xref: /freebsd/sys/contrib/dev/rtw88/main.c (revision 02e9120893770924227138ba49df1edb3896112a)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #if defined(__FreeBSD__)
6 #define	LINUXKPI_PARAM_PREFIX	rtw88_
7 #endif
8 
9 #include <linux/devcoredump.h>
10 
11 #include "main.h"
12 #include "regd.h"
13 #include "fw.h"
14 #include "ps.h"
15 #include "sec.h"
16 #include "mac.h"
17 #include "coex.h"
18 #include "phy.h"
19 #include "reg.h"
20 #include "efuse.h"
21 #include "tx.h"
22 #include "debug.h"
23 #include "bf.h"
24 #include "sar.h"
25 #include "sdio.h"
26 
27 bool rtw_disable_lps_deep_mode;
28 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
29 bool rtw_bf_support = true;
30 unsigned int rtw_debug_mask;
31 EXPORT_SYMBOL(rtw_debug_mask);
32 /* EDCCA is enabled during normal behavior. For debugging purpose in
33  * a noisy environment, it can be disabled via edcca debugfs. Because
34  * all rtw88 devices will probably be affected if environment is noisy,
35  * rtw_edcca_enabled is just declared by driver instead of by device.
36  * So, turning it off will take effect for all rtw88 devices before
37  * there is a tough reason to maintain rtw_edcca_enabled by device.
38  */
39 bool rtw_edcca_enabled = true;
40 
41 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
42 module_param_named(support_bf, rtw_bf_support, bool, 0644);
43 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
44 
45 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
46 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
47 MODULE_PARM_DESC(debug_mask, "Debugging mask");
48 
49 static struct ieee80211_channel rtw_channeltable_2g[] = {
50 	{.center_freq = 2412, .hw_value = 1,},
51 	{.center_freq = 2417, .hw_value = 2,},
52 	{.center_freq = 2422, .hw_value = 3,},
53 	{.center_freq = 2427, .hw_value = 4,},
54 	{.center_freq = 2432, .hw_value = 5,},
55 	{.center_freq = 2437, .hw_value = 6,},
56 	{.center_freq = 2442, .hw_value = 7,},
57 	{.center_freq = 2447, .hw_value = 8,},
58 	{.center_freq = 2452, .hw_value = 9,},
59 	{.center_freq = 2457, .hw_value = 10,},
60 	{.center_freq = 2462, .hw_value = 11,},
61 	{.center_freq = 2467, .hw_value = 12,},
62 	{.center_freq = 2472, .hw_value = 13,},
63 	{.center_freq = 2484, .hw_value = 14,},
64 };
65 
66 static struct ieee80211_channel rtw_channeltable_5g[] = {
67 	{.center_freq = 5180, .hw_value = 36,},
68 	{.center_freq = 5200, .hw_value = 40,},
69 	{.center_freq = 5220, .hw_value = 44,},
70 	{.center_freq = 5240, .hw_value = 48,},
71 	{.center_freq = 5260, .hw_value = 52,},
72 	{.center_freq = 5280, .hw_value = 56,},
73 	{.center_freq = 5300, .hw_value = 60,},
74 	{.center_freq = 5320, .hw_value = 64,},
75 	{.center_freq = 5500, .hw_value = 100,},
76 	{.center_freq = 5520, .hw_value = 104,},
77 	{.center_freq = 5540, .hw_value = 108,},
78 	{.center_freq = 5560, .hw_value = 112,},
79 	{.center_freq = 5580, .hw_value = 116,},
80 	{.center_freq = 5600, .hw_value = 120,},
81 	{.center_freq = 5620, .hw_value = 124,},
82 	{.center_freq = 5640, .hw_value = 128,},
83 	{.center_freq = 5660, .hw_value = 132,},
84 	{.center_freq = 5680, .hw_value = 136,},
85 	{.center_freq = 5700, .hw_value = 140,},
86 	{.center_freq = 5720, .hw_value = 144,},
87 	{.center_freq = 5745, .hw_value = 149,},
88 	{.center_freq = 5765, .hw_value = 153,},
89 	{.center_freq = 5785, .hw_value = 157,},
90 	{.center_freq = 5805, .hw_value = 161,},
91 	{.center_freq = 5825, .hw_value = 165,
92 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
93 };
94 
95 static struct ieee80211_rate rtw_ratetable[] = {
96 	{.bitrate = 10, .hw_value = 0x00,},
97 	{.bitrate = 20, .hw_value = 0x01,},
98 	{.bitrate = 55, .hw_value = 0x02,},
99 	{.bitrate = 110, .hw_value = 0x03,},
100 	{.bitrate = 60, .hw_value = 0x04,},
101 	{.bitrate = 90, .hw_value = 0x05,},
102 	{.bitrate = 120, .hw_value = 0x06,},
103 	{.bitrate = 180, .hw_value = 0x07,},
104 	{.bitrate = 240, .hw_value = 0x08,},
105 	{.bitrate = 360, .hw_value = 0x09,},
106 	{.bitrate = 480, .hw_value = 0x0a,},
107 	{.bitrate = 540, .hw_value = 0x0b,},
108 };
109 
110 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
111 	{
112 		.max = 1,
113 		.types = BIT(NL80211_IFTYPE_STATION),
114 	},
115 	{
116 		.max = 1,
117 		.types = BIT(NL80211_IFTYPE_AP),
118 	}
119 };
120 
121 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
122 	{
123 		.limits = rtw_iface_limits,
124 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
125 		.max_interfaces = 2,
126 		.num_different_channels = 1,
127 	}
128 };
129 
130 u16 rtw_desc_to_bitrate(u8 desc_rate)
131 {
132 	struct ieee80211_rate rate;
133 
134 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
135 		return 0;
136 
137 	rate = rtw_ratetable[desc_rate];
138 
139 	return rate.bitrate;
140 }
141 
142 static struct ieee80211_supported_band rtw_band_2ghz = {
143 	.band = NL80211_BAND_2GHZ,
144 
145 	.channels = rtw_channeltable_2g,
146 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
147 
148 	.bitrates = rtw_ratetable,
149 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
150 
151 	.ht_cap = {0},
152 	.vht_cap = {0},
153 };
154 
155 static struct ieee80211_supported_band rtw_band_5ghz = {
156 	.band = NL80211_BAND_5GHZ,
157 
158 	.channels = rtw_channeltable_5g,
159 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
160 
161 	/* 5G has no CCK rates */
162 	.bitrates = rtw_ratetable + 4,
163 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
164 
165 	.ht_cap = {0},
166 	.vht_cap = {0},
167 };
168 
169 struct rtw_watch_dog_iter_data {
170 	struct rtw_dev *rtwdev;
171 	struct rtw_vif *rtwvif;
172 };
173 
174 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
175 {
176 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
177 	u8 fix_rate_enable = 0;
178 	u8 new_csi_rate_idx;
179 
180 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
181 	    rtwvif->bfee.role != RTW_BFEE_MU)
182 		return;
183 
184 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
185 			      bf_info->cur_csi_rpt_rate,
186 			      fix_rate_enable, &new_csi_rate_idx);
187 
188 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
189 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
190 }
191 
192 static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
193 {
194 	struct rtw_watch_dog_iter_data *iter_data = data;
195 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
196 
197 	if (vif->type == NL80211_IFTYPE_STATION)
198 		if (vif->cfg.assoc)
199 			iter_data->rtwvif = rtwvif;
200 
201 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
202 
203 	rtwvif->stats.tx_unicast = 0;
204 	rtwvif->stats.rx_unicast = 0;
205 	rtwvif->stats.tx_cnt = 0;
206 	rtwvif->stats.rx_cnt = 0;
207 }
208 
209 /* process TX/RX statistics periodically for hardware,
210  * the information helps hardware to enhance performance
211  */
212 static void rtw_watch_dog_work(struct work_struct *work)
213 {
214 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
215 					      watch_dog_work.work);
216 	struct rtw_traffic_stats *stats = &rtwdev->stats;
217 	struct rtw_watch_dog_iter_data data = {};
218 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
219 	bool ps_active;
220 
221 	mutex_lock(&rtwdev->mutex);
222 
223 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
224 		goto unlock;
225 
226 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
227 				     RTW_WATCH_DOG_DELAY_TIME);
228 
229 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
230 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
231 	else
232 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
233 
234 	rtw_coex_wl_status_check(rtwdev);
235 	rtw_coex_query_bt_hid_list(rtwdev);
236 
237 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
238 		rtw_coex_wl_status_change_notify(rtwdev, 0);
239 
240 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
241 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
242 		ps_active = true;
243 	else
244 		ps_active = false;
245 
246 	ewma_tp_add(&stats->tx_ewma_tp,
247 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
248 	ewma_tp_add(&stats->rx_ewma_tp,
249 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
250 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
251 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
252 
253 	/* reset tx/rx statictics */
254 	stats->tx_unicast = 0;
255 	stats->rx_unicast = 0;
256 	stats->tx_cnt = 0;
257 	stats->rx_cnt = 0;
258 
259 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
260 		goto unlock;
261 
262 	/* make sure BB/RF is working for dynamic mech */
263 	rtw_leave_lps(rtwdev);
264 
265 	rtw_phy_dynamic_mechanism(rtwdev);
266 
267 	data.rtwdev = rtwdev;
268 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
269 	 * to avoid taking local->iflist_mtx mutex
270 	 */
271 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
272 
273 	/* fw supports only one station associated to enter lps, if there are
274 	 * more than two stations associated to the AP, then we can not enter
275 	 * lps, because fw does not handle the overlapped beacon interval
276 	 *
277 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
278 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
279 	 * get that vif and check if device is having traffic more than the
280 	 * threshold.
