1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 #if defined(__linux__) 238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239 #elif defined(__FreeBSD__) 240 IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 241 (u32)rxb->vid, rxq->id, rxq->write); 242 #endif 243 } 244 245 /* 246 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 247 */ 248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 249 struct iwl_rxq *rxq) 250 { 251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 252 struct iwl_rx_mem_buffer *rxb; 253 254 /* 255 * If the device isn't enabled - no need to try to add buffers... 256 * This can happen when we stop the device and still have an interrupt 257 * pending. We stop the APM before we sync the interrupts because we 258 * have to (see comment there). On the other hand, since the APM is 259 * stopped, we cannot access the HW (in particular not prph). 260 * So don't try to restock if the APM has been already stopped. 261 */ 262 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 263 return; 264 265 spin_lock_bh(&rxq->lock); 266 while (rxq->free_count) { 267 /* Get next free Rx buffer, remove from free list */ 268 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 269 list); 270 list_del(&rxb->list); 271 rxb->invalid = false; 272 /* some low bits are expected to be unset (depending on hw) */ 273 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 274 /* Point to Rx buffer via next RBD in circular buffer */ 275 iwl_pcie_restock_bd(trans, rxq, rxb); 276 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 277 rxq->free_count--; 278 } 279 spin_unlock_bh(&rxq->lock); 280 281 /* 282 * If we've added more space for the firmware to place data, tell it. 283 * Increment device's write pointer in multiples of 8. 284 */ 285 if (rxq->write_actual != (rxq->write & ~0x7)) { 286 spin_lock_bh(&rxq->lock); 287 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 288 spin_unlock_bh(&rxq->lock); 289 } 290 } 291 292 /* 293 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 294 */ 295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 296 struct iwl_rxq *rxq) 297 { 298 struct iwl_rx_mem_buffer *rxb; 299 300 /* 301 * If the device isn't enabled - not need to try to add buffers... 302 * This can happen when we stop the device and still have an interrupt 303 * pending. We stop the APM before we sync the interrupts because we 304 * have to (see comment there). On the other hand, since the APM is 305 * stopped, we cannot access the HW (in particular not prph). 306 * So don't try to restock if the APM has been already stopped. 307 */ 308 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 309 return; 310 311 spin_lock_bh(&rxq->lock); 312 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 313 __le32 *bd = (__le32 *)rxq->bd; 314 /* The overwritten rxb must be a used one */ 315 rxb = rxq->queue[rxq->write]; 316 BUG_ON(rxb && rxb->page); 317 318 /* Get next free Rx buffer, remove from free list */ 319 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 320 list); 321 list_del(&rxb->list); 322 rxb->invalid = false; 323 324 /* Point to Rx buffer via next RBD in circular buffer */ 325 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 326 rxq->queue[rxq->write] = rxb; 327 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 328 rxq->free_count--; 329 } 330 spin_unlock_bh(&rxq->lock); 331 332 /* If we've added more space for the firmware to place data, tell it. 333 * Increment device's write pointer in multiples of 8. */ 334 if (rxq->write_actual != (rxq->write & ~0x7)) { 335 spin_lock_bh(&rxq->lock); 336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337 spin_unlock_bh(&rxq->lock); 338 } 339 } 340 341 /* 342 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 343 * 344 * If there are slots in the RX queue that need to be restocked, 345 * and we have free pre-allocated buffers, fill the ranks as much 346 * as we can, pulling from rx_free. 347 * 348 * This moves the 'write' index forward to catch up with 'processed', and 349 * also updates the memory address in the firmware to reference the new 350 * target buffer. 351 */ 352 static 353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 354 { 355 if (trans->trans_cfg->mq_rx_supported) 356 iwl_pcie_rxmq_restock(trans, rxq); 357 else 358 iwl_pcie_rxsq_restock(trans, rxq); 359 } 360 361 /* 362 * iwl_pcie_rx_alloc_page - allocates and returns a page. 363 * 364 */ 365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 366 u32 *offset, gfp_t priority) 367 { 368 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 369 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 370 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 371 struct page *page; 372 gfp_t gfp_mask = priority; 373 374 if (trans_pcie->rx_page_order > 0) 375 gfp_mask |= __GFP_COMP; 376 377 if (trans_pcie->alloc_page) { 378 spin_lock_bh(&trans_pcie->alloc_page_lock); 379 /* recheck */ 380 if (trans_pcie->alloc_page) { 381 *offset = trans_pcie->alloc_page_used; 382 page = trans_pcie->alloc_page; 383 trans_pcie->alloc_page_used += rbsize; 384 if (trans_pcie->alloc_page_used >= allocsize) 385 trans_pcie->alloc_page = NULL; 386 else 387 get_page(page); 388 spin_unlock_bh(&trans_pcie->alloc_page_lock); 389 return page; 390 } 391 spin_unlock_bh(&trans_pcie->alloc_page_lock); 392 } 393 394 /* Alloc a new receive buffer */ 395 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 396 if (!page) { 397 if (net_ratelimit()) 398 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 399 trans_pcie->rx_page_order); 400 /* 401 * Issue an error if we don't have enough pre-allocated 402 * buffers. 403 */ 404 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 405 IWL_CRIT(trans, 406 "Failed to alloc_pages\n"); 407 return NULL; 408 } 409 410 if (2 * rbsize <= allocsize) { 411 spin_lock_bh(&trans_pcie->alloc_page_lock); 412 if (!trans_pcie->alloc_page) { 413 get_page(page); 414 trans_pcie->alloc_page = page; 415 trans_pcie->alloc_page_used = rbsize; 416 } 417 spin_unlock_bh(&trans_pcie->alloc_page_lock); 418 } 419 420 *offset = 0; 421 return page; 422 } 423 424 /* 425 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 426 * 427 * A used RBD is an Rx buffer that has been given to the stack. To use it again 428 * a page must be allocated and the RBD must point to the page. This function 429 * doesn't change the HW pointer but handles the list of pages that is used by 430 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 431 * allocated buffers. 432 */ 433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 434 struct iwl_rxq *rxq) 435 { 436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 437 struct iwl_rx_mem_buffer *rxb; 438 struct page *page; 439 440 while (1) { 441 unsigned int offset; 442 443 spin_lock_bh(&rxq->lock); 444 if (list_empty(&rxq->rx_used)) { 445 spin_unlock_bh(&rxq->lock); 446 return; 447 } 448 spin_unlock_bh(&rxq->lock); 449 450 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 451 if (!page) 452 return; 453 454 spin_lock_bh(&rxq->lock); 455 456 if (list_empty(&rxq->rx_used)) { 457 spin_unlock_bh(&rxq->lock); 458 __free_pages(page, trans_pcie->rx_page_order); 459 return; 460 } 461 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 462 list); 463 list_del(&rxb->list); 464 spin_unlock_bh(&rxq->lock); 465 466 BUG_ON(rxb->page); 467 rxb->page = page; 468 rxb->offset = offset; 469 /* Get physical address of the RB */ 470 rxb->page_dma = 471 dma_map_page(trans->dev, page, rxb->offset, 472 trans_pcie->rx_buf_bytes, 473 DMA_FROM_DEVICE); 474 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 475 rxb->page = NULL; 476 spin_lock_bh(&rxq->lock); 477 list_add(&rxb->list, &rxq->rx_used); 478 spin_unlock_bh(&rxq->lock); 479 __free_pages(page, trans_pcie->rx_page_order); 480 return; 481 } 482 483 spin_lock_bh(&rxq->lock); 484 485 list_add_tail(&rxb->list, &rxq->rx_free); 486 rxq->free_count++; 487 488 spin_unlock_bh(&rxq->lock); 489 } 490 } 491 492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 493 { 494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 495 int i; 496 497 if (!trans_pcie->rx_pool) 498 return; 499 500 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 501 if (!trans_pcie->rx_pool[i].page) 502 continue; 503 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 504 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 505 __free_pages(trans_pcie->rx_pool[i].page, 506 trans_pcie->rx_page_order); 507 