xref: /freebsd/sys/contrib/dev/rtw88/pci.c (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_pci_
7 #endif
8 
9 #include <linux/module.h>
10 #include <linux/pci.h>
11 #include "main.h"
12 #include "pci.h"
13 #include "reg.h"
14 #include "tx.h"
15 #include "rx.h"
16 #include "fw.h"
17 #include "ps.h"
18 #include "debug.h"
19 #if defined(__FreeBSD__)
20 #include <linux/pm.h>
21 #endif
22 
23 static bool rtw_disable_msi;
24 static bool rtw_pci_disable_aspm;
25 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
26 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
27 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
28 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
29 
30 static u32 rtw_pci_tx_queue_idx_addr[] = {
31 	[RTW_TX_QUEUE_BK]	= RTK_PCI_TXBD_IDX_BKQ,
32 	[RTW_TX_QUEUE_BE]	= RTK_PCI_TXBD_IDX_BEQ,
33 	[RTW_TX_QUEUE_VI]	= RTK_PCI_TXBD_IDX_VIQ,
34 	[RTW_TX_QUEUE_VO]	= RTK_PCI_TXBD_IDX_VOQ,
35 	[RTW_TX_QUEUE_MGMT]	= RTK_PCI_TXBD_IDX_MGMTQ,
36 	[RTW_TX_QUEUE_HI0]	= RTK_PCI_TXBD_IDX_HI0Q,
37 	[RTW_TX_QUEUE_H2C]	= RTK_PCI_TXBD_IDX_H2CQ,
38 };
39 
40 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb, u8 queue)
41 {
42 	switch (queue) {
43 	case RTW_TX_QUEUE_BCN:
44 		return TX_DESC_QSEL_BEACON;
45 	case RTW_TX_QUEUE_H2C:
46 		return TX_DESC_QSEL_H2C;
47 	case RTW_TX_QUEUE_MGMT:
48 		return TX_DESC_QSEL_MGMT;
49 	case RTW_TX_QUEUE_HI0:
50 		return TX_DESC_QSEL_HIGH;
51 	default:
52 		return skb->priority;
53 	}
54 };
55 
56 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
57 {
58 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
59 
60 #if defined(__linux__)
61 	return readb(rtwpci->mmap + addr);
62 #elif defined(__FreeBSD__)
63 	u8 val;
64 
65 	val = bus_read_1((struct resource *)rtwpci->mmap, addr);
66 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R08 (%#010x) -> %#04x\n", addr, val);
67 	return (val);
68 #endif
69 }
70 
71 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
72 {
73 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74 
75 #if defined(__linux__)
76 	return readw(rtwpci->mmap + addr);
77 #elif defined(__FreeBSD__)
78 	u16 val;
79 
80 	val = bus_read_2((struct resource *)rtwpci->mmap, addr);
81 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R16 (%#010x) -> %#06x\n", addr, val);
82 	return (val);
83 #endif
84 }
85 
86 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
87 {
88 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
89 
90 #if defined(__linux__)
91 	return readl(rtwpci->mmap + addr);
92 #elif defined(__FreeBSD__)
93 	u32 val;
94 
95 	val = bus_read_4((struct resource *)rtwpci->mmap, addr);
96 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "R32 (%#010x) -> %#010x\n", addr, val);
97 	return (val);
98 #endif
99 }
100 
101 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
102 {
103 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
104 
105 #if defined(__linux__)
106 	writeb(val, rtwpci->mmap + addr);
107 #elif defined(__FreeBSD__)
108 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W08 (%#010x) <- %#04x\n", addr, val);
109 	return (bus_write_1((struct resource *)rtwpci->mmap, addr, val));
110 #endif
111 }
112 
113 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
114 {
115 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
116 
117 #if defined(__linux__)
118 	writew(val, rtwpci->mmap + addr);
119 #elif defined(__FreeBSD__)
120 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W16 (%#010x) <- %#06x\n", addr, val);
121 	return (bus_write_2((struct resource *)rtwpci->mmap, addr, val));
122 #endif
123 }
124 
125 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
126 {
127 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
128 
129 #if defined(__linux__)
130 	writel(val, rtwpci->mmap + addr);
131 #elif defined(__FreeBSD__)
132 	rtw_dbg(rtwdev, RTW_DBG_IO_RW, "W32 (%#010x) <- %#010x\n", addr, val);
133 	return (bus_write_4((struct resource *)rtwpci->mmap, addr, val));
134 #endif
135 }
136 
137 #if defined(__linux__) && 0
138 static inline void *rtw_pci_get_tx_desc(struct rtw_pci_tx_ring *tx_ring, u8 idx)
139 {
140 	int offset = tx_ring->r.desc_size * idx;
141 
142 	return tx_ring->r.head + offset;
143 }
144 #endif
145 
146 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
147 				      struct rtw_pci_tx_ring *tx_ring)
148 {
149 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
150 	struct rtw_pci_tx_data *tx_data;
151 	struct sk_buff *skb, *tmp;
152 	dma_addr_t dma;
153 
154 	/* free every skb remained in tx list */
155 	skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
156 		__skb_unlink(skb, &tx_ring->queue);
157 		tx_data = rtw_pci_get_tx_data(skb);
158 		dma = tx_data->dma;
159 
160 		dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
161 		dev_kfree_skb_any(skb);
162 	}
163 }
164 
165 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
166 				 struct rtw_pci_tx_ring *tx_ring)
167 {
168 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
169 	u8 *head = tx_ring->r.head;
170 	u32 len = tx_ring->r.len;
171 	int ring_sz = len * tx_ring->r.desc_size;
172 
173 	rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
174 
175 	/* free the ring itself */
176 	dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
177 	tx_ring->r.head = NULL;
178 }
179 
180 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
181 				      struct rtw_pci_rx_ring *rx_ring)
182 {
183 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
184 	struct sk_buff *skb;
185 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
186 	dma_addr_t dma;
187 	int i;
188 
189 	for (i = 0; i < rx_ring->r.len; i++) {
190 		skb = rx_ring->buf[i];
191 		if (!skb)
192 			continue;
193 
194 		dma = *((dma_addr_t *)skb->cb);
195 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
196 		dev_kfree_skb(skb);
197 		rx_ring->buf[i] = NULL;
198 	}
199 }
200 
201 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
202 				 struct rtw_pci_rx_ring *rx_ring)
203 {
204 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
205 	u8 *head = rx_ring->r.head;
206 	int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
207 
208 	rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
209 
210 	dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
211 }
212 
213 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
214 {
215 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
216 	struct rtw_pci_tx_ring *tx_ring;
217 	struct rtw_pci_rx_ring *rx_ring;
218 	int i;
219 
220 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
221 		tx_ring = &rtwpci->tx_rings[i];
222 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
223 	}
224 
225 	for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
226 		rx_ring = &rtwpci->rx_rings[i];
227 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
228 	}
229 }
230 
231 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
232 				struct rtw_pci_tx_ring *tx_ring,
233 				u8 desc_size, u32 len)
234 {
235 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
236 	int ring_sz = desc_size * len;
237 	dma_addr_t dma;
238 	u8 *head;
239 
240 	if (len > TRX_BD_IDX_MASK) {
241 		rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
242 		return -EINVAL;
243 	}
244 
245 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
246 	if (!head) {
247 		rtw_err(rtwdev, "failed to allocate tx ring\n");
248 		return -ENOMEM;
249 	}
250 
251 	skb_queue_head_init(&tx_ring->queue);
252 	tx_ring->r.head = head;
253 	tx_ring->r.dma = dma;
254 	tx_ring->r.len = len;
255 	tx_ring->r.desc_size = desc_size;
256 	tx_ring->r.wp = 0;
257 	tx_ring->r.rp = 0;
258 
259 	return 0;
260 }
261 
262 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
263 				 struct rtw_pci_rx_ring *rx_ring,
264 				 u32 idx, u32 desc_sz)
265 {
266 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
267 	struct rtw_pci_rx_buffer_desc *buf_desc;
268 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
269 	dma_addr_t dma;
270 
271 	if (!skb)
272 		return -EINVAL;
273 
274 	dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
275 	if (dma_mapping_error(&pdev->dev, dma))
276 		return -EBUSY;
277 
278 	*((dma_addr_t *)skb->cb) = dma;
279 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
280 						     idx * desc_sz);
281 	memset(buf_desc, 0, sizeof(*buf_desc));
