1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2003-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/sched.h> 8 #include <linux/wait.h> 9 #include <linux/gfp.h> 10 11 #include "iwl-prph.h" 12 #include "iwl-io.h" 13 #include "internal.h" 14 #include "iwl-op-mode.h" 15 #include "iwl-context-info-gen3.h" 16 17 /****************************************************************************** 18 * 19 * RX path functions 20 * 21 ******************************************************************************/ 22 23 /* 24 * Rx theory of operation 25 * 26 * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27 * each of which point to Receive Buffers to be filled by the NIC. These get 28 * used not only for Rx frames, but for any command response or notification 29 * from the NIC. The driver and NIC manage the Rx buffers by means 30 * of indexes into the circular buffer. 31 * 32 * Rx Queue Indexes 33 * The host/firmware share two index registers for managing the Rx buffers. 34 * 35 * The READ index maps to the first position that the firmware may be writing 36 * to -- the driver can read up to (but not including) this position and get 37 * good data. 38 * The READ index is managed by the firmware once the card is enabled. 39 * 40 * The WRITE index maps to the last position the driver has read from -- the 41 * position preceding WRITE is the last slot the firmware can place a packet. 42 * 43 * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44 * WRITE = READ. 45 * 46 * During initialization, the host sets up the READ queue position to the first 47 * INDEX position, and WRITE to the last (READ - 1 wrapped) 48 * 49 * When the firmware places a packet in a buffer, it will advance the READ index 50 * and fire the RX interrupt. The driver can then query the READ index and 51 * process as many packets as possible, moving the WRITE index forward as it 52 * resets the Rx queue buffers with new memory. 53 * 54 * The management in the driver is as follows: 55 * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56 * When the interrupt handler is called, the request is processed. 57 * The page is either stolen - transferred to the upper layer 58 * or reused - added immediately to the iwl->rxq->rx_free list. 59 * + When the page is stolen - the driver updates the matching queue's used 60 * count, detaches the RBD and transfers it to the queue used list. 61 * When there are two used RBDs - they are transferred to the allocator empty 62 * list. Work is then scheduled for the allocator to start allocating 63 * eight buffers. 64 * When there are another 6 used RBDs - they are transferred to the allocator 65 * empty list and the driver tries to claim the pre-allocated buffers and 66 * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67 * until ready. 68 * When there are 8+ buffers in the free list - either from allocation or from 69 * 8 reused unstolen pages - restock is called to update the FW and indexes. 70 * + In order to make sure the allocator always has RBDs to use for allocation 71 * the allocator has initial pool in the size of num_queues*(8-2) - the 72 * maximum missing RBDs per allocation request (request posted with 2 73 * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74 * The queues supplies the recycle of the rest of the RBDs. 75 * + A received packet is processed and handed to the kernel network stack, 76 * detached from the iwl->rxq. The driver 'processed' index is updated. 77 * + If there are no allocated buffers in iwl->rxq->rx_free, 78 * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79 * If there were enough free buffers and RX_STALLED is set it is cleared. 80 * 81 * 82 * Driver sequence: 83 * 84 * iwl_rxq_alloc() Allocates rx_free 85 * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86 * iwl_pcie_rxq_restock. 87 * Used only during initialization. 88 * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89 * queue, updates firmware pointers, and updates 90 * the WRITE index. 91 * iwl_pcie_rx_allocator() Background work for allocating pages. 92 * 93 * -- enable interrupts -- 94 * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95 * READ INDEX, detaching the SKB from the pool. 96 * Moves the packet buffer from queue to rx_used. 97 * Posts and claims requests to the allocator. 98 * Calls iwl_pcie_rxq_restock to refill any empty 99 * slots. 100 * 101 * RBD life-cycle: 102 * 103 * Init: 104 * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105 * 106 * Regular Receive interrupt: 107 * Page Stolen: 108 * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109 * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110 * Page not Stolen: 111 * rxq.queue -> rxq.rx_free -> rxq.queue 112 * ... 113 * 114 */ 115 116 /* 117 * iwl_rxq_space - Return number of free slots available in queue. 118 */ 119 static int iwl_rxq_space(const struct iwl_rxq *rxq) 120 { 121 /* Make sure rx queue size is a power of 2 */ 122 WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123 124 /* 125 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126 * between empty and completely full queues. 127 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128 * defined for negative dividends. 129 */ 130 return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131 } 132 133 /* 134 * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135 */ 136 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137 { 138 return cpu_to_le32((u32)(dma_addr >> 8)); 139 } 140 141 /* 142 * iwl_pcie_rx_stop - stops the Rx DMA 143 */ 144 int iwl_pcie_rx_stop(struct iwl_trans *trans) 145 { 146 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147 /* TODO: remove this once fw does it */ 148 iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149 return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151 } else if (trans->trans_cfg->mq_rx_supported) { 152 iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153 return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154 RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155 } else { 156 iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157 return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158 FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159 1000); 160 } 161 } 162 163 /* 164 * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165 */ 166 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167 struct iwl_rxq *rxq) 168 { 169 u32 reg; 170 171 lockdep_assert_held(&rxq->lock); 172 173 /* 174 * explicitly wake up the NIC if: 175 * 1. shadow registers aren't enabled 176 * 2. there is a chance that the NIC is asleep 177 */ 178 if (!trans->trans_cfg->base_params->shadow_reg_enable && 179 test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180 reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181 182 if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183 IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184 reg); 185 iwl_set_bit(trans, CSR_GP_CNTRL, 186 CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187 rxq->need_update = true; 188 return; 189 } 190 } 191 192 rxq->write_actual = round_down(rxq->write, 8); 193 if (!trans->trans_cfg->mq_rx_supported) 194 iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195 else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196 iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197 HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198 else 199 iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200 rxq->write_actual); 201 } 202 203 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204 { 205 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206 int i; 207 208 for (i = 0; i < trans->num_rx_queues; i++) { 209 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210 211 if (!rxq->need_update) 212 continue; 213 spin_lock_bh(&rxq->lock); 214 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215 rxq->need_update = false; 216 spin_unlock_bh(&rxq->lock); 217 } 218 } 219 220 static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221 struct iwl_rxq *rxq, 222 struct iwl_rx_mem_buffer *rxb) 223 { 224 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225 struct iwl_rx_transfer_desc *bd = rxq->bd; 226 227 BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228 229 bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230 bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231 } else { 232 __le64 *bd = rxq->bd; 233 234 bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235 } 236 237 #if defined(__linux__) 238 IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239 #elif defined(__FreeBSD__) 240 IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 241 (u32)rxb->vid, rxq->id, rxq->write); 242 #endif 243 } 244 245 /* 246 * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 247 */ 248 static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 249 struct iwl_rxq *rxq) 250 { 251 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 252 struct iwl_rx_mem_buffer *rxb; 253 254 /* 255 * If the device isn't enabled - no need to try to add buffers... 256 * This can happen when we stop the device and still have an interrupt 257 * pending. We stop the APM before we sync the interrupts because we 258 * have to (see comment there). On the other hand, since the APM is 259 * stopped, we cannot access the HW (in particular not prph). 260 * So don't try to restock if the APM has been already stopped. 