log_blk_ent: %llu\n",
4769 		    (u_longlong_t)l2dhdr.dh_log_entries);
4770 		(void) printf("    start: %llu\n",
4771 		    (u_longlong_t)l2dhdr.dh_start);
4772 		(void) printf("    end: %llu\n",
4773 		    (u_longlong_t)l2dhdr.dh_end);
4774 		(void) printf("    evict: %llu\n",
4775 		    (u_longlong_t)l2dhdr.dh_evict);
4776 		(void) printf("    lb_asize_refcount: %llu\n",
4777 		    (u_longlong_t)l2dhdr.dh_lb_asize);
4778 		(void) printf("    lb_count_refcount: %llu\n",
4779 		    (u_longlong_t)l2dhdr.dh_lb_count);
4780 		(void) printf("    trim_action_time: %llu\n",
4781 		    (u_longlong_t)l2dhdr.dh_trim_action_time);
4782 		(void) printf("    trim_state: %llu\n\n",
4783 		    (u_longlong_t)l2dhdr.dh_trim_state);
4784 	}
4785 
4786 	dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4787 	/*
4788 	 * The total aligned size of log blocks and the number of log blocks
4789 	 * reported in the header of the device may be less than what zdb
4790 	 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4791 	 * This happens because dump_l2arc_log_blocks() lacks the memory
4792 	 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4793 	 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4794 	 * and dh_lb_count will be lower to begin with than what exists on the
4795 	 * device. This is normal and zdb should not exit with an error. The
4796 	 * opposite case should never happen though, the values reported in the
4797 	 * header should never be higher than what dump_l2arc_log_blocks() and
4798 	 * l2arc_rebuild() report. If this happens there is a leak in the
4799 	 * accounting of log blocks.
4800 	 */
4801 	if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4802 	    l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4803 		return (1);
4804 
4805 	return (0);
4806 }
4807 
4808 static void
4809 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4810 {
4811 	if (dump_opt['q'])
4812 		return;
4813 
4814 	if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4815 		return;
4816 
4817 	print_label_header(label, l);
4818 	dump_nvlist(label->config_nv, 4);
4819 	print_label_numbers("    labels = ", label->config);
4820 
4821 	if (dump_opt['l'] >= 2)
4822 		dump_nvlist_stats(label->config_nv, buflen);
4823 }
4824 
4825 #define	ZDB_MAX_UB_HEADER_SIZE 32
4826 
4827 static void
4828 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4829 {
4830 
4831 	vdev_t vd;
4832 	char header[ZDB_MAX_UB_HEADER_SIZE];
4833 
4834 	vd.vdev_ashift = ashift;
4835 	vd.vdev_top = &vd;
4836 
4837 	for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4838 		uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4839 		uberblock_t *ub = (void *)((char *)&label->label + uoff);
4840 		cksum_record_t *rec = label->uberblocks[i];
4841 
4842 		if (rec == NULL) {
4843 			if (dump_opt['u'] >= 2) {
4844 				print_label_header(label, label_num);
4845 				(void) printf("    Uberblock[%d] invalid\n", i);
4846 			}
4847 			continue;
4848 		}
4849 
4850 		if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4851 			continue;
4852 
4853 		if ((dump_opt['u'] < 4) &&
4854 		    (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4855 		    (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4856 			continue;
4857 
4858 		print_label_header(label, label_num);
4859 		(void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4860 		    "    Uberblock[%d]\n", i);
4861 		dump_uberblock(ub, header, "");
4862 		print_label_numbers("        labels = ", rec);
4863 	}
4864 }
4865 
4866 static char curpath[PATH_MAX];
4867 
4868 /*
4869  * Iterate through the path components, recursively passing
4870  * current one's obj and remaining path until we find the obj
4871  * for the last one.
4872  */
4873 static int
4874 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4875 {
4876 	int err;
4877 	boolean_t header = B_TRUE;
4878 	uint64_t child_obj;
4879 	char *s;
4880 	dmu_buf_t *db;
4881 	dmu_object_info_t doi;
4882 
4883 	if ((s = strchr(name, '/')) != NULL)
4884 		*s = '\0';
4885 	err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4886 
4887 	(void) strlcat(curpath, name, sizeof (curpath));
4888 
4889 	if (err != 0) {
4890 		(void) fprintf(stderr, "failed to lookup %s: %s\n",
4891 		    curpath, strerror(err));
4892 		return (err);
4893 	}
4894 
4895 	child_obj = ZFS_DIRENT_OBJ(child_obj);
4896 	err = sa_buf_hold(os, child_obj, FTAG, &db);
4897 	if (err != 0) {
4898 		(void) fprintf(stderr,
4899 		    "failed to get SA dbuf for obj %llu: %s\n",
4900 		    (u_longlong_t)child_obj, strerror(err));
4901 		return (EINVAL);
4902 	}
4903 	dmu_object_info_from_db(db, &doi);
4904 	sa_buf_rele(db, FTAG);
4905 
4906 	if (doi.doi_bonus_type != DMU_OT_SA &&
4907 	    doi.doi_bonus_type != DMU_OT_ZNODE) {
4908 		(void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4909 		    doi.doi_bonus_type, (u_longlong_t)child_obj);
4910 		return (EINVAL);
4911 	}
4912 
4913 	if (dump_opt['v'] > 6) {
4914 		(void) printf("obj=%llu %s type=%d bonustype=%d\n",
4915 		    (u_longlong_t)child_obj, curpath, doi.doi_type,
4916 		    doi.doi_bonus_type);
4917 	}
4918 
4919 	(void) strlcat(curpath, "/", sizeof (curpath));
4920 
4921 	switch (doi.doi_type) {
4922 	case DMU_OT_DIRECTORY_CONTENTS:
4923 		if (s != NULL && *(s + 1) != '\0')
4924 			return (dump_path_impl(os, child_obj, s + 1, retobj));
4925 		zfs_fallthrough;
4926 	case DMU_OT_PLAIN_FILE_CONTENTS:
4927 		if (retobj != NULL) {
4928 			*retobj = child_obj;
4929 		} else {
4930 			dump_object(os, child_obj, dump_opt['v'], &header,
4931 			    NULL, 0);
4932 		}
4933 		return (0);
4934 	default:
4935 		(void) fprintf(stderr, "object %llu has non-file/directory "
4936 		    "type %d\n", (u_longlong_t)obj, doi.doi_type);
4937 		break;
4938 	}
4939 
4940 	return (EINVAL);
4941 }
4942 
4943 /*
4944  * Dump the blocks for the object specified by path inside the dataset.
4945  */
4946 static int
4947 dump_path(char *ds, char *path, uint64_t *retobj)
4948 {
4949 	int err;
4950 	objset_t *os;
4951 	uint64_t root_obj;
4952 
4953 	err = open_objset(ds, FTAG, &os);
4954 	if (err != 0)
4955 		return (err);
4956 
4957 	err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
4958 	if (err != 0) {
4959 		(void) fprintf(stderr, "can't lookup root znode: %s\n",
4960 		    strerror(err));
4961 		close_objset(os, FTAG);
4962 		return (EINVAL);
4963 	}
4964 
4965 	(void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
4966 
4967 	err = dump_path_impl(os, root_obj, path, retobj);
4968 
4969 	close_objset(os, FTAG);
4970 	return (err);
4971 }
4972 
4973 static int
4974 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
4975 {
4976 	const char *p = (const char *)buf;
4977 	ssize_t nwritten;
4978 
4979 	(void) os;
4980 	(void) arg;
4981 
4982 	/* Write the data out, handling short writes and signals. */
4983 	while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
4984 		if (nwritten < 0) {
4985 			if (errno == EINTR)
4986 				continue;
4987 			return (errno);
4988 		}
4989 		p += nwritten;
4990 		len -= nwritten;
4991 	}
4992 
4993 	return (0);
4994 }
4995 
4996 static void
4997 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
4998 {
4999 	boolean_t embed = B_FALSE;
5000 	boolean_t large_block = B_FALSE;
5001 	boolean_t compress = B_FALSE;
5002 	boolean_t raw = B_FALSE;
5003 
5004 	const char *c;
5005 	for (c = flagstr; c != NULL && *c != '\0'; c++) {
5006 		switch (*c) {
5007 			case 'e':
5008 				embed = B_TRUE;
5009 				break;
5010 			case 'L':
5011 				large_block = B_TRUE;
5012 				break;
5013 			case 'c':
5014 				compress = B_TRUE;
5015 				break;
5016 			case 'w':
5017 				raw = B_TRUE;
5018 				break;
5019 			default:
5020 				fprintf(stderr, "dump_backup: invalid flag "
5021 				    "'%c'\n", *c);
5022 				return;
5023 		}
5024 	}
5025 
5026 	if (isatty(STDOUT_FILENO)) {
5027 		fprintf(stderr, "dump_backup: stream cannot be written "
5028 		    "to a terminal\n");
5029 		return;
5030 	}
5031 
5032 	offset_t off = 0;
5033 	dmu_send_outparams_t out = {
5034 	    .dso_outfunc = dump_backup_bytes,
5035 	    .dso_dryrun  = B_FALSE,
5036 	};
5037 
5038 	int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5039 	    large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5040 	    &off, &out);
5041 	if (err != 0) {
5042 		fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5043 		    strerror(err));
5044 		return;
5045 	}
5046 }
5047 
5048 static int
5049 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5050 {
5051 	int err = 0;
5052 	uint64_t size, readsize, oursize, offset;
5053 	ssize_t writesize;
5054 	sa_handle_t *hdl;
5055 
5056 	(void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5057 	    destfile);
5058 
5059 	VERIFY3P(os, ==, sa_os);
5060 	if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5061 		(void) printf("Failed to get handle for SA znode\n");
5062 		return (err);
5063 	}
5064 	if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5065 		(void) sa_handle_destroy(hdl);
5066 		return (err);
5067 	}
5068 	(void) sa_handle_destroy(hdl);
5069 
5070 	(void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5071 	    size);
5072 	if (size == 0) {
5073 		return (EINVAL);
5074 	}
5075 
5076 	int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5077 	if (fd == -1)
5078 		return (errno);
5079 	/*
5080 	 * We cap the size at 1 mebibyte here to prevent
5081 	 * allocation failures and nigh-infinite printing if the
5082 	 * object is extremely large.
5083 	 */
5084 	oursize = MIN(size, 1 << 20);
5085 	offset = 0;
5086 	char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5087 	if (buf == NULL) {
5088 		(void) close(fd);
5089 		return (ENOMEM);
5090 	}
5091 
5092 	while (offset < size) {
5093 		readsize = MIN(size - offset, 1 << 20);
5094 		err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5095 		if (err != 0) {
5096 			(void) printf("got error %u from dmu_read\n", err);
5097 			kmem_free(buf, oursize);
5098 			(void) close(fd);
5099 			return (err);
5100 		}
5101 		if (dump_opt['v'] > 3) {
5102 			(void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5103 			    " error=%d\n", offset, readsize, err);
5104 		}
5105 
5106 		writesize = write(fd, buf, readsize);
5107 		if (writesize < 0) {
5108 			err = errno;
5109 			break;
5110 		} else if (writesize != readsize) {
5111 			/* Incomplete write */
5112 			(void) fprintf(stderr, "Short write, only wrote %llu of"
5113 			    " %" PRIu64 " bytes, exiting...\n",
5114 			    (u_longlong_t)writesize, readsize);
5115 			break;
5116 		}
5117 
5118 		offset += readsize;
5119 	}
5120 
5121 	(void) close(fd);
5122 
5123 	if (buf != NULL)
5124 		kmem_free(buf, oursize);
5125 
5126 	return (err);
5127 }
5128 
5129 static boolean_t
5130 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5131 {
5132 	zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5133 	zio_cksum_t expected_cksum;
5134 	zio_cksum_t actual_cksum;
5135 	zio_cksum_t verifier;
5136 	zio_eck_t *eck;
5137 	int byteswap;
5138 
5139 	void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5140 	eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5141 
5142 	offset += offsetof(vdev_label_t, vl_vdev_phys);
5143 	ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5144 
5145 	byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5146 	if (byteswap)
5147 		byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5148 
5149 	expected_cksum = eck->zec_cksum;
5150 	eck->zec_cksum = verifier;
5151 
5152 	abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5153 	ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5154 	abd_free(abd);
5155 
5156 	if (byteswap)
5157 		byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5158 
5159 	if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5160 		return (B_TRUE);
5161 
5162 	return (B_FALSE);
5163 }
5164 
5165 static int
5166 dump_label(const char *dev)
5167 {
5168 	char path[MAXPATHLEN];
5169 	zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5170 	uint64_t psize, ashift, l2cache;
5171 	struct stat64 statbuf;
5172 	boolean_t config_found = B_FALSE;
5173 	boolean_t error = B_FALSE;
5174 	boolean_t read_l2arc_header = B_FALSE;
5175 	avl_tree_t config_tree;
5176 	avl_tree_t uberblock_tree;
5177 	void *node, *cookie;
5178 	int fd;
5179 
5180 	/*
5181 	 * Check if we were given absolute path and use it as is.
5182 	 * Otherwise if the provided vdev name doesn't point to a file,
5183 	 * try prepending expected disk paths and partition numbers.
5184 	 */
5185 	(void) strlcpy(path, dev, sizeof (path));
5186 	if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5187 		int error;
5188 
5189 		error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5190 		if (error == 0 && zfs_dev_is_whole_disk(path)) {
5191 			if (zfs_append_partition(path, MAXPATHLEN) == -1)
5192 				error = ENOENT;
5193 		}
5194 
5195 		if (error || (stat64(path, &statbuf) != 0)) {
5196 			(void) printf("failed to find device %s, try "
5197 			    "specifying absolute path instead\n", dev);
5198 			return (1);
5199 		}
5200 	}
5201 
5202 	if ((fd = open64(path, O_RDONLY)) < 0) {
5203 		(void) printf("cannot open '%s': %s\n", path, strerror(errno));
5204 		exit(1);
5205 	}
5206 
5207 	if (fstat64_blk(fd, &statbuf) != 0) {
5208 		(void) printf("failed to stat '%s': %s\n", path,
5209 		    strerror(errno));
5210 		(void) close(fd);
5211 		exit(1);
5212 	}
5213 
5214 	if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5215 		(void) printf("failed to invalidate cache '%s' : %s\n", path,
5216 		    strerror(errno));
5217 
5218 	avl_create(&config_tree, cksum_record_compare,
5219 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5220 	avl_create(&uberblock_tree, cksum_record_compare,
5221 	    sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5222 
5223 	psize = statbuf.st_size;
5224 	psize = P2ALIGN(psize, (uint64_t)sizeof (vdev_label_t));
5225 	ashift = SPA_MINBLOCKSHIFT;
5226 
5227 	/*
5228 	 * 1. Read the label from disk
5229 	 * 2. Verify label cksum
5230 	 * 3. Unpack the configuration and insert in config tree.
5231 	 * 4. Traverse all uberblocks and insert in uberblock tree.
5232 	 */
5233 	for (int l = 0; l < VDEV_LABELS; l++) {
5234 		zdb_label_t *label = &labels[l];
5235 		char *buf = label->label.vl_vdev_phys.vp_nvlist;
5236 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5237 		nvlist_t *config;
5238 		cksum_record_t *rec;
5239 		zio_cksum_t cksum;
5240 		vdev_t vd;
5241 
5242 		label->label_offset = vdev_label_offset(psize, l, 0);
5243 
5244 		if (pread64(fd, &label->label, sizeof (label->label),
5245 		    label->label_offset) != sizeof (label->label)) {
5246 			if (!dump_opt['q'])
5247 				(void) printf("failed to read label %d\n", l);
5248 			label->read_failed = B_TRUE;
5249 			error = B_TRUE;
5250 			continue;
5251 		}
5252 
5253 		label->read_failed = B_FALSE;
5254 		label->cksum_valid = label_cksum_valid(&label->label,
5255 		    label->label_offset);
5256 
5257 		if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5258 			nvlist_t *vdev_tree = NULL;
5259 			size_t size;
5260 
5261 			if ((nvlist_lookup_nvlist(config,
5262 			    ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5263 			    (nvlist_lookup_uint64(vdev_tree,
5264 			    ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5265 				ashift = SPA_MINBLOCKSHIFT;
5266 
5267 			if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5268 				size = buflen;
5269 
5270 			/* If the device is a cache device read the header. */
5271 			if (!read_l2arc_header) {
5272 				if (nvlist_lookup_uint64(config,
5273 				    ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5274 				    l2cache == POOL_STATE_L2CACHE) {
5275 					read_l2arc_header = B_TRUE;
5276 				}
5277 			}
5278 
5279 			fletcher_4_native_varsize(buf, size, &cksum);
5280 			rec = cksum_record_insert(&config_tree, &cksum, l);
5281 
5282 			label->config = rec;
5283 			label->config_nv = config;
5284 			config_found = B_TRUE;
5285 		} else {
5286 			error = B_TRUE;
5287 		}
5288 
5289 		vd.vdev_ashift = ashift;
5290 		vd.vdev_top = &vd;
5291 
5292 		for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5293 			uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5294 			uberblock_t *ub = (void *)((char *)label + uoff);
5295 
5296 			if (uberblock_verify(ub))
5297 				continue;
5298 
5299 			fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5300 			rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5301 
5302 			label->uberblocks[i] = rec;
5303 		}
5304 	}
5305 
5306 	/*
5307 	 * Dump the label and uberblocks.
5308 	 */
5309 	for (int l = 0; l < VDEV_LABELS; l++) {
5310 		zdb_label_t *label = &labels[l];
5311 		size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5312 
5313 		if (label->read_failed == B_TRUE)
5314 			continue;
5315 
5316 		if (label->config_nv) {
5317 			dump_config_from_label(label, buflen, l);
5318 		} else {
5319 			if (!dump_opt['q'])
5320 				(void) printf("failed to unpack label %d\n", l);
5321 		}
5322 
5323 		if (dump_opt['u'])
5324 			dump_label_uberblocks(label, ashift, l);
5325 
5326 		nvlist_free(label->config_nv);
5327 	}
5328 
5329 	/*
5330 	 * Dump the L2ARC header, if existent.
5331 	 */
5332 	if (read_l2arc_header)
5333 		error |= dump_l2arc_header(fd);
5334 
5335 	cookie = NULL;
5336 	while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5337 		umem_free(node, sizeof (cksum_record_t));
5338 
5339 	cookie = NULL;
5340 	while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5341 		umem_free(node, sizeof (cksum_record_t));
5342 
5343 	avl_destroy(&config_tree);
5344 	avl_destroy(&uberblock_tree);
5345 
5346 	(void) close(fd);
5347 
5348 	return (config_found == B_FALSE ? 2 :
5349 	    (error == B_TRUE ? 1 : 0));
5350 }
5351 
5352 static uint64_t dataset_feature_count[SPA_FEATURES];
5353 static uint64_t global_feature_count[SPA_FEATURES];
5354 static uint64_t remap_deadlist_count = 0;
5355 
5356 static int
5357 dump_one_objset(const char *dsname, void *arg)
5358 {
5359 	(void) arg;
5360 	int error;
5361 	objset_t *os;
5362 	spa_feature_t f;
5363 
5364 	error = open_objset(dsname, FTAG, &os);
5365 	if (error != 0)
5366 		return (0);
5367 
5368 	for (f = 0; f < SPA_FEATURES; f++) {
5369 		if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5370 			continue;
5371 		ASSERT(spa_feature_table[f].fi_flags &
5372 		    ZFEATURE_FLAG_PER_DATASET);
5373 		dataset_feature_count[f]++;
5374 	}
5375 
5376 	if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5377 		remap_deadlist_count++;
5378 	}
5379 
5380 	for (dsl_bookmark_node_t *dbn =
5381 	    avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5382 	    dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5383 		mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5384 		if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5385 			global_feature_count[
5386 			    SPA_FEATURE_REDACTION_BOOKMARKS]++;
5387 			objset_t *mos = os->os_spa->spa_meta_objset;
5388 			dnode_t *rl;
5389 			VERIFY0(dnode_hold(mos,
5390 			    dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5391 			if (rl->dn_have_spill) {
5392 				global_feature_count[
5393 				    SPA_FEATURE_REDACTION_LIST_SPILL]++;
5394 			}
5395 		}
5396 		if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5397 			global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5398 	}
5399 
5400 	if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5401 	    !dmu_objset_is_snapshot(os)) {
5402 		global_feature_count[SPA_FEATURE_LIVELIST]++;
5403 	}
5404 
5405 	dump_objset(os);
5406 	close_objset(os, FTAG);
5407 	fuid_table_destroy();
5408 	return (0);
5409 }
5410 
5411 /*
5412  * Block statistics.
