xref: /freebsd/sys/contrib/openzfs/cmd/raidz_test/raidz_test.c (revision 90b5fc95832da64a5f56295e687379732c33718f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/time.h>
28 #include <sys/wait.h>
29 #include <sys/zio.h>
30 #include <umem.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_raidz_impl.h>
33 #include <assert.h>
34 #include <stdio.h>
35 #include "raidz_test.h"
36 
37 static int *rand_data;
38 raidz_test_opts_t rto_opts;
39 
40 static char gdb[256];
41 static const char gdb_tmpl[] = "gdb -ex \"set pagination 0\" -p %d";
42 
43 static void sig_handler(int signo)
44 {
45 	struct sigaction action;
46 	/*
47 	 * Restore default action and re-raise signal so SIGSEGV and
48 	 * SIGABRT can trigger a core dump.
49 	 */
50 	action.sa_handler = SIG_DFL;
51 	sigemptyset(&action.sa_mask);
52 	action.sa_flags = 0;
53 	(void) sigaction(signo, &action, NULL);
54 
55 	if (rto_opts.rto_gdb)
56 		if (system(gdb)) { }
57 
58 	raise(signo);
59 }
60 
61 static void print_opts(raidz_test_opts_t *opts, boolean_t force)
62 {
63 	char *verbose;
64 	switch (opts->rto_v) {
65 		case 0:
66 			verbose = "no";
67 			break;
68 		case 1:
69 			verbose = "info";
70 			break;
71 		default:
72 			verbose = "debug";
73 			break;
74 	}
75 
76 	if (force || opts->rto_v >= D_INFO) {
77 		(void) fprintf(stdout, DBLSEP "Running with options:\n"
78 		    "  (-a) zio ashift                   : %zu\n"
79 		    "  (-o) zio offset                   : 1 << %zu\n"
80 		    "  (-e) expanded map                 : %s\n"
81 		    "  (-r) reflow offset                : %llx\n"
82 		    "  (-d) number of raidz data columns : %zu\n"
83 		    "  (-s) size of DATA                 : 1 << %zu\n"
84 		    "  (-S) sweep parameters             : %s \n"
85 		    "  (-v) verbose                      : %s \n\n",
86 		    opts->rto_ashift,				/* -a */
87 		    ilog2(opts->rto_offset),			/* -o */
88 		    opts->rto_expand ? "yes" : "no",		/* -e */
89 		    (u_longlong_t)opts->rto_expand_offset,	/* -r */
90 		    opts->rto_dcols,				/* -d */
91 		    ilog2(opts->rto_dsize),			/* -s */
92 		    opts->rto_sweep ? "yes" : "no",		/* -S */
93 		    verbose);					/* -v */
94 	}
95 }
96 
97 static void usage(boolean_t requested)
98 {
99 	const raidz_test_opts_t *o = &rto_opts_defaults;
100 
101 	FILE *fp = requested ? stdout : stderr;
102 
103 	(void) fprintf(fp, "Usage:\n"
104 	    "\t[-a zio ashift (default: %zu)]\n"
105 	    "\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
106 	    "\t[-d number of raidz data columns (default: %zu)]\n"
107 	    "\t[-s zio size, exponent radix 2 (default: %zu)]\n"
108 	    "\t[-S parameter sweep (default: %s)]\n"
109 	    "\t[-t timeout for parameter sweep test]\n"
110 	    "\t[-B benchmark all raidz implementations]\n"
111 	    "\t[-e use expanded raidz map (default: %s)]\n"
112 	    "\t[-r expanded raidz map reflow offset (default: %llx)]\n"
113 	    "\t[-v increase verbosity (default: %zu)]\n"
114 	    "\t[-h (print help)]\n"
115 	    "\t[-T test the test, see if failure would be detected]\n"
116 	    "\t[-D debug (attach gdb on SIGSEGV)]\n"
117 	    "",
118 	    o->rto_ashift,				/* -a */
119 	    ilog2(o->rto_offset),			/* -o */
120 	    o->rto_dcols,				/* -d */
121 	    ilog2(o->rto_dsize),			/* -s */
122 	    rto_opts.rto_sweep ? "yes" : "no",		/* -S */
123 	    rto_opts.rto_expand ? "yes" : "no",		/* -e */
124 	    (u_longlong_t)o->rto_expand_offset,		/* -r */
125 	    o->rto_v);					/* -d */
126 
127 	exit(requested ? 0 : 1);
128 }
129 
130 static void process_options(int argc, char **argv)
131 {
