xref: /freebsd/sys/contrib/openzfs/cmd/raidz_test/raidz_test.c (revision 13ec1e3155c7e9bf037b12af186351b7fa9b9450)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/time.h>
28 #include <sys/wait.h>
29 #include <sys/zio.h>
30 #include <umem.h>
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_raidz_impl.h>
33 #include <assert.h>
34 #include <stdio.h>
35 #include "raidz_test.h"
36 
37 static int *rand_data;
38 raidz_test_opts_t rto_opts;
39 
40 static char pid_s[16];
41 
42 static void sig_handler(int signo)
43 {
44 	int old_errno = errno;
45 	struct sigaction action;
46 	/*
47 	 * Restore default action and re-raise signal so SIGSEGV and
48 	 * SIGABRT can trigger a core dump.
49 	 */
50 	action.sa_handler = SIG_DFL;
51 	sigemptyset(&action.sa_mask);
52 	action.sa_flags = 0;
53 	(void) sigaction(signo, &action, NULL);
54 
55 	if (rto_opts.rto_gdb) {
56 		pid_t pid = fork();
57 		if (pid == 0) {
58 			execlp("gdb", "gdb", "-ex", "set pagination 0",
59 			    "-p", pid_s, NULL);
60 			_exit(-1);
61 		} else if (pid > 0)
62 			while (waitpid(pid, NULL, 0) == -1 && errno == EINTR)
63 				;
64 	}
65 
66 	raise(signo);
67 	errno = old_errno;
68 }
69 
70 static void print_opts(raidz_test_opts_t *opts, boolean_t force)
71 {
72 	char *verbose;
73 	switch (opts->rto_v) {
74 		case 0:
75 			verbose = "no";
76 			break;
77 		case 1:
78 			verbose = "info";
79 			break;
80 		default:
81 			verbose = "debug";
82 			break;
83 	}
84 
85 	if (force || opts->rto_v >= D_INFO) {
86 		(void) fprintf(stdout, DBLSEP "Running with options:\n"
87 		    "  (-a) zio ashift                   : %zu\n"
88 		    "  (-o) zio offset                   : 1 << %zu\n"
89 		    "  (-e) expanded map                 : %s\n"
90 		    "  (-r) reflow offset                : %llx\n"
91 		    "  (-d) number of raidz data columns : %zu\n"
92 		    "  (-s) size of DATA                 : 1 << %zu\n"
93 		    "  (-S) sweep parameters             : %s \n"
94 		    "  (-v) verbose                      : %s \n\n",
95 		    opts->rto_ashift,				/* -a */
96 		    ilog2(opts->rto_offset),			/* -o */
97 		    opts->rto_expand ? "yes" : "no",		/* -e */
98 		    (u_longlong_t)opts->rto_expand_offset,	/* -r */
99 		    opts->rto_dcols,				/* -d */
100 		    ilog2(opts->rto_dsize),			/* -s */
101 		    opts->rto_sweep ? "yes" : "no",		/* -S */
102 		    verbose);					/* -v */
103 	}
104 }
105 
106 static void usage(boolean_t requested)
107 {
108 	const raidz_test_opts_t *o = &rto_opts_defaults;
109 
110 	FILE *fp = requested ? stdout : stderr;
111 
112 	(void) fprintf(fp, "Usage:\n"
113 	    "\t[-a zio ashift (default: %zu)]\n"
114 	    "\t[-o zio offset, exponent radix 2 (default: %zu)]\n"
115 	    "\t[-d number of raidz data columns (default: %zu)]\n"
116 	    "\t[-s zio size, exponent radix 2 (default: %zu)]\n"
117 	    "\t[-S parameter sweep (default: %s)]\n"
118 	    "\t[-t timeout for parameter sweep test]\n"
119 	    "\t[-B benchmark all raidz implementations]\n"
120 	    "\t[-e use expanded raidz map (default: %s)]\n"
121 	    "\t[-r expanded raidz map reflow offset (default: %llx)]\n"
122 	    "\t[-v increase verbosity (default: %zu)]\n"
123 	    "\t[-h (print help)]\n"
124 	    "\t[-T test the test, see if failure would be detected]\n"
125 	    "\t[-D debug (attach gdb on SIGSEGV)]\n"
126 	    "",
127 	    o->rto_ashift,				/* -a */
128 	    ilog2(o->rto_offset),			/* -o */
129 	    o->rto_dcols,				/* -d */
130 	    ilog2(o->rto_dsize),			/* -s */
131 	    rto_opts.rto_sweep ? "yes" : "no",		/* -S */
132 	    rto_opts.rto_expand ? "yes" : "no",		/* -e */
133 	    (u_longlong_t)o->rto_expand_offset,		/* -r */
134 	    o->rto_v);					/* -d */
135 
136 	exit(requested ? 0 : 1);
137 }
138 