282 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
283 	buf_desc->dma = cpu_to_le32(dma);
284 
285 	return 0;
286 }
287 
288 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
289 					struct rtw_pci_rx_ring *rx_ring,
290 					u32 idx, u32 desc_sz)
291 {
292 	struct device *dev = rtwdev->dev;
293 	struct rtw_pci_rx_buffer_desc *buf_desc;
294 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
295 
296 	dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
297 
298 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
299 						     idx * desc_sz);
300 	memset(buf_desc, 0, sizeof(*buf_desc));
301 	buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
302 	buf_desc->dma = cpu_to_le32(dma);
303 }
304 
305 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
306 				struct rtw_pci_rx_ring *rx_ring,
307 				u8 desc_size, u32 len)
308 {
309 	struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
310 	struct sk_buff *skb = NULL;
311 	dma_addr_t dma;
312 	u8 *head;
313 	int ring_sz = desc_size * len;
314 	int buf_sz = RTK_PCI_RX_BUF_SIZE;
315 	int i, allocated;
316 	int ret = 0;
317 
318 	head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
319 	if (!head) {
320 		rtw_err(rtwdev, "failed to allocate rx ring\n");
321 		return -ENOMEM;
322 	}
323 	rx_ring->r.head = head;
324 
325 	for (i = 0; i < len; i++) {
326 		skb = dev_alloc_skb(buf_sz);
327 		if (!skb) {
328 			allocated = i;
329 			ret = -ENOMEM;
330 			goto err_out;
331 		}
332 
333 		memset(skb->data, 0, buf_sz);
334 		rx_ring->buf[i] = skb;
335 		ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
336 		if (ret) {
337 			allocated = i;
338 			dev_kfree_skb_any(skb);
339 			goto err_out;
340 		}
341 	}
342 
343 	rx_ring->r.dma = dma;
344 	rx_ring->r.len = len;
345 	rx_ring->r.desc_size = desc_size;
346 	rx_ring->r.wp = 0;
347 	rx_ring->r.rp = 0;
348 
349 	return 0;
350 
351 err_out:
352 	for (i = 0; i < allocated; i++) {
353 		skb = rx_ring->buf[i];
354 		if (!skb)
355 			continue;
356 		dma = *((dma_addr_t *)skb->cb);
357 		dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
358 		dev_kfree_skb_any(skb);
359 		rx_ring->buf[i] = NULL;
360 	}
361 	dma_free_coherent(&pdev->dev, ring_sz, head, dma);
362 
363 	rtw_err(rtwdev, "failed to init rx buffer\n");
364 
365 	return ret;
366 }
367 
368 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
369 {
370 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
371 	struct rtw_pci_tx_ring *tx_ring;
372 	struct rtw_pci_rx_ring *rx_ring;
373 	struct rtw_chip_info *chip = rtwdev->chip;
374 	int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
375 	int tx_desc_size, rx_desc_size;
376 	u32 len;
377 	int ret;
378 
379 	tx_desc_size = chip->tx_buf_desc_sz;
380 
381 	for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
382 		tx_ring = &rtwpci->tx_rings[i];
383 		len = max_num_of_tx_queue(i);
384 		ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
385 		if (ret)
386 			goto out;
387 	}
388 
389 	rx_desc_size = chip->rx_buf_desc_sz;
390 
391 	for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
392 		rx_ring = &rtwpci->rx_rings[j];
393 		ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
394 					   RTK_MAX_RX_DESC_NUM);
395 		if (ret)
396 			goto out;
397 	}
398 
399 	return 0;
400 
401 out:
402 	tx_alloced = i;
403 	for (i = 0; i < tx_alloced; i++) {
404 		tx_ring = &rtwpci->tx_rings[i];
405 		rtw_pci_free_tx_ring(rtwdev, tx_ring);
406 	}
407 
408 	rx_alloced = j;
409 	for (j = 0; j < rx_alloced; j++) {
410 		rx_ring = &rtwpci->rx_rings[j];
411 		rtw_pci_free_rx_ring(rtwdev, rx_ring);
412 	}
413 
414 	return ret;
415 }
416 
417 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
418 {
419 	rtw_pci_free_trx_ring(rtwdev);
420 }
421 
422 static int rtw_pci_init(struct rtw_dev *rtwdev)
423 {
424 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
425 	int ret = 0;
426 
427 	rtwpci->irq_mask[0] = IMR_HIGHDOK |
428 			      IMR_MGNTDOK |
429 			      IMR_BKDOK |
430 			      IMR_BEDOK |
431 			      IMR_VIDOK |
432 			      IMR_VODOK |
433 			      IMR_ROK |
434 			      IMR_BCNDMAINT_E |
435 			      IMR_C2HCMD |
436 			      0;
437 	rtwpci->irq_mask[1] = IMR_TXFOVW |
438 			      0;
439 	rtwpci->irq_mask[3] = IMR_H2CDOK |
440 			      0;
441 	spin_lock_init(&rtwpci->irq_lock);
442 	spin_lock_init(&rtwpci->hwirq_lock);
443 	ret = rtw_pci_init_trx_ring(rtwdev);
444 
445 	return ret;
446 }
447 
448 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
449 {
450 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
451 	u32 len;
452 	u8 tmp;
453 	dma_addr_t dma;
454 
455 	tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
456 	rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
457 
458 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
459 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
460 
461 	if (!rtw_chip_wcpu_11n(rtwdev)) {
462 		len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
463 		dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
464 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
465 		rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
466 		rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
467 		rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
468 	}
469 
470 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
471 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
472 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
473 	rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
474 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
475 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
476 
477 	len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
478 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
479 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
480 	rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
481 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
482 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
483 
484 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
485 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
486 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
487 	rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
488 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
489 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
490 
491 	len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
492 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
493 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
494 	rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
495 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
496 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
497 
498 	len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
499 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
500 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
501 	rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
502 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
503 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
504 
505 	len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
506 	dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
507 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
508 	rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
509 	rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
510 	rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
511 
512 	len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
513 	dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
514 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
515 	rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
516 	rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
517 	rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
518 
519 	/* reset read/write point */
520 	rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
521 
522 	/* reset H2C Queue index in a single write */
523 	if (rtw_chip_wcpu_11ac(rtwdev))
524 		rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
525 				BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
526 }
527 
528 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
529 {
530 	rtw_pci_reset_buf_desc(rtwdev);
531 }
532 
533 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
534 				     struct rtw_pci *rtwpci, bool exclude_rx)
