1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 23 /* 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2011, 2019 by Delphix. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Nexenta Systems, Inc. 28 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC. 29 * Copyright (c) 2015, 2017, Intel Corporation. 30 * Copyright (c) 2020 Datto Inc. 31 * Copyright (c) 2020, The FreeBSD Foundation [1] 32 * 33 * [1] Portions of this software were developed by Allan Jude 34 * under sponsorship from the FreeBSD Foundation. 35 * Copyright (c) 2021 Allan Jude 36 * Copyright (c) 2021 Toomas Soome <tsoome@me.com> 37 * Copyright (c) 2023, 2024, Klara Inc. 38 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com> 39 */ 40 41 #include <stdio.h> 42 #include <unistd.h> 43 #include <stdlib.h> 44 #include <ctype.h> 45 #include <getopt.h> 46 #include <openssl/evp.h> 47 #include <sys/zfs_context.h> 48 #include <sys/spa.h> 49 #include <sys/spa_impl.h> 50 #include <sys/dmu.h> 51 #include <sys/zap.h> 52 #include <sys/zap_impl.h> 53 #include <sys/fs/zfs.h> 54 #include <sys/zfs_znode.h> 55 #include <sys/zfs_sa.h> 56 #include <sys/sa.h> 57 #include <sys/sa_impl.h> 58 #include <sys/vdev.h> 59 #include <sys/vdev_impl.h> 60 #include <sys/metaslab_impl.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/dsl_dir.h> 63 #include <sys/dsl_dataset.h> 64 #include <sys/dsl_pool.h> 65 #include <sys/dsl_bookmark.h> 66 #include <sys/dbuf.h> 67 #include <sys/zil.h> 68 #include <sys/zil_impl.h> 69 #include <sys/stat.h> 70 #include <sys/resource.h> 71 #include <sys/dmu_send.h> 72 #include <sys/dmu_traverse.h> 73 #include <sys/zio_checksum.h> 74 #include <sys/zio_compress.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/arc.h> 77 #include <sys/arc_impl.h> 78 #include <sys/ddt.h> 79 #include <sys/ddt_impl.h> 80 #include <sys/zfeature.h> 81 #include <sys/abd.h> 82 #include <sys/blkptr.h> 83 #include <sys/dsl_crypt.h> 84 #include <sys/dsl_scan.h> 85 #include <sys/btree.h> 86 #include <sys/brt.h> 87 #include <sys/brt_impl.h> 88 #include <zfs_comutil.h> 89 #include <sys/zstd/zstd.h> 90 #include <sys/backtrace.h> 91 92 #include <libnvpair.h> 93 #include <libzutil.h> 94 #include <libzfs_core.h> 95 96 #include <libzdb.h> 97 98 #include "zdb.h" 99 100 101 extern int reference_tracking_enable; 102 extern int zfs_recover; 103 extern uint_t zfs_vdev_async_read_max_active; 104 extern boolean_t spa_load_verify_dryrun; 105 extern boolean_t spa_mode_readable_spacemaps; 106 extern uint_t zfs_reconstruct_indirect_combinations_max; 107 extern uint_t zfs_btree_verify_intensity; 108 109 static const char cmdname[] = "zdb"; 110 uint8_t dump_opt[256]; 111 112 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size); 113 114 static uint64_t *zopt_metaslab = NULL; 115 static unsigned zopt_metaslab_args = 0; 116 117 118 static zopt_object_range_t *zopt_object_ranges = NULL; 119 static unsigned zopt_object_args = 0; 120 121 static int flagbits[256]; 122 123 124 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */ 125 static int leaked_objects = 0; 126 static zfs_range_tree_t *mos_refd_objs; 127 static spa_t *spa; 128 static objset_t *os; 129 static boolean_t kernel_init_done; 130 131 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *, 132 boolean_t); 133 static void mos_obj_refd(uint64_t); 134 static void mos_obj_refd_multiple(uint64_t); 135 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free, 136 dmu_tx_t *tx); 137 138 139 140 static void zdb_print_blkptr(const blkptr_t *bp, int flags); 141 static void zdb_exit(int reason); 142 143 typedef struct sublivelist_verify_block_refcnt { 144 /* block pointer entry in livelist being verified */ 145 blkptr_t svbr_blk; 146 147 /* 148 * Refcount gets incremented to 1 when we encounter the first 149 * FREE entry for the svfbr block pointer and a node for it 150 * is created in our ZDB verification/tracking metadata. 151 * 152 * As we encounter more FREE entries we increment this counter 153 * and similarly decrement it whenever we find the respective 154 * ALLOC entries for this block. 155 * 156 * When the refcount gets to 0 it means that all the FREE and 157 * ALLOC entries of this block have paired up and we no longer 158 * need to track it in our verification logic (e.g. the node 159 * containing this struct in our verification data structure 160 * should be freed). 161 * 162 * [refer to sublivelist_verify_blkptr() for the actual code] 163 */ 164 uint32_t svbr_refcnt; 165 } sublivelist_verify_block_refcnt_t; 166 167 static int 168 sublivelist_block_refcnt_compare(const void *larg, const void *rarg) 169 { 170 const sublivelist_verify_block_refcnt_t *l = larg; 171 const sublivelist_verify_block_refcnt_t *r = rarg; 172 return (livelist_compare(&l->svbr_blk, &r->svbr_blk)); 173 } 174 175 static int 176 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free, 177 dmu_tx_t *tx) 178 { 179 ASSERT3P(tx, ==, NULL); 180 struct sublivelist_verify *sv = arg; 181 sublivelist_verify_block_refcnt_t current = { 182 .svbr_blk = *bp, 183 184 /* 185 * Start with 1 in case this is the first free entry. 186 * This field is not used for our B-Tree comparisons 187 * anyway. 188 */ 189 .svbr_refcnt = 1, 190 }; 191 192 zfs_btree_index_t where; 193 sublivelist_verify_block_refcnt_t *pair = 194 zfs_btree_find(&sv->sv_pair, ¤t, &where); 195 if (free) { 196 if (pair == NULL) { 197 /* first free entry for this block pointer */ 198 zfs_btree_add(&sv->sv_pair, ¤t); 199 } else { 200 pair->svbr_refcnt++; 201 } 202 } else { 203 if (pair == NULL) { 204 /* block that is currently marked as allocated */ 205 for (int i = 0; i < SPA_DVAS_PER_BP; i++) { 206 if (DVA_IS_EMPTY(&bp->blk_dva[i])) 207 break; 208 sublivelist_verify_block_t svb = { 209 .svb_dva = bp->blk_dva[i], 210 .svb_allocated_txg = 211 BP_GET_LOGICAL_BIRTH(bp) 212 }; 213 214 if (zfs_btree_find(&sv->sv_leftover, &svb, 215 &where) == NULL) { 216 zfs_btree_add_idx(&sv->sv_leftover, 217 &svb, &where); 218 } 219 } 220 } else { 221 /* alloc matches a free entry */ 222 pair->svbr_refcnt--; 223 if (pair->svbr_refcnt == 0) { 224 /* all allocs and frees have been matched */ 225 zfs_btree_remove_idx(&sv->sv_pair, &where); 226 } 227 } 228 } 229 230 return (0); 231 } 232 233 static int 234 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle) 235 { 236 int err; 237 struct sublivelist_verify *sv = args; 238 239 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL, 240 sizeof (sublivelist_verify_block_refcnt_t)); 241 242 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr, 243 sv, NULL); 244 245 sublivelist_verify_block_refcnt_t *e; 246 zfs_btree_index_t *cookie = NULL; 247 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) { 248 char blkbuf[BP_SPRINTF_LEN]; 249 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 250 &e->svbr_blk, B_TRUE); 251 (void) printf("\tERROR: %d unmatched FREE(s): %s\n", 252 e->svbr_refcnt, blkbuf); 253 } 254 zfs_btree_destroy(&sv->sv_pair); 255 256 return (err); 257 } 258 259 static int 260 livelist_block_compare(const void *larg, const void *rarg) 261 { 262 const sublivelist_verify_block_t *l = larg; 263 const sublivelist_verify_block_t *r = rarg; 264 265 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva)) 266 return (-1); 267 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva)) 268 return (+1); 269 270 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva)) 271 return (-1); 272 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva)) 273 return (+1); 274 275 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva)) 276 return (-1); 277 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva)) 278 return (+1); 279 280 return (0); 281 } 282 283 /* 284 * Check for errors in a livelist while tracking all unfreed ALLOCs in the 285 * sublivelist_verify_t: sv->sv_leftover 286 */ 287 static void 288 livelist_verify(dsl_deadlist_t *dl, void *arg) 289 { 290 sublivelist_verify_t *sv = arg; 291 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv); 292 } 293 294 /* 295 * Check for errors in the livelist entry and discard the intermediary 296 * data structures 297 */ 298 static int 299 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle) 300 { 301 (void) args; 302 sublivelist_verify_t sv; 303 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 304 sizeof (sublivelist_verify_block_t)); 305 int err = sublivelist_verify_func(&sv, dle); 306 zfs_btree_clear(&sv.sv_leftover); 307 zfs_btree_destroy(&sv.sv_leftover); 308 return (err); 309 } 310 311 typedef struct metaslab_verify { 312 /* 313 * Tree containing all the leftover ALLOCs from the livelists 314 * that are part of this metaslab. 315 */ 316 zfs_btree_t mv_livelist_allocs; 317 318 /* 319 * Metaslab information. 320 */ 321 uint64_t mv_vdid; 322 uint64_t mv_msid; 323 uint64_t mv_start; 324 uint64_t mv_end; 325 326 /* 327 * What's currently allocated for this metaslab. 328 */ 329 zfs_range_tree_t *mv_allocated; 330 } metaslab_verify_t; 331 332 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg); 333 334 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg, 335 void *arg); 336 337 typedef struct unflushed_iter_cb_arg { 338 spa_t *uic_spa; 339 uint64_t uic_txg; 340 void *uic_arg; 341 zdb_log_sm_cb_t uic_cb; 342 } unflushed_iter_cb_arg_t; 343 344 static int 345 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg) 346 { 347 unflushed_iter_cb_arg_t *uic = arg; 348 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg)); 349 } 350 351 static void 352 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg) 353 { 354 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 355 return; 356 357 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 358 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 359 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 360 space_map_t *sm = NULL; 361 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 362 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 363 364 unflushed_iter_cb_arg_t uic = { 365 .uic_spa = spa, 366 .uic_txg = sls->sls_txg, 367 .uic_arg = arg, 368 .uic_cb = cb 369 }; 370 VERIFY0(space_map_iterate(sm, space_map_length(sm), 371 iterate_through_spacemap_logs_cb, &uic)); 372 space_map_close(sm); 373 } 374 spa_config_exit(spa, SCL_CONFIG, FTAG); 375 } 376 377 static void 378 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg, 379 uint64_t offset, uint64_t size) 380 { 381 sublivelist_verify_block_t svb = {{{0}}}; 382 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid); 383 DVA_SET_OFFSET(&svb.svb_dva, offset); 384 DVA_SET_ASIZE(&svb.svb_dva, size); 385 zfs_btree_index_t where; 386 uint64_t end_offset = offset + size; 387 388 /* 389 * Look for an exact match for spacemap entry in the livelist entries. 390 * Then, look for other livelist entries that fall within the range 391 * of the spacemap entry as it may have been condensed 392 */ 393 sublivelist_verify_block_t *found = 394 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where); 395 if (found == NULL) { 396 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where); 397 } 398 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid && 399 DVA_GET_OFFSET(&found->svb_dva) < end_offset; 400 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 401 if (found->svb_allocated_txg <= txg) { 402 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] " 403 "from TXG %llx FREED at TXG %llx\n", 404 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva), 405 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva), 406 (u_longlong_t)found->svb_allocated_txg, 407 (u_longlong_t)txg); 408 } 409 } 410 } 411 412 static int 413 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg) 414 { 415 metaslab_verify_t *mv = arg; 416 uint64_t offset = sme->sme_offset; 417 uint64_t size = sme->sme_run; 418 uint64_t txg = sme->sme_txg; 419 420 if (sme->sme_type == SM_ALLOC) { 421 if (zfs_range_tree_contains(mv->mv_allocated, 422 offset, size)) { 423 (void) printf("ERROR: DOUBLE ALLOC: " 424 "%llu [%llx:%llx] " 425 "%llu:%llu LOG_SM\n", 426 (u_longlong_t)txg, (u_longlong_t)offset, 427 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 428 (u_longlong_t)mv->mv_msid); 429 } else { 430 zfs_range_tree_add(mv->mv_allocated, 431 offset, size); 432 } 433 } else { 434 if (!zfs_range_tree_contains(mv->mv_allocated, 435 offset, size)) { 436 (void) printf("ERROR: DOUBLE FREE: " 437 "%llu [%llx:%llx] " 438 "%llu:%llu LOG_SM\n", 439 (u_longlong_t)txg, (u_longlong_t)offset, 440 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid, 441 (u_longlong_t)mv->mv_msid); 442 } else { 443 zfs_range_tree_remove(mv->mv_allocated, 444 offset, size); 445 } 446 } 447 448 if (sme->sme_type != SM_ALLOC) { 449 /* 450 * If something is freed in the spacemap, verify that 451 * it is not listed as allocated in the livelist. 452 */ 453 verify_livelist_allocs(mv, txg, offset, size); 454 } 455 return (0); 456 } 457 458 static int 459 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme, 460 uint64_t txg, void *arg) 461 { 462 metaslab_verify_t *mv = arg; 463 uint64_t offset = sme->sme_offset; 464 uint64_t vdev_id = sme->sme_vdev; 465 466 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 467 468 /* skip indirect vdevs */ 469 if (!vdev_is_concrete(vd)) 470 return (0); 471 472 if (vdev_id != mv->mv_vdid) 473 return (0); 474 475 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 476 if (ms->ms_id != mv->mv_msid) 477 return (0); 478 479 if (txg < metaslab_unflushed_txg(ms)) 480 return (0); 481 482 483 ASSERT3U(txg, ==, sme->sme_txg); 484 return (metaslab_spacemap_validation_cb(sme, mv)); 485 } 486 487 static void 488 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv) 489 { 490 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv); 491 } 492 493 static void 494 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv) 495 { 496 if (sm == NULL) 497 return; 498 499 VERIFY0(space_map_iterate(sm, space_map_length(sm), 500 metaslab_spacemap_validation_cb, mv)); 501 } 502 503 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg); 504 505 /* 506 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if 507 * they are part of that metaslab (mv_msid). 508 */ 509 static void 510 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv) 511 { 512 zfs_btree_index_t where; 513 sublivelist_verify_block_t *svb; 514 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0); 515 for (svb = zfs_btree_first(&sv->sv_leftover, &where); 516 svb != NULL; 517 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) { 518 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid) 519 continue; 520 521 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start && 522 (DVA_GET_OFFSET(&svb->svb_dva) + 523 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) { 524 (void) printf("ERROR: Found block that crosses " 525 "metaslab boundary: <%llu:%llx:%llx>\n", 526 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 527 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 528 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 529 continue; 530 } 531 532 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start) 533 continue; 534 535 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end) 536 continue; 537 538 if ((DVA_GET_OFFSET(&svb->svb_dva) + 539 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) { 540 (void) printf("ERROR: Found block that crosses " 541 "metaslab boundary: <%llu:%llx:%llx>\n", 542 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva), 543 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 544 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva)); 545 continue; 546 } 547 548 zfs_btree_add(&mv->mv_livelist_allocs, svb); 549 } 550 551 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where); 552 svb != NULL; 553 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) { 554 zfs_btree_remove(&sv->sv_leftover, svb); 555 } 556 } 557 558 /* 559 * [Livelist Check] 560 * Iterate through all the sublivelists and: 561 * - report leftover frees (**) 562 * - record leftover ALLOCs together with their TXG [see Cross Check] 563 * 564 * (**) Note: Double ALLOCs are valid in datasets that have dedup 565 * enabled. Similarly double FREEs are allowed as well but 566 * only if they pair up with a corresponding ALLOC entry once 567 * we our done with our sublivelist iteration. 568 * 569 * [Spacemap Check] 570 * for each metaslab: 571 * - iterate over spacemap and then the metaslab's entries in the 572 * spacemap log, then report any double FREEs and ALLOCs (do not 573 * blow up). 574 * 575 * [Cross Check] 576 * After finishing the Livelist Check phase and while being in the 577 * Spacemap Check phase, we find all the recorded leftover ALLOCs 578 * of the livelist check that are part of the metaslab that we are 579 * currently looking at in the Spacemap Check. We report any entries 580 * that are marked as ALLOCs in the livelists but have been actually 581 * freed (and potentially allocated again) after their TXG stamp in 582 * the spacemaps. Also report any ALLOCs from the livelists that 583 * belong to indirect vdevs (e.g. their vdev completed removal). 584 * 585 * Note that this will miss Log Spacemap entries that cancelled each other 586 * out before being flushed to the metaslab, so we are not guaranteed 587 * to match all erroneous ALLOCs. 588 */ 589 static void 590 livelist_metaslab_validate(spa_t *spa) 591 { 592 (void) printf("Verifying deleted livelist entries\n"); 593 594 sublivelist_verify_t sv; 595 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL, 596 sizeof (sublivelist_verify_block_t)); 597 iterate_deleted_livelists(spa, livelist_verify, &sv); 598 599 (void) printf("Verifying metaslab entries\n"); 600 vdev_t *rvd = spa->spa_root_vdev; 601 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 602 vdev_t *vd = rvd->vdev_child[c]; 603 604 if (!vdev_is_concrete(vd)) 605 continue; 606 607 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) { 608 metaslab_t *m = vd->vdev_ms[mid]; 609 610 (void) fprintf(stderr, 611 "\rverifying concrete vdev %llu, " 612 "metaslab %llu of %llu ...", 613 (longlong_t)vd->vdev_id, 614 (longlong_t)mid, 615 (longlong_t)vd->vdev_ms_count); 616 617 uint64_t shift, start; 618 zfs_range_seg_type_t type = 619 metaslab_calculate_range_tree_type(vd, m, 620 &start, &shift); 621 metaslab_verify_t mv; 622 mv.mv_allocated = zfs_range_tree_create(NULL, 623 type, NULL, start, shift); 624 mv.mv_vdid = vd->vdev_id; 625 mv.mv_msid = m->ms_id; 626 mv.mv_start = m->ms_start; 627 mv.mv_end = m->ms_start + m->ms_size; 628 zfs_btree_create(&mv.mv_livelist_allocs, 629 livelist_block_compare, NULL, 630 sizeof (sublivelist_verify_block_t)); 631 632 mv_populate_livelist_allocs(&mv, &sv); 633 634 spacemap_check_ms_sm(m->ms_sm, &mv); 635 spacemap_check_sm_log(spa, &mv); 636 637 zfs_range_tree_vacate(mv.mv_allocated, NULL, NULL); 638 zfs_range_tree_destroy(mv.mv_allocated); 639 zfs_btree_clear(&mv.mv_livelist_allocs); 640 zfs_btree_destroy(&mv.mv_livelist_allocs); 641 } 642 } 643 (void) fprintf(stderr, "\n"); 644 645 /* 646 * If there are any segments in the leftover tree after we walked 647 * through all the metaslabs in the concrete vdevs then this means 648 * that we have segments in the livelists that belong to indirect 649 * vdevs and are marked as allocated. 650 */ 651 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) { 652 zfs_btree_destroy(&sv.sv_leftover); 653 return; 654 } 655 (void) printf("ERROR: Found livelist blocks marked as allocated " 656 "for indirect vdevs:\n"); 657 658 zfs_btree_index_t *where = NULL; 659 sublivelist_verify_block_t *svb; 660 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) != 661 NULL) { 662 int vdev_id = DVA_GET_VDEV(&svb->svb_dva); 663 ASSERT3U(vdev_id, <, rvd->vdev_children); 664 vdev_t *vd = rvd->vdev_child[vdev_id]; 665 ASSERT(!vdev_is_concrete(vd)); 666 (void) printf("<%d:%llx:%llx> TXG %llx\n", 667 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva), 668 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva), 669 (u_longlong_t)svb->svb_allocated_txg); 670 } 671 (void) printf("\n"); 672 zfs_btree_destroy(&sv.sv_leftover); 673 } 674 675 /* 676 * These libumem hooks provide a reasonable set of defaults for the allocator's 677 * debugging facilities. 678 */ 679 const char * 680 _umem_debug_init(void) 681 { 682 return ("default,verbose"); /* $UMEM_DEBUG setting */ 683 } 684 685 const char * 686 _umem_logging_init(void) 687 { 688 return ("fail,contents"); /* $UMEM_LOGGING setting */ 689 } 690 691 static void 692 usage(void) 693 { 694 (void) fprintf(stderr, 695 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] " 696 "[-I <inflight I/Os>]\n" 697 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 698 "\t\t[-K <key>]\n" 699 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n" 700 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n" 701 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n" 702 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n" 703 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n" 704 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n" 705 "\t%s [-v] <bookmark>\n" 706 "\t%s -C [-A] [-U <cache>] [<poolname>]\n" 707 "\t%s -l [-Aqu] <device>\n" 708 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] " 709 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n" 710 "\t%s -O [-K <key>] <dataset> <path>\n" 711 "\t%s -r [-K <key>] <dataset> <path> <destination>\n" 712 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n" 713 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n" 714 "\t%s -E [-A] word0:word1:...:word15\n" 715 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] " 716 "<poolname>\n\n", 717 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, 718 cmdname, cmdname, cmdname, cmdname, cmdname); 719 720 (void) fprintf(stderr, " Dataset name must include at least one " 721 "separator character '/' or '@'\n"); 722 (void) fprintf(stderr, " If dataset name is specified, only that " 723 "dataset is dumped\n"); 724 (void) fprintf(stderr, " If object numbers or object number " 725 "ranges are specified, only those\n" 726 " objects or ranges are dumped.\n\n"); 727 (void) fprintf(stderr, 728 " Object ranges take the form <start>:<end>[:<flags>]\n" 729 " start Starting object number\n" 730 " end Ending object number, or -1 for no upper bound\n" 731 " flags Optional flags to select object types:\n" 732 " A All objects (this is the default)\n" 733 " d ZFS directories\n" 734 " f ZFS files \n" 735 " m SPA space maps\n" 736 " z ZAPs\n" 737 " - Negate effect of next flag\n\n"); 738 (void) fprintf(stderr, " Options to control amount of output:\n"); 739 (void) fprintf(stderr, " -b --block-stats " 740 "block statistics\n"); 741 (void) fprintf(stderr, " -B --backup " 742 "backup stream\n"); 743 (void) fprintf(stderr, " -c --checksum " 744 "checksum all metadata (twice for all data) blocks\n"); 745 (void) fprintf(stderr, " -C --config " 746 "config (or cachefile if alone)\n"); 747 (void) fprintf(stderr, " -d --datasets " 748 "dataset(s)\n"); 749 (void) fprintf(stderr, " -D --dedup-stats " 750 "dedup statistics\n"); 751 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n" 752 " decode and display block " 753 "from an embedded block pointer\n"); 754 (void) fprintf(stderr, " -h --history " 755 "pool history\n"); 756 (void) fprintf(stderr, " -i --intent-logs " 757 "intent logs\n"); 758 (void) fprintf(stderr, " -l --label " 759 "read label contents\n"); 760 (void) fprintf(stderr, " -k --checkpointed-state " 761 "examine the checkpointed state of the pool\n"); 762 (void) fprintf(stderr, " -L --disable-leak-tracking " 763 "disable leak tracking (do not load spacemaps)\n"); 764 (void) fprintf(stderr, " -m --metaslabs " 765 "metaslabs\n"); 766 (void) fprintf(stderr, " -M --metaslab-groups " 767 "metaslab groups\n"); 768 (void) fprintf(stderr, " -O --object-lookups " 769 "perform object lookups by path\n"); 770 (void) fprintf(stderr, " -r --copy-object " 771 "copy an object by path to file\n"); 772 (void) fprintf(stderr, " -R --read-block " 773 "read and display block from a device\n"); 774 (void) fprintf(stderr, " -s --io-stats " 775 "report stats on zdb's I/O\n"); 776 (void) fprintf(stderr, " -S --simulate-dedup " 777 "simulate dedup to measure effect\n"); 778 (void) fprintf(stderr, " -v --verbose " 779 "verbose (applies to all others)\n"); 780 (void) fprintf(stderr, " -y --livelist " 781 "perform livelist and metaslab validation on any livelists being " 782 "deleted\n\n"); 783 (void) fprintf(stderr, " Below options are intended for use " 784 "with other options:\n"); 785 (void) fprintf(stderr, " -A --ignore-assertions " 786 "ignore assertions (-A), enable panic recovery (-AA) or both " 787 "(-AAA)\n"); 788 (void) fprintf(stderr, " -e --exported " 789 "pool is exported/destroyed/has altroot/not in a cachefile\n"); 790 (void) fprintf(stderr, " -F --automatic-rewind " 791 "attempt automatic rewind within safe range of transaction " 792 "groups\n"); 793 (void) fprintf(stderr, " -G --dump-debug-msg " 794 "dump zfs_dbgmsg buffer before exiting\n"); 795 (void) fprintf(stderr, " -I --inflight=INTEGER " 796 "specify the maximum number of checksumming I/Os " 797 "[default is 200]\n"); 798 (void) fprintf(stderr, " -K --key=KEY " 799 "decryption key for encrypted dataset\n"); 800 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" " 801 "set global variable to an unsigned 32-bit integer\n"); 802 (void) fprintf(stderr, " -p --path==PATH " 803 "use one or more with -e to specify path to vdev dir\n"); 804 (void) fprintf(stderr, " -P --parseable " 805 "print numbers in parseable form\n"); 806 (void) fprintf(stderr, " -q --skip-label " 807 "don't print label contents\n"); 808 (void) fprintf(stderr, " -t --txg=INTEGER " 809 "highest txg to use when searching for uberblocks\n"); 810 (void) fprintf(stderr, " -T --brt-stats " 811 "BRT statistics\n"); 812 (void) fprintf(stderr, " -u --uberblock " 813 "uberblock\n"); 814 (void) fprintf(stderr, " -U --cachefile=PATH " 815 "use alternate cachefile\n"); 816 (void) fprintf(stderr, " -V --verbatim " 817 "do verbatim import\n"); 818 (void) fprintf(stderr, " -x --dump-blocks=PATH " 819 "dump all read blocks into specified directory\n"); 820 (void) fprintf(stderr, " -X --extreme-rewind " 821 "attempt extreme rewind (does not work with dataset)\n"); 822 (void) fprintf(stderr, " -Y --all-reconstruction " 823 "attempt all reconstruction combinations for split blocks\n"); 824 (void) fprintf(stderr, " -Z --zstd-headers " 825 "show ZSTD headers \n"); 826 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) " 827 "to make only that option verbose\n"); 828 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n"); 829 zdb_exit(1); 830 } 831 832 static void 833 dump_debug_buffer(void) 834 { 835 ssize_t ret __attribute__((unused)); 836 837 if (!dump_opt['G']) 838 return; 839 /* 840 * We use write() instead of printf() so that this function 841 * is safe to call from a signal handler. 842 */ 843 ret = write(STDERR_FILENO, "\n", 1); 844 zfs_dbgmsg_print(STDERR_FILENO, "zdb"); 845 } 846 847 static void sig_handler(int signo) 848 { 849 struct sigaction action; 850 851 libspl_backtrace(STDERR_FILENO); 852 dump_debug_buffer(); 853 854 /* 855 * Restore default action and re-raise signal so SIGSEGV and 856 * SIGABRT can trigger a core dump. 857 */ 858 action.sa_handler = SIG_DFL; 859 sigemptyset(&action.sa_mask); 860 action.sa_flags = 0; 861 (void) sigaction(signo, &action, NULL); 862 raise(signo); 863 } 864 865 /* 866 * Called for usage errors that are discovered after a call to spa_open(), 867 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors. 868 */ 869 870 static void 871 fatal(const char *fmt, ...) 872 { 873 va_list ap; 874 875 va_start(ap, fmt); 876 (void) fprintf(stderr, "%s: ", cmdname); 877 (void) vfprintf(stderr, fmt, ap); 878 va_end(ap); 879 (void) fprintf(stderr, "\n"); 880 881 dump_debug_buffer(); 882 883 zdb_exit(1); 884 } 885 886 static void 887 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size) 888 { 889 (void) size; 890 nvlist_t *nv; 891 size_t nvsize = *(uint64_t *)data; 892 char *packed = umem_alloc(nvsize, UMEM_NOFAIL); 893 894 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH)); 895 896 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0); 897 898 umem_free(packed, nvsize); 899 900 dump_nvlist(nv, 8); 901 902 nvlist_free(nv); 903 } 904 905 static void 906 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size) 907 { 908 (void) os, (void) object, (void) size; 909 spa_history_phys_t *shp = data; 910 911 if (shp == NULL) 912 return; 913 914 (void) printf("\t\tpool_create_len = %llu\n", 915 (u_longlong_t)shp->sh_pool_create_len); 916 (void) printf("\t\tphys_max_off = %llu\n", 917 (u_longlong_t)shp->sh_phys_max_off); 918 (void) printf("\t\tbof = %llu\n", 919 (u_longlong_t)shp->sh_bof); 920 (void) printf("\t\teof = %llu\n", 921 (u_longlong_t)shp->sh_eof); 922 (void) printf("\t\trecords_lost = %llu\n", 923 (u_longlong_t)shp->sh_records_lost); 924 } 925 926 static void 927 zdb_nicenum(uint64_t num, char *buf, size_t buflen) 928 { 929 if (dump_opt['P']) 930 (void) snprintf(buf, buflen, "%llu", (longlong_t)num); 931 else 932 nicenum(num, buf, buflen); 933 } 934 935 static void 936 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen) 937 { 938 if (dump_opt['P']) 939 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes); 940 else 941 zfs_nicebytes(bytes, buf, buflen); 942 } 943 944 static const char histo_stars[] = "****************************************"; 945 static const uint64_t histo_width = sizeof (histo_stars) - 1; 946 947 static void 948 dump_histogram(const uint64_t *histo, int size, int offset) 949 { 950 int i; 951 int minidx = size - 1; 952 int maxidx = 0; 953 uint64_t max = 0; 954 955 for (i = 0; i < size; i++) { 956 if (histo[i] == 0) 957 continue; 958 if (histo[i] > max) 959 max = histo[i]; 960 if (i > maxidx) 961 maxidx = i; 962 if (i < minidx) 963 minidx = i; 964 } 965 966 if (max < histo_width) 967 max = histo_width; 968 969 for (i = minidx; i <= maxidx; i++) { 970 (void) printf("\t\t\t%3u: %6llu %s\n", 971 i + offset, (u_longlong_t)histo[i], 972 &histo_stars[(max - histo[i]) * histo_width / max]); 973 } 974 } 975 976 static void 977 dump_zap_stats(objset_t *os, uint64_t object) 978 { 979 int error; 980 zap_stats_t zs; 981 982 error = zap_get_stats(os, object, &zs); 983 if (error) 984 return; 985 986 if (zs.zs_ptrtbl_len == 0) { 987 ASSERT(zs.zs_num_blocks == 1); 988 (void) printf("\tmicrozap: %llu bytes, %llu entries\n", 989 (u_longlong_t)zs.zs_blocksize, 990 (u_longlong_t)zs.zs_num_entries); 991 return; 992 } 993 994 (void) printf("\tFat ZAP stats:\n"); 995 996 (void) printf("\t\tPointer table:\n"); 997 (void) printf("\t\t\t%llu elements\n", 998 (u_longlong_t)zs.zs_ptrtbl_len); 999 (void) printf("\t\t\tzt_blk: %llu\n", 1000 (u_longlong_t)zs.zs_ptrtbl_zt_blk); 1001 (void) printf("\t\t\tzt_numblks: %llu\n", 1002 (u_longlong_t)zs.zs_ptrtbl_zt_numblks); 1003 (void) printf("\t\t\tzt_shift: %llu\n", 1004 (u_longlong_t)zs.zs_ptrtbl_zt_shift); 1005 (void) printf("\t\t\tzt_blks_copied: %llu\n", 1006 (u_longlong_t)zs.zs_ptrtbl_blks_copied); 1007 (void) printf("\t\t\tzt_nextblk: %llu\n", 1008 (u_longlong_t)zs.zs_ptrtbl_nextblk); 1009 1010 (void) printf("\t\tZAP entries: %llu\n", 1011 (u_longlong_t)zs.zs_num_entries); 1012 (void) printf("\t\tLeaf blocks: %llu\n", 1013 (u_longlong_t)zs.zs_num_leafs); 1014 (void) printf("\t\tTotal blocks: %llu\n", 1015 (u_longlong_t)zs.zs_num_blocks); 1016 (void) printf("\t\tzap_block_type: 0x%llx\n", 1017 (u_longlong_t)zs.zs_block_type); 1018 (void) printf("\t\tzap_magic: 0x%llx\n", 1019 (u_longlong_t)zs.zs_magic); 1020 (void) printf("\t\tzap_salt: 0x%llx\n", 1021 (u_longlong_t)zs.zs_salt); 1022 1023 (void) printf("\t\tLeafs with 2^n pointers:\n"); 1024 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0); 1025 1026 (void) printf("\t\tBlocks with n*5 entries:\n"); 1027 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0); 1028 1029 (void) printf("\t\tBlocks n/10 full:\n"); 1030 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0); 1031 1032 (void) printf("\t\tEntries with n chunks:\n"); 1033 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0); 1034 1035 (void) printf("\t\tBuckets with n entries:\n"); 1036 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0); 1037 } 1038 1039 static void 1040 dump_none(objset_t *os, uint64_t object, void *data, size_t size) 1041 { 1042 (void) os, (void) object, (void) data, (void) size; 1043 } 1044 1045 static void 1046 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size) 1047 { 1048 (void) os, (void) object, (void) data, (void) size; 1049 (void) printf("\tUNKNOWN OBJECT TYPE\n"); 1050 } 1051 1052 static void 1053 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size) 1054 { 1055 (void) os, (void) object, (void) data, (void) size; 1056 } 1057 1058 static void 1059 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size) 1060 { 1061 uint64_t *arr; 1062 uint64_t oursize; 1063 if (dump_opt['d'] < 6) 1064 return; 1065 1066 if (data == NULL) { 1067 dmu_object_info_t doi; 1068 1069 VERIFY0(dmu_object_info(os, object, &doi)); 1070 size = doi.doi_max_offset; 1071 /* 1072 * We cap the size at 1 mebibyte here to prevent 1073 * allocation failures and nigh-infinite printing if the 1074 * object is extremely large. 1075 */ 1076 oursize = MIN(size, 1 << 20); 1077 arr = kmem_alloc(oursize, KM_SLEEP); 1078 1079 int err = dmu_read(os, object, 0, oursize, arr, 0); 1080 if (err != 0) { 1081 (void) printf("got error %u from dmu_read\n", err); 1082 kmem_free(arr, oursize); 1083 return; 1084 } 1085 } else { 1086 /* 1087 * Even though the allocation is already done in this code path, 1088 * we still cap the size to prevent excessive printing. 