1bfcc09ddSBjoern A. Zeeb // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2bfcc09ddSBjoern A. Zeeb /* 3*9af1bba4SBjoern A. Zeeb * Copyright (C) 2003-2014, 2018-2023 Intel Corporation 4bfcc09ddSBjoern A. Zeeb * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5bfcc09ddSBjoern A. Zeeb * Copyright (C) 2016-2017 Intel Deutschland GmbH 6bfcc09ddSBjoern A. Zeeb */ 7bfcc09ddSBjoern A. Zeeb #include <linux/sched.h> 8bfcc09ddSBjoern A. Zeeb #include <linux/wait.h> 9bfcc09ddSBjoern A. Zeeb #include <linux/gfp.h> 10bfcc09ddSBjoern A. Zeeb 11bfcc09ddSBjoern A. Zeeb #include "iwl-prph.h" 12bfcc09ddSBjoern A. Zeeb #include "iwl-io.h" 13bfcc09ddSBjoern A. Zeeb #include "internal.h" 14bfcc09ddSBjoern A. Zeeb #include "iwl-op-mode.h" 15bfcc09ddSBjoern A. Zeeb #include "iwl-context-info-gen3.h" 16bfcc09ddSBjoern A. Zeeb 17bfcc09ddSBjoern A. Zeeb /****************************************************************************** 18bfcc09ddSBjoern A. Zeeb * 19bfcc09ddSBjoern A. Zeeb * RX path functions 20bfcc09ddSBjoern A. Zeeb * 21bfcc09ddSBjoern A. Zeeb ******************************************************************************/ 22bfcc09ddSBjoern A. Zeeb 23bfcc09ddSBjoern A. Zeeb /* 24bfcc09ddSBjoern A. Zeeb * Rx theory of operation 25bfcc09ddSBjoern A. Zeeb * 26bfcc09ddSBjoern A. Zeeb * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs), 27bfcc09ddSBjoern A. Zeeb * each of which point to Receive Buffers to be filled by the NIC. These get 28bfcc09ddSBjoern A. Zeeb * used not only for Rx frames, but for any command response or notification 29bfcc09ddSBjoern A. Zeeb * from the NIC. The driver and NIC manage the Rx buffers by means 30bfcc09ddSBjoern A. Zeeb * of indexes into the circular buffer. 31bfcc09ddSBjoern A. Zeeb * 32bfcc09ddSBjoern A. Zeeb * Rx Queue Indexes 33bfcc09ddSBjoern A. Zeeb * The host/firmware share two index registers for managing the Rx buffers. 34bfcc09ddSBjoern A. Zeeb * 35bfcc09ddSBjoern A. Zeeb * The READ index maps to the first position that the firmware may be writing 36bfcc09ddSBjoern A. Zeeb * to -- the driver can read up to (but not including) this position and get 37bfcc09ddSBjoern A. Zeeb * good data. 38bfcc09ddSBjoern A. Zeeb * The READ index is managed by the firmware once the card is enabled. 39bfcc09ddSBjoern A. Zeeb * 40bfcc09ddSBjoern A. Zeeb * The WRITE index maps to the last position the driver has read from -- the 41bfcc09ddSBjoern A. Zeeb * position preceding WRITE is the last slot the firmware can place a packet. 42bfcc09ddSBjoern A. Zeeb * 43bfcc09ddSBjoern A. Zeeb * The queue is empty (no good data) if WRITE = READ - 1, and is full if 44bfcc09ddSBjoern A. Zeeb * WRITE = READ. 45bfcc09ddSBjoern A. Zeeb * 46bfcc09ddSBjoern A. Zeeb * During initialization, the host sets up the READ queue position to the first 47bfcc09ddSBjoern A. Zeeb * INDEX position, and WRITE to the last (READ - 1 wrapped) 48bfcc09ddSBjoern A. Zeeb * 49bfcc09ddSBjoern A. Zeeb * When the firmware places a packet in a buffer, it will advance the READ index 50bfcc09ddSBjoern A. Zeeb * and fire the RX interrupt. The driver can then query the READ index and 51bfcc09ddSBjoern A. Zeeb * process as many packets as possible, moving the WRITE index forward as it 52bfcc09ddSBjoern A. Zeeb * resets the Rx queue buffers with new memory. 53bfcc09ddSBjoern A. Zeeb * 54bfcc09ddSBjoern A. Zeeb * The management in the driver is as follows: 55bfcc09ddSBjoern A. Zeeb * + A list of pre-allocated RBDs is stored in iwl->rxq->rx_free. 56bfcc09ddSBjoern A. Zeeb * When the interrupt handler is called, the request is processed. 57bfcc09ddSBjoern A. Zeeb * The page is either stolen - transferred to the upper layer 58bfcc09ddSBjoern A. Zeeb * or reused - added immediately to the iwl->rxq->rx_free list. 59bfcc09ddSBjoern A. Zeeb * + When the page is stolen - the driver updates the matching queue's used 60bfcc09ddSBjoern A. Zeeb * count, detaches the RBD and transfers it to the queue used list. 61bfcc09ddSBjoern A. Zeeb * When there are two used RBDs - they are transferred to the allocator empty 62bfcc09ddSBjoern A. Zeeb * list. Work is then scheduled for the allocator to start allocating 63bfcc09ddSBjoern A. Zeeb * eight buffers. 64bfcc09ddSBjoern A. Zeeb * When there are another 6 used RBDs - they are transferred to the allocator 65bfcc09ddSBjoern A. Zeeb * empty list and the driver tries to claim the pre-allocated buffers and 66bfcc09ddSBjoern A. Zeeb * add them to iwl->rxq->rx_free. If it fails - it continues to claim them 67bfcc09ddSBjoern A. Zeeb * until ready. 68bfcc09ddSBjoern A. Zeeb * When there are 8+ buffers in the free list - either from allocation or from 69bfcc09ddSBjoern A. Zeeb * 8 reused unstolen pages - restock is called to update the FW and indexes. 70bfcc09ddSBjoern A. Zeeb * + In order to make sure the allocator always has RBDs to use for allocation 71bfcc09ddSBjoern A. Zeeb * the allocator has initial pool in the size of num_queues*(8-2) - the 72bfcc09ddSBjoern A. Zeeb * maximum missing RBDs per allocation request (request posted with 2 73bfcc09ddSBjoern A. Zeeb * empty RBDs, there is no guarantee when the other 6 RBDs are supplied). 74bfcc09ddSBjoern A. Zeeb * The queues supplies the recycle of the rest of the RBDs. 75bfcc09ddSBjoern A. Zeeb * + A received packet is processed and handed to the kernel network stack, 76bfcc09ddSBjoern A. Zeeb * detached from the iwl->rxq. The driver 'processed' index is updated. 77bfcc09ddSBjoern A. Zeeb * + If there are no allocated buffers in iwl->rxq->rx_free, 78bfcc09ddSBjoern A. Zeeb * the READ INDEX is not incremented and iwl->status(RX_STALLED) is set. 79bfcc09ddSBjoern A. Zeeb * If there were enough free buffers and RX_STALLED is set it is cleared. 80bfcc09ddSBjoern A. Zeeb * 81bfcc09ddSBjoern A. Zeeb * 82bfcc09ddSBjoern A. Zeeb * Driver sequence: 83bfcc09ddSBjoern A. Zeeb * 84bfcc09ddSBjoern A. Zeeb * iwl_rxq_alloc() Allocates rx_free 85bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls 86bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_restock. 87bfcc09ddSBjoern A. Zeeb * Used only during initialization. 88bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx 89bfcc09ddSBjoern A. Zeeb * queue, updates firmware pointers, and updates 90bfcc09ddSBjoern A. Zeeb * the WRITE index. 91bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_allocator() Background work for allocating pages. 92bfcc09ddSBjoern A. Zeeb * 93bfcc09ddSBjoern A. Zeeb * -- enable interrupts -- 94bfcc09ddSBjoern A. Zeeb * ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the 95bfcc09ddSBjoern A. Zeeb * READ INDEX, detaching the SKB from the pool. 96bfcc09ddSBjoern A. Zeeb * Moves the packet buffer from queue to rx_used. 97bfcc09ddSBjoern A. Zeeb * Posts and claims requests to the allocator. 98bfcc09ddSBjoern A. Zeeb * Calls iwl_pcie_rxq_restock to refill any empty 99bfcc09ddSBjoern A. Zeeb * slots. 100bfcc09ddSBjoern A. Zeeb * 101bfcc09ddSBjoern A. Zeeb * RBD life-cycle: 102bfcc09ddSBjoern A. Zeeb * 103bfcc09ddSBjoern A. Zeeb * Init: 104bfcc09ddSBjoern A. Zeeb * rxq.pool -> rxq.rx_used -> rxq.rx_free -> rxq.queue 105bfcc09ddSBjoern A. Zeeb * 106bfcc09ddSBjoern A. Zeeb * Regular Receive interrupt: 107bfcc09ddSBjoern A. Zeeb * Page Stolen: 108bfcc09ddSBjoern A. Zeeb * rxq.queue -> rxq.rx_used -> allocator.rbd_empty -> 109bfcc09ddSBjoern A. Zeeb * allocator.rbd_allocated -> rxq.rx_free -> rxq.queue 110bfcc09ddSBjoern A. Zeeb * Page not Stolen: 111bfcc09ddSBjoern A. Zeeb * rxq.queue -> rxq.rx_free -> rxq.queue 112bfcc09ddSBjoern A. Zeeb * ... 113bfcc09ddSBjoern A. Zeeb * 114bfcc09ddSBjoern A. Zeeb */ 115bfcc09ddSBjoern A. Zeeb 116bfcc09ddSBjoern A. Zeeb /* 117bfcc09ddSBjoern A. Zeeb * iwl_rxq_space - Return number of free slots available in queue. 118bfcc09ddSBjoern A. Zeeb */ 119bfcc09ddSBjoern A. Zeeb static int iwl_rxq_space(const struct iwl_rxq *rxq) 120bfcc09ddSBjoern A. Zeeb { 121bfcc09ddSBjoern A. Zeeb /* Make sure rx queue size is a power of 2 */ 122bfcc09ddSBjoern A. Zeeb WARN_ON(rxq->queue_size & (rxq->queue_size - 1)); 123bfcc09ddSBjoern A. Zeeb 124bfcc09ddSBjoern A. Zeeb /* 125bfcc09ddSBjoern A. Zeeb * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity 126bfcc09ddSBjoern A. Zeeb * between empty and completely full queues. 127bfcc09ddSBjoern A. Zeeb * The following is equivalent to modulo by RX_QUEUE_SIZE and is well 128bfcc09ddSBjoern A. Zeeb * defined for negative dividends. 129bfcc09ddSBjoern A. Zeeb */ 130bfcc09ddSBjoern A. Zeeb return (rxq->read - rxq->write - 1) & (rxq->queue_size - 1); 131bfcc09ddSBjoern A. Zeeb } 132bfcc09ddSBjoern A. Zeeb 133bfcc09ddSBjoern A. Zeeb /* 134bfcc09ddSBjoern A. Zeeb * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr 135bfcc09ddSBjoern A. Zeeb */ 136bfcc09ddSBjoern A. Zeeb static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr) 137bfcc09ddSBjoern A. Zeeb { 138bfcc09ddSBjoern A. Zeeb return cpu_to_le32((u32)(dma_addr >> 8)); 139bfcc09ddSBjoern A. Zeeb } 140bfcc09ddSBjoern A. Zeeb 141bfcc09ddSBjoern A. Zeeb /* 142bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_stop - stops the Rx DMA 143bfcc09ddSBjoern A. Zeeb */ 144bfcc09ddSBjoern A. Zeeb int iwl_pcie_rx_stop(struct iwl_trans *trans) 145bfcc09ddSBjoern A. Zeeb { 146bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 147bfcc09ddSBjoern A. Zeeb /* TODO: remove this once fw does it */ 148bfcc09ddSBjoern A. Zeeb iwl_write_umac_prph(trans, RFH_RXF_DMA_CFG_GEN3, 0); 149bfcc09ddSBjoern A. Zeeb return iwl_poll_umac_prph_bit(trans, RFH_GEN_STATUS_GEN3, 150bfcc09ddSBjoern A. Zeeb RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 151bfcc09ddSBjoern A. Zeeb } else if (trans->trans_cfg->mq_rx_supported) { 152bfcc09ddSBjoern A. Zeeb iwl_write_prph(trans, RFH_RXF_DMA_CFG, 0); 153bfcc09ddSBjoern A. Zeeb return iwl_poll_prph_bit(trans, RFH_GEN_STATUS, 154bfcc09ddSBjoern A. Zeeb RXF_DMA_IDLE, RXF_DMA_IDLE, 1000); 155bfcc09ddSBjoern A. Zeeb } else { 156bfcc09ddSBjoern A. Zeeb iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 157bfcc09ddSBjoern A. Zeeb return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG, 158bfcc09ddSBjoern A. Zeeb FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 159bfcc09ddSBjoern A. Zeeb 1000); 160bfcc09ddSBjoern A. Zeeb } 161bfcc09ddSBjoern A. Zeeb } 162bfcc09ddSBjoern A. Zeeb 163bfcc09ddSBjoern A. Zeeb /* 164bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue 165bfcc09ddSBjoern A. Zeeb */ 166bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans, 167bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 168bfcc09ddSBjoern A. Zeeb { 169bfcc09ddSBjoern A. Zeeb u32 reg; 170bfcc09ddSBjoern A. Zeeb 171bfcc09ddSBjoern A. Zeeb lockdep_assert_held(&rxq->lock); 172bfcc09ddSBjoern A. Zeeb 173bfcc09ddSBjoern A. Zeeb /* 174bfcc09ddSBjoern A. Zeeb * explicitly wake up the NIC if: 175bfcc09ddSBjoern A. Zeeb * 1. shadow registers aren't enabled 176bfcc09ddSBjoern A. Zeeb * 2. there is a chance that the NIC is asleep 177bfcc09ddSBjoern A. Zeeb */ 178bfcc09ddSBjoern A. Zeeb if (!trans->trans_cfg->base_params->shadow_reg_enable && 179bfcc09ddSBjoern A. Zeeb test_bit(STATUS_TPOWER_PMI, &trans->status)) { 180bfcc09ddSBjoern A. Zeeb reg = iwl_read32(trans, CSR_UCODE_DRV_GP1); 181bfcc09ddSBjoern A. Zeeb 182bfcc09ddSBjoern A. Zeeb if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) { 183bfcc09ddSBjoern A. Zeeb IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n", 184bfcc09ddSBjoern A. Zeeb reg); 185bfcc09ddSBjoern A. Zeeb iwl_set_bit(trans, CSR_GP_CNTRL, 186bfcc09ddSBjoern A. Zeeb CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); 187bfcc09ddSBjoern A. Zeeb rxq->need_update = true; 188bfcc09ddSBjoern A. Zeeb return; 189bfcc09ddSBjoern A. Zeeb } 190bfcc09ddSBjoern A. Zeeb } 191bfcc09ddSBjoern A. Zeeb 192bfcc09ddSBjoern A. Zeeb rxq->write_actual = round_down(rxq->write, 8); 193d9836fb4SBjoern A. Zeeb if (!trans->trans_cfg->mq_rx_supported) 194d9836fb4SBjoern A. Zeeb iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual); 195d9836fb4SBjoern A. Zeeb else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 196d9836fb4SBjoern A. Zeeb iwl_write32(trans, HBUS_TARG_WRPTR, rxq->write_actual | 197d9836fb4SBjoern A. Zeeb HBUS_TARG_WRPTR_RX_Q(rxq->id)); 198d9836fb4SBjoern A. Zeeb else 199bfcc09ddSBjoern A. Zeeb iwl_write32(trans, RFH_Q_FRBDCB_WIDX_TRG(rxq->id), 200bfcc09ddSBjoern A. Zeeb rxq->write_actual); 201bfcc09ddSBjoern A. Zeeb } 202bfcc09ddSBjoern A. Zeeb 203bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans) 204bfcc09ddSBjoern A. Zeeb { 205bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 