trans_pcie->rx_pool[i].page = NULL; 508 } 509 } 510 511 /* 512 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 513 * 514 * Allocates for each received request 8 pages 515 * Called as a scheduled work item. 516 */ 517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 518 { 519 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 520 struct iwl_rb_allocator *rba = &trans_pcie->rba; 521 struct list_head local_empty; 522 int pending = atomic_read(&rba->req_pending); 523 524 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 525 526 /* If we were scheduled - there is at least one request */ 527 spin_lock_bh(&rba->lock); 528 /* swap out the rba->rbd_empty to a local list */ 529 list_replace_init(&rba->rbd_empty, &local_empty); 530 spin_unlock_bh(&rba->lock); 531 532 while (pending) { 533 int i; 534 LIST_HEAD(local_allocated); 535 gfp_t gfp_mask = GFP_KERNEL; 536 537 /* Do not post a warning if there are only a few requests */ 538 if (pending < RX_PENDING_WATERMARK) 539 gfp_mask |= __GFP_NOWARN; 540 541 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 542 struct iwl_rx_mem_buffer *rxb; 543 struct page *page; 544 545 /* List should never be empty - each reused RBD is 546 * returned to the list, and initial pool covers any 547 * possible gap between the time the page is allocated 548 * to the time the RBD is added. 549 */ 550 BUG_ON(list_empty(&local_empty)); 551 /* Get the first rxb from the rbd list */ 552 rxb = list_first_entry(&local_empty, 553 struct iwl_rx_mem_buffer, list); 554 BUG_ON(rxb->page); 555 556 /* Alloc a new receive buffer */ 557 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 558 gfp_mask); 559 if (!page) 560 continue; 561 rxb->page = page; 562 563 /* Get physical address of the RB */ 564 rxb->page_dma = dma_map_page(trans->dev, page, 565 rxb->offset, 566 trans_pcie->rx_buf_bytes, 567 DMA_FROM_DEVICE); 568 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 569 rxb->page = NULL; 570 __free_pages(page, trans_pcie->rx_page_order); 571 continue; 572 } 573 574 /* move the allocated entry to the out list */ 575 list_move(&rxb->list, &local_allocated); 576 i++; 577 } 578 579 atomic_dec(&rba->req_pending); 580 pending--; 581 582 if (!pending) { 583 pending = atomic_read(&rba->req_pending); 584 if (pending) 585 IWL_DEBUG_TPT(trans, 586 "Got more pending allocation requests = %d\n", 587 pending); 588 } 589 590 spin_lock_bh(&rba->lock); 591 /* add the allocated rbds to the allocator allocated list */ 592 list_splice_tail(&local_allocated, &rba->rbd_allocated); 593 /* get more empty RBDs for current pending requests */ 594 list_splice_tail_init(&rba->rbd_empty, &local_empty); 595 spin_unlock_bh(&rba->lock); 596 597 atomic_inc(&rba->req_ready); 598 599 } 600 601 spin_lock_bh(&rba->lock); 602 /* return unused rbds to the allocator empty list */ 603 list_splice_tail(&local_empty, &rba->rbd_empty); 604 spin_unlock_bh(&rba->lock); 605 606 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 607 } 608 609 /* 610 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 611 .* 612 .* Called by queue when the queue posted allocation request and 613 * has freed 8 RBDs in order to restock itself. 614 * This function directly moves the allocated RBs to the queue's ownership 615 * and updates the relevant counters. 616 */ 617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 618 struct iwl_rxq *rxq) 619 { 620 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 621 struct iwl_rb_allocator *rba = &trans_pcie->rba; 622 int i; 623 624 lockdep_assert_held(&rxq->lock); 625 626 /* 627 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 628 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 629 * function will return early, as there are no ready requests. 630 * atomic_dec_if_positive will perofrm the *actual* decrement only if 631 * req_ready > 0, i.e. - there are ready requests and the function 632 * hands one request to the caller. 633 */ 634 if (atomic_dec_if_positive(&rba->req_ready) < 0) 635 return; 636 637 spin_lock(&rba->lock); 638 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 639 /* Get next free Rx buffer, remove it from free list */ 640 struct iwl_rx_mem_buffer *rxb = 641 list_first_entry(&rba->rbd_allocated, 642 struct iwl_rx_mem_buffer, list); 643 644 list_move(&rxb->list, &rxq->rx_free); 645 } 646 spin_unlock(&rba->lock); 647 648 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 649 rxq->free_count += RX_CLAIM_REQ_ALLOC; 650 } 651 652 void iwl_pcie_rx_allocator_work(struct work_struct *data) 653 { 654 struct iwl_rb_allocator *rba_p = 655 container_of(data, struct iwl_rb_allocator, rx_alloc); 656 struct iwl_trans_pcie *trans_pcie = 657 container_of(rba_p, struct iwl_trans_pcie, rba); 658 659 iwl_pcie_rx_allocator(trans_pcie->trans); 660 } 661 662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 663 { 664 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 665 return sizeof(struct iwl_rx_transfer_desc); 666 667 return trans->trans_cfg->mq_rx_supported ? 668 sizeof(__le64) : sizeof(__le32); 669 } 670 671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 672 { 673 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 674 return sizeof(struct iwl_rx_completion_desc_bz); 675 676 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 677 return sizeof(struct iwl_rx_completion_desc); 678 679 return sizeof(__le32); 680 } 681 682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 683 struct iwl_rxq *rxq) 684 { 685 int free_size = iwl_pcie_free_bd_size(trans); 686 687 if (rxq->bd) 688 dma_free_coherent(trans->dev, 689 free_size * rxq->queue_size, 690 rxq->bd, rxq->bd_dma); 691 rxq->bd_dma = 0; 692 rxq->bd = NULL; 693 694 rxq->rb_stts_dma = 0; 695 rxq->rb_stts = NULL; 696 697 if (rxq->used_bd) 698 dma_free_coherent(trans->dev, 699 iwl_pcie_used_bd_size(trans) * 700 rxq->queue_size, 701 rxq->used_bd, rxq->used_bd_dma); 702 rxq->used_bd_dma = 0; 703 rxq->used_bd = NULL; 704 } 705 706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 707 struct iwl_rxq *rxq) 708 { 709 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 710 struct device *dev = trans->dev; 711 int i; 712 int free_size; 713 bool use_rx_td = (trans->trans_cfg->device_family >= 714 IWL_DEVICE_FAMILY_AX210); 715 size_t rb_stts_size = use_rx_td ? sizeof(__le16) : 716 sizeof(struct iwl_rb_status); 717 718 spin_lock_init(&rxq->lock); 719 if (trans->trans_cfg->mq_rx_supported) 720 rxq->queue_size = trans->cfg->num_rbds; 721 else 722 rxq->queue_size = RX_QUEUE_SIZE; 723 724 free_size = iwl_pcie_free_bd_size(trans); 725 726 /* 727 * Allocate the circular buffer of Read Buffer Descriptors 728 * (RBDs) 729 */ 730 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 731 &rxq->bd_dma, GFP_KERNEL); 732 if (!rxq->bd) 733 goto err; 734 735 if (trans->trans_cfg->mq_rx_supported) { 736 rxq->used_bd = dma_alloc_coherent(dev, 737 iwl_pcie_used_bd_size(trans) * 738 rxq->queue_size, 739 &rxq->used_bd_dma, 740 GFP_KERNEL); 741 if (!rxq->used_bd) 742 goto err; 743 } 744 745 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 746 rxq->rb_stts_dma = 747 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 748 749 return 0; 750 751 err: 752 for (i = 0; i < trans->num_rx_queues; i++) { 753 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 754 755 iwl_pcie_free_rxq_dma(trans, rxq); 756 } 757 758 return -ENOMEM; 759 } 760 761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 762 { 763 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 764 struct iwl_rb_allocator *rba = &trans_pcie->rba; 765 int i, ret; 766 size_t rb_stts_size = trans->trans_cfg->device_family >= 767 IWL_DEVICE_FAMILY_AX210 ? 768 sizeof(__le16) : sizeof(struct iwl_rb_status); 769 770 if (WARN_ON(trans_pcie->rxq)) 771 return -EINVAL; 772 773 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 774 GFP_KERNEL); 775 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 776 sizeof(trans_pcie->rx_pool[0]), 777 GFP_KERNEL); 778 trans_pcie->global_table = 779 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 780 sizeof(trans_pcie->global_table[0]), 781 GFP_KERNEL); 782 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 783 !trans_pcie->global_table) { 784 ret = -ENOMEM; 785 goto err; 786 } 787 788 spin_lock_init(&rba->lock); 789 790 /* 791 * Allocate the driver's pointer to receive buffer status. 792 * Allocate for all queues continuously (HW requirement). 