5413  */
5414 #define	PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5415 typedef struct zdb_blkstats {
5416 	uint64_t zb_asize;
5417 	uint64_t zb_lsize;
5418 	uint64_t zb_psize;
5419 	uint64_t zb_count;
5420 	uint64_t zb_gangs;
5421 	uint64_t zb_ditto_samevdev;
5422 	uint64_t zb_ditto_same_ms;
5423 	uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5424 } zdb_blkstats_t;
5425 
5426 /*
5427  * Extended object types to report deferred frees and dedup auto-ditto blocks.
5428  */
5429 #define	ZDB_OT_DEFERRED	(DMU_OT_NUMTYPES + 0)
5430 #define	ZDB_OT_DITTO	(DMU_OT_NUMTYPES + 1)
5431 #define	ZDB_OT_OTHER	(DMU_OT_NUMTYPES + 2)
5432 #define	ZDB_OT_TOTAL	(DMU_OT_NUMTYPES + 3)
5433 
5434 static const char *zdb_ot_extname[] = {
5435 	"deferred free",
5436 	"dedup ditto",
5437 	"other",
5438 	"Total",
5439 };
5440 
5441 #define	ZB_TOTAL	DN_MAX_LEVELS
5442 #define	SPA_MAX_FOR_16M	(SPA_MAXBLOCKSHIFT+1)
5443 
5444 typedef struct zdb_brt_entry {
5445 	dva_t		zbre_dva;
5446 	uint64_t	zbre_refcount;
5447 	avl_node_t	zbre_node;
5448 } zdb_brt_entry_t;
5449 
5450 typedef struct zdb_cb {
5451 	zdb_blkstats_t	zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5452 	uint64_t	zcb_removing_size;
5453 	uint64_t	zcb_checkpoint_size;
5454 	uint64_t	zcb_dedup_asize;
5455 	uint64_t	zcb_dedup_blocks;
5456 	uint64_t	zcb_clone_asize;
5457 	uint64_t	zcb_clone_blocks;
5458 	uint64_t	zcb_psize_count[SPA_MAX_FOR_16M];
5459 	uint64_t	zcb_lsize_count[SPA_MAX_FOR_16M];
5460 	uint64_t	zcb_asize_count[SPA_MAX_FOR_16M];
5461 	uint64_t	zcb_psize_len[SPA_MAX_FOR_16M];
5462 	uint64_t	zcb_lsize_len[SPA_MAX_FOR_16M];
5463 	uint64_t	zcb_asize_len[SPA_MAX_FOR_16M];
5464 	uint64_t	zcb_psize_total;
5465 	uint64_t	zcb_lsize_total;
5466 	uint64_t	zcb_asize_total;
5467 	uint64_t	zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5468 	uint64_t	zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5469 	    [BPE_PAYLOAD_SIZE + 1];
5470 	uint64_t	zcb_start;
5471 	hrtime_t	zcb_lastprint;
5472 	uint64_t	zcb_totalasize;
5473 	uint64_t	zcb_errors[256];
5474 	int		zcb_readfails;
5475 	int		zcb_haderrors;
5476 	spa_t		*zcb_spa;
5477 	uint32_t	**zcb_vd_obsolete_counts;
5478 	avl_tree_t	zcb_brt;
5479 	boolean_t	zcb_brt_is_active;
5480 } zdb_cb_t;
5481 
5482 /* test if two DVA offsets from same vdev are within the same metaslab */
5483 static boolean_t
5484 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5485 {
5486 	vdev_t *vd = vdev_lookup_top(spa, vdev);
5487 	uint64_t ms_shift = vd->vdev_ms_shift;
5488 
5489 	return ((off1 >> ms_shift) == (off2 >> ms_shift));
5490 }
5491 
5492 /*
5493  * Used to simplify reporting of the histogram data.
5494  */
5495 typedef struct one_histo {
5496 	const char *name;
5497 	uint64_t *count;
5498 	uint64_t *len;
5499 	uint64_t cumulative;
5500 } one_histo_t;
5501 
5502 /*
5503  * The number of separate histograms processed for psize, lsize and asize.
5504  */
5505 #define	NUM_HISTO 3
5506 
5507 /*
5508  * This routine will create a fixed column size output of three different
5509  * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5510  * the count, length and cumulative length of the psize, lsize and
5511  * asize blocks.
5512  *
5513  * All three types of blocks are listed on a single line
5514  *
5515  * By default the table is printed in nicenumber format (e.g. 123K) but
5516  * if the '-P' parameter is specified then the full raw number (parseable)
5517  * is printed out.
5518  */
5519 static void
5520 dump_size_histograms(zdb_cb_t *zcb)
5521 {
5522 	/*
5523 	 * A temporary buffer that allows us to convert a number into
5524 	 * a string using zdb_nicenumber to allow either raw or human
5525 	 * readable numbers to be output.
5526 	 */
5527 	char numbuf[32];
5528 
5529 	/*
5530 	 * Define titles which are used in the headers of the tables
5531 	 * printed by this routine.
5532 	 */
5533 	const char blocksize_title1[] = "block";
5534 	const char blocksize_title2[] = "size";
5535 	const char count_title[] = "Count";
5536 	const char length_title[] = "Size";
5537 	const char cumulative_title[] = "Cum.";
5538 
5539 	/*
5540 	 * Setup the histogram arrays (psize, lsize, and asize).
5541 	 */
5542 	one_histo_t parm_histo[NUM_HISTO];
5543 
5544 	parm_histo[0].name = "psize";
5545 	parm_histo[0].count = zcb->zcb_psize_count;
5546 	parm_histo[0].len = zcb->zcb_psize_len;
5547 	parm_histo[0].cumulative = 0;
5548 
5549 	parm_histo[1].name = "lsize";
5550 	parm_histo[1].count = zcb->zcb_lsize_count;
5551 	parm_histo[1].len = zcb->zcb_lsize_len;
5552 	parm_histo[1].cumulative = 0;
5553 
5554 	parm_histo[2].name = "asize";
5555 	parm_histo[2].count = zcb->zcb_asize_count;
5556 	parm_histo[2].len = zcb->zcb_asize_len;
5557 	parm_histo[2].cumulative = 0;
5558 
5559 
5560 	(void) printf("\nBlock Size Histogram\n");
5561 	/*
5562 	 * Print the first line titles
5563 	 */
5564 	if (dump_opt['P'])
5565 		(void) printf("\n%s\t", blocksize_title1);
5566 	else
5567 		(void) printf("\n%7s   ", blocksize_title1);
5568 
5569 	for (int j = 0; j < NUM_HISTO; j++) {
5570 		if (dump_opt['P']) {
5571 			if (j < NUM_HISTO - 1) {
5572 				(void) printf("%s\t\t\t", parm_histo[j].name);
5573 			} else {
5574 				/* Don't print trailing spaces */
5575 				(void) printf("  %s", parm_histo[j].name);
5576 			}
5577 		} else {
5578 			if (j < NUM_HISTO - 1) {
5579 				/* Left aligned strings in the output */
5580 				(void) printf("%-7s              ",
5581 				    parm_histo[j].name);
5582 			} else {
5583 				/* Don't print trailing spaces */
5584 				(void) printf("%s", parm_histo[j].name);
5585 			}
5586 		}
5587 	}
5588 	(void) printf("\n");
5589 
5590 	/*
5591 	 * Print the second line titles
5592 	 */
5593 	if (dump_opt['P']) {
5594 		(void) printf("%s\t", blocksize_title2);
5595 	} else {
5596 		(void) printf("%7s ", blocksize_title2);
5597 	}
5598 
5599 	for (int i = 0; i < NUM_HISTO; i++) {
5600 		if (dump_opt['P']) {
5601 			(void) printf("%s\t%s\t%s\t",
5602 			    count_title, length_title, cumulative_title);
5603 		} else {
5604 			(void) printf("%7s%7s%7s",
5605 			    count_title, length_title, cumulative_title);
5606 		}
5607 	}
5608 	(void) printf("\n");
5609 
5610 	/*
5611 	 * Print the rows
5612 	 */
5613 	for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5614 
5615 		/*
5616 		 * Print the first column showing the blocksize
5617 		 */
5618 		zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5619 
5620 		if (dump_opt['P']) {
5621 			printf("%s", numbuf);
5622 		} else {
5623 			printf("%7s:", numbuf);
5624 		}
5625 
5626 		/*
5627 		 * Print the remaining set of 3 columns per size:
5628 		 * for psize, lsize and asize
5629 		 */
5630 		for (int j = 0; j < NUM_HISTO; j++) {
5631 			parm_histo[j].cumulative += parm_histo[j].len[i];
5632 
5633 			zdb_nicenum(parm_histo[j].count[i],
5634 			    numbuf, sizeof (numbuf));
5635 			if (dump_opt['P'])
5636 				(void) printf("\t%s", numbuf);
5637 			else
5638 				(void) printf("%7s", numbuf);
5639 
5640 			zdb_nicenum(parm_histo[j].len[i],
5641 			    numbuf, sizeof (numbuf));
5642 			if (dump_opt['P'])
5643 				(void) printf("\t%s", numbuf);
5644 			else
5645 				(void) printf("%7s", numbuf);
5646 
5647 			zdb_nicenum(parm_histo[j].cumulative,
5648 			    numbuf, sizeof (numbuf));
5649 			if (dump_opt['P'])
5650 				(void) printf("\t%s", numbuf);
5651 			else
5652 				(void) printf("%7s", numbuf);
5653 		}
5654 		(void) printf("\n");
5655 	}
5656 }
5657 
5658 static void
5659 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5660     dmu_object_type_t type)
5661 {
5662 	uint64_t refcnt = 0;
5663 	int i;
5664 
5665 	ASSERT(type < ZDB_OT_TOTAL);
5666 
5667 	if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5668 		return;
5669 
5670 	spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5671 
5672 	for (i = 0; i < 4; i++) {
5673 		int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5674 		int t = (i & 1) ? type : ZDB_OT_TOTAL;
5675 		int equal;
5676 		zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5677 
5678 		zb->zb_asize += BP_GET_ASIZE(bp);
5679 		zb->zb_lsize += BP_GET_LSIZE(bp);
5680 		zb->zb_psize += BP_GET_PSIZE(bp);
5681 		zb->zb_count++;
5682 
5683 		/*
5684 		 * The histogram is only big enough to record blocks up to
5685 		 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5686 		 * "other", bucket.
5687 		 */
5688 		unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5689 		idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5690 		zb->zb_psize_histogram[idx]++;
5691 
5692 		zb->zb_gangs += BP_COUNT_GANG(bp);
5693 
5694 		switch (BP_GET_NDVAS(bp)) {
5695 		case 2:
5696 			if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5697 			    DVA_GET_VDEV(&bp->blk_dva[1])) {
5698 				zb->zb_ditto_samevdev++;
5699 
5700 				if (same_metaslab(zcb->zcb_spa,
5701 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5702 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5703 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5704 					zb->zb_ditto_same_ms++;
5705 			}
5706 			break;
5707 		case 3:
5708 			equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5709 			    DVA_GET_VDEV(&bp->blk_dva[1])) +
5710 			    (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5711 			    DVA_GET_VDEV(&bp->blk_dva[2])) +
5712 			    (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5713 			    DVA_GET_VDEV(&bp->blk_dva[2]));
5714 			if (equal != 0) {
5715 				zb->zb_ditto_samevdev++;
5716 
5717 				if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5718 				    DVA_GET_VDEV(&bp->blk_dva[1]) &&
5719 				    same_metaslab(zcb->zcb_spa,
5720 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5721 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5722 				    DVA_GET_OFFSET(&bp->blk_dva[1])))
5723 					zb->zb_ditto_same_ms++;
5724 				else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5725 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5726 				    same_metaslab(zcb->zcb_spa,
5727 				    DVA_GET_VDEV(&bp->blk_dva[0]),
5728 				    DVA_GET_OFFSET(&bp->blk_dva[0]),
5729 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5730 					zb->zb_ditto_same_ms++;
5731 				else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5732 				    DVA_GET_VDEV(&bp->blk_dva[2]) &&
5733 				    same_metaslab(zcb->zcb_spa,
5734 				    DVA_GET_VDEV(&bp->blk_dva[1]),
5735 				    DVA_GET_OFFSET(&bp->blk_dva[1]),
5736 				    DVA_GET_OFFSET(&bp->blk_dva[2])))
5737 					zb->zb_ditto_same_ms++;
5738 			}
5739 			break;
5740 		}
5741 	}
5742 
5743 	spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5744 
5745 	if (BP_IS_EMBEDDED(bp)) {
5746 		zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5747 		zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5748 		    [BPE_GET_PSIZE(bp)]++;
5749 		return;
5750 	}
5751 	/*
5752 	 * The binning histogram bins by powers of two up to
5753 	 * SPA_MAXBLOCKSIZE rather than creating bins for
5754 	 * every possible blocksize found in the pool.
5755 	 */
5756 	int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5757 
5758 	zcb->zcb_psize_count[bin]++;
5759 	zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5760 	zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5761 
5762 	bin = highbit64(BP_GET_LSIZE(bp)) - 1;
5763 
5764 	zcb->zcb_lsize_count[bin]++;
5765 	zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
5766 	zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
5767 
5768 	bin = highbit64(BP_GET_ASIZE(bp)) - 1;
5769 
5770 	zcb->zcb_asize_count[bin]++;
5771 	zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
5772 	zcb->zcb_asize_total += BP_GET_ASIZE(bp);
5773 
5774 	if (zcb->zcb_brt_is_active && brt_maybe_exists(zcb->zcb_spa, bp)) {
5775 		/*
5776 		 * Cloned blocks are special. We need to count them, so we can
5777 		 * later uncount them when reporting leaked space, and we must
5778 		 * only claim them them once.
5779 		 *
5780 		 * To do this, we keep our own in-memory BRT. For each block
5781 		 * we haven't seen before, we look it up in the real BRT and
5782 		 * if its there, we note it and its refcount then proceed as
5783 		 * normal. If we see the block again, we count it as a clone
5784 		 * and then give it no further consideration.
5785 		 */
5786 		zdb_brt_entry_t zbre_search, *zbre;
5787 		avl_index_t where;
5788 
5789 		zbre_search.zbre_dva = bp->blk_dva[0];
5790 		zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5791 		if (zbre != NULL) {
5792 			zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5793 			zcb->zcb_clone_blocks++;
5794 
5795 			zbre->zbre_refcount--;
5796 			if (zbre->zbre_refcount == 0) {
5797 				avl_remove(&zcb->zcb_brt, zbre);
5798 				umem_free(zbre, sizeof (zdb_brt_entry_t));
5799 			}
5800 			return;
5801 		}
5802 
5803 		uint64_t crefcnt = brt_entry_get_refcount(zcb->zcb_spa, bp);
5804 		if (crefcnt > 0) {
5805 			zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5806 			    UMEM_NOFAIL);
5807 			zbre->zbre_dva = bp->blk_dva[0];
5808 			zbre->zbre_refcount = crefcnt;
5809 			avl_insert(&zcb->zcb_brt, zbre, where);
5810 		}
5811 	}
5812 
5813 	if (dump_opt['L'])
5814 		return;
5815 
5816 	if (BP_GET_DEDUP(bp)) {
5817 		ddt_t *ddt;
5818 		ddt_entry_t *dde;
5819 
5820 		ddt = ddt_select(zcb->zcb_spa, bp);
5821 		ddt_enter(ddt);
5822 		dde = ddt_lookup(ddt, bp, B_FALSE);
5823 
5824 		if (dde == NULL) {
5825 			refcnt = 0;
5826 		} else {
5827 			ddt_phys_t *ddp = ddt_phys_select(dde, bp);
5828 			ddt_phys_decref(ddp);
5829 			refcnt = ddp->ddp_refcnt;
5830 			if (ddt_phys_total_refcnt(dde) == 0)
5831 				ddt_remove(ddt, dde);
5832 		}
5833 		ddt_exit(ddt);
5834 	}
5835 
5836 	VERIFY3U(zio_wait(zio_claim(NULL, zcb->zcb_spa,
5837 	    refcnt ? 0 : spa_min_claim_txg(zcb->zcb_spa),
5838 	    bp, NULL, NULL, ZIO_FLAG_CANFAIL)), ==, 0);
5839 }
5840 
5841 static void
5842 zdb_blkptr_done(zio_t *zio)
5843 {
5844 	spa_t *spa = zio->io_spa;
5845 	blkptr_t *bp = zio->io_bp;
5846 	int ioerr = zio->io_error;
5847 	zdb_cb_t *zcb = zio->io_private;
5848 	zbookmark_phys_t *zb = &zio->io_bookmark;
5849 
5850 	mutex_enter(&spa->spa_scrub_lock);
5851 	spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
5852 	cv_broadcast(&spa->spa_scrub_io_cv);
5853 
5854 	if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
5855 		char blkbuf[BP_SPRINTF_LEN];
5856 
5857 		zcb->zcb_haderrors = 1;
5858 		zcb->zcb_errors[ioerr]++;
5859 
5860 		if (dump_opt['b'] >= 2)
5861 			snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5862 		else
5863 			blkbuf[0] = '\0';
5864 
5865 		(void) printf("zdb_blkptr_cb: "
5866 		    "Got error %d reading "
5867 		    "<%llu, %llu, %lld, %llx> %s -- skipping\n",
5868 		    ioerr,
5869 		    (u_longlong_t)zb->zb_objset,
5870 		    (u_longlong_t)zb->zb_object,
5871 		    (u_longlong_t)zb->zb_level,
5872 		    (u_longlong_t)zb->zb_blkid,
5873 		    blkbuf);
5874 	}
5875 	mutex_exit(&spa->spa_scrub_lock);
5876 
5877 	abd_free(zio->io_abd);
5878 }
5879 
5880 static int
5881 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
5882     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
5883 {
5884 	zdb_cb_t *zcb = arg;
5885 	dmu_object_type_t type;
5886 	boolean_t is_metadata;
5887 
5888 	if (zb->zb_level == ZB_DNODE_LEVEL)
5889 		return (0);
5890 
5891 	if (dump_opt['b'] >= 5 && bp->blk_birth > 0) {
5892 		char blkbuf[BP_SPRINTF_LEN];
5893 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
5894 		(void) printf("objset %llu object %llu "
5895 		    "level %lld offset 0x%llx %s\n",
5896 		    (u_longlong_t)zb->zb_objset,
5897 		    (u_longlong_t)zb->zb_object,
5898 		    (longlong_t)zb->zb_level,
5899 		    (u_longlong_t)blkid2offset(dnp, bp, zb),
5900 		    blkbuf);
5901 	}
5902 
5903 	if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
5904 		return (0);
5905 
5906 	type = BP_GET_TYPE(bp);
5907 
5908 	zdb_count_block(zcb, zilog, bp,
5909 	    (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
5910 
5911 	is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
5912 
5913 	if (!BP_IS_EMBEDDED(bp) &&
5914 	    (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
5915 		size_t size = BP_GET_PSIZE(bp);
5916 		abd_t *abd = abd_alloc(size, B_FALSE);
5917 		int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
5918 
5919 		/* If it's an intent log block, failure is expected. */
5920 		if (zb->zb_level == ZB_ZIL_LEVEL)
5921 			flags |= ZIO_FLAG_SPECULATIVE;
5922 
5923 		mutex_enter(&spa->spa_scrub_lock);
5924 		while (spa->spa_load_verify_bytes > max_inflight_bytes)
5925 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5926 		spa->spa_load_verify_bytes += size;
5927 		mutex_exit(&spa->spa_scrub_lock);
5928 
5929 		zio_nowait(zio_read(NULL, spa, bp, abd, size,
5930 		    zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
5931 	}
5932 
5933 	zcb->zcb_readfails = 0;
5934 
5935 	/* only call gethrtime() every 100 blocks */
5936 	static int iters;
5937 	if (++iters > 100)
5938 		iters = 0;
5939 	else
5940 		return (0);
5941 
5942 	if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
5943 		uint64_t now = gethrtime();
5944 		char buf[10];
5945 		uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
5946 		uint64_t kb_per_sec =
5947 		    1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
5948 		uint64_t sec_remaining =
5949 		    (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
5950 
5951 		/* make sure nicenum has enough space */
5952 		_Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
5953 
5954 		zfs_nicebytes(bytes, buf, sizeof (buf));
5955 		(void) fprintf(stderr,
5956 		    "\r%5s completed (%4"PRIu64"MB/s) "
5957 		    "estimated time remaining: "
5958 		    "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec        ",
5959 		    buf, kb_per_sec / 1024,
5960 		    sec_remaining / 60 / 60,
5961 		    sec_remaining / 60 % 60,
5962 		    sec_remaining % 60);
5963 
5964 		zcb->zcb_lastprint = now;
5965 	}
5966 
5967 	return (0);
5968 }
5969 
5970 static void
5971 zdb_leak(void *arg, uint64_t start, uint64_t size)
5972 {
5973 	vdev_t *vd = arg;
5974 
5975 	(void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
5976 	    (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
5977 }
5978 
5979 static metaslab_ops_t zdb_metaslab_ops = {
5980 	NULL	/* alloc */
5981 };
5982 
5983 static int
5984 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
5985     uint64_t txg, void *arg)
5986 {
5987 	spa_vdev_removal_t *svr = arg;
5988 
5989 	uint64_t offset = sme->sme_offset;
5990 	uint64_t size = sme->sme_run;
5991 
5992 	/* skip vdevs we don't care about */
5993 	if (sme->sme_vdev != svr->svr_vdev_id)
5994 		return (0);
5995 
5996 	vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
5997 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5998 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
5999 
6000 	if (txg < metaslab_unflushed_txg(ms))
6001 		return (0);
6002 
6003 	if (sme->sme_type == SM_ALLOC)
6004 		range_tree_add(svr->svr_allocd_segs, offset, size);
6005 	else
6006 		range_tree_remove(svr->svr_allocd_segs, offset, size);
6007 
6008 	return (0);
6009 }
6010 
6011 static void
6012 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6013     uint64_t size, void *arg)
6014 {
6015 	(void) inner_offset, (void) arg;
6016 
6017 	/*
6018 	 * This callback was called through a remap from
6019 	 * a device being removed. Therefore, the vdev that
6020 	 * this callback is applied to is a concrete
6021 	 * vdev.