535 {
536 	unsigned long flags;
537 	u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
538 
539 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
540 
541 	rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
542 	rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
543 	if (rtw_chip_wcpu_11ac(rtwdev))
544 		rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
545 
546 	rtwpci->irq_enabled = true;
547 
548 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
549 }
550 
551 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
552 				      struct rtw_pci *rtwpci)
553 {
554 	unsigned long flags;
555 
556 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
557 
558 	if (!rtwpci->irq_enabled)
559 		goto out;
560 
561 	rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
562 	rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
563 	if (rtw_chip_wcpu_11ac(rtwdev))
564 		rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
565 
566 	rtwpci->irq_enabled = false;
567 
568 out:
569 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
570 }
571 
572 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
573 {
574 	/* reset dma and rx tag */
575 	rtw_write32_set(rtwdev, RTK_PCI_CTRL,
576 			BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
577 	rtwpci->rx_tag = 0;
578 }
579 
580 static int rtw_pci_setup(struct rtw_dev *rtwdev)
581 {
582 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
583 
584 	rtw_pci_reset_trx_ring(rtwdev);
585 	rtw_pci_dma_reset(rtwdev, rtwpci);
586 
587 	return 0;
588 }
589 
590 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
591 {
592 	struct rtw_pci_tx_ring *tx_ring;
593 	u8 queue;
594 
595 	rtw_pci_reset_trx_ring(rtwdev);
596 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
597 		tx_ring = &rtwpci->tx_rings[queue];
598 		rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
599 	}
600 }
601 
602 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
603 {
604 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
605 
606 	if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
607 		return;
608 
609 	napi_enable(&rtwpci->napi);
610 }
611 
612 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
613 {
614 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
615 
616 	if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
617 		return;
618 
619 	napi_synchronize(&rtwpci->napi);
620 	napi_disable(&rtwpci->napi);
621 }
622 
623 static int rtw_pci_start(struct rtw_dev *rtwdev)
624 {
625 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
626 
627 	rtw_pci_napi_start(rtwdev);
628 
629 	spin_lock_bh(&rtwpci->irq_lock);
630 	rtwpci->running = true;
631 	rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
632 	spin_unlock_bh(&rtwpci->irq_lock);
633 
634 	return 0;
635 }
636 
637 static void rtw_pci_stop(struct rtw_dev *rtwdev)
638 {
639 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
640 	struct pci_dev *pdev = rtwpci->pdev;
641 
642 	spin_lock_bh(&rtwpci->irq_lock);
643 	rtwpci->running = false;
644 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
645 	spin_unlock_bh(&rtwpci->irq_lock);
646 
647 	synchronize_irq(pdev->irq);
648 	rtw_pci_napi_stop(rtwdev);
649 
650 	spin_lock_bh(&rtwpci->irq_lock);
651 	rtw_pci_dma_release(rtwdev, rtwpci);
652 	spin_unlock_bh(&rtwpci->irq_lock);
653 }
654 
655 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
656 {
657 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
658 	struct rtw_pci_tx_ring *tx_ring;
659 	bool tx_empty = true;
660 	u8 queue;
661 
662 	if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
663 		goto enter_deep_ps;
664 
665 	lockdep_assert_held(&rtwpci->irq_lock);
666 
667 	/* Deep PS state is not allowed to TX-DMA */
668 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
669 		/* BCN queue is rsvd page, does not have DMA interrupt
670 		 * H2C queue is managed by firmware
671 		 */
672 		if (queue == RTW_TX_QUEUE_BCN ||
673 		    queue == RTW_TX_QUEUE_H2C)
674 			continue;
675 
676 		tx_ring = &rtwpci->tx_rings[queue];
677 
678 		/* check if there is any skb DMAing */
679 		if (skb_queue_len(&tx_ring->queue)) {
680 			tx_empty = false;
681 			break;
682 		}
683 	}
684 
685 	if (!tx_empty) {
686 		rtw_dbg(rtwdev, RTW_DBG_PS,
687 			"TX path not empty, cannot enter deep power save state\n");
688 		return;
689 	}
690 enter_deep_ps:
691 	set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
692 	rtw_power_mode_change(rtwdev, true);
693 }
694 
695 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
696 {
697 #if defined(__linux__)
698 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
699 
700 	lockdep_assert_held(&rtwpci->irq_lock);
701 #elif defined(__FreeBSD__)
702 	lockdep_assert_held(&((struct rtw_pci *)rtwdev->priv)->irq_lock);
703 #endif
704 
705 	if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
706 		rtw_power_mode_change(rtwdev, false);
707 }
708 
709 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
710 {
711 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
712 
713 	spin_lock_bh(&rtwpci->irq_lock);
714 
715 	if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
716 		rtw_pci_deep_ps_enter(rtwdev);
717 
718 	if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
719 		rtw_pci_deep_ps_leave(rtwdev);
720 
721 	spin_unlock_bh(&rtwpci->irq_lock);
722 }
723 
724 static u8 ac_to_hwq[] = {
725 	[IEEE80211_AC_VO] = RTW_TX_QUEUE_VO,
726 	[IEEE80211_AC_VI] = RTW_TX_QUEUE_VI,
727 	[IEEE80211_AC_BE] = RTW_TX_QUEUE_BE,
728 	[IEEE80211_AC_BK] = RTW_TX_QUEUE_BK,
729 };
730 
731 #if defined(__linux__)
732 static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
733 #elif defined(__FreeBSD__)
734 rtw88_static_assert(ARRAY_SIZE(ac_to_hwq) == IEEE80211_NUM_ACS);
735 #endif
736 
737 static u8 rtw_hw_queue_mapping(struct sk_buff *skb)
738 {
739 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
740 	__le16 fc = hdr->frame_control;
741 	u8 q_mapping = skb_get_queue_mapping(skb);
742 	u8 queue;
743 
744 	if (unlikely(ieee80211_is_beacon(fc)))
745 		queue = RTW_TX_QUEUE_BCN;
746 	else if (unlikely(ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)))
747 		queue = RTW_TX_QUEUE_MGMT;
748 	else if (WARN_ON_ONCE(q_mapping >= ARRAY_SIZE(ac_to_hwq)))
749 		queue = ac_to_hwq[IEEE80211_AC_BE];
750 	else
751 		queue = ac_to_hwq[q_mapping];
752 
753 	return queue;
754 }
755 
756 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
757 				      struct rtw_pci_tx_ring *ring)
758 {
759 	struct sk_buff *prev = skb_dequeue(&ring->queue);
760 	struct rtw_pci_tx_data *tx_data;
761 	dma_addr_t dma;
762 
763 	if (!prev)
764 		return;
765 
766 	tx_data = rtw_pci_get_tx_data(prev);
767 	dma = tx_data->dma;
768 	dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
769 	dev_kfree_skb_any(prev);
770 }
771 
772 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
773 			      struct rtw_pci_rx_ring *rx_ring,
774 			      u32 idx)
775 {
776 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
777 	struct rtw_chip_info *chip = rtwdev->chip;
778 	struct rtw_pci_rx_buffer_desc *buf_desc;
779 	u32 desc_sz = chip->rx_buf_desc_sz;
780 	u16 total_pkt_size;
781 
782 	buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
783 						     idx * desc_sz);
784 	total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
785 
786 	/* rx tag mismatch, throw a warning */
787 	if (total_pkt_size != rtwpci->rx_tag)
788 		rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
789 
790 	rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
791 }
792 
793 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
794 {
795 	u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
796 	u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
797 
798 	return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
799 }
800 
801 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
802 {
803 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
804 	struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
805 	u32 cur_rp;
806 	u8 i;
807 
808 	/* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
809 	 * bit dynamic, it's hard to define a reasonable fixed total timeout to
810 	 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
811 	 * polling times, so we just use for loop with udelay here.
