xref: /freebsd/sys/contrib/dev/rtw88/pci.c (revision 6d67aabd63555ab62a2f2b7f52a75ef100a2fe75)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_pci_
7 #endif
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include "main.h"
12 #include "pci.h"
13 #include "reg.h"
14 #include "tx.h"
15 #include "rx.h"
16 #include "fw.h"
17 #include "ps.h"
18 #include "debug.h"
19 #if defined(__FreeBSD__)
20 #include <sys/rman.h>
21 #include <linux/pm.h>
22 #endif
23 
24 static bool rtw_disable_msi;
25 static bool rtw_pci_disable_aspm;
26 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
27 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
28 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
29 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
30 
31 static u32 rtw_pci_tx_queue_idx_addr[] = {
32 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
33 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
34 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
35 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
36 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
37 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
38 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
39 };
40 
41 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
42 			      enum rtw_tx_queue_type queue)
43 {
44 	switch (queue) {
45 	case RTW_TX_QUEUE_BCN:
46 		return TX_DESC_QSEL_BEACON;
47 	case RTW_TX_QUEUE_H2C:
48 		return TX_DESC_QSEL_H2C;
49 	case RTW_TX_QUEUE_MGMT:
50 		return TX_DESC_QSEL_MGMT;
51 	case RTW_TX_QUEUE_HI0:
52 		return TX_DESC_QSEL_HIGH;
53 	default:
54 		return skb->priority;
55 	}
56 };
57 
58 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
59 {
60 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
61 
62 #if defined(__linux__)
63 	return readb(rtwpci->mmap + addr);
64 #elif defined(__FreeBSD__)
65 	u8 val;
66 
67 	val = bus_read_1((struct resource *)rtwpci->mmap, addr);
68 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val);
69 	return (val);
70 #endif
71 }
72 
73 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
74 {
75 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
76 
77 #if defined(__linux__)
78 	return readw(rtwpci->mmap + addr);
79 #elif defined(__FreeBSD__)
80 	u16 val;
81 
82 	val = bus_read_2((struct resource *)rtwpci->mmap, addr);
83 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val);
84 	return (val);
85 #endif
86 }
87 
88 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
89 {
90 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
91 
92 #if defined(__linux__)
93 	return readl(rtwpci->mmap + addr);
94 #elif defined(__FreeBSD__)
95 	u32 val;
96 
97 	val = bus_read_4((struct resource *)rtwpci->mmap, addr);
98 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val);
99 	return (val);
100 #endif
101 }
102 
103 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
104 {
105 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
106 
107 #if defined(__linux__)
108 	writeb(val, rtwpci->mmap + addr);
109 #elif defined(__FreeBSD__)
110 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val);
111 	return (bus_write_1((struct resource *)rtwpci->mmap, addr, val));
112 #endif
113 }
114 
115 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
116 {
117 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
118 
119 #if defined(__linux__)
120 	writew(val, rtwpci->mmap + addr);
121 #elif defined(__FreeBSD__)
122 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val);
123 	return (bus_write_2((struct resource *)rtwpci->mmap, addr, val));
124 #endif
125 }
126 
127 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
128 {
129 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
130 
131 #if defined(__linux__)
132 	writel(val, rtwpci->mmap + addr);
133 #elif defined(__FreeBSD__)
134 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val);
135 	return (bus_write_4((struct resource *)rtwpci->mmap, addr, val));
136 #endif
137 }
138 
139 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
140 				      struct rtw_pci_tx_ring *tx_ring)
141 {
142 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
143 	struct rtw_pci_tx_data *tx_data;
144 	struct sk_buff *skb, *tmp;
145 	dma_addr_t dma;
146 
147 	/* free every skb remained in tx list */
148 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
149 		__skb_unlink(skb, &tx_ring->queue);
150 		tx_data = rtw_pci_get_tx_data(skb);
151 		dma = tx_data->dma;
152 
153 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
154 		dev_kfree_skb_any(skb);
155 	}
156 }
157 
158 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
159 				 struct rtw_pci_tx_ring *tx_ring)
160 {
161 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
162 	u8 *head = tx_ring->r.head;
163 	u32 len = tx_ring->r.len;
164 	int ring_sz = len * tx_ring->r.desc_size;
165 
166 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
167 
168 	/* free the ring itself */
169 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
170 	tx_ring->r.head = NULL;
171 }
172 
173 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
174 				      struct rtw_pci_rx_ring *rx_ring)
175 {
176 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
177 	struct sk_buff *skb;
178 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
179 	dma_addr_t dma;
180 	int i;
181 
182 	for (i = 0; i < rx_ring->r.len; i++) {
183 		skb = rx_ring->buf[i];
184 		if (!skb)
185 			continue;
186 
187 		dma = *((dma_addr_t *)skb->cb);
188 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
189 		dev_kfree_skb(skb);
190 		rx_ring->buf[i] = NULL;
191 	}
192 }
193 
194 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
195 				 struct rtw_pci_rx_ring *rx_ring)
196 {
197 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
198 	u8 *head = rx_ring->r.head;
199 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
200 
201 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
202 
203 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
204 }
205 
206 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
207 {
208 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
209 	struct rtw_pci_tx_ring *tx_ring;
210 	struct rtw_pci_rx_ring *rx_ring;
211 	int i;
212 
213 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
214 		tx_ring = &rtwpci->tx_rings[i];
215 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
216 	}
217 
218 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
219 		rx_ring = &rtwpci->rx_rings[i];
220 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
221 	}
222 }
223 
224 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
225 				struct rtw_pci_tx_ring *tx_ring,
226 				u8 desc_size, u32 len)
227 {
228 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
229 	int ring_sz = desc_size * len;
230 	dma_addr_t dma;
231 	u8 *head;
232 
233 	if (len > TRX_BD_IDX_MASK) {
234 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
235 		return -EINVAL;
236 	}
237 
238 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
239 	if (!head) {
240 		rtw_err(rtwdev, "failed to allocate tx ring\n");
241 		return -ENOMEM;
242 	}
243 
244 	skb_queue_head_init(&tx_ring->queue);
245 	tx_ring->r.head = head;
246 	tx_ring->r.dma = dma;
247 	tx_ring->r.len = len;
248 	tx_ring->r.desc_size = desc_size;
249 	tx_ring->r.wp = 0;
250 	tx_ring->r.rp = 0;
251 
252 	return 0;
253 }
254 
255 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
256 				 struct rtw_pci_rx_ring *rx_ring,
257 				 u32 idx, u32 desc_sz)
258 {
259 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
260 	struct rtw_pci_rx_buffer_desc *buf_desc;
261 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
262 	dma_addr_t dma;
263 
264 	if (!skb)
265 		return -EINVAL;
266 
267 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
268 	if (dma_mapping_error(&pdev->dev, dma))
269 		return -EBUSY;
270 
271 	*((dma_addr_t *)skb->cb) = dma;
272 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
273 						     idx * desc_sz);
274 	memset(buf_desc, 0, sizeof(*buf_desc));
275 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
276 	buf_desc->dma = cpu_to_le32(dma);
277 
278 	return 0;