1089 */ 1090 oursize = MIN(size, 1 << 20); 1091 arr = data; 1092 } 1093 1094 if (size == 0) { 1095 if (data == NULL) 1096 kmem_free(arr, oursize); 1097 (void) printf("\t\t[]\n"); 1098 return; 1099 } 1100 1101 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]); 1102 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) { 1103 if (i % 4 != 0) 1104 (void) printf(", %0llx", (u_longlong_t)arr[i]); 1105 else 1106 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]); 1107 } 1108 if (oursize != size) 1109 (void) printf(", ... "); 1110 (void) printf("]\n"); 1111 1112 if (data == NULL) 1113 kmem_free(arr, oursize); 1114 } 1115 1116 static void 1117 dump_zap(objset_t *os, uint64_t object, void *data, size_t size) 1118 { 1119 (void) data, (void) size; 1120 zap_cursor_t zc; 1121 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1122 void *prop; 1123 unsigned i; 1124 1125 dump_zap_stats(os, object); 1126 (void) printf("\n"); 1127 1128 for (zap_cursor_init(&zc, os, object); 1129 zap_cursor_retrieve(&zc, attrp) == 0; 1130 zap_cursor_advance(&zc)) { 1131 boolean_t key64 = 1132 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY); 1133 1134 if (key64) 1135 (void) printf("\t\t0x%010" PRIu64 "x = ", 1136 *(uint64_t *)attrp->za_name); 1137 else 1138 (void) printf("\t\t%s = ", attrp->za_name); 1139 1140 if (attrp->za_num_integers == 0) { 1141 (void) printf("\n"); 1142 continue; 1143 } 1144 prop = umem_zalloc(attrp->za_num_integers * 1145 attrp->za_integer_length, UMEM_NOFAIL); 1146 1147 if (key64) 1148 (void) zap_lookup_uint64(os, object, 1149 (const uint64_t *)attrp->za_name, 1, 1150 attrp->za_integer_length, attrp->za_num_integers, 1151 prop); 1152 else 1153 (void) zap_lookup(os, object, attrp->za_name, 1154 attrp->za_integer_length, attrp->za_num_integers, 1155 prop); 1156 1157 if (attrp->za_integer_length == 1 && !key64) { 1158 if (strcmp(attrp->za_name, 1159 DSL_CRYPTO_KEY_MASTER_KEY) == 0 || 1160 strcmp(attrp->za_name, 1161 DSL_CRYPTO_KEY_HMAC_KEY) == 0 || 1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 || 1163 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 || 1164 strcmp(attrp->za_name, 1165 DMU_POOL_CHECKSUM_SALT) == 0) { 1166 uint8_t *u8 = prop; 1167 1168 for (i = 0; i < attrp->za_num_integers; i++) { 1169 (void) printf("%02x", u8[i]); 1170 } 1171 } else { 1172 (void) printf("%s", (char *)prop); 1173 } 1174 } else { 1175 for (i = 0; i < attrp->za_num_integers; i++) { 1176 switch (attrp->za_integer_length) { 1177 case 1: 1178 (void) printf("%u ", 1179 ((uint8_t *)prop)[i]); 1180 break; 1181 case 2: 1182 (void) printf("%u ", 1183 ((uint16_t *)prop)[i]); 1184 break; 1185 case 4: 1186 (void) printf("%u ", 1187 ((uint32_t *)prop)[i]); 1188 break; 1189 case 8: 1190 (void) printf("%lld ", 1191 (u_longlong_t)((int64_t *)prop)[i]); 1192 break; 1193 } 1194 } 1195 } 1196 (void) printf("\n"); 1197 umem_free(prop, 1198 attrp->za_num_integers * attrp->za_integer_length); 1199 } 1200 zap_cursor_fini(&zc); 1201 zap_attribute_free(attrp); 1202 } 1203 1204 static void 1205 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size) 1206 { 1207 bpobj_phys_t *bpop = data; 1208 uint64_t i; 1209 char bytes[32], comp[32], uncomp[32]; 1210 1211 /* make sure the output won't get truncated */ 1212 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 1213 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 1214 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 1215 1216 if (bpop == NULL) 1217 return; 1218 1219 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes)); 1220 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp)); 1221 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp)); 1222 1223 (void) printf("\t\tnum_blkptrs = %llu\n", 1224 (u_longlong_t)bpop->bpo_num_blkptrs); 1225 (void) printf("\t\tbytes = %s\n", bytes); 1226 if (size >= BPOBJ_SIZE_V1) { 1227 (void) printf("\t\tcomp = %s\n", comp); 1228 (void) printf("\t\tuncomp = %s\n", uncomp); 1229 } 1230 if (size >= BPOBJ_SIZE_V2) { 1231 (void) printf("\t\tsubobjs = %llu\n", 1232 (u_longlong_t)bpop->bpo_subobjs); 1233 (void) printf("\t\tnum_subobjs = %llu\n", 1234 (u_longlong_t)bpop->bpo_num_subobjs); 1235 } 1236 if (size >= sizeof (*bpop)) { 1237 (void) printf("\t\tnum_freed = %llu\n", 1238 (u_longlong_t)bpop->bpo_num_freed); 1239 } 1240 1241 if (dump_opt['d'] < 5) 1242 return; 1243 1244 for (i = 0; i < bpop->bpo_num_blkptrs; i++) { 1245 char blkbuf[BP_SPRINTF_LEN]; 1246 blkptr_t bp; 1247 1248 int err = dmu_read(os, object, 1249 i * sizeof (bp), sizeof (bp), &bp, 0); 1250 if (err != 0) { 1251 (void) printf("got error %u from dmu_read\n", err); 1252 break; 1253 } 1254 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp, 1255 BP_GET_FREE(&bp)); 1256 (void) printf("\t%s\n", blkbuf); 1257 } 1258 } 1259 1260 static void 1261 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size) 1262 { 1263 (void) data, (void) size; 1264 dmu_object_info_t doi; 1265 int64_t i; 1266 1267 VERIFY0(dmu_object_info(os, object, &doi)); 1268 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP); 1269 1270 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0); 1271 if (err != 0) { 1272 (void) printf("got error %u from dmu_read\n", err); 1273 kmem_free(subobjs, doi.doi_max_offset); 1274 return; 1275 } 1276 1277 int64_t last_nonzero = -1; 1278 for (i = 0; i < doi.doi_max_offset / 8; i++) { 1279 if (subobjs[i] != 0) 1280 last_nonzero = i; 1281 } 1282 1283 for (i = 0; i <= last_nonzero; i++) { 1284 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]); 1285 } 1286 kmem_free(subobjs, doi.doi_max_offset); 1287 } 1288 1289 static void 1290 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size) 1291 { 1292 (void) data, (void) size; 1293 dump_zap_stats(os, object); 1294 /* contents are printed elsewhere, properly decoded */ 1295 } 1296 1297 static void 1298 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size) 1299 { 1300 (void) data, (void) size; 1301 zap_cursor_t zc; 1302 zap_attribute_t *attrp = zap_attribute_alloc(); 1303 1304 dump_zap_stats(os, object); 1305 (void) printf("\n"); 1306 1307 for (zap_cursor_init(&zc, os, object); 1308 zap_cursor_retrieve(&zc, attrp) == 0; 1309 zap_cursor_advance(&zc)) { 1310 (void) printf("\t\t%s = ", attrp->za_name); 1311 if (attrp->za_num_integers == 0) { 1312 (void) printf("\n"); 1313 continue; 1314 } 1315 (void) printf(" %llx : [%d:%d:%d]\n", 1316 (u_longlong_t)attrp->za_first_integer, 1317 (int)ATTR_LENGTH(attrp->za_first_integer), 1318 (int)ATTR_BSWAP(attrp->za_first_integer), 1319 (int)ATTR_NUM(attrp->za_first_integer)); 1320 } 1321 zap_cursor_fini(&zc); 1322 zap_attribute_free(attrp); 1323 } 1324 1325 static void 1326 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size) 1327 { 1328 (void) data, (void) size; 1329 zap_cursor_t zc; 1330 zap_attribute_t *attrp = zap_attribute_alloc(); 1331 uint16_t *layout_attrs; 1332 unsigned i; 1333 1334 dump_zap_stats(os, object); 1335 (void) printf("\n"); 1336 1337 for (zap_cursor_init(&zc, os, object); 1338 zap_cursor_retrieve(&zc, attrp) == 0; 1339 zap_cursor_advance(&zc)) { 1340 (void) printf("\t\t%s = [", attrp->za_name); 1341 if (attrp->za_num_integers == 0) { 1342 (void) printf("\n"); 1343 continue; 1344 } 1345 1346 VERIFY(attrp->za_integer_length == 2); 1347 layout_attrs = umem_zalloc(attrp->za_num_integers * 1348 attrp->za_integer_length, UMEM_NOFAIL); 1349 1350 VERIFY(zap_lookup(os, object, attrp->za_name, 1351 attrp->za_integer_length, 1352 attrp->za_num_integers, layout_attrs) == 0); 1353 1354 for (i = 0; i != attrp->za_num_integers; i++) 1355 (void) printf(" %d ", (int)layout_attrs[i]); 1356 (void) printf("]\n"); 1357 umem_free(layout_attrs, 1358 attrp->za_num_integers * attrp->za_integer_length); 1359 } 1360 zap_cursor_fini(&zc); 1361 zap_attribute_free(attrp); 1362 } 1363 1364 static void 1365 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size) 1366 { 1367 (void) data, (void) size; 1368 zap_cursor_t zc; 1369 zap_attribute_t *attrp = zap_attribute_long_alloc(); 1370 const char *typenames[] = { 1371 /* 0 */ "not specified", 1372 /* 1 */ "FIFO", 1373 /* 2 */ "Character Device", 1374 /* 3 */ "3 (invalid)", 1375 /* 4 */ "Directory", 1376 /* 5 */ "5 (invalid)", 1377 /* 6 */ "Block Device", 1378 /* 7 */ "7 (invalid)", 1379 /* 8 */ "Regular File", 1380 /* 9 */ "9 (invalid)", 1381 /* 10 */ "Symbolic Link", 1382 /* 11 */ "11 (invalid)", 1383 /* 12 */ "Socket", 1384 /* 13 */ "Door", 1385 /* 14 */ "Event Port", 1386 /* 15 */ "15 (invalid)", 1387 }; 1388 1389 dump_zap_stats(os, object); 1390 (void) printf("\n"); 1391 1392 for (zap_cursor_init(&zc, os, object); 1393 zap_cursor_retrieve(&zc, attrp) == 0; 1394 zap_cursor_advance(&zc)) { 1395 (void) printf("\t\t%s = %lld (type: %s)\n", 1396 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer), 1397 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]); 1398 } 1399 zap_cursor_fini(&zc); 1400 zap_attribute_free(attrp); 1401 } 1402 1403 static int 1404 get_dtl_refcount(vdev_t *vd) 1405 { 1406 int refcount = 0; 1407 1408 if (vd->vdev_ops->vdev_op_leaf) { 1409 space_map_t *sm = vd->vdev_dtl_sm; 1410 1411 if (sm != NULL && 1412 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1413 return (1); 1414 return (0); 1415 } 1416 1417 for (unsigned c = 0; c < vd->vdev_children; c++) 1418 refcount += get_dtl_refcount(vd->vdev_child[c]); 1419 return (refcount); 1420 } 1421 1422 static int 1423 get_metaslab_refcount(vdev_t *vd) 1424 { 1425 int refcount = 0; 1426 1427 if (vd->vdev_top == vd) { 1428 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 1429 space_map_t *sm = vd->vdev_ms[m]->ms_sm; 1430 1431 if (sm != NULL && 1432 sm->sm_dbuf->db_size == sizeof (space_map_phys_t)) 1433 refcount++; 1434 } 1435 } 1436 for (unsigned c = 0; c < vd->vdev_children; c++) 1437 refcount += get_metaslab_refcount(vd->vdev_child[c]); 1438 1439 return (refcount); 1440 } 1441 1442 static int 1443 get_obsolete_refcount(vdev_t *vd) 1444 { 1445 uint64_t obsolete_sm_object; 1446 int refcount = 0; 1447 1448 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1449 if (vd->vdev_top == vd && obsolete_sm_object != 0) { 1450 dmu_object_info_t doi; 1451 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset, 1452 obsolete_sm_object, &doi)); 1453 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1454 refcount++; 1455 } 1456 } else { 1457 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); 1458 ASSERT3U(obsolete_sm_object, ==, 0); 1459 } 1460 for (unsigned c = 0; c < vd->vdev_children; c++) { 1461 refcount += get_obsolete_refcount(vd->vdev_child[c]); 1462 } 1463 1464 return (refcount); 1465 } 1466 1467 static int 1468 get_prev_obsolete_spacemap_refcount(spa_t *spa) 1469 { 1470 uint64_t prev_obj = 1471 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object; 1472 if (prev_obj != 0) { 1473 dmu_object_info_t doi; 1474 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi)); 1475 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) { 1476 return (1); 1477 } 1478 } 1479 return (0); 1480 } 1481 1482 static int 1483 get_checkpoint_refcount(vdev_t *vd) 1484 { 1485 int refcount = 0; 1486 1487 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 && 1488 zap_contains(spa_meta_objset(vd->vdev_spa), 1489 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0) 1490 refcount++; 1491 1492 for (uint64_t c = 0; c < vd->vdev_children; c++) 1493 refcount += get_checkpoint_refcount(vd->vdev_child[c]); 1494 1495 return (refcount); 1496 } 1497 1498 static int 1499 get_log_spacemap_refcount(spa_t *spa) 1500 { 1501 return (avl_numnodes(&spa->spa_sm_logs_by_txg)); 1502 } 1503 1504 static int 1505 verify_spacemap_refcounts(spa_t *spa) 1506 { 1507 uint64_t expected_refcount = 0; 1508 uint64_t actual_refcount; 1509 1510 (void) feature_get_refcount(spa, 1511 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM], 1512 &expected_refcount); 1513 actual_refcount = get_dtl_refcount(spa->spa_root_vdev); 1514 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev); 1515 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev); 1516 actual_refcount += get_prev_obsolete_spacemap_refcount(spa); 1517 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev); 1518 actual_refcount += get_log_spacemap_refcount(spa); 1519 1520 if (expected_refcount != actual_refcount) { 1521 (void) printf("space map refcount mismatch: expected %lld != " 1522 "actual %lld\n", 1523 (longlong_t)expected_refcount, 1524 (longlong_t)actual_refcount); 1525 return (2); 1526 } 1527 return (0); 1528 } 1529 1530 static void 1531 dump_spacemap(objset_t *os, space_map_t *sm) 1532 { 1533 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID", 1534 "INVALID", "INVALID", "INVALID", "INVALID" }; 1535 1536 if (sm == NULL) 1537 return; 1538 1539 (void) printf("space map object %llu:\n", 1540 (longlong_t)sm->sm_object); 1541 (void) printf(" smp_length = 0x%llx\n", 1542 (longlong_t)sm->sm_phys->smp_length); 1543 (void) printf(" smp_alloc = 0x%llx\n", 1544 (longlong_t)sm->sm_phys->smp_alloc); 1545 1546 if (dump_opt['d'] < 6 && dump_opt['m'] < 4) 1547 return; 1548 1549 /* 1550 * Print out the freelist entries in both encoded and decoded form. 1551 */ 1552 uint8_t mapshift = sm->sm_shift; 1553 int64_t alloc = 0; 1554 uint64_t word, entry_id = 0; 1555 for (uint64_t offset = 0; offset < space_map_length(sm); 1556 offset += sizeof (word)) { 1557 1558 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1559 sizeof (word), &word, DMU_READ_PREFETCH)); 1560 1561 if (sm_entry_is_debug(word)) { 1562 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word); 1563 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word); 1564 if (de_txg == 0) { 1565 (void) printf( 1566 "\t [%6llu] PADDING\n", 1567 (u_longlong_t)entry_id); 1568 } else { 1569 (void) printf( 1570 "\t [%6llu] %s: txg %llu pass %llu\n", 1571 (u_longlong_t)entry_id, 1572 ddata[SM_DEBUG_ACTION_DECODE(word)], 1573 (u_longlong_t)de_txg, 1574 (u_longlong_t)de_sync_pass); 1575 } 1576 entry_id++; 1577 continue; 1578 } 1579 1580 uint8_t words; 1581 char entry_type; 1582 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID; 1583 1584 if (sm_entry_is_single_word(word)) { 1585 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ? 1586 'A' : 'F'; 1587 entry_off = (SM_OFFSET_DECODE(word) << mapshift) + 1588 sm->sm_start; 1589 entry_run = SM_RUN_DECODE(word) << mapshift; 1590 words = 1; 1591 } else { 1592 /* it is a two-word entry so we read another word */ 1593 ASSERT(sm_entry_is_double_word(word)); 1594 1595 uint64_t extra_word; 1596 offset += sizeof (extra_word); 1597 VERIFY0(dmu_read(os, space_map_object(sm), offset, 1598 sizeof (extra_word), &extra_word, 1599 DMU_READ_PREFETCH)); 1600 1601 ASSERT3U(offset, <=, space_map_length(sm)); 1602 1603 entry_run = SM2_RUN_DECODE(word) << mapshift; 1604 entry_vdev = SM2_VDEV_DECODE(word); 1605 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ? 1606 'A' : 'F'; 1607 entry_off = (SM2_OFFSET_DECODE(extra_word) << 1608 mapshift) + sm->sm_start; 1609 words = 2; 1610 } 1611 1612 (void) printf("\t [%6llu] %c range:" 1613 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n", 1614 (u_longlong_t)entry_id, 1615 entry_type, (u_longlong_t)entry_off, 1616 (u_longlong_t)(entry_off + entry_run), 1617 (u_longlong_t)entry_run, 1618 (u_longlong_t)entry_vdev, words); 1619 1620 if (entry_type == 'A') 1621 alloc += entry_run; 1622 else 1623 alloc -= entry_run; 1624 entry_id++; 1625 } 1626 if (alloc != space_map_allocated(sm)) { 1627 (void) printf("space_map_object alloc (%lld) INCONSISTENT " 1628 "with space map summary (%lld)\n", 1629 (longlong_t)space_map_allocated(sm), (longlong_t)alloc); 1630 } 1631 } 1632 1633 static void 1634 dump_metaslab_stats(metaslab_t *msp) 1635 { 1636 char maxbuf[32]; 1637 zfs_range_tree_t *rt = msp->ms_allocatable; 1638 zfs_btree_t *t = &msp->ms_allocatable_by_size; 1639 int free_pct = zfs_range_tree_space(rt) * 100 / msp->ms_size; 1640 1641 /* max sure nicenum has enough space */ 1642 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated"); 1643 1644 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf)); 1645 1646 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n", 1647 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf, 1648 "freepct", free_pct); 1649 (void) printf("\tIn-memory histogram:\n"); 1650 dump_histogram(rt->rt_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1651 } 1652 1653 static void 1654 dump_metaslab(metaslab_t *msp) 1655 { 1656 vdev_t *vd = msp->ms_group->mg_vd; 1657 spa_t *spa = vd->vdev_spa; 1658 space_map_t *sm = msp->ms_sm; 1659 char freebuf[32]; 1660 1661 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf, 1662 sizeof (freebuf)); 1663 1664 (void) printf( 1665 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n", 1666 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start, 1667 (u_longlong_t)space_map_object(sm), freebuf); 1668 1669 if (dump_opt['m'] > 2 && !dump_opt['L']) { 1670 mutex_enter(&msp->ms_lock); 1671 VERIFY0(metaslab_load(msp)); 1672 zfs_range_tree_stat_verify(msp->ms_allocatable); 1673 dump_metaslab_stats(msp); 1674 metaslab_unload(msp); 1675 mutex_exit(&msp->ms_lock); 1676 } 1677 1678 if (dump_opt['m'] > 1 && sm != NULL && 1679 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) { 1680 /* 1681 * The space map histogram represents free space in chunks 1682 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift). 1683 */ 1684 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n", 1685 (u_longlong_t)msp->ms_fragmentation); 1686 dump_histogram(sm->sm_phys->smp_histogram, 1687 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift); 1688 } 1689 1690 if (vd->vdev_ops == &vdev_draid_ops) 1691 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift); 1692 else 1693 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift); 1694 1695 dump_spacemap(spa->spa_meta_objset, msp->ms_sm); 1696 1697 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) { 1698 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n", 1699 (u_longlong_t)metaslab_unflushed_txg(msp)); 1700 } 1701 } 1702 1703 static void 1704 print_vdev_metaslab_header(vdev_t *vd) 1705 { 1706 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; 1707 const char *bias_str = ""; 1708 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) { 1709 bias_str = VDEV_ALLOC_BIAS_LOG; 1710 } else if (alloc_bias == VDEV_BIAS_SPECIAL) { 1711 bias_str = VDEV_ALLOC_BIAS_SPECIAL; 1712 } else if (alloc_bias == VDEV_BIAS_DEDUP) { 1713 bias_str = VDEV_ALLOC_BIAS_DEDUP; 1714 } 1715 1716 uint64_t ms_flush_data_obj = 0; 1717 if (vd->vdev_top_zap != 0) { 1718 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 1719 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 1720 sizeof (uint64_t), 1, &ms_flush_data_obj); 1721 if (error != ENOENT) { 1722 ASSERT0(error); 1723 } 1724 } 1725 1726 (void) printf("\tvdev %10llu %s", 1727 (u_longlong_t)vd->vdev_id, bias_str); 1728 1729 if (ms_flush_data_obj != 0) { 1730 (void) printf(" ms_unflushed_phys object %llu", 1731 (u_longlong_t)ms_flush_data_obj); 1732 } 1733 1734 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n", 1735 "metaslabs", (u_longlong_t)vd->vdev_ms_count, 1736 "offset", "spacemap", "free"); 1737 (void) printf("\t%15s %19s %15s %12s\n", 1738 "---------------", "-------------------", 1739 "---------------", "------------"); 1740 } 1741 1742 static void 1743 dump_metaslab_groups(spa_t *spa, boolean_t show_special) 1744 { 1745 vdev_t *rvd = spa->spa_root_vdev; 1746 metaslab_class_t *mc = spa_normal_class(spa); 1747 metaslab_class_t *smc = spa_special_class(spa); 1748 uint64_t fragmentation; 1749 1750 metaslab_class_histogram_verify(mc); 1751 1752 for (unsigned c = 0; c < rvd->vdev_children; c++) { 1753 vdev_t *tvd = rvd->vdev_child[c]; 1754 metaslab_group_t *mg = tvd->vdev_mg; 1755 1756 if (mg == NULL || (mg->mg_class != mc && 1757 (!show_special || mg->mg_class != smc))) 1758 continue; 1759 1760 metaslab_group_histogram_verify(mg); 1761 mg->mg_fragmentation = metaslab_group_fragmentation(mg); 1762 1763 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t" 1764 "fragmentation", 1765 (u_longlong_t)tvd->vdev_id, 1766 (u_longlong_t)tvd->vdev_ms_count); 1767 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) { 1768 (void) printf("%3s\n", "-"); 1769 } else { 1770 (void) printf("%3llu%%\n", 1771 (u_longlong_t)mg->mg_fragmentation); 1772 } 1773 dump_histogram(mg->mg_histogram, 1774 ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1775 } 1776 1777 (void) printf("\tpool %s\tfragmentation", spa_name(spa)); 1778 fragmentation = metaslab_class_fragmentation(mc); 1779 if (fragmentation == ZFS_FRAG_INVALID) 1780 (void) printf("\t%3s\n", "-"); 1781 else 1782 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation); 1783 dump_histogram(mc->mc_histogram, ZFS_RANGE_TREE_HISTOGRAM_SIZE, 0); 1784 } 1785 1786 static void 1787 print_vdev_indirect(vdev_t *vd) 1788 { 1789 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 1790 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 1791 vdev_indirect_births_t *vib = vd->vdev_indirect_births; 1792 1793 if (vim == NULL) { 1794 ASSERT3P(vib, ==, NULL); 1795 return; 1796 } 1797 1798 ASSERT3U(vdev_indirect_mapping_object(vim), ==, 1799 vic->vic_mapping_object); 1800 ASSERT3U(vdev_indirect_births_object(vib), ==, 1801 vic->vic_births_object); 1802 1803 (void) printf("indirect births obj %llu:\n", 1804 (longlong_t)vic->vic_births_object); 1805 (void) printf(" vib_count = %llu\n", 1806 (longlong_t)vdev_indirect_births_count(vib)); 1807 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) { 1808 vdev_indirect_birth_entry_phys_t *cur_vibe = 1809 &vib->vib_entries[i]; 1810 (void) printf("\toffset %llx -> txg %llu\n", 1811 (longlong_t)cur_vibe->vibe_offset, 1812 (longlong_t)cur_vibe->vibe_phys_birth_txg); 1813 } 1814 (void) printf("\n"); 1815 1816 (void) printf("indirect mapping obj %llu:\n", 1817 (longlong_t)vic->vic_mapping_object); 1818 (void) printf(" vim_max_offset = 0x%llx\n", 1819 (longlong_t)vdev_indirect_mapping_max_offset(vim)); 1820 (void) printf(" vim_bytes_mapped = 0x%llx\n", 1821 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim)); 1822 (void) printf(" vim_count = %llu\n", 1823 (longlong_t)vdev_indirect_mapping_num_entries(vim)); 1824 1825 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3) 1826 return; 1827 1828 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim); 1829 1830 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 1831 vdev_indirect_mapping_entry_phys_t *vimep = 1832 &vim->vim_entries[i]; 1833 (void) printf("\t<%llx:%llx:%llx> -> " 1834 "<%llx:%llx:%llx> (%x obsolete)\n", 1835 (longlong_t)vd->vdev_id, 1836 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 1837 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1838 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst), 1839 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst), 1840 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 1841 counts[i]); 1842 } 1843 (void) printf("\n"); 1844 1845 uint64_t obsolete_sm_object; 1846 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 1847 if (obsolete_sm_object != 0) { 1848 objset_t *mos = vd->vdev_spa->spa_meta_objset; 1849 (void) printf("obsolete space map object %llu:\n", 1850 (u_longlong_t)obsolete_sm_object); 1851 ASSERT(vd->vdev_obsolete_sm != NULL); 1852 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==, 1853 obsolete_sm_object); 1854 dump_spacemap(mos, vd->vdev_obsolete_sm); 1855 (void) printf("\n"); 1856 } 1857 } 1858 1859 static void 1860 dump_metaslabs(spa_t *spa) 1861 { 1862 vdev_t *vd, *rvd = spa->spa_root_vdev; 1863 uint64_t m, c = 0, children = rvd->vdev_children; 1864 1865 (void) printf("\nMetaslabs:\n"); 1866 1867 if (!dump_opt['d'] && zopt_metaslab_args > 0) { 1868 c = zopt_metaslab[0]; 1869 1870 if (c >= children) 1871 (void) fatal("bad vdev id: %llu", (u_longlong_t)c); 1872 1873 if (zopt_metaslab_args > 1) { 1874 vd = rvd->vdev_child[c]; 1875 print_vdev_metaslab_header(vd); 1876 1877 for (m = 1; m < zopt_metaslab_args; m++) { 1878 if (zopt_metaslab[m] < vd->vdev_ms_count) 1879 dump_metaslab( 1880 vd->vdev_ms[zopt_metaslab[m]]); 1881 else 1882 (void) fprintf(stderr, "bad metaslab " 1883 "number %llu\n", 1884 (u_longlong_t)zopt_metaslab[m]); 1885 } 1886 (void) printf("\n"); 1887 return; 1888 } 1889 children = c + 1; 1890 } 1891 for (; c < children; c++) { 1892 vd = rvd->vdev_child[c]; 1893 print_vdev_metaslab_header(vd); 1894 1895 print_vdev_indirect(vd); 1896 1897 for (m = 0; m < vd->vdev_ms_count; m++) 1898 dump_metaslab(vd->vdev_ms[m]); 1899 (void) printf("\n"); 1900 } 1901 } 1902 1903 static void 1904 dump_log_spacemaps(spa_t *spa) 1905 { 1906 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 1907 return; 1908 1909 (void) printf("\nLog Space Maps in Pool:\n"); 1910 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 1911 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) { 1912 space_map_t *sm = NULL; 1913 VERIFY0(space_map_open(&sm, spa_meta_objset(spa), 1914 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT)); 1915 1916 (void) printf("Log Spacemap object %llu txg %llu\n", 1917 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg); 1918 dump_spacemap(spa->spa_meta_objset, sm); 1919 space_map_close(sm); 1920 } 1921 (void) printf("\n"); 1922 } 1923 1924 static void 1925 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe, 1926 uint64_t index) 1927 { 1928 const ddt_key_t *ddk = &ddlwe->ddlwe_key; 1929 char blkbuf[BP_SPRINTF_LEN]; 1930 blkptr_t blk; 1931 int p; 1932 1933 for (p = 0; p < DDT_NPHYS(ddt); p++) { 1934 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys; 1935 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p); 1936 1937 if (ddt_phys_birth(ddp, v) == 0) 1938 continue; 1939 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk); 1940 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk); 1941 (void) printf("index %llx refcnt %llu phys %d %s\n", 1942 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v), 1943 p, blkbuf); 1944 } 1945 } 1946 1947 static void 1948 dump_dedup_ratio(const ddt_stat_t *dds) 1949 { 1950 double rL, rP, rD, D, dedup, compress, copies; 1951 1952 if (dds->dds_blocks == 0) 1953 return; 1954 1955 rL = (double)dds->dds_ref_lsize; 1956 rP = (double)dds->dds_ref_psize; 1957 rD = (double)dds->dds_ref_dsize; 1958 D = (double)dds->dds_dsize; 1959 1960 dedup = rD / D; 1961 compress = rL / rP; 1962 copies = rD / rP; 1963 1964 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, " 1965 "dedup * compress / copies = %.2f\n\n", 1966 dedup, compress, copies, dedup * compress / copies); 1967 } 1968 1969 static void 1970 dump_ddt_log(ddt_t *ddt) 1971 { 1972 if (ddt->ddt_version != DDT_VERSION_FDT || 1973 !(ddt->ddt_flags & DDT_FLAG_LOG)) 1974 return; 1975 1976 for (int n = 0; n < 2; n++) { 1977 ddt_log_t *ddl = &ddt->ddt_log[n]; 1978 1979 char flagstr[64] = {0}; 1980 if (ddl->ddl_flags > 0) { 1981 flagstr[0] = ' '; 1982 int c = 1; 1983 if (ddl->ddl_flags & DDL_FLAG_FLUSHING) 1984 c += strlcpy(&flagstr[c], " FLUSHING", 1985 sizeof (flagstr) - c); 1986 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) 1987 c += strlcpy(&flagstr[c], " CHECKPOINT", 1988 sizeof (flagstr) - c); 1989 if (ddl->ddl_flags & 1990 ~(DDL_FLAG_FLUSHING|DDL_FLAG_CHECKPOINT)) 1991 c += strlcpy(&flagstr[c], " UNKNOWN", 1992 sizeof (flagstr) - c); 1993 flagstr[1] = '['; 1994 flagstr[c++] = ']'; 1995 } 1996 1997 uint64_t count = avl_numnodes(&ddl->ddl_tree); 1998 1999 printf(DMU_POOL_DDT_LOG ": flags=0x%02x%s; obj=%llu; " 2000 "len=%llu; txg=%llu; entries=%llu\n", 2001 zio_checksum_table[ddt->ddt_checksum].ci_name, n, 2002 ddl->ddl_flags, flagstr, 2003 (u_longlong_t)ddl->ddl_object, 2004 (u_longlong_t)ddl->ddl_length, 2005 (u_longlong_t)ddl->ddl_first_txg, (u_longlong_t)count); 2006 2007 if (ddl->ddl_flags & DDL_FLAG_CHECKPOINT) { 2008 const ddt_key_t *ddk = &ddl->ddl_checkpoint; 2009 printf(" checkpoint: " 2010 "%016llx:%016llx:%016llx:%016llx:%016llx\n", 2011 (u_longlong_t)ddk->ddk_cksum.zc_word[0], 2012 (u_longlong_t)ddk->ddk_cksum.zc_word[1], 2013 (u_longlong_t)ddk->ddk_cksum.zc_word[2], 2014 (u_longlong_t)ddk->ddk_cksum.zc_word[3], 2015 (u_longlong_t)ddk->ddk_prop); 2016 } 2017 2018 if (count == 0 || dump_opt['D'] < 4) 2019 continue; 2020 2021 ddt_lightweight_entry_t ddlwe; 2022 uint64_t index = 0; 2023 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree); 2024 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) { 2025 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe); 2026 dump_ddt_entry(ddt, &ddlwe, index++); 2027 } 2028 } 2029 } 2030 2031 static void 2032 dump_ddt_object(ddt_t *ddt, ddt_type_t type, ddt_class_t class) 2033 { 2034 char name[DDT_NAMELEN]; 2035 ddt_lightweight_entry_t ddlwe; 2036 uint64_t walk = 0; 2037 dmu_object_info_t doi; 2038 uint64_t count, dspace, mspace; 2039 int error; 2040 2041 error = ddt_object_info(ddt, type, class, &doi); 2042 2043 if (error == ENOENT) 2044 return; 2045 ASSERT(error == 0); 2046 2047 error = ddt_object_count(ddt, type, class, &count); 2048 ASSERT(error == 0); 2049 if (count == 0) 2050 return; 2051 2052 dspace = doi.doi_physical_blocks_512 << 9; 2053 mspace = doi.doi_fill_count * doi.doi_data_block_size; 2054 2055 ddt_object_name(ddt, type, class, name); 2056 2057 (void) printf("%s: dspace=%llu; mspace=%llu; entries=%llu\n", name, 2058 (u_longlong_t)dspace, (u_longlong_t)mspace, (u_longlong_t)count); 2059 2060 if (dump_opt['D'] < 3) 2061 return; 2062 2063 (void) printf("%s: object=%llu\n", name, 2064 (u_longlong_t)ddt->ddt_object[type][class]); 2065 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]); 2066 2067 if (dump_opt['D'] < 4) 2068 return; 2069 2070 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE) 2071 return; 2072 2073 (void) printf("%s contents:\n\n", name); 2074 2075 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0) 2076 dump_ddt_entry(ddt, &ddlwe, walk); 2077 2078 ASSERT3U(error, ==, ENOENT); 2079 2080 (void) printf("\n"); 2081 } 2082 2083 static void 2084 dump_ddt(ddt_t *ddt) 2085 { 2086 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 2087 return; 2088 2089 char flagstr[64] = {0}; 2090 if (ddt->ddt_flags > 0) { 2091 flagstr[0] = ' '; 2092 int c = 1; 2093 if (ddt->ddt_flags & DDT_FLAG_FLAT) 2094 c += strlcpy(&flagstr[c], " FLAT", 2095 sizeof (flagstr) - c); 2096 if (ddt->ddt_flags & DDT_FLAG_LOG) 2097 c += strlcpy(&flagstr[c], " LOG", 2098 sizeof (flagstr) - c); 2099 if (ddt->ddt_flags & ~DDT_FLAG_MASK) 2100 c += strlcpy(&flagstr[c], " UNKNOWN", 2101 sizeof (flagstr) - c); 2102 flagstr[1] = '['; 2103 flagstr[c] = ']'; 2104 } 2105 2106 printf("DDT-%s: version=%llu [%s]; flags=0x%02llx%s; rootobj=%llu\n", 2107 zio_checksum_table[ddt->ddt_checksum].ci_name, 2108 (u_longlong_t)ddt->ddt_version, 2109 (ddt->ddt_version == 0) ? "LEGACY" : 2110 (ddt->ddt_version == 1) ? "FDT" : "UNKNOWN", 2111 (u_longlong_t)ddt->ddt_flags, flagstr, 2112 (u_longlong_t)ddt->ddt_dir_object); 2113 2114 for (ddt_type_t type = 0; type < DDT_TYPES; type++) 2115 for (ddt_class_t class = 0; class < DDT_CLASSES; class++) 2116 dump_ddt_object(ddt, type, class); 2117 2118 dump_ddt_log(ddt); 2119 } 2120 2121 static void 2122 dump_all_ddts(spa_t *spa) 2123 { 2124 ddt_histogram_t ddh_total = {{{0}}}; 2125 ddt_stat_t dds_total = {0}; 2126 2127 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) 2128 dump_ddt(spa->spa_ddt[c]); 2129 2130 ddt_get_dedup_stats(spa, &dds_total); 2131 2132 if (dds_total.dds_blocks == 0) { 2133 (void) printf("All DDTs are empty\n"); 2134 return; 2135 } 2136 2137 (void) printf("\n"); 2138 2139 if (dump_opt['D'] > 1) { 2140 (void) printf("DDT histogram (aggregated over all DDTs):\n"); 2141 ddt_get_dedup_histogram(spa, &ddh_total); 2142 zpool_dump_ddt(&dds_total, &ddh_total); 2143 } 2144 2145 dump_dedup_ratio(&dds_total); 2146 2147 /* 2148 * Dump a histogram of unique class entry age 2149 */ 2150 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) { 2151 ddt_age_histo_t histogram; 2152 2153 (void) printf("DDT walk unique, building age histogram...\n"); 2154 ddt_prune_walk(spa, 0, &histogram); 2155 2156 /* 2157 * print out histogram for unique entry class birth 2158 */ 2159 if (histogram.dah_entries > 0) { 2160 (void) printf("%5s %9s %4s\n", 2161 "age", "blocks", "amnt"); 2162 (void) printf("%5s %9s %4s\n", 2163 "-----", "---------", "----"); 2164 for (int i = 0; i < HIST_BINS; i++) { 2165 (void) printf("%5d %9d %4d%%\n", 1 << i, 2166 (int)histogram.dah_age_histo[i], 2167 (int)((histogram.dah_age_histo[i] * 100) / 2168 histogram.dah_entries)); 2169 } 2170 } 2171 } 2172 } 2173 2174 static void 2175 dump_brt(spa_t *spa) 2176 { 2177 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) { 2178 printf("BRT: unsupported on this pool\n"); 2179 return; 2180 } 2181 2182 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 2183 printf("BRT: empty\n"); 2184 return; 2185 } 2186 2187 char count[32], used[32], saved[32]; 2188 zdb_nicebytes(brt_get_used(spa), used, sizeof (used)); 2189 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved)); 2190 uint64_t ratio = brt_get_ratio(spa); 2191 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved, 2192 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100)); 2193 2194 if (dump_opt['T'] < 2) 2195 return; 2196 2197 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2198 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2199 if (!brtvd->bv_initiated) { 2200 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid); 2201 continue; 2202 } 2203 2204 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count)); 2205 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used)); 2206 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved)); 2207 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n", 2208 vdevid, count, used, saved); 2209 } 2210 2211 if (dump_opt['T'] < 3) 2212 return; 2213 2214 /* -TTT shows a per-vdev histograms; -TTTT shows all entries */ 2215 boolean_t do_histo = dump_opt['T'] == 3; 2216 2217 char dva[64]; 2218 2219 if (!do_histo) 2220 printf("\n%-16s %-10s\n", "DVA", "REFCNT"); 2221 2222 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 2223 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 2224 if (!brtvd->bv_initiated) 2225 continue; 2226 2227 uint64_t counts[64] = {}; 2228 2229 zap_cursor_t zc; 2230 zap_attribute_t *za = zap_attribute_alloc(); 2231 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2232 brtvd->bv_mos_entries); 2233 zap_cursor_retrieve(&zc, za) == 0; 2234 zap_cursor_advance(&zc)) { 2235 uint64_t refcnt; 2236 VERIFY0(zap_lookup_uint64(spa->spa_meta_objset, 2237 brtvd->bv_mos_entries, 2238 (const uint64_t *)za->za_name, 1, 2239 za->za_integer_length, za->za_num_integers, 2240 &refcnt)); 2241 2242 if (do_histo) 2243 counts[highbit64(refcnt)]++; 2244 else { 2245 uint64_t offset = 2246 *(const uint64_t *)za->za_name; 2247 2248 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", 2249 vdevid, (u_longlong_t)offset); 2250 printf("%-16s %-10llu\n", dva, 2251 (u_longlong_t)refcnt); 2252 } 2253 } 2254 zap_cursor_fini(&zc); 2255 zap_attribute_free(za); 2256 2257 if (do_histo) { 2258 printf("\nBRT: vdev %" PRIu64 2259 ": DVAs with 2^n refcnts:\n", vdevid); 2260 dump_histogram(counts, 64, 0); 2261 } 2262 } 2263 } 2264 2265 static void 2266 dump_dtl_seg(void *arg, uint64_t start, uint64_t size) 2267 { 2268 char *prefix = arg; 2269 2270 (void) printf("%s [%llu,%llu) length %llu\n", 2271 prefix, 2272 (u_longlong_t)start, 2273 (u_longlong_t)(start + size), 2274 (u_longlong_t)(size)); 2275 } 2276 2277 static void 2278 dump_dtl(vdev_t *vd, int indent) 2279 { 2280 spa_t *spa = vd->vdev_spa; 2281 boolean_t required; 2282 const char *name[DTL_TYPES] = { "missing", "partial", "scrub", 2283 "outage" }; 2284 char prefix[256]; 2285 2286 spa_vdev_state_enter(spa, SCL_NONE); 2287 required = vdev_dtl_required(vd); 2288 (void) spa_vdev_state_exit(spa, NULL, 0); 2289 2290 if (indent == 0) 2291 (void) printf("\nDirty time logs:\n\n"); 2292 2293 (void) printf("\t%*s%s [%s]\n", indent, "", 2294 vd->vdev_path ? vd->vdev_path : 2295 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa), 2296 required ? "DTL-required" : "DTL-expendable"); 2297 2298 for (int t = 0; t < DTL_TYPES; t++) { 2299 zfs_range_tree_t *rt = vd->vdev_dtl[t]; 2300 if (zfs_range_tree_space(rt) == 0) 2301 continue; 2302 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s", 2303 indent + 2, "", name[t]); 2304 zfs_range_tree_walk(rt, dump_dtl_seg, prefix); 2305 if (dump_opt['d'] > 5 && vd->vdev_children == 0) 2306 dump_spacemap(spa->spa_meta_objset, 2307 vd->vdev_dtl_sm); 2308 } 2309 2310 for (unsigned c = 0; c < vd->vdev_children; c++) 2311 dump_dtl(vd->vdev_child[c], indent + 4); 2312 } 2313 2314 static void 2315 dump_history(spa_t *spa) 2316 { 2317 nvlist_t **events = NULL; 2318 char *buf; 2319 uint64_t resid, len, off = 0; 2320 uint_t num = 0; 2321 int error; 2322 char tbuf[30]; 2323 2324 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) { 2325 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n", 2326 __func__); 2327 return; 2328 } 2329 2330 do { 2331 len = SPA_OLD_MAXBLOCKSIZE; 2332 2333 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) { 2334 (void) fprintf(stderr, "Unable to read history: " 2335 "error %d\n", error); 2336 free(buf); 2337 return; 2338 } 2339 2340 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0) 2341 break; 2342 2343 off -= resid; 2344 } while (len != 0); 2345 2346 (void) printf("\nHistory:\n"); 2347 for (unsigned i = 0; i < num; i++) { 2348 boolean_t printed = B_FALSE; 2349 2350 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) { 2351 time_t tsec; 2352 struct tm t; 2353 2354 tsec = fnvlist_lookup_uint64(events[i], 2355 ZPOOL_HIST_TIME); 2356 (void) localtime_r(&tsec, &t); 2357 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t); 2358 } else { 2359 tbuf[0] = '\0'; 2360 } 2361 2362 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) { 2363 (void) printf("%s %s\n", tbuf, 2364 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD)); 2365 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) { 2366 uint64_t ievent; 2367 2368 ievent = fnvlist_lookup_uint64(events[i], 2369 ZPOOL_HIST_INT_EVENT); 2370 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS) 2371 goto next; 2372 2373 (void) printf(" %s [internal %s txg:%ju] %s\n", 2374 tbuf, 2375 zfs_history_event_names[ievent], 2376 fnvlist_lookup_uint64(events[i], 2377 ZPOOL_HIST_TXG), 2378 fnvlist_lookup_string(events[i], 2379 ZPOOL_HIST_INT_STR)); 2380 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) { 2381 (void) printf("%s [txg:%ju] %s", tbuf, 2382 fnvlist_lookup_uint64(events[i], 2383 ZPOOL_HIST_TXG), 2384 fnvlist_lookup_string(events[i], 2385 ZPOOL_HIST_INT_NAME)); 2386 2387 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) { 2388 (void) printf(" %s (%llu)", 2389 fnvlist_lookup_string(events[i], 2390 ZPOOL_HIST_DSNAME), 2391 (u_longlong_t)fnvlist_lookup_uint64( 2392 events[i], 2393 ZPOOL_HIST_DSID)); 2394 } 2395 2396 (void) printf(" %s\n", fnvlist_lookup_string(events[i], 2397 ZPOOL_HIST_INT_STR)); 2398 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) { 2399 (void) printf("%s ioctl %s\n", tbuf, 2400 fnvlist_lookup_string(events[i], 2401 ZPOOL_HIST_IOCTL)); 2402 2403 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) { 2404 (void) printf(" input:\n"); 2405 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2406 ZPOOL_HIST_INPUT_NVL), 8); 2407 } 2408 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) { 2409 (void) printf(" output:\n"); 2410 dump_nvlist(fnvlist_lookup_nvlist(events[i], 2411 ZPOOL_HIST_OUTPUT_NVL), 8); 2412 } 2413 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) { 2414 (void) printf(" errno: %lld\n", 2415 (longlong_t)fnvlist_lookup_int64(events[i], 2416 ZPOOL_HIST_ERRNO)); 2417 } 2418 } else { 2419 goto next; 2420 } 2421 2422 printed = B_TRUE; 2423 next: 2424 if (dump_opt['h'] > 1) { 2425 if (!printed) 2426 (void) printf("unrecognized record:\n"); 2427 dump_nvlist(events[i], 2); 2428 } 2429 } 2430 free(buf); 2431 } 2432 2433 static void 2434 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size) 2435 { 2436 (void) os, (void) object, (void) data, (void) size; 2437 } 2438 2439 static uint64_t 2440 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp, 2441 const zbookmark_phys_t *zb) 2442 { 2443 if (dnp == NULL) { 2444 ASSERT(zb->zb_level < 0); 2445 if (zb->zb_object == 0) 2446 return (zb->zb_blkid); 2447 return (zb->zb_blkid * BP_GET_LSIZE(bp)); 2448 } 2449 2450 ASSERT(zb->zb_level >= 0); 2451 2452 return ((zb->zb_blkid << 2453 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) * 2454 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 2455 } 2456 2457 static void 2458 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen, 2459 const blkptr_t *bp) 2460 { 2461 static abd_t *pabd = NULL; 2462 void *buf; 2463 zio_t *zio; 2464 zfs_zstdhdr_t zstd_hdr; 2465 int error; 2466 2467 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD) 2468 return; 2469 2470 if (BP_IS_HOLE(bp)) 2471 return; 2472 2473 if (BP_IS_EMBEDDED(bp)) { 2474 buf = malloc(SPA_MAXBLOCKSIZE); 2475 if (buf == NULL) { 2476 (void) fprintf(stderr, "out of memory\n"); 2477 zdb_exit(1); 2478 } 2479 decode_embedded_bp_compressed(bp, buf); 2480 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2481 free(buf); 2482 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2483 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2484 (void) snprintf(blkbuf + strlen(blkbuf), 2485 buflen - strlen(blkbuf), 2486 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED", 2487 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2488 zfs_get_hdrlevel(&zstd_hdr)); 2489 return; 2490 } 2491 2492 if (!pabd) 2493 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 2494 zio = zio_root(spa, NULL, NULL, 0); 2495 2496 /* Decrypt but don't decompress so we can read the compression header */ 2497 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL, 2498 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS, 2499 NULL)); 2500 error = zio_wait(zio); 2501 if (error) { 2502 (void) fprintf(stderr, "read failed: %d\n", error); 2503 return; 2504 } 2505 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp)); 