6022 	 */
6023 	ASSERT(vdev_is_concrete(vd));
6024 
6025 	VERIFY0(metaslab_claim_impl(vd, offset, size,
6026 	    spa_min_claim_txg(vd->vdev_spa)));
6027 }
6028 
6029 static void
6030 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6031 {
6032 	vdev_t *vd = arg;
6033 
6034 	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6035 	    claim_segment_impl_cb, NULL);
6036 }
6037 
6038 /*
6039  * After accounting for all allocated blocks that are directly referenced,
6040  * we might have missed a reference to a block from a partially complete
6041  * (and thus unused) indirect mapping object. We perform a secondary pass
6042  * through the metaslabs we have already mapped and claim the destination
6043  * blocks.
6044  */
6045 static void
6046 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6047 {
6048 	if (dump_opt['L'])
6049 		return;
6050 
6051 	if (spa->spa_vdev_removal == NULL)
6052 		return;
6053 
6054 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6055 
6056 	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6057 	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6058 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6059 
6060 	ASSERT0(range_tree_space(svr->svr_allocd_segs));
6061 
6062 	range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
6063 	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6064 		metaslab_t *msp = vd->vdev_ms[msi];
6065 
6066 		ASSERT0(range_tree_space(allocs));
6067 		if (msp->ms_sm != NULL)
6068 			VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6069 		range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
6070 	}
6071 	range_tree_destroy(allocs);
6072 
6073 	iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6074 
6075 	/*
6076 	 * Clear everything past what has been synced,
6077 	 * because we have not allocated mappings for
6078 	 * it yet.
6079 	 */
6080 	range_tree_clear(svr->svr_allocd_segs,
6081 	    vdev_indirect_mapping_max_offset(vim),
6082 	    vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6083 
6084 	zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
6085 	range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6086 
6087 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6088 }
6089 
6090 static int
6091 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6092     dmu_tx_t *tx)
6093 {
6094 	(void) tx;
6095 	zdb_cb_t *zcb = arg;
6096 	spa_t *spa = zcb->zcb_spa;
6097 	vdev_t *vd;
6098 	const dva_t *dva = &bp->blk_dva[0];
6099 
6100 	ASSERT(!bp_freed);
6101 	ASSERT(!dump_opt['L']);
6102 	ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6103 
6104 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6105 	vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6106 	ASSERT3P(vd, !=, NULL);
6107 	spa_config_exit(spa, SCL_VDEV, FTAG);
6108 
6109 	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6110 	ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6111 
6112 	vdev_indirect_mapping_increment_obsolete_count(
6113 	    vd->vdev_indirect_mapping,
6114 	    DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6115 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6116 
6117 	return (0);
6118 }
6119 
6120 static uint32_t *
6121 zdb_load_obsolete_counts(vdev_t *vd)
6122 {
6123 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6124 	spa_t *spa = vd->vdev_spa;
6125 	spa_condensing_indirect_phys_t *scip =
6126 	    &spa->spa_condensing_indirect_phys;
6127 	uint64_t obsolete_sm_object;
6128 	uint32_t *counts;
6129 
6130 	VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6131 	EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6132 	counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6133 	if (vd->vdev_obsolete_sm != NULL) {
6134 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6135 		    vd->vdev_obsolete_sm);
6136 	}
6137 	if (scip->scip_vdev == vd->vdev_id &&
6138 	    scip->scip_prev_obsolete_sm_object != 0) {
6139 		space_map_t *prev_obsolete_sm = NULL;
6140 		VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6141 		    scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6142 		vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6143 		    prev_obsolete_sm);
6144 		space_map_close(prev_obsolete_sm);
6145 	}
6146 	return (counts);
6147 }
6148 
6149 static void
6150 zdb_ddt_leak_init(spa_t *spa, zdb_cb_t *zcb)
6151 {
6152 	ddt_bookmark_t ddb = {0};
6153 	ddt_entry_t dde;
6154 	int error;
6155 	int p;
6156 
6157 	ASSERT(!dump_opt['L']);
6158 
6159 	while ((error = ddt_walk(spa, &ddb, &dde)) == 0) {
6160 		blkptr_t blk;
6161 		ddt_phys_t *ddp = dde.dde_phys;
6162 
6163 		if (ddb.ddb_class == DDT_CLASS_UNIQUE)
6164 			return;
6165 
6166 		ASSERT(ddt_phys_total_refcnt(&dde) > 1);
6167 
6168 		for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
6169 			if (ddp->ddp_phys_birth == 0)
6170 				continue;
6171 			ddt_bp_create(ddb.ddb_checksum,
6172 			    &dde.dde_key, ddp, &blk);
6173 			if (p == DDT_PHYS_DITTO) {
6174 				zdb_count_block(zcb, NULL, &blk, ZDB_OT_DITTO);
6175 			} else {
6176 				zcb->zcb_dedup_asize +=
6177 				    BP_GET_ASIZE(&blk) * (ddp->ddp_refcnt - 1);
6178 				zcb->zcb_dedup_blocks++;
6179 			}
6180 		}
6181 		ddt_t *ddt = spa->spa_ddt[ddb.ddb_checksum];
6182 		ddt_enter(ddt);
6183 		VERIFY(ddt_lookup(ddt, &blk, B_TRUE) != NULL);
6184 		ddt_exit(ddt);
6185 	}
6186 
6187 	ASSERT(error == ENOENT);
6188 }
6189 
6190 typedef struct checkpoint_sm_exclude_entry_arg {
6191 	vdev_t *cseea_vd;
6192 	uint64_t cseea_checkpoint_size;
6193 } checkpoint_sm_exclude_entry_arg_t;
6194 
6195 static int
6196 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6197 {
6198 	checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6199 	vdev_t *vd = cseea->cseea_vd;
6200 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6201 	uint64_t end = sme->sme_offset + sme->sme_run;
6202 
6203 	ASSERT(sme->sme_type == SM_FREE);
6204 
6205 	/*
6206 	 * Since the vdev_checkpoint_sm exists in the vdev level
6207 	 * and the ms_sm space maps exist in the metaslab level,
6208 	 * an entry in the checkpoint space map could theoretically
6209 	 * cross the boundaries of the metaslab that it belongs.
6210 	 *
6211 	 * In reality, because of the way that we populate and
6212 	 * manipulate the checkpoint's space maps currently,
6213 	 * there shouldn't be any entries that cross metaslabs.
6214 	 * Hence the assertion below.
6215 	 *
6216 	 * That said, there is no fundamental requirement that
6217 	 * the checkpoint's space map entries should not cross
6218 	 * metaslab boundaries. So if needed we could add code
6219 	 * that handles metaslab-crossing segments in the future.
6220 	 */
6221 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6222 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6223 
6224 	/*
6225 	 * By removing the entry from the allocated segments we
6226 	 * also verify that the entry is there to begin with.
6227 	 */
6228 	mutex_enter(&ms->ms_lock);
6229 	range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6230 	mutex_exit(&ms->ms_lock);
6231 
6232 	cseea->cseea_checkpoint_size += sme->sme_run;
6233 	return (0);
6234 }
6235 
6236 static void
6237 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6238 {
6239 	spa_t *spa = vd->vdev_spa;
6240 	space_map_t *checkpoint_sm = NULL;
6241 	uint64_t checkpoint_sm_obj;
6242 
6243 	/*
6244 	 * If there is no vdev_top_zap, we are in a pool whose
6245 	 * version predates the pool checkpoint feature.
6246 	 */
6247 	if (vd->vdev_top_zap == 0)
6248 		return;
6249 
6250 	/*
6251 	 * If there is no reference of the vdev_checkpoint_sm in
6252 	 * the vdev_top_zap, then one of the following scenarios
6253 	 * is true:
6254 	 *
6255 	 * 1] There is no checkpoint
6256 	 * 2] There is a checkpoint, but no checkpointed blocks
6257 	 *    have been freed yet
6258 	 * 3] The current vdev is indirect
6259 	 *
6260 	 * In these cases we return immediately.
6261 	 */
6262 	if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6263 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6264 		return;
6265 
6266 	VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6267 	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6268 	    &checkpoint_sm_obj));
6269 
6270 	checkpoint_sm_exclude_entry_arg_t cseea;
6271 	cseea.cseea_vd = vd;
6272 	cseea.cseea_checkpoint_size = 0;
6273 
6274 	VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6275 	    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6276 
6277 	VERIFY0(space_map_iterate(checkpoint_sm,
6278 	    space_map_length(checkpoint_sm),
6279 	    checkpoint_sm_exclude_entry_cb, &cseea));
6280 	space_map_close(checkpoint_sm);
6281 
6282 	zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6283 }
6284 
6285 static void
6286 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6287 {
6288 	ASSERT(!dump_opt['L']);
6289 
6290 	vdev_t *rvd = spa->spa_root_vdev;
6291 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6292 		ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6293 		zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6294 	}
6295 }
6296 
6297 static int
6298 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6299     uint64_t txg, void *arg)
6300 {
6301 	int64_t *ualloc_space = arg;
6302 
6303 	uint64_t offset = sme->sme_offset;
6304 	uint64_t vdev_id = sme->sme_vdev;
6305 
6306 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6307 	if (!vdev_is_concrete(vd))
6308 		return (0);
6309 
6310 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6311 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6312 
6313 	if (txg < metaslab_unflushed_txg(ms))
6314 		return (0);
6315 
6316 	if (sme->sme_type == SM_ALLOC)
6317 		*ualloc_space += sme->sme_run;
6318 	else
6319 		*ualloc_space -= sme->sme_run;
6320 
6321 	return (0);
6322 }
6323 
6324 static int64_t
6325 get_unflushed_alloc_space(spa_t *spa)
6326 {
6327 	if (dump_opt['L'])
6328 		return (0);
6329 
6330 	int64_t ualloc_space = 0;
6331 	iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6332 	    &ualloc_space);
6333 	return (ualloc_space);
6334 }
6335 
6336 static int
6337 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6338 {
6339 	maptype_t *uic_maptype = arg;
6340 
6341 	uint64_t offset = sme->sme_offset;
6342 	uint64_t size = sme->sme_run;
6343 	uint64_t vdev_id = sme->sme_vdev;
6344 
6345 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6346 
6347 	/* skip indirect vdevs */
6348 	if (!vdev_is_concrete(vd))
6349 		return (0);
6350 
6351 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6352 
6353 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6354 	ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6355 
6356 	if (txg < metaslab_unflushed_txg(ms))
6357 		return (0);
6358 
6359 	if (*uic_maptype == sme->sme_type)
6360 		range_tree_add(ms->ms_allocatable, offset, size);
6361 	else
6362 		range_tree_remove(ms->ms_allocatable, offset, size);
6363 
6364 	return (0);
6365 }
6366 
6367 static void
6368 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6369 {
6370 	iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6371 }
6372 
6373 static void
6374 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6375 {
6376 	vdev_t *rvd = spa->spa_root_vdev;
6377 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6378 		vdev_t *vd = rvd->vdev_child[i];
6379 
6380 		ASSERT3U(i, ==, vd->vdev_id);
6381 
6382 		if (vd->vdev_ops == &vdev_indirect_ops)
6383 			continue;
6384 
6385 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6386 			metaslab_t *msp = vd->vdev_ms[m];
6387 
6388 			(void) fprintf(stderr,
6389 			    "\rloading concrete vdev %llu, "
6390 			    "metaslab %llu of %llu ...",
6391 			    (longlong_t)vd->vdev_id,
6392 			    (longlong_t)msp->ms_id,
6393 			    (longlong_t)vd->vdev_ms_count);
6394 
6395 			mutex_enter(&msp->ms_lock);
6396 			range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6397 
6398 			/*
6399 			 * We don't want to spend the CPU manipulating the
6400 			 * size-ordered tree, so clear the range_tree ops.
6401 			 */
6402 			msp->ms_allocatable->rt_ops = NULL;
6403 
6404 			if (msp->ms_sm != NULL) {
6405 				VERIFY0(space_map_load(msp->ms_sm,
6406 				    msp->ms_allocatable, maptype));
6407 			}
6408 			if (!msp->ms_loaded)
6409 				msp->ms_loaded = B_TRUE;
6410 			mutex_exit(&msp->ms_lock);
6411 		}
6412 	}
6413 
6414 	load_unflushed_to_ms_allocatables(spa, maptype);
6415 }
6416 
6417 /*
6418  * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6419  * index in vim_entries that has the first entry in this metaslab.
6420  * On return, it will be set to the first entry after this metaslab.
6421  */
6422 static void
6423 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6424     uint64_t *vim_idxp)
6425 {
6426 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6427 
6428 	mutex_enter(&msp->ms_lock);
6429 	range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6430 
6431 	/*
6432 	 * We don't want to spend the CPU manipulating the
6433 	 * size-ordered tree, so clear the range_tree ops.
6434 	 */
6435 	msp->ms_allocatable->rt_ops = NULL;
6436 
6437 	for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6438 	    (*vim_idxp)++) {
6439 		vdev_indirect_mapping_entry_phys_t *vimep =
6440 		    &vim->vim_entries[*vim_idxp];
6441 		uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6442 		uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6443 		ASSERT3U(ent_offset, >=, msp->ms_start);
6444 		if (ent_offset >= msp->ms_start + msp->ms_size)
6445 			break;
6446 
6447 		/*
6448 		 * Mappings do not cross metaslab boundaries,
6449 		 * because we create them by walking the metaslabs.
6450 		 */
6451 		ASSERT3U(ent_offset + ent_len, <=,
6452 		    msp->ms_start + msp->ms_size);
6453 		range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6454 	}
6455 
6456 	if (!msp->ms_loaded)
6457 		msp->ms_loaded = B_TRUE;
6458 	mutex_exit(&msp->ms_lock);
6459 }
6460 
6461 static void
6462 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6463 {
6464 	ASSERT(!dump_opt['L']);
6465 
6466 	vdev_t *rvd = spa->spa_root_vdev;
6467 	for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6468 		vdev_t *vd = rvd->vdev_child[c];
6469 
6470 		ASSERT3U(c, ==, vd->vdev_id);
6471 
6472 		if (vd->vdev_ops != &vdev_indirect_ops)
6473 			continue;
6474 
6475 		/*
6476 		 * Note: we don't check for mapping leaks on
6477 		 * removing vdevs because their ms_allocatable's
6478 		 * are used to look for leaks in allocated space.
6479 		 */
6480 		zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6481 
6482 		/*
6483 		 * Normally, indirect vdevs don't have any
6484 		 * metaslabs.  We want to set them up for
6485 		 * zio_claim().
6486 		 */
6487 		vdev_metaslab_group_create(vd);
6488 		VERIFY0(vdev_metaslab_init(vd, 0));
6489 
6490 		vdev_indirect_mapping_t *vim __maybe_unused =
6491 		    vd->vdev_indirect_mapping;
6492 		uint64_t vim_idx = 0;
6493 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6494 
6495 			(void) fprintf(stderr,
6496 			    "\rloading indirect vdev %llu, "
6497 			    "metaslab %llu of %llu ...",
6498 			    (longlong_t)vd->vdev_id,
6499 			    (longlong_t)vd->vdev_ms[m]->ms_id,
6500 			    (longlong_t)vd->vdev_ms_count);
6501 
6502 			load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6503 			    &vim_idx);
6504 		}
6505 		ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6506 	}
6507 }
6508 
6509 static void
6510 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6511 {
6512 	zcb->zcb_spa = spa;
6513 
6514 	if (dump_opt['L'])
6515 		return;
6516 
6517 	dsl_pool_t *dp = spa->spa_dsl_pool;
6518 	vdev_t *rvd = spa->spa_root_vdev;
6519 
6520 	/*
6521 	 * We are going to be changing the meaning of the metaslab's
6522 	 * ms_allocatable.  Ensure that the allocator doesn't try to
6523 	 * use the tree.
6524 	 */
6525 	spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6526 	spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6527 	spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6528 
6529 	zcb->zcb_vd_obsolete_counts =
6530 	    umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6531 	    UMEM_NOFAIL);
6532 
6533 	/*
6534 	 * For leak detection, we overload the ms_allocatable trees
6535 	 * to contain allocated segments instead of free segments.
6536 	 * As a result, we can't use the normal metaslab_load/unload
6537 	 * interfaces.
6538 	 */
6539 	zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6540 	load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6541 
6542 	/*
6543 	 * On load_concrete_ms_allocatable_trees() we loaded all the
6544 	 * allocated entries from the ms_sm to the ms_allocatable for
6545 	 * each metaslab. If the pool has a checkpoint or is in the
6546 	 * middle of discarding a checkpoint, some of these blocks
6547 	 * may have been freed but their ms_sm may not have been
6548 	 * updated because they are referenced by the checkpoint. In
6549 	 * order to avoid false-positives during leak-detection, we
6550 	 * go through the vdev's checkpoint space map and exclude all
6551 	 * its entries from their relevant ms_allocatable.
6552 	 *
6553 	 * We also aggregate the space held by the checkpoint and add
6554 	 * it to zcb_checkpoint_size.
6555 	 *
6556 	 * Note that at this point we are also verifying that all the
6557 	 * entries on the checkpoint_sm are marked as allocated in
6558 	 * the ms_sm of their relevant metaslab.
6559 	 * [see comment in checkpoint_sm_exclude_entry_cb()]
6560 	 */
6561 	zdb_leak_init_exclude_checkpoint(spa, zcb);
6562 	ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6563 
6564 	/* for cleaner progress output */
6565 	(void) fprintf(stderr, "\n");
6566 
6567 	if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6568 		ASSERT(spa_feature_is_enabled(spa,
6569 		    SPA_FEATURE_DEVICE_REMOVAL));
6570 		(void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6571 		    increment_indirect_mapping_cb, zcb, NULL);
6572 	}
6573 
6574 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6575 	zdb_ddt_leak_init(spa, zcb);
6576 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6577 }
6578 
6579 static boolean_t
6580 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6581 {
6582 	boolean_t leaks = B_FALSE;
6583 	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6584 	uint64_t total_leaked = 0;
6585 	boolean_t are_precise = B_FALSE;
6586 
6587 	ASSERT(vim != NULL);
6588 
6589 	for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6590 		vdev_indirect_mapping_entry_phys_t *vimep =
6591 		    &vim->vim_entries[i];
6592 		uint64_t obsolete_bytes = 0;
6593 		uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6594 		metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6595 
6596 		/*
6597 		 * This is not very efficient but it's easy to
6598 		 * verify correctness.
