1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #if defined(__FreeBSD__) 6 #define LINUXKPI_PARAM_PREFIX rtw88_pci_ 7 #endif 8 9 #include <linux/module.h> 10 #include <linux/pci.h> 11 #include "main.h" 12 #include "pci.h" 13 #include "reg.h" 14 #include "tx.h" 15 #include "rx.h" 16 #include "fw.h" 17 #include "ps.h" 18 #include "debug.h" 19 #if defined(__FreeBSD__) 20 #include <linux/pm.h> 21 #endif 22 23 static bool rtw_disable_msi; 24 static bool rtw_pci_disable_aspm; 25 module_param_named(disable_msi, rtw_disable_msi, bool, 0644); 26 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644); 27 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support"); 28 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support"); 29 30 static u32 rtw_pci_tx_queue_idx_addr[] = { 31 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ, 32 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ, 33 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ, 34 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ, 35 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ, 36 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q, 37 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ, 38 }; 39 40 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue) 41 { 42 switch (queue) { 43 case RTW_TX_QUEUE_BCN: 44 return TX_DESC_QSEL_BEACON; 45 case RTW_TX_QUEUE_H2C: 46 return TX_DESC_QSEL_H2C; 47 case RTW_TX_QUEUE_MGMT: 48 return TX_DESC_QSEL_MGMT; 49 case RTW_TX_QUEUE_HI0: 50 return TX_DESC_QSEL_HIGH; 51 default: 52 return skb->priority; 53 } 54 }; 55 56 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr) 57 { 58 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 59 60 #if defined(__linux__) 61 return readb(rtwpci->mmap + addr); 62 #elif defined(__FreeBSD__) 63 u8 val; 64 65 val = bus_read_1((struct resource *)rtwpci->mmap, addr); 66 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val); 67 return (val); 68 #endif 69 } 70 71 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr) 72 { 73 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 74 75 #if defined(__linux__) 76 return readw(rtwpci->mmap + addr); 77 #elif defined(__FreeBSD__) 78 u16 val; 79 80 val = bus_read_2((struct resource *)rtwpci->mmap, addr); 81 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val); 82 return (val); 83 #endif 84 } 85 86 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr) 87 { 88 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 89 90 #if defined(__linux__) 91 return readl(rtwpci->mmap + addr); 92 #elif defined(__FreeBSD__) 93 u32 val; 94 95 val = bus_read_4((struct resource *)rtwpci->mmap, addr); 96 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val); 97 return (val); 98 #endif 99 } 100 101 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val) 102 { 103 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 104 105 #if defined(__linux__) 106 writeb(val, rtwpci->mmap + addr); 107 #elif defined(__FreeBSD__) 108 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val); 109 return (bus_write_1((struct resource *)rtwpci->mmap, addr, val)); 110 #endif 111 } 112 113 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val) 114 { 115 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 116 117 #if defined(__linux__) 118 writew(val, rtwpci->mmap + addr); 119 #elif defined(__FreeBSD__) 120 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val); 121 return (bus_write_2((struct resource *)rtwpci->mmap, addr, val)); 122 #endif 123 } 124 125 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val) 126 { 127 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 128 129 #if defined(__linux__) 130 writel(val, rtwpci->mmap + addr); 131 #elif defined(__FreeBSD__) 132 rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val); 133 return (bus_write_4((struct resource *)rtwpci->mmap, addr, val)); 134 #endif 135 } 136 137 #if defined(__linux__) && 0 138 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx) 139 { 140 int offset = tx_ring->r.desc_size * idx; 141 142 return tx_ring->r.head + offset; 143 } 144 #endif 145 146 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev, 147 struct rtw_pci_tx_ring *tx_ring) 148 { 149 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 150 struct rtw_pci_tx_data *tx_data; 151 struct sk_buff *skb, *tmp; 152 dma_addr_t dma; 153 154 /* free every skb remained in tx list */ 155 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) { 156 __skb_unlink(skb, &tx_ring->queue); 157 tx_data = rtw_pci_get_tx_data(skb); 158 dma = tx_data->dma; 159 160 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE); 161 dev_kfree_skb_any(skb); 162 } 163 } 164 165 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev, 166 struct rtw_pci_tx_ring *tx_ring) 167 { 168 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 169 u8 *head = tx_ring->r.head; 170 u32 len = tx_ring->r.len; 171 int ring_sz = len * tx_ring->r.desc_size; 172 173 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 174 175 /* free the ring itself */ 176 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma); 177 tx_ring->r.head = NULL; 178 } 179 180 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev, 181 struct rtw_pci_rx_ring *rx_ring) 182 { 183 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 184 struct sk_buff *skb; 185 int buf_sz = RTK_PCI_RX_BUF_SIZE; 186 dma_addr_t dma; 187 int i; 188 189 for (i = 0; i < rx_ring->r.len; i++) { 190 skb = rx_ring->buf[i]; 191 if (!skb) 192 continue; 193 194 dma = *((dma_addr_t *)skb->cb); 195 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 196 dev_kfree_skb(skb); 197 rx_ring->buf[i] = NULL; 198 } 199 } 200 201 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev, 202 struct rtw_pci_rx_ring *rx_ring) 203 { 204 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 205 u8 *head = rx_ring->r.head; 206 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len; 207 208 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring); 209 210 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma); 211 } 212 213 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev) 214 { 215 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 216 struct rtw_pci_tx_ring *tx_ring; 217 struct rtw_pci_rx_ring *rx_ring; 218 int i; 219 220 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 221 tx_ring = &rtwpci->tx_rings[i]; 222 rtw_pci_free_tx_ring(rtwdev, tx_ring); 223 } 224 225 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) { 226 rx_ring = &rtwpci->rx_rings[i]; 227 rtw_pci_free_rx_ring(rtwdev, rx_ring); 228 } 229 } 230 231 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev, 232 struct rtw_pci_tx_ring *tx_ring, 233 u8 desc_size, u32 len) 234 { 235 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 236 int ring_sz = desc_size * len; 237 dma_addr_t dma; 238 u8 *head; 239 240 if (len > TRX_BD_IDX_MASK) { 241 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len); 242 return -EINVAL; 243 } 244 245 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 246 if (!head) { 247 rtw_err(rtwdev, "failed to allocate tx ring\n"); 248 return -ENOMEM; 249 } 250 251 skb_queue_head_init(&tx_ring->queue); 252 tx_ring->r.head = head; 253 tx_ring->r.dma = dma; 254 tx_ring->r.len = len; 255 tx_ring->r.desc_size = desc_size; 256 tx_ring->r.wp = 0; 257 tx_ring->r.rp = 0; 258 259 return 0; 260 } 261 262 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb, 263 struct rtw_pci_rx_ring *rx_ring, 264 u32 idx, u32 desc_sz) 265 { 266 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 267 struct rtw_pci_rx_buffer_desc *buf_desc; 268 int buf_sz = RTK_PCI_RX_BUF_SIZE; 269 dma_addr_t dma; 270 271 if (!skb) 272 return -EINVAL; 273 274 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE); 275 if (dma_mapping_error(&pdev->dev, dma)) 276 return -EBUSY; 277 278 *((dma_addr_t *)skb->cb) = dma; 279 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 280 idx * desc_sz); 281 memset(buf_desc, 0, sizeof(*buf_desc)); 282 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 283 buf_desc->dma = cpu_to_le32(dma); 284 285 return 0; 286 } 287 288 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma, 289 struct rtw_pci_rx_ring *rx_ring, 290 u32 idx, u32 desc_sz) 291 { 292 struct device *dev = rtwdev->dev; 293 struct rtw_pci_rx_buffer_desc *buf_desc; 294 int buf_sz = RTK_PCI_RX_BUF_SIZE; 295 296 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE); 297 298 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 299 idx * desc_sz); 300 memset(buf_desc, 0, sizeof(*buf_desc)); 301 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE); 302 buf_desc->dma = cpu_to_le32(dma); 303 } 304 305 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev, 306 struct rtw_pci_rx_ring *rx_ring, 307 u8 desc_size, u32 len) 308 { 309 struct pci_dev *pdev = to_pci_dev(rtwdev->dev); 310 struct sk_buff *skb = NULL; 311 dma_addr_t dma; 312 u8 *head; 313 int ring_sz = desc_size * len; 314 int buf_sz = RTK_PCI_RX_BUF_SIZE; 315 int i, allocated; 316 int ret = 0; 317 318 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL); 319 if (!head) { 320 rtw_err(rtwdev, "failed to allocate rx ring\n"); 321 return -ENOMEM; 322 } 323 rx_ring->r.head = head; 324 325 for (i = 0; i < len; i++) { 326 skb = dev_alloc_skb(buf_sz); 327 if (!skb) { 328 allocated = i; 329 ret = -ENOMEM; 330 goto err_out; 331 } 332 333 memset(skb->data, 0, buf_sz); 334 rx_ring->buf[i] = skb; 335 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size); 336 if (ret) { 337 allocated = i; 338 dev_kfree_skb_any(skb); 339 goto err_out; 340 } 341 } 342 343 rx_ring->r.dma = dma; 344 rx_ring->r.len = len; 345 rx_ring->r.desc_size = desc_size; 346 rx_ring->r.wp = 0; 347 rx_ring->r.rp = 0; 348 349 return 0; 350 351 err_out: 352 for (i = 0; i < allocated; i++) { 353 skb = rx_ring->buf[i]; 354 if (!skb) 355 continue; 356 dma = *((dma_addr_t *)skb->cb); 357 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE); 358 dev_kfree_skb_any(skb); 359 rx_ring->buf[i] = NULL; 360 } 361 dma_free_coherent(&pdev->dev, ring_sz, head, dma); 362 363 rtw_err(rtwdev, "failed to init rx buffer\n"); 364 365 return ret; 366 } 367 368 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev) 369 { 370 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 371 struct rtw_pci_tx_ring *tx_ring; 372 struct rtw_pci_rx_ring *rx_ring; 373 struct rtw_chip_info *chip = rtwdev->chip; 374 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0; 375 int tx_desc_size, rx_desc_size; 376 u32 len; 377 int ret; 378 379 tx_desc_size = chip->tx_buf_desc_sz; 380 381 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) { 382 tx_ring = &rtwpci->tx_rings[i]; 383 len = max_num_of_tx_queue(i); 384 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len); 385 if (ret) 386 goto out; 387 } 388 389 rx_desc_size = chip->rx_buf_desc_sz; 390 391 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) { 392 rx_ring = &rtwpci->rx_rings[j]; 393 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size, 394 RTK_MAX_RX_DESC_NUM); 395 if (ret) 396 goto out; 397 } 398 399 return 0; 400 401 out: 402 tx_alloced = i; 403 for (i = 0; i < tx_alloced; i++) { 404 tx_ring = &rtwpci->tx_rings[i]; 405 rtw_pci_free_tx_ring(rtwdev, tx_ring); 406 } 407 408 rx_alloced = j; 409 for (j = 0; j < rx_alloced; j++) { 410 rx_ring = &rtwpci->rx_rings[j]; 411 rtw_pci_free_rx_ring(rtwdev, rx_ring); 412 } 413 414 return ret; 415 } 416 417 static void rtw_pci_deinit(struct rtw_dev *rtwdev) 418 { 419 rtw_pci_free_trx_ring(rtwdev); 420 } 421 422 static int rtw_pci_init(struct rtw_dev *rtwdev) 423 { 424 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 425 int ret = 0; 426 427 rtwpci->irq_mask[0] = IMR_HIGHDOK | 428 IMR_MGNTDOK | 429 IMR_BKDOK | 430 IMR_BEDOK | 431 IMR_VIDOK | 432 IMR_VODOK | 433 IMR_ROK | 434 IMR_BCNDMAINT_E | 435 IMR_C2HCMD | 436 0; 437 rtwpci->irq_mask[1] = IMR_TXFOVW | 438 0; 439 rtwpci->irq_mask[3] = IMR_H2CDOK | 440 0; 441 spin_lock_init(&rtwpci->irq_lock); 442 spin_lock_init(&rtwpci->hwirq_lock); 443 ret = rtw_pci_init_trx_ring(rtwdev); 444 445 return ret; 446 } 447 448 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev) 449 { 450 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 451 u32 len; 452 u8 tmp; 453 dma_addr_t dma; 454 455 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3); 456 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7); 457 458 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma; 459 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma); 460 461 if (!rtw_chip_wcpu_11n(rtwdev)) { 462 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len; 463 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma; 464 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0; 465 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0; 466 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK); 467 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma); 468 } 469 470 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len; 471 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma; 472 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0; 473 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0; 474 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK); 475 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma); 476 477 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len; 478 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma; 479 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0; 480 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0; 481 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK); 482 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma); 483 484 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len; 485 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma; 486 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0; 487 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0; 488 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK); 489 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma); 490 491 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len; 492 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma; 493 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0; 494 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0; 495 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK); 496 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma); 497 498 