281 	 */
282 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
283 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
284 		rtw_enter_lps(rtwdev, data.rtwvif->port);
285 
286 	rtwdev->watch_dog_cnt++;
287 
288 unlock:
289 	mutex_unlock(&rtwdev->mutex);
290 }
291 
292 static void rtw_c2h_work(struct work_struct *work)
293 {
294 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
295 	struct sk_buff *skb, *tmp;
296 
297 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
298 		skb_unlink(skb, &rtwdev->c2h_queue);
299 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
300 		dev_kfree_skb_any(skb);
301 	}
302 }
303 
304 static void rtw_ips_work(struct work_struct *work)
305 {
306 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
307 
308 	mutex_lock(&rtwdev->mutex);
309 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
310 		rtw_enter_ips(rtwdev);
311 	mutex_unlock(&rtwdev->mutex);
312 }
313 
314 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
315 {
316 	unsigned long mac_id;
317 
318 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
319 	if (mac_id < RTW_MAX_MAC_ID_NUM)
320 		set_bit(mac_id, rtwdev->mac_id_map);
321 
322 	return mac_id;
323 }
324 
325 static void rtw_sta_rc_work(struct work_struct *work)
326 {
327 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
328 					       rc_work);
329 	struct rtw_dev *rtwdev = si->rtwdev;
330 
331 	mutex_lock(&rtwdev->mutex);
332 	rtw_update_sta_info(rtwdev, si, true);
333 	mutex_unlock(&rtwdev->mutex);
334 }
335 
336 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
337 		struct ieee80211_vif *vif)
338 {
339 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
340 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
341 	int i;
342 
343 	si->mac_id = rtw_acquire_macid(rtwdev);
344 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
345 		return -ENOSPC;
346 
347 	if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
348 		rtwvif->mac_id = si->mac_id;
349 	si->rtwdev = rtwdev;
350 	si->sta = sta;
351 	si->vif = vif;
352 	si->init_ra_lv = 1;
353 	ewma_rssi_init(&si->avg_rssi);
354 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
355 		rtw_txq_init(rtwdev, sta->txq[i]);
356 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
357 
358 	rtw_update_sta_info(rtwdev, si, true);
359 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
360 
361 	rtwdev->sta_cnt++;
362 	rtwdev->beacon_loss = false;
363 #if defined(__linux__)
364 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
365 		sta->addr, si->mac_id);
366 #elif defined(__FreeBSD__)
367 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D joined with macid %d\n",
368 		sta->addr, ":", si->mac_id);
369 #endif
370 
371 	return 0;
372 }
373 
374 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
375 		    bool fw_exist)
376 {
377 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
378 	int i;
379 
380 	cancel_work_sync(&si->rc_work);
381 
382 	rtw_release_macid(rtwdev, si->mac_id);
383 	if (fw_exist)
384 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
385 
386 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
387 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
388 
389 	kfree(si->mask);
390 
391 	rtwdev->sta_cnt--;
392 #if defined(__linux__)
393 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
394 		sta->addr, si->mac_id);
395 #elif defined(__FreeBSD__)
396 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %6D with macid %d left\n",
397 		sta->addr, ":", si->mac_id);
398 #endif
399 }
400 
401 struct rtw_fwcd_hdr {
402 	u32 item;
403 	u32 size;
404 	u32 padding1;
405 	u32 padding2;
406 } __packed;
407 
408 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
409 {
410 	const struct rtw_chip_info *chip = rtwdev->chip;
411 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
412 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
413 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
414 	u8 i;
415 
416 	if (segs) {
417 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
418 
419 		for (i = 0; i < segs->num; i++)
420 			prep_size += segs->segs[i];
421 	}
422 
423 	desc->data = vmalloc(prep_size);
424 	if (!desc->data)
425 		return -ENOMEM;
426 
427 	desc->size = prep_size;
428 	desc->next = desc->data;
429 
430 	return 0;
431 }
432 
433 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
434 {
435 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
436 	struct rtw_fwcd_hdr *hdr;
437 	u8 *next;
438 
439 	if (!desc->data) {
440 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
441 		return NULL;
442 	}
443 
444 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
445 	if (next - desc->data + size > desc->size) {
446 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
447 		return NULL;
448 	}
449 
450 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
451 	hdr->item = item;
452 	hdr->size = size;
453 	hdr->padding1 = 0x01234567;
454 	hdr->padding2 = 0x89abcdef;
455 	desc->next = next + size;
456 
457 	return next;
458 }
459 
460 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
461 {
462 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463 
464 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
465 
466 	/* Data will be freed after lifetime of device coredump. After calling
467 	 * dev_coredump, data is supposed to be handled by the device coredump
468 	 * framework. Note that a new dump will be discarded if a previous one
469 	 * hasn't been released yet.
470 	 */
471 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
472 }
473 
474 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
475 {
476 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
477 
478 	if (free_self) {
479 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
480 		vfree(desc->data);
481 	}
482 
483 	desc->data = NULL;
484 	desc->next = NULL;
485 }
486 
487 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
488 {
489 	u32 size = rtwdev->chip->fw_rxff_size;
490 	u32 *buf;
491 	u8 seq;
492 
493 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
494 	if (!buf)
495 		return -ENOMEM;
496 
497 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
498 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
499 		return -EINVAL;
500 	}
501 
502 	if (GET_FW_DUMP_LEN(buf) == 0) {
503 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
504 		return -EINVAL;
505 	}
506 
507 	seq = GET_FW_DUMP_SEQ(buf);
508 	if (seq > 0) {
509 		rtw_dbg(rtwdev, RTW_DBG_FW,
510 			"fw crash dump's seq is wrong: %d\n", seq);
511 		return -EINVAL;
512 	}
513 
514 	return 0;
515 }
516 
517 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
518 		u32 fwcd_item)
519 {
520 	u32 rxff = rtwdev->chip->fw_rxff_size;
521 	u32 dump_size, done_size = 0;
522 	u8 *buf;
523 	int ret;
524 
525 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
526 	if (!buf)
527 		return -ENOMEM;
528 
529 	while (size) {
530 		dump_size = size > rxff ? rxff : size;
531 
532 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
533 					  dump_size);
534 		if (ret) {
535 			rtw_err(rtwdev,
536 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
537 				ocp_src, done_size);
538 			return ret;
539 		}
540 
541 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
542 				       dump_size, (u32 *)(buf + done_size));
543 		if (ret) {
544 			rtw_err(rtwdev,
545 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
546 				ocp_src, done_size);
547 			return ret;
548 		}
549 
550 		size -= dump_size;
551 		done_size += dump_size;
552 	}
553 
554 	return 0;
555 }
556 EXPORT_SYMBOL(rtw_dump_fw);
557 
558 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
559 {
560 	u8 *buf;
561 	u32 i;
562 
563 	if (addr & 0x3) {
564 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
565 		return -EINVAL;
566 	}
567 
568 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
569 	if (!buf)
570 		return -ENOMEM;
571 
572 	for (i = 0; i < size; i += 4)
573 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL(rtw_dump_reg);
578 
579 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
580 			   struct ieee80211_bss_conf *conf)
581 {
582 	struct ieee80211_vif *vif = NULL;
583 
584 	if (conf)
585 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
586 
587 	if (conf && vif->cfg.assoc) {
588 		rtwvif->aid = vif->cfg.aid;
589 		rtwvif->net_type = RTW_NET_MGD_LINKED;
590 	} else {
591 		rtwvif->aid = 0;
592 		rtwvif->net_type = RTW_NET_NO_LINK;
593 	}
594 }
595 
596 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
597 			       struct ieee80211_vif *vif,
598 			       struct ieee80211_sta *sta,
599 			       struct ieee80211_key_conf *key,
600 			       void *data)
601 {
602 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
603 	struct rtw_sec_desc *sec = &rtwdev->sec;
604 
605 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
606 }
607 
608 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