2506 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr)); 2507 zstd_hdr.c_len = BE_32(zstd_hdr.c_len); 2508 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level); 2509 2510 (void) snprintf(blkbuf + strlen(blkbuf), 2511 buflen - strlen(blkbuf), 2512 " ZSTD:size=%u:version=%u:level=%u:NORMAL", 2513 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr), 2514 zfs_get_hdrlevel(&zstd_hdr)); 2515 2516 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp)); 2517 } 2518 2519 static void 2520 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp, 2521 boolean_t bp_freed) 2522 { 2523 const dva_t *dva = bp->blk_dva; 2524 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1; 2525 int i; 2526 2527 if (dump_opt['b'] >= 6) { 2528 snprintf_blkptr(blkbuf, buflen, bp); 2529 if (bp_freed) { 2530 (void) snprintf(blkbuf + strlen(blkbuf), 2531 buflen - strlen(blkbuf), " %s", "FREE"); 2532 } 2533 return; 2534 } 2535 2536 if (BP_IS_EMBEDDED(bp)) { 2537 (void) sprintf(blkbuf, 2538 "EMBEDDED et=%u %llxL/%llxP B=%llu", 2539 (int)BPE_GET_ETYPE(bp), 2540 (u_longlong_t)BPE_GET_LSIZE(bp), 2541 (u_longlong_t)BPE_GET_PSIZE(bp), 2542 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2543 return; 2544 } 2545 2546 blkbuf[0] = '\0'; 2547 2548 for (i = 0; i < ndvas; i++) { 2549 (void) snprintf(blkbuf + strlen(blkbuf), 2550 buflen - strlen(blkbuf), "%llu:%llx:%llx%s ", 2551 (u_longlong_t)DVA_GET_VDEV(&dva[i]), 2552 (u_longlong_t)DVA_GET_OFFSET(&dva[i]), 2553 (u_longlong_t)DVA_GET_ASIZE(&dva[i]), 2554 (DVA_GET_GANG(&dva[i]) ? "G" : "")); 2555 } 2556 2557 if (BP_IS_HOLE(bp)) { 2558 (void) snprintf(blkbuf + strlen(blkbuf), 2559 buflen - strlen(blkbuf), 2560 "%llxL B=%llu", 2561 (u_longlong_t)BP_GET_LSIZE(bp), 2562 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp)); 2563 } else { 2564 (void) snprintf(blkbuf + strlen(blkbuf), 2565 buflen - strlen(blkbuf), 2566 "%llxL/%llxP F=%llu B=%llu/%llu", 2567 (u_longlong_t)BP_GET_LSIZE(bp), 2568 (u_longlong_t)BP_GET_PSIZE(bp), 2569 (u_longlong_t)BP_GET_FILL(bp), 2570 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp), 2571 (u_longlong_t)BP_GET_BIRTH(bp)); 2572 if (bp_freed) 2573 (void) snprintf(blkbuf + strlen(blkbuf), 2574 buflen - strlen(blkbuf), " %s", "FREE"); 2575 (void) snprintf(blkbuf + strlen(blkbuf), 2576 buflen - strlen(blkbuf), 2577 " cksum=%016llx:%016llx:%016llx:%016llx", 2578 (u_longlong_t)bp->blk_cksum.zc_word[0], 2579 (u_longlong_t)bp->blk_cksum.zc_word[1], 2580 (u_longlong_t)bp->blk_cksum.zc_word[2], 2581 (u_longlong_t)bp->blk_cksum.zc_word[3]); 2582 } 2583 } 2584 2585 static void 2586 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb, 2587 const dnode_phys_t *dnp) 2588 { 2589 char blkbuf[BP_SPRINTF_LEN]; 2590 int l; 2591 2592 if (!BP_IS_EMBEDDED(bp)) { 2593 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type); 2594 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level); 2595 } 2596 2597 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb)); 2598 2599 ASSERT(zb->zb_level >= 0); 2600 2601 for (l = dnp->dn_nlevels - 1; l >= -1; l--) { 2602 if (l == zb->zb_level) { 2603 (void) printf("L%llx", (u_longlong_t)zb->zb_level); 2604 } else { 2605 (void) printf(" "); 2606 } 2607 } 2608 2609 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE); 2610 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD) 2611 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp); 2612 (void) printf("%s\n", blkbuf); 2613 } 2614 2615 static int 2616 visit_indirect(spa_t *spa, const dnode_phys_t *dnp, 2617 blkptr_t *bp, const zbookmark_phys_t *zb) 2618 { 2619 int err = 0; 2620 2621 if (BP_GET_LOGICAL_BIRTH(bp) == 0) 2622 return (0); 2623 2624 print_indirect(spa, bp, zb, dnp); 2625 2626 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) { 2627 arc_flags_t flags = ARC_FLAG_WAIT; 2628 int i; 2629 blkptr_t *cbp; 2630 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT; 2631 arc_buf_t *buf; 2632 uint64_t fill = 0; 2633 ASSERT(!BP_IS_REDACTED(bp)); 2634 2635 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf, 2636 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb); 2637 if (err) 2638 return (err); 2639 ASSERT(buf->b_data); 2640 2641 /* recursively visit blocks below this */ 2642 cbp = buf->b_data; 2643 for (i = 0; i < epb; i++, cbp++) { 2644 zbookmark_phys_t czb; 2645 2646 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object, 2647 zb->zb_level - 1, 2648 zb->zb_blkid * epb + i); 2649 err = visit_indirect(spa, dnp, cbp, &czb); 2650 if (err) 2651 break; 2652 fill += BP_GET_FILL(cbp); 2653 } 2654 if (!err) 2655 ASSERT3U(fill, ==, BP_GET_FILL(bp)); 2656 arc_buf_destroy(buf, &buf); 2657 } 2658 2659 return (err); 2660 } 2661 2662 static void 2663 dump_indirect(dnode_t *dn) 2664 { 2665 dnode_phys_t *dnp = dn->dn_phys; 2666 zbookmark_phys_t czb; 2667 2668 (void) printf("Indirect blocks:\n"); 2669 2670 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset), 2671 dn->dn_object, dnp->dn_nlevels - 1, 0); 2672 for (int j = 0; j < dnp->dn_nblkptr; j++) { 2673 czb.zb_blkid = j; 2674 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp, 2675 &dnp->dn_blkptr[j], &czb); 2676 } 2677 2678 (void) printf("\n"); 2679 } 2680 2681 static void 2682 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size) 2683 { 2684 (void) os, (void) object; 2685 dsl_dir_phys_t *dd = data; 2686 time_t crtime; 2687 char nice[32]; 2688 2689 /* make sure nicenum has enough space */ 2690 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated"); 2691 2692 if (dd == NULL) 2693 return; 2694 2695 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t)); 2696 2697 crtime = dd->dd_creation_time; 2698 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2699 (void) printf("\t\thead_dataset_obj = %llu\n", 2700 (u_longlong_t)dd->dd_head_dataset_obj); 2701 (void) printf("\t\tparent_dir_obj = %llu\n", 2702 (u_longlong_t)dd->dd_parent_obj); 2703 (void) printf("\t\torigin_obj = %llu\n", 2704 (u_longlong_t)dd->dd_origin_obj); 2705 (void) printf("\t\tchild_dir_zapobj = %llu\n", 2706 (u_longlong_t)dd->dd_child_dir_zapobj); 2707 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice)); 2708 (void) printf("\t\tused_bytes = %s\n", nice); 2709 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice)); 2710 (void) printf("\t\tcompressed_bytes = %s\n", nice); 2711 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice)); 2712 (void) printf("\t\tuncompressed_bytes = %s\n", nice); 2713 zdb_nicenum(dd->dd_quota, nice, sizeof (nice)); 2714 (void) printf("\t\tquota = %s\n", nice); 2715 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice)); 2716 (void) printf("\t\treserved = %s\n", nice); 2717 (void) printf("\t\tprops_zapobj = %llu\n", 2718 (u_longlong_t)dd->dd_props_zapobj); 2719 (void) printf("\t\tdeleg_zapobj = %llu\n", 2720 (u_longlong_t)dd->dd_deleg_zapobj); 2721 (void) printf("\t\tflags = %llx\n", 2722 (u_longlong_t)dd->dd_flags); 2723 2724 #define DO(which) \ 2725 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \ 2726 sizeof (nice)); \ 2727 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice) 2728 DO(HEAD); 2729 DO(SNAP); 2730 DO(CHILD); 2731 DO(CHILD_RSRV); 2732 DO(REFRSRV); 2733 #undef DO 2734 (void) printf("\t\tclones = %llu\n", 2735 (u_longlong_t)dd->dd_clones); 2736 } 2737 2738 static void 2739 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size) 2740 { 2741 (void) os, (void) object; 2742 dsl_dataset_phys_t *ds = data; 2743 time_t crtime; 2744 char used[32], compressed[32], uncompressed[32], unique[32]; 2745 char blkbuf[BP_SPRINTF_LEN]; 2746 2747 /* make sure nicenum has enough space */ 2748 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated"); 2749 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ, 2750 "compressed truncated"); 2751 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ, 2752 "uncompressed truncated"); 2753 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated"); 2754 2755 if (ds == NULL) 2756 return; 2757 2758 ASSERT(size == sizeof (*ds)); 2759 crtime = ds->ds_creation_time; 2760 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used)); 2761 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed)); 2762 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed, 2763 sizeof (uncompressed)); 2764 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique)); 2765 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp); 2766 2767 (void) printf("\t\tdir_obj = %llu\n", 2768 (u_longlong_t)ds->ds_dir_obj); 2769 (void) printf("\t\tprev_snap_obj = %llu\n", 2770 (u_longlong_t)ds->ds_prev_snap_obj); 2771 (void) printf("\t\tprev_snap_txg = %llu\n", 2772 (u_longlong_t)ds->ds_prev_snap_txg); 2773 (void) printf("\t\tnext_snap_obj = %llu\n", 2774 (u_longlong_t)ds->ds_next_snap_obj); 2775 (void) printf("\t\tsnapnames_zapobj = %llu\n", 2776 (u_longlong_t)ds->ds_snapnames_zapobj); 2777 (void) printf("\t\tnum_children = %llu\n", 2778 (u_longlong_t)ds->ds_num_children); 2779 (void) printf("\t\tuserrefs_obj = %llu\n", 2780 (u_longlong_t)ds->ds_userrefs_obj); 2781 (void) printf("\t\tcreation_time = %s", ctime(&crtime)); 2782 (void) printf("\t\tcreation_txg = %llu\n", 2783 (u_longlong_t)ds->ds_creation_txg); 2784 (void) printf("\t\tdeadlist_obj = %llu\n", 2785 (u_longlong_t)ds->ds_deadlist_obj); 2786 (void) printf("\t\tused_bytes = %s\n", used); 2787 (void) printf("\t\tcompressed_bytes = %s\n", compressed); 2788 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed); 2789 (void) printf("\t\tunique = %s\n", unique); 2790 (void) printf("\t\tfsid_guid = %llu\n", 2791 (u_longlong_t)ds->ds_fsid_guid); 2792 (void) printf("\t\tguid = %llu\n", 2793 (u_longlong_t)ds->ds_guid); 2794 (void) printf("\t\tflags = %llx\n", 2795 (u_longlong_t)ds->ds_flags); 2796 (void) printf("\t\tnext_clones_obj = %llu\n", 2797 (u_longlong_t)ds->ds_next_clones_obj); 2798 (void) printf("\t\tprops_obj = %llu\n", 2799 (u_longlong_t)ds->ds_props_obj); 2800 (void) printf("\t\tbp = %s\n", blkbuf); 2801 } 2802 2803 static int 2804 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 2805 { 2806 (void) arg, (void) tx; 2807 char blkbuf[BP_SPRINTF_LEN]; 2808 2809 if (BP_GET_LOGICAL_BIRTH(bp) != 0) { 2810 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 2811 (void) printf("\t%s\n", blkbuf); 2812 } 2813 return (0); 2814 } 2815 2816 static void 2817 dump_bptree(objset_t *os, uint64_t obj, const char *name) 2818 { 2819 char bytes[32]; 2820 bptree_phys_t *bt; 2821 dmu_buf_t *db; 2822 2823 /* make sure nicenum has enough space */ 2824 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2825 2826 if (dump_opt['d'] < 3) 2827 return; 2828 2829 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db)); 2830 bt = db->db_data; 2831 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes)); 2832 (void) printf("\n %s: %llu datasets, %s\n", 2833 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes); 2834 dmu_buf_rele(db, FTAG); 2835 2836 if (dump_opt['d'] < 5) 2837 return; 2838 2839 (void) printf("\n"); 2840 2841 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL); 2842 } 2843 2844 static int 2845 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx) 2846 { 2847 (void) arg, (void) tx; 2848 char blkbuf[BP_SPRINTF_LEN]; 2849 2850 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0); 2851 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed); 2852 (void) printf("\t%s\n", blkbuf); 2853 return (0); 2854 } 2855 2856 static void 2857 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent) 2858 { 2859 char bytes[32]; 2860 char comp[32]; 2861 char uncomp[32]; 2862 uint64_t i; 2863 2864 /* make sure nicenum has enough space */ 2865 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 2866 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 2867 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 2868 2869 if (dump_opt['d'] < 3) 2870 return; 2871 2872 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes)); 2873 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 2874 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp)); 2875 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp)); 2876 if (bpo->bpo_havefreed) { 2877 (void) printf(" %*s: object %llu, %llu local " 2878 "blkptrs, %llu freed, %llu subobjs in object %llu, " 2879 "%s (%s/%s comp)\n", 2880 indent * 8, name, 2881 (u_longlong_t)bpo->bpo_object, 2882 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2883 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2884 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2885 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2886 bytes, comp, uncomp); 2887 } else { 2888 (void) printf(" %*s: object %llu, %llu local " 2889 "blkptrs, %llu subobjs in object %llu, " 2890 "%s (%s/%s comp)\n", 2891 indent * 8, name, 2892 (u_longlong_t)bpo->bpo_object, 2893 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2894 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs, 2895 (u_longlong_t)bpo->bpo_phys->bpo_subobjs, 2896 bytes, comp, uncomp); 2897 } 2898 2899 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 2900 uint64_t subobj; 2901 bpobj_t subbpo; 2902 int error; 2903 VERIFY0(dmu_read(bpo->bpo_os, 2904 bpo->bpo_phys->bpo_subobjs, 2905 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 2906 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 2907 if (error != 0) { 2908 (void) printf("ERROR %u while trying to open " 2909 "subobj id %llu\n", 2910 error, (u_longlong_t)subobj); 2911 continue; 2912 } 2913 dump_full_bpobj(&subbpo, "subobj", indent + 1); 2914 bpobj_close(&subbpo); 2915 } 2916 } else { 2917 if (bpo->bpo_havefreed) { 2918 (void) printf(" %*s: object %llu, %llu blkptrs, " 2919 "%llu freed, %s\n", 2920 indent * 8, name, 2921 (u_longlong_t)bpo->bpo_object, 2922 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2923 (u_longlong_t)bpo->bpo_phys->bpo_num_freed, 2924 bytes); 2925 } else { 2926 (void) printf(" %*s: object %llu, %llu blkptrs, " 2927 "%s\n", 2928 indent * 8, name, 2929 (u_longlong_t)bpo->bpo_object, 2930 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs, 2931 bytes); 2932 } 2933 } 2934 2935 if (dump_opt['d'] < 5) 2936 return; 2937 2938 2939 if (indent == 0) { 2940 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL); 2941 (void) printf("\n"); 2942 } 2943 } 2944 2945 static int 2946 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact, 2947 boolean_t print_list) 2948 { 2949 int err = 0; 2950 zfs_bookmark_phys_t prop; 2951 objset_t *mos = dp->dp_spa->spa_meta_objset; 2952 err = dsl_bookmark_lookup(dp, name, NULL, &prop); 2953 2954 if (err != 0) { 2955 return (err); 2956 } 2957 2958 (void) printf("\t#%s: ", strchr(name, '#') + 1); 2959 (void) printf("{guid: %llx creation_txg: %llu creation_time: " 2960 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid, 2961 (u_longlong_t)prop.zbm_creation_txg, 2962 (u_longlong_t)prop.zbm_creation_time, 2963 (u_longlong_t)prop.zbm_redaction_obj); 2964 2965 IMPLY(print_list, print_redact); 2966 if (!print_redact || prop.zbm_redaction_obj == 0) 2967 return (0); 2968 2969 redaction_list_t *rl; 2970 VERIFY0(dsl_redaction_list_hold_obj(dp, 2971 prop.zbm_redaction_obj, FTAG, &rl)); 2972 2973 redaction_list_phys_t *rlp = rl->rl_phys; 2974 (void) printf("\tRedacted:\n\t\tProgress: "); 2975 if (rlp->rlp_last_object != UINT64_MAX || 2976 rlp->rlp_last_blkid != UINT64_MAX) { 2977 (void) printf("%llu %llu (incomplete)\n", 2978 (u_longlong_t)rlp->rlp_last_object, 2979 (u_longlong_t)rlp->rlp_last_blkid); 2980 } else { 2981 (void) printf("complete\n"); 2982 } 2983 (void) printf("\t\tSnapshots: ["); 2984 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) { 2985 if (i > 0) 2986 (void) printf(", "); 2987 (void) printf("%0llu", 2988 (u_longlong_t)rlp->rlp_snaps[i]); 2989 } 2990 (void) printf("]\n\t\tLength: %llu\n", 2991 (u_longlong_t)rlp->rlp_num_entries); 2992 2993 if (!print_list) { 2994 dsl_redaction_list_rele(rl, FTAG); 2995 return (0); 2996 } 2997 2998 if (rlp->rlp_num_entries == 0) { 2999 dsl_redaction_list_rele(rl, FTAG); 3000 (void) printf("\t\tRedaction List: []\n\n"); 3001 return (0); 3002 } 3003 3004 redact_block_phys_t *rbp_buf; 3005 uint64_t size; 3006 dmu_object_info_t doi; 3007 3008 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi)); 3009 size = doi.doi_max_offset; 3010 rbp_buf = kmem_alloc(size, KM_SLEEP); 3011 3012 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size, 3013 rbp_buf, 0); 3014 if (err != 0) { 3015 dsl_redaction_list_rele(rl, FTAG); 3016 kmem_free(rbp_buf, size); 3017 return (err); 3018 } 3019 3020 (void) printf("\t\tRedaction List: [{object: %llx, offset: " 3021 "%llx, blksz: %x, count: %llx}", 3022 (u_longlong_t)rbp_buf[0].rbp_object, 3023 (u_longlong_t)rbp_buf[0].rbp_blkid, 3024 (uint_t)(redact_block_get_size(&rbp_buf[0])), 3025 (u_longlong_t)redact_block_get_count(&rbp_buf[0])); 3026 3027 for (size_t i = 1; i < rlp->rlp_num_entries; i++) { 3028 (void) printf(",\n\t\t{object: %llx, offset: %llx, " 3029 "blksz: %x, count: %llx}", 3030 (u_longlong_t)rbp_buf[i].rbp_object, 3031 (u_longlong_t)rbp_buf[i].rbp_blkid, 3032 (uint_t)(redact_block_get_size(&rbp_buf[i])), 3033 (u_longlong_t)redact_block_get_count(&rbp_buf[i])); 3034 } 3035 dsl_redaction_list_rele(rl, FTAG); 3036 kmem_free(rbp_buf, size); 3037 (void) printf("]\n\n"); 3038 return (0); 3039 } 3040 3041 static void 3042 dump_bookmarks(objset_t *os, int verbosity) 3043 { 3044 zap_cursor_t zc; 3045 zap_attribute_t *attrp; 3046 dsl_dataset_t *ds = dmu_objset_ds(os); 3047 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3048 objset_t *mos = os->os_spa->spa_meta_objset; 3049 if (verbosity < 4) 3050 return; 3051 attrp = zap_attribute_alloc(); 3052 dsl_pool_config_enter(dp, FTAG); 3053 3054 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj); 3055 zap_cursor_retrieve(&zc, attrp) == 0; 3056 zap_cursor_advance(&zc)) { 3057 char osname[ZFS_MAX_DATASET_NAME_LEN]; 3058 char buf[ZFS_MAX_DATASET_NAME_LEN]; 3059 int len; 3060 dmu_objset_name(os, osname); 3061 len = snprintf(buf, sizeof (buf), "%s#%s", osname, 3062 attrp->za_name); 3063 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN); 3064 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6); 3065 } 3066 zap_cursor_fini(&zc); 3067 dsl_pool_config_exit(dp, FTAG); 3068 zap_attribute_free(attrp); 3069 } 3070 3071 static void 3072 bpobj_count_refd(bpobj_t *bpo) 3073 { 3074 mos_obj_refd(bpo->bpo_object); 3075 3076 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) { 3077 mos_obj_refd(bpo->bpo_phys->bpo_subobjs); 3078 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) { 3079 uint64_t subobj; 3080 bpobj_t subbpo; 3081 int error; 3082 VERIFY0(dmu_read(bpo->bpo_os, 3083 bpo->bpo_phys->bpo_subobjs, 3084 i * sizeof (subobj), sizeof (subobj), &subobj, 0)); 3085 error = bpobj_open(&subbpo, bpo->bpo_os, subobj); 3086 if (error != 0) { 3087 (void) printf("ERROR %u while trying to open " 3088 "subobj id %llu\n", 3089 error, (u_longlong_t)subobj); 3090 continue; 3091 } 3092 bpobj_count_refd(&subbpo); 3093 bpobj_close(&subbpo); 3094 } 3095 } 3096 } 3097 3098 static int 3099 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle) 3100 { 3101 spa_t *spa = arg; 3102 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3103 if (dle->dle_bpobj.bpo_object != empty_bpobj) 3104 bpobj_count_refd(&dle->dle_bpobj); 3105 return (0); 3106 } 3107 3108 static int 3109 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle) 3110 { 3111 ASSERT(arg == NULL); 3112 if (dump_opt['d'] >= 5) { 3113 char buf[128]; 3114 (void) snprintf(buf, sizeof (buf), 3115 "mintxg %llu -> obj %llu", 3116 (longlong_t)dle->dle_mintxg, 3117 (longlong_t)dle->dle_bpobj.bpo_object); 3118 3119 dump_full_bpobj(&dle->dle_bpobj, buf, 0); 3120 } else { 3121 (void) printf("mintxg %llu -> obj %llu\n", 3122 (longlong_t)dle->dle_mintxg, 3123 (longlong_t)dle->dle_bpobj.bpo_object); 3124 } 3125 return (0); 3126 } 3127 3128 static void 3129 dump_blkptr_list(dsl_deadlist_t *dl, const char *name) 3130 { 3131 char bytes[32]; 3132 char comp[32]; 3133 char uncomp[32]; 3134 char entries[32]; 3135 spa_t *spa = dmu_objset_spa(dl->dl_os); 3136 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj; 3137 3138 if (dl->dl_oldfmt) { 3139 if (dl->dl_bpobj.bpo_object != empty_bpobj) 3140 bpobj_count_refd(&dl->dl_bpobj); 3141 } else { 3142 mos_obj_refd(dl->dl_object); 3143 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa); 3144 } 3145 3146 /* make sure nicenum has enough space */ 3147 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated"); 3148 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated"); 3149 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated"); 3150 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated"); 3151 3152 if (dump_opt['d'] < 3) 3153 return; 3154 3155 if (dl->dl_oldfmt) { 3156 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0); 3157 return; 3158 } 3159 3160 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes)); 3161 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp)); 3162 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp)); 3163 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries)); 3164 (void) printf("\n %s: %s (%s/%s comp), %s entries\n", 3165 name, bytes, comp, uncomp, entries); 3166 3167 if (dump_opt['d'] < 4) 3168 return; 3169 3170 (void) putchar('\n'); 3171 3172 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL); 3173 } 3174 3175 static int 3176 verify_dd_livelist(objset_t *os) 3177 { 3178 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp; 3179 dsl_pool_t *dp = spa_get_dsl(os->os_spa); 3180 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir; 3181 3182 ASSERT(!dmu_objset_is_snapshot(os)); 3183 if (!dsl_deadlist_is_open(&dd->dd_livelist)) 3184 return (0); 3185 3186 /* Iterate through the livelist to check for duplicates */ 3187 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight, 3188 NULL); 3189 3190 dsl_pool_config_enter(dp, FTAG); 3191 dsl_deadlist_space(&dd->dd_livelist, &ll_used, 3192 &ll_comp, &ll_uncomp); 3193 3194 dsl_dataset_t *origin_ds; 3195 ASSERT(dsl_pool_config_held(dp)); 3196 VERIFY0(dsl_dataset_hold_obj(dp, 3197 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds)); 3198 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset, 3199 &used, &comp, &uncomp)); 3200 dsl_dataset_rele(origin_ds, FTAG); 3201 dsl_pool_config_exit(dp, FTAG); 3202 /* 3203 * It's possible that the dataset's uncomp space is larger than the 3204 * livelist's because livelists do not track embedded block pointers 3205 */ 3206 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) { 3207 char nice_used[32], nice_comp[32], nice_uncomp[32]; 3208 (void) printf("Discrepancy in space accounting:\n"); 3209 zdb_nicenum(used, nice_used, sizeof (nice_used)); 3210 zdb_nicenum(comp, nice_comp, sizeof (nice_comp)); 3211 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp)); 3212 (void) printf("dir: used %s, comp %s, uncomp %s\n", 3213 nice_used, nice_comp, nice_uncomp); 3214 zdb_nicenum(ll_used, nice_used, sizeof (nice_used)); 3215 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp)); 3216 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp)); 3217 (void) printf("livelist: used %s, comp %s, uncomp %s\n", 3218 nice_used, nice_comp, nice_uncomp); 3219 return (1); 3220 } 3221 return (0); 3222 } 3223 3224 static char *key_material = NULL; 3225 3226 static boolean_t 3227 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out) 3228 { 3229 uint64_t keyformat, salt, iters; 3230 int i; 3231 unsigned char c; 3232 3233 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3234 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t), 3235 1, &keyformat)); 3236 3237 switch (keyformat) { 3238 case ZFS_KEYFORMAT_HEX: 3239 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) { 3240 if (!isxdigit(key_material[i]) || 3241 !isxdigit(key_material[i+1])) 3242 return (B_FALSE); 3243 if (sscanf(&key_material[i], "%02hhx", &c) != 1) 3244 return (B_FALSE); 3245 key_out[i / 2] = c; 3246 } 3247 break; 3248 3249 case ZFS_KEYFORMAT_PASSPHRASE: 3250 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3251 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 3252 sizeof (uint64_t), 1, &salt)); 3253 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, 3254 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 3255 sizeof (uint64_t), 1, &iters)); 3256 3257 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material), 3258 ((uint8_t *)&salt), sizeof (uint64_t), iters, 3259 WRAPPING_KEY_LEN, key_out) != 1) 3260 return (B_FALSE); 3261 3262 break; 3263 3264 default: 3265 fatal("no support for key format %u\n", 3266 (unsigned int) keyformat); 3267 } 3268 3269 return (B_TRUE); 3270 } 3271 3272 static char encroot[ZFS_MAX_DATASET_NAME_LEN]; 3273 static boolean_t key_loaded = B_FALSE; 3274 3275 static void 3276 zdb_load_key(objset_t *os) 3277 { 3278 dsl_pool_t *dp; 3279 dsl_dir_t *dd, *rdd; 3280 uint8_t key[WRAPPING_KEY_LEN]; 3281 uint64_t rddobj; 3282 int err; 3283 3284 dp = spa_get_dsl(os->os_spa); 3285 dd = os->os_dsl_dataset->ds_dir; 3286 3287 dsl_pool_config_enter(dp, FTAG); 3288 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj, 3289 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj)); 3290 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd)); 3291 dsl_dir_name(rdd, encroot); 3292 dsl_dir_rele(rdd, FTAG); 3293 3294 if (!zdb_derive_key(dd, key)) 3295 fatal("couldn't derive encryption key"); 3296 3297 dsl_pool_config_exit(dp, FTAG); 3298 3299 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE); 3300 3301 dsl_crypto_params_t *dcp; 3302 nvlist_t *crypto_args; 3303 3304 crypto_args = fnvlist_alloc(); 3305 fnvlist_add_uint8_array(crypto_args, "wkeydata", 3306 (uint8_t *)key, WRAPPING_KEY_LEN); 3307 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, 3308 NULL, crypto_args, &dcp)); 3309 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE); 3310 3311 dsl_crypto_params_free(dcp, (err != 0)); 3312 fnvlist_free(crypto_args); 3313 3314 if (err != 0) 3315 fatal( 3316 "couldn't load encryption key for %s: %s", 3317 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ? 3318 "crypto params not supported" : strerror(err)); 3319 3320 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE); 3321 3322 printf("Unlocked encryption root: %s\n", encroot); 3323 key_loaded = B_TRUE; 3324 } 3325 3326 static void 3327 zdb_unload_key(void) 3328 { 3329 if (!key_loaded) 3330 return; 3331 3332 VERIFY0(spa_keystore_unload_wkey(encroot)); 3333 key_loaded = B_FALSE; 3334 } 3335 3336 static avl_tree_t idx_tree; 3337 static avl_tree_t domain_tree; 3338 static boolean_t fuid_table_loaded; 3339 static objset_t *sa_os = NULL; 3340 static sa_attr_type_t *sa_attr_table = NULL; 3341 3342 static int 3343 open_objset(const char *path, const void *tag, objset_t **osp) 3344 { 3345 int err; 3346 uint64_t sa_attrs = 0; 3347 uint64_t version = 0; 3348 3349 VERIFY3P(sa_os, ==, NULL); 3350 3351 /* 3352 * We can't own an objset if it's redacted. Therefore, we do this 3353 * dance: hold the objset, then acquire a long hold on its dataset, then 3354 * release the pool (which is held as part of holding the objset). 3355 */ 3356 3357 if (dump_opt['K']) { 3358 /* decryption requested, try to load keys */ 3359 err = dmu_objset_hold(path, tag, osp); 3360 if (err != 0) { 3361 (void) fprintf(stderr, "failed to hold dataset " 3362 "'%s': %s\n", 3363 path, strerror(err)); 3364 return (err); 3365 } 3366 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3367 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3368 3369 /* succeeds or dies */ 3370 zdb_load_key(*osp); 3371 3372 /* release it all */ 3373 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3374 dsl_dataset_rele(dmu_objset_ds(*osp), tag); 3375 } 3376 3377 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0; 3378 3379 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp); 3380 if (err != 0) { 3381 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n", 3382 path, strerror(err)); 3383 return (err); 3384 } 3385 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag); 3386 dsl_pool_rele(dmu_objset_pool(*osp), tag); 3387 3388 if (dmu_objset_type(*osp) == DMU_OST_ZFS && 3389 (key_loaded || !(*osp)->os_encrypted)) { 3390 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR, 3391 8, 1, &version); 3392 if (version >= ZPL_VERSION_SA) { 3393 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 3394 8, 1, &sa_attrs); 3395 } 3396 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END, 3397 &sa_attr_table); 3398 if (err != 0) { 3399 (void) fprintf(stderr, "sa_setup failed: %s\n", 3400 strerror(err)); 3401 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag); 3402 dsl_dataset_rele_flags(dmu_objset_ds(*osp), 3403 ds_hold_flags, tag); 3404 *osp = NULL; 3405 } 3406 } 3407 sa_os = *osp; 3408 3409 return (err); 3410 } 3411 3412 static void 3413 close_objset(objset_t *os, const void *tag) 3414 { 3415 VERIFY3P(os, ==, sa_os); 3416 if (os->os_sa != NULL) 3417 sa_tear_down(os); 3418 dsl_dataset_long_rele(dmu_objset_ds(os), tag); 3419 dsl_dataset_rele_flags(dmu_objset_ds(os), 3420 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag); 3421 sa_attr_table = NULL; 3422 sa_os = NULL; 3423 3424 zdb_unload_key(); 3425 } 3426 3427 static void 3428 fuid_table_destroy(void) 3429 { 3430 if (fuid_table_loaded) { 3431 zfs_fuid_table_destroy(&idx_tree, &domain_tree); 3432 fuid_table_loaded = B_FALSE; 3433 } 3434 } 3435 3436 /* 3437 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on 3438 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and 3439 * wouldn't want to anyway), but if we don't clean up the presence of stuff on 3440 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves. 3441 * 3442 * Note that this is not a particularly efficient way to do this, but 3443 * ddt_remove() is the only public method that can do the work we need, and it 3444 * requires the right locks and etc to do the job. This is only ever called 3445 * during zdb shutdown so efficiency is not especially important. 3446 */ 3447 static void 3448 zdb_ddt_cleanup(spa_t *spa) 3449 { 3450 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 3451 ddt_t *ddt = spa->spa_ddt[c]; 3452 if (!ddt) 3453 continue; 3454 3455 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3456 ddt_enter(ddt); 3457 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next; 3458 while (dde) { 3459 next = AVL_NEXT(&ddt->ddt_tree, dde); 3460 dde->dde_io = NULL; 3461 ddt_remove(ddt, dde); 3462 dde = next; 3463 } 3464 ddt_exit(ddt); 3465 spa_config_exit(spa, SCL_CONFIG, FTAG); 3466 } 3467 } 3468 3469 static void 3470 zdb_exit(int reason) 3471 { 3472 if (spa != NULL) 3473 zdb_ddt_cleanup(spa); 3474 3475 if (os != NULL) { 3476 close_objset(os, FTAG); 3477 } else if (spa != NULL) { 3478 spa_close(spa, FTAG); 3479 } 3480 3481 fuid_table_destroy(); 3482 3483 if (kernel_init_done) 3484 kernel_fini(); 3485 3486 exit(reason); 3487 } 3488 3489 /* 3490 * print uid or gid information. 3491 * For normal POSIX id just the id is printed in decimal format. 3492 * For CIFS files with FUID the fuid is printed in hex followed by 3493 * the domain-rid string. 3494 */ 3495 static void 3496 print_idstr(uint64_t id, const char *id_type) 3497 { 3498 if (FUID_INDEX(id)) { 3499 const char *domain = 3500 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id)); 3501 (void) printf("\t%s %llx [%s-%d]\n", id_type, 3502 (u_longlong_t)id, domain, (int)FUID_RID(id)); 3503 } else { 3504 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id); 3505 } 3506 3507 } 3508 3509 static void 3510 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid) 3511 { 3512 uint32_t uid_idx, gid_idx; 3513 3514 uid_idx = FUID_INDEX(uid); 3515 gid_idx = FUID_INDEX(gid); 3516 3517 /* Load domain table, if not already loaded */ 3518 if (!fuid_table_loaded && (uid_idx || gid_idx)) { 3519 uint64_t fuid_obj; 3520 3521 /* first find the fuid object. It lives in the master node */ 3522 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 3523 8, 1, &fuid_obj) == 0); 3524 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree); 3525 (void) zfs_fuid_table_load(os, fuid_obj, 3526 &idx_tree, &domain_tree); 3527 fuid_table_loaded = B_TRUE; 3528 } 3529 3530 print_idstr(uid, "uid"); 3531 print_idstr(gid, "gid"); 3532 } 3533 3534 static void 3535 dump_znode_sa_xattr(sa_handle_t *hdl) 3536 { 3537 nvlist_t *sa_xattr; 3538 nvpair_t *elem = NULL; 3539 int sa_xattr_size = 0; 3540 int sa_xattr_entries = 0; 3541 int error; 3542 char *sa_xattr_packed; 3543 3544 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size); 3545 if (error || sa_xattr_size == 0) 3546 return; 3547 3548 sa_xattr_packed = malloc(sa_xattr_size); 3549 if (sa_xattr_packed == NULL) 3550 return; 3551 3552 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR], 3553 sa_xattr_packed, sa_xattr_size); 3554 if (error) { 3555 free(sa_xattr_packed); 3556 return; 3557 } 3558 3559 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0); 3560 if (error) { 3561 free(sa_xattr_packed); 3562 return; 3563 } 3564 3565 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) 3566 sa_xattr_entries++; 3567 3568 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n", 3569 sa_xattr_size, sa_xattr_entries); 3570 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) { 3571 boolean_t can_print = !dump_opt['P']; 3572 uchar_t *value; 3573 uint_t cnt, idx; 3574 3575 (void) printf("\t\t%s = ", nvpair_name(elem)); 3576 nvpair_value_byte_array(elem, &value, &cnt); 3577 3578 for (idx = 0; idx < cnt; ++idx) { 3579 if (!isprint(value[idx])) { 3580 can_print = B_FALSE; 3581 break; 3582 } 3583 } 3584 3585 for (idx = 0; idx < cnt; ++idx) { 3586 if (can_print) 3587 (void) putchar(value[idx]); 3588 else 3589 (void) printf("\\%3.3o", value[idx]); 3590 } 3591 (void) putchar('\n'); 3592 } 3593 3594 nvlist_free(sa_xattr); 3595 free(sa_xattr_packed); 3596 } 3597 3598 static void 3599 dump_znode_symlink(sa_handle_t *hdl) 3600 { 3601 int sa_symlink_size = 0; 3602 char linktarget[MAXPATHLEN]; 3603 int error; 3604 3605 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size); 3606 if (error || sa_symlink_size == 0) { 3607 return; 3608 } 3609 if (sa_symlink_size >= sizeof (linktarget)) { 3610 (void) printf("symlink size %d is too large\n", 3611 sa_symlink_size); 3612 return; 3613 } 3614 linktarget[sa_symlink_size] = '\0'; 3615 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK], 3616 &linktarget, sa_symlink_size) == 0) 3617 (void) printf("\ttarget %s\n", linktarget); 3618 } 3619 3620 static void 3621 dump_znode(objset_t *os, uint64_t object, void *data, size_t size) 3622 { 3623 (void) data, (void) size; 3624 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */ 3625 sa_handle_t *hdl; 3626 uint64_t xattr, rdev, gen; 3627 uint64_t uid, gid, mode, fsize, parent, links; 3628 uint64_t pflags; 3629 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2]; 3630 time_t z_crtime, z_atime, z_mtime, z_ctime; 3631 sa_bulk_attr_t bulk[12]; 3632 int idx = 0; 3633 int error; 3634 3635 VERIFY3P(os, ==, sa_os); 3636 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) { 3637 (void) printf("Failed to get handle for SA znode\n"); 3638 return; 3639 } 3640 3641 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8); 3642 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8); 3643 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL, 3644 &links, 8); 3645 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8); 3646 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL, 3647 &mode, 8); 3648 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT], 3649 NULL, &parent, 8); 3650 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL, 3651 &fsize, 8); 3652 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL, 3653 acctm, 16); 3654 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL, 3655 modtm, 16); 3656 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL, 3657 crtm, 16); 3658 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL, 3659 chgtm, 16); 3660 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL, 3661 &pflags, 8); 3662 3663 if (sa_bulk_lookup(hdl, bulk, idx)) { 3664 (void) sa_handle_destroy(hdl); 3665 return; 3666 } 3667 3668 z_crtime = (time_t)crtm[0]; 3669 z_atime = (time_t)acctm[0]; 3670 z_mtime = (time_t)modtm[0]; 3671 z_ctime = (time_t)chgtm[0]; 3672 3673 if (dump_opt['d'] > 4) { 3674 error = zfs_obj_to_path(os, object, path, sizeof (path)); 3675 if (error == ESTALE) { 3676 (void) snprintf(path, sizeof (path), "on delete queue"); 3677 } else if (error != 0) { 3678 leaked_objects++; 3679 (void) snprintf(path, sizeof (path), 3680 "path not found, possibly leaked"); 3681 } 3682 (void) printf("\tpath %s\n", path); 3683 } 3684 3685 if (S_ISLNK(mode)) 3686 dump_znode_symlink(hdl); 3687 dump_uidgid(os, uid, gid); 3688 (void) printf("\tatime %s", ctime(&z_atime)); 3689 (void) printf("\tmtime %s", ctime(&z_mtime)); 3690 (void) printf("\tctime %s", ctime(&z_ctime)); 3691 (void) printf("\tcrtime %s", ctime(&z_crtime)); 3692 (void) printf("\tgen %llu\n", (u_longlong_t)gen); 3693 (void) printf("\tmode %llo\n", (u_longlong_t)mode); 3694 (void) printf("\tsize %llu\n", (u_longlong_t)fsize); 3695 (void) printf("\tparent %llu\n", (u_longlong_t)parent); 3696 (void) printf("\tlinks %llu\n", (u_longlong_t)links); 3697 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags); 3698 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) { 3699 uint64_t projid; 3700 3701 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid, 3702 sizeof (uint64_t)) == 0) 3703 (void) printf("\tprojid %llu\n", (u_longlong_t)projid); 3704 } 3705 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr, 3706 sizeof (uint64_t)) == 0) 3707 (void) printf("\txattr %llu\n", (u_longlong_t)xattr); 3708 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev, 3709 sizeof (uint64_t)) == 0) 3710 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev); 3711 dump_znode_sa_xattr(hdl); 3712 sa_handle_destroy(hdl); 3713 } 3714 3715 static void 3716 dump_acl(objset_t *os, uint64_t object, void *data, size_t size) 3717 { 3718 (void) os, (void) object, (void) data, (void) size; 3719 } 3720 3721 static void 3722 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size) 3723 { 3724 (void) os, (void) object, (void) data, (void) size; 3725 } 3726 3727 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = { 3728 dump_none, /* unallocated */ 3729 dump_zap, /* object directory */ 3730 dump_uint64, /* object array */ 3731 dump_none, /* packed nvlist */ 3732 dump_packed_nvlist, /* packed nvlist size */ 3733 dump_none, /* bpobj */ 3734 dump_bpobj, /* bpobj header */ 3735 dump_none, /* SPA space map header */ 3736 dump_none, /* SPA space map */ 3737 dump_none, /* ZIL intent log */ 3738 dump_dnode, /* DMU dnode */ 3739 dump_dmu_objset, /* DMU objset */ 3740 dump_dsl_dir, /* DSL directory */ 3741 dump_zap, /* DSL directory child map */ 3742 dump_zap, /* DSL dataset snap map */ 3743 dump_zap, /* DSL props */ 3744 dump_dsl_dataset, /* DSL dataset */ 3745 dump_znode, /* ZFS znode */ 3746 dump_acl, /* ZFS V0 ACL */ 3747 dump_uint8, /* ZFS plain file */ 3748 dump_zpldir, /* ZFS directory */ 3749 dump_zap, /* ZFS master node */ 3750 dump_zap, /* ZFS delete queue */ 3751 dump_uint8, /* zvol object */ 3752 dump_zap, /* zvol prop */ 3753 dump_uint8, /* other uint8[] */ 3754 dump_uint64, /* other uint64[] */ 3755 dump_zap, /* other ZAP */ 3756 dump_zap, /* persistent error log */ 3757 dump_uint8, /* SPA history */ 3758 dump_history_offsets, /* SPA history offsets */ 3759 dump_zap, /* Pool properties */ 3760 dump_zap, /* DSL permissions */ 3761 dump_acl, /* ZFS ACL */ 3762 dump_uint8, /* ZFS SYSACL */ 3763 dump_none, /* FUID nvlist */ 3764 dump_packed_nvlist, /* FUID nvlist size */ 3765 dump_zap, /* DSL dataset next clones */ 3766 dump_zap, /* DSL scrub queue */ 3767 dump_zap, /* ZFS user/group/project used */ 3768 dump_zap, /* ZFS user/group/project quota */ 3769 dump_zap, /* snapshot refcount tags */ 3770 dump_ddt_zap, /* DDT ZAP object */ 3771 dump_zap, /* DDT statistics */ 3772 dump_znode, /* SA object */ 3773 dump_zap, /* SA Master Node */ 3774 dump_sa_attrs, /* SA attribute registration */ 3775 dump_sa_layouts, /* SA attribute layouts */ 3776 dump_zap, /* DSL scrub translations */ 3777 dump_none, /* fake dedup BP */ 3778 dump_zap, /* deadlist */ 3779 dump_none, /* deadlist hdr */ 3780 dump_zap, /* dsl clones */ 3781 dump_bpobj_subobjs, /* bpobj subobjs */ 3782 dump_unknown, /* Unknown type, must be last */ 3783 }; 3784 3785 static boolean_t 3786 match_object_type(dmu_object_type_t obj_type, uint64_t flags) 3787 { 3788 boolean_t match = B_TRUE; 3789 3790 switch (obj_type) { 3791 case DMU_OT_DIRECTORY_CONTENTS: 3792 if (!