812 	 */
813 	for (i = 0; i < 30; i++) {
814 		cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
815 		if (cur_rp == ring->r.wp)
816 			return;
817 
818 		udelay(1);
819 	}
820 
821 	if (!drop)
822 		rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
823 }
824 
825 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
826 				   bool drop)
827 {
828 	u8 q;
829 
830 	for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
831 		/* It may be not necessary to flush BCN and H2C tx queues. */
832 		if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C)
833 			continue;
834 
835 		if (pci_queues & BIT(q))
836 			__pci_flush_queue(rtwdev, q, drop);
837 	}
838 }
839 
840 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
841 {
842 	u32 pci_queues = 0;
843 	u8 i;
844 
845 	/* If all of the hardware queues are requested to flush,
846 	 * flush all of the pci queues.
847 	 */
848 	if (queues == BIT(rtwdev->hw->queues) - 1) {
849 		pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
850 	} else {
851 		for (i = 0; i < rtwdev->hw->queues; i++)
852 			if (queues & BIT(i))
853 				pci_queues |= BIT(ac_to_hwq[i]);
854 	}
855 
856 	__rtw_pci_flush_queues(rtwdev, pci_queues, drop);
857 }
858 
859 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev, u8 queue)
860 {
861 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
862 	struct rtw_pci_tx_ring *ring;
863 	u32 bd_idx;
864 
865 	ring = &rtwpci->tx_rings[queue];
866 	bd_idx = rtw_pci_tx_queue_idx_addr[queue];
867 
868 	spin_lock_bh(&rtwpci->irq_lock);
869 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
870 		rtw_pci_deep_ps_leave(rtwdev);
871 	rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
872 	spin_unlock_bh(&rtwpci->irq_lock);
873 }
874 
875 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
876 {
877 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
878 	u8 queue;
879 
880 	for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
881 		if (test_and_clear_bit(queue, rtwpci->tx_queued))
882 			rtw_pci_tx_kick_off_queue(rtwdev, queue);
883 }
884 
885 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
886 				 struct rtw_tx_pkt_info *pkt_info,
887 				 struct sk_buff *skb, u8 queue)
888 {
889 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
890 	struct rtw_chip_info *chip = rtwdev->chip;
891 	struct rtw_pci_tx_ring *ring;
892 	struct rtw_pci_tx_data *tx_data;
893 	dma_addr_t dma;
894 	u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
895 	u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
896 	u32 size;
897 	u32 psb_len;
898 	u8 *pkt_desc;
899 	struct rtw_pci_tx_buffer_desc *buf_desc;
900 
901 	ring = &rtwpci->tx_rings[queue];
902 
903 	size = skb->len;
904 
905 	if (queue == RTW_TX_QUEUE_BCN)
906 		rtw_pci_release_rsvd_page(rtwpci, ring);
907 	else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
908 		return -ENOSPC;
909 
910 	pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
911 	memset(pkt_desc, 0, tx_pkt_desc_sz);
912 	pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
913 	rtw_tx_fill_tx_desc(pkt_info, skb);
914 	dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
915 			     DMA_TO_DEVICE);
916 	if (dma_mapping_error(&rtwpci->pdev->dev, dma))
917 		return -EBUSY;
918 
919 	/* after this we got dma mapped, there is no way back */
920 	buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
921 	memset(buf_desc, 0, tx_buf_desc_sz);
922 	psb_len = (skb->len - 1) / 128 + 1;
923 	if (queue == RTW_TX_QUEUE_BCN)
924 		psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
925 
926 	buf_desc[0].psb_len = cpu_to_le16(psb_len);
927 	buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
928 	buf_desc[0].dma = cpu_to_le32(dma);
929 	buf_desc[1].buf_size = cpu_to_le16(size);
930 	buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
931 
932 	tx_data = rtw_pci_get_tx_data(skb);
933 	tx_data->dma = dma;
934 	tx_data->sn = pkt_info->sn;
935 
936 	spin_lock_bh(&rtwpci->irq_lock);
937 
938 	skb_queue_tail(&ring->queue, skb);
939 
940 	if (queue == RTW_TX_QUEUE_BCN)
941 		goto out_unlock;
942 
943 	/* update write-index, and kick it off later */
944 	set_bit(queue, rtwpci->tx_queued);
945 	if (++ring->r.wp >= ring->r.len)
946 		ring->r.wp = 0;
947 
948 out_unlock:
949 	spin_unlock_bh(&rtwpci->irq_lock);
950 
951 	return 0;
952 }
953 
954 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
955 					u32 size)
956 {
957 	struct sk_buff *skb;
958 	struct rtw_tx_pkt_info pkt_info = {0};
959 	u8 reg_bcn_work;
960 	int ret;
961 
962 	skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
963 	if (!skb)
964 		return -ENOMEM;
965 
966 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
967 	if (ret) {
968 		rtw_err(rtwdev, "failed to write rsvd page data\n");
969 		return ret;
970 	}
971 
972 	/* reserved pages go through beacon queue */
973 	reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
974 	reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
975 	rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
976 
977 	return 0;
978 }
979 
980 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
981 {
982 	struct sk_buff *skb;
983 	struct rtw_tx_pkt_info pkt_info = {0};
984 	int ret;
985 
986 	skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
987 	if (!skb)
988 		return -ENOMEM;
989 
990 	ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
991 	if (ret) {
992 		rtw_err(rtwdev, "failed to write h2c data\n");
993 		return ret;
994 	}
995 
996 	rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
997 
998 	return 0;
999 }
1000 
1001 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
1002 			    struct rtw_tx_pkt_info *pkt_info,
1003 			    struct sk_buff *skb)
1004 {
1005 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1006 	struct rtw_pci_tx_ring *ring;
1007 	u8 queue = rtw_hw_queue_mapping(skb);
1008 	int ret;
1009 
1010 	ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
1011 	if (ret)
1012 		return ret;
1013 
1014 	ring = &rtwpci->tx_rings[queue];
1015 	spin_lock_bh(&rtwpci->irq_lock);
1016 	if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
1017 		ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
1018 		ring->queue_stopped = true;
1019 	}
1020 	spin_unlock_bh(&rtwpci->irq_lock);
1021 
1022 	return 0;
1023 }
1024 
1025 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1026 			   u8 hw_queue)
1027 {
1028 	struct ieee80211_hw *hw = rtwdev->hw;
1029 	struct ieee80211_tx_info *info;
1030 	struct rtw_pci_tx_ring *ring;
1031 	struct rtw_pci_tx_data *tx_data;
1032 	struct sk_buff *skb;
1033 	u32 count;
1034 	u32 bd_idx_addr;
1035 	u32 bd_idx, cur_rp, rp_idx;
1036 	u16 q_map;
1037 
1038 	ring = &rtwpci->tx_rings[hw_queue];