609 {
610 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
611 
612 	if (rtwdev->sta_cnt == 0) {
613 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
614 		return;
615 	}
616 	rtw_sta_remove(rtwdev, sta, false);
617 }
618 
619 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
620 {
621 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
622 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
623 
624 	rtw_bf_disassoc(rtwdev, vif, NULL);
625 	rtw_vif_assoc_changed(rtwvif, NULL);
626 	rtw_txq_cleanup(rtwdev, vif->txq);
627 }
628 
629 void rtw_fw_recovery(struct rtw_dev *rtwdev)
630 {
631 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
632 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
633 }
634 
635 static void __fw_recovery_work(struct rtw_dev *rtwdev)
636 {
637 	int ret = 0;
638 
639 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
640 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
641 
642 	ret = rtw_fwcd_prep(rtwdev);
643 	if (ret)
644 		goto free;
645 	ret = rtw_fw_dump_crash_log(rtwdev);
646 	if (ret)
647 		goto free;
648 	ret = rtw_chip_dump_fw_crash(rtwdev);
649 	if (ret)
650 		goto free;
651 
652 	rtw_fwcd_dump(rtwdev);
653 free:
654 	rtw_fwcd_free(rtwdev, !!ret);
655 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
656 
657 	WARN(1, "firmware crash, start reset and recover\n");
658 
659 	rcu_read_lock();
660 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
661 	rcu_read_unlock();
662 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
663 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
664 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
665 	rtw_enter_ips(rtwdev);
666 }
667 
668 static void rtw_fw_recovery_work(struct work_struct *work)
669 {
670 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
671 					      fw_recovery_work);
672 
673 	mutex_lock(&rtwdev->mutex);
674 	__fw_recovery_work(rtwdev);
675 	mutex_unlock(&rtwdev->mutex);
676 
677 	ieee80211_restart_hw(rtwdev->hw);
678 }
679 
680 struct rtw_txq_ba_iter_data {
681 };
682 
683 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
684 {
685 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
686 	int ret;
687 	u8 tid;
688 
689 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
690 	while (tid != IEEE80211_NUM_TIDS) {
691 		clear_bit(tid, si->tid_ba);
692 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
693 		if (ret == -EINVAL) {
694 			struct ieee80211_txq *txq;
695 			struct rtw_txq *rtwtxq;
696 
697 			txq = sta->txq[tid];
698 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
699 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
700 		}
701 
702 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
703 	}
704 }
705 
706 static void rtw_txq_ba_work(struct work_struct *work)
707 {
708 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
709 	struct rtw_txq_ba_iter_data data;
710 
711 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
712 }
713 
714 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
715 {
716 	if (IS_CH_2G_BAND(channel))
717 		pkt_stat->band = NL80211_BAND_2GHZ;
718 	else if (IS_CH_5G_BAND(channel))
719 		pkt_stat->band = NL80211_BAND_5GHZ;
720 	else
721 		return;
722 
723 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
724 }
725 EXPORT_SYMBOL(rtw_set_rx_freq_band);
726 
727 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
728 {
729 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
730 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
731 }
732 
733 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
734 			u8 primary_channel, enum rtw_supported_band band,
735 			enum rtw_bandwidth bandwidth)
736 {
737 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
738 	struct rtw_hal *hal = &rtwdev->hal;
739 	u8 *cch_by_bw = hal->cch_by_bw;
740 	u32 center_freq, primary_freq;
741 	enum rtw_sar_bands sar_band;
742 	u8 primary_channel_idx;
743 
744 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
745 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
746 
747 	/* assign the center channel used while 20M bw is selected */
748 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
749 
750 	/* assign the center channel used while current bw is selected */
751 	cch_by_bw[bandwidth] = center_channel;
752 
753 	switch (bandwidth) {
754 	case RTW_CHANNEL_WIDTH_20:
755 	default:
756 		primary_channel_idx = RTW_SC_DONT_CARE;
757 		break;
758 	case RTW_CHANNEL_WIDTH_40:
759 		if (primary_freq > center_freq)
760 			primary_channel_idx = RTW_SC_20_UPPER;
761 		else
762 			primary_channel_idx = RTW_SC_20_LOWER;
763 		break;
764 	case RTW_CHANNEL_WIDTH_80:
765 		if (primary_freq > center_freq) {
766 			if (primary_freq - center_freq == 10)
767 				primary_channel_idx = RTW_SC_20_UPPER;
768 			else
769 				primary_channel_idx = RTW_SC_20_UPMOST;
770 
771 			/* assign the center channel used
772 			 * while 40M bw is selected
773 			 */
774 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
775 		} else {
776 			if (center_freq - primary_freq == 10)
777 				primary_channel_idx = RTW_SC_20_LOWER;
778 			else
779 				primary_channel_idx = RTW_SC_20_LOWEST;
780 
781 			/* assign the center channel used
782 			 * while 40M bw is selected
783 			 */
784 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
785 		}
786 		break;
787 	}
788 
789 	switch (center_channel) {
790 	case 1 ... 14:
791 		sar_band = RTW_SAR_BAND_0;
792 		break;
793 	case 36 ... 64:
794 		sar_band = RTW_SAR_BAND_1;
795 		break;
796 	case 100 ... 144:
797 		sar_band = RTW_SAR_BAND_3;
798 		break;
799 	case 149 ... 177:
800 		sar_band = RTW_SAR_BAND_4;
801 		break;
802 	default:
803 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
804 		sar_band = RTW_SAR_BAND_0;
805 		break;
806 	}
807 
808 	hal->current_primary_channel_index = primary_channel_idx;
809 	hal->current_band_width = bandwidth;
810 	hal->primary_channel = primary_channel;
811 	hal->current_channel = center_channel;
812 	hal->current_band_type = band;
813 	hal->sar_band = sar_band;
814 }
815 
816 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
817 			    struct rtw_channel_params *chan_params)
818 {
819 	struct ieee80211_channel *channel = chandef->chan;
820 	enum nl80211_chan_width width = chandef->width;
821 	u32 primary_freq, center_freq;
822 	u8 center_chan;
823 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
824 
825 	center_chan = channel->hw_value;
826 	primary_freq = channel->center_freq;
827 	center_freq = chandef->center_freq1;
828 
829 	switch (width) {
830 	case NL80211_CHAN_WIDTH_20_NOHT:
831 	case NL80211_CHAN_WIDTH_20:
832 		bandwidth = RTW_CHANNEL_WIDTH_20;
833 		break;
834 	case NL80211_CHAN_WIDTH_40:
835 		bandwidth = RTW_CHANNEL_WIDTH_40;
836 		if (primary_freq > center_freq)
837 			center_chan -= 2;
838 		else
839 			center_chan += 2;
840 		break;
841 	case NL80211_CHAN_WIDTH_80:
842 		bandwidth = RTW_CHANNEL_WIDTH_80;
843 		if (primary_freq > center_freq) {
844 			if (primary_freq - center_freq == 10)
845 				center_chan -= 2;
846 			else
847 				center_chan -= 6;
848 		} else {
849 			if (center_freq - primary_freq == 10)
850 				center_chan += 2;
851 			else
852 				center_chan += 6;
853 		}
854 		break;
855 	default:
856 		center_chan = 0;
857 		break;
858 	}
859 
860 	chan_params->center_chan = center_chan;
861 	chan_params->bandwidth = bandwidth;
862 	chan_params->primary_chan = channel->hw_value;
863 }
864 
865 void rtw_set_channel(struct rtw_dev *rtwdev)
866 {
867 	const struct rtw_chip_info *chip = rtwdev->chip;
868 	struct ieee80211_hw *hw = rtwdev->hw;
869 	struct rtw_hal *hal = &rtwdev->hal;
870 	struct rtw_channel_params ch_param;
871 	u8 center_chan, primary_chan, bandwidth, band;
872 
873 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
874 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
875 		return;
876 
877 	center_chan = ch_param.center_chan;
878 	primary_chan = ch_param.primary_chan;
879 	bandwidth = ch_param.bandwidth;
880 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
881 
882 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
883 
884 	if (rtwdev->scan_info.op_chan)
885 		rtw_store_op_chan(rtwdev, true);
886 
887 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
888 			       hal->current_primary_channel_index);
889 
890 	if (hal->current_band_type == RTW_BAND_5G) {
891 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
892 	} else {
893 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
894 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
895 		else
896 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
897 	}
898 
899 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
900 
901 	/* if the channel isn't set for scanning, we will do RF calibration
902 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
903 	 * during scanning on each channel takes too long.
