xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 
27 bool rtw_disable_lps_deep_mode;
28 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
29 bool rtw_bf_support = true;
30 unsigned int rtw_debug_mask;
31 EXPORT_SYMBOL(rtw_debug_mask);
32 /* EDCCA is enabled during normal behavior. For debugging purpose in
33  * a noisy environment, it can be disabled via edcca debugfs. Because
34  * all rtw88 devices will probably be affected if environment is noisy,
35  * rtw_edcca_enabled is just declared by driver instead of by device.
36  * So, turning it off will take effect for all rtw88 devices before
37  * there is a tough reason to maintain rtw_edcca_enabled by device.
38  */
39 bool rtw_edcca_enabled = true;
40 
41 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
42 module_param_named(support_bf, rtw_bf_support, bool, 0644);
43 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
44 
45 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
46 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
47 MODULE_PARM_DESC(debug_mask, "Debugging mask");
48 
49 static struct ieee80211_channel rtw_channeltable_2g[] = {
50 	{.center_freq = 2412, .hw_value = 1,},
51 	{.center_freq = 2417, .hw_value = 2,},
52 	{.center_freq = 2422, .hw_value = 3,},
53 	{.center_freq = 2427, .hw_value = 4,},
54 	{.center_freq = 2432, .hw_value = 5,},
55 	{.center_freq = 2437, .hw_value = 6,},
56 	{.center_freq = 2442, .hw_value = 7,},
57 	{.center_freq = 2447, .hw_value = 8,},
58 	{.center_freq = 2452, .hw_value = 9,},
59 	{.center_freq = 2457, .hw_value = 10,},
60 	{.center_freq = 2462, .hw_value = 11,},
61 	{.center_freq = 2467, .hw_value = 12,},
62 	{.center_freq = 2472, .hw_value = 13,},
63 	{.center_freq = 2484, .hw_value = 14,},
64 };
65 
66 static struct ieee80211_channel rtw_channeltable_5g[] = {
67 	{.center_freq = 5180, .hw_value = 36,},
68 	{.center_freq = 5200, .hw_value = 40,},
69 	{.center_freq = 5220, .hw_value = 44,},
70 	{.center_freq = 5240, .hw_value = 48,},
71 	{.center_freq = 5260, .hw_value = 52,},
72 	{.center_freq = 5280, .hw_value = 56,},
73 	{.center_freq = 5300, .hw_value = 60,},
74 	{.center_freq = 5320, .hw_value = 64,},
75 	{.center_freq = 5500, .hw_value = 100,},
76 	{.center_freq = 5520, .hw_value = 104,},
77 	{.center_freq = 5540, .hw_value = 108,},
78 	{.center_freq = 5560, .hw_value = 112,},
79 	{.center_freq = 5580, .hw_value = 116,},
80 	{.center_freq = 5600, .hw_value = 120,},
81 	{.center_freq = 5620, .hw_value = 124,},
82 	{.center_freq = 5640, .hw_value = 128,},
83 	{.center_freq = 5660, .hw_value = 132,},
84 	{.center_freq = 5680, .hw_value = 136,},
85 	{.center_freq = 5700, .hw_value = 140,},
86 	{.center_freq = 5720, .hw_value = 144,},
87 	{.center_freq = 5745, .hw_value = 149,},
88 	{.center_freq = 5765, .hw_value = 153,},
89 	{.center_freq = 5785, .hw_value = 157,},
90 	{.center_freq = 5805, .hw_value = 161,},
91 	{.center_freq = 5825, .hw_value = 165,
92 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
93 };
94 
95 static struct ieee80211_rate rtw_ratetable[] = {
96 	{.bitrate = 10, .hw_value = 0x00,},
97 	{.bitrate = 20, .hw_value = 0x01,},
98 	{.bitrate = 55, .hw_value = 0x02,},
99 	{.bitrate = 110, .hw_value = 0x03,},
100 	{.bitrate = 60, .hw_value = 0x04,},
101 	{.bitrate = 90, .hw_value = 0x05,},
102 	{.bitrate = 120, .hw_value = 0x06,},
103 	{.bitrate = 180, .hw_value = 0x07,},
104 	{.bitrate = 240, .hw_value = 0x08,},
105 	{.bitrate = 360, .hw_value = 0x09,},
106 	{.bitrate = 480, .hw_value = 0x0a,},
107 	{.bitrate = 540, .hw_value = 0x0b,},
108 };
109 
110 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
111 	{
112 		.max = 1,
113 		.types = BIT(NL80211_IFTYPE_STATION),
114 	},
115 	{
116 		.max = 1,
117 		.types = BIT(NL80211_IFTYPE_AP),
118 	}
119 };
120 
121 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
122 	{
123 		.limits = rtw_iface_limits,
124 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
125 		.max_interfaces = 2,
126 		.num_different_channels = 1,
127 	}
128 };
129 
130 u16 rtw_desc_to_bitrate(u8 desc_rate)
131 {
132 	struct ieee80211_rate rate;
133 
134 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
135 		return 0;
136 
137 	rate = rtw_ratetable[desc_rate];
138 
139 	return rate.bitrate;
140 }
141 
142 static struct ieee80211_supported_band rtw_band_2ghz = {
143 	.band = NL80211_BAND_2GHZ,
144 
145 	.channels = rtw_channeltable_2g,
146 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
147 
148 	.bitrates = rtw_ratetable,
149 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
150 
151 	.ht_cap = {0},
152 	.vht_cap = {0},
153 };
154 
155 static struct ieee80211_supported_band rtw_band_5ghz = {
156 	.band = NL80211_BAND_5GHZ,
157 
158 	.channels = rtw_channeltable_5g,
159 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
160 
161 	/* 5G has no CCK rates */
162 	.bitrates = rtw_ratetable + 4,
163 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
164 
165 	.ht_cap = {0},
166 	.vht_cap = {0},
167 };
168 
169 struct rtw_watch_dog_iter_data {
170 	struct rtw_dev *rtwdev;
171 	struct rtw_vif *rtwvif;
172 };
173 
174 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
175 {
176 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
177 	u8 fix_rate_enable = 0;
178 	u8 new_csi_rate_idx;
179 
180 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
181 	    rtwvif->bfee.role != RTW_BFEE_MU)
182 		return;
183 
184 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
185 			      bf_info->cur_csi_rpt_rate,
186 			      fix_rate_enable, &new_csi_rate_idx);
187 
188 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
189 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
190 }
191 
192 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
193 {
194 	struct rtw_watch_dog_iter_data *iter_data = data;
195 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
196 
197 	if (vif->type == NL80211_IFTYPE_STATION)
198 		if (vif->cfg.assoc)
199 			iter_data->rtwvif = rtwvif;
200 
201 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
202 
203 	rtwvif->stats.tx_unicast = 0;
204 	rtwvif->stats.rx_unicast = 0;
205 	rtwvif->stats.tx_cnt = 0;
206 	rtwvif->stats.rx_cnt = 0;
207 }
208 
209 /* process TX/RX statistics periodically for hardware,
210  * the information helps hardware to enhance performance
211  */
212 static void rtw_watch_dog_work(struct work_struct *work)
213 {
214 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
215 					      watch_dog_work.work);
216 	struct rtw_traffic_stats *stats = &rtwdev->stats;
217 	struct rtw_watch_dog_iter_data data = {};
218 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
219 	bool ps_active;
220 
221 	mutex_lock(&rtwdev->mutex);
222 
223 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
224 		goto unlock;
225 
226 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
227 				     RTW_WATCH_DOG_DELAY_TIME);
228 
229 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
230 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
231 	else
232 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
233 
234 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
235 		rtw_coex_wl_status_change_notify(rtwdev, 0);
236 
237 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
238 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
239 		ps_active = true;
240 	else
241 		ps_active = false;
242 
243 	ewma_tp_add(&stats->tx_ewma_tp,
244 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
245 	ewma_tp_add(&stats->rx_ewma_tp,
246 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
247 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
248 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
249 
250 	/* reset tx/rx statictics */
251 	stats->tx_unicast = 0;
252 	stats->rx_unicast = 0;
253 	stats->tx_cnt = 0;
254 	stats->rx_cnt = 0;
255 
256 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
257 		goto unlock;
258 
259 	/* make sure BB/RF is working for dynamic mech */
260 	rtw_leave_lps(rtwdev);
261 	rtw_coex_wl_status_check(rtwdev);
262 	rtw_coex_query_bt_hid_list(rtwdev);
263 
264 	rtw_phy_dynamic_mechanism(rtwdev);
265 
266 	data.rtwdev = rtwdev;
267 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
268 	 * to avoid taking local->iflist_mtx mutex
269 	 */
270 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
271 
272 	/* fw supports only one station associated to enter lps, if there are
273 	 * more than two stations associated to the AP, then we can not enter
274 	 * lps, because fw does not handle the overlapped beacon interval
275 	 *
276 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
277 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
278 	 * get that vif and check if device is having traffic more than the
279 	 * threshold.