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len; 499 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma; 500 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0; 501 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0; 502 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK); 503 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma); 504 505 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len; 506 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma; 507 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0; 508 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0; 509 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK); 510 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma); 511 512 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len; 513 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma; 514 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0; 515 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0; 516 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK); 517 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma); 518 519 /* reset read/write point */ 520 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff); 521 522 /* reset H2C Queue index in a single write */ 523 if (rtw_chip_wcpu_11ac(rtwdev)) 524 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR, 525 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX); 526 } 527 528 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev) 529 { 530 rtw_pci_reset_buf_desc(rtwdev); 531 } 532 533 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev, 534 struct rtw_pci *rtwpci, bool exclude_rx) 535 { 536 unsigned long flags; 537 u32 imr0_unmask = exclude_rx ? IMR_ROK : 0; 538 539 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 540 541 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask); 542 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]); 543 if (rtw_chip_wcpu_11ac(rtwdev)) 544 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]); 545 546 rtwpci->irq_enabled = true; 547 548 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 549 } 550 551 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev, 552 struct rtw_pci *rtwpci) 553 { 554 unsigned long flags; 555 556 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 557 558 if (!rtwpci->irq_enabled) 559 goto out; 560 561 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0); 562 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0); 563 if (rtw_chip_wcpu_11ac(rtwdev)) 564 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0); 565 566 rtwpci->irq_enabled = false; 567 568 out: 569 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 570 } 571 572 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 573 { 574 /* reset dma and rx tag */ 575 rtw_write32_set(rtwdev, RTK_PCI_CTRL, 576 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN); 577 rtwpci->rx_tag = 0; 578 } 579 580 static int rtw_pci_setup(struct rtw_dev *rtwdev) 581 { 582 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 583 584 rtw_pci_reset_trx_ring(rtwdev); 585 rtw_pci_dma_reset(rtwdev, rtwpci); 586 587 return 0; 588 } 589 590 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci) 591 { 592 struct rtw_pci_tx_ring *tx_ring; 593 u8 queue; 594 595 rtw_pci_reset_trx_ring(rtwdev); 596 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 597 tx_ring = &rtwpci->tx_rings[queue]; 598 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring); 599 } 600 } 601 602 static void rtw_pci_napi_start(struct rtw_dev *rtwdev) 603 { 604 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 605 606 if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) 607 return; 608 609 napi_enable(&rtwpci->napi); 610 } 611 612 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev) 613 { 614 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 615 616 if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags)) 617 return; 618 619 napi_synchronize(&rtwpci->napi); 620 napi_disable(&rtwpci->napi); 621 } 622 623 static int rtw_pci_start(struct rtw_dev *rtwdev) 624 { 625 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 626 627 rtw_pci_napi_start(rtwdev); 628 629 spin_lock_bh(&rtwpci->irq_lock); 630 rtwpci->running = true; 631 rtw_pci_enable_interrupt(rtwdev, rtwpci, false); 632 spin_unlock_bh(&rtwpci->irq_lock); 633 634 return 0; 635 } 636 637 static void rtw_pci_stop(struct rtw_dev *rtwdev) 638 { 639 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 640 struct pci_dev *pdev = rtwpci->pdev; 641 642 spin_lock_bh(&rtwpci->irq_lock); 643 rtwpci->running = false; 644 rtw_pci_disable_interrupt(rtwdev, rtwpci); 645 spin_unlock_bh(&rtwpci->irq_lock); 646 647 synchronize_irq(pdev->irq); 648 rtw_pci_napi_stop(rtwdev); 649 650 spin_lock_bh(&rtwpci->irq_lock); 651 rtw_pci_dma_release(rtwdev, rtwpci); 652 spin_unlock_bh(&rtwpci->irq_lock); 653 } 654 655 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev) 656 { 657 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 658 struct rtw_pci_tx_ring *tx_ring; 659 bool tx_empty = true; 660 u8 queue; 661 662 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) 663 goto enter_deep_ps; 664 665 lockdep_assert_held(&rtwpci->irq_lock); 666 667 /* Deep PS state is not allowed to TX-DMA */ 668 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) { 669 /* BCN queue is rsvd page, does not have DMA interrupt 670 * H2C queue is managed by firmware 671 */ 672 if (queue == RTW_TX_QUEUE_BCN || 673 queue == RTW_TX_QUEUE_H2C) 674 continue; 675 676 tx_ring = &rtwpci->tx_rings[queue]; 677 678 /* check if there is any skb DMAing */ 679 if (skb_queue_len(&tx_ring->queue)) { 680 tx_empty = false; 681 break; 682 } 683 } 684 685 if (!tx_empty) { 686 rtw_dbg(rtwdev, RTW_DBG_PS, 687 "TX path not empty, cannot enter deep power save state\n"); 688 return; 689 } 690 enter_deep_ps: 691 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags); 692 rtw_power_mode_change(rtwdev, true); 693 } 694 695 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev) 696 { 697 #if defined(__linux__) 698 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 699 700 lockdep_assert_held(&rtwpci->irq_lock); 701 #elif defined(__FreeBSD__) 702 lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock); 703 #endif 704 705 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 706 rtw_power_mode_change(rtwdev, false); 707 } 708 709 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter) 710 { 711 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 712 713 spin_lock_bh(&rtwpci->irq_lock); 714 715 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 716 rtw_pci_deep_ps_enter(rtwdev); 717 718 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags)) 719 rtw_pci_deep_ps_leave(rtwdev); 720 721 spin_unlock_bh(&rtwpci->irq_lock); 722 } 723 724 static u8 ac_to_hwq[] = { 725 [IEEE80211_AC_VO] = RTW_TX_QUEUE_VO, 726 [IEEE80211_AC_VI] = RTW_TX_QUEUE_VI, 727 [IEEE80211_AC_BE] = RTW_TX_QUEUE_BE, 728 [IEEE80211_AC_BK] = RTW_TX_QUEUE_BK, 729 }; 730 731 #if defined(__linux__) 732 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS); 733 #elif defined(__FreeBSD__) 734 rtw88_static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS); 735 #endif 736 737 static