206bfcc09ddSBjoern A. Zeeb int i; 207bfcc09ddSBjoern A. Zeeb 208bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 209bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 210bfcc09ddSBjoern A. Zeeb 211bfcc09ddSBjoern A. Zeeb if (!rxq->need_update) 212bfcc09ddSBjoern A. Zeeb continue; 213bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 214bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 215bfcc09ddSBjoern A. Zeeb rxq->need_update = false; 216bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 217bfcc09ddSBjoern A. Zeeb } 218bfcc09ddSBjoern A. Zeeb } 219bfcc09ddSBjoern A. Zeeb 220bfcc09ddSBjoern A. Zeeb static void iwl_pcie_restock_bd(struct iwl_trans *trans, 221bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq, 222bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb) 223bfcc09ddSBjoern A. Zeeb { 224bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 225bfcc09ddSBjoern A. Zeeb struct iwl_rx_transfer_desc *bd = rxq->bd; 226bfcc09ddSBjoern A. Zeeb 227bfcc09ddSBjoern A. Zeeb BUILD_BUG_ON(sizeof(*bd) != 2 * sizeof(u64)); 228bfcc09ddSBjoern A. Zeeb 229bfcc09ddSBjoern A. Zeeb bd[rxq->write].addr = cpu_to_le64(rxb->page_dma); 230bfcc09ddSBjoern A. Zeeb bd[rxq->write].rbid = cpu_to_le16(rxb->vid); 231bfcc09ddSBjoern A. Zeeb } else { 232bfcc09ddSBjoern A. Zeeb __le64 *bd = rxq->bd; 233bfcc09ddSBjoern A. Zeeb 234bfcc09ddSBjoern A. Zeeb bd[rxq->write] = cpu_to_le64(rxb->page_dma | rxb->vid); 235bfcc09ddSBjoern A. Zeeb } 236bfcc09ddSBjoern A. Zeeb 237d9836fb4SBjoern A. Zeeb #if defined(__linux__) 238d9836fb4SBjoern A. Zeeb IWL_DEBUG_RX(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 239d9836fb4SBjoern A. Zeeb #elif defined(__FreeBSD__) 240bfcc09ddSBjoern A. Zeeb IWL_DEBUG_PCI_RW(trans, "Assigned virtual RB ID %u to queue %d index %d\n", 241bfcc09ddSBjoern A. Zeeb (u32)rxb->vid, rxq->id, rxq->write); 242d9836fb4SBjoern A. Zeeb #endif 243bfcc09ddSBjoern A. Zeeb } 244bfcc09ddSBjoern A. Zeeb 245bfcc09ddSBjoern A. Zeeb /* 246bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxmq_restock - restock implementation for multi-queue rx 247bfcc09ddSBjoern A. Zeeb */ 248bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rxmq_restock(struct iwl_trans *trans, 249bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 250bfcc09ddSBjoern A. Zeeb { 251bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 252bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 253bfcc09ddSBjoern A. Zeeb 254bfcc09ddSBjoern A. Zeeb /* 255bfcc09ddSBjoern A. Zeeb * If the device isn't enabled - no need to try to add buffers... 256bfcc09ddSBjoern A. Zeeb * This can happen when we stop the device and still have an interrupt 257bfcc09ddSBjoern A. Zeeb * pending. We stop the APM before we sync the interrupts because we 258bfcc09ddSBjoern A. Zeeb * have to (see comment there). On the other hand, since the APM is 259bfcc09ddSBjoern A. Zeeb * stopped, we cannot access the HW (in particular not prph). 260bfcc09ddSBjoern A. Zeeb * So don't try to restock if the APM has been already stopped. 261bfcc09ddSBjoern A. Zeeb */ 262bfcc09ddSBjoern A. Zeeb if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 263bfcc09ddSBjoern A. Zeeb return; 264bfcc09ddSBjoern A. Zeeb 265bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 266bfcc09ddSBjoern A. Zeeb while (rxq->free_count) { 267bfcc09ddSBjoern A. Zeeb /* Get next free Rx buffer, remove from free list */ 268bfcc09ddSBjoern A. Zeeb rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 269bfcc09ddSBjoern A. Zeeb list); 270bfcc09ddSBjoern A. Zeeb list_del(&rxb->list); 271bfcc09ddSBjoern A. Zeeb rxb->invalid = false; 272bfcc09ddSBjoern A. Zeeb /* some low bits are expected to be unset (depending on hw) */ 273bfcc09ddSBjoern A. Zeeb WARN_ON(rxb->page_dma & trans_pcie->supported_dma_mask); 274bfcc09ddSBjoern A. Zeeb /* Point to Rx buffer via next RBD in circular buffer */ 275bfcc09ddSBjoern A. Zeeb iwl_pcie_restock_bd(trans, rxq, rxb); 276bfcc09ddSBjoern A. Zeeb rxq->write = (rxq->write + 1) & (rxq->queue_size - 1); 277bfcc09ddSBjoern A. Zeeb rxq->free_count--; 278bfcc09ddSBjoern A. Zeeb } 279bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 280bfcc09ddSBjoern A. Zeeb 281bfcc09ddSBjoern A. Zeeb /* 282bfcc09ddSBjoern A. Zeeb * If we've added more space for the firmware to place data, tell it. 283bfcc09ddSBjoern A. Zeeb * Increment device's write pointer in multiples of 8. 284bfcc09ddSBjoern A. Zeeb */ 285bfcc09ddSBjoern A. Zeeb if (rxq->write_actual != (rxq->write & ~0x7)) { 286bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 287bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 288bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 289bfcc09ddSBjoern A. Zeeb } 290bfcc09ddSBjoern A. Zeeb } 291bfcc09ddSBjoern A. Zeeb 292bfcc09ddSBjoern A. Zeeb /* 293bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxsq_restock - restock implementation for single queue rx 294bfcc09ddSBjoern A. Zeeb */ 295bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rxsq_restock(struct iwl_trans *trans, 296bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 297bfcc09ddSBjoern A. Zeeb { 298bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 299bfcc09ddSBjoern A. Zeeb 300bfcc09ddSBjoern A. Zeeb /* 301bfcc09ddSBjoern A. Zeeb * If the device isn't enabled - not need to try to add buffers... 302bfcc09ddSBjoern A. Zeeb * This can happen when we stop the device and still have an interrupt 303bfcc09ddSBjoern A. Zeeb * pending. We stop the APM before we sync the interrupts because we 304bfcc09ddSBjoern A. Zeeb * have to (see comment there). On the other hand, since the APM is 305bfcc09ddSBjoern A. Zeeb * stopped, we cannot access the HW (in particular not prph). 306bfcc09ddSBjoern A. Zeeb * So don't try to restock if the APM has been already stopped. 