280 	 */
281 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
282 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
283 		rtw_enter_lps(rtwdev, data.rtwvif->port);
284 
285 	rtwdev->watch_dog_cnt++;
286 
287 unlock:
288 	mutex_unlock(&rtwdev->mutex);
289 }
290 
291 static void rtw_c2h_work(struct work_struct *work)
292 {
293 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
294 	struct sk_buff *skb, *tmp;
295 
296 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
297 		skb_unlink(skb, &rtwdev->c2h_queue);
298 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
299 		dev_kfree_skb_any(skb);
300 	}
301 }
302 
303 static void rtw_ips_work(struct work_struct *work)
304 {
305 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
306 
307 	mutex_lock(&rtwdev->mutex);
308 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
309 		rtw_enter_ips(rtwdev);
310 	mutex_unlock(&rtwdev->mutex);
311 }
312 
313 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
314 {
315 	unsigned long mac_id;
316 
317 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
318 	if (mac_id < RTW_MAX_MAC_ID_NUM)
319 		set_bit(mac_id, rtwdev->mac_id_map);
320 
321 	return mac_id;
322 }
323 
324 static void rtw_sta_rc_work(struct work_struct *work)
325 {
326 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
327 					       rc_work);
328 	struct rtw_dev *rtwdev = si->rtwdev;
329 
330 	mutex_lock(&rtwdev->mutex);
331 	rtw_update_sta_info(rtwdev, si, true);
332 	mutex_unlock(&rtwdev->mutex);
333 }
334 
335 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
336 		struct ieee80211_vif *vif)
337 {
338 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
339 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
340 	int i;
341 
342 	si->mac_id = rtw_acquire_macid(rtwdev);
343 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
344 		return -ENOSPC;
345 
346 	if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
347 		rtwvif->mac_id = si->mac_id;
348 	si->rtwdev = rtwdev;
349 	si->sta = sta;
350 	si->vif = vif;
351 	si->init_ra_lv = 1;
352 	ewma_rssi_init(&si->avg_rssi);
353 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
354 		rtw_txq_init(rtwdev, sta->txq[i]);
355 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
356 
357 	rtw_update_sta_info(rtwdev, si, true);
358 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
359 
360 	rtwdev->sta_cnt++;
361 	rtwdev->beacon_loss = false;
362 #if defined(__linux__)
363 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
364 		sta->addr, si->mac_id);
365 #elif defined(__FreeBSD__)
366 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
367 		sta->addr, ":", si->mac_id);
368 #endif
369 
370 	return 0;
371 }
372 
373 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
374 		    bool fw_exist)
375 {
376 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
377 	int i;
378 
379 	cancel_work_sync(&si->rc_work);
380 
381 	rtw_release_macid(rtwdev, si->mac_id);
382 	if (fw_exist)
383 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
384 
385 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
386 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
387 
388 	kfree(si->mask);
389 
390 	rtwdev->sta_cnt--;
391 #if defined(__linux__)
392 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
393 		sta->addr, si->mac_id);
394 #elif defined(__FreeBSD__)
395 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
396 		sta->addr, ":", si->mac_id);
397 #endif
398 }
399 
400 struct rtw_fwcd_hdr {
401 	u32 item;
402 	u32 size;
403 	u32 padding1;
404 	u32 padding2;
405 } __packed;
406 
407 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
408 {
409 	const struct rtw_chip_info *chip = rtwdev->chip;
410 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
411 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
412 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
413 	u8 i;
414 
415 	if (segs) {
416 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
417 
418 		for (i = 0; i < segs->num; i++)
419 			prep_size += segs->segs[i];
420 	}
421 
422 	desc->data = vmalloc(prep_size);
423 	if (!desc->data)
424 		return -ENOMEM;
425 
426 	desc->size = prep_size;
427 	desc->next = desc->data;
428 
429 	return 0;
430 }
431 
432 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
433 {
434 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
435 	struct rtw_fwcd_hdr *hdr;
436 	u8 *next;
437 
438 	if (!desc->data) {
439 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
440 		return NULL;
441 	}
442 
443 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
444 	if (next - desc->data + size > desc->size) {
445 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
446 		return NULL;
447 	}
448 
449 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
450 	hdr->item = item;
451 	hdr->size = size;
452 	hdr->padding1 = 0x01234567;
453 	hdr->padding2 = 0x89abcdef;
454 	desc->next = next + size;
455 
456 	return next;
457 }
458 
459 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
460 {
461 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
462 
463 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
464 
465 	/* Data will be freed after lifetime of device coredump. After calling
466 	 * dev_coredump, data is supposed to be handled by the device coredump
467 	 * framework. Note that a new dump will be discarded if a previous one
468 	 * hasn't been released yet.
469 	 */
470 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
471 }
472 
473 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
474 {
475 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
476 
477 	if (free_self) {
478 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
479 		vfree(desc->data);
480 	}
481 
482 	desc->data = NULL;
483 	desc->next = NULL;
484 }
485 
486 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
487 {
488 	u32 size = rtwdev->chip->fw_rxff_size;
489 	u32 *buf;
490 	u8 seq;
491 
492 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
493 	if (!buf)
494 		return -ENOMEM;
495 
496 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
497 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
498 		return -EINVAL;
499 	}
500 
501 	if (GET_FW_DUMP_LEN(buf) == 0) {
502 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
503 		return -EINVAL;
504 	}
505 
506 	seq = GET_FW_DUMP_SEQ(buf);
507 	if (seq > 0) {
508 		rtw_dbg(rtwdev, RTW_DBG_FW,
509 			"fw crash dump's seq is wrong: %d\n", seq);
510 		return -EINVAL;
511 	}
512 
513 	return 0;
514 }
515 
516 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
517 		u32 fwcd_item)
518 {
519 	u32 rxff = rtwdev->chip->fw_rxff_size;
520 	u32 dump_size, done_size = 0;
521 	u8 *buf;
522 	int ret;
523 
524 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
525 	if (!buf)
526 		return -ENOMEM;
527 
528 	while (size) {
529 		dump_size = size > rxff ? rxff : size;
530 
531 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
532 					  dump_size);
533 		if (ret) {
534 			rtw_err(rtwdev,
535 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
536 				ocp_src, done_size);
537 			return ret;
538 		}
539 
540 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
541 				       dump_size, (u32 *)(buf + done_size));
542 		if (ret) {
543 			rtw_err(rtwdev,
544 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
545 				ocp_src, done_size);
546 			return ret;
547 		}
548 
549 		size -= dump_size;
550 		done_size += dump_size;
551 	}
552 
553 	return 0;
554 }
555 EXPORT_SYMBOL(rtw_dump_fw);
556 
557 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
558 {
559 	u8 *buf;
560 	u32 i;
561 
562 	if (addr & 0x3) {
563 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
564 		return -EINVAL;
565 	}
566 
567 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
568 	if (!buf)
569 		return -ENOMEM;
570 
571 	for (i = 0; i < size; i += 4)
572 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
573 
574 	return 0;
575 }
576 EXPORT_SYMBOL(rtw_dump_reg);
577 
578 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
579 			   struct ieee80211_bss_conf *conf)
580 {
581 	struct ieee80211_vif *vif = NULL;
582 
583 	if (conf)
584 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
585 
586 	if (conf && vif->cfg.assoc) {
587 		rtwvif->aid = vif->cfg.aid;
588 		rtwvif->net_type = RTW_NET_MGD_LINKED;
589 	} else {
590 		rtwvif->aid = 0;
591 		rtwvif->net_type = RTW_NET_NO_LINK;
592 	}
593 }
594 
595 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
596 			       struct ieee80211_vif *vif,
597 			       struct ieee80211_sta *sta,
598 			       struct ieee80211_key_conf *key,
599 			       void *data)
600 {
601 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
602 	struct rtw_sec_desc *sec = &rtwdev->sec;
603 
604 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
605 }
606 
607 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
