1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 #if defined(__linux__) 238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239 #elif defined(__FreeBSD__) 240 IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 241 (u32)rxb->vid, rxq->id, rxq->write); 242 #endif 243 } 244 245 /* 246 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 247 */ 248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 249 struct iwl_rxq *rxq) 250 { 251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 252 struct iwl_rx_mem_buffer *rxb; 253 254 /* 255 * If the device isn't enabled - no need to try to add buffers... 256 * This can happen when we stop the device and still have an interrupt 257 * pending. We stop the APM before we sync the interrupts because we 258 * have to (see comment there). On the other hand, since the APM is 259 * stopped, we cannot access the HW (in particular not prph). 260 * So don't try to restock if the APM has been already stopped. 261 */ 262 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 263 return; 264 265 spin_lock_bh(&rxq->lock); 266 while (rxq->free_count) { 267 /* Get next free Rx buffer, remove from free list */ 268 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 269 list); 270 list_del(&rxb->list); 271 rxb->invalid = false; 272 /* some low bits are expected to be unset (depending on hw) */ 273 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 274 /* Point to Rx buffer via next RBD in circular buffer */ 275 iwl_pcie_restock_bd(trans, rxq, rxb); 276 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 277 rxq->free_count--; 278 } 279 spin_unlock_bh(&rxq->lock); 280 281 /* 282 * If we've added more space for the firmware to place data, tell it. 283 * Increment device's write pointer in multiples of 8. 284 */ 285 if (rxq->write_actual != (rxq->write & ~0x7)) { 286 spin_lock_bh(&rxq->lock); 287 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 288 spin_unlock_bh(&rxq->lock); 289 } 290 } 291 292 /* 293 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 294 */ 295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 296 struct iwl_rxq *rxq) 297 { 298 struct iwl_rx_mem_buffer *rxb; 299 300 /* 301 * If the device isn't enabled - not need to try to add buffers... 302 * This can happen when we stop the device and still have an interrupt 303 * pending. We stop the APM before we sync the interrupts because we 304 * have to (see comment there). On the other hand, since the APM is 305 * stopped, we cannot access the HW (in particular not prph). 306 * So don't try to restock if the APM has been already stopped. 307 */ 308 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 309 return; 310 311 spin_lock_bh(&rxq->lock); 312 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 313 __le32 *bd = (__le32 *)rxq->bd; 314 /* The overwritten rxb must be a used one */ 315 rxb = rxq->queue[rxq->write]; 316 BUG_ON(rxb && rxb->page); 317 318 /* Get next free Rx buffer, remove from free list */ 319 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 320 list); 321 list_del(&rxb->list); 322 rxb->invalid = false; 323 324 /* Point to Rx buffer via next RBD in circular buffer */ 325 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 326 rxq->queue[rxq->write] = rxb; 327 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 328 rxq->free_count--; 329 } 330 spin_unlock_bh(&rxq->lock); 331 332 /* If we've added more space for the firmware to place data, tell it. 333 * Increment device's write pointer in multiples of 8. */ 334 if (rxq->write_actual != (rxq->write & ~0x7)) { 335 spin_lock_bh(&rxq->lock); 336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337 spin_unlock_bh(&rxq->lock); 338 } 339 } 340 341 /* 342 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 343 * 344 * If there are slots in the RX queue that need to be restocked, 345 * and we have free pre-allocated buffers, fill the ranks as much 346 * as we can, pulling from rx_free. 347 * 348 * This moves the 'write' index forward to catch up with 'processed', and 349 * also updates the memory address in the firmware to reference the new 350 * target buffer. 351 */ 352 static 353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 354 { 355 if (trans->trans_cfg->mq_rx_supported) 356 iwl_pcie_rxmq_restock(trans, rxq); 357 else 358 iwl_pcie_rxsq_restock(trans, rxq); 359 } 360 361 /* 362 * iwl_pcie_rx_alloc_page - allocates and returns a page. 363 * 364 */ 365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 366 u32 *offset, gfp_t priority) 367 { 368 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 369 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 370 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 371 struct page *page; 372 gfp_t gfp_mask = priority; 373 374 if (trans_pcie->rx_page_order > 0) 375 gfp_mask |= __GFP_COMP; 376 377 if (trans_pcie->alloc_page) { 378 spin_lock_bh(&trans_pcie->alloc_page_lock); 379 /* recheck */ 380 if (trans_pcie->alloc_page) { 381 *offset = trans_pcie->alloc_page_used; 382 page = trans_pcie->alloc_page; 383 trans_pcie->alloc_page_used += rbsize; 384 if (trans_pcie->alloc_page_used >= allocsize) 385 trans_pcie->alloc_page = NULL; 386 else 387 get_page(page); 388 spin_unlock_bh(&trans_pcie->alloc_page_lock); 389 return page; 390 } 391 spin_unlock_bh(&trans_pcie->alloc_page_lock); 392 } 393 394 /* Alloc a new receive buffer */ 395 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 396 if (!page) { 397 if (net_ratelimit()) 398 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 399 trans_pcie->rx_page_order); 400 /* 401 * Issue an error if we don't have enough pre-allocated 402 * buffers. 403 */ 404 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 405 IWL_CRIT(trans, 406 "Failed to alloc_pages\n"); 407 return NULL; 408 } 409 410 if (2 * rbsize <= allocsize) { 411 spin_lock_bh(&trans_pcie->alloc_page_lock); 412 if (!trans_pcie->alloc_page) { 413 get_page(page); 414 trans_pcie->alloc_page = page; 415 trans_pcie->alloc_page_used = rbsize; 416 } 417 spin_unlock_bh(&trans_pcie->alloc_page_lock); 418 } 419 420 *offset = 0; 421 return page; 422 } 423 424 /* 425 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 426 * 427 * A used RBD is an Rx buffer that has been given to the stack. To use it again 428 * a page must be allocated and the RBD must point to the page. This function 429 * doesn't change the HW pointer but handles the list of pages that is used by 430 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 431 * allocated buffers. 432 */ 433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 434 struct iwl_rxq *rxq) 435 { 436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 437 struct iwl_rx_mem_buffer *rxb; 438 struct page *page; 439 440 while (1) { 441 unsigned int offset; 442 443 spin_lock_bh(&rxq->lock); 444 if (list_empty(&rxq->rx_used)) { 445 spin_unlock_bh(&rxq->lock); 446 return; 447 } 448 spin_unlock_bh(&rxq->lock); 449 450 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 451 if (!page) 452 return; 453 454 spin_lock_bh(&rxq->lock); 455 456 if (list_empty(&rxq->rx_used)) { 457 spin_unlock_bh(&rxq->lock); 458 __free_pages(page, trans_pcie->rx_page_order); 459 return; 460 } 461 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 462 list); 463 list_del(&rxb->list); 464 spin_unlock_bh(&rxq->lock); 465 466 BUG_ON(rxb->page); 467 rxb->page = page; 468 rxb->offset = offset; 469 /* Get physical address of the RB */ 470 rxb->page_dma = 471 dma_map_page(trans->dev, page, rxb->offset, 472 trans_pcie->rx_buf_bytes, 473 DMA_FROM_DEVICE); 474 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 475 rxb->page = NULL; 476 spin_lock_bh(&rxq->lock); 477 list_add(&rxb->list, &rxq->rx_used); 478 spin_unlock_bh(&rxq->lock); 479 __free_pages(page, trans_pcie->rx_page_order); 480 return; 481 } 482 483 spin_lock_bh(&rxq->lock); 484 485 list_add_tail(&rxb->list, &rxq->rx_free); 486 rxq->free_count++; 487 488 spin_unlock_bh(&rxq->lock); 489 } 490 } 491 492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 493 { 494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 495 int i; 496 497 if (!trans_pcie->rx_pool) 498 return; 499 500 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 501 if (!trans_pcie->rx_pool[i].page) 502 continue; 503 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 504 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 505 __free_pages(trans_pcie->rx_pool[i].page, 506 trans_pcie->rx_page_order); 507 trans_pcie->rx_pool[i].page = NULL; 508 } 509 } 510 511 /* 512 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 513 * 514 * Allocates for each received request 8 pages 515 * Called as a scheduled work item. 516 */ 517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 518 { 519 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 520 struct iwl_rb_allocator *rba = &trans_pcie->rba; 521 struct list_head local_empty; 522 int pending = atomic_read(&rba->req_pending); 523 524 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 525 526 /* If we were scheduled - there is at least one request */ 527 spin_lock_bh(&rba->lock); 528 /* swap out the rba->rbd_empty to a local list */ 529 list_replace_init(&rba->rbd_empty, &local_empty); 530 spin_unlock_bh(&rba->lock); 531 532 while (pending) { 533 int i; 534 LIST_HEAD(local_allocated); 535 gfp_t gfp_mask = GFP_KERNEL; 536 537 /* Do not post a warning if there are only a few requests */ 538 if (pending < RX_PENDING_WATERMARK) 539 gfp_mask |= __GFP_NOWARN; 540 541 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 542 struct iwl_rx_mem_buffer *rxb; 543 struct page *page; 544 545 /* List should never be empty - each reused RBD is 546 * returned to the list, and initial pool covers any 547 * possible gap between the time the page is allocated 548 * to the time the RBD is added. 549 */ 550 BUG_ON(list_empty(&local_empty)); 551 /* Get the first rxb from the rbd list */ 552 rxb = list_first_entry(&local_empty, 553 struct iwl_rx_mem_buffer, list); 554 BUG_ON(rxb->page); 555 556 /* Alloc a new receive buffer */ 557 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 558 gfp_mask); 559 if (!page) 560 continue; 561 rxb->page = page; 562 563 /* Get physical address of the RB */ 564 rxb->page_dma = dma_map_page(trans->dev, page, 565 rxb->offset, 566 trans_pcie->rx_buf_bytes, 567 DMA_FROM_DEVICE); 568 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 569 rxb->page = NULL; 570 __free_pages(page, trans_pcie->rx_page_order); 571 continue; 572 } 573 574 /* move the allocated entry to the out list */ 575 list_move(&rxb->list, &local_allocated); 576 i++; 577 } 578 579 atomic_dec(&rba->req_pending); 580 pending--; 581 582 if (!pending) { 583 pending = atomic_read(&rba->req_pending); 584 if (pending) 585 IWL_DEBUG_TPT(trans, 586 "Got more pending allocation requests = %d\n", 587 pending); 588 } 589 590 spin_lock_bh(&rba->lock); 591 /* add the allocated rbds to the allocator allocated list */ 592 list_splice_tail(&local_allocated, &rba->rbd_allocated); 593 /* get more empty RBDs for current pending requests */ 594 list_splice_tail_init(&rba->rbd_empty, &local_empty); 595 spin_unlock_bh(&rba->lock); 596 597 atomic_inc(&rba->req_ready); 598 599 } 600 601 spin_lock_bh(&rba->lock); 602 /* return unused rbds to the allocator empty list */ 603 list_splice_tail(&local_empty, &rba->rbd_empty); 604 spin_unlock_bh(&rba->lock); 605 606 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 607 } 608 609 /* 610 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 611 .* 612 .* Called by queue when the queue posted allocation request and 613 * has freed 8 RBDs in order to restock itself. 614 * This function directly moves the allocated RBs to the queue's ownership 615 * and updates the relevant counters. 616 */ 617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 618 struct iwl_rxq *rxq) 619 { 620 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 621 struct iwl_rb_allocator *rba = &trans_pcie->rba; 622 int i; 623 624 lockdep_assert_held(&rxq->lock); 625 626 /* 627 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 628 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 629 * function will return early, as there are no ready requests. 630 * atomic_dec_if_positive will perofrm the *actual* decrement only if 631 * req_ready > 0, i.e. - there are ready requests and the function 632 * hands one request to the caller. 633 */ 634 if (atomic_dec_if_positive(&rba->req_ready) < 0) 635 return; 636 637 spin_lock(&rba->lock); 638 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 639 /* Get next free Rx buffer, remove it from free list */ 640 struct iwl_rx_mem_buffer *rxb = 641 list_first_entry(&rba->rbd_allocated, 642 struct iwl_rx_mem_buffer, list); 643 644 list_move(&rxb->list, &rxq->rx_free); 645 } 646 spin_unlock(&rba->lock); 647 648 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 649 rxq->free_count += RX_CLAIM_REQ_ALLOC; 650 } 651 652 void iwl_pcie_rx_allocator_work(struct work_struct *data) 653 { 654 struct iwl_rb_allocator *rba_p = 655 container_of(data, struct iwl_rb_allocator, rx_alloc); 656 struct iwl_trans_pcie *trans_pcie = 657 container_of(rba_p, struct iwl_trans_pcie, rba); 658 659 iwl_pcie_rx_allocator(trans_pcie->trans); 660 } 661 662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 663 { 664 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 665 return sizeof(struct iwl_rx_transfer_desc); 666 667 return trans->trans_cfg->mq_rx_supported ? 668 sizeof(__le64) : sizeof(__le32); 669 } 670 671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 672 { 673 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 674 return sizeof(struct iwl_rx_completion_desc_bz); 675 676 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 677 return sizeof(struct iwl_rx_completion_desc); 678 679 return sizeof(__le32); 680 } 681 682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 683 struct iwl_rxq *rxq) 684 { 685 int free_size = iwl_pcie_free_bd_size(trans); 686 687 if (rxq->bd) 688 dma_free_coherent(trans->dev, 689 free_size * rxq->queue_size, 690 rxq->bd, rxq->bd_dma); 691 rxq->bd_dma = 0; 692 rxq->bd = NULL; 693 694 rxq->rb_stts_dma = 0; 695 rxq->rb_stts = NULL; 696 697 if (rxq->used_bd) 698 dma_free_coherent(trans->dev, 699 iwl_pcie_used_bd_size(trans) * 700 rxq->queue_size, 701 rxq->used_bd, rxq->used_bd_dma); 702 rxq->used_bd_dma = 0; 703 rxq->used_bd = NULL; 704 } 705 706 static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 707 { 708 bool use_rx_td = (trans->trans_cfg->device_family >= 709 IWL_DEVICE_FAMILY_AX210); 710 711 if (use_rx_td) 712 return sizeof(__le16); 713 714 return sizeof(struct iwl_rb_status); 715 } 716 717 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 718 struct iwl_rxq *rxq) 719 { 720 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 721 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 722 struct device *dev = trans->dev; 723 int i; 724 int free_size; 725 726 spin_lock_init(&rxq->lock); 727 if (trans->trans_cfg->mq_rx_supported) 728 rxq->queue_size = trans->cfg->num_rbds; 729 else 730 rxq->queue_size = RX_QUEUE_SIZE; 731 732 free_size = iwl_pcie_free_bd_size(trans); 733 734 /* 735 * Allocate the circular buffer of Read Buffer Descriptors 736 * (RBDs) 737 */ 738 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 739 &rxq->bd_dma, GFP_KERNEL); 740 if (!rxq->bd) 741 goto err; 742 743 if (trans->trans_cfg->mq_rx_supported) { 744 rxq->used_bd = dma_alloc_coherent(dev, 745 iwl_pcie_used_bd_size(trans) * 746 rxq->queue_size, 747 &rxq->used_bd_dma, 748 GFP_KERNEL); 749 if (!rxq->used_bd) 750 goto err; 751 } 752 753 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 754 rxq->rb_stts_dma = 755 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 756 757 return 0; 758 759 err: 760 for (i = 0; i < trans->num_rx_queues; i++) { 761 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 762 763 iwl_pcie_free_rxq_dma(trans, rxq); 764 } 765 766 return -ENOMEM; 767 } 768 769 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 770 { 771 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 772 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 773 struct iwl_rb_allocator *rba = &trans_pcie->rba; 774 int i, ret; 775 776 if (WARN_ON(trans_pcie->rxq)) 777 return -EINVAL; 778 779 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 780 GFP_KERNEL); 781 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 782 sizeof(trans_pcie->rx_pool[0]), 783 GFP_KERNEL); 784 trans_pcie->global_table = 785 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 786 sizeof(trans_pcie->global_table[0]), 787 GFP_KERNEL); 788 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 789 !trans_pcie->global_table) { 790 ret = -ENOMEM; 791 goto err; 792 } 793 794 spin_lock_init(&rba->lock); 795 796 /* 797 * Allocate the driver's pointer to receive buffer status. 798 * Allocate for all queues continuously (HW requirement). 