1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* Copyright(c) 2018-2019 Realtek Corporation 3 */ 4 5 #if defined(__FreeBSD__) 6 #define LINUXKPI_PARAM_PREFIX rtw88_ 7 #endif 8 9 #include <linux/devcoredump.h> 10 11 #include "main.h" 12 #include "regd.h" 13 #include "fw.h" 14 #include "ps.h" 15 #include "sec.h" 16 #include "mac.h" 17 #include "coex.h" 18 #include "phy.h" 19 #include "reg.h" 20 #include "efuse.h" 21 #include "tx.h" 22 #include "debug.h" 23 #include "bf.h" 24 #include "sar.h" 25 #include "sdio.h" 26 #include "led.h" 27 28 bool rtw_disable_lps_deep_mode; 29 EXPORT_SYMBOL(rtw_disable_lps_deep_mode); 30 bool rtw_bf_support = true; 31 unsigned int rtw_debug_mask; 32 EXPORT_SYMBOL(rtw_debug_mask); 33 /* EDCCA is enabled during normal behavior. For debugging purpose in 34 * a noisy environment, it can be disabled via edcca debugfs. Because 35 * all rtw88 devices will probably be affected if environment is noisy, 36 * rtw_edcca_enabled is just declared by driver instead of by device. 37 * So, turning it off will take effect for all rtw88 devices before 38 * there is a tough reason to maintain rtw_edcca_enabled by device. 39 */ 40 bool rtw_edcca_enabled = true; 41 42 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644); 43 module_param_named(support_bf, rtw_bf_support, bool, 0644); 44 module_param_named(debug_mask, rtw_debug_mask, uint, 0644); 45 46 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS"); 47 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support"); 48 MODULE_PARM_DESC(debug_mask, "Debugging mask"); 49 50 #if defined(__FreeBSD__) 51 static bool rtw_ht_support = false; 52 module_param_named(support_ht, rtw_ht_support, bool, 0644); 53 MODULE_PARM_DESC(support_ht, "Set to Y to enable HT support"); 54 55 static bool rtw_vht_support = false; 56 module_param_named(support_vht, rtw_vht_support, bool, 0644); 57 MODULE_PARM_DESC(support_vht, "Set to Y to enable VHT support"); 58 #endif 59 60 #if defined(__FreeBSD__) 61 /* Macros based on rtw89::core.c. */ 62 #define RTW88_DEF_CHAN(_freq, _hw_val, _flags, _band) \ 63 { .center_freq = _freq, .hw_value = _hw_val, .flags = _flags, .band = _band, } 64 #define RTW88_DEF_CHAN_2G(_freq, _hw_val) \ 65 RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_2GHZ) 66 #define RTW88_DEF_CHAN_5G(_freq, _hw_val) \ 67 RTW88_DEF_CHAN(_freq, _hw_val, 0, NL80211_BAND_5GHZ) 68 #define RTW88_DEF_CHAN_5G_NO_HT40MINUS(_freq, _hw_val) \ 69 RTW88_DEF_CHAN(_freq, _hw_val, IEEE80211_CHAN_NO_HT40MINUS, NL80211_BAND_5GHZ) 70 71 static struct ieee80211_channel rtw_channeltable_2g[] = { 72 RTW88_DEF_CHAN_2G(2412, 1), 73 RTW88_DEF_CHAN_2G(2417, 2), 74 RTW88_DEF_CHAN_2G(2422, 3), 75 RTW88_DEF_CHAN_2G(2427, 4), 76 RTW88_DEF_CHAN_2G(2432, 5), 77 RTW88_DEF_CHAN_2G(2437, 6), 78 RTW88_DEF_CHAN_2G(2442, 7), 79 RTW88_DEF_CHAN_2G(2447, 8), 80 RTW88_DEF_CHAN_2G(2452, 9), 81 RTW88_DEF_CHAN_2G(2457, 10), 82 RTW88_DEF_CHAN_2G(2462, 11), 83 RTW88_DEF_CHAN_2G(2467, 12), 84 RTW88_DEF_CHAN_2G(2472, 13), 85 RTW88_DEF_CHAN_2G(2484, 14), 86 }; 87 88 static struct ieee80211_channel rtw_channeltable_5g[] = { 89 RTW88_DEF_CHAN_5G(5180, 36), 90 RTW88_DEF_CHAN_5G(5200, 40), 91 RTW88_DEF_CHAN_5G(5220, 44), 92 RTW88_DEF_CHAN_5G(5240, 48), 93 RTW88_DEF_CHAN_5G(5260, 52), 94 RTW88_DEF_CHAN_5G(5280, 56), 95 RTW88_DEF_CHAN_5G(5300, 60), 96 RTW88_DEF_CHAN_5G(5320, 64), 97 RTW88_DEF_CHAN_5G(5500, 100), 98 RTW88_DEF_CHAN_5G(5520, 104), 99 RTW88_DEF_CHAN_5G(5540, 108), 100 RTW88_DEF_CHAN_5G(5560, 112), 101 RTW88_DEF_CHAN_5G(5580, 116), 102 RTW88_DEF_CHAN_5G(5600, 120), 103 RTW88_DEF_CHAN_5G(5620, 124), 104 RTW88_DEF_CHAN_5G(5640, 128), 105 RTW88_DEF_CHAN_5G(5660, 132), 106 RTW88_DEF_CHAN_5G(5680, 136), 107 RTW88_DEF_CHAN_5G(5700, 140), 108 RTW88_DEF_CHAN_5G(5720, 144), 109 RTW88_DEF_CHAN_5G(5745, 149), 110 RTW88_DEF_CHAN_5G(5765, 153), 111 RTW88_DEF_CHAN_5G(5785, 157), 112 RTW88_DEF_CHAN_5G(5805, 161), 113 RTW88_DEF_CHAN_5G_NO_HT40MINUS(5825, 165), 114 }; 115 #elif deifned(__linux__) 116 static struct ieee80211_channel rtw_channeltable_2g[] = { 117 {.center_freq = 2412, .hw_value = 1,}, 118 {.center_freq = 2417, .hw_value = 2,}, 119 {.center_freq = 2422, .hw_value = 3,}, 120 {.center_freq = 2427, .hw_value = 4,}, 121 {.center_freq = 2432, .hw_value = 5,}, 122 {.center_freq = 2437, .hw_value = 6,}, 123 {.center_freq = 2442, .hw_value = 7,}, 124 {.center_freq = 2447, .hw_value = 8,}, 125 {.center_freq = 2452, .hw_value = 9,}, 126 {.center_freq = 2457, .hw_value = 10,}, 127 {.center_freq = 2462, .hw_value = 11,}, 128 {.center_freq = 2467, .hw_value = 12,}, 129 {.center_freq = 2472, .hw_value = 13,}, 130 {.center_freq = 2484, .hw_value = 14,}, 131 }; 132 133 static struct ieee80211_channel rtw_channeltable_5g[] = { 134 {.center_freq = 5180, .hw_value = 36,}, 135 {.center_freq = 5200, .hw_value = 40,}, 136 {.center_freq = 5220, .hw_value = 44,}, 137 {.center_freq = 5240, .hw_value = 48,}, 138 {.center_freq = 5260, .hw_value = 52,}, 139 {.center_freq = 5280, .hw_value = 56,}, 140 {.center_freq = 5300, .hw_value = 60,}, 141 {.center_freq = 5320, .hw_value = 64,}, 142 {.center_freq = 5500, .hw_value = 100,}, 143 {.center_freq = 5520, .hw_value = 104,}, 144 {.center_freq = 5540, .hw_value = 108,}, 145 {.center_freq = 5560, .hw_value = 112,}, 146 {.center_freq = 5580, .hw_value = 116,}, 147 {.center_freq = 5600, .hw_value = 120,}, 148 {.center_freq = 5620, .hw_value = 124,}, 149 {.center_freq = 5640, .hw_value = 128,}, 150 {.center_freq = 5660, .hw_value = 132,}, 151 {.center_freq = 5680, .hw_value = 136,}, 152 {.center_freq = 5700, .hw_value = 140,}, 153 {.center_freq = 5720, .hw_value = 144,}, 154 {.center_freq = 5745, .hw_value = 149,}, 155 {.center_freq = 5765, .hw_value = 153,}, 156 {.center_freq = 5785, .hw_value = 157,}, 157 {.center_freq = 5805, .hw_value = 161,}, 158 {.center_freq = 5825, .hw_value = 165, 159 .flags = IEEE80211_CHAN_NO_HT40MINUS}, 160 }; 161 #endif 162 163 static struct ieee80211_rate rtw_ratetable[] = { 164 {.bitrate = 10, .hw_value = 0x00,}, 165 {.bitrate = 20, .hw_value = 0x01,}, 166 {.bitrate = 55, .hw_value = 0x02,}, 167 {.bitrate = 110, .hw_value = 0x03,}, 168 {.bitrate = 60, .hw_value = 0x04,}, 169 {.bitrate = 90, .hw_value = 0x05,}, 170 {.bitrate = 120, .hw_value = 0x06,}, 171 {.bitrate = 180, .hw_value = 0x07,}, 172 {.bitrate = 240, .hw_value = 0x08,}, 173 {.bitrate = 360, .hw_value = 0x09,}, 174 {.bitrate = 480, .hw_value = 0x0a,}, 175 {.bitrate = 540, .hw_value = 0x0b,}, 176 }; 177 178 static const struct ieee80211_iface_limit rtw_iface_limits[] = { 179 { 180 .max = 1, 181 .types = BIT(NL80211_IFTYPE_STATION), 182 }, 183 { 184 .max = 1, 185 .types = BIT(NL80211_IFTYPE_AP), 186 } 187 }; 188 189 static const struct ieee80211_iface_combination rtw_iface_combs[] = { 190 { 191 .limits = rtw_iface_limits, 192 .n_limits = ARRAY_SIZE(rtw_iface_limits), 193 .max_interfaces = 2, 194 .num_different_channels = 1, 195 } 196 }; 197 198 u16 rtw_desc_to_bitrate(u8 desc_rate) 199 { 200 struct ieee80211_rate rate; 201 202 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n")) 203 return 0; 204 205 rate = rtw_ratetable[desc_rate]; 206 207 return rate.bitrate; 208 } 209 210 static struct ieee80211_supported_band rtw_band_2ghz = { 211 .band = NL80211_BAND_2GHZ, 212 213 .channels = rtw_channeltable_2g, 214 .n_channels = ARRAY_SIZE(rtw_channeltable_2g), 215 216 .bitrates = rtw_ratetable, 217 .n_bitrates = ARRAY_SIZE(rtw_ratetable), 218 219 .ht_cap = {0}, 220 .vht_cap = {0}, 221 }; 222 223 static struct ieee80211_supported_band rtw_band_5ghz = { 224 .band = NL80211_BAND_5GHZ, 225 226 .channels = rtw_channeltable_5g, 227 .n_channels = ARRAY_SIZE(rtw_channeltable_5g), 228 229 /* 5G has no CCK rates */ 230 .bitrates = rtw_ratetable + 4, 231 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, 232 233 .ht_cap = {0}, 234 .vht_cap = {0}, 235 }; 236 237 struct rtw_watch_dog_iter_data { 238 struct rtw_dev *rtwdev; 239 struct rtw_vif *rtwvif; 240 }; 241 242 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif) 243 { 244 struct rtw_bf_info *bf_info = &rtwdev->bf_info; 245 u8 fix_rate_enable = 0; 246 u8 new_csi_rate_idx; 247 248 if (rtwvif->bfee.role != RTW_BFEE_SU && 249 rtwvif->bfee.role != RTW_BFEE_MU) 250 return; 251 252 rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi, 253 bf_info->cur_csi_rpt_rate, 254 fix_rate_enable, &new_csi_rate_idx); 255 256 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate) 257 bf_info->cur_csi_rpt_rate = new_csi_rate_idx; 258 } 259 260 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif) 261 { 262 struct rtw_watch_dog_iter_data *iter_data = data; 263 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 264 265 if (vif->type == NL80211_IFTYPE_STATION) 266 if (vif->cfg.assoc) 267 iter_data->rtwvif = rtwvif; 268 269 rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif); 270 271 rtwvif->stats.tx_unicast = 0; 272 rtwvif->stats.rx_unicast = 0; 273 rtwvif->stats.tx_cnt = 0; 274 rtwvif->stats.rx_cnt = 0; 275 } 276 277 static void rtw_sw_beacon_loss_check(struct rtw_dev *rtwdev, 278 struct rtw_vif *rtwvif, int received_beacons) 279 { 280 int watchdog_delay = 2000000 / 1024; /* TU */ 281 int beacon_int, expected_beacons; 282 283 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_BCN_FILTER) || !rtwvif) 284 return; 285 286 beacon_int = rtwvif_to_vif(rtwvif)->bss_conf.beacon_int; 287 expected_beacons = DIV_ROUND_UP(watchdog_delay, beacon_int); 288 289 rtwdev->beacon_loss = received_beacons < expected_beacons / 2; 290 } 291 292 /* process TX/RX statistics periodically for hardware, 293 * the information helps hardware to enhance performance 294 */ 295 static void rtw_watch_dog_work(struct work_struct *work) 296 { 297 