608 {
609 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
610 
611 	if (rtwdev->sta_cnt == 0) {
612 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
613 		return;
614 	}
615 	rtw_sta_remove(rtwdev, sta, false);
616 }
617 
618 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
619 {
620 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
621 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
622 
623 	rtw_bf_disassoc(rtwdev, vif, NULL);
624 	rtw_vif_assoc_changed(rtwvif, NULL);
625 	rtw_txq_cleanup(rtwdev, vif->txq);
626 }
627 
628 void rtw_fw_recovery(struct rtw_dev *rtwdev)
629 {
630 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
631 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
632 }
633 
634 static void __fw_recovery_work(struct rtw_dev *rtwdev)
635 {
636 	int ret = 0;
637 
638 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
639 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
640 
641 	ret = rtw_fwcd_prep(rtwdev);
642 	if (ret)
643 		goto free;
644 	ret = rtw_fw_dump_crash_log(rtwdev);
645 	if (ret)
646 		goto free;
647 	ret = rtw_chip_dump_fw_crash(rtwdev);
648 	if (ret)
649 		goto free;
650 
651 	rtw_fwcd_dump(rtwdev);
652 free:
653 	rtw_fwcd_free(rtwdev, !!ret);
654 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
655 
656 	WARN(1, "firmware crash, start reset and recover\n");
657 
658 	rcu_read_lock();
659 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
660 	rcu_read_unlock();
661 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
662 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
663 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
664 	rtw_enter_ips(rtwdev);
665 }
666 
667 static void rtw_fw_recovery_work(struct work_struct *work)
668 {
669 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
670 					      fw_recovery_work);
671 
672 	mutex_lock(&rtwdev->mutex);
673 	__fw_recovery_work(rtwdev);
674 	mutex_unlock(&rtwdev->mutex);
675 
676 	ieee80211_restart_hw(rtwdev->hw);
677 }
678 
679 struct rtw_txq_ba_iter_data {
680 };
681 
682 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
683 {
684 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
685 	int ret;
686 	u8 tid;
687 
688 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
689 	while (tid != IEEE80211_NUM_TIDS) {
690 		clear_bit(tid, si->tid_ba);
691 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
692 		if (ret == -EINVAL) {
693 			struct ieee80211_txq *txq;
694 			struct rtw_txq *rtwtxq;
695 
696 			txq = sta->txq[tid];
697 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
698 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
699 		}
700 
701 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
702 	}
703 }
704 
705 static void rtw_txq_ba_work(struct work_struct *work)
706 {
707 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
708 	struct rtw_txq_ba_iter_data data;
709 
710 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
711 }
712 
713 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
714 {
715 	if (IS_CH_2G_BAND(channel))
716 		pkt_stat->band = NL80211_BAND_2GHZ;
717 	else if (IS_CH_5G_BAND(channel))
718 		pkt_stat->band = NL80211_BAND_5GHZ;
719 	else
720 		return;
721 
722 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
723 }
724 EXPORT_SYMBOL(rtw_set_rx_freq_band);
725 
726 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
727 {
728 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
729 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
730 }
731 
732 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
733 			u8 primary_channel, enum rtw_supported_band band,
734 			enum rtw_bandwidth bandwidth)
735 {
736 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
737 	struct rtw_hal *hal = &rtwdev->hal;
738 	u8 *cch_by_bw = hal->cch_by_bw;
739 	u32 center_freq, primary_freq;
740 	enum rtw_sar_bands sar_band;
741 	u8 primary_channel_idx;
742 
743 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
744 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
745 
746 	/* assign the center channel used while 20M bw is selected */
747 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
748 
749 	/* assign the center channel used while current bw is selected */
750 	cch_by_bw[bandwidth] = center_channel;
751 
752 	switch (bandwidth) {
753 	case RTW_CHANNEL_WIDTH_20:
754 	default:
755 		primary_channel_idx = RTW_SC_DONT_CARE;
756 		break;
757 	case RTW_CHANNEL_WIDTH_40:
758 		if (primary_freq > center_freq)
759 			primary_channel_idx = RTW_SC_20_UPPER;
760 		else
761 			primary_channel_idx = RTW_SC_20_LOWER;
762 		break;
763 	case RTW_CHANNEL_WIDTH_80:
764 		if (primary_freq > center_freq) {
765 			if (primary_freq - center_freq == 10)
766 				primary_channel_idx = RTW_SC_20_UPPER;
767 			else
768 				primary_channel_idx = RTW_SC_20_UPMOST;
769 
770 			/* assign the center channel used
771 			 * while 40M bw is selected
772 			 */
773 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
774 		} else {
775 			if (center_freq - primary_freq == 10)
776 				primary_channel_idx = RTW_SC_20_LOWER;
777 			else
778 				primary_channel_idx = RTW_SC_20_LOWEST;
779 
780 			/* assign the center channel used
781 			 * while 40M bw is selected
782 			 */
783 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
784 		}
785 		break;
786 	}
787 
788 	switch (center_channel) {
789 	case 1 ... 14:
790 		sar_band = RTW_SAR_BAND_0;
791 		break;
792 	case 36 ... 64:
793 		sar_band = RTW_SAR_BAND_1;
794 		break;
795 	case 100 ... 144:
796 		sar_band = RTW_SAR_BAND_3;
797 		break;
798 	case 149 ... 177:
799 		sar_band = RTW_SAR_BAND_4;
800 		break;
801 	default:
802 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
803 		sar_band = RTW_SAR_BAND_0;
804 		break;
805 	}
806 
807 	hal->current_primary_channel_index = primary_channel_idx;
808 	hal->current_band_width = bandwidth;
809 	hal->primary_channel = primary_channel;
810 	hal->current_channel = center_channel;
811 	hal->current_band_type = band;
812 	hal->sar_band = sar_band;
813 }
814 
815 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
816 			    struct rtw_channel_params *chan_params)
817 {
818 	struct ieee80211_channel *channel = chandef->chan;
819 	enum nl80211_chan_width width = chandef->width;
820 	u32 primary_freq, center_freq;
821 	u8 center_chan;
822 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
823 
824 	center_chan = channel->hw_value;
825 	primary_freq = channel->center_freq;
826 	center_freq = chandef->center_freq1;
827 
828 	switch (width) {
829 	case NL80211_CHAN_WIDTH_20_NOHT:
830 	case NL80211_CHAN_WIDTH_20:
831 		bandwidth = RTW_CHANNEL_WIDTH_20;
832 		break;
833 	case NL80211_CHAN_WIDTH_40:
834 		bandwidth = RTW_CHANNEL_WIDTH_40;
835 		if (primary_freq > center_freq)
836 			center_chan -= 2;
837 		else
838 			center_chan += 2;
839 		break;
840 	case NL80211_CHAN_WIDTH_80:
841 		bandwidth = RTW_CHANNEL_WIDTH_80;
842 		if (primary_freq > center_freq) {
843 			if (primary_freq - center_freq == 10)
844 				center_chan -= 2;
845 			else
846 				center_chan -= 6;
847 		} else {
848 			if (center_freq - primary_freq == 10)
849 				center_chan += 2;
850 			else
851 				center_chan += 6;
852 		}
853 		break;
854 	default:
855 		center_chan = 0;
856 		break;
857 	}
858 
859 	chan_params->center_chan = center_chan;
860 	chan_params->bandwidth = bandwidth;
861 	chan_params->primary_chan = channel->hw_value;
862 }
863 
864 void rtw_set_channel(struct rtw_dev *rtwdev)
865 {
866 	const struct rtw_chip_info *chip = rtwdev->chip;
867 	struct ieee80211_hw *hw = rtwdev->hw;
868 	struct rtw_hal *hal = &rtwdev->hal;
869 	struct rtw_channel_params ch_param;
870 	u8 center_chan, primary_chan, bandwidth, band;
871 
872 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
873 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
874 		return;
875 
876 	center_chan = ch_param.center_chan;
877 	primary_chan = ch_param.primary_chan;
878 	bandwidth = ch_param.bandwidth;
879 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
880 
881 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
882 
883 	if (rtwdev->scan_info.op_chan)
884 		rtw_store_op_chan(rtwdev, true);
885 
886 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
887 			       hal->current_primary_channel_index);
888 
889 	if (hal->current_band_type == RTW_BAND_5G) {
890 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
891 	} else {
892 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
893 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
894 		else
895 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
896 	}
897 
898 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
899 
900 	/* if the channel isn't set for scanning, we will do RF calibration
901 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
902 	 * during scanning on each channel takes too long.