904 	 */
905 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
906 		rtwdev->need_rfk = true;
907 }
908 
909 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
910 {
911 	const struct rtw_chip_info *chip = rtwdev->chip;
912 
913 	if (rtwdev->need_rfk) {
914 		rtwdev->need_rfk = false;
915 		chip->ops->phy_calibration(rtwdev);
916 	}
917 }
918 
919 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
920 {
921 	int i;
922 
923 	for (i = 0; i < ETH_ALEN; i++)
924 		rtw_write8(rtwdev, start + i, addr[i]);
925 }
926 
927 void rtw_vif_port_config(struct rtw_dev *rtwdev,
928 			 struct rtw_vif *rtwvif,
929 			 u32 config)
930 {
931 	u32 addr, mask;
932 
933 	if (config & PORT_SET_MAC_ADDR) {
934 		addr = rtwvif->conf->mac_addr.addr;
935 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
936 	}
937 	if (config & PORT_SET_BSSID) {
938 		addr = rtwvif->conf->bssid.addr;
939 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
940 	}
941 	if (config & PORT_SET_NET_TYPE) {
942 		addr = rtwvif->conf->net_type.addr;
943 		mask = rtwvif->conf->net_type.mask;
944 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
945 	}
946 	if (config & PORT_SET_AID) {
947 		addr = rtwvif->conf->aid.addr;
948 		mask = rtwvif->conf->aid.mask;
949 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
950 	}
951 	if (config & PORT_SET_BCN_CTRL) {
952 		addr = rtwvif->conf->bcn_ctrl.addr;
953 		mask = rtwvif->conf->bcn_ctrl.mask;
954 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
955 	}
956 }
957 
958 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
959 {
960 	u8 bw = 0;
961 
962 	switch (bw_cap) {
963 	case EFUSE_HW_CAP_IGNORE:
964 	case EFUSE_HW_CAP_SUPP_BW80:
965 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
966 		fallthrough;
967 	case EFUSE_HW_CAP_SUPP_BW40:
968 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
969 		fallthrough;
970 	default:
971 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
972 		break;
973 	}
974 
975 	return bw;
976 }
977 
978 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
979 {
980 	const struct rtw_chip_info *chip = rtwdev->chip;
981 	struct rtw_hal *hal = &rtwdev->hal;
982 
983 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
984 	    hw_ant_num >= hal->rf_path_num)
985 		return;
986 
987 	switch (hw_ant_num) {
988 	case 1:
989 		hal->rf_type = RF_1T1R;
990 		hal->rf_path_num = 1;
991 		if (!chip->fix_rf_phy_num)
992 			hal->rf_phy_num = hal->rf_path_num;
993 		hal->antenna_tx = BB_PATH_A;
994 		hal->antenna_rx = BB_PATH_A;
995 		break;
996 	default:
997 		WARN(1, "invalid hw configuration from efuse\n");
998 		break;
999 	}
1000 }
1001 
1002 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
1003 {
1004 	u64 ra_mask = 0;
1005 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
1006 	u8 vht_mcs_cap;
1007 	int i, nss;
1008 
1009 	/* 4SS, every two bits for MCS7/8/9 */
1010 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
1011 		vht_mcs_cap = mcs_map & 0x3;
1012 		switch (vht_mcs_cap) {
1013 		case 2: /* MCS9 */
1014 			ra_mask |= 0x3ffULL << nss;
1015 			break;
1016 		case 1: /* MCS8 */
1017 			ra_mask |= 0x1ffULL << nss;
1018 			break;
1019 		case 0: /* MCS7 */
1020 			ra_mask |= 0x0ffULL << nss;
1021 			break;
1022 		default:
1023 			break;
1024 		}
1025 	}
1026 
1027 	return ra_mask;
1028 }
1029 
1030 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1031 {
1032 	u8 rate_id = 0;
1033 
1034 	switch (wireless_set) {
1035 	case WIRELESS_CCK:
1036 		rate_id = RTW_RATEID_B_20M;
1037 		break;
1038 	case WIRELESS_OFDM:
1039 		rate_id = RTW_RATEID_G;
1040 		break;
1041 	case WIRELESS_CCK | WIRELESS_OFDM:
1042 		rate_id = RTW_RATEID_BG;
1043 		break;
1044 	case WIRELESS_OFDM | WIRELESS_HT:
1045 		if (tx_num == 1)
1046 			rate_id = RTW_RATEID_GN_N1SS;
1047 		else if (tx_num == 2)
1048 			rate_id = RTW_RATEID_GN_N2SS;
1049 		else if (tx_num == 3)
1050 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1051 		break;
1052 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1053 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1054 			if (tx_num == 1)
1055 				rate_id = RTW_RATEID_BGN_40M_1SS;
1056 			else if (tx_num == 2)
1057 				rate_id = RTW_RATEID_BGN_40M_2SS;
1058 			else if (tx_num == 3)
1059 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1060 			else if (tx_num == 4)
1061 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1062 		} else {
1063 			if (tx_num == 1)
1064 				rate_id = RTW_RATEID_BGN_20M_1SS;
1065 			else if (tx_num == 2)
1066 				rate_id = RTW_RATEID_BGN_20M_2SS;
1067 			else if (tx_num == 3)
1068 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1069 			else if (tx_num == 4)
1070 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1071 		}
1072 		break;
1073 	case WIRELESS_OFDM | WIRELESS_VHT:
1074 		if (tx_num == 1)
1075 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1076 		else if (tx_num == 2)
1077 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1078 		else if (tx_num == 3)
1079 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1080 		else if (tx_num == 4)
1081 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1082 		break;
1083 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1084 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1085 			if (tx_num == 1)
1086 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1087 			else if (tx_num == 2)
1088 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1089 			else if (tx_num == 3)
1090 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1091 			else if (tx_num == 4)
1092 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1093 		} else {
1094 			if (tx_num == 1)
1095 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1096 			else if (tx_num == 2)
1097 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1098 			else if (tx_num == 3)
1099 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1100 			else if (tx_num == 4)
1101 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1102 		}
1103 		break;
1104 	default:
1105 		break;
1106 	}
1107 
1108 	return rate_id;
1109 }
1110 
1111 #define RA_MASK_CCK_RATES	0x0000f
1112 #define RA_MASK_OFDM_RATES	0x00ff0
1113 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1114 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1115 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1116 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1117 				 RA_MASK_HT_RATES_2SS | \
1118 				 RA_MASK_HT_RATES_3SS)
1119 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1120 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1121 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1122 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1123 				 RA_MASK_VHT_RATES_2SS | \
1124 				 RA_MASK_VHT_RATES_3SS)
1125 #define RA_MASK_CCK_IN_BG	0x00005
1126 #define RA_MASK_CCK_IN_HT	0x00005
1127 #define RA_MASK_CCK_IN_VHT	0x00005
1128 #define RA_MASK_OFDM_IN_VHT	0x00010
1129 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1130 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1131 
1132 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1133 {
1134 	u8 rssi_level = si->rssi_level;
1135 
1136 	if (wireless_set == WIRELESS_CCK)
1137 		return 0xffffffffffffffffULL;
1138 
1139 	if (rssi_level == 0)
1140 		return 0xffffffffffffffffULL;
1141 	else if (rssi_level == 1)
1142 		return 0xfffffffffffffff0ULL;
1143 	else if (rssi_level == 2)
1144 		return 0xffffffffffffefe0ULL;
1145 	else if (rssi_level == 3)
1146 		return 0xffffffffffffcfc0ULL;
1147 	else if (rssi_level == 4)
1148 		return 0xffffffffffff8f80ULL;
1149 	else
1150 		return 0xffffffffffff0f00ULL;
1151 }
1152 
1153 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1154 {
1155 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1156 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1157 
1158 	if (ra_mask == 0)
1159 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1160 
1161 	return ra_mask;
1162 }
1163 
1164 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1165 			     u64 ra_mask, bool is_vht_enable)
1166 {
1167 	struct rtw_hal *hal = &rtwdev->hal;
1168 	const struct cfg80211_bitrate_mask *mask = si->mask;
1169 	u64 cfg_mask = GENMASK_ULL(63, 0);
1170 	u8 band;
1171 
1172 	if (!si->use_cfg_mask)
1173 		return ra_mask;
1174 
1175 	band = hal->current_band_type;
1176 	if (band == RTW_BAND_2G) {
1177 		band = NL80211_BAND_2GHZ;
1178 		cfg_mask = mask->control[band].legacy;
1179 	} else if (band == RTW_BAND_5G) {
1180 		band = NL80211_BAND_5GHZ;
1181 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1182 					   RA_MASK_OFDM_RATES);
1183 	}
1184 
1185 	if (!is_vht_enable) {
1186 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1187 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1188 						    RA_MASK_HT_RATES_1SS);
1189 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1190 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1191 						    RA_MASK_HT_RATES_2SS);
1192 	} else {
1193 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1194 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1195 						    RA_MASK_VHT_RATES_1SS);
1196 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1197 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1198 						    RA_MASK_VHT_RATES_2SS);
1199 	}
1200 
1201 	ra_mask &= cfg_mask;
1202 
1203 	return ra_mask;
1204 }
1205 
1206 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1207 			 bool reset_ra_mask)
1208 {
1209 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1210 	struct ieee80211_sta *sta = si->sta;
1211 	struct rtw_efuse *efuse = &rtwdev->efuse;
1212 	struct rtw_hal *hal = &rtwdev->hal;
1213 	u8 wireless_set;
1214 	u8 bw_mode;
1215 	u8 rate_id;
1216 	u8 rf_type = RF_1T1R;
1217 	u8 stbc_en = 0;
1218 	u8 ldpc_en = 0;
1219 	u8 tx_num = 1;