6599 		 */
6600 		for (uint64_t inner_offset = 0;
6601 		    inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6602 		    inner_offset += 1ULL << vd->vdev_ashift) {
6603 			if (range_tree_contains(msp->ms_allocatable,
6604 			    offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6605 				obsolete_bytes += 1ULL << vd->vdev_ashift;
6606 			}
6607 		}
6608 
6609 		int64_t bytes_leaked = obsolete_bytes -
6610 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6611 		ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6612 		    zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6613 
6614 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6615 		if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6616 			(void) printf("obsolete indirect mapping count "
6617 			    "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6618 			    (u_longlong_t)vd->vdev_id,
6619 			    (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6620 			    (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6621 			    (u_longlong_t)bytes_leaked);
6622 		}
6623 		total_leaked += ABS(bytes_leaked);
6624 	}
6625 
6626 	VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6627 	if (!are_precise && total_leaked > 0) {
6628 		int pct_leaked = total_leaked * 100 /
6629 		    vdev_indirect_mapping_bytes_mapped(vim);
6630 		(void) printf("cannot verify obsolete indirect mapping "
6631 		    "counts of vdev %llu because precise feature was not "
6632 		    "enabled when it was removed: %d%% (%llx bytes) of mapping"
6633 		    "unreferenced\n",
6634 		    (u_longlong_t)vd->vdev_id, pct_leaked,
6635 		    (u_longlong_t)total_leaked);
6636 	} else if (total_leaked > 0) {
6637 		(void) printf("obsolete indirect mapping count mismatch "
6638 		    "for vdev %llu -- %llx total bytes mismatched\n",
6639 		    (u_longlong_t)vd->vdev_id,
6640 		    (u_longlong_t)total_leaked);
6641 		leaks |= B_TRUE;
6642 	}
6643 
6644 	vdev_indirect_mapping_free_obsolete_counts(vim,
6645 	    zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6646 	zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6647 
6648 	return (leaks);
6649 }
6650 
6651 static boolean_t
6652 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6653 {
6654 	if (dump_opt['L'])
6655 		return (B_FALSE);
6656 
6657 	boolean_t leaks = B_FALSE;
6658 	vdev_t *rvd = spa->spa_root_vdev;
6659 	for (unsigned c = 0; c < rvd->vdev_children; c++) {
6660 		vdev_t *vd = rvd->vdev_child[c];
6661 
6662 		if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6663 			leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6664 		}
6665 
6666 		for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6667 			metaslab_t *msp = vd->vdev_ms[m];
6668 			ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6669 			    spa_embedded_log_class(spa)) ?
6670 			    vd->vdev_log_mg : vd->vdev_mg);
6671 
6672 			/*
6673 			 * ms_allocatable has been overloaded
6674 			 * to contain allocated segments. Now that
6675 			 * we finished traversing all blocks, any
6676 			 * block that remains in the ms_allocatable
6677 			 * represents an allocated block that we
6678 			 * did not claim during the traversal.
6679 			 * Claimed blocks would have been removed
6680 			 * from the ms_allocatable.  For indirect
6681 			 * vdevs, space remaining in the tree
6682 			 * represents parts of the mapping that are
6683 			 * not referenced, which is not a bug.
6684 			 */
6685 			if (vd->vdev_ops == &vdev_indirect_ops) {
6686 				range_tree_vacate(msp->ms_allocatable,
6687 				    NULL, NULL);
6688 			} else {
6689 				range_tree_vacate(msp->ms_allocatable,
6690 				    zdb_leak, vd);
6691 			}
6692 			if (msp->ms_loaded) {
6693 				msp->ms_loaded = B_FALSE;
6694 			}
6695 		}
6696 	}
6697 
6698 	umem_free(zcb->zcb_vd_obsolete_counts,
6699 	    rvd->vdev_children * sizeof (uint32_t *));
6700 	zcb->zcb_vd_obsolete_counts = NULL;
6701 
6702 	return (leaks);
6703 }
6704 
6705 static int
6706 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6707 {
6708 	(void) tx;
6709 	zdb_cb_t *zcb = arg;
6710 
6711 	if (dump_opt['b'] >= 5) {
6712 		char blkbuf[BP_SPRINTF_LEN];
6713 		snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6714 		(void) printf("[%s] %s\n",
6715 		    "deferred free", blkbuf);
6716 	}
6717 	zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6718 	return (0);
6719 }
6720 
6721 /*
6722  * Iterate over livelists which have been destroyed by the user but
6723  * are still present in the MOS, waiting to be freed
6724  */
6725 static void
6726 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6727 {
6728 	objset_t *mos = spa->spa_meta_objset;
6729 	uint64_t zap_obj;
6730 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6731 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6732 	if (err == ENOENT)
6733 		return;
6734 	ASSERT0(err);
6735 
6736 	zap_cursor_t zc;
6737 	zap_attribute_t attr;
6738 	dsl_deadlist_t ll;
6739 	/* NULL out os prior to dsl_deadlist_open in case it's garbage */
6740 	ll.dl_os = NULL;
6741 	for (zap_cursor_init(&zc, mos, zap_obj);
6742 	    zap_cursor_retrieve(&zc, &attr) == 0;
6743 	    (void) zap_cursor_advance(&zc)) {
6744 		dsl_deadlist_open(&ll, mos, attr.za_first_integer);
6745 		func(&ll, arg);
6746 		dsl_deadlist_close(&ll);
6747 	}
6748 	zap_cursor_fini(&zc);
6749 }
6750 
6751 static int
6752 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6753     dmu_tx_t *tx)
6754 {
6755 	ASSERT(!bp_freed);
6756 	return (count_block_cb(arg, bp, tx));
6757 }
6758 
6759 static int
6760 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6761 {
6762 	zdb_cb_t *zbc = args;
6763 	bplist_t blks;
6764 	bplist_create(&blks);
6765 	/* determine which blocks have been alloc'd but not freed */
6766 	VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6767 	/* count those blocks */
6768 	(void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6769 	bplist_destroy(&blks);
6770 	return (0);
6771 }
6772 
6773 static void
6774 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6775 {
6776 	dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6777 }
6778 
6779 /*
6780  * Count the blocks in the livelists that have been destroyed by the user
6781  * but haven't yet been freed.
6782  */
6783 static void
6784 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6785 {
6786 	iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6787 }
6788 
6789 static void
6790 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6791 {
6792 	ASSERT3P(arg, ==, NULL);
6793 	global_feature_count[SPA_FEATURE_LIVELIST]++;
6794 	dump_blkptr_list(ll, "Deleted Livelist");
6795 	dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6796 }
6797 
6798 /*
6799  * Print out, register object references to, and increment feature counts for
6800  * livelists that have been destroyed by the user but haven't yet been freed.
6801  */
6802 static void
6803 deleted_livelists_dump_mos(spa_t *spa)
6804 {
6805 	uint64_t zap_obj;
6806 	objset_t *mos = spa->spa_meta_objset;
6807 	int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6808 	    DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6809 	if (err == ENOENT)
6810 		return;
6811 	mos_obj_refd(zap_obj);
6812 	iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6813 }
6814 
6815 static int
6816 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
6817 {
6818 	const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
6819 	const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
6820 	int cmp;
6821 
6822 	cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
6823 	if (cmp == 0)
6824 		cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
6825 
6826 	return (cmp);
6827 }
6828 
6829 static int
6830 dump_block_stats(spa_t *spa)
6831 {
6832 	zdb_cb_t *zcb;
6833 	zdb_blkstats_t *zb, *tzb;
6834 	uint64_t norm_alloc, norm_space, total_alloc, total_found;
6835 	int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6836 	    TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6837 	boolean_t leaks = B_FALSE;
6838 	int e, c, err;
6839 	bp_embedded_type_t i;
6840 
6841 	zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6842 
6843 	if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
6844 		avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
6845 		    sizeof (zdb_brt_entry_t),
6846 		    offsetof(zdb_brt_entry_t, zbre_node));
6847 		zcb->zcb_brt_is_active = B_TRUE;
6848 	}
6849 
6850 	(void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6851 	    (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6852 	    (dump_opt['c'] == 1) ? "metadata " : "",
6853 	    dump_opt['c'] ? "checksums " : "",
6854 	    (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6855 	    !dump_opt['L'] ? "nothing leaked " : "");
6856 
6857 	/*
6858 	 * When leak detection is enabled we load all space maps as SM_ALLOC
6859 	 * maps, then traverse the pool claiming each block we discover. If
6860 	 * the pool is perfectly consistent, the segment trees will be empty
6861 	 * when we're done. Anything left over is a leak; any block we can't
6862 	 * claim (because it's not part of any space map) is a double
6863 	 * allocation, reference to a freed block, or an unclaimed log block.
6864 	 *
6865 	 * When leak detection is disabled (-L option) we still traverse the
6866 	 * pool claiming each block we discover, but we skip opening any space
6867 	 * maps.
6868 	 */
6869 	zdb_leak_init(spa, zcb);
6870 
6871 	/*
6872 	 * If there's a deferred-free bplist, process that first.
6873 	 */
6874 	(void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
6875 	    bpobj_count_block_cb, zcb, NULL);
6876 
6877 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
6878 		(void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
6879 		    bpobj_count_block_cb, zcb, NULL);
6880 	}
6881 
6882 	zdb_claim_removing(spa, zcb);
6883 
6884 	if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
6885 		VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
6886 		    spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
6887 		    zcb, NULL));
6888 	}
6889 
6890 	deleted_livelists_count_blocks(spa, zcb);
6891 
6892 	if (dump_opt['c'] > 1)
6893 		flags |= TRAVERSE_PREFETCH_DATA;
6894 
6895 	zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
6896 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
6897 	zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
6898 	zcb->zcb_totalasize +=
6899 	    metaslab_class_get_alloc(spa_embedded_log_class(spa));
6900 	zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
6901 	err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
6902 
6903 	/*
6904 	 * If we've traversed the data blocks then we need to wait for those
6905 	 * I/Os to complete. We leverage "The Godfather" zio to wait on
6906 	 * all async I/Os to complete.
6907 	 */
6908 	if (dump_opt['c']) {
6909 		for (c = 0; c < max_ncpus; c++) {
6910 			(void) zio_wait(spa->spa_async_zio_root[c]);
6911 			spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
6912 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6913 			    ZIO_FLAG_GODFATHER);
6914 		}
6915 	}
6916 	ASSERT0(spa->spa_load_verify_bytes);
6917 
6918 	/*
6919 	 * Done after zio_wait() since zcb_haderrors is modified in
6920 	 * zdb_blkptr_done()
6921 	 */
6922 	zcb->zcb_haderrors |= err;
6923 
6924 	if (zcb->zcb_haderrors) {
6925 		(void) printf("\nError counts:\n\n");
6926 		(void) printf("\t%5s  %s\n", "errno", "count");
6927 		for (e = 0; e < 256; e++) {
6928 			if (zcb->zcb_errors[e] != 0) {
6929 				(void) printf("\t%5d  %llu\n",
6930 				    e, (u_longlong_t)zcb->zcb_errors[e]);
6931 			}
6932 		}
6933 	}
6934 
6935 	/*
6936 	 * Report any leaked segments.
6937 	 */
6938 	leaks |= zdb_leak_fini(spa, zcb);
6939 
6940 	tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
6941 
6942 	norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
6943 	norm_space = metaslab_class_get_space(spa_normal_class(spa));
6944 
6945 	total_alloc = norm_alloc +
6946 	    metaslab_class_get_alloc(spa_log_class(spa)) +
6947 	    metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
6948 	    metaslab_class_get_alloc(spa_special_class(spa)) +
6949 	    metaslab_class_get_alloc(spa_dedup_class(spa)) +
6950 	    get_unflushed_alloc_space(spa);
6951 	total_found =
6952 	    tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
6953 	    zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
6954 
6955 	if (total_found == total_alloc && !dump_opt['L']) {
6956 		(void) printf("\n\tNo leaks (block sum matches space"
6957 		    " maps exactly)\n");
6958 	} else if (!dump_opt['L']) {
6959 		(void) printf("block traversal size %llu != alloc %llu "
6960 		    "(%s %lld)\n",
6961 		    (u_longlong_t)total_found,
6962 		    (u_longlong_t)total_alloc,
6963 		    (dump_opt['L']) ? "unreachable" : "leaked",
6964 		    (longlong_t)(total_alloc - total_found));
6965 		leaks = B_TRUE;
6966 	}
6967 
6968 	if (tzb->zb_count == 0) {
6969 		umem_free(zcb, sizeof (zdb_cb_t));
6970 		return (2);
6971 	}
6972 
6973 	(void) printf("\n");
6974 	(void) printf("\t%-16s %14llu\n", "bp count:",
6975 	    (u_longlong_t)tzb->zb_count);
6976 	(void) printf("\t%-16s %14llu\n", "ganged count:",
6977 	    (longlong_t)tzb->zb_gangs);
6978 	(void) printf("\t%-16s %14llu      avg: %6llu\n", "bp logical:",
6979 	    (u_longlong_t)tzb->zb_lsize,
6980 	    (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
6981 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6982 	    "bp physical:", (u_longlong_t)tzb->zb_psize,
6983 	    (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
6984 	    (double)tzb->zb_lsize / tzb->zb_psize);
6985 	(void) printf("\t%-16s %14llu      avg: %6llu     compression: %6.2f\n",
6986 	    "bp allocated:", (u_longlong_t)tzb->zb_asize,
6987 	    (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
6988 	    (double)tzb->zb_lsize / tzb->zb_asize);
6989 	(void) printf("\t%-16s %14llu    ref>1: %6llu   deduplication: %6.2f\n",
6990 	    "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
6991 	    (u_longlong_t)zcb->zcb_dedup_blocks,
6992 	    (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
6993 	(void) printf("\t%-16s %14llu    count: %6llu\n",
6994 	    "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
6995 	    (u_longlong_t)zcb->zcb_clone_blocks);
6996 	(void) printf("\t%-16s %14llu     used: %5.2f%%\n", "Normal class:",
6997 	    (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
6998 
6999 	if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7000 		uint64_t alloc = metaslab_class_get_alloc(
7001 		    spa_special_class(spa));
7002 		uint64_t space = metaslab_class_get_space(
7003 		    spa_special_class(spa));
7004 
7005 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7006 		    "Special class", (u_longlong_t)alloc,
7007 		    100.0 * alloc / space);
7008 	}
7009 
7010 	if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7011 		uint64_t alloc = metaslab_class_get_alloc(
7012 		    spa_dedup_class(spa));
7013 		uint64_t space = metaslab_class_get_space(
7014 		    spa_dedup_class(spa));
7015 
7016 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7017 		    "Dedup class", (u_longlong_t)alloc,
7018 		    100.0 * alloc / space);
7019 	}
7020 
7021 	if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7022 		uint64_t alloc = metaslab_class_get_alloc(
7023 		    spa_embedded_log_class(spa));
7024 		uint64_t space = metaslab_class_get_space(
7025 		    spa_embedded_log_class(spa));
7026 
7027 		(void) printf("\t%-16s %14llu     used: %5.2f%%\n",
7028 		    "Embedded log class", (u_longlong_t)alloc,
7029 		    100.0 * alloc / space);
7030 	}
7031 
7032 	for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7033 		if (zcb->zcb_embedded_blocks[i] == 0)
7034 			continue;
7035 		(void) printf("\n");
7036 		(void) printf("\tadditional, non-pointer bps of type %u: "
7037 		    "%10llu\n",
7038 		    i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7039 
7040 		if (dump_opt['b'] >= 3) {
7041 			(void) printf("\t number of (compressed) bytes:  "
7042 			    "number of bps\n");
7043 			dump_histogram(zcb->zcb_embedded_histogram[i],
7044 			    sizeof (zcb->zcb_embedded_histogram[i]) /
7045 			    sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7046 		}
7047 	}
7048 
7049 	if (tzb->zb_ditto_samevdev != 0) {
7050 		(void) printf("\tDittoed blocks on same vdev: %llu\n",
7051 		    (longlong_t)tzb->zb_ditto_samevdev);
7052 	}
7053 	if (tzb->zb_ditto_same_ms != 0) {
7054 		(void) printf("\tDittoed blocks in same metaslab: %llu\n",
7055 		    (longlong_t)tzb->zb_ditto_same_ms);
7056 	}
7057 
7058 	for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7059 		vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7060 		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7061 
7062 		if (vim == NULL) {
7063 			continue;
7064 		}
7065 
7066 		char mem[32];
7067 		zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7068 		    mem, vdev_indirect_mapping_size(vim));
7069 
7070 		(void) printf("\tindirect vdev id %llu has %llu segments "
7071 		    "(%s in memory)\n",
7072 		    (longlong_t)vd->vdev_id,
7073 		    (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7074 	}
7075 
7076 	if (dump_opt['b'] >= 2) {
7077 		int l, t, level;
7078 		char csize[32], lsize[32], psize[32], asize[32];
7079 		char avg[32], gang[32];
7080 		(void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7081 		    "\t  avg\t comp\t%%Total\tType\n");
7082 
7083 		zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7084 		    UMEM_NOFAIL);
7085 
7086 		for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7087 			const char *typename;
7088 
7089 			/* make sure nicenum has enough space */
7090 			_Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7091 			    "csize truncated");
7092 			_Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7093 			    "lsize truncated");
7094 			_Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7095 			    "psize truncated");
7096 			_Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7097 			    "asize truncated");
7098 			_Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7099 			    "avg truncated");
7100 			_Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7101 			    "gang truncated");
7102 
7103 			if (t < DMU_OT_NUMTYPES)
7104 				typename = dmu_ot[t].ot_name;
7105 			else
7106 				typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7107 
7108 			if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7109 				(void) printf("%6s\t%5s\t%5s\t%5s"
7110 				    "\t%5s\t%5s\t%6s\t%s\n",
7111 				    "-",
7112 				    "-",
7113 				    "-",
7114 				    "-",
7115 				    "-",
7116 				    "-",
7117 				    "-",
7118 				    typename);
7119 				continue;
7120 			}
7121 
7122 			for (l = ZB_TOTAL - 1; l >= -1; l--) {
7123 				level = (l == -1 ? ZB_TOTAL : l);
7124 				zb = &zcb->zcb_type[level][t];
7125 
7126 				if (zb->zb_asize == 0)
7127 					continue;
7128 
7129 				if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7130 				    (level > 0 || DMU_OT_IS_METADATA(t))) {
7131 					mdstats->zb_count += zb->zb_count;
7132 					mdstats->zb_lsize += zb->zb_lsize;
7133 					mdstats->zb_psize += zb->zb_psize;
7134 					mdstats->zb_asize += zb->zb_asize;
7135 					mdstats->zb_gangs += zb->zb_gangs;
7136 				}
7137 
7138 				if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7139 					continue;
7140 
7141 				if (level == 0 && zb->zb_asize ==
7142 				    zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7143 					continue;
7144 
7145 				zdb_nicenum(zb->zb_count, csize,
7146 				    sizeof (csize));
7147 				zdb_nicenum(zb->zb_lsize, lsize,
7148 				    sizeof (lsize));
7149 				zdb_nicenum(zb->zb_psize, psize,
7150 				    sizeof (psize));
7151 				zdb_nicenum(zb->zb_asize, asize,
7152 				    sizeof (asize));
7153 				zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7154 				    sizeof (avg));
7155 				zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7156 
7157 				(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7158 				    "\t%5.2f\t%6.2f\t",
7159 				    csize, lsize, psize, asize, avg,
7160 				    (double)zb->zb_lsize / zb->zb_psize,
7161 				    100.0 * zb->zb_asize / tzb->zb_asize);
7162 
7163 				if (level == ZB_TOTAL)
7164 					(void) printf("%s\n", typename);
7165 				else
7166 					(void) printf("    L%d %s\n",
7167 					    level, typename);
7168 
7169 				if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7170 					(void) printf("\t number of ganged "
7171 					    "blocks: %s\n", gang);
7172 				}
7173 
7174 				if (dump_opt['b'] >= 4) {
7175 					(void) printf("psize "
7176 					    "(in 512-byte sectors): "
7177 					    "number of blocks\n");
7178 					dump_histogram(zb->zb_psize_histogram,
7179 					    PSIZE_HISTO_SIZE, 0);
7180 				}
7181 			}
7182 		}
7183 		zdb_nicenum(mdstats->zb_count, csize,
7184 		    sizeof (csize));
7185 		zdb_nicenum(mdstats->zb_lsize, lsize,
7186 		    sizeof (lsize));
7187 		zdb_nicenum(mdstats->zb_psize, psize,
7188 		    sizeof (psize));
7189 		zdb_nicenum(mdstats->zb_asize, asize,
7190 		    sizeof (asize));
7191 		zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7192 		    sizeof (avg));
7193 		zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7194 
7195 		(void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7196 		    "\t%5.2f\t%6.2f\t",
7197 		    csize, lsize, psize, asize, avg,
7198 		    (double)mdstats->zb_lsize / mdstats->zb_psize,
7199 		    100.0 * mdstats->zb_asize / tzb->zb_asize);
7200 		(void) printf("%s\n", "Metadata Total");
7201 
7202 		/* Output a table summarizing block sizes in the pool */
7203 		if (dump_opt['b'] >= 2) {
7204 			dump_size_histograms(zcb);
7205 		}
7206 
7207 		umem_free(mdstats, sizeof (zfs_blkstat_t));