903 	 */
904 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
905 		rtwdev->need_rfk = true;
906 }
907 
908 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
909 {
910 	const struct rtw_chip_info *chip = rtwdev->chip;
911 
912 	if (rtwdev->need_rfk) {
913 		rtwdev->need_rfk = false;
914 		chip->ops->phy_calibration(rtwdev);
915 	}
916 }
917 
918 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
919 {
920 	int i;
921 
922 	for (i = 0; i < ETH_ALEN; i++)
923 		rtw_write8(rtwdev, start + i, addr[i]);
924 }
925 
926 void rtw_vif_port_config(struct rtw_dev *rtwdev,
927 			 struct rtw_vif *rtwvif,
928 			 u32 config)
929 {
930 	u32 addr, mask;
931 
932 	if (config & PORT_SET_MAC_ADDR) {
933 		addr = rtwvif->conf->mac_addr.addr;
934 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
935 	}
936 	if (config & PORT_SET_BSSID) {
937 		addr = rtwvif->conf->bssid.addr;
938 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
939 	}
940 	if (config & PORT_SET_NET_TYPE) {
941 		addr = rtwvif->conf->net_type.addr;
942 		mask = rtwvif->conf->net_type.mask;
943 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
944 	}
945 	if (config & PORT_SET_AID) {
946 		addr = rtwvif->conf->aid.addr;
947 		mask = rtwvif->conf->aid.mask;
948 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
949 	}
950 	if (config & PORT_SET_BCN_CTRL) {
951 		addr = rtwvif->conf->bcn_ctrl.addr;
952 		mask = rtwvif->conf->bcn_ctrl.mask;
953 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
954 	}
955 }
956 
957 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
958 {
959 	u8 bw = 0;
960 
961 	switch (bw_cap) {
962 	case EFUSE_HW_CAP_IGNORE:
963 	case EFUSE_HW_CAP_SUPP_BW80:
964 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
965 		fallthrough;
966 	case EFUSE_HW_CAP_SUPP_BW40:
967 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
968 		fallthrough;
969 	default:
970 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
971 		break;
972 	}
973 
974 	return bw;
975 }
976 
977 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
978 {
979 	const struct rtw_chip_info *chip = rtwdev->chip;
980 	struct rtw_hal *hal = &rtwdev->hal;
981 
982 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
983 	    hw_ant_num >= hal->rf_path_num)
984 		return;
985 
986 	switch (hw_ant_num) {
987 	case 1:
988 		hal->rf_type = RF_1T1R;
989 		hal->rf_path_num = 1;
990 		if (!chip->fix_rf_phy_num)
991 			hal->rf_phy_num = hal->rf_path_num;
992 		hal->antenna_tx = BB_PATH_A;
993 		hal->antenna_rx = BB_PATH_A;
994 		break;
995 	default:
996 		WARN(1, "invalid hw configuration from efuse\n");
997 		break;
998 	}
999 }
1000 
1001 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1002 {
1003 	u64 ra_mask = 0;
1004 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1005 	u8 vht_mcs_cap;
1006 	int i, nss;
1007 
1008 	/* 4SS, every two bits for MCS7/8/9 */
1009 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1010 		vht_mcs_cap = mcs_map & 0x3;
1011 		switch (vht_mcs_cap) {
1012 		case 2: /* MCS9 */
1013 			ra_mask |= 0x3ffULL << nss;
1014 			break;
1015 		case 1: /* MCS8 */
1016 			ra_mask |= 0x1ffULL << nss;
1017 			break;
1018 		case 0: /* MCS7 */
1019 			ra_mask |= 0x0ffULL << nss;
1020 			break;
1021 		default:
1022 			break;
1023 		}
1024 	}
1025 
1026 	return ra_mask;
1027 }
1028 
1029 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1030 {
1031 	u8 rate_id = 0;
1032 
1033 	switch (wireless_set) {
1034 	case WIRELESS_CCK:
1035 		rate_id = RTW_RATEID_B_20M;
1036 		break;
1037 	case WIRELESS_OFDM:
1038 		rate_id = RTW_RATEID_G;
1039 		break;
1040 	case WIRELESS_CCK | WIRELESS_OFDM:
1041 		rate_id = RTW_RATEID_BG;
1042 		break;
1043 	case WIRELESS_OFDM | WIRELESS_HT:
1044 		if (tx_num == 1)
1045 			rate_id = RTW_RATEID_GN_N1SS;
1046 		else if (tx_num == 2)
1047 			rate_id = RTW_RATEID_GN_N2SS;
1048 		else if (tx_num == 3)
1049 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1050 		break;
1051 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1052 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1053 			if (tx_num == 1)
1054 				rate_id = RTW_RATEID_BGN_40M_1SS;
1055 			else if (tx_num == 2)
1056 				rate_id = RTW_RATEID_BGN_40M_2SS;
1057 			else if (tx_num == 3)
1058 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1059 			else if (tx_num == 4)
1060 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1061 		} else {
1062 			if (tx_num == 1)
1063 				rate_id = RTW_RATEID_BGN_20M_1SS;
1064 			else if (tx_num == 2)
1065 				rate_id = RTW_RATEID_BGN_20M_2SS;
1066 			else if (tx_num == 3)
1067 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1068 			else if (tx_num == 4)
1069 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1070 		}
1071 		break;
1072 	case WIRELESS_OFDM | WIRELESS_VHT:
1073 		if (tx_num == 1)
1074 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1075 		else if (tx_num == 2)
1076 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1077 		else if (tx_num == 3)
1078 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1079 		else if (tx_num == 4)
1080 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1081 		break;
1082 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1083 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1084 			if (tx_num == 1)
1085 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1086 			else if (tx_num == 2)
1087 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1088 			else if (tx_num == 3)
1089 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1090 			else if (tx_num == 4)
1091 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1092 		} else {
1093 			if (tx_num == 1)
1094 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1095 			else if (tx_num == 2)
1096 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1097 			else if (tx_num == 3)
1098 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1099 			else if (tx_num == 4)
1100 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1101 		}
1102 		break;
1103 	default:
1104 		break;
1105 	}
1106 
1107 	return rate_id;
1108 }
1109 
1110 #define RA_MASK_CCK_RATES	0x0000f
1111 #define RA_MASK_OFDM_RATES	0x00ff0
1112 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1113 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1114 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1115 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1116 				 RA_MASK_HT_RATES_2SS | \
1117 				 RA_MASK_HT_RATES_3SS)
1118 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1119 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1120 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1121 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1122 				 RA_MASK_VHT_RATES_2SS | \
1123 				 RA_MASK_VHT_RATES_3SS)
1124 #define RA_MASK_CCK_IN_BG	0x00005
1125 #define RA_MASK_CCK_IN_HT	0x00005
1126 #define RA_MASK_CCK_IN_VHT	0x00005
1127 #define RA_MASK_OFDM_IN_VHT	0x00010
1128 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1129 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1130 
1131 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1132 {
1133 	u8 rssi_level = si->rssi_level;
1134 
1135 	if (wireless_set == WIRELESS_CCK)
1136 		return 0xffffffffffffffffULL;
1137 
1138 	if (rssi_level == 0)
1139 		return 0xffffffffffffffffULL;
1140 	else if (rssi_level == 1)
1141 		return 0xfffffffffffffff0ULL;
1142 	else if (rssi_level == 2)
1143 		return 0xffffffffffffefe0ULL;
1144 	else if (rssi_level == 3)
1145 		return 0xffffffffffffcfc0ULL;
1146 	else if (rssi_level == 4)
1147 		return 0xffffffffffff8f80ULL;
1148 	else
1149 		return 0xffffffffffff0f00ULL;
1150 }
1151 
1152 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1153 {
1154 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1155 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1156 
1157 	if (ra_mask == 0)
1158 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1159 
1160 	return ra_mask;
1161 }
1162 
1163 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1164 			     u64 ra_mask, bool is_vht_enable)
1165 {
1166 	struct rtw_hal *hal = &rtwdev->hal;
1167 	const struct cfg80211_bitrate_mask *mask = si->mask;
1168 	u64 cfg_mask = GENMASK_ULL(63, 0);
1169 	u8 band;
1170 
1171 	if (!si->use_cfg_mask)
1172 		return ra_mask;
1173 
1174 	band = hal->current_band_type;
1175 	if (band == RTW_BAND_2G) {
1176 		band = NL80211_BAND_2GHZ;
1177 		cfg_mask = mask->control[band].legacy;
1178 	} else if (band == RTW_BAND_5G) {
1179 		band = NL80211_BAND_5GHZ;
1180 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1181 					   RA_MASK_OFDM_RATES);
1182 	}
1183 
1184 	if (!is_vht_enable) {
1185 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1186 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1187 						    RA_MASK_HT_RATES_1SS);
1188 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1189 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1190 						    RA_MASK_HT_RATES_2SS);
1191 	} else {
1192 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1193 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1194 						    RA_MASK_VHT_RATES_1SS);
1195 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1196 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1197 						    RA_MASK_VHT_RATES_2SS);
1198 	}
1199 
1200 	ra_mask &= cfg_mask;
1201 
1202 	return ra_mask;
1203 }
1204 
1205 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1206 			 bool reset_ra_mask)
1207 {
1208 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1209 	struct ieee80211_sta *sta = si->sta;
1210 	struct rtw_efuse *efuse = &rtwdev->efuse;
1211 	struct rtw_hal *hal = &rtwdev->hal;
1212 	u8 wireless_set;
1213 	u8 bw_mode;
1214 	u8 rate_id;
1215 	u8 rf_type = RF_1T1R;
1216 	u8 stbc_en = 0;
1217 	u8 ldpc_en = 0;
1218 	u8 tx_num = 1;
1219 	u64 ra_mask = 0;
1220 	u64 ra_mask_bak = 0;