1220 	u64 ra_mask = 0;
1221 	u64 ra_mask_bak = 0;
1222 	bool is_vht_enable = false;
1223 	bool is_support_sgi = false;
1224 
1225 	if (sta->deflink.vht_cap.vht_supported) {
1226 		is_vht_enable = true;
1227 		ra_mask |= get_vht_ra_mask(sta);
1228 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1229 			stbc_en = VHT_STBC_EN;
1230 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1231 			ldpc_en = VHT_LDPC_EN;
1232 	} else if (sta->deflink.ht_cap.ht_supported) {
1233 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1234 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1235 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1236 			stbc_en = HT_STBC_EN;
1237 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1238 			ldpc_en = HT_LDPC_EN;
1239 	}
1240 
1241 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1242 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1243 
1244 	if (hal->current_band_type == RTW_BAND_5G) {
1245 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1246 		ra_mask_bak = ra_mask;
1247 		if (sta->deflink.vht_cap.vht_supported) {
1248 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1249 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1250 		} else if (sta->deflink.ht_cap.ht_supported) {
1251 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1252 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1253 		} else {
1254 			wireless_set = WIRELESS_OFDM;
1255 		}
1256 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1257 	} else if (hal->current_band_type == RTW_BAND_2G) {
1258 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1259 		ra_mask_bak = ra_mask;
1260 		if (sta->deflink.vht_cap.vht_supported) {
1261 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1262 				   RA_MASK_OFDM_IN_VHT;
1263 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1264 				       WIRELESS_HT | WIRELESS_VHT;
1265 		} else if (sta->deflink.ht_cap.ht_supported) {
1266 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1267 				   RA_MASK_OFDM_IN_HT_2G;
1268 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1269 				       WIRELESS_HT;
1270 #if defined(__linux__)
1271 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1272 #elif defined(__FreeBSD__)
1273 		} else if (sta->deflink.supp_rates[NL80211_BAND_2GHZ] <= 0xf) {
1274 #endif
1275 			wireless_set = WIRELESS_CCK;
1276 		} else {
1277 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1278 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1279 		}
1280 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1281 	} else {
1282 		rtw_err(rtwdev, "Unknown band type\n");
1283 		ra_mask_bak = ra_mask;
1284 		wireless_set = 0;
1285 	}
1286 
1287 	switch (sta->deflink.bandwidth) {
1288 	case IEEE80211_STA_RX_BW_80:
1289 		bw_mode = RTW_CHANNEL_WIDTH_80;
1290 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1291 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1292 		break;
1293 	case IEEE80211_STA_RX_BW_40:
1294 		bw_mode = RTW_CHANNEL_WIDTH_40;
1295 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1296 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1297 		break;
1298 	default:
1299 		bw_mode = RTW_CHANNEL_WIDTH_20;
1300 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1301 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1302 		break;
1303 	}
1304 
1305 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1306 		tx_num = 2;
1307 		rf_type = RF_2T2R;
1308 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1309 		tx_num = 2;
1310 		rf_type = RF_2T2R;
1311 	}
1312 
1313 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1314 
1315 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1316 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1317 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1318 
1319 	si->bw_mode = bw_mode;
1320 	si->stbc_en = stbc_en;
1321 	si->ldpc_en = ldpc_en;
1322 	si->rf_type = rf_type;
1323 	si->sgi_enable = is_support_sgi;
1324 	si->vht_enable = is_vht_enable;
1325 	si->ra_mask = ra_mask;
1326 	si->rate_id = rate_id;
1327 
1328 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1329 }
1330 
1331 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1332 {
1333 	const struct rtw_chip_info *chip = rtwdev->chip;
1334 	struct rtw_fw_state *fw;
1335 
1336 	fw = &rtwdev->fw;
1337 	wait_for_completion(&fw->completion);
1338 	if (!fw->firmware)
1339 		return -EINVAL;
1340 
1341 	if (chip->wow_fw_name) {
1342 		fw = &rtwdev->wow_fw;
1343 		wait_for_completion(&fw->completion);
1344 		if (!fw->firmware)
1345 			return -EINVAL;
1346 	}
1347 
1348 	return 0;
1349 }
1350 
1351 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1352 						       struct rtw_fw_state *fw)
1353 {
1354 	const struct rtw_chip_info *chip = rtwdev->chip;
1355 
1356 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1357 	    !fw->feature)
1358 		return LPS_DEEP_MODE_NONE;
1359 
1360 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1361 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1362 		return LPS_DEEP_MODE_PG;
1363 
1364 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1365 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1366 		return LPS_DEEP_MODE_LCLK;
1367 
1368 	return LPS_DEEP_MODE_NONE;
1369 }
1370 
1371 static int rtw_power_on(struct rtw_dev *rtwdev)
1372 {
1373 	const struct rtw_chip_info *chip = rtwdev->chip;
1374 	struct rtw_fw_state *fw = &rtwdev->fw;
1375 	bool wifi_only;
1376 	int ret;
1377 
1378 	ret = rtw_hci_setup(rtwdev);
1379 	if (ret) {
1380 		rtw_err(rtwdev, "failed to setup hci\n");
1381 		goto err;
1382 	}
1383 
1384 	/* power on MAC before firmware downloaded */
1385 	ret = rtw_mac_power_on(rtwdev);
1386 	if (ret) {
1387 		rtw_err(rtwdev, "failed to power on mac\n");
1388 		goto err;
1389 	}
1390 
1391 	ret = rtw_wait_firmware_completion(rtwdev);
1392 	if (ret) {
1393 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1394 		goto err_off;
1395 	}
1396 
1397 	ret = rtw_download_firmware(rtwdev, fw);
1398 	if (ret) {
1399 		rtw_err(rtwdev, "failed to download firmware\n");
1400 		goto err_off;
1401 	}
1402 
1403 	/* config mac after firmware downloaded */
1404 	ret = rtw_mac_init(rtwdev);
1405 	if (ret) {
1406 		rtw_err(rtwdev, "failed to configure mac\n");
1407 		goto err_off;
1408 	}
1409 
1410 	chip->ops->phy_set_param(rtwdev);
1411 
1412 	ret = rtw_hci_start(rtwdev);
1413 	if (ret) {
1414 		rtw_err(rtwdev, "failed to start hci\n");
1415 		goto err_off;
1416 	}
1417 
1418 	/* send H2C after HCI has started */
1419 	rtw_fw_send_general_info(rtwdev);
1420 	rtw_fw_send_phydm_info(rtwdev);
1421 
1422 	wifi_only = !rtwdev->efuse.btcoex;
1423 	rtw_coex_power_on_setting(rtwdev);
1424 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1425 
1426 	return 0;
1427 
1428 err_off:
1429 	rtw_mac_power_off(rtwdev);
1430 
1431 err:
1432 	return ret;
1433 }
1434 
1435 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1436 {
1437 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1438 		return;
1439 
1440 	if (start) {
1441 		rtw_fw_scan_notify(rtwdev, true);
1442 	} else {
1443 		reinit_completion(&rtwdev->fw_scan_density);
1444 		rtw_fw_scan_notify(rtwdev, false);
1445 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1446 						 SCAN_NOTIFY_TIMEOUT))
1447 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1448 	}
1449 }
1450 
1451 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1452 			 const u8 *mac_addr, bool hw_scan)
1453 {
1454 	u32 config = 0;
1455 	int ret = 0;
1456 
1457 	rtw_leave_lps(rtwdev);
1458 
1459 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1460 		ret = rtw_leave_ips(rtwdev);
1461 		if (ret) {
1462 			rtw_err(rtwdev, "failed to leave idle state\n");
1463 			return;
1464 		}
1465 	}
1466 
1467 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1468 	config |= PORT_SET_MAC_ADDR;
1469 	rtw_vif_port_config(rtwdev, rtwvif, config);
1470 
1471 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1472 	rtw_core_fw_scan_notify(rtwdev, true);
1473 
1474 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1475 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1476 }
1477 
1478 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1479 			    bool hw_scan)
1480 {
1481 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1482 	u32 config = 0;
1483 
1484 	if (!rtwvif)
1485 		return;
1486 
1487 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1488 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1489 
1490 	rtw_core_fw_scan_notify(rtwdev, false);
1491 
1492 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1493 	config |= PORT_SET_MAC_ADDR;
1494 	rtw_vif_port_config(rtwdev, rtwvif, config);
1495 
1496 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1497 
1498 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1499 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1500 }
1501 
1502 int rtw_core_start(struct rtw_dev *rtwdev)
1503 {
1504 	int ret;
1505 
1506 	ret = rtw_power_on(rtwdev);
1507 	if (ret)
1508 		return ret;
1509 
1510 	rtw_sec_enable_sec_engine(rtwdev);
1511 
1512 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1513 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1514 
1515 	/* rcr reset after powered on */
1516 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1517 
1518 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1519 				     RTW_WATCH_DOG_DELAY_TIME);
1520 
1521 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1522 
1523 	return 0;
1524 }
1525 
1526 static void rtw_power_off(struct rtw_dev *rtwdev)
1527 {
1528 	rtw_hci_stop(rtwdev);
1529 	rtw_coex_power_off_setting(rtwdev);
1530 	rtw_mac_power_off(rtwdev);
1531 }
1532 
1533 void rtw_core_stop(struct rtw_dev *rtwdev)
1534 {
1535 	struct rtw_coex *coex = &rtwdev->coex;
1536 