307bfcc09ddSBjoern A. Zeeb */ 308bfcc09ddSBjoern A. Zeeb if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) 309bfcc09ddSBjoern A. Zeeb return; 310bfcc09ddSBjoern A. Zeeb 311bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 312bfcc09ddSBjoern A. Zeeb while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) { 313bfcc09ddSBjoern A. Zeeb __le32 *bd = (__le32 *)rxq->bd; 314bfcc09ddSBjoern A. Zeeb /* The overwritten rxb must be a used one */ 315bfcc09ddSBjoern A. Zeeb rxb = rxq->queue[rxq->write]; 316bfcc09ddSBjoern A. Zeeb BUG_ON(rxb && rxb->page); 317bfcc09ddSBjoern A. Zeeb 318bfcc09ddSBjoern A. Zeeb /* Get next free Rx buffer, remove from free list */ 319bfcc09ddSBjoern A. Zeeb rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer, 320bfcc09ddSBjoern A. Zeeb list); 321bfcc09ddSBjoern A. Zeeb list_del(&rxb->list); 322bfcc09ddSBjoern A. Zeeb rxb->invalid = false; 323bfcc09ddSBjoern A. Zeeb 324bfcc09ddSBjoern A. Zeeb /* Point to Rx buffer via next RBD in circular buffer */ 325bfcc09ddSBjoern A. Zeeb bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma); 326bfcc09ddSBjoern A. Zeeb rxq->queue[rxq->write] = rxb; 327bfcc09ddSBjoern A. Zeeb rxq->write = (rxq->write + 1) & RX_QUEUE_MASK; 328bfcc09ddSBjoern A. Zeeb rxq->free_count--; 329bfcc09ddSBjoern A. Zeeb } 330bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 331bfcc09ddSBjoern A. Zeeb 332bfcc09ddSBjoern A. Zeeb /* If we've added more space for the firmware to place data, tell it. 333bfcc09ddSBjoern A. Zeeb * Increment device's write pointer in multiples of 8. */ 334bfcc09ddSBjoern A. Zeeb if (rxq->write_actual != (rxq->write & ~0x7)) { 335bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 336bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_inc_wr_ptr(trans, rxq); 337bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 338bfcc09ddSBjoern A. Zeeb } 339bfcc09ddSBjoern A. Zeeb } 340bfcc09ddSBjoern A. Zeeb 341bfcc09ddSBjoern A. Zeeb /* 342bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool 343bfcc09ddSBjoern A. Zeeb * 344bfcc09ddSBjoern A. Zeeb * If there are slots in the RX queue that need to be restocked, 345bfcc09ddSBjoern A. Zeeb * and we have free pre-allocated buffers, fill the ranks as much 346bfcc09ddSBjoern A. Zeeb * as we can, pulling from rx_free. 347bfcc09ddSBjoern A. Zeeb * 348bfcc09ddSBjoern A. Zeeb * This moves the 'write' index forward to catch up with 'processed', and 349bfcc09ddSBjoern A. Zeeb * also updates the memory address in the firmware to reference the new 350bfcc09ddSBjoern A. Zeeb * target buffer. 351bfcc09ddSBjoern A. Zeeb */ 352bfcc09ddSBjoern A. Zeeb static 353bfcc09ddSBjoern A. Zeeb void iwl_pcie_rxq_restock(struct iwl_trans *trans, struct iwl_rxq *rxq) 354bfcc09ddSBjoern A. Zeeb { 355bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->mq_rx_supported) 356bfcc09ddSBjoern A. Zeeb iwl_pcie_rxmq_restock(trans, rxq); 357bfcc09ddSBjoern A. Zeeb else 358bfcc09ddSBjoern A. Zeeb iwl_pcie_rxsq_restock(trans, rxq); 359bfcc09ddSBjoern A. Zeeb } 360bfcc09ddSBjoern A. Zeeb 361bfcc09ddSBjoern A. Zeeb /* 362bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_alloc_page - allocates and returns a page. 363bfcc09ddSBjoern A. Zeeb * 364bfcc09ddSBjoern A. Zeeb */ 365bfcc09ddSBjoern A. Zeeb static struct page *iwl_pcie_rx_alloc_page(struct iwl_trans *trans, 366bfcc09ddSBjoern A. Zeeb u32 *offset, gfp_t priority) 367bfcc09ddSBjoern A. Zeeb { 368bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 369bfcc09ddSBjoern A. Zeeb unsigned int rbsize = iwl_trans_get_rb_size(trans_pcie->rx_buf_size); 370bfcc09ddSBjoern A. Zeeb unsigned int allocsize = PAGE_SIZE << trans_pcie->rx_page_order; 371bfcc09ddSBjoern A. Zeeb struct page *page; 372bfcc09ddSBjoern A. Zeeb gfp_t gfp_mask = priority; 373bfcc09ddSBjoern A. Zeeb 374bfcc09ddSBjoern A. Zeeb if (trans_pcie->rx_page_order > 0) 375bfcc09ddSBjoern A. Zeeb gfp_mask |= __GFP_COMP; 376bfcc09ddSBjoern A. Zeeb 377bfcc09ddSBjoern A. Zeeb if (trans_pcie->alloc_page) { 378bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->alloc_page_lock); 379bfcc09ddSBjoern A. Zeeb /* recheck */ 380bfcc09ddSBjoern A. Zeeb if (trans_pcie->alloc_page) { 381bfcc09ddSBjoern A. Zeeb *offset = trans_pcie->alloc_page_used; 382bfcc09ddSBjoern A. Zeeb page = trans_pcie->alloc_page; 383bfcc09ddSBjoern A. Zeeb trans_pcie->alloc_page_used += rbsize; 384bfcc09ddSBjoern A. Zeeb if (trans_pcie->alloc_page_used >= allocsize) 385bfcc09ddSBjoern A. Zeeb trans_pcie->alloc_page = NULL; 386bfcc09ddSBjoern A. Zeeb else 387bfcc09ddSBjoern A. Zeeb get_page(page); 388bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->alloc_page_lock); 389bfcc09ddSBjoern A. Zeeb return page; 390bfcc09ddSBjoern A. Zeeb } 391bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->alloc_page_lock); 392bfcc09ddSBjoern A. Zeeb } 393bfcc09ddSBjoern A. Zeeb 394bfcc09ddSBjoern A. Zeeb /* Alloc a new receive buffer */ 395bfcc09ddSBjoern A. Zeeb page = alloc_pages(gfp_mask, trans_pcie->rx_page_order); 396bfcc09ddSBjoern A. Zeeb if (!page) { 397bfcc09ddSBjoern A. Zeeb if (net_ratelimit()) 398bfcc09ddSBjoern A. Zeeb IWL_DEBUG_INFO(trans, "alloc_pages failed, order: %d\n", 399bfcc09ddSBjoern A. Zeeb trans_pcie->rx_page_order); 400bfcc09ddSBjoern A. Zeeb /* 401bfcc09ddSBjoern A. Zeeb * Issue an error if we don't have enough pre-allocated 402bfcc09ddSBjoern A. Zeeb * buffers. 403bfcc09ddSBjoern A. Zeeb */ 404bfcc09ddSBjoern A. Zeeb if (!(gfp_mask & __GFP_NOWARN) && net_ratelimit()) 405bfcc09ddSBjoern A. Zeeb IWL_CRIT(trans, 406bfcc09ddSBjoern A. Zeeb "Failed to alloc_pages\n"); 407bfcc09ddSBjoern A. Zeeb return NULL; 408bfcc09ddSBjoern A. Zeeb } 409bfcc09ddSBjoern A. Zeeb 410bfcc09ddSBjoern A. Zeeb if (2 * rbsize <= allocsize) { 411bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->alloc_page_lock); 412bfcc09ddSBjoern A. Zeeb if (!trans_pcie->alloc_page) { 413bfcc09ddSBjoern A. Zeeb get_page(page); 414bfcc09ddSBjoern A. Zeeb trans_pcie->alloc_page = page; 415bfcc09ddSBjoern A. Zeeb trans_pcie->alloc_page_used = rbsize; 416bfcc09ddSBjoern A. Zeeb } 417bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->alloc_page_lock); 418bfcc09ddSBjoern A. Zeeb } 419bfcc09ddSBjoern A. Zeeb 420bfcc09ddSBjoern A. Zeeb *offset = 0; 421bfcc09ddSBjoern A. Zeeb return page; 422bfcc09ddSBjoern A. Zeeb } 423bfcc09ddSBjoern A. Zeeb 424bfcc09ddSBjoern A. Zeeb /* 425bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD 426bfcc09ddSBjoern A. Zeeb * 427bfcc09ddSBjoern A. Zeeb * A used RBD is an Rx buffer that has been given to the stack. To use it again 428bfcc09ddSBjoern A. Zeeb * a page must be allocated and the RBD must point to the page. This function 429bfcc09ddSBjoern A. Zeeb * doesn't change the HW pointer but handles the list of pages that is used by 430bfcc09ddSBjoern A. Zeeb * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly 431bfcc09ddSBjoern A. Zeeb * allocated buffers. 