1221 	bool is_vht_enable = false;
1222 	bool is_support_sgi = false;
1223 
1224 	if (sta->deflink.vht_cap.vht_supported) {
1225 		is_vht_enable = true;
1226 		ra_mask |= get_vht_ra_mask(sta);
1227 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1228 			stbc_en = VHT_STBC_EN;
1229 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1230 			ldpc_en = VHT_LDPC_EN;
1231 	} else if (sta->deflink.ht_cap.ht_supported) {
1232 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1233 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1234 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1235 			stbc_en = HT_STBC_EN;
1236 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1237 			ldpc_en = HT_LDPC_EN;
1238 	}
1239 
1240 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1241 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1242 
1243 	if (hal->current_band_type == RTW_BAND_5G) {
1244 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1245 		ra_mask_bak = ra_mask;
1246 		if (sta->deflink.vht_cap.vht_supported) {
1247 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1248 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1249 		} else if (sta->deflink.ht_cap.ht_supported) {
1250 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1251 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1252 		} else {
1253 			wireless_set = WIRELESS_OFDM;
1254 		}
1255 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1256 	} else if (hal->current_band_type == RTW_BAND_2G) {
1257 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1258 		ra_mask_bak = ra_mask;
1259 		if (sta->deflink.vht_cap.vht_supported) {
1260 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1261 				   RA_MASK_OFDM_IN_VHT;
1262 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1263 				       WIRELESS_HT | WIRELESS_VHT;
1264 		} else if (sta->deflink.ht_cap.ht_supported) {
1265 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1266 				   RA_MASK_OFDM_IN_HT_2G;
1267 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1268 				       WIRELESS_HT;
1269 #if defined(__linux__)
1270 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1271 #elif defined(__FreeBSD__)
1272 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1273 #endif
1274 			wireless_set = WIRELESS_CCK;
1275 		} else {
1276 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1277 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1278 		}
1279 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1280 	} else {
1281 		rtw_err(rtwdev, "Unknown band type\n");
1282 		ra_mask_bak = ra_mask;
1283 		wireless_set = 0;
1284 	}
1285 
1286 	switch (sta->deflink.bandwidth) {
1287 	case IEEE80211_STA_RX_BW_80:
1288 		bw_mode = RTW_CHANNEL_WIDTH_80;
1289 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1290 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1291 		break;
1292 	case IEEE80211_STA_RX_BW_40:
1293 		bw_mode = RTW_CHANNEL_WIDTH_40;
1294 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1295 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1296 		break;
1297 	default:
1298 		bw_mode = RTW_CHANNEL_WIDTH_20;
1299 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1300 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1301 		break;
1302 	}
1303 
1304 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1305 		tx_num = 2;
1306 		rf_type = RF_2T2R;
1307 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1308 		tx_num = 2;
1309 		rf_type = RF_2T2R;
1310 	}
1311 
1312 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1313 
1314 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1315 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1316 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1317 
1318 	si->bw_mode = bw_mode;
1319 	si->stbc_en = stbc_en;
1320 	si->ldpc_en = ldpc_en;
1321 	si->rf_type = rf_type;
1322 	si->sgi_enable = is_support_sgi;
1323 	si->vht_enable = is_vht_enable;
1324 	si->ra_mask = ra_mask;
1325 	si->rate_id = rate_id;
1326 
1327 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1328 }
1329 
1330 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1331 {
1332 	const struct rtw_chip_info *chip = rtwdev->chip;
1333 	struct rtw_fw_state *fw;
1334 
1335 	fw = &rtwdev->fw;
1336 	wait_for_completion(&fw->completion);
1337 	if (!fw->firmware)
1338 		return -EINVAL;
1339 
1340 	if (chip->wow_fw_name) {
1341 		fw = &rtwdev->wow_fw;
1342 		wait_for_completion(&fw->completion);
1343 		if (!fw->firmware)
1344 			return -EINVAL;
1345 	}
1346 
1347 	return 0;
1348 }
1349 
1350 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1351 						       struct rtw_fw_state *fw)
1352 {
1353 	const struct rtw_chip_info *chip = rtwdev->chip;
1354 
1355 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1356 	    !fw->feature)
1357 		return LPS_DEEP_MODE_NONE;
1358 
1359 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1360 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1361 		return LPS_DEEP_MODE_PG;
1362 
1363 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1364 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1365 		return LPS_DEEP_MODE_LCLK;
1366 
1367 	return LPS_DEEP_MODE_NONE;
1368 }
1369 
1370 static int rtw_power_on(struct rtw_dev *rtwdev)
1371 {
1372 	const struct rtw_chip_info *chip = rtwdev->chip;
1373 	struct rtw_fw_state *fw = &rtwdev->fw;
1374 	bool wifi_only;
1375 	int ret;
1376 
1377 	ret = rtw_hci_setup(rtwdev);
1378 	if (ret) {
1379 		rtw_err(rtwdev, "failed to setup hci\n");
1380 		goto err;
1381 	}
1382 
1383 	/* power on MAC before firmware downloaded */
1384 	ret = rtw_mac_power_on(rtwdev);
1385 	if (ret) {
1386 		rtw_err(rtwdev, "failed to power on mac\n");
1387 		goto err;
1388 	}
1389 
1390 	ret = rtw_wait_firmware_completion(rtwdev);
1391 	if (ret) {
1392 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1393 		goto err_off;
1394 	}
1395 
1396 	ret = rtw_download_firmware(rtwdev, fw);
1397 	if (ret) {
1398 		rtw_err(rtwdev, "failed to download firmware\n");
1399 		goto err_off;
1400 	}
1401 
1402 	/* config mac after firmware downloaded */
1403 	ret = rtw_mac_init(rtwdev);
1404 	if (ret) {
1405 		rtw_err(rtwdev, "failed to configure mac\n");
1406 		goto err_off;
1407 	}
1408 
1409 	chip->ops->phy_set_param(rtwdev);
1410 
1411 	ret = rtw_hci_start(rtwdev);
1412 	if (ret) {
1413 		rtw_err(rtwdev, "failed to start hci\n");
1414 		goto err_off;
1415 	}
1416 
1417 	/* send H2C after HCI has started */
1418 	rtw_fw_send_general_info(rtwdev);
1419 	rtw_fw_send_phydm_info(rtwdev);
1420 
1421 	wifi_only = !rtwdev->efuse.btcoex;
1422 	rtw_coex_power_on_setting(rtwdev);
1423 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1424 
1425 	return 0;
1426 
1427 err_off:
1428 	rtw_mac_power_off(rtwdev);
1429 
1430 err:
1431 	return ret;
1432 }
1433 
1434 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1435 {
1436 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1437 		return;
1438 
1439 	if (start) {
1440 		rtw_fw_scan_notify(rtwdev, true);
1441 	} else {
1442 		reinit_completion(&rtwdev->fw_scan_density);
1443 		rtw_fw_scan_notify(rtwdev, false);
1444 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1445 						 SCAN_NOTIFY_TIMEOUT))
1446 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1447 	}
1448 }
1449 
1450 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1451 			 const u8 *mac_addr, bool hw_scan)
1452 {
1453 	u32 config = 0;
1454 	int ret = 0;
1455 
1456 	rtw_leave_lps(rtwdev);
1457 
1458 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1459 		ret = rtw_leave_ips(rtwdev);
1460 		if (ret) {
1461 			rtw_err(rtwdev, "failed to leave idle state\n");
1462 			return;
1463 		}
1464 	}
1465 
1466 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1467 	config |= PORT_SET_MAC_ADDR;
1468 	rtw_vif_port_config(rtwdev, rtwvif, config);
1469 
1470 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1471 	rtw_core_fw_scan_notify(rtwdev, true);
1472 
1473 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1474 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1475 }
1476 
1477 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1478 			    bool hw_scan)
1479 {
1480 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1481 	u32 config = 0;
1482 
1483 	if (!rtwvif)
1484 		return;
1485 
1486 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1487 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1488 
1489 	rtw_core_fw_scan_notify(rtwdev, false);
1490 
1491 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1492 	config |= PORT_SET_MAC_ADDR;
1493 	rtw_vif_port_config(rtwdev, rtwvif, config);
1494 
1495 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1496 
1497 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1498 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1499 }
1500 
1501 int rtw_core_start(struct rtw_dev *rtwdev)
1502 {
1503 	int ret;
1504 
1505 	ret = rtw_power_on(rtwdev);
1506 	if (ret)
1507 		return ret;
1508 
1509 	rtw_sec_enable_sec_engine(rtwdev);
1510 
1511 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1512 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1513 
1514 	/* rcr reset after powered on */
1515 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1516 
1517 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1518 				     RTW_WATCH_DOG_DELAY_TIME);
1519 
1520 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1521 
1522 	return 0;
1523 }
1524 
1525 static void rtw_power_off(struct rtw_dev *rtwdev)
1526 {
1527 	rtw_hci_stop(rtwdev);
1528 	rtw_coex_power_off_setting(rtwdev);
1529 	rtw_mac_power_off(rtwdev);
1530 }
1531 
1532 void rtw_core_stop(struct rtw_dev *rtwdev)
1533 {
1534 	struct rtw_coex *coex = &rtwdev->coex;
1535 
1536 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1537 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1538 