1039 
1040 	bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
1041 	bd_idx = rtw_read32(rtwdev, bd_idx_addr);
1042 	cur_rp = bd_idx >> 16;
1043 	cur_rp &= TRX_BD_IDX_MASK;
1044 	rp_idx = ring->r.rp;
1045 	if (cur_rp >= ring->r.rp)
1046 		count = cur_rp - ring->r.rp;
1047 	else
1048 		count = ring->r.len - (ring->r.rp - cur_rp);
1049 
1050 	while (count--) {
1051 		skb = skb_dequeue(&ring->queue);
1052 		if (!skb) {
1053 			rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
1054 				count, hw_queue, bd_idx, ring->r.rp, cur_rp);
1055 			break;
1056 		}
1057 		tx_data = rtw_pci_get_tx_data(skb);
1058 		dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
1059 				 DMA_TO_DEVICE);
1060 
1061 		/* just free command packets from host to card */
1062 		if (hw_queue == RTW_TX_QUEUE_H2C) {
1063 			dev_kfree_skb_irq(skb);
1064 			continue;
1065 		}
1066 
1067 		if (ring->queue_stopped &&
1068 		    avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
1069 			q_map = skb_get_queue_mapping(skb);
1070 			ieee80211_wake_queue(hw, q_map);
1071 			ring->queue_stopped = false;
1072 		}
1073 
1074 		if (++rp_idx >= ring->r.len)
1075 			rp_idx = 0;
1076 
1077 		skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
1078 
1079 		info = IEEE80211_SKB_CB(skb);
1080 
1081 		/* enqueue to wait for tx report */
1082 		if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
1083 			rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
1084 			continue;
1085 		}
1086 
1087 		/* always ACK for others, then they won't be marked as drop */
1088 		if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1089 			info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1090 		else
1091 			info->flags |= IEEE80211_TX_STAT_ACK;
1092 
1093 		ieee80211_tx_info_clear_status(info);
1094 		ieee80211_tx_status_irqsafe(hw, skb);
1095 	}
1096 
1097 	ring->r.rp = cur_rp;
1098 }
1099 
1100 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1101 {
1102 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1103 	struct napi_struct *napi = &rtwpci->napi;
1104 
1105 	napi_schedule(napi);
1106 }
1107 
1108 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1109 				     struct rtw_pci *rtwpci)
1110 {
1111 	struct rtw_pci_rx_ring *ring;
1112 	int count = 0;
1113 	u32 tmp, cur_wp;
1114 
1115 	ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1116 	tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1117 	cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1118 	if (cur_wp >= ring->r.wp)
1119 		count = cur_wp - ring->r.wp;
1120 	else
1121 		count = ring->r.len - (ring->r.wp - cur_wp);
1122 
1123 	return count;
1124 }
1125 
1126 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1127 			   u8 hw_queue, u32 limit)
1128 {
1129 	struct rtw_chip_info *chip = rtwdev->chip;
1130 	struct napi_struct *napi = &rtwpci->napi;
1131 	struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1132 	struct rtw_rx_pkt_stat pkt_stat;
1133 	struct ieee80211_rx_status rx_status;
1134 	struct sk_buff *skb, *new;
1135 	u32 cur_rp = ring->r.rp;
1136 	u32 count, rx_done = 0;
1137 	u32 pkt_offset;
1138 	u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1139 	u32 buf_desc_sz = chip->rx_buf_desc_sz;
1140 	u32 new_len;
1141 	u8 *rx_desc;
1142 	dma_addr_t dma;
1143 
1144 	count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1145 	count = min(count, limit);
1146 
1147 	while (count--) {
1148 		rtw_pci_dma_check(rtwdev, ring, cur_rp);
1149 		skb = ring->buf[cur_rp];
1150 		dma = *((dma_addr_t *)skb->cb);
1151 		dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1152 					DMA_FROM_DEVICE);
1153 		rx_desc = skb->data;
1154 		chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1155 
1156 		/* offset from rx_desc to payload */
1157 		pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1158 			     pkt_stat.shift;
1159 
1160 		/* allocate a new skb for this frame,
1161 		 * discard the frame if none available
1162 		 */
1163 		new_len = pkt_stat.pkt_len + pkt_offset;
1164 		new = dev_alloc_skb(new_len);
1165 		if (WARN_ONCE(!new, "rx routine starvation\n"))
1166 			goto next_rp;
1167 
1168 		/* put the DMA data including rx_desc from phy to new skb */
1169 		skb_put_data(new, skb->data, new_len);
1170 
1171 		if (pkt_stat.is_c2h) {
1172 			rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1173 		} else {
1174 			/* remove rx_desc */
1175 			skb_pull(new, pkt_offset);
1176 
1177 			rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1178 			memcpy(new->cb, &rx_status, sizeof(rx_status));
1179 			ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1180 			rx_done++;
1181 		}
1182 
1183 next_rp:
1184 		/* new skb delivered to mac80211, re-enable original skb DMA */
1185 		rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1186 					    buf_desc_sz);
1187 
1188 		/* host read next element in ring */
1189 		if (++cur_rp >= ring->r.len)
1190 			cur_rp = 0;
1191 	}
1192 
1193 	ring->r.rp = cur_rp;
1194 	/* 'rp', the last position we have read, is seen as previous posistion
1195 	 * of 'wp' that is used to calculate 'count' next time.
1196 	 */
1197 	ring->r.wp = cur_rp;
1198 	rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1199 
1200 	return rx_done;
1201 }
1202 
1203 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1204 				   struct rtw_pci *rtwpci, u32 *irq_status)
1205 {
1206 	unsigned long flags;
1207 
1208 	spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1209 
1210 	irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1211 	irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1212 	if (rtw_chip_wcpu_11ac(rtwdev))
1213 		irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1214 	else
1215 		irq_status[3] = 0;
1216 	irq_status[0] &= rtwpci->irq_mask[0];
1217 	irq_status[1] &= rtwpci->irq_mask[1];
1218 	irq_status[3] &= rtwpci->irq_mask[3];
1219 	rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1220 	rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1221 	if (rtw_chip_wcpu_11ac(rtwdev))
1222 		rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1223 
1224 	spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1225 }
1226 
1227 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1228 {
1229 	struct rtw_dev *rtwdev = dev;
1230 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1231 
1232 	/* disable RTW PCI interrupt to avoid more interrupts before the end of
1233 	 * thread function
1234 	 *
1235 	 * disable HIMR here to also avoid new HISR flag being raised before
1236 	 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1237 	 * are cleared, the edge-triggered interrupt will not be generated when
1238 	 * a new HISR flag is set.