432bfcc09ddSBjoern A. Zeeb */ 433bfcc09ddSBjoern A. Zeeb void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority, 434bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 435bfcc09ddSBjoern A. Zeeb { 436bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 437bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 438bfcc09ddSBjoern A. Zeeb struct page *page; 439bfcc09ddSBjoern A. Zeeb 440bfcc09ddSBjoern A. Zeeb while (1) { 441bfcc09ddSBjoern A. Zeeb unsigned int offset; 442bfcc09ddSBjoern A. Zeeb 443bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 444bfcc09ddSBjoern A. Zeeb if (list_empty(&rxq->rx_used)) { 445bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 446bfcc09ddSBjoern A. Zeeb return; 447bfcc09ddSBjoern A. Zeeb } 448bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 449bfcc09ddSBjoern A. Zeeb 450bfcc09ddSBjoern A. Zeeb page = iwl_pcie_rx_alloc_page(trans, &offset, priority); 451bfcc09ddSBjoern A. Zeeb if (!page) 452bfcc09ddSBjoern A. Zeeb return; 453bfcc09ddSBjoern A. Zeeb 454bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 455bfcc09ddSBjoern A. Zeeb 456bfcc09ddSBjoern A. Zeeb if (list_empty(&rxq->rx_used)) { 457bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 458bfcc09ddSBjoern A. Zeeb __free_pages(page, trans_pcie->rx_page_order); 459bfcc09ddSBjoern A. Zeeb return; 460bfcc09ddSBjoern A. Zeeb } 461bfcc09ddSBjoern A. Zeeb rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer, 462bfcc09ddSBjoern A. Zeeb list); 463bfcc09ddSBjoern A. Zeeb list_del(&rxb->list); 464bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 465bfcc09ddSBjoern A. Zeeb 466bfcc09ddSBjoern A. Zeeb BUG_ON(rxb->page); 467bfcc09ddSBjoern A. Zeeb rxb->page = page; 468bfcc09ddSBjoern A. Zeeb rxb->offset = offset; 469bfcc09ddSBjoern A. Zeeb /* Get physical address of the RB */ 470bfcc09ddSBjoern A. Zeeb rxb->page_dma = 471bfcc09ddSBjoern A. Zeeb dma_map_page(trans->dev, page, rxb->offset, 472bfcc09ddSBjoern A. Zeeb trans_pcie->rx_buf_bytes, 473bfcc09ddSBjoern A. Zeeb DMA_FROM_DEVICE); 474bfcc09ddSBjoern A. Zeeb if (dma_mapping_error(trans->dev, rxb->page_dma)) { 475bfcc09ddSBjoern A. Zeeb rxb->page = NULL; 476bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 477bfcc09ddSBjoern A. Zeeb list_add(&rxb->list, &rxq->rx_used); 478bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 479bfcc09ddSBjoern A. Zeeb __free_pages(page, trans_pcie->rx_page_order); 480bfcc09ddSBjoern A. Zeeb return; 481bfcc09ddSBjoern A. Zeeb } 482bfcc09ddSBjoern A. Zeeb 483bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 484bfcc09ddSBjoern A. Zeeb 485bfcc09ddSBjoern A. Zeeb list_add_tail(&rxb->list, &rxq->rx_free); 486bfcc09ddSBjoern A. Zeeb rxq->free_count++; 487bfcc09ddSBjoern A. Zeeb 488bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 489bfcc09ddSBjoern A. Zeeb } 490bfcc09ddSBjoern A. Zeeb } 491bfcc09ddSBjoern A. Zeeb 492bfcc09ddSBjoern A. Zeeb void iwl_pcie_free_rbs_pool(struct iwl_trans *trans) 493bfcc09ddSBjoern A. Zeeb { 494bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 495bfcc09ddSBjoern A. Zeeb int i; 496bfcc09ddSBjoern A. Zeeb 497bfcc09ddSBjoern A. Zeeb if (!trans_pcie->rx_pool) 498bfcc09ddSBjoern A. Zeeb return; 499bfcc09ddSBjoern A. Zeeb 500bfcc09ddSBjoern A. Zeeb for (i = 0; i < RX_POOL_SIZE(trans_pcie->num_rx_bufs); i++) { 501bfcc09ddSBjoern A. Zeeb if (!trans_pcie->rx_pool[i].page) 502bfcc09ddSBjoern A. Zeeb continue; 503bfcc09ddSBjoern A. Zeeb dma_unmap_page(trans->dev, trans_pcie->rx_pool[i].page_dma, 504bfcc09ddSBjoern A. Zeeb trans_pcie->rx_buf_bytes, DMA_FROM_DEVICE); 505bfcc09ddSBjoern A. Zeeb __free_pages(trans_pcie->rx_pool[i].page, 506bfcc09ddSBjoern A. Zeeb trans_pcie->rx_page_order); 507bfcc09ddSBjoern A. Zeeb trans_pcie->rx_pool[i].page = NULL; 508bfcc09ddSBjoern A. Zeeb } 509bfcc09ddSBjoern A. Zeeb } 510bfcc09ddSBjoern A. Zeeb 511bfcc09ddSBjoern A. Zeeb /* 512bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_allocator - Allocates pages in the background for RX queues 513bfcc09ddSBjoern A. Zeeb * 514bfcc09ddSBjoern A. Zeeb * Allocates for each received request 8 pages 515bfcc09ddSBjoern A. Zeeb * Called as a scheduled work item. 516bfcc09ddSBjoern A. Zeeb */ 517bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_allocator(struct iwl_trans *trans) 518bfcc09ddSBjoern A. Zeeb { 519bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 520bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 521bfcc09ddSBjoern A. Zeeb struct list_head local_empty; 522bfcc09ddSBjoern A. Zeeb int pending = atomic_read(&rba->req_pending); 523bfcc09ddSBjoern A. Zeeb 524bfcc09ddSBjoern A. Zeeb IWL_DEBUG_TPT(trans, "Pending allocation requests = %d\n", pending); 525bfcc09ddSBjoern A. Zeeb 526bfcc09ddSBjoern A. Zeeb /* If we were scheduled - there is at least one request */ 527bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rba->lock); 528bfcc09ddSBjoern A. Zeeb /* swap out the rba->rbd_empty to a local list */ 529bfcc09ddSBjoern A. Zeeb list_replace_init(&rba->rbd_empty, &local_empty); 530bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rba->lock); 531bfcc09ddSBjoern A. Zeeb 532bfcc09ddSBjoern A. Zeeb while (pending) { 533bfcc09ddSBjoern A. Zeeb int i; 534bfcc09ddSBjoern A. Zeeb LIST_HEAD(local_allocated); 535bfcc09ddSBjoern A. Zeeb gfp_t gfp_mask = GFP_KERNEL; 536bfcc09ddSBjoern A. Zeeb 537bfcc09ddSBjoern A. Zeeb /* Do not post a warning if there are only a few requests */ 538bfcc09ddSBjoern A. Zeeb if (pending < RX_PENDING_WATERMARK) 539bfcc09ddSBjoern A. Zeeb gfp_mask |= __GFP_NOWARN; 540bfcc09ddSBjoern A. Zeeb 541bfcc09ddSBjoern A. Zeeb for (i = 0; i < RX_CLAIM_REQ_ALLOC;) { 542bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 543bfcc09ddSBjoern A. Zeeb struct page *page; 544bfcc09ddSBjoern A. Zeeb 545bfcc09ddSBjoern A. Zeeb /* List should never be empty - each reused RBD is 546bfcc09ddSBjoern A. Zeeb * returned to the list, and initial pool covers any 547bfcc09ddSBjoern A. Zeeb * possible gap between the time the page is allocated 548bfcc09ddSBjoern A. Zeeb * to the time the RBD is added. 