279 }
280 
281 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
282 					struct rtw_pci_rx_ring *rx_ring,
283 					u32 idx, u32 desc_sz)
284 {
285 	struct device *dev = rtwdev->dev;
286 	struct rtw_pci_rx_buffer_desc *buf_desc;
287 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
288 
289 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
290 
291 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
292 						     idx * desc_sz);
293 	memset(buf_desc, 0, sizeof(*buf_desc));
294 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
295 	buf_desc->dma = cpu_to_le32(dma);
296 }
297 
298 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
299 				struct rtw_pci_rx_ring *rx_ring,
300 				u8 desc_size, u32 len)
301 {
302 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
303 	struct sk_buff *skb = NULL;
304 	dma_addr_t dma;
305 	u8 *head;
306 	int ring_sz = desc_size * len;
307 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
308 	int i, allocated;
309 	int ret = 0;
310 
311 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
312 	if (!head) {
313 		rtw_err(rtwdev, "failed to allocate rx ring\n");
314 		return -ENOMEM;
315 	}
316 	rx_ring->r.head = head;
317 
318 	for (i = 0; i < len; i++) {
319 		skb = dev_alloc_skb(buf_sz);
320 		if (!skb) {
321 			allocated = i;
322 			ret = -ENOMEM;
323 			goto err_out;
324 		}
325 
326 		memset(skb->data, 0, buf_sz);
327 		rx_ring->buf[i] = skb;
328 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
329 		if (ret) {
330 			allocated = i;
331 			dev_kfree_skb_any(skb);
332 			goto err_out;
333 		}
334 	}
335 
336 	rx_ring->r.dma = dma;
337 	rx_ring->r.len = len;
338 	rx_ring->r.desc_size = desc_size;
339 	rx_ring->r.wp = 0;
340 	rx_ring->r.rp = 0;
341 
342 	return 0;
343 
344 err_out:
345 	for (i = 0; i < allocated; i++) {
346 		skb = rx_ring->buf[i];
347 		if (!skb)
348 			continue;
349 		dma = *((dma_addr_t *)skb->cb);
350 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
351 		dev_kfree_skb_any(skb);
352 		rx_ring->buf[i] = NULL;
353 	}
354 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
355 
356 	rtw_err(rtwdev, "failed to init rx buffer\n");
357 
358 	return ret;
359 }
360 
361 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
362 {
363 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
364 	struct rtw_pci_tx_ring *tx_ring;
365 	struct rtw_pci_rx_ring *rx_ring;
366 	const struct rtw_chip_info *chip = rtwdev->chip;
367 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
368 	int tx_desc_size, rx_desc_size;
369 	u32 len;
370 	int ret;
371 
372 	tx_desc_size = chip->tx_buf_desc_sz;
373 
374 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
375 		tx_ring = &rtwpci->tx_rings[i];
376 		len = max_num_of_tx_queue(i);
377 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
378 		if (ret)
379 			goto out;
380 	}
381 
382 	rx_desc_size = chip->rx_buf_desc_sz;
383 
384 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
385 		rx_ring = &rtwpci->rx_rings[j];
386 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
387 					   RTK_MAX_RX_DESC_NUM);
388 		if (ret)
389 			goto out;
390 	}
391 
392 	return 0;
393 
394 out:
395 	tx_alloced = i;
396 	for (i = 0; i < tx_alloced; i++) {
397 		tx_ring = &rtwpci->tx_rings[i];
398 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
399 	}
400 
401 	rx_alloced = j;
402 	for (j = 0; j < rx_alloced; j++) {
403 		rx_ring = &rtwpci->rx_rings[j];
404 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
405 	}
406 
407 	return ret;
408 }
409 
410 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
411 {
412 	rtw_pci_free_trx_ring(rtwdev);
413 }
414 
415 static int rtw_pci_init(struct rtw_dev *rtwdev)
416 {
417 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
418 	int ret = 0;
419 
420 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
421 			      IMR_MGNTDOK |
422 			      IMR_BKDOK |
423 			      IMR_BEDOK |
424 			      IMR_VIDOK |
425 			      IMR_VODOK |
426 			      IMR_ROK |
427 			      IMR_BCNDMAINT_E |
428 			      IMR_C2HCMD |
429 			      0;
430 	rtwpci->irq_mask[1] = IMR_TXFOVW |
431 			      0;
432 	rtwpci->irq_mask[3] = IMR_H2CDOK |
433 			      0;
434 	spin_lock_init(&rtwpci->irq_lock);
435 	spin_lock_init(&rtwpci->hwirq_lock);
436 	ret = rtw_pci_init_trx_ring(rtwdev);
437 
438 	return ret;
439 }
440 
441 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
442 {
443 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
444 	u32 len;
445 	u8 tmp;
446 	dma_addr_t dma;
447 
448 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
449 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
450 
451 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
452 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
453 
454 	if (!rtw_chip_wcpu_11n(rtwdev)) {
455 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
456 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
457 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
458 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
459 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
460 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
461 	}
462 
463 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
464 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
465 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
466 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
467 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
468 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
469 
470 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
471 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
472 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
473 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
474 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
475 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
476 
477 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
478 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
479 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
480 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
481 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
482 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
483 
484 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
485 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
486 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
487 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
488 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
489 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
490 
491 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
492 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
493 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
494 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
495 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
496 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
497 
498 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
499 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
500 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
501 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
502 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
503 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
504 
505 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
506 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
507 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
508 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
509 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
510 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
511 
512 	/* reset read/write point */
513 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
514 
515 	/* reset H2C Queue index in a single write */
516 	if (rtw_chip_wcpu_11ac(rtwdev))
517 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
518 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
519 }
520 
521 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
522 {
523 	rtw_pci_reset_buf_desc(rtwdev);
524 }
525 
526 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
527 				     struct rtw_pci *rtwpci, bool exclude_rx)