139 static void process_options(int argc, char **argv)
140 {
141 	size_t value;
142 	int opt;
143 
144 	raidz_test_opts_t *o = &rto_opts;
145 
146 	bcopy(&rto_opts_defaults, o, sizeof (*o));
147 
148 	while ((opt = getopt(argc, argv, "TDBSvha:er:o:d:s:t:")) != -1) {
149 		value = 0;
150 
151 		switch (opt) {
152 		case 'a':
153 			value = strtoull(optarg, NULL, 0);
154 			o->rto_ashift = MIN(13, MAX(9, value));
155 			break;
156 		case 'e':
157 			o->rto_expand = 1;
158 			break;
159 		case 'r':
160 			o->rto_expand_offset = strtoull(optarg, NULL, 0);
161 			break;
162 		case 'o':
163 			value = strtoull(optarg, NULL, 0);
164 			o->rto_offset = ((1ULL << MIN(12, value)) >> 9) << 9;
165 			break;
166 		case 'd':
167 			value = strtoull(optarg, NULL, 0);
168 			o->rto_dcols = MIN(255, MAX(1, value));
169 			break;
170 		case 's':
171 			value = strtoull(optarg, NULL, 0);
172 			o->rto_dsize = 1ULL <<  MIN(SPA_MAXBLOCKSHIFT,
173 			    MAX(SPA_MINBLOCKSHIFT, value));
174 			break;
175 		case 't':
176 			value = strtoull(optarg, NULL, 0);
177 			o->rto_sweep_timeout = value;
178 			break;
179 		case 'v':
180 			o->rto_v++;
181 			break;
182 		case 'S':
183 			o->rto_sweep = 1;
184 			break;
185 		case 'B':
186 			o->rto_benchmark = 1;
187 			break;
188 		case 'D':
189 			o->rto_gdb = 1;
190 			break;
191 		case 'T':
192 			o->rto_sanity = 1;
193 			break;
194 		case 'h':
195 			usage(B_TRUE);
196 			break;
197 		case '?':
198 		default:
199 			usage(B_FALSE);
200 			break;
201 		}
202 	}
203 }
204 
205 #define	DATA_COL(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_abd)
206 #define	DATA_COL_SIZE(rr, i) ((rr)->rr_col[rr->rr_firstdatacol + (i)].rc_size)
207 
208 #define	CODE_COL(rr, i) ((rr)->rr_col[(i)].rc_abd)
209 #define	CODE_COL_SIZE(rr, i) ((rr)->rr_col[(i)].rc_size)
210 
211 static int
212 cmp_code(raidz_test_opts_t *opts, const raidz_map_t *rm, const int parity)
213 {
214 	int r, i, ret = 0;
215 
216 	VERIFY(parity >= 1 && parity <= 3);
217 
218 	for (r = 0; r < rm->rm_nrows; r++) {
219 		raidz_row_t * const rr = rm->rm_row[r];
220 		raidz_row_t * const rrg = opts->rm_golden->rm_row[r];
221 		for (i = 0; i < parity; i++) {
222 			if (CODE_COL_SIZE(rrg, i) == 0) {
223 				VERIFY0(CODE_COL_SIZE(rr, i));
224 				continue;
225 			}
226 
227 			if (abd_cmp(CODE_COL(rr, i),
228 			    CODE_COL(rrg, i)) != 0) {
229 				ret++;
230 				LOG_OPT(D_DEBUG, opts,
231 				    "\nParity block [%d] different!\n", i);
232 			}
233 		}
234 	}
235 	return (ret);
236 }
237 
238 static int
239 cmp_data(raidz_test_opts_t *opts, raidz_map_t *rm)
240 {
241 	int r, i, dcols, ret = 0;
242 
243 	for (r = 0; r < rm->rm_nrows; r++) {
244 		raidz_row_t *rr = rm->rm_row[r];
245 		raidz_row_t *rrg = opts->rm_golden->rm_row[r];
246 		dcols = opts->rm_golden->rm_row[0]->rr_cols -
247 		    raidz_parity(opts->rm_golden);
248 		for (i = 0; i < dcols; i++) {
249 			if (DATA_COL_SIZE(rrg, i) == 0) {
250 				VERIFY0(DATA_COL_SIZE(rr, i));
251 				continue;
252 			}
253 
254 			if (abd_cmp(DATA_COL(rrg, i),
255 			    DATA_COL(rr, i)) != 0) {
256 				ret++;
257 
258 				LOG_OPT(D_DEBUG, opts,
259 				    "\nData block [%d] different!\n", i);
260 			}
261 		}
262 	}
263 	return (ret);
264 }
265 
266 static int
267 init_rand(void *data, size_t size, void *private)
268 {
269 	(void) private;
270 	memcpy(data, rand_data, size);
271 	return (0);
272 }
273 
274 static void
275 corrupt_colums(raidz_map_t *rm, const int *tgts, const int cnt)
276 {
277 	for (int r = 0; r < rm->rm_nrows; r++) {
278 		raidz_row_t *rr = rm->rm_row[r];
279 		for (int i = 0; i < cnt; i++) {
280 			raidz_col_t *col = &rr->rr_col[tgts[i]];
281 			abd_iterate_func(col->rc_abd, 0, col->rc_size,
282 			    init_rand, NULL);