549bfcc09ddSBjoern A. Zeeb */ 550bfcc09ddSBjoern A. Zeeb BUG_ON(list_empty(&local_empty)); 551bfcc09ddSBjoern A. Zeeb /* Get the first rxb from the rbd list */ 552bfcc09ddSBjoern A. Zeeb rxb = list_first_entry(&local_empty, 553bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer, list); 554bfcc09ddSBjoern A. Zeeb BUG_ON(rxb->page); 555bfcc09ddSBjoern A. Zeeb 556bfcc09ddSBjoern A. Zeeb /* Alloc a new receive buffer */ 557bfcc09ddSBjoern A. Zeeb page = iwl_pcie_rx_alloc_page(trans, &rxb->offset, 558bfcc09ddSBjoern A. Zeeb gfp_mask); 559bfcc09ddSBjoern A. Zeeb if (!page) 560bfcc09ddSBjoern A. Zeeb continue; 561bfcc09ddSBjoern A. Zeeb rxb->page = page; 562bfcc09ddSBjoern A. Zeeb 563bfcc09ddSBjoern A. Zeeb /* Get physical address of the RB */ 564bfcc09ddSBjoern A. Zeeb rxb->page_dma = dma_map_page(trans->dev, page, 565bfcc09ddSBjoern A. Zeeb rxb->offset, 566bfcc09ddSBjoern A. Zeeb trans_pcie->rx_buf_bytes, 567bfcc09ddSBjoern A. Zeeb DMA_FROM_DEVICE); 568bfcc09ddSBjoern A. Zeeb if (dma_mapping_error(trans->dev, rxb->page_dma)) { 569bfcc09ddSBjoern A. Zeeb rxb->page = NULL; 570bfcc09ddSBjoern A. Zeeb __free_pages(page, trans_pcie->rx_page_order); 571bfcc09ddSBjoern A. Zeeb continue; 572bfcc09ddSBjoern A. Zeeb } 573bfcc09ddSBjoern A. Zeeb 574bfcc09ddSBjoern A. Zeeb /* move the allocated entry to the out list */ 575bfcc09ddSBjoern A. Zeeb list_move(&rxb->list, &local_allocated); 576bfcc09ddSBjoern A. Zeeb i++; 577bfcc09ddSBjoern A. Zeeb } 578bfcc09ddSBjoern A. Zeeb 579bfcc09ddSBjoern A. Zeeb atomic_dec(&rba->req_pending); 580bfcc09ddSBjoern A. Zeeb pending--; 581bfcc09ddSBjoern A. Zeeb 582bfcc09ddSBjoern A. Zeeb if (!pending) { 583bfcc09ddSBjoern A. Zeeb pending = atomic_read(&rba->req_pending); 584bfcc09ddSBjoern A. Zeeb if (pending) 585bfcc09ddSBjoern A. Zeeb IWL_DEBUG_TPT(trans, 586bfcc09ddSBjoern A. Zeeb "Got more pending allocation requests = %d\n", 587bfcc09ddSBjoern A. Zeeb pending); 588bfcc09ddSBjoern A. Zeeb } 589bfcc09ddSBjoern A. Zeeb 590bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rba->lock); 591bfcc09ddSBjoern A. Zeeb /* add the allocated rbds to the allocator allocated list */ 592bfcc09ddSBjoern A. Zeeb list_splice_tail(&local_allocated, &rba->rbd_allocated); 593bfcc09ddSBjoern A. Zeeb /* get more empty RBDs for current pending requests */ 594bfcc09ddSBjoern A. Zeeb list_splice_tail_init(&rba->rbd_empty, &local_empty); 595bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rba->lock); 596bfcc09ddSBjoern A. Zeeb 597bfcc09ddSBjoern A. Zeeb atomic_inc(&rba->req_ready); 598bfcc09ddSBjoern A. Zeeb 599bfcc09ddSBjoern A. Zeeb } 600bfcc09ddSBjoern A. Zeeb 601bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rba->lock); 602bfcc09ddSBjoern A. Zeeb /* return unused rbds to the allocator empty list */ 603bfcc09ddSBjoern A. Zeeb list_splice_tail(&local_empty, &rba->rbd_empty); 604bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rba->lock); 605bfcc09ddSBjoern A. Zeeb 606bfcc09ddSBjoern A. Zeeb IWL_DEBUG_TPT(trans, "%s, exit.\n", __func__); 607bfcc09ddSBjoern A. Zeeb } 608bfcc09ddSBjoern A. Zeeb 609bfcc09ddSBjoern A. Zeeb /* 610bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_allocator_get - returns the pre-allocated pages 611bfcc09ddSBjoern A. Zeeb .* 612bfcc09ddSBjoern A. Zeeb .* Called by queue when the queue posted allocation request and 613bfcc09ddSBjoern A. Zeeb * has freed 8 RBDs in order to restock itself. 614bfcc09ddSBjoern A. Zeeb * This function directly moves the allocated RBs to the queue's ownership 615bfcc09ddSBjoern A. Zeeb * and updates the relevant counters. 616bfcc09ddSBjoern A. Zeeb */ 617bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_allocator_get(struct iwl_trans *trans, 618bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 619bfcc09ddSBjoern A. Zeeb { 620bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 621bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 622bfcc09ddSBjoern A. Zeeb int i; 623bfcc09ddSBjoern A. Zeeb 624bfcc09ddSBjoern A. Zeeb lockdep_assert_held(&rxq->lock); 625bfcc09ddSBjoern A. Zeeb 626bfcc09ddSBjoern A. Zeeb /* 627bfcc09ddSBjoern A. Zeeb * atomic_dec_if_positive returns req_ready - 1 for any scenario. 628bfcc09ddSBjoern A. Zeeb * If req_ready is 0 atomic_dec_if_positive will return -1 and this 629bfcc09ddSBjoern A. Zeeb * function will return early, as there are no ready requests. 630bfcc09ddSBjoern A. Zeeb * atomic_dec_if_positive will perofrm the *actual* decrement only if 631bfcc09ddSBjoern A. Zeeb * req_ready > 0, i.e. - there are ready requests and the function 632bfcc09ddSBjoern A. Zeeb * hands one request to the caller. 633bfcc09ddSBjoern A. Zeeb */ 634bfcc09ddSBjoern A. Zeeb if (atomic_dec_if_positive(&rba->req_ready) < 0) 635bfcc09ddSBjoern A. Zeeb return; 636bfcc09ddSBjoern A. Zeeb 637bfcc09ddSBjoern A. Zeeb spin_lock(&rba->lock); 638bfcc09ddSBjoern A. Zeeb for (i = 0; i < RX_CLAIM_REQ_ALLOC; i++) { 639bfcc09ddSBjoern A. Zeeb /* Get next free Rx buffer, remove it from free list */ 640bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb = 641bfcc09ddSBjoern A. Zeeb list_first_entry(&rba->rbd_allocated, 642bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer, list); 643bfcc09ddSBjoern A. Zeeb 644bfcc09ddSBjoern A. Zeeb list_move(&rxb->list, &rxq->rx_free); 645bfcc09ddSBjoern A. Zeeb } 646bfcc09ddSBjoern A. Zeeb spin_unlock(&rba->lock); 647bfcc09ddSBjoern A. Zeeb 648bfcc09ddSBjoern A. Zeeb rxq->used_count -= RX_CLAIM_REQ_ALLOC; 649bfcc09ddSBjoern A. Zeeb rxq->free_count += RX_CLAIM_REQ_ALLOC; 650bfcc09ddSBjoern A. Zeeb } 651bfcc09ddSBjoern A. Zeeb 652bfcc09ddSBjoern A. Zeeb void iwl_pcie_rx_allocator_work(struct work_struct *data) 653bfcc09ddSBjoern A. Zeeb { 654bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba_p = 655bfcc09ddSBjoern A. Zeeb container_of(data, struct iwl_rb_allocator, rx_alloc); 656bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = 657bfcc09ddSBjoern A. Zeeb container_of(rba_p, struct iwl_trans_pcie, rba); 658bfcc09ddSBjoern A. Zeeb 659bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_allocator(trans_pcie->trans); 660bfcc09ddSBjoern A. Zeeb } 661bfcc09ddSBjoern A. Zeeb 662d9836fb4SBjoern A. Zeeb static int iwl_pcie_free_bd_size(struct iwl_trans *trans) 663bfcc09ddSBjoern A. Zeeb { 664d9836fb4SBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 665d9836fb4SBjoern A. Zeeb return sizeof(struct iwl_rx_transfer_desc); 666bfcc09ddSBjoern A. Zeeb 667d9836fb4SBjoern A. Zeeb return trans->trans_cfg->mq_rx_supported ? 