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 298 watch_dog_work.work); 299 struct rtw_traffic_stats *stats = &rtwdev->stats; 300 struct rtw_watch_dog_iter_data data = {}; 301 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 302 int received_beacons = rtwdev->dm_info.cur_pkt_count.num_bcn_pkt; 303 u32 tx_unicast_mbps, rx_unicast_mbps; 304 bool ps_active; 305 306 mutex_lock(&rtwdev->mutex); 307 308 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags)) 309 goto unlock; 310 311 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 312 RTW_WATCH_DOG_DELAY_TIME); 313 314 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100) 315 set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 316 else 317 clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags); 318 319 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags)) 320 rtw_coex_wl_status_change_notify(rtwdev, 0); 321 322 if (stats->tx_cnt > RTW_LPS_THRESHOLD || 323 stats->rx_cnt > RTW_LPS_THRESHOLD) 324 ps_active = true; 325 else 326 ps_active = false; 327 328 tx_unicast_mbps = stats->tx_unicast >> RTW_TP_SHIFT; 329 rx_unicast_mbps = stats->rx_unicast >> RTW_TP_SHIFT; 330 331 ewma_tp_add(&stats->tx_ewma_tp, tx_unicast_mbps); 332 ewma_tp_add(&stats->rx_ewma_tp, rx_unicast_mbps); 333 stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp); 334 stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp); 335 336 /* reset tx/rx statictics */ 337 stats->tx_unicast = 0; 338 stats->rx_unicast = 0; 339 stats->tx_cnt = 0; 340 stats->rx_cnt = 0; 341 342 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 343 goto unlock; 344 345 /* make sure BB/RF is working for dynamic mech */ 346 rtw_leave_lps(rtwdev); 347 rtw_coex_wl_status_check(rtwdev); 348 rtw_coex_query_bt_hid_list(rtwdev); 349 rtw_coex_active_query_bt_info(rtwdev); 350 351 rtw_phy_dynamic_mechanism(rtwdev); 352 353 rtw_hci_dynamic_rx_agg(rtwdev, 354 tx_unicast_mbps >= 1 || rx_unicast_mbps >= 1); 355 356 data.rtwdev = rtwdev; 357 /* rtw_iterate_vifs internally uses an atomic iterator which is needed 358 * to avoid taking local->iflist_mtx mutex 359 */ 360 rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data); 361 362 rtw_sw_beacon_loss_check(rtwdev, data.rtwvif, received_beacons); 363 364 /* fw supports only one station associated to enter lps, if there are 365 * more than two stations associated to the AP, then we can not enter 366 * lps, because fw does not handle the overlapped beacon interval 367 * 368 * rtw_recalc_lps() iterate vifs and determine if driver can enter 369 * ps by vif->type and vif->cfg.ps, all we need to do here is to 370 * get that vif and check if device is having traffic more than the 371 * threshold. 372 */ 373 if (rtwdev->ps_enabled && data.rtwvif && !ps_active && 374 !rtwdev->beacon_loss && !rtwdev->ap_active) 375 rtw_enter_lps(rtwdev, data.rtwvif->port); 376 377 rtwdev->watch_dog_cnt++; 378 379 unlock: 380 mutex_unlock(&rtwdev->mutex); 381 } 382 383 static void rtw_c2h_work(struct work_struct *work) 384 { 385 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); 386 struct sk_buff *skb, *tmp; 387 388 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { 389 skb_unlink(skb, &rtwdev->c2h_queue); 390 rtw_fw_c2h_cmd_handle(rtwdev, skb); 391 dev_kfree_skb_any(skb); 392 } 393 } 394 395 static void rtw_ips_work(struct work_struct *work) 396 { 397 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work); 398 399 mutex_lock(&rtwdev->mutex); 400 if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE) 401 rtw_enter_ips(rtwdev); 402 mutex_unlock(&rtwdev->mutex); 403 } 404 405 static void rtw_sta_rc_work(struct work_struct *work) 406 { 407 struct rtw_sta_info *si = container_of(work, struct rtw_sta_info, 408 rc_work); 409 struct rtw_dev *rtwdev = si->rtwdev; 410 411 mutex_lock(&rtwdev->mutex); 412 rtw_update_sta_info(rtwdev, si, true); 413 mutex_unlock(&rtwdev->mutex); 414 } 415 416 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 417 struct ieee80211_vif *vif) 418 { 419 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 420 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 421 int i; 422 423 if (vif->type == NL80211_IFTYPE_STATION) { 424 si->mac_id = rtwvif->mac_id; 425 } else { 426 si->mac_id = rtw_acquire_macid(rtwdev); 427 if (si->mac_id >= RTW_MAX_MAC_ID_NUM) 428 return -ENOSPC; 429 } 430 431 si->rtwdev = rtwdev; 432 si->sta = sta; 433 si->vif = vif; 434 si->init_ra_lv = 1; 435 ewma_rssi_init(&si->avg_rssi); 436 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 437 rtw_txq_init(rtwdev, sta->txq[i]); 438 INIT_WORK(&si->rc_work, rtw_sta_rc_work); 439 440 rtw_update_sta_info(rtwdev, si, true); 441 rtw_fw_media_status_report(rtwdev, si->mac_id, true); 442 443 rtwdev->sta_cnt++; 444 rtwdev->beacon_loss = false; 445 #if defined(__linux__) 446 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n", 447 sta->addr, si->mac_id); 448 #elif defined(__FreeBSD__) 449 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n", 450 sta->addr, ":", si->mac_id); 451 #endif 452 453 return 0; 454 } 455 456 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta, 457 bool fw_exist) 458 { 459 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 460 struct ieee80211_vif *vif = si->vif; 461 int i; 462 463 cancel_work_sync(&si->rc_work); 464 465 if (vif->type != NL80211_IFTYPE_STATION) 466 rtw_release_macid(rtwdev, si->mac_id); 467 if (fw_exist) 468 rtw_fw_media_status_report(rtwdev, si->mac_id, false); 469 470 for (i = 0; i < ARRAY_SIZE(sta->txq); i++) 471 rtw_txq_cleanup(rtwdev, sta->txq[i]); 472 473 kfree(si->mask); 474 475 rtwdev->sta_cnt--; 476 #if defined(__linux__) 477 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n", 478 sta->addr, si->mac_id); 479 #elif defined(__FreeBSD__) 480 rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n", 481 sta->addr, ":", si->mac_id); 482 #endif 483 } 484 485 struct rtw_fwcd_hdr { 486 u32 item; 487 u32 size; 488 u32 padding1; 489 u32 padding2; 490 } __packed; 491 492 static int rtw_fwcd_prep(struct rtw_dev *rtwdev) 493 { 494 const struct rtw_chip_info *chip = rtwdev->chip; 495 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 496 const struct rtw_fwcd_segs *segs = chip->fwcd_segs; 497 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr); 498 u8 i; 499 500 if (segs) { 501 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr); 502 503 for (i = 0; i < segs->num; i++) 504 prep_size += segs->segs[i]; 505 } 506 507 desc->data = vmalloc(prep_size); 508 if (!desc->data) 509 return -ENOMEM; 510 511 desc->size = prep_size; 512 desc->next = desc->data; 513 514 return 0; 515 } 516 517 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size) 518 { 519 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 520 struct rtw_fwcd_hdr *hdr; 521 u8 *next; 522 523 if (!desc->data) { 524 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n"); 525 return NULL; 526 } 527 528 next = desc->next + sizeof(struct rtw_fwcd_hdr); 529 if (next - desc->data + size > desc->size) { 530 rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n"); 531 return NULL; 532 } 533 534 hdr = (struct rtw_fwcd_hdr *)(desc->next); 535 hdr->item = item; 536 hdr->size = size; 537 hdr->padding1 = 0x01234567; 538 hdr->padding2 = 0x89abcdef; 539 desc->next = next + size; 540 541 return next; 542 } 543 544 static void rtw_fwcd_dump(struct rtw_dev *rtwdev) 545 { 546 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 547 548 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n"); 549 550 /* Data will be freed after lifetime of device coredump. After calling 551 * dev_coredump, data is supposed to be handled by the device coredump 552 * framework. Note that a new dump will be discarded if a previous one 553 * hasn't been released yet. 554 */ 555 dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL); 556 } 557 558 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self) 559 { 560 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc; 561 562 if (free_self) { 563 rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n"); 564 vfree(desc->data); 565 } 566 567 desc->data = NULL; 568 desc->next = NULL; 569 } 570 571 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev) 572 { 573 u32 size = rtwdev->chip->fw_rxff_size; 574 u32 *buf; 575 u8 seq; 576 577 buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size); 578 if (!buf) 579 return -ENOMEM; 580 581 if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) { 582 rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n"); 583 return -EINVAL; 584 } 585 586 if (GET_FW_DUMP_LEN(buf) == 0) { 587 rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n"); 588 return -EINVAL; 589 } 590 591 seq = GET_FW_DUMP_SEQ(buf); 592 if (seq > 0) { 593 rtw_dbg(rtwdev, RTW_DBG_FW, 594 "fw crash dump's seq is wrong: %d\n", seq); 595 return -EINVAL; 596 } 597 598 return 0; 599 } 600 601 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size, 602 u32 fwcd_item) 603 { 604 u32 rxff = rtwdev->chip->fw_rxff_size; 605 u32 dump_size, done_size = 0; 606 u8 *buf; 607 int ret; 608 609 buf = rtw_fwcd_next(rtwdev, fwcd_item, size); 610 if (!buf) 611 return -ENOMEM; 612 613 while (size) { 614 dump_size = size > rxff ? rxff : size; 615 616 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size, 617 dump_size); 618 if (ret) { 619 rtw_err(rtwdev, 620 "ddma fw 0x%x [+0x%x] to fw fifo fail\n", 621 ocp_src, done_size); 622 return ret; 623 } 624 625 ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, 626 dump_size, (u32 *)(buf + done_size)); 627 if (ret) { 628 rtw_err(rtwdev, 629 "dump fw 0x%x [+0x%x] from fw fifo fail\n", 630 ocp_src, done_size); 631 return ret; 632 } 633 634 size -= dump_size; 635 done_size += dump_size; 636 } 637 638 return 0; 639 } 640 EXPORT_SYMBOL(rtw_dump_fw); 641 642 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size) 643 { 644 u8 *buf; 645 u32 i; 646 647 if (addr & 0x3) { 648 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr); 649 return -EINVAL; 650 } 651 652 buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size); 653 if (!buf) 654 return -ENOMEM; 655 656 for (i = 0; i < size; i += 4) 657 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i); 658 659 return 0; 660 } 661 EXPORT_SYMBOL(rtw_dump_reg); 662 663 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif, 664 struct ieee80211_bss_conf *conf) 665 { 666 struct ieee80211_vif *vif = NULL; 667 668 if (conf) 669 vif = container_of(conf, struct ieee80211_vif, bss_conf); 670 671 if (conf && vif->cfg.assoc) { 672 rtwvif->aid = vif->cfg.aid; 673 rtwvif->net_type = RTW_NET_MGD_LINKED; 674 } else { 675 rtwvif->aid = 0; 676 rtwvif->net_type = RTW_NET_NO_LINK; 677 } 678 } 679 680 static void rtw_reset_key_iter(struct ieee80211_hw *hw, 681 struct ieee80211_vif *vif, 682 struct ieee80211_sta *sta, 683 struct ieee80211_key_conf *key, 684 void *data) 685 { 686 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 687 struct rtw_sec_desc *sec = &rtwdev->sec; 688 689 rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx); 690 } 691 692 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta) 693 { 694 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 695 696 if (rtwdev->sta_cnt == 0) { 697 rtw_warn(rtwdev, "sta count before reset should not be 0\n"); 698 return; 699 } 700 rtw_sta_remove(rtwdev, sta, false); 701 } 702 703 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif) 704 { 705 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 706 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 707 708 rtw_bf_disassoc(rtwdev, vif, NULL); 709 rtw_vif_assoc_changed(rtwvif, NULL); 710 rtw_txq_cleanup(rtwdev, vif->txq); 711 712 rtw_release_macid(rtwdev, rtwvif->mac_id); 713 } 714 715 void rtw_fw_recovery(struct rtw_dev *rtwdev) 716 { 717 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags)) 718 ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work); 719 } 720 721 static void __fw_recovery_work(struct rtw_dev *rtwdev) 722 { 723 int ret = 0; 724 725 set_bit(RTW_FLAG_RESTARTING, rtwdev->flags); 726 clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags); 727 728 ret = rtw_fwcd_prep(rtwdev); 729 if (ret) 730 goto free; 731 ret = rtw_fw_dump_crash_log(rtwdev); 732 if (ret) 733 goto free; 734 ret = rtw_chip_dump_fw_crash(rtwdev); 735 if (ret) 736 goto free; 737 738 rtw_fwcd_dump(rtwdev); 739 free: 740 rtw_fwcd_free(rtwdev, !!ret); 741 rtw_write8(rtwdev, REG_MCU_TST_CFG, 0); 742 743 WARN(1, "firmware crash, start reset and recover\n"); 744 745 rcu_read_lock(); 746 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev); 747 rcu_read_unlock(); 748 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev); 749 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev); 750 bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM); 751 rtw_enter_ips(rtwdev); 752 } 753 754 static void rtw_fw_recovery_work(struct work_struct *work) 755 { 756 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, 757 fw_recovery_work); 758 759 mutex_lock(&rtwdev->mutex); 760 __fw_recovery_work(rtwdev); 761 mutex_unlock(&rtwdev->mutex); 762 763 ieee80211_restart_hw(rtwdev->hw); 764 } 765 766 struct rtw_txq_ba_iter_data { 767 }; 768 769 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta) 770 { 771 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv; 772 int ret; 773 u8 tid; 774 775 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 776 while (tid != IEEE80211_NUM_TIDS) { 777 clear_bit(tid, si->tid_ba); 778 ret = ieee80211_start_tx_ba_session(sta, tid, 0); 779 if (ret == -EINVAL) { 780 struct ieee80211_txq *txq; 781 struct rtw_txq *rtwtxq; 782 783 txq = sta->txq[tid]; 784 rtwtxq = (struct rtw_txq *)txq->drv_priv; 785 set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags); 786 } 787 788 tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS); 789 } 790 } 791 792 static void rtw_txq_ba_work(struct work_struct *work) 793 { 794 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work); 795 struct rtw_txq_ba_iter_data data; 796 797 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data); 798 } 799 800 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel) 801 { 802 if (IS_CH_2G_BAND(channel)) 803 pkt_stat->band = NL80211_BAND_2GHZ; 804 else if (IS_CH_5G_BAND(channel)) 805 pkt_stat->band = NL80211_BAND_5GHZ; 806 else 807 return; 808 809 pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band); 810 } 811 EXPORT_SYMBOL(rtw_set_rx_freq_band); 812 813 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period) 814 { 815 rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE); 816 rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1); 817 } 818 819 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel, 820 u8 primary_channel, enum rtw_supported_band band, 821 enum rtw_bandwidth bandwidth) 822 { 823 enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band); 824 struct rtw_hal *hal = &rtwdev->hal; 825 u8 *cch_by_bw = hal->cch_by_bw; 826 u32 center_freq, primary_freq; 827 enum rtw_sar_bands sar_band; 828 u8 primary_channel_idx; 829 830 center_freq = ieee80211_channel_to_frequency(center_channel, nl_band); 831 primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band); 832 833 /* assign the center channel used while 20M bw is selected */ 834 cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel; 835 836 /* assign the center channel used while current bw is selected */ 837 cch_by_bw[bandwidth] = center_channel; 838 839 switch (bandwidth) { 840 case RTW_CHANNEL_WIDTH_20: 841 default: 842 primary_channel_idx = RTW_SC_DONT_CARE; 843 break; 844 case RTW_CHANNEL_WIDTH_40: 845 if (primary_freq > center_freq) 846 primary_channel_idx = RTW_SC_20_UPPER; 847 else 848 primary_channel_idx = RTW_SC_20_LOWER; 849 break; 850 case RTW_CHANNEL_WIDTH_80: 851 if (primary_freq > center_freq) { 852 if (primary_freq - center_freq == 10) 853 primary_channel_idx = RTW_SC_20_UPPER; 854 else 855 primary_channel_idx = RTW_SC_20_UPMOST; 856 857 /* assign the center channel used 858 * while 40M bw is selected 859 */ 860 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4; 861 } else { 862 if (center_freq - primary_freq == 10) 863 primary_channel_idx = RTW_SC_20_LOWER; 864 else 865 primary_channel_idx = RTW_SC_20_LOWEST; 866 867 /* assign the center channel used 868 * while 40M bw is selected 869 */ 870 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4; 871 } 872 break; 873 } 874 875 switch (center_channel) { 876 case 1 ... 14: 877 sar_band = RTW_SAR_BAND_0; 878 break; 879 case 36 ... 64: 880 sar_band = RTW_SAR_BAND_1; 881 break; 882 case 100 ... 144: 883 sar_band = RTW_SAR_BAND_3; 884 break; 885 case 149 ... 177: 886 sar_band = RTW_SAR_BAND_4; 887 break; 888 default: 889 WARN(1, "unknown ch(%u) to SAR band\n", center_channel); 890 sar_band = RTW_SAR_BAND_0; 891 break; 892 } 893 894 hal->current_primary_channel_index = primary_channel_idx; 895 hal->current_band_width = bandwidth; 896 hal->primary_channel = primary_channel; 897 hal->current_channel = center_channel; 898 hal->current_band_type = band; 899 hal->sar_band = sar_band; 900 } 901 902 void rtw_get_channel_params(struct cfg80211_chan_def *chandef, 903 struct rtw_channel_params *chan_params) 904 { 905 struct ieee80211_channel *channel = chandef->chan; 906 enum nl80211_chan_width width = chandef->width; 907 u32 primary_freq, center_freq; 908 u8 center_chan; 909 u8 bandwidth = RTW_CHANNEL_WIDTH_20; 910 911 center_chan = channel->hw_value; 912 primary_freq = channel->center_freq; 913 center_freq = chandef->center_freq1; 914 915 switch (width) { 916 case NL80211_CHAN_WIDTH_20_NOHT: 917 case NL80211_CHAN_WIDTH_20: 918 bandwidth = RTW_CHANNEL_WIDTH_20; 919 break; 920 case NL80211_CHAN_WIDTH_40: 921 bandwidth = RTW_CHANNEL_WIDTH_40; 922 if (primary_freq > center_freq) 923 center_chan -= 2; 924 else 925 center_chan += 2; 926 break; 927 case NL80211_CHAN_WIDTH_80: 928 bandwidth = RTW_CHANNEL_WIDTH_80; 929 if (primary_freq > center_freq) { 930 if (primary_freq - center_freq == 10) 931 center_chan -= 2; 932 else 933 center_chan -= 6; 934 } else { 935 if (center_freq - primary_freq == 10) 936 center_chan += 2; 937 else 938 center_chan += 6; 939 } 940 break; 941 default: 942 center_chan = 0; 943 break; 944 } 945 946 chan_params->center_chan = center_chan; 947 chan_params->bandwidth = bandwidth; 948 chan_params->primary_chan = channel->hw_value; 949 } 950 951 void rtw_set_channel(struct rtw_dev *rtwdev) 952 { 953 const struct rtw_chip_info *chip = rtwdev->chip; 954 struct ieee80211_hw *hw = rtwdev->hw; 955 struct rtw_hal *hal = &rtwdev->hal; 956 struct rtw_channel_params ch_param; 957 u8 center_chan, primary_chan, bandwidth, band; 958 959 rtw_get_channel_params(&hw->conf.chandef, &ch_param); 960 if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) 961 return; 962 963 center_chan = ch_param.center_chan; 964 primary_chan = ch_param.primary_chan; 965 bandwidth = ch_param.bandwidth; 966 band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; 967 968 rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth); 969 970 if (rtwdev->scan_info.op_chan) 971 rtw_store_op_chan(rtwdev, true); 972 973 chip->ops->set_channel(rtwdev, center_chan, bandwidth, 974 hal->current_primary_channel_index); 975 976 if (hal->current_band_type == RTW_BAND_5G) { 977 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G); 978 } else { 979 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 980 