132 	size_t value;
133 	int opt;
134 
135 	raidz_test_opts_t *o = &rto_opts;
136 
137 	bcopy(&rto_opts_defaults, o, sizeof (*o));
138 
139 	while ((opt = getopt(argc, argv, "TDBSvha:er:o:d:s:t:")) != -1) {
140 		value = 0;
141 
142 		switch (opt) {
143 		case 'a':
144 			value = strtoull(optarg, NULL, 0);
145 			o->rto_ashift = MIN(13, MAX(9, value));
146 			break;
147 		case 'e':
148 			o->rto_expand = 1;
149 			break;
150 		case 'r':
151 			o->rto_expand_offset = strtoull(optarg, NULL, 0);
152 			break;
153 		case 'o':
154 			value = strtoull(optarg, NULL, 0);
155 			o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
156 			break;
157 		case 'd':
158 			value = strtoull(optarg, NULL, 0);
159 			o->rto_dcols = MIN(255, MAX(1, value));
160 			break;
161 		case 's':
162 			value = strtoull(optarg, NULL, 0);
163 			o->rto_dsize = 1ULL <<  MIN(SPA_MAXBLOCKSHIFT,
164 			    MAX(SPA_MINBLOCKSHIFT, value));
165 			break;
166 		case 't':
167 			value = strtoull(optarg, NULL, 0);
168 			o->rto_sweep_timeout = value;
169 			break;
170 		case 'v':
171 			o->rto_v++;
172 			break;
173 		case 'S':
174 			o->rto_sweep = 1;
175 			break;
176 		case 'B':
177 			o->rto_benchmark = 1;
178 			break;
179 		case 'D':
180 			o->rto_gdb = 1;
181 			break;
182 		case 'T':
183 			o->rto_sanity = 1;
184 			break;
185 		case 'h':
186 			usage(B_TRUE);
187 			break;
188 		case '?':
189 		default:
190 			usage(B_FALSE);
191 			break;
192 		}
193 	}
194 }
195 
196 #define	DATA_COL(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_abd)
197 #define	DATA_COL_SIZE(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_size)
198 
199 #define	CODE_COL(rr, i) ((rr)->rr_col[(i)].rc_abd)
200 #define	CODE_COL_SIZE(rr, i) ((rr)->rr_col[(i)].rc_size)
201 
202 static int
203 cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
204 {
205 	int r, i, ret = 0;
206 
207 	VERIFY(parity >= 1 && parity <= 3);
208 
209 	for (r = 0; r < rm->rm_nrows; r++) {
210 		raidz_row_t * const rr = rm->rm_row[r];
211 		raidz_row_t * const rrg = opts->rm_golden->rm_row[r];
212 		for (i = 0; i < parity; i++) {
213 			if (CODE_COL_SIZE(rrg, i) == 0) {
214 				VERIFY0(CODE_COL_SIZE(rr, i));
215 				continue;
216 			}
217 
218 			if (abd_cmp(CODE_COL(rr, i),
219 			    CODE_COL(rrg, i)) != 0) {
220 				ret++;
221 				LOG_OPT(D_DEBUG, opts,
222 				    "\nParity block [%d] different!\n", i);
223 			}
224 		}
225 	}
226 	return (ret);
227 }
228 
229 static int
230 cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
231 {
232 	int r, i, dcols, ret = 0;
233 
234 	for (r = 0; r < rm->rm_nrows; r++) {
235 		raidz_row_t *rr = rm->rm_row[r];
236 		raidz_row_t *rrg = opts->rm_golden->rm_row[r];
237 		dcols = opts->rm_golden->rm_row[0]->rr_cols -
238 		    raidz_parity(opts->rm_golden);
239 		for (i = 0; i < dcols; i++) {
240 			if (DATA_COL_SIZE(rrg, i) == 0) {
241 				VERIFY0(DATA_COL_SIZE(rr, i));
242 				continue;
243 			}
244 
245 			if (abd_cmp(DATA_COL(rrg, i),
246 			    DATA_COL(rr, i)) != 0) {
247 				ret++;
248 
249 				LOG_OPT(D_DEBUG, opts,
250 				    "\nData block [%d] different!\n", i);
251 			}
252 		}
253 	}
254 	return (ret);
255 }
256 
257 static int
258 init_rand(void *data, size_t size, void *private)
259 {
260 	int i;
261 	int *dst = (int *)data;
262 
263 	for (i = 0; i < size / sizeof (int); i++)
264 		dst[i] = rand_data[i];
265 
266 	return (0);
267 }
268 
269 static void
270 corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
271 {
272 	for (int r = 0; r < rm->rm_nrows; r++) {
273 		raidz_row_t *rr = rm->rm_row[r];
274 		for (int i = 0; i < cnt; i++) {