1537 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1538 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1539 
1540 	mutex_unlock(&rtwdev->mutex);
1541 
1542 	cancel_work_sync(&rtwdev->c2h_work);
1543 	cancel_work_sync(&rtwdev->update_beacon_work);
1544 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1545 	cancel_delayed_work_sync(&coex->bt_relink_work);
1546 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1547 	cancel_delayed_work_sync(&coex->defreeze_work);
1548 	cancel_delayed_work_sync(&coex->wl_remain_work);
1549 	cancel_delayed_work_sync(&coex->bt_remain_work);
1550 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1551 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1552 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1553 
1554 	mutex_lock(&rtwdev->mutex);
1555 
1556 	rtw_power_off(rtwdev);
1557 }
1558 
1559 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1560 			    struct ieee80211_sta_ht_cap *ht_cap)
1561 {
1562 	const struct rtw_chip_info *chip = rtwdev->chip;
1563 	struct rtw_efuse *efuse = &rtwdev->efuse;
1564 
1565 	ht_cap->ht_supported = true;
1566 	ht_cap->cap = 0;
1567 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1568 			IEEE80211_HT_CAP_MAX_AMSDU |
1569 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1570 
1571 	if (rtw_chip_has_rx_ldpc(rtwdev))
1572 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1573 	if (rtw_chip_has_tx_stbc(rtwdev))
1574 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1575 
1576 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1577 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1578 				IEEE80211_HT_CAP_DSSSCCK40 |
1579 				IEEE80211_HT_CAP_SGI_40;
1580 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1581 	ht_cap->ampdu_density = chip->ampdu_density;
1582 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1583 	if (efuse->hw_cap.nss > 1) {
1584 		ht_cap->mcs.rx_mask[0] = 0xFF;
1585 		ht_cap->mcs.rx_mask[1] = 0xFF;
1586 		ht_cap->mcs.rx_mask[4] = 0x01;
1587 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1588 	} else {
1589 		ht_cap->mcs.rx_mask[0] = 0xFF;
1590 		ht_cap->mcs.rx_mask[1] = 0x00;
1591 		ht_cap->mcs.rx_mask[4] = 0x01;
1592 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1593 	}
1594 }
1595 
1596 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1597 			     struct ieee80211_sta_vht_cap *vht_cap)
1598 {
1599 	struct rtw_efuse *efuse = &rtwdev->efuse;
1600 	u16 mcs_map;
1601 	__le16 highest;
1602 
1603 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1604 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1605 		return;
1606 
1607 	vht_cap->vht_supported = true;
1608 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1609 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1610 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1611 		       IEEE80211_VHT_CAP_HTC_VHT |
1612 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1613 		       0;
1614 	if (rtwdev->hal.rf_path_num > 1)
1615 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1616 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1617 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1618 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1619 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1620 
1621 	if (rtw_chip_has_rx_ldpc(rtwdev))
1622 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1623 
1624 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1625 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1626 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1627 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1628 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1629 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1630 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1631 	if (efuse->hw_cap.nss > 1) {
1632 		highest = cpu_to_le16(780);
1633 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1634 	} else {
1635 		highest = cpu_to_le16(390);
1636 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1637 	}
1638 
1639 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1640 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1641 	vht_cap->vht_mcs.rx_highest = highest;
1642 	vht_cap->vht_mcs.tx_highest = highest;
1643 }
1644 
1645 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1646 {
1647 	u16 len;
1648 
1649 	len = rtwdev->chip->max_scan_ie_len;
1650 
1651 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1652 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1653 		len = IEEE80211_MAX_DATA_LEN;
1654 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1655 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1656 
1657 	return len;
1658 }
1659 
1660 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1661 				   const struct rtw_chip_info *chip)
1662 {
1663 	struct rtw_dev *rtwdev = hw->priv;
1664 	struct ieee80211_supported_band *sband;
1665 
1666 	if (chip->band & RTW_BAND_2G) {
1667 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1668 		if (!sband)
1669 			goto err_out;
1670 		if (chip->ht_supported)
1671 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1672 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1673 	}
1674 
1675 	if (chip->band & RTW_BAND_5G) {
1676 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1677 		if (!sband)
1678 			goto err_out;
1679 		if (chip->ht_supported)
1680 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1681 		if (chip->vht_supported)
1682 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1683 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1684 	}
1685 
1686 	return;
1687 
1688 err_out:
1689 	rtw_err(rtwdev, "failed to set supported band\n");
1690 }
1691 
1692 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1693 				     const struct rtw_chip_info *chip)
1694 {
1695 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1696 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1697 }
1698 
1699 static void rtw_vif_smps_iter(void *data, u8 *mac,
1700 			      struct ieee80211_vif *vif)
1701 {
1702 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1703 
1704 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1705 		return;
1706 
1707 	if (rtwdev->hal.txrx_1ss)
1708 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1709 	else
1710 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1711 }
1712 
1713 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1714 {
1715 	const struct rtw_chip_info *chip = rtwdev->chip;
1716 	struct rtw_hal *hal = &rtwdev->hal;
1717 
1718 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1719 		return;
1720 
1721 	rtwdev->hal.txrx_1ss = txrx_1ss;
1722 	if (txrx_1ss)
1723 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1724 	else
1725 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1726 					    hal->antenna_rx, false);
1727 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1728 }
1729 
1730 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1731 				      struct rtw_fw_state *fw)
1732 {
1733 	u32 feature;
1734 	const struct rtw_fw_hdr *fw_hdr =
1735 				(const struct rtw_fw_hdr *)fw->firmware->data;
1736 
1737 	feature = le32_to_cpu(fw_hdr->feature);
1738 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1739 
1740 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1741 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1742 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1743 }
1744 
1745 static void __update_firmware_info(struct rtw_dev *rtwdev,
1746 				   struct rtw_fw_state *fw)
1747 {
1748 	const struct rtw_fw_hdr *fw_hdr =
1749 				(const struct rtw_fw_hdr *)fw->firmware->data;
1750 
1751 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1752 	fw->version = le16_to_cpu(fw_hdr->version);
1753 	fw->sub_version = fw_hdr->subversion;
1754 	fw->sub_index = fw_hdr->subindex;
1755 
1756 	__update_firmware_feature(rtwdev, fw);
1757 }
1758 
1759 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1760 					  struct rtw_fw_state *fw)
1761 {
1762 	struct rtw_fw_hdr_legacy *legacy =
1763 #if defined(__linux__)
1764 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1765 #elif defined(__FreeBSD__)
1766 	    __DECONST(struct rtw_fw_hdr_legacy *, fw->firmware->data);
1767 #endif
1768 
1769 	fw->h2c_version = 0;
1770 	fw->version = le16_to_cpu(legacy->version);
1771 	fw->sub_version = legacy->subversion1;
1772 	fw->sub_index = legacy->subversion2;
1773 }
1774 
1775 static void update_firmware_info(struct rtw_dev *rtwdev,
1776 				 struct rtw_fw_state *fw)
1777 {
1778 	if (rtw_chip_wcpu_11n(rtwdev))
1779 		__update_firmware_info_legacy(rtwdev, fw);
1780 	else
1781 		__update_firmware_info(rtwdev, fw);
1782 }
1783 
1784 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1785 {
1786 	struct rtw_fw_state *fw = context;
1787 	struct rtw_dev *rtwdev = fw->rtwdev;
1788 
1789 	if (!firmware || !firmware->data) {
1790 		rtw_err(rtwdev, "failed to request firmware\n");
1791 		complete_all(&fw->completion);
1792 		return;
1793 	}
1794 
1795 	fw->firmware = firmware;
1796 	update_firmware_info(rtwdev, fw);
1797 	complete_all(&fw->completion);
1798 
1799 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1800 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1801 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1802 }
1803 
1804 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1805 {
1806 	const char *fw_name;
1807 	struct rtw_fw_state *fw;
1808 	int ret;
1809 
1810 	switch (type) {
1811 	case RTW_WOWLAN_FW:
1812 		fw = &rtwdev->wow_fw;
1813 		fw_name = rtwdev->chip->wow_fw_name;
1814 		break;
1815 
1816 	case RTW_NORMAL_FW:
1817 		fw = &rtwdev->fw;
1818 		fw_name = rtwdev->chip->fw_name;
1819 		break;
1820 
1821 	default:
1822 		rtw_warn(rtwdev, "unsupported firmware type\n");
1823 		return -ENOENT;
1824 	}