528 {
529 	unsigned long flags;
530 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
531 
532 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
533 
534 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
535 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
536 	if (rtw_chip_wcpu_11ac(rtwdev))
537 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
538 
539 	rtwpci->irq_enabled = true;
540 
541 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
542 }
543 
544 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
545 				      struct rtw_pci *rtwpci)
546 {
547 	unsigned long flags;
548 
549 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
550 
551 	if (!rtwpci->irq_enabled)
552 		goto out;
553 
554 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
555 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
556 	if (rtw_chip_wcpu_11ac(rtwdev))
557 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
558 
559 	rtwpci->irq_enabled = false;
560 
561 out:
562 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
563 }
564 
565 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
566 {
567 	/* reset dma and rx tag */
568 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
569 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
570 	rtwpci->rx_tag = 0;
571 }
572 
573 static int rtw_pci_setup(struct rtw_dev *rtwdev)
574 {
575 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
576 
577 	rtw_pci_reset_trx_ring(rtwdev);
578 	rtw_pci_dma_reset(rtwdev, rtwpci);
579 
580 	return 0;
581 }
582 
583 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
584 {
585 	struct rtw_pci_tx_ring *tx_ring;
586 	enum rtw_tx_queue_type queue;
587 
588 	rtw_pci_reset_trx_ring(rtwdev);
589 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
590 		tx_ring = &rtwpci->tx_rings[queue];
591 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
592 	}
593 }
594 
595 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
596 {
597 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
598 
599 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
600 		return;
601 
602 	napi_enable(&rtwpci->napi);
603 }
604 
605 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
606 {
607 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
608 
609 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
610 		return;
611 
612 	napi_synchronize(&rtwpci->napi);
613 	napi_disable(&rtwpci->napi);
614 }
615 
616 static int rtw_pci_start(struct rtw_dev *rtwdev)
617 {
618 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
619 
620 	rtw_pci_napi_start(rtwdev);
621 
622 	spin_lock_bh(&rtwpci->irq_lock);
623 	rtwpci->running = true;
624 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
625 	spin_unlock_bh(&rtwpci->irq_lock);
626 
627 	return 0;
628 }
629 
630 static void rtw_pci_stop(struct rtw_dev *rtwdev)
631 {
632 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
633 	struct pci_dev *pdev = rtwpci->pdev;
634 
635 	spin_lock_bh(&rtwpci->irq_lock);
636 	rtwpci->running = false;
637 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
638 	spin_unlock_bh(&rtwpci->irq_lock);
639 
640 	synchronize_irq(pdev->irq);
641 	rtw_pci_napi_stop(rtwdev);
642 
643 	spin_lock_bh(&rtwpci->irq_lock);
644 	rtw_pci_dma_release(rtwdev, rtwpci);
645 	spin_unlock_bh(&rtwpci->irq_lock);
646 }
647 
648 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
649 {
650 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
651 	struct rtw_pci_tx_ring *tx_ring;
652 	enum rtw_tx_queue_type queue;
653 	bool tx_empty = true;
654 
655 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
656 		goto enter_deep_ps;
657 
658 	lockdep_assert_held(&rtwpci->irq_lock);
659 
660 	/* Deep PS state is not allowed to TX-DMA */
661 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
662 		/* BCN queue is rsvd page, does not have DMA interrupt
663 		 * H2C queue is managed by firmware
664 		 */
665 		if (queue == RTW_TX_QUEUE_BCN ||
666 		    queue == RTW_TX_QUEUE_H2C)
667 			continue;
668 
669 		tx_ring = &rtwpci->tx_rings[queue];
670 
671 		/* check if there is any skb DMAing */
672 		if (skb_queue_len(&tx_ring->queue)) {
673 			tx_empty = false;
674 			break;
675 		}
676 	}
677 
678 	if (!tx_empty) {
679 		rtw_dbg(rtwdev, RTW_DBG_PS,
680 			"TX path not empty, cannot enter deep power save state\n");
681 		return;
682 	}
683 enter_deep_ps:
684 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
685 	rtw_power_mode_change(rtwdev, true);
686 }
687 
688 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
689 {
690 #if defined(__linux__)
691 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
692 
693 	lockdep_assert_held(&rtwpci->irq_lock);
694 #elif defined(__FreeBSD__)
695 	lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock);
696 #endif
697 
698 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
699 		rtw_power_mode_change(rtwdev, false);
700 }
701 
702 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
703 {
704 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
705 
706 	spin_lock_bh(&rtwpci->irq_lock);
707 
708 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
709 		rtw_pci_deep_ps_enter(rtwdev);
710 
711 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
712 		rtw_pci_deep_ps_leave(rtwdev);
713 
714 	spin_unlock_bh(&rtwpci->irq_lock);
715 }
716 
717 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
718 				      struct rtw_pci_tx_ring *ring)
719 {
720 	struct sk_buff *prev = skb_dequeue(&ring->queue);
721 	struct rtw_pci_tx_data *tx_data;
722 	dma_addr_t dma;
723 
724 	if (!prev)
725 		return;
726 
727 	tx_data = rtw_pci_get_tx_data(prev);
728 	dma = tx_data->dma;
729 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
730 	dev_kfree_skb_any(prev);
731 }
732 
733 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
734 			      struct rtw_pci_rx_ring *rx_ring,
735 			      u32 idx)
736 {
737 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
738 	const struct rtw_chip_info *chip = rtwdev->chip;
739 	struct rtw_pci_rx_buffer_desc *buf_desc;
740 	u32 desc_sz = chip->rx_buf_desc_sz;
741 	u16 total_pkt_size;
742 
743 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
744 						     idx * desc_sz);
745 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
746 
747 	/* rx tag mismatch, throw a warning */
748 	if (total_pkt_size != rtwpci->rx_tag)
749 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
750 
751 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
752 }
753 
754 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
755 {
756 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
757 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
758 
759 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
760 }
761 
762 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
763 {
764 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
765 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
766 	u32 cur_rp;
767 	u8 i;
768 
769 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
770 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
771 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
772 	 * polling times, so we just use for loop with udelay here.
773 	 */
774 	for (i = 0; i < 30; i++) {
775 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
776 		if (cur_rp == ring->r.wp)
777 			return;
778 
779 		udelay(1);
780 	}
781 
782 	if (!drop)
783 		rtw_dbg(rtwdev, RTW_DBG_UNEXP,
784 			"timed out to flush pci tx ring[%d]\n", pci_q);
785 }
786 
787 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
788 				   bool drop)
789 {
790 	u8 q;
791 
792 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
793 		/* Unnecessary to flush BCN, H2C and HI tx queues. */
794 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
795 		    q == RTW_TX_QUEUE_HI0)
796 			continue;
797 
798 		if (pci_queues & BIT(q))
799 			__pci_flush_queue(rtwdev, q, drop);
800 	}
801 }
802 
803 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
804 {
805 	u32 pci_queues = 0;
806 	u8 i;
807 
808 	/* If all of the hardware queues are requested to flush,
809 	 * flush all of the pci queues.