275 			raidz_col_t *col = &rr->rr_col[tgts[i]];
276 			abd_iterate_func(col->rc_abd, 0, col->rc_size,
277 			    init_rand, NULL);
278 		}
279 	}
280 }
281 
282 void
283 init_zio_abd(zio_t *zio)
284 {
285 	abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL);
286 }
287 
288 static void
289 fini_raidz_map(zio_t **zio, raidz_map_t **rm)
290 {
291 	vdev_raidz_map_free(*rm);
292 	raidz_free((*zio)->io_abd, (*zio)->io_size);
293 	umem_free(*zio, sizeof (zio_t));
294 
295 	*zio = NULL;
296 	*rm = NULL;
297 }
298 
299 static int
300 init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
301 {
302 	int err = 0;
303 	zio_t *zio_test;
304 	raidz_map_t *rm_test;
305 	const size_t total_ncols = opts->rto_dcols + parity;
306 
307 	if (opts->rm_golden) {
308 		fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
309 	}
310 
311 	opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
312 	zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
313 
314 	opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
315 	opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
316 
317 	opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize);
318 	zio_test->io_abd = raidz_alloc(opts->rto_dsize);
319 
320 	init_zio_abd(opts->zio_golden);
321 	init_zio_abd(zio_test);
322 
323 	VERIFY0(vdev_raidz_impl_set("original"));
324 
325 	if (opts->rto_expand) {
326 		opts->rm_golden =
327 		    vdev_raidz_map_alloc_expanded(opts->zio_golden->io_abd,
328 		    opts->zio_golden->io_size, opts->zio_golden->io_offset,
329 		    opts->rto_ashift, total_ncols+1, total_ncols,
330 		    parity, opts->rto_expand_offset);
331 		rm_test = vdev_raidz_map_alloc_expanded(zio_test->io_abd,
332 		    zio_test->io_size, zio_test->io_offset,
333 		    opts->rto_ashift, total_ncols+1, total_ncols,
334 		    parity, opts->rto_expand_offset);
335 	} else {
336 		opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
337 		    opts->rto_ashift, total_ncols, parity);
338 		rm_test = vdev_raidz_map_alloc(zio_test,
339 		    opts->rto_ashift, total_ncols, parity);
340 	}
341 
342 	VERIFY(opts->zio_golden);
343 	VERIFY(opts->rm_golden);
344 
345 	vdev_raidz_generate_parity(opts->rm_golden);
346 	vdev_raidz_generate_parity(rm_test);
347 
348 	/* sanity check */
349 	err |= cmp_data(opts, rm_test);
350 	err |= cmp_code(opts, rm_test, parity);
351 
352 	if (err)
353 		ERR("initializing the golden copy ... [FAIL]!\n");
354 
355 	/* tear down raidz_map of test zio */
356 	fini_raidz_map(&zio_test, &rm_test);
357 
358 	return (err);
359 }
360 
361 /*
362  * If reflow is not in progress, reflow_offset should be UINT64_MAX.
363  * For each row, if the row is entirely before reflow_offset, it will
364  * come from the new location.  Otherwise this row will come from the
365  * old location.  Therefore, rows that straddle the reflow_offset will
366  * come from the old location.
367  *
368  * NOTE: Until raidz expansion is implemented this function is only
369  * needed by raidz_test.c to the multi-row raid_map_t functionality.
370  */
371 raidz_map_t *
372 vdev_raidz_map_alloc_expanded(abd_t *abd, uint64_t size, uint64_t offset,
373     uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
374     uint64_t nparity, uint64_t reflow_offset)
375 {
376 	/* The zio's size in units of the vdev's minimum sector size. */
377 	uint64_t s = size >> ashift;
378 	uint64_t q, r, bc, devidx, asize = 0, tot;
379 
380 	/*
381 	 * "Quotient": The number of data sectors for this stripe on all but
382 	 * the "big column" child vdevs that also contain "remainder" data.