261 */ 262 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 263 return; 264 265 spin_lock_bh(&rxq->lock); 266 while (rxq->free_count) { 267 /* Get next free Rx buffer, remove from free list */ 268 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 269 list); 270 list_del(&rxb->list); 271 rxb->invalid = false; 272 /* some low bits are expected to be unset (depending on hw) */ 273 WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 274 /* Point to Rx buffer via next RBD in circular buffer */ 275 iwl_pcie_restock_bd(trans, rxq, rxb); 276 rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 277 rxq->free_count--; 278 } 279 spin_unlock_bh(&rxq->lock); 280 281 /* 282 * If we've added more space for the firmware to place data, tell it. 283 * Increment device's write pointer in multiples of 8. 284 */ 285 if (rxq->write_actual != (rxq->write & ~0x7)) { 286 spin_lock_bh(&rxq->lock); 287 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 288 spin_unlock_bh(&rxq->lock); 289 } 290 } 291 292 /* 293 * iwl_pcie_rxsq_restock - restock implementation for single queue rx 294 */ 295 static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 296 struct iwl_rxq *rxq) 297 { 298 struct iwl_rx_mem_buffer *rxb; 299 300 /* 301 * If the device isn't enabled - not need to try to add buffers... 302 * This can happen when we stop the device and still have an interrupt 303 * pending. We stop the APM before we sync the interrupts because we 304 * have to (see comment there). On the other hand, since the APM is 305 * stopped, we cannot access the HW (in particular not prph). 306 * So don't try to restock if the APM has been already stopped. 307 */ 308 if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 309 return; 310 311 spin_lock_bh(&rxq->lock); 312 while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 313 __le32 *bd = (__le32 *)rxq->bd; 314 /* The overwritten rxb must be a used one */ 315 rxb = rxq->queue[rxq->write]; 316 BUG_ON(rxb && rxb->page); 317 318 /* Get next free Rx buffer, remove from free list */ 319 rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 320 list); 321 list_del(&rxb->list); 322 rxb->invalid = false; 323 324 /* Point to Rx buffer via next RBD in circular buffer */ 325 bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 326 rxq->queue[rxq->write] = rxb; 327 rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 328 rxq->free_count--; 329 } 330 spin_unlock_bh(&rxq->lock); 331 332 /* If we've added more space for the firmware to place data, tell it. 333 * Increment device's write pointer in multiples of 8. */ 334 if (rxq->write_actual != (rxq->write & ~0x7)) { 335 spin_lock_bh(&rxq->lock); 336 iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337 spin_unlock_bh(&rxq->lock); 338 } 339 } 340 341 /* 342 * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 343 * 344 * If there are slots in the RX queue that need to be restocked, 345 * and we have free pre-allocated buffers, fill the ranks as much 346 * as we can, pulling from rx_free. 347 * 348 * This moves the 'write' index forward to catch up with 'processed', and 349 * also updates the memory address in the firmware to reference the new 350 * target buffer. 351 */ 352 static 353 void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 354 { 355 if (trans->trans_cfg->mq_rx_supported) 356 iwl_pcie_rxmq_restock(trans, rxq); 357 else 358 iwl_pcie_rxsq_restock(trans, rxq); 359 } 360 361 /* 362 * iwl_pcie_rx_alloc_page - allocates and returns a page. 363 * 364 */ 365 static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 366 u32 *offset, gfp_t priority) 367 { 368 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 369 unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 370 unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 371 struct page *page; 372 gfp_t gfp_mask = priority; 373 374 if (trans_pcie->rx_page_order > 0) 375 gfp_mask |= __GFP_COMP; 376 377 if (trans_pcie->alloc_page) { 378 spin_lock_bh(&trans_pcie->alloc_page_lock); 379 /* recheck */ 380 if (trans_pcie->alloc_page) { 381 *offset = trans_pcie->alloc_page_used; 382 page = trans_pcie->alloc_page; 383 trans_pcie->alloc_page_used += rbsize; 384 if (trans_pcie->alloc_page_used >= allocsize) 385 trans_pcie->alloc_page = NULL; 386 else 387 get_page(page); 388 spin_unlock_bh(&trans_pcie->alloc_page_lock); 389 return page; 390 } 391 spin_unlock_bh(&trans_pcie->alloc_page_lock); 392 } 393 394 /* Alloc a new receive buffer */ 395 page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 396 if (!page) { 397 if (net_ratelimit()) 398 IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 399 trans_pcie->rx_page_order); 400 /* 401 * Issue an error if we don't have enough pre-allocated 402 * buffers. 403 */ 404 if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 405 IWL_CRIT(trans, 406 "Failed to alloc_pages\n"); 407 return NULL; 408 } 409 410 if (2 * rbsize <= allocsize) { 411 spin_lock_bh(&trans_pcie->alloc_page_lock); 412 if (!trans_pcie->alloc_page) { 413 get_page(page); 414 trans_pcie->alloc_page = page; 415 trans_pcie->alloc_page_used = rbsize; 416 } 417 spin_unlock_bh(&trans_pcie->alloc_page_lock); 418 } 419 420 *offset = 0; 421 return page; 422 } 423 424 /* 425 * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 426 * 427 * A used RBD is an Rx buffer that has been given to the stack. To use it again 428 * a page must be allocated and the RBD must point to the page. This function 429 * doesn't change the HW pointer but handles the list of pages that is used by 430 * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 431 * allocated buffers. 432 */ 433 void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 434 struct iwl_rxq *rxq) 435 { 436 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 437 struct iwl_rx_mem_buffer *rxb; 438 struct page *page; 439 440 while (1) { 441 unsigned int offset; 442 443 spin_lock_bh(&rxq->lock); 444 if (list_empty(&rxq->rx_used)) { 445 spin_unlock_bh(&rxq->lock); 446 return; 447 } 448 spin_unlock_bh(&rxq->lock); 449 450 page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 451 if (!page) 452 return; 453 454 spin_lock_bh(&rxq->lock); 455 456 if (list_empty(&rxq->rx_used)) { 457 spin_unlock_bh(&rxq->lock); 458 __free_pages(page, trans_pcie->rx_page_order); 459 return; 460 } 461 rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 462 list); 463 list_del(&rxb->list); 464 spin_unlock_bh(&rxq->lock); 465 466 BUG_ON(rxb->page); 467 rxb->page = page; 468 rxb->offset = offset; 469 /* Get physical address of the RB */ 470 rxb->page_dma = 471 dma_map_page(trans->dev, page, rxb->offset, 472 trans_pcie->rx_buf_bytes, 473 DMA_FROM_DEVICE); 474 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 475 rxb->page = NULL; 476 spin_lock_bh(&rxq->lock); 477 list_add(&rxb->list, &rxq->rx_used); 478 spin_unlock_bh(&rxq->lock); 479 __free_pages(page, trans_pcie->rx_page_order); 480 return; 481 } 482 483 spin_lock_bh(&rxq->lock); 484 485 list_add_tail(&rxb->list, &rxq->rx_free); 486 rxq->free_count++; 487 488 spin_unlock_bh(&rxq->lock); 489 } 490 } 491 492 void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 493 { 494 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 495 int i; 496 497 if (!trans_pcie->rx_pool) 498 return; 499 500 for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 501 if (!trans_pcie->rx_pool[i].page) 502 continue; 503 dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 504 trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 505 __free_pages(trans_pcie->rx_pool[i].page, 506 trans_pcie->rx_page_order); 507 trans_pcie->rx_pool[i].page = NULL; 508 } 509 } 510 511 /* 512 * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 513 * 514 * Allocates for each received request 8 pages 515 * Called as a scheduled work item. 516 */ 517 static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 518 { 519 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 520 struct iwl_rb_allocator *rba = &trans_pcie->rba; 521 struct list_head local_empty; 522 int pending = atomic_read(&rba->req_pending); 523 524 IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 525 526 /* If we were scheduled - there is at least one request */ 527 spin_lock_bh(&rba->lock); 528 /* swap out the rba->rbd_empty to a local list */ 529 list_replace_init(&rba->rbd_empty, &local_empty); 530 spin_unlock_bh(&rba->lock); 531 532 while (pending) { 533 int i; 534 LIST_HEAD(local_allocated); 535 gfp_t gfp_mask = GFP_KERNEL; 536 537 /* Do not post a warning if there are only a few requests */ 538 if (pending < RX_PENDING_WATERMARK) 539 gfp_mask |= __GFP_NOWARN; 540 541 for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 542 struct iwl_rx_mem_buffer *rxb; 543 struct page *page; 544 545 /* List should never be empty - each reused RBD is 546 * returned to the list, and initial pool covers any 547 * possible gap between the time the page is allocated 548 * to the time the RBD is added. 