283 		}
284 	}
285 }
286 
287 void
288 init_zio_abd(zio_t *zio)
289 {
290 	abd_iterate_func(zio->io_abd, 0, zio->io_size, init_rand, NULL);
291 }
292 
293 static void
294 fini_raidz_map(zio_t **zio, raidz_map_t **rm)
295 {
296 	vdev_raidz_map_free(*rm);
297 	raidz_free((*zio)->io_abd, (*zio)->io_size);
298 	umem_free(*zio, sizeof (zio_t));
299 
300 	*zio = NULL;
301 	*rm = NULL;
302 }
303 
304 static int
305 init_raidz_golden_map(raidz_test_opts_t *opts, const int parity)
306 {
307 	int err = 0;
308 	zio_t *zio_test;
309 	raidz_map_t *rm_test;
310 	const size_t total_ncols = opts->rto_dcols + parity;
311 
312 	if (opts->rm_golden) {
313 		fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
314 	}
315 
316 	opts->zio_golden = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
317 	zio_test = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
318 
319 	opts->zio_golden->io_offset = zio_test->io_offset = opts->rto_offset;
320 	opts->zio_golden->io_size = zio_test->io_size = opts->rto_dsize;
321 
322 	opts->zio_golden->io_abd = raidz_alloc(opts->rto_dsize);
323 	zio_test->io_abd = raidz_alloc(opts->rto_dsize);
324 
325 	init_zio_abd(opts->zio_golden);
326 	init_zio_abd(zio_test);
327 
328 	VERIFY0(vdev_raidz_impl_set("original"));
329 
330 	if (opts->rto_expand) {
331 		opts->rm_golden =
332 		    vdev_raidz_map_alloc_expanded(opts->zio_golden->io_abd,
333 		    opts->zio_golden->io_size, opts->zio_golden->io_offset,
334 		    opts->rto_ashift, total_ncols+1, total_ncols,
335 		    parity, opts->rto_expand_offset);
336 		rm_test = vdev_raidz_map_alloc_expanded(zio_test->io_abd,
337 		    zio_test->io_size, zio_test->io_offset,
338 		    opts->rto_ashift, total_ncols+1, total_ncols,
339 		    parity, opts->rto_expand_offset);
340 	} else {
341 		opts->rm_golden = vdev_raidz_map_alloc(opts->zio_golden,
342 		    opts->rto_ashift, total_ncols, parity);
343 		rm_test = vdev_raidz_map_alloc(zio_test,
344 		    opts->rto_ashift, total_ncols, parity);
345 	}
346 
347 	VERIFY(opts->zio_golden);
348 	VERIFY(opts->rm_golden);
349 
350 	vdev_raidz_generate_parity(opts->rm_golden);
351 	vdev_raidz_generate_parity(rm_test);
352 
353 	/* sanity check */
354 	err |= cmp_data(opts, rm_test);
355 	err |= cmp_code(opts, rm_test, parity);
356 
357 	if (err)
358 		ERR("initializing the golden copy ... [FAIL]!\n");
359 
360 	/* tear down raidz_map of test zio */
361 	fini_raidz_map(&zio_test, &rm_test);
362 
363 	return (err);
364 }
365 
366 /*
367  * If reflow is not in progress, reflow_offset should be UINT64_MAX.
368  * For each row, if the row is entirely before reflow_offset, it will
369  * come from the new location.  Otherwise this row will come from the
370  * old location.  Therefore, rows that straddle the reflow_offset will
371  * come from the old location.
372  *
373  * NOTE: Until raidz expansion is implemented this function is only
374  * needed by raidz_test.c to the multi-row raid_map_t functionality.
375  */
376 raidz_map_t *
377 vdev_raidz_map_alloc_expanded(abd_t *abd, uint64_t size, uint64_t offset,
378     uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
379     uint64_t nparity, uint64_t reflow_offset)
380 {
381 	/* The zio's size in units of the vdev's minimum sector size. */
382 	uint64_t s = size >> ashift;
383 	uint64_t q, r, bc, devidx, asize = 0, tot;
384 
385 	/*
386 	 * "Quotient": The number of data sectors for this stripe on all but
387 	 * the "big column" child vdevs that also contain "remainder" data.
388 	 * AKA "full rows"
389 	 */
390 	q = s / (logical_cols - nparity);
391 
392 	/*
393 	 * "Remainder": The number of partial stripe data sectors in this I/O.
394 	 * This will add a sector to some, but not all, child vdevs.
