xref: /freebsd/sys/contrib/dev/rtw88/pci.c (revision f5463265955b829775bbb32e1fd0bc11dafc36ce)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_pci_
7 #endif
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include "main.h"
12 #include "pci.h"
13 #include "reg.h"
14 #include "tx.h"
15 #include "rx.h"
16 #include "fw.h"
17 #include "ps.h"
18 #include "debug.h"
19 #if defined(__FreeBSD__)
20 #include <sys/rman.h>
21 #include <linux/pm.h>
22 #endif
23 
24 static bool rtw_disable_msi;
25 static bool rtw_pci_disable_aspm;
26 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
27 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
28 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
29 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
30 
31 static u32 rtw_pci_tx_queue_idx_addr[] = {
32 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
33 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
34 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
35 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
36 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
37 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
38 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
39 };
40 
41 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
42 			      enum rtw_tx_queue_type queue)
43 {
44 	switch (queue) {
45 	case RTW_TX_QUEUE_BCN:
46 		return TX_DESC_QSEL_BEACON;
47 	case RTW_TX_QUEUE_H2C:
48 		return TX_DESC_QSEL_H2C;
49 	case RTW_TX_QUEUE_MGMT:
50 		return TX_DESC_QSEL_MGMT;
51 	case RTW_TX_QUEUE_HI0:
52 		return TX_DESC_QSEL_HIGH;
53 	default:
54 		return skb->priority;
55 	}
56 };
57 
58 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
59 {
60 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
61 
62 #if defined(__linux__)
63 	return readb(rtwpci->mmap + addr);
64 #elif defined(__FreeBSD__)
65 	u8 val;
66 
67 	val = bus_read_1((struct resource *)rtwpci->mmap, addr);
68 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val);
69 	return (val);
70 #endif
71 }
72 
73 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
74 {
75 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
76 
77 #if defined(__linux__)
78 	return readw(rtwpci->mmap + addr);
79 #elif defined(__FreeBSD__)
80 	u16 val;
81 
82 	val = bus_read_2((struct resource *)rtwpci->mmap, addr);
83 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val);
84 	return (val);
85 #endif
86 }
87 
88 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
89 {
90 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
91 
92 #if defined(__linux__)
93 	return readl(rtwpci->mmap + addr);
94 #elif defined(__FreeBSD__)
95 	u32 val;
96 
97 	val = bus_read_4((struct resource *)rtwpci->mmap, addr);
98 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val);
99 	return (val);
100 #endif
101 }
102 
103 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
104 {
105 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
106 
107 #if defined(__linux__)
108 	writeb(val, rtwpci->mmap + addr);
109 #elif defined(__FreeBSD__)
110 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val);
111 	return (bus_write_1((struct resource *)rtwpci->mmap, addr, val));
112 #endif
113 }
114 
115 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
116 {
117 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
118 
119 #if defined(__linux__)
120 	writew(val, rtwpci->mmap + addr);
121 #elif defined(__FreeBSD__)
122 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val);
123 	return (bus_write_2((struct resource *)rtwpci->mmap, addr, val));
124 #endif
125 }
126 
127 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
128 {
129 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
130 
131 #if defined(__linux__)
132 	writel(val, rtwpci->mmap + addr);
133 #elif defined(__FreeBSD__)
134 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val);
135 	return (bus_write_4((struct resource *)rtwpci->mmap, addr, val));
136 #endif
137 }
138 
139 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
140 				      struct rtw_pci_tx_ring *tx_ring)
141 {
142 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
143 	struct rtw_pci_tx_data *tx_data;
144 	struct sk_buff *skb, *tmp;
145 	dma_addr_t dma;
146 
147 	/* free every skb remained in tx list */
148 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
149 		__skb_unlink(skb, &tx_ring->queue);
150 		tx_data = rtw_pci_get_tx_data(skb);
151 		dma = tx_data->dma;
152 
153 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
154 		dev_kfree_skb_any(skb);
155 	}
156 }
157 
158 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
159 				 struct rtw_pci_tx_ring *tx_ring)
160 {
161 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
162 	u8 *head = tx_ring->r.head;
163 	u32 len = tx_ring->r.len;
164 	int ring_sz = len * tx_ring->r.desc_size;
165 
166 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
167 
168 	/* free the ring itself */
169 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
170 	tx_ring->r.head = NULL;
171 }
172 
173 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
174 				      struct rtw_pci_rx_ring *rx_ring)
175 {
176 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
177 	struct sk_buff *skb;
178 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
179 	dma_addr_t dma;
180 	int i;
181 
182 	for (i = 0; i < rx_ring->r.len; i++) {
183 		skb = rx_ring->buf[i];
184 		if (!skb)
185 			continue;
186 
187 		dma = *((dma_addr_t *)skb->cb);
188 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
189 		dev_kfree_skb(skb);
190 		rx_ring->buf[i] = NULL;
191 	}
192 }
193 
194 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
195 				 struct rtw_pci_rx_ring *rx_ring)
196 {
197 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
198 	u8 *head = rx_ring->r.head;
199 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
200 
201 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
202 
203 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
204 }
205 
206 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
207 {
208 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
209 	struct rtw_pci_tx_ring *tx_ring;
210 	struct rtw_pci_rx_ring *rx_ring;
211 	int i;
212 
213 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
214 		tx_ring = &rtwpci->tx_rings[i];
215 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
216 	}
217 
218 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
219 		rx_ring = &rtwpci->rx_rings[i];
220 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
221 	}
222 }
223 
224 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
225 				struct rtw_pci_tx_ring *tx_ring,
226 				u8 desc_size, u32 len)
227 {
228 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
229 	int ring_sz = desc_size * len;
230 	dma_addr_t dma;
231 	u8 *head;
232 
233 	if (len > TRX_BD_IDX_MASK) {
234 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
235 		return -EINVAL;
236 	}
237 
238 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
239 	if (!head) {
240 		rtw_err(rtwdev, "failed to allocate tx ring\n");
241 		return -ENOMEM;
242 	}
243 
244 	skb_queue_head_init(&tx_ring->queue);
245 	tx_ring->r.head = head;
246 	tx_ring->r.dma = dma;
247 	tx_ring->r.len = len;
248 	tx_ring->r.desc_size = desc_size;
249 	tx_ring->r.wp = 0;
250 	tx_ring->r.rp = 0;
251 
252 	return 0;
253 }
254 
255 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
256 				 struct rtw_pci_rx_ring *rx_ring,
257 				 u32 idx, u32 desc_sz)
258 {
259 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
260 	struct rtw_pci_rx_buffer_desc *buf_desc;
261 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
262 	dma_addr_t dma;
263 
264 	if (!skb)
265 		return -EINVAL;
266 
267 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
268 	if (dma_mapping_error(&pdev->dev, dma))