799 */ 800 trans_pcie->base_rb_stts = 801 dma_alloc_coherent(trans->dev, 802 rb_stts_size * trans->num_rx_queues, 803 &trans_pcie->base_rb_stts_dma, 804 GFP_KERNEL); 805 if (!trans_pcie->base_rb_stts) { 806 ret = -ENOMEM; 807 goto err; 808 } 809 810 for (i = 0; i < trans->num_rx_queues; i++) { 811 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 812 813 rxq->id = i; 814 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 815 if (ret) 816 goto err; 817 } 818 return 0; 819 820 err: 821 if (trans_pcie->base_rb_stts) { 822 dma_free_coherent(trans->dev, 823 rb_stts_size * trans->num_rx_queues, 824 trans_pcie->base_rb_stts, 825 trans_pcie->base_rb_stts_dma); 826 trans_pcie->base_rb_stts = NULL; 827 trans_pcie->base_rb_stts_dma = 0; 828 } 829 kfree(trans_pcie->rx_pool); 830 trans_pcie->rx_pool = NULL; 831 kfree(trans_pcie->global_table); 832 trans_pcie->global_table = NULL; 833 kfree(trans_pcie->rxq); 834 trans_pcie->rxq = NULL; 835 836 return ret; 837 } 838 839 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 840 { 841 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 842 u32 rb_size; 843 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 844 845 switch (trans_pcie->rx_buf_size) { 846 case IWL_AMSDU_4K: 847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 848 break; 849 case IWL_AMSDU_8K: 850 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 851 break; 852 case IWL_AMSDU_12K: 853 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 854 break; 855 default: 856 WARN_ON(1); 857 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 858 } 859 860 if (!iwl_trans_grab_nic_access(trans)) 861 return; 862 863 /* Stop Rx DMA */ 864 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 865 /* reset and flush pointers */ 866 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 867 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 868 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 869 870 /* Reset driver's Rx queue write index */ 871 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 872 873 /* Tell device where to find RBD circular buffer in DRAM */ 874 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 875 (u32)(rxq->bd_dma >> 8)); 876 877 /* Tell device where in DRAM to update its Rx status */ 878 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 879 rxq->rb_stts_dma >> 4); 880 881 /* Enable Rx DMA 882 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 883 * the credit mechanism in 5000 HW RX FIFO 884 * Direct rx interrupts to hosts 885 * Rx buffer size 4 or 8k or 12k 886 * RB timeout 0x10 887 * 256 RBDs 888 */ 889 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 890 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 891 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 892 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 893 rb_size | 894 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 895 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 896 897 iwl_trans_release_nic_access(trans); 898 899 /* Set interrupt coalescing timer to default (2048 usecs) */ 900 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 901 902 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 903 if (trans->cfg->host_interrupt_operation_mode) 904 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 905 } 906 907 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 908 { 909 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 910 u32 rb_size, enabled = 0; 911 int i; 912 913 switch (trans_pcie->rx_buf_size) { 914 case IWL_AMSDU_2K: 915 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 916 break; 917 case IWL_AMSDU_4K: 918 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 919 break; 920 case IWL_AMSDU_8K: 921 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 922 break; 923 case IWL_AMSDU_12K: 924 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 925 break; 926 default: 927 WARN_ON(1); 928 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 929 } 930 931 if (!iwl_trans_grab_nic_access(trans)) 932 return; 933 934 /* Stop Rx DMA */ 935 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 936 /* disable free amd used rx queue operation */ 937 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 938 939 for (i = 0; i < trans->num_rx_queues; i++) { 940 /* Tell device where to find RBD free table in DRAM */ 941 iwl_write_prph64_no_grab(trans, 942 RFH_Q_FRBDCB_BA_LSB(i), 943 trans_pcie->rxq[i].bd_dma); 944 /* Tell device where to find RBD used table in DRAM */ 945 iwl_write_prph64_no_grab(trans, 946 RFH_Q_URBDCB_BA_LSB(i), 947 trans_pcie->rxq[i].used_bd_dma); 948 /* Tell device where in DRAM to update its Rx status */ 949 iwl_write_prph64_no_grab(trans, 950 RFH_Q_URBD_STTS_WPTR_LSB(i), 951 trans_pcie->rxq[i].rb_stts_dma); 952 /* Reset device indice tables */ 953 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 954 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 955 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 956 957 enabled |= BIT(i) | BIT(i + 16); 958 } 959 960 /* 961 * Enable Rx DMA 962 * Rx buffer size 4 or 8k or 12k 963 * Min RB size 4 or 8 964 * Drop frames that exceed RB size 965 * 512 RBDs 966 */ 967 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 968 RFH_DMA_EN_ENABLE_VAL | rb_size | 969 RFH_RXF_DMA_MIN_RB_4_8 | 970 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 971 RFH_RXF_DMA_RBDCB_SIZE_512); 972 973 /* 974 * Activate DMA snooping. 975 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 976 * Default queue is 0 977 */ 978 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 979 RFH_GEN_CFG_RFH_DMA_SNOOP | 980 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 981 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 982 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 983 trans->trans_cfg->integrated ? 984 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 985 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 986 /* Enable the relevant rx queues */ 987 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 988 989 iwl_trans_release_nic_access(trans); 990 991 /* Set interrupt coalescing timer to default (2048 usecs) */ 992 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 993 } 994 995 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 996 { 997 lockdep_assert_held(&rxq->lock); 998 999 INIT_LIST_HEAD(&rxq->rx_free); 1000 INIT_LIST_HEAD(&rxq->rx_used); 1001 rxq->free_count = 0; 1002 rxq->used_count = 0; 1003 } 1004 1005 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1006 1007 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1008 { 1009 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1010 struct iwl_trans_pcie *trans_pcie; 1011 struct iwl_trans *trans; 1012 int ret; 1013 1014 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1015 trans = trans_pcie->trans; 1016 1017 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1018 1019 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1020 rxq->id, ret, budget); 1021 1022 if (ret < budget) { 1023 spin_lock(&trans_pcie->irq_lock); 1024 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1025 _iwl_enable_interrupts(trans); 1026 spin_unlock(&trans_pcie->irq_lock); 1027 1028 napi_complete_done(&rxq->napi, ret); 1029 } 1030 1031 return ret; 1032 } 1033 1034 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1035 { 1036 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1037 struct iwl_trans_pcie *trans_pcie; 1038 struct iwl_trans *trans; 1039 int ret; 1040 1041 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1042 trans = trans_pcie->trans; 1043 1044 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1045 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1046 budget); 1047 1048 if (ret < budget) { 1049 int irq_line = rxq->id; 1050 1051 /* FIRST_RSS is shared with line 0 */ 1052 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1053 rxq->id == 1) 1054 irq_line = 0; 1055 1056 spin_lock(&trans_pcie->irq_lock); 1057 iwl_pcie_clear_irq(trans, irq_line); 1058 spin_unlock(&trans_pcie->irq_lock); 1059 1060 napi_complete_done(&rxq->napi, ret); 1061 } 1062 1063 return ret; 1064 } 1065 1066 void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1067 { 1068 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1069 int i; 1070 1071 if (unlikely(!trans_pcie->rxq)) 1072 return; 1073 1074 for (i = 0; i < trans->num_rx_queues; i++) { 1075 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1076 1077 if (rxq && rxq->napi.poll) 1078 napi_synchronize(&rxq->napi); 1079 } 1080 } 1081 1082 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1083 { 1084 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1085 struct iwl_rxq *def_rxq; 1086 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1087 int i, err, queue_size, allocator_pool_size, num_alloc; 1088 1089 if (!trans_pcie->rxq) { 1090 err = iwl_pcie_rx_alloc(trans); 1091 if (err) 1092 return err; 1093 } 1094 def_rxq = trans_pcie->rxq; 1095 1096 cancel_work_sync(&rba->rx_alloc); 1097 1098 spin_lock_bh(&rba->lock); 1099 atomic_set(&rba->req_pending, 0); 1100 atomic_set(&rba->req_ready, 0); 1101 INIT_LIST_HEAD(&rba->rbd_allocated); 1102 INIT_LIST_HEAD(&rba->rbd_empty); 1103 spin_unlock_bh(&rba->lock); 1104 1105 /* free all first - we overwrite everything here */ 1106 iwl_pcie_free_rbs_pool(trans); 1107 1108 for (i = 0; i < RX_QUEUE_SIZE; i++) 1109 def_rxq->queue[i] = NULL; 1110 1111 for (i = 0; i < trans->num_rx_queues; i++) { 1112 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1113 1114 spin_lock_bh(&rxq->lock); 1115 /* 1116 * Set read write pointer to reflect that we have processed 1117 * and used all buffers, but have not restocked the Rx queue 1118 * with fresh buffers 1119 */ 1120 rxq->read = 0; 1121 rxq->write = 0; 1122 rxq->write_actual = 0; 1123 memset(rxq->rb_stts, 0, 1124 (trans->trans_cfg->device_family >= 1125 IWL_DEVICE_FAMILY_AX210) ? 