395 	 */
396 	r = s - q * (logical_cols - nparity);
397 
398 	/* The number of "big columns" - those which contain remainder data. */
399 	bc = (r == 0 ? 0 : r + nparity);
400 
401 	/*
402 	 * The total number of data and parity sectors associated with
403 	 * this I/O.
404 	 */
405 	tot = s + nparity * (q + (r == 0 ? 0 : 1));
406 
407 	/* How many rows contain data (not skip) */
408 	uint64_t rows = howmany(tot, logical_cols);
409 	int cols = MIN(tot, logical_cols);
410 
411 	raidz_map_t *rm = kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
412 	    KM_SLEEP);
413 	rm->rm_nrows = rows;
414 
415 	for (uint64_t row = 0; row < rows; row++) {
416 		raidz_row_t *rr = kmem_alloc(offsetof(raidz_row_t,
417 		    rr_col[cols]), KM_SLEEP);
418 		rm->rm_row[row] = rr;
419 
420 		/* The starting RAIDZ (parent) vdev sector of the row. */
421 		uint64_t b = (offset >> ashift) + row * logical_cols;
422 
423 		/*
424 		 * If we are in the middle of a reflow, and any part of this
425 		 * row has not been copied, then use the old location of
426 		 * this row.
427 		 */
428 		int row_phys_cols = physical_cols;
429 		if (b + (logical_cols - nparity) > reflow_offset >> ashift)
430 			row_phys_cols--;
431 
432 		/* starting child of this row */
433 		uint64_t child_id = b % row_phys_cols;
434 		/* The starting byte offset on each child vdev. */
435 		uint64_t child_offset = (b / row_phys_cols) << ashift;
436 
437 		/*
438 		 * We set cols to the entire width of the block, even
439 		 * if this row is shorter.  This is needed because parity
440 		 * generation (for Q and R) needs to know the entire width,
441 		 * because it treats the short row as though it was
442 		 * full-width (and the "phantom" sectors were zero-filled).
443 		 *
444 		 * Another approach to this would be to set cols shorter
445 		 * (to just the number of columns that we might do i/o to)
446 		 * and have another mechanism to tell the parity generation
447 		 * about the "entire width".  Reconstruction (at least
448 		 * vdev_raidz_reconstruct_general()) would also need to
449 		 * know about the "entire width".
450 		 */
451 		rr->rr_cols = cols;
452 		rr->rr_bigcols = bc;
453 		rr->rr_missingdata = 0;
454 		rr->rr_missingparity = 0;
455 		rr->rr_firstdatacol = nparity;
456 		rr->rr_abd_empty = NULL;
457 		rr->rr_nempty = 0;
458 
459 		for (int c = 0; c < rr->rr_cols; c++, child_id++) {
460 			if (child_id >= row_phys_cols) {
461 				child_id -= row_phys_cols;
462 				child_offset += 1ULL << ashift;
463 			}
464 			rr->rr_col[c].rc_devidx = child_id;
465 			rr->rr_col[c].rc_offset = child_offset;
466 			rr->rr_col[c].rc_orig_data = NULL;
467 			rr->rr_col[c].rc_error = 0;
468 			rr->rr_col[c].rc_tried = 0;
469 			rr->rr_col[c].rc_skipped = 0;
470 			rr->rr_col[c].rc_need_orig_restore = B_FALSE;
471 
472 			uint64_t dc = c - rr->rr_firstdatacol;
473 			if (c < rr->rr_firstdatacol) {
474 				rr->rr_col[c].rc_size = 1ULL << ashift;
475 				rr->rr_col[c].rc_abd =
476 				    abd_alloc_linear(rr->rr_col[c].rc_size,
477 				    B_TRUE);
478 			} else if (row == rows - 1 && bc != 0 && c >= bc) {
479 				/*
480 				 * Past the end, this for parity generation.
481 				 */
482 				rr->rr_col[c].rc_size = 0;
483 				rr->rr_col[c].rc_abd = NULL;
484 			} else {
485 				/*
486 				 * "data column" (col excluding parity)
487 				 * Add an ASCII art diagram here
488 				 */
489 				uint64_t off;
490 
491 				if (c < bc || r == 0) {
492 					off = dc * rows + row;
493 				} else {
494 					off = r * rows +
495 					    (dc - r) * (rows - 1) + row;
496 				}
497 				rr->rr_col[c].rc_size = 1ULL << ashift;
498 				rr->rr_col[c].rc_abd = abd_get_offset_struct(
499 				    &rr->rr_col[c].rc_abdstruct,
500 				    abd, off << ashift, 1 << ashift);
501 			}
502 
503 			asize += rr->rr_col[c].rc_size;
504 		}
505 		/*
506 		 * If all data stored spans all columns, there's a danger that
507 		 * parity will always be on the same device and, since parity
508 		 * isn't read during normal operation, that that device's I/O
509 		 * bandwidth won't be used effectively. We therefore switch
510 		 * the parity every 1MB.