269 		return -EBUSY;
270 
271 	*((dma_addr_t *)skb->cb) = dma;
272 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
273 						     idx * desc_sz);
274 	memset(buf_desc, 0, sizeof(*buf_desc));
275 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
276 	buf_desc->dma = cpu_to_le32(dma);
277 
278 	return 0;
279 }
280 
281 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
282 					struct rtw_pci_rx_ring *rx_ring,
283 					u32 idx, u32 desc_sz)
284 {
285 	struct device *dev = rtwdev->dev;
286 	struct rtw_pci_rx_buffer_desc *buf_desc;
287 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
288 
289 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
290 
291 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
292 						     idx * desc_sz);
293 	memset(buf_desc, 0, sizeof(*buf_desc));
294 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
295 	buf_desc->dma = cpu_to_le32(dma);
296 }
297 
298 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
299 				struct rtw_pci_rx_ring *rx_ring,
300 				u8 desc_size, u32 len)
301 {
302 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
303 	struct sk_buff *skb = NULL;
304 	dma_addr_t dma;
305 	u8 *head;
306 	int ring_sz = desc_size * len;
307 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
308 	int i, allocated;
309 	int ret = 0;
310 
311 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
312 	if (!head) {
313 		rtw_err(rtwdev, "failed to allocate rx ring\n");
314 		return -ENOMEM;
315 	}
316 	rx_ring->r.head = head;
317 
318 	for (i = 0; i < len; i++) {
319 		skb = dev_alloc_skb(buf_sz);
320 		if (!skb) {
321 			allocated = i;
322 			ret = -ENOMEM;
323 			goto err_out;
324 		}
325 
326 		memset(skb->data, 0, buf_sz);
327 		rx_ring->buf[i] = skb;
328 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
329 		if (ret) {
330 			allocated = i;
331 			dev_kfree_skb_any(skb);
332 			goto err_out;
333 		}
334 	}
335 
336 	rx_ring->r.dma = dma;
337 	rx_ring->r.len = len;
338 	rx_ring->r.desc_size = desc_size;
339 	rx_ring->r.wp = 0;
340 	rx_ring->r.rp = 0;
341 
342 	return 0;
343 
344 err_out:
345 	for (i = 0; i < allocated; i++) {
346 		skb = rx_ring->buf[i];
347 		if (!skb)
348 			continue;
349 		dma = *((dma_addr_t *)skb->cb);
350 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
351 		dev_kfree_skb_any(skb);
352 		rx_ring->buf[i] = NULL;
353 	}
354 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
355 
356 	rtw_err(rtwdev, "failed to init rx buffer\n");
357 
358 	return ret;
359 }
360 
361 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
362 {
363 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
364 	struct rtw_pci_tx_ring *tx_ring;
365 	struct rtw_pci_rx_ring *rx_ring;
366 	const struct rtw_chip_info *chip = rtwdev->chip;
367 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
368 	int tx_desc_size, rx_desc_size;
369 	u32 len;
370 	int ret;
371 
372 	tx_desc_size = chip->tx_buf_desc_sz;
373 
374 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
375 		tx_ring = &rtwpci->tx_rings[i];
376 		len = max_num_of_tx_queue(i);
377 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
378 		if (ret)
379 			goto out;
380 	}
381 
382 	rx_desc_size = chip->rx_buf_desc_sz;
383 
384 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
385 		rx_ring = &rtwpci->rx_rings[j];
386 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
387 					   RTK_MAX_RX_DESC_NUM);
388 		if (ret)
389 			goto out;
390 	}
391 
392 	return 0;
393 
394 out:
395 	tx_alloced = i;
396 	for (i = 0; i < tx_alloced; i++) {
397 		tx_ring = &rtwpci->tx_rings[i];
398 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
399 	}
400 
401 	rx_alloced = j;
402 	for (j = 0; j < rx_alloced; j++) {
403 		rx_ring = &rtwpci->rx_rings[j];
404 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
405 	}
406 
407 	return ret;
408 }
409 
410 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
411 {
412 	rtw_pci_free_trx_ring(rtwdev);
413 }
414 
415 static int rtw_pci_init(struct rtw_dev *rtwdev)
416 {
417 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
418 	int ret = 0;
419 
420 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
421 			      IMR_MGNTDOK |
422 			      IMR_BKDOK |
423 			      IMR_BEDOK |
424 			      IMR_VIDOK |
425 			      IMR_VODOK |
426 			      IMR_ROK |
427 			      IMR_BCNDMAINT_E |
428 			      IMR_C2HCMD |
429 			      0;
430 	rtwpci->irq_mask[1] = IMR_TXFOVW |
431 			      0;
432 	rtwpci->irq_mask[3] = IMR_H2CDOK |
433 			      0;
434 	spin_lock_init(&rtwpci->irq_lock);
435 	spin_lock_init(&rtwpci->hwirq_lock);
436 	ret = rtw_pci_init_trx_ring(rtwdev);
437 
438 	return ret;
439 }
440 
441 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
442 {
443 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
444 	u32 len;
445 	u8 tmp;
446 	dma_addr_t dma;
447 
448 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
449 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
450 
451 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
452 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
453 
454 	if (!rtw_chip_wcpu_11n(rtwdev)) {
455 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
456 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
457 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
458 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
459 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
460 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
461 	}
462 
463 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
464 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
466 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
467 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
468 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
469 
470 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
471 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
472 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
473 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
474 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
475 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
476 
477 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
478 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
479 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
480 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
481 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
482 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
483 
484 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
485 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
486 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
487 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
488 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
489 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
490 
491 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
492 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
493 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
494 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
495 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
496 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
497 
498 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
499 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
500 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
501 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
502 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
503 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
504 
505 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
506 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
507 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
508 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
509 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