1126 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1127 1128 iwl_pcie_rx_init_rxb_lists(rxq); 1129 1130 spin_unlock_bh(&rxq->lock); 1131 1132 if (!rxq->napi.poll) { 1133 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1134 1135 if (trans_pcie->msix_enabled) 1136 poll = iwl_pcie_napi_poll_msix; 1137 1138 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1139 poll); 1140 napi_enable(&rxq->napi); 1141 } 1142 1143 } 1144 1145 /* move the pool to the default queue and allocator ownerships */ 1146 queue_size = trans->trans_cfg->mq_rx_supported ? 1147 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1148 allocator_pool_size = trans->num_rx_queues * 1149 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1150 num_alloc = queue_size + allocator_pool_size; 1151 1152 for (i = 0; i < num_alloc; i++) { 1153 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1154 1155 if (i < allocator_pool_size) 1156 list_add(&rxb->list, &rba->rbd_empty); 1157 else 1158 list_add(&rxb->list, &def_rxq->rx_used); 1159 trans_pcie->global_table[i] = rxb; 1160 rxb->vid = (u16)(i + 1); 1161 rxb->invalid = true; 1162 } 1163 1164 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1165 1166 return 0; 1167 } 1168 1169 int iwl_pcie_rx_init(struct iwl_trans *trans) 1170 { 1171 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1172 int ret = _iwl_pcie_rx_init(trans); 1173 1174 if (ret) 1175 return ret; 1176 1177 if (trans->trans_cfg->mq_rx_supported) 1178 iwl_pcie_rx_mq_hw_init(trans); 1179 else 1180 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1181 1182 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1183 1184 spin_lock_bh(&trans_pcie->rxq->lock); 1185 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1186 spin_unlock_bh(&trans_pcie->rxq->lock); 1187 1188 return 0; 1189 } 1190 1191 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1192 { 1193 /* Set interrupt coalescing timer to default (2048 usecs) */ 1194 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1195 1196 /* 1197 * We don't configure the RFH. 1198 * Restock will be done at alive, after firmware configured the RFH. 1199 */ 1200 return _iwl_pcie_rx_init(trans); 1201 } 1202 1203 void iwl_pcie_rx_free(struct iwl_trans *trans) 1204 { 1205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1206 size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1207 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1208 int i; 1209 1210 /* 1211 * if rxq is NULL, it means that nothing has been allocated, 1212 * exit now 1213 */ 1214 if (!trans_pcie->rxq) { 1215 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1216 return; 1217 } 1218 1219 cancel_work_sync(&rba->rx_alloc); 1220 1221 iwl_pcie_free_rbs_pool(trans); 1222 1223 if (trans_pcie->base_rb_stts) { 1224 dma_free_coherent(trans->dev, 1225 rb_stts_size * trans->num_rx_queues, 1226 trans_pcie->base_rb_stts, 1227 trans_pcie->base_rb_stts_dma); 1228 trans_pcie->base_rb_stts = NULL; 1229 trans_pcie->base_rb_stts_dma = 0; 1230 } 1231 1232 for (i = 0; i < trans->num_rx_queues; i++) { 1233 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1234 1235 iwl_pcie_free_rxq_dma(trans, rxq); 1236 1237 if (rxq->napi.poll) { 1238 napi_disable(&rxq->napi); 1239 netif_napi_del(&rxq->napi); 1240 } 1241 } 1242 kfree(trans_pcie->rx_pool); 1243 kfree(trans_pcie->global_table); 1244 kfree(trans_pcie->rxq); 1245 1246 if (trans_pcie->alloc_page) 1247 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1248 } 1249 1250 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1251 struct iwl_rb_allocator *rba) 1252 { 1253 spin_lock(&rba->lock); 1254 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1255 spin_unlock(&rba->lock); 1256 } 1257 1258 /* 1259 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1260 * 1261 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1262 * When there are 2 empty RBDs - a request for allocation is posted 1263 */ 1264 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1265 struct iwl_rx_mem_buffer *rxb, 1266 struct iwl_rxq *rxq, bool emergency) 1267 { 1268 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1269 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1270 1271 /* Move the RBD to the used list, will be moved to allocator in batches 1272 * before claiming or posting a request*/ 1273 list_add_tail(&rxb->list, &rxq->rx_used); 1274 1275 if (unlikely(emergency)) 1276 return; 1277 1278 /* Count the allocator owned RBDs */ 1279 rxq->used_count++; 1280 1281 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1282 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1283 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1284 * after but we still need to post another request. 1285 */ 1286 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1287 /* Move the 2 RBDs to the allocator ownership. 1288 Allocator has another 6 from pool for the request completion*/ 1289 iwl_pcie_rx_move_to_allocator(rxq, rba); 1290 1291 atomic_inc(&rba->req_pending); 1292 queue_work(rba->alloc_wq, &rba->rx_alloc); 1293 } 1294 } 1295 1296 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1297 struct iwl_rxq *rxq, 1298 struct iwl_rx_mem_buffer *rxb, 1299 bool emergency, 1300 int i) 1301 { 1302 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1303 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1304 bool page_stolen = false; 1305 int max_len = trans_pcie->rx_buf_bytes; 1306 u32 offset = 0; 1307 1308 if (WARN_ON(!rxb)) 1309 return; 1310 1311 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1312 1313 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1314 struct iwl_rx_packet *pkt; 1315 bool reclaim; 1316 int len; 1317 struct iwl_rx_cmd_buffer rxcb = { 1318 ._offset = rxb->offset + offset, 1319 ._rx_page_order = trans_pcie->rx_page_order, 1320 ._page = rxb->page, 1321 ._page_stolen = false, 1322 .truesize = max_len, 1323 }; 1324 1325 pkt = rxb_addr(&rxcb); 1326 1327 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1328 IWL_DEBUG_RX(trans, 1329 "Q %d: RB end marker at offset %d\n", 1330 rxq->id, offset); 1331 break; 1332 } 1333 1334 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1335 FH_RSCSR_RXQ_POS != rxq->id, 1336 "frame on invalid queue - is on %d and indicates %d\n", 1337 rxq->id, 1338 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1339 FH_RSCSR_RXQ_POS); 1340 1341 IWL_DEBUG_RX(trans, 1342 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1343 rxq->id, offset, 1344 iwl_get_cmd_string(trans, 1345 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1346 pkt->hdr.group_id, pkt->hdr.cmd, 1347 le16_to_cpu(pkt->hdr.sequence)); 1348 1349 len = iwl_rx_packet_len(pkt); 1350 len += sizeof(u32); /* account for status word */ 1351 1352 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1353 1354 /* check that what the device tells us made sense */ 1355 if (len < sizeof(*pkt) || offset > max_len) 1356 break; 1357 1358 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1359 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1360 1361 /* Reclaim a command buffer only if this packet is a response 1362 * to a (driver-originated) command. 1363 * If the packet (e.g. Rx frame) originated from uCode, 1364 * there is no command buffer to reclaim. 