511 		 *
512 		 * ...at least that was, ostensibly, the theory. As a practical
513 		 * matter unless we juggle the parity between all devices
514 		 * evenly, we won't see any benefit. Further, occasional writes
515 		 * that aren't a multiple of the LCM of the number of children
516 		 * and the minimum stripe width are sufficient to avoid pessimal
517 		 * behavior. Unfortunately, this decision created an implicit
518 		 * on-disk format requirement that we need to support for all
519 		 * eternity, but only for single-parity RAID-Z.
520 		 *
521 		 * If we intend to skip a sector in the zeroth column for
522 		 * padding we must make sure to note this swap. We will never
523 		 * intend to skip the first column since at least one data and
524 		 * one parity column must appear in each row.
525 		 */
526 		if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
527 		    (offset & (1ULL << 20))) {
528 			ASSERT(rr->rr_cols >= 2);
529 			ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
530 			devidx = rr->rr_col[0].rc_devidx;
531 			uint64_t o = rr->rr_col[0].rc_offset;
532 			rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
533 			rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
534 			rr->rr_col[1].rc_devidx = devidx;
535 			rr->rr_col[1].rc_offset = o;
536 		}
537 
538 	}
539 	ASSERT3U(asize, ==, tot << ashift);
540 
541 	/* init RAIDZ parity ops */
542 	rm->rm_ops = vdev_raidz_math_get_ops();
543 
544 	return (rm);
545 }
546 
547 static raidz_map_t *
548 init_raidz_map(raidz_test_opts_t *opts, zio_t **zio, const int parity)
549 {
550 	raidz_map_t *rm = NULL;
551 	const size_t alloc_dsize = opts->rto_dsize;
552 	const size_t total_ncols = opts->rto_dcols + parity;
553 	const int ccols[] = { 0, 1, 2 };
554 
555 	VERIFY(zio);
556 	VERIFY(parity <= 3 && parity >= 1);
557 
558 	*zio = umem_zalloc(sizeof (zio_t), UMEM_NOFAIL);
559 
560 	(*zio)->io_offset = 0;
561 	(*zio)->io_size = alloc_dsize;
562 	(*zio)->io_abd = raidz_alloc(alloc_dsize);
563 	init_zio_abd(*zio);
564 
565 	if (opts->rto_expand) {
566 		rm = vdev_raidz_map_alloc_expanded((*zio)->io_abd,
567 		    (*zio)->io_size, (*zio)->io_offset,
568 		    opts->rto_ashift, total_ncols+1, total_ncols,
569 		    parity, opts->rto_expand_offset);
570 	} else {
571 		rm = vdev_raidz_map_alloc(*zio, opts->rto_ashift,
572 		    total_ncols, parity);
573 	}
574 	VERIFY(rm);
575 
576 	/* Make sure code columns are destroyed */
577 	corrupt_colums(rm, ccols, parity);
578 
579 	return (rm);
580 }
581 
582 static int
583 run_gen_check(raidz_test_opts_t *opts)
584 {
585 	char **impl_name;
586 	int fn, err = 0;
587 	zio_t *zio_test;
588 	raidz_map_t *rm_test;
589 
590 	err = init_raidz_golden_map(opts, PARITY_PQR);
591 	if (0 != err)
592 		return (err);
593 
594 	LOG(D_INFO, DBLSEP);
595 	LOG(D_INFO, "Testing parity generation...\n");
596 
597 	for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
598 	    impl_name++) {
599 
600 		LOG(D_INFO, SEP);
601 		LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
602 
603 		if (0 != vdev_raidz_impl_set(*impl_name)) {
604 			LOG(D_INFO, "[SKIP]\n");
605 			continue;
606 		} else {
607 			LOG(D_INFO, "[SUPPORTED]\n");
608 		}
609 
610 		for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
611 
612 			/* Check if should stop */
613 			if (rto_opts.rto_should_stop)
614 				return (err);
615 
616 			/* create suitable raidz_map */
617 			rm_test = init_raidz_map(opts, &zio_test, fn+1);
618 			VERIFY(rm_test);
619 
620 			LOG(D_INFO, "\t\tTesting method [%s] ...",
621 			    raidz_gen_name[fn]);
622 
623 			if (!opts->rto_sanity)