7208 	}
7209 
7210 	(void) printf("\n");
7211 
7212 	if (leaks) {
7213 		umem_free(zcb, sizeof (zdb_cb_t));
7214 		return (2);
7215 	}
7216 
7217 	if (zcb->zcb_haderrors) {
7218 		umem_free(zcb, sizeof (zdb_cb_t));
7219 		return (3);
7220 	}
7221 
7222 	umem_free(zcb, sizeof (zdb_cb_t));
7223 	return (0);
7224 }
7225 
7226 typedef struct zdb_ddt_entry {
7227 	ddt_key_t	zdde_key;
7228 	uint64_t	zdde_ref_blocks;
7229 	uint64_t	zdde_ref_lsize;
7230 	uint64_t	zdde_ref_psize;
7231 	uint64_t	zdde_ref_dsize;
7232 	avl_node_t	zdde_node;
7233 } zdb_ddt_entry_t;
7234 
7235 static int
7236 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7237     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7238 {
7239 	(void) zilog, (void) dnp;
7240 	avl_tree_t *t = arg;
7241 	avl_index_t where;
7242 	zdb_ddt_entry_t *zdde, zdde_search;
7243 
7244 	if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7245 	    BP_IS_EMBEDDED(bp))
7246 		return (0);
7247 
7248 	if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7249 		(void) printf("traversing objset %llu, %llu objects, "
7250 		    "%lu blocks so far\n",
7251 		    (u_longlong_t)zb->zb_objset,
7252 		    (u_longlong_t)BP_GET_FILL(bp),
7253 		    avl_numnodes(t));
7254 	}
7255 
7256 	if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7257 	    BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7258 		return (0);
7259 
7260 	ddt_key_fill(&zdde_search.zdde_key, bp);
7261 
7262 	zdde = avl_find(t, &zdde_search, &where);
7263 
7264 	if (zdde == NULL) {
7265 		zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7266 		zdde->zdde_key = zdde_search.zdde_key;
7267 		avl_insert(t, zdde, where);
7268 	}
7269 
7270 	zdde->zdde_ref_blocks += 1;
7271 	zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7272 	zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7273 	zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7274 
7275 	return (0);
7276 }
7277 
7278 static void
7279 dump_simulated_ddt(spa_t *spa)
7280 {
7281 	avl_tree_t t;
7282 	void *cookie = NULL;
7283 	zdb_ddt_entry_t *zdde;
7284 	ddt_histogram_t ddh_total = {{{0}}};
7285 	ddt_stat_t dds_total = {0};
7286 
7287 	avl_create(&t, ddt_entry_compare,
7288 	    sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7289 
7290 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7291 
7292 	(void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7293 	    TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7294 
7295 	spa_config_exit(spa, SCL_CONFIG, FTAG);
7296 
7297 	while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7298 		ddt_stat_t dds;
7299 		uint64_t refcnt = zdde->zdde_ref_blocks;
7300 		ASSERT(refcnt != 0);
7301 
7302 		dds.dds_blocks = zdde->zdde_ref_blocks / refcnt;
7303 		dds.dds_lsize = zdde->zdde_ref_lsize / refcnt;
7304 		dds.dds_psize = zdde->zdde_ref_psize / refcnt;
7305 		dds.dds_dsize = zdde->zdde_ref_dsize / refcnt;
7306 
7307 		dds.dds_ref_blocks = zdde->zdde_ref_blocks;
7308 		dds.dds_ref_lsize = zdde->zdde_ref_lsize;
7309 		dds.dds_ref_psize = zdde->zdde_ref_psize;
7310 		dds.dds_ref_dsize = zdde->zdde_ref_dsize;
7311 
7312 		ddt_stat_add(&ddh_total.ddh_stat[highbit64(refcnt) - 1],
7313 		    &dds, 0);
7314 
7315 		umem_free(zdde, sizeof (*zdde));
7316 	}
7317 
7318 	avl_destroy(&t);
7319 
7320 	ddt_histogram_stat(&dds_total, &ddh_total);
7321 
7322 	(void) printf("Simulated DDT histogram:\n");
7323 
7324 	zpool_dump_ddt(&dds_total, &ddh_total);
7325 
7326 	dump_dedup_ratio(&dds_total);
7327 }
7328 
7329 static int
7330 verify_device_removal_feature_counts(spa_t *spa)
7331 {
7332 	uint64_t dr_feature_refcount = 0;
7333 	uint64_t oc_feature_refcount = 0;
7334 	uint64_t indirect_vdev_count = 0;
7335 	uint64_t precise_vdev_count = 0;
7336 	uint64_t obsolete_counts_object_count = 0;
7337 	uint64_t obsolete_sm_count = 0;
7338 	uint64_t obsolete_counts_count = 0;
7339 	uint64_t scip_count = 0;
7340 	uint64_t obsolete_bpobj_count = 0;
7341 	int ret = 0;
7342 
7343 	spa_condensing_indirect_phys_t *scip =
7344 	    &spa->spa_condensing_indirect_phys;
7345 	if (scip->scip_next_mapping_object != 0) {
7346 		vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7347 		ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7348 		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7349 
7350 		(void) printf("Condensing indirect vdev %llu: new mapping "
7351 		    "object %llu, prev obsolete sm %llu\n",
7352 		    (u_longlong_t)scip->scip_vdev,
7353 		    (u_longlong_t)scip->scip_next_mapping_object,
7354 		    (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7355 		if (scip->scip_prev_obsolete_sm_object != 0) {
7356 			space_map_t *prev_obsolete_sm = NULL;
7357 			VERIFY0(space_map_open(&prev_obsolete_sm,
7358 			    spa->spa_meta_objset,
7359 			    scip->scip_prev_obsolete_sm_object,
7360 			    0, vd->vdev_asize, 0));
7361 			dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7362 			(void) printf("\n");
7363 			space_map_close(prev_obsolete_sm);
7364 		}
7365 
7366 		scip_count += 2;
7367 	}
7368 
7369 	for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7370 		vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7371 		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7372 
7373 		if (vic->vic_mapping_object != 0) {
7374 			ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7375 			    vd->vdev_removing);
7376 			indirect_vdev_count++;
7377 
7378 			if (vd->vdev_indirect_mapping->vim_havecounts) {
7379 				obsolete_counts_count++;
7380 			}
7381 		}
7382 
7383 		boolean_t are_precise;
7384 		VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7385 		if (are_precise) {
7386 			ASSERT(vic->vic_mapping_object != 0);
7387 			precise_vdev_count++;
7388 		}
7389 
7390 		uint64_t obsolete_sm_object;
7391 		VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7392 		if (obsolete_sm_object != 0) {
7393 			ASSERT(vic->vic_mapping_object != 0);
7394 			obsolete_sm_count++;
7395 		}
7396 	}
7397 
7398 	(void) feature_get_refcount(spa,
7399 	    &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7400 	    &dr_feature_refcount);
7401 	(void) feature_get_refcount(spa,
7402 	    &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7403 	    &oc_feature_refcount);
7404 
7405 	if (dr_feature_refcount != indirect_vdev_count) {
7406 		ret = 1;
7407 		(void) printf("Number of indirect vdevs (%llu) " \
7408 		    "does not match feature count (%llu)\n",
7409 		    (u_longlong_t)indirect_vdev_count,
7410 		    (u_longlong_t)dr_feature_refcount);
7411 	} else {
7412 		(void) printf("Verified device_removal feature refcount " \
7413 		    "of %llu is correct\n",
7414 		    (u_longlong_t)dr_feature_refcount);
7415 	}
7416 
7417 	if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7418 	    DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7419 		obsolete_bpobj_count++;
7420 	}
7421 
7422 
7423 	obsolete_counts_object_count = precise_vdev_count;
7424 	obsolete_counts_object_count += obsolete_sm_count;
7425 	obsolete_counts_object_count += obsolete_counts_count;
7426 	obsolete_counts_object_count += scip_count;
7427 	obsolete_counts_object_count += obsolete_bpobj_count;
7428 	obsolete_counts_object_count += remap_deadlist_count;
7429 
7430 	if (oc_feature_refcount != obsolete_counts_object_count) {
7431 		ret = 1;
7432 		(void) printf("Number of obsolete counts objects (%llu) " \
7433 		    "does not match feature count (%llu)\n",
7434 		    (u_longlong_t)obsolete_counts_object_count,
7435 		    (u_longlong_t)oc_feature_refcount);
7436 		(void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7437 		    "ob:%llu rd:%llu\n",
7438 		    (u_longlong_t)precise_vdev_count,
7439 		    (u_longlong_t)obsolete_sm_count,
7440 		    (u_longlong_t)obsolete_counts_count,
7441 		    (u_longlong_t)scip_count,
7442 		    (u_longlong_t)obsolete_bpobj_count,
7443 		    (u_longlong_t)remap_deadlist_count);
7444 	} else {
7445 		(void) printf("Verified indirect_refcount feature refcount " \
7446 		    "of %llu is correct\n",
7447 		    (u_longlong_t)oc_feature_refcount);
7448 	}
7449 	return (ret);
7450 }
7451 
7452 static void
7453 zdb_set_skip_mmp(char *target)
7454 {
7455 	spa_t *spa;
7456 
7457 	/*
7458 	 * Disable the activity check to allow examination of
7459 	 * active pools.
7460 	 */
7461 	mutex_enter(&spa_namespace_lock);
7462 	if ((spa = spa_lookup(target)) != NULL) {
7463 		spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7464 	}
7465 	mutex_exit(&spa_namespace_lock);
7466 }
7467 
7468 #define	BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7469 /*
7470  * Import the checkpointed state of the pool specified by the target
7471  * parameter as readonly. The function also accepts a pool config
7472  * as an optional parameter, else it attempts to infer the config by
7473  * the name of the target pool.
7474  *
7475  * Note that the checkpointed state's pool name will be the name of
7476  * the original pool with the above suffix appended to it. In addition,
7477  * if the target is not a pool name (e.g. a path to a dataset) then
7478  * the new_path parameter is populated with the updated path to
7479  * reflect the fact that we are looking into the checkpointed state.
7480  *
7481  * The function returns a newly-allocated copy of the name of the
7482  * pool containing the checkpointed state. When this copy is no
7483  * longer needed it should be freed with free(3C). Same thing
7484  * applies to the new_path parameter if allocated.
7485  */
7486 static char *
7487 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7488 {
7489 	int error = 0;
7490 	char *poolname, *bogus_name = NULL;
7491 	boolean_t freecfg = B_FALSE;
7492 
7493 	/* If the target is not a pool, the extract the pool name */
7494 	char *path_start = strchr(target, '/');
7495 	if (path_start != NULL) {
7496 		size_t poolname_len = path_start - target;
7497 		poolname = strndup(target, poolname_len);
7498 	} else {
7499 		poolname = target;
7500 	}
7501 
7502 	if (cfg == NULL) {
7503 		zdb_set_skip_mmp(poolname);
7504 		error = spa_get_stats(poolname, &cfg, NULL, 0);
7505 		if (error != 0) {
7506 			fatal("Tried to read config of pool \"%s\" but "
7507 			    "spa_get_stats() failed with error %d\n",
7508 			    poolname, error);
7509 		}
7510 		freecfg = B_TRUE;
7511 	}
7512 
7513 	if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7514 		if (target != poolname)
7515 			free(poolname);
7516 		return (NULL);
7517 	}
7518 	fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7519 
7520 	error = spa_import(bogus_name, cfg, NULL,
7521 	    ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7522 	    ZFS_IMPORT_SKIP_MMP);
7523 	if (freecfg)
7524 		nvlist_free(cfg);
7525 	if (error != 0) {
7526 		fatal("Tried to import pool \"%s\" but spa_import() failed "
7527 		    "with error %d\n", bogus_name, error);
7528 	}
7529 
7530 	if (new_path != NULL && path_start != NULL) {
7531 		if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7532 			free(bogus_name);
7533 			if (path_start != NULL)
7534 				free(poolname);
7535 			return (NULL);
7536 		}
7537 	}
7538 
7539 	if (target != poolname)
7540 		free(poolname);
7541 
7542 	return (bogus_name);
7543 }
7544 
7545 typedef struct verify_checkpoint_sm_entry_cb_arg {
7546 	vdev_t *vcsec_vd;
7547 
7548 	/* the following fields are only used for printing progress */
7549 	uint64_t vcsec_entryid;
7550 	uint64_t vcsec_num_entries;
7551 } verify_checkpoint_sm_entry_cb_arg_t;
7552 
7553 #define	ENTRIES_PER_PROGRESS_UPDATE 10000
7554 
7555 static int
7556 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7557 {
7558 	verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7559 	vdev_t *vd = vcsec->vcsec_vd;
7560 	metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7561 	uint64_t end = sme->sme_offset + sme->sme_run;
7562 
7563 	ASSERT(sme->sme_type == SM_FREE);
7564 
7565 	if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7566 		(void) fprintf(stderr,
7567 		    "\rverifying vdev %llu, space map entry %llu of %llu ...",
7568 		    (longlong_t)vd->vdev_id,
7569 		    (longlong_t)vcsec->vcsec_entryid,
7570 		    (longlong_t)vcsec->vcsec_num_entries);
7571 	}
7572 	vcsec->vcsec_entryid++;
7573 
7574 	/*
7575 	 * See comment in checkpoint_sm_exclude_entry_cb()
7576 	 */
7577 	VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7578 	VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7579 
7580 	/*
7581 	 * The entries in the vdev_checkpoint_sm should be marked as
7582 	 * allocated in the checkpointed state of the pool, therefore
7583 	 * their respective ms_allocateable trees should not contain them.
7584 	 */
7585 	mutex_enter(&ms->ms_lock);
7586 	range_tree_verify_not_present(ms->ms_allocatable,
7587 	    sme->sme_offset, sme->sme_run);
7588 	mutex_exit(&ms->ms_lock);
7589 
7590 	return (0);
7591 }
7592 
7593 /*
7594  * Verify that all segments in the vdev_checkpoint_sm are allocated
7595  * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7596  * ms_allocatable).
7597  *
7598  * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7599  * each vdev in the current state of the pool to the metaslab space maps
7600  * (ms_sm) of the checkpointed state of the pool.
7601  *
7602  * Note that the function changes the state of the ms_allocatable
7603  * trees of the current spa_t. The entries of these ms_allocatable
7604  * trees are cleared out and then repopulated from with the free
7605  * entries of their respective ms_sm space maps.
7606  */
7607 static void
7608 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7609 {
7610 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7611 	vdev_t *current_rvd = current->spa_root_vdev;
7612 
7613 	load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7614 
7615 	for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7616 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7617 		vdev_t *current_vd = current_rvd->vdev_child[c];
7618 
7619 		space_map_t *checkpoint_sm = NULL;
7620 		uint64_t checkpoint_sm_obj;
7621 
7622 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7623 			/*
7624 			 * Since we don't allow device removal in a pool
7625 			 * that has a checkpoint, we expect that all removed
7626 			 * vdevs were removed from the pool before the
7627 			 * checkpoint.
7628 			 */
7629 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7630 			continue;
7631 		}
7632 
7633 		/*
7634 		 * If the checkpoint space map doesn't exist, then nothing
7635 		 * here is checkpointed so there's nothing to verify.
7636 		 */
7637 		if (current_vd->vdev_top_zap == 0 ||
7638 		    zap_contains(spa_meta_objset(current),
7639 		    current_vd->vdev_top_zap,
7640 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7641 			continue;
7642 
7643 		VERIFY0(zap_lookup(spa_meta_objset(current),
7644 		    current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7645 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7646 
7647 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7648 		    checkpoint_sm_obj, 0, current_vd->vdev_asize,
7649 		    current_vd->vdev_ashift));
7650 
7651 		verify_checkpoint_sm_entry_cb_arg_t vcsec;
7652 		vcsec.vcsec_vd = ckpoint_vd;
7653 		vcsec.vcsec_entryid = 0;
7654 		vcsec.vcsec_num_entries =
7655 		    space_map_length(checkpoint_sm) / sizeof (uint64_t);
7656 		VERIFY0(space_map_iterate(checkpoint_sm,
7657 		    space_map_length(checkpoint_sm),
7658 		    verify_checkpoint_sm_entry_cb, &vcsec));
7659 		if (dump_opt['m'] > 3)
7660 			dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7661 		space_map_close(checkpoint_sm);
7662 	}
7663 
7664 	/*
7665 	 * If we've added vdevs since we took the checkpoint, ensure
7666 	 * that their checkpoint space maps are empty.
7667 	 */
7668 	if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7669 		for (uint64_t c = ckpoint_rvd->vdev_children;
7670 		    c < current_rvd->vdev_children; c++) {
7671 			vdev_t *current_vd = current_rvd->vdev_child[c];
7672 			VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7673 		}
7674 	}
7675 
7676 	/* for cleaner progress output */
7677 	(void) fprintf(stderr, "\n");
7678 }
7679 
7680 /*
7681  * Verifies that all space that's allocated in the checkpoint is
7682  * still allocated in the current version, by checking that everything
7683  * in checkpoint's ms_allocatable (which is actually allocated, not
7684  * allocatable/free) is not present in current's ms_allocatable.
7685  *
7686  * Note that the function changes the state of the ms_allocatable
7687  * trees of both spas when called. The entries of all ms_allocatable
7688  * trees are cleared out and then repopulated from their respective
7689  * ms_sm space maps. In the checkpointed state we load the allocated
7690  * entries, and in the current state we load the free entries.
7691  */
7692 static void
7693 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7694 {
7695 	vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7696 	vdev_t *current_rvd = current->spa_root_vdev;
7697 
7698 	load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7699 	load_concrete_ms_allocatable_trees(current, SM_FREE);
7700 
7701 	for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7702 		vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7703 		vdev_t *current_vd = current_rvd->vdev_child[i];
7704 
7705 		if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7706 			/*
7707 			 * See comment in verify_checkpoint_vdev_spacemaps()
7708 			 */
7709 			ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7710 			continue;
7711 		}
7712 
7713 		for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7714 			metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7715 			metaslab_t *current_msp = current_vd->vdev_ms[m];
7716 
7717 			(void) fprintf(stderr,
7718 			    "\rverifying vdev %llu of %llu, "
7719 			    "metaslab %llu of %llu ...",
7720 			    (longlong_t)current_vd->vdev_id,
7721 			    (longlong_t)current_rvd->vdev_children,
7722 			    (longlong_t)current_vd->vdev_ms[m]->ms_id,
7723 			    (longlong_t)current_vd->vdev_ms_count);
7724 
7725 			/*
7726 			 * We walk through the ms_allocatable trees that
7727 			 * are loaded with the allocated blocks from the
7728 			 * ms_sm spacemaps of the checkpoint. For each
7729 			 * one of these ranges we ensure that none of them
7730 			 * exists in the ms_allocatable trees of the
7731 			 * current state which are loaded with the ranges
7732 			 * that are currently free.
7733 			 *
7734 			 * This way we ensure that none of the blocks that
7735 			 * are part of the checkpoint were freed by mistake.
7736 			 */
7737 			range_tree_walk(ckpoint_msp->ms_allocatable,
7738 			    (range_tree_func_t *)range_tree_verify_not_present,
7739 			    current_msp->ms_allocatable);
7740 		}
7741 	}
7742 
7743 	/* for cleaner progress output */
7744 	(void) fprintf(stderr, "\n");
7745 }
7746 
7747 static void
7748 verify_checkpoint_blocks(spa_t *spa)
7749 {
7750 	ASSERT(!dump_opt['L']);
7751 
7752 	spa_t *checkpoint_spa;
7753 	char *checkpoint_pool;
7754 	int error = 0;
7755 
7756 	/*
7757 	 * We import the checkpointed state of the pool (under a different
7758 	 * name) so we can do verification on it against the current state
7759 	 * of the pool.
7760 	 */
7761 	checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7762 	    NULL);
7763 	ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7764 
7765 	error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7766 	if (error != 0) {
7767 		fatal("Tried to open pool \"%s\" but spa_open() failed with "
7768 		    "error %d\n", checkpoint_pool, error);
7769 	}
7770 
7771 	/*
7772 	 * Ensure that ranges in the checkpoint space maps of each vdev
7773 	 * are allocated according to the checkpointed state's metaslab
7774 	 * space maps.
7775 	 */
7776 	verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7777 
7778 	/*
7779 	 * Ensure that allocated ranges in the checkpoint's metaslab
7780 	 * space maps remain allocated in the metaslab space maps of
7781 	 * the current state.
7782 	 */
7783 	verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7784 
7785 	/*
7786 	 * Once we are done, we get rid of the checkpointed state.
7787 	 */
7788 	spa_close(checkpoint_spa, FTAG);
7789 	free(checkpoint_pool);
7790 }
7791 
7792 static void
7793 dump_leftover_checkpoint_blocks(spa_t *spa)
7794 {
7795 	vdev_t *rvd = spa->spa_root_vdev;
7796 
7797 	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7798 		vdev_t *vd = rvd->vdev_child[i];
7799 
7800 		space_map_t *checkpoint_sm = NULL;
7801 		uint64_t checkpoint_sm_obj;
7802 
7803 		if (vd->vdev_top_zap == 0)
7804 			continue;
7805 
7806 		if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7807 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7808 			continue;
7809 
7810 		VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7811 		    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7812 		    sizeof (uint64_t), 1, &checkpoint_sm_obj));
7813 
7814 		VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7815 		    checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7816 		dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7817 		space_map_close(checkpoint_sm);
7818 	}
7819 }
7820 
7821 static int
7822 verify_checkpoint(spa_t *spa)
7823 {
7824 	uberblock_t checkpoint;
7825 	int error;
7826 
7827 	if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7828 		return (0);
7829 
7830 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7831 	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7832 	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7833 
7834 	if (error == ENOENT && !dump_opt['L']) {
7835 		/*
7836 		 * If the feature is active but the uberblock is missing
7837 		 * then we must be in the middle of discarding the
7838 		 * checkpoint.