1365 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1366 * but apparently a few don't get set; catch them here. */ 1367 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1368 if (reclaim && !pkt->hdr.group_id) { 1369 int i; 1370 1371 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1372 if (trans_pcie->no_reclaim_cmds[i] == 1373 pkt->hdr.cmd) { 1374 reclaim = false; 1375 break; 1376 } 1377 } 1378 } 1379 1380 if (rxq->id == trans_pcie->def_rx_queue) 1381 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1382 &rxcb); 1383 else 1384 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1385 &rxcb, rxq->id); 1386 1387 /* 1388 * After here, we should always check rxcb._page_stolen, 1389 * if it is true then one of the handlers took the page. 1390 */ 1391 1392 if (reclaim) { 1393 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1394 int index = SEQ_TO_INDEX(sequence); 1395 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1396 1397 kfree_sensitive(txq->entries[cmd_index].free_buf); 1398 txq->entries[cmd_index].free_buf = NULL; 1399 1400 /* Invoke any callbacks, transfer the buffer to caller, 1401 * and fire off the (possibly) blocking 1402 * iwl_trans_send_cmd() 1403 * as we reclaim the driver command queue */ 1404 if (!rxcb._page_stolen) 1405 iwl_pcie_hcmd_complete(trans, &rxcb); 1406 else 1407 IWL_WARN(trans, "Claim null rxb?\n"); 1408 } 1409 1410 page_stolen |= rxcb._page_stolen; 1411 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1412 break; 1413 } 1414 1415 /* page was stolen from us -- free our reference */ 1416 if (page_stolen) { 1417 __free_pages(rxb->page, trans_pcie->rx_page_order); 1418 rxb->page = NULL; 1419 } 1420 1421 /* Reuse the page if possible. For notification packets and 1422 * SKBs that fail to Rx correctly, add them back into the 1423 * rx_free list for reuse later. */ 1424 if (rxb->page != NULL) { 1425 rxb->page_dma = 1426 dma_map_page(trans->dev, rxb->page, rxb->offset, 1427 trans_pcie->rx_buf_bytes, 1428 DMA_FROM_DEVICE); 1429 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1430 /* 1431 * free the page(s) as well to not break 1432 * the invariant that the items on the used 1433 * list have no page(s) 1434 */ 1435 __free_pages(rxb->page, trans_pcie->rx_page_order); 1436 rxb->page = NULL; 1437 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1438 } else { 1439 list_add_tail(&rxb->list, &rxq->rx_free); 1440 rxq->free_count++; 1441 } 1442 } else 1443 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1444 } 1445 1446 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1447 struct iwl_rxq *rxq, int i, 1448 bool *join) 1449 { 1450 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1451 struct iwl_rx_mem_buffer *rxb; 1452 u16 vid; 1453 1454 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1455 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1456 1457 if (!trans->trans_cfg->mq_rx_supported) { 1458 rxb = rxq->queue[i]; 1459 rxq->queue[i] = NULL; 1460 return rxb; 1461 } 1462 1463 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1464 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1465 1466 vid = le16_to_cpu(cd[i].rbid); 1467 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1468 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1469 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1470 1471 vid = le16_to_cpu(cd[i].rbid); 1472 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1473 } else { 1474 __le32 *cd = rxq->used_bd; 1475 1476 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1477 } 1478 1479 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1480 goto out_err; 1481 1482 rxb = trans_pcie->global_table[vid - 1]; 1483 if (rxb->invalid) 1484 goto out_err; 1485 1486 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1487 1488 rxb->invalid = true; 1489 1490 return rxb; 1491 1492 out_err: 1493 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1494 iwl_force_nmi(trans); 1495 return NULL; 1496 } 1497 1498 /* 1499 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1500 */ 1501 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1502 { 1503 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1504 struct iwl_rxq *rxq; 1505 u32 r, i, count = 0, handled = 0; 1506 bool emergency = false; 1507 1508 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1509 return budget; 1510 1511 rxq = &trans_pcie->rxq[queue]; 1512 1513 restart: 1514 spin_lock(&rxq->lock); 1515 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1516 * buffer that the driver may process (last buffer filled by ucode). */ 1517 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1518 i = rxq->read; 1519 1520 /* W/A 9000 device step A0 wrap-around bug */ 1521 r &= (rxq->queue_size - 1); 1522 1523 /* Rx interrupt, but nothing sent from uCode */ 1524 if (i == r) 1525 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1526 1527 while (i != r && ++handled < budget) { 1528 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1529 struct iwl_rx_mem_buffer *rxb; 1530 /* number of RBDs still waiting for page allocation */ 1531 u32 rb_pending_alloc = 1532 atomic_read(&trans_pcie->rba.req_pending) * 1533 RX_CLAIM_REQ_ALLOC; 1534 bool join = false; 1535 1536 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1537 !emergency)) { 1538 iwl_pcie_rx_move_to_allocator(rxq, rba); 1539 emergency = true; 1540 IWL_DEBUG_TPT(trans, 1541 "RX path is in emergency. Pending allocations %d\n", 1542 rb_pending_alloc); 1543 } 1544 1545 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1546 1547 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1548 if (!rxb) 1549 goto out; 1550 1551 if (unlikely(join || rxq->next_rb_is_fragment)) { 1552 rxq->next_rb_is_fragment = join; 1553 /* 1554 * We can only get a multi-RB in the following cases: 1555 * - firmware issue, sending a too big notification 1556 * - sniffer mode with a large A-MSDU 1557 * - large MTU frames (>2k) 1558 * since the multi-RB functionality is limited to newer 1559 * hardware that cannot put multiple entries into a 1560 * single RB. 1561 * 1562 * Right now, the higher layers aren't set up to deal 1563 * with that, so discard all of these. 1564 */ 1565 list_add_tail(&rxb->list, &rxq->rx_free); 1566 rxq->free_count++; 1567 } else { 1568 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1569 } 1570 1571 i = (i + 1) & (rxq->queue_size - 1); 1572 1573 /* 1574 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1575 * try to claim the pre-allocated buffers from the allocator. 1576 * If not ready - will try to reclaim next time. 1577 * There is no need to reschedule work - allocator exits only 1578 * on success 1579 */ 1580 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1581 iwl_pcie_rx_allocator_get(trans, rxq); 1582 1583 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1584 /* Add the remaining empty RBDs for allocator use */ 1585 iwl_pcie_rx_move_to_allocator(rxq, rba); 1586 } else if (emergency) { 1587 count++; 1588 if (count == 8) { 1589 count = 0; 1590 if (rb_pending_alloc < rxq->queue_size / 3) { 1591 IWL_DEBUG_TPT(trans, 1592 "RX path exited emergency. Pending allocations %d\n", 1593 rb_pending_alloc); 1594 emergency = false; 1595 } 1596 1597 rxq->read = i; 1598 spin_unlock(&rxq->lock); 1599 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1600 iwl_pcie_rxq_restock(trans, rxq); 1601 goto restart; 1602 } 1603 } 1604 } 1605 out: 1606 /* Backtrack one entry */ 1607 rxq->read = i; 1608 spin_unlock(&rxq->lock); 1609 1610 /* 1611 * handle a case where in emergency there are some unallocated RBDs. 1612 * those RBDs are in the used list, but are not tracked by the queue's 1613 * used_count which counts allocator owned RBDs. 1614 * unallocated emergency RBDs must be allocated on exit, otherwise 1615 * when called again the function may not be in emergency mode and 1616 * they will be handed to the allocator with no tracking in the RBD 1617 * allocator counters, which will lead to them never being claimed back 1618 * by the queue. 1619 * by allocating them here, they are now in the queue free list, and 1620 * will be restocked by the next call of iwl_pcie_rxq_restock. 