810 	 */
811 	if (queues == BIT(rtwdev->hw->queues) - 1) {
812 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
813 	} else {
814 		for (i = 0; i < rtwdev->hw->queues; i++)
815 			if (queues & BIT(i))
816 				pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
817 	}
818 
819 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
820 }
821 
822 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
823 				      enum rtw_tx_queue_type queue)
824 {
825 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
826 	struct rtw_pci_tx_ring *ring;
827 	u32 bd_idx;
828 
829 	ring = &rtwpci->tx_rings[queue];
830 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
831 
832 	spin_lock_bh(&rtwpci->irq_lock);
833 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
834 		rtw_pci_deep_ps_leave(rtwdev);
835 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
836 	spin_unlock_bh(&rtwpci->irq_lock);
837 }
838 
839 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
840 {
841 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
842 	enum rtw_tx_queue_type queue;
843 
844 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
845 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
846 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
847 }
848 
849 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
850 				 struct rtw_tx_pkt_info *pkt_info,
851 				 struct sk_buff *skb,
852 				 enum rtw_tx_queue_type queue)
853 {
854 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
855 	const struct rtw_chip_info *chip = rtwdev->chip;
856 	struct rtw_pci_tx_ring *ring;
857 	struct rtw_pci_tx_data *tx_data;
858 	dma_addr_t dma;
859 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
860 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
861 	u32 size;
862 	u32 psb_len;
863 	u8 *pkt_desc;
864 	struct rtw_pci_tx_buffer_desc *buf_desc;
865 
866 	ring = &rtwpci->tx_rings[queue];
867 
868 	size = skb->len;
869 
870 	if (queue == RTW_TX_QUEUE_BCN)
871 		rtw_pci_release_rsvd_page(rtwpci, ring);
872 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
873 		return -ENOSPC;
874 
875 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
876 	memset(pkt_desc, 0, tx_pkt_desc_sz);
877 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
878 	rtw_tx_fill_tx_desc(pkt_info, skb);
879 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
880 			     DMA_TO_DEVICE);
881 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
882 		return -EBUSY;
883 
884 	/* after this we got dma mapped, there is no way back */
885 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
886 	memset(buf_desc, 0, tx_buf_desc_sz);
887 	psb_len = (skb->len - 1) / 128 + 1;
888 	if (queue == RTW_TX_QUEUE_BCN)
889 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
890 
891 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
892 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
893 	buf_desc[0].dma = cpu_to_le32(dma);
894 	buf_desc[1].buf_size = cpu_to_le16(size);
895 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
896 
897 	tx_data = rtw_pci_get_tx_data(skb);
898 	tx_data->dma = dma;
899 	tx_data->sn = pkt_info->sn;
900 
901 	spin_lock_bh(&rtwpci->irq_lock);
902 
903 	skb_queue_tail(&ring->queue, skb);
904 
905 	if (queue == RTW_TX_QUEUE_BCN)
906 		goto out_unlock;
907 
908 	/* update write-index, and kick it off later */
909 	set_bit(queue, rtwpci->tx_queued);
910 	if (++ring->r.wp >= ring->r.len)
911 		ring->r.wp = 0;
912 
913 out_unlock:
914 	spin_unlock_bh(&rtwpci->irq_lock);
915 
916 	return 0;
917 }
918 
919 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
920 					u32 size)
921 {
922 	struct sk_buff *skb;
923 	struct rtw_tx_pkt_info pkt_info = {0};
924 	u8 reg_bcn_work;
925 	int ret;
926 
927 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
928 	if (!skb)
929 		return -ENOMEM;
930 
931 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
932 	if (ret) {
933 #if defined(__FreeBSD__)
934 		dev_kfree_skb_any(skb);
935 #endif
936 		rtw_err(rtwdev, "failed to write rsvd page data\n");
937 		return ret;
938 	}
939 
940 	/* reserved pages go through beacon queue */
941 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
942 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
943 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
944 
945 	return 0;
946 }
947 
948 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
949 {
950 	struct sk_buff *skb;
951 	struct rtw_tx_pkt_info pkt_info = {0};
952 	int ret;
953 
954 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
955 	if (!skb)
956 		return -ENOMEM;
957 
958 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
959 	if (ret) {
960 #if defined(__FreeBSD__)
961 		dev_kfree_skb_any(skb);
962 #endif
963 		rtw_err(rtwdev, "failed to write h2c data\n");
964 		return ret;
965 	}
966 
967 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
968 
969 	return 0;
970 }
971 
972 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
973 			    struct rtw_tx_pkt_info *pkt_info,
974 			    struct sk_buff *skb)
975 {
976 	enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
977 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
978 	struct rtw_pci_tx_ring *ring;
979 	int ret;
980 
981 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
982 	if (ret)
983 		return ret;
984 
985 	ring = &rtwpci->tx_rings[queue];
986 	spin_lock_bh(&rtwpci->irq_lock);
987 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
988 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
989 		ring->queue_stopped = true;
990 	}
991 	spin_unlock_bh(&rtwpci->irq_lock);
992 
993 	return 0;
994 }
995 
996 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
997 			   u8 hw_queue)
998 {
999 	struct ieee80211_hw *hw = rtwdev->hw;
1000 	struct ieee80211_tx_info *info;
1001 	struct rtw_pci_tx_ring *ring;
1002 	struct rtw_pci_tx_data *tx_data;
1003 	struct sk_buff *skb;
1004 	u32 count;
1005 	u32 bd_idx_addr;
1006 	u32 bd_idx, cur_rp, rp_idx;
1007 	u16 q_map;
1008 
1009 	ring = &rtwpci->tx_rings[hw_queue];
1010 
1011 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
1012 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
1013 	cur_rp = bd_idx >> 16;
1014 	cur_rp &= TRX_BD_IDX_MASK;
1015 	rp_idx = ring->r.rp;
1016 	if (cur_rp >= ring->r.rp)
1017 		count = cur_rp - ring->r.rp;