383 	 * AKA "full rows"
384 	 */
385 	q = s / (logical_cols - nparity);
386 
387 	/*
388 	 * "Remainder": The number of partial stripe data sectors in this I/O.
389 	 * This will add a sector to some, but not all, child vdevs.
390 	 */
391 	r = s - q * (logical_cols - nparity);
392 
393 	/* The number of "big columns" - those which contain remainder data. */
394 	bc = (r == 0 ? 0 : r + nparity);
395 
396 	/*
397 	 * The total number of data and parity sectors associated with
398 	 * this I/O.
399 	 */
400 	tot = s + nparity * (q + (r == 0 ? 0 : 1));
401 
402 	/* How many rows contain data (not skip) */
403 	uint64_t rows = howmany(tot, logical_cols);
404 	int cols = MIN(tot, logical_cols);
405 
406 	raidz_map_t *rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
407 	    KM_SLEEP);
408 	rm->rm_nrows = rows;
409 
410 	for (uint64_t row = 0; row < rows; row++) {
411 		raidz_row_t *rr = kmem_alloc(offsetof(raidz_row_t,
412 		    rr_col[cols]), KM_SLEEP);
413 		rm->rm_row[row] = rr;
414 
415 		/* The starting RAIDZ (parent) vdev sector of the row. */
416 		uint64_t b = (offset >> ashift) + row * logical_cols;
417 
418 		/*
419 		 * If we are in the middle of a reflow, and any part of this
420 		 * row has not been copied, then use the old location of
421 		 * this row.
422 		 */
423 		int row_phys_cols = physical_cols;
424 		if (b + (logical_cols - nparity) > reflow_offset >> ashift)
425 			row_phys_cols--;
426 
427 		/* starting child of this row */
428 		uint64_t child_id = b % row_phys_cols;
429 		/* The starting byte offset on each child vdev. */
430 		uint64_t child_offset = (b / row_phys_cols) << ashift;
431 
432 		/*
433 		 * We set cols to the entire width of the block, even
434 		 * if this row is shorter.  This is needed because parity
435 		 * generation (for Q and R) needs to know the entire width,
436 		 * because it treats the short row as though it was
437 		 * full-width (and the "phantom" sectors were zero-filled).
438 		 *
439 		 * Another approach to this would be to set cols shorter
440 		 * (to just the number of columns that we might do i/o to)
441 		 * and have another mechanism to tell the parity generation
442 		 * about the "entire width".  Reconstruction (at least
443 		 * vdev_raidz_reconstruct_general()) would also need to
444 		 * know about the "entire width".
445 		 */
446 		rr->rr_cols = cols;
447 		rr->rr_bigcols = bc;
448 		rr->rr_missingdata = 0;
449 		rr->rr_missingparity = 0;
450 		rr->rr_firstdatacol = nparity;
451 		rr->rr_abd_copy = NULL;
452 		rr->rr_abd_empty = NULL;
453 		rr->rr_nempty = 0;
454 
455 		for (int c = 0; c < rr->rr_cols; c++, child_id++) {
456 			if (child_id >= row_phys_cols) {
457 				child_id -= row_phys_cols;
458 				child_offset += 1ULL << ashift;
459 			}
460 			rr->rr_col[c].rc_devidx = child_id;
461 			rr->rr_col[c].rc_offset = child_offset;
462 			rr->rr_col[c].rc_gdata = NULL;
463 			rr->rr_col[c].rc_orig_data = NULL;
464 			rr->rr_col[c].rc_error = 0;
465 			rr->rr_col[c].rc_tried = 0;
466 			rr->rr_col[c].rc_skipped = 0;
467 			rr->rr_col[c].rc_need_orig_restore = B_FALSE;
468 
469 			uint64_t dc = c - rr->rr_firstdatacol;
470 			if (c < rr->rr_firstdatacol) {
471 				rr->rr_col[c].rc_size = 1ULL << ashift;
472 				rr->rr_col[c].rc_abd =
473 				    abd_alloc_linear(rr->rr_col[c].rc_size,
474 				    B_TRUE);
475 			} else if (row == rows - 1 && bc != 0 && c >= bc) {
476 				/*
477 				 * Past the end, this for parity generation.