1621 */ 1622 if (unlikely(emergency && count)) 1623 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1624 1625 iwl_pcie_rxq_restock(trans, rxq); 1626 1627 return handled; 1628 } 1629 1630 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1631 { 1632 u8 queue = entry->entry; 1633 struct msix_entry *entries = entry - queue; 1634 1635 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1636 } 1637 1638 /* 1639 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1640 * This interrupt handler should be used with RSS queue only. 1641 */ 1642 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1643 { 1644 struct msix_entry *entry = dev_id; 1645 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1646 struct iwl_trans *trans = trans_pcie->trans; 1647 struct iwl_rxq *rxq; 1648 1649 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1650 1651 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1652 return IRQ_NONE; 1653 1654 if (!trans_pcie->rxq) { 1655 if (net_ratelimit()) 1656 IWL_ERR(trans, 1657 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1658 entry->entry); 1659 return IRQ_NONE; 1660 } 1661 1662 rxq = &trans_pcie->rxq[entry->entry]; 1663 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1664 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1665 1666 local_bh_disable(); 1667 if (napi_schedule_prep(&rxq->napi)) 1668 __napi_schedule(&rxq->napi); 1669 else 1670 iwl_pcie_clear_irq(trans, entry->entry); 1671 local_bh_enable(); 1672 1673 lock_map_release(&trans->sync_cmd_lockdep_map); 1674 1675 return IRQ_HANDLED; 1676 } 1677 1678 /* 1679 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1680 */ 1681 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1682 { 1683 int i; 1684 1685 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1686 if (trans->cfg->internal_wimax_coex && 1687 !trans->cfg->apmg_not_supported && 1688 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1689 APMS_CLK_VAL_MRB_FUNC_MODE) || 1690 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1691 APMG_PS_CTRL_VAL_RESET_REQ))) { 1692 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1693 iwl_op_mode_wimax_active(trans->op_mode); 1694 wake_up(&trans->wait_command_queue); 1695 return; 1696 } 1697 1698 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1699 if (!trans->txqs.txq[i]) 1700 continue; 1701 del_timer(&trans->txqs.txq[i]->stuck_timer); 1702 } 1703 1704 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1705 * before we wake up the command caller, to ensure a proper cleanup. */ 1706 iwl_trans_fw_error(trans, false); 1707 1708 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1709 wake_up(&trans->wait_command_queue); 1710 } 1711 1712 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1713 { 1714 u32 inta; 1715 1716 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1717 1718 trace_iwlwifi_dev_irq(trans->dev); 1719 1720 /* Discover which interrupts are active/pending */ 1721 inta = iwl_read32(trans, CSR_INT); 1722 1723 /* the thread will service interrupts and re-enable them */ 1724 return inta; 1725 } 1726 1727 /* a device (PCI-E) page is 4096 bytes long */ 1728 #define ICT_SHIFT 12 1729 #define ICT_SIZE (1 << ICT_SHIFT) 1730 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1731 1732 /* interrupt handler using ict table, with this interrupt driver will 1733 * stop using INTA register to get device's interrupt, reading this register 1734 * is expensive, device will write interrupts in ICT dram table, increment 1735 * index then will fire interrupt to driver, driver will OR all ICT table 1736 * entries from current index up to table entry with 0 value. the result is 1737 * the interrupt we need to service, driver will set the entries back to 0 and 1738 * set index. 1739 */ 1740 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1741 { 1742 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1743 u32 inta; 1744 u32 val = 0; 1745 u32 read; 1746 1747 trace_iwlwifi_dev_irq(trans->dev); 1748 1749 /* Ignore interrupt if there's nothing in NIC to service. 1750 * This may be due to IRQ shared with another device, 1751 * or due to sporadic interrupts thrown from our NIC. */ 1752 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1753 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1754 if (!read) 1755 return 0; 1756 1757 /* 1758 * Collect all entries up to the first 0, starting from ict_index; 1759 * note we already read at ict_index. 1760 */ 1761 do { 1762 val |= read; 1763 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1764 trans_pcie->ict_index, read); 1765 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1766 trans_pcie->ict_index = 1767 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1768 1769 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1770 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1771 read); 1772 } while (read); 1773 1774 /* We should not get this value, just ignore it. */ 1775 if (val == 0xffffffff) 1776 val = 0; 1777 1778 /* 1779 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1780 * (bit 15 before shifting it to 31) to clear when using interrupt 1781 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1782 * so we use them to decide on the real state of the Rx bit. 1783 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1784 */ 1785 if (val & 0xC0000) 1786 val |= 0x8000; 1787 1788 inta = (0xff & val) | ((0xff00 & val) << 16); 1789 return inta; 1790 } 1791 1792 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1793 { 1794 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1795 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1796 bool hw_rfkill, prev, report; 1797 1798 mutex_lock(&trans_pcie->mutex); 1799 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1800 hw_rfkill = iwl_is_rfkill_set(trans); 1801 if (hw_rfkill) { 1802 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1803 set_bit(STATUS_RFKILL_HW, &trans->status); 1804 } 1805 if (trans_pcie->opmode_down) 1806 report = hw_rfkill; 1807 else 1808 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1809 1810 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1811 hw_rfkill ? "disable radio" : "enable radio"); 1812 1813 isr_stats->rfkill++; 1814 1815 if (prev != report) 1816 iwl_trans_pcie_rf_kill(trans, report); 1817 mutex_unlock(&trans_pcie->mutex); 1818 1819 if (hw_rfkill) { 1820 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1821 &trans->status)) 1822 IWL_DEBUG_RF_KILL(trans, 1823 "Rfkill while SYNC HCMD in flight\n"); 1824 wake_up(&trans->wait_command_queue); 1825 } else { 1826 clear_bit(STATUS_RFKILL_HW, &trans->status); 1827 if (trans_pcie->opmode_down) 1828 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1829 } 1830 } 1831 1832 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1833 { 1834 struct iwl_trans *trans = dev_id; 1835 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1836 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1837 u32 inta = 0; 1838 u32 handled = 0; 1839 bool polling = false; 1840 1841 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1842 1843 spin_lock_bh(&trans_pcie->irq_lock); 1844 1845 /* dram interrupt table not set yet, 1846 * use legacy interrupt. 1847 */ 1848 if (likely(trans_pcie->use_ict)) 1849 inta = iwl_pcie_int_cause_ict(trans); 1850 else 1851 inta = iwl_pcie_int_cause_non_ict(trans); 1852 1853 #ifdef CONFIG_IWLWIFI_DEBUG 1854 if (iwl_have_debug_level(IWL_DL_ISR)) { 1855 IWL_DEBUG_ISR(trans, 1856 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1857 inta, trans_pcie->inta_mask, 1858 iwl_read32(trans, CSR_INT_MASK), 1859 iwl_read32(trans, CSR_FH_INT_STATUS)); 1860 if (inta & (~trans_pcie->inta_mask)) 1861 IWL_DEBUG_ISR(trans, 1862 "We got a masked interrupt (0x%08x)\n", 1863 inta & (~trans_pcie->inta_mask)); 1864 } 1865 #endif 1866 1867 inta &= trans_pcie->inta_mask; 1868 1869 /* 1870 * Ignore interrupt if there's nothing in NIC to service. 1871 * This may be due to IRQ shared with another device, 1872 * or due to sporadic interrupts thrown from our NIC. 1873 */ 1874 if (unlikely(!inta)) { 1875 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1876 /* 1877 * Re-enable interrupts here since we don't 1878 * have anything to service 1879 */ 1880 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1881 _iwl_enable_interrupts(trans); 1882 spin_unlock_bh(&trans_pcie->irq_lock); 1883 lock_map_release(&trans->sync_cmd_lockdep_map); 1884 return IRQ_NONE; 1885 } 1886 1887 if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1888 /* 1889 * Hardware disappeared. It might have 1890 * already raised an interrupt. 1891 */ 1892 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1893 spin_unlock_bh(&trans_pcie->irq_lock); 1894 goto out; 1895 } 1896 1897 /* Ack/clear/reset pending uCode interrupts. 