624 				vdev_raidz_generate_parity(rm_test);
625 
626 			if (cmp_code(opts, rm_test, fn+1) != 0) {
627 				LOG(D_INFO, "[FAIL]\n");
628 				err++;
629 			} else
630 				LOG(D_INFO, "[PASS]\n");
631 
632 			fini_raidz_map(&zio_test, &rm_test);
633 		}
634 	}
635 
636 	fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
637 
638 	return (err);
639 }
640 
641 static int
642 run_rec_check_impl(raidz_test_opts_t *opts, raidz_map_t *rm, const int fn)
643 {
644 	int x0, x1, x2;
645 	int tgtidx[3];
646 	int err = 0;
647 	static const int rec_tgts[7][3] = {
648 		{1, 2, 3},	/* rec_p:   bad QR & D[0]	*/
649 		{0, 2, 3},	/* rec_q:   bad PR & D[0]	*/
650 		{0, 1, 3},	/* rec_r:   bad PQ & D[0]	*/
651 		{2, 3, 4},	/* rec_pq:  bad R  & D[0][1]	*/
652 		{1, 3, 4},	/* rec_pr:  bad Q  & D[0][1]	*/
653 		{0, 3, 4},	/* rec_qr:  bad P  & D[0][1]	*/
654 		{3, 4, 5}	/* rec_pqr: bad    & D[0][1][2] */
655 	};
656 
657 	memcpy(tgtidx, rec_tgts[fn], sizeof (tgtidx));
658 
659 	if (fn < RAIDZ_REC_PQ) {
660 		/* can reconstruct 1 failed data disk */
661 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
662 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
663 				continue;
664 
665 			/* Check if should stop */
666 			if (rto_opts.rto_should_stop)
667 				return (err);
668 
669 			LOG(D_DEBUG, "[%d] ", x0);
670 
671 			tgtidx[2] = x0 + raidz_parity(rm);
672 
673 			corrupt_colums(rm, tgtidx+2, 1);
674 
675 			if (!opts->rto_sanity)
676 				vdev_raidz_reconstruct(rm, tgtidx, 3);
677 
678 			if (cmp_data(opts, rm) != 0) {
679 				err++;
680 				LOG(D_DEBUG, "\nREC D[%d]... [FAIL]\n", x0);
681 			}
682 		}
683 
684 	} else if (fn < RAIDZ_REC_PQR) {
685 		/* can reconstruct 2 failed data disk */
686 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
687 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
688 				continue;
689 			for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
690 				if (x1 >= rm->rm_row[0]->rr_cols -
691 				    raidz_parity(rm))
692 					continue;
693 
694 				/* Check if should stop */
695 				if (rto_opts.rto_should_stop)
696 					return (err);
697 
698 				LOG(D_DEBUG, "[%d %d] ", x0, x1);
699 
700 				tgtidx[1] = x0 + raidz_parity(rm);
701 				tgtidx[2] = x1 + raidz_parity(rm);
702 
703 				corrupt_colums(rm, tgtidx+1, 2);
704 
705 				if (!opts->rto_sanity)
706 					vdev_raidz_reconstruct(rm, tgtidx, 3);
707 
708 				if (cmp_data(opts, rm) != 0) {
709 					err++;
710 					LOG(D_DEBUG, "\nREC D[%d %d]... "
711 					    "[FAIL]\n", x0, x1);
712 				}
713 			}
714 		}
715 	} else {
716 		/* can reconstruct 3 failed data disk */
717 		for (x0 = 0; x0 < opts->rto_dcols; x0++) {
718 			if (x0 >= rm->rm_row[0]->rr_cols - raidz_parity(rm))
719 				continue;
720 			for (x1 = x0 + 1; x1 < opts->rto_dcols; x1++) {
721 				if (x1 >= rm->rm_row[0]->rr_cols -
722 				    raidz_parity(rm))
723 					continue;
724 				for (x2 = x1 + 1; x2 < opts->rto_dcols; x2++) {
725 					if (x2 >= rm->rm_row[0]->rr_cols -
726 					    raidz_parity(rm))
727 						continue;
728 
729 					/* Check if should stop */
730 					if (rto_opts.rto_should_stop)
731 						return (err);
732 
733 					LOG(D_DEBUG, "[%d %d %d]", x0, x1, x2);
734 
735 					tgtidx[0] = x0 + raidz_parity(rm);
736 					tgtidx[1] = x1 + raidz_parity(rm);
737 					tgtidx[2] = x2 + raidz_parity(rm);
738 
739 					corrupt_colums(rm, tgtidx, 3);
740 
741 					if (!opts->rto_sanity)
742 						vdev_raidz_reconstruct(rm,
743 						    tgtidx, 3);
744 
745 					if (cmp_data(opts, rm) != 0) {
746 						err++;
747 						LOG(D_DEBUG,
748 						    "\nREC D[%d %d %d]... "
749 						    "[FAIL]\n", x0, x1, x2);
750 					}
751 				}
752 			}