478 				 */
479 				rr->rr_col[c].rc_size = 0;
480 				rr->rr_col[c].rc_abd = NULL;
481 			} else {
482 				/*
483 				 * "data column" (col excluding parity)
484 				 * Add an ASCII art diagram here
485 				 */
486 				uint64_t off;
487 
488 				if (c < bc || r == 0) {
489 					off = dc * rows + row;
490 				} else {
491 					off = r * rows +
492 					    (dc - r) * (rows - 1) + row;
493 				}
494 				rr->rr_col[c].rc_size = 1ULL << ashift;
495 				rr->rr_col[c].rc_abd =
496 				    abd_get_offset(abd, off << ashift);
497 			}
498 
499 			asize += rr->rr_col[c].rc_size;
500 		}
501 		/*
502 		 * If all data stored spans all columns, there's a danger that
503 		 * parity will always be on the same device and, since parity
504 		 * isn't read during normal operation, that that device's I/O
505 		 * bandwidth won't be used effectively. We therefore switch
506 		 * the parity every 1MB.
507 		 *
508 		 * ...at least that was, ostensibly, the theory. As a practical
509 		 * matter unless we juggle the parity between all devices
510 		 * evenly, we won't see any benefit. Further, occasional writes
511 		 * that aren't a multiple of the LCM of the number of children
512 		 * and the minimum stripe width are sufficient to avoid pessimal
513 		 * behavior. Unfortunately, this decision created an implicit
514 		 * on-disk format requirement that we need to support for all
515 		 * eternity, but only for single-parity RAID-Z.
516 		 *
517 		 * If we intend to skip a sector in the zeroth column for
518 		 * padding we must make sure to note this swap. We will never
519 		 * intend to skip the first column since at least one data and
520 		 * one parity column must appear in each row.
521 		 */
522 		if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
523 		    (offset & (1ULL << 20))) {
524 			ASSERT(rr->rr_cols >= 2);
525 			ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
526 			devidx = rr->rr_col[0].rc_devidx;
527 			uint64_t o = rr->rr_col[0].rc_offset;
528 			rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
529 			rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
530 			rr->rr_col[1].rc_devidx = devidx;
531 			rr->rr_col[1].rc_offset = o;
532 		}
533 
534 	}
535 	ASSERT3U(asize, ==, tot << ashift);
536 
537 	/* init RAIDZ parity ops */
538 	rm->rm_ops = vdev_raidz_math_get_ops();
539 
540 	return (rm);
541 }
542 
543 static raidz_map_t *
544 init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
545 {
546 	raidz_map_t *rm = NULL;
547 	const size_t alloc_dsize = opts->rto_dsize;
548 	const size_t total_ncols = opts->rto_dcols + parity;
549 	const int ccols[] = { 0, 1, 2 };
550 
551 	VERIFY(zio);
552 	VERIFY(parity <= 3 && parity >= 1);
553 
554 	*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
555 
556 	(*zio)->io_offset = 0;
557 	(*zio)->io_size = alloc_dsize;
558 	(*zio)->io_abd = raidz_alloc(alloc_dsize);
559 	init_zio_abd(*zio);
560 
561 	if (opts->rto_expand) {
562 		rm = vdev_raidz_map_alloc_expanded((*zio)->io_abd,
563 		    (*zio)->io_size, (*zio)->io_offset,
564 		    opts->rto_ashift, total_ncols+1, total_ncols,
565 		    parity, opts->rto_expand_offset);
566 	} else {
567 		rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
568 		    total_ncols, parity);
569 	}
570 	VERIFY(rm);
571 
572 	/* Make sure code columns are destroyed */
573 	corrupt_colums(rm, ccols, parity);
574 
575 	return (rm);
576 }
577 
578 static int
579 run_gen_check(raidz_test_opts_t *opts)
580 {
581 	char **impl_name;
582 	int fn, err = 0;
583 	zio_t *zio_test;
584 	raidz_map_t *rm_test;
585 
586 	err = init_raidz_golden_map(opts, PARITY_PQR);
587 	if (0 != err)
588 		return (err);
589 
590 	LOG(D_INFO, DBLSEP);
591 	LOG(D_INFO, "Testing parity generation...\n");
592 
593 	for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
594 	    impl_name++) {
595 
596 		LOG(D_INFO, SEP);