549 */ 550 BUG_ON(list_empty(&local_empty)); 551 /* Get the first rxb from the rbd list */ 552 rxb = list_first_entry(&local_empty, 553 struct iwl_rx_mem_buffer, list); 554 BUG_ON(rxb->page); 555 556 /* Alloc a new receive buffer */ 557 page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 558 gfp_mask); 559 if (!page) 560 continue; 561 rxb->page = page; 562 563 /* Get physical address of the RB */ 564 rxb->page_dma = dma_map_page(trans->dev, page, 565 rxb->offset, 566 trans_pcie->rx_buf_bytes, 567 DMA_FROM_DEVICE); 568 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 569 rxb->page = NULL; 570 __free_pages(page, trans_pcie->rx_page_order); 571 continue; 572 } 573 574 /* move the allocated entry to the out list */ 575 list_move(&rxb->list, &local_allocated); 576 i++; 577 } 578 579 atomic_dec(&rba->req_pending); 580 pending--; 581 582 if (!pending) { 583 pending = atomic_read(&rba->req_pending); 584 if (pending) 585 IWL_DEBUG_TPT(trans, 586 "Got more pending allocation requests = %d\n", 587 pending); 588 } 589 590 spin_lock_bh(&rba->lock); 591 /* add the allocated rbds to the allocator allocated list */ 592 list_splice_tail(&local_allocated, &rba->rbd_allocated); 593 /* get more empty RBDs for current pending requests */ 594 list_splice_tail_init(&rba->rbd_empty, &local_empty); 595 spin_unlock_bh(&rba->lock); 596 597 atomic_inc(&rba->req_ready); 598 599 } 600 601 spin_lock_bh(&rba->lock); 602 /* return unused rbds to the allocator empty list */ 603 list_splice_tail(&local_empty, &rba->rbd_empty); 604 spin_unlock_bh(&rba->lock); 605 606 IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 607 } 608 609 /* 610 * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 611 .* 612 .* Called by queue when the queue posted allocation request and 613 * has freed 8 RBDs in order to restock itself. 614 * This function directly moves the allocated RBs to the queue's ownership 615 * and updates the relevant counters. 616 */ 617 static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 618 struct iwl_rxq *rxq) 619 { 620 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 621 struct iwl_rb_allocator *rba = &trans_pcie->rba; 622 int i; 623 624 lockdep_assert_held(&rxq->lock); 625 626 /* 627 * atomic_dec_if_positive returns req_ready - 1 for any scenario. 628 * If req_ready is 0 atomic_dec_if_positive will return -1 and this 629 * function will return early, as there are no ready requests. 630 * atomic_dec_if_positive will perofrm the *actual* decrement only if 631 * req_ready > 0, i.e. - there are ready requests and the function 632 * hands one request to the caller. 633 */ 634 if (atomic_dec_if_positive(&rba->req_ready) < 0) 635 return; 636 637 spin_lock(&rba->lock); 638 for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 639 /* Get next free Rx buffer, remove it from free list */ 640 struct iwl_rx_mem_buffer *rxb = 641 list_first_entry(&rba->rbd_allocated, 642 struct iwl_rx_mem_buffer, list); 643 644 list_move(&rxb->list, &rxq->rx_free); 645 } 646 spin_unlock(&rba->lock); 647 648 rxq->used_count -= RX_CLAIM_REQ_ALLOC; 649 rxq->free_count += RX_CLAIM_REQ_ALLOC; 650 } 651 652 void iwl_pcie_rx_allocator_work(struct work_struct *data) 653 { 654 struct iwl_rb_allocator *rba_p = 655 container_of(data, struct iwl_rb_allocator, rx_alloc); 656 struct iwl_trans_pcie *trans_pcie = 657 container_of(rba_p, struct iwl_trans_pcie, rba); 658 659 iwl_pcie_rx_allocator(trans_pcie->trans); 660 } 661 662 static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 663 { 664 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 665 return sizeof(struct iwl_rx_transfer_desc); 666 667 return trans->trans_cfg->mq_rx_supported ? 668 sizeof(__le64) : sizeof(__le32); 669 } 670 671 static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 672 { 673 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 674 return sizeof(struct iwl_rx_completion_desc_bz); 675 676 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 677 return sizeof(struct iwl_rx_completion_desc); 678 679 return sizeof(__le32); 680 } 681 682 static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 683 struct iwl_rxq *rxq) 684 { 685 int free_size = iwl_pcie_free_bd_size(trans); 686 687 if (rxq->bd) 688 dma_free_coherent(trans->dev, 689 free_size * rxq->queue_size, 690 rxq->bd, rxq->bd_dma); 691 rxq->bd_dma = 0; 692 rxq->bd = NULL; 693 694 rxq->rb_stts_dma = 0; 695 rxq->rb_stts = NULL; 696 697 if (rxq->used_bd) 698 dma_free_coherent(trans->dev, 699 iwl_pcie_used_bd_size(trans) * 700 rxq->queue_size, 701 rxq->used_bd, rxq->used_bd_dma); 702 rxq->used_bd_dma = 0; 703 rxq->used_bd = NULL; 704 } 705 706 static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 707 struct iwl_rxq *rxq) 708 { 709 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 710 struct device *dev = trans->dev; 711 int i; 712 int free_size; 713 bool use_rx_td = (trans->trans_cfg->device_family >= 714 IWL_DEVICE_FAMILY_AX210); 715 size_t rb_stts_size = use_rx_td ? sizeof(__le16) : 716 sizeof(struct iwl_rb_status); 717 718 spin_lock_init(&rxq->lock); 719 if (trans->trans_cfg->mq_rx_supported) 720 rxq->queue_size = trans->cfg->num_rbds; 721 else 722 rxq->queue_size = RX_QUEUE_SIZE; 723 724 free_size = iwl_pcie_free_bd_size(trans); 725 726 /* 727 * Allocate the circular buffer of Read Buffer Descriptors 728 * (RBDs) 729 */ 730 rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 731 &rxq->bd_dma, GFP_KERNEL); 732 if (!rxq->bd) 733 goto err; 734 735 if (trans->trans_cfg->mq_rx_supported) { 736 rxq->used_bd = dma_alloc_coherent(dev, 737 iwl_pcie_used_bd_size(trans) * 738 rxq->queue_size, 739 &rxq->used_bd_dma, 740 GFP_KERNEL); 741 if (!rxq->used_bd) 742 goto err; 743 } 744 745 rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 746 rxq->rb_stts_dma = 747 trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 748 749 return 0; 750 751 err: 752 for (i = 0; i < trans->num_rx_queues; i++) { 753 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 754 755 iwl_pcie_free_rxq_dma(trans, rxq); 756 } 757 758 return -ENOMEM; 759 } 760 761 static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 762 { 763 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 764 struct iwl_rb_allocator *rba = &trans_pcie->rba; 765 int i, ret; 766 size_t rb_stts_size = trans->trans_cfg->device_family >= 767 IWL_DEVICE_FAMILY_AX210 ? 768 sizeof(__le16) : sizeof(struct iwl_rb_status); 769 770 if (WARN_ON(trans_pcie->rxq)) 771 return -EINVAL; 772 773 trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 774 GFP_KERNEL); 775 trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 776 sizeof(trans_pcie->rx_pool[0]), 777 GFP_KERNEL); 778 trans_pcie->global_table = 779 kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 780 sizeof(trans_pcie->global_table[0]), 781 GFP_KERNEL); 782 if (!trans_pcie->rxq || !trans_pcie->rx_pool || 783 !trans_pcie->global_table) { 784 ret = -ENOMEM; 785 goto err; 786 } 787 788 spin_lock_init(&rba->lock); 789 790 /* 791 * Allocate the driver's pointer to receive buffer status. 792 * Allocate for all queues continuously (HW requirement). 793 */ 794 trans_pcie->base_rb_stts = 795 dma_alloc_coherent(trans->dev, 796 rb_stts_size * trans->num_rx_queues, 797 &trans_pcie->base_rb_stts_dma, 798 GFP_KERNEL); 799 if (!trans_pcie->base_rb_stts) { 800 ret = -ENOMEM; 801 goto err; 802 } 803 804 for (i = 0; i < trans->num_rx_queues; i++) { 805 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 806 807 rxq->id = i; 808 ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 809 if (ret) 810 goto err; 811 } 812 return 0; 813 814 err: 815 if (trans_pcie->base_rb_stts) { 816 dma_free_coherent(trans->dev, 817 rb_stts_size * trans->num_rx_queues, 818 trans_pcie->base_rb_stts, 819 trans_pcie->base_rb_stts_dma); 820 trans_pcie->base_rb_stts = NULL; 821 trans_pcie->base_rb_stts_dma = 0; 822 } 823 kfree(trans_pcie->rx_pool); 824 trans_pcie->rx_pool = NULL; 825 kfree(trans_pcie->global_table); 826 trans_pcie->global_table = NULL; 827 kfree(trans_pcie->rxq); 828 trans_pcie->rxq = NULL; 829 830 return ret; 831 } 832 833 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 834 { 835 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 836 u32 rb_size; 837 const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 838 839 switch (trans_pcie->rx_buf_size) { 840 case IWL_AMSDU_4K: 841 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 842 break; 843 case IWL_AMSDU_8K: 844 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 845 break; 846 case IWL_AMSDU_12K: 847 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 848 break; 849 default: 850 WARN_ON(1); 851 rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 852 } 853 854 if (!iwl_trans_grab_nic_access(trans)) 855 return; 856 857 /* Stop Rx DMA */ 858 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 859 /* reset and flush pointers */ 860 iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 861 iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 862 iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 863 864 /* Reset driver's Rx queue write index */ 865 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 866 867 /* Tell device where to find RBD circular buffer in DRAM */ 868 iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 869 (u32)(rxq->bd_dma >> 8)); 870 871 /* Tell device where in DRAM to update its Rx status */ 872 iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 873 rxq->rb_stts_dma >> 4); 874 875 /* Enable Rx DMA 876 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 877 * the credit mechanism in 5000 HW RX FIFO 878 * Direct rx interrupts to hosts 879 * Rx buffer size 4 or 8k or 12k 880 * RB timeout 0x10 881 * 256 RBDs 882 */ 883 iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 884 FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 885 FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 886 FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 887 rb_size | 888 (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 889 (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 890 891 iwl_trans_release_nic_access(trans); 892 893 /* Set interrupt coalescing timer to default (2048 usecs) */ 894 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 895 896 /* W/A for interrupt coalescing bug in 7260 and 3160 */ 897 if (trans->cfg->host_interrupt_operation_mode) 898 iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 899 } 900 901 static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 902 { 903 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 904 u32 rb_size, enabled = 0; 905 int i; 906 907 switch (trans_pcie->rx_buf_size) { 908 case IWL_AMSDU_2K: 909 rb_size = RFH_RXF_DMA_RB_SIZE_2K; 910 break; 911 case IWL_AMSDU_4K: 912 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 913 break; 914 case IWL_AMSDU_8K: 915 rb_size = RFH_RXF_DMA_RB_SIZE_8K; 916 break; 917 case IWL_AMSDU_12K: 918 rb_size = RFH_RXF_DMA_RB_SIZE_12K; 919 break; 920 default: 921 WARN_ON(1); 922 rb_size = RFH_RXF_DMA_RB_SIZE_4K; 923 } 924 925 if (!iwl_trans_grab_nic_access(trans)) 926 return; 927 928 /* Stop Rx DMA */ 929 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 930 /* disable free amd used rx queue operation */ 931 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 932 933 for (i = 0; i < trans->num_rx_queues; i++) { 934 /* Tell device where to find RBD free table in DRAM */ 935 iwl_write_prph64_no_grab(trans, 936 RFH_Q_FRBDCB_BA_LSB(i), 937 trans_pcie->rxq[i].bd_dma); 938 /* Tell device where to find RBD used table in DRAM */ 939 iwl_write_prph64_no_grab(trans, 940 RFH_Q_URBDCB_BA_LSB(i), 941 trans_pcie->rxq[i].used_bd_dma); 942 /* Tell device where in DRAM to update its Rx status */ 943 iwl_write_prph64_no_grab(trans, 944 RFH_Q_URBD_STTS_WPTR_LSB(i), 945 trans_pcie->rxq[i].rb_stts_dma); 946 /* Reset device indice tables */ 947 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 948 iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 949 iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 950 951 enabled |= BIT(i) | BIT(i + 16); 952 } 953 954 /* 955 * Enable Rx DMA 956 * Rx buffer size 4 or 8k or 12k 957 * Min RB size 4 or 8 958 * Drop frames that exceed RB size 959 * 512 RBDs 960 */ 961 iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 962 RFH_DMA_EN_ENABLE_VAL | rb_size | 963 RFH_RXF_DMA_MIN_RB_4_8 | 964 RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 965 RFH_RXF_DMA_RBDCB_SIZE_512); 966 967 /* 968 * Activate DMA snooping. 969 * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 970 * Default queue is 0 971 */ 972 iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 973 RFH_GEN_CFG_RFH_DMA_SNOOP | 974 RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 975 RFH_GEN_CFG_SERVICE_DMA_SNOOP | 976 RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 977 trans->trans_cfg->integrated ? 978 RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 979 RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 980 /* Enable the relevant rx queues */ 981 iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 982 983 iwl_trans_release_nic_access(trans); 984 985 /* Set interrupt coalescing timer to default (2048 usecs) */ 986 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 987 } 988 989 void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 990 { 991 lockdep_assert_held(&rxq->lock); 992 993 INIT_LIST_HEAD(&rxq->rx_free); 994 INIT_LIST_HEAD(&rxq->rx_used); 995 rxq->free_count = 0; 996 rxq->used_count = 0; 997 } 998 999 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1000 1001 static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1002 { 1003 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1004 struct iwl_trans_pcie *trans_pcie; 1005 struct iwl_trans *trans; 1006 int ret; 1007 1008 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1009 trans = trans_pcie->trans; 1010 1011 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1012 1013 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1014 rxq->id, ret, budget); 1015 1016 if (ret < budget) { 1017 spin_lock(&trans_pcie->irq_lock); 1018 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1019 _iwl_enable_interrupts(trans); 1020 spin_unlock(&trans_pcie->irq_lock); 1021 1022 napi_complete_done(&rxq->napi, ret); 1023 } 1024 1025 return ret; 1026 } 1027 1028 static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1029 { 1030 struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1031 struct iwl_trans_pcie *trans_pcie; 1032 struct iwl_trans *trans; 1033 int ret; 1034 1035 trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1036 trans = trans_pcie->trans; 1037 1038 ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1039 IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1040 budget); 1041 1042 if (ret < budget) { 1043 int irq_line = rxq->id; 1044 1045 /* FIRST_RSS is shared with line 0 */ 1046 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1047 rxq->id == 1) 1048 irq_line = 0; 1049 1050 spin_lock(&trans_pcie->irq_lock); 1051 iwl_pcie_clear_irq(trans, irq_line); 1052 spin_unlock(&trans_pcie->irq_lock); 1053 1054 napi_complete_done(&rxq->napi, ret); 1055 } 1056 1057 return ret; 1058 } 1059 1060 static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1061 { 1062 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1063 struct iwl_rxq *def_rxq; 1064 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1065 int i, err, queue_size, allocator_pool_size, num_alloc; 1066 1067 if (!trans_pcie->rxq) { 1068 err = iwl_pcie_rx_alloc(trans); 1069 if (err) 1070 return err; 1071 } 1072 def_rxq = trans_pcie->rxq; 1073 1074 cancel_work_sync(&rba->rx_alloc); 1075 1076 spin_lock_bh(&rba->lock); 1077 atomic_set(&rba->req_pending, 0); 1078 atomic_set(&rba->req_ready, 0); 1079 INIT_LIST_HEAD(&rba->rbd_allocated); 1080 INIT_LIST_HEAD(&rba->rbd_empty); 1081 spin_unlock_bh(&rba->lock); 1082 1083 /* free all first - we overwrite everything here */ 1084 iwl_pcie_free_rbs_pool(trans); 1085 1086 for (i = 0; i < RX_QUEUE_SIZE; i++) 1087 def_rxq->queue[i] = NULL; 1088 1089 for (i = 0; i < trans->num_rx_queues; i++) { 1090 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1091 1092 spin_lock_bh(&rxq->lock); 1093 /* 1094 * Set read write pointer to reflect that we have processed 1095 * and used all buffers, but have not restocked the Rx queue 1096 * with fresh buffers 1097 */ 1098 rxq->read = 0; 1099 rxq->write = 0; 1100 rxq->write_actual = 0; 1101 memset(rxq->rb_stts, 0, 1102 (trans->trans_cfg->device_family >= 1103 IWL_DEVICE_FAMILY_AX210) ? 1104 sizeof(__le16) : sizeof(struct iwl_rb_status)); 1105 1106 iwl_pcie_rx_init_rxb_lists(rxq); 1107 1108 spin_unlock_bh(&rxq->lock); 1109 1110 if (!rxq->napi.poll) { 1111 int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1112 1113 if (trans_pcie->msix_enabled) 1114 poll = iwl_pcie_napi_poll_msix; 1115 1116 netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, poll); 1117 napi_enable(&rxq->napi); 1118 } 1119 1120 } 1121 1122 /* move the pool to the default queue and allocator ownerships */ 1123 queue_size = trans->trans_cfg->mq_rx_supported ? 1124 trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1125 allocator_pool_size = trans->num_rx_queues * 1126 (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1127 num_alloc = queue_size + allocator_pool_size; 1128 1129 for (i = 0; i < num_alloc; i++) { 1130 struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1131 1132 if (i < allocator_pool_size) 1133 list_add(&rxb->list, &rba->rbd_empty); 1134 else 1135 list_add(&rxb->list, &def_rxq->rx_used); 1136 trans_pcie->global_table[i] = rxb; 1137 rxb->vid = (u16)(i + 1); 1138 rxb->invalid = true; 1139 } 1140 1141 iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1142 1143 return 0; 1144 } 1145 1146 int iwl_pcie_rx_init(struct iwl_trans *trans) 1147 { 1148 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1149 int ret = _iwl_pcie_rx_init(trans); 1150 1151 if (ret) 1152 return ret; 1153 1154 if (trans->trans_cfg->mq_rx_supported) 1155 iwl_pcie_rx_mq_hw_init(trans); 1156 else 1157 iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1158 1159 iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1160 1161 spin_lock_bh(&trans_pcie->rxq->lock); 1162 iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1163 spin_unlock_bh(&trans_pcie->rxq->lock); 1164 1165 return 0; 1166 } 1167 1168 int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1169 { 1170 /* Set interrupt coalescing timer to default (2048 usecs) */ 1171 iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1172 1173 /* 1174 * We don't configure the RFH. 1175 * Restock will be done at alive, after firmware configured the RFH. 1176 */ 1177 return _iwl_pcie_rx_init(trans); 1178 } 1179 1180 void iwl_pcie_rx_free(struct iwl_trans *trans) 1181 { 1182 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1183 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1184 int i; 1185 size_t rb_stts_size = trans->trans_cfg->device_family >= 1186 IWL_DEVICE_FAMILY_AX210 ? 1187 sizeof(__le16) : sizeof(struct iwl_rb_status); 1188 1189 /* 1190 * if rxq is NULL, it means that nothing has been allocated, 1191 * exit now 1192 */ 1193 if (!trans_pcie->rxq) { 1194 IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1195 return; 1196 } 1197 1198 cancel_work_sync(&rba->rx_alloc); 1199 1200 iwl_pcie_free_rbs_pool(trans); 1201 1202 if (trans_pcie->base_rb_stts) { 1203 dma_free_coherent(trans->dev, 1204 rb_stts_size * trans->num_rx_queues, 1205 trans_pcie->base_rb_stts, 1206 trans_pcie->base_rb_stts_dma); 1207 trans_pcie->base_rb_stts = NULL; 1208 trans_pcie->base_rb_stts_dma = 0; 1209 } 1210 1211 for (i = 0; i < trans->num_rx_queues; i++) { 1212 struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1213 1214 iwl_pcie_free_rxq_dma(trans, rxq); 1215 1216 if (rxq->napi.poll) { 1217 napi_disable(&rxq->napi); 1218 netif_napi_del(&rxq->napi); 1219 } 1220 } 1221 kfree(trans_pcie->rx_pool); 1222 kfree(trans_pcie->global_table); 1223 kfree(trans_pcie->rxq); 1224 1225 if (trans_pcie->alloc_page) 1226 __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1227 } 1228 1229 static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1230 struct iwl_rb_allocator *rba) 1231 { 1232 spin_lock(&rba->lock); 1233 list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1234 spin_unlock(&rba->lock); 1235 } 1236 1237 /* 1238 * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1239 * 1240 * Called when a RBD can be reused. The RBD is transferred to the allocator. 