793 */ 794 trans_pcie->base_rb_stts = 795 dma_alloc_coherent(trans->dev, 796 rb_stts_size * trans->num_rx_queues, 797 &trans_pcie->base_rb_stts_dma, 798 GFP_KERNEL); 799 if (!trans_pcie->base_rb_stts) { 800 ret = -ENOMEM; 801 goto err; 802 } 803 804 for (i = 0; i < trans->num_rx_queues; i++) { 805 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 806 807 rxq->id = i; 808 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 809 if (ret) 810 goto err; 811 } 812 return 0; 813 814 err: 815 if (trans_pcie->base_rb_stts) { 816 dma_free_coherent(trans->dev, 817 rb_stts_size * trans->num_rx_queues, 818 trans_pcie->base_rb_stts, 819 trans_pcie->base_rb_stts_dma); 820 trans_pcie->base_rb_stts = NULL; 821 trans_pcie->base_rb_stts_dma = 0; 822 } 823 kfree(trans_pcie->rx_pool); 824 trans_pcie->rx_pool = NULL; 825 kfree(trans_pcie->global_table); 826 trans_pcie->global_table = NULL; 827 kfree(trans_pcie->rxq); 828 trans_pcie->rxq = NULL; 829 830 return ret; 831 } 832 833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 834 { 835 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 836 u32 rb_size; 837 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 838 839 switch (trans_pcie->rx_buf_size) { 840 case IWL_AMSDU_4K: 841 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 842 break; 843 case IWL_AMSDU_8K: 844 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 845 break; 846 case IWL_AMSDU_12K: 847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 848 break; 849 default: 850 WARN_ON(1); 851 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 852 } 853 854 if (!iwl_trans_grab_nic_access(trans)) 855 return; 856 857 /* Stop Rx DMA */ 858 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 859 /* reset and flush pointers */ 860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 861 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 862 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 863 864 /* Reset driver's Rx queue write index */ 865 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 866 867 /* Tell device where to find RBD circular buffer in DRAM */ 868 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 869 (u32)(rxq->bd_dma >> 8)); 870 871 /* Tell device where in DRAM to update its Rx status */ 872 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 873 rxq->rb_stts_dma >> 4); 874 875 /* Enable Rx DMA 876 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 877 * the credit mechanism in 5000 HW RX FIFO 878 * Direct rx interrupts to hosts 879 * Rx buffer size 4 or 8k or 12k 880 * RB timeout 0x10 881 * 256 RBDs 882 */ 883 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 884 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 885 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 886 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 887 rb_size | 888 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 889 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 890 891 iwl_trans_release_nic_access(trans); 892 893 /* Set interrupt coalescing timer to default (2048 usecs) */ 894 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 895 896 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 897 if (trans->cfg->host_interrupt_operation_mode) 898 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 899 } 900 901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 902 { 903 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 904 u32 rb_size, enabled = 0; 905 int i; 906 907 switch (trans_pcie->rx_buf_size) { 908 case IWL_AMSDU_2K: 909 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 910 break; 911 case IWL_AMSDU_4K: 912 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 913 break; 914 case IWL_AMSDU_8K: 915 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 916 break; 917 case IWL_AMSDU_12K: 918 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 919 break; 920 default: 921 WARN_ON(1); 922 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 923 } 924 925 if (!iwl_trans_grab_nic_access(trans)) 926 return; 927 928 /* Stop Rx DMA */ 929 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 930 /* disable free amd used rx queue operation */ 931 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 932 933 for (i = 0; i < trans->num_rx_queues; i++) { 934 /* Tell device where to find RBD free table in DRAM */ 935 iwl_write_prph64_no_grab(trans, 936 RFH_Q_FRBDCB_BA_LSB(i), 937 trans_pcie->rxq[i].bd_dma); 938 /* Tell device where to find RBD used table in DRAM */ 939 iwl_write_prph64_no_grab(trans, 940 RFH_Q_URBDCB_BA_LSB(i), 941 trans_pcie->rxq[i].used_bd_dma); 942 /* Tell device where in DRAM to update its Rx status */ 943 iwl_write_prph64_no_grab(trans, 944 RFH_Q_URBD_STTS_WPTR_LSB(i), 945 trans_pcie->rxq[i].rb_stts_dma); 946 /* Reset device indice tables */ 947 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 948 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 949 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 950 951 enabled |= BIT(i) | BIT(i + 16); 952 } 953 954 /* 955 * Enable Rx DMA 956 * Rx buffer size 4 or 8k or 12k 957 * Min RB size 4 or 8 958 * Drop frames that exceed RB size 959 * 512 RBDs 960 */ 961 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 962 RFH_DMA_EN_ENABLE_VAL | rb_size | 963 RFH_RXF_DMA_MIN_RB_4_8 | 964 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 965 RFH_RXF_DMA_RBDCB_SIZE_512); 966 967 /* 968 * Activate DMA snooping. 969 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 970 * Default queue is 0 971 */ 972 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 973 RFH_GEN_CFG_RFH_DMA_SNOOP | 974 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 975 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 976 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 977 trans->trans_cfg->integrated ? 978 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 979 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 980 /* Enable the relevant rx queues */ 981 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 982 983 iwl_trans_release_nic_access(trans); 984 985 /* Set interrupt coalescing timer to default (2048 usecs) */ 986 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 987 } 988 989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 990 { 991 lockdep_assert_held(&rxq->lock); 992 993 INIT_LIST_HEAD(&rxq->rx_free); 994 INIT_LIST_HEAD(&rxq->rx_used); 995 rxq->free_count = 0; 996 rxq->used_count = 0; 997 } 998 999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1000 1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1002 { 1003 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1004 struct iwl_trans_pcie *trans_pcie; 1005 struct iwl_trans *trans; 1006 int ret; 1007 1008 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1009 trans = trans_pcie->trans; 1010 1011 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1012 1013 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1014 rxq->id, ret, budget); 1015 1016 if (ret < budget) { 1017 spin_lock(&trans_pcie->irq_lock); 1018 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1019 _iwl_enable_interrupts(trans); 1020 spin_unlock(&trans_pcie->irq_lock); 1021 1022 napi_complete_done(&rxq->napi, ret); 1023 } 1024 1025 return ret; 1026 } 1027 1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1029 { 1030 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1031 struct iwl_trans_pcie *trans_pcie; 1032 struct iwl_trans *trans; 1033 int ret; 1034 1035 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1036 trans = trans_pcie->trans; 1037 1038 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1039 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1040 budget); 1041 1042 if (ret < budget) { 1043 int irq_line = rxq->id; 1044 1045 /* FIRST_RSS is shared with line 0 */ 1046 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1047 rxq->id == 1) 1048 irq_line = 0; 1049 1050 spin_lock(&trans_pcie->irq_lock); 1051 iwl_pcie_clear_irq(trans, irq_line); 1052 spin_unlock(&trans_pcie->irq_lock); 1053 1054 napi_complete_done(&rxq->napi, ret); 1055 } 1056 1057 return ret; 1058 } 1059 1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1061 { 1062 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1063 struct iwl_rxq *def_rxq; 1064 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1065 int i, err, queue_size, allocator_pool_size, num_alloc; 1066 1067 if (!trans_pcie->rxq) { 1068 err = iwl_pcie_rx_alloc(trans); 1069 if (err) 1070 return err; 1071 } 1072 def_rxq = trans_pcie->rxq; 1073 1074 cancel_work_sync(&rba->rx_alloc); 1075 1076 spin_lock_bh(&rba->lock); 1077 atomic_set(&rba->req_pending, 0); 1078 atomic_set(&rba->req_ready, 0); 1079 INIT_LIST_HEAD(&rba->rbd_allocated); 1080 INIT_LIST_HEAD(&rba->rbd_empty); 1081 spin_unlock_bh(&rba->lock); 1082 1083 /* free all first - we overwrite everything here */ 1084 iwl_pcie_free_rbs_pool(trans); 1085 1086 for (i = 0; i < RX_QUEUE_SIZE; i++) 1087 def_rxq->queue[i] = NULL; 1088 1089 for (i = 0; i < trans->num_rx_queues; i++) { 1090 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1091 1092 spin_lock_bh(&rxq->lock); 1093 /* 1094 * Set read write pointer to reflect that we have processed 1095 * and used all buffers, but have not restocked the Rx queue 1096 * with fresh buffers 1097 */ 1098 rxq->read = 0; 1099 rxq->write = 0; 1100 rxq->write_actual = 0; 1101 memset(rxq->rb_stts, 0, 1102 (trans->trans_cfg->device_family >= 1103 IWL_DEVICE_FAMILY_AX210) ? 