(flags & ZOR_FLAG_DIRECTORY)) 3793 match = B_FALSE; 3794 break; 3795 case DMU_OT_PLAIN_FILE_CONTENTS: 3796 if (!(flags & ZOR_FLAG_PLAIN_FILE)) 3797 match = B_FALSE; 3798 break; 3799 case DMU_OT_SPACE_MAP: 3800 if (!(flags & ZOR_FLAG_SPACE_MAP)) 3801 match = B_FALSE; 3802 break; 3803 default: 3804 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) { 3805 if (!(flags & ZOR_FLAG_ZAP)) 3806 match = B_FALSE; 3807 break; 3808 } 3809 3810 /* 3811 * If all bits except some of the supported flags are 3812 * set, the user combined the all-types flag (A) with 3813 * a negated flag to exclude some types (e.g. A-f to 3814 * show all object types except plain files). 3815 */ 3816 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES) 3817 match = B_FALSE; 3818 3819 break; 3820 } 3821 3822 return (match); 3823 } 3824 3825 static void 3826 dump_object(objset_t *os, uint64_t object, int verbosity, 3827 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags) 3828 { 3829 dmu_buf_t *db = NULL; 3830 dmu_object_info_t doi; 3831 dnode_t *dn; 3832 boolean_t dnode_held = B_FALSE; 3833 void *bonus = NULL; 3834 size_t bsize = 0; 3835 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32]; 3836 char bonus_size[32]; 3837 char aux[50]; 3838 int error; 3839 3840 /* make sure nicenum has enough space */ 3841 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated"); 3842 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated"); 3843 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated"); 3844 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated"); 3845 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ, 3846 "bonus_size truncated"); 3847 3848 if (*print_header) { 3849 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n", 3850 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize", 3851 "lsize", "%full", "type"); 3852 *print_header = 0; 3853 } 3854 3855 if (object == 0) { 3856 dn = DMU_META_DNODE(os); 3857 dmu_object_info_from_dnode(dn, &doi); 3858 } else { 3859 /* 3860 * Encrypted datasets will have sensitive bonus buffers 3861 * encrypted. Therefore we cannot hold the bonus buffer and 3862 * must hold the dnode itself instead. 3863 */ 3864 error = dmu_object_info(os, object, &doi); 3865 if (error) 3866 fatal("dmu_object_info() failed, errno %u", error); 3867 3868 if (!key_loaded && os->os_encrypted && 3869 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) { 3870 error = dnode_hold(os, object, FTAG, &dn); 3871 if (error) 3872 fatal("dnode_hold() failed, errno %u", error); 3873 dnode_held = B_TRUE; 3874 } else { 3875 error = dmu_bonus_hold(os, object, FTAG, &db); 3876 if (error) 3877 fatal("dmu_bonus_hold(%llu) failed, errno %u", 3878 object, error); 3879 bonus = db->db_data; 3880 bsize = db->db_size; 3881 dn = DB_DNODE((dmu_buf_impl_t *)db); 3882 } 3883 } 3884 3885 /* 3886 * Default to showing all object types if no flags were specified. 3887 */ 3888 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES && 3889 !match_object_type(doi.doi_type, flags)) 3890 goto out; 3891 3892 if (dnode_slots_used) 3893 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE; 3894 3895 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk)); 3896 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk)); 3897 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize)); 3898 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize)); 3899 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size)); 3900 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize)); 3901 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 * 3902 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ? 3903 DNODES_PER_BLOCK : 1) / doi.doi_max_offset); 3904 3905 aux[0] = '\0'; 3906 3907 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) { 3908 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3909 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum)); 3910 } 3911 3912 if (doi.doi_compress == ZIO_COMPRESS_INHERIT && 3913 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) { 3914 const char *compname = NULL; 3915 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION, 3916 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel), 3917 &compname) == 0) { 3918 (void) snprintf(aux + strlen(aux), 3919 sizeof (aux) - strlen(aux), " (Z=inherit=%s)", 3920 compname); 3921 } else { 3922 (void) snprintf(aux + strlen(aux), 3923 sizeof (aux) - strlen(aux), 3924 " (Z=inherit=%s-unknown)", 3925 ZDB_COMPRESS_NAME(os->os_compress)); 3926 } 3927 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) { 3928 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3929 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress)); 3930 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) { 3931 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux), 3932 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress)); 3933 } 3934 3935 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n", 3936 (u_longlong_t)object, doi.doi_indirection, iblk, dblk, 3937 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux); 3938 3939 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) { 3940 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n", 3941 "", "", "", "", "", "", bonus_size, "bonus", 3942 zdb_ot_name(doi.doi_bonus_type)); 3943 } 3944 3945 if (verbosity >= 4) { 3946 (void) printf("\tdnode flags: %s%s%s%s\n", 3947 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ? 3948 "USED_BYTES " : "", 3949 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ? 3950 "USERUSED_ACCOUNTED " : "", 3951 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ? 3952 "USEROBJUSED_ACCOUNTED " : "", 3953 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ? 3954 "SPILL_BLKPTR" : ""); 3955 (void) printf("\tdnode maxblkid: %llu\n", 3956 (longlong_t)dn->dn_phys->dn_maxblkid); 3957 3958 if (!dnode_held) { 3959 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os, 3960 object, bonus, bsize); 3961 } else { 3962 (void) printf("\t\t(bonus encrypted)\n"); 3963 } 3964 3965 if (key_loaded || 3966 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) { 3967 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object, 3968 NULL, 0); 3969 } else { 3970 (void) printf("\t\t(object encrypted)\n"); 3971 } 3972 3973 *print_header = B_TRUE; 3974 } 3975 3976 if (verbosity >= 5) { 3977 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 3978 char blkbuf[BP_SPRINTF_LEN]; 3979 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), 3980 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE); 3981 (void) printf("\nSpill block: %s\n", blkbuf); 3982 } 3983 dump_indirect(dn); 3984 } 3985 3986 if (verbosity >= 5) { 3987 /* 3988 * Report the list of segments that comprise the object. 3989 */ 3990 uint64_t start = 0; 3991 uint64_t end; 3992 uint64_t blkfill = 1; 3993 int minlvl = 1; 3994 3995 if (dn->dn_type == DMU_OT_DNODE) { 3996 minlvl = 0; 3997 blkfill = DNODES_PER_BLOCK; 3998 } 3999 4000 for (;;) { 4001 char segsize[32]; 4002 /* make sure nicenum has enough space */ 4003 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ, 4004 "segsize truncated"); 4005 error = dnode_next_offset(dn, 4006 0, &start, minlvl, blkfill, 0); 4007 if (error) 4008 break; 4009 end = start; 4010 error = dnode_next_offset(dn, 4011 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0); 4012 zdb_nicenum(end - start, segsize, sizeof (segsize)); 4013 (void) printf("\t\tsegment [%016llx, %016llx)" 4014 " size %5s\n", (u_longlong_t)start, 4015 (u_longlong_t)end, segsize); 4016 if (error) 4017 break; 4018 start = end; 4019 } 4020 } 4021 4022 out: 4023 if (db != NULL) 4024 dmu_buf_rele(db, FTAG); 4025 if (dnode_held) 4026 dnode_rele(dn, FTAG); 4027 } 4028 4029 static void 4030 count_dir_mos_objects(dsl_dir_t *dd) 4031 { 4032 mos_obj_refd(dd->dd_object); 4033 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj); 4034 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj); 4035 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj); 4036 mos_obj_refd(dsl_dir_phys(dd)->dd_clones); 4037 4038 /* 4039 * The dd_crypto_obj can be referenced by multiple dsl_dir's. 4040 * Ignore the references after the first one. 4041 */ 4042 mos_obj_refd_multiple(dd->dd_crypto_obj); 4043 } 4044 4045 static void 4046 count_ds_mos_objects(dsl_dataset_t *ds) 4047 { 4048 mos_obj_refd(ds->ds_object); 4049 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj); 4050 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj); 4051 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj); 4052 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj); 4053 mos_obj_refd(ds->ds_bookmarks_obj); 4054 4055 if (!dsl_dataset_is_snapshot(ds)) { 4056 count_dir_mos_objects(ds->ds_dir); 4057 } 4058 } 4059 4060 static const char *const objset_types[DMU_OST_NUMTYPES] = { 4061 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" }; 4062 4063 /* 4064 * Parse a string denoting a range of object IDs of the form 4065 * <start>[:<end>[:flags]], and store the results in zor. 4066 * Return 0 on success. On error, return 1 and update the msg 4067 * pointer to point to a descriptive error message. 4068 */ 4069 static int 4070 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg) 4071 { 4072 uint64_t flags = 0; 4073 char *p, *s, *dup, *flagstr, *tmp = NULL; 4074 size_t len; 4075 int i; 4076 int rc = 0; 4077 4078 if (strchr(range, ':') == NULL) { 4079 zor->zor_obj_start = strtoull(range, &p, 0); 4080 if (*p != '\0') { 4081 *msg = "Invalid characters in object ID"; 4082 rc = 1; 4083 } 4084 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4085 zor->zor_obj_end = zor->zor_obj_start; 4086 return (rc); 4087 } 4088 4089 if (strchr(range, ':') == range) { 4090 *msg = "Invalid leading colon"; 4091 rc = 1; 4092 return (rc); 4093 } 4094 4095 len = strlen(range); 4096 if (range[len - 1] == ':') { 4097 *msg = "Invalid trailing colon"; 4098 rc = 1; 4099 return (rc); 4100 } 4101 4102 dup = strdup(range); 4103 s = strtok_r(dup, ":", &tmp); 4104 zor->zor_obj_start = strtoull(s, &p, 0); 4105 4106 if (*p != '\0') { 4107 *msg = "Invalid characters in start object ID"; 4108 rc = 1; 4109 goto out; 4110 } 4111 4112 s = strtok_r(NULL, ":", &tmp); 4113 zor->zor_obj_end = strtoull(s, &p, 0); 4114 4115 if (*p != '\0') { 4116 *msg = "Invalid characters in end object ID"; 4117 rc = 1; 4118 goto out; 4119 } 4120 4121 if (zor->zor_obj_start > zor->zor_obj_end) { 4122 *msg = "Start object ID may not exceed end object ID"; 4123 rc = 1; 4124 goto out; 4125 } 4126 4127 s = strtok_r(NULL, ":", &tmp); 4128 if (s == NULL) { 4129 zor->zor_flags = ZOR_FLAG_ALL_TYPES; 4130 goto out; 4131 } else if (strtok_r(NULL, ":", &tmp) != NULL) { 4132 *msg = "Invalid colon-delimited field after flags"; 4133 rc = 1; 4134 goto out; 4135 } 4136 4137 flagstr = s; 4138 for (i = 0; flagstr[i]; i++) { 4139 int bit; 4140 boolean_t negation = (flagstr[i] == '-'); 4141 4142 if (negation) { 4143 i++; 4144 if (flagstr[i] == '\0') { 4145 *msg = "Invalid trailing negation operator"; 4146 rc = 1; 4147 goto out; 4148 } 4149 } 4150 bit = flagbits[(uchar_t)flagstr[i]]; 4151 if (bit == 0) { 4152 *msg = "Invalid flag"; 4153 rc = 1; 4154 goto out; 4155 } 4156 if (negation) 4157 flags &= ~bit; 4158 else 4159 flags |= bit; 4160 } 4161 zor->zor_flags = flags; 4162 4163 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start); 4164 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end); 4165 4166 out: 4167 free(dup); 4168 return (rc); 4169 } 4170 4171 static void 4172 dump_objset(objset_t *os) 4173 { 4174 dmu_objset_stats_t dds = { 0 }; 4175 uint64_t object, object_count; 4176 uint64_t refdbytes, usedobjs, scratch; 4177 char numbuf[32]; 4178 char blkbuf[BP_SPRINTF_LEN + 20]; 4179 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4180 const char *type = "UNKNOWN"; 4181 int verbosity = dump_opt['d']; 4182 boolean_t print_header; 4183 unsigned i; 4184 int error; 4185 uint64_t total_slots_used = 0; 4186 uint64_t max_slot_used = 0; 4187 uint64_t dnode_slots; 4188 uint64_t obj_start; 4189 uint64_t obj_end; 4190 uint64_t flags; 4191 4192 /* make sure nicenum has enough space */ 4193 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated"); 4194 4195 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 4196 dmu_objset_fast_stat(os, &dds); 4197 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 4198 4199 print_header = B_TRUE; 4200 4201 if (dds.dds_type < DMU_OST_NUMTYPES) 4202 type = objset_types[dds.dds_type]; 4203 4204 if (dds.dds_type == DMU_OST_META) { 4205 dds.dds_creation_txg = TXG_INITIAL; 4206 usedobjs = BP_GET_FILL(os->os_rootbp); 4207 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)-> 4208 dd_used_bytes; 4209 } else { 4210 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch); 4211 } 4212 4213 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp)); 4214 4215 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf)); 4216 4217 if (verbosity >= 4) { 4218 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp "); 4219 (void) snprintf_blkptr(blkbuf + strlen(blkbuf), 4220 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp); 4221 } else { 4222 blkbuf[0] = '\0'; 4223 } 4224 4225 dmu_objset_name(os, osname); 4226 4227 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, " 4228 "%s, %llu objects%s%s\n", 4229 osname, type, (u_longlong_t)dmu_objset_id(os), 4230 (u_longlong_t)dds.dds_creation_txg, 4231 numbuf, (u_longlong_t)usedobjs, blkbuf, 4232 (dds.dds_inconsistent) ? " (inconsistent)" : ""); 4233 4234 for (i = 0; i < zopt_object_args; i++) { 4235 obj_start = zopt_object_ranges[i].zor_obj_start; 4236 obj_end = zopt_object_ranges[i].zor_obj_end; 4237 flags = zopt_object_ranges[i].zor_flags; 4238 4239 object = obj_start; 4240 if (object == 0 || obj_start == obj_end) 4241 dump_object(os, object, verbosity, &print_header, NULL, 4242 flags); 4243 else 4244 object--; 4245 4246 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) && 4247 object <= obj_end) { 4248 dump_object(os, object, verbosity, &print_header, NULL, 4249 flags); 4250 } 4251 } 4252 4253 if (zopt_object_args > 0) { 4254 (void) printf("\n"); 4255 return; 4256 } 4257 4258 if (dump_opt['i'] != 0 || verbosity >= 2) 4259 dump_intent_log(dmu_objset_zil(os)); 4260 4261 if (dmu_objset_ds(os) != NULL) { 4262 dsl_dataset_t *ds = dmu_objset_ds(os); 4263 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 4264 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) && 4265 !dmu_objset_is_snapshot(os)) { 4266 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist"); 4267 if (verify_dd_livelist(os) != 0) 4268 fatal("livelist is incorrect"); 4269 } 4270 4271 if (dsl_dataset_remap_deadlist_exists(ds)) { 4272 (void) printf("ds_remap_deadlist:\n"); 4273 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist"); 4274 } 4275 count_ds_mos_objects(ds); 4276 } 4277 4278 if (dmu_objset_ds(os) != NULL) 4279 dump_bookmarks(os, verbosity); 4280 4281 if (verbosity < 2) 4282 return; 4283 4284 if (BP_IS_HOLE(os->os_rootbp)) 4285 return; 4286 4287 dump_object(os, 0, verbosity, &print_header, NULL, 0); 4288 object_count = 0; 4289 if (DMU_USERUSED_DNODE(os) != NULL && 4290 DMU_USERUSED_DNODE(os)->dn_type != 0) { 4291 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header, 4292 NULL, 0); 4293 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header, 4294 NULL, 0); 4295 } 4296 4297 if (DMU_PROJECTUSED_DNODE(os) != NULL && 4298 DMU_PROJECTUSED_DNODE(os)->dn_type != 0) 4299 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity, 4300 &print_header, NULL, 0); 4301 4302 object = 0; 4303 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) { 4304 dump_object(os, object, verbosity, &print_header, &dnode_slots, 4305 0); 4306 object_count++; 4307 total_slots_used += dnode_slots; 4308 max_slot_used = object + dnode_slots - 1; 4309 } 4310 4311 (void) printf("\n"); 4312 4313 (void) printf(" Dnode slots:\n"); 4314 (void) printf("\tTotal used: %10llu\n", 4315 (u_longlong_t)total_slots_used); 4316 (void) printf("\tMax used: %10llu\n", 4317 (u_longlong_t)max_slot_used); 4318 (void) printf("\tPercent empty: %10lf\n", 4319 (double)(max_slot_used - total_slots_used)*100 / 4320 (double)max_slot_used); 4321 (void) printf("\n"); 4322 4323 if (error != ESRCH) { 4324 (void) fprintf(stderr, "dmu_object_next() = %d\n", error); 4325 abort(); 4326 } 4327 4328 ASSERT3U(object_count, ==, usedobjs); 4329 4330 if (leaked_objects != 0) { 4331 (void) printf("%d potentially leaked objects detected\n", 4332 leaked_objects); 4333 leaked_objects = 0; 4334 } 4335 } 4336 4337 static void 4338 dump_uberblock(uberblock_t *ub, const char *header, const char *footer) 4339 { 4340 time_t timestamp = ub->ub_timestamp; 4341 4342 (void) printf("%s", header ? header : ""); 4343 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic); 4344 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version); 4345 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg); 4346 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum); 4347 (void) printf("\ttimestamp = %llu UTC = %s", 4348 (u_longlong_t)ub->ub_timestamp, ctime(×tamp)); 4349 4350 char blkbuf[BP_SPRINTF_LEN]; 4351 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4352 (void) printf("\tbp = %s\n", blkbuf); 4353 4354 (void) printf("\tmmp_magic = %016llx\n", 4355 (u_longlong_t)ub->ub_mmp_magic); 4356 if (MMP_VALID(ub)) { 4357 (void) printf("\tmmp_delay = %0llu\n", 4358 (u_longlong_t)ub->ub_mmp_delay); 4359 if (MMP_SEQ_VALID(ub)) 4360 (void) printf("\tmmp_seq = %u\n", 4361 (unsigned int) MMP_SEQ(ub)); 4362 if (MMP_FAIL_INT_VALID(ub)) 4363 (void) printf("\tmmp_fail = %u\n", 4364 (unsigned int) MMP_FAIL_INT(ub)); 4365 if (MMP_INTERVAL_VALID(ub)) 4366 (void) printf("\tmmp_write = %u\n", 4367 (unsigned int) MMP_INTERVAL(ub)); 4368 /* After MMP_* to make summarize_uberblock_mmp cleaner */ 4369 (void) printf("\tmmp_valid = %x\n", 4370 (unsigned int) ub->ub_mmp_config & 0xFF); 4371 } 4372 4373 if (dump_opt['u'] >= 4) { 4374 char blkbuf[BP_SPRINTF_LEN]; 4375 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp); 4376 (void) printf("\trootbp = %s\n", blkbuf); 4377 } 4378 (void) printf("\tcheckpoint_txg = %llu\n", 4379 (u_longlong_t)ub->ub_checkpoint_txg); 4380 4381 (void) printf("\traidz_reflow state=%u off=%llu\n", 4382 (int)RRSS_GET_STATE(ub), 4383 (u_longlong_t)RRSS_GET_OFFSET(ub)); 4384 4385 (void) printf("%s", footer ? footer : ""); 4386 } 4387 4388 static void 4389 dump_config(spa_t *spa) 4390 { 4391 dmu_buf_t *db; 4392 size_t nvsize = 0; 4393 int error = 0; 4394 4395 4396 error = dmu_bonus_hold(spa->spa_meta_objset, 4397 spa->spa_config_object, FTAG, &db); 4398 4399 if (error == 0) { 4400 nvsize = *(uint64_t *)db->db_data; 4401 dmu_buf_rele(db, FTAG); 4402 4403 (void) printf("\nMOS Configuration:\n"); 4404 dump_packed_nvlist(spa->spa_meta_objset, 4405 spa->spa_config_object, (void *)&nvsize, 1); 4406 } else { 4407 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d", 4408 (u_longlong_t)spa->spa_config_object, error); 4409 } 4410 } 4411 4412 static void 4413 dump_cachefile(const char *cachefile) 4414 { 4415 int fd; 4416 struct stat64 statbuf; 4417 char *buf; 4418 nvlist_t *config; 4419 4420 if ((fd = open64(cachefile, O_RDONLY)) < 0) { 4421 (void) printf("cannot open '%s': %s\n", cachefile, 4422 strerror(errno)); 4423 zdb_exit(1); 4424 } 4425 4426 if (fstat64(fd, &statbuf) != 0) { 4427 (void) printf("failed to stat '%s': %s\n", cachefile, 4428 strerror(errno)); 4429 zdb_exit(1); 4430 } 4431 4432 if ((buf = malloc(statbuf.st_size)) == NULL) { 4433 (void) fprintf(stderr, "failed to allocate %llu bytes\n", 4434 (u_longlong_t)statbuf.st_size); 4435 zdb_exit(1); 4436 } 4437 4438 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 4439 (void) fprintf(stderr, "failed to read %llu bytes\n", 4440 (u_longlong_t)statbuf.st_size); 4441 zdb_exit(1); 4442 } 4443 4444 (void) close(fd); 4445 4446 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) { 4447 (void) fprintf(stderr, "failed to unpack nvlist\n"); 4448 zdb_exit(1); 4449 } 4450 4451 free(buf); 4452 4453 dump_nvlist(config, 0); 4454 4455 nvlist_free(config); 4456 } 4457 4458 /* 4459 * ZFS label nvlist stats 4460 */ 4461 typedef struct zdb_nvl_stats { 4462 int zns_list_count; 4463 int zns_leaf_count; 4464 size_t zns_leaf_largest; 4465 size_t zns_leaf_total; 4466 nvlist_t *zns_string; 4467 nvlist_t *zns_uint64; 4468 nvlist_t *zns_boolean; 4469 } zdb_nvl_stats_t; 4470 4471 static void 4472 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats) 4473 { 4474 nvlist_t *list, **array; 4475 nvpair_t *nvp = NULL; 4476 const char *name; 4477 uint_t i, items; 4478 4479 stats->zns_list_count++; 4480 4481 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) { 4482 name = nvpair_name(nvp); 4483 4484 switch (nvpair_type(nvp)) { 4485 case DATA_TYPE_STRING: 4486 fnvlist_add_string(stats->zns_string, name, 4487 fnvpair_value_string(nvp)); 4488 break; 4489 case DATA_TYPE_UINT64: 4490 fnvlist_add_uint64(stats->zns_uint64, name, 4491 fnvpair_value_uint64(nvp)); 4492 break; 4493 case DATA_TYPE_BOOLEAN: 4494 fnvlist_add_boolean(stats->zns_boolean, name); 4495 break; 4496 case DATA_TYPE_NVLIST: 4497 if (nvpair_value_nvlist(nvp, &list) == 0) 4498 collect_nvlist_stats(list, stats); 4499 break; 4500 case DATA_TYPE_NVLIST_ARRAY: 4501 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0) 4502 break; 4503 4504 for (i = 0; i < items; i++) { 4505 collect_nvlist_stats(array[i], stats); 4506 4507 /* collect stats on leaf vdev */ 4508 if (strcmp(name, "children") == 0) { 4509 size_t size; 4510 4511 (void) nvlist_size(array[i], &size, 4512 NV_ENCODE_XDR); 4513 stats->zns_leaf_total += size; 4514 if (size > stats->zns_leaf_largest) 4515 stats->zns_leaf_largest = size; 4516 stats->zns_leaf_count++; 4517 } 4518 } 4519 break; 4520 default: 4521 (void) printf("skip type %d!\n", (int)nvpair_type(nvp)); 4522 } 4523 } 4524 } 4525 4526 static void 4527 dump_nvlist_stats(nvlist_t *nvl, size_t cap) 4528 { 4529 zdb_nvl_stats_t stats = { 0 }; 4530 size_t size, sum = 0, total; 4531 size_t noise; 4532 4533 /* requires nvlist with non-unique names for stat collection */ 4534 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0)); 4535 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0)); 4536 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0)); 4537 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR)); 4538 4539 (void) printf("\n\nZFS Label NVList Config Stats:\n"); 4540 4541 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR)); 4542 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n", 4543 (int)total, (int)(cap - total), 100.0 * total / cap); 4544 4545 collect_nvlist_stats(nvl, &stats); 4546 4547 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR)); 4548 size -= noise; 4549 sum += size; 4550 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:", 4551 (int)fnvlist_num_pairs(stats.zns_uint64), 4552 (int)size, 100.0 * size / total); 4553 4554 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR)); 4555 size -= noise; 4556 sum += size; 4557 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:", 4558 (int)fnvlist_num_pairs(stats.zns_string), 4559 (int)size, 100.0 * size / total); 4560 4561 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR)); 4562 size -= noise; 4563 sum += size; 4564 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:", 4565 (int)fnvlist_num_pairs(stats.zns_boolean), 4566 (int)size, 100.0 * size / total); 4567 4568 size = total - sum; /* treat remainder as nvlist overhead */ 4569 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:", 4570 stats.zns_list_count, (int)size, 100.0 * size / total); 4571 4572 if (stats.zns_leaf_count > 0) { 4573 size_t average = stats.zns_leaf_total / stats.zns_leaf_count; 4574 4575 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:", 4576 stats.zns_leaf_count, (int)average); 4577 (void) printf("%24d bytes largest\n", 4578 (int)stats.zns_leaf_largest); 4579 4580 if (dump_opt['l'] >= 3 && average > 0) 4581 (void) printf(" space for %d additional leaf vdevs\n", 4582 (int)((cap - total) / average)); 4583 } 4584 (void) printf("\n"); 4585 4586 nvlist_free(stats.zns_string); 4587 nvlist_free(stats.zns_uint64); 4588 nvlist_free(stats.zns_boolean); 4589 } 4590 4591 typedef struct cksum_record { 4592 zio_cksum_t cksum; 4593 boolean_t labels[VDEV_LABELS]; 4594 avl_node_t link; 4595 } cksum_record_t; 4596 4597 static int 4598 cksum_record_compare(const void *x1, const void *x2) 4599 { 4600 const cksum_record_t *l = (cksum_record_t *)x1; 4601 const cksum_record_t *r = (cksum_record_t *)x2; 4602 int arraysize = ARRAY_SIZE(l->cksum.zc_word); 4603 int difference = 0; 4604 4605 for (int i = 0; i < arraysize; i++) { 4606 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]); 4607 if (difference) 4608 break; 4609 } 4610 4611 return (difference); 4612 } 4613 4614 static cksum_record_t * 4615 cksum_record_alloc(zio_cksum_t *cksum, int l) 4616 { 4617 cksum_record_t *rec; 4618 4619 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL); 4620 rec->cksum = *cksum; 4621 rec->labels[l] = B_TRUE; 4622 4623 return (rec); 4624 } 4625 4626 static cksum_record_t * 4627 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum) 4628 { 4629 cksum_record_t lookup = { .cksum = *cksum }; 4630 avl_index_t where; 4631 4632 return (avl_find(tree, &lookup, &where)); 4633 } 4634 4635 static cksum_record_t * 4636 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l) 4637 { 4638 cksum_record_t *rec; 4639 4640 rec = cksum_record_lookup(tree, cksum); 4641 if (rec) { 4642 rec->labels[l] = B_TRUE; 4643 } else { 4644 rec = cksum_record_alloc(cksum, l); 4645 avl_add(tree, rec); 4646 } 4647 4648 return (rec); 4649 } 4650 4651 static int 4652 first_label(cksum_record_t *rec) 4653 { 4654 for (int i = 0; i < VDEV_LABELS; i++) 4655 if (rec->labels[i]) 4656 return (i); 4657 4658 return (-1); 4659 } 4660 4661 static void 4662 print_label_numbers(const char *prefix, const cksum_record_t *rec) 4663 { 4664 fputs(prefix, stdout); 4665 for (int i = 0; i < VDEV_LABELS; i++) 4666 if (rec->labels[i] == B_TRUE) 4667 printf("%d ", i); 4668 putchar('\n'); 4669 } 4670 4671 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT) 4672 4673 typedef struct zdb_label { 4674 vdev_label_t label; 4675 uint64_t label_offset; 4676 nvlist_t *config_nv; 4677 cksum_record_t *config; 4678 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT]; 4679 boolean_t header_printed; 4680 boolean_t read_failed; 4681 boolean_t cksum_valid; 4682 } zdb_label_t; 4683 4684 static void 4685 print_label_header(zdb_label_t *label, int l) 4686 { 4687 4688 if (dump_opt['q']) 4689 return; 4690 4691 if (label->header_printed == B_TRUE) 4692 return; 4693 4694 (void) printf("------------------------------------\n"); 4695 (void) printf("LABEL %d %s\n", l, 4696 label->cksum_valid ? "" : "(Bad label cksum)"); 4697 (void) printf("------------------------------------\n"); 4698 4699 label->header_printed = B_TRUE; 4700 } 4701 4702 static void 4703 print_l2arc_header(void) 4704 { 4705 (void) printf("------------------------------------\n"); 4706 (void) printf("L2ARC device header\n"); 4707 (void) printf("------------------------------------\n"); 4708 } 4709 4710 static void 4711 print_l2arc_log_blocks(void) 4712 { 4713 (void) printf("------------------------------------\n"); 4714 (void) printf("L2ARC device log blocks\n"); 4715 (void) printf("------------------------------------\n"); 4716 } 4717 4718 static void 4719 dump_l2arc_log_entries(uint64_t log_entries, 4720 l2arc_log_ent_phys_t *le, uint64_t i) 4721 { 4722 for (int j = 0; j < log_entries; j++) { 4723 dva_t dva = le[j].le_dva; 4724 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, " 4725 "vdev: %llu, offset: %llu\n", 4726 (u_longlong_t)i, j + 1, 4727 (u_longlong_t)DVA_GET_ASIZE(&dva), 4728 (u_longlong_t)DVA_GET_VDEV(&dva), 4729 (u_longlong_t)DVA_GET_OFFSET(&dva)); 4730 (void) printf("|\t\t\t\tbirth: %llu\n", 4731 (u_longlong_t)le[j].le_birth); 4732 (void) printf("|\t\t\t\tlsize: %llu\n", 4733 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop)); 4734 (void) printf("|\t\t\t\tpsize: %llu\n", 4735 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop)); 4736 (void) printf("|\t\t\t\tcompr: %llu\n", 4737 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop)); 4738 (void) printf("|\t\t\t\tcomplevel: %llu\n", 4739 (u_longlong_t)(&le[j])->le_complevel); 4740 (void) printf("|\t\t\t\ttype: %llu\n", 4741 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop)); 4742 (void) printf("|\t\t\t\tprotected: %llu\n", 4743 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop)); 4744 (void) printf("|\t\t\t\tprefetch: %llu\n", 4745 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop)); 4746 (void) printf("|\t\t\t\taddress: %llu\n", 4747 (u_longlong_t)le[j].le_daddr); 4748 (void) printf("|\t\t\t\tARC state: %llu\n", 4749 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop)); 4750 (void) printf("|\n"); 4751 } 4752 (void) printf("\n"); 4753 } 4754 4755 static void 4756 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps) 4757 { 4758 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr); 4759 (void) printf("|\t\tpayload_asize: %llu\n", 4760 (u_longlong_t)lbps->lbp_payload_asize); 4761 (void) printf("|\t\tpayload_start: %llu\n", 4762 (u_longlong_t)lbps->lbp_payload_start); 4763 (void) printf("|\t\tlsize: %llu\n", 4764 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop)); 4765 (void) printf("|\t\tasize: %llu\n", 4766 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop)); 4767 (void) printf("|\t\tcompralgo: %llu\n", 4768 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop)); 4769 (void) printf("|\t\tcksumalgo: %llu\n", 4770 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop)); 4771 (void) printf("|\n\n"); 4772 } 4773 4774 static void 4775 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr, 4776 l2arc_dev_hdr_phys_t *rebuild) 4777 { 4778 l2arc_log_blk_phys_t this_lb; 4779 uint64_t asize; 4780 l2arc_log_blkptr_t lbps[2]; 4781 zio_cksum_t cksum; 4782 int failed = 0; 4783 l2arc_dev_t dev; 4784 4785 if (!dump_opt['q']) 4786 print_l2arc_log_blocks(); 4787 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps)); 4788 4789 dev.l2ad_evict = l2dhdr->dh_evict; 4790 dev.l2ad_start = l2dhdr->dh_start; 4791 dev.l2ad_end = l2dhdr->dh_end; 4792 4793 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) { 4794 /* no log blocks to read */ 4795 if (!dump_opt['q']) { 4796 (void) printf("No log blocks to read\n"); 4797 (void) printf("\n"); 4798 } 4799 return; 4800 } else { 4801 dev.l2ad_hand = lbps[0].lbp_daddr + 4802 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4803 } 4804 4805 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST); 4806 4807 for (;;) { 4808 if (!l2arc_log_blkptr_valid(&dev, &lbps[0])) 4809 break; 4810 4811 /* L2BLK_GET_PSIZE returns aligned size for log blocks */ 4812 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop); 4813 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) { 4814 if (!dump_opt['q']) { 4815 (void) printf("Error while reading next log " 4816 "block\n\n"); 4817 } 4818 break; 4819 } 4820 4821 fletcher_4_native_varsize(&this_lb, asize, &cksum); 4822 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) { 4823 failed++; 4824 if (!dump_opt['q']) { 4825 (void) printf("Invalid cksum\n"); 4826 dump_l2arc_log_blkptr(&lbps[0]); 4827 } 4828 break; 4829 } 4830 4831 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) { 4832 case ZIO_COMPRESS_OFF: 4833 break; 4834 default: { 4835 abd_t *abd = abd_alloc_linear(asize, B_TRUE); 4836 abd_copy_from_buf_off(abd, &this_lb, 0, asize); 4837 abd_t dabd; 4838 abd_get_from_buf_struct(&dabd, &this_lb, 4839 sizeof (this_lb)); 4840 int err = zio_decompress_data(L2BLK_GET_COMPRESS( 4841 (&lbps[0])->lbp_prop), abd, &dabd, 4842 asize, sizeof (this_lb), NULL); 4843 abd_free(&dabd); 4844 abd_free(abd); 4845 if (err != 0) { 4846 (void) printf("L2ARC block decompression " 4847 "failed\n"); 4848 goto out; 4849 } 4850 break; 4851 } 4852 } 4853 4854 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC)) 4855 byteswap_uint64_array(&this_lb, sizeof (this_lb)); 4856 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) { 4857 if (!dump_opt['q']) 4858 (void) printf("Invalid log block magic\n\n"); 4859 break; 4860 } 4861 4862 rebuild->dh_lb_count++; 4863 rebuild->dh_lb_asize += asize; 4864 if (dump_opt['l'] > 1 && !dump_opt['q']) { 4865 (void) printf("lb[%4llu]\tmagic: %llu\n", 4866 (u_longlong_t)rebuild->dh_lb_count, 4867 (u_longlong_t)this_lb.lb_magic); 4868 dump_l2arc_log_blkptr(&lbps[0]); 4869 } 4870 4871 if (dump_opt['l'] > 2 && !dump_opt['q']) 4872 dump_l2arc_log_entries(l2dhdr->dh_log_entries, 4873 this_lb.lb_entries, 4874 rebuild->dh_lb_count); 4875 4876 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start, 4877 lbps[0].lbp_payload_start, dev.l2ad_evict) && 4878 !dev.l2ad_first) 4879 break; 4880 4881 lbps[0] = lbps[1]; 4882 lbps[1] = this_lb.lb_prev_lbp; 4883 } 4884 out: 4885 if (!dump_opt['q']) { 4886 (void) printf("log_blk_count:\t %llu with valid cksum\n", 4887 (u_longlong_t)rebuild->dh_lb_count); 4888 (void) printf("\t\t %d with invalid cksum\n", failed); 4889 (void) printf("log_blk_asize:\t %llu\n\n", 4890 (u_longlong_t)rebuild->dh_lb_asize); 4891 } 4892 } 4893 4894 static int 4895 dump_l2arc_header(int fd) 4896 { 4897 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0}; 4898 int error = B_FALSE; 4899 4900 if (pread64(fd, &l2dhdr, sizeof (l2dhdr), 4901 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) { 4902 error = B_TRUE; 4903 } else { 4904 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC)) 4905 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr)); 4906 4907 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC) 4908 error = B_TRUE; 4909 } 4910 4911 if (error) { 4912 (void) printf("L2ARC device header not found\n\n"); 4913 /* Do not return an error here for backward compatibility */ 4914 return (0); 4915 } else if (!dump_opt['q']) { 4916 print_l2arc_header(); 4917 4918 (void) printf(" magic: %llu\n", 4919 (u_longlong_t)l2dhdr.dh_magic); 4920 (void) printf(" version: %llu\n", 4921 (u_longlong_t)l2dhdr.dh_version); 4922 (void) printf(" pool_guid: %llu\n", 4923 (u_longlong_t)l2dhdr.dh_spa_guid); 4924 (void) printf(" flags: %llu\n", 4925 (u_longlong_t)l2dhdr.dh_flags); 4926 (void) printf(" start_lbps[0]: %llu\n", 4927 (u_longlong_t) 4928 l2dhdr.dh_start_lbps[0].lbp_daddr); 4929 (void) printf(" start_lbps[1]: %llu\n", 4930 (u_longlong_t) 4931 l2dhdr.dh_start_lbps[1].lbp_daddr); 4932 (void) printf(" log_blk_ent: %llu\n", 4933 (u_longlong_t)l2dhdr.dh_log_entries); 4934 (void) printf(" start: %llu\n", 4935 (u_longlong_t)l2dhdr.dh_start); 4936 (void) printf(" end: %llu\n", 4937 (u_longlong_t)l2dhdr.dh_end); 4938 (void) printf(" evict: %llu\n", 4939 (u_longlong_t)l2dhdr.dh_evict); 4940 (void) printf(" lb_asize_refcount: %llu\n", 4941 (u_longlong_t)l2dhdr.dh_lb_asize); 4942 (void) printf(" lb_count_refcount: %llu\n", 4943 (u_longlong_t)l2dhdr.dh_lb_count); 4944 (void) printf(" trim_action_time: %llu\n", 4945 (u_longlong_t)l2dhdr.dh_trim_action_time); 4946 (void) printf(" trim_state: %llu\n\n", 4947 (u_longlong_t)l2dhdr.dh_trim_state); 4948 } 4949 4950 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild); 4951 /* 4952 * The total aligned size of log blocks and the number of log blocks 4953 * reported in the header of the device may be less than what zdb 4954 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild(). 