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G); 981 else 982 rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN); 983 } 984 985 rtw_phy_set_tx_power_level(rtwdev, center_chan); 986 987 /* if the channel isn't set for scanning, we will do RF calibration 988 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration 989 * during scanning on each channel takes too long. 990 */ 991 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags)) 992 rtwdev->need_rfk = true; 993 } 994 995 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev) 996 { 997 const struct rtw_chip_info *chip = rtwdev->chip; 998 999 if (rtwdev->need_rfk) { 1000 rtwdev->need_rfk = false; 1001 chip->ops->phy_calibration(rtwdev); 1002 } 1003 } 1004 1005 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) 1006 { 1007 int i; 1008 1009 for (i = 0; i < ETH_ALEN; i++) 1010 rtw_write8(rtwdev, start + i, addr[i]); 1011 } 1012 1013 void rtw_vif_port_config(struct rtw_dev *rtwdev, 1014 struct rtw_vif *rtwvif, 1015 u32 config) 1016 { 1017 u32 addr, mask; 1018 1019 if (config & PORT_SET_MAC_ADDR) { 1020 addr = rtwvif->conf->mac_addr.addr; 1021 rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); 1022 } 1023 if (config & PORT_SET_BSSID) { 1024 addr = rtwvif->conf->bssid.addr; 1025 rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); 1026 } 1027 if (config & PORT_SET_NET_TYPE) { 1028 addr = rtwvif->conf->net_type.addr; 1029 mask = rtwvif->conf->net_type.mask; 1030 rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); 1031 } 1032 if (config & PORT_SET_AID) { 1033 addr = rtwvif->conf->aid.addr; 1034 mask = rtwvif->conf->aid.mask; 1035 rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); 1036 } 1037 if (config & PORT_SET_BCN_CTRL) { 1038 addr = rtwvif->conf->bcn_ctrl.addr; 1039 mask = rtwvif->conf->bcn_ctrl.mask; 1040 rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl); 1041 } 1042 } 1043 1044 static u8 hw_bw_cap_to_bitamp(u8 bw_cap) 1045 { 1046 u8 bw = 0; 1047 1048 switch (bw_cap) { 1049 case EFUSE_HW_CAP_IGNORE: 1050 case EFUSE_HW_CAP_SUPP_BW80: 1051 bw |= BIT(RTW_CHANNEL_WIDTH_80); 1052 fallthrough; 1053 case EFUSE_HW_CAP_SUPP_BW40: 1054 bw |= BIT(RTW_CHANNEL_WIDTH_40); 1055 fallthrough; 1056 default: 1057 bw |= BIT(RTW_CHANNEL_WIDTH_20); 1058 break; 1059 } 1060 1061 return bw; 1062 } 1063 1064 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) 1065 { 1066 const struct rtw_chip_info *chip = rtwdev->chip; 1067 struct rtw_hal *hal = &rtwdev->hal; 1068 1069 if (hw_ant_num == EFUSE_HW_CAP_IGNORE || 1070 hw_ant_num >= hal->rf_path_num) 1071 return; 1072 1073 switch (hw_ant_num) { 1074 case 1: 1075 hal->rf_type = RF_1T1R; 1076 hal->rf_path_num = 1; 1077 if (!chip->fix_rf_phy_num) 1078 hal->rf_phy_num = hal->rf_path_num; 1079 hal->antenna_tx = BB_PATH_A; 1080 hal->antenna_rx = BB_PATH_A; 1081 break; 1082 default: 1083 WARN(1, "invalid hw configuration from efuse\n"); 1084 break; 1085 } 1086 } 1087 1088 static u64 get_vht_ra_mask(struct ieee80211_sta *sta) 1089 { 1090 u64 ra_mask = 0; 1091 u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map); 1092 u8 vht_mcs_cap; 1093 int i, nss; 1094 1095 /* 4SS, every two bits for MCS7/8/9 */ 1096 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { 1097 vht_mcs_cap = mcs_map & 0x3; 1098 switch (vht_mcs_cap) { 1099 case 2: /* MCS9 */ 1100 ra_mask |= 0x3ffULL << nss; 1101 break; 1102 case 1: /* MCS8 */ 1103 ra_mask |= 0x1ffULL << nss; 1104 break; 1105 case 0: /* MCS7 */ 1106 ra_mask |= 0x0ffULL << nss; 1107 break; 1108 default: 1109 break; 1110 } 1111 } 1112 1113 return ra_mask; 1114 } 1115 1116 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) 1117 { 1118 u8 rate_id = 0; 1119 1120 switch (wireless_set) { 1121 case WIRELESS_CCK: 1122 rate_id = RTW_RATEID_B_20M; 1123 break; 1124 case WIRELESS_OFDM: 1125 rate_id = RTW_RATEID_G; 1126 break; 1127 case WIRELESS_CCK | WIRELESS_OFDM: 1128 rate_id = RTW_RATEID_BG; 1129 break; 1130 case WIRELESS_OFDM | WIRELESS_HT: 1131 if (tx_num == 1) 1132 rate_id = RTW_RATEID_GN_N1SS; 1133 else if (tx_num == 2) 1134 rate_id = RTW_RATEID_GN_N2SS; 1135 else if (tx_num == 3) 1136 rate_id = RTW_RATEID_ARFR5_N_3SS; 1137 break; 1138 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: 1139 if (bw_mode == RTW_CHANNEL_WIDTH_40) { 1140 if (tx_num == 1) 1141 rate_id = RTW_RATEID_BGN_40M_1SS; 1142 else if (tx_num == 2) 1143 rate_id = RTW_RATEID_BGN_40M_2SS; 1144 else if (tx_num == 3) 1145 rate_id = RTW_RATEID_ARFR5_N_3SS; 1146 else if (tx_num == 4) 1147 rate_id = RTW_RATEID_ARFR7_N_4SS; 1148 } else { 1149 if (tx_num == 1) 1150 rate_id = RTW_RATEID_BGN_20M_1SS; 1151 else if (tx_num == 2) 1152 rate_id = RTW_RATEID_BGN_20M_2SS; 1153 else if (tx_num == 3) 1154 rate_id = RTW_RATEID_ARFR5_N_3SS; 1155 else if (tx_num == 4) 1156 rate_id = RTW_RATEID_ARFR7_N_4SS; 1157 } 1158 break; 1159 case WIRELESS_OFDM | WIRELESS_VHT: 1160 if (tx_num == 1) 1161 rate_id = RTW_RATEID_ARFR1_AC_1SS; 1162 else if (tx_num == 2) 1163 rate_id = RTW_RATEID_ARFR0_AC_2SS; 1164 else if (tx_num == 3) 1165 rate_id = RTW_RATEID_ARFR4_AC_3SS; 1166 else if (tx_num == 4) 1167 rate_id = RTW_RATEID_ARFR6_AC_4SS; 1168 break; 1169 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: 1170 if (bw_mode >= RTW_CHANNEL_WIDTH_80) { 1171 if (tx_num == 1) 1172 rate_id = RTW_RATEID_ARFR1_AC_1SS; 1173 else if (tx_num == 2) 1174 rate_id = RTW_RATEID_ARFR0_AC_2SS; 1175 else if (tx_num == 3) 1176 rate_id = RTW_RATEID_ARFR4_AC_3SS; 1177 else if (tx_num == 4) 1178 rate_id = RTW_RATEID_ARFR6_AC_4SS; 1179 } else { 1180 if (tx_num == 1) 1181 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; 1182 else if (tx_num == 2) 1183 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; 1184 else if (tx_num == 3) 1185 rate_id = RTW_RATEID_ARFR4_AC_3SS; 1186 else if (tx_num == 4) 1187 rate_id = RTW_RATEID_ARFR6_AC_4SS; 1188 } 1189 break; 1190 default: 1191 break; 1192 } 1193 1194 return rate_id; 1195 } 1196 1197 #define RA_MASK_CCK_RATES 0x0000f 1198 #define RA_MASK_OFDM_RATES 0x00ff0 1199 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) 1200 #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) 1201 #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) 1202 #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ 1203 RA_MASK_HT_RATES_2SS | \ 1204 RA_MASK_HT_RATES_3SS) 1205 #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) 1206 #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) 1207 #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) 1208 #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ 1209 RA_MASK_VHT_RATES_2SS | \ 1210 RA_MASK_VHT_RATES_3SS) 1211 #define RA_MASK_CCK_IN_BG 0x00005 1212 #define RA_MASK_CCK_IN_HT 0x00005 1213 #define RA_MASK_CCK_IN_VHT 0x00005 1214 #define RA_MASK_OFDM_IN_VHT 0x00010 1215 #define RA_MASK_OFDM_IN_HT_2G 0x00010 1216 #define RA_MASK_OFDM_IN_HT_5G 0x00030 1217 1218 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set) 1219 { 1220 u8 rssi_level = si->rssi_level; 1221 1222 if (wireless_set == WIRELESS_CCK) 1223 return 0xffffffffffffffffULL; 1224 1225 if (rssi_level == 0) 1226 return 0xffffffffffffffffULL; 1227 else if (rssi_level == 1) 1228 return 0xfffffffffffffff0ULL; 1229 else if (rssi_level == 2) 1230 return 0xffffffffffffefe0ULL; 1231 else if (rssi_level == 3) 1232 return 0xffffffffffffcfc0ULL; 1233 else if (rssi_level == 4) 1234 return 0xffffffffffff8f80ULL; 1235 else 1236 return 0xffffffffffff0f00ULL; 1237 } 1238 1239 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak) 1240 { 1241 if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0) 1242 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); 1243 1244 if (ra_mask == 0) 1245 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)); 1246 1247 return ra_mask; 1248 } 1249 1250 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si, 1251 u64 ra_mask, bool is_vht_enable) 1252 { 1253 struct rtw_hal *hal = &rtwdev->hal; 1254 const struct cfg80211_bitrate_mask *mask = si->mask; 1255 u64 cfg_mask = GENMASK_ULL(63, 0); 1256 u8 band; 1257 1258 if (!si->use_cfg_mask) 1259 return ra_mask; 1260 1261 band = hal->current_band_type; 1262 if (band == RTW_BAND_2G) { 1263 band = NL80211_BAND_2GHZ; 1264 cfg_mask = mask->control[band].legacy; 1265 } else if (band == RTW_BAND_5G) { 1266 band = NL80211_BAND_5GHZ; 1267 cfg_mask = u64_encode_bits(mask->control[band].legacy, 1268 RA_MASK_OFDM_RATES); 1269 } 1270 1271 if (!is_vht_enable) { 1272 if (ra_mask & RA_MASK_HT_RATES_1SS) 1273 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0], 1274 RA_MASK_HT_RATES_1SS); 1275 if (ra_mask & RA_MASK_HT_RATES_2SS) 1276 cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1], 1277 RA_MASK_HT_RATES_2SS); 1278 } else { 1279 if (ra_mask & RA_MASK_VHT_RATES_1SS) 1280 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0], 1281 RA_MASK_VHT_RATES_1SS); 1282 if (ra_mask & RA_MASK_VHT_RATES_2SS) 1283 cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1], 1284 RA_MASK_VHT_RATES_2SS); 1285 } 1286 1287 ra_mask &= cfg_mask; 1288 1289 return ra_mask; 1290 } 1291 1292 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si, 1293 bool reset_ra_mask) 1294 { 1295 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 1296 struct ieee80211_sta *sta = si->sta; 1297 struct rtw_efuse *efuse = &rtwdev->efuse; 1298 struct rtw_hal *hal = &rtwdev->hal; 1299 u8 wireless_set; 1300 u8 bw_mode; 1301 u8 rate_id; 1302 u8 stbc_en = 0; 1303 u8 ldpc_en = 0; 1304 u8 tx_num = 1; 1305 u64 ra_mask = 0; 1306 u64 ra_mask_bak = 0; 1307 bool is_vht_enable = false; 1308 bool is_support_sgi = false; 1309 1310 if (sta->deflink.vht_cap.vht_supported) { 1311 is_vht_enable = true; 1312 ra_mask |= get_vht_ra_mask(sta); 1313 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) 