u8 rtw_hw_queue_mapping(struct sk_buff *skb) 738 { 739 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 740 __le16 fc = hdr->frame_control; 741 u8 q_mapping = skb_get_queue_mapping(skb); 742 u8 queue; 743 744 if (unlikely(ieee80211_is_beacon(fc))) 745 queue = RTW_TX_QUEUE_BCN; 746 else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc))) 747 queue = RTW_TX_QUEUE_MGMT; 748 else if (is_broadcast_ether_addr(hdr->addr1) || 749 is_multicast_ether_addr(hdr->addr1)) 750 queue = RTW_TX_QUEUE_HI0; 751 else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq))) 752 queue = ac_to_hwq[IEEE80211_AC_BE]; 753 else 754 queue = ac_to_hwq[q_mapping]; 755 756 return queue; 757 } 758 759 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci, 760 struct rtw_pci_tx_ring *ring) 761 { 762 struct sk_buff *prev = skb_dequeue(&ring->queue); 763 struct rtw_pci_tx_data *tx_data; 764 dma_addr_t dma; 765 766 if (!prev) 767 return; 768 769 tx_data = rtw_pci_get_tx_data(prev); 770 dma = tx_data->dma; 771 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE); 772 dev_kfree_skb_any(prev); 773 } 774 775 static void rtw_pci_dma_check(struct rtw_dev *rtwdev, 776 struct rtw_pci_rx_ring *rx_ring, 777 u32 idx) 778 { 779 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 780 struct rtw_chip_info *chip = rtwdev->chip; 781 struct rtw_pci_rx_buffer_desc *buf_desc; 782 u32 desc_sz = chip->rx_buf_desc_sz; 783 u16 total_pkt_size; 784 785 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head + 786 idx * desc_sz); 787 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size); 788 789 /* rx tag mismatch, throw a warning */ 790 if (total_pkt_size != rtwpci->rx_tag) 791 rtw_warn(rtwdev, "pci bus timeout, check dma status\n"); 792 793 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX; 794 } 795 796 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q) 797 { 798 u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q]; 799 u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2); 800 801 return FIELD_GET(TRX_BD_IDX_MASK, bd_idx); 802 } 803 804 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop) 805 { 806 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 807 struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q]; 808 u32 cur_rp; 809 u8 i; 810 811 /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a 812 * bit dynamic, it's hard to define a reasonable fixed total timeout to 813 * use read_poll_timeout* helper. Instead, we can ensure a reasonable 814 * polling times, so we just use for loop with udelay here. 815 */ 816 for (i = 0; i < 30; i++) { 817 cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q); 818 if (cur_rp == ring->r.wp) 819 return; 820 821 udelay(1); 822 } 823 824 if (!drop) 825 rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q); 826 } 827 828 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues, 829 bool drop) 830 { 831 u8 q; 832 833 for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) { 834 /* It may be not necessary to flush BCN and H2C tx queues. */ 835 if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C) 836 continue; 837 838 if (pci_queues & BIT(q)) 839 __pci_flush_queue(rtwdev, q, drop); 840 } 841 } 842 843 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop) 844 { 845 u32 pci_queues = 0; 846 u8 i; 847 848 /* If all of the hardware queues are requested to flush, 849 * flush all of the pci queues. 850 */ 851 if (queues == BIT(rtwdev->hw->queues) - 1) { 852 pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1; 853 } else { 854 for (i = 0; i < rtwdev->hw->queues; i++) 855 if (queues & BIT(i)) 856 pci_queues |= BIT(ac_to_hwq[i]); 857 } 858 859 __rtw_pci_flush_queues(rtwdev, pci_queues, drop); 860 } 861 862 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue) 863 { 864 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 865 struct rtw_pci_tx_ring *ring; 866 u32 bd_idx; 867 868 ring = &rtwpci->tx_rings[queue]; 869 bd_idx = rtw_pci_tx_queue_idx_addr[queue]; 870 871 spin_lock_bh(&rtwpci->irq_lock); 872 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE)) 873 rtw_pci_deep_ps_leave(rtwdev); 874 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK); 875 spin_unlock_bh(&rtwpci->irq_lock); 876 } 877 878 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev) 879 { 880 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 881 u8 queue; 882 883 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) 884 if (test_and_clear_bit(queue, rtwpci->tx_queued)) 885 rtw_pci_tx_kick_off_queue(rtwdev, queue); 886 } 887 888 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev, 889 struct rtw_tx_pkt_info *pkt_info, 890 struct sk_buff *skb, u8 queue) 891 { 892 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 893 struct rtw_chip_info *chip = rtwdev->chip; 894 struct rtw_pci_tx_ring *ring; 895 struct rtw_pci_tx_data *tx_data; 896 dma_addr_t dma; 897 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz; 898 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz; 899 u32 size; 900 u32 psb_len; 901 u8 *pkt_desc; 902 struct rtw_pci_tx_buffer_desc *buf_desc; 903 904 ring = &rtwpci->tx_rings[queue]; 905 906 size = skb->len; 907 908 if (queue == RTW_TX_QUEUE_BCN) 909 rtw_pci_release_rsvd_page(rtwpci, ring); 910 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len)) 911 return -ENOSPC; 912 913 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz); 914 memset(pkt_desc, 0, tx_pkt_desc_sz); 915 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue); 916 rtw_tx_fill_tx_desc(pkt_info, skb); 917 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len, 918 DMA_TO_DEVICE); 919 if (dma_mapping_error(&rtwpci->pdev->dev, dma)) 920 return -EBUSY; 921 922 /* after this we got dma mapped, there is no way back */ 923 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz); 924 memset(buf_desc, 0, tx_buf_desc_sz); 925 psb_len = (skb->len - 1) / 128 + 1; 926 if (queue == RTW_TX_QUEUE_BCN) 927 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET; 928 929 buf_desc[0].psb_len = cpu_to_le16(psb_len); 930 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz); 931 buf_desc[0].dma = cpu_to_le32(dma); 932 buf_desc[1].buf_size = cpu_to_le16(size); 933 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz); 934 935 tx_data = rtw_pci_get_tx_data(skb); 936 tx_data->dma = dma; 937 tx_data->sn = pkt_info->sn; 938 939 spin_lock_bh(&rtwpci->irq_lock); 940 941 skb_queue_tail(&ring->queue, skb); 942 943 if (queue == RTW_TX_QUEUE_BCN) 944 goto out_unlock; 945 946 /* update write-index, and kick it off later */ 947 set_bit(queue, rtwpci->tx_queued); 948 if (++ring->r.wp >= ring->r.len) 949 ring->r.wp = 0; 950 951 out_unlock: 952 spin_unlock_bh(&rtwpci->irq_lock); 953 954 return 0; 955 } 956 957 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf, 958 u32 size) 959 { 960 struct sk_buff *skb; 961 struct rtw_tx_pkt_info pkt_info = {0}; 962 u8 reg_bcn_work; 963 int ret; 964 965 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size); 966 if (!skb) 967 return -ENOMEM; 968 969 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN); 970 if (ret) { 971 #if defined(__FreeBSD__) 972 dev_kfree_skb_any(skb); 973 #endif 974 rtw_err(rtwdev, "failed to write rsvd page