1825 
1826 	fw->type = type;
1827 	fw->rtwdev = rtwdev;
1828 	init_completion(&fw->completion);
1829 
1830 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1831 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1832 	if (ret) {
1833 		rtw_err(rtwdev, "failed to async firmware request\n");
1834 		return ret;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1841 {
1842 	const struct rtw_chip_info *chip = rtwdev->chip;
1843 	struct rtw_hal *hal = &rtwdev->hal;
1844 	struct rtw_efuse *efuse = &rtwdev->efuse;
1845 
1846 	switch (rtw_hci_type(rtwdev)) {
1847 	case RTW_HCI_TYPE_PCIE:
1848 		rtwdev->hci.rpwm_addr = 0x03d9;
1849 		rtwdev->hci.cpwm_addr = 0x03da;
1850 		break;
1851 	case RTW_HCI_TYPE_SDIO:
1852 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1853 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1854 		break;
1855 	case RTW_HCI_TYPE_USB:
1856 		rtwdev->hci.rpwm_addr = 0xfe58;
1857 		rtwdev->hci.cpwm_addr = 0xfe57;
1858 		break;
1859 	default:
1860 		rtw_err(rtwdev, "unsupported hci type\n");
1861 		return -EINVAL;
1862 	}
1863 
1864 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1865 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1866 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1867 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1868 		hal->rf_type = RF_2T2R;
1869 		hal->rf_path_num = 2;
1870 		hal->antenna_tx = BB_PATH_AB;
1871 		hal->antenna_rx = BB_PATH_AB;
1872 	} else {
1873 		hal->rf_type = RF_1T1R;
1874 		hal->rf_path_num = 1;
1875 		hal->antenna_tx = BB_PATH_A;
1876 		hal->antenna_rx = BB_PATH_A;
1877 	}
1878 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1879 			  hal->rf_path_num;
1880 
1881 	efuse->physical_size = chip->phy_efuse_size;
1882 	efuse->logical_size = chip->log_efuse_size;
1883 	efuse->protect_size = chip->ptct_efuse_size;
1884 
1885 	/* default use ack */
1886 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1887 
1888 	hal->bfee_sts_cap = 3;
1889 
1890 	return 0;
1891 }
1892 
1893 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1894 {
1895 	struct rtw_fw_state *fw = &rtwdev->fw;
1896 	int ret;
1897 
1898 	ret = rtw_hci_setup(rtwdev);
1899 	if (ret) {
1900 		rtw_err(rtwdev, "failed to setup hci\n");
1901 		goto err;
1902 	}
1903 
1904 	ret = rtw_mac_power_on(rtwdev);
1905 	if (ret) {
1906 		rtw_err(rtwdev, "failed to power on mac\n");
1907 		goto err;
1908 	}
1909 
1910 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1911 
1912 	wait_for_completion(&fw->completion);
1913 	if (!fw->firmware) {
1914 		ret = -EINVAL;
1915 		rtw_err(rtwdev, "failed to load firmware\n");
1916 		goto err;
1917 	}
1918 
1919 	ret = rtw_download_firmware(rtwdev, fw);
1920 	if (ret) {
1921 		rtw_err(rtwdev, "failed to download firmware\n");
1922 		goto err_off;
1923 	}
1924 
1925 	return 0;
1926 
1927 err_off:
1928 	rtw_mac_power_off(rtwdev);
1929 
1930 err:
1931 	return ret;
1932 }
1933 
1934 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1935 {
1936 	struct rtw_efuse *efuse = &rtwdev->efuse;
1937 	u8 hw_feature[HW_FEATURE_LEN];
1938 	u8 id;
1939 	u8 bw;
1940 	int i;
1941 
1942 	id = rtw_read8(rtwdev, REG_C2HEVT);
1943 	if (id != C2H_HW_FEATURE_REPORT) {
1944 		rtw_err(rtwdev, "failed to read hw feature report\n");
1945 		return -EBUSY;
1946 	}
1947 
1948 	for (i = 0; i < HW_FEATURE_LEN; i++)
1949 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1950 
1951 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1952 
1953 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1954 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1955 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1956 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1957 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1958 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1959 
1960 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1961 
1962 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1963 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1964 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1965 
1966 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1967 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1968 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1969 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1970 
1971 	return 0;
1972 }
1973 
1974 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1975 {
1976 	rtw_hci_stop(rtwdev);
1977 	rtw_mac_power_off(rtwdev);
1978 }
1979 
1980 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1981 {
1982 	struct rtw_efuse *efuse = &rtwdev->efuse;
1983 	int ret;
1984 
1985 	mutex_lock(&rtwdev->mutex);
1986 
1987 	/* power on mac to read efuse */
1988 	ret = rtw_chip_efuse_enable(rtwdev);
1989 	if (ret)
1990 		goto out_unlock;
1991 
1992 	ret = rtw_parse_efuse_map(rtwdev);
1993 	if (ret)
1994 		goto out_disable;
1995 
1996 	ret = rtw_dump_hw_feature(rtwdev);
1997 	if (ret)
1998 		goto out_disable;
1999 
2000 	ret = rtw_check_supported_rfe(rtwdev);
2001 	if (ret)
2002 		goto out_disable;
2003 
2004 	if (efuse->crystal_cap == 0xff)
2005 		efuse->crystal_cap = 0;
2006 	if (efuse->pa_type_2g == 0xff)
2007 		efuse->pa_type_2g = 0;
2008 	if (efuse->pa_type_5g == 0xff)
2009 		efuse->pa_type_5g = 0;
2010 	if (efuse->lna_type_2g == 0xff)
2011 		efuse->lna_type_2g = 0;
2012 	if (efuse->lna_type_5g == 0xff)
2013 		efuse->lna_type_5g = 0;
2014 	if (efuse->channel_plan == 0xff)
2015 		efuse->channel_plan = 0x7f;
2016 	if (efuse->rf_board_option == 0xff)
2017 		efuse->rf_board_option = 0;
2018 	if (efuse->bt_setting & BIT(0))
2019 		efuse->share_ant = true;
2020 	if (efuse->regd == 0xff)
2021 		efuse->regd = 0;
2022 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2023 		efuse->tx_bb_swing_setting_2g = 0;
2024 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2025 		efuse->tx_bb_swing_setting_5g = 0;
2026 
2027 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2028 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2029 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2030 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2031 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2032 
2033 out_disable:
2034 	rtw_chip_efuse_disable(rtwdev);
2035 
2036 out_unlock:
2037 	mutex_unlock(&rtwdev->mutex);
2038 	return ret;
2039 }
2040 
2041 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2042 {
2043 	struct rtw_hal *hal = &rtwdev->hal;
2044 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2045 
2046 	if (!rfe_def)
2047 		return -ENODEV;
2048 
2049 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2050 
2051 	rtw_phy_init_tx_power(rtwdev);
2052 	if (rfe_def->agc_btg_tbl)
2053 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
2054 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2055 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2056 	rtw_phy_tx_power_by_rate_config(hal);
2057 	rtw_phy_tx_power_limit_config(hal);
2058 
2059 	return 0;
2060 }
2061 
2062 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2063 {
2064 	int ret;
2065 
2066 	ret = rtw_chip_parameter_setup(rtwdev);
2067 	if (ret) {
2068 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2069 		goto err_out;
2070 	}
2071 
2072 	ret = rtw_chip_efuse_info_setup(rtwdev);
2073 	if (ret) {
2074 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2075 		goto err_out;
2076 	}
2077 
2078 	ret = rtw_chip_board_info_setup(rtwdev);
2079 	if (ret) {
2080 		rtw_err(rtwdev, "failed to setup chip board info\n");
2081 		goto err_out;
2082 	}
2083 
2084 	return 0;
2085 
2086 err_out:
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL(rtw_chip_info_setup);
2090 
2091 static void rtw_stats_init(struct rtw_dev *rtwdev)
2092 {
2093 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2094 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2095 	int i;
2096 
2097 	ewma_tp_init(&stats->tx_ewma_tp);
2098 	ewma_tp_init(&stats->rx_ewma_tp);
2099 
2100 	for (i = 0; i < RTW_EVM_NUM; i++)
2101 		ewma_evm_init(&dm_info->ewma_evm[i]);
2102 	for (i = 0; i < RTW_SNR_NUM; i++)
2103 		ewma_snr_init(&dm_info->ewma_snr[i]);
2104 }
2105 
2106 int rtw_core_init(struct rtw_dev *rtwdev)
2107 {
2108 	const struct rtw_chip_info *chip = rtwdev->chip;
2109 	struct rtw_coex *coex = &rtwdev->coex;
2110 	int ret;
2111 
2112 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2113 	INIT_LIST_HEAD(&rtwdev->txqs);
2114 
2115 	timer_setup(&rtwdev->tx_report.purge_timer,
2116 		    rtw_tx_report_purge_timer, 0);
2117 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2118 	if (!rtwdev->tx_wq) {
2119 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2120 		return -ENOMEM;
2121 	}
2122 
2123 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2124 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2125 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2126 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2127 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2128 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2129 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2130 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2131 			  rtw_coex_bt_multi_link_remain_work);
2132 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2133 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2134 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2135 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2136 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2137 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2138 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2139 	skb_queue_head_init(&rtwdev->c2h_queue);
2140 	skb_queue_head_init(&rtwdev->coex.queue);
2141 	skb_queue_head_init(&rtwdev->tx_report.queue);
2142 
2143 	spin_lock_init(&rtwdev->txq_lock);
2144 	spin_lock_init(&rtwdev->tx_report.q_lock);