4955 * This happens because dump_l2arc_log_blocks() lacks the memory 4956 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system 4957 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize 4958 * and dh_lb_count will be lower to begin with than what exists on the 4959 * device. This is normal and zdb should not exit with an error. The 4960 * opposite case should never happen though, the values reported in the 4961 * header should never be higher than what dump_l2arc_log_blocks() and 4962 * l2arc_rebuild() report. If this happens there is a leak in the 4963 * accounting of log blocks. 4964 */ 4965 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize || 4966 l2dhdr.dh_lb_count > rebuild.dh_lb_count) 4967 return (1); 4968 4969 return (0); 4970 } 4971 4972 static void 4973 dump_config_from_label(zdb_label_t *label, size_t buflen, int l) 4974 { 4975 if (dump_opt['q']) 4976 return; 4977 4978 if ((dump_opt['l'] < 3) && (first_label(label->config) != l)) 4979 return; 4980 4981 print_label_header(label, l); 4982 dump_nvlist(label->config_nv, 4); 4983 print_label_numbers(" labels = ", label->config); 4984 4985 if (dump_opt['l'] >= 2) 4986 dump_nvlist_stats(label->config_nv, buflen); 4987 } 4988 4989 #define ZDB_MAX_UB_HEADER_SIZE 32 4990 4991 static void 4992 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num) 4993 { 4994 4995 vdev_t vd; 4996 char header[ZDB_MAX_UB_HEADER_SIZE]; 4997 4998 vd.vdev_ashift = ashift; 4999 vd.vdev_top = &vd; 5000 5001 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5002 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5003 uberblock_t *ub = (void *)((char *)&label->label + uoff); 5004 cksum_record_t *rec = label->uberblocks[i]; 5005 5006 if (rec == NULL) { 5007 if (dump_opt['u'] >= 2) { 5008 print_label_header(label, label_num); 5009 (void) printf(" Uberblock[%d] invalid\n", i); 5010 } 5011 continue; 5012 } 5013 5014 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num)) 5015 continue; 5016 5017 if ((dump_opt['u'] < 4) && 5018 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay && 5019 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL)) 5020 continue; 5021 5022 print_label_header(label, label_num); 5023 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE, 5024 " Uberblock[%d]\n", i); 5025 dump_uberblock(ub, header, ""); 5026 print_label_numbers(" labels = ", rec); 5027 } 5028 } 5029 5030 static char curpath[PATH_MAX]; 5031 5032 /* 5033 * Iterate through the path components, recursively passing 5034 * current one's obj and remaining path until we find the obj 5035 * for the last one. 5036 */ 5037 static int 5038 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj) 5039 { 5040 int err; 5041 boolean_t header = B_TRUE; 5042 uint64_t child_obj; 5043 char *s; 5044 dmu_buf_t *db; 5045 dmu_object_info_t doi; 5046 5047 if ((s = strchr(name, '/')) != NULL) 5048 *s = '\0'; 5049 err = zap_lookup(os, obj, name, 8, 1, &child_obj); 5050 5051 (void) strlcat(curpath, name, sizeof (curpath)); 5052 5053 if (err != 0) { 5054 (void) fprintf(stderr, "failed to lookup %s: %s\n", 5055 curpath, strerror(err)); 5056 return (err); 5057 } 5058 5059 child_obj = ZFS_DIRENT_OBJ(child_obj); 5060 err = sa_buf_hold(os, child_obj, FTAG, &db); 5061 if (err != 0) { 5062 (void) fprintf(stderr, 5063 "failed to get SA dbuf for obj %llu: %s\n", 5064 (u_longlong_t)child_obj, strerror(err)); 5065 return (EINVAL); 5066 } 5067 dmu_object_info_from_db(db, &doi); 5068 sa_buf_rele(db, FTAG); 5069 5070 if (doi.doi_bonus_type != DMU_OT_SA && 5071 doi.doi_bonus_type != DMU_OT_ZNODE) { 5072 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n", 5073 doi.doi_bonus_type, (u_longlong_t)child_obj); 5074 return (EINVAL); 5075 } 5076 5077 if (dump_opt['v'] > 6) { 5078 (void) printf("obj=%llu %s type=%d bonustype=%d\n", 5079 (u_longlong_t)child_obj, curpath, doi.doi_type, 5080 doi.doi_bonus_type); 5081 } 5082 5083 (void) strlcat(curpath, "/", sizeof (curpath)); 5084 5085 switch (doi.doi_type) { 5086 case DMU_OT_DIRECTORY_CONTENTS: 5087 if (s != NULL && *(s + 1) != '\0') 5088 return (dump_path_impl(os, child_obj, s + 1, retobj)); 5089 zfs_fallthrough; 5090 case DMU_OT_PLAIN_FILE_CONTENTS: 5091 if (retobj != NULL) { 5092 *retobj = child_obj; 5093 } else { 5094 dump_object(os, child_obj, dump_opt['v'], &header, 5095 NULL, 0); 5096 } 5097 return (0); 5098 default: 5099 (void) fprintf(stderr, "object %llu has non-file/directory " 5100 "type %d\n", (u_longlong_t)obj, doi.doi_type); 5101 break; 5102 } 5103 5104 return (EINVAL); 5105 } 5106 5107 /* 5108 * Dump the blocks for the object specified by path inside the dataset. 5109 */ 5110 static int 5111 dump_path(char *ds, char *path, uint64_t *retobj) 5112 { 5113 int err; 5114 objset_t *os; 5115 uint64_t root_obj; 5116 5117 err = open_objset(ds, FTAG, &os); 5118 if (err != 0) 5119 return (err); 5120 5121 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj); 5122 if (err != 0) { 5123 (void) fprintf(stderr, "can't lookup root znode: %s\n", 5124 strerror(err)); 5125 close_objset(os, FTAG); 5126 return (EINVAL); 5127 } 5128 5129 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds); 5130 5131 err = dump_path_impl(os, root_obj, path, retobj); 5132 5133 close_objset(os, FTAG); 5134 return (err); 5135 } 5136 5137 static int 5138 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg) 5139 { 5140 const char *p = (const char *)buf; 5141 ssize_t nwritten; 5142 5143 (void) os; 5144 (void) arg; 5145 5146 /* Write the data out, handling short writes and signals. */ 5147 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) { 5148 if (nwritten < 0) { 5149 if (errno == EINTR) 5150 continue; 5151 return (errno); 5152 } 5153 p += nwritten; 5154 len -= nwritten; 5155 } 5156 5157 return (0); 5158 } 5159 5160 static void 5161 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr) 5162 { 5163 boolean_t embed = B_FALSE; 5164 boolean_t large_block = B_FALSE; 5165 boolean_t compress = B_FALSE; 5166 boolean_t raw = B_FALSE; 5167 5168 const char *c; 5169 for (c = flagstr; c != NULL && *c != '\0'; c++) { 5170 switch (*c) { 5171 case 'e': 5172 embed = B_TRUE; 5173 break; 5174 case 'L': 5175 large_block = B_TRUE; 5176 break; 5177 case 'c': 5178 compress = B_TRUE; 5179 break; 5180 case 'w': 5181 raw = B_TRUE; 5182 break; 5183 default: 5184 fprintf(stderr, "dump_backup: invalid flag " 5185 "'%c'\n", *c); 5186 return; 5187 } 5188 } 5189 5190 if (isatty(STDOUT_FILENO)) { 5191 fprintf(stderr, "dump_backup: stream cannot be written " 5192 "to a terminal\n"); 5193 return; 5194 } 5195 5196 offset_t off = 0; 5197 dmu_send_outparams_t out = { 5198 .dso_outfunc = dump_backup_bytes, 5199 .dso_dryrun = B_FALSE, 5200 }; 5201 5202 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed, 5203 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO, 5204 &off, &out); 5205 if (err != 0) { 5206 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n", 5207 strerror(err)); 5208 return; 5209 } 5210 } 5211 5212 static int 5213 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile) 5214 { 5215 int err = 0; 5216 uint64_t size, readsize, oursize, offset; 5217 ssize_t writesize; 5218 sa_handle_t *hdl; 5219 5220 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj, 5221 destfile); 5222 5223 VERIFY3P(os, ==, sa_os); 5224 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) { 5225 (void) printf("Failed to get handle for SA znode\n"); 5226 return (err); 5227 } 5228 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) { 5229 (void) sa_handle_destroy(hdl); 5230 return (err); 5231 } 5232 (void) sa_handle_destroy(hdl); 5233 5234 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj, 5235 size); 5236 if (size == 0) { 5237 return (EINVAL); 5238 } 5239 5240 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644); 5241 if (fd == -1) 5242 return (errno); 5243 /* 5244 * We cap the size at 1 mebibyte here to prevent 5245 * allocation failures and nigh-infinite printing if the 5246 * object is extremely large. 5247 */ 5248 oursize = MIN(size, 1 << 20); 5249 offset = 0; 5250 char *buf = kmem_alloc(oursize, KM_NOSLEEP); 5251 if (buf == NULL) { 5252 (void) close(fd); 5253 return (ENOMEM); 5254 } 5255 5256 while (offset < size) { 5257 readsize = MIN(size - offset, 1 << 20); 5258 err = dmu_read(os, srcobj, offset, readsize, buf, 0); 5259 if (err != 0) { 5260 (void) printf("got error %u from dmu_read\n", err); 5261 kmem_free(buf, oursize); 5262 (void) close(fd); 5263 return (err); 5264 } 5265 if (dump_opt['v'] > 3) { 5266 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64 5267 " error=%d\n", offset, readsize, err); 5268 } 5269 5270 writesize = write(fd, buf, readsize); 5271 if (writesize < 0) { 5272 err = errno; 5273 break; 5274 } else if (writesize != readsize) { 5275 /* Incomplete write */ 5276 (void) fprintf(stderr, "Short write, only wrote %llu of" 5277 " %" PRIu64 " bytes, exiting...\n", 5278 (u_longlong_t)writesize, readsize); 5279 break; 5280 } 5281 5282 offset += readsize; 5283 } 5284 5285 (void) close(fd); 5286 5287 if (buf != NULL) 5288 kmem_free(buf, oursize); 5289 5290 return (err); 5291 } 5292 5293 static boolean_t 5294 label_cksum_valid(vdev_label_t *label, uint64_t offset) 5295 { 5296 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL]; 5297 zio_cksum_t expected_cksum; 5298 zio_cksum_t actual_cksum; 5299 zio_cksum_t verifier; 5300 zio_eck_t *eck; 5301 int byteswap; 5302 5303 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys); 5304 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1; 5305 5306 offset += offsetof(vdev_label_t, vl_vdev_phys); 5307 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0); 5308 5309 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC)); 5310 if (byteswap) 5311 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t)); 5312 5313 expected_cksum = eck->zec_cksum; 5314 eck->zec_cksum = verifier; 5315 5316 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE); 5317 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum); 5318 abd_free(abd); 5319 5320 if (byteswap) 5321 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t)); 5322 5323 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum)) 5324 return (B_TRUE); 5325 5326 return (B_FALSE); 5327 } 5328 5329 static int 5330 dump_label(const char *dev) 5331 { 5332 char path[MAXPATHLEN]; 5333 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}}; 5334 uint64_t psize, ashift, l2cache; 5335 struct stat64 statbuf; 5336 boolean_t config_found = B_FALSE; 5337 boolean_t error = B_FALSE; 5338 boolean_t read_l2arc_header = B_FALSE; 5339 avl_tree_t config_tree; 5340 avl_tree_t uberblock_tree; 5341 void *node, *cookie; 5342 int fd; 5343 5344 /* 5345 * Check if we were given absolute path and use it as is. 5346 * Otherwise if the provided vdev name doesn't point to a file, 5347 * try prepending expected disk paths and partition numbers. 5348 */ 5349 (void) strlcpy(path, dev, sizeof (path)); 5350 if (dev[0] != '/' && stat64(path, &statbuf) != 0) { 5351 int error; 5352 5353 error = zfs_resolve_shortname(dev, path, MAXPATHLEN); 5354 if (error == 0 && zfs_dev_is_whole_disk(path)) { 5355 if (zfs_append_partition(path, MAXPATHLEN) == -1) 5356 error = ENOENT; 5357 } 5358 5359 if (error || (stat64(path, &statbuf) != 0)) { 5360 (void) printf("failed to find device %s, try " 5361 "specifying absolute path instead\n", dev); 5362 return (1); 5363 } 5364 } 5365 5366 if ((fd = open64(path, O_RDONLY)) < 0) { 5367 (void) printf("cannot open '%s': %s\n", path, strerror(errno)); 5368 zdb_exit(1); 5369 } 5370 5371 if (fstat64_blk(fd, &statbuf) != 0) { 5372 (void) printf("failed to stat '%s': %s\n", path, 5373 strerror(errno)); 5374 (void) close(fd); 5375 zdb_exit(1); 5376 } 5377 5378 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0) 5379 (void) printf("failed to invalidate cache '%s' : %s\n", path, 5380 strerror(errno)); 5381 5382 avl_create(&config_tree, cksum_record_compare, 5383 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5384 avl_create(&uberblock_tree, cksum_record_compare, 5385 sizeof (cksum_record_t), offsetof(cksum_record_t, link)); 5386 5387 psize = statbuf.st_size; 5388 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t); 5389 ashift = SPA_MINBLOCKSHIFT; 5390 5391 /* 5392 * 1. Read the label from disk 5393 * 2. Verify label cksum 5394 * 3. Unpack the configuration and insert in config tree. 5395 * 4. Traverse all uberblocks and insert in uberblock tree. 5396 */ 5397 for (int l = 0; l < VDEV_LABELS; l++) { 5398 zdb_label_t *label = &labels[l]; 5399 char *buf = label->label.vl_vdev_phys.vp_nvlist; 5400 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5401 nvlist_t *config; 5402 cksum_record_t *rec; 5403 zio_cksum_t cksum; 5404 vdev_t vd; 5405 5406 label->label_offset = vdev_label_offset(psize, l, 0); 5407 5408 if (pread64(fd, &label->label, sizeof (label->label), 5409 label->label_offset) != sizeof (label->label)) { 5410 if (!dump_opt['q']) 5411 (void) printf("failed to read label %d\n", l); 5412 label->read_failed = B_TRUE; 5413 error = B_TRUE; 5414 continue; 5415 } 5416 5417 label->read_failed = B_FALSE; 5418 label->cksum_valid = label_cksum_valid(&label->label, 5419 label->label_offset); 5420 5421 if (nvlist_unpack(buf, buflen, &config, 0) == 0) { 5422 nvlist_t *vdev_tree = NULL; 5423 size_t size; 5424 5425 if ((nvlist_lookup_nvlist(config, 5426 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) || 5427 (nvlist_lookup_uint64(vdev_tree, 5428 ZPOOL_CONFIG_ASHIFT, &ashift) != 0)) 5429 ashift = SPA_MINBLOCKSHIFT; 5430 5431 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0) 5432 size = buflen; 5433 5434 /* If the device is a cache device read the header. */ 5435 if (!read_l2arc_header) { 5436 if (nvlist_lookup_uint64(config, 5437 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 && 5438 l2cache == POOL_STATE_L2CACHE) { 5439 read_l2arc_header = B_TRUE; 5440 } 5441 } 5442 5443 fletcher_4_native_varsize(buf, size, &cksum); 5444 rec = cksum_record_insert(&config_tree, &cksum, l); 5445 5446 label->config = rec; 5447 label->config_nv = config; 5448 config_found = B_TRUE; 5449 } else { 5450 error = B_TRUE; 5451 } 5452 5453 vd.vdev_ashift = ashift; 5454 vd.vdev_top = &vd; 5455 5456 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) { 5457 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i); 5458 uberblock_t *ub = (void *)((char *)label + uoff); 5459 5460 if (uberblock_verify(ub)) 5461 continue; 5462 5463 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum); 5464 rec = cksum_record_insert(&uberblock_tree, &cksum, l); 5465 5466 label->uberblocks[i] = rec; 5467 } 5468 } 5469 5470 /* 5471 * Dump the label and uberblocks. 5472 */ 5473 for (int l = 0; l < VDEV_LABELS; l++) { 5474 zdb_label_t *label = &labels[l]; 5475 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist); 5476 5477 if (label->read_failed == B_TRUE) 5478 continue; 5479 5480 if (label->config_nv) { 5481 dump_config_from_label(label, buflen, l); 5482 } else { 5483 if (!dump_opt['q']) 5484 (void) printf("failed to unpack label %d\n", l); 5485 } 5486 5487 if (dump_opt['u']) 5488 dump_label_uberblocks(label, ashift, l); 5489 5490 nvlist_free(label->config_nv); 5491 } 5492 5493 /* 5494 * Dump the L2ARC header, if existent. 5495 */ 5496 if (read_l2arc_header) 5497 error |= dump_l2arc_header(fd); 5498 5499 cookie = NULL; 5500 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL) 5501 umem_free(node, sizeof (cksum_record_t)); 5502 5503 cookie = NULL; 5504 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL) 5505 umem_free(node, sizeof (cksum_record_t)); 5506 5507 avl_destroy(&config_tree); 5508 avl_destroy(&uberblock_tree); 5509 5510 (void) close(fd); 5511 5512 return (config_found == B_FALSE ? 2 : 5513 (error == B_TRUE ? 1 : 0)); 5514 } 5515 5516 static uint64_t dataset_feature_count[SPA_FEATURES]; 5517 static uint64_t global_feature_count[SPA_FEATURES]; 5518 static uint64_t remap_deadlist_count = 0; 5519 5520 static int 5521 dump_one_objset(const char *dsname, void *arg) 5522 { 5523 (void) arg; 5524 int error; 5525 objset_t *os; 5526 spa_feature_t f; 5527 5528 error = open_objset(dsname, FTAG, &os); 5529 if (error != 0) 5530 return (0); 5531 5532 for (f = 0; f < SPA_FEATURES; f++) { 5533 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f)) 5534 continue; 5535 ASSERT(spa_feature_table[f].fi_flags & 5536 ZFEATURE_FLAG_PER_DATASET); 5537 dataset_feature_count[f]++; 5538 } 5539 5540 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) { 5541 remap_deadlist_count++; 5542 } 5543 5544 for (dsl_bookmark_node_t *dbn = 5545 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL; 5546 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) { 5547 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj); 5548 if (dbn->dbn_phys.zbm_redaction_obj != 0) { 5549 global_feature_count[ 5550 SPA_FEATURE_REDACTION_BOOKMARKS]++; 5551 objset_t *mos = os->os_spa->spa_meta_objset; 5552 dnode_t *rl; 5553 VERIFY0(dnode_hold(mos, 5554 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl)); 5555 if (rl->dn_have_spill) { 5556 global_feature_count[ 5557 SPA_FEATURE_REDACTION_LIST_SPILL]++; 5558 } 5559 } 5560 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN) 5561 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++; 5562 } 5563 5564 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) && 5565 !dmu_objset_is_snapshot(os)) { 5566 global_feature_count[SPA_FEATURE_LIVELIST]++; 5567 } 5568 5569 dump_objset(os); 5570 close_objset(os, FTAG); 5571 fuid_table_destroy(); 5572 return (0); 5573 } 5574 5575 /* 5576 * Block statistics. 5577 */ 5578 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2) 5579 typedef struct zdb_blkstats { 5580 uint64_t zb_asize; 5581 uint64_t zb_lsize; 5582 uint64_t zb_psize; 5583 uint64_t zb_count; 5584 uint64_t zb_gangs; 5585 uint64_t zb_ditto_samevdev; 5586 uint64_t zb_ditto_same_ms; 5587 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE]; 5588 } zdb_blkstats_t; 5589 5590 /* 5591 * Extended object types to report deferred frees and dedup auto-ditto blocks. 5592 */ 5593 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0) 5594 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1) 5595 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2) 5596 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3) 5597 5598 static const char *zdb_ot_extname[] = { 5599 "deferred free", 5600 "dedup ditto", 5601 "other", 5602 "Total", 5603 }; 5604 5605 #define ZB_TOTAL DN_MAX_LEVELS 5606 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1) 5607 5608 typedef struct zdb_brt_entry { 5609 dva_t zbre_dva; 5610 uint64_t zbre_refcount; 5611 avl_node_t zbre_node; 5612 } zdb_brt_entry_t; 5613 5614 typedef struct zdb_cb { 5615 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1]; 5616 uint64_t zcb_removing_size; 5617 uint64_t zcb_checkpoint_size; 5618 uint64_t zcb_dedup_asize; 5619 uint64_t zcb_dedup_blocks; 5620 uint64_t zcb_clone_asize; 5621 uint64_t zcb_clone_blocks; 5622 uint64_t zcb_psize_count[SPA_MAX_FOR_16M]; 5623 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M]; 5624 uint64_t zcb_asize_count[SPA_MAX_FOR_16M]; 5625 uint64_t zcb_psize_len[SPA_MAX_FOR_16M]; 5626 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M]; 5627 uint64_t zcb_asize_len[SPA_MAX_FOR_16M]; 5628 uint64_t zcb_psize_total; 5629 uint64_t zcb_lsize_total; 5630 uint64_t zcb_asize_total; 5631 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES]; 5632 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES] 5633 [BPE_PAYLOAD_SIZE + 1]; 5634 uint64_t zcb_start; 5635 hrtime_t zcb_lastprint; 5636 uint64_t zcb_totalasize; 5637 uint64_t zcb_errors[256]; 5638 int zcb_readfails; 5639 int zcb_haderrors; 5640 spa_t *zcb_spa; 5641 uint32_t **zcb_vd_obsolete_counts; 5642 avl_tree_t zcb_brt; 5643 boolean_t zcb_brt_is_active; 5644 } zdb_cb_t; 5645 5646 /* test if two DVA offsets from same vdev are within the same metaslab */ 5647 static boolean_t 5648 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2) 5649 { 5650 vdev_t *vd = vdev_lookup_top(spa, vdev); 5651 uint64_t ms_shift = vd->vdev_ms_shift; 5652 5653 return ((off1 >> ms_shift) == (off2 >> ms_shift)); 5654 } 5655 5656 /* 5657 * Used to simplify reporting of the histogram data. 5658 */ 5659 typedef struct one_histo { 5660 const char *name; 5661 uint64_t *count; 5662 uint64_t *len; 5663 uint64_t cumulative; 5664 } one_histo_t; 5665 5666 /* 5667 * The number of separate histograms processed for psize, lsize and asize. 5668 */ 5669 #define NUM_HISTO 3 5670 5671 /* 5672 * This routine will create a fixed column size output of three different 5673 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M 5674 * the count, length and cumulative length of the psize, lsize and 5675 * asize blocks. 5676 * 5677 * All three types of blocks are listed on a single line 5678 * 5679 * By default the table is printed in nicenumber format (e.g. 123K) but 5680 * if the '-P' parameter is specified then the full raw number (parseable) 5681 * is printed out. 5682 */ 5683 static void 5684 dump_size_histograms(zdb_cb_t *zcb) 5685 { 5686 /* 5687 * A temporary buffer that allows us to convert a number into 5688 * a string using zdb_nicenumber to allow either raw or human 5689 * readable numbers to be output. 5690 */ 5691 char numbuf[32]; 5692 5693 /* 5694 * Define titles which are used in the headers of the tables 5695 * printed by this routine. 5696 */ 5697 const char blocksize_title1[] = "block"; 5698 const char blocksize_title2[] = "size"; 5699 const char count_title[] = "Count"; 5700 const char length_title[] = "Size"; 5701 const char cumulative_title[] = "Cum."; 5702 5703 /* 5704 * Setup the histogram arrays (psize, lsize, and asize). 5705 */ 5706 one_histo_t parm_histo[NUM_HISTO]; 5707 5708 parm_histo[0].name = "psize"; 5709 parm_histo[0].count = zcb->zcb_psize_count; 5710 parm_histo[0].len = zcb->zcb_psize_len; 5711 parm_histo[0].cumulative = 0; 5712 5713 parm_histo[1].name = "lsize"; 5714 parm_histo[1].count = zcb->zcb_lsize_count; 5715 parm_histo[1].len = zcb->zcb_lsize_len; 5716 parm_histo[1].cumulative = 0; 5717 5718 parm_histo[2].name = "asize"; 5719 parm_histo[2].count = zcb->zcb_asize_count; 5720 parm_histo[2].len = zcb->zcb_asize_len; 5721 parm_histo[2].cumulative = 0; 5722 5723 5724 (void) printf("\nBlock Size Histogram\n"); 5725 /* 5726 * Print the first line titles 5727 */ 5728 if (dump_opt['P']) 5729 (void) printf("\n%s\t", blocksize_title1); 5730 else 5731 (void) printf("\n%7s ", blocksize_title1); 5732 5733 for (int j = 0; j < NUM_HISTO; j++) { 5734 if (dump_opt['P']) { 5735 if (j < NUM_HISTO - 1) { 5736 (void) printf("%s\t\t\t", parm_histo[j].name); 5737 } else { 5738 /* Don't print trailing spaces */ 5739 (void) printf(" %s", parm_histo[j].name); 5740 } 5741 } else { 5742 if (j < NUM_HISTO - 1) { 5743 /* Left aligned strings in the output */ 5744 (void) printf("%-7s ", 5745 parm_histo[j].name); 5746 } else { 5747 /* Don't print trailing spaces */ 5748 (void) printf("%s", parm_histo[j].name); 5749 } 5750 } 5751 } 5752 (void) printf("\n"); 5753 5754 /* 5755 * Print the second line titles 5756 */ 5757 if (dump_opt['P']) { 5758 (void) printf("%s\t", blocksize_title2); 5759 } else { 5760 (void) printf("%7s ", blocksize_title2); 5761 } 5762 5763 for (int i = 0; i < NUM_HISTO; i++) { 5764 if (dump_opt['P']) { 5765 (void) printf("%s\t%s\t%s\t", 5766 count_title, length_title, cumulative_title); 5767 } else { 5768 (void) printf("%7s%7s%7s", 5769 count_title, length_title, cumulative_title); 5770 } 5771 } 5772 (void) printf("\n"); 5773 5774 /* 5775 * Print the rows 5776 */ 5777 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) { 5778 5779 /* 5780 * Print the first column showing the blocksize 5781 */ 5782 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf)); 5783 5784 if (dump_opt['P']) { 5785 printf("%s", numbuf); 5786 } else { 5787 printf("%7s:", numbuf); 5788 } 5789 5790 /* 5791 * Print the remaining set of 3 columns per size: 5792 * for psize, lsize and asize 5793 */ 5794 for (int j = 0; j < NUM_HISTO; j++) { 5795 parm_histo[j].cumulative += parm_histo[j].len[i]; 5796 5797 zdb_nicenum(parm_histo[j].count[i], 5798 numbuf, sizeof (numbuf)); 5799 if (dump_opt['P']) 5800 (void) printf("\t%s", numbuf); 5801 else 5802 (void) printf("%7s", numbuf); 5803 5804 zdb_nicenum(parm_histo[j].len[i], 5805 numbuf, sizeof (numbuf)); 5806 if (dump_opt['P']) 5807 (void) printf("\t%s", numbuf); 5808 else 5809 (void) printf("%7s", numbuf); 5810 5811 zdb_nicenum(parm_histo[j].cumulative, 5812 numbuf, sizeof (numbuf)); 5813 if (dump_opt['P']) 5814 (void) printf("\t%s", numbuf); 5815 else 5816 (void) printf("%7s", numbuf); 5817 } 5818 (void) printf("\n"); 5819 } 5820 } 5821 5822 static void 5823 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp, 5824 dmu_object_type_t type) 5825 { 5826 int i; 5827 5828 ASSERT(type < ZDB_OT_TOTAL); 5829 5830 if (zilog && zil_bp_tree_add(zilog, bp) != 0) 5831 return; 5832 5833 /* 5834 * This flag controls if we will issue a claim for the block while 5835 * counting it, to ensure that all blocks are referenced in space maps. 5836 * We don't issue claims if we're not doing leak tracking, because it's 5837 * expensive if the user isn't interested. We also don't claim the 5838 * second or later occurences of cloned or dedup'd blocks, because we 5839 * already claimed them the first time. 5840 */ 5841 boolean_t do_claim = !dump_opt['L']; 5842 5843 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER); 5844 5845 blkptr_t tempbp; 5846 if (BP_GET_DEDUP(bp)) { 5847 /* 5848 * Dedup'd blocks are special. We need to count them, so we can 5849 * later uncount them when reporting leaked space, and we must 5850 * only claim them once. 5851 * 5852 * We use the existing dedup system to track what we've seen. 5853 * The first time we see a block, we do a ddt_lookup() to see 5854 * if it exists in the DDT. If we're doing leak tracking, we 5855 * claim the block at this time. 5856 * 5857 * Each time we see a block, we reduce the refcount in the 5858 * entry by one, and add to the size and count of dedup'd 5859 * blocks to report at the end. 5860 */ 5861 5862 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp); 5863 5864 ddt_enter(ddt); 5865 5866 /* 5867 * Find the block. This will create the entry in memory, but 5868 * we'll know if that happened by its refcount. 5869 */ 5870 ddt_entry_t *dde = ddt_lookup(ddt, bp, B_TRUE); 5871 5872 /* 5873 * ddt_lookup() can return NULL if this block didn't exist 5874 * in the DDT and creating it would take the DDT over its 5875 * quota. Since we got the block from disk, it must exist in 5876 * the DDT, so this can't happen. However, when unique entries 5877 * are pruned, the dedup bit can be set with no corresponding 5878 * entry in the DDT. 5879 */ 5880 if (dde == NULL) { 5881 ddt_exit(ddt); 5882 goto skipped; 5883 } 5884 5885 /* Get the phys for this variant */ 5886 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp); 5887 5888 /* 5889 * This entry may have multiple sets of DVAs. We must claim 5890 * each set the first time we see them in a real block on disk, 5891 * or count them on subsequent occurences. We don't have a 5892 * convenient way to track the first time we see each variant, 5893 * so we repurpose dde_io as a set of "seen" flag bits. We can 5894 * do this safely in zdb because it never writes, so it will 5895 * never have a writing zio for this block in that pointer. 5896 */ 5897 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v)); 5898 if (!seen) 5899 dde->dde_io = 5900 (void *)(((uintptr_t)dde->dde_io) | (1 << v)); 5901 5902 /* Consume a reference for this block. */ 5903 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0) 5904 ddt_phys_decref(dde->dde_phys, v); 5905 5906 /* 5907 * If this entry has a single flat phys, it may have been 5908 * extended with additional DVAs at some time in its life. 5909 * This block might be from before it was fully extended, and 5910 * so have fewer DVAs. 5911 * 5912 * If this is the first time we've seen this block, and we 5913 * claimed it as-is, then we would miss the claim on some 5914 * number of DVAs, which would then be seen as leaked. 5915 * 5916 * In all cases, if we've had fewer DVAs, then the asize would 5917 * be too small, and would lead to the pool apparently using 5918 * more space than allocated. 5919 * 5920 * To handle this, we copy the canonical set of DVAs from the 5921 * entry back to the block pointer before we claim it. 5922 */ 5923 if (v == DDT_PHYS_FLAT) { 5924 ASSERT3U(BP_GET_BIRTH(bp), ==, 5925 ddt_phys_birth(dde->dde_phys, v)); 5926 tempbp = *bp; 5927 ddt_bp_fill(dde->dde_phys, v, &tempbp, 5928 BP_GET_BIRTH(bp)); 5929 bp = &tempbp; 5930 } 5931 5932 if (seen) { 5933 /* 5934 * The second or later time we see this block, 5935 * it's a duplicate and we count it. 5936 */ 5937 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp); 5938 zcb->zcb_dedup_blocks++; 5939 5940 /* Already claimed, don't do it again. */ 5941 do_claim = B_FALSE; 5942 } 5943 5944 ddt_exit(ddt); 5945 } else if (zcb->zcb_brt_is_active && 5946 brt_maybe_exists(zcb->zcb_spa, bp)) { 5947 /* 5948 * Cloned blocks are special. We need to count them, so we can 5949 * later uncount them when reporting leaked space, and we must 5950 * only claim them once. 5951 * 5952 * To do this, we keep our own in-memory BRT. For each block 5953 * we haven't seen before, we look it up in the real BRT and 5954 * if its there, we note it and its refcount then proceed as 5955 * normal. If we see the block again, we count it as a clone 5956 * and then give it no further consideration. 5957 */ 5958 zdb_brt_entry_t zbre_search, *zbre; 5959 avl_index_t where; 5960 5961 zbre_search.zbre_dva = bp->blk_dva[0]; 5962 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where); 5963 if (zbre == NULL) { 5964 /* Not seen before; track it */ 5965 uint64_t refcnt = 5966 brt_entry_get_refcount(zcb->zcb_spa, bp); 5967 if (refcnt > 0) { 5968 zbre = umem_zalloc(sizeof (zdb_brt_entry_t), 5969 UMEM_NOFAIL); 5970 zbre->zbre_dva = bp->blk_dva[0]; 5971 zbre->zbre_refcount = refcnt; 5972 avl_insert(&zcb->zcb_brt, zbre, where); 5973 } 5974 } else { 5975 /* 5976 * Second or later occurrence, count it and take a 5977 * refcount. 5978 */ 5979 zcb->zcb_clone_asize += BP_GET_ASIZE(bp); 5980 zcb->zcb_clone_blocks++; 5981 5982 zbre->zbre_refcount--; 5983 if (zbre->zbre_refcount == 0) { 5984 avl_remove(&zcb->zcb_brt, zbre); 5985 umem_free(zbre, sizeof (zdb_brt_entry_t)); 5986 } 5987 5988 /* Already claimed, don't do it again. */ 5989 do_claim = B_FALSE; 5990 } 5991 } 5992 5993 skipped: 5994 for (i = 0; i < 4; i++) { 5995 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL; 5996 int t = (i & 1) ? type : ZDB_OT_TOTAL; 5997 int equal; 5998 zdb_blkstats_t *zb = &zcb->zcb_type[l][t]; 5999 6000 zb->zb_asize += BP_GET_ASIZE(bp); 6001 zb->zb_lsize += BP_GET_LSIZE(bp); 6002 zb->zb_psize += BP_GET_PSIZE(bp); 6003 zb->zb_count++; 6004 6005 /* 6006 * The histogram is only big enough to record blocks up to 6007 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last, 6008 * "other", bucket. 6009 */ 6010 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT; 6011 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1); 6012 zb->zb_psize_histogram[idx]++; 6013 6014 zb->zb_gangs += BP_COUNT_GANG(bp); 6015 6016 switch (BP_GET_NDVAS(bp)) { 6017 case 2: 6018 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6019 DVA_GET_VDEV(&bp->blk_dva[1])) { 6020 zb->zb_ditto_samevdev++; 6021 6022 if (same_metaslab(zcb->zcb_spa, 6023 DVA_GET_VDEV(&bp->blk_dva[0]), 6024 DVA_GET_OFFSET(&bp->blk_dva[0]), 6025 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6026 zb->zb_ditto_same_ms++; 6027 } 6028 break; 6029 case 3: 6030 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) == 6031 DVA_GET_VDEV(&bp->blk_dva[1])) + 6032 (DVA_GET_VDEV(&bp->blk_dva[0]) == 6033 DVA_GET_VDEV(&bp->blk_dva[2])) + 6034 (DVA_GET_VDEV(&bp->blk_dva[1]) == 6035 DVA_GET_VDEV(&bp->blk_dva[2])); 6036 if (equal != 0) { 6037 zb->zb_ditto_samevdev++; 6038 6039 if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6040 DVA_GET_VDEV(&bp->blk_dva[1]) && 6041 same_metaslab(zcb->zcb_spa, 6042 DVA_GET_VDEV(&bp->blk_dva[0]), 6043 DVA_GET_OFFSET(&bp->blk_dva[0]), 6044 DVA_GET_OFFSET(&bp->blk_dva[1]))) 6045 zb->zb_ditto_same_ms++; 6046 else if (DVA_GET_VDEV(&bp->blk_dva[0]) == 6047 DVA_GET_VDEV(&bp->blk_dva[2]) && 6048 same_metaslab(zcb->zcb_spa, 6049 DVA_GET_VDEV(&bp->blk_dva[0]), 6050 DVA_GET_OFFSET(&bp->blk_dva[0]), 6051 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6052 zb->zb_ditto_same_ms++; 6053 else if (DVA_GET_VDEV(&bp->blk_dva[1]) == 6054 DVA_GET_VDEV(&bp->blk_dva[2]) && 6055 same_metaslab(zcb->zcb_spa, 6056 DVA_GET_VDEV(&bp->blk_dva[1]), 6057 DVA_GET_OFFSET(&bp->blk_dva[1]), 6058 DVA_GET_OFFSET(&bp->blk_dva[2]))) 6059 zb->zb_ditto_same_ms++; 6060 } 6061 break; 6062 } 6063 } 6064 6065 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG); 6066 6067 if (BP_IS_EMBEDDED(bp)) { 6068 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++; 6069 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)] 6070 [BPE_GET_PSIZE(bp)]++; 6071 return; 6072 } 6073 /* 6074 * The binning histogram bins by powers of two up to 6075 * SPA_MAXBLOCKSIZE rather than creating bins for 6076 * every possible blocksize found in the pool. 6077 */ 6078 int bin = highbit64(BP_GET_PSIZE(bp)) - 1; 6079 6080 zcb->zcb_psize_count[bin]++; 6081 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp); 6082 zcb->zcb_psize_total += BP_GET_PSIZE(bp); 6083 6084 bin = highbit64(BP_GET_LSIZE(bp)) - 1; 6085 6086 zcb->zcb_lsize_count[bin]++; 6087 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp); 6088 zcb->zcb_lsize_total += BP_GET_LSIZE(bp); 6089 6090 bin = highbit64(BP_GET_ASIZE(bp)) - 1; 6091 6092 zcb->zcb_asize_count[bin]++; 6093 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp); 6094 zcb->zcb_asize_total += BP_GET_ASIZE(bp); 6095 6096 if (!do_claim) 6097 return; 6098 6099 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa, 6100 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL, 6101 ZIO_FLAG_CANFAIL))); 6102 } 6103 6104 static void 6105 zdb_blkptr_done(zio_t *zio) 6106 { 6107 spa_t *spa = zio->io_spa; 6108 blkptr_t *bp = zio->io_bp; 6109 int ioerr = zio->io_error; 6110 zdb_cb_t *zcb = zio->io_private; 6111 zbookmark_phys_t *zb = &zio->io_bookmark; 6112 6113 mutex_enter(&spa->spa_scrub_lock); 6114 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp); 6115 cv_broadcast(&spa->spa_scrub_io_cv); 6116 6117 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 6118 char blkbuf[BP_SPRINTF_LEN]; 6119 6120 zcb->zcb_haderrors = 1; 6121 zcb->zcb_errors[ioerr]++; 6122 6123 if (dump_opt['b'] >= 2) 6124 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6125 else 6126 blkbuf[0] = '\0'; 6127 6128 (void) printf("zdb_blkptr_cb: " 6129 "Got error %d reading " 6130 "<%llu, %llu, %lld, %llx> %s -- skipping\n", 6131 ioerr, 6132 (u_longlong_t)zb->zb_objset, 6133 (u_longlong_t)zb->zb_object, 6134 (u_longlong_t)zb->zb_level, 6135 (u_longlong_t)zb->zb_blkid, 6136 blkbuf); 6137 } 6138 mutex_exit(&spa->spa_scrub_lock); 6139 6140 abd_free(zio->io_abd); 6141 } 6142 6143 static int 6144 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 6145 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 6146 { 6147 zdb_cb_t *zcb = arg; 6148 dmu_object_type_t type; 6149 boolean_t is_metadata; 6150 6151 if (zb->zb_level == ZB_DNODE_LEVEL) 6152 return (0); 6153 6154 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) { 6155 char blkbuf[BP_SPRINTF_LEN]; 6156 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6157 (void) printf("objset %llu object %llu " 6158 "level %lld offset 0x%llx %s\n", 6159 (u_longlong_t)zb->zb_objset, 6160 (u_longlong_t)zb->zb_object, 6161 (longlong_t)zb->zb_level, 6162 (u_longlong_t)blkid2offset(dnp, bp, zb), 6163 blkbuf); 6164 } 6165 6166 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) 6167 return (0); 6168 6169 type = BP_GET_TYPE(bp); 6170 6171 zdb_count_block(zcb, zilog, bp, 6172 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type); 6173 6174 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)); 6175 6176 if (!BP_IS_EMBEDDED(bp) && 6177 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) { 6178 size_t size = BP_GET_PSIZE(bp); 6179 abd_t *abd = abd_alloc(size, B_FALSE); 6180 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW; 6181 6182 /* If it's an intent log block, failure is expected. */ 6183 if (zb->zb_level == ZB_ZIL_LEVEL) 6184 flags |= ZIO_FLAG_SPECULATIVE; 6185 6186 mutex_enter(&spa->spa_scrub_lock); 6187 while (spa->spa_load_verify_bytes > max_inflight_bytes) 6188 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 6189 spa->spa_load_verify_bytes += size; 6190 mutex_exit(&spa->spa_scrub_lock); 6191 6192 zio_nowait(zio_read(NULL, spa, bp, abd, size, 6193 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb)); 6194 } 6195 6196 zcb->zcb_readfails = 0; 6197 6198 /* only call gethrtime() every 100 blocks */ 6199 static int iters; 6200 if (++iters > 100) 6201 iters = 0; 6202 else 6203 return (0); 6204 6205 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) { 6206 uint64_t now = gethrtime(); 6207 char buf[10]; 6208 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize; 6209 uint64_t kb_per_sec = 6210 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000)); 6211 uint64_t sec_remaining = 6212 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec; 6213 6214 /* make sure nicenum has enough space */ 6215 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated"); 6216 6217 zfs_nicebytes(bytes, buf, sizeof (buf)); 6218 (void) fprintf(stderr, 6219 "\r%5s completed (%4"PRIu64"MB/s) " 6220 "estimated time remaining: " 6221 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ", 6222 buf, kb_per_sec / 1024, 6223 sec_remaining / 60 / 60, 6224 sec_remaining / 60 % 60, 6225 sec_remaining % 60); 6226 6227 zcb->zcb_lastprint = now; 6228 } 6229 6230 return (0); 6231 } 6232 6233 static void 6234 zdb_leak(void *arg, uint64_t start, uint64_t size) 6235 { 6236 vdev_t *vd = arg; 6237 6238 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n", 6239 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size); 6240 } 6241 6242 static metaslab_ops_t zdb_metaslab_ops = { 6243 NULL /* alloc */ 6244 }; 6245 6246 static int 6247 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme, 6248 uint64_t txg, void *arg) 6249 { 6250 spa_vdev_removal_t *svr = arg; 6251 6252 uint64_t offset = sme->sme_offset; 6253 uint64_t size = sme->sme_run; 6254 6255 /* skip vdevs we don't care about */ 6256 if (sme->sme_vdev != svr->svr_vdev_id) 6257 return (0); 6258 6259 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev); 6260 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6261 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6262 6263 if (txg < metaslab_unflushed_txg(ms)) 6264 return (0); 6265 6266 if (sme->sme_type == SM_ALLOC) 6267 zfs_range_tree_add(svr->svr_allocd_segs, offset, size); 6268 else 6269 zfs_range_tree_remove(svr->svr_allocd_segs, offset, size); 6270 6271 return (0); 6272 } 6273 6274 static void 6275 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset, 6276 uint64_t size, void *arg) 6277 { 6278 (void) inner_offset, (void) arg; 6279 6280 /* 6281 * This callback was called through a remap from 6282 * a device being removed. Therefore, the vdev that 6283 * this callback is applied to is a concrete 6284 * vdev. 6285 */ 6286 ASSERT(vdev_is_concrete(vd)); 6287 6288 VERIFY0(metaslab_claim_impl(vd, offset, size, 6289 spa_min_claim_txg(vd->vdev_spa))); 6290 } 6291 6292 static void 6293 claim_segment_cb(void *arg, uint64_t offset, uint64_t size) 6294 { 6295 vdev_t *vd = arg; 6296 6297 vdev_indirect_ops.vdev_op_remap(vd, offset, size, 6298 claim_segment_impl_cb, NULL); 6299 } 6300 6301 /* 6302 * After accounting for all allocated blocks that are directly referenced, 6303 * we might have missed a reference to a block from a partially complete 6304 * (and thus unused) indirect mapping object. We perform a secondary pass 6305 * through the metaslabs we have already mapped and claim the destination 6306 * blocks. 