1239 	 */
1240 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1241 
1242 	return IRQ_WAKE_THREAD;
1243 }
1244 
1245 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1246 {
1247 	struct rtw_dev *rtwdev = dev;
1248 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1249 	u32 irq_status[4];
1250 	bool rx = false;
1251 
1252 	spin_lock_bh(&rtwpci->irq_lock);
1253 	rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1254 
1255 	if (irq_status[0] & IMR_MGNTDOK)
1256 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1257 	if (irq_status[0] & IMR_HIGHDOK)
1258 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1259 	if (irq_status[0] & IMR_BEDOK)
1260 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1261 	if (irq_status[0] & IMR_BKDOK)
1262 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1263 	if (irq_status[0] & IMR_VODOK)
1264 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1265 	if (irq_status[0] & IMR_VIDOK)
1266 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1267 	if (irq_status[3] & IMR_H2CDOK)
1268 		rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1269 	if (irq_status[0] & IMR_ROK) {
1270 		rtw_pci_rx_isr(rtwdev);
1271 		rx = true;
1272 	}
1273 	if (unlikely(irq_status[0] & IMR_C2HCMD))
1274 		rtw_fw_c2h_cmd_isr(rtwdev);
1275 
1276 	/* all of the jobs for this interrupt have been done */
1277 	if (rtwpci->running)
1278 		rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1279 	spin_unlock_bh(&rtwpci->irq_lock);
1280 
1281 	return IRQ_HANDLED;
1282 }
1283 
1284 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1285 			      struct pci_dev *pdev)
1286 {
1287 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1288 	unsigned long len;
1289 	u8 bar_id = 2;
1290 	int ret;
1291 
1292 	ret = pci_request_regions(pdev, KBUILD_MODNAME);
1293 	if (ret) {
1294 		rtw_err(rtwdev, "failed to request pci regions\n");
1295 		return ret;
1296 	}
1297 
1298 #if defined(__FreeBSD__)
1299 	ret = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1300 	if (ret) {
1301 		rtw_err(rtwdev, "failed to set dma mask to 32-bit\n");
1302 		goto err_release_regions;
1303 	}
1304 
1305 	ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1306 	if (ret) {
1307 		rtw_err(rtwdev, "failed to set consistent dma mask to 32-bit\n");
1308 		goto err_release_regions;
1309 	}
1310 #endif
1311 
1312 	len = pci_resource_len(pdev, bar_id);
1313 #if defined(__FreeBSD__)
1314 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
1315 #endif
1316 	rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1317 	if (!rtwpci->mmap) {
1318 		pci_release_regions(pdev);
1319 		rtw_err(rtwdev, "failed to map pci memory\n");
1320 		return -ENOMEM;
1321 	}
1322 
1323 	return 0;
1324 #if defined(__FreeBSD__)
1325 err_release_regions:
1326 	pci_release_regions(pdev);
1327 	return ret;
1328 #endif
1329 }
1330 
1331 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1332 				 struct pci_dev *pdev)
1333 {
1334 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1335 
1336 	if (rtwpci->mmap) {
1337 		pci_iounmap(pdev, rtwpci->mmap);
1338 		pci_release_regions(pdev);
1339 	}
1340 }
1341 
1342 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1343 {
1344 	u16 write_addr;
1345 	u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1346 	u8 flag;
1347 	u8 cnt;
1348 
1349 	write_addr = addr & BITS_DBI_ADDR_MASK;
1350 	write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1351 	rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1352 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1353 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1354 
1355 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1356 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1357 		if (flag == 0)
1358 			return;
1359 
1360 		udelay(10);
1361 	}
1362 
1363 	WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1364 }
1365 
1366 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1367 {
1368 	u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1369 	u8 flag;
1370 	u8 cnt;
1371 
1372 	rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1373 	rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1374 
1375 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1376 		flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1377 		if (flag == 0) {
1378 			read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1379 			*value = rtw_read8(rtwdev, read_addr);
1380 			return 0;
1381 		}
1382 
1383 		udelay(10);
1384 	}
1385 
1386 	WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1387 	return -EIO;
1388 }
1389 
1390 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1391 {
1392 	u8 page;
1393 	u8 wflag;
1394 	u8 cnt;
1395 
1396 	rtw_write16(rtwdev, REG_MDIO_V1, data);
1397 
1398 	page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1399 	page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1400 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1401 	rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1402 	rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1403 
1404 	for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1405 		wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1406 					BIT_MDIO_WFLAG_V1);
1407 		if (wflag == 0)
1408 			return;
1409 
1410 		udelay(10);
1411 	}
1412 
1413 	WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1414 }
1415 
1416 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1417 {
1418 	u8 value;
1419 	int ret;
1420 
1421 	if (rtw_pci_disable_aspm)
1422 		return;
1423 
1424 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1425 	if (ret) {
1426 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1427 		return;
1428 	}
1429 
1430 	if (enable)
1431 		value |= BIT_CLKREQ_SW_EN;
1432 	else
1433 		value &= ~BIT_CLKREQ_SW_EN;
1434 
1435 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1436 }
1437 
1438 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1439 {
1440 	u8 value;
1441 	int ret;
1442 
1443 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1444 	if (ret) {
1445 		rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1446 		return;
1447 	}
1448 
1449 	if (enable)
1450 		value &= ~BIT_CLKREQ_N_PAD;
1451 	else
1452 		value |= BIT_CLKREQ_N_PAD;
1453 
1454 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1455 }
1456 
1457 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1458 {
1459 	u8 value;
1460 	int ret;
1461 
1462 	if (rtw_pci_disable_aspm)
1463 		return;
1464 
1465 	ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1466 	if (ret) {
1467 		rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1468 		return;
1469 	}
1470 
1471 	if (enable)
1472 		value |= BIT_L1_SW_EN;
1473 	else
1474 		value &= ~BIT_L1_SW_EN;
1475 
1476 	rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1477 }
1478 
1479 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1480 {
1481 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1482 
1483 	/* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1484 	 * only be enabled when host supports it.
1485 	 *
1486 	 * And ASPM mechanism should be enabled when driver/firmware enters
1487 	 * power save mode, without having heavy traffic. Because we've
1488 	 * experienced some inter-operability issues that the link tends
1489 	 * to enter L1 state on the fly even when driver is having high
1490 	 * throughput. This is probably because the ASPM behavior slightly
1491 	 * varies from different SOC.
1492 	 */
1493 	if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1494 		return;
1495 
1496 	if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1497 	    (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1498 		rtw_pci_aspm_set(rtwdev, enter);
1499 }
1500 
1501 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1502 {
1503 	struct rtw_chip_info *chip = rtwdev->chip;
1504 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1505 	struct pci_dev *pdev = rtwpci->pdev;
1506 	u16 link_ctrl;
1507 	int ret;
1508 
1509 	/* RTL8822CE has enabled REFCLK auto calibration, it does not need
1510 	 * to add clock delay to cover the REFCLK timing gap.
1511 	 */
1512 	if (chip->id == RTW_CHIP_TYPE_8822C)
1513 		rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1514 
1515 	/* Though there is standard PCIE configuration space to set the
1516 	 * link control register, but by Realtek's design, driver should
1517 	 * check if host supports CLKREQ/ASPM to enable the HW module.