510 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
511 
512 	/* reset read/write point */
513 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
514 
515 	/* reset H2C Queue index in a single write */
516 	if (rtw_chip_wcpu_11ac(rtwdev))
517 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
518 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
519 }
520 
521 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
522 {
523 	rtw_pci_reset_buf_desc(rtwdev);
524 }
525 
526 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
527 				     struct rtw_pci *rtwpci, bool exclude_rx)
528 {
529 	unsigned long flags;
530 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
531 
532 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
533 
534 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
535 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
536 	if (rtw_chip_wcpu_11ac(rtwdev))
537 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
538 
539 	rtwpci->irq_enabled = true;
540 
541 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
542 }
543 
544 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
545 				      struct rtw_pci *rtwpci)
546 {
547 	unsigned long flags;
548 
549 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
550 
551 	if (!rtwpci->irq_enabled)
552 		goto out;
553 
554 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
555 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
556 	if (rtw_chip_wcpu_11ac(rtwdev))
557 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
558 
559 	rtwpci->irq_enabled = false;
560 
561 out:
562 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
563 }
564 
565 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
566 {
567 	/* reset dma and rx tag */
568 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
569 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
570 	rtwpci->rx_tag = 0;
571 }
572 
573 static int rtw_pci_setup(struct rtw_dev *rtwdev)
574 {
575 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
576 
577 	rtw_pci_reset_trx_ring(rtwdev);
578 	rtw_pci_dma_reset(rtwdev, rtwpci);
579 
580 	return 0;
581 }
582 
583 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
584 {
585 	struct rtw_pci_tx_ring *tx_ring;
586 	enum rtw_tx_queue_type queue;
587 
588 	rtw_pci_reset_trx_ring(rtwdev);
589 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
590 		tx_ring = &rtwpci->tx_rings[queue];
591 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
592 	}
593 }
594 
595 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
596 {
597 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
598 
599 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
600 		return;
601 
602 	napi_enable(&rtwpci->napi);
603 }
604 
605 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
606 {
607 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
608 
609 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
610 		return;
611 
612 	napi_synchronize(&rtwpci->napi);
613 	napi_disable(&rtwpci->napi);
614 }
615 
616 static int rtw_pci_start(struct rtw_dev *rtwdev)
617 {
618 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
619 
620 	rtw_pci_napi_start(rtwdev);
621 
622 	spin_lock_bh(&rtwpci->irq_lock);
623 	rtwpci->running = true;
624 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
625 	spin_unlock_bh(&rtwpci->irq_lock);
626 
627 	return 0;
628 }
629 
630 static void rtw_pci_stop(struct rtw_dev *rtwdev)
631 {
632 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
633 	struct pci_dev *pdev = rtwpci->pdev;
634 
635 	spin_lock_bh(&rtwpci->irq_lock);
636 	rtwpci->running = false;
637 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
638 	spin_unlock_bh(&rtwpci->irq_lock);
639 
640 	synchronize_irq(pdev->irq);
641 	rtw_pci_napi_stop(rtwdev);
642 
643 	spin_lock_bh(&rtwpci->irq_lock);
644 	rtw_pci_dma_release(rtwdev, rtwpci);
645 	spin_unlock_bh(&rtwpci->irq_lock);
646 }
647 
648 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
649 {
650 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
651 	struct rtw_pci_tx_ring *tx_ring;
652 	enum rtw_tx_queue_type queue;
653 	bool tx_empty = true;
654 
655 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
656 		goto enter_deep_ps;
657 
658 	lockdep_assert_held(&rtwpci->irq_lock);
659 
660 	/* Deep PS state is not allowed to TX-DMA */
661 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
662 		/* BCN queue is rsvd page, does not have DMA interrupt
663 		 * H2C queue is managed by firmware
664 		 */
665 		if (queue == RTW_TX_QUEUE_BCN ||
666 		    queue == RTW_TX_QUEUE_H2C)
667 			continue;
668 
669 		tx_ring = &rtwpci->tx_rings[queue];
670 
671 		/* check if there is any skb DMAing */
672 		if (skb_queue_len(&tx_ring->queue)) {
673 			tx_empty = false;
674 			break;
675 		}
676 	}
677 
678 	if (!tx_empty) {
679 		rtw_dbg(rtwdev, RTW_DBG_PS,
680 			"TX path not empty, cannot enter deep power save state\n");
681 		return;
682 	}
683 enter_deep_ps:
684 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
685 	rtw_power_mode_change(rtwdev, true);
686 }
687 
688 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
689 {
690 #if defined(__linux__)
691 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
692 
693 	lockdep_assert_held(&rtwpci->irq_lock);
694 #elif defined(__FreeBSD__)
695 	lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock);
696 #endif
697 
698 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
699 		rtw_power_mode_change(rtwdev, false);
700 }
701 
702 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
703 {
704 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
705 
706 	spin_lock_bh(&rtwpci->irq_lock);
707 
708 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
709 		rtw_pci_deep_ps_enter(rtwdev);
710 
711 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
712 		rtw_pci_deep_ps_leave(rtwdev);
713 
714 	spin_unlock_bh(&rtwpci->irq_lock);
715 }
716 
717 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
718 				      struct rtw_pci_tx_ring *ring)
719 {
720 	struct sk_buff *prev = skb_dequeue(&ring->queue);
721 	struct rtw_pci_tx_data *tx_data;
722 	dma_addr_t dma;
723 
724 	if (!prev)
725 		return;
726 
727 	tx_data = rtw_pci_get_tx_data(prev);
728 	dma = tx_data->dma;
729 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
730 	dev_kfree_skb_any(prev);
731 }
732 
733 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
734 			      struct rtw_pci_rx_ring *rx_ring,
735 			      u32 idx)
736 {
737 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
738 	const struct rtw_chip_info *chip = rtwdev->chip;
739 	struct rtw_pci_rx_buffer_desc *buf_desc;
740 	u32 desc_sz = chip->rx_buf_desc_sz;
741 	u16 total_pkt_size;
742 
743 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
744 						     idx * desc_sz);
745 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
746 
747 	/* rx tag mismatch, throw a warning */
748 	if (total_pkt_size != rtwpci->rx_tag)
749 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
750 
751 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
752 }
753 
754 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
755 {
756 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
757 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
758 
759 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
760 }
761 
762 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
763 {
764 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
765 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
766 	u32 cur_rp;
767 	u8 i;
768 
769 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
770 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
771 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
772 	 * polling times, so we just use for loop with udelay here.