597 		LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
598 
599 		if (0 != vdev_raidz_impl_set(*impl_name)) {
600 			LOG(D_INFO, "[SKIP]\n");
601 			continue;
602 		} else {
603 			LOG(D_INFO, "[SUPPORTED]\n");
604 		}
605 
606 		for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
607 
608 			/* Check if should stop */
609 			if (rto_opts.rto_should_stop)
610 				return (err);
611 
612 			/* create suitable raidz_map */
613 			rm_test = init_raidz_map(opts, &zio_test, fn+1);
614 			VERIFY(rm_test);
615 
616 			LOG(D_INFO, "\t\tTesting method [%s] ...",
617 			    raidz_gen_name[fn]);
618 
619 			if (!opts->rto_sanity)
620 				vdev_raidz_generate_parity(rm_test);
621 
622 			if (cmp_code(opts, rm_test, fn+1) != 0) {
623 				LOG(D_INFO, "[FAIL]\n");
624 				err++;
625 			} else
626 				LOG(D_INFO, "[PASS]\n");
627 
628 			fini_raidz_map(&zio_test, &rm_test);
629 		}
630 	}
631 
632 	fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
633 
634 	return (err);
635 }
636 
637 static int
638 run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
639 {
640 	int x0, x1, x2;
641 	int tgtidx[3];
642 	int err = 0;
643 	static const int rec_tgts[7][3] = {
644 		{1, 2, 3},	/* rec_p:   bad QR & D[0]	*/
645 		{0, 2, 3},	/* rec_q:   bad PR & D[0]	*/
646 		{0, 1, 3},	/* rec_r:   bad PQ & D[0]	*/
647 		{2, 3, 4},	/* rec_pq:  bad R  & D[0][1]	*/
648 		{1, 3, 4},	/* rec_pr:  bad Q  & D[0][1]	*/
649 		{0, 3, 4},	/* rec_qr:  bad P  & D[0][1]	*/
650 		{3, 4, 5}	/* rec_pqr: bad    & D[0][1][2] */
651 	};
652 
653 	memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
654 
655 	if (fn < RAIDZ_REC_PQ) {
656 		/* can reconstruct 1 failed data disk */
657 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
658 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
659 				continue;
660 
661 			/* Check if should stop */
662 			if (rto_opts.rto_should_stop)
663 				return (err);
664 
665 			LOG(D_DEBUG, "[%d] ", x0);
666 
667 			tgtidx[2] = x0 + raidz_parity(rm);
668 
669 			corrupt_colums(rm, tgtidx+2, 1);
670 
671 			if (!opts->rto_sanity)
672 				vdev_raidz_reconstruct(rm, tgtidx, 3);
673 
674 			if (cmp_data(opts, rm) != 0) {
675 				err++;
676 				LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
677 			}
678 		}
679 
680 	} else if (fn < RAIDZ_REC_PQR) {
681 		/* can reconstruct 2 failed data disk */
682 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
683 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
684 				continue;
685 			for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
686 				if (x1 >= rm->rm_row[0]->rr_cols -
687 				    raidz_parity(rm))
688 					continue;
689 
690 				/* Check if should stop */
691 				if (rto_opts.rto_should_stop)
692 					return (err);
693 
694 				LOG(D_DEBUG, "[%d %d] ", x0, x1);
695 
696 				tgtidx[1] = x0 + raidz_parity(rm);
697 				tgtidx[2] = x1 + raidz_parity(rm);
698 
699 				corrupt_colums(rm, tgtidx+1, 2);
700 
701 				if (!opts->rto_sanity)
702 					vdev_raidz_reconstruct(rm, tgtidx, 3);
703 
704 				if (cmp_data(opts, rm) != 0) {
705 					err++;
706 					LOG(D_DEBUG, "\nREC D[%d %d]... "
707 					    "[FAIL]\n", x0, x1);
708 				}
709 			}
710 		}
711 	} else {
712 		/* can reconstruct 3 failed data disk */
713 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
714 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
715 				continue;
716 			for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
717 				if (x1 >= rm->rm_row[0]->rr_cols -
718 				    raidz_parity(rm))
719 					continue;
720 				for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
721 					if (x2 >= rm->rm_row[0]->rr_cols -
722 					    raidz_parity(rm))
723 						continue;
724 
725 					/* Check if should stop */
726 					if (rto_opts.rto_should_stop)
727 						return (err);
728 
729 					LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
730 