753 		}
754 	}
755 	return (err);
756 }
757 
758 static int
759 run_rec_check(raidz_test_opts_t *opts)
760 {
761 	char **impl_name;
762 	unsigned fn, err = 0;
763 	zio_t *zio_test;
764 	raidz_map_t *rm_test;
765 
766 	err = init_raidz_golden_map(opts, PARITY_PQR);
767 	if (0 != err)
768 		return (err);
769 
770 	LOG(D_INFO, DBLSEP);
771 	LOG(D_INFO, "Testing data reconstruction...\n");
772 
773 	for (impl_name = (char **)raidz_impl_names+1; *impl_name != NULL;
774 	    impl_name++) {
775 
776 		LOG(D_INFO, SEP);
777 		LOG(D_INFO, "\tTesting [%s] implementation...", *impl_name);
778 
779 		if (vdev_raidz_impl_set(*impl_name) != 0) {
780 			LOG(D_INFO, "[SKIP]\n");
781 			continue;
782 		} else
783 			LOG(D_INFO, "[SUPPORTED]\n");
784 
785 
786 		/* create suitable raidz_map */
787 		rm_test = init_raidz_map(opts, &zio_test, PARITY_PQR);
788 		/* generate parity */
789 		vdev_raidz_generate_parity(rm_test);
790 
791 		for (fn = 0; fn < RAIDZ_REC_NUM; fn++) {
792 
793 			LOG(D_INFO, "\t\tTesting method [%s] ...",
794 			    raidz_rec_name[fn]);
795 
796 			if (run_rec_check_impl(opts, rm_test, fn) != 0) {
797 				LOG(D_INFO, "[FAIL]\n");
798 				err++;
799 
800 			} else
801 				LOG(D_INFO, "[PASS]\n");
802 
803 		}
804 		/* tear down test raidz_map */
805 		fini_raidz_map(&zio_test, &rm_test);
806 	}
807 
808 	fini_raidz_map(&opts->zio_golden, &opts->rm_golden);
809 
810 	return (err);
811 }
812 
813 static int
814 run_test(raidz_test_opts_t *opts)
815 {
816 	int err = 0;
817 
818 	if (opts == NULL)
819 		opts = &rto_opts;
820 
821 	print_opts(opts, B_FALSE);
822 
823 	err |= run_gen_check(opts);
824 	err |= run_rec_check(opts);
825 
826 	return (err);
827 }
828 
829 #define	SWEEP_RUNNING	0
830 #define	SWEEP_FINISHED	1
831 #define	SWEEP_ERROR	2
832 #define	SWEEP_TIMEOUT	3
833 
834 static int sweep_state = 0;
835 static raidz_test_opts_t failed_opts;
836 
837 static kmutex_t sem_mtx;
838 static kcondvar_t sem_cv;
839 static int max_free_slots;
840 static int free_slots;
841 
842 static void
843 sweep_thread(void *arg)
844 {
845 	int err = 0;
846 	raidz_test_opts_t *opts = (raidz_test_opts_t *)arg;
847 	VERIFY(opts != NULL);
848 
849 	err = run_test(opts);
850 
851 	if (rto_opts.rto_sanity) {
852 		/* 25% chance that a sweep test fails */
853 		if (rand() < (RAND_MAX/4))
854 			err = 1;
855 	}
856 
857 	if (0 != err) {
858 		mutex_enter(&sem_mtx);
859 		memcpy(&failed_opts, opts, sizeof (raidz_test_opts_t));
860 		sweep_state = SWEEP_ERROR;
861 		mutex_exit(&sem_mtx);
862 	}
863 
864 	umem_free(opts, sizeof (raidz_test_opts_t));
865 
866 	/* signal the next thread */
867 	mutex_enter(&sem_mtx);
868 	free_slots++;
869 	cv_signal(&sem_cv);
870 	mutex_exit(&sem_mtx);
871 
872 	thread_exit();
873 }
874 
875 static int
876 run_sweep(void)
877 {
878 	static const size_t dcols_v[] = { 1, 2, 3, 4, 5, 6, 7, 8, 12, 15, 16 };
879 	static const size_t ashift_v[] = { 9, 12, 14 };
880 	static const size_t size_v[] = { 1 << 9, 21 * (1 << 9), 13 * (1 << 12),
881 		1 << 17, (1 << 20) - (1 << 12), SPA_MAXBLOCKSIZE };
882 
883 	(void) setvbuf(stdout, NULL, _IONBF, 0);
884 
885 	ulong_t total_comb = ARRAY_SIZE(size_v) * ARRAY_SIZE(ashift_v) *
886 	    ARRAY_SIZE(dcols_v);
887 	ulong_t tried_comb = 0;
888 	hrtime_t time_diff, start_time = gethrtime();
889 	raidz_test_opts_t *opts;
890 	int a, d, s;
891 
892 	max_free_slots = free_slots = MAX(2, boot_ncpus);
893 
894 	mutex_init(&sem_mtx, NULL, MUTEX_DEFAULT, NULL);
895 	cv_init(&sem_cv, NULL, CV_DEFAULT, NULL);
896 
897 	for (s = 0; s < ARRAY_SIZE(size_v); s++)
898 	for (a = 0; a < ARRAY_SIZE(ashift_v); a++)