1018 	else
1019 		count = ring->r.len - (ring->r.rp - cur_rp);
1020 
1021 	while (count--) {
1022 		skb = skb_dequeue(&ring->queue);
1023 		if (!skb) {
1024 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
1025 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1026 			break;
1027 		}
1028 		tx_data = rtw_pci_get_tx_data(skb);
1029 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1030 				 DMA_TO_DEVICE);
1031 
1032 		/* just free command packets from host to card */
1033 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1034 			dev_kfree_skb_irq(skb);
1035 			continue;
1036 		}
1037 
1038 		if (ring->queue_stopped &&
1039 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1040 			q_map = skb_get_queue_mapping(skb);
1041 			ieee80211_wake_queue(hw, q_map);
1042 			ring->queue_stopped = false;
1043 		}
1044 
1045 		if (++rp_idx >= ring->r.len)
1046 			rp_idx = 0;
1047 
1048 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1049 
1050 		info = IEEE80211_SKB_CB(skb);
1051 
1052 		/* enqueue to wait for tx report */
1053 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1054 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1055 			continue;
1056 		}
1057 
1058 		/* always ACK for others, then they won't be marked as drop */
1059 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1060 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1061 		else
1062 			info->flags |= IEEE80211_TX_STAT_ACK;
1063 
1064 		ieee80211_tx_info_clear_status(info);
1065 		ieee80211_tx_status_irqsafe(hw, skb);
1066 	}
1067 
1068 	ring->r.rp = cur_rp;
1069 }
1070 
1071 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1072 {
1073 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1074 	struct napi_struct *napi = &rtwpci->napi;
1075 
1076 	napi_schedule(napi);
1077 }
1078 
1079 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1080 				     struct rtw_pci *rtwpci)
1081 {
1082 	struct rtw_pci_rx_ring *ring;
1083 	int count = 0;
1084 	u32 tmp, cur_wp;
1085 
1086 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1087 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1088 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1089 	if (cur_wp >= ring->r.wp)
1090 		count = cur_wp - ring->r.wp;
1091 	else
1092 		count = ring->r.len - (ring->r.wp - cur_wp);
1093 
1094 	return count;
1095 }
1096 
1097 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1098 			   u8 hw_queue, u32 limit)
1099 {
1100 	const struct rtw_chip_info *chip = rtwdev->chip;
1101 	struct napi_struct *napi = &rtwpci->napi;
1102 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1103 	struct rtw_rx_pkt_stat pkt_stat;
1104 	struct ieee80211_rx_status rx_status;
1105 	struct sk_buff *skb, *new;
1106 	u32 cur_rp = ring->r.rp;
1107 	u32 count, rx_done = 0;
1108 	u32 pkt_offset;
1109 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1110 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1111 	u32 new_len;
1112 	u8 *rx_desc;
1113 	dma_addr_t dma;
1114 
1115 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1116 	count = min(count, limit);
1117 
1118 	while (count--) {
1119 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1120 		skb = ring->buf[cur_rp];
1121 		dma = *((dma_addr_t *)skb->cb);
1122 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1123 					DMA_FROM_DEVICE);
1124 		rx_desc = skb->data;
1125 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1126 
1127 		/* offset from rx_desc to payload */
1128 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1129 			     pkt_stat.shift;
1130 
1131 		/* allocate a new skb for this frame,
1132 		 * discard the frame if none available
1133 		 */
1134 		new_len = pkt_stat.pkt_len + pkt_offset;
1135 		new = dev_alloc_skb(new_len);
1136 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1137 			goto next_rp;
1138 
1139 		/* put the DMA data including rx_desc from phy to new skb */
1140 		skb_put_data(new, skb->data, new_len);
1141 
1142 		if (pkt_stat.is_c2h) {
1143 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1144 		} else {
1145 			/* remove rx_desc */
1146 			skb_pull(new, pkt_offset);
1147 
1148 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1149 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1150 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1151 			rx_done++;
1152 		}
1153 
1154 next_rp:
1155 		/* new skb delivered to mac80211, re-enable original skb DMA */
1156 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1157 					    buf_desc_sz);
1158 
1159 		/* host read next element in ring */
1160 		if (++cur_rp >= ring->r.len)
1161 			cur_rp = 0;
1162 	}
1163 
1164 	ring->r.rp = cur_rp;
1165 	/* 'rp', the last position we have read, is seen as previous posistion
1166 	 * of 'wp' that is used to calculate 'count' next time.
1167 	 */
1168 	ring->r.wp = cur_rp;
1169 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1170 
1171 	return rx_done;
1172 }
1173 
1174 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1175 				   struct rtw_pci *rtwpci, u32 *irq_status)
1176 {
1177 	unsigned long flags;
1178 
1179 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1180 
1181 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1182 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1183 	if (rtw_chip_wcpu_11ac(rtwdev))
1184 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1185 	else
1186 		irq_status[3] = 0;
1187 	irq_status[0] &= rtwpci->irq_mask[0];
1188 	irq_status[1] &= rtwpci->irq_mask[1];
1189 	irq_status[3] &= rtwpci->irq_mask[3];
1190 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1191 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1192 	if (rtw_chip_wcpu_11ac(rtwdev))
1193 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1194 
1195 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1196 }
1197 
1198 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1199 {
1200 	struct rtw_dev *rtwdev = dev;
1201 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1202 
1203 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1204 	 * thread function
1205 	 *
1206 	 * disable HIMR here to also avoid new HISR flag being raised before
1207 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1208 	 * are cleared, the edge-triggered interrupt will not be generated when
1209 	 * a new HISR flag is set.