1539 	mutex_unlock(&rtwdev->mutex);
1540 
1541 	cancel_work_sync(&rtwdev->c2h_work);
1542 	cancel_work_sync(&rtwdev->update_beacon_work);
1543 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1544 	cancel_delayed_work_sync(&coex->bt_relink_work);
1545 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1546 	cancel_delayed_work_sync(&coex->defreeze_work);
1547 	cancel_delayed_work_sync(&coex->wl_remain_work);
1548 	cancel_delayed_work_sync(&coex->bt_remain_work);
1549 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1550 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1551 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1552 
1553 	mutex_lock(&rtwdev->mutex);
1554 
1555 	rtw_power_off(rtwdev);
1556 }
1557 
1558 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1559 			    struct ieee80211_sta_ht_cap *ht_cap)
1560 {
1561 	const struct rtw_chip_info *chip = rtwdev->chip;
1562 	struct rtw_efuse *efuse = &rtwdev->efuse;
1563 
1564 	ht_cap->ht_supported = true;
1565 	ht_cap->cap = 0;
1566 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1567 			IEEE80211_HT_CAP_MAX_AMSDU |
1568 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1569 
1570 	if (rtw_chip_has_rx_ldpc(rtwdev))
1571 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1572 	if (rtw_chip_has_tx_stbc(rtwdev))
1573 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1574 
1575 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1576 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1577 				IEEE80211_HT_CAP_DSSSCCK40 |
1578 				IEEE80211_HT_CAP_SGI_40;
1579 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1580 	ht_cap->ampdu_density = chip->ampdu_density;
1581 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1582 	if (efuse->hw_cap.nss > 1) {
1583 		ht_cap->mcs.rx_mask[0] = 0xFF;
1584 		ht_cap->mcs.rx_mask[1] = 0xFF;
1585 		ht_cap->mcs.rx_mask[4] = 0x01;
1586 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1587 	} else {
1588 		ht_cap->mcs.rx_mask[0] = 0xFF;
1589 		ht_cap->mcs.rx_mask[1] = 0x00;
1590 		ht_cap->mcs.rx_mask[4] = 0x01;
1591 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1592 	}
1593 }
1594 
1595 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1596 			     struct ieee80211_sta_vht_cap *vht_cap)
1597 {
1598 	struct rtw_efuse *efuse = &rtwdev->efuse;
1599 	u16 mcs_map;
1600 	__le16 highest;
1601 
1602 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1603 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1604 		return;
1605 
1606 	vht_cap->vht_supported = true;
1607 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1608 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1609 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1610 		       IEEE80211_VHT_CAP_HTC_VHT |
1611 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1612 		       0;
1613 	if (rtwdev->hal.rf_path_num > 1)
1614 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1615 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1616 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1617 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1618 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1619 
1620 	if (rtw_chip_has_rx_ldpc(rtwdev))
1621 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1622 
1623 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1624 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1625 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1626 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1627 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1628 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1629 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1630 	if (efuse->hw_cap.nss > 1) {
1631 		highest = cpu_to_le16(780);
1632 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1633 	} else {
1634 		highest = cpu_to_le16(390);
1635 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1636 	}
1637 
1638 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1639 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1640 	vht_cap->vht_mcs.rx_highest = highest;
1641 	vht_cap->vht_mcs.tx_highest = highest;
1642 }
1643 
1644 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1645 {
1646 	u16 len;
1647 
1648 	len = rtwdev->chip->max_scan_ie_len;
1649 
1650 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1651 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1652 		len = IEEE80211_MAX_DATA_LEN;
1653 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1654 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1655 
1656 	return len;
1657 }
1658 
1659 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1660 				   const struct rtw_chip_info *chip)
1661 {
1662 	struct rtw_dev *rtwdev = hw->priv;
1663 	struct ieee80211_supported_band *sband;
1664 
1665 	if (chip->band & RTW_BAND_2G) {
1666 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1667 		if (!sband)
1668 			goto err_out;
1669 		if (chip->ht_supported)
1670 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1671 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1672 	}
1673 
1674 	if (chip->band & RTW_BAND_5G) {
1675 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1676 		if (!sband)
1677 			goto err_out;
1678 		if (chip->ht_supported)
1679 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1680 		if (chip->vht_supported)
1681 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1682 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1683 	}
1684 
1685 	return;
1686 
1687 err_out:
1688 	rtw_err(rtwdev, "failed to set supported band\n");
1689 }
1690 
1691 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1692 				     const struct rtw_chip_info *chip)
1693 {
1694 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1695 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1696 }
1697 
1698 static void rtw_vif_smps_iter(void *data, u8 *mac,
1699 			      struct ieee80211_vif *vif)
1700 {
1701 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1702 
1703 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1704 		return;
1705 
1706 	if (rtwdev->hal.txrx_1ss)
1707 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1708 	else
1709 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1710 }
1711 
1712 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1713 {
1714 	const struct rtw_chip_info *chip = rtwdev->chip;
1715 	struct rtw_hal *hal = &rtwdev->hal;
1716 
1717 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1718 		return;
1719 
1720 	rtwdev->hal.txrx_1ss = txrx_1ss;
1721 	if (txrx_1ss)
1722 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1723 	else
1724 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1725 					    hal->antenna_rx, false);
1726 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1727 }
1728 
1729 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1730 				      struct rtw_fw_state *fw)
1731 {
1732 	u32 feature;
1733 	const struct rtw_fw_hdr *fw_hdr =
1734 				(const struct rtw_fw_hdr *)fw->firmware->data;
1735 
1736 	feature = le32_to_cpu(fw_hdr->feature);
1737 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1738 
1739 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1740 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1741 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1742 }
1743 
1744 static void __update_firmware_info(struct rtw_dev *rtwdev,
1745 				   struct rtw_fw_state *fw)
1746 {
1747 	const struct rtw_fw_hdr *fw_hdr =
1748 				(const struct rtw_fw_hdr *)fw->firmware->data;
1749 
1750 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1751 	fw->version = le16_to_cpu(fw_hdr->version);
1752 	fw->sub_version = fw_hdr->subversion;
1753 	fw->sub_index = fw_hdr->subindex;
1754 
1755 	__update_firmware_feature(rtwdev, fw);
1756 }
1757 
1758 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1759 					  struct rtw_fw_state *fw)
1760 {
1761 	struct rtw_fw_hdr_legacy *legacy =
1762 #if defined(__linux__)
1763 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1764 #elif defined(__FreeBSD__)
1765 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1766 #endif
1767 
1768 	fw->h2c_version = 0;
1769 	fw->version = le16_to_cpu(legacy->version);
1770 	fw->sub_version = legacy->subversion1;
1771 	fw->sub_index = legacy->subversion2;
1772 }
1773 
1774 static void update_firmware_info(struct rtw_dev *rtwdev,
1775 				 struct rtw_fw_state *fw)
1776 {
1777 	if (rtw_chip_wcpu_11n(rtwdev))
1778 		__update_firmware_info_legacy(rtwdev, fw);
1779 	else
1780 		__update_firmware_info(rtwdev, fw);
1781 }
1782 
1783 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1784 {
1785 	struct rtw_fw_state *fw = context;
1786 	struct rtw_dev *rtwdev = fw->rtwdev;
1787 
1788 	if (!firmware || !firmware->data) {
1789 		rtw_err(rtwdev, "failed to request firmware\n");
1790 		complete_all(&fw->completion);
1791 		return;
1792 	}
1793 
1794 	fw->firmware = firmware;
1795 	update_firmware_info(rtwdev, fw);
1796 	complete_all(&fw->completion);
1797 
1798 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1799 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1800 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1801 }
1802 
1803 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1804 {
1805 	const char *fw_name;
1806 	struct rtw_fw_state *fw;
1807 	int ret;
1808 
1809 	switch (type) {
1810 	case RTW_WOWLAN_FW:
1811 		fw = &rtwdev->wow_fw;
1812 		fw_name = rtwdev->chip->wow_fw_name;
1813 		break;
1814 
1815 	case RTW_NORMAL_FW:
1816 		fw = &rtwdev->fw;
1817 		fw_name = rtwdev->chip->fw_name;
1818 		break;
1819 
1820 	default:
1821 		rtw_warn(rtwdev, "unsupported firmware type\n");
1822 		return -ENOENT;
1823 	}
1824 
1825 	fw->type = type;
1826 	fw->rtwdev = rtwdev;
1827 	init_completion(&fw->completion);
1828 