1241 * When there are 2 empty RBDs - a request for allocation is posted 1242 */ 1243 static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1244 struct iwl_rx_mem_buffer *rxb, 1245 struct iwl_rxq *rxq, bool emergency) 1246 { 1247 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1248 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1249 1250 /* Move the RBD to the used list, will be moved to allocator in batches 1251 * before claiming or posting a request*/ 1252 list_add_tail(&rxb->list, &rxq->rx_used); 1253 1254 if (unlikely(emergency)) 1255 return; 1256 1257 /* Count the allocator owned RBDs */ 1258 rxq->used_count++; 1259 1260 /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1261 * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1262 * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1263 * after but we still need to post another request. 1264 */ 1265 if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1266 /* Move the 2 RBDs to the allocator ownership. 1267 Allocator has another 6 from pool for the request completion*/ 1268 iwl_pcie_rx_move_to_allocator(rxq, rba); 1269 1270 atomic_inc(&rba->req_pending); 1271 queue_work(rba->alloc_wq, &rba->rx_alloc); 1272 } 1273 } 1274 1275 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1276 struct iwl_rxq *rxq, 1277 struct iwl_rx_mem_buffer *rxb, 1278 bool emergency, 1279 int i) 1280 { 1281 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1282 struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1283 bool page_stolen = false; 1284 int max_len = trans_pcie->rx_buf_bytes; 1285 u32 offset = 0; 1286 1287 if (WARN_ON(!rxb)) 1288 return; 1289 1290 dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1291 1292 while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1293 struct iwl_rx_packet *pkt; 1294 bool reclaim; 1295 int len; 1296 struct iwl_rx_cmd_buffer rxcb = { 1297 ._offset = rxb->offset + offset, 1298 ._rx_page_order = trans_pcie->rx_page_order, 1299 ._page = rxb->page, 1300 ._page_stolen = false, 1301 .truesize = max_len, 1302 }; 1303 1304 pkt = rxb_addr(&rxcb); 1305 1306 if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1307 IWL_DEBUG_RX(trans, 1308 "Q %d: RB end marker at offset %d\n", 1309 rxq->id, offset); 1310 break; 1311 } 1312 1313 WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1314 FH_RSCSR_RXQ_POS != rxq->id, 1315 "frame on invalid queue - is on %d and indicates %d\n", 1316 rxq->id, 1317 (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1318 FH_RSCSR_RXQ_POS); 1319 1320 IWL_DEBUG_RX(trans, 1321 "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1322 rxq->id, offset, 1323 iwl_get_cmd_string(trans, 1324 WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1325 pkt->hdr.group_id, pkt->hdr.cmd, 1326 le16_to_cpu(pkt->hdr.sequence)); 1327 1328 len = iwl_rx_packet_len(pkt); 1329 len += sizeof(u32); /* account for status word */ 1330 1331 offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1332 1333 /* check that what the device tells us made sense */ 1334 if (len < sizeof(*pkt) || offset > max_len) 1335 break; 1336 1337 trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1338 trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1339 1340 /* Reclaim a command buffer only if this packet is a response 1341 * to a (driver-originated) command. 1342 * If the packet (e.g. Rx frame) originated from uCode, 1343 * there is no command buffer to reclaim. 1344 * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1345 * but apparently a few don't get set; catch them here. */ 1346 reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1347 if (reclaim && !pkt->hdr.group_id) { 1348 int i; 1349 1350 for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1351 if (trans_pcie->no_reclaim_cmds[i] == 1352 pkt->hdr.cmd) { 1353 reclaim = false; 1354 break; 1355 } 1356 } 1357 } 1358 1359 if (rxq->id == trans_pcie->def_rx_queue) 1360 iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1361 &rxcb); 1362 else 1363 iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1364 &rxcb, rxq->id); 1365 1366 /* 1367 * After here, we should always check rxcb._page_stolen, 1368 * if it is true then one of the handlers took the page. 1369 */ 1370 1371 if (reclaim) { 1372 u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1373 int index = SEQ_TO_INDEX(sequence); 1374 int cmd_index = iwl_txq_get_cmd_index(txq, index); 1375 1376 kfree_sensitive(txq->entries[cmd_index].free_buf); 1377 txq->entries[cmd_index].free_buf = NULL; 1378 1379 /* Invoke any callbacks, transfer the buffer to caller, 1380 * and fire off the (possibly) blocking 1381 * iwl_trans_send_cmd() 1382 * as we reclaim the driver command queue */ 1383 if (!rxcb._page_stolen) 1384 iwl_pcie_hcmd_complete(trans, &rxcb); 1385 else 1386 IWL_WARN(trans, "Claim null rxb?\n"); 1387 } 1388 1389 page_stolen |= rxcb._page_stolen; 1390 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1391 break; 1392 } 1393 1394 /* page was stolen from us -- free our reference */ 1395 if (page_stolen) { 1396 __free_pages(rxb->page, trans_pcie->rx_page_order); 1397 rxb->page = NULL; 1398 } 1399 1400 /* Reuse the page if possible. For notification packets and 1401 * SKBs that fail to Rx correctly, add them back into the 1402 * rx_free list for reuse later. */ 1403 if (rxb->page != NULL) { 1404 rxb->page_dma = 1405 dma_map_page(trans->dev, rxb->page, rxb->offset, 1406 trans_pcie->rx_buf_bytes, 1407 DMA_FROM_DEVICE); 1408 if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1409 /* 1410 * free the page(s) as well to not break 1411 * the invariant that the items on the used 1412 * list have no page(s) 1413 */ 1414 __free_pages(rxb->page, trans_pcie->rx_page_order); 1415 rxb->page = NULL; 1416 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1417 } else { 1418 list_add_tail(&rxb->list, &rxq->rx_free); 1419 rxq->free_count++; 1420 } 1421 } else 1422 iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1423 } 1424 1425 static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1426 struct iwl_rxq *rxq, int i, 1427 bool *join) 1428 { 1429 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1430 struct iwl_rx_mem_buffer *rxb; 1431 u16 vid; 1432 1433 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1434 BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1435 1436 if (!trans->trans_cfg->mq_rx_supported) { 1437 rxb = rxq->queue[i]; 1438 rxq->queue[i] = NULL; 1439 return rxb; 1440 } 1441 1442 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1443 struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1444 1445 vid = le16_to_cpu(cd[i].rbid); 1446 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1447 } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1448 struct iwl_rx_completion_desc *cd = rxq->used_bd; 1449 1450 vid = le16_to_cpu(cd[i].rbid); 1451 *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1452 } else { 1453 __le32 *cd = rxq->used_bd; 1454 1455 vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1456 } 1457 1458 if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1459 goto out_err; 1460 1461 rxb = trans_pcie->global_table[vid - 1]; 1462 if (rxb->invalid) 1463 goto out_err; 1464 1465 IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1466 1467 rxb->invalid = true; 1468 1469 return rxb; 1470 1471 out_err: 1472 WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1473 iwl_force_nmi(trans); 1474 return NULL; 1475 } 1476 1477 /* 1478 * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1479 */ 1480 static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1481 { 1482 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1483 struct iwl_rxq *rxq; 1484 u32 r, i, count = 0, handled = 0; 1485 bool emergency = false; 1486 1487 if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1488 return budget; 1489 1490 rxq = &trans_pcie->rxq[queue]; 1491 1492 restart: 1493 spin_lock(&rxq->lock); 1494 /* uCode's read index (stored in shared DRAM) indicates the last Rx 1495 * buffer that the driver may process (last buffer filled by ucode). */ 1496 r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1497 i = rxq->read; 1498 1499 /* W/A 9000 device step A0 wrap-around bug */ 1500 r &= (rxq->queue_size - 1); 1501 1502 /* Rx interrupt, but nothing sent from uCode */ 1503 if (i == r) 1504 IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1505 1506 while (i != r && ++handled < budget) { 1507 struct iwl_rb_allocator *rba = &trans_pcie->rba; 1508 struct iwl_rx_mem_buffer *rxb; 1509 /* number of RBDs still waiting for page allocation */ 1510 u32 rb_pending_alloc = 1511 atomic_read(&trans_pcie->rba.req_pending) * 1512 RX_CLAIM_REQ_ALLOC; 1513 bool join = false; 1514 1515 if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1516 !emergency)) { 1517 iwl_pcie_rx_move_to_allocator(rxq, rba); 1518 emergency = true; 1519 IWL_DEBUG_TPT(trans, 1520 "RX path is in emergency. Pending allocations %d\n", 1521 rb_pending_alloc); 1522 } 1523 1524 IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1525 1526 rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1527 if (!rxb) 1528 goto out; 1529 1530 if (unlikely(join || rxq->next_rb_is_fragment)) { 1531 rxq->next_rb_is_fragment = join; 1532 /* 1533 * We can only get a multi-RB in the following cases: 1534 * - firmware issue, sending a too big notification 1535 * - sniffer mode with a large A-MSDU 1536 * - large MTU frames (>2k) 1537 * since the multi-RB functionality is limited to newer 1538 * hardware that cannot put multiple entries into a 1539 * single RB. 1540 * 1541 * Right now, the higher layers aren't set up to deal 1542 * with that, so discard all of these. 