6307 */ 6308 static void 6309 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb) 6310 { 6311 if (dump_opt['L']) 6312 return; 6313 6314 if (spa->spa_vdev_removal == NULL) 6315 return; 6316 6317 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6318 6319 spa_vdev_removal_t *svr = spa->spa_vdev_removal; 6320 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id); 6321 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6322 6323 ASSERT0(zfs_range_tree_space(svr->svr_allocd_segs)); 6324 6325 zfs_range_tree_t *allocs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 6326 NULL, 0, 0); 6327 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) { 6328 metaslab_t *msp = vd->vdev_ms[msi]; 6329 6330 ASSERT0(zfs_range_tree_space(allocs)); 6331 if (msp->ms_sm != NULL) 6332 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC)); 6333 zfs_range_tree_vacate(allocs, zfs_range_tree_add, 6334 svr->svr_allocd_segs); 6335 } 6336 zfs_range_tree_destroy(allocs); 6337 6338 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr); 6339 6340 /* 6341 * Clear everything past what has been synced, 6342 * because we have not allocated mappings for 6343 * it yet. 6344 */ 6345 zfs_range_tree_clear(svr->svr_allocd_segs, 6346 vdev_indirect_mapping_max_offset(vim), 6347 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim)); 6348 6349 zcb->zcb_removing_size += zfs_range_tree_space(svr->svr_allocd_segs); 6350 zfs_range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd); 6351 6352 spa_config_exit(spa, SCL_CONFIG, FTAG); 6353 } 6354 6355 static int 6356 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6357 dmu_tx_t *tx) 6358 { 6359 (void) tx; 6360 zdb_cb_t *zcb = arg; 6361 spa_t *spa = zcb->zcb_spa; 6362 vdev_t *vd; 6363 const dva_t *dva = &bp->blk_dva[0]; 6364 6365 ASSERT(!bp_freed); 6366 ASSERT(!dump_opt['L']); 6367 ASSERT3U(BP_GET_NDVAS(bp), ==, 1); 6368 6369 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 6370 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva)); 6371 ASSERT3P(vd, !=, NULL); 6372 spa_config_exit(spa, SCL_VDEV, FTAG); 6373 6374 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0); 6375 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL); 6376 6377 vdev_indirect_mapping_increment_obsolete_count( 6378 vd->vdev_indirect_mapping, 6379 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva), 6380 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6381 6382 return (0); 6383 } 6384 6385 static uint32_t * 6386 zdb_load_obsolete_counts(vdev_t *vd) 6387 { 6388 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6389 spa_t *spa = vd->vdev_spa; 6390 spa_condensing_indirect_phys_t *scip = 6391 &spa->spa_condensing_indirect_phys; 6392 uint64_t obsolete_sm_object; 6393 uint32_t *counts; 6394 6395 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 6396 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL); 6397 counts = vdev_indirect_mapping_load_obsolete_counts(vim); 6398 if (vd->vdev_obsolete_sm != NULL) { 6399 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6400 vd->vdev_obsolete_sm); 6401 } 6402 if (scip->scip_vdev == vd->vdev_id && 6403 scip->scip_prev_obsolete_sm_object != 0) { 6404 space_map_t *prev_obsolete_sm = NULL; 6405 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset, 6406 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0)); 6407 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts, 6408 prev_obsolete_sm); 6409 space_map_close(prev_obsolete_sm); 6410 } 6411 return (counts); 6412 } 6413 6414 typedef struct checkpoint_sm_exclude_entry_arg { 6415 vdev_t *cseea_vd; 6416 uint64_t cseea_checkpoint_size; 6417 } checkpoint_sm_exclude_entry_arg_t; 6418 6419 static int 6420 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg) 6421 { 6422 checkpoint_sm_exclude_entry_arg_t *cseea = arg; 6423 vdev_t *vd = cseea->cseea_vd; 6424 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 6425 uint64_t end = sme->sme_offset + sme->sme_run; 6426 6427 ASSERT(sme->sme_type == SM_FREE); 6428 6429 /* 6430 * Since the vdev_checkpoint_sm exists in the vdev level 6431 * and the ms_sm space maps exist in the metaslab level, 6432 * an entry in the checkpoint space map could theoretically 6433 * cross the boundaries of the metaslab that it belongs. 6434 * 6435 * In reality, because of the way that we populate and 6436 * manipulate the checkpoint's space maps currently, 6437 * there shouldn't be any entries that cross metaslabs. 6438 * Hence the assertion below. 6439 * 6440 * That said, there is no fundamental requirement that 6441 * the checkpoint's space map entries should not cross 6442 * metaslab boundaries. So if needed we could add code 6443 * that handles metaslab-crossing segments in the future. 6444 */ 6445 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 6446 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 6447 6448 /* 6449 * By removing the entry from the allocated segments we 6450 * also verify that the entry is there to begin with. 6451 */ 6452 mutex_enter(&ms->ms_lock); 6453 zfs_range_tree_remove(ms->ms_allocatable, sme->sme_offset, 6454 sme->sme_run); 6455 mutex_exit(&ms->ms_lock); 6456 6457 cseea->cseea_checkpoint_size += sme->sme_run; 6458 return (0); 6459 } 6460 6461 static void 6462 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb) 6463 { 6464 spa_t *spa = vd->vdev_spa; 6465 space_map_t *checkpoint_sm = NULL; 6466 uint64_t checkpoint_sm_obj; 6467 6468 /* 6469 * If there is no vdev_top_zap, we are in a pool whose 6470 * version predates the pool checkpoint feature. 6471 */ 6472 if (vd->vdev_top_zap == 0) 6473 return; 6474 6475 /* 6476 * If there is no reference of the vdev_checkpoint_sm in 6477 * the vdev_top_zap, then one of the following scenarios 6478 * is true: 6479 * 6480 * 1] There is no checkpoint 6481 * 2] There is a checkpoint, but no checkpointed blocks 6482 * have been freed yet 6483 * 3] The current vdev is indirect 6484 * 6485 * In these cases we return immediately. 6486 */ 6487 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 6488 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 6489 return; 6490 6491 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 6492 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, 6493 &checkpoint_sm_obj)); 6494 6495 checkpoint_sm_exclude_entry_arg_t cseea; 6496 cseea.cseea_vd = vd; 6497 cseea.cseea_checkpoint_size = 0; 6498 6499 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 6500 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 6501 6502 VERIFY0(space_map_iterate(checkpoint_sm, 6503 space_map_length(checkpoint_sm), 6504 checkpoint_sm_exclude_entry_cb, &cseea)); 6505 space_map_close(checkpoint_sm); 6506 6507 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size; 6508 } 6509 6510 static void 6511 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb) 6512 { 6513 ASSERT(!dump_opt['L']); 6514 6515 vdev_t *rvd = spa->spa_root_vdev; 6516 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6517 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id); 6518 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb); 6519 } 6520 } 6521 6522 static int 6523 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme, 6524 uint64_t txg, void *arg) 6525 { 6526 int64_t *ualloc_space = arg; 6527 6528 uint64_t offset = sme->sme_offset; 6529 uint64_t vdev_id = sme->sme_vdev; 6530 6531 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6532 if (!vdev_is_concrete(vd)) 6533 return (0); 6534 6535 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6536 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6537 6538 if (txg < metaslab_unflushed_txg(ms)) 6539 return (0); 6540 6541 if (sme->sme_type == SM_ALLOC) 6542 *ualloc_space += sme->sme_run; 6543 else 6544 *ualloc_space -= sme->sme_run; 6545 6546 return (0); 6547 } 6548 6549 static int64_t 6550 get_unflushed_alloc_space(spa_t *spa) 6551 { 6552 if (dump_opt['L']) 6553 return (0); 6554 6555 int64_t ualloc_space = 0; 6556 iterate_through_spacemap_logs(spa, count_unflushed_space_cb, 6557 &ualloc_space); 6558 return (ualloc_space); 6559 } 6560 6561 static int 6562 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg) 6563 { 6564 maptype_t *uic_maptype = arg; 6565 6566 uint64_t offset = sme->sme_offset; 6567 uint64_t size = sme->sme_run; 6568 uint64_t vdev_id = sme->sme_vdev; 6569 6570 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 6571 6572 /* skip indirect vdevs */ 6573 if (!vdev_is_concrete(vd)) 6574 return (0); 6575 6576 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6577 6578 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 6579 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE); 6580 6581 if (txg < metaslab_unflushed_txg(ms)) 6582 return (0); 6583 6584 if (*uic_maptype == sme->sme_type) 6585 zfs_range_tree_add(ms->ms_allocatable, offset, size); 6586 else 6587 zfs_range_tree_remove(ms->ms_allocatable, offset, size); 6588 6589 return (0); 6590 } 6591 6592 static void 6593 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype) 6594 { 6595 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype); 6596 } 6597 6598 static void 6599 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype) 6600 { 6601 vdev_t *rvd = spa->spa_root_vdev; 6602 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 6603 vdev_t *vd = rvd->vdev_child[i]; 6604 6605 ASSERT3U(i, ==, vd->vdev_id); 6606 6607 if (vd->vdev_ops == &vdev_indirect_ops) 6608 continue; 6609 6610 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6611 metaslab_t *msp = vd->vdev_ms[m]; 6612 6613 (void) fprintf(stderr, 6614 "\rloading concrete vdev %llu, " 6615 "metaslab %llu of %llu ...", 6616 (longlong_t)vd->vdev_id, 6617 (longlong_t)msp->ms_id, 6618 (longlong_t)vd->vdev_ms_count); 6619 6620 mutex_enter(&msp->ms_lock); 6621 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6622 6623 /* 6624 * We don't want to spend the CPU manipulating the 6625 * size-ordered tree, so clear the range_tree ops. 6626 */ 6627 msp->ms_allocatable->rt_ops = NULL; 6628 6629 if (msp->ms_sm != NULL) { 6630 VERIFY0(space_map_load(msp->ms_sm, 6631 msp->ms_allocatable, maptype)); 6632 } 6633 if (!msp->ms_loaded) 6634 msp->ms_loaded = B_TRUE; 6635 mutex_exit(&msp->ms_lock); 6636 } 6637 } 6638 6639 load_unflushed_to_ms_allocatables(spa, maptype); 6640 } 6641 6642 /* 6643 * vm_idxp is an in-out parameter which (for indirect vdevs) is the 6644 * index in vim_entries that has the first entry in this metaslab. 6645 * On return, it will be set to the first entry after this metaslab. 6646 */ 6647 static void 6648 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp, 6649 uint64_t *vim_idxp) 6650 { 6651 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6652 6653 mutex_enter(&msp->ms_lock); 6654 zfs_range_tree_vacate(msp->ms_allocatable, NULL, NULL); 6655 6656 /* 6657 * We don't want to spend the CPU manipulating the 6658 * size-ordered tree, so clear the range_tree ops. 6659 */ 6660 msp->ms_allocatable->rt_ops = NULL; 6661 6662 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim); 6663 (*vim_idxp)++) { 6664 vdev_indirect_mapping_entry_phys_t *vimep = 6665 &vim->vim_entries[*vim_idxp]; 6666 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6667 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst); 6668 ASSERT3U(ent_offset, >=, msp->ms_start); 6669 if (ent_offset >= msp->ms_start + msp->ms_size) 6670 break; 6671 6672 /* 6673 * Mappings do not cross metaslab boundaries, 6674 * because we create them by walking the metaslabs. 6675 */ 6676 ASSERT3U(ent_offset + ent_len, <=, 6677 msp->ms_start + msp->ms_size); 6678 zfs_range_tree_add(msp->ms_allocatable, ent_offset, ent_len); 6679 } 6680 6681 if (!msp->ms_loaded) 6682 msp->ms_loaded = B_TRUE; 6683 mutex_exit(&msp->ms_lock); 6684 } 6685 6686 static void 6687 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb) 6688 { 6689 ASSERT(!dump_opt['L']); 6690 6691 vdev_t *rvd = spa->spa_root_vdev; 6692 for (uint64_t c = 0; c < rvd->vdev_children; c++) { 6693 vdev_t *vd = rvd->vdev_child[c]; 6694 6695 ASSERT3U(c, ==, vd->vdev_id); 6696 6697 if (vd->vdev_ops != &vdev_indirect_ops) 6698 continue; 6699 6700 /* 6701 * Note: we don't check for mapping leaks on 6702 * removing vdevs because their ms_allocatable's 6703 * are used to look for leaks in allocated space. 6704 */ 6705 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd); 6706 6707 /* 6708 * Normally, indirect vdevs don't have any 6709 * metaslabs. We want to set them up for 6710 * zio_claim(). 6711 */ 6712 vdev_metaslab_group_create(vd); 6713 VERIFY0(vdev_metaslab_init(vd, 0)); 6714 6715 vdev_indirect_mapping_t *vim __maybe_unused = 6716 vd->vdev_indirect_mapping; 6717 uint64_t vim_idx = 0; 6718 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6719 6720 (void) fprintf(stderr, 6721 "\rloading indirect vdev %llu, " 6722 "metaslab %llu of %llu ...", 6723 (longlong_t)vd->vdev_id, 6724 (longlong_t)vd->vdev_ms[m]->ms_id, 6725 (longlong_t)vd->vdev_ms_count); 6726 6727 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m], 6728 &vim_idx); 6729 } 6730 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim)); 6731 } 6732 } 6733 6734 static void 6735 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb) 6736 { 6737 zcb->zcb_spa = spa; 6738 6739 if (dump_opt['L']) 6740 return; 6741 6742 dsl_pool_t *dp = spa->spa_dsl_pool; 6743 vdev_t *rvd = spa->spa_root_vdev; 6744 6745 /* 6746 * We are going to be changing the meaning of the metaslab's 6747 * ms_allocatable. Ensure that the allocator doesn't try to 6748 * use the tree. 6749 */ 6750 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops; 6751 spa->spa_log_class->mc_ops = &zdb_metaslab_ops; 6752 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops; 6753 6754 zcb->zcb_vd_obsolete_counts = 6755 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *), 6756 UMEM_NOFAIL); 6757 6758 /* 6759 * For leak detection, we overload the ms_allocatable trees 6760 * to contain allocated segments instead of free segments. 6761 * As a result, we can't use the normal metaslab_load/unload 6762 * interfaces. 6763 */ 6764 zdb_leak_init_prepare_indirect_vdevs(spa, zcb); 6765 load_concrete_ms_allocatable_trees(spa, SM_ALLOC); 6766 6767 /* 6768 * On load_concrete_ms_allocatable_trees() we loaded all the 6769 * allocated entries from the ms_sm to the ms_allocatable for 6770 * each metaslab. If the pool has a checkpoint or is in the 6771 * middle of discarding a checkpoint, some of these blocks 6772 * may have been freed but their ms_sm may not have been 6773 * updated because they are referenced by the checkpoint. In 6774 * order to avoid false-positives during leak-detection, we 6775 * go through the vdev's checkpoint space map and exclude all 6776 * its entries from their relevant ms_allocatable. 6777 * 6778 * We also aggregate the space held by the checkpoint and add 6779 * it to zcb_checkpoint_size. 6780 * 6781 * Note that at this point we are also verifying that all the 6782 * entries on the checkpoint_sm are marked as allocated in 6783 * the ms_sm of their relevant metaslab. 6784 * [see comment in checkpoint_sm_exclude_entry_cb()] 6785 */ 6786 zdb_leak_init_exclude_checkpoint(spa, zcb); 6787 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa)); 6788 6789 /* for cleaner progress output */ 6790 (void) fprintf(stderr, "\n"); 6791 6792 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 6793 ASSERT(spa_feature_is_enabled(spa, 6794 SPA_FEATURE_DEVICE_REMOVAL)); 6795 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj, 6796 increment_indirect_mapping_cb, zcb, NULL); 6797 } 6798 } 6799 6800 static boolean_t 6801 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb) 6802 { 6803 boolean_t leaks = B_FALSE; 6804 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 6805 uint64_t total_leaked = 0; 6806 boolean_t are_precise = B_FALSE; 6807 6808 ASSERT(vim != NULL); 6809 6810 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) { 6811 vdev_indirect_mapping_entry_phys_t *vimep = 6812 &vim->vim_entries[i]; 6813 uint64_t obsolete_bytes = 0; 6814 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep); 6815 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 6816 6817 /* 6818 * This is not very efficient but it's easy to 6819 * verify correctness. 6820 */ 6821 for (uint64_t inner_offset = 0; 6822 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst); 6823 inner_offset += 1ULL << vd->vdev_ashift) { 6824 if (zfs_range_tree_contains(msp->ms_allocatable, 6825 offset + inner_offset, 1ULL << vd->vdev_ashift)) { 6826 obsolete_bytes += 1ULL << vd->vdev_ashift; 6827 } 6828 } 6829 6830 int64_t bytes_leaked = obsolete_bytes - 6831 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]; 6832 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=, 6833 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]); 6834 6835 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6836 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) { 6837 (void) printf("obsolete indirect mapping count " 6838 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n", 6839 (u_longlong_t)vd->vdev_id, 6840 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep), 6841 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst), 6842 (u_longlong_t)bytes_leaked); 6843 } 6844 total_leaked += ABS(bytes_leaked); 6845 } 6846 6847 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 6848 if (!are_precise && total_leaked > 0) { 6849 int pct_leaked = total_leaked * 100 / 6850 vdev_indirect_mapping_bytes_mapped(vim); 6851 (void) printf("cannot verify obsolete indirect mapping " 6852 "counts of vdev %llu because precise feature was not " 6853 "enabled when it was removed: %d%% (%llx bytes) of mapping" 6854 "unreferenced\n", 6855 (u_longlong_t)vd->vdev_id, pct_leaked, 6856 (u_longlong_t)total_leaked); 6857 } else if (total_leaked > 0) { 6858 (void) printf("obsolete indirect mapping count mismatch " 6859 "for vdev %llu -- %llx total bytes mismatched\n", 6860 (u_longlong_t)vd->vdev_id, 6861 (u_longlong_t)total_leaked); 6862 leaks |= B_TRUE; 6863 } 6864 6865 vdev_indirect_mapping_free_obsolete_counts(vim, 6866 zcb->zcb_vd_obsolete_counts[vd->vdev_id]); 6867 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL; 6868 6869 return (leaks); 6870 } 6871 6872 static boolean_t 6873 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb) 6874 { 6875 if (dump_opt['L']) 6876 return (B_FALSE); 6877 6878 boolean_t leaks = B_FALSE; 6879 vdev_t *rvd = spa->spa_root_vdev; 6880 for (unsigned c = 0; c < rvd->vdev_children; c++) { 6881 vdev_t *vd = rvd->vdev_child[c]; 6882 6883 if (zcb->zcb_vd_obsolete_counts[c] != NULL) { 6884 leaks |= zdb_check_for_obsolete_leaks(vd, zcb); 6885 } 6886 6887 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 6888 metaslab_t *msp = vd->vdev_ms[m]; 6889 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class == 6890 spa_embedded_log_class(spa)) ? 6891 vd->vdev_log_mg : vd->vdev_mg); 6892 6893 /* 6894 * ms_allocatable has been overloaded 6895 * to contain allocated segments. Now that 6896 * we finished traversing all blocks, any 6897 * block that remains in the ms_allocatable 6898 * represents an allocated block that we 6899 * did not claim during the traversal. 6900 * Claimed blocks would have been removed 6901 * from the ms_allocatable. For indirect 6902 * vdevs, space remaining in the tree 6903 * represents parts of the mapping that are 6904 * not referenced, which is not a bug. 6905 */ 6906 if (vd->vdev_ops == &vdev_indirect_ops) { 6907 zfs_range_tree_vacate(msp->ms_allocatable, 6908 NULL, NULL); 6909 } else { 6910 zfs_range_tree_vacate(msp->ms_allocatable, 6911 zdb_leak, vd); 6912 } 6913 if (msp->ms_loaded) { 6914 msp->ms_loaded = B_FALSE; 6915 } 6916 } 6917 } 6918 6919 umem_free(zcb->zcb_vd_obsolete_counts, 6920 rvd->vdev_children * sizeof (uint32_t *)); 6921 zcb->zcb_vd_obsolete_counts = NULL; 6922 6923 return (leaks); 6924 } 6925 6926 static int 6927 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 6928 { 6929 (void) tx; 6930 zdb_cb_t *zcb = arg; 6931 6932 if (dump_opt['b'] >= 5) { 6933 char blkbuf[BP_SPRINTF_LEN]; 6934 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 6935 (void) printf("[%s] %s\n", 6936 "deferred free", blkbuf); 6937 } 6938 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED); 6939 return (0); 6940 } 6941 6942 /* 6943 * Iterate over livelists which have been destroyed by the user but 6944 * are still present in the MOS, waiting to be freed 6945 */ 6946 static void 6947 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg) 6948 { 6949 objset_t *mos = spa->spa_meta_objset; 6950 uint64_t zap_obj; 6951 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 6952 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 6953 if (err == ENOENT) 6954 return; 6955 ASSERT0(err); 6956 6957 zap_cursor_t zc; 6958 zap_attribute_t *attrp = zap_attribute_alloc(); 6959 dsl_deadlist_t ll; 6960 /* NULL out os prior to dsl_deadlist_open in case it's garbage */ 6961 ll.dl_os = NULL; 6962 for (zap_cursor_init(&zc, mos, zap_obj); 6963 zap_cursor_retrieve(&zc, attrp) == 0; 6964 (void) zap_cursor_advance(&zc)) { 6965 VERIFY0(dsl_deadlist_open(&ll, mos, attrp->za_first_integer)); 6966 func(&ll, arg); 6967 dsl_deadlist_close(&ll); 6968 } 6969 zap_cursor_fini(&zc); 6970 zap_attribute_free(attrp); 6971 } 6972 6973 static int 6974 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, 6975 dmu_tx_t *tx) 6976 { 6977 ASSERT(!bp_freed); 6978 return (count_block_cb(arg, bp, tx)); 6979 } 6980 6981 static int 6982 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle) 6983 { 6984 zdb_cb_t *zbc = args; 6985 bplist_t blks; 6986 bplist_create(&blks); 6987 /* determine which blocks have been alloc'd but not freed */ 6988 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL)); 6989 /* count those blocks */ 6990 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL); 6991 bplist_destroy(&blks); 6992 return (0); 6993 } 6994 6995 static void 6996 livelist_count_blocks(dsl_deadlist_t *ll, void *arg) 6997 { 6998 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg); 6999 } 7000 7001 /* 7002 * Count the blocks in the livelists that have been destroyed by the user 7003 * but haven't yet been freed. 7004 */ 7005 static void 7006 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc) 7007 { 7008 iterate_deleted_livelists(spa, livelist_count_blocks, zbc); 7009 } 7010 7011 static void 7012 dump_livelist_cb(dsl_deadlist_t *ll, void *arg) 7013 { 7014 ASSERT3P(arg, ==, NULL); 7015 global_feature_count[SPA_FEATURE_LIVELIST]++; 7016 dump_blkptr_list(ll, "Deleted Livelist"); 7017 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL); 7018 } 7019 7020 /* 7021 * Print out, register object references to, and increment feature counts for 7022 * livelists that have been destroyed by the user but haven't yet been freed. 7023 */ 7024 static void 7025 deleted_livelists_dump_mos(spa_t *spa) 7026 { 7027 uint64_t zap_obj; 7028 objset_t *mos = spa->spa_meta_objset; 7029 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT, 7030 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj); 7031 if (err == ENOENT) 7032 return; 7033 mos_obj_refd(zap_obj); 7034 iterate_deleted_livelists(spa, dump_livelist_cb, NULL); 7035 } 7036 7037 static int 7038 zdb_brt_entry_compare(const void *zcn1, const void *zcn2) 7039 { 7040 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva; 7041 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva; 7042 int cmp; 7043 7044 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2)); 7045 if (cmp == 0) 7046 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)); 7047 7048 return (cmp); 7049 } 7050 7051 static int 7052 dump_block_stats(spa_t *spa) 7053 { 7054 zdb_cb_t *zcb; 7055 zdb_blkstats_t *zb, *tzb; 7056 uint64_t norm_alloc, norm_space, total_alloc, total_found; 7057 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7058 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD; 7059 boolean_t leaks = B_FALSE; 7060 int e, c, err; 7061 bp_embedded_type_t i; 7062 7063 ddt_prefetch_all(spa); 7064 7065 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL); 7066 7067 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) { 7068 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare, 7069 sizeof (zdb_brt_entry_t), 7070 offsetof(zdb_brt_entry_t, zbre_node)); 7071 zcb->zcb_brt_is_active = B_TRUE; 7072 } 7073 7074 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n", 7075 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "", 7076 (dump_opt['c'] == 1) ? "metadata " : "", 7077 dump_opt['c'] ? "checksums " : "", 7078 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "", 7079 !dump_opt['L'] ? "nothing leaked " : ""); 7080 7081 /* 7082 * When leak detection is enabled we load all space maps as SM_ALLOC 7083 * maps, then traverse the pool claiming each block we discover. If 7084 * the pool is perfectly consistent, the segment trees will be empty 7085 * when we're done. Anything left over is a leak; any block we can't 7086 * claim (because it's not part of any space map) is a double 7087 * allocation, reference to a freed block, or an unclaimed log block. 7088 * 7089 * When leak detection is disabled (-L option) we still traverse the 7090 * pool claiming each block we discover, but we skip opening any space 7091 * maps. 7092 */ 7093 zdb_leak_init(spa, zcb); 7094 7095 /* 7096 * If there's a deferred-free bplist, process that first. 7097 */ 7098 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj, 7099 bpobj_count_block_cb, zcb, NULL); 7100 7101 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 7102 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj, 7103 bpobj_count_block_cb, zcb, NULL); 7104 } 7105 7106 zdb_claim_removing(spa, zcb); 7107 7108 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) { 7109 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset, 7110 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb, 7111 zcb, NULL)); 7112 } 7113 7114 deleted_livelists_count_blocks(spa, zcb); 7115 7116 if (dump_opt['c'] > 1) 7117 flags |= TRAVERSE_PREFETCH_DATA; 7118 7119 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa)); 7120 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa)); 7121 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa)); 7122 zcb->zcb_totalasize += 7123 metaslab_class_get_alloc(spa_embedded_log_class(spa)); 7124 zcb->zcb_start = zcb->zcb_lastprint = gethrtime(); 7125 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb); 7126 7127 /* 7128 * If we've traversed the data blocks then we need to wait for those 7129 * I/Os to complete. We leverage "The Godfather" zio to wait on 7130 * all async I/Os to complete. 7131 */ 7132 if (dump_opt['c']) { 7133 for (c = 0; c < max_ncpus; c++) { 7134 (void) zio_wait(spa->spa_async_zio_root[c]); 7135 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL, 7136 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | 7137 ZIO_FLAG_GODFATHER); 7138 } 7139 } 7140 ASSERT0(spa->spa_load_verify_bytes); 7141 7142 /* 7143 * Done after zio_wait() since zcb_haderrors is modified in 7144 * zdb_blkptr_done() 7145 */ 7146 zcb->zcb_haderrors |= err; 7147 7148 if (zcb->zcb_haderrors) { 7149 (void) printf("\nError counts:\n\n"); 7150 (void) printf("\t%5s %s\n", "errno", "count"); 7151 for (e = 0; e < 256; e++) { 7152 if (zcb->zcb_errors[e] != 0) { 7153 (void) printf("\t%5d %llu\n", 7154 e, (u_longlong_t)zcb->zcb_errors[e]); 7155 } 7156 } 7157 } 7158 7159 /* 7160 * Report any leaked segments. 7161 */ 7162 leaks |= zdb_leak_fini(spa, zcb); 7163 7164 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL]; 7165 7166 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 7167 norm_space = metaslab_class_get_space(spa_normal_class(spa)); 7168 7169 total_alloc = norm_alloc + 7170 metaslab_class_get_alloc(spa_log_class(spa)) + 7171 metaslab_class_get_alloc(spa_embedded_log_class(spa)) + 7172 metaslab_class_get_alloc(spa_special_class(spa)) + 7173 metaslab_class_get_alloc(spa_dedup_class(spa)) + 7174 get_unflushed_alloc_space(spa); 7175 total_found = 7176 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize + 7177 zcb->zcb_removing_size + zcb->zcb_checkpoint_size; 7178 7179 if (total_found == total_alloc && !dump_opt['L']) { 7180 (void) printf("\n\tNo leaks (block sum matches space" 7181 " maps exactly)\n"); 7182 } else if (!dump_opt['L']) { 7183 (void) printf("block traversal size %llu != alloc %llu " 7184 "(%s %lld)\n", 7185 (u_longlong_t)total_found, 7186 (u_longlong_t)total_alloc, 7187 (dump_opt['L']) ? "unreachable" : "leaked", 7188 (longlong_t)(total_alloc - total_found)); 7189 } 7190 7191 if (tzb->zb_count == 0) { 7192 umem_free(zcb, sizeof (zdb_cb_t)); 7193 return (2); 7194 } 7195 7196 (void) printf("\n"); 7197 (void) printf("\t%-16s %14llu\n", "bp count:", 7198 (u_longlong_t)tzb->zb_count); 7199 (void) printf("\t%-16s %14llu\n", "ganged count:", 7200 (longlong_t)tzb->zb_gangs); 7201 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:", 7202 (u_longlong_t)tzb->zb_lsize, 7203 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count)); 7204 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7205 "bp physical:", (u_longlong_t)tzb->zb_psize, 7206 (u_longlong_t)(tzb->zb_psize / tzb->zb_count), 7207 (double)tzb->zb_lsize / tzb->zb_psize); 7208 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n", 7209 "bp allocated:", (u_longlong_t)tzb->zb_asize, 7210 (u_longlong_t)(tzb->zb_asize / tzb->zb_count), 7211 (double)tzb->zb_lsize / tzb->zb_asize); 7212 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n", 7213 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize, 7214 (u_longlong_t)zcb->zcb_dedup_blocks, 7215 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0); 7216 (void) printf("\t%-16s %14llu count: %6llu\n", 7217 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize, 7218 (u_longlong_t)zcb->zcb_clone_blocks); 7219 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:", 7220 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space); 7221 7222 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7223 uint64_t alloc = metaslab_class_get_alloc( 7224 spa_special_class(spa)); 7225 uint64_t space = metaslab_class_get_space( 7226 spa_special_class(spa)); 7227 7228 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7229 "Special class", (u_longlong_t)alloc, 7230 100.0 * alloc / space); 7231 } 7232 7233 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7234 uint64_t alloc = metaslab_class_get_alloc( 7235 spa_dedup_class(spa)); 7236 uint64_t space = metaslab_class_get_space( 7237 spa_dedup_class(spa)); 7238 7239 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7240 "Dedup class", (u_longlong_t)alloc, 7241 100.0 * alloc / space); 7242 } 7243 7244 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) { 7245 uint64_t alloc = metaslab_class_get_alloc( 7246 spa_embedded_log_class(spa)); 7247 uint64_t space = metaslab_class_get_space( 7248 spa_embedded_log_class(spa)); 7249 7250 (void) printf("\t%-16s %14llu used: %5.2f%%\n", 7251 "Embedded log class", (u_longlong_t)alloc, 7252 100.0 * alloc / space); 7253 } 7254 7255 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) { 7256 if (zcb->zcb_embedded_blocks[i] == 0) 7257 continue; 7258 (void) printf("\n"); 7259 (void) printf("\tadditional, non-pointer bps of type %u: " 7260 "%10llu\n", 7261 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]); 7262 7263 if (dump_opt['b'] >= 3) { 7264 (void) printf("\t number of (compressed) bytes: " 7265 "number of bps\n"); 7266 dump_histogram(zcb->zcb_embedded_histogram[i], 7267 sizeof (zcb->zcb_embedded_histogram[i]) / 7268 sizeof (zcb->zcb_embedded_histogram[i][0]), 0); 7269 } 7270 } 7271 7272 if (tzb->zb_ditto_samevdev != 0) { 7273 (void) printf("\tDittoed blocks on same vdev: %llu\n", 7274 (longlong_t)tzb->zb_ditto_samevdev); 7275 } 7276 if (tzb->zb_ditto_same_ms != 0) { 7277 (void) printf("\tDittoed blocks in same metaslab: %llu\n", 7278 (longlong_t)tzb->zb_ditto_same_ms); 7279 } 7280 7281 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) { 7282 vdev_t *vd = spa->spa_root_vdev->vdev_child[v]; 7283 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping; 7284 7285 if (vim == NULL) { 7286 continue; 7287 } 7288 7289 char mem[32]; 7290 zdb_nicenum(vdev_indirect_mapping_num_entries(vim), 7291 mem, vdev_indirect_mapping_size(vim)); 7292 7293 (void) printf("\tindirect vdev id %llu has %llu segments " 7294 "(%s in memory)\n", 7295 (longlong_t)vd->vdev_id, 7296 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem); 7297 } 7298 7299 if (dump_opt['b'] >= 2) { 7300 int l, t, level; 7301 char csize[32], lsize[32], psize[32], asize[32]; 7302 char avg[32], gang[32]; 7303 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE" 7304 "\t avg\t comp\t%%Total\tType\n"); 7305 7306 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t), 7307 UMEM_NOFAIL); 7308 7309 for (t = 0; t <= ZDB_OT_TOTAL; t++) { 7310 const char *typename; 7311 7312 /* make sure nicenum has enough space */ 7313 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ, 7314 "csize truncated"); 7315 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, 7316 "lsize truncated"); 7317 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ, 7318 "psize truncated"); 7319 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, 7320 "asize truncated"); 7321 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ, 7322 "avg truncated"); 7323 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ, 7324 "gang truncated"); 7325 7326 if (t < DMU_OT_NUMTYPES) 7327 typename = dmu_ot[t].ot_name; 7328 else 7329 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES]; 7330 7331 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) { 7332 (void) printf("%6s\t%5s\t%5s\t%5s" 7333 "\t%5s\t%5s\t%6s\t%s\n", 7334 "-", 7335 "-", 7336 "-", 7337 "-", 7338 "-", 7339 "-", 7340 "-", 7341 typename); 7342 continue; 7343 } 7344 7345 for (l = ZB_TOTAL - 1; l >= -1; l--) { 7346 level = (l == -1 ? ZB_TOTAL : l); 7347 zb = &zcb->zcb_type[level][t]; 7348 7349 if (zb->zb_asize == 0) 7350 continue; 7351 7352 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES && 7353 (level > 0 || DMU_OT_IS_METADATA(t))) { 7354 mdstats->zb_count += zb->zb_count; 7355 mdstats->zb_lsize += zb->zb_lsize; 7356 mdstats->zb_psize += zb->zb_psize; 7357 mdstats->zb_asize += zb->zb_asize; 7358 mdstats->zb_gangs += zb->zb_gangs; 7359 } 7360 7361 if (dump_opt['b'] < 3 && level != ZB_TOTAL) 7362 continue; 7363 7364 if (level == 0 && zb->zb_asize == 7365 zcb->zcb_type[ZB_TOTAL][t].zb_asize) 7366 continue; 7367 7368 zdb_nicenum(zb->zb_count, csize, 7369 sizeof (csize)); 7370 zdb_nicenum(zb->zb_lsize, lsize, 7371 sizeof (lsize)); 7372 zdb_nicenum(zb->zb_psize, psize, 7373 sizeof (psize)); 7374 zdb_nicenum(zb->zb_asize, asize, 7375 sizeof (asize)); 7376 zdb_nicenum(zb->zb_asize / zb->zb_count, avg, 7377 sizeof (avg)); 7378 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang)); 7379 7380 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7381 "\t%5.2f\t%6.2f\t", 7382 csize, lsize, psize, asize, avg, 7383 (double)zb->zb_lsize / zb->zb_psize, 7384 100.0 * zb->zb_asize / tzb->zb_asize); 7385 7386 if (level == ZB_TOTAL) 7387 (void) printf("%s\n", typename); 7388 else 7389 (void) printf(" L%d %s\n", 7390 level, typename); 7391 7392 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) { 7393 (void) printf("\t number of ganged " 7394 "blocks: %s\n", gang); 7395 } 7396 7397 if (dump_opt['b'] >= 4) { 7398 (void) printf("psize " 7399 "(in 512-byte sectors): " 7400 "number of blocks\n"); 7401 dump_histogram(zb->zb_psize_histogram, 7402 PSIZE_HISTO_SIZE, 0); 7403 } 7404 } 7405 } 7406 zdb_nicenum(mdstats->zb_count, csize, 7407 sizeof (csize)); 7408 zdb_nicenum(mdstats->zb_lsize, lsize, 7409 sizeof (lsize)); 7410 zdb_nicenum(mdstats->zb_psize, psize, 7411 sizeof (psize)); 7412 zdb_nicenum(mdstats->zb_asize, asize, 7413 sizeof (asize)); 7414 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg, 7415 sizeof (avg)); 7416 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang)); 7417 7418 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s" 7419 "\t%5.2f\t%6.2f\t", 7420 csize, lsize, psize, asize, avg, 7421 (double)mdstats->zb_lsize / mdstats->zb_psize, 7422 100.0 * mdstats->zb_asize / tzb->zb_asize); 7423 (void) printf("%s\n", "Metadata Total"); 7424 7425 /* Output a table summarizing block sizes in the pool */ 7426 if (dump_opt['b'] >= 2) { 7427 dump_size_histograms(zcb); 7428 } 7429 7430 umem_free(mdstats, sizeof (zfs_blkstat_t)); 7431 } 7432 7433 (void) printf("\n"); 7434 7435 if (leaks) { 7436 umem_free(zcb, sizeof (zdb_cb_t)); 7437 return (2); 7438 } 7439 7440 if (zcb->zcb_haderrors) { 7441 umem_free(zcb, sizeof (zdb_cb_t)); 7442 return (3); 7443 } 7444 7445 umem_free(zcb, sizeof (zdb_cb_t)); 7446 return (0); 7447 } 7448 7449 typedef struct zdb_ddt_entry { 7450 /* key must be first for ddt_key_compare */ 7451 ddt_key_t zdde_key; 7452 uint64_t zdde_ref_blocks; 7453 uint64_t zdde_ref_lsize; 7454 uint64_t zdde_ref_psize; 7455 uint64_t zdde_ref_dsize; 7456 avl_node_t zdde_node; 7457 } zdb_ddt_entry_t; 7458 7459 static int 7460 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 7461 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 7462 { 7463 (void) zilog, (void) dnp; 7464 avl_tree_t *t = arg; 7465 avl_index_t where; 7466 zdb_ddt_entry_t *zdde, zdde_search; 7467 7468 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) || 7469 BP_IS_EMBEDDED(bp)) 7470 return (0); 7471 7472 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) { 7473 (void) printf("traversing objset %llu, %llu objects, " 7474 "%lu blocks so far\n", 7475 (u_longlong_t)zb->zb_objset, 7476 (u_longlong_t)BP_GET_FILL(bp), 7477 avl_numnodes(t)); 7478 } 7479 7480 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF || 7481 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp))) 7482 return (0); 7483 7484 ddt_key_fill(&zdde_search.zdde_key, bp); 7485 7486 zdde = avl_find(t, &zdde_search, &where); 7487 7488 if (zdde == NULL) { 7489 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL); 7490 zdde->zdde_key = zdde_search.zdde_key; 7491 avl_insert(t, zdde, where); 7492 } 7493 7494 zdde->zdde_ref_blocks += 1; 7495 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp); 7496 zdde->zdde_ref_psize += BP_GET_PSIZE(bp); 7497 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp); 7498 7499 return (0); 7500 } 7501 7502 static void 7503 dump_simulated_ddt(spa_t *spa) 7504 { 7505 avl_tree_t t; 7506 void *cookie = NULL; 7507 zdb_ddt_entry_t *zdde; 7508 ddt_histogram_t ddh_total = {{{0}}}; 7509 ddt_stat_t dds_total = {0}; 7510 7511 avl_create(&t, ddt_key_compare, 7512 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node)); 7513 7514 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 7515 7516 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA | 7517 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t); 7518 7519 spa_config_exit(spa, SCL_CONFIG, FTAG); 7520 7521 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) { 7522 uint64_t refcnt = zdde->zdde_ref_blocks; 7523 ASSERT(refcnt != 0); 7524 7525 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1]; 7526 7527 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt; 7528 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt; 7529 dds->dds_psize += zdde->zdde_ref_psize / refcnt; 7530 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt; 7531 7532 dds->dds_ref_blocks += zdde->zdde_ref_blocks; 7533 dds->dds_ref_lsize += zdde->zdde_ref_lsize; 7534 dds->dds_ref_psize += zdde->zdde_ref_psize; 7535 dds->dds_ref_dsize += zdde->zdde_ref_dsize; 7536 7537 umem_free(zdde, sizeof (*zdde)); 7538 } 7539 7540 avl_destroy(&t); 7541 7542 ddt_histogram_total(&dds_total, &ddh_total); 7543 7544 (void) printf("Simulated DDT histogram:\n"); 7545 7546 zpool_dump_ddt(&dds_total, &ddh_total); 7547 7548 dump_dedup_ratio(&dds_total); 7549 } 7550 7551 static int 7552 verify_device_removal_feature_counts(spa_t *spa) 7553 { 7554 uint64_t dr_feature_refcount = 0; 7555 uint64_t oc_feature_refcount = 0; 7556 uint64_t indirect_vdev_count = 0; 7557 uint64_t precise_vdev_count = 0; 7558 uint64_t obsolete_counts_object_count = 0; 7559 uint64_t obsolete_sm_count = 0; 7560 uint64_t obsolete_counts_count = 0; 7561 uint64_t scip_count = 0; 7562 uint64_t obsolete_bpobj_count = 0; 7563 int ret = 0; 7564 7565 spa_condensing_indirect_phys_t *scip = 7566 &spa->spa_condensing_indirect_phys; 7567 if (scip->scip_next_mapping_object != 0) { 7568 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev]; 7569 ASSERT(scip->scip_prev_obsolete_sm_object != 0); 7570 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops); 7571 7572 (void) printf("Condensing indirect vdev %llu: new mapping " 7573 "object %llu, prev obsolete sm %llu\n", 7574 (u_longlong_t)scip->scip_vdev, 7575 (u_longlong_t)scip->scip_next_mapping_object, 7576 (u_longlong_t)scip->scip_prev_obsolete_sm_object); 7577 if (scip->scip_prev_obsolete_sm_object != 0) { 7578 space_map_t *prev_obsolete_sm = NULL; 7579 VERIFY0(space_map_open(&prev_obsolete_sm, 7580 spa->spa_meta_objset, 7581 scip->scip_prev_obsolete_sm_object, 7582 0, vd->vdev_asize, 0)); 7583 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm); 7584 (void) printf("\n"); 7585 space_map_close(prev_obsolete_sm); 7586 } 7587 7588 scip_count += 2; 7589 } 7590 7591 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) { 7592 vdev_t *vd = spa->spa_root_vdev->vdev_child[i]; 7593 vdev_indirect_config_t *vic = &vd->vdev_indirect_config; 7594 7595 if (vic->vic_mapping_object != 0) { 7596 ASSERT(vd->vdev_ops == &vdev_indirect_ops || 7597 vd->vdev_removing); 7598 indirect_vdev_count++; 7599 7600 if (vd->vdev_indirect_mapping->vim_havecounts) { 7601 obsolete_counts_count++; 7602 } 7603 } 7604 7605 boolean_t are_precise; 7606 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise)); 7607 if (are_precise) { 7608 ASSERT(vic->vic_mapping_object != 0); 7609 precise_vdev_count++; 7610 } 7611 7612 uint64_t obsolete_sm_object; 7613 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object)); 7614 if (obsolete_sm_object != 0) { 7615 ASSERT(vic->vic_mapping_object != 0); 7616 obsolete_sm_count++; 7617 } 7618 } 7619 7620 (void) feature_get_refcount(spa, 7621 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL], 7622 &dr_feature_refcount); 7623 (void) feature_get_refcount(spa, 7624 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS], 7625 &oc_feature_refcount); 7626 7627 if (dr_feature_refcount != indirect_vdev_count) { 7628 ret = 1; 7629 (void) printf("Number of indirect vdevs (%llu) " \ 7630 "does not match feature count (%llu)\n", 7631 (u_longlong_t)indirect_vdev_count, 7632 (u_longlong_t)dr_feature_refcount); 7633 } else { 7634 (void) printf("Verified device_removal feature refcount " \ 7635 "of %llu is correct\n", 7636 (u_longlong_t)dr_feature_refcount); 7637 } 7638 7639 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT, 7640 DMU_POOL_OBSOLETE_BPOBJ) == 0) { 7641 obsolete_bpobj_count++; 7642 } 7643 7644 7645 obsolete_counts_object_count = precise_vdev_count; 7646 obsolete_counts_object_count += obsolete_sm_count; 7647 obsolete_counts_object_count += obsolete_counts_count; 7648 obsolete_counts_object_count += scip_count; 7649 obsolete_counts_object_count += obsolete_bpobj_count; 7650 obsolete_counts_object_count += remap_deadlist_count; 7651 7652 if (oc_feature_refcount != obsolete_counts_object_count) { 7653 ret = 1; 7654 (void) printf("Number of obsolete counts objects (%llu) " \ 7655 "does not match feature count (%llu)\n", 7656 (u_longlong_t)obsolete_counts_object_count, 7657 (u_longlong_t)oc_feature_refcount); 7658 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu " 7659 "ob:%llu rd:%llu\n", 7660 (u_longlong_t)precise_vdev_count, 7661 (u_longlong_t)obsolete_sm_count, 7662 (u_longlong_t)obsolete_counts_count, 7663 (u_longlong_t)scip_count, 7664 (u_longlong_t)obsolete_bpobj_count, 7665 (u_longlong_t)remap_deadlist_count); 7666 } else { 7667 (void) printf("Verified indirect_refcount feature refcount " \ 7668 "of %llu is correct\n", 7669 (u_longlong_t)oc_feature_refcount); 7670 } 7671 return (ret); 7672 } 7673 7674 static void 7675 zdb_set_skip_mmp(char *target) 7676 { 7677 spa_t *spa; 7678 7679 /* 7680 * Disable the activity check to allow examination of 7681 * active pools. 7682 */ 7683 mutex_enter(&spa_namespace_lock); 7684 if ((spa = spa_lookup(target)) != NULL) { 7685 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP; 7686 } 7687 mutex_exit(&spa_namespace_lock); 7688 } 7689 7690 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE" 7691 /* 7692 * Import the checkpointed state of the pool specified by the target 7693 * parameter as readonly. The function also accepts a pool config 7694 * as an optional parameter, else it attempts to infer the config by 7695 * the name of the target pool. 7696 * 7697 * Note that the checkpointed state's pool name will be the name of 7698 * the original pool with the above suffix appended to it. In addition, 7699 * if the target is not a pool name (e.g. a path to a dataset) then 7700 * the new_path parameter is populated with the updated path to 7701 * reflect the fact that we are looking into the checkpointed state. 7702 * 7703 * The function returns a newly-allocated copy of the name of the 7704 * pool containing the checkpointed state. When this copy is no 7705 * longer needed it should be freed with free(3C). Same thing 7706 * applies to the new_path parameter if allocated. 7707 */ 7708 static char * 7709 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path) 7710 { 7711 int error = 0; 7712 char *poolname, *bogus_name = NULL; 7713 boolean_t freecfg = B_FALSE; 7714 7715 /* If the target is not a pool, the extract the pool name */ 7716 char *path_start = strchr(target, '/'); 7717 if (path_start != NULL) { 7718 size_t poolname_len = path_start - target; 7719 poolname = strndup(target, poolname_len); 7720 } else { 7721 poolname = target; 7722 } 7723 7724 if (cfg == NULL) { 7725 zdb_set_skip_mmp(poolname); 7726 error = spa_get_stats(poolname, &cfg, NULL, 0); 7727 if (error != 0) { 7728 fatal("Tried to read config of pool \"%s\" but " 7729 "spa_get_stats() failed with error %d\n", 7730 poolname, error); 7731 } 7732 freecfg = B_TRUE; 7733 } 7734 7735 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) { 7736 if (target != poolname) 7737 free(poolname); 7738 return (NULL); 7739 } 7740 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name); 7741 7742 error = spa_import(bogus_name, cfg, NULL, 7743 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT | 7744 ZFS_IMPORT_SKIP_MMP); 7745 if (freecfg) 7746 nvlist_free(cfg); 7747 if (error != 0) { 7748 fatal("Tried to import pool \"%s\" but spa_import() failed " 7749 "with error %d\n", bogus_name, error); 7750 } 7751 7752 if (new_path != NULL && path_start != NULL) { 7753 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) { 7754 free(bogus_name); 7755 if (path_start != NULL) 7756 free(poolname); 7757 return (NULL); 7758 } 7759 } 7760 7761 if (target != poolname) 7762 free(poolname); 7763 7764 return (bogus_name); 7765 } 7766 7767 typedef struct verify_checkpoint_sm_entry_cb_arg { 7768 vdev_t *vcsec_vd; 7769 7770 /* the following fields are only used for printing progress */ 7771 uint64_t vcsec_entryid; 7772 uint64_t vcsec_num_entries; 7773 } verify_checkpoint_sm_entry_cb_arg_t; 7774 7775 #define ENTRIES_PER_PROGRESS_UPDATE 10000 7776 7777 static int 7778 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg) 7779 { 7780 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg; 7781 vdev_t *vd = vcsec->vcsec_vd; 7782 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift]; 7783 uint64_t end = sme->sme_offset + sme->sme_run; 7784 7785 ASSERT(sme->sme_type == SM_FREE); 7786 7787 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) { 7788 (void) fprintf(stderr, 7789 "\rverifying vdev %llu, space map entry %llu of %llu ...", 7790 (longlong_t)vd->vdev_id, 7791 (longlong_t)vcsec->vcsec_entryid, 7792 (longlong_t)vcsec->vcsec_num_entries); 7793 } 7794 vcsec->vcsec_entryid++; 7795 7796 /* 7797 * See comment in checkpoint_sm_exclude_entry_cb() 7798 */ 7799 VERIFY3U(sme->sme_offset, >=, ms->ms_start); 7800 VERIFY3U(end, <=, ms->ms_start + ms->ms_size); 7801 7802 /* 7803 * The entries in the vdev_checkpoint_sm should be marked as 7804 * allocated in the checkpointed state of the pool, therefore 7805 * their respective ms_allocateable trees should not contain them. 7806 */ 7807 mutex_enter(&ms->ms_lock); 7808 zfs_range_tree_verify_not_present(ms->ms_allocatable, 7809 sme->sme_offset, sme->sme_run); 7810 mutex_exit(&ms->ms_lock); 7811 7812 return (0); 7813 } 7814 7815 /* 7816 * Verify that all segments in the vdev_checkpoint_sm are allocated 7817 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's 7818 * ms_allocatable). 7819 * 7820 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of 7821 * each vdev in the current state of the pool to the metaslab space maps 7822 * (ms_sm) of the checkpointed state of the pool. 7823 * 7824 * Note that the function changes the state of the ms_allocatable 7825 * trees of the current spa_t. The entries of these ms_allocatable 7826 * trees are cleared out and then repopulated from with the free 7827 * entries of their respective ms_sm space maps. 7828 */ 7829 static void 7830 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current) 7831 { 7832 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7833 vdev_t *current_rvd = current->spa_root_vdev; 7834 7835 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE); 7836 7837 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) { 7838 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c]; 7839 vdev_t *current_vd = current_rvd->vdev_child[c]; 7840 7841 space_map_t *checkpoint_sm = NULL; 7842 uint64_t checkpoint_sm_obj; 7843 7844 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7845 /* 7846 * Since we don't allow device removal in a pool 7847 * that has a checkpoint, we expect that all removed 7848 * vdevs were removed from the pool before the 7849 * checkpoint. 7850 */ 7851 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7852 continue; 7853 } 7854 7855 /* 7856 * If the checkpoint space map doesn't exist, then nothing 7857 * here is checkpointed so there's nothing to verify. 7858 */ 7859 if (current_vd->vdev_top_zap == 0 || 7860 zap_contains(spa_meta_objset(current), 7861 current_vd->vdev_top_zap, 7862 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 7863 continue; 7864 7865 VERIFY0(zap_lookup(spa_meta_objset(current), 7866 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 7867 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 7868 7869 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current), 7870 checkpoint_sm_obj, 0, current_vd->vdev_asize, 7871 current_vd->vdev_ashift)); 7872 7873 verify_checkpoint_sm_entry_cb_arg_t vcsec; 7874 vcsec.vcsec_vd = ckpoint_vd; 7875 vcsec.vcsec_entryid = 0; 7876 vcsec.vcsec_num_entries = 7877 space_map_length(checkpoint_sm) / sizeof (uint64_t); 7878 VERIFY0(space_map_iterate(checkpoint_sm, 7879 space_map_length(checkpoint_sm), 7880 verify_checkpoint_sm_entry_cb, &vcsec)); 7881 if (dump_opt['m'] > 3) 7882 dump_spacemap(current->spa_meta_objset, checkpoint_sm); 7883 space_map_close(checkpoint_sm); 7884 } 7885 7886 /* 7887 * If we've added vdevs since we took the checkpoint, ensure 7888 * that their checkpoint space maps are empty. 7889 */ 7890 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) { 7891 for (uint64_t c = ckpoint_rvd->vdev_children; 7892 c < current_rvd->vdev_children; c++) { 7893 vdev_t *current_vd = current_rvd->vdev_child[c]; 7894 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL); 7895 } 7896 } 7897 7898 /* for cleaner progress output */ 7899 (void) fprintf(stderr, "\n"); 7900 } 7901 7902 /* 7903 * Verifies that all space that's allocated in the checkpoint is 7904 * still allocated in the current version, by checking that everything 7905 * in checkpoint's ms_allocatable (which is actually allocated, not 7906 * allocatable/free) is not present in current's ms_allocatable. 7907 * 7908 * Note that the function changes the state of the ms_allocatable 7909 * trees of both spas when called. The entries of all ms_allocatable 7910 * trees are cleared out and then repopulated from their respective 7911 * ms_sm space maps. In the checkpointed state we load the allocated 7912 * entries, and in the current state we load the free entries. 7913 */ 7914 static void 7915 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current) 7916 { 7917 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev; 7918 vdev_t *current_rvd = current->spa_root_vdev; 7919 7920 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC); 7921 load_concrete_ms_allocatable_trees(current, SM_FREE); 7922 7923 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) { 7924 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i]; 7925 vdev_t *current_vd = current_rvd->vdev_child[i]; 7926 7927 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) { 7928 /* 7929 * See comment in verify_checkpoint_vdev_spacemaps() 7930 */ 7931 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops); 7932 continue; 7933 } 7934 7935 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) { 7936 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m]; 7937 metaslab_t *current_msp = current_vd->vdev_ms[m]; 7938 7939 (void) fprintf(stderr, 7940 "\rverifying vdev %llu of %llu, " 7941 "metaslab %llu of %llu ...", 7942 (longlong_t)current_vd->vdev_id, 7943 (longlong_t)current_rvd->vdev_children, 7944 (longlong_t)current_vd->vdev_ms[m]->ms_id, 7945 (longlong_t)current_vd->vdev_ms_count); 7946 7947 /* 7948 * We walk through the ms_allocatable trees that 7949 * are loaded with the allocated blocks from the 7950 * ms_sm spacemaps of the checkpoint. For each 7951 * one of these ranges we ensure that none of them 7952 * exists in the ms_allocatable trees of the 7953 * current state which are loaded with the ranges 7954 * that are currently free. 7955 * 7956 * This way we ensure that none of the blocks that 7957 * are part of the checkpoint were freed by mistake. 7958 */ 7959 zfs_range_tree_walk(ckpoint_msp->ms_allocatable, 7960 (zfs_range_tree_func_t *) 7961 zfs_range_tree_verify_not_present, 7962 current_msp->ms_allocatable); 7963 } 7964 } 7965 7966 /* for cleaner progress output */ 7967 (void) fprintf(stderr, "\n"); 7968 } 7969 7970 static void 7971 verify_checkpoint_blocks(spa_t *spa) 7972 { 7973 ASSERT(!dump_opt['L']); 7974 7975 spa_t *checkpoint_spa; 7976 char *checkpoint_pool; 7977 int error = 0; 7978 7979 /* 7980 * We import the checkpointed state of the pool (under a different 7981 * name) so we can do verification on it against the current state 7982 * of the pool. 7983 */ 7984 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL, 7985 NULL); 7986 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0); 7987 7988 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG); 7989 if (error != 0) { 7990 fatal("Tried to open pool \"%s\" but spa_open() failed with " 7991 "error %d\n", checkpoint_pool, error); 7992 } 7993 7994 /* 7995 * Ensure that ranges in the checkpoint space maps of each vdev 7996 * are allocated according to the checkpointed state's metaslab 7997 * space maps. 7998 */ 7999 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa); 8000 8001 /* 8002 * Ensure that allocated ranges in the checkpoint's metaslab 8003 * space maps remain allocated in the metaslab space maps of 8004 * the current state. 8005 */ 8006 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa); 8007 8008 /* 8009 * Once we are done, we get rid of the checkpointed state. 8010 */ 8011 spa_close(checkpoint_spa, FTAG); 8012 free(checkpoint_pool); 8013 } 8014 8015 static void 8016 dump_leftover_checkpoint_blocks(spa_t *spa) 8017 { 8018 vdev_t *rvd = spa->spa_root_vdev; 8019 8020 for (uint64_t i = 0; i < rvd->vdev_children; i++) { 8021 vdev_t *vd = rvd->vdev_child[i]; 8022 8023 space_map_t *checkpoint_sm = NULL; 8024 uint64_t checkpoint_sm_obj; 8025 8026 if (vd->vdev_top_zap == 0) 8027 continue; 8028 8029 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap, 8030 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0) 8031 continue; 8032 8033 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap, 8034 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, 8035 sizeof (uint64_t), 1, &checkpoint_sm_obj)); 8036 8037 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa), 8038 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift)); 8039 dump_spacemap(spa->spa_meta_objset, checkpoint_sm); 8040 space_map_close(checkpoint_sm); 8041 } 8042 } 8043 8044 static int 8045 verify_checkpoint(spa_t *spa) 8046 { 8047 uberblock_t checkpoint; 8048 int error; 8049 8050 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) 8051 return (0); 8052 8053 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 8054 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t), 8055 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint); 8056 8057 if (error == ENOENT && !dump_opt['L']) { 8058 /* 8059 * If the feature is active but the uberblock is missing 8060 * then we must be in the middle of discarding the 8061 * checkpoint. 8062 */ 8063 (void) printf("\nPartially discarded checkpoint " 8064 "state found:\n"); 8065 if (dump_opt['m'] > 3) 8066 dump_leftover_checkpoint_blocks(spa); 8067 return (0); 8068 } else if (error != 0) { 8069 (void) printf("lookup error %d when looking for " 8070 "checkpointed uberblock in MOS\n", error); 8071 return (error); 8072 } 8073 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n"); 8074 8075 if (checkpoint.ub_checkpoint_txg == 0) { 8076 (void) printf("\nub_checkpoint_txg not set in checkpointed " 8077 "uberblock\n"); 8078 error = 3; 8079 } 8080 8081 if (error == 0 && !dump_opt['L']) 8082 verify_checkpoint_blocks(spa); 8083 8084 return (error); 8085 } 8086 8087 static void 8088 mos_leaks_cb(void *arg, uint64_t start, uint64_t size) 8089 { 8090 (void) arg; 8091 for (uint64_t i = start; i < size; i++) { 8092 (void) printf("MOS object %llu referenced but not allocated\n", 8093 (u_longlong_t)i); 8094 } 8095 } 8096 8097 static void 8098 mos_obj_refd(uint64_t obj) 8099 { 8100 if (obj != 0 && mos_refd_objs != NULL) 8101 zfs_range_tree_add(mos_refd_objs, obj, 1); 8102 } 8103 8104 /* 8105 * Call on a MOS object that may already have been referenced. 8106 */ 8107 static void 8108 mos_obj_refd_multiple(uint64_t obj) 8109 { 8110 if (obj != 0 && mos_refd_objs != NULL && 8111 !zfs_range_tree_contains(mos_refd_objs, obj, 1)) 8112 zfs_range_tree_add(mos_refd_objs, obj, 1); 8113 } 8114 8115 static void 8116 mos_leak_vdev_top_zap(vdev_t *vd) 8117 { 8118 uint64_t ms_flush_data_obj; 8119 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), 8120 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, 8121 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj); 8122 if (error == ENOENT) 8123 return; 8124 ASSERT0(error); 8125 8126 mos_obj_refd(ms_flush_data_obj); 8127 } 8128 8129 static void 8130 mos_leak_vdev(vdev_t *vd) 8131 { 8132 mos_obj_refd(vd->vdev_dtl_object); 8133 mos_obj_refd(vd->vdev_ms_array); 8134 mos_obj_refd(vd->vdev_indirect_config.vic_births_object); 8135 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object); 8136 mos_obj_refd(vd->vdev_leaf_zap); 8137 if (vd->vdev_checkpoint_sm != NULL) 8138 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object); 8139 if (vd->vdev_indirect_mapping != NULL) { 8140 mos_obj_refd(vd->vdev_indirect_mapping-> 8141 vim_phys->vimp_counts_object); 8142 } 8143 if (vd->vdev_obsolete_sm != NULL) 8144 mos_obj_refd(vd->vdev_obsolete_sm->sm_object); 8145 8146 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) { 8147 metaslab_t *ms = vd->vdev_ms[m]; 8148 mos_obj_refd(space_map_object(ms->ms_sm)); 8149 } 8150 8151 if (vd->vdev_root_zap != 0) 8152 mos_obj_refd(vd->vdev_root_zap); 8153 8154 if (vd->vdev_top_zap != 0) { 8155 mos_obj_refd(vd->vdev_top_zap); 8156 mos_leak_vdev_top_zap(vd); 8157 } 8158 8159 for (uint64_t c = 0; c < vd->vdev_children; c++) { 8160 mos_leak_vdev(vd->vdev_child[c]); 8161 } 8162 } 8163 8164 static void 8165 mos_leak_log_spacemaps(spa_t *spa) 8166 { 8167 uint64_t spacemap_zap; 8168 int error = zap_lookup(spa_meta_objset(spa), 8169 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP, 8170 sizeof (spacemap_zap), 1, &spacemap_zap); 8171 if (error == ENOENT) 8172 return; 8173 ASSERT0(error); 8174 8175 mos_obj_refd(spacemap_zap); 8176 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg); 8177 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) 8178 mos_obj_refd(sls->sls_sm_obj); 8179 } 8180 8181 static void 8182 errorlog_count_refd(objset_t *mos, uint64_t errlog) 8183 { 8184 zap_cursor_t zc; 8185 zap_attribute_t *za = zap_attribute_alloc(); 8186 for (zap_cursor_init(&zc, mos, errlog); 8187 zap_cursor_retrieve(&zc, za) == 0; 8188 zap_cursor_advance(&zc)) { 8189 mos_obj_refd(za->za_first_integer); 8190 } 8191 zap_cursor_fini(&zc); 8192 zap_attribute_free(za); 8193 } 8194 8195 static int 8196 dump_mos_leaks(spa_t *spa) 8197 { 8198 int rv = 0; 8199 objset_t *mos = spa->spa_meta_objset; 8200 dsl_pool_t *dp = spa->spa_dsl_pool; 8201 8202 /* Visit and mark all referenced objects in the MOS */ 8203 8204 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT); 8205 mos_obj_refd(spa->spa_pool_props_object); 8206 mos_obj_refd(spa->spa_config_object); 8207 mos_obj_refd(spa->spa_ddt_stat_object); 8208 mos_obj_refd(spa->spa_feat_desc_obj); 8209 mos_obj_refd(spa->spa_feat_enabled_txg_obj); 8210 mos_obj_refd(spa->spa_feat_for_read_obj); 8211 mos_obj_refd(spa->spa_feat_for_write_obj); 8212 mos_obj_refd(spa->spa_history); 8213 mos_obj_refd(spa->spa_errlog_last); 8214 mos_obj_refd(spa->spa_errlog_scrub); 8215 8216 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) { 8217 errorlog_count_refd(mos, spa->spa_errlog_last); 8218 errorlog_count_refd(mos, spa->spa_errlog_scrub); 8219 } 8220 8221 mos_obj_refd(spa->spa_all_vdev_zaps); 8222 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj); 8223 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj); 8224 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj); 8225 bpobj_count_refd(&spa->spa_deferred_bpobj); 8226 mos_obj_refd(dp->dp_empty_bpobj); 8227 bpobj_count_refd(&dp->dp_obsolete_bpobj); 8228 bpobj_count_refd(&dp->dp_free_bpobj); 8229 mos_obj_refd(spa->spa_l2cache.sav_object); 8230 mos_obj_refd(spa->spa_spares.sav_object); 8231 8232 if (spa->spa_syncing_log_sm != NULL) 8233 mos_obj_refd(spa->spa_syncing_log_sm->sm_object); 8234 mos_leak_log_spacemaps(spa); 8235 8236 mos_obj_refd(spa->spa_condensing_indirect_phys. 8237 scip_next_mapping_object); 8238 mos_obj_refd(spa->spa_condensing_indirect_phys. 8239 scip_prev_obsolete_sm_object); 8240 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) { 8241 vdev_indirect_mapping_t *vim = 8242 vdev_indirect_mapping_open(mos, 8243 spa->spa_condensing_indirect_phys.scip_next_mapping_object); 8244 mos_obj_refd(vim->vim_phys->vimp_counts_object); 8245 vdev_indirect_mapping_close(vim); 8246 } 8247 deleted_livelists_dump_mos(spa); 8248 8249 if (dp->dp_origin_snap != NULL) { 8250 dsl_dataset_t *ds; 8251 8252 dsl_pool_config_enter(dp, FTAG); 8253 VERIFY0(dsl_dataset_hold_obj(dp, 8254 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj, 8255 FTAG, &ds)); 8256 count_ds_mos_objects(ds); 8257 dump_blkptr_list(&ds->ds_deadlist, "Deadlist"); 8258 dsl_dataset_rele(ds, FTAG); 8259 dsl_pool_config_exit(dp, FTAG); 8260 8261 count_ds_mos_objects(dp->dp_origin_snap); 8262 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist"); 8263 } 8264 count_dir_mos_objects(dp->dp_mos_dir); 8265 if (dp->dp_free_dir != NULL) 8266 count_dir_mos_objects(dp->dp_free_dir); 8267 if (dp->dp_leak_dir != NULL) 8268 count_dir_mos_objects(dp->dp_leak_dir); 8269 8270 mos_leak_vdev(spa->spa_root_vdev); 8271 8272 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) { 8273 ddt_t *ddt = spa->spa_ddt[c]; 8274 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED) 8275 continue; 8276 8277 /* DDT store objects */ 8278 for (ddt_type_t type = 0; type < DDT_TYPES; type++) { 8279 for (ddt_class_t class = 0; class < DDT_CLASSES; 8280 class++) { 8281 mos_obj_refd(ddt->ddt_object[type][class]); 8282 } 8283 } 8284 8285 /* FDT container */ 8286 if (ddt->ddt_version == DDT_VERSION_FDT) 8287 mos_obj_refd(ddt->ddt_dir_object); 8288 8289 /* FDT log objects */ 8290 if (ddt->ddt_flags & DDT_FLAG_LOG) { 8291 mos_obj_refd(ddt->ddt_log[0].ddl_object); 8292 mos_obj_refd(ddt->ddt_log[1].ddl_object); 8293 } 8294 } 8295 8296 for (uint64_t vdevid = 0; vdevid < spa->spa_brt_nvdevs; vdevid++) { 8297 brt_vdev_t *brtvd = spa->spa_brt_vdevs[vdevid]; 8298 if (brtvd->bv_initiated) { 8299 mos_obj_refd(brtvd->bv_mos_brtvdev); 8300 mos_obj_refd(brtvd->bv_mos_entries); 8301 } 8302 } 8303 8304 /* 8305 * Visit all allocated objects and make sure they are referenced. 8306 */ 8307 uint64_t object = 0; 8308 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) { 8309 if (zfs_range_tree_contains(mos_refd_objs, object, 1)) { 8310 zfs_range_tree_remove(mos_refd_objs, object, 1); 8311 } else { 8312 dmu_object_info_t doi; 8313 const char *name; 8314 VERIFY0(dmu_object_info(mos, object, &doi)); 8315 if (doi.doi_type & DMU_OT_NEWTYPE) { 8316 dmu_object_byteswap_t bswap = 8317 DMU_OT_BYTESWAP(doi.doi_type); 8318 name = dmu_ot_byteswap[bswap].ob_name; 8319 } else { 8320 name = dmu_ot[doi.doi_type].ot_name; 8321 } 8322 8323 (void) printf("MOS object %llu (%s) leaked\n", 8324 (u_longlong_t)object, name); 8325 rv = 2; 8326 } 8327 } 8328 (void) zfs_range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL); 8329 if (!zfs_range_tree_is_empty(mos_refd_objs)) 8330 rv = 2; 8331 zfs_range_tree_vacate(mos_refd_objs, NULL, NULL); 8332 zfs_range_tree_destroy(mos_refd_objs); 8333 return (rv); 8334 } 8335 8336 typedef struct log_sm_obsolete_stats_arg { 8337 uint64_t lsos_current_txg; 8338 8339 uint64_t lsos_total_entries; 8340 uint64_t lsos_valid_entries; 8341 8342 uint64_t lsos_sm_entries; 8343 uint64_t lsos_valid_sm_entries; 8344 } log_sm_obsolete_stats_arg_t; 8345 8346 static int 8347 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme, 8348 uint64_t txg, void *arg) 8349 { 8350 log_sm_obsolete_stats_arg_t *lsos = arg; 8351 8352 uint64_t offset = sme->sme_offset; 8353 uint64_t vdev_id = sme->sme_vdev; 8354 8355 if (lsos->lsos_current_txg == 0) { 8356 /* this is the first log */ 8357 lsos->lsos_current_txg = txg; 8358 } else if (lsos->lsos_current_txg < txg) { 8359 /* we just changed log - print stats and reset */ 8360 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8361 (u_longlong_t)lsos->lsos_valid_sm_entries, 8362 (u_longlong_t)lsos->lsos_sm_entries, 8363 (u_longlong_t)lsos->lsos_current_txg); 8364 lsos->lsos_valid_sm_entries = 0; 8365 lsos->lsos_sm_entries = 0; 8366 lsos->lsos_current_txg = txg; 8367 } 8368 ASSERT3U(lsos->lsos_current_txg, ==, txg); 8369 8370 lsos->lsos_sm_entries++; 8371 lsos->lsos_total_entries++; 8372 8373 vdev_t *vd = vdev_lookup_top(spa, vdev_id); 8374 if (!vdev_is_concrete(vd)) 8375 return (0); 8376 8377 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift]; 8378 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE); 8379 8380 if (txg < metaslab_unflushed_txg(ms)) 8381 return (0); 8382 lsos->lsos_valid_sm_entries++; 8383 lsos->lsos_valid_entries++; 8384 return (0); 8385 } 8386 8387 static void 8388 dump_log_spacemap_obsolete_stats(spa_t *spa) 8389 { 8390 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) 8391 return; 8392 8393 log_sm_obsolete_stats_arg_t lsos = {0}; 8394 8395 (void) printf("Log Space Map Obsolete Entry Statistics:\n"); 8396 8397 iterate_through_spacemap_logs(spa, 8398 log_spacemap_obsolete_stats_cb, &lsos); 8399 8400 /* print stats for latest log */ 8401 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n", 8402 (u_longlong_t)lsos.lsos_valid_sm_entries, 8403 (u_longlong_t)lsos.lsos_sm_entries, 8404 (u_longlong_t)lsos.lsos_current_txg); 8405 8406 (void) printf("%-8llu valid entries out of %-8llu - total\n\n", 8407 (u_longlong_t)lsos.lsos_valid_entries, 8408 (u_longlong_t)lsos.lsos_total_entries); 8409 } 8410 8411 static void 8412 dump_zpool(spa_t *spa) 8413 { 8414 dsl_pool_t *dp = spa_get_dsl(spa); 8415 int rc = 0; 8416 8417 if (dump_opt['y']) { 8418 livelist_metaslab_validate(spa); 8419 } 8420 8421 if (dump_opt['S']) { 8422 dump_simulated_ddt(spa); 8423 return; 8424 } 8425 8426 if (!dump_opt['e'] && dump_opt['C'] > 1) { 8427 (void) printf("\nCached configuration:\n"); 8428 dump_nvlist(spa->spa_config, 8); 8429 } 8430 8431 if (dump_opt['C']) 8432 dump_config(spa); 8433 8434 if (dump_opt['u']) 8435 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n"); 8436 8437 if (dump_opt['D']) 8438 dump_all_ddts(spa); 8439 8440 if (dump_opt['T']) 8441 dump_brt(spa); 8442 8443 if (dump_opt['d'] > 2 || dump_opt['m']) 8444 dump_metaslabs(spa); 8445 if (dump_opt['M']) 8446 dump_metaslab_groups(spa, dump_opt['M'] > 1); 8447 if (dump_opt['d'] > 2 || dump_opt['m']) { 8448 dump_log_spacemaps(spa); 8449 dump_log_spacemap_obsolete_stats(spa); 8450 } 8451 8452 if (dump_opt['d'] || dump_opt['i']) { 8453 spa_feature_t f; 8454 mos_refd_objs = zfs_range_tree_create(NULL, ZFS_RANGE_SEG64, 8455 NULL, 0, 0); 8456 dump_objset(dp->dp_meta_objset); 8457 8458 if (dump_opt['d'] >= 3) { 8459 dsl_pool_t *dp = spa->spa_dsl_pool; 8460 dump_full_bpobj(&spa->spa_deferred_bpobj, 8461 "Deferred frees", 0); 8462 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) { 8463 dump_full_bpobj(&dp->dp_free_bpobj, 8464 "Pool snapshot frees", 0); 8465 } 8466 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) { 8467 ASSERT(spa_feature_is_enabled(spa, 8468 SPA_FEATURE_DEVICE_REMOVAL)); 8469 dump_full_bpobj(&dp->dp_obsolete_bpobj, 8470 "Pool obsolete blocks", 0); 8471 } 8472 8473 if (spa_feature_is_active(spa, 8474 SPA_FEATURE_ASYNC_DESTROY)) { 8475 dump_bptree(spa->spa_meta_objset, 8476 dp->dp_bptree_obj, 8477 "Pool dataset frees"); 8478 } 8479 dump_dtl(spa->spa_root_vdev, 0); 8480 } 8481 8482 for (spa_feature_t f = 0; f < SPA_FEATURES; f++) 8483 global_feature_count[f] = UINT64_MAX; 8484 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0; 8485 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0; 8486 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0; 8487 global_feature_count[SPA_FEATURE_LIVELIST] = 0; 8488 8489 (void) dmu_objset_find(spa_name(spa), dump_one_objset, 8490 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 8491 8492 if (rc == 0 && !dump_opt['L']) 8493 rc = dump_mos_leaks(spa); 8494 8495 for (f = 0; f < SPA_FEATURES; f++) { 8496 uint64_t refcount; 8497 8498 uint64_t *arr; 8499 if (!(spa_feature_table[f].fi_flags & 8500 ZFEATURE_FLAG_PER_DATASET)) { 8501 if (global_feature_count[f] == UINT64_MAX) 8502 continue; 8503 if (!spa_feature_is_enabled(spa, f)) { 8504 ASSERT0(global_feature_count[f]); 8505 continue; 8506 } 8507 arr = global_feature_count; 8508 } else { 8509 if (!spa_feature_is_enabled(spa, f)) { 8510 ASSERT0(dataset_feature_count[f]); 8511 continue; 8512 } 8513 arr = dataset_feature_count; 8514 } 8515 if (feature_get_refcount(spa, &spa_feature_table[f], 8516 &refcount) == ENOTSUP) 8517 continue; 8518 if (arr[f] != refcount) { 8519 (void) printf("%s feature refcount mismatch: " 8520 "%lld consumers != %lld refcount\n", 8521 spa_feature_table[f].fi_uname, 8522 (longlong_t)arr[f], (longlong_t)refcount); 8523 rc = 2; 8524 } else { 8525 (void) printf("Verified %s feature refcount " 8526 "of %llu is correct\n", 8527 spa_feature_table[f].fi_uname, 8528 (longlong_t)refcount); 8529 } 8530 } 8531 8532 if (rc == 0) 8533 rc = verify_device_removal_feature_counts(spa); 8534 } 8535 8536 if (rc == 0 && (dump_opt['b'] || dump_opt['c'])) 8537 rc = dump_block_stats(spa); 8538 8539 if (rc == 0) 8540 rc = verify_spacemap_refcounts(spa); 8541 8542 if (dump_opt['s']) 8543 show_pool_stats(spa); 8544 8545 if (dump_opt['h']) 8546 dump_history(spa); 8547 8548 if (rc == 0) 8549 rc = verify_checkpoint(spa); 8550 8551 if (rc != 0) { 8552 dump_debug_buffer(); 8553 zdb_exit(rc); 8554 } 8555 } 8556 8557 #define ZDB_FLAG_CHECKSUM 0x0001 8558 #define ZDB_FLAG_DECOMPRESS 0x0002 8559 #define ZDB_FLAG_BSWAP 0x0004 8560 #define ZDB_FLAG_GBH 0x0008 8561 #define ZDB_FLAG_INDIRECT 0x0010 8562 #define ZDB_FLAG_RAW 0x0020 8563 #define ZDB_FLAG_PRINT_BLKPTR 0x0040 8564 #define ZDB_FLAG_VERBOSE 0x0080 8565 8566 static int flagbits[256]; 8567 static char flagbitstr[16]; 8568 8569 static void 8570 zdb_print_blkptr(const blkptr_t *bp, int flags) 8571 { 8572 char blkbuf[BP_SPRINTF_LEN]; 8573 8574 if (flags & ZDB_FLAG_BSWAP) 8575 byteswap_uint64_array((void *)bp, sizeof (blkptr_t)); 8576 8577 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp); 8578 (void) printf("%s\n", blkbuf); 8579 } 8580 8581 static void 8582 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags) 8583 { 8584 int i; 8585 8586 for (i = 0; i < nbps; i++) 8587 zdb_print_blkptr(&bp[i], flags); 8588 } 8589 8590 static void 8591 zdb_dump_gbh(void *buf, int flags) 8592 { 8593 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags); 8594 } 8595 8596 static void 8597 zdb_dump_block_raw(void *buf, uint64_t size, int flags) 8598 { 8599 if (flags & ZDB_FLAG_BSWAP) 8600 byteswap_uint64_array(buf, size); 8601 VERIFY(write(fileno(stdout), buf, size) == size); 8602 } 8603 8604 static void 8605 zdb_dump_block(char *label, void *buf, uint64_t size, int flags) 8606 { 8607 uint64_t *d = (uint64_t *)buf; 8608 unsigned nwords = size / sizeof (uint64_t); 8609 int do_bswap = !!