1829 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1830 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1831 	if (ret) {
1832 		rtw_err(rtwdev, "failed to async firmware request\n");
1833 		return ret;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1840 {
1841 	const struct rtw_chip_info *chip = rtwdev->chip;
1842 	struct rtw_hal *hal = &rtwdev->hal;
1843 	struct rtw_efuse *efuse = &rtwdev->efuse;
1844 
1845 	switch (rtw_hci_type(rtwdev)) {
1846 	case RTW_HCI_TYPE_PCIE:
1847 		rtwdev->hci.rpwm_addr = 0x03d9;
1848 		rtwdev->hci.cpwm_addr = 0x03da;
1849 		break;
1850 	case RTW_HCI_TYPE_SDIO:
1851 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1852 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1853 		break;
1854 	case RTW_HCI_TYPE_USB:
1855 		rtwdev->hci.rpwm_addr = 0xfe58;
1856 		rtwdev->hci.cpwm_addr = 0xfe57;
1857 		break;
1858 	default:
1859 		rtw_err(rtwdev, "unsupported hci type\n");
1860 		return -EINVAL;
1861 	}
1862 
1863 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1864 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1865 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1866 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1867 		hal->rf_type = RF_2T2R;
1868 		hal->rf_path_num = 2;
1869 		hal->antenna_tx = BB_PATH_AB;
1870 		hal->antenna_rx = BB_PATH_AB;
1871 	} else {
1872 		hal->rf_type = RF_1T1R;
1873 		hal->rf_path_num = 1;
1874 		hal->antenna_tx = BB_PATH_A;
1875 		hal->antenna_rx = BB_PATH_A;
1876 	}
1877 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1878 			  hal->rf_path_num;
1879 
1880 	efuse->physical_size = chip->phy_efuse_size;
1881 	efuse->logical_size = chip->log_efuse_size;
1882 	efuse->protect_size = chip->ptct_efuse_size;
1883 
1884 	/* default use ack */
1885 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1886 
1887 	hal->bfee_sts_cap = 3;
1888 
1889 	return 0;
1890 }
1891 
1892 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1893 {
1894 	struct rtw_fw_state *fw = &rtwdev->fw;
1895 	int ret;
1896 
1897 	ret = rtw_hci_setup(rtwdev);
1898 	if (ret) {
1899 		rtw_err(rtwdev, "failed to setup hci\n");
1900 		goto err;
1901 	}
1902 
1903 	ret = rtw_mac_power_on(rtwdev);
1904 	if (ret) {
1905 		rtw_err(rtwdev, "failed to power on mac\n");
1906 		goto err;
1907 	}
1908 
1909 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1910 
1911 	wait_for_completion(&fw->completion);
1912 	if (!fw->firmware) {
1913 		ret = -EINVAL;
1914 		rtw_err(rtwdev, "failed to load firmware\n");
1915 		goto err;
1916 	}
1917 
1918 	ret = rtw_download_firmware(rtwdev, fw);
1919 	if (ret) {
1920 		rtw_err(rtwdev, "failed to download firmware\n");
1921 		goto err_off;
1922 	}
1923 
1924 	return 0;
1925 
1926 err_off:
1927 	rtw_mac_power_off(rtwdev);
1928 
1929 err:
1930 	return ret;
1931 }
1932 
1933 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1934 {
1935 	struct rtw_efuse *efuse = &rtwdev->efuse;
1936 	u8 hw_feature[HW_FEATURE_LEN];
1937 	u8 id;
1938 	u8 bw;
1939 	int i;
1940 
1941 	id = rtw_read8(rtwdev, REG_C2HEVT);
1942 	if (id != C2H_HW_FEATURE_REPORT) {
1943 		rtw_err(rtwdev, "failed to read hw feature report\n");
1944 		return -EBUSY;
1945 	}
1946 
1947 	for (i = 0; i < HW_FEATURE_LEN; i++)
1948 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1949 
1950 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1951 
1952 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1953 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1954 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1955 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1956 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1957 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1958 
1959 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1960 
1961 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1962 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1963 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1964 
1965 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1966 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1967 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1968 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1969 
1970 	return 0;
1971 }
1972 
1973 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1974 {
1975 	rtw_hci_stop(rtwdev);
1976 	rtw_mac_power_off(rtwdev);
1977 }
1978 
1979 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1980 {
1981 	struct rtw_efuse *efuse = &rtwdev->efuse;
1982 	int ret;
1983 
1984 	mutex_lock(&rtwdev->mutex);
1985 
1986 	/* power on mac to read efuse */
1987 	ret = rtw_chip_efuse_enable(rtwdev);
1988 	if (ret)
1989 		goto out_unlock;
1990 
1991 	ret = rtw_parse_efuse_map(rtwdev);
1992 	if (ret)
1993 		goto out_disable;
1994 
1995 	ret = rtw_dump_hw_feature(rtwdev);
1996 	if (ret)
1997 		goto out_disable;
1998 
1999 	ret = rtw_check_supported_rfe(rtwdev);
2000 	if (ret)
2001 		goto out_disable;
2002 
2003 	if (efuse->crystal_cap == 0xff)
2004 		efuse->crystal_cap = 0;
2005 	if (efuse->pa_type_2g == 0xff)
2006 		efuse->pa_type_2g = 0;
2007 	if (efuse->pa_type_5g == 0xff)
2008 		efuse->pa_type_5g = 0;
2009 	if (efuse->lna_type_2g == 0xff)
2010 		efuse->lna_type_2g = 0;
2011 	if (efuse->lna_type_5g == 0xff)
2012 		efuse->lna_type_5g = 0;
2013 	if (efuse->channel_plan == 0xff)
2014 		efuse->channel_plan = 0x7f;
2015 	if (efuse->rf_board_option == 0xff)
2016 		efuse->rf_board_option = 0;
2017 	if (efuse->bt_setting & BIT(0))
2018 		efuse->share_ant = true;
2019 	if (efuse->regd == 0xff)
2020 		efuse->regd = 0;
2021 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2022 		efuse->tx_bb_swing_setting_2g = 0;
2023 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2024 		efuse->tx_bb_swing_setting_5g = 0;
2025 
2026 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2027 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2028 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2029 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2030 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2031 
2032 	if (!is_valid_ether_addr(efuse->addr)) {
2033 		eth_random_addr(efuse->addr);
2034 		dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2035 	}
2036 
2037 out_disable:
2038 	rtw_chip_efuse_disable(rtwdev);
2039 
2040 out_unlock:
2041 	mutex_unlock(&rtwdev->mutex);
2042 	return ret;
2043 }
2044 
2045 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2046 {
2047 	struct rtw_hal *hal = &rtwdev->hal;
2048 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2049 
2050 	if (!rfe_def)
2051 		return -ENODEV;
2052 
2053 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2054 
2055 	rtw_phy_init_tx_power(rtwdev);
2056 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2057 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2058 	rtw_phy_tx_power_by_rate_config(hal);
2059 	rtw_phy_tx_power_limit_config(hal);
2060 
2061 	return 0;
2062 }
2063 
2064 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2065 {
2066 	int ret;
2067 
2068 	ret = rtw_chip_parameter_setup(rtwdev);
2069 	if (ret) {
2070 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2071 		goto err_out;
2072 	}
2073 
2074 	ret = rtw_chip_efuse_info_setup(rtwdev);
2075 	if (ret) {
2076 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2077 		goto err_out;
2078 	}
2079 
2080 	ret = rtw_chip_board_info_setup(rtwdev);
2081 	if (ret) {
2082 		rtw_err(rtwdev, "failed to setup chip board info\n");
2083 		goto err_out;
2084 	}
2085 
2086 	return 0;
2087 
2088 err_out:
2089 	return ret;
2090 }
2091 EXPORT_SYMBOL(rtw_chip_info_setup);
2092 
2093 static void rtw_stats_init(struct rtw_dev *rtwdev)
2094 {
2095 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2096 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2097 	int i;
2098 
2099 	ewma_tp_init(&stats->tx_ewma_tp);
2100 	ewma_tp_init(&stats->rx_ewma_tp);
2101 
2102 	for (i = 0; i < RTW_EVM_NUM; i++)
2103 		ewma_evm_init(&dm_info->ewma_evm[i]);
2104 	for (i = 0; i < RTW_SNR_NUM; i++)
2105 		ewma_snr_init(&dm_info->ewma_snr[i]);
2106 }
2107 
2108 int rtw_core_init(struct rtw_dev *rtwdev)
2109 {
2110 	const struct rtw_chip_info *chip = rtwdev->chip;
2111 	struct rtw_coex *coex = &rtwdev->coex;
2112 	int ret;
2113 
2114 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2115 	INIT_LIST_HEAD(&rtwdev->txqs);
2116 
2117 	timer_setup(&rtwdev->tx_report.purge_timer,
2118 		    rtw_tx_report_purge_timer, 0);
2119 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2120 	if (!rtwdev->tx_wq) {
2121 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2122 		return -ENOMEM;
2123 	}
2124 
2125 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2126 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2127 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2128 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2129 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2130 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2131 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2132 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2133 			  rtw_coex_bt_multi_link_remain_work);
2134 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2135 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2136 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2137 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2138 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2139 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2140 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2141 	skb_queue_head_init(&rtwdev->c2h_queue);
2142 	skb_queue_head_init(&rtwdev->coex.queue);
2143 	skb_queue_head_init(&rtwdev->tx_report.queue);
2144 
2145 	spin_lock_init(&rtwdev->txq_lock);
2146 	spin_lock_init(&rtwdev->tx_report.q_lock);
2147 
2148 	mutex_init(&rtwdev->mutex);