773 	 */
774 	for (i = 0; i < 30; i++) {
775 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
776 		if (cur_rp == ring->r.wp)
777 			return;
778 
779 		udelay(1);
780 	}
781 
782 	if (!drop)
783 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
784 }
785 
786 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
787 				   bool drop)
788 {
789 	u8 q;
790 
791 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
792 		/* Unnecessary to flush BCN, H2C and HI tx queues. */
793 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
794 		    q == RTW_TX_QUEUE_HI0)
795 			continue;
796 
797 		if (pci_queues & BIT(q))
798 			__pci_flush_queue(rtwdev, q, drop);
799 	}
800 }
801 
802 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
803 {
804 	u32 pci_queues = 0;
805 	u8 i;
806 
807 	/* If all of the hardware queues are requested to flush,
808 	 * flush all of the pci queues.
809 	 */
810 	if (queues == BIT(rtwdev->hw->queues) - 1) {
811 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
812 	} else {
813 		for (i = 0; i < rtwdev->hw->queues; i++)
814 			if (queues & BIT(i))
815 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
816 	}
817 
818 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
819 }
820 
821 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
822 				      enum rtw_tx_queue_type queue)
823 {
824 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
825 	struct rtw_pci_tx_ring *ring;
826 	u32 bd_idx;
827 
828 	ring = &rtwpci->tx_rings[queue];
829 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
830 
831 	spin_lock_bh(&rtwpci->irq_lock);
832 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
833 		rtw_pci_deep_ps_leave(rtwdev);
834 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
835 	spin_unlock_bh(&rtwpci->irq_lock);
836 }
837 
838 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
839 {
840 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
841 	enum rtw_tx_queue_type queue;
842 
843 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
844 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
845 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
846 }
847 
848 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
849 				 struct rtw_tx_pkt_info *pkt_info,
850 				 struct sk_buff *skb,
851 				 enum rtw_tx_queue_type queue)
852 {
853 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
854 	const struct rtw_chip_info *chip = rtwdev->chip;
855 	struct rtw_pci_tx_ring *ring;
856 	struct rtw_pci_tx_data *tx_data;
857 	dma_addr_t dma;
858 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
859 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
860 	u32 size;
861 	u32 psb_len;
862 	u8 *pkt_desc;
863 	struct rtw_pci_tx_buffer_desc *buf_desc;
864 
865 	ring = &rtwpci->tx_rings[queue];
866 
867 	size = skb->len;
868 
869 	if (queue == RTW_TX_QUEUE_BCN)
870 		rtw_pci_release_rsvd_page(rtwpci, ring);
871 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
872 		return -ENOSPC;
873 
874 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
875 	memset(pkt_desc, 0, tx_pkt_desc_sz);
876 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
877 	rtw_tx_fill_tx_desc(pkt_info, skb);
878 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
879 			     DMA_TO_DEVICE);
880 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
881 		return -EBUSY;
882 
883 	/* after this we got dma mapped, there is no way back */
884 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
885 	memset(buf_desc, 0, tx_buf_desc_sz);
886 	psb_len = (skb->len - 1) / 128 + 1;
887 	if (queue == RTW_TX_QUEUE_BCN)
888 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
889 
890 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
891 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
892 	buf_desc[0].dma = cpu_to_le32(dma);
893 	buf_desc[1].buf_size = cpu_to_le16(size);
894 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
895 
896 	tx_data = rtw_pci_get_tx_data(skb);
897 	tx_data->dma = dma;
898 	tx_data->sn = pkt_info->sn;
899 
900 	spin_lock_bh(&rtwpci->irq_lock);
901 
902 	skb_queue_tail(&ring->queue, skb);
903 
904 	if (queue == RTW_TX_QUEUE_BCN)
905 		goto out_unlock;
906 
907 	/* update write-index, and kick it off later */
908 	set_bit(queue, rtwpci->tx_queued);
909 	if (++ring->r.wp >= ring->r.len)
910 		ring->r.wp = 0;
911 
912 out_unlock:
913 	spin_unlock_bh(&rtwpci->irq_lock);
914 
915 	return 0;
916 }
917 
918 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
919 					u32 size)
920 {
921 	struct sk_buff *skb;
922 	struct rtw_tx_pkt_info pkt_info = {0};
923 	u8 reg_bcn_work;
924 	int ret;
925 
926 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
927 	if (!skb)
928 		return -ENOMEM;
929 
930 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
931 	if (ret) {
932 #if defined(__FreeBSD__)
933 		dev_kfree_skb_any(skb);
934 #endif
935 		rtw_err(rtwdev, "failed to write rsvd page data\n");
936 		return ret;
937 	}
938 
939 	/* reserved pages go through beacon queue */
940 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
941 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
942 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
943 
944 	return 0;
945 }
946 
947 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
948 {
949 	struct sk_buff *skb;
950 	struct rtw_tx_pkt_info pkt_info = {0};
951 	int ret;
952 
953 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
954 	if (!skb)
955 		return -ENOMEM;
956 
957 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
958 	if (ret) {
959 #if defined(__FreeBSD__)
960 		dev_kfree_skb_any(skb);
961 #endif
962 		rtw_err(rtwdev, "failed to write h2c data\n");
963 		return ret;
964 	}
965 
966 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
967 
968 	return 0;
969 }
970 
971 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
972 			    struct rtw_tx_pkt_info *pkt_info,
973 			    struct sk_buff *skb)
974 {
975 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
976 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
977 	struct rtw_pci_tx_ring *ring;
978 	int ret;
979 
980 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
981 	if (ret)
982 		return ret;
983 
984 	ring = &rtwpci->tx_rings[queue];
985 	spin_lock_bh(&rtwpci->irq_lock);
986 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
987 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
988 		ring->queue_stopped = true;
989 	}
990 	spin_unlock_bh(&rtwpci->irq_lock);
991 
992 	return 0;
993 }
994 
995 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
996 			   u8 hw_queue)
997 {
998 	struct ieee80211_hw *hw = rtwdev->hw;
999 	struct ieee80211_tx_info *info;
1000 	struct rtw_pci_tx_ring *ring;
1001 	struct rtw_pci_tx_data *tx_data;