1543 */ 1544 list_add_tail(&rxb->list, &rxq->rx_free); 1545 rxq->free_count++; 1546 } else { 1547 iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1548 } 1549 1550 i = (i + 1) & (rxq->queue_size - 1); 1551 1552 /* 1553 * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1554 * try to claim the pre-allocated buffers from the allocator. 1555 * If not ready - will try to reclaim next time. 1556 * There is no need to reschedule work - allocator exits only 1557 * on success 1558 */ 1559 if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1560 iwl_pcie_rx_allocator_get(trans, rxq); 1561 1562 if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1563 /* Add the remaining empty RBDs for allocator use */ 1564 iwl_pcie_rx_move_to_allocator(rxq, rba); 1565 } else if (emergency) { 1566 count++; 1567 if (count == 8) { 1568 count = 0; 1569 if (rb_pending_alloc < rxq->queue_size / 3) { 1570 IWL_DEBUG_TPT(trans, 1571 "RX path exited emergency. Pending allocations %d\n", 1572 rb_pending_alloc); 1573 emergency = false; 1574 } 1575 1576 rxq->read = i; 1577 spin_unlock(&rxq->lock); 1578 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1579 iwl_pcie_rxq_restock(trans, rxq); 1580 goto restart; 1581 } 1582 } 1583 } 1584 out: 1585 /* Backtrack one entry */ 1586 rxq->read = i; 1587 spin_unlock(&rxq->lock); 1588 1589 /* 1590 * handle a case where in emergency there are some unallocated RBDs. 1591 * those RBDs are in the used list, but are not tracked by the queue's 1592 * used_count which counts allocator owned RBDs. 1593 * unallocated emergency RBDs must be allocated on exit, otherwise 1594 * when called again the function may not be in emergency mode and 1595 * they will be handed to the allocator with no tracking in the RBD 1596 * allocator counters, which will lead to them never being claimed back 1597 * by the queue. 1598 * by allocating them here, they are now in the queue free list, and 1599 * will be restocked by the next call of iwl_pcie_rxq_restock. 1600 */ 1601 if (unlikely(emergency && count)) 1602 iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1603 1604 iwl_pcie_rxq_restock(trans, rxq); 1605 1606 return handled; 1607 } 1608 1609 static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1610 { 1611 u8 queue = entry->entry; 1612 struct msix_entry *entries = entry - queue; 1613 1614 return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1615 } 1616 1617 /* 1618 * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1619 * This interrupt handler should be used with RSS queue only. 1620 */ 1621 irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1622 { 1623 struct msix_entry *entry = dev_id; 1624 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1625 struct iwl_trans *trans = trans_pcie->trans; 1626 struct iwl_rxq *rxq = &trans_pcie->rxq[entry->entry]; 1627 1628 trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1629 1630 if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1631 return IRQ_NONE; 1632 1633 if (!rxq) { 1634 if (net_ratelimit()) 1635 IWL_ERR(trans, 1636 "[%d] Got MSI-X interrupt before we have Rx queues\n", 1637 entry->entry); 1638 return IRQ_NONE; 1639 } 1640 1641 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1642 IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1643 1644 local_bh_disable(); 1645 if (napi_schedule_prep(&rxq->napi)) 1646 __napi_schedule(&rxq->napi); 1647 else 1648 iwl_pcie_clear_irq(trans, entry->entry); 1649 local_bh_enable(); 1650 1651 lock_map_release(&trans->sync_cmd_lockdep_map); 1652 1653 return IRQ_HANDLED; 1654 } 1655 1656 /* 1657 * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1658 */ 1659 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1660 { 1661 int i; 1662 1663 /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1664 if (trans->cfg->internal_wimax_coex && 1665 !trans->cfg->apmg_not_supported && 1666 (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1667 APMS_CLK_VAL_MRB_FUNC_MODE) || 1668 (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1669 APMG_PS_CTRL_VAL_RESET_REQ))) { 1670 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1671 iwl_op_mode_wimax_active(trans->op_mode); 1672 wake_up(&trans->wait_command_queue); 1673 return; 1674 } 1675 1676 for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1677 if (!trans->txqs.txq[i]) 1678 continue; 1679 del_timer(&trans->txqs.txq[i]->stuck_timer); 1680 } 1681 1682 /* The STATUS_FW_ERROR bit is set in this function. This must happen 1683 * before we wake up the command caller, to ensure a proper cleanup. */ 1684 iwl_trans_fw_error(trans, false); 1685 1686 clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1687 wake_up(&trans->wait_command_queue); 1688 } 1689 1690 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1691 { 1692 u32 inta; 1693 1694 lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1695 1696 trace_iwlwifi_dev_irq(trans->dev); 1697 1698 /* Discover which interrupts are active/pending */ 1699 inta = iwl_read32(trans, CSR_INT); 1700 1701 /* the thread will service interrupts and re-enable them */ 1702 return inta; 1703 } 1704 1705 /* a device (PCI-E) page is 4096 bytes long */ 1706 #define ICT_SHIFT 12 1707 #define ICT_SIZE (1 << ICT_SHIFT) 1708 #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1709 1710 /* interrupt handler using ict table, with this interrupt driver will 1711 * stop using INTA register to get device's interrupt, reading this register 1712 * is expensive, device will write interrupts in ICT dram table, increment 1713 * index then will fire interrupt to driver, driver will OR all ICT table 1714 * entries from current index up to table entry with 0 value. the result is 1715 * the interrupt we need to service, driver will set the entries back to 0 and 1716 * set index. 1717 */ 1718 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1719 { 1720 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1721 u32 inta; 1722 u32 val = 0; 1723 u32 read; 1724 1725 trace_iwlwifi_dev_irq(trans->dev); 1726 1727 /* Ignore interrupt if there's nothing in NIC to service. 1728 * This may be due to IRQ shared with another device, 1729 * or due to sporadic interrupts thrown from our NIC. */ 1730 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1731 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1732 if (!read) 1733 return 0; 1734 1735 /* 1736 * Collect all entries up to the first 0, starting from ict_index; 1737 * note we already read at ict_index. 1738 */ 1739 do { 1740 val |= read; 1741 IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1742 trans_pcie->ict_index, read); 1743 trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1744 trans_pcie->ict_index = 1745 ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1746 1747 read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1748 trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1749 read); 1750 } while (read); 1751 1752 /* We should not get this value, just ignore it. */ 1753 if (val == 0xffffffff) 1754 val = 0; 1755 1756 /* 1757 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1758 * (bit 15 before shifting it to 31) to clear when using interrupt 1759 * coalescing. fortunately, bits 18 and 19 stay set when this happens 1760 * so we use them to decide on the real state of the Rx bit. 1761 * In order words, bit 15 is set if bit 18 or bit 19 are set. 1762 */ 1763 if (val & 0xC0000) 1764 val |= 0x8000; 1765 1766 inta = (0xff & val) | ((0xff00 & val) << 16); 1767 return inta; 1768 } 1769 1770 void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1771 { 1772 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1773 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1774 bool hw_rfkill, prev, report; 1775 1776 mutex_lock(&trans_pcie->mutex); 1777 prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1778 hw_rfkill = iwl_is_rfkill_set(trans); 1779 if (hw_rfkill) { 1780 set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1781 set_bit(STATUS_RFKILL_HW, &trans->status); 1782 } 1783 if (trans_pcie->opmode_down) 1784 report = hw_rfkill; 1785 else 1786 report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1787 1788 IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1789 hw_rfkill ? "disable radio" : "enable radio"); 1790 1791 isr_stats->rfkill++; 1792 1793 if (prev != report) 1794 iwl_trans_pcie_rf_kill(trans, report); 1795 mutex_unlock(&trans_pcie->mutex); 1796 1797 if (hw_rfkill) { 1798 if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1799 &trans->status)) 1800 IWL_DEBUG_RF_KILL(trans, 1801 "Rfkill while SYNC HCMD in flight\n"); 1802 wake_up(&trans->wait_command_queue); 1803 } else { 1804 clear_bit(STATUS_RFKILL_HW, &trans->status); 1805 if (trans_pcie->opmode_down) 1806 clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1807 } 1808 } 1809 1810 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1811 { 1812 struct iwl_trans *trans = dev_id; 1813 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1814 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1815 u32 inta = 0; 1816 u32 handled = 0; 1817 bool polling = false; 1818 1819 lock_map_acquire(&trans->sync_cmd_lockdep_map); 1820 1821 spin_lock_bh(&trans_pcie->irq_lock); 1822 1823 /* dram interrupt table not set yet, 1824 * use legacy interrupt. 