data\n"); 975 return ret; 976 } 977 978 /* reserved pages go through beacon queue */ 979 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK); 980 reg_bcn_work |= BIT_PCI_BCNQ_FLAG; 981 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work); 982 983 return 0; 984 } 985 986 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size) 987 { 988 struct sk_buff *skb; 989 struct rtw_tx_pkt_info pkt_info = {0}; 990 int ret; 991 992 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size); 993 if (!skb) 994 return -ENOMEM; 995 996 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C); 997 if (ret) { 998 #if defined(__FreeBSD__) 999 dev_kfree_skb_any(skb); 1000 #endif 1001 rtw_err(rtwdev, "failed to write h2c data\n"); 1002 return ret; 1003 } 1004 1005 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C); 1006 1007 return 0; 1008 } 1009 1010 static int rtw_pci_tx_write(struct rtw_dev *rtwdev, 1011 struct rtw_tx_pkt_info *pkt_info, 1012 struct sk_buff *skb) 1013 { 1014 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1015 struct rtw_pci_tx_ring *ring; 1016 u8 queue = rtw_hw_queue_mapping(skb); 1017 int ret; 1018 1019 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue); 1020 if (ret) 1021 return ret; 1022 1023 ring = &rtwpci->tx_rings[queue]; 1024 spin_lock_bh(&rtwpci->irq_lock); 1025 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) { 1026 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb)); 1027 ring->queue_stopped = true; 1028 } 1029 spin_unlock_bh(&rtwpci->irq_lock); 1030 1031 return 0; 1032 } 1033 1034 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 1035 u8 hw_queue) 1036 { 1037 struct ieee80211_hw *hw = rtwdev->hw; 1038 struct ieee80211_tx_info *info; 1039 struct rtw_pci_tx_ring *ring; 1040 struct rtw_pci_tx_data *tx_data; 1041 struct sk_buff *skb; 1042 u32 count; 1043 u32 bd_idx_addr; 1044 u32 bd_idx, cur_rp, rp_idx; 1045 u16 q_map; 1046 1047 ring = &rtwpci->tx_rings[hw_queue]; 1048 1049 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue]; 1050 bd_idx = rtw_read32(rtwdev, bd_idx_addr); 1051 cur_rp = bd_idx >> 16; 1052 cur_rp &= TRX_BD_IDX_MASK; 1053 rp_idx = ring->r.rp; 1054 if (cur_rp >= ring->r.rp) 1055 count = cur_rp - ring->r.rp; 1056 else 1057 count = ring->r.len - (ring->r.rp - cur_rp); 1058 1059 while (count--) { 1060 skb = skb_dequeue(&ring->queue); 1061 if (!skb) { 1062 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n", 1063 count, hw_queue, bd_idx, ring->r.rp, cur_rp); 1064 break; 1065 } 1066 tx_data = rtw_pci_get_tx_data(skb); 1067 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len, 1068 DMA_TO_DEVICE); 1069 1070 /* just free command packets from host to card */ 1071 if (hw_queue == RTW_TX_QUEUE_H2C) { 1072 dev_kfree_skb_irq(skb); 1073 continue; 1074 } 1075 1076 if (ring->queue_stopped && 1077 avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) { 1078 q_map = skb_get_queue_mapping(skb); 1079 ieee80211_wake_queue(hw, q_map); 1080 ring->queue_stopped = false; 1081 } 1082 1083 if (++rp_idx >= ring->r.len) 1084 rp_idx = 0; 1085 1086 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz); 1087 1088 info = IEEE80211_SKB_CB(skb); 1089 1090 /* enqueue to wait for tx report */ 1091 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 1092 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn); 1093 continue; 1094 } 1095 1096 /* always ACK for others, then they won't be marked as drop */ 1097 if (info->flags & IEEE80211_TX_CTL_NO_ACK) 1098 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 1099 else 1100 info->flags |= IEEE80211_TX_STAT_ACK; 1101 1102 ieee80211_tx_info_clear_status(info); 1103 ieee80211_tx_status_irqsafe(hw, skb); 1104 } 1105 1106 ring->r.rp = cur_rp; 1107 } 1108 1109 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev) 1110 { 1111 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1112 struct napi_struct *napi = &rtwpci->napi; 1113 1114 napi_schedule(napi); 1115 } 1116 1117 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev, 1118 struct rtw_pci *rtwpci) 1119 { 1120 struct rtw_pci_rx_ring *ring; 1121 int count = 0; 1122 u32 tmp, cur_wp; 1123 1124 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; 1125 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ); 1126 cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK); 1127 if (cur_wp >= ring->r.wp) 1128 count = cur_wp - ring->r.wp; 1129 else 1130 count = ring->r.len - (ring->r.wp - cur_wp); 1131 1132 return count; 1133 } 1134 1135 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci, 1136 u8 hw_queue, u32 limit) 1137 { 1138 struct rtw_chip_info *chip = rtwdev->chip; 1139 struct napi_struct *napi = &rtwpci->napi; 1140 struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU]; 1141 struct rtw_rx_pkt_stat pkt_stat; 1142 struct ieee80211_rx_status rx_status; 1143 struct sk_buff *skb, *new; 1144 u32 cur_rp = ring->r.rp; 1145 u32 count, rx_done = 0; 1146 u32 pkt_offset; 1147 u32 pkt_desc_sz = chip->rx_pkt_desc_sz; 1148 u32 buf_desc_sz = chip->rx_buf_desc_sz; 1149 u32 new_len; 1150 u8 *rx_desc; 1151 dma_addr_t dma; 1152 1153 count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci); 1154 count = min(count, limit); 1155 1156 while (count--) { 1157 rtw_pci_dma_check(rtwdev, ring, cur_rp); 1158 skb = ring->buf[cur_rp]; 1159 dma = *((dma_addr_t *)skb->cb); 1160 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE, 1161 DMA_FROM_DEVICE); 1162 rx_desc = skb->data; 1163 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status); 1164 1165 /* offset from rx_desc to payload */ 1166 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz + 1167 pkt_stat.shift; 1168 1169 /* allocate a new skb for this frame, 1170 * discard the frame if none available 1171 */ 1172 new_len = pkt_stat.pkt_len + pkt_offset; 1173 new = dev_alloc_skb(new_len); 1174 if (WARN_ONCE(!new, "rx routine starvation\n")) 1175 goto next_rp; 1176 1177 /* put the DMA data including rx_desc from phy to new skb */ 1178 skb_put_data(new, skb->data, new_len); 1179 1180 if (pkt_stat.is_c2h) { 1181 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new); 1182 } else { 1183 /* remove rx_desc */ 1184 skb_pull(new, pkt_offset); 1185 1186 rtw_rx_stats(rtwdev, pkt_stat.vif, new); 1187 memcpy(new->cb, &rx_status, sizeof(rx_status)); 1188 ieee80211_rx_napi(rtwdev->hw, NULL, new, napi); 1189 rx_done++; 1190 } 1191 1192 next_rp: 1193 /* new skb delivered to mac80211, re-enable original skb DMA */ 1194 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp, 1195 buf_desc_sz); 1196 1197 /* host read next element in ring */ 1198 if (++cur_rp >= ring->r.len) 1199 cur_rp = 0; 1200 } 1201 1202 ring->r.rp = cur_rp; 1203 /* 'rp', the last position we have read, is seen as previous posistion 1204 * of 'wp' that is used to calculate 'count' next time. 1205 */ 1206 ring->r.wp = cur_rp; 1207 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp); 1208 1209 return rx_done; 1210 } 1211 1212 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev, 1213 struct rtw_pci *rtwpci, u32 *irq_status) 1214 { 1215 unsigned long flags; 1216 1217 spin_lock_irqsave(&rtwpci->hwirq_lock, flags); 1218 1219 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0); 1220 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1); 