1002 	struct sk_buff *skb;
1003 	u32 count;
1004 	u32 bd_idx_addr;
1005 	u32 bd_idx, cur_rp, rp_idx;
1006 	u16 q_map;
1007 
1008 	ring = &rtwpci->tx_rings[hw_queue];
1009 
1010 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
1011 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
1012 	cur_rp = bd_idx >> 16;
1013 	cur_rp &= TRX_BD_IDX_MASK;
1014 	rp_idx = ring->r.rp;
1015 	if (cur_rp >= ring->r.rp)
1016 		count = cur_rp - ring->r.rp;
1017 	else
1018 		count = ring->r.len - (ring->r.rp - cur_rp);
1019 
1020 	while (count--) {
1021 		skb = skb_dequeue(&ring->queue);
1022 		if (!skb) {
1023 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
1024 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1025 			break;
1026 		}
1027 		tx_data = rtw_pci_get_tx_data(skb);
1028 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1029 				 DMA_TO_DEVICE);
1030 
1031 		/* just free command packets from host to card */
1032 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1033 			dev_kfree_skb_irq(skb);
1034 			continue;
1035 		}
1036 
1037 		if (ring->queue_stopped &&
1038 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1039 			q_map = skb_get_queue_mapping(skb);
1040 			ieee80211_wake_queue(hw, q_map);
1041 			ring->queue_stopped = false;
1042 		}
1043 
1044 		if (++rp_idx >= ring->r.len)
1045 			rp_idx = 0;
1046 
1047 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1048 
1049 		info = IEEE80211_SKB_CB(skb);
1050 
1051 		/* enqueue to wait for tx report */
1052 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1053 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1054 			continue;
1055 		}
1056 
1057 		/* always ACK for others, then they won't be marked as drop */
1058 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1059 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1060 		else
1061 			info->flags |= IEEE80211_TX_STAT_ACK;
1062 
1063 		ieee80211_tx_info_clear_status(info);
1064 		ieee80211_tx_status_irqsafe(hw, skb);
1065 	}
1066 
1067 	ring->r.rp = cur_rp;
1068 }
1069 
1070 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1071 {
1072 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1073 	struct napi_struct *napi = &rtwpci->napi;
1074 
1075 	napi_schedule(napi);
1076 }
1077 
1078 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1079 				     struct rtw_pci *rtwpci)
1080 {
1081 	struct rtw_pci_rx_ring *ring;
1082 	int count = 0;
1083 	u32 tmp, cur_wp;
1084 
1085 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1086 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1087 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1088 	if (cur_wp >= ring->r.wp)
1089 		count = cur_wp - ring->r.wp;
1090 	else
1091 		count = ring->r.len - (ring->r.wp - cur_wp);
1092 
1093 	return count;
1094 }
1095 
1096 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1097 			   u8 hw_queue, u32 limit)
1098 {
1099 	const struct rtw_chip_info *chip = rtwdev->chip;
1100 	struct napi_struct *napi = &rtwpci->napi;
1101 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1102 	struct rtw_rx_pkt_stat pkt_stat;
1103 	struct ieee80211_rx_status rx_status;
1104 	struct sk_buff *skb, *new;
1105 	u32 cur_rp = ring->r.rp;
1106 	u32 count, rx_done = 0;
1107 	u32 pkt_offset;
1108 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1109 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1110 	u32 new_len;
1111 	u8 *rx_desc;
1112 	dma_addr_t dma;
1113 
1114 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1115 	count = min(count, limit);
1116 
1117 	while (count--) {
1118 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1119 		skb = ring->buf[cur_rp];
1120 		dma = *((dma_addr_t *)skb->cb);
1121 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1122 					DMA_FROM_DEVICE);
1123 		rx_desc = skb->data;
1124 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1125 
1126 		/* offset from rx_desc to payload */
1127 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1128 			     pkt_stat.shift;
1129 
1130 		/* allocate a new skb for this frame,
1131 		 * discard the frame if none available
1132 		 */
1133 		new_len = pkt_stat.pkt_len + pkt_offset;
1134 		new = dev_alloc_skb(new_len);
1135 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1136 			goto next_rp;
1137 
1138 		/* put the DMA data including rx_desc from phy to new skb */
1139 		skb_put_data(new, skb->data, new_len);
1140 
1141 		if (pkt_stat.is_c2h) {
1142 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1143 		} else {
1144 			/* remove rx_desc */
1145 			skb_pull(new, pkt_offset);
1146 
1147 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1148 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1149 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1150 			rx_done++;
1151 		}
1152 
1153 next_rp:
1154 		/* new skb delivered to mac80211, re-enable original skb DMA */
1155 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1156 					    buf_desc_sz);
1157 
1158 		/* host read next element in ring */
1159 		if (++cur_rp >= ring->r.len)
1160 			cur_rp = 0;
1161 	}
1162 
1163 	ring->r.rp = cur_rp;
1164 	/* 'rp', the last position we have read, is seen as previous posistion
1165 	 * of 'wp' that is used to calculate 'count' next time.
1166 	 */
1167 	ring->r.wp = cur_rp;
1168 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1169 
1170 	return rx_done;
1171 }
1172 
1173 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1174 				   struct rtw_pci *rtwpci, u32 *irq_status)
1175 {
1176 	unsigned long flags;
1177 
1178 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1179 
1180 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1181 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1182 	if (rtw_chip_wcpu_11ac(rtwdev))
1183 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1184 	else
1185 		irq_status[3] = 0;
1186 	irq_status[0] &= rtwpci->irq_mask[0];
1187 	irq_status[1] &= rtwpci->irq_mask[1];
1188 	irq_status[3] &= rtwpci->irq_mask[3];
1189 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1190 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1191 	if (rtw_chip_wcpu_11ac(rtwdev))
1192 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1193 
1194 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1195 }
1196 
1197 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1198 {
1199 	struct rtw_dev *rtwdev = dev;
1200 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1201 
1202 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1203 	 * thread function
1204 	 *
1205 	 * disable HIMR here to also avoid new HISR flag being raised before
1206 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1207 	 * are cleared, the edge-triggered interrupt will not be generated when
1208 	 * a new HISR flag is set.