1825 */ 1826 if (likely(trans_pcie->use_ict)) 1827 inta = iwl_pcie_int_cause_ict(trans); 1828 else 1829 inta = iwl_pcie_int_cause_non_ict(trans); 1830 1831 #ifdef CONFIG_IWLWIFI_DEBUG 1832 if (iwl_have_debug_level(IWL_DL_ISR)) { 1833 IWL_DEBUG_ISR(trans, 1834 "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1835 inta, trans_pcie->inta_mask, 1836 iwl_read32(trans, CSR_INT_MASK), 1837 iwl_read32(trans, CSR_FH_INT_STATUS)); 1838 if (inta & (~trans_pcie->inta_mask)) 1839 IWL_DEBUG_ISR(trans, 1840 "We got a masked interrupt (0x%08x)\n", 1841 inta & (~trans_pcie->inta_mask)); 1842 } 1843 #endif 1844 1845 inta &= trans_pcie->inta_mask; 1846 1847 /* 1848 * Ignore interrupt if there's nothing in NIC to service. 1849 * This may be due to IRQ shared with another device, 1850 * or due to sporadic interrupts thrown from our NIC. 1851 */ 1852 if (unlikely(!inta)) { 1853 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1854 /* 1855 * Re-enable interrupts here since we don't 1856 * have anything to service 1857 */ 1858 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1859 _iwl_enable_interrupts(trans); 1860 spin_unlock_bh(&trans_pcie->irq_lock); 1861 lock_map_release(&trans->sync_cmd_lockdep_map); 1862 return IRQ_NONE; 1863 } 1864 1865 if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) { 1866 /* 1867 * Hardware disappeared. It might have 1868 * already raised an interrupt. 1869 */ 1870 IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1871 spin_unlock_bh(&trans_pcie->irq_lock); 1872 goto out; 1873 } 1874 1875 /* Ack/clear/reset pending uCode interrupts. 1876 * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1877 */ 1878 /* There is a hardware bug in the interrupt mask function that some 1879 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1880 * they are disabled in the CSR_INT_MASK register. Furthermore the 1881 * ICT interrupt handling mechanism has another bug that might cause 1882 * these unmasked interrupts fail to be detected. We workaround the 1883 * hardware bugs here by ACKing all the possible interrupts so that 1884 * interrupt coalescing can still be achieved. 1885 */ 1886 iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1887 1888 #ifdef CONFIG_IWLWIFI_DEBUG 1889 if (iwl_have_debug_level(IWL_DL_ISR)) 1890 IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1891 inta, iwl_read32(trans, CSR_INT_MASK)); 1892 #endif 1893 1894 spin_unlock_bh(&trans_pcie->irq_lock); 1895 1896 /* Now service all interrupt bits discovered above. */ 1897 if (inta & CSR_INT_BIT_HW_ERR) { 1898 IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1899 1900 /* Tell the device to stop sending interrupts */ 1901 iwl_disable_interrupts(trans); 1902 1903 isr_stats->hw++; 1904 iwl_pcie_irq_handle_error(trans); 1905 1906 handled |= CSR_INT_BIT_HW_ERR; 1907 1908 goto out; 1909 } 1910 1911 /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1912 if (inta & CSR_INT_BIT_SCD) { 1913 IWL_DEBUG_ISR(trans, 1914 "Scheduler finished to transmit the frame/frames.\n"); 1915 isr_stats->sch++; 1916 } 1917 1918 /* Alive notification via Rx interrupt will do the real work */ 1919 if (inta & CSR_INT_BIT_ALIVE) { 1920 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1921 isr_stats->alive++; 1922 if (trans->trans_cfg->gen2) { 1923 /* 1924 * We can restock, since firmware configured 1925 * the RFH 1926 */ 1927 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1928 } 1929 1930 handled |= CSR_INT_BIT_ALIVE; 1931 } 1932 1933 /* Safely ignore these bits for debug checks below */ 1934 inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1935 1936 /* HW RF KILL switch toggled */ 1937 if (inta & CSR_INT_BIT_RF_KILL) { 1938 iwl_pcie_handle_rfkill_irq(trans); 1939 handled |= CSR_INT_BIT_RF_KILL; 1940 } 1941 1942 /* Chip got too hot and stopped itself */ 1943 if (inta & CSR_INT_BIT_CT_KILL) { 1944 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1945 isr_stats->ctkill++; 1946 handled |= CSR_INT_BIT_CT_KILL; 1947 } 1948 1949 /* Error detected by uCode */ 1950 if (inta & CSR_INT_BIT_SW_ERR) { 1951 IWL_ERR(trans, "Microcode SW error detected. " 1952 " Restarting 0x%X.\n", inta); 1953 isr_stats->sw++; 1954 iwl_pcie_irq_handle_error(trans); 1955 handled |= CSR_INT_BIT_SW_ERR; 1956 } 1957 1958 /* uCode wakes up after power-down sleep */ 1959 if (inta & CSR_INT_BIT_WAKEUP) { 1960 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1961 iwl_pcie_rxq_check_wrptr(trans); 1962 iwl_pcie_txq_check_wrptrs(trans); 1963 1964 isr_stats->wakeup++; 1965 1966 handled |= CSR_INT_BIT_WAKEUP; 1967 } 1968 1969 /* All uCode command responses, including Tx command responses, 1970 * Rx "responses" (frame-received notification), and other 1971 * notifications from uCode come through here*/ 1972 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1973 CSR_INT_BIT_RX_PERIODIC)) { 1974 IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1975 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1976 handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1977 iwl_write32(trans, CSR_FH_INT_STATUS, 1978 CSR_FH_INT_RX_MASK); 1979 } 1980 if (inta & CSR_INT_BIT_RX_PERIODIC) { 1981 handled |= CSR_INT_BIT_RX_PERIODIC; 1982 iwl_write32(trans, 1983 CSR_INT, CSR_INT_BIT_RX_PERIODIC); 1984 } 1985 /* Sending RX interrupt require many steps to be done in the 1986 * device: 1987 * 1- write interrupt to current index in ICT table. 1988 * 2- dma RX frame. 1989 * 3- update RX shared data to indicate last write index. 1990 * 4- send interrupt. 1991 * This could lead to RX race, driver could receive RX interrupt 1992 * but the shared data changes does not reflect this; 1993 * periodic interrupt will detect any dangling Rx activity. 1994 */ 1995 1996 /* Disable periodic interrupt; we use it as just a one-shot. */ 1997 iwl_write8(trans, CSR_INT_PERIODIC_REG, 1998 CSR_INT_PERIODIC_DIS); 1999 2000 /* 2001 * Enable periodic interrupt in 8 msec only if we received 2002 * real RX interrupt (instead of just periodic int), to catch 2003 * any dangling Rx interrupt. If it was just the periodic 2004 * interrupt, there was no dangling Rx activity, and no need 2005 * to extend the periodic interrupt; one-shot is enough. 2006 */ 2007 if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2008 iwl_write8(trans, CSR_INT_PERIODIC_REG, 2009 CSR_INT_PERIODIC_ENA); 2010 2011 isr_stats->rx++; 2012 2013 local_bh_disable(); 2014 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2015 polling = true; 2016 __napi_schedule(&trans_pcie->rxq[0].napi); 2017 } 2018 local_bh_enable(); 2019 } 2020 2021 /* This "Tx" DMA channel is used only for loading uCode */ 2022 if (inta & CSR_INT_BIT_FH_TX) { 2023 iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2024 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2025 isr_stats->tx++; 2026 handled |= CSR_INT_BIT_FH_TX; 2027 /* Wake up uCode load routine, now that load is complete */ 2028 trans_pcie->ucode_write_complete = true; 2029 wake_up(&trans_pcie->ucode_write_waitq); 2030 /* Wake up IMR write routine, now that write to SRAM is complete */ 2031 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2032 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2033 wake_up(&trans_pcie->ucode_write_waitq); 2034 } 2035 } 2036 2037 if (inta & ~handled) { 2038 IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2039 isr_stats->unhandled++; 2040 } 2041 2042 if (inta & ~(trans_pcie->inta_mask)) { 2043 IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2044 inta & ~trans_pcie->inta_mask); 2045 } 2046 2047 if (!polling) { 2048 spin_lock_bh(&trans_pcie->irq_lock); 2049 /* only Re-enable all interrupt if disabled by irq */ 2050 if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2051 _iwl_enable_interrupts(trans); 2052 /* we are loading the firmware, enable FH_TX interrupt only */ 2053 else if (handled & CSR_INT_BIT_FH_TX) 2054 iwl_enable_fw_load_int(trans); 2055 /* Re-enable RF_KILL if it occurred */ 2056 else if (handled & CSR_INT_BIT_RF_KILL) 2057 iwl_enable_rfkill_int(trans); 2058 /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2059 else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2060 iwl_enable_fw_load_int_ctx_info(trans); 2061 spin_unlock_bh(&trans_pcie->irq_lock); 2062 } 2063 2064 out: 2065 lock_map_release(&trans->sync_cmd_lockdep_map); 2066 return IRQ_HANDLED; 2067 } 2068 2069 /****************************************************************************** 2070 * 2071 * ICT functions 2072 * 2073 ******************************************************************************/ 2074 2075 /* Free dram table */ 2076 void iwl_pcie_free_ict(struct iwl_trans *trans) 2077 { 2078 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2079 2080 if (trans_pcie->ict_tbl) { 2081 dma_free_coherent(trans->dev, ICT_SIZE, 2082 trans_pcie->ict_tbl, 2083 trans_pcie->ict_tbl_dma); 2084 trans_pcie->ict_tbl = NULL; 2085 trans_pcie->ict_tbl_dma = 0; 2086 } 2087 } 2088 2089 /* 2090 * allocate dram shared table, it is an aligned memory 2091 * block of ICT_SIZE. 2092 * also reset all data related to ICT table interrupt. 