668d9836fb4SBjoern A. Zeeb sizeof(__le64) : sizeof(__le32); 669d9836fb4SBjoern A. Zeeb } 670d9836fb4SBjoern A. Zeeb 671d9836fb4SBjoern A. Zeeb static int iwl_pcie_used_bd_size(struct iwl_trans *trans) 672d9836fb4SBjoern A. Zeeb { 673d9836fb4SBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 674d9836fb4SBjoern A. Zeeb return sizeof(struct iwl_rx_completion_desc_bz); 675d9836fb4SBjoern A. Zeeb 676d9836fb4SBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 677d9836fb4SBjoern A. Zeeb return sizeof(struct iwl_rx_completion_desc); 678d9836fb4SBjoern A. Zeeb 679d9836fb4SBjoern A. Zeeb return sizeof(__le32); 680bfcc09ddSBjoern A. Zeeb } 681bfcc09ddSBjoern A. Zeeb 682bfcc09ddSBjoern A. Zeeb static void iwl_pcie_free_rxq_dma(struct iwl_trans *trans, 683bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 684bfcc09ddSBjoern A. Zeeb { 685d9836fb4SBjoern A. Zeeb int free_size = iwl_pcie_free_bd_size(trans); 686bfcc09ddSBjoern A. Zeeb 687bfcc09ddSBjoern A. Zeeb if (rxq->bd) 688bfcc09ddSBjoern A. Zeeb dma_free_coherent(trans->dev, 689bfcc09ddSBjoern A. Zeeb free_size * rxq->queue_size, 690bfcc09ddSBjoern A. Zeeb rxq->bd, rxq->bd_dma); 691bfcc09ddSBjoern A. Zeeb rxq->bd_dma = 0; 692bfcc09ddSBjoern A. Zeeb rxq->bd = NULL; 693bfcc09ddSBjoern A. Zeeb 694bfcc09ddSBjoern A. Zeeb rxq->rb_stts_dma = 0; 695bfcc09ddSBjoern A. Zeeb rxq->rb_stts = NULL; 696bfcc09ddSBjoern A. Zeeb 697bfcc09ddSBjoern A. Zeeb if (rxq->used_bd) 698bfcc09ddSBjoern A. Zeeb dma_free_coherent(trans->dev, 699d9836fb4SBjoern A. Zeeb iwl_pcie_used_bd_size(trans) * 700d9836fb4SBjoern A. Zeeb rxq->queue_size, 701bfcc09ddSBjoern A. Zeeb rxq->used_bd, rxq->used_bd_dma); 702bfcc09ddSBjoern A. Zeeb rxq->used_bd_dma = 0; 703bfcc09ddSBjoern A. Zeeb rxq->used_bd = NULL; 704bfcc09ddSBjoern A. Zeeb } 705bfcc09ddSBjoern A. Zeeb 706*9af1bba4SBjoern A. Zeeb static size_t iwl_pcie_rb_stts_size(struct iwl_trans *trans) 707*9af1bba4SBjoern A. Zeeb { 708*9af1bba4SBjoern A. Zeeb bool use_rx_td = (trans->trans_cfg->device_family >= 709*9af1bba4SBjoern A. Zeeb IWL_DEVICE_FAMILY_AX210); 710*9af1bba4SBjoern A. Zeeb 711*9af1bba4SBjoern A. Zeeb if (use_rx_td) 712*9af1bba4SBjoern A. Zeeb return sizeof(__le16); 713*9af1bba4SBjoern A. Zeeb 714*9af1bba4SBjoern A. Zeeb return sizeof(struct iwl_rb_status); 715*9af1bba4SBjoern A. Zeeb } 716*9af1bba4SBjoern A. Zeeb 717bfcc09ddSBjoern A. Zeeb static int iwl_pcie_alloc_rxq_dma(struct iwl_trans *trans, 718bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq) 719bfcc09ddSBjoern A. Zeeb { 720bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 721*9af1bba4SBjoern A. Zeeb size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 722bfcc09ddSBjoern A. Zeeb struct device *dev = trans->dev; 723bfcc09ddSBjoern A. Zeeb int i; 724bfcc09ddSBjoern A. Zeeb int free_size; 725bfcc09ddSBjoern A. Zeeb 726bfcc09ddSBjoern A. Zeeb spin_lock_init(&rxq->lock); 727bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->mq_rx_supported) 728bfcc09ddSBjoern A. Zeeb rxq->queue_size = trans->cfg->num_rbds; 729bfcc09ddSBjoern A. Zeeb else 730bfcc09ddSBjoern A. Zeeb rxq->queue_size = RX_QUEUE_SIZE; 731bfcc09ddSBjoern A. Zeeb 732d9836fb4SBjoern A. Zeeb free_size = iwl_pcie_free_bd_size(trans); 733bfcc09ddSBjoern A. Zeeb 734bfcc09ddSBjoern A. Zeeb /* 735bfcc09ddSBjoern A. Zeeb * Allocate the circular buffer of Read Buffer Descriptors 736bfcc09ddSBjoern A. Zeeb * (RBDs) 737bfcc09ddSBjoern A. Zeeb */ 738bfcc09ddSBjoern A. Zeeb rxq->bd = dma_alloc_coherent(dev, free_size * rxq->queue_size, 739bfcc09ddSBjoern A. Zeeb &rxq->bd_dma, GFP_KERNEL); 740bfcc09ddSBjoern A. Zeeb if (!rxq->bd) 741bfcc09ddSBjoern A. Zeeb goto err; 742bfcc09ddSBjoern A. Zeeb 743bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->mq_rx_supported) { 744bfcc09ddSBjoern A. Zeeb rxq->used_bd = dma_alloc_coherent(dev, 745d9836fb4SBjoern A. Zeeb iwl_pcie_used_bd_size(trans) * 746d9836fb4SBjoern A. Zeeb rxq->queue_size, 747bfcc09ddSBjoern A. Zeeb &rxq->used_bd_dma, 748bfcc09ddSBjoern A. Zeeb GFP_KERNEL); 749bfcc09ddSBjoern A. Zeeb if (!rxq->used_bd) 750bfcc09ddSBjoern A. Zeeb goto err; 751bfcc09ddSBjoern A. Zeeb } 752bfcc09ddSBjoern A. Zeeb 753d9836fb4SBjoern A. Zeeb rxq->rb_stts = (u8 *)trans_pcie->base_rb_stts + rxq->id * rb_stts_size; 754bfcc09ddSBjoern A. Zeeb rxq->rb_stts_dma = 755bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts_dma + rxq->id * rb_stts_size; 756bfcc09ddSBjoern A. Zeeb 757bfcc09ddSBjoern A. Zeeb return 0; 758bfcc09ddSBjoern A. Zeeb 759bfcc09ddSBjoern A. Zeeb err: 760bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 761bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 762bfcc09ddSBjoern A. Zeeb 763bfcc09ddSBjoern A. Zeeb iwl_pcie_free_rxq_dma(trans, rxq); 764bfcc09ddSBjoern A. Zeeb } 765bfcc09ddSBjoern A. Zeeb 766bfcc09ddSBjoern A. Zeeb return -ENOMEM; 767bfcc09ddSBjoern A. Zeeb } 768bfcc09ddSBjoern A. Zeeb 769bfcc09ddSBjoern A. Zeeb static int iwl_pcie_rx_alloc(struct iwl_trans *trans) 770bfcc09ddSBjoern A. Zeeb { 771bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 772*9af1bba4SBjoern A. Zeeb size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 773bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 774bfcc09ddSBjoern A. Zeeb int i, ret; 775bfcc09ddSBjoern A. Zeeb 776bfcc09ddSBjoern A. Zeeb if (WARN_ON(trans_pcie->rxq)) 777bfcc09ddSBjoern A. Zeeb return -EINVAL; 778bfcc09ddSBjoern A. Zeeb 779bfcc09ddSBjoern A. Zeeb trans_pcie->rxq = kcalloc(trans->num_rx_queues, sizeof(struct iwl_rxq), 780bfcc09ddSBjoern A. Zeeb GFP_KERNEL); 781bfcc09ddSBjoern A. Zeeb trans_pcie->rx_pool = kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 782bfcc09ddSBjoern A. Zeeb sizeof(trans_pcie->rx_pool[0]), 783bfcc09ddSBjoern A. Zeeb GFP_KERNEL); 784bfcc09ddSBjoern A. Zeeb trans_pcie->global_table = 785bfcc09ddSBjoern A. Zeeb kcalloc(RX_POOL_SIZE(trans_pcie->num_rx_bufs), 786bfcc09ddSBjoern A. Zeeb sizeof(trans_pcie->global_table[0]), 787bfcc09ddSBjoern A. Zeeb GFP_KERNEL); 788bfcc09ddSBjoern A. Zeeb if (!trans_pcie->rxq || !trans_pcie->rx_pool || 789bfcc09ddSBjoern A. Zeeb !trans_pcie->global_table) { 790bfcc09ddSBjoern A. Zeeb ret = -ENOMEM; 791bfcc09ddSBjoern A. Zeeb goto err; 792bfcc09ddSBjoern A. Zeeb } 793bfcc09ddSBjoern A. Zeeb 794bfcc09ddSBjoern A. Zeeb spin_lock_init(&rba->lock); 795bfcc09ddSBjoern A. Zeeb 796bfcc09ddSBjoern A. Zeeb /* 797bfcc09ddSBjoern A. Zeeb * Allocate the driver's pointer to receive buffer status. 