1210 	 */
1211 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1212 
1213 	return IRQ_WAKE_THREAD;
1214 }
1215 
1216 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1217 {
1218 	struct rtw_dev *rtwdev = dev;
1219 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1220 	u32 irq_status[4];
1221 	bool rx = false;
1222 
1223 	spin_lock_bh(&rtwpci->irq_lock);
1224 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1225 
1226 	if (irq_status[0] & IMR_MGNTDOK)
1227 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1228 	if (irq_status[0] & IMR_HIGHDOK)
1229 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1230 	if (irq_status[0] & IMR_BEDOK)
1231 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1232 	if (irq_status[0] & IMR_BKDOK)
1233 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1234 	if (irq_status[0] & IMR_VODOK)
1235 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1236 	if (irq_status[0] & IMR_VIDOK)
1237 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1238 	if (irq_status[3] & IMR_H2CDOK)
1239 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1240 	if (irq_status[0] & IMR_ROK) {
1241 		rtw_pci_rx_isr(rtwdev);
1242 		rx = true;
1243 	}
1244 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1245 		rtw_fw_c2h_cmd_isr(rtwdev);
1246 
1247 	/* all of the jobs for this interrupt have been done */
1248 	if (rtwpci->running)
1249 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1250 	spin_unlock_bh(&rtwpci->irq_lock);
1251 
1252 	return IRQ_HANDLED;
1253 }
1254 
1255 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1256 			      struct pci_dev *pdev)
1257 {
1258 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1259 	unsigned long len;
1260 	u8 bar_id = 2;
1261 	int ret;
1262 
1263 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1264 	if (ret) {
1265 		rtw_err(rtwdev, "failed to request pci regions\n");
1266 		return ret;
1267 	}
1268 
1269 #if defined(__FreeBSD__)
1270 	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1271 	if (ret) {
1272 		rtw_err(rtwdev, "failed to set dma mask to 32-bit\n");
1273 		goto err_release_regions;
1274 	}
1275 
1276 	ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1277 	if (ret) {
1278 		rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n");
1279 		goto err_release_regions;
1280 	}
1281 #endif
1282 
1283 	len = pci_resource_len(pdev, bar_id);
1284 #if defined(__FreeBSD__)
1285 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
1286 #endif
1287 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1288 	if (!rtwpci->mmap) {
1289 		pci_release_regions(pdev);
1290 		rtw_err(rtwdev, "failed to map pci memory\n");
1291 		return -ENOMEM;
1292 	}
1293 
1294 	return 0;
1295 #if defined(__FreeBSD__)
1296 err_release_regions:
1297 	pci_release_regions(pdev);
1298 	return ret;
1299 #endif
1300 }
1301 
1302 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1303 				 struct pci_dev *pdev)
1304 {
1305 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1306 
1307 	if (rtwpci->mmap) {
1308 		pci_iounmap(pdev, rtwpci->mmap);
1309 		pci_release_regions(pdev);
1310 	}
1311 }
1312 
1313 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1314 {
1315 	u16 write_addr;
1316 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1317 	u8 flag;
1318 	u8 cnt;
1319 
1320 	write_addr = addr & BITS_DBI_ADDR_MASK;
1321 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1322 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1323 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1324 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1325 
1326 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1327 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1328 		if (flag == 0)
1329 			return;
1330 
1331 		udelay(10);
1332 	}
1333 
1334 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1335 }
1336 
1337 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1338 {
1339 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1340 	u8 flag;
1341 	u8 cnt;
1342 
1343 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1344 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1345 
1346 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1347 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1348 		if (flag == 0) {
1349 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1350 			*value = rtw_read8(rtwdev, read_addr);
1351 			return 0;
1352 		}
1353 
1354 		udelay(10);
1355 	}
1356 
1357 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1358 	return -EIO;
1359 }
1360 
1361 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1362 {
1363 	u8 page;
1364 	u8 wflag;
1365 	u8 cnt;
1366 
1367 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1368 
1369 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1370 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1371 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1372 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1373 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1374 
1375 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1376 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1377 					BIT_MDIO_WFLAG_V1);
1378 		if (wflag == 0)
1379 			return;
1380 
1381 		udelay(10);
1382 	}
1383 
1384 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1385 }
1386 
1387 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1388 {
1389 	u8 value;
1390 	int ret;
1391 
1392 	if (rtw_pci_disable_aspm)
1393 		return;
1394 
1395 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1396 	if (ret) {
1397 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1398 		return;
1399 	}
1400 
1401 	if (enable)
1402 		value |= BIT_CLKREQ_SW_EN;
1403 	else
1404 		value &= ~BIT_CLKREQ_SW_EN;
1405 
1406 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1407 }
1408 
1409 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1410 {
1411 	u8 value;
1412 	int ret;
1413 
1414 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1415 	if (ret) {
1416 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1417 		return;
1418 	}
1419 
1420 	if (enable)
1421 		value &= ~BIT_CLKREQ_N_PAD;
1422 	else
1423 		value |= BIT_CLKREQ_N_PAD;
1424 
1425 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1426 }
1427 
1428 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1429 {
1430 	u8 value;
1431 	int ret;
1432 
1433 	if (rtw_pci_disable_aspm)
1434 		return;
1435 
1436 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1437 	if (ret) {
1438 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1439 		return;
1440 	}
1441 
1442 	if (enable)
1443 		value |= BIT_L1_SW_EN;
1444 	else
1445 		value &= ~BIT_L1_SW_EN;
1446 
1447 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1448 }
1449 
1450 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1451 {
1452 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1453 
1454 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1455 	 * only be enabled when host supports it.
1456 	 *
1457 	 * And ASPM mechanism should be enabled when driver/firmware enters
1458 	 * power save mode, without having heavy traffic. Because we've
1459 	 * experienced some inter-operability issues that the link tends
1460 	 * to enter L1 state on the fly even when driver is having high
1461 	 * throughput. This is probably because the ASPM behavior slightly
1462 	 * varies from different SOC.
1463 	 */
1464 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1465 		return;
1466 
1467 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1468 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1469 		rtw_pci_aspm_set(rtwdev, enter);
1470 }
1471 
1472 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1473 {
1474 	const struct rtw_chip_info *chip = rtwdev->chip;
1475 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1476 	struct pci_dev *pdev = rtwpci->pdev;
1477 	u16 link_ctrl;
1478 	int ret;
1479 
1480 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1481 	 * to add clock delay to cover the REFCLK timing gap.
1482 	 */
1483 	if (chip->id == RTW_CHIP_TYPE_8822C)
1484 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1485 
1486 	/* Though there is standard PCIE configuration space to set the
1487 	 * link control register, but by Realtek's design, driver should
1488 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1489 	 *
1490 	 * These functions are implemented by two HW modules associated,
1491 	 * one is responsible to access PCIE configuration space to
1492 	 * follow the host settings, and another is in charge of doing
1493 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1494 	 * the host does not support it, and due to some reasons or wrong
1495 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1496 	 * loss if HW misbehaves on the link.
1497 	 *
1498 	 * Hence it's designed that driver should first check the PCIE
1499 	 * configuration space is sync'ed and enabled, then driver can turn
1500 	 * on the other module that is actually working on the mechanism.