1209 	 */
1210 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1211 
1212 	return IRQ_WAKE_THREAD;
1213 }
1214 
1215 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1216 {
1217 	struct rtw_dev *rtwdev = dev;
1218 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1219 	u32 irq_status[4];
1220 	bool rx = false;
1221 
1222 	spin_lock_bh(&rtwpci->irq_lock);
1223 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1224 
1225 	if (irq_status[0] & IMR_MGNTDOK)
1226 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1227 	if (irq_status[0] & IMR_HIGHDOK)
1228 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1229 	if (irq_status[0] & IMR_BEDOK)
1230 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1231 	if (irq_status[0] & IMR_BKDOK)
1232 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1233 	if (irq_status[0] & IMR_VODOK)
1234 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1235 	if (irq_status[0] & IMR_VIDOK)
1236 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1237 	if (irq_status[3] & IMR_H2CDOK)
1238 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1239 	if (irq_status[0] & IMR_ROK) {
1240 		rtw_pci_rx_isr(rtwdev);
1241 		rx = true;
1242 	}
1243 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1244 		rtw_fw_c2h_cmd_isr(rtwdev);
1245 
1246 	/* all of the jobs for this interrupt have been done */
1247 	if (rtwpci->running)
1248 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1249 	spin_unlock_bh(&rtwpci->irq_lock);
1250 
1251 	return IRQ_HANDLED;
1252 }
1253 
1254 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1255 			      struct pci_dev *pdev)
1256 {
1257 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1258 	unsigned long len;
1259 	u8 bar_id = 2;
1260 	int ret;
1261 
1262 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1263 	if (ret) {
1264 		rtw_err(rtwdev, "failed to request pci regions\n");
1265 		return ret;
1266 	}
1267 
1268 #if defined(__FreeBSD__)
1269 	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1270 	if (ret) {
1271 		rtw_err(rtwdev, "failed to set dma mask to 32-bit\n");
1272 		goto err_release_regions;
1273 	}
1274 
1275 	ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1276 	if (ret) {
1277 		rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n");
1278 		goto err_release_regions;
1279 	}
1280 #endif
1281 
1282 	len = pci_resource_len(pdev, bar_id);
1283 #if defined(__FreeBSD__)
1284 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
1285 #endif
1286 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1287 	if (!rtwpci->mmap) {
1288 		pci_release_regions(pdev);
1289 		rtw_err(rtwdev, "failed to map pci memory\n");
1290 		return -ENOMEM;
1291 	}
1292 
1293 	return 0;
1294 #if defined(__FreeBSD__)
1295 err_release_regions:
1296 	pci_release_regions(pdev);
1297 	return ret;
1298 #endif
1299 }
1300 
1301 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1302 				 struct pci_dev *pdev)
1303 {
1304 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1305 
1306 	if (rtwpci->mmap) {
1307 		pci_iounmap(pdev, rtwpci->mmap);
1308 		pci_release_regions(pdev);
1309 	}
1310 }
1311 
1312 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1313 {
1314 	u16 write_addr;
1315 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1316 	u8 flag;
1317 	u8 cnt;
1318 
1319 	write_addr = addr & BITS_DBI_ADDR_MASK;
1320 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1321 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1322 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1323 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1324 
1325 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1326 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1327 		if (flag == 0)
1328 			return;
1329 
1330 		udelay(10);
1331 	}
1332 
1333 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1334 }
1335 
1336 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1337 {
1338 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1339 	u8 flag;
1340 	u8 cnt;
1341 
1342 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1343 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1344 
1345 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1346 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1347 		if (flag == 0) {
1348 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1349 			*value = rtw_read8(rtwdev, read_addr);
1350 			return 0;
1351 		}
1352 
1353 		udelay(10);
1354 	}
1355 
1356 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1357 	return -EIO;
1358 }
1359 
1360 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1361 {
1362 	u8 page;
1363 	u8 wflag;
1364 	u8 cnt;
1365 
1366 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1367 
1368 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1369 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1370 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1371 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1372 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1373 
1374 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1375 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1376 					BIT_MDIO_WFLAG_V1);
1377 		if (wflag == 0)
1378 			return;
1379 
1380 		udelay(10);
1381 	}
1382 
1383 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1384 }
1385 
1386 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1387 {
1388 	u8 value;
1389 	int ret;
1390 
1391 	if (rtw_pci_disable_aspm)
1392 		return;
1393 
1394 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1395 	if (ret) {
1396 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1397 		return;
1398 	}
1399 
1400 	if (enable)
1401 		value |= BIT_CLKREQ_SW_EN;
1402 	else
1403 		value &= ~BIT_CLKREQ_SW_EN;
1404 
1405 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1406 }
1407 
1408 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1409 {
1410 	u8 value;
1411 	int ret;
1412 
1413 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1414 	if (ret) {
1415 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1416 		return;
1417 	}
1418 
1419 	if (enable)
1420 		value &= ~BIT_CLKREQ_N_PAD;
1421 	else
1422 		value |= BIT_CLKREQ_N_PAD;
1423 
1424 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1425 }
1426 
1427 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1428 {
1429 	u8 value;
1430 	int ret;
1431 
1432 	if (rtw_pci_disable_aspm)
1433 		return;
1434 
1435 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1436 	if (ret) {
1437 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1438 		return;
1439 	}
1440 
1441 	if (enable)
1442 		value |= BIT_L1_SW_EN;
1443 	else
1444 		value &= ~BIT_L1_SW_EN;
1445 
1446 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1447 }
1448 
1449 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1450 {
1451 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1452 
1453 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1454 	 * only be enabled when host supports it.
1455 	 *
1456 	 * And ASPM mechanism should be enabled when driver/firmware enters
1457 	 * power save mode, without having heavy traffic. Because we've
1458 	 * experienced some inter-operability issues that the link tends
1459 	 * to enter L1 state on the fly even when driver is having high
1460 	 * throughput. This is probably because the ASPM behavior slightly
1461 	 * varies from different SOC.
1462 	 */
1463 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1464 		return;
1465 
1466 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1467 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1468 		rtw_pci_aspm_set(rtwdev, enter);
1469 }
1470 
1471 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1472 {
1473 	const struct rtw_chip_info *chip = rtwdev->chip;
1474 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1475 	struct pci_dev *pdev = rtwpci->pdev;
1476 	u16 link_ctrl;
1477 	int ret;
1478 
1479 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1480 	 * to add clock delay to cover the REFCLK timing gap.
1481 	 */
1482 	if (chip->id == RTW_CHIP_TYPE_8822C)
1483 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1484 
1485 	/* Though there is standard PCIE configuration space to set the
1486 	 * link control register, but by Realtek's design, driver should
1487 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1488 	 *
1489 	 * These functions are implemented by two HW modules associated,
1490 	 * one is responsible to access PCIE configuration space to
1491 	 * follow the host settings, and another is in charge of doing
1492 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1493 	 * the host does not support it, and due to some reasons or wrong
1494 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1495 	 * loss if HW misbehaves on the link.
1496 	 *
1497 	 * Hence it's designed that driver should first check the PCIE
1498 	 * configuration space is sync'ed and enabled, then driver can turn
1499 	 * on the other module that is actually working on the mechanism.