(flags & ZDB_FLAG_BSWAP); 8610 unsigned i, j; 8611 const char *hdr; 8612 char *c; 8613 8614 8615 if (do_bswap) 8616 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8"; 8617 else 8618 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f"; 8619 8620 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr); 8621 8622 #ifdef _ZFS_LITTLE_ENDIAN 8623 /* correct the endianness */ 8624 do_bswap = !do_bswap; 8625 #endif 8626 for (i = 0; i < nwords; i += 2) { 8627 (void) printf("%06llx: %016llx %016llx ", 8628 (u_longlong_t)(i * sizeof (uint64_t)), 8629 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]), 8630 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1])); 8631 8632 c = (char *)&d[i]; 8633 for (j = 0; j < 2 * sizeof (uint64_t); j++) 8634 (void) printf("%c", isprint(c[j]) ? c[j] : '.'); 8635 (void) printf("\n"); 8636 } 8637 } 8638 8639 /* 8640 * There are two acceptable formats: 8641 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a 8642 * child[.child]* - For example: 0.1.1 8643 * 8644 * The second form can be used to specify arbitrary vdevs anywhere 8645 * in the hierarchy. For example, in a pool with a mirror of 8646 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 . 8647 */ 8648 static vdev_t * 8649 zdb_vdev_lookup(vdev_t *vdev, const char *path) 8650 { 8651 char *s, *p, *q; 8652 unsigned i; 8653 8654 if (vdev == NULL) 8655 return (NULL); 8656 8657 /* First, assume the x.x.x.x format */ 8658 i = strtoul(path, &s, 10); 8659 if (s == path || (s && *s != '.' && *s != '\0')) 8660 goto name; 8661 if (i >= vdev->vdev_children) 8662 return (NULL); 8663 8664 vdev = vdev->vdev_child[i]; 8665 if (s && *s == '\0') 8666 return (vdev); 8667 return (zdb_vdev_lookup(vdev, s+1)); 8668 8669 name: 8670 for (i = 0; i < vdev->vdev_children; i++) { 8671 vdev_t *vc = vdev->vdev_child[i]; 8672 8673 if (vc->vdev_path == NULL) { 8674 vc = zdb_vdev_lookup(vc, path); 8675 if (vc == NULL) 8676 continue; 8677 else 8678 return (vc); 8679 } 8680 8681 p = strrchr(vc->vdev_path, '/'); 8682 p = p ? p + 1 : vc->vdev_path; 8683 q = &vc->vdev_path[strlen(vc->vdev_path) - 2]; 8684 8685 if (strcmp(vc->vdev_path, path) == 0) 8686 return (vc); 8687 if (strcmp(p, path) == 0) 8688 return (vc); 8689 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0) 8690 return (vc); 8691 } 8692 8693 return (NULL); 8694 } 8695 8696 static int 8697 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr) 8698 { 8699 dsl_dataset_t *ds; 8700 8701 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG); 8702 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id, 8703 NULL, &ds); 8704 if (error != 0) { 8705 (void) fprintf(stderr, "failed to hold objset %llu: %s\n", 8706 (u_longlong_t)objset_id, strerror(error)); 8707 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8708 return (error); 8709 } 8710 dsl_dataset_name(ds, outstr); 8711 dsl_dataset_rele(ds, NULL); 8712 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG); 8713 return (0); 8714 } 8715 8716 static boolean_t 8717 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize) 8718 { 8719 char *s0, *s1, *tmp = NULL; 8720 8721 if (sizes == NULL) 8722 return (B_FALSE); 8723 8724 s0 = strtok_r(sizes, "/", &tmp); 8725 if (s0 == NULL) 8726 return (B_FALSE); 8727 s1 = strtok_r(NULL, "/", &tmp); 8728 *lsize = strtoull(s0, NULL, 16); 8729 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize; 8730 return (*lsize >= *psize && *psize > 0); 8731 } 8732 8733 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg)) 8734 8735 static boolean_t 8736 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize, 8737 int flags, int cfunc, void *lbuf, void *lbuf2) 8738 { 8739 if (flags & ZDB_FLAG_VERBOSE) { 8740 (void) fprintf(stderr, 8741 "Trying %05llx -> %05llx (%s)\n", 8742 (u_longlong_t)psize, 8743 (u_longlong_t)lsize, 8744 zio_compress_table[cfunc].ci_name); 8745 } 8746 8747 /* 8748 * We set lbuf to all zeros and lbuf2 to all 8749 * ones, then decompress to both buffers and 8750 * compare their contents. This way we can 8751 * know if decompression filled exactly to 8752 * lsize or if it left some bytes unwritten. 8753 */ 8754 8755 memset(lbuf, 0x00, lsize); 8756 memset(lbuf2, 0xff, lsize); 8757 8758 abd_t labd, labd2; 8759 abd_get_from_buf_struct(&labd, lbuf, lsize); 8760 abd_get_from_buf_struct(&labd2, lbuf2, lsize); 8761 8762 boolean_t ret = B_FALSE; 8763 if (zio_decompress_data(cfunc, pabd, 8764 &labd, psize, lsize, NULL) == 0 && 8765 zio_decompress_data(cfunc, pabd, 8766 &labd2, psize, lsize, NULL) == 0 && 8767 memcmp(lbuf, lbuf2, lsize) == 0) 8768 ret = B_TRUE; 8769 8770 abd_free(&labd2); 8771 abd_free(&labd); 8772 8773 return (ret); 8774 } 8775 8776 static uint64_t 8777 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize, 8778 uint64_t psize, int flags) 8779 { 8780 (void) buf; 8781 uint64_t orig_lsize = lsize; 8782 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL)); 8783 boolean_t found = B_FALSE; 8784 /* 8785 * We don't know how the data was compressed, so just try 8786 * every decompress function at every inflated blocksize. 8787 */ 8788 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8789 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 }; 8790 int *cfuncp = cfuncs; 8791 uint64_t maxlsize = SPA_MAXBLOCKSIZE; 8792 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) | 8793 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) | 8794 ZIO_COMPRESS_MASK(ZLE); 8795 *cfuncp++ = ZIO_COMPRESS_LZ4; 8796 *cfuncp++ = ZIO_COMPRESS_LZJB; 8797 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB); 8798 /* 8799 * Every gzip level has the same decompressor, no need to 8800 * run it 9 times per bruteforce attempt. 8801 */ 8802 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3); 8803 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5); 8804 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7); 8805 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9); 8806 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++) 8807 if (((1ULL << c) & mask) == 0) 8808 *cfuncp++ = c; 8809 8810 /* 8811 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this 8812 * could take a while and we should let the user know 8813 * we are not stuck. On the other hand, printing progress 8814 * info gets old after a while. User can specify 'v' flag 8815 * to see the progression. 8816 */ 8817 if (lsize == psize) 8818 lsize += SPA_MINBLOCKSIZE; 8819 else 8820 maxlsize = lsize; 8821 8822 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) { 8823 for (cfuncp = cfuncs; *cfuncp; cfuncp++) { 8824 if (try_decompress_block(pabd, lsize, psize, flags, 8825 *cfuncp, lbuf, lbuf2)) { 8826 found = B_TRUE; 8827 break; 8828 } 8829 } 8830 if (*cfuncp != 0) 8831 break; 8832 } 8833 if (!found && tryzle) { 8834 for (lsize = orig_lsize; lsize <= maxlsize; 8835 lsize += SPA_MINBLOCKSIZE) { 8836 if (try_decompress_block(pabd, lsize, psize, flags, 8837 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) { 8838 *cfuncp = ZIO_COMPRESS_ZLE; 8839 found = B_TRUE; 8840 break; 8841 } 8842 } 8843 } 8844 umem_free(lbuf2, SPA_MAXBLOCKSIZE); 8845 8846 if (*cfuncp == ZIO_COMPRESS_ZLE) { 8847 printf("\nZLE decompression was selected. If you " 8848 "suspect the results are wrong,\ntry avoiding ZLE " 8849 "by setting and exporting ZDB_NO_ZLE=\"true\"\n"); 8850 } 8851 8852 return (lsize > maxlsize ? -1 : lsize); 8853 } 8854 8855 /* 8856 * Read a block from a pool and print it out. The syntax of the 8857 * block descriptor is: 8858 * 8859 * pool:vdev_specifier:offset:[lsize/]psize[:flags] 8860 * 8861 * pool - The name of the pool you wish to read from 8862 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup) 8863 * offset - offset, in hex, in bytes 8864 * size - Amount of data to read, in hex, in bytes 8865 * flags - A string of characters specifying options 8866 * b: Decode a blkptr at given offset within block 8867 * c: Calculate and display checksums 8868 * d: Decompress data before dumping 8869 * e: Byteswap data before dumping 8870 * g: Display data as a gang block header 8871 * i: Display as an indirect block 8872 * r: Dump raw data to stdout 8873 * v: Verbose 8874 * 8875 */ 8876 static void 8877 zdb_read_block(char *thing, spa_t *spa) 8878 { 8879 blkptr_t blk, *bp = &blk; 8880 dva_t *dva = bp->blk_dva; 8881 int flags = 0; 8882 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0; 8883 zio_t *zio; 8884 vdev_t *vd; 8885 abd_t *pabd; 8886 void *lbuf, *buf; 8887 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL; 8888 const char *vdev, *errmsg = NULL; 8889 int i, len, error; 8890 boolean_t borrowed = B_FALSE, found = B_FALSE; 8891 8892 dup = strdup(thing); 8893 s = strtok_r(dup, ":", &tmp); 8894 vdev = s ?: ""; 8895 s = strtok_r(NULL, ":", &tmp); 8896 offset = strtoull(s ? s : "", NULL, 16); 8897 sizes = strtok_r(NULL, ":", &tmp); 8898 s = strtok_r(NULL, ":", &tmp); 8899 flagstr = strdup(s ?: ""); 8900 8901 if (!zdb_parse_block_sizes(sizes, &lsize, &psize)) 8902 errmsg = "invalid size(s)"; 8903 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE)) 8904 errmsg = "size must be a multiple of sector size"; 8905 if (!IS_P2ALIGNED(offset, DEV_BSIZE)) 8906 errmsg = "offset must be a multiple of sector size"; 8907 if (errmsg) { 8908 (void) printf("Invalid block specifier: %s - %s\n", 8909 thing, errmsg); 8910 goto done; 8911 } 8912 8913 tmp = NULL; 8914 for (s = strtok_r(flagstr, ":", &tmp); 8915 s != NULL; 8916 s = strtok_r(NULL, ":", &tmp)) { 8917 len = strlen(flagstr); 8918 for (i = 0; i < len; i++) { 8919 int bit = flagbits[(uchar_t)flagstr[i]]; 8920 8921 if (bit == 0) { 8922 (void) printf("***Ignoring flag: %c\n", 8923 (uchar_t)flagstr[i]); 8924 continue; 8925 } 8926 found = B_TRUE; 8927 flags |= bit; 8928 8929 p = &flagstr[i + 1]; 8930 if (*p != ':' && *p != '\0') { 8931 int j = 0, nextbit = flagbits[(uchar_t)*p]; 8932 char *end, offstr[8] = { 0 }; 8933 if ((bit == ZDB_FLAG_PRINT_BLKPTR) && 8934 (nextbit == 0)) { 8935 /* look ahead to isolate the offset */ 8936 while (nextbit == 0 && 8937 strchr(flagbitstr, *p) == NULL) { 8938 offstr[j] = *p; 8939 j++; 8940 if (i + j > strlen(flagstr)) 8941 break; 8942 p++; 8943 nextbit = flagbits[(uchar_t)*p]; 8944 } 8945 blkptr_offset = strtoull(offstr, &end, 8946 16); 8947 i += j; 8948 } else if (nextbit == 0) { 8949 (void) printf("***Ignoring flag arg:" 8950 " '%c'\n", (uchar_t)*p); 8951 } 8952 } 8953 } 8954 } 8955 if (blkptr_offset % sizeof (blkptr_t)) { 8956 printf("Block pointer offset 0x%llx " 8957 "must be divisible by 0x%x\n", 8958 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t)); 8959 goto done; 8960 } 8961 if (found == B_FALSE && strlen(flagstr) > 0) { 8962 printf("Invalid flag arg: '%s'\n", flagstr); 8963 goto done; 8964 } 8965 8966 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev); 8967 if (vd == NULL) { 8968 (void) printf("***Invalid vdev: %s\n", vdev); 8969 goto done; 8970 } else { 8971 if (vd->vdev_path) 8972 (void) fprintf(stderr, "Found vdev: %s\n", 8973 vd->vdev_path); 8974 else 8975 (void) fprintf(stderr, "Found vdev type: %s\n", 8976 vd->vdev_ops->vdev_op_type); 8977 } 8978 8979 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE); 8980 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL); 8981 8982 BP_ZERO(bp); 8983 8984 DVA_SET_VDEV(&dva[0], vd->vdev_id); 8985 DVA_SET_OFFSET(&dva[0], offset); 8986 DVA_SET_GANG(&dva[0], 0); 8987 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize)); 8988 8989 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL); 8990 8991 BP_SET_LSIZE(bp, lsize); 8992 BP_SET_PSIZE(bp, psize); 8993 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 8994 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF); 8995 BP_SET_TYPE(bp, DMU_OT_NONE); 8996 BP_SET_LEVEL(bp, 0); 8997 BP_SET_DEDUP(bp, 0); 8998 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 8999 9000 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9001 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9002 9003 if (vd == vd->vdev_top) { 9004 /* 9005 * Treat this as a normal block read. 9006 */ 9007 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL, 9008 ZIO_PRIORITY_SYNC_READ, 9009 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL)); 9010 } else { 9011 /* 9012 * Treat this as a vdev child I/O. 9013 */ 9014 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd, 9015 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ, 9016 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY | 9017 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL, 9018 NULL, NULL)); 9019 } 9020 9021 error = zio_wait(zio); 9022 spa_config_exit(spa, SCL_STATE, FTAG); 9023 9024 if (error) { 9025 (void) printf("Read of %s failed, error: %d\n", thing, error); 9026 goto out; 9027 } 9028 9029 uint64_t orig_lsize = lsize; 9030 buf = lbuf; 9031 if (flags & ZDB_FLAG_DECOMPRESS) { 9032 lsize = zdb_decompress_block(pabd, buf, lbuf, 9033 lsize, psize, flags); 9034 if (lsize == -1) { 9035 (void) printf("Decompress of %s failed\n", thing); 9036 goto out; 9037 } 9038 } else { 9039 buf = abd_borrow_buf_copy(pabd, lsize); 9040 borrowed = B_TRUE; 9041 } 9042 /* 9043 * Try to detect invalid block pointer. If invalid, try 9044 * decompressing. 9045 */ 9046 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) && 9047 !(flags & ZDB_FLAG_DECOMPRESS)) { 9048 const blkptr_t *b = (const blkptr_t *)(void *) 9049 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9050 if (zfs_blkptr_verify(spa, b, 9051 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY)) { 9052 abd_return_buf_copy(pabd, buf, lsize); 9053 borrowed = B_FALSE; 9054 buf = lbuf; 9055 lsize = zdb_decompress_block(pabd, buf, 9056 lbuf, lsize, psize, flags); 9057 b = (const blkptr_t *)(void *) 9058 ((uintptr_t)buf + (uintptr_t)blkptr_offset); 9059 if (lsize == -1 || zfs_blkptr_verify(spa, b, 9060 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) { 9061 printf("invalid block pointer at this DVA\n"); 9062 goto out; 9063 } 9064 } 9065 } 9066 9067 if (flags & ZDB_FLAG_PRINT_BLKPTR) 9068 zdb_print_blkptr((blkptr_t *)(void *) 9069 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags); 9070 else if (flags & ZDB_FLAG_RAW) 9071 zdb_dump_block_raw(buf, lsize, flags); 9072 else if (flags & ZDB_FLAG_INDIRECT) 9073 zdb_dump_indirect((blkptr_t *)buf, 9074 orig_lsize / sizeof (blkptr_t), flags); 9075 else if (flags & ZDB_FLAG_GBH) 9076 zdb_dump_gbh(buf, flags); 9077 else 9078 zdb_dump_block(thing, buf, lsize, flags); 9079 9080 /* 9081 * If :c was specified, iterate through the checksum table to 9082 * calculate and display each checksum for our specified 9083 * DVA and length. 9084 */ 9085 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) && 9086 !(flags & ZDB_FLAG_GBH)) { 9087 zio_t *czio; 9088 (void) printf("\n"); 9089 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL; 9090 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) { 9091 9092 if ((zio_checksum_table[ck].ci_flags & 9093 ZCHECKSUM_FLAG_EMBEDDED) || 9094 ck == ZIO_CHECKSUM_NOPARITY) { 9095 continue; 9096 } 9097 BP_SET_CHECKSUM(bp, ck); 9098 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 9099 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL); 9100 if (vd == vd->vdev_top) { 9101 zio_nowait(zio_read(czio, spa, bp, pabd, psize, 9102 NULL, NULL, 9103 ZIO_PRIORITY_SYNC_READ, 9104 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9105 ZIO_FLAG_DONT_RETRY, NULL)); 9106 } else { 9107 zio_nowait(zio_vdev_child_io(czio, bp, vd, 9108 offset, pabd, psize, ZIO_TYPE_READ, 9109 ZIO_PRIORITY_SYNC_READ, 9110 ZIO_FLAG_DONT_PROPAGATE | 9111 ZIO_FLAG_DONT_RETRY | 9112 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | 9113 ZIO_FLAG_SPECULATIVE | 9114 ZIO_FLAG_OPTIONAL, NULL, NULL)); 9115 } 9116 error = zio_wait(czio); 9117 if (error == 0 || error == ECKSUM) { 9118 zio_t *ck_zio = zio_null(NULL, spa, NULL, 9119 NULL, NULL, 0); 9120 ck_zio->io_offset = 9121 DVA_GET_OFFSET(&bp->blk_dva[0]); 9122 ck_zio->io_bp = bp; 9123 zio_checksum_compute(ck_zio, ck, pabd, lsize); 9124 printf( 9125 "%12s\t" 9126 "cksum=%016llx:%016llx:%016llx:%016llx\n", 9127 zio_checksum_table[ck].ci_name, 9128 (u_longlong_t)bp->blk_cksum.zc_word[0], 9129 (u_longlong_t)bp->blk_cksum.zc_word[1], 9130 (u_longlong_t)bp->blk_cksum.zc_word[2], 9131 (u_longlong_t)bp->blk_cksum.zc_word[3]); 9132 zio_wait(ck_zio); 9133 } else { 9134 printf("error %d reading block\n", error); 9135 } 9136 spa_config_exit(spa, SCL_STATE, FTAG); 9137 } 9138 } 9139 9140 if (borrowed) 9141 abd_return_buf_copy(pabd, buf, lsize); 9142 9143 out: 9144 abd_free(pabd); 9145 umem_free(lbuf, SPA_MAXBLOCKSIZE); 9146 done: 9147 free(flagstr); 9148 free(dup); 9149 } 9150 9151 static void 9152 zdb_embedded_block(char *thing) 9153 { 9154 blkptr_t bp = {{{{0}}}}; 9155 unsigned long long *words = (void *)&bp; 9156 char *buf; 9157 int err; 9158 9159 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:" 9160 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx", 9161 words + 0, words + 1, words + 2, words + 3, 9162 words + 4, words + 5, words + 6, words + 7, 9163 words + 8, words + 9, words + 10, words + 11, 9164 words + 12, words + 13, words + 14, words + 15); 9165 if (err != 16) { 9166 (void) fprintf(stderr, "invalid input format\n"); 9167 zdb_exit(1); 9168 } 9169 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE); 9170 buf = malloc(SPA_MAXBLOCKSIZE); 9171 if (buf == NULL) { 9172 (void) fprintf(stderr, "out of memory\n"); 9173 zdb_exit(1); 9174 } 9175 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp)); 9176 if (err != 0) { 9177 (void) fprintf(stderr, "decode failed: %u\n", err); 9178 zdb_exit(1); 9179 } 9180 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0); 9181 free(buf); 9182 } 9183 9184 /* check for valid hex or decimal numeric string */ 9185 static boolean_t 9186 zdb_numeric(char *str) 9187 { 9188 int i = 0, len; 9189 9190 len = strlen(str); 9191 if (len == 0) 9192 return (B_FALSE); 9193 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0) 9194 i = 2; 9195 for (; i < len; i++) { 9196 if (!isxdigit(str[i])) 9197 return (B_FALSE); 9198 } 9199 return (B_TRUE); 9200 } 9201 9202 static int 9203 dummy_get_file_info(dmu_object_type_t bonustype, const void *data, 9204 zfs_file_info_t *zoi) 9205 { 9206 (void) data, (void) zoi; 9207 9208 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 9209 return (ENOENT); 9210 9211 (void) fprintf(stderr, "dummy_get_file_info: not implemented"); 9212 abort(); 9213 } 9214 9215 int 9216 main(int argc, char **argv) 9217 { 9218 int c; 9219 int dump_all = 1; 9220 int verbose = 0; 9221 int error = 0; 9222 char **searchdirs = NULL; 9223 int nsearch = 0; 9224 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN]; 9225 nvlist_t *policy = NULL; 9226 uint64_t max_txg = UINT64_MAX; 9227 int64_t objset_id = -1; 9228 uint64_t object; 9229 int flags = ZFS_IMPORT_MISSING_LOG; 9230 int rewind = ZPOOL_NEVER_REWIND; 9231 char *spa_config_path_env, *objset_str; 9232 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE; 9233 nvlist_t *cfg = NULL; 9234 struct sigaction action; 9235 boolean_t force_import = B_FALSE; 9236 boolean_t config_path_console = B_FALSE; 9237 char pbuf[MAXPATHLEN]; 9238 9239 dprintf_setup(&argc, argv); 9240 9241 /* 9242 * Set up signal handlers, so if we crash due to bad on-disk data we 9243 * can get more info. Unlike ztest, we don't bail out if we can't set 9244 * up signal handlers, because zdb is very useful without them. 9245 */ 9246 action.sa_handler = sig_handler; 9247 sigemptyset(&action.sa_mask); 9248 action.sa_flags = 0; 9249 if (sigaction(SIGSEGV, &action, NULL) < 0) { 9250 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n", 9251 strerror(errno)); 9252 } 9253 if (sigaction(SIGABRT, &action, NULL) < 0) { 9254 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n", 9255 strerror(errno)); 9256 } 9257 9258 /* 9259 * If there is an environment variable SPA_CONFIG_PATH it overrides 9260 * default spa_config_path setting. If -U flag is specified it will 9261 * override this environment variable settings once again. 9262 */ 9263 spa_config_path_env = getenv("SPA_CONFIG_PATH"); 9264 if (spa_config_path_env != NULL) 9265 spa_config_path = spa_config_path_env; 9266 9267 /* 9268 * For performance reasons, we set this tunable down. We do so before 9269 * the arg parsing section so that the user can override this value if 9270 * they choose. 9271 */ 9272 zfs_btree_verify_intensity = 3; 9273 9274 struct option long_options[] = { 9275 {"ignore-assertions", no_argument, NULL, 'A'}, 9276 {"block-stats", no_argument, NULL, 'b'}, 9277 {"backup", no_argument, NULL, 'B'}, 9278 {"checksum", no_argument, NULL, 'c'}, 9279 {"config", no_argument, NULL, 'C'}, 9280 {"datasets", no_argument, NULL, 'd'}, 9281 {"dedup-stats", no_argument, NULL, 'D'}, 9282 {"exported", no_argument, NULL, 'e'}, 9283 {"embedded-block-pointer", no_argument, NULL, 'E'}, 9284 {"automatic-rewind", no_argument, NULL, 'F'}, 9285 {"dump-debug-msg", no_argument, NULL, 'G'}, 9286 {"history", no_argument, NULL, 'h'}, 9287 {"intent-logs", no_argument, NULL, 'i'}, 9288 {"inflight", required_argument, NULL, 'I'}, 9289 {"checkpointed-state", no_argument, NULL, 'k'}, 9290 {"key", required_argument, NULL, 'K'}, 9291 {"label", no_argument, NULL, 'l'}, 9292 {"disable-leak-tracking", no_argument, NULL, 'L'}, 9293 {"metaslabs", no_argument, NULL, 'm'}, 9294 {"metaslab-groups", no_argument, NULL, 'M'}, 9295 {"numeric", no_argument, NULL, 'N'}, 9296 {"option", required_argument, NULL, 'o'}, 9297 {"object-lookups", no_argument, NULL, 'O'}, 9298 {"path", required_argument, NULL, 'p'}, 9299 {"parseable", no_argument, NULL, 'P'}, 9300 {"skip-label", no_argument, NULL, 'q'}, 9301 {"copy-object", no_argument, NULL, 'r'}, 9302 {"read-block", no_argument, NULL, 'R'}, 9303 {"io-stats", no_argument, NULL, 's'}, 9304 {"simulate-dedup", no_argument, NULL, 'S'}, 9305 {"txg", required_argument, NULL, 't'}, 9306 {"brt-stats", no_argument, NULL, 'T'}, 9307 {"uberblock", no_argument, NULL, 'u'}, 9308 {"cachefile", required_argument, NULL, 'U'}, 9309 {"verbose", no_argument, NULL, 'v'}, 9310 {"verbatim", no_argument, NULL, 'V'}, 9311 {"dump-blocks", required_argument, NULL, 'x'}, 9312 {"extreme-rewind", no_argument, NULL, 'X'}, 9313 {"all-reconstruction", no_argument, NULL, 'Y'}, 9314 {"livelist", no_argument, NULL, 'y'}, 9315 {"zstd-headers", no_argument, NULL, 'Z'}, 9316 {0, 0, 0, 0} 9317 }; 9318 9319 while ((c = getopt_long(argc, argv, 9320 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ", 9321 long_options, NULL)) != -1) { 9322 switch (c) { 9323 case 'b': 9324 case 'B': 9325 case 'c': 9326 case 'C': 9327 case 'd': 9328 case 'D': 9329 case 'E': 9330 case 'G': 9331 case 'h': 9332 case 'i': 9333 case 'l': 9334 case 'm': 9335 case 'M': 9336 case 'N': 9337 case 'O': 9338 case 'r': 9339 case 'R': 9340 case 's': 9341 case 'S': 9342 case 'T': 9343 case 'u': 9344 case 'y': 9345 case 'Z': 9346 dump_opt[c]++; 9347 dump_all = 0; 9348 break; 9349 case 'A': 9350 case 'e': 9351 case 'F': 9352 case 'k': 9353 case 'L': 9354 case 'P': 9355 case 'q': 9356 case 'X': 9357 dump_opt[c]++; 9358 break; 9359 case 'Y': 9360 zfs_reconstruct_indirect_combinations_max = INT_MAX; 9361 zfs_deadman_enabled = 0; 9362 break; 9363 /* NB: Sort single match options below. */ 9364 case 'I': 9365 max_inflight_bytes = strtoull(optarg, NULL, 0); 9366 if (max_inflight_bytes == 0) { 9367 (void) fprintf(stderr, "maximum number " 9368 "of inflight bytes must be greater " 9369 "than 0\n"); 9370 usage(); 9371 } 9372 break; 9373 case 'K': 9374 dump_opt[c]++; 9375 key_material = strdup(optarg); 9376 /* redact key material in process table */ 9377 while (*optarg != '\0') { *optarg++ = '*'; } 9378 break; 9379 case 'o': 9380 error = set_global_var(optarg); 9381 if (error != 0) 9382 usage(); 9383 break; 9384 case 'p': 9385 if (searchdirs == NULL) { 9386 searchdirs = umem_alloc(sizeof (char *), 9387 UMEM_NOFAIL); 9388 } else { 9389 char **tmp = umem_alloc((nsearch + 1) * 9390 sizeof (char *), UMEM_NOFAIL); 9391 memcpy(tmp, searchdirs, nsearch * 9392 sizeof (char *)); 9393 umem_free(searchdirs, 9394 nsearch * sizeof (char *)); 9395 searchdirs = tmp; 9396 } 9397 searchdirs[nsearch++] = optarg; 9398 break; 9399 case 't': 9400 max_txg = strtoull(optarg, NULL, 0); 9401 if (max_txg < TXG_INITIAL) { 9402 (void) fprintf(stderr, "incorrect txg " 9403 "specified: %s\n", optarg); 9404 usage(); 9405 } 9406 break; 9407 case 'U': 9408 config_path_console = B_TRUE; 9409 spa_config_path = optarg; 9410 if (spa_config_path[0] != '/') { 9411 (void) fprintf(stderr, 9412 "cachefile must be an absolute path " 9413 "(i.e. start with a slash)\n"); 9414 usage(); 9415 } 9416 break; 9417 case 'v': 9418 verbose++; 9419 break; 9420 case 'V': 9421 flags = ZFS_IMPORT_VERBATIM; 9422 break; 9423 case 'x': 9424 vn_dumpdir = optarg; 9425 break; 9426 default: 9427 usage(); 9428 break; 9429 } 9430 } 9431 9432 if (!dump_opt['e'] && searchdirs != NULL) { 9433 (void) fprintf(stderr, "-p option requires use of -e\n"); 9434 usage(); 9435 } 9436 #if defined(_LP64) 9437 /* 9438 * ZDB does not typically re-read blocks; therefore limit the ARC 9439 * to 256 MB, which can be used entirely for metadata. 9440 */ 9441 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT; 9442 zfs_arc_max = 256 * 1024 * 1024; 9443 #endif 9444 9445 /* 9446 * "zdb -c" uses checksum-verifying scrub i/os which are async reads. 9447 * "zdb -b" uses traversal prefetch which uses async reads. 9448 * For good performance, let several of them be active at once. 9449 */ 9450 zfs_vdev_async_read_max_active = 10; 9451 9452 /* 9453 * Disable reference tracking for better performance. 9454 */ 9455 reference_tracking_enable = B_FALSE; 9456 9457 /* 9458 * Do not fail spa_load when spa_load_verify fails. This is needed 9459 * to load non-idle pools. 9460 */ 9461 spa_load_verify_dryrun = B_TRUE; 9462 9463 /* 9464 * ZDB should have ability to read spacemaps. 9465 */ 9466 spa_mode_readable_spacemaps = B_TRUE; 9467 9468 if (dump_all) 9469 verbose = MAX(verbose, 1); 9470 9471 for (c = 0; c < 256; c++) { 9472 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL) 9473 dump_opt[c] = 1; 9474 if (dump_opt[c]) 9475 dump_opt[c] += verbose; 9476 } 9477 9478 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2)); 9479 zfs_recover = (dump_opt['A'] > 1); 9480 9481 argc -= optind; 9482 argv += optind; 9483 if (argc < 2 && dump_opt['R']) 9484 usage(); 9485 9486 target = argv[0]; 9487 9488 /* 9489 * Automate cachefile 9490 */ 9491 if (!spa_config_path_env && !config_path_console && target && 9492 libzfs_core_init() == 0) { 9493 char *pname = strdup(target); 9494 const char *value; 9495 nvlist_t *pnvl = NULL; 9496 nvlist_t *vnvl = NULL; 9497 9498 if (strpbrk(pname, "/@") != NULL) 9499 *strpbrk(pname, "/@") = '\0'; 9500 9501 if (pname && lzc_get_props(pname, &pnvl) == 0) { 9502 if (nvlist_lookup_nvlist(pnvl, "cachefile", 9503 &vnvl) == 0) { 9504 value = fnvlist_lookup_string(vnvl, 9505 ZPROP_VALUE); 9506 } else { 9507 value = "-"; 9508 } 9509 strlcpy(pbuf, value, sizeof (pbuf)); 9510 if (pbuf[0] != '\0') { 9511 if (pbuf[0] == '/') { 9512 if (access(pbuf, F_OK) == 0) 9513 spa_config_path = pbuf; 9514 else 9515 force_import = B_TRUE; 9516 } else if ((strcmp(pbuf, "-") == 0 && 9517 access(ZPOOL_CACHE, F_OK) != 0) || 9518 strcmp(pbuf, "none") == 0) { 9519 force_import = B_TRUE; 9520 } 9521 } 9522 nvlist_free(vnvl); 9523 } 9524 9525 free(pname); 9526 nvlist_free(pnvl); 9527 libzfs_core_fini(); 9528 } 9529 9530 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info); 9531 kernel_init(SPA_MODE_READ); 9532 kernel_init_done = B_TRUE; 9533 9534 if (dump_opt['E']) { 9535 if (argc != 1) 9536 usage(); 9537 zdb_embedded_block(argv[0]); 9538 error = 0; 9539 goto fini; 9540 } 9541 9542 if (argc < 1) { 9543 if (!dump_opt['e'] && dump_opt['C']) { 9544 dump_cachefile(spa_config_path); 9545 error = 0; 9546 goto fini; 9547 } 9548 usage(); 9549 } 9550 9551 if (dump_opt['l']) { 9552 error = dump_label(argv[0]); 9553 goto fini; 9554 } 9555 9556 if (dump_opt['X'] || dump_opt['F']) 9557 rewind = ZPOOL_DO_REWIND | 9558 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0); 9559 9560 /* -N implies -d */ 9561 if (dump_opt['N'] && dump_opt['d'] == 0) 9562 dump_opt['d'] = dump_opt['N']; 9563 9564 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 || 9565 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 || 9566 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0) 9567 fatal("internal error: %s", strerror(ENOMEM)); 9568 9569 error = 0; 9570 9571 if (strpbrk(target, "/@") != NULL) { 9572 size_t targetlen; 9573 9574 target_pool = strdup(target); 9575 *strpbrk(target_pool, "/@") = '\0'; 9576 9577 target_is_spa = B_FALSE; 9578 targetlen = strlen(target); 9579 if (targetlen && target[targetlen - 1] == '/') 9580 target[targetlen - 1] = '\0'; 9581 9582 /* 9583 * See if an objset ID was supplied (-d <pool>/<objset ID>). 9584 * To disambiguate tank/100, consider the 100 as objsetID 9585 * if -N was given, otherwise 100 is an objsetID iff 9586 * tank/100 as a named dataset fails on lookup. 9587 */ 9588 objset_str = strchr(target, '/'); 9589 if (objset_str && strlen(objset_str) > 1 && 9590 zdb_numeric(objset_str + 1)) { 9591 char *endptr; 9592 errno = 0; 9593 objset_str++; 9594 objset_id = strtoull(objset_str, &endptr, 0); 9595 /* dataset 0 is the same as opening the pool */ 9596 if (errno == 0 && endptr != objset_str && 9597 objset_id != 0) { 9598 if (dump_opt['N']) 9599 dataset_lookup = B_TRUE; 9600 } 9601 /* normal dataset name not an objset ID */ 9602 if (endptr == objset_str) { 9603 objset_id = -1; 9604 } 9605 } else if (objset_str && !zdb_numeric(objset_str + 1) && 9606 dump_opt['N']) { 9607 printf("Supply a numeric objset ID with -N\n"); 9608 error = 1; 9609 goto fini; 9610 } 9611 } else { 9612 target_pool = target; 9613 } 9614 9615 if (dump_opt['e'] || force_import) { 9616 importargs_t args = { 0 }; 9617 9618 /* 9619 * If path is not provided, search in /dev 9620 */ 9621 if (searchdirs == NULL) { 9622 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL); 9623 searchdirs[nsearch++] = (char *)ZFS_DEVDIR; 9624 } 9625 9626 args.paths = nsearch; 9627 args.path = searchdirs; 9628 args.can_be_active = B_TRUE; 9629 9630 libpc_handle_t lpch = { 9631 .lpc_lib_handle = NULL, 9632 .lpc_ops = &libzpool_config_ops, 9633 .lpc_printerr = B_TRUE 9634 }; 9635 error = zpool_find_config(&lpch, target_pool, &cfg, &args); 9636 9637 if (error == 0) { 9638 9639 if (nvlist_add_nvlist(cfg, 9640 ZPOOL_LOAD_POLICY, policy) != 0) { 9641 fatal("can't open '%s': %s", 9642 target, strerror(ENOMEM)); 9643 } 9644 9645 if (dump_opt['C'] > 1) { 9646 (void) printf("\nConfiguration for import:\n"); 9647 dump_nvlist(cfg, 8); 9648 } 9649 9650 /* 9651 * Disable the activity check to allow examination of 9652 * active pools. 9653 */ 9654 error = spa_import(target_pool, cfg, NULL, 9655 flags | ZFS_IMPORT_SKIP_MMP); 9656 } 9657 } 9658 9659 if (searchdirs != NULL) { 9660 umem_free(searchdirs, nsearch * sizeof (char *)); 9661 searchdirs = NULL; 9662 } 9663 9664 /* 9665 * We need to make sure to process -O option or call 9666 * dump_path after the -e option has been processed, 9667 * which imports the pool to the namespace if it's 9668 * not in the cachefile. 9669 */ 9670 if (dump_opt['O']) { 9671 if (argc != 2) 9672 usage(); 9673 dump_opt['v'] = verbose + 3; 9674 error = dump_path(argv[0], argv[1], NULL); 9675 goto fini; 9676 } 9677 9678 if (dump_opt['r']) { 9679 target_is_spa = B_FALSE; 9680 if (argc != 3) 9681 usage(); 9682 dump_opt['v'] = verbose; 9683 error = dump_path(argv[0], argv[1], &object); 9684 if (error != 0) 9685 fatal("internal error: %s", strerror(error)); 9686 } 9687 9688 /* 9689 * import_checkpointed_state makes the assumption that the 9690 * target pool that we pass it is already part of the spa 9691 * namespace. Because of that we need to make sure to call 9692 * it always after the -e option has been processed, which 9693 * imports the pool to the namespace if it's not in the 9694 * cachefile. 9695 */ 9696 char *checkpoint_pool = NULL; 9697 char *checkpoint_target = NULL; 9698 if (dump_opt['k']) { 9699 checkpoint_pool = import_checkpointed_state(target, cfg, 9700 &checkpoint_target); 9701 9702 if (checkpoint_target != NULL) 9703 target = checkpoint_target; 9704 } 9705 9706 if (cfg != NULL) { 9707 nvlist_free(cfg); 9708 cfg = NULL; 9709 } 9710 9711 if (target_pool != target) 9712 free(target_pool); 9713 9714 if (error == 0) { 9715 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) { 9716 ASSERT(checkpoint_pool != NULL); 9717 ASSERT(checkpoint_target == NULL); 9718 9719 error = spa_open(checkpoint_pool, &spa, FTAG); 9720 if (error != 0) { 9721 fatal("Tried to open pool \"%s\" but " 9722 "spa_open() failed with error %d\n", 9723 checkpoint_pool, error); 9724 } 9725 9726 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] || 9727 objset_id == 0) { 9728 zdb_set_skip_mmp(target); 9729 error = spa_open_rewind(target, &spa, FTAG, policy, 9730 NULL); 9731 if (error) { 9732 /* 9733 * If we're missing the log device then 9734 * try opening the pool after clearing the 9735 * log state. 9736 */ 9737 mutex_enter(&spa_namespace_lock); 9738 if ((spa = spa_lookup(target)) != NULL && 9739 spa->spa_log_state == SPA_LOG_MISSING) { 9740 spa->spa_log_state = SPA_LOG_CLEAR; 9741 error = 0; 9742 } 9743 mutex_exit(&spa_namespace_lock); 9744 9745 if (!error) { 9746 error = spa_open_rewind(target, &spa, 9747 FTAG, policy, NULL); 9748 } 9749 } 9750 } else if (strpbrk(target, "#") != NULL) { 9751 dsl_pool_t *dp; 9752 error = dsl_pool_hold(target, FTAG, &dp); 9753 if (error != 0) { 9754 fatal("can't dump '%s': %s", target, 9755 strerror(error)); 9756 } 9757 error = dump_bookmark(dp, target, B_TRUE, verbose > 1); 9758 dsl_pool_rele(dp, FTAG); 9759 if (error != 0) { 9760 fatal("can't dump '%s': %s", target, 9761 strerror(error)); 9762 } 9763 goto fini; 9764 } else { 9765 target_pool = strdup(target); 9766 if (strpbrk(target, "/@") != NULL) 9767 *strpbrk(target_pool, "/@") = '\0'; 9768 9769 zdb_set_skip_mmp(target); 9770 /* 9771 * If -N was supplied, the user has indicated that 9772 * zdb -d <pool>/<objsetID> is in effect. Otherwise 9773 * we first assume that the dataset string is the 9774 * dataset name. If dmu_objset_hold fails with the 9775 * dataset string, and we have an objset_id, retry the 9776 * lookup with the objsetID. 9777 */ 9778 boolean_t retry = B_TRUE; 9779 retry_lookup: 9780 if (dataset_lookup == B_TRUE) { 9781 /* 9782 * Use the supplied id to get the name 9783 * for open_objset. 9784 */ 9785 error = spa_open(target_pool, &spa, FTAG); 9786 if (error == 0) { 9787 error = name_from_objset_id(spa, 9788 objset_id, dsname); 9789 spa_close(spa, FTAG); 9790 if (error == 0) 9791 target = dsname; 9792 } 9793 } 9794 if (error == 0) { 9795 if (objset_id > 0 && retry) { 9796 int err = dmu_objset_hold(target, FTAG, 9797 &os); 9798 if (err) { 9799 dataset_lookup = B_TRUE; 9800 retry = B_FALSE; 9801 goto retry_lookup; 9802 } else { 9803 dmu_objset_rele(os, FTAG); 9804 } 9805 } 9806 error = open_objset(target, FTAG, &os); 9807 } 9808 if (error == 0) 9809 spa = dmu_objset_spa(os); 9810 free(target_pool); 9811 } 9812 } 9813 nvlist_free(policy); 9814 9815 if (error) 9816 fatal("can't open '%s': %s", target, strerror(error)); 9817 9818 /* 9819 * Set the pool failure mode to panic in order to prevent the pool 9820 * from suspending. A suspended I/O will have no way to resume and 9821 * can prevent the zdb(8) command from terminating as expected. 9822 */ 9823 if (spa != NULL) 9824 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 9825 9826 argv++; 9827 argc--; 9828 if (dump_opt['r']) { 9829 error = zdb_copy_object(os, object, argv[1]); 9830 } else if (!dump_opt['R']) { 9831 flagbits['d'] = ZOR_FLAG_DIRECTORY; 9832 flagbits['f'] = ZOR_FLAG_PLAIN_FILE; 9833 flagbits['m'] = ZOR_FLAG_SPACE_MAP; 9834 flagbits['z'] = ZOR_FLAG_ZAP; 9835 flagbits['A'] = ZOR_FLAG_ALL_TYPES; 9836 9837 if (argc > 0 && dump_opt['d']) { 9838 zopt_object_args = argc; 9839 zopt_object_ranges = calloc(zopt_object_args, 9840 sizeof (zopt_object_range_t)); 9841 for (unsigned i = 0; i < zopt_object_args; i++) { 9842 int err; 9843 const char *msg = NULL; 9844 9845 err = parse_object_range(argv[i], 9846 &zopt_object_ranges[i], &msg); 9847 if (err != 0) 9848 fatal("Bad object or range: '%s': %s\n", 9849 argv[i], msg ?: ""); 9850 } 9851 } else if (argc > 0 && dump_opt['m']) { 9852 zopt_metaslab_args = argc; 9853 zopt_metaslab = calloc(zopt_metaslab_args, 9854 sizeof (uint64_t)); 9855 for (unsigned i = 0; i < zopt_metaslab_args; i++) { 9856 errno = 0; 9857 zopt_metaslab[i] = strtoull(argv[i], NULL, 0); 9858 if (zopt_metaslab[i] == 0 && errno != 0) 9859 fatal("bad number %s: %s", argv[i], 9860 strerror(errno)); 9861 } 9862 } 9863 if (dump_opt['B']) { 9864 dump_backup(target, objset_id, 9865 argc > 0 ? argv[0] : NULL); 9866 } else if (os != NULL) { 9867 dump_objset(os); 9868 } else if (zopt_object_args > 0 && !dump_opt['m']) { 9869 dump_objset(spa->spa_meta_objset); 9870 } else { 9871 dump_zpool(spa); 9872 } 9873 } else { 9874 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR; 9875 flagbits['c'] = ZDB_FLAG_CHECKSUM; 9876 flagbits['d'] = ZDB_FLAG_DECOMPRESS; 9877 flagbits['e'] = ZDB_FLAG_BSWAP; 9878 flagbits['g'] = ZDB_FLAG_GBH; 9879 flagbits['i'] = ZDB_FLAG_INDIRECT; 9880 flagbits['r'] = ZDB_FLAG_RAW; 9881 flagbits['v'] = ZDB_FLAG_VERBOSE; 9882 9883 for (int i = 0; i < argc; i++) 9884 zdb_read_block(argv[i], spa); 9885 } 9886 9887 if (dump_opt['k']) { 9888 free(checkpoint_pool); 9889 if (!target_is_spa) 9890 free(checkpoint_target); 9891 } 9892 9893 fini: 9894 if (spa != NULL) 9895 zdb_ddt_cleanup(spa); 9896 9897 if (os != NULL) { 9898 close_objset(os, FTAG); 9899 } else if (spa != NULL) { 9900 spa_close(spa, FTAG); 9901 } 9902 9903 fuid_table_destroy(); 9904 9905 dump_debug_buffer(); 9906 9907 if (kernel_init_done) 9908 kernel_fini(); 9909 9910 return (error); 9911 } 9912