1501 	 */
1502 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1503 	if (ret) {
1504 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1505 		return;
1506 	}
1507 
1508 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1509 		rtw_pci_clkreq_set(rtwdev, true);
1510 
1511 	rtwpci->link_ctrl = link_ctrl;
1512 }
1513 
1514 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1515 {
1516 	const struct rtw_chip_info *chip = rtwdev->chip;
1517 
1518 	switch (chip->id) {
1519 	case RTW_CHIP_TYPE_8822C:
1520 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1521 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1522 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1523 		break;
1524 	default:
1525 		break;
1526 	}
1527 }
1528 
1529 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1530 {
1531 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1532 	const struct rtw_chip_info *chip = rtwdev->chip;
1533 	struct rtw_efuse *efuse = &rtwdev->efuse;
1534 	struct pci_dev *pdev = rtwpci->pdev;
1535 	const struct rtw_intf_phy_para *para;
1536 	u16 cut;
1537 	u16 value;
1538 	u16 offset;
1539 	int i;
1540 	int ret;
1541 
1542 	cut = BIT(0) << rtwdev->hal.cut_version;
1543 
1544 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1545 		para = &chip->intf_table->gen1_para[i];
1546 		if (!(para->cut_mask & cut))
1547 			continue;
1548 		if (para->offset == 0xffff)
1549 			break;
1550 		offset = para->offset;
1551 		value = para->value;
1552 		if (para->ip_sel == RTW_IP_SEL_PHY)
1553 			rtw_mdio_write(rtwdev, offset, value, true);
1554 		else
1555 			rtw_dbi_write8(rtwdev, offset, value);
1556 	}
1557 
1558 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1559 		para = &chip->intf_table->gen2_para[i];
1560 		if (!(para->cut_mask & cut))
1561 			continue;
1562 		if (para->offset == 0xffff)
1563 			break;
1564 		offset = para->offset;
1565 		value = para->value;
1566 		if (para->ip_sel == RTW_IP_SEL_PHY)
1567 			rtw_mdio_write(rtwdev, offset, value, false);
1568 		else
1569 			rtw_dbi_write8(rtwdev, offset, value);
1570 	}
1571 
1572 	rtw_pci_link_cfg(rtwdev);
1573 
1574 	/* Disable 8821ce completion timeout by default */
1575 	if (chip->id == RTW_CHIP_TYPE_8821C) {
1576 		ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1577 					       PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1578 		if (ret)
1579 			rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1580 				ret);
1581 	}
1582 
1583 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 5)
1584 		rtw_write32_mask(rtwdev, REG_ANAPARSW_MAC_0, BIT_CF_L_V2, 0x1);
1585 }
1586 
1587 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1588 {
1589 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1590 	struct rtw_dev *rtwdev = hw->priv;
1591 	const struct rtw_chip_info *chip = rtwdev->chip;
1592 	struct rtw_efuse *efuse = &rtwdev->efuse;
1593 
1594 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1595 		rtw_pci_clkreq_pad_low(rtwdev, true);
1596 	return 0;
1597 }
1598 
1599 static int __maybe_unused rtw_pci_resume(struct device *dev)
1600 {
1601 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1602 	struct rtw_dev *rtwdev = hw->priv;
1603 	const struct rtw_chip_info *chip = rtwdev->chip;
1604 	struct rtw_efuse *efuse = &rtwdev->efuse;
1605 
1606 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1607 		rtw_pci_clkreq_pad_low(rtwdev, false);
1608 	return 0;
1609 }
1610 
1611 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1612 EXPORT_SYMBOL(rtw_pm_ops);
1613 
1614 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1615 {
1616 	int ret;
1617 
1618 	ret = pci_enable_device(pdev);
1619 	if (ret) {
1620 		rtw_err(rtwdev, "failed to enable pci device\n");
1621 		return ret;
1622 	}
1623 
1624 	pci_set_master(pdev);
1625 	pci_set_drvdata(pdev, rtwdev->hw);
1626 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1627 
1628 	return 0;
1629 }
1630 
1631 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1632 {
1633 	pci_disable_device(pdev);
1634 }
1635 
1636 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1637 {
1638 	struct rtw_pci *rtwpci;
1639 	int ret;
1640 
1641 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1642 	rtwpci->pdev = pdev;
1643 
1644 	/* after this driver can access to hw registers */
1645 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1646 	if (ret) {
1647 		rtw_err(rtwdev, "failed to request pci io region\n");
1648 		goto err_out;
1649 	}
1650 
1651 	ret = rtw_pci_init(rtwdev);
1652 	if (ret) {
1653 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1654 		goto err_io_unmap;
1655 	}
1656 
1657 	return 0;
1658 
1659 err_io_unmap:
1660 	rtw_pci_io_unmapping(rtwdev, pdev);
1661 
1662 err_out:
1663 	return ret;
1664 }
1665 
1666 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1667 {
1668 	rtw_pci_deinit(rtwdev);
1669 	rtw_pci_io_unmapping(rtwdev, pdev);
1670 }
1671 
1672 static struct rtw_hci_ops rtw_pci_ops = {
1673 	.tx_write = rtw_pci_tx_write,
1674 	.tx_kick_off = rtw_pci_tx_kick_off,
1675 	.flush_queues = rtw_pci_flush_queues,
1676 	.setup = rtw_pci_setup,
1677 	.start = rtw_pci_start,
1678 	.stop = rtw_pci_stop,
1679 	.deep_ps = rtw_pci_deep_ps,
1680 	.link_ps = rtw_pci_link_ps,
1681 	.interface_cfg = rtw_pci_interface_cfg,
1682 
1683 	.read8 = rtw_pci_read8,
1684 	.read16 = rtw_pci_read16,
1685 	.read32 = rtw_pci_read32,
1686 	.write8 = rtw_pci_write8,
1687 	.write16 = rtw_pci_write16,
1688 	.write32 = rtw_pci_write32,
1689 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1690 	.write_data_h2c = rtw_pci_write_data_h2c,
1691 };
1692 
1693 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1694 {
1695 	unsigned int flags = PCI_IRQ_INTX;
1696 	int ret;
1697 
1698 	if (!rtw_disable_msi)
1699 		flags |= PCI_IRQ_MSI;
1700 
1701 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1702 	if (ret < 0) {
1703 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1704 		return ret;
1705 	}
1706 
1707 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1708 					rtw_pci_interrupt_handler,
1709 					rtw_pci_interrupt_threadfn,
1710 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1711 	if (ret) {
1712 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1713 		pci_free_irq_vectors(pdev);
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1720 {
1721 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1722 	pci_free_irq_vectors(pdev);
1723 }
1724 
1725 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1726 {
1727 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1728 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1729 					      priv);
1730 	int work_done = 0;
1731 
1732 	if (rtwpci->rx_no_aspm)
1733 		rtw_pci_link_ps(rtwdev, false);
1734 
1735 	while (work_done < budget) {
1736 		u32 work_done_once;
1737 
1738 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1739 						 budget - work_done);
1740 		if (work_done_once == 0)
1741 			break;
1742 		work_done += work_done_once;
1743 	}
1744 	if (work_done < budget) {
1745 		napi_complete_done(napi, work_done);
1746 		spin_lock_bh(&rtwpci->irq_lock);
1747 		if (rtwpci->running)
1748 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1749 		spin_unlock_bh(&rtwpci->irq_lock);
1750 		/* When ISR happens during polling and before napi_complete
1751 		 * while no further data is received. Data on the dma_ring will
1752 		 * not be processed immediately. Check whether dma ring is
1753 		 * empty and perform napi_schedule accordingly.