7839 		 */
7840 		(void) printf("\nPartially discarded checkpoint "
7841 		    "state found:\n");
7842 		if (dump_opt['m'] > 3)
7843 			dump_leftover_checkpoint_blocks(spa);
7844 		return (0);
7845 	} else if (error != 0) {
7846 		(void) printf("lookup error %d when looking for "
7847 		    "checkpointed uberblock in MOS\n", error);
7848 		return (error);
7849 	}
7850 	dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7851 
7852 	if (checkpoint.ub_checkpoint_txg == 0) {
7853 		(void) printf("\nub_checkpoint_txg not set in checkpointed "
7854 		    "uberblock\n");
7855 		error = 3;
7856 	}
7857 
7858 	if (error == 0 && !dump_opt['L'])
7859 		verify_checkpoint_blocks(spa);
7860 
7861 	return (error);
7862 }
7863 
7864 static void
7865 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
7866 {
7867 	(void) arg;
7868 	for (uint64_t i = start; i < size; i++) {
7869 		(void) printf("MOS object %llu referenced but not allocated\n",
7870 		    (u_longlong_t)i);
7871 	}
7872 }
7873 
7874 static void
7875 mos_obj_refd(uint64_t obj)
7876 {
7877 	if (obj != 0 && mos_refd_objs != NULL)
7878 		range_tree_add(mos_refd_objs, obj, 1);
7879 }
7880 
7881 /*
7882  * Call on a MOS object that may already have been referenced.
7883  */
7884 static void
7885 mos_obj_refd_multiple(uint64_t obj)
7886 {
7887 	if (obj != 0 && mos_refd_objs != NULL &&
7888 	    !range_tree_contains(mos_refd_objs, obj, 1))
7889 		range_tree_add(mos_refd_objs, obj, 1);
7890 }
7891 
7892 static void
7893 mos_leak_vdev_top_zap(vdev_t *vd)
7894 {
7895 	uint64_t ms_flush_data_obj;
7896 	int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
7897 	    vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
7898 	    sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
7899 	if (error == ENOENT)
7900 		return;
7901 	ASSERT0(error);
7902 
7903 	mos_obj_refd(ms_flush_data_obj);
7904 }
7905 
7906 static void
7907 mos_leak_vdev(vdev_t *vd)
7908 {
7909 	mos_obj_refd(vd->vdev_dtl_object);
7910 	mos_obj_refd(vd->vdev_ms_array);
7911 	mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
7912 	mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
7913 	mos_obj_refd(vd->vdev_leaf_zap);
7914 	if (vd->vdev_checkpoint_sm != NULL)
7915 		mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
7916 	if (vd->vdev_indirect_mapping != NULL) {
7917 		mos_obj_refd(vd->vdev_indirect_mapping->
7918 		    vim_phys->vimp_counts_object);
7919 	}
7920 	if (vd->vdev_obsolete_sm != NULL)
7921 		mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
7922 
7923 	for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
7924 		metaslab_t *ms = vd->vdev_ms[m];
7925 		mos_obj_refd(space_map_object(ms->ms_sm));
7926 	}
7927 
7928 	if (vd->vdev_root_zap != 0)
7929 		mos_obj_refd(vd->vdev_root_zap);
7930 
7931 	if (vd->vdev_top_zap != 0) {
7932 		mos_obj_refd(vd->vdev_top_zap);
7933 		mos_leak_vdev_top_zap(vd);
7934 	}
7935 
7936 	for (uint64_t c = 0; c < vd->vdev_children; c++) {
7937 		mos_leak_vdev(vd->vdev_child[c]);
7938 	}
7939 }
7940 
7941 static void
7942 mos_leak_log_spacemaps(spa_t *spa)
7943 {
7944 	uint64_t spacemap_zap;
7945 	int error = zap_lookup(spa_meta_objset(spa),
7946 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
7947 	    sizeof (spacemap_zap), 1, &spacemap_zap);
7948 	if (error == ENOENT)
7949 		return;
7950 	ASSERT0(error);
7951 
7952 	mos_obj_refd(spacemap_zap);
7953 	for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
7954 	    sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
7955 		mos_obj_refd(sls->sls_sm_obj);
7956 }
7957 
7958 static void
7959 errorlog_count_refd(objset_t *mos, uint64_t errlog)
7960 {
7961 	zap_cursor_t zc;
7962 	zap_attribute_t za;
7963 	for (zap_cursor_init(&zc, mos, errlog);
7964 	    zap_cursor_retrieve(&zc, &za) == 0;
7965 	    zap_cursor_advance(&zc)) {
7966 		mos_obj_refd(za.za_first_integer);
7967 	}
7968 	zap_cursor_fini(&zc);
7969 }
7970 
7971 static int
7972 dump_mos_leaks(spa_t *spa)
7973 {
7974 	int rv = 0;
7975 	objset_t *mos = spa->spa_meta_objset;
7976 	dsl_pool_t *dp = spa->spa_dsl_pool;
7977 
7978 	/* Visit and mark all referenced objects in the MOS */
7979 
7980 	mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
7981 	mos_obj_refd(spa->spa_pool_props_object);
7982 	mos_obj_refd(spa->spa_config_object);
7983 	mos_obj_refd(spa->spa_ddt_stat_object);
7984 	mos_obj_refd(spa->spa_feat_desc_obj);
7985 	mos_obj_refd(spa->spa_feat_enabled_txg_obj);
7986 	mos_obj_refd(spa->spa_feat_for_read_obj);
7987 	mos_obj_refd(spa->spa_feat_for_write_obj);
7988 	mos_obj_refd(spa->spa_history);
7989 	mos_obj_refd(spa->spa_errlog_last);
7990 	mos_obj_refd(spa->spa_errlog_scrub);
7991 
7992 	if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
7993 		errorlog_count_refd(mos, spa->spa_errlog_last);
7994 		errorlog_count_refd(mos, spa->spa_errlog_scrub);
7995 	}
7996 
7997 	mos_obj_refd(spa->spa_all_vdev_zaps);
7998 	mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
7999 	mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8000 	mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8001 	bpobj_count_refd(&spa->spa_deferred_bpobj);
8002 	mos_obj_refd(dp->dp_empty_bpobj);
8003 	bpobj_count_refd(&dp->dp_obsolete_bpobj);
8004 	bpobj_count_refd(&dp->dp_free_bpobj);
8005 	mos_obj_refd(spa->spa_l2cache.sav_object);
8006 	mos_obj_refd(spa->spa_spares.sav_object);
8007 
8008 	if (spa->spa_syncing_log_sm != NULL)
8009 		mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8010 	mos_leak_log_spacemaps(spa);
8011 
8012 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8013 	    scip_next_mapping_object);
8014 	mos_obj_refd(spa->spa_condensing_indirect_phys.
8015 	    scip_prev_obsolete_sm_object);
8016 	if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8017 		vdev_indirect_mapping_t *vim =
8018 		    vdev_indirect_mapping_open(mos,
8019 		    spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8020 		mos_obj_refd(vim->vim_phys->vimp_counts_object);
8021 		vdev_indirect_mapping_close(vim);
8022 	}
8023 	deleted_livelists_dump_mos(spa);
8024 
8025 	if (dp->dp_origin_snap != NULL) {
8026 		dsl_dataset_t *ds;
8027 
8028 		dsl_pool_config_enter(dp, FTAG);
8029 		VERIFY0(dsl_dataset_hold_obj(dp,
8030 		    dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8031 		    FTAG, &ds));
8032 		count_ds_mos_objects(ds);
8033 		dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8034 		dsl_dataset_rele(ds, FTAG);
8035 		dsl_pool_config_exit(dp, FTAG);
8036 
8037 		count_ds_mos_objects(dp->dp_origin_snap);
8038 		dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8039 	}
8040 	count_dir_mos_objects(dp->dp_mos_dir);
8041 	if (dp->dp_free_dir != NULL)
8042 		count_dir_mos_objects(dp->dp_free_dir);
8043 	if (dp->dp_leak_dir != NULL)
8044 		count_dir_mos_objects(dp->dp_leak_dir);
8045 
8046 	mos_leak_vdev(spa->spa_root_vdev);
8047 
8048 	for (uint64_t class = 0; class < DDT_CLASSES; class++) {
8049 		for (uint64_t type = 0; type < DDT_TYPES; type++) {
8050 			for (uint64_t cksum = 0;
8051 			    cksum < ZIO_CHECKSUM_FUNCTIONS; cksum++) {
8052 				ddt_t *ddt = spa->spa_ddt[cksum];
8053 				mos_obj_refd(ddt->ddt_object[type][class]);
8054 			}
8055 		}
8056 	}
8057 
8058 	/*
8059 	 * Visit all allocated objects and make sure they are referenced.
8060 	 */
8061 	uint64_t object = 0;
8062 	while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8063 		if (range_tree_contains(mos_refd_objs, object, 1)) {
8064 			range_tree_remove(mos_refd_objs, object, 1);
8065 		} else {
8066 			dmu_object_info_t doi;
8067 			const char *name;
8068 			VERIFY0(dmu_object_info(mos, object, &doi));
8069 			if (doi.doi_type & DMU_OT_NEWTYPE) {
8070 				dmu_object_byteswap_t bswap =
8071 				    DMU_OT_BYTESWAP(doi.doi_type);
8072 				name = dmu_ot_byteswap[bswap].ob_name;
8073 			} else {
8074 				name = dmu_ot[doi.doi_type].ot_name;
8075 			}
8076 
8077 			(void) printf("MOS object %llu (%s) leaked\n",
8078 			    (u_longlong_t)object, name);
8079 			rv = 2;
8080 		}
8081 	}
8082 	(void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8083 	if (!range_tree_is_empty(mos_refd_objs))
8084 		rv = 2;
8085 	range_tree_vacate(mos_refd_objs, NULL, NULL);
8086 	range_tree_destroy(mos_refd_objs);
8087 	return (rv);
8088 }
8089 
8090 typedef struct log_sm_obsolete_stats_arg {
8091 	uint64_t lsos_current_txg;
8092 
8093 	uint64_t lsos_total_entries;
8094 	uint64_t lsos_valid_entries;
8095 
8096 	uint64_t lsos_sm_entries;
8097 	uint64_t lsos_valid_sm_entries;
8098 } log_sm_obsolete_stats_arg_t;
8099 
8100 static int
8101 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8102     uint64_t txg, void *arg)
8103 {
8104 	log_sm_obsolete_stats_arg_t *lsos = arg;
8105 
8106 	uint64_t offset = sme->sme_offset;
8107 	uint64_t vdev_id = sme->sme_vdev;
8108 
8109 	if (lsos->lsos_current_txg == 0) {
8110 		/* this is the first log */
8111 		lsos->lsos_current_txg = txg;
8112 	} else if (lsos->lsos_current_txg < txg) {
8113 		/* we just changed log - print stats and reset */
8114 		(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8115 		    (u_longlong_t)lsos->lsos_valid_sm_entries,
8116 		    (u_longlong_t)lsos->lsos_sm_entries,
8117 		    (u_longlong_t)lsos->lsos_current_txg);
8118 		lsos->lsos_valid_sm_entries = 0;
8119 		lsos->lsos_sm_entries = 0;
8120 		lsos->lsos_current_txg = txg;
8121 	}
8122 	ASSERT3U(lsos->lsos_current_txg, ==, txg);
8123 
8124 	lsos->lsos_sm_entries++;
8125 	lsos->lsos_total_entries++;
8126 
8127 	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8128 	if (!vdev_is_concrete(vd))
8129 		return (0);
8130 
8131 	metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8132 	ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8133 
8134 	if (txg < metaslab_unflushed_txg(ms))
8135 		return (0);
8136 	lsos->lsos_valid_sm_entries++;
8137 	lsos->lsos_valid_entries++;
8138 	return (0);
8139 }
8140 
8141 static void
8142 dump_log_spacemap_obsolete_stats(spa_t *spa)
8143 {
8144 	if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8145 		return;
8146 
8147 	log_sm_obsolete_stats_arg_t lsos = {0};
8148 
8149 	(void) printf("Log Space Map Obsolete Entry Statistics:\n");
8150 
8151 	iterate_through_spacemap_logs(spa,
8152 	    log_spacemap_obsolete_stats_cb, &lsos);
8153 
8154 	/* print stats for latest log */
8155 	(void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8156 	    (u_longlong_t)lsos.lsos_valid_sm_entries,
8157 	    (u_longlong_t)lsos.lsos_sm_entries,
8158 	    (u_longlong_t)lsos.lsos_current_txg);
8159 
8160 	(void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8161 	    (u_longlong_t)lsos.lsos_valid_entries,
8162 	    (u_longlong_t)lsos.lsos_total_entries);
8163 }
8164 
8165 static void
8166 dump_zpool(spa_t *spa)
8167 {
8168 	dsl_pool_t *dp = spa_get_dsl(spa);
8169 	int rc = 0;
8170 
8171 	if (dump_opt['y']) {
8172 		livelist_metaslab_validate(spa);
8173 	}
8174 
8175 	if (dump_opt['S']) {
8176 		dump_simulated_ddt(spa);
8177 		return;
8178 	}
8179 
8180 	if (!dump_opt['e'] && dump_opt['C'] > 1) {
8181 		(void) printf("\nCached configuration:\n");
8182 		dump_nvlist(spa->spa_config, 8);
8183 	}
8184 
8185 	if (dump_opt['C'])
8186 		dump_config(spa);
8187 
8188 	if (dump_opt['u'])
8189 		dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8190 
8191 	if (dump_opt['D'])
8192 		dump_all_ddts(spa);
8193 
8194 	if (dump_opt['T'])
8195 		dump_brt(spa);
8196 
8197 	if (dump_opt['d'] > 2 || dump_opt['m'])
8198 		dump_metaslabs(spa);
8199 	if (dump_opt['M'])
8200 		dump_metaslab_groups(spa, dump_opt['M'] > 1);
8201 	if (dump_opt['d'] > 2 || dump_opt['m']) {
8202 		dump_log_spacemaps(spa);
8203 		dump_log_spacemap_obsolete_stats(spa);
8204 	}
8205 
8206 	if (dump_opt['d'] || dump_opt['i']) {
8207 		spa_feature_t f;
8208 		mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8209 		    0);
8210 		dump_objset(dp->dp_meta_objset);
8211 
8212 		if (dump_opt['d'] >= 3) {
8213 			dsl_pool_t *dp = spa->spa_dsl_pool;
8214 			dump_full_bpobj(&spa->spa_deferred_bpobj,
8215 			    "Deferred frees", 0);
8216 			if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8217 				dump_full_bpobj(&dp->dp_free_bpobj,
8218 				    "Pool snapshot frees", 0);
8219 			}
8220 			if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8221 				ASSERT(spa_feature_is_enabled(spa,
8222 				    SPA_FEATURE_DEVICE_REMOVAL));
8223 				dump_full_bpobj(&dp->dp_obsolete_bpobj,
8224 				    "Pool obsolete blocks", 0);
8225 			}
8226 
8227 			if (spa_feature_is_active(spa,
8228 			    SPA_FEATURE_ASYNC_DESTROY)) {
8229 				dump_bptree(spa->spa_meta_objset,
8230 				    dp->dp_bptree_obj,
8231 				    "Pool dataset frees");
8232 			}
8233 			dump_dtl(spa->spa_root_vdev, 0);
8234 		}
8235 
8236 		for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8237 			global_feature_count[f] = UINT64_MAX;
8238 		global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8239 		global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8240 		global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8241 		global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8242 
8243 		(void) dmu_objset_find(spa_name(spa), dump_one_objset,
8244 		    NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8245 
8246 		if (rc == 0 && !dump_opt['L'])
8247 			rc = dump_mos_leaks(spa);
8248 
8249 		for (f = 0; f < SPA_FEATURES; f++) {
8250 			uint64_t refcount;
8251 
8252 			uint64_t *arr;
8253 			if (!(spa_feature_table[f].fi_flags &
8254 			    ZFEATURE_FLAG_PER_DATASET)) {
8255 				if (global_feature_count[f] == UINT64_MAX)
8256 					continue;
8257 				if (!spa_feature_is_enabled(spa, f)) {
8258 					ASSERT0(global_feature_count[f]);
8259 					continue;
8260 				}
8261 				arr = global_feature_count;
8262 			} else {
8263 				if (!spa_feature_is_enabled(spa, f)) {
8264 					ASSERT0(dataset_feature_count[f]);
8265 					continue;
8266 				}
8267 				arr = dataset_feature_count;
8268 			}
8269 			if (feature_get_refcount(spa, &spa_feature_table[f],
8270 			    &refcount) == ENOTSUP)
8271 				continue;
8272 			if (arr[f] != refcount) {
8273 				(void) printf("%s feature refcount mismatch: "
8274 				    "%lld consumers != %lld refcount\n",
8275 				    spa_feature_table[f].fi_uname,
8276 				    (longlong_t)arr[f], (longlong_t)refcount);
8277 				rc = 2;
8278 			} else {
8279 				(void) printf("Verified %s feature refcount "
8280 				    "of %llu is correct\n",
8281 				    spa_feature_table[f].fi_uname,
8282 				    (longlong_t)refcount);
8283 			}
8284 		}
8285 
8286 		if (rc == 0)
8287 			rc = verify_device_removal_feature_counts(spa);
8288 	}
8289 
8290 	if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8291 		rc = dump_block_stats(spa);
8292 
8293 	if (rc == 0)
8294 		rc = verify_spacemap_refcounts(spa);
8295 
8296 	if (dump_opt['s'])
8297 		show_pool_stats(spa);
8298 
8299 	if (dump_opt['h'])
8300 		dump_history(spa);
8301 
8302 	if (rc == 0)
8303 		rc = verify_checkpoint(spa);
8304 
8305 	if (rc != 0) {
8306 		dump_debug_buffer();
8307 		exit(rc);
8308 	}
8309 }
8310 
8311 #define	ZDB_FLAG_CHECKSUM	0x0001
8312 #define	ZDB_FLAG_DECOMPRESS	0x0002
8313 #define	ZDB_FLAG_BSWAP		0x0004
8314 #define	ZDB_FLAG_GBH		0x0008
8315 #define	ZDB_FLAG_INDIRECT	0x0010
8316 #define	ZDB_FLAG_RAW		0x0020
8317 #define	ZDB_FLAG_PRINT_BLKPTR	0x0040
8318 #define	ZDB_FLAG_VERBOSE	0x0080
8319 
8320 static int flagbits[256];
8321 static char flagbitstr[16];
8322 
8323 static void
8324 zdb_print_blkptr(const blkptr_t *bp, int flags)
8325 {
8326 	char blkbuf[BP_SPRINTF_LEN];
8327 
8328 	if (flags & ZDB_FLAG_BSWAP)
8329 		byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8330 
8331 	snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8332 	(void) printf("%s\n", blkbuf);
8333 }
8334 
8335 static void
8336 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8337 {
8338 	int i;
8339 
8340 	for (i = 0; i < nbps; i++)
8341 		zdb_print_blkptr(&bp[i], flags);
8342 }
8343 
8344 static void
8345 zdb_dump_gbh(void *buf, int flags)
8346 {
8347 	zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8348 }
8349 
8350 static void
8351 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8352 {
8353 	if (flags & ZDB_FLAG_BSWAP)
8354 		byteswap_uint64_array(buf, size);
8355 	VERIFY(write(fileno(stdout), buf, size) == size);
8356 }
8357 
8358 static void
8359 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8360 {
8361 	uint64_t *d = (uint64_t *)buf;
8362 	unsigned nwords = size / sizeof (uint64_t);
8363 	int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8364 	unsigned i, j;
8365 	const char *hdr;
8366 	char *c;
8367 
8368 
8369 	if (do_bswap)
8370 		hdr = " 7 6 5 4 3 2 1 0   f e d c b a 9 8";
8371 	else
8372 		hdr = " 0 1 2 3 4 5 6 7   8 9 a b c d e f";
8373 
8374 	(void) printf("\n%s\n%6s   %s  0123456789abcdef\n", label, "", hdr);
8375 
8376 #ifdef _LITTLE_ENDIAN
8377 	/* correct the endianness */
8378 	do_bswap = !do_bswap;
8379 #endif
8380 	for (i = 0; i < nwords; i += 2) {
8381 		(void) printf("%06llx:  %016llx  %016llx  ",
8382 		    (u_longlong_t)(i * sizeof (uint64_t)),
8383 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8384 		    (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8385 
8386 		c = (char *)&d[i];
8387 		for (j = 0; j < 2 * sizeof (uint64_t); j++)
8388 			(void) printf("%c", isprint(c[j]) ? c[j] : '.');
8389 		(void) printf("\n");
8390 	}
8391 }
8392 
8393 /*
8394  * There are two acceptable formats:
8395  *	leaf_name	  - For example: c1t0d0 or /tmp/ztest.0a
8396  *	child[.child]*    - For example: 0.1.1
8397  *
8398  * The second form can be used to specify arbitrary vdevs anywhere
8399  * in the hierarchy.  For example, in a pool with a mirror of
8400  * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8401  */
8402 static vdev_t *
8403 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8404 {
8405 	char *s, *p, *q;
8406 	unsigned i;
8407 
8408 	if (vdev == NULL)
8409 		return (NULL);
8410 
8411 	/* First, assume the x.x.x.x format */
8412 	i = strtoul(path, &s, 10);
8413 	if (s == path || (s && *s != '.' && *s != '\0'))
8414 		goto name;
8415 	if (i >= vdev->vdev_children)
8416 		return (NULL);
8417 
8418 	vdev = vdev->vdev_child[i];
8419 	if (s && *s == '\0')
8420 		return (vdev);
8421 	return (zdb_vdev_lookup(vdev, s+1));
8422 
8423 name:
8424 	for (i = 0; i < vdev->vdev_children; i++) {
8425 		vdev_t *vc = vdev->vdev_child[i];
8426 
8427 		if (vc->vdev_path == NULL) {
8428 			vc = zdb_vdev_lookup(vc, path);
8429 			if (vc == NULL)
8430 				continue;
8431 			else
8432 				return (vc);
8433 		}
8434 
8435 		p = strrchr(vc->vdev_path, '/');
8436 		p = p ? p + 1 : vc->vdev_path;
8437 		q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8438 
8439 		if (strcmp(vc->vdev_path, path) == 0)
8440 			return (vc);
8441 		if (strcmp(p, path) == 0)
8442 			return (vc);
8443 		if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8444 			return (vc);
8445 	}
8446 
8447 	return (NULL);
8448 }
8449 
8450 static int
8451 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8452 {
8453 	dsl_dataset_t *ds;
8454 
8455 	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8456 	int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8457 	    NULL, &ds);
8458 	if (error != 0) {
8459 		(void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8460 		    (u_longlong_t)objset_id, strerror(error));
8461 		dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8462 		return (error);
8463 	}
8464 	dsl_dataset_name(ds, outstr);
8465 	dsl_dataset_rele(ds, NULL);
8466 	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8467 	return (0);
8468 }
8469 
8470 static boolean_t
8471 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8472 {
8473 	char *s0, *s1, *tmp = NULL;
8474 
8475 	if (sizes == NULL)
8476 		return (B_FALSE);
8477 
8478 	s0 = strtok_r(sizes, "/", &tmp);
8479 	if (s0 == NULL)
8480 		return (B_FALSE);
8481 	s1 = strtok_r(NULL, "/", &tmp);
8482 	*lsize = strtoull(s0, NULL, 16);
8483 	*psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8484 	return (*lsize >= *psize && *psize > 0);
8485 }
8486 
8487 #define	ZIO_COMPRESS_MASK(alg)	(1ULL << (ZIO_COMPRESS_##alg))
8488 
8489 static boolean_t
8490 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8491     uint64_t psize, int flags)
8492 {
8493 	(void) buf;
8494 	boolean_t exceeded = B_FALSE;
8495 	/*
8496 	 * We don't know how the data was compressed, so just try
8497 	 * every decompress function at every inflated blocksize.