1221 if (rtw_chip_wcpu_11ac(rtwdev)) 1222 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3); 1223 else 1224 irq_status[3] = 0; 1225 irq_status[0] &= rtwpci->irq_mask[0]; 1226 irq_status[1] &= rtwpci->irq_mask[1]; 1227 irq_status[3] &= rtwpci->irq_mask[3]; 1228 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]); 1229 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]); 1230 if (rtw_chip_wcpu_11ac(rtwdev)) 1231 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]); 1232 1233 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags); 1234 } 1235 1236 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev) 1237 { 1238 struct rtw_dev *rtwdev = dev; 1239 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1240 1241 /* disable RTW PCI interrupt to avoid more interrupts before the end of 1242 * thread function 1243 * 1244 * disable HIMR here to also avoid new HISR flag being raised before 1245 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs 1246 * are cleared, the edge-triggered interrupt will not be generated when 1247 * a new HISR flag is set. 1248 */ 1249 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1250 1251 return IRQ_WAKE_THREAD; 1252 } 1253 1254 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev) 1255 { 1256 struct rtw_dev *rtwdev = dev; 1257 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1258 u32 irq_status[4]; 1259 bool rx = false; 1260 1261 spin_lock_bh(&rtwpci->irq_lock); 1262 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status); 1263 1264 if (irq_status[0] & IMR_MGNTDOK) 1265 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT); 1266 if (irq_status[0] & IMR_HIGHDOK) 1267 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0); 1268 if (irq_status[0] & IMR_BEDOK) 1269 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE); 1270 if (irq_status[0] & IMR_BKDOK) 1271 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK); 1272 if (irq_status[0] & IMR_VODOK) 1273 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO); 1274 if (irq_status[0] & IMR_VIDOK) 1275 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI); 1276 if (irq_status[3] & IMR_H2CDOK) 1277 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C); 1278 if (irq_status[0] & IMR_ROK) { 1279 rtw_pci_rx_isr(rtwdev); 1280 rx = true; 1281 } 1282 if (unlikely(irq_status[0] & IMR_C2HCMD)) 1283 rtw_fw_c2h_cmd_isr(rtwdev); 1284 1285 /* all of the jobs for this interrupt have been done */ 1286 if (rtwpci->running) 1287 rtw_pci_enable_interrupt(rtwdev, rtwpci, rx); 1288 spin_unlock_bh(&rtwpci->irq_lock); 1289 1290 return IRQ_HANDLED; 1291 } 1292 1293 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev, 1294 struct pci_dev *pdev) 1295 { 1296 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1297 unsigned long len; 1298 u8 bar_id = 2; 1299 int ret; 1300 1301 ret = pci_request_regions(pdev, KBUILD_MODNAME); 1302 if (ret) { 1303 rtw_err(rtwdev, "failed to request pci regions\n"); 1304 return ret; 1305 } 1306 1307 #if defined(__FreeBSD__) 1308 ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1309 if (ret) { 1310 rtw_err(rtwdev, "failed to set dma mask to 32-bit\n"); 1311 goto err_release_regions; 1312 } 1313 1314 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); 1315 if (ret) { 1316 rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n"); 1317 goto err_release_regions; 1318 } 1319 #endif 1320 1321 len = pci_resource_len(pdev, bar_id); 1322 #if defined(__FreeBSD__) 1323 linuxkpi_pcim_want_to_use_bus_functions(pdev); 1324 #endif 1325 rtwpci->mmap = pci_iomap(pdev, bar_id, len); 1326 if (!rtwpci->mmap) { 1327 pci_release_regions(pdev); 1328 rtw_err(rtwdev, "failed to map pci memory\n"); 1329 return -ENOMEM; 1330 } 1331 1332 return 0; 1333 #if defined(__FreeBSD__) 1334 err_release_regions: 1335 pci_release_regions(pdev); 1336 return ret; 1337 #endif 1338 } 1339 1340 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev, 1341 struct pci_dev *pdev) 1342 { 1343 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1344 1345 if (rtwpci->mmap) { 1346 pci_iounmap(pdev, rtwpci->mmap); 1347 pci_release_regions(pdev); 1348 } 1349 } 1350 1351 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data) 1352 { 1353 u16 write_addr; 1354 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK); 1355 u8 flag; 1356 u8 cnt; 1357 1358 write_addr = addr & BITS_DBI_ADDR_MASK; 1359 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN); 1360 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data); 1361 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr); 1362 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16); 1363 1364 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1365 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1366 if (flag == 0) 1367 return; 1368 1369 udelay(10); 1370 } 1371 1372 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr); 1373 } 1374 1375 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value) 1376 { 1377 u16 read_addr = addr & BITS_DBI_ADDR_MASK; 1378 u8 flag; 1379 u8 cnt; 1380 1381 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr); 1382 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16); 1383 1384 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1385 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2); 1386 if (flag == 0) { 1387 read_addr = REG_DBI_RDATA_V1 + (addr & 3); 1388 *value = rtw_read8(rtwdev, read_addr); 1389 return 0; 1390 } 1391 1392 udelay(10); 1393 } 1394 1395 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr); 1396 return -EIO; 1397 } 1398 1399 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1) 1400 { 1401 u8 page; 1402 u8 wflag; 1403 u8 cnt; 1404 1405 rtw_write16(rtwdev, REG_MDIO_V1, data); 1406 1407 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1; 1408 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2; 1409 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK); 1410 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page); 1411 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1); 1412 1413 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) { 1414 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG, 1415 BIT_MDIO_WFLAG_V1); 1416 if (wflag == 0) 1417 return; 1418 1419 udelay(10); 1420 } 1421 1422 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr); 1423 } 1424 1425 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable) 1426 { 1427 u8 value; 1428 int ret; 1429 1430 if (rtw_pci_disable_aspm) 1431 return; 1432 1433 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1434 if (ret) { 1435 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); 1436 return; 1437 } 1438 1439 if (enable) 1440 value |= BIT_CLKREQ_SW_EN; 1441 else 1442 value &= ~BIT_CLKREQ_SW_EN; 1443 1444 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1445 } 1446 1447 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable) 1448 { 1449 u8 value; 1450 int ret; 1451 1452 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1453 if (ret) { 1454 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret); 1455 return; 1456 } 1457 1458 if (enable) 1459 value &= ~BIT_CLKREQ_N_PAD; 1460 else 1461 value |= BIT_CLKREQ_N_PAD; 1462 1463 