1754 		 */
1755 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1756 			napi_schedule(napi);
1757 	}
1758 	if (rtwpci->rx_no_aspm)
1759 		rtw_pci_link_ps(rtwdev, true);
1760 
1761 	return work_done;
1762 }
1763 
1764 static int rtw_pci_napi_init(struct rtw_dev *rtwdev)
1765 {
1766 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1767 
1768 	rtwpci->netdev = alloc_netdev_dummy(0);
1769 	if (!rtwpci->netdev)
1770 		return -ENOMEM;
1771 
1772 	netif_napi_add(rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1773 	return 0;
1774 }
1775 
1776 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1777 {
1778 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1779 
1780 	rtw_pci_napi_stop(rtwdev);
1781 	netif_napi_del(&rtwpci->napi);
1782 	free_netdev(rtwpci->netdev);
1783 }
1784 
1785 int rtw_pci_probe(struct pci_dev *pdev,
1786 		  const struct pci_device_id *id)
1787 {
1788 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1789 	struct ieee80211_hw *hw;
1790 	struct rtw_dev *rtwdev;
1791 	struct rtw_pci *rtwpci;
1792 	int drv_data_size;
1793 	int ret;
1794 
1795 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1796 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1797 	if (!hw) {
1798 		dev_err(&pdev->dev, "failed to allocate hw\n");
1799 		return -ENOMEM;
1800 	}
1801 
1802 	rtwdev = hw->priv;
1803 	rtwdev->hw = hw;
1804 	rtwdev->dev = &pdev->dev;
1805 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1806 	rtwdev->hci.ops = &rtw_pci_ops;
1807 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1808 
1809 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1810 	atomic_set(&rtwpci->link_usage, 1);
1811 
1812 	ret = rtw_core_init(rtwdev);
1813 	if (ret)
1814 		goto err_release_hw;
1815 
1816 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1817 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1818 		pdev->vendor, pdev->device, pdev->revision);
1819 
1820 	ret = rtw_pci_claim(rtwdev, pdev);
1821 	if (ret) {
1822 		rtw_err(rtwdev, "failed to claim pci device\n");
1823 		goto err_deinit_core;
1824 	}
1825 
1826 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1827 	if (ret) {
1828 		rtw_err(rtwdev, "failed to setup pci resources\n");
1829 		goto err_pci_declaim;
1830 	}
1831 
1832 	ret = rtw_pci_napi_init(rtwdev);
1833 	if (ret) {
1834 		rtw_err(rtwdev, "failed to setup NAPI\n");
1835 		goto err_pci_declaim;
1836 	}
1837 
1838 	ret = rtw_chip_info_setup(rtwdev);
1839 	if (ret) {
1840 		rtw_err(rtwdev, "failed to setup chip information\n");
1841 		goto err_destroy_pci;
1842 	}
1843 
1844 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1845 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1846 		rtwpci->rx_no_aspm = true;
1847 
1848 	rtw_pci_phy_cfg(rtwdev);
1849 
1850 	ret = rtw_register_hw(rtwdev, hw);
1851 	if (ret) {
1852 		rtw_err(rtwdev, "failed to register hw\n");
1853 		goto err_destroy_pci;
1854 	}
1855 
1856 	ret = rtw_pci_request_irq(rtwdev, pdev);
1857 	if (ret) {
1858 		ieee80211_unregister_hw(hw);
1859 		goto err_destroy_pci;
1860 	}
1861 
1862 	return 0;
1863 
1864 err_destroy_pci:
1865 	rtw_pci_napi_deinit(rtwdev);
1866 	rtw_pci_destroy(rtwdev, pdev);
1867 
1868 err_pci_declaim:
1869 	rtw_pci_declaim(rtwdev, pdev);
1870 
1871 err_deinit_core:
1872 	rtw_core_deinit(rtwdev);
1873 
1874 err_release_hw:
1875 	ieee80211_free_hw(hw);
1876 
1877 	return ret;
1878 }
1879 EXPORT_SYMBOL(rtw_pci_probe);
1880 
1881 void rtw_pci_remove(struct pci_dev *pdev)
1882 {
1883 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1884 	struct rtw_dev *rtwdev;
1885 	struct rtw_pci *rtwpci;
1886 
1887 	if (!hw)
1888 		return;
1889 
1890 	rtwdev = hw->priv;
1891 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1892 
1893 	rtw_unregister_hw(rtwdev, hw);
1894 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1895 	rtw_pci_napi_deinit(rtwdev);
1896 	rtw_pci_destroy(rtwdev, pdev);
1897 	rtw_pci_declaim(rtwdev, pdev);
1898 	rtw_pci_free_irq(rtwdev, pdev);
1899 	rtw_core_deinit(rtwdev);
1900 	ieee80211_free_hw(hw);
1901 }
1902 EXPORT_SYMBOL(rtw_pci_remove);
1903 
1904 void rtw_pci_shutdown(struct pci_dev *pdev)
1905 {
1906 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1907 	struct rtw_dev *rtwdev;
1908 	const struct rtw_chip_info *chip;
1909 
1910 	if (!hw)
1911 		return;
1912 
1913 	rtwdev = hw->priv;
1914 	chip = rtwdev->chip;
1915 
1916 	if (chip->ops->shutdown)
1917 		chip->ops->shutdown(rtwdev);
1918 
1919 	pci_set_power_state(pdev, PCI_D3hot);
1920 }
1921 EXPORT_SYMBOL(rtw_pci_shutdown);
1922 
1923 MODULE_AUTHOR("Realtek Corporation");
1924 MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver");
1925 MODULE_LICENSE("Dual BSD/GPL");
1926 #if defined(__FreeBSD__)
1927 MODULE_VERSION(rtw_pci, 1);
1928 MODULE_DEPEND(rtw_pci, linuxkpi, 1, 1, 1);
1929 MODULE_DEPEND(rtw_pci, linuxkpi_wlan, 1, 1, 1);
1930 #ifdef CONFIG_RTW88_DEBUGFS
1931 MODULE_DEPEND(rtw_pci, lindebugfs, 1, 1, 1);
1932 #endif
1933 #endif
1934