1518 	 *
1519 	 * These functions are implemented by two HW modules associated,
1520 	 * one is responsible to access PCIE configuration space to
1521 	 * follow the host settings, and another is in charge of doing
1522 	 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1523 	 * the host does not support it, and due to some reasons or wrong
1524 	 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1525 	 * loss if HW misbehaves on the link.
1526 	 *
1527 	 * Hence it's designed that driver should first check the PCIE
1528 	 * configuration space is sync'ed and enabled, then driver can turn
1529 	 * on the other module that is actually working on the mechanism.
1530 	 */
1531 	ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1532 	if (ret) {
1533 		rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1534 		return;
1535 	}
1536 
1537 	if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1538 		rtw_pci_clkreq_set(rtwdev, true);
1539 
1540 	rtwpci->link_ctrl = link_ctrl;
1541 }
1542 
1543 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1544 {
1545 	struct rtw_chip_info *chip = rtwdev->chip;
1546 
1547 	switch (chip->id) {
1548 	case RTW_CHIP_TYPE_8822C:
1549 		if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1550 			rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1551 					 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1552 		break;
1553 	default:
1554 		break;
1555 	}
1556 }
1557 
1558 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1559 {
1560 	struct rtw_chip_info *chip = rtwdev->chip;
1561 	const struct rtw_intf_phy_para *para;
1562 	u16 cut;
1563 	u16 value;
1564 	u16 offset;
1565 	int i;
1566 
1567 	cut = BIT(0) << rtwdev->hal.cut_version;
1568 
1569 	for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1570 		para = &chip->intf_table->gen1_para[i];
1571 		if (!(para->cut_mask & cut))
1572 			continue;
1573 		if (para->offset == 0xffff)
1574 			break;
1575 		offset = para->offset;
1576 		value = para->value;
1577 		if (para->ip_sel == RTW_IP_SEL_PHY)
1578 			rtw_mdio_write(rtwdev, offset, value, true);
1579 		else
1580 			rtw_dbi_write8(rtwdev, offset, value);
1581 	}
1582 
1583 	for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1584 		para = &chip->intf_table->gen2_para[i];
1585 		if (!(para->cut_mask & cut))
1586 			continue;
1587 		if (para->offset == 0xffff)
1588 			break;
1589 		offset = para->offset;
1590 		value = para->value;
1591 		if (para->ip_sel == RTW_IP_SEL_PHY)
1592 			rtw_mdio_write(rtwdev, offset, value, false);
1593 		else
1594 			rtw_dbi_write8(rtwdev, offset, value);
1595 	}
1596 
1597 	rtw_pci_link_cfg(rtwdev);
1598 }
1599 
1600 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1601 {
1602 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1603 	struct rtw_dev *rtwdev = hw->priv;
1604 	struct rtw_chip_info *chip = rtwdev->chip;
1605 	struct rtw_efuse *efuse = &rtwdev->efuse;
1606 
1607 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1608 		rtw_pci_clkreq_pad_low(rtwdev, true);
1609 	return 0;
1610 }
1611 
1612 static int __maybe_unused rtw_pci_resume(struct device *dev)
1613 {
1614 	struct ieee80211_hw *hw = dev_get_drvdata(dev);
1615 	struct rtw_dev *rtwdev = hw->priv;
1616 	struct rtw_chip_info *chip = rtwdev->chip;
1617 	struct rtw_efuse *efuse = &rtwdev->efuse;
1618 
1619 	if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1620 		rtw_pci_clkreq_pad_low(rtwdev, false);
1621 	return 0;
1622 }
1623 
1624 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1625 EXPORT_SYMBOL(rtw_pm_ops);
1626 
1627 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1628 {
1629 	int ret;
1630 
1631 	ret = pci_enable_device(pdev);
1632 	if (ret) {
1633 		rtw_err(rtwdev, "failed to enable pci device\n");
1634 		return ret;
1635 	}
1636 
1637 	pci_set_master(pdev);
1638 	pci_set_drvdata(pdev, rtwdev->hw);
1639 	SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1640 
1641 	return 0;
1642 }
1643 
1644 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1645 {
1646 	pci_clear_master(pdev);
1647 	pci_disable_device(pdev);
1648 }
1649 
1650 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1651 {
1652 	struct rtw_pci *rtwpci;
1653 	int ret;
1654 
1655 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1656 	rtwpci->pdev = pdev;
1657 
1658 	/* after this driver can access to hw registers */
1659 	ret = rtw_pci_io_mapping(rtwdev, pdev);
1660 	if (ret) {
1661 		rtw_err(rtwdev, "failed to request pci io region\n");
1662 		goto err_out;
1663 	}
1664 
1665 	ret = rtw_pci_init(rtwdev);
1666 	if (ret) {
1667 		rtw_err(rtwdev, "failed to allocate pci resources\n");
1668 		goto err_io_unmap;
1669 	}
1670 
1671 	return 0;
1672 
1673 err_io_unmap:
1674 	rtw_pci_io_unmapping(rtwdev, pdev);
1675 
1676 err_out:
1677 	return ret;
1678 }
1679 
1680 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1681 {
1682 	rtw_pci_deinit(rtwdev);
1683 	rtw_pci_io_unmapping(rtwdev, pdev);
1684 }
1685 
1686 static struct rtw_hci_ops rtw_pci_ops = {
1687 	.tx_write = rtw_pci_tx_write,
1688 	.tx_kick_off = rtw_pci_tx_kick_off,
1689 	.flush_queues = rtw_pci_flush_queues,
1690 	.setup = rtw_pci_setup,
1691 	.start = rtw_pci_start,
1692 	.stop = rtw_pci_stop,
1693 	.deep_ps = rtw_pci_deep_ps,
1694 	.link_ps = rtw_pci_link_ps,
1695 	.interface_cfg = rtw_pci_interface_cfg,
1696 
1697 	.read8 = rtw_pci_read8,
1698 	.read16 = rtw_pci_read16,
1699 	.read32 = rtw_pci_read32,
1700 	.write8 = rtw_pci_write8,
1701 	.write16 = rtw_pci_write16,
1702 	.write32 = rtw_pci_write32,
1703 	.write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1704 	.write_data_h2c = rtw_pci_write_data_h2c,
1705 };
1706 
1707 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1708 {
1709 	unsigned int flags = PCI_IRQ_LEGACY;
1710 	int ret;
1711 
1712 	if (!rtw_disable_msi)
1713 		flags |= PCI_IRQ_MSI;
1714 
1715 	ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1716 	if (ret < 0) {
1717 		rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1718 		return ret;
1719 	}
1720 
1721 	ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1722 					rtw_pci_interrupt_handler,
1723 					rtw_pci_interrupt_threadfn,
1724 					IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1725 	if (ret) {
1726 		rtw_err(rtwdev, "failed to request irq %d\n", ret);
1727 		pci_free_irq_vectors(pdev);
1728 	}
1729 
1730 	return ret;
1731 }
1732 
1733 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1734 {
1735 	devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1736 	pci_free_irq_vectors(pdev);
1737 }
1738 
1739 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1740 {
1741 	struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1742 	struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1743 					      priv);
1744 	int work_done = 0;
1745 
1746 	if (rtwpci->rx_no_aspm)
1747 		rtw_pci_link_ps(rtwdev, false);
1748 
1749 	while (work_done < budget) {
1750 		u32 work_done_once;
1751 
1752 		work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1753 						 budget - work_done);
1754 		if (work_done_once == 0)
1755 			break;
1756 		work_done += work_done_once;
1757 	}
1758 	if (work_done < budget) {
1759 		napi_complete_done(napi, work_done);
1760 		spin_lock_bh(&rtwpci->irq_lock);
1761 		if (rtwpci->running)
1762 			rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1763 		spin_unlock_bh(&rtwpci->irq_lock);
1764 		/* When ISR happens during polling and before napi_complete
1765 		 * while no further data is received. Data on the dma_ring will
1766 		 * not be processed immediately. Check whether dma ring is
1767 		 * empty and perform napi_schedule accordingly.