731 					tgtidx[0] = x0 + raidz_parity(rm);
732 					tgtidx[1] = x1 + raidz_parity(rm);
733 					tgtidx[2] = x2 + raidz_parity(rm);
734 
735 					corrupt_colums(rm, tgtidx, 3);
736 
737 					if (!opts->rto_sanity)
738 						vdev_raidz_reconstruct(rm,
739 						    tgtidx, 3);
740 
741 					if (cmp_data(opts, rm) != 0) {
742 						err++;
743 						LOG(D_DEBUG,
744 						    "\nREC D[%d %d %d]... "
745 						    "[FAIL]\n", x0, x1, x2);
746 					}
747 				}
748 			}
749 		}
750 	}
751 	return (err);
752 }
753 
754 static int
755 run_rec_check(raidz_test_opts_t *opts)
756 {
757 	char **impl_name;
758 	unsigned fn, err = 0;
759 	zio_t *zio_test;
760 	raidz_map_t *rm_test;
761 
762 	err = init_raidz_golden_map(opts, PARITY_PQR);
763 	if (0 != err)
764 		return (err);
765 
766 	LOG(D_INFO, DBLSEP);
767 	LOG(D_INFO, "Testing data reconstruction...\n");
768 
769 	for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
770 	    impl_name++) {
771 
772 		LOG(D_INFO, SEP);
773 		LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
774 
775 		if (vdev_raidz_impl_set(*impl_name) != 0) {
776 			LOG(D_INFO, "[SKIP]\n");
777 			continue;
778 		} else
779 			LOG(D_INFO, "[SUPPORTED]\n");
780 
781 
782 		/* create suitable raidz_map */
783 		rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
784 		/* generate parity */
785 		vdev_raidz_generate_parity(rm_test);
786 
787 		for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
788 
789 			LOG(D_INFO, "\t\tTesting method [%s] ...",
790 			    raidz_rec_name[fn]);
791 
792 			if (run_rec_check_impl(opts, rm_test, fn) != 0) {
793 				LOG(D_INFO, "[FAIL]\n");
794 				err++;
795 
796 			} else
797 				LOG(D_INFO, "[PASS]\n");
798 
799 		}
800 		/* tear down test raidz_map */
801 		fini_raidz_map(&zio_test, &rm_test);
802 	}
803 
804 	fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
805 
806 	return (err);
807 }
808 
809 static int
810 run_test(raidz_test_opts_t *opts)
811 {
812 	int err = 0;
813 
814 	if (opts == NULL)
815 		opts = &rto_opts;
816 
817 	print_opts(opts, B_FALSE);
818 
819 	err |= run_gen_check(opts);
820 	err |= run_rec_check(opts);
821 
822 	return (err);
823 }
824 
825 #define	SWEEP_RUNNING	0
826 #define	SWEEP_FINISHED	1
827 #define	SWEEP_ERROR	2
828 #define	SWEEP_TIMEOUT	3
829 
830 static int sweep_state = 0;
831 static raidz_test_opts_t failed_opts;
832 
833 static kmutex_t sem_mtx;
834 static kcondvar_t sem_cv;
835 static int max_free_slots;
836 static int free_slots;
837 
838 static void
839 sweep_thread(void *arg)
840 {
841 	int err = 0;
842 	raidz_test_opts_t *opts = (raidz_test_opts_t *)arg;
843 	VERIFY(opts != NULL);
844 
845 	err = run_test(opts);
846 
847 	if (rto_opts.rto_sanity) {
848 		/* 25% chance that a sweep test fails */
849 		if (rand() < (RAND_MAX/4))
850 			err = 1;
851 	}
852 
853 	if (0 != err) {
854 		mutex_enter(&sem_mtx);
855 		memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
856 		sweep_state = SWEEP_ERROR;
857 		mutex_exit(&sem_mtx);
858 	}
859 
860 	umem_free(opts, sizeof (raidz_test_opts_t));
861 
862 	/* signal the next thread */
863 	mutex_enter(&sem_mtx);
864 	free_slots++;
865 	cv_signal(&sem_cv);
866 	mutex_exit(&sem_mtx);
867 
868 	thread_exit();
869 }
870 
871 static int
872 run_sweep(void)
873 {
874 	static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 };
875 	static const size_t ashift_v[] = { 9, 12, 14 };
876 	static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
877 		1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
878 
879 	(void) setvbuf(stdout, NULL, _IONBF, 0);
880 
881 	ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
882 	    ARRAY_SIZE(dcols_v);
883 	ulong_t tried_comb = 0;
884 	hrtime_t time_diff, start_time = gethrtime();
885 	raidz_test_opts_t *opts;
886 	int a, d, s;
887 
888 	max_free_slots = free_slots = MAX(2, boot_ncpus);
889 