8498 	 */
8499 	void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8500 	int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8501 	int *cfuncp = cfuncs;
8502 	uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8503 	uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8504 	    ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8505 	    (getenv("ZDB_NO_ZLE") ? ZIO_COMPRESS_MASK(ZLE) : 0);
8506 	*cfuncp++ = ZIO_COMPRESS_LZ4;
8507 	*cfuncp++ = ZIO_COMPRESS_LZJB;
8508 	mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8509 	for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8510 		if (((1ULL << c) & mask) == 0)
8511 			*cfuncp++ = c;
8512 
8513 	/*
8514 	 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8515 	 * could take a while and we should let the user know
8516 	 * we are not stuck.  On the other hand, printing progress
8517 	 * info gets old after a while.  User can specify 'v' flag
8518 	 * to see the progression.
8519 	 */
8520 	if (lsize == psize)
8521 		lsize += SPA_MINBLOCKSIZE;
8522 	else
8523 		maxlsize = lsize;
8524 	for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8525 		for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8526 			if (flags & ZDB_FLAG_VERBOSE) {
8527 				(void) fprintf(stderr,
8528 				    "Trying %05llx -> %05llx (%s)\n",
8529 				    (u_longlong_t)psize,
8530 				    (u_longlong_t)lsize,
8531 				    zio_compress_table[*cfuncp].\
8532 				    ci_name);
8533 			}
8534 
8535 			/*
8536 			 * We set lbuf to all zeros and lbuf2 to all
8537 			 * ones, then decompress to both buffers and
8538 			 * compare their contents. This way we can
8539 			 * know if decompression filled exactly to
8540 			 * lsize or if it left some bytes unwritten.
8541 			 */
8542 			memset(lbuf, 0x00, lsize);
8543 			memset(lbuf2, 0xff, lsize);
8544 
8545 			if (zio_decompress_data(*cfuncp, pabd,
8546 			    lbuf, psize, lsize, NULL) == 0 &&
8547 			    zio_decompress_data(*cfuncp, pabd,
8548 			    lbuf2, psize, lsize, NULL) == 0 &&
8549 			    memcmp(lbuf, lbuf2, lsize) == 0)
8550 				break;
8551 		}
8552 		if (*cfuncp != 0)
8553 			break;
8554 	}
8555 	umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8556 
8557 	if (lsize > maxlsize) {
8558 		exceeded = B_TRUE;
8559 	}
8560 	if (*cfuncp == ZIO_COMPRESS_ZLE) {
8561 		printf("\nZLE decompression was selected. If you "
8562 		    "suspect the results are wrong,\ntry avoiding ZLE "
8563 		    "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8564 	}
8565 
8566 	return (exceeded);
8567 }
8568 
8569 /*
8570  * Read a block from a pool and print it out.  The syntax of the
8571  * block descriptor is:
8572  *
8573  *	pool:vdev_specifier:offset:[lsize/]psize[:flags]
8574  *
8575  *	pool           - The name of the pool you wish to read from
8576  *	vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8577  *	offset         - offset, in hex, in bytes
8578  *	size           - Amount of data to read, in hex, in bytes
8579  *	flags          - A string of characters specifying options
8580  *		 b: Decode a blkptr at given offset within block
8581  *		 c: Calculate and display checksums
8582  *		 d: Decompress data before dumping
8583  *		 e: Byteswap data before dumping
8584  *		 g: Display data as a gang block header
8585  *		 i: Display as an indirect block
8586  *		 r: Dump raw data to stdout
8587  *		 v: Verbose
8588  *
8589  */
8590 static void
8591 zdb_read_block(char *thing, spa_t *spa)
8592 {
8593 	blkptr_t blk, *bp = &blk;
8594 	dva_t *dva = bp->blk_dva;
8595 	int flags = 0;
8596 	uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8597 	zio_t *zio;
8598 	vdev_t *vd;
8599 	abd_t *pabd;
8600 	void *lbuf, *buf;
8601 	char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8602 	const char *vdev, *errmsg = NULL;
8603 	int i, error;
8604 	boolean_t borrowed = B_FALSE, found = B_FALSE;
8605 
8606 	dup = strdup(thing);
8607 	s = strtok_r(dup, ":", &tmp);
8608 	vdev = s ?: "";
8609 	s = strtok_r(NULL, ":", &tmp);
8610 	offset = strtoull(s ? s : "", NULL, 16);
8611 	sizes = strtok_r(NULL, ":", &tmp);
8612 	s = strtok_r(NULL, ":", &tmp);
8613 	flagstr = strdup(s ?: "");
8614 
8615 	if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8616 		errmsg = "invalid size(s)";
8617 	if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8618 		errmsg = "size must be a multiple of sector size";
8619 	if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8620 		errmsg = "offset must be a multiple of sector size";
8621 	if (errmsg) {
8622 		(void) printf("Invalid block specifier: %s  - %s\n",
8623 		    thing, errmsg);
8624 		goto done;
8625 	}
8626 
8627 	tmp = NULL;
8628 	for (s = strtok_r(flagstr, ":", &tmp);
8629 	    s != NULL;
8630 	    s = strtok_r(NULL, ":", &tmp)) {
8631 		for (i = 0; i < strlen(flagstr); i++) {
8632 			int bit = flagbits[(uchar_t)flagstr[i]];
8633 
8634 			if (bit == 0) {
8635 				(void) printf("***Ignoring flag: %c\n",
8636 				    (uchar_t)flagstr[i]);
8637 				continue;
8638 			}
8639 			found = B_TRUE;
8640 			flags |= bit;
8641 
8642 			p = &flagstr[i + 1];
8643 			if (*p != ':' && *p != '\0') {
8644 				int j = 0, nextbit = flagbits[(uchar_t)*p];
8645 				char *end, offstr[8] = { 0 };
8646 				if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8647 				    (nextbit == 0)) {
8648 					/* look ahead to isolate the offset */
8649 					while (nextbit == 0 &&
8650 					    strchr(flagbitstr, *p) == NULL) {
8651 						offstr[j] = *p;
8652 						j++;
8653 						if (i + j > strlen(flagstr))
8654 							break;
8655 						p++;
8656 						nextbit = flagbits[(uchar_t)*p];
8657 					}
8658 					blkptr_offset = strtoull(offstr, &end,
8659 					    16);
8660 					i += j;
8661 				} else if (nextbit == 0) {
8662 					(void) printf("***Ignoring flag arg:"
8663 					    " '%c'\n", (uchar_t)*p);
8664 				}
8665 			}
8666 		}
8667 	}
8668 	if (blkptr_offset % sizeof (blkptr_t)) {
8669 		printf("Block pointer offset 0x%llx "
8670 		    "must be divisible by 0x%x\n",
8671 		    (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8672 		goto done;
8673 	}
8674 	if (found == B_FALSE && strlen(flagstr) > 0) {
8675 		printf("Invalid flag arg: '%s'\n", flagstr);
8676 		goto done;
8677 	}
8678 
8679 	vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8680 	if (vd == NULL) {
8681 		(void) printf("***Invalid vdev: %s\n", vdev);
8682 		goto done;
8683 	} else {
8684 		if (vd->vdev_path)
8685 			(void) fprintf(stderr, "Found vdev: %s\n",
8686 			    vd->vdev_path);
8687 		else
8688 			(void) fprintf(stderr, "Found vdev type: %s\n",
8689 			    vd->vdev_ops->vdev_op_type);
8690 	}
8691 
8692 	pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8693 	lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8694 
8695 	BP_ZERO(bp);
8696 
8697 	DVA_SET_VDEV(&dva[0], vd->vdev_id);
8698 	DVA_SET_OFFSET(&dva[0], offset);
8699 	DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8700 	DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8701 
8702 	BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8703 
8704 	BP_SET_LSIZE(bp, lsize);
8705 	BP_SET_PSIZE(bp, psize);
8706 	BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8707 	BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8708 	BP_SET_TYPE(bp, DMU_OT_NONE);
8709 	BP_SET_LEVEL(bp, 0);
8710 	BP_SET_DEDUP(bp, 0);
8711 	BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8712 
8713 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8714 	zio = zio_root(spa, NULL, NULL, 0);
8715 
8716 	if (vd == vd->vdev_top) {
8717 		/*
8718 		 * Treat this as a normal block read.
8719 		 */
8720 		zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8721 		    ZIO_PRIORITY_SYNC_READ,
8722 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8723 	} else {
8724 		/*
8725 		 * Treat this as a vdev child I/O.
8726 		 */
8727 		zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8728 		    psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8729 		    ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8730 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8731 		    NULL, NULL));
8732 	}
8733 
8734 	error = zio_wait(zio);
8735 	spa_config_exit(spa, SCL_STATE, FTAG);
8736 
8737 	if (error) {
8738 		(void) printf("Read of %s failed, error: %d\n", thing, error);
8739 		goto out;
8740 	}
8741 
8742 	uint64_t orig_lsize = lsize;
8743 	buf = lbuf;
8744 	if (flags & ZDB_FLAG_DECOMPRESS) {
8745 		boolean_t failed = zdb_decompress_block(pabd, buf, lbuf,
8746 		    lsize, psize, flags);
8747 		if (failed) {
8748 			(void) printf("Decompress of %s failed\n", thing);
8749 			goto out;
8750 		}
8751 	} else {
8752 		buf = abd_borrow_buf_copy(pabd, lsize);
8753 		borrowed = B_TRUE;
8754 	}
8755 	/*
8756 	 * Try to detect invalid block pointer.  If invalid, try
8757 	 * decompressing.
8758 	 */
8759 	if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8760 	    !(flags & ZDB_FLAG_DECOMPRESS)) {
8761 		const blkptr_t *b = (const blkptr_t *)(void *)
8762 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8763 		if (zfs_blkptr_verify(spa, b,
8764 		    BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8765 			abd_return_buf_copy(pabd, buf, lsize);
8766 			borrowed = B_FALSE;
8767 			buf = lbuf;
8768 			boolean_t failed = zdb_decompress_block(pabd, buf,
8769 			    lbuf, lsize, psize, flags);
8770 			b = (const blkptr_t *)(void *)
8771 			    ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8772 			if (failed || zfs_blkptr_verify(spa, b,
8773 			    BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8774 				printf("invalid block pointer at this DVA\n");
8775 				goto out;
8776 			}
8777 		}
8778 	}
8779 
8780 	if (flags & ZDB_FLAG_PRINT_BLKPTR)
8781 		zdb_print_blkptr((blkptr_t *)(void *)
8782 		    ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8783 	else if (flags & ZDB_FLAG_RAW)
8784 		zdb_dump_block_raw(buf, lsize, flags);
8785 	else if (flags & ZDB_FLAG_INDIRECT)
8786 		zdb_dump_indirect((blkptr_t *)buf,
8787 		    orig_lsize / sizeof (blkptr_t), flags);
8788 	else if (flags & ZDB_FLAG_GBH)
8789 		zdb_dump_gbh(buf, flags);
8790 	else
8791 		zdb_dump_block(thing, buf, lsize, flags);
8792 
8793 	/*
8794 	 * If :c was specified, iterate through the checksum table to
8795 	 * calculate and display each checksum for our specified
8796 	 * DVA and length.
8797 	 */
8798 	if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
8799 	    !(flags & ZDB_FLAG_GBH)) {
8800 		zio_t *czio;
8801 		(void) printf("\n");
8802 		for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
8803 		    ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
8804 
8805 			if ((zio_checksum_table[ck].ci_flags &
8806 			    ZCHECKSUM_FLAG_EMBEDDED) ||
8807 			    ck == ZIO_CHECKSUM_NOPARITY) {
8808 				continue;
8809 			}
8810 			BP_SET_CHECKSUM(bp, ck);
8811 			spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8812 			czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
8813 			if (vd == vd->vdev_top) {
8814 				zio_nowait(zio_read(czio, spa, bp, pabd, psize,
8815 				    NULL, NULL,
8816 				    ZIO_PRIORITY_SYNC_READ,
8817 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8818 				    ZIO_FLAG_DONT_RETRY, NULL));
8819 			} else {
8820 				zio_nowait(zio_vdev_child_io(czio, bp, vd,
8821 				    offset, pabd, psize, ZIO_TYPE_READ,
8822 				    ZIO_PRIORITY_SYNC_READ,
8823 				    ZIO_FLAG_DONT_PROPAGATE |
8824 				    ZIO_FLAG_DONT_RETRY |
8825 				    ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
8826 				    ZIO_FLAG_SPECULATIVE |
8827 				    ZIO_FLAG_OPTIONAL, NULL, NULL));
8828 			}
8829 			error = zio_wait(czio);
8830 			if (error == 0 || error == ECKSUM) {
8831 				zio_t *ck_zio = zio_null(NULL, spa, NULL,
8832 				    NULL, NULL, 0);
8833 				ck_zio->io_offset =
8834 				    DVA_GET_OFFSET(&bp->blk_dva[0]);
8835 				ck_zio->io_bp = bp;
8836 				zio_checksum_compute(ck_zio, ck, pabd, lsize);
8837 				printf(
8838 				    "%12s\t"
8839 				    "cksum=%016llx:%016llx:%016llx:%016llx\n",
8840 				    zio_checksum_table[ck].ci_name,
8841 				    (u_longlong_t)bp->blk_cksum.zc_word[0],
8842 				    (u_longlong_t)bp->blk_cksum.zc_word[1],
8843 				    (u_longlong_t)bp->blk_cksum.zc_word[2],
8844 				    (u_longlong_t)bp->blk_cksum.zc_word[3]);
8845 				zio_wait(ck_zio);
8846 			} else {
8847 				printf("error %d reading block\n", error);
8848 			}
8849 			spa_config_exit(spa, SCL_STATE, FTAG);
8850 		}
8851 	}
8852 
8853 	if (borrowed)
8854 		abd_return_buf_copy(pabd, buf, lsize);
8855 
8856 out:
8857 	abd_free(pabd);
8858 	umem_free(lbuf, SPA_MAXBLOCKSIZE);
8859 done:
8860 	free(flagstr);
8861 	free(dup);
8862 }
8863 
8864 static void
8865 zdb_embedded_block(char *thing)
8866 {
8867 	blkptr_t bp = {{{{0}}}};
8868 	unsigned long long *words = (void *)&bp;
8869 	char *buf;
8870 	int err;
8871 
8872 	err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
8873 	    "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
8874 	    words + 0, words + 1, words + 2, words + 3,
8875 	    words + 4, words + 5, words + 6, words + 7,
8876 	    words + 8, words + 9, words + 10, words + 11,
8877 	    words + 12, words + 13, words + 14, words + 15);
8878 	if (err != 16) {
8879 		(void) fprintf(stderr, "invalid input format\n");
8880 		exit(1);
8881 	}
8882 	ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
8883 	buf = malloc(SPA_MAXBLOCKSIZE);
8884 	if (buf == NULL) {
8885 		(void) fprintf(stderr, "out of memory\n");
8886 		exit(1);
8887 	}
8888 	err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
8889 	if (err != 0) {
8890 		(void) fprintf(stderr, "decode failed: %u\n", err);
8891 		exit(1);
8892 	}
8893 	zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
8894 	free(buf);
8895 }
8896 
8897 /* check for valid hex or decimal numeric string */
8898 static boolean_t
8899 zdb_numeric(char *str)
8900 {
8901 	int i = 0;
8902 
8903 	if (strlen(str) == 0)
8904 		return (B_FALSE);
8905 	if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
8906 		i = 2;
8907 	for (; i < strlen(str); i++) {
8908 		if (!isxdigit(str[i]))
8909 			return (B_FALSE);
8910 	}
8911 	return (B_TRUE);
8912 }
8913 
8914 int
8915 main(int argc, char **argv)
8916 {
8917 	int c;
8918 	spa_t *spa = NULL;
8919 	objset_t *os = NULL;
8920 	int dump_all = 1;
8921 	int verbose = 0;
8922 	int error = 0;
8923 	char **searchdirs = NULL;
8924 	int nsearch = 0;
8925 	char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
8926 	nvlist_t *policy = NULL;
8927 	uint64_t max_txg = UINT64_MAX;
8928 	int64_t objset_id = -1;
8929 	uint64_t object;
8930 	int flags = ZFS_IMPORT_MISSING_LOG;
8931 	int rewind = ZPOOL_NEVER_REWIND;
8932 	char *spa_config_path_env, *objset_str;
8933 	boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
8934 	nvlist_t *cfg = NULL;
8935 
8936 	dprintf_setup(&argc, argv);
8937 
8938 	/*
8939 	 * If there is an environment variable SPA_CONFIG_PATH it overrides
8940 	 * default spa_config_path setting. If -U flag is specified it will
8941 	 * override this environment variable settings once again.
8942 	 */
8943 	spa_config_path_env = getenv("SPA_CONFIG_PATH");
8944 	if (spa_config_path_env != NULL)
8945 		spa_config_path = spa_config_path_env;
8946 
8947 	/*
8948 	 * For performance reasons, we set this tunable down. We do so before
8949 	 * the arg parsing section so that the user can override this value if
8950 	 * they choose.