1314 stbc_en = VHT_STBC_EN; 1315 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) 1316 ldpc_en = VHT_LDPC_EN; 1317 } else if (sta->deflink.ht_cap.ht_supported) { 1318 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) | 1319 (sta->deflink.ht_cap.mcs.rx_mask[0] << 12); 1320 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) 1321 stbc_en = HT_STBC_EN; 1322 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) 1323 ldpc_en = HT_LDPC_EN; 1324 } 1325 1326 if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss) 1327 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS; 1328 1329 if (hal->current_band_type == RTW_BAND_5G) { 1330 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4; 1331 ra_mask_bak = ra_mask; 1332 if (sta->deflink.vht_cap.vht_supported) { 1333 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; 1334 wireless_set = WIRELESS_OFDM | WIRELESS_VHT; 1335 } else if (sta->deflink.ht_cap.ht_supported) { 1336 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; 1337 wireless_set = WIRELESS_OFDM | WIRELESS_HT; 1338 } else { 1339 wireless_set = WIRELESS_OFDM; 1340 } 1341 dm_info->rrsr_val_init = RRSR_INIT_5G; 1342 } else if (hal->current_band_type == RTW_BAND_2G) { 1343 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ]; 1344 ra_mask_bak = ra_mask; 1345 if (sta->deflink.vht_cap.vht_supported) { 1346 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | 1347 RA_MASK_OFDM_IN_VHT; 1348 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 1349 WIRELESS_HT | WIRELESS_VHT; 1350 } else if (sta->deflink.ht_cap.ht_supported) { 1351 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | 1352 RA_MASK_OFDM_IN_HT_2G; 1353 wireless_set = WIRELESS_CCK | WIRELESS_OFDM | 1354 WIRELESS_HT; 1355 #if defined(__linux__) 1356 } else if (sta->deflink.supp_rates[0] <= 0xf) { 1357 #elif defined(__FreeBSD__) 1358 } else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) { 1359 #endif 1360 wireless_set = WIRELESS_CCK; 1361 } else { 1362 ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG; 1363 wireless_set = WIRELESS_CCK | WIRELESS_OFDM; 1364 } 1365 dm_info->rrsr_val_init = RRSR_INIT_2G; 1366 } else { 1367 rtw_err(rtwdev, "Unknown band type\n"); 1368 ra_mask_bak = ra_mask; 1369 wireless_set = 0; 1370 } 1371 1372 switch (sta->deflink.bandwidth) { 1373 case IEEE80211_STA_RX_BW_80: 1374 bw_mode = RTW_CHANNEL_WIDTH_80; 1375 is_support_sgi = sta->deflink.vht_cap.vht_supported && 1376 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80); 1377 break; 1378 case IEEE80211_STA_RX_BW_40: 1379 bw_mode = RTW_CHANNEL_WIDTH_40; 1380 is_support_sgi = sta->deflink.ht_cap.ht_supported && 1381 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40); 1382 break; 1383 default: 1384 bw_mode = RTW_CHANNEL_WIDTH_20; 1385 is_support_sgi = sta->deflink.ht_cap.ht_supported && 1386 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20); 1387 break; 1388 } 1389 1390 if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) 1391 tx_num = 2; 1392 else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) 1393 tx_num = 2; 1394 1395 rate_id = get_rate_id(wireless_set, bw_mode, tx_num); 1396 1397 ra_mask &= rtw_rate_mask_rssi(si, wireless_set); 1398 ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak); 1399 ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable); 1400 1401 si->bw_mode = bw_mode; 1402 si->stbc_en = stbc_en; 1403 si->ldpc_en = ldpc_en; 1404 si->sgi_enable = is_support_sgi; 1405 si->vht_enable = is_vht_enable; 1406 si->ra_mask = ra_mask; 1407 si->rate_id = rate_id; 1408 1409 rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask); 1410 } 1411 1412 int rtw_wait_firmware_completion(struct rtw_dev *rtwdev) 1413 { 1414 const struct rtw_chip_info *chip = rtwdev->chip; 1415 struct rtw_fw_state *fw; 1416 int ret = 0; 1417 1418 fw = &rtwdev->fw; 1419 wait_for_completion(&fw->completion); 1420 if (!fw->firmware) 1421 ret = -EINVAL; 1422 1423 if (chip->wow_fw_name) { 1424 fw = &rtwdev->wow_fw; 1425 wait_for_completion(&fw->completion); 1426 if (!fw->firmware) 1427 ret = -EINVAL; 1428 } 1429 1430 return ret; 1431 } 1432 EXPORT_SYMBOL(rtw_wait_firmware_completion); 1433 1434 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev, 1435 struct rtw_fw_state *fw) 1436 { 1437 const struct rtw_chip_info *chip = rtwdev->chip; 1438 1439 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported || 1440 !fw->feature) 1441 return LPS_DEEP_MODE_NONE; 1442 1443 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) && 1444 rtw_fw_feature_check(fw, FW_FEATURE_PG)) 1445 return LPS_DEEP_MODE_PG; 1446 1447 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) && 1448 rtw_fw_feature_check(fw, FW_FEATURE_LCLK)) 1449 return LPS_DEEP_MODE_LCLK; 1450 1451 return LPS_DEEP_MODE_NONE; 1452 } 1453 1454 int rtw_power_on(struct rtw_dev *rtwdev) 1455 { 1456 const struct rtw_chip_info *chip = rtwdev->chip; 1457 struct rtw_fw_state *fw = &rtwdev->fw; 1458 bool wifi_only; 1459 int ret; 1460 1461 ret = rtw_hci_setup(rtwdev); 1462 if (ret) { 1463 rtw_err(rtwdev, "failed to setup hci\n"); 1464 goto err; 1465 } 1466 1467 /* power on MAC before firmware downloaded */ 1468 ret = rtw_mac_power_on(rtwdev); 1469 if (ret) { 1470 rtw_err(rtwdev, "failed to power on mac\n"); 1471 goto err; 1472 } 1473 1474 ret = rtw_wait_firmware_completion(rtwdev); 1475 if (ret) { 1476 rtw_err(rtwdev, "failed to wait firmware completion\n"); 1477 goto err_off; 1478 } 1479 1480 ret = rtw_download_firmware(rtwdev, fw); 1481 if (ret) { 1482 rtw_err(rtwdev, "failed to download firmware\n"); 1483 goto err_off; 1484 } 1485 1486 /* config mac after firmware downloaded */ 1487 ret = rtw_mac_init(rtwdev); 1488 if (ret) { 1489 rtw_err(rtwdev, "failed to configure mac\n"); 1490 goto err_off; 1491 } 1492 1493 chip->ops->phy_set_param(rtwdev); 1494 1495 ret = rtw_hci_start(rtwdev); 1496 if (ret) { 1497 rtw_err(rtwdev, "failed to start hci\n"); 1498 goto err_off; 1499 } 1500 1501 /* send H2C after HCI has started */ 1502 rtw_fw_send_general_info(rtwdev); 1503 rtw_fw_send_phydm_info(rtwdev); 1504 1505 wifi_only = !rtwdev->efuse.btcoex; 1506 rtw_coex_power_on_setting(rtwdev); 1507 rtw_coex_init_hw_config(rtwdev, wifi_only); 1508 1509 return 0; 1510 1511 err_off: 1512 rtw_mac_power_off(rtwdev); 1513 1514 err: 1515 return ret; 1516 } 1517 EXPORT_SYMBOL(rtw_power_on); 1518 1519 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start) 1520 { 1521 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN)) 1522 return; 1523 1524 if (start) { 1525 rtw_fw_scan_notify(rtwdev, true); 1526 } else { 1527 reinit_completion(&rtwdev->fw_scan_density); 1528 rtw_fw_scan_notify(rtwdev, false); 1529 if (!wait_for_completion_timeout(&rtwdev->fw_scan_density, 1530 SCAN_NOTIFY_TIMEOUT)) 1531 rtw_warn(rtwdev, "firmware failed to report density after scan\n"); 1532 } 1533 } 1534 1535 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif, 1536 const u8 *mac_addr, bool hw_scan) 1537 { 1538 u32 config = 0; 1539 int ret = 0; 1540 1541 rtw_leave_lps(rtwdev); 1542 1543 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) { 1544 ret = rtw_leave_ips(rtwdev); 1545 if (ret) { 1546 rtw_err(rtwdev, "failed to leave idle state\n"); 1547 return; 1548 } 1549 } 1550 1551 ether_addr_copy(rtwvif->mac_addr, mac_addr); 1552 config |= PORT_SET_MAC_ADDR; 1553 rtw_vif_port_config(rtwdev, rtwvif, config); 1554 1555 rtw_coex_scan_notify(rtwdev, COEX_SCAN_START); 1556 rtw_core_fw_scan_notify(rtwdev, true); 1557 1558 set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); 1559 set_bit(RTW_FLAG_SCANNING, rtwdev->flags); 1560 } 1561 1562 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif, 1563 bool hw_scan) 1564 { 1565 struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL; 1566 u32 config = 0; 1567 1568 if (!rtwvif) 1569 return; 1570 1571 clear_bit(RTW_FLAG_SCANNING, rtwdev->flags); 1572 clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags); 1573 1574 rtw_core_fw_scan_notify(rtwdev, false); 1575 1576 ether_addr_copy(rtwvif->mac_addr, vif->addr); 1577 config |= PORT_SET_MAC_ADDR; 1578 rtw_vif_port_config(rtwdev, rtwvif, config); 1579 1580 rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH); 1581 1582 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) 1583 ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work); 1584 } 1585 1586 int rtw_core_start(struct rtw_dev *rtwdev) 1587 { 1588 int ret; 1589 1590 ret = rtwdev->chip->ops->power_on(rtwdev); 1591 if (ret) 1592 return ret; 1593 1594 rtw_sec_enable_sec_engine(rtwdev); 1595 1596 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw); 1597 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw); 1598 1599 /* rcr reset after powered on */ 1600 rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); 1601 1602 ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, 1603 RTW_WATCH_DOG_DELAY_TIME); 1604 1605 set_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1606 1607 return 0; 1608 } 1609 1610 void rtw_power_off(struct rtw_dev *rtwdev) 1611 { 1612 rtw_hci_stop(rtwdev); 1613 rtw_coex_power_off_setting(rtwdev); 1614 rtw_mac_power_off(rtwdev); 1615 } 1616 EXPORT_SYMBOL(rtw_power_off); 1617 1618 void rtw_core_stop(struct rtw_dev *rtwdev) 1619 { 1620 struct rtw_coex *coex = &rtwdev->coex; 1621 1622 clear_bit(RTW_FLAG_RUNNING, rtwdev->flags); 1623 clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags); 1624 1625 mutex_unlock(&rtwdev->mutex); 1626 1627 cancel_work_sync(&rtwdev->c2h_work); 1628 cancel_work_sync(&rtwdev->update_beacon_work); 1629 cancel_delayed_work_sync(&rtwdev->watch_dog_work); 1630 cancel_delayed_work_sync(&coex->bt_relink_work); 1631 cancel_delayed_work_sync(&coex->bt_reenable_work); 