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1464 } 1465 1466 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable) 1467 { 1468 u8 value; 1469 int ret; 1470 1471 if (rtw_pci_disable_aspm) 1472 return; 1473 1474 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value); 1475 if (ret) { 1476 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret); 1477 return; 1478 } 1479 1480 if (enable) 1481 value |= BIT_L1_SW_EN; 1482 else 1483 value &= ~BIT_L1_SW_EN; 1484 1485 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value); 1486 } 1487 1488 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter) 1489 { 1490 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1491 1492 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can 1493 * only be enabled when host supports it. 1494 * 1495 * And ASPM mechanism should be enabled when driver/firmware enters 1496 * power save mode, without having heavy traffic. Because we've 1497 * experienced some inter-operability issues that the link tends 1498 * to enter L1 state on the fly even when driver is having high 1499 * throughput. This is probably because the ASPM behavior slightly 1500 * varies from different SOC. 1501 */ 1502 if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1)) 1503 return; 1504 1505 if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) || 1506 (!enter && atomic_inc_return(&rtwpci->link_usage) == 1)) 1507 rtw_pci_aspm_set(rtwdev, enter); 1508 } 1509 1510 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev) 1511 { 1512 struct rtw_chip_info *chip = rtwdev->chip; 1513 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1514 struct pci_dev *pdev = rtwpci->pdev; 1515 u16 link_ctrl; 1516 int ret; 1517 1518 /* RTL8822CE has enabled REFCLK auto calibration, it does not need 1519 * to add clock delay to cover the REFCLK timing gap. 1520 */ 1521 if (chip->id == RTW_CHIP_TYPE_8822C) 1522 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0); 1523 1524 /* Though there is standard PCIE configuration space to set the 1525 * link control register, but by Realtek's design, driver should 1526 * check if host supports CLKREQ/ASPM to enable the HW module. 1527 * 1528 * These functions are implemented by two HW modules associated, 1529 * one is responsible to access PCIE configuration space to 1530 * follow the host settings, and another is in charge of doing 1531 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes 1532 * the host does not support it, and due to some reasons or wrong 1533 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device 1534 * loss if HW misbehaves on the link. 1535 * 1536 * Hence it's designed that driver should first check the PCIE 1537 * configuration space is sync'ed and enabled, then driver can turn 1538 * on the other module that is actually working on the mechanism. 1539 */ 1540 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl); 1541 if (ret) { 1542 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret); 1543 return; 1544 } 1545 1546 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN) 1547 rtw_pci_clkreq_set(rtwdev, true); 1548 1549 rtwpci->link_ctrl = link_ctrl; 1550 } 1551 1552 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev) 1553 { 1554 struct rtw_chip_info *chip = rtwdev->chip; 1555 1556 switch (chip->id) { 1557 case RTW_CHIP_TYPE_8822C: 1558 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D) 1559 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG, 1560 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1); 1561 break; 1562 default: 1563 break; 1564 } 1565 } 1566 1567 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev) 1568 { 1569 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1570 struct rtw_chip_info *chip = rtwdev->chip; 1571 struct pci_dev *pdev = rtwpci->pdev; 1572 const struct rtw_intf_phy_para *para; 1573 u16 cut; 1574 u16 value; 1575 u16 offset; 1576 int i; 1577 int ret; 1578 1579 cut = BIT(0) << rtwdev->hal.cut_version; 1580 1581 for (i = 0; i < chip->intf_table->n_gen1_para; i++) { 1582 para = &chip->intf_table->gen1_para[i]; 1583 if (!(para->cut_mask & cut)) 1584 continue; 1585 if (para->offset == 0xffff) 1586 break; 1587 offset = para->offset; 1588 value = para->value; 1589 if (para->ip_sel == RTW_IP_SEL_PHY) 1590 rtw_mdio_write(rtwdev, offset, value, true); 1591 else 1592 rtw_dbi_write8(rtwdev, offset, value); 1593 } 1594 1595 for (i = 0; i < chip->intf_table->n_gen2_para; i++) { 1596 para = &chip->intf_table->gen2_para[i]; 1597 if (!(para->cut_mask & cut)) 1598 continue; 1599 if (para->offset == 0xffff) 1600 break; 1601 offset = para->offset; 1602 value = para->value; 1603 if (para->ip_sel == RTW_IP_SEL_PHY) 1604 rtw_mdio_write(rtwdev, offset, value, false); 1605 else 1606 rtw_dbi_write8(rtwdev, offset, value); 1607 } 1608 1609 rtw_pci_link_cfg(rtwdev); 1610 1611 /* Disable 8821ce completion timeout by default */ 1612 if (chip->id == RTW_CHIP_TYPE_8821C) { 1613 ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2, 1614 PCI_EXP_DEVCTL2_COMP_TMOUT_DIS); 1615 if (ret) 1616 rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n", 1617 ret); 1618 } 1619 } 1620 1621 static int __maybe_unused rtw_pci_suspend(struct device *dev) 1622 { 1623 struct ieee80211_hw *hw = dev_get_drvdata(dev); 1624 struct rtw_dev *rtwdev = hw->priv; 1625 struct rtw_chip_info *chip = rtwdev->chip; 1626 struct rtw_efuse *efuse = &rtwdev->efuse; 1627 1628 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) 1629 rtw_pci_clkreq_pad_low(rtwdev, true); 1630 return 0; 1631 } 1632 1633 static int __maybe_unused rtw_pci_resume(struct device *dev) 1634 { 1635 struct ieee80211_hw *hw = dev_get_drvdata(dev); 1636 struct rtw_dev *rtwdev = hw->priv; 1637 struct rtw_chip_info *chip = rtwdev->chip; 1638 struct rtw_efuse *efuse = &rtwdev->efuse; 1639 1640 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6) 1641 rtw_pci_clkreq_pad_low(rtwdev, false); 1642 return 0; 1643 } 1644 1645 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume); 1646 EXPORT_SYMBOL(rtw_pm_ops); 1647 1648 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1649 { 1650 int ret; 1651 1652 ret = pci_enable_device(pdev); 1653 if (ret) { 1654 rtw_err(rtwdev, "failed to enable pci device\n"); 1655 return ret; 1656 } 1657 1658 pci_set_master(pdev); 1659 pci_set_drvdata(pdev, rtwdev->hw); 1660 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev); 1661 1662 return 0; 1663 } 1664 1665 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1666 { 1667 pci_clear_master(pdev); 1668 pci_disable_device(pdev); 1669 } 1670 1671 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1672 { 1673 struct rtw_pci *rtwpci; 1674 int ret; 1675 1676 rtwpci = (struct rtw_pci *)rtwdev->priv; 1677 rtwpci->pdev = pdev; 1678 1679 /* after this driver can access to hw registers */ 1680 ret = rtw_pci_io_mapping(rtwdev, pdev); 1681 if (ret) { 1682 rtw_err(rtwdev, "failed to request pci io region\n"); 1683 goto err_out; 1684 } 1685 1686 ret = rtw_pci_init(rtwdev); 1687 if (ret) { 1688 rtw_err(rtwdev, "failed to allocate pci resources\n"); 1689 goto err_io_unmap; 1690 } 1691 1692 return 0; 1693 1694 err_io_unmap: 1695 rtw_pci_io_unmapping(rtwdev, pdev); 1696 1697 err_out: 1698 return ret; 1699 } 1700 1701 