8951 	 */
8952 	zfs_btree_verify_intensity = 3;
8953 
8954 	struct option long_options[] = {
8955 		{"ignore-assertions",	no_argument,		NULL, 'A'},
8956 		{"block-stats",		no_argument,		NULL, 'b'},
8957 		{"backup",		no_argument,		NULL, 'B'},
8958 		{"checksum",		no_argument,		NULL, 'c'},
8959 		{"config",		no_argument,		NULL, 'C'},
8960 		{"datasets",		no_argument,		NULL, 'd'},
8961 		{"dedup-stats",		no_argument,		NULL, 'D'},
8962 		{"exported",		no_argument,		NULL, 'e'},
8963 		{"embedded-block-pointer",	no_argument,	NULL, 'E'},
8964 		{"automatic-rewind",	no_argument,		NULL, 'F'},
8965 		{"dump-debug-msg",	no_argument,		NULL, 'G'},
8966 		{"history",		no_argument,		NULL, 'h'},
8967 		{"intent-logs",		no_argument,		NULL, 'i'},
8968 		{"inflight",		required_argument,	NULL, 'I'},
8969 		{"checkpointed-state",	no_argument,		NULL, 'k'},
8970 		{"key",			required_argument,	NULL, 'K'},
8971 		{"label",		no_argument,		NULL, 'l'},
8972 		{"disable-leak-tracking",	no_argument,	NULL, 'L'},
8973 		{"metaslabs",		no_argument,		NULL, 'm'},
8974 		{"metaslab-groups",	no_argument,		NULL, 'M'},
8975 		{"numeric",		no_argument,		NULL, 'N'},
8976 		{"option",		required_argument,	NULL, 'o'},
8977 		{"object-lookups",	no_argument,		NULL, 'O'},
8978 		{"path",		required_argument,	NULL, 'p'},
8979 		{"parseable",		no_argument,		NULL, 'P'},
8980 		{"skip-label",		no_argument,		NULL, 'q'},
8981 		{"copy-object",		no_argument,		NULL, 'r'},
8982 		{"read-block",		no_argument,		NULL, 'R'},
8983 		{"io-stats",		no_argument,		NULL, 's'},
8984 		{"simulate-dedup",	no_argument,		NULL, 'S'},
8985 		{"txg",			required_argument,	NULL, 't'},
8986 		{"brt-stats",		no_argument,		NULL, 'T'},
8987 		{"uberblock",		no_argument,		NULL, 'u'},
8988 		{"cachefile",		required_argument,	NULL, 'U'},
8989 		{"verbose",		no_argument,		NULL, 'v'},
8990 		{"verbatim",		no_argument,		NULL, 'V'},
8991 		{"dump-blocks",		required_argument,	NULL, 'x'},
8992 		{"extreme-rewind",	no_argument,		NULL, 'X'},
8993 		{"all-reconstruction",	no_argument,		NULL, 'Y'},
8994 		{"livelist",		no_argument,		NULL, 'y'},
8995 		{"zstd-headers",	no_argument,		NULL, 'Z'},
8996 		{0, 0, 0, 0}
8997 	};
8998 
8999 	while ((c = getopt_long(argc, argv,
9000 	    "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9001 	    long_options, NULL)) != -1) {
9002 		switch (c) {
9003 		case 'b':
9004 		case 'B':
9005 		case 'c':
9006 		case 'C':
9007 		case 'd':
9008 		case 'D':
9009 		case 'E':
9010 		case 'G':
9011 		case 'h':
9012 		case 'i':
9013 		case 'l':
9014 		case 'm':
9015 		case 'M':
9016 		case 'N':
9017 		case 'O':
9018 		case 'r':
9019 		case 'R':
9020 		case 's':
9021 		case 'S':
9022 		case 'T':
9023 		case 'u':
9024 		case 'y':
9025 		case 'Z':
9026 			dump_opt[c]++;
9027 			dump_all = 0;
9028 			break;
9029 		case 'A':
9030 		case 'e':
9031 		case 'F':
9032 		case 'k':
9033 		case 'L':
9034 		case 'P':
9035 		case 'q':
9036 		case 'X':
9037 			dump_opt[c]++;
9038 			break;
9039 		case 'Y':
9040 			zfs_reconstruct_indirect_combinations_max = INT_MAX;
9041 			zfs_deadman_enabled = 0;
9042 			break;
9043 		/* NB: Sort single match options below. */
9044 		case 'I':
9045 			max_inflight_bytes = strtoull(optarg, NULL, 0);
9046 			if (max_inflight_bytes == 0) {
9047 				(void) fprintf(stderr, "maximum number "
9048 				    "of inflight bytes must be greater "
9049 				    "than 0\n");
9050 				usage();
9051 			}
9052 			break;
9053 		case 'K':
9054 			dump_opt[c]++;
9055 			key_material = strdup(optarg);
9056 			/* redact key material in process table */
9057 			while (*optarg != '\0') { *optarg++ = '*'; }
9058 			break;
9059 		case 'o':
9060 			error = set_global_var(optarg);
9061 			if (error != 0)
9062 				usage();
9063 			break;
9064 		case 'p':
9065 			if (searchdirs == NULL) {
9066 				searchdirs = umem_alloc(sizeof (char *),
9067 				    UMEM_NOFAIL);
9068 			} else {
9069 				char **tmp = umem_alloc((nsearch + 1) *
9070 				    sizeof (char *), UMEM_NOFAIL);
9071 				memcpy(tmp, searchdirs, nsearch *
9072 				    sizeof (char *));
9073 				umem_free(searchdirs,
9074 				    nsearch * sizeof (char *));
9075 				searchdirs = tmp;
9076 			}
9077 			searchdirs[nsearch++] = optarg;
9078 			break;
9079 		case 't':
9080 			max_txg = strtoull(optarg, NULL, 0);
9081 			if (max_txg < TXG_INITIAL) {
9082 				(void) fprintf(stderr, "incorrect txg "
9083 				    "specified: %s\n", optarg);
9084 				usage();
9085 			}
9086 			break;
9087 		case 'U':
9088 			spa_config_path = optarg;
9089 			if (spa_config_path[0] != '/') {
9090 				(void) fprintf(stderr,
9091 				    "cachefile must be an absolute path "
9092 				    "(i.e. start with a slash)\n");
9093 				usage();
9094 			}
9095 			break;
9096 		case 'v':
9097 			verbose++;
9098 			break;
9099 		case 'V':
9100 			flags = ZFS_IMPORT_VERBATIM;
9101 			break;
9102 		case 'x':
9103 			vn_dumpdir = optarg;
9104 			break;
9105 		default:
9106 			usage();
9107 			break;
9108 		}
9109 	}
9110 
9111 	if (!dump_opt['e'] && searchdirs != NULL) {
9112 		(void) fprintf(stderr, "-p option requires use of -e\n");
9113 		usage();
9114 	}
9115 #if defined(_LP64)
9116 	/*
9117 	 * ZDB does not typically re-read blocks; therefore limit the ARC
9118 	 * to 256 MB, which can be used entirely for metadata.
9119 	 */
9120 	zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9121 	zfs_arc_max = 256 * 1024 * 1024;
9122 #endif
9123 
9124 	/*
9125 	 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9126 	 * "zdb -b" uses traversal prefetch which uses async reads.
9127 	 * For good performance, let several of them be active at once.
9128 	 */
9129 	zfs_vdev_async_read_max_active = 10;
9130 
9131 	/*
9132 	 * Disable reference tracking for better performance.
9133 	 */
9134 	reference_tracking_enable = B_FALSE;
9135 
9136 	/*
9137 	 * Do not fail spa_load when spa_load_verify fails. This is needed
9138 	 * to load non-idle pools.
9139 	 */
9140 	spa_load_verify_dryrun = B_TRUE;
9141 
9142 	/*
9143 	 * ZDB should have ability to read spacemaps.
9144 	 */
9145 	spa_mode_readable_spacemaps = B_TRUE;
9146 
9147 	kernel_init(SPA_MODE_READ);
9148 
9149 	if (dump_all)
9150 		verbose = MAX(verbose, 1);
9151 
9152 	for (c = 0; c < 256; c++) {
9153 		if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9154 			dump_opt[c] = 1;
9155 		if (dump_opt[c])
9156 			dump_opt[c] += verbose;
9157 	}
9158 
9159 	libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9160 	zfs_recover = (dump_opt['A'] > 1);
9161 
9162 	argc -= optind;
9163 	argv += optind;
9164 	if (argc < 2 && dump_opt['R'])
9165 		usage();
9166 
9167 	if (dump_opt['E']) {
9168 		if (argc != 1)
9169 			usage();
9170 		zdb_embedded_block(argv[0]);
9171 		return (0);
9172 	}
9173 
9174 	if (argc < 1) {
9175 		if (!dump_opt['e'] && dump_opt['C']) {
9176 			dump_cachefile(spa_config_path);
9177 			return (0);
9178 		}
9179 		usage();
9180 	}
9181 
9182 	if (dump_opt['l'])
9183 		return (dump_label(argv[0]));
9184 
9185 	if (dump_opt['X'] || dump_opt['F'])
9186 		rewind = ZPOOL_DO_REWIND |
9187 		    (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9188 
9189 	/* -N implies -d */
9190 	if (dump_opt['N'] && dump_opt['d'] == 0)
9191 		dump_opt['d'] = dump_opt['N'];
9192 
9193 	if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9194 	    nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9195 	    nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9196 		fatal("internal error: %s", strerror(ENOMEM));
9197 
9198 	error = 0;
9199 	target = argv[0];
9200 
9201 	if (strpbrk(target, "/@") != NULL) {
9202 		size_t targetlen;
9203 
9204 		target_pool = strdup(target);
9205 		*strpbrk(target_pool, "/@") = '\0';
9206 
9207 		target_is_spa = B_FALSE;
9208 		targetlen = strlen(target);
9209 		if (targetlen && target[targetlen - 1] == '/')
9210 			target[targetlen - 1] = '\0';
9211 
9212 		/*
9213 		 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9214 		 * To disambiguate tank/100, consider the 100 as objsetID
9215 		 * if -N was given, otherwise 100 is an objsetID iff
9216 		 * tank/100 as a named dataset fails on lookup.
9217 		 */
9218 		objset_str = strchr(target, '/');
9219 		if (objset_str && strlen(objset_str) > 1 &&
9220 		    zdb_numeric(objset_str + 1)) {
9221 			char *endptr;
9222 			errno = 0;
9223 			objset_str++;
9224 			objset_id = strtoull(objset_str, &endptr, 0);
9225 			/* dataset 0 is the same as opening the pool */
9226 			if (errno == 0 && endptr != objset_str &&
9227 			    objset_id != 0) {
9228 				if (dump_opt['N'])
9229 					dataset_lookup = B_TRUE;
9230 			}
9231 			/* normal dataset name not an objset ID */
9232 			if (endptr == objset_str) {
9233 				objset_id = -1;
9234 			}
9235 		} else if (objset_str && !zdb_numeric(objset_str + 1) &&
9236 		    dump_opt['N']) {
9237 			printf("Supply a numeric objset ID with -N\n");
9238 			exit(1);
9239 		}
9240 	} else {
9241 		target_pool = target;
9242 	}
9243 
9244 	if (dump_opt['e']) {
9245 		importargs_t args = { 0 };
9246 
9247 		args.paths = nsearch;
9248 		args.path = searchdirs;
9249 		args.can_be_active = B_TRUE;
9250 
9251 		libpc_handle_t lpch = {
9252 			.lpc_lib_handle = NULL,
9253 			.lpc_ops = &libzpool_config_ops,
9254 			.lpc_printerr = B_TRUE
9255 		};
9256 		error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9257 
9258 		if (error == 0) {
9259 
9260 			if (nvlist_add_nvlist(cfg,
9261 			    ZPOOL_LOAD_POLICY, policy) != 0) {
9262 				fatal("can't open '%s': %s",
9263 				    target, strerror(ENOMEM));
9264 			}
9265 
9266 			if (dump_opt['C'] > 1) {
9267 				(void) printf("\nConfiguration for import:\n");
9268 				dump_nvlist(cfg, 8);
9269 			}
9270 
9271 			/*
9272 			 * Disable the activity check to allow examination of
9273 			 * active pools.
9274 			 */
9275 			error = spa_import(target_pool, cfg, NULL,
9276 			    flags | ZFS_IMPORT_SKIP_MMP);
9277 		}
9278 	}
9279 
9280 	if (searchdirs != NULL) {
9281 		umem_free(searchdirs, nsearch * sizeof (char *));
9282 		searchdirs = NULL;
9283 	}
9284 
9285 	/*
9286 	 * We need to make sure to process -O option or call
9287 	 * dump_path after the -e option has been processed,
9288 	 * which imports the pool to the namespace if it's
9289 	 * not in the cachefile.
9290 	 */
9291 	if (dump_opt['O']) {
9292 		if (argc != 2)
9293 			usage();
9294 		dump_opt['v'] = verbose + 3;
9295 		return (dump_path(argv[0], argv[1], NULL));
9296 	}
9297 
9298 	if (dump_opt['r']) {
9299 		target_is_spa = B_FALSE;
9300 		if (argc != 3)
9301 			usage();
9302 		dump_opt['v'] = verbose;
9303 		error = dump_path(argv[0], argv[1], &object);
9304 		if (error != 0)
9305 			fatal("internal error: %s", strerror(error));
9306 	}
9307 
9308 	/*
9309 	 * import_checkpointed_state makes the assumption that the
9310 	 * target pool that we pass it is already part of the spa
9311 	 * namespace. Because of that we need to make sure to call
9312 	 * it always after the -e option has been processed, which
9313 	 * imports the pool to the namespace if it's not in the
9314 	 * cachefile.
9315 	 */
9316 	char *checkpoint_pool = NULL;
9317 	char *checkpoint_target = NULL;
9318 	if (dump_opt['k']) {
9319 		checkpoint_pool = import_checkpointed_state(target, cfg,
9320 		    &checkpoint_target);
9321 
9322 		if (checkpoint_target != NULL)
9323 			target = checkpoint_target;
9324 	}
9325 
9326 	if (cfg != NULL) {
9327 		nvlist_free(cfg);
9328 		cfg = NULL;
9329 	}
9330 
9331 	if (target_pool != target)
9332 		free(target_pool);
9333 
9334 	if (error == 0) {
9335 		if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9336 			ASSERT(checkpoint_pool != NULL);
9337 			ASSERT(checkpoint_target == NULL);
9338 
9339 			error = spa_open(checkpoint_pool, &spa, FTAG);
9340 			if (error != 0) {
9341 				fatal("Tried to open pool \"%s\" but "
9342 				    "spa_open() failed with error %d\n",
9343 				    checkpoint_pool, error);
9344 			}
9345 
9346 		} else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9347 		    objset_id == 0) {
9348 			zdb_set_skip_mmp(target);
9349 			error = spa_open_rewind(target, &spa, FTAG, policy,
9350 			    NULL);
9351 			if (error) {
9352 				/*
9353 				 * If we're missing the log device then
9354 				 * try opening the pool after clearing the
9355 				 * log state.
9356 				 */
9357 				mutex_enter(&spa_namespace_lock);
9358 				if ((spa = spa_lookup(target)) != NULL &&
9359 				    spa->spa_log_state == SPA_LOG_MISSING) {
9360 					spa->spa_log_state = SPA_LOG_CLEAR;
9361 					error = 0;
9362 				}
9363 				mutex_exit(&spa_namespace_lock);
9364 
9365 				if (!error) {
9366 					error = spa_open_rewind(target, &spa,
9367 					    FTAG, policy, NULL);
9368 				}
9369 			}
9370 		} else if (strpbrk(target, "#") != NULL) {
9371 			dsl_pool_t *dp;
9372 			error = dsl_pool_hold(target, FTAG, &dp);
9373 			if (error != 0) {
9374 				fatal("can't dump '%s': %s", target,
9375 				    strerror(error));
9376 			}
9377 			error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9378 			dsl_pool_rele(dp, FTAG);
9379 			if (error != 0) {
9380 				fatal("can't dump '%s': %s", target,
9381 				    strerror(error));
9382 			}
9383 			return (error);
9384 		} else {
9385 			target_pool = strdup(target);
9386 			if (strpbrk(target, "/@") != NULL)
9387 				*strpbrk(target_pool, "/@") = '\0';
9388 
9389 			zdb_set_skip_mmp(target);
9390 			/*
9391 			 * If -N was supplied, the user has indicated that
9392 			 * zdb -d <pool>/<objsetID> is in effect.  Otherwise
9393 			 * we first assume that the dataset string is the
9394 			 * dataset name.  If dmu_objset_hold fails with the
9395 			 * dataset string, and we have an objset_id, retry the
9396 			 * lookup with the objsetID.
9397 			 */
9398 			boolean_t retry = B_TRUE;
9399 retry_lookup:
9400 			if (dataset_lookup == B_TRUE) {
9401 				/*
9402 				 * Use the supplied id to get the name
9403 				 * for open_objset.
9404 				 */
9405 				error = spa_open(target_pool, &spa, FTAG);
9406 				if (error == 0) {
9407 					error = name_from_objset_id(spa,
9408 					    objset_id, dsname);
9409 					spa_close(spa, FTAG);
9410 					if (error == 0)
9411 						target = dsname;
9412 				}
9413 			}
9414 			if (error == 0) {
9415 				if (objset_id > 0 && retry) {
9416 					int err = dmu_objset_hold(target, FTAG,
9417 					    &os);
9418 					if (err) {
9419 						dataset_lookup = B_TRUE;
9420 						retry = B_FALSE;
9421 						goto retry_lookup;
9422 					} else {
9423 						dmu_objset_rele(os, FTAG);
9424 					}
9425 				}
9426 				error = open_objset(target, FTAG, &os);
9427 			}
9428 			if (error == 0)
9429 				spa = dmu_objset_spa(os);
9430 			free(target_pool);
9431 		}
9432 	}
9433 	nvlist_free(policy);
9434 
9435 	if (error)
9436 		fatal("can't open '%s': %s", target, strerror(error));
9437 
9438 	/*
9439 	 * Set the pool failure mode to panic in order to prevent the pool
9440 	 * from suspending.  A suspended I/O will have no way to resume and
9441 	 * can prevent the zdb(8) command from terminating as expected.
9442 	 */
9443 	if (spa != NULL)
9444 		spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9445 
9446 	argv++;
9447 	argc--;
9448 	if (dump_opt['r']) {
9449 		error = zdb_copy_object(os, object, argv[1]);
9450 	} else if (!dump_opt['R']) {
9451 		flagbits['d'] = ZOR_FLAG_DIRECTORY;
9452 		flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9453 		flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9454 		flagbits['z'] = ZOR_FLAG_ZAP;
9455 		flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9456 
9457 		if (argc > 0 && dump_opt['d']) {
9458 			zopt_object_args = argc;
9459 			zopt_object_ranges = calloc(zopt_object_args,
9460 			    sizeof (zopt_object_range_t));
9461 			for (unsigned i = 0; i < zopt_object_args; i++) {
9462 				int err;
9463 				const char *msg = NULL;
9464 
9465 				err = parse_object_range(argv[i],
9466 				    &zopt_object_ranges[i], &msg);
9467 				if (err != 0)
9468 					fatal("Bad object or range: '%s': %s\n",
9469 					    argv[i], msg ?: "");
9470 			}
9471 		} else if (argc > 0 && dump_opt['m']) {
9472 			zopt_metaslab_args = argc;
9473 			zopt_metaslab = calloc(zopt_metaslab_args,
9474 			    sizeof (uint64_t));
9475 			for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9476 				errno = 0;
9477 				zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9478 				if (zopt_metaslab[i] == 0 && errno != 0)
9479 					fatal("bad number %s: %s", argv[i],
9480 					    strerror(errno));
9481 			}
9482 		}
9483 		if (dump_opt['B']) {
9484 			dump_backup(target, objset_id,
9485 			    argc > 0 ? argv[0] : NULL);
9486 		} else if (os != NULL) {
9487 			dump_objset(os);
9488 		} else if (zopt_object_args > 0 && !dump_opt['m']) {
9489 			dump_objset(spa->spa_meta_objset);
9490 		} else {
9491 			dump_zpool(spa);
9492 		}
9493 	} else {
9494 		flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9495 		flagbits['c'] = ZDB_FLAG_CHECKSUM;
9496 		flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9497 		flagbits['e'] = ZDB_FLAG_BSWAP;
9498 		flagbits['g'] = ZDB_FLAG_GBH;
9499 		flagbits['i'] = ZDB_FLAG_INDIRECT;
9500 		flagbits['r'] = ZDB_FLAG_RAW;
9501 		flagbits['v'] = ZDB_FLAG_VERBOSE;
9502 
9503 		for (int i = 0; i < argc; i++)
9504 			zdb_read_block(argv[i], spa);
9505 	}
9506 
9507 	if (dump_opt['k']) {
9508 		free(checkpoint_pool);
9509 		if (!target_is_spa)
9510 			free(checkpoint_target);
9511 	}
9512 
9513 	if (os != NULL) {
9514 		close_objset(os, FTAG);
9515 	} else {
9516 		spa_close(spa, FTAG);
9517 	}
9518 
9519 	fuid_table_destroy();
9520 
9521 	dump_debug_buffer();
9522 
9523 	kernel_fini();
9524 
9525 	return (error);
9526 }
9527