1898 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1899 */ 1900 /* There is a hardware bug in the interrupt mask function that some 1901 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1902 * they are disabled in the CSR_INT_MASK register. Furthermore the 1903 * ICT interrupt handling mechanism has another bug that might cause 1904 * these unmasked interrupts fail to be detected. We workaround the 1905 * hardware bugs here by ACKing all the possible interrupts so that 1906 * interrupt coalescing can still be achieved. 1907 */ 1908 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1909 1910 #ifdef CONFIG_IWLWIFI_DEBUG 1911 if (iwl_have_debug_level(IWL_DL_ISR)) 1912 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1913 inta, iwl_read32(trans, CSR_INT_MASK)); 1914 #endif 1915 1916 spin_unlock_bh(&trans_pcie->irq_lock); 1917 1918 /* Now service all interrupt bits discovered above. */ 1919 if (inta & CSR_INT_BIT_HW_ERR) { 1920 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1921 1922 /* Tell the device to stop sending interrupts */ 1923 iwl_disable_interrupts(trans); 1924 1925 isr_stats->hw++; 1926 iwl_pcie_irq_handle_error(trans); 1927 1928 handled |= CSR_INT_BIT_HW_ERR; 1929 1930 goto out; 1931 } 1932 1933 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1934 if (inta & CSR_INT_BIT_SCD) { 1935 IWL_DEBUG_ISR(trans, 1936 "Scheduler finished to transmit the frame/frames.\n"); 1937 isr_stats->sch++; 1938 } 1939 1940 /* Alive notification via Rx interrupt will do the real work */ 1941 if (inta & CSR_INT_BIT_ALIVE) { 1942 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1943 isr_stats->alive++; 1944 if (trans->trans_cfg->gen2) { 1945 /* 1946 * We can restock, since firmware configured 1947 * the RFH 1948 */ 1949 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1950 } 1951 1952 handled |= CSR_INT_BIT_ALIVE; 1953 } 1954 1955 /* Safely ignore these bits for debug checks below */ 1956 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1957 1958 /* HW RF KILL switch toggled */ 1959 if (inta & CSR_INT_BIT_RF_KILL) { 1960 iwl_pcie_handle_rfkill_irq(trans); 1961 handled |= CSR_INT_BIT_RF_KILL; 1962 } 1963 1964 /* Chip got too hot and stopped itself */ 1965 if (inta & CSR_INT_BIT_CT_KILL) { 1966 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1967 isr_stats->ctkill++; 1968 handled |= CSR_INT_BIT_CT_KILL; 1969 } 1970 1971 /* Error detected by uCode */ 1972 if (inta & CSR_INT_BIT_SW_ERR) { 1973 IWL_ERR(trans, "Microcode SW error detected. " 1974 " Restarting 0x%X.\n", inta); 1975 isr_stats->sw++; 1976 iwl_pcie_irq_handle_error(trans); 1977 handled |= CSR_INT_BIT_SW_ERR; 1978 } 1979 1980 /* uCode wakes up after power-down sleep */ 1981 if (inta & CSR_INT_BIT_WAKEUP) { 1982 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1983 iwl_pcie_rxq_check_wrptr(trans); 1984 iwl_pcie_txq_check_wrptrs(trans); 1985 1986 isr_stats->wakeup++; 1987 1988 handled |= CSR_INT_BIT_WAKEUP; 1989 } 1990 1991 /* All uCode command responses, including Tx command responses, 1992 * Rx "responses" (frame-received notification), and other 1993 * notifications from uCode come through here*/ 1994 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1995 CSR_INT_BIT_RX_PERIODIC)) { 1996 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1997 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1998 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1999 iwl_write32(trans, CSR_FH_INT_STATUS, 2000 CSR_FH_INT_RX_MASK); 2001 } 2002 if (inta & CSR_INT_BIT_RX_PERIODIC) { 2003 handled |= CSR_INT_BIT_RX_PERIODIC; 2004 iwl_write32(trans, 2005 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 2006 } 2007 /* Sending RX interrupt require many steps to be done in the 2008 * device: 2009 * 1- write interrupt to current index in ICT table. 2010 * 2- dma RX frame. 2011 * 3- update RX shared data to indicate last write index. 2012 * 4- send interrupt. 2013 * This could lead to RX race, driver could receive RX interrupt 2014 * but the shared data changes does not reflect this; 2015 * periodic interrupt will detect any dangling Rx activity. 2016 */ 2017 2018 /* Disable periodic interrupt; we use it as just a one-shot. */ 2019 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2020 CSR_INT_PERIODIC_DIS); 2021 2022 /* 2023 * Enable periodic interrupt in 8 msec only if we received 2024 * real RX interrupt (instead of just periodic int), to catch 2025 * any dangling Rx interrupt. If it was just the periodic 2026 * interrupt, there was no dangling Rx activity, and no need 2027 * to extend the periodic interrupt; one-shot is enough. 2028 */ 2029 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2030 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2031 CSR_INT_PERIODIC_ENA); 2032 2033 isr_stats->rx++; 2034 2035 local_bh_disable(); 2036 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2037 polling = true; 2038 __napi_schedule(&trans_pcie->rxq[0].napi); 2039 } 2040 local_bh_enable(); 2041 } 2042 2043 /* This "Tx" DMA channel is used only for loading uCode */ 2044 if (inta & CSR_INT_BIT_FH_TX) { 2045 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2046 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2047 isr_stats->tx++; 2048 handled |= CSR_INT_BIT_FH_TX; 2049 /* Wake up uCode load routine, now that load is complete */ 2050 trans_pcie->ucode_write_complete = true; 2051 wake_up(&trans_pcie->ucode_write_waitq); 2052 /* Wake up IMR write routine, now that write to SRAM is complete */ 2053 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2054 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2055 wake_up(&trans_pcie->ucode_write_waitq); 2056 } 2057 } 2058 2059 if (inta & ~handled) { 2060 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2061 isr_stats->unhandled++; 2062 } 2063 2064 if (inta & ~(trans_pcie->inta_mask)) { 2065 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2066 inta & ~trans_pcie->inta_mask); 2067 } 2068 2069 if (!polling) { 2070 spin_lock_bh(&trans_pcie->irq_lock); 2071 /* only Re-enable all interrupt if disabled by irq */ 2072 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2073 _iwl_enable_interrupts(trans); 2074 /* we are loading the firmware, enable FH_TX interrupt only */ 2075 else if (handled & CSR_INT_BIT_FH_TX) 2076 iwl_enable_fw_load_int(trans); 2077 /* Re-enable RF_KILL if it occurred */ 2078 else if (handled & CSR_INT_BIT_RF_KILL) 2079 iwl_enable_rfkill_int(trans); 2080 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2081 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2082 iwl_enable_fw_load_int_ctx_info(trans); 2083 spin_unlock_bh(&trans_pcie->irq_lock); 2084 } 2085 2086 out: 2087 lock_map_release(&trans->sync_cmd_lockdep_map); 2088 return IRQ_HANDLED; 2089 } 2090 2091 /****************************************************************************** 2092 * 2093 * ICT functions 2094 * 2095 ******************************************************************************/ 2096 2097 /* Free dram table */ 2098 void iwl_pcie_free_ict(struct iwl_trans *trans) 2099 { 2100 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2101 2102 if (trans_pcie->ict_tbl) { 2103 dma_free_coherent(trans->dev, ICT_SIZE, 2104 trans_pcie->ict_tbl, 2105 trans_pcie->ict_tbl_dma); 2106 trans_pcie->ict_tbl = NULL; 2107 trans_pcie->ict_tbl_dma = 0; 2108 } 2109 } 2110 2111 /* 2112 * allocate dram shared table, it is an aligned memory 2113 * block of ICT_SIZE. 2114 * also reset all data related to ICT table interrupt. 2115 */ 2116 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2117 { 2118 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2119 2120 trans_pcie->ict_tbl = 2121 dma_alloc_coherent(trans->dev, ICT_SIZE, 2122 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2123 if (!trans_pcie->ict_tbl) 2124 return -ENOMEM; 2125 2126 /* just an API sanity check ... it is guaranteed to be aligned */ 2127 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2128 iwl_pcie_free_ict(trans); 2129 return -EINVAL; 2130 } 2131 2132 return 0; 2133 } 2134 2135 /* Device is going up inform it about using ICT interrupt table, 2136 * also we need to tell the driver to start using ICT interrupt. 