2093 */ 2094 int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2095 { 2096 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2097 2098 trans_pcie->ict_tbl = 2099 dma_alloc_coherent(trans->dev, ICT_SIZE, 2100 &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2101 if (!trans_pcie->ict_tbl) 2102 return -ENOMEM; 2103 2104 /* just an API sanity check ... it is guaranteed to be aligned */ 2105 if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2106 iwl_pcie_free_ict(trans); 2107 return -EINVAL; 2108 } 2109 2110 return 0; 2111 } 2112 2113 /* Device is going up inform it about using ICT interrupt table, 2114 * also we need to tell the driver to start using ICT interrupt. 2115 */ 2116 void iwl_pcie_reset_ict(struct iwl_trans *trans) 2117 { 2118 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2119 u32 val; 2120 2121 if (!trans_pcie->ict_tbl) 2122 return; 2123 2124 spin_lock_bh(&trans_pcie->irq_lock); 2125 _iwl_disable_interrupts(trans); 2126 2127 memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2128 2129 val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2130 2131 val |= CSR_DRAM_INT_TBL_ENABLE | 2132 CSR_DRAM_INIT_TBL_WRAP_CHECK | 2133 CSR_DRAM_INIT_TBL_WRITE_POINTER; 2134 2135 IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2136 2137 iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2138 trans_pcie->use_ict = true; 2139 trans_pcie->ict_index = 0; 2140 iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2141 _iwl_enable_interrupts(trans); 2142 spin_unlock_bh(&trans_pcie->irq_lock); 2143 } 2144 2145 /* Device is going down disable ict interrupt usage */ 2146 void iwl_pcie_disable_ict(struct iwl_trans *trans) 2147 { 2148 struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2149 2150 spin_lock_bh(&trans_pcie->irq_lock); 2151 trans_pcie->use_ict = false; 2152 spin_unlock_bh(&trans_pcie->irq_lock); 2153 } 2154 2155 irqreturn_t iwl_pcie_isr(int irq, void *data) 2156 { 2157 struct iwl_trans *trans = data; 2158 2159 if (!trans) 2160 return IRQ_NONE; 2161 2162 /* Disable (but don't clear!) interrupts here to avoid 2163 * back-to-back ISRs and sporadic interrupts from our NIC. 2164 * If we have something to service, the tasklet will re-enable ints. 2165 * If we *don't* have something, we'll re-enable before leaving here. 2166 */ 2167 iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2168 2169 return IRQ_WAKE_THREAD; 2170 } 2171 2172 irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2173 { 2174 return IRQ_WAKE_THREAD; 2175 } 2176 2177 irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2178 { 2179 struct msix_entry *entry = dev_id; 2180 struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2181 struct iwl_trans *trans = trans_pcie->trans; 2182 struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2183 u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2184 u32 inta_fh, inta_hw; 2185 bool polling = false; 2186 bool sw_err; 2187 2188 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2189 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2190 2191 if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2192 inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2193 2194 lock_map_acquire(&trans->sync_cmd_lockdep_map); 2195 2196 spin_lock_bh(&trans_pcie->irq_lock); 2197 inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2198 inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2199 /* 2200 * Clear causes registers to avoid being handling the same cause. 2201 */ 2202 iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2203 iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2204 spin_unlock_bh(&trans_pcie->irq_lock); 2205 2206 trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2207 2208 if (unlikely(!(inta_fh | inta_hw))) { 2209 IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2210 lock_map_release(&trans->sync_cmd_lockdep_map); 2211 return IRQ_NONE; 2212 } 2213 2214 #ifdef CONFIG_IWLWIFI_DEBUG 2215 if (iwl_have_debug_level(IWL_DL_ISR)) { 2216 IWL_DEBUG_ISR(trans, 2217 "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2218 entry->entry, inta_fh, trans_pcie->fh_mask, 2219 iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2220 if (inta_fh & ~trans_pcie->fh_mask) 2221 IWL_DEBUG_ISR(trans, 2222 "We got a masked interrupt (0x%08x)\n", 2223 inta_fh & ~trans_pcie->fh_mask); 2224 } 2225 #endif 2226 2227 inta_fh &= trans_pcie->fh_mask; 2228 2229 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2230 inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2231 local_bh_disable(); 2232 if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2233 polling = true; 2234 __napi_schedule(&trans_pcie->rxq[0].napi); 2235 } 2236 local_bh_enable(); 2237 } 2238 2239 if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2240 inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2241 local_bh_disable(); 2242 if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2243 polling = true; 2244 __napi_schedule(&trans_pcie->rxq[1].napi); 2245 } 2246 local_bh_enable(); 2247 } 2248 2249 /* This "Tx" DMA channel is used only for loading uCode */ 2250 if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2251 trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2252 IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2253 isr_stats->tx++; 2254 2255 /* Wake up IMR routine once write to SRAM is complete */ 2256 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2257 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2258 wake_up(&trans_pcie->ucode_write_waitq); 2259 } 2260 } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2261 IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2262 isr_stats->tx++; 2263 /* 2264 * Wake up uCode load routine, 2265 * now that load is complete 2266 */ 2267 trans_pcie->ucode_write_complete = true; 2268 wake_up(&trans_pcie->ucode_write_waitq); 2269 2270 /* Wake up IMR routine once write to SRAM is complete */ 2271 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2272 trans_pcie->imr_status = IMR_D2S_COMPLETED; 2273 wake_up(&trans_pcie->ucode_write_waitq); 2274 } 2275 } 2276 2277 if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2278 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2279 else 2280 sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2281 2282 /* Error detected by uCode */ 2283 if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2284 IWL_ERR(trans, 2285 "Microcode SW error detected. Restarting 0x%X.\n", 2286 inta_fh); 2287 isr_stats->sw++; 2288 /* during FW reset flow report errors from there */ 2289 if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2290 trans_pcie->imr_status = IMR_D2S_ERROR; 2291 wake_up(&trans_pcie->imr_waitq); 2292 } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2293 trans_pcie->fw_reset_state = FW_RESET_ERROR; 2294 wake_up(&trans_pcie->fw_reset_waitq); 2295 } else { 2296 iwl_pcie_irq_handle_error(trans); 2297 } 2298 } 2299 2300 /* After checking FH register check HW register */ 2301 #ifdef CONFIG_IWLWIFI_DEBUG 2302 if (iwl_have_debug_level(IWL_DL_ISR)) { 2303 IWL_DEBUG_ISR(trans, 2304 "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2305 entry->entry, inta_hw, trans_pcie->hw_mask, 2306 iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2307 if (inta_hw & ~trans_pcie->hw_mask) 2308 IWL_DEBUG_ISR(trans, 2309 "We got a masked interrupt 0x%08x\n", 2310 inta_hw & ~trans_pcie->hw_mask); 2311 } 2312 #endif 2313 2314 inta_hw &= trans_pcie->hw_mask; 2315 2316 /* Alive notification via Rx interrupt will do the real work */ 2317 if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2318 IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2319 isr_stats->alive++; 2320 if (trans->trans_cfg->gen2) { 2321 /* We can restock, since firmware configured the RFH */ 2322 iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2323 } 2324 } 2325 2326 /* 2327 * In some rare cases when the HW is in a bad state, we may 2328 * get this interrupt too early, when prph_info is still NULL. 2329 * So make sure that it's not NULL to prevent crashing. 2330 */ 2331 if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2332 u32 sleep_notif = 2333 le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2334 if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2335 sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2336 IWL_DEBUG_ISR(trans, 2337 "Sx interrupt: sleep notification = 0x%x\n", 2338 sleep_notif); 2339 trans_pcie->sx_complete = true; 2340 wake_up(&trans_pcie->sx_waitq); 2341 } else { 2342 /* uCode wakes up after power-down sleep */ 2343 IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2344 iwl_pcie_rxq_check_wrptr(trans); 2345 iwl_pcie_txq_check_wrptrs(trans); 2346 2347 isr_stats->wakeup++; 2348 } 2349 } 2350 2351 /* Chip got too hot and stopped itself */ 2352 if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2353 IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2354 isr_stats->ctkill++; 2355 } 2356 2357 /* HW RF KILL switch toggled */ 2358 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2359 iwl_pcie_handle_rfkill_irq(trans); 2360 2361 if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2362 IWL_ERR(trans, 2363 "Hardware error detected. Restarting.\n"); 2364 2365 isr_stats->hw++; 2366 trans->dbg.hw_error = true; 2367 iwl_pcie_irq_handle_error(trans); 2368 } 2369 2370 if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2371 IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2372 trans_pcie->fw_reset_state = FW_RESET_OK; 2373 wake_up(&trans_pcie->fw_reset_waitq); 2374 } 2375 2376 if (!polling) 2377 iwl_pcie_clear_irq(trans, entry->entry); 2378 2379 lock_map_release(&trans->sync_cmd_lockdep_map); 2380 2381 return IRQ_HANDLED; 2382 } 2383