1768 		 */
1769 		if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1770 			napi_schedule(napi);
1771 	}
1772 	if (rtwpci->rx_no_aspm)
1773 		rtw_pci_link_ps(rtwdev, true);
1774 
1775 	return work_done;
1776 }
1777 
1778 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1779 {
1780 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1781 
1782 	init_dummy_netdev(&rtwpci->netdev);
1783 	netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll,
1784 		       RTW_NAPI_WEIGHT_NUM);
1785 }
1786 
1787 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1788 {
1789 	struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1790 
1791 	rtw_pci_napi_stop(rtwdev);
1792 	netif_napi_del(&rtwpci->napi);
1793 }
1794 
1795 int rtw_pci_probe(struct pci_dev *pdev,
1796 		  const struct pci_device_id *id)
1797 {
1798 	struct pci_dev *bridge = pci_upstream_bridge(pdev);
1799 	struct ieee80211_hw *hw;
1800 	struct rtw_dev *rtwdev;
1801 	struct rtw_pci *rtwpci;
1802 	int drv_data_size;
1803 	int ret;
1804 
1805 	drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1806 	hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1807 	if (!hw) {
1808 		dev_err(&pdev->dev, "failed to allocate hw\n");
1809 		return -ENOMEM;
1810 	}
1811 
1812 	rtwdev = hw->priv;
1813 	rtwdev->hw = hw;
1814 	rtwdev->dev = &pdev->dev;
1815 	rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1816 	rtwdev->hci.ops = &rtw_pci_ops;
1817 	rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1818 
1819 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1820 	atomic_set(&rtwpci->link_usage, 1);
1821 
1822 	ret = rtw_core_init(rtwdev);
1823 	if (ret)
1824 		goto err_release_hw;
1825 
1826 	rtw_dbg(rtwdev, RTW_DBG_PCI,
1827 		"rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1828 		pdev->vendor, pdev->device, pdev->revision);
1829 
1830 	ret = rtw_pci_claim(rtwdev, pdev);
1831 	if (ret) {
1832 		rtw_err(rtwdev, "failed to claim pci device\n");
1833 		goto err_deinit_core;
1834 	}
1835 
1836 	ret = rtw_pci_setup_resource(rtwdev, pdev);
1837 	if (ret) {
1838 		rtw_err(rtwdev, "failed to setup pci resources\n");
1839 		goto err_pci_declaim;
1840 	}
1841 
1842 	rtw_pci_napi_init(rtwdev);
1843 
1844 	ret = rtw_chip_info_setup(rtwdev);
1845 	if (ret) {
1846 		rtw_err(rtwdev, "failed to setup chip information\n");
1847 		goto err_destroy_pci;
1848 	}
1849 
1850 	/* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1851 	if (pdev->device == 0xc821 && bridge->vendor == PCI_VENDOR_ID_INTEL)
1852 		rtwpci->rx_no_aspm = true;
1853 
1854 	rtw_pci_phy_cfg(rtwdev);
1855 
1856 	ret = rtw_register_hw(rtwdev, hw);
1857 	if (ret) {
1858 		rtw_err(rtwdev, "failed to register hw\n");
1859 		goto err_destroy_pci;
1860 	}
1861 
1862 	ret = rtw_pci_request_irq(rtwdev, pdev);
1863 	if (ret) {
1864 		ieee80211_unregister_hw(hw);
1865 		goto err_destroy_pci;
1866 	}
1867 
1868 	return 0;
1869 
1870 err_destroy_pci:
1871 	rtw_pci_napi_deinit(rtwdev);
1872 	rtw_pci_destroy(rtwdev, pdev);
1873 
1874 err_pci_declaim:
1875 	rtw_pci_declaim(rtwdev, pdev);
1876 
1877 err_deinit_core:
1878 	rtw_core_deinit(rtwdev);
1879 
1880 err_release_hw:
1881 	ieee80211_free_hw(hw);
1882 
1883 	return ret;
1884 }
1885 EXPORT_SYMBOL(rtw_pci_probe);
1886 
1887 void rtw_pci_remove(struct pci_dev *pdev)
1888 {
1889 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1890 	struct rtw_dev *rtwdev;
1891 	struct rtw_pci *rtwpci;
1892 
1893 	if (!hw)
1894 		return;
1895 
1896 	rtwdev = hw->priv;
1897 	rtwpci = (struct rtw_pci *)rtwdev->priv;
1898 
1899 	rtw_unregister_hw(rtwdev, hw);
1900 	rtw_pci_disable_interrupt(rtwdev, rtwpci);
1901 	rtw_pci_napi_deinit(rtwdev);
1902 	rtw_pci_destroy(rtwdev, pdev);
1903 	rtw_pci_declaim(rtwdev, pdev);
1904 	rtw_pci_free_irq(rtwdev, pdev);
1905 	rtw_core_deinit(rtwdev);
1906 	ieee80211_free_hw(hw);
1907 }
1908 EXPORT_SYMBOL(rtw_pci_remove);
1909 
1910 void rtw_pci_shutdown(struct pci_dev *pdev)
1911 {
1912 	struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1913 	struct rtw_dev *rtwdev;
1914 	struct rtw_chip_info *chip;
1915 
1916 	if (!hw)
1917 		return;
1918 
1919 	rtwdev = hw->priv;
1920 	chip = rtwdev->chip;
1921 
1922 	if (chip->ops->shutdown)
1923 		chip->ops->shutdown(rtwdev);
1924 
1925 	pci_set_power_state(pdev, PCI_D3hot);
1926 }
1927 EXPORT_SYMBOL(rtw_pci_shutdown);
1928 
1929 MODULE_AUTHOR("Realtek Corporation");
1930 MODULE_DESCRIPTION("Realtek 802.11ac wireless PCI driver");
1931 MODULE_LICENSE("Dual BSD/GPL");
1932 #if defined(__FreeBSD__)
1933 MODULE_VERSION(rtw_pci, 1);
1934 MODULE_DEPEND(rtw_pci, linuxkpi, 1, 1, 1);
1935 MODULE_DEPEND(rtw_pci, linuxkpi_wlan, 1, 1, 1);
1936 #ifdef CONFIG_RTW88_DEBUGFS
1937 MODULE_DEPEND(rtw_pci, debugfs, 1, 1, 1);
1938 #endif
1939 #endif
1940