1632 cancel_delayed_work_sync(&coex->defreeze_work); 1633 cancel_delayed_work_sync(&coex->wl_remain_work); 1634 cancel_delayed_work_sync(&coex->bt_remain_work); 1635 cancel_delayed_work_sync(&coex->wl_connecting_work); 1636 cancel_delayed_work_sync(&coex->bt_multi_link_remain_work); 1637 cancel_delayed_work_sync(&coex->wl_ccklock_work); 1638 1639 mutex_lock(&rtwdev->mutex); 1640 1641 rtwdev->chip->ops->power_off(rtwdev); 1642 } 1643 1644 static void rtw_init_ht_cap(struct rtw_dev *rtwdev, 1645 struct ieee80211_sta_ht_cap *ht_cap) 1646 { 1647 const struct rtw_chip_info *chip = rtwdev->chip; 1648 struct rtw_efuse *efuse = &rtwdev->efuse; 1649 1650 ht_cap->ht_supported = true; 1651 ht_cap->cap = 0; 1652 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | 1653 IEEE80211_HT_CAP_MAX_AMSDU | 1654 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); 1655 1656 if (rtw_chip_has_rx_ldpc(rtwdev)) 1657 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING; 1658 if (rtw_chip_has_tx_stbc(rtwdev)) 1659 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC; 1660 1661 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) 1662 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | 1663 IEEE80211_HT_CAP_DSSSCCK40 | 1664 IEEE80211_HT_CAP_SGI_40; 1665 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; 1666 ht_cap->ampdu_density = chip->ampdu_density; 1667 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; 1668 if (efuse->hw_cap.nss > 1) { 1669 ht_cap->mcs.rx_mask[0] = 0xFF; 1670 ht_cap->mcs.rx_mask[1] = 0xFF; 1671 ht_cap->mcs.rx_mask[4] = 0x01; 1672 ht_cap->mcs.rx_highest = cpu_to_le16(300); 1673 } else { 1674 ht_cap->mcs.rx_mask[0] = 0xFF; 1675 ht_cap->mcs.rx_mask[1] = 0x00; 1676 ht_cap->mcs.rx_mask[4] = 0x01; 1677 ht_cap->mcs.rx_highest = cpu_to_le16(150); 1678 } 1679 } 1680 1681 static void rtw_init_vht_cap(struct rtw_dev *rtwdev, 1682 struct ieee80211_sta_vht_cap *vht_cap) 1683 { 1684 struct rtw_efuse *efuse = &rtwdev->efuse; 1685 u16 mcs_map; 1686 __le16 highest; 1687 1688 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && 1689 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) 1690 return; 1691 1692 vht_cap->vht_supported = true; 1693 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | 1694 IEEE80211_VHT_CAP_SHORT_GI_80 | 1695 IEEE80211_VHT_CAP_RXSTBC_1 | 1696 IEEE80211_VHT_CAP_HTC_VHT | 1697 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | 1698 0; 1699 if (rtwdev->hal.rf_path_num > 1) 1700 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC; 1701 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE | 1702 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE; 1703 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap << 1704 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT); 1705 1706 if (rtw_chip_has_rx_ldpc(rtwdev)) 1707 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC; 1708 1709 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | 1710 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | 1711 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | 1712 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | 1713 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | 1714 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | 1715 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; 1716 if (efuse->hw_cap.nss > 1) { 1717 highest = cpu_to_le16(780); 1718 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; 1719 } else { 1720 highest = cpu_to_le16(390); 1721 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; 1722 } 1723 1724 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); 1725 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); 1726 vht_cap->vht_mcs.rx_highest = highest; 1727 vht_cap->vht_mcs.tx_highest = highest; 1728 } 1729 1730 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev) 1731 { 1732 u16 len; 1733 1734 len = rtwdev->chip->max_scan_ie_len; 1735 1736 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) && 1737 rtwdev->chip->id == RTW_CHIP_TYPE_8822C) 1738 len = IEEE80211_MAX_DATA_LEN; 1739 else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM)) 1740 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE; 1741 1742 return len; 1743 } 1744 1745 static void rtw_set_supported_band(struct ieee80211_hw *hw, 1746 const struct rtw_chip_info *chip) 1747 { 1748 struct rtw_dev *rtwdev = hw->priv; 1749 struct ieee80211_supported_band *sband; 1750 1751 if (chip->band & RTW_BAND_2G) { 1752 sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); 1753 if (!sband) 1754 goto err_out; 1755 #if defined(__linux__) 1756 if (chip->ht_supported) 1757 #elif defined(__FreeBSD__) 1758 if (rtw_ht_support && chip->ht_supported) 1759 #endif 1760 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1761 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; 1762 } 1763 1764 if (chip->band & RTW_BAND_5G) { 1765 sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); 1766 if (!sband) 1767 goto err_out; 1768 #if defined(__linux__) 1769 if (chip->ht_supported) 1770 #elif defined(__FreeBSD__) 1771 if (rtw_ht_support && chip->ht_supported) 1772 #endif 1773 rtw_init_ht_cap(rtwdev, &sband->ht_cap); 1774 #if defined(__linux__) 1775 if (chip->vht_supported) 1776 #elif defined(__FreeBSD__) 1777 if (rtw_vht_support && chip->vht_supported) 1778 #endif 1779 rtw_init_vht_cap(rtwdev, &sband->vht_cap); 1780 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; 1781 } 1782 1783 return; 1784 1785 err_out: 1786 rtw_err(rtwdev, "failed to set supported band\n"); 1787 } 1788 1789 static void rtw_unset_supported_band(struct ieee80211_hw *hw, 1790 const struct rtw_chip_info *chip) 1791 { 1792 kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); 1793 kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); 1794 } 1795 1796 static void rtw_vif_smps_iter(void *data, u8 *mac, 1797 struct ieee80211_vif *vif) 1798 { 1799 struct rtw_dev *rtwdev = (struct rtw_dev *)data; 1800 1801 if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc) 1802 return; 1803 1804 if (rtwdev->hal.txrx_1ss) 1805 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC); 1806 else 1807 ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF); 1808 } 1809 1810 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss) 1811 { 1812 const struct rtw_chip_info *chip = rtwdev->chip; 1813 struct rtw_hal *hal = &rtwdev->hal; 1814 1815 if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss) 1816 return; 1817 1818 rtwdev->hal.txrx_1ss = txrx_1ss; 1819 if (txrx_1ss) 1820 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false); 1821 else 1822 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx, 1823 hal->antenna_rx, false); 1824 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev); 1825 } 1826 1827 static void __update_firmware_feature(struct rtw_dev *rtwdev, 1828 struct rtw_fw_state *fw) 1829 { 1830 u32 feature; 1831 const struct rtw_fw_hdr *fw_hdr = 1832 (const struct rtw_fw_hdr *)fw->firmware->data; 1833 1834 feature = le32_to_cpu(fw_hdr->feature); 1835 fw->feature = feature & FW_FEATURE_SIG ? feature : 0; 1836 1837 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C && 1838 RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13)) 1839 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM; 1840 } 1841 1842 static void __update_firmware_info(struct rtw_dev *rtwdev, 1843 struct rtw_fw_state *fw) 1844 { 1845 const struct rtw_fw_hdr *fw_hdr = 1846 (const struct rtw_fw_hdr *)fw->firmware->data; 1847 1848 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver); 1849 fw->version = le16_to_cpu(fw_hdr->version); 1850 fw->sub_version = fw_hdr->subversion; 1851 fw->sub_index = fw_hdr->subindex; 1852 1853 __update_firmware_feature(rtwdev, fw); 1854 } 1855 1856 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev, 1857 struct rtw_fw_state *fw) 1858 { 1859 struct rtw_fw_hdr_legacy *legacy = 1860 #if defined(__linux__) 1861 (struct rtw_fw_hdr_legacy *)fw->firmware->data; 1862 #elif defined(__FreeBSD__) 1863 __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data); 1864 #endif 1865 1866 fw->h2c_version = 0; 1867 fw->version = le16_to_cpu(legacy->version); 1868 fw->sub_version = legacy->subversion1; 1869 fw->sub_index = legacy->subversion2; 1870 } 1871 1872 static void update_firmware_info(struct rtw_dev *rtwdev, 1873 struct rtw_fw_state *fw) 1874 { 1875 if (rtw_chip_wcpu_11n(rtwdev)) 1876 __update_firmware_info_legacy(rtwdev, fw); 1877 else 1878 __update_firmware_info(rtwdev, fw); 1879 } 1880 1881 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) 1882 { 1883 struct rtw_fw_state *fw = context; 1884 struct rtw_dev *rtwdev = fw->rtwdev; 1885 1886 if (!firmware || !firmware->data) { 1887 rtw_err(rtwdev, "failed to request firmware\n"); 1888 complete_all(&fw->completion); 1889 return; 1890 } 1891 1892 fw->firmware = firmware; 1893 update_firmware_info(rtwdev, fw); 1894 complete_all(&fw->completion); 1895 1896 rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n", 1897 fw->type == RTW_WOWLAN_FW ? "WOW " : "", 1898 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version); 1899 } 1900 1901 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type) 1902 { 1903 const char *fw_name; 1904 struct rtw_fw_state *fw; 1905 int ret; 1906 1907 switch (type) { 1908 case RTW_WOWLAN_FW: 1909 fw = &rtwdev->wow_fw; 1910 fw_name = rtwdev->chip->wow_fw_name; 1911 break; 1912 1913 case RTW_NORMAL_FW: 1914 fw = &rtwdev->fw; 1915 fw_name = rtwdev->chip->fw_name; 1916 break; 1917 1918 default: 1919 rtw_warn(rtwdev, "unsupported firmware type\n"); 1920 return -ENOENT; 1921 } 1922 1923 fw->type = type; 1924 fw->rtwdev = rtwdev; 1925 init_completion(&fw->completion); 1926 1927 ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, 1928 GFP_KERNEL, fw, rtw_load_firmware_cb); 1929 if (ret) { 1930 rtw_err(rtwdev, "failed to async firmware request\n"); 1931 return ret; 1932 } 1933 1934 return 0; 1935 } 1936 1937 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) 1938 { 1939 const struct rtw_chip_info *chip = rtwdev->chip; 1940 struct rtw_hal *hal = &rtwdev->hal; 1941 struct rtw_efuse *efuse = &rtwdev->efuse; 1942 1943 switch (rtw_hci_type(rtwdev)) { 1944 case RTW_HCI_TYPE_PCIE: 1945 rtwdev->hci.rpwm_addr = 0x03d9; 1946 rtwdev->hci.cpwm_addr = 0x03da; 1947 break; 1948 case RTW_HCI_TYPE_SDIO: 1949 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1; 1950 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2; 1951 break; 1952 case RTW_HCI_TYPE_USB: 1953 rtwdev->hci.rpwm_addr = 0xfe58; 1954 rtwdev->hci.cpwm_addr = 0xfe57; 1955 break; 1956 default: 1957 rtw_err(rtwdev, "unsupported hci type\n"); 1958 return -EINVAL; 1959 } 1960 1961 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); 1962 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); 1963 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; 1964 if (hal->chip_version & BIT_RF_TYPE_ID) { 1965 hal->rf_type = RF_2T2R; 1966 hal->rf_path_num = 2; 1967 hal->antenna_tx = BB_PATH_AB; 1968 hal->antenna_rx = BB_PATH_AB; 1969 } else { 1970 hal->rf_type = RF_1T1R; 1971 hal->rf_path_num = 1; 1972 hal->antenna_tx = BB_PATH_A; 1973 hal->antenna_rx = BB_PATH_A; 1974 } 1975 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num : 1976 hal->rf_path_num; 1977 1978 efuse->physical_size = chip->phy_efuse_size; 1979 efuse->logical_size = chip->log_efuse_size; 1980 efuse->protect_size = chip->ptct_efuse_size; 1981 1982 /* default use ack */ 1983 rtwdev->hal.rcr |= BIT_VHT_DACK; 1984 1985 hal->bfee_sts_cap = 3; 1986 1987 return 0; 1988 } 1989 1990 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) 1991 { 1992 struct rtw_fw_state *fw = &rtwdev->fw; 1993 int ret; 1994 1995 ret = rtw_hci_setup(rtwdev); 1996 if (ret) { 1997 rtw_err(rtwdev, "failed to setup hci\n"); 1998 goto err; 1999 } 2000 2001 ret = rtw_mac_power_on(rtwdev); 2002 if (ret) { 2003 rtw_err(rtwdev, "failed to power on mac\n"); 2004 goto err; 2005 } 2006 2007 rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); 2008 2009 wait_for_completion(&fw->completion); 2010 if (!fw->firmware) { 2011 ret = -EINVAL; 2012 rtw_err(rtwdev, "failed to load firmware\n"); 2013 goto err; 2014 } 2015 2016 ret = rtw_download_firmware(rtwdev, fw); 2017 if (ret) { 2018 rtw_err(rtwdev, "failed to download firmware\n"); 2019 goto err_off; 2020 } 2021 2022 return 0; 2023 2024 err_off: 2025 rtw_mac_power_off(rtwdev); 2026 2027 err: 2028 return ret; 2029 } 2030 2031 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) 2032 { 2033 struct rtw_efuse *efuse = &rtwdev->efuse; 2034 u8 hw_feature[HW_FEATURE_LEN]; 2035 u8 id; 2036 u8 bw; 2037 int i; 2038 2039 if (!rtwdev->chip->hw_feature_report) 2040 return 0; 2041 2042 id = rtw_read8(rtwdev, REG_C2HEVT); 2043 if (id != C2H_HW_FEATURE_REPORT) { 2044 rtw_err(rtwdev, "failed to read hw feature report\n"); 2045 return -EBUSY; 2046 } 2047 2048 for (i = 0; i < HW_FEATURE_LEN; i++) 2049 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); 2050 2051 rtw_write8(rtwdev, REG_C2HEVT, 0); 2052 2053 bw = GET_EFUSE_HW_CAP_BW(hw_feature); 2054 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); 2055 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); 2056 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); 2057 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); 2058 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); 2059 2060 rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); 2061 2062 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE || 2063 efuse->hw_cap.nss > rtwdev->hal.rf_path_num) 2064 efuse->hw_cap.nss = rtwdev->hal.rf_path_num; 2065 2066 rtw_dbg(rtwdev, RTW_DBG_EFUSE, 2067 "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", 2068 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, 2069 efuse->hw_cap.ant_num, efuse->hw_cap.nss); 2070 2071 return 0; 2072 } 2073 2074 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) 2075 { 2076 rtw_hci_stop(rtwdev); 2077 rtw_mac_power_off(rtwdev); 2078 } 2079 2080 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) 2081 { 2082 struct rtw_efuse *efuse = &rtwdev->efuse; 2083 int ret; 2084 2085 mutex_lock(&rtwdev->mutex); 2086 2087 /* power on mac to read efuse */ 2088 ret = rtw_chip_efuse_enable(rtwdev); 2089 if (ret) 2090 goto out_unlock; 2091 2092 ret = rtw_parse_efuse_map(rtwdev); 2093 if (ret) 2094 goto out_disable; 2095 2096 ret = rtw_dump_hw_feature(rtwdev); 2097 if (ret) 2098 goto out_disable; 2099 2100 ret = rtw_check_supported_rfe(rtwdev); 2101 if (ret) 2102 goto out_disable; 2103 2104 if (efuse->crystal_cap == 0xff) 2105 efuse->crystal_cap = 0; 2106 if (efuse->pa_type_2g == 0xff) 2107 efuse->pa_type_2g = 0; 2108 if (efuse->pa_type_5g == 0xff) 2109 efuse->pa_type_5g = 0; 2110 if (efuse->lna_type_2g == 0xff) 2111 efuse->lna_type_2g = 0; 2112 if (efuse->lna_type_5g == 0xff) 2113 efuse->lna_type_5g = 0; 2114 if (efuse->channel_plan == 0xff) 2115 efuse->channel_plan = 0x7f; 2116 if (efuse->rf_board_option == 0xff) 2117 efuse->rf_board_option = 0; 2118 if (efuse->bt_setting & BIT(0)) 2119 efuse->share_ant = true; 2120 if (efuse->regd == 0xff) 2121 efuse->regd = 0; 2122 if (efuse->tx_bb_swing_setting_2g == 0xff) 2123 efuse->tx_bb_swing_setting_2g = 0; 2124 if (efuse->tx_bb_swing_setting_5g == 0xff) 2125 efuse->tx_bb_swing_setting_5g = 0; 2126 2127 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20; 2128 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; 2129 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; 2130 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; 2131 efuse->ext_lna_5g = efuse->lna_type_5g & BIT(3) ? 1 : 0; 2132 2133 if (!is_valid_ether_addr(efuse->addr)) { 2134 eth_random_addr(efuse->addr); 2135 dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n"); 2136 } 2137 2138 out_disable: 2139 rtw_chip_efuse_disable(rtwdev); 2140 2141 out_unlock: 2142 mutex_unlock(&rtwdev->mutex); 2143 return ret; 2144 } 2145 2146 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) 2147 { 2148 struct rtw_hal *hal = &rtwdev->hal; 2149 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); 2150 2151 if (!rfe_def) 2152 return -ENODEV; 2153 2154 rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type); 2155 2156 rtw_phy_init_tx_power(rtwdev); 2157 rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); 2158 rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); 2159 rtw_phy_tx_power_by_rate_config(hal); 2160 rtw_phy_tx_power_limit_config(hal); 2161 2162 return 0; 2163 } 2164 2165 int rtw_chip_info_setup(struct rtw_dev *rtwdev) 2166 { 2167 int ret; 2168 2169 ret = rtw_chip_parameter_setup(rtwdev); 2170 if (ret) { 2171 rtw_err(rtwdev, "failed to setup chip parameters\n"); 2172 goto err_out; 2173 } 2174 2175 ret = rtw_chip_efuse_info_setup(rtwdev); 2176 if (ret) { 2177 rtw_err(rtwdev, "failed to setup chip efuse info\n"); 2178 goto err_out; 2179 } 2180 2181 ret = rtw_chip_board_info_setup(rtwdev); 2182 if (ret) { 2183 rtw_err(rtwdev, "failed to setup chip board info\n"); 2184 goto err_out; 2185 } 2186 2187 return 0; 2188 2189 err_out: 2190 return ret; 2191 } 2192 EXPORT_SYMBOL(rtw_chip_info_setup); 2193 2194 static void rtw_stats_init(struct rtw_dev *rtwdev) 2195 { 2196 struct rtw_traffic_stats *stats = &rtwdev->stats; 2197 struct rtw_dm_info *dm_info = &rtwdev->dm_info; 2198 int i; 2199 2200 ewma_tp_init(&stats->tx_ewma_tp); 2201 ewma_tp_init(&stats->rx_ewma_tp); 2202 2203 for (i = 0; i < RTW_EVM_NUM; i++) 2204 ewma_evm_init(&dm_info->ewma_evm[i]); 2205 for (i = 0; i < RTW_SNR_NUM; i++) 2206 ewma_snr_init(&dm_info->ewma_snr[i]); 2207 } 2208 2209 int rtw_core_init(struct rtw_dev *rtwdev) 2210 { 2211 const struct rtw_chip_info *chip = rtwdev->chip; 2212 struct rtw_coex *coex = &rtwdev->coex; 2213 int ret; 2214 2215 INIT_LIST_HEAD(&rtwdev->rsvd_page_list); 2216 INIT_LIST_HEAD(&rtwdev->txqs); 2217 2218 timer_setup(&rtwdev->tx_report.purge_timer, 2219 rtw_tx_report_purge_timer, 0); 2220 rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0); 2221 if (!rtwdev->tx_wq) { 2222 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n"); 2223 return -ENOMEM; 2224 } 2225 2226 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); 2227 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work); 2228 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work); 2229 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work); 2230 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work); 2231 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work); 2232 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work); 2233 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work, 2234 rtw_coex_bt_multi_link_remain_work); 2235 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work); 2236 INIT_WORK(&rtwdev->tx_work, rtw_tx_work); 2237 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); 2238 INIT_WORK(&rtwdev->ips_work, rtw_ips_work); 2239 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work); 2240 INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work); 2241 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work); 2242 skb_queue_head_init(&rtwdev->c2h_queue); 2243 skb_queue_head_init(&rtwdev->coex.queue); 2244 skb_queue_head_init(&rtwdev->tx_report.queue); 2245 2246 spin_lock_init(&rtwdev->txq_lock); 2247 spin_lock_init(&rtwdev->tx_report.q_lock); 2248 2249 mutex_init(&rtwdev->mutex); 2250 mutex_init(&rtwdev->hal.tx_power_mutex); 2251 2252 