890 	mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
891 	cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
892 
893 	for (s = 0; s < ARRAY_SIZE(size_v); s++)
894 	for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
895 	for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
896 
897 		if (size_v[s] < (1 << ashift_v[a])) {
898 			total_comb--;
899 			continue;
900 		}
901 
902 		if (++tried_comb % 20 == 0)
903 			LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
904 
905 		/* wait for signal to start new thread */
906 		mutex_enter(&sem_mtx);
907 		while (cv_timedwait_sig(&sem_cv, &sem_mtx,
908 		    ddi_get_lbolt() + hz)) {
909 
910 			/* check if should stop the test (timeout) */
911 			time_diff = (gethrtime() - start_time) / NANOSEC;
912 			if (rto_opts.rto_sweep_timeout > 0 &&
913 			    time_diff >= rto_opts.rto_sweep_timeout) {
914 				sweep_state = SWEEP_TIMEOUT;
915 				rto_opts.rto_should_stop = B_TRUE;
916 				mutex_exit(&sem_mtx);
917 				goto exit;
918 			}
919 
920 			/* check if should stop the test (error) */
921 			if (sweep_state != SWEEP_RUNNING) {
922 				mutex_exit(&sem_mtx);
923 				goto exit;
924 			}
925 
926 			/* exit loop if a slot is available */
927 			if (free_slots > 0) {
928 				break;
929 			}
930 		}
931 
932 		free_slots--;
933 		mutex_exit(&sem_mtx);
934 
935 		opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
936 		opts->rto_ashift = ashift_v[a];
937 		opts->rto_dcols = dcols_v[d];
938 		opts->rto_offset = (1 << ashift_v[a]) * rand();
939 		opts->rto_dsize = size_v[s];
940 		opts->rto_expand = rto_opts.rto_expand;
941 		opts->rto_expand_offset = rto_opts.rto_expand_offset;
942 		opts->rto_v = 0; /* be quiet */
943 
944 		VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
945 		    0, NULL, TS_RUN, defclsyspri), !=, NULL);
946 	}
947 
948 exit:
949 	LOG(D_ALL, "\nWaiting for test threads to finish...\n");
950 	mutex_enter(&sem_mtx);
951 	VERIFY(free_slots <= max_free_slots);
952 	while (free_slots < max_free_slots) {
953 		(void) cv_wait(&sem_cv, &sem_mtx);
954 	}
955 	mutex_exit(&sem_mtx);
956 
957 	if (sweep_state == SWEEP_ERROR) {
958 		ERR("Sweep test failed! Failed option: \n");
959 		print_opts(&failed_opts, B_TRUE);
960 	} else {
961 		if (sweep_state == SWEEP_TIMEOUT)
962 			LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
963 			    (ulong_t)rto_opts.rto_sweep_timeout);
964 
965 		LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
966 		    (ulong_t)tried_comb);
967 	}
968 
969 	mutex_destroy(&sem_mtx);
970 
971 	return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
972 }
973 
974 
975 int
976 main(int argc, char **argv)
977 {
978 	size_t i;
979 	struct sigaction action;
980 	int err = 0;
981 
982 	/* init gdb string early */
983 	(void) sprintf(gdb, gdb_tmpl, getpid());
984 
985 	action.sa_handler = sig_handler;
986 	sigemptyset(&action.sa_mask);
987 	action.sa_flags = 0;
988 
989 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
990 		ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
991 		exit(EXIT_FAILURE);
992 	}
993 
994 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
995 
996 	dprintf_setup(&argc, argv);
997 
998 	process_options(argc, argv);
999 
1000 	kernel_init(SPA_MODE_READ);
1001 
1002 	/* setup random data because rand() is not reentrant */
1003 	rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
1004 	srand((unsigned)time(NULL) * getpid());
1005 	for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
1006 		rand_data[i] = rand();
1007 
1008 	mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
1009 
1010 	if (rto_opts.rto_benchmark) {
1011 		run_raidz_benchmark();
1012 	} else if (rto_opts.rto_sweep) {
1013 		err = run_sweep();
1014 	} else {
1015 		err = run_test(NULL);
1016 	}
1017 
1018 	umem_free(rand_data, SPA_MAXBLOCKSIZE);
1019 	kernel_fini();
1020 
1021 	return (err);
1022 }
1023