1500 	 */
1501 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1502 	if (ret) {
1503 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1504 		return;
1505 	}
1506 
1507 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1508 		rtw_pci_clkreq_set(rtwdev, true);
1509 
1510 	rtwpci->link_ctrl = link_ctrl;
1511 }
1512 
1513 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1514 {
1515 	const struct rtw_chip_info *chip = rtwdev->chip;
1516 
1517 	switch (chip->id) {
1518 	case RTW_CHIP_TYPE_8822C:
1519 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1520 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1521 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1522 		break;
1523 	default:
1524 		break;
1525 	}
1526 }
1527 
1528 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1529 {
1530 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1531 	const struct rtw_chip_info *chip = rtwdev->chip;
1532 	struct pci_dev *pdev = rtwpci->pdev;
1533 	const struct rtw_intf_phy_para *para;
1534 	u16 cut;
1535 	u16 value;
1536 	u16 offset;
1537 	int i;
1538 	int ret;
1539 
1540 	cut = BIT(0) << rtwdev->hal.cut_version;
1541 
1542 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1543 		para = &chip->intf_table->gen1_para[i];
1544 		if (!(para->cut_mask & cut))
1545 			continue;
1546 		if (para->offset == 0xffff)
1547 			break;
1548 		offset = para->offset;
1549 		value = para->value;
1550 		if (para->ip_sel == RTW_IP_SEL_PHY)
1551 			rtw_mdio_write(rtwdev, offset, value, true);
1552 		else
1553 			rtw_dbi_write8(rtwdev, offset, value);
1554 	}
1555 
1556 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1557 		para = &chip->intf_table->gen2_para[i];
1558 		if (!(para->cut_mask & cut))
1559 			continue;
1560 		if (para->offset == 0xffff)
1561 			break;
1562 		offset = para->offset;
1563 		value = para->value;
1564 		if (para->ip_sel == RTW_IP_SEL_PHY)
1565 			rtw_mdio_write(rtwdev, offset, value, false);
1566 		else
1567 			rtw_dbi_write8(rtwdev, offset, value);
1568 	}
1569 
1570 	rtw_pci_link_cfg(rtwdev);
1571 
1572 	/* Disable 8821ce completion timeout by default */
1573 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1574 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1575 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1576 		if (ret)
1577 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1578 				ret);
1579 	}
1580 }
1581 
1582 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1583 {
1584 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1585 	struct rtw_dev *rtwdev = hw->priv;
1586 	const struct rtw_chip_info *chip = rtwdev->chip;
1587 	struct rtw_efuse *efuse = &rtwdev->efuse;
1588 
1589 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1590 		rtw_pci_clkreq_pad_low(rtwdev, true);
1591 	return 0;
1592 }
1593 
1594 static int __maybe_unused rtw_pci_resume(struct device *dev)
1595 {
1596 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1597 	struct rtw_dev *rtwdev = hw->priv;
1598 	const struct rtw_chip_info *chip = rtwdev->chip;
1599 	struct rtw_efuse *efuse = &rtwdev->efuse;
1600 
1601 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1602 		rtw_pci_clkreq_pad_low(rtwdev, false);
1603 	return 0;
1604 }
1605 
1606 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1607 EXPORT_SYMBOL(rtw_pm_ops);
1608 
1609 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1610 {
1611 	int ret;
1612 
1613 	ret = pci_enable_device(pdev);
1614 	if (ret) {
1615 		rtw_err(rtwdev, "failed to enable pci device\n");
1616 		return ret;
1617 	}
1618 
1619 	pci_set_master(pdev);
1620 	pci_set_drvdata(pdev, rtwdev->hw);
1621 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1622 
1623 	return 0;
1624 }
1625 
1626 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1627 {
1628 	pci_disable_device(pdev);
1629 }
1630 
1631 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1632 {
1633 	struct rtw_pci *rtwpci;
1634 	int ret;
1635 
1636 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1637 	rtwpci->pdev = pdev;
1638 
1639 	/* after this driver can access to hw registers */
1640 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1641 	if (ret) {
1642 		rtw_err(rtwdev, "failed to request pci io region\n");
1643 		goto err_out;
1644 	}
1645 
1646 	ret = rtw_pci_init(rtwdev);
1647 	if (ret) {
1648 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1649 		goto err_io_unmap;
1650 	}
1651 
1652 	return 0;
1653 
1654 err_io_unmap:
1655 	rtw_pci_io_unmapping(rtwdev, pdev);
1656 
1657 err_out:
1658 	return ret;
1659 }
1660 
1661 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1662 {
1663 	rtw_pci_deinit(rtwdev);
1664 	rtw_pci_io_unmapping(rtwdev, pdev);
1665 }
1666 
1667 static struct rtw_hci_ops rtw_pci_ops = {
1668 	.tx_write = rtw_pci_tx_write,
1669 	.tx_kick_off = rtw_pci_tx_kick_off,
1670 	.flush_queues = rtw_pci_flush_queues,
1671 	.setup = rtw_pci_setup,
1672 	.start = rtw_pci_start,
1673 	.stop = rtw_pci_stop,
1674 	.deep_ps = rtw_pci_deep_ps,
1675 	.link_ps = rtw_pci_link_ps,
1676 	.interface_cfg = rtw_pci_interface_cfg,
1677 
1678 	.read8 = rtw_pci_read8,
1679 	.read16 = rtw_pci_read16,
1680 	.read32 = rtw_pci_read32,
1681 	.write8 = rtw_pci_write8,
1682 	.write16 = rtw_pci_write16,
1683 	.write32 = rtw_pci_write32,
1684 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1685 	.write_data_h2c = rtw_pci_write_data_h2c,
1686 };
1687 
1688 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1689 {
1690 	unsigned int flags = PCI_IRQ_LEGACY;
1691 	int ret;
1692 
1693 	if (!rtw_disable_msi)
1694 		flags |= PCI_IRQ_MSI;
1695 
1696 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1697 	if (ret < 0) {
1698 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1699 		return ret;
1700 	}
1701 
1702 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1703 					rtw_pci_interrupt_handler,
1704 					rtw_pci_interrupt_threadfn,
1705 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1706 	if (ret) {
1707 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1708 		pci_free_irq_vectors(pdev);
1709 	}
1710 
1711 	return ret;
1712 }
1713 
1714 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1715 {
1716 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1717 	pci_free_irq_vectors(pdev);
1718 }
1719 
1720 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1721 {
1722 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1723 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1724 					      priv);
1725 	int work_done = 0;
1726 
1727 	if (rtwpci->rx_no_aspm)
1728 		rtw_pci_link_ps(rtwdev, false);
1729 
1730 	while (work_done < budget) {
1731 		u32 work_done_once;
1732 
1733 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1734 						 budget - work_done);
1735 		if (work_done_once == 0)
1736 			break;
1737 		work_done += work_done_once;
1738 	}
1739 	if (work_done < budget) {
1740 		napi_complete_done(napi, work_done);
1741 		spin_lock_bh(&rtwpci->irq_lock);
1742 		if (rtwpci->running)
1743 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1744 		spin_unlock_bh(&rtwpci->irq_lock);
1745 		/* When ISR happens during polling and before napi_complete
1746 		 * while no further data is received. Data on the dma_ring will
1747 		 * not be processed immediately. Check whether dma ring is
1748 		 * empty and perform napi_schedule accordingly.