2137 */ 2138 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2139 { 2140 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2141 u32 val; 2142 2143 if (!trans_pcie->ict_tbl) 2144 return; 2145 2146 spin_lock_bh(&trans_pcie->irq_lock); 2147 _iwl_disable_interrupts(trans); 2148 2149 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2150 2151 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2152 2153 val |= CSR_DRAM_INT_TBL_ENABLE | 2154 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2155 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2156 2157 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2158 2159 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2160 trans_pcie->use_ict = true; 2161 trans_pcie->ict_index = 0; 2162 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2163 _iwl_enable_interrupts(trans); 2164 spin_unlock_bh(&trans_pcie->irq_lock); 2165 } 2166 2167 /* Device is going down disable ict interrupt usage */ 2168 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2169 { 2170 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2171 2172 spin_lock_bh(&trans_pcie->irq_lock); 2173 trans_pcie->use_ict = false; 2174 spin_unlock_bh(&trans_pcie->irq_lock); 2175 } 2176 2177 irqreturn_t iwl_pcie_isr(int irq, void *data) 2178 { 2179 struct iwl_trans *trans = data; 2180 2181 if (!trans) 2182 return IRQ_NONE; 2183 2184 /* Disable (but don't clear!) interrupts here to avoid 2185 * back-to-back ISRs and sporadic interrupts from our NIC. 2186 * If we have something to service, the tasklet will re-enable ints. 2187 * If we *don't* have something, we'll re-enable before leaving here. 2188 */ 2189 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2190 2191 return IRQ_WAKE_THREAD; 2192 } 2193 2194 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2195 { 2196 return IRQ_WAKE_THREAD; 2197 } 2198 2199 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2200 { 2201 struct msix_entry *entry = dev_id; 2202 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2203 struct iwl_trans *trans = trans_pcie->trans; 2204 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2205 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2206 u32 inta_fh, inta_hw; 2207 bool polling = false; 2208 bool sw_err; 2209 2210 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2211 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2212 2213 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2214 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2215 2216 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2217 2218 spin_lock_bh(&trans_pcie->irq_lock); 2219 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2220 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2221 /* 2222 * Clear causes registers to avoid being handling the same cause. 2223 */ 2224 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2225 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2226 spin_unlock_bh(&trans_pcie->irq_lock); 2227 2228 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2229 2230 if (unlikely(!(inta_fh | inta_hw))) { 2231 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2232 lock_map_release(&trans->sync_cmd_lockdep_map); 2233 return IRQ_NONE; 2234 } 2235 2236 #ifdef CONFIG_IWLWIFI_DEBUG 2237 if (iwl_have_debug_level(IWL_DL_ISR)) { 2238 IWL_DEBUG_ISR(trans, 2239 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2240 entry->entry, inta_fh, trans_pcie->fh_mask, 2241 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2242 if (inta_fh & ~trans_pcie->fh_mask) 2243 IWL_DEBUG_ISR(trans, 2244 "We got a masked interrupt (0x%08x)\n", 2245 inta_fh & ~trans_pcie->fh_mask); 2246 } 2247 #endif 2248 2249 inta_fh &= trans_pcie->fh_mask; 2250 2251 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2252 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2253 local_bh_disable(); 2254 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2255 polling = true; 2256 __napi_schedule(&trans_pcie->rxq[0].napi); 2257 } 2258 local_bh_enable(); 2259 } 2260 2261 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2262 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2263 local_bh_disable(); 2264 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2265 polling = true; 2266 __napi_schedule(&trans_pcie->rxq[1].napi); 2267 } 2268 local_bh_enable(); 2269 } 2270 2271 /* This "Tx" DMA channel is used only for loading uCode */ 2272 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2273 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2274 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2275 isr_stats->tx++; 2276 2277 /* Wake up IMR routine once write to SRAM is complete */ 2278 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2279 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2280 wake_up(&trans_pcie->ucode_write_waitq); 2281 } 2282 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2283 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2284 isr_stats->tx++; 2285 /* 2286 * Wake up uCode load routine, 2287 * now that load is complete 2288 */ 2289 trans_pcie->ucode_write_complete = true; 2290 wake_up(&trans_pcie->ucode_write_waitq); 2291 2292 /* Wake up IMR routine once write to SRAM is complete */ 2293 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2294 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2295 wake_up(&trans_pcie->ucode_write_waitq); 2296 } 2297 } 2298 2299 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2300 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2301 else 2302 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2303 2304 /* Error detected by uCode */ 2305 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2306 IWL_ERR(trans, 2307 "Microcode SW error detected. Restarting 0x%X.\n", 2308 inta_fh); 2309 isr_stats->sw++; 2310 /* during FW reset flow report errors from there */ 2311 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2312 trans_pcie->imr_status = IMR_D2S_ERROR; 2313 wake_up(&trans_pcie->imr_waitq); 2314 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2315 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2316 wake_up(&trans_pcie->fw_reset_waitq); 2317 } else { 2318 iwl_pcie_irq_handle_error(trans); 2319 } 2320 } 2321 2322 /* After checking FH register check HW register */ 2323 #ifdef CONFIG_IWLWIFI_DEBUG 2324 if (iwl_have_debug_level(IWL_DL_ISR)) { 2325 IWL_DEBUG_ISR(trans, 2326 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2327 entry->entry, inta_hw, trans_pcie->hw_mask, 2328 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2329 if (inta_hw & ~trans_pcie->hw_mask) 2330 IWL_DEBUG_ISR(trans, 2331 "We got a masked interrupt 0x%08x\n", 2332 inta_hw & ~trans_pcie->hw_mask); 2333 } 2334 #endif 2335 2336 inta_hw &= trans_pcie->hw_mask; 2337 2338 /* Alive notification via Rx interrupt will do the real work */ 2339 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2340 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2341 isr_stats->alive++; 2342 if (trans->trans_cfg->gen2) { 2343 /* We can restock, since firmware configured the RFH */ 2344 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2345 } 2346 } 2347 2348 /* 2349 * In some rare cases when the HW is in a bad state, we may 2350 * get this interrupt too early, when prph_info is still NULL. 2351 * So make sure that it's not NULL to prevent crashing. 2352 */ 2353 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2354 u32 sleep_notif = 2355 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2356 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2357 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2358 IWL_DEBUG_ISR(trans, 2359 "Sx interrupt: sleep notification = 0x%x\n", 2360 sleep_notif); 2361 trans_pcie->sx_complete = true; 2362 wake_up(&trans_pcie->sx_waitq); 2363 } else { 2364 /* uCode wakes up after power-down sleep */ 2365 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2366 iwl_pcie_rxq_check_wrptr(trans); 2367 iwl_pcie_txq_check_wrptrs(trans); 2368 2369 isr_stats->wakeup++; 2370 } 2371 } 2372 2373 /* Chip got too hot and stopped itself */ 2374 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2375 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2376 isr_stats->ctkill++; 2377 } 2378 2379 /* HW RF KILL switch toggled */ 2380 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2381 iwl_pcie_handle_rfkill_irq(trans); 2382 2383 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2384 IWL_ERR(trans, 2385 "Hardware error detected. Restarting.\n"); 2386 2387 isr_stats->hw++; 2388 trans->dbg.hw_error = true; 2389 iwl_pcie_irq_handle_error(trans); 2390 } 2391 2392 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2393 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2394 trans_pcie->fw_reset_state = FW_RESET_OK; 2395 wake_up(&trans_pcie->fw_reset_waitq); 2396 } 2397 2398 if (!polling) 2399 iwl_pcie_clear_irq(trans, entry->entry); 2400 2401 lock_map_release(&trans->sync_cmd_lockdep_map); 2402 2403 return IRQ_HANDLED; 2404 } 2405