899 	for (d = 0; d < ARRAY_SIZE(dcols_v); d++) {
900 
901 		if (size_v[s] < (1 << ashift_v[a])) {
902 			total_comb--;
903 			continue;
904 		}
905 
906 		if (++tried_comb % 20 == 0)
907 			LOG(D_ALL, "%lu/%lu... ", tried_comb, total_comb);
908 
909 		/* wait for signal to start new thread */
910 		mutex_enter(&sem_mtx);
911 		while (cv_timedwait_sig(&sem_cv, &sem_mtx,
912 		    ddi_get_lbolt() + hz)) {
913 
914 			/* check if should stop the test (timeout) */
915 			time_diff = (gethrtime() - start_time) / NANOSEC;
916 			if (rto_opts.rto_sweep_timeout > 0 &&
917 			    time_diff >= rto_opts.rto_sweep_timeout) {
918 				sweep_state = SWEEP_TIMEOUT;
919 				rto_opts.rto_should_stop = B_TRUE;
920 				mutex_exit(&sem_mtx);
921 				goto exit;
922 			}
923 
924 			/* check if should stop the test (error) */
925 			if (sweep_state != SWEEP_RUNNING) {
926 				mutex_exit(&sem_mtx);
927 				goto exit;
928 			}
929 
930 			/* exit loop if a slot is available */
931 			if (free_slots > 0) {
932 				break;
933 			}
934 		}
935 
936 		free_slots--;
937 		mutex_exit(&sem_mtx);
938 
939 		opts = umem_zalloc(sizeof (raidz_test_opts_t), UMEM_NOFAIL);
940 		opts->rto_ashift = ashift_v[a];
941 		opts->rto_dcols = dcols_v[d];
942 		opts->rto_offset = (1 << ashift_v[a]) * rand();
943 		opts->rto_dsize = size_v[s];
944 		opts->rto_expand = rto_opts.rto_expand;
945 		opts->rto_expand_offset = rto_opts.rto_expand_offset;
946 		opts->rto_v = 0; /* be quiet */
947 
948 		VERIFY3P(thread_create(NULL, 0, sweep_thread, (void *) opts,
949 		    0, NULL, TS_RUN, defclsyspri), !=, NULL);
950 	}
951 
952 exit:
953 	LOG(D_ALL, "\nWaiting for test threads to finish...\n");
954 	mutex_enter(&sem_mtx);
955 	VERIFY(free_slots <= max_free_slots);
956 	while (free_slots < max_free_slots) {
957 		(void) cv_wait(&sem_cv, &sem_mtx);
958 	}
959 	mutex_exit(&sem_mtx);
960 
961 	if (sweep_state == SWEEP_ERROR) {
962 		ERR("Sweep test failed! Failed option: \n");
963 		print_opts(&failed_opts, B_TRUE);
964 	} else {
965 		if (sweep_state == SWEEP_TIMEOUT)
966 			LOG(D_ALL, "Test timeout (%lus). Stopping...\n",
967 			    (ulong_t)rto_opts.rto_sweep_timeout);
968 
969 		LOG(D_ALL, "Sweep test succeeded on %lu raidz maps!\n",
970 		    (ulong_t)tried_comb);
971 	}
972 
973 	mutex_destroy(&sem_mtx);
974 
975 	return (sweep_state == SWEEP_ERROR ? SWEEP_ERROR : 0);
976 }
977 
978 
979 int
980 main(int argc, char **argv)
981 {
982 	size_t i;
983 	struct sigaction action;
984 	int err = 0;
985 
986 	/* init gdb pid string early */
987 	(void) sprintf(pid_s, "%d", getpid());
988 
989 	action.sa_handler = sig_handler;
990 	sigemptyset(&action.sa_mask);
991 	action.sa_flags = 0;
992 
993 	if (sigaction(SIGSEGV, &action, NULL) < 0) {
994 		ERR("raidz_test: cannot catch SIGSEGV: %s.\n", strerror(errno));
995 		exit(EXIT_FAILURE);
996 	}
997 
998 	(void) setvbuf(stdout, NULL, _IOLBF, 0);
999 
1000 	dprintf_setup(&argc, argv);
1001 
1002 	process_options(argc, argv);
1003 
1004 	kernel_init(SPA_MODE_READ);
1005 
1006 	/* setup random data because rand() is not reentrant */
1007 	rand_data = (int *)umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
1008 	srand((unsigned)time(NULL) * getpid());
1009 	for (i = 0; i < SPA_MAXBLOCKSIZE / sizeof (int); i++)
1010 		rand_data[i] = rand();
1011 
1012 	mprotect(rand_data, SPA_MAXBLOCKSIZE, PROT_READ);
1013 
1014 	if (rto_opts.rto_benchmark) {
1015 		run_raidz_benchmark();
1016 	} else if (rto_opts.rto_sweep) {
1017 		err = run_sweep();
1018 	} else {
1019 		err = run_test(NULL);
1020 	}
1021 
1022 	umem_free(rand_data, SPA_MAXBLOCKSIZE);
1023 	kernel_fini();
1024 
1025 	return (err);
1026 }
1027