init_waitqueue_head(&rtwdev->coex.wait); 2253 init_completion(&rtwdev->lps_leave_check); 2254 init_completion(&rtwdev->fw_scan_density); 2255 2256 rtwdev->sec.total_cam_num = 32; 2257 rtwdev->hal.current_channel = 1; 2258 rtwdev->dm_info.fix_rate = U8_MAX; 2259 2260 rtw_stats_init(rtwdev); 2261 2262 /* default rx filter setting */ 2263 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | 2264 BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | 2265 BIT_AB | BIT_AM | BIT_APM; 2266 2267 ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW); 2268 if (ret) { 2269 rtw_warn(rtwdev, "no firmware loaded\n"); 2270 goto out; 2271 } 2272 2273 if (chip->wow_fw_name) { 2274 ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW); 2275 if (ret) { 2276 rtw_warn(rtwdev, "no wow firmware loaded\n"); 2277 wait_for_completion(&rtwdev->fw.completion); 2278 if (rtwdev->fw.firmware) 2279 release_firmware(rtwdev->fw.firmware); 2280 goto out; 2281 } 2282 } 2283 2284 #if defined(__FreeBSD__) 2285 rtw_wait_firmware_completion(rtwdev); 2286 #endif 2287 2288 return 0; 2289 2290 out: 2291 destroy_workqueue(rtwdev->tx_wq); 2292 return ret; 2293 } 2294 EXPORT_SYMBOL(rtw_core_init); 2295 2296 void rtw_core_deinit(struct rtw_dev *rtwdev) 2297 { 2298 struct rtw_fw_state *fw = &rtwdev->fw; 2299 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw; 2300 struct rtw_rsvd_page *rsvd_pkt, *tmp; 2301 unsigned long flags; 2302 2303 rtw_wait_firmware_completion(rtwdev); 2304 2305 if (fw->firmware) 2306 release_firmware(fw->firmware); 2307 2308 if (wow_fw->firmware) 2309 release_firmware(wow_fw->firmware); 2310 2311 destroy_workqueue(rtwdev->tx_wq); 2312 timer_delete_sync(&rtwdev->tx_report.purge_timer); 2313 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); 2314 skb_queue_purge(&rtwdev->tx_report.queue); 2315 spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); 2316 skb_queue_purge(&rtwdev->coex.queue); 2317 skb_queue_purge(&rtwdev->c2h_queue); 2318 2319 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, 2320 build_list) { 2321 list_del(&rsvd_pkt->build_list); 2322 kfree(rsvd_pkt); 2323 } 2324 2325 mutex_destroy(&rtwdev->mutex); 2326 mutex_destroy(&rtwdev->hal.tx_power_mutex); 2327 } 2328 EXPORT_SYMBOL(rtw_core_deinit); 2329 2330 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 2331 { 2332 bool sta_mode_only = rtwdev->hci.type == RTW_HCI_TYPE_SDIO; 2333 struct rtw_hal *hal = &rtwdev->hal; 2334 int max_tx_headroom = 0; 2335 int ret; 2336 2337 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; 2338 2339 if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO) 2340 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN; 2341 2342 hw->extra_tx_headroom = max_tx_headroom; 2343 hw->queues = IEEE80211_NUM_ACS; 2344 hw->txq_data_size = sizeof(struct rtw_txq); 2345 hw->sta_data_size = sizeof(struct rtw_sta_info); 2346 hw->vif_data_size = sizeof(struct rtw_vif); 2347 2348 ieee80211_hw_set(hw, SIGNAL_DBM); 2349 ieee80211_hw_set(hw, RX_INCLUDES_FCS); 2350 ieee80211_hw_set(hw, AMPDU_AGGREGATION); 2351 ieee80211_hw_set(hw, MFP_CAPABLE); 2352 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); 2353 ieee80211_hw_set(hw, SUPPORTS_PS); 2354 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); 2355 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT); 2356 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU); 2357 ieee80211_hw_set(hw, HAS_RATE_CONTROL); 2358 ieee80211_hw_set(hw, TX_AMSDU); 2359 ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS); 2360 2361 if (sta_mode_only) 2362 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION); 2363 else 2364 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | 2365 BIT(NL80211_IFTYPE_AP) | 2366 BIT(NL80211_IFTYPE_ADHOC); 2367 hw->wiphy->available_antennas_tx = hal->antenna_tx; 2368 hw->wiphy->available_antennas_rx = hal->antenna_rx; 2369 2370 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | 2371 WIPHY_FLAG_TDLS_EXTERNAL_SETUP; 2372 2373 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR; 2374 hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS; 2375 hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev); 2376 2377 if (!sta_mode_only && rtwdev->chip->id == RTW_CHIP_TYPE_8822C) { 2378 hw->wiphy->iface_combinations = rtw_iface_combs; 2379 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs); 2380 } 2381 2382 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0); 2383 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN); 2384 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL); 2385 2386 #ifdef CONFIG_PM 2387 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub; 2388 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids; 2389 #endif 2390 rtw_set_supported_band(hw, rtwdev->chip); 2391 SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); 2392 2393 hw->wiphy->sar_capa = &rtw_sar_capa; 2394 2395 ret = rtw_regd_init(rtwdev); 2396 if (ret) { 2397 rtw_err(rtwdev, "failed to init regd\n"); 2398 return ret; 2399 } 2400 2401 rtw_led_init(rtwdev); 2402 2403 ret = ieee80211_register_hw(hw); 2404 if (ret) { 2405 rtw_err(rtwdev, "failed to register hw\n"); 2406 goto led_deinit; 2407 } 2408 2409 ret = rtw_regd_hint(rtwdev); 2410 if (ret) { 2411 rtw_err(rtwdev, "failed to hint regd\n"); 2412 goto led_deinit; 2413 } 2414 2415 rtw_debugfs_init(rtwdev); 2416 2417 rtwdev->bf_info.bfer_mu_cnt = 0; 2418 rtwdev->bf_info.bfer_su_cnt = 0; 2419 2420 return 0; 2421 2422 led_deinit: 2423 rtw_led_deinit(rtwdev); 2424 return ret; 2425 } 2426 EXPORT_SYMBOL(rtw_register_hw); 2427 2428 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) 2429 { 2430 const struct rtw_chip_info *chip = rtwdev->chip; 2431 2432 ieee80211_unregister_hw(hw); 2433 rtw_unset_supported_band(hw, chip); 2434 rtw_debugfs_deinit(rtwdev); 2435 rtw_led_deinit(rtwdev); 2436 } 2437 EXPORT_SYMBOL(rtw_unregister_hw); 2438 2439 static 2440 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, 2441 const struct rtw_hw_reg *reg2, u8 nbytes) 2442 { 2443 u8 i; 2444 2445 for (i = 0; i < nbytes; i++) { 2446 u8 v1 = rtw_read8(rtwdev, reg1->addr + i); 2447 u8 v2 = rtw_read8(rtwdev, reg2->addr + i); 2448 2449 rtw_write8(rtwdev, reg1->addr + i, v2); 2450 rtw_write8(rtwdev, reg2->addr + i, v1); 2451 } 2452 } 2453 2454 static 2455 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1, 2456 const struct rtw_hw_reg *reg2) 2457 { 2458 u32 v1, v2; 2459 2460 v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask); 2461 v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask); 2462 rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1); 2463 rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2); 2464 } 2465 2466 struct rtw_iter_port_switch_data { 2467 struct rtw_dev *rtwdev; 2468 struct rtw_vif *rtwvif_ap; 2469 }; 2470 2471 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif) 2472 { 2473 struct rtw_iter_port_switch_data *iter_data = data; 2474 struct rtw_dev *rtwdev = iter_data->rtwdev; 2475 struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv; 2476 struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap; 2477 const struct rtw_hw_reg *reg1, *reg2; 2478 2479 if (rtwvif_target->port != RTW_PORT_0) 2480 return; 2481 2482 rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n", 2483 rtwvif_ap->port, rtwvif_target->port); 2484 2485 /* Leave LPS so the value swapped are not in PS mode */ 2486 rtw_leave_lps(rtwdev); 2487 2488 reg1 = &rtwvif_ap->conf->net_type; 2489 reg2 = &rtwvif_target->conf->net_type; 2490 rtw_swap_reg_mask(rtwdev, reg1, reg2); 2491 2492 reg1 = &rtwvif_ap->conf->mac_addr; 2493 reg2 = &rtwvif_target->conf->mac_addr; 2494 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); 2495 2496 reg1 = &rtwvif_ap->conf->bssid; 2497 reg2 = &rtwvif_target->conf->bssid; 2498 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN); 2499 2500 reg1 = &rtwvif_ap->conf->bcn_ctrl; 2501 reg2 = &rtwvif_target->conf->bcn_ctrl; 2502 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1); 2503 2504 swap(rtwvif_target->port, rtwvif_ap->port); 2505 swap(rtwvif_target->conf, rtwvif_ap->conf); 2506 2507 rtw_fw_default_port(rtwdev, rtwvif_target); 2508 } 2509 2510 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif) 2511 { 2512 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 2513 struct rtw_iter_port_switch_data iter_data; 2514 2515 if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0) 2516 return; 2517 2518 iter_data.rtwdev = rtwdev; 2519 iter_data.rtwvif_ap = rtwvif; 2520 rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data); 2521 } 2522 2523 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif) 2524 { 2525 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; 2526 bool *active = data; 2527 2528 if (*active) 2529 return; 2530 2531 if (vif->type != NL80211_IFTYPE_STATION) 2532 return; 2533 2534 if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid)) 2535 *active = true; 2536 } 2537 2538 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev) 2539 { 2540 bool sta_active = false; 2541 2542 rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active); 2543 2544 return rtwdev->ap_active || sta_active; 2545 } 2546 2547 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable) 2548 { 2549 if (!rtwdev->ap_active) 2550 return; 2551 2552 if (enable) { 2553 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); 2554 rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE); 2555 } else { 2556 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION); 2557 rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE); 2558 } 2559 } 2560 2561 MODULE_AUTHOR("Realtek Corporation"); 2562 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); 2563 MODULE_LICENSE("Dual BSD/GPL"); 2564