2145 
2146 	mutex_init(&rtwdev->mutex);
2147 	mutex_init(&rtwdev->hal.tx_power_mutex);
2148 
2149 	init_waitqueue_head(&rtwdev->coex.wait);
2150 	init_completion(&rtwdev->lps_leave_check);
2151 	init_completion(&rtwdev->fw_scan_density);
2152 
2153 	rtwdev->sec.total_cam_num = 32;
2154 	rtwdev->hal.current_channel = 1;
2155 	rtwdev->dm_info.fix_rate = U8_MAX;
2156 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2157 
2158 	rtw_stats_init(rtwdev);
2159 
2160 	/* default rx filter setting */
2161 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2162 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2163 			  BIT_AB | BIT_AM | BIT_APM;
2164 
2165 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2166 	if (ret) {
2167 		rtw_warn(rtwdev, "no firmware loaded\n");
2168 		goto out;
2169 	}
2170 
2171 	if (chip->wow_fw_name) {
2172 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2173 		if (ret) {
2174 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2175 			wait_for_completion(&rtwdev->fw.completion);
2176 			if (rtwdev->fw.firmware)
2177 				release_firmware(rtwdev->fw.firmware);
2178 			goto out;
2179 		}
2180 	}
2181 
2182 #if defined(__FreeBSD__)
2183 	rtw_wait_firmware_completion(rtwdev);
2184 #endif
2185 
2186 	return 0;
2187 
2188 out:
2189 	destroy_workqueue(rtwdev->tx_wq);
2190 	return ret;
2191 }
2192 EXPORT_SYMBOL(rtw_core_init);
2193 
2194 void rtw_core_deinit(struct rtw_dev *rtwdev)
2195 {
2196 	struct rtw_fw_state *fw = &rtwdev->fw;
2197 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2198 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2199 	unsigned long flags;
2200 
2201 	rtw_wait_firmware_completion(rtwdev);
2202 
2203 	if (fw->firmware)
2204 		release_firmware(fw->firmware);
2205 
2206 	if (wow_fw->firmware)
2207 		release_firmware(wow_fw->firmware);
2208 
2209 	destroy_workqueue(rtwdev->tx_wq);
2210 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2211 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2212 	skb_queue_purge(&rtwdev->tx_report.queue);
2213 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2214 	skb_queue_purge(&rtwdev->coex.queue);
2215 	skb_queue_purge(&rtwdev->c2h_queue);
2216 
2217 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2218 				 build_list) {
2219 		list_del(&rsvd_pkt->build_list);
2220 		kfree(rsvd_pkt);
2221 	}
2222 
2223 	mutex_destroy(&rtwdev->mutex);
2224 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2225 }
2226 EXPORT_SYMBOL(rtw_core_deinit);
2227 
2228 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2229 {
2230 	struct rtw_hal *hal = &rtwdev->hal;
2231 	int max_tx_headroom = 0;
2232 	int ret;
2233 
2234 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2235 
2236 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2237 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2238 
2239 	hw->extra_tx_headroom = max_tx_headroom;
2240 	hw->queues = IEEE80211_NUM_ACS;
2241 	hw->txq_data_size = sizeof(struct rtw_txq);
2242 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2243 	hw->vif_data_size = sizeof(struct rtw_vif);
2244 
2245 	ieee80211_hw_set(hw, SIGNAL_DBM);
2246 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2247 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2248 	ieee80211_hw_set(hw, MFP_CAPABLE);
2249 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2250 	ieee80211_hw_set(hw, SUPPORTS_PS);
2251 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2252 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2253 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2254 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2255 	ieee80211_hw_set(hw, TX_AMSDU);
2256 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2257 
2258 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2259 				     BIT(NL80211_IFTYPE_AP) |
2260 				     BIT(NL80211_IFTYPE_ADHOC) |
2261 				     BIT(NL80211_IFTYPE_MESH_POINT);
2262 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2263 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2264 
2265 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2266 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2267 
2268 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2269 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2270 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2271 
2272 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2273 		hw->wiphy->iface_combinations = rtw_iface_combs;
2274 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2275 	}
2276 
2277 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2278 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2279 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2280 
2281 #ifdef CONFIG_PM
2282 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2283 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2284 #endif
2285 	rtw_set_supported_band(hw, rtwdev->chip);
2286 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2287 
2288 	hw->wiphy->sar_capa = &rtw_sar_capa;
2289 
2290 	ret = rtw_regd_init(rtwdev);
2291 	if (ret) {
2292 		rtw_err(rtwdev, "failed to init regd\n");
2293 		return ret;
2294 	}
2295 
2296 	ret = ieee80211_register_hw(hw);
2297 	if (ret) {
2298 		rtw_err(rtwdev, "failed to register hw\n");
2299 		return ret;
2300 	}
2301 
2302 	ret = rtw_regd_hint(rtwdev);
2303 	if (ret) {
2304 		rtw_err(rtwdev, "failed to hint regd\n");
2305 		return ret;
2306 	}
2307 
2308 	rtw_debugfs_init(rtwdev);
2309 
2310 	rtwdev->bf_info.bfer_mu_cnt = 0;
2311 	rtwdev->bf_info.bfer_su_cnt = 0;
2312 
2313 	return 0;
2314 }
2315 EXPORT_SYMBOL(rtw_register_hw);
2316 
2317 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2318 {
2319 	const struct rtw_chip_info *chip = rtwdev->chip;
2320 
2321 	ieee80211_unregister_hw(hw);
2322 	rtw_unset_supported_band(hw, chip);
2323 }
2324 EXPORT_SYMBOL(rtw_unregister_hw);
2325 
2326 static
2327 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2328 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2329 {
2330 	u8 i;
2331 
2332 	for (i = 0; i < nbytes; i++) {
2333 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2334 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2335 
2336 		rtw_write8(rtwdev, reg1->addr + i, v2);
2337 		rtw_write8(rtwdev, reg2->addr + i, v1);
2338 	}
2339 }
2340 
2341 static
2342 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2343 		       const struct rtw_hw_reg *reg2)
2344 {
2345 	u32 v1, v2;
2346 
2347 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2348 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2349 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2350 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2351 }
2352 
2353 struct rtw_iter_port_switch_data {
2354 	struct rtw_dev *rtwdev;
2355 	struct rtw_vif *rtwvif_ap;
2356 };
2357 
2358 static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2359 {
2360 	struct rtw_iter_port_switch_data *iter_data = data;
2361 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2362 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2363 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2364 	const struct rtw_hw_reg *reg1, *reg2;
2365 
2366 	if (rtwvif_target->port != RTW_PORT_0)
2367 		return;
2368 
2369 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2370 		rtwvif_ap->port, rtwvif_target->port);
2371 
2372 	/* Leave LPS so the value swapped are not in PS mode */
2373 	rtw_leave_lps(rtwdev);
2374 
2375 	reg1 = &rtwvif_ap->conf->net_type;
2376 	reg2 = &rtwvif_target->conf->net_type;
2377 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2378 
2379 	reg1 = &rtwvif_ap->conf->mac_addr;
2380 	reg2 = &rtwvif_target->conf->mac_addr;
2381 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2382 
2383 	reg1 = &rtwvif_ap->conf->bssid;
2384 	reg2 = &rtwvif_target->conf->bssid;
2385 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2386 
2387 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2388 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2389 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2390 
2391 	swap(rtwvif_target->port, rtwvif_ap->port);
2392 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2393 
2394 	rtw_fw_default_port(rtwdev, rtwvif_target);
2395 }
2396 
2397 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2398 {
2399 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2400 	struct rtw_iter_port_switch_data iter_data;
2401 
2402 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2403 		return;
2404 
2405 	iter_data.rtwdev = rtwdev;
2406 	iter_data.rtwvif_ap = rtwvif;
2407 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2408 }
2409 
2410 static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2411 {
2412 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2413 	bool *active = data;
2414 
2415 	if (*active)
2416 		return;
2417 
2418 	if (vif->type != NL80211_IFTYPE_STATION)
2419 		return;
2420 
2421 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2422 		*active = true;
2423 }
2424 
2425 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2426 {
2427 	bool sta_active = false;
2428 
2429 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2430 
2431 	return rtwdev->ap_active || sta_active;
2432 }
2433 
2434 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2435 {
2436 	if (!rtwdev->ap_active)
2437 		return;
2438 
2439 	if (enable) {
2440 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2441 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2442 	} else {
2443 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2444 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2445 	}
2446 }
2447 
2448 MODULE_AUTHOR("Realtek Corporation");
2449 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2450 MODULE_LICENSE("Dual BSD/GPL");
2451