798bfcc09ddSBjoern A. Zeeb * Allocate for all queues continuously (HW requirement). 799bfcc09ddSBjoern A. Zeeb */ 800bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts = 801bfcc09ddSBjoern A. Zeeb dma_alloc_coherent(trans->dev, 802bfcc09ddSBjoern A. Zeeb rb_stts_size * trans->num_rx_queues, 803bfcc09ddSBjoern A. Zeeb &trans_pcie->base_rb_stts_dma, 804bfcc09ddSBjoern A. Zeeb GFP_KERNEL); 805bfcc09ddSBjoern A. Zeeb if (!trans_pcie->base_rb_stts) { 806bfcc09ddSBjoern A. Zeeb ret = -ENOMEM; 807bfcc09ddSBjoern A. Zeeb goto err; 808bfcc09ddSBjoern A. Zeeb } 809bfcc09ddSBjoern A. Zeeb 810bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 811bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 812bfcc09ddSBjoern A. Zeeb 813bfcc09ddSBjoern A. Zeeb rxq->id = i; 814bfcc09ddSBjoern A. Zeeb ret = iwl_pcie_alloc_rxq_dma(trans, rxq); 815bfcc09ddSBjoern A. Zeeb if (ret) 816bfcc09ddSBjoern A. Zeeb goto err; 817bfcc09ddSBjoern A. Zeeb } 818bfcc09ddSBjoern A. Zeeb return 0; 819bfcc09ddSBjoern A. Zeeb 820bfcc09ddSBjoern A. Zeeb err: 821bfcc09ddSBjoern A. Zeeb if (trans_pcie->base_rb_stts) { 822bfcc09ddSBjoern A. Zeeb dma_free_coherent(trans->dev, 823bfcc09ddSBjoern A. Zeeb rb_stts_size * trans->num_rx_queues, 824bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts, 825bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts_dma); 826bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts = NULL; 827bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts_dma = 0; 828bfcc09ddSBjoern A. Zeeb } 829bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->rx_pool); 830bfcc09ddSBjoern A. Zeeb trans_pcie->rx_pool = NULL; 831bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->global_table); 832bfcc09ddSBjoern A. Zeeb trans_pcie->global_table = NULL; 833bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->rxq); 834bfcc09ddSBjoern A. Zeeb trans_pcie->rxq = NULL; 835bfcc09ddSBjoern A. Zeeb 836bfcc09ddSBjoern A. Zeeb return ret; 837bfcc09ddSBjoern A. Zeeb } 838bfcc09ddSBjoern A. Zeeb 839bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq) 840bfcc09ddSBjoern A. Zeeb { 841bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 842bfcc09ddSBjoern A. Zeeb u32 rb_size; 843bfcc09ddSBjoern A. Zeeb const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */ 844bfcc09ddSBjoern A. Zeeb 845bfcc09ddSBjoern A. Zeeb switch (trans_pcie->rx_buf_size) { 846bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_4K: 847bfcc09ddSBjoern A. Zeeb rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 848bfcc09ddSBjoern A. Zeeb break; 849bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_8K: 850bfcc09ddSBjoern A. Zeeb rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K; 851bfcc09ddSBjoern A. Zeeb break; 852bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_12K: 853bfcc09ddSBjoern A. Zeeb rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_12K; 854bfcc09ddSBjoern A. Zeeb break; 855bfcc09ddSBjoern A. Zeeb default: 856bfcc09ddSBjoern A. Zeeb WARN_ON(1); 857bfcc09ddSBjoern A. Zeeb rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K; 858bfcc09ddSBjoern A. Zeeb } 859bfcc09ddSBjoern A. Zeeb 860bfcc09ddSBjoern A. Zeeb if (!iwl_trans_grab_nic_access(trans)) 861bfcc09ddSBjoern A. Zeeb return; 862bfcc09ddSBjoern A. Zeeb 863bfcc09ddSBjoern A. Zeeb /* Stop Rx DMA */ 864bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); 865bfcc09ddSBjoern A. Zeeb /* reset and flush pointers */ 866bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); 867bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); 868bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_RSCSR_CHNL0_RDPTR, 0); 869bfcc09ddSBjoern A. Zeeb 870bfcc09ddSBjoern A. Zeeb /* Reset driver's Rx queue write index */ 871bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); 872bfcc09ddSBjoern A. Zeeb 873bfcc09ddSBjoern A. Zeeb /* Tell device where to find RBD circular buffer in DRAM */ 874bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG, 875bfcc09ddSBjoern A. Zeeb (u32)(rxq->bd_dma >> 8)); 876bfcc09ddSBjoern A. Zeeb 877bfcc09ddSBjoern A. Zeeb /* Tell device where in DRAM to update its Rx status */ 878bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG, 879bfcc09ddSBjoern A. Zeeb rxq->rb_stts_dma >> 4); 880bfcc09ddSBjoern A. Zeeb 881bfcc09ddSBjoern A. Zeeb /* Enable Rx DMA 882bfcc09ddSBjoern A. Zeeb * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in 883bfcc09ddSBjoern A. Zeeb * the credit mechanism in 5000 HW RX FIFO 884bfcc09ddSBjoern A. Zeeb * Direct rx interrupts to hosts 885bfcc09ddSBjoern A. Zeeb * Rx buffer size 4 or 8k or 12k 886bfcc09ddSBjoern A. Zeeb * RB timeout 0x10 887bfcc09ddSBjoern A. Zeeb * 256 RBDs 888bfcc09ddSBjoern A. Zeeb */ 889bfcc09ddSBjoern A. Zeeb iwl_write32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 890bfcc09ddSBjoern A. Zeeb FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | 891bfcc09ddSBjoern A. Zeeb FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | 892bfcc09ddSBjoern A. Zeeb FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | 893bfcc09ddSBjoern A. Zeeb rb_size | 894bfcc09ddSBjoern A. Zeeb (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | 895bfcc09ddSBjoern A. Zeeb (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS)); 896bfcc09ddSBjoern A. Zeeb 897bfcc09ddSBjoern A. Zeeb iwl_trans_release_nic_access(trans); 898bfcc09ddSBjoern A. Zeeb 899bfcc09ddSBjoern A. Zeeb /* Set interrupt coalescing timer to default (2048 usecs) */ 900bfcc09ddSBjoern A. Zeeb iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 901bfcc09ddSBjoern A. Zeeb 902bfcc09ddSBjoern A. Zeeb /* W/A for interrupt coalescing bug in 7260 and 3160 */ 903bfcc09ddSBjoern A. Zeeb if (trans->cfg->host_interrupt_operation_mode) 904bfcc09ddSBjoern A. Zeeb iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE); 905bfcc09ddSBjoern A. Zeeb } 906bfcc09ddSBjoern A. Zeeb 907bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_mq