1104 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1105 1106 iwl_pcie_rx_init_rxb_lists(rxq); 1107 1108 spin_unlock_bh(&rxq->lock); 1109 1110 if (!rxq->napi.poll) { 1111 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1112 1113 if (trans_pcie->msix_enabled) 1114 poll = iwl_pcie_napi_poll_msix; 1115 1116 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1117 poll, NAPI_POLL_WEIGHT); 1118 napi_enable(&rxq->napi); 1119 } 1120 1121 } 1122 1123 /* move the pool to the default queue and allocator ownerships */ 1124 queue_size = trans->trans_cfg->mq_rx_supported ? 1125 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1126 allocator_pool_size = trans->num_rx_queues * 1127 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1128 num_alloc = queue_size + allocator_pool_size; 1129 1130 for (i = 0; i < num_alloc; i++) { 1131 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1132 1133 if (i < allocator_pool_size) 1134 list_add(&rxb->list, &rba->rbd_empty); 1135 else 1136 list_add(&rxb->list, &def_rxq->rx_used); 1137 trans_pcie->global_table[i] = rxb; 1138 rxb->vid = (u16)(i + 1); 1139 rxb->invalid = true; 1140 } 1141 1142 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1143 1144 return 0; 1145 } 1146 1147 int iwl_pcie_rx_init(struct iwl_trans *trans) 1148 { 1149 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1150 int ret = _iwl_pcie_rx_init(trans); 1151 1152 if (ret) 1153 return ret; 1154 1155 if (trans->trans_cfg->mq_rx_supported) 1156 iwl_pcie_rx_mq_hw_init(trans); 1157 else 1158 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1159 1160 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1161 1162 spin_lock_bh(&trans_pcie->rxq->lock); 1163 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1164 spin_unlock_bh(&trans_pcie->rxq->lock); 1165 1166 return 0; 1167 } 1168 1169 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1170 { 1171 /* Set interrupt coalescing timer to default (2048 usecs) */ 1172 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1173 1174 /* 1175 * We don't configure the RFH. 1176 * Restock will be done at alive, after firmware configured the RFH. 1177 */ 1178 return _iwl_pcie_rx_init(trans); 1179 } 1180 1181 void iwl_pcie_rx_free(struct iwl_trans *trans) 1182 { 1183 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1184 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1185 int i; 1186 size_t rb_stts_size = trans->trans_cfg->device_family >= 1187 IWL_DEVICE_FAMILY_AX210 ? 1188 sizeof(__le16) : sizeof(struct iwl_rb_status); 1189 1190 /* 1191 * if rxq is NULL, it means that nothing has been allocated, 1192 * exit now 1193 */ 1194 if (!trans_pcie->rxq) { 1195 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1196 return; 1197 } 1198 1199 cancel_work_sync(&rba->rx_alloc); 1200 1201 iwl_pcie_free_rbs_pool(trans); 1202 1203 if (trans_pcie->base_rb_stts) { 1204 dma_free_coherent(trans->dev, 1205 rb_stts_size * trans->num_rx_queues, 1206 trans_pcie->base_rb_stts, 1207 trans_pcie->base_rb_stts_dma); 1208 trans_pcie->base_rb_stts = NULL; 1209 trans_pcie->base_rb_stts_dma = 0; 1210 } 1211 1212 for (i = 0; i < trans->num_rx_queues; i++) { 1213 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1214 1215 iwl_pcie_free_rxq_dma(trans, rxq); 1216 1217 if (rxq->napi.poll) { 1218 napi_disable(&rxq->napi); 1219 netif_napi_del(&rxq->napi); 1220 } 1221 } 1222 kfree(trans_pcie->rx_pool); 1223 kfree(trans_pcie->global_table); 1224 kfree(trans_pcie->rxq); 1225 1226 if (trans_pcie->alloc_page) 1227 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1228 } 1229 1230 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1231 struct iwl_rb_allocator *rba) 1232 { 1233 spin_lock(&rba->lock); 1234 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1235 spin_unlock(&rba->lock); 1236 } 1237 1238 /* 1239 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1240 * 1241 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1242 * When there are 2 empty RBDs - a request for allocation is posted 1243 */ 1244 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1245 struct iwl_rx_mem_buffer *rxb, 1246 struct iwl_rxq *rxq, bool emergency) 1247 { 1248 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1249 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1250 1251 /* Move the RBD to the used list, will be moved to allocator in batches 1252 * before claiming or posting a request*/ 1253 list_add_tail(&rxb->list, &rxq->rx_used); 1254 1255 if (unlikely(emergency)) 1256 return; 1257 1258 /* Count the allocator owned RBDs */ 1259 rxq->used_count++; 1260 1261 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1262 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1263 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1264 * after but we still need to post another request. 1265 */ 1266 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1267 /* Move the 2 RBDs to the allocator ownership. 1268 Allocator has another 6 from pool for the request completion*/ 1269 iwl_pcie_rx_move_to_allocator(rxq, rba); 1270 1271 atomic_inc(&rba->req_pending); 1272 queue_work(rba->alloc_wq, &rba->rx_alloc); 1273 } 1274 } 1275 1276 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1277 struct iwl_rxq *rxq, 1278 struct iwl_rx_mem_buffer *rxb, 1279 bool emergency, 1280 int i) 1281 { 1282 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1283 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1284 bool page_stolen = false; 1285 int max_len = trans_pcie->rx_buf_bytes; 1286 u32 offset = 0; 1287 1288 if (WARN_ON(!rxb)) 1289 return; 1290 1291 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1292 1293 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1294 struct iwl_rx_packet *pkt; 1295 bool reclaim; 1296 int len; 1297 struct iwl_rx_cmd_buffer rxcb = { 1298 ._offset = rxb->offset + offset, 1299 ._rx_page_order = trans_pcie->rx_page_order, 1300 ._page = rxb->page, 1301 ._page_stolen = false, 1302 .truesize = max_len, 1303 }; 1304 1305 pkt = rxb_addr(&rxcb); 1306 1307 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1308 IWL_DEBUG_RX(trans, 1309 "Q %d: RB end marker at offset %d\n", 1310 rxq->id, offset); 1311 break; 1312 } 1313 1314 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1315 FH_RSCSR_RXQ_POS != rxq->id, 1316 "frame on invalid queue - is on %d and indicates %d\n", 1317 rxq->id, 1318 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1319 FH_RSCSR_RXQ_POS); 1320 1321 IWL_DEBUG_RX(trans, 1322 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1323 rxq->id, offset, 1324 iwl_get_cmd_string(trans, 1325 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1326 pkt->hdr.group_id, pkt->hdr.cmd, 1327 le16_to_cpu(pkt->hdr.sequence)); 1328 1329 len = iwl_rx_packet_len(pkt); 1330 len += sizeof(u32); /* account for status word */ 1331 1332 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1333 1334 /* check that what the device tells us made sense */ 1335 if (len < sizeof(*pkt) || offset > max_len) 1336 break; 1337 1338 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1339 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1340 1341 /* Reclaim a command buffer only if this packet is a response 1342 * to a (driver-originated) command. 1343 * If the packet (e.g. Rx frame) originated from uCode, 1344 * there is no command buffer to reclaim. 