1749 		 */
1750 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1751 			napi_schedule(napi);
1752 	}
1753 	if (rtwpci->rx_no_aspm)
1754 		rtw_pci_link_ps(rtwdev, true);
1755 
1756 	return work_done;
1757 }
1758 
1759 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1760 {
1761 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1762 
1763 	init_dummy_netdev(&rtwpci->netdev);
1764 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1765 }
1766 
1767 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1768 {
1769 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1770 
1771 	rtw_pci_napi_stop(rtwdev);
1772 	netif_napi_del(&rtwpci->napi);
1773 }
1774 
1775 int rtw_pci_probe(struct pci_dev *pdev,
1776 		  const struct pci_device_id *id)
1777 {
1778 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1779 	struct ieee80211_hw *hw;
1780 	struct rtw_dev *rtwdev;
1781 	struct rtw_pci *rtwpci;
1782 	int drv_data_size;
1783 	int ret;
1784 
1785 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1786 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1787 	if (!hw) {
1788 		dev_err(&pdev->dev, "failed to allocate hw\n");
1789 		return -ENOMEM;
1790 	}
1791 
1792 	rtwdev = hw->priv;
1793 	rtwdev->hw = hw;
1794 	rtwdev->dev = &pdev->dev;
1795 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1796 	rtwdev->hci.ops = &rtw_pci_ops;
1797 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1798 
1799 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1800 	atomic_set(&rtwpci->link_usage, 1);
1801 
1802 	ret = rtw_core_init(rtwdev);
1803 	if (ret)
1804 		goto err_release_hw;
1805 
1806 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1807 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1808 		pdev->vendor, pdev->device, pdev->revision);
1809 
1810 	ret = rtw_pci_claim(rtwdev, pdev);
1811 	if (ret) {
1812 		rtw_err(rtwdev, "failed to claim pci device\n");
1813 		goto err_deinit_core;
1814 	}
1815 
1816 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1817 	if (ret) {
1818 		rtw_err(rtwdev, "failed to setup pci resources\n");
1819 		goto err_pci_declaim;
1820 	}
1821 
1822 	rtw_pci_napi_init(rtwdev);
1823 
1824 	ret = rtw_chip_info_setup(rtwdev);
1825 	if (ret) {
1826 		rtw_err(rtwdev, "failed to setup chip information\n");
1827 		goto err_destroy_pci;
1828 	}
1829 
1830 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1831 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1832 		rtwpci->rx_no_aspm = true;
1833 
1834 	rtw_pci_phy_cfg(rtwdev);
1835 
1836 	ret = rtw_register_hw(rtwdev, hw);
1837 	if (ret) {
1838 		rtw_err(rtwdev, "failed to register hw\n");
1839 		goto err_destroy_pci;
1840 	}
1841 
1842 	ret = rtw_pci_request_irq(rtwdev, pdev);
1843 	if (ret) {
1844 		ieee80211_unregister_hw(hw);
1845 		goto err_destroy_pci;
1846 	}
1847 
1848 	return 0;
1849 
1850 err_destroy_pci:
1851 	rtw_pci_napi_deinit(rtwdev);
1852 	rtw_pci_destroy(rtwdev, pdev);
1853 
1854 err_pci_declaim:
1855 	rtw_pci_declaim(rtwdev, pdev);
1856 
1857 err_deinit_core:
1858 	rtw_core_deinit(rtwdev);
1859 
1860 err_release_hw:
1861 	ieee80211_free_hw(hw);
1862 
1863 	return ret;
1864 }
1865 EXPORT_SYMBOL(rtw_pci_probe);
1866 
1867 void rtw_pci_remove(struct pci_dev *pdev)
1868 {
1869 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1870 	struct rtw_dev *rtwdev;
1871 	struct rtw_pci *rtwpci;
1872 
1873 	if (!hw)
1874 		return;
1875 
1876 	rtwdev = hw->priv;
1877 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1878 
1879 	rtw_unregister_hw(rtwdev, hw);
1880 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1881 	rtw_pci_napi_deinit(rtwdev);
1882 	rtw_pci_destroy(rtwdev, pdev);
1883 	rtw_pci_declaim(rtwdev, pdev);
1884 	rtw_pci_free_irq(rtwdev, pdev);
1885 	rtw_core_deinit(rtwdev);
1886 	ieee80211_free_hw(hw);
1887 }
1888 EXPORT_SYMBOL(rtw_pci_remove);
1889 
1890 void rtw_pci_shutdown(struct pci_dev *pdev)
1891 {
1892 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1893 	struct rtw_dev *rtwdev;
1894 	const struct rtw_chip_info *chip;
1895 
1896 	if (!hw)
1897 		return;
1898 
1899 	rtwdev = hw->priv;
1900 	chip = rtwdev->chip;
1901 
1902 	if (chip->ops->shutdown)
1903 		chip->ops->shutdown(rtwdev);
1904 
1905 	pci_set_power_state(pdev, PCI_D3hot);
1906 }
1907 EXPORT_SYMBOL(rtw_pci_shutdown);
1908 
1909 MODULE_AUTHOR("Realtek Corporation");
1910 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1911 MODULE_LICENSE("Dual BSD/GPL");
1912 #if defined(__FreeBSD__)
1913 MODULE_VERSION(rtw_pci, 1);
1914 MODULE_DEPEND(rtw_pci, linuxkpi, 1, 1, 1);
1915 MODULE_DEPEND(rtw_pci, linuxkpi_wlan, 1, 1, 1);
1916 #ifdef CONFIG_RTW88_DEBUGFS
1917 MODULE_DEPEND(rtw_pci, lindebugfs, 1, 1, 1);
1918 #endif
1919 #endif
1920