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1702 { 1703 rtw_pci_deinit(rtwdev); 1704 rtw_pci_io_unmapping(rtwdev, pdev); 1705 } 1706 1707 static struct rtw_hci_ops rtw_pci_ops = { 1708 .tx_write = rtw_pci_tx_write, 1709 .tx_kick_off = rtw_pci_tx_kick_off, 1710 .flush_queues = rtw_pci_flush_queues, 1711 .setup = rtw_pci_setup, 1712 .start = rtw_pci_start, 1713 .stop = rtw_pci_stop, 1714 .deep_ps = rtw_pci_deep_ps, 1715 .link_ps = rtw_pci_link_ps, 1716 .interface_cfg = rtw_pci_interface_cfg, 1717 1718 .read8 = rtw_pci_read8, 1719 .read16 = rtw_pci_read16, 1720 .read32 = rtw_pci_read32, 1721 .write8 = rtw_pci_write8, 1722 .write16 = rtw_pci_write16, 1723 .write32 = rtw_pci_write32, 1724 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page, 1725 .write_data_h2c = rtw_pci_write_data_h2c, 1726 }; 1727 1728 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1729 { 1730 unsigned int flags = PCI_IRQ_LEGACY; 1731 int ret; 1732 1733 if (!rtw_disable_msi) 1734 flags |= PCI_IRQ_MSI; 1735 1736 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags); 1737 if (ret < 0) { 1738 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n"); 1739 return ret; 1740 } 1741 1742 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq, 1743 rtw_pci_interrupt_handler, 1744 rtw_pci_interrupt_threadfn, 1745 IRQF_SHARED, KBUILD_MODNAME, rtwdev); 1746 if (ret) { 1747 rtw_err(rtwdev, "failed to request irq %d\n", ret); 1748 pci_free_irq_vectors(pdev); 1749 } 1750 1751 return ret; 1752 } 1753 1754 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev) 1755 { 1756 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev); 1757 pci_free_irq_vectors(pdev); 1758 } 1759 1760 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget) 1761 { 1762 struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi); 1763 struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev, 1764 priv); 1765 int work_done = 0; 1766 1767 if (rtwpci->rx_no_aspm) 1768 rtw_pci_link_ps(rtwdev, false); 1769 1770 while (work_done < budget) { 1771 u32 work_done_once; 1772 1773 work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU, 1774 budget - work_done); 1775 if (work_done_once == 0) 1776 break; 1777 work_done += work_done_once; 1778 } 1779 if (work_done < budget) { 1780 napi_complete_done(napi, work_done); 1781 spin_lock_bh(&rtwpci->irq_lock); 1782 if (rtwpci->running) 1783 rtw_pci_enable_interrupt(rtwdev, rtwpci, false); 1784 spin_unlock_bh(&rtwpci->irq_lock); 1785 /* When ISR happens during polling and before napi_complete 1786 * while no further data is received. Data on the dma_ring will 1787 * not be processed immediately. Check whether dma ring is 1788 * empty and perform napi_schedule accordingly. 1789 */ 1790 if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci)) 1791 napi_schedule(napi); 1792 } 1793 if (rtwpci->rx_no_aspm) 1794 rtw_pci_link_ps(rtwdev, true); 1795 1796 return work_done; 1797 } 1798 1799 static void rtw_pci_napi_init(struct rtw_dev *rtwdev) 1800 { 1801 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1802 1803 init_dummy_netdev(&rtwpci->netdev); 1804 netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll, 1805 NAPI_POLL_WEIGHT); 1806 } 1807 1808 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev) 1809 { 1810 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv; 1811 1812 rtw_pci_napi_stop(rtwdev); 1813 netif_napi_del(&rtwpci->napi); 1814 } 1815 1816 int rtw_pci_probe(struct pci_dev *pdev, 1817 const struct pci_device_id *id) 1818 { 1819 struct pci_dev *bridge = pci_upstream_bridge(pdev); 1820 struct ieee80211_hw *hw; 1821 struct rtw_dev *rtwdev; 1822 struct rtw_pci *rtwpci; 1823 int drv_data_size; 1824 int ret; 1825 1826 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci); 1827 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops); 1828 if (!hw) { 1829 dev_err(&pdev->dev, "failed to allocate hw\n"); 1830 return -ENOMEM; 1831 } 1832 1833 rtwdev = hw->priv; 1834 rtwdev->hw = hw; 1835 rtwdev->dev = &pdev->dev; 1836 rtwdev->chip = (struct rtw_chip_info *)id->driver_data; 1837 rtwdev->hci.ops = &rtw_pci_ops; 1838 rtwdev->hci.type = RTW_HCI_TYPE_PCIE; 1839 1840 rtwpci = (struct rtw_pci *)rtwdev->priv; 1841 atomic_set(&rtwpci->link_usage, 1); 1842 1843 ret = rtw_core_init(rtwdev); 1844 if (ret) 1845 goto err_release_hw; 1846 1847 rtw_dbg(rtwdev, RTW_DBG_PCI, 1848 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n", 1849 pdev->vendor, pdev->device, pdev->revision); 1850 1851 ret = rtw_pci_claim(rtwdev, pdev); 1852 if (ret) { 1853 rtw_err(rtwdev, "failed to claim pci device\n"); 1854 goto err_deinit_core; 1855 } 1856 1857 ret = rtw_pci_setup_resource(rtwdev, pdev); 1858 if (ret) { 1859 rtw_err(rtwdev, "failed to setup pci resources\n"); 1860 goto err_pci_declaim; 1861 } 1862 1863 rtw_pci_napi_init(rtwdev); 1864 1865 ret = rtw_chip_info_setup(rtwdev); 1866 if (ret) { 1867 rtw_err(rtwdev, "failed to setup chip information\n"); 1868 goto err_destroy_pci; 1869 } 1870 1871 /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */ 1872 if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL) 1873 rtwpci->rx_no_aspm = true; 1874 1875 rtw_pci_phy_cfg(rtwdev); 1876 1877 ret = rtw_register_hw(rtwdev, hw); 1878 if (ret) { 1879 rtw_err(rtwdev, "failed to register hw\n"); 1880 goto err_destroy_pci; 1881 } 1882 1883 ret = rtw_pci_request_irq(rtwdev, pdev); 1884 if (ret) { 1885 ieee80211_unregister_hw(hw); 1886 goto err_destroy_pci; 1887 } 1888 1889 return 0; 1890 1891 err_destroy_pci: 1892 rtw_pci_napi_deinit(rtwdev); 1893 rtw_pci_destroy(rtwdev, pdev); 1894 1895 err_pci_declaim: 1896 rtw_pci_declaim(rtwdev, pdev); 1897 1898 err_deinit_core: 1899 rtw_core_deinit(rtwdev); 1900 1901 err_release_hw: 1902 ieee80211_free_hw(hw); 1903 1904 return ret; 1905 } 1906 EXPORT_SYMBOL(rtw_pci_probe); 1907 1908 void rtw_pci_remove(struct pci_dev *pdev) 1909 { 1910 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1911 struct rtw_dev *rtwdev; 1912 struct rtw_pci *rtwpci; 1913 1914 if (!hw) 1915 return; 1916 1917 rtwdev = hw->priv; 1918 rtwpci = (struct rtw_pci *)rtwdev->priv; 1919 1920 rtw_unregister_hw(rtwdev, hw); 1921 rtw_pci_disable_interrupt(rtwdev, rtwpci); 1922 rtw_pci_napi_deinit(rtwdev); 1923 rtw_pci_destroy(rtwdev, pdev); 1924 rtw_pci_declaim(rtwdev, pdev); 1925 rtw_pci_free_irq(rtwdev, pdev); 1926 rtw_core_deinit(rtwdev); 1927 ieee80211_free_hw(hw); 1928 } 1929 EXPORT_SYMBOL(rtw_pci_remove); 1930 1931 void rtw_pci_shutdown(struct pci_dev *pdev) 1932 { 1933 struct ieee80211_hw *hw = pci_get_drvdata(pdev); 1934 struct rtw_dev *rtwdev; 1935 struct rtw_chip_info *chip; 1936 1937 if (!hw) 1938 return; 1939 1940 rtwdev = hw->priv; 1941 chip = rtwdev->chip; 1942 1943 if (chip->ops->shutdown) 1944 chip->ops->shutdown(rtwdev); 1945 1946 pci_set_power_state(pdev, PCI_D3hot); 1947 } 1948 EXPORT_SYMBOL(rtw_pci_shutdown); 1949 1950 MODULE_AUTHOR("Realtek Corporation"); 1951 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver"); 1952 MODULE_LICENSE("Dual BSD/GPL"); 1953 #if defined(__FreeBSD__) 1954 MODULE_VERSION(rtw88_pci, 1); 1955 MODULE_DEPEND(rtw88_pci, rtw88_core, 1, 1, 1); 1956 MODULE_DEPEND(rtw88_pci, linuxkpi, 1, 1, 1); 1957 MODULE_DEPEND(rtw88_pci, linuxkpi_wlan, 1, 1, 1); 1958 #endif 1959