1345 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1346 * but apparently a few don't get set; catch them here. */ 1347 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1348 if (reclaim && !pkt->hdr.group_id) { 1349 int i; 1350 1351 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1352 if (trans_pcie->no_reclaim_cmds[i] == 1353 pkt->hdr.cmd) { 1354 reclaim = false; 1355 break; 1356 } 1357 } 1358 } 1359 1360 if (rxq->id == trans_pcie->def_rx_queue) 1361 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1362 &rxcb); 1363 else 1364 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1365 &rxcb, rxq->id); 1366 1367 /* 1368 * After here, we should always check rxcb._page_stolen, 1369 * if it is true then one of the handlers took the page. 1370 */ 1371 1372 if (reclaim) { 1373 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1374 int index = SEQ_TO_INDEX(sequence); 1375 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1376 1377 kfree_sensitive(txq->entries[cmd_index].free_buf); 1378 txq->entries[cmd_index].free_buf = NULL; 1379 1380 /* Invoke any callbacks, transfer the buffer to caller, 1381 * and fire off the (possibly) blocking 1382 * iwl_trans_send_cmd() 1383 * as we reclaim the driver command queue */ 1384 if (!rxcb._page_stolen) 1385 iwl_pcie_hcmd_complete(trans, &rxcb); 1386 else 1387 IWL_WARN(trans, "Claim null rxb?\n"); 1388 } 1389 1390 page_stolen |= rxcb._page_stolen; 1391 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1392 break; 1393 } 1394 1395 /* page was stolen from us -- free our reference */ 1396 if (page_stolen) { 1397 __free_pages(rxb->page, trans_pcie->rx_page_order); 1398 rxb->page = NULL; 1399 } 1400 1401 /* Reuse the page if possible. For notification packets and 1402 * SKBs that fail to Rx correctly, add them back into the 1403 * rx_free list for reuse later. */ 1404 if (rxb->page != NULL) { 1405 rxb->page_dma = 1406 dma_map_page(trans->dev, rxb->page, rxb->offset, 1407 trans_pcie->rx_buf_bytes, 1408 DMA_FROM_DEVICE); 1409 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1410 /* 1411 * free the page(s) as well to not break 1412 * the invariant that the items on the used 1413 * list have no page(s) 1414 */ 1415 __free_pages(rxb->page, trans_pcie->rx_page_order); 1416 rxb->page = NULL; 1417 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1418 } else { 1419 list_add_tail(&rxb->list, &rxq->rx_free); 1420 rxq->free_count++; 1421 } 1422 } else 1423 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1424 } 1425 1426 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1427 struct iwl_rxq *rxq, int i, 1428 bool *join) 1429 { 1430 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1431 struct iwl_rx_mem_buffer *rxb; 1432 u16 vid; 1433 1434 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1435 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1436 1437 if (!trans->trans_cfg->mq_rx_supported) { 1438 rxb = rxq->queue[i]; 1439 rxq->queue[i] = NULL; 1440 return rxb; 1441 } 1442 1443 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1444 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1445 1446 vid = le16_to_cpu(cd[i].rbid); 1447 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1448 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1449 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1450 1451 vid = le16_to_cpu(cd[i].rbid); 1452 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1453 } else { 1454 __le32 *cd = rxq->used_bd; 1455 1456 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1457 } 1458 1459 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1460 goto out_err; 1461 1462 rxb = trans_pcie->global_table[vid - 1]; 1463 if (rxb->invalid) 1464 goto out_err; 1465 1466 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1467 1468 rxb->invalid = true; 1469 1470 return rxb; 1471 1472 out_err: 1473 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1474 iwl_force_nmi(trans); 1475 return NULL; 1476 } 1477 1478 /* 1479 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1480 */ 1481 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1482 { 1483 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1484 struct iwl_rxq *rxq; 1485 u32 r, i, count = 0, handled = 0; 1486 bool emergency = false; 1487 1488 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1489 return budget; 1490 1491 rxq = &trans_pcie->rxq[queue]; 1492 1493 restart: 1494 spin_lock(&rxq->lock); 1495 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1496 * buffer that the driver may process (last buffer filled by ucode). */ 1497 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1498 i = rxq->read; 1499 1500 /* W/A 9000 device step A0 wrap-around bug */ 1501 r &= (rxq->queue_size - 1); 1502 1503 /* Rx interrupt, but nothing sent from uCode */ 1504 if (i == r) 1505 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1506 1507 while (i != r && ++handled < budget) { 1508 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1509 struct iwl_rx_mem_buffer *rxb; 1510 /* number of RBDs still waiting for page allocation */ 1511 u32 rb_pending_alloc = 1512 atomic_read(&trans_pcie->rba.req_pending) * 1513 RX_CLAIM_REQ_ALLOC; 1514 bool join = false; 1515 1516 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1517 !emergency)) { 1518 iwl_pcie_rx_move_to_allocator(rxq, rba); 1519 emergency = true; 1520 IWL_DEBUG_TPT(trans, 1521 "RX path is in emergency. Pending allocations %d\n", 1522 rb_pending_alloc); 1523 } 1524 1525 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1526 1527 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1528 if (!rxb) 1529 goto out; 1530 1531 if (unlikely(join || rxq->next_rb_is_fragment)) { 1532 rxq->next_rb_is_fragment = join; 1533 /* 1534 * We can only get a multi-RB in the following cases: 1535 * - firmware issue, sending a too big notification 1536 * - sniffer mode with a large A-MSDU 1537 * - large MTU frames (>2k) 1538 * since the multi-RB functionality is limited to newer 1539 * hardware that cannot put multiple entries into a 1540 * single RB. 1541 * 1542 * Right now, the higher layers aren't set up to deal 1543 * with that, so discard all of these. 1544 */ 1545 list_add_tail(&rxb->list, &rxq->rx_free); 1546 rxq->free_count++; 1547 } else { 1548 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1549 } 1550 1551 i = (i + 1) & (rxq->queue_size - 1); 1552 1553 /* 1554 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1555 * try to claim the pre-allocated buffers from the allocator. 1556 * If not ready - will try to reclaim next time. 1557 * There is no need to reschedule work - allocator exits only 1558 * on success 1559 */ 1560 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1561 iwl_pcie_rx_allocator_get(trans, rxq); 1562 1563 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1564 /* Add the remaining empty RBDs for allocator use */ 1565 iwl_pcie_rx_move_to_allocator(rxq, rba); 1566 } else if (emergency) { 1567 count++; 1568 if (count == 8) { 1569 count = 0; 1570 if (rb_pending_alloc < rxq->queue_size / 3) { 1571 IWL_DEBUG_TPT(trans, 1572 "RX path exited emergency. Pending allocations %d\n", 1573 rb_pending_alloc); 1574 emergency = false; 1575 } 1576 1577 rxq->read = i; 1578 spin_unlock(&rxq->lock); 1579 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1580 iwl_pcie_rxq_restock(trans, rxq); 1581 goto restart; 1582 } 1583 } 1584 } 1585 out: 1586 /* Backtrack one entry */ 1587 rxq->read = i; 1588 spin_unlock(&rxq->lock); 1589 1590 /* 1591 * handle a case where in emergency there are some unallocated RBDs. 1592 * those RBDs are in the used list, but are not tracked by the queue's 1593 * used_count which counts allocator owned RBDs. 1594 * unallocated emergency RBDs must be allocated on exit, otherwise 1595 * when called again the function may not be in emergency mode and 1596 * they will be handed to the allocator with no tracking in the RBD 1597 * allocator counters, which will lead to them never being claimed back 1598 * by the queue. 1599 * by allocating them here, they are now in the queue free list, and 1600 * will be restocked by the next call of iwl_pcie_rxq_restock. 