2149 	mutex_init(&rtwdev->hal.tx_power_mutex);
2150 
2151 	init_waitqueue_head(&rtwdev->coex.wait);
2152 	init_completion(&rtwdev->lps_leave_check);
2153 	init_completion(&rtwdev->fw_scan_density);
2154 
2155 	rtwdev->sec.total_cam_num = 32;
2156 	rtwdev->hal.current_channel = 1;
2157 	rtwdev->dm_info.fix_rate = U8_MAX;
2158 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2159 
2160 	rtw_stats_init(rtwdev);
2161 
2162 	/* default rx filter setting */
2163 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2164 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2165 			  BIT_AB | BIT_AM | BIT_APM;
2166 
2167 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2168 	if (ret) {
2169 		rtw_warn(rtwdev, "no firmware loaded\n");
2170 		goto out;
2171 	}
2172 
2173 	if (chip->wow_fw_name) {
2174 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2175 		if (ret) {
2176 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2177 			wait_for_completion(&rtwdev->fw.completion);
2178 			if (rtwdev->fw.firmware)
2179 				release_firmware(rtwdev->fw.firmware);
2180 			goto out;
2181 		}
2182 	}
2183 
2184 #if defined(__FreeBSD__)
2185 	rtw_wait_firmware_completion(rtwdev);
2186 #endif
2187 
2188 	return 0;
2189 
2190 out:
2191 	destroy_workqueue(rtwdev->tx_wq);
2192 	return ret;
2193 }
2194 EXPORT_SYMBOL(rtw_core_init);
2195 
2196 void rtw_core_deinit(struct rtw_dev *rtwdev)
2197 {
2198 	struct rtw_fw_state *fw = &rtwdev->fw;
2199 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2200 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2201 	unsigned long flags;
2202 
2203 	rtw_wait_firmware_completion(rtwdev);
2204 
2205 	if (fw->firmware)
2206 		release_firmware(fw->firmware);
2207 
2208 	if (wow_fw->firmware)
2209 		release_firmware(wow_fw->firmware);
2210 
2211 	destroy_workqueue(rtwdev->tx_wq);
2212 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2213 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2214 	skb_queue_purge(&rtwdev->tx_report.queue);
2215 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2216 	skb_queue_purge(&rtwdev->coex.queue);
2217 	skb_queue_purge(&rtwdev->c2h_queue);
2218 
2219 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2220 				 build_list) {
2221 		list_del(&rsvd_pkt->build_list);
2222 		kfree(rsvd_pkt);
2223 	}
2224 
2225 	mutex_destroy(&rtwdev->mutex);
2226 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2227 }
2228 EXPORT_SYMBOL(rtw_core_deinit);
2229 
2230 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2231 {
2232 	bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO;
2233 	struct rtw_hal *hal = &rtwdev->hal;
2234 	int max_tx_headroom = 0;
2235 	int ret;
2236 
2237 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2238 
2239 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2240 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2241 
2242 	hw->extra_tx_headroom = max_tx_headroom;
2243 	hw->queues = IEEE80211_NUM_ACS;
2244 	hw->txq_data_size = sizeof(struct rtw_txq);
2245 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2246 	hw->vif_data_size = sizeof(struct rtw_vif);
2247 
2248 	ieee80211_hw_set(hw, SIGNAL_DBM);
2249 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2250 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2251 	ieee80211_hw_set(hw, MFP_CAPABLE);
2252 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2253 	ieee80211_hw_set(hw, SUPPORTS_PS);
2254 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2255 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2256 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2257 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2258 	ieee80211_hw_set(hw, TX_AMSDU);
2259 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2260 
2261 	if (sta_mode_only)
2262 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
2263 	else
2264 		hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2265 					     BIT(NL80211_IFTYPE_AP) |
2266 					     BIT(NL80211_IFTYPE_ADHOC);
2267 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2268 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2269 
2270 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2271 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2272 
2273 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2274 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2275 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2276 
2277 	if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2278 		hw->wiphy->iface_combinations = rtw_iface_combs;
2279 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2280 	}
2281 
2282 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2283 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2284 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2285 
2286 #ifdef CONFIG_PM
2287 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2288 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2289 #endif
2290 	rtw_set_supported_band(hw, rtwdev->chip);
2291 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2292 
2293 	hw->wiphy->sar_capa = &rtw_sar_capa;
2294 
2295 	ret = rtw_regd_init(rtwdev);
2296 	if (ret) {
2297 		rtw_err(rtwdev, "failed to init regd\n");
2298 		return ret;
2299 	}
2300 
2301 	ret = ieee80211_register_hw(hw);
2302 	if (ret) {
2303 		rtw_err(rtwdev, "failed to register hw\n");
2304 		return ret;
2305 	}
2306 
2307 	ret = rtw_regd_hint(rtwdev);
2308 	if (ret) {
2309 		rtw_err(rtwdev, "failed to hint regd\n");
2310 		return ret;
2311 	}
2312 
2313 	rtw_debugfs_init(rtwdev);
2314 
2315 	rtwdev->bf_info.bfer_mu_cnt = 0;
2316 	rtwdev->bf_info.bfer_su_cnt = 0;
2317 
2318 	return 0;
2319 }
2320 EXPORT_SYMBOL(rtw_register_hw);
2321 
2322 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2323 {
2324 	const struct rtw_chip_info *chip = rtwdev->chip;
2325 
2326 	ieee80211_unregister_hw(hw);
2327 	rtw_unset_supported_band(hw, chip);
2328 }
2329 EXPORT_SYMBOL(rtw_unregister_hw);
2330 
2331 static
2332 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2333 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2334 {
2335 	u8 i;
2336 
2337 	for (i = 0; i < nbytes; i++) {
2338 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2339 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2340 
2341 		rtw_write8(rtwdev, reg1->addr + i, v2);
2342 		rtw_write8(rtwdev, reg2->addr + i, v1);
2343 	}
2344 }
2345 
2346 static
2347 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2348 		       const struct rtw_hw_reg *reg2)
2349 {
2350 	u32 v1, v2;
2351 
2352 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2353 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2354 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2355 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2356 }
2357 
2358 struct rtw_iter_port_switch_data {
2359 	struct rtw_dev *rtwdev;
2360 	struct rtw_vif *rtwvif_ap;
2361 };
2362 
2363 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2364 {
2365 	struct rtw_iter_port_switch_data *iter_data = data;
2366 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2367 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2368 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2369 	const struct rtw_hw_reg *reg1, *reg2;
2370 
2371 	if (rtwvif_target->port != RTW_PORT_0)
2372 		return;
2373 
2374 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2375 		rtwvif_ap->port, rtwvif_target->port);
2376 
2377 	/* Leave LPS so the value swapped are not in PS mode */
2378 	rtw_leave_lps(rtwdev);
2379 
2380 	reg1 = &rtwvif_ap->conf->net_type;
2381 	reg2 = &rtwvif_target->conf->net_type;
2382 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2383 
2384 	reg1 = &rtwvif_ap->conf->mac_addr;
2385 	reg2 = &rtwvif_target->conf->mac_addr;
2386 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2387 
2388 	reg1 = &rtwvif_ap->conf->bssid;
2389 	reg2 = &rtwvif_target->conf->bssid;
2390 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2391 
2392 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2393 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2394 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2395 
2396 	swap(rtwvif_target->port, rtwvif_ap->port);
2397 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2398 
2399 	rtw_fw_default_port(rtwdev, rtwvif_target);
2400 }
2401 
2402 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2403 {
2404 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2405 	struct rtw_iter_port_switch_data iter_data;
2406 
2407 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2408 		return;
2409 
2410 	iter_data.rtwdev = rtwdev;
2411 	iter_data.rtwvif_ap = rtwvif;
2412 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2413 }
2414 
2415 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2416 {
2417 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2418 	bool *active = data;
2419 
2420 	if (*active)
2421 		return;
2422 
2423 	if (vif->type != NL80211_IFTYPE_STATION)
2424 		return;
2425 
2426 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2427 		*active = true;
2428 }
2429 
2430 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2431 {
2432 	bool sta_active = false;
2433 
2434 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2435 
2436 	return rtwdev->ap_active || sta_active;
2437 }
2438 
2439 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2440 {
2441 	if (!rtwdev->ap_active)
2442 		return;
2443 
2444 	if (enable) {
2445 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2446 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2447 	} else {
2448 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2449 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2450 	}
2451 }
2452 
2453 MODULE_AUTHOR("Realtek Corporation");
2454 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2455 MODULE_LICENSE("Dual BSD/GPL");
2456