1601 */ 1602 if (unlikely(emergency && count)) 1603 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1604 1605 iwl_pcie_rxq_restock(trans, rxq); 1606 1607 return handled; 1608 } 1609 1610 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1611 { 1612 u8 queue = entry->entry; 1613 struct msix_entry *entries = entry - queue; 1614 1615 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1616 } 1617 1618 /* 1619 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1620 * This interrupt handler should be used with RSS queue only. 1621 */ 1622 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1623 { 1624 struct msix_entry *entry = dev_id; 1625 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1626 struct iwl_trans *trans = trans_pcie->trans; 1627 struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry]; 1628 1629 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1630 1631 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1632 return IRQ_NONE; 1633 1634 if (!rxq) { 1635 if (net_ratelimit()) 1636 IWL_ERR(trans, 1637 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1638 entry->entry); 1639 return IRQ_NONE; 1640 } 1641 1642 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1643 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1644 1645 local_bh_disable(); 1646 if (napi_schedule_prep(&rxq->napi)) 1647 __napi_schedule(&rxq->napi); 1648 else 1649 iwl_pcie_clear_irq(trans, entry->entry); 1650 local_bh_enable(); 1651 1652 lock_map_release(&trans->sync_cmd_lockdep_map); 1653 1654 return IRQ_HANDLED; 1655 } 1656 1657 /* 1658 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1659 */ 1660 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1661 { 1662 int i; 1663 1664 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1665 if (trans->cfg->internal_wimax_coex && 1666 !trans->cfg->apmg_not_supported && 1667 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1668 APMS_CLK_VAL_MRB_FUNC_MODE) || 1669 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1670 APMG_PS_CTRL_VAL_RESET_REQ))) { 1671 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1672 iwl_op_mode_wimax_active(trans->op_mode); 1673 wake_up(&trans->wait_command_queue); 1674 return; 1675 } 1676 1677 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1678 if (!trans->txqs.txq[i]) 1679 continue; 1680 del_timer(&trans->txqs.txq[i]->stuck_timer); 1681 } 1682 1683 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1684 * before we wake up the command caller, to ensure a proper cleanup. */ 1685 iwl_trans_fw_error(trans, false); 1686 1687 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1688 wake_up(&trans->wait_command_queue); 1689 } 1690 1691 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1692 { 1693 u32 inta; 1694 1695 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1696 1697 trace_iwlwifi_dev_irq(trans->dev); 1698 1699 /* Discover which interrupts are active/pending */ 1700 inta = iwl_read32(trans, CSR_INT); 1701 1702 /* the thread will service interrupts and re-enable them */ 1703 return inta; 1704 } 1705 1706 /* a device (PCI-E) page is 4096 bytes long */ 1707 #define ICT_SHIFT 12 1708 #define ICT_SIZE (1 << ICT_SHIFT) 1709 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1710 1711 /* interrupt handler using ict table, with this interrupt driver will 1712 * stop using INTA register to get device's interrupt, reading this register 1713 * is expensive, device will write interrupts in ICT dram table, increment 1714 * index then will fire interrupt to driver, driver will OR all ICT table 1715 * entries from current index up to table entry with 0 value. the result is 1716 * the interrupt we need to service, driver will set the entries back to 0 and 1717 * set index. 1718 */ 1719 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1720 { 1721 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1722 u32 inta; 1723 u32 val = 0; 1724 u32 read; 1725 1726 trace_iwlwifi_dev_irq(trans->dev); 1727 1728 /* Ignore interrupt if there's nothing in NIC to service. 1729 * This may be due to IRQ shared with another device, 1730 * or due to sporadic interrupts thrown from our NIC. */ 1731 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1732 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1733 if (!read) 1734 return 0; 1735 1736 /* 1737 * Collect all entries up to the first 0, starting from ict_index; 1738 * note we already read at ict_index. 1739 */ 1740 do { 1741 val |= read; 1742 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1743 trans_pcie->ict_index, read); 1744 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1745 trans_pcie->ict_index = 1746 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1747 1748 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1749 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1750 read); 1751 } while (read); 1752 1753 /* We should not get this value, just ignore it. */ 1754 if (val == 0xffffffff) 1755 val = 0; 1756 1757 /* 1758 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1759 * (bit 15 before shifting it to 31) to clear when using interrupt 1760 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1761 * so we use them to decide on the real state of the Rx bit. 1762 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1763 */ 1764 if (val & 0xC0000) 1765 val |= 0x8000; 1766 1767 inta = (0xff & val) | ((0xff00 & val) << 16); 1768 return inta; 1769 } 1770 1771 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1772 { 1773 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1774 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1775 bool hw_rfkill, prev, report; 1776 1777 mutex_lock(&trans_pcie->mutex); 1778 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1779 hw_rfkill = iwl_is_rfkill_set(trans); 1780 if (hw_rfkill) { 1781 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1782 set_bit(STATUS_RFKILL_HW, &trans->status); 1783 } 1784 if (trans_pcie->opmode_down) 1785 report = hw_rfkill; 1786 else 1787 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1788 1789 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1790 hw_rfkill ? "disable radio" : "enable radio"); 1791 1792 isr_stats->rfkill++; 1793 1794 if (prev != report) 1795 iwl_trans_pcie_rf_kill(trans, report); 1796 mutex_unlock(&trans_pcie->mutex); 1797 1798 if (hw_rfkill) { 1799 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1800 &trans->status)) 1801 IWL_DEBUG_RF_KILL(trans, 1802 "Rfkill while SYNC HCMD in flight\n"); 1803 wake_up(&trans->wait_command_queue); 1804 } else { 1805 clear_bit(STATUS_RFKILL_HW, &trans->status); 1806 if (trans_pcie->opmode_down) 1807 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1808 } 1809 } 1810 1811 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1812 { 1813 struct iwl_trans *trans = dev_id; 1814 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1815 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1816 u32 inta = 0; 1817 u32 handled = 0; 1818 bool polling = false; 1819 1820 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1821 1822 spin_lock_bh(&trans_pcie->irq_lock); 1823 1824 /* dram interrupt table not set yet, 1825 * use legacy interrupt. 1826 */ 1827 if (likely(trans_pcie->use_ict)) 1828 inta = iwl_pcie_int_cause_ict(trans); 1829 else 1830 inta = iwl_pcie_int_cause_non_ict(trans); 1831 1832 #ifdef CONFIG_IWLWIFI_DEBUG 1833 if (iwl_have_debug_level(IWL_DL_ISR)) { 1834 IWL_DEBUG_ISR(trans, 1835 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1836 inta, trans_pcie->inta_mask, 1837 iwl_read32(trans, CSR_INT_MASK), 1838 iwl_read32(trans, CSR_FH_INT_STATUS)); 1839 if (inta & (~trans_pcie->inta_mask)) 1840 IWL_DEBUG_ISR(trans, 1841 "We got a masked interrupt (0x%08x)\n", 1842 inta & (~trans_pcie->inta_mask)); 1843 } 1844 #endif 1845 1846 inta &= trans_pcie->inta_mask; 1847 1848 /* 1849 * Ignore interrupt if there's nothing in NIC to service. 1850 * This may be due to IRQ shared with another device, 1851 * or due to sporadic interrupts thrown from our NIC. 1852 */ 1853 if (unlikely(!inta)) { 1854 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1855 /* 1856 * Re-enable interrupts here since we don't 1857 * have anything to service 1858 */ 1859 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1860 _iwl_enable_interrupts(trans); 1861 spin_unlock_bh(&trans_pcie->irq_lock); 1862 lock_map_release(&trans->sync_cmd_lockdep_map); 1863 return IRQ_NONE; 1864 } 1865 1866 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1867 /* 1868 * Hardware disappeared. It might have 1869 * already raised an interrupt. 1870 */ 1871 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1872 spin_unlock_bh(&trans_pcie->irq_lock); 1873 goto out; 1874 } 1875 1876 /* Ack/clear/reset pending uCode interrupts. 1877 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1878 */ 1879 /* There is a hardware bug in the interrupt mask function that some 1880 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1881 * they are disabled in the CSR_INT_MASK register. Furthermore the 1882 * ICT interrupt handling mechanism has another bug that might cause 1883 * these unmasked interrupts fail to be detected. We workaround the 1884 * hardware bugs here by ACKing all the possible interrupts so that 1885 * interrupt coalescing can still be achieved. 1886 */ 1887 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1888 1889 #ifdef CONFIG_IWLWIFI_DEBUG 1890 if (iwl_have_debug_level(IWL_DL_ISR)) 1891 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1892 inta, iwl_read32(trans, CSR_INT_MASK)); 1893 #endif 1894 1895 spin_unlock_bh(&trans_pcie->irq_lock); 1896 1897 /* Now service all interrupt bits discovered above. */ 1898 if (inta & CSR_INT_BIT_HW_ERR) { 1899 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1900 1901 /* Tell the device to stop sending interrupts */ 1902 iwl_disable_interrupts(trans); 1903 1904 isr_stats->hw++; 1905 iwl_pcie_irq_handle_error(trans); 1906 1907 handled |= CSR_INT_BIT_HW_ERR; 1908 1909 goto out; 1910 } 1911 1912 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1913 if (inta & CSR_INT_BIT_SCD) { 1914 IWL_DEBUG_ISR(trans, 1915 "Scheduler finished to transmit the frame/frames.\n"); 1916 isr_stats->sch++; 1917 } 1918 1919 /* Alive notification via Rx interrupt will do the real work */ 1920 if (inta & CSR_INT_BIT_ALIVE) { 1921 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1922 isr_stats->alive++; 1923 if (trans->trans_cfg->gen2) { 1924 /* 1925 * We can restock, since firmware configured 1926 * the RFH 1927 */ 1928 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1929 } 1930 1931 handled |= CSR_INT_BIT_ALIVE; 1932 } 1933 1934 /* Safely ignore these bits for debug checks below */ 1935 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1936 1937 /* HW RF KILL switch toggled */ 1938 if (inta & CSR_INT_BIT_RF_KILL) { 1939 iwl_pcie_handle_rfkill_irq(trans); 1940 handled |= CSR_INT_BIT_RF_KILL; 1941 } 1942 1943 /* Chip got too hot and stopped itself */ 1944 if (inta & CSR_INT_BIT_CT_KILL) { 1945 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1946 isr_stats->ctkill++; 1947 handled |= CSR_INT_BIT_CT_KILL; 1948 } 1949 1950 /* Error detected by uCode */ 1951 if (inta & CSR_INT_BIT_SW_ERR) { 1952 IWL_ERR(trans, "Microcode SW error detected. " 1953 " Restarting 0x%X.\n", inta); 1954 isr_stats->sw++; 1955 iwl_pcie_irq_handle_error(trans); 1956 handled |= CSR_INT_BIT_SW_ERR; 1957 } 1958 1959 /* uCode wakes up after power-down sleep */ 1960 if (inta & CSR_INT_BIT_WAKEUP) { 1961 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1962 iwl_pcie_rxq_check_wrptr(trans); 1963 iwl_pcie_txq_check_wrptrs(trans); 1964 1965 isr_stats->wakeup++; 1966 1967 handled |= CSR_INT_BIT_WAKEUP; 1968 } 1969 1970 /* All uCode command responses, including Tx command responses, 1971 * Rx "responses" (frame-received notification), and other 1972 * notifications from uCode come through here*/ 1973 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1974 CSR_INT_BIT_RX_PERIODIC)) { 1975 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1976 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1977 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1978 iwl_write32(trans, CSR_FH_INT_STATUS, 1979 CSR_FH_INT_RX_MASK); 1980 } 1981 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1982 handled |= CSR_INT_BIT_RX_PERIODIC; 1983 iwl_write32(trans, 1984 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1985 } 1986 /* Sending RX interrupt require many steps to be done in the 1987 * device: 1988 * 1- write interrupt to current index in ICT table. 1989 * 2- dma RX frame. 1990 * 3- update RX shared data to indicate last write index. 1991 * 4- send interrupt. 1992 * This could lead to RX race, driver could receive RX interrupt 1993 * but the shared data changes does not reflect this; 1994 * periodic interrupt will detect any dangling Rx activity. 1995 */ 1996 1997 /* Disable periodic interrupt; we use it as just a one-shot. */ 1998 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1999 CSR_INT_PERIODIC_DIS); 2000 2001 /* 2002 * Enable periodic interrupt in 8 msec only if we received 2003 * real RX interrupt (instead of just periodic int), to catch 2004 * any dangling Rx interrupt. If it was just the periodic 2005 * interrupt, there was no dangling Rx activity, and no need 2006 * to extend the periodic interrupt; one-shot is enough. 2007 */ 2008 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2009 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2010 CSR_INT_PERIODIC_ENA); 2011 2012 isr_stats->rx++; 2013 2014 local_bh_disable(); 2015 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2016 polling = true; 2017 __napi_schedule(&trans_pcie->rxq[0].napi); 2018 } 2019 local_bh_enable(); 2020 } 2021 2022 /* This "Tx" DMA channel is used only for loading uCode */ 2023 if (inta & CSR_INT_BIT_FH_TX) { 2024 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2025 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2026 isr_stats->tx++; 2027 handled |= CSR_INT_BIT_FH_TX; 2028 /* Wake up uCode load routine, now that load is complete */ 2029 trans_pcie->ucode_write_complete = true; 2030 wake_up(&trans_pcie->ucode_write_waitq); 2031 /* Wake up IMR write routine, now that write to SRAM is complete */ 2032 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2033 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2034 wake_up(&trans_pcie->ucode_write_waitq); 2035 } 2036 } 2037 2038 if (inta & ~handled) { 2039 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2040 isr_stats->unhandled++; 2041 } 2042 2043 if (inta & ~(trans_pcie->inta_mask)) { 2044 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2045 inta & ~trans_pcie->inta_mask); 2046 } 2047 2048 if (!polling) { 2049 spin_lock_bh(&trans_pcie->irq_lock); 2050 /* only Re-enable all interrupt if disabled by irq */ 2051 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2052 _iwl_enable_interrupts(trans); 2053 /* we are loading the firmware, enable FH_TX interrupt only */ 2054 else if (handled & CSR_INT_BIT_FH_TX) 2055 iwl_enable_fw_load_int(trans); 2056 /* Re-enable RF_KILL if it occurred */ 2057 else if (handled & CSR_INT_BIT_RF_KILL) 2058 iwl_enable_rfkill_int(trans); 2059 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2060 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2061 iwl_enable_fw_load_int_ctx_info(trans); 2062 spin_unlock_bh(&trans_pcie->irq_lock); 2063 } 2064 2065 out: 2066 lock_map_release(&trans->sync_cmd_lockdep_map); 2067 return IRQ_HANDLED; 2068 } 2069 2070 /****************************************************************************** 2071 * 2072 * ICT functions 2073 * 2074 ******************************************************************************/ 2075 2076 /* Free dram table */ 2077 void iwl_pcie_free_ict(struct iwl_trans *trans) 2078 { 2079 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2080 2081 if (trans_pcie->ict_tbl) { 2082 dma_free_coherent(trans->dev, ICT_SIZE, 2083 trans_pcie->ict_tbl, 2084 trans_pcie->ict_tbl_dma); 2085 trans_pcie->ict_tbl = NULL; 2086 trans_pcie->ict_tbl_dma = 0; 2087 } 2088 } 2089 2090 /* 2091 * allocate dram shared table, it is an aligned memory 2092 * block of ICT_SIZE. 2093 * also reset all data related to ICT table interrupt. 2094 */ 2095 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2096 { 2097 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2098 2099 trans_pcie->ict_tbl = 2100 dma_alloc_coherent(trans->dev, ICT_SIZE, 2101 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2102 if (!trans_pcie->ict_tbl) 2103 return -ENOMEM; 2104 2105 /* just an API sanity check ... it is guaranteed to be aligned */ 2106 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2107 iwl_pcie_free_ict(trans); 2108 return -EINVAL; 2109 } 2110 2111 return 0; 2112 } 2113 2114 /* Device is going up inform it about using ICT interrupt table, 2115 * also we need to tell the driver to start using ICT interrupt. 2116 */ 2117 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2118 { 2119 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2120 u32 val; 2121 2122 if (!trans_pcie->ict_tbl) 2123 return; 2124 2125 spin_lock_bh(&trans_pcie->irq_lock); 2126 _iwl_disable_interrupts(trans); 2127 2128 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2129 2130 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2131 2132 val |= CSR_DRAM_INT_TBL_ENABLE | 2133 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2134 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2135 2136 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2137 2138 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2139 trans_pcie->use_ict = true; 2140 trans_pcie->ict_index = 0; 2141 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2142 _iwl_enable_interrupts(trans); 2143 spin_unlock_bh(&trans_pcie->irq_lock); 2144 } 2145 2146 /* Device is going down disable ict interrupt usage */ 2147 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2148 { 2149 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2150 2151 spin_lock_bh(&trans_pcie->irq_lock); 2152 trans_pcie->use_ict = false; 2153 spin_unlock_bh(&trans_pcie->irq_lock); 2154 } 2155 2156 irqreturn_t iwl_pcie_isr(int irq, void *data) 2157 { 2158 struct iwl_trans *trans = data; 2159 2160 if (!trans) 2161 return IRQ_NONE; 2162 2163 /* Disable (but don't clear!) interrupts here to avoid 2164 * back-to-back ISRs and sporadic interrupts from our NIC. 2165 * If we have something to service, the tasklet will re-enable ints. 2166 * If we *don't* have something, we'll re-enable before leaving here. 2167 */ 2168 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2169 2170 return IRQ_WAKE_THREAD; 2171 } 2172 2173 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2174 { 2175 return IRQ_WAKE_THREAD; 2176 } 2177 2178 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2179 { 2180 struct msix_entry *entry = dev_id; 2181 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2182 struct iwl_trans *trans = trans_pcie->trans; 2183 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2184 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2185 u32 inta_fh, inta_hw; 2186 bool polling = false; 2187 bool sw_err; 2188 2189 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2190 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2191 2192 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2193 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2194 2195 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2196 2197 spin_lock_bh(&trans_pcie->irq_lock); 2198 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2199 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2200 /* 2201 * Clear causes registers to avoid being handling the same cause. 2202 */ 2203 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2204 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2205 spin_unlock_bh(&trans_pcie->irq_lock); 2206 2207 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2208 2209 if (unlikely(!(inta_fh | inta_hw))) { 2210 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2211 lock_map_release(&trans->sync_cmd_lockdep_map); 2212 return IRQ_NONE; 2213 } 2214 2215 #ifdef CONFIG_IWLWIFI_DEBUG 2216 if (iwl_have_debug_level(IWL_DL_ISR)) { 2217 IWL_DEBUG_ISR(trans, 2218 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2219 entry->entry, inta_fh, trans_pcie->fh_mask, 2220 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2221 if (inta_fh & ~trans_pcie->fh_mask) 2222 IWL_DEBUG_ISR(trans, 2223 "We got a masked interrupt (0x%08x)\n", 2224 inta_fh & ~trans_pcie->fh_mask); 2225 } 2226 #endif 2227 2228 inta_fh &= trans_pcie->fh_mask; 2229 2230 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2231 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2232 local_bh_disable(); 2233 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2234 polling = true; 2235 __napi_schedule(&trans_pcie->rxq[0].napi); 2236 } 2237 local_bh_enable(); 2238 } 2239 2240 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2241 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2242 local_bh_disable(); 2243 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2244 polling = true; 2245 __napi_schedule(&trans_pcie->rxq[1].napi); 2246 } 2247 local_bh_enable(); 2248 } 2249 2250 /* This "Tx" DMA channel is used only for loading uCode */ 2251 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2252 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2253 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2254 isr_stats->tx++; 2255 2256 /* Wake up IMR routine once write to SRAM is complete */ 2257 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2258 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2259 wake_up(&trans_pcie->ucode_write_waitq); 2260 } 2261 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2262 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2263 isr_stats->tx++; 2264 /* 2265 * Wake up uCode load routine, 2266 * now that load is complete 2267 */ 2268 trans_pcie->ucode_write_complete = true; 2269 wake_up(&trans_pcie->ucode_write_waitq); 2270 2271 /* Wake up IMR routine once write to SRAM is complete */ 2272 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2273 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2274 wake_up(&trans_pcie->ucode_write_waitq); 2275 } 2276 } 2277 2278 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2279 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2280 else 2281 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2282 2283 /* Error detected by uCode */ 2284 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2285 IWL_ERR(trans, 2286 "Microcode SW error detected. Restarting 0x%X.\n", 2287 inta_fh); 2288 isr_stats->sw++; 2289 /* during FW reset flow report errors from there */ 2290 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2291 trans_pcie->imr_status = IMR_D2S_ERROR; 2292 wake_up(&trans_pcie->imr_waitq); 2293 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2294 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2295 wake_up(&trans_pcie->fw_reset_waitq); 2296 } else { 2297 iwl_pcie_irq_handle_error(trans); 2298 } 2299 } 2300 2301 /* After checking FH register check HW register */ 2302 #ifdef CONFIG_IWLWIFI_DEBUG 2303 if (iwl_have_debug_level(IWL_DL_ISR)) { 2304 IWL_DEBUG_ISR(trans, 2305 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2306 entry->entry, inta_hw, trans_pcie->hw_mask, 2307 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2308 if (inta_hw & ~trans_pcie->hw_mask) 2309 IWL_DEBUG_ISR(trans, 2310 "We got a masked interrupt 0x%08x\n", 2311 inta_hw & ~trans_pcie->hw_mask); 2312 } 2313 #endif 2314 2315 inta_hw &= trans_pcie->hw_mask; 2316 2317 /* Alive notification via Rx interrupt will do the real work */ 2318 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2319 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2320 isr_stats->alive++; 2321 if (trans->trans_cfg->gen2) { 2322 /* We can restock, since firmware configured the RFH */ 2323 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2324 } 2325 } 2326 2327 /* 2328 * In some rare cases when the HW is in a bad state, we may 2329 * get this interrupt too early, when prph_info is still NULL. 2330 * So make sure that it's not NULL to prevent crashing. 2331 */ 2332 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2333 u32 sleep_notif = 2334 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2335 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2336 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2337 IWL_DEBUG_ISR(trans, 2338 "Sx interrupt: sleep notification = 0x%x\n", 2339 sleep_notif); 2340 trans_pcie->sx_complete = true; 2341 wake_up(&trans_pcie->sx_waitq); 2342 } else { 2343 /* uCode wakes up after power-down sleep */ 2344 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2345 iwl_pcie_rxq_check_wrptr(trans); 2346 iwl_pcie_txq_check_wrptrs(trans); 2347 2348 isr_stats->wakeup++; 2349 } 2350 } 2351 2352 /* Chip got too hot and stopped itself */ 2353 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2354 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2355 isr_stats->ctkill++; 2356 } 2357 2358 /* HW RF KILL switch toggled */ 2359 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2360 iwl_pcie_handle_rfkill_irq(trans); 2361 2362 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2363 IWL_ERR(trans, 2364 "Hardware error detected. Restarting.\n"); 2365 2366 isr_stats->hw++; 2367 trans->dbg.hw_error = true; 2368 iwl_pcie_irq_handle_error(trans); 2369 } 2370 2371 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2372 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2373 trans_pcie->fw_reset_state = FW_RESET_OK; 2374 wake_up(&trans_pcie->fw_reset_waitq); 2375 } 2376 2377 if (!polling) 2378 iwl_pcie_clear_irq(trans, entry->entry); 2379 2380 lock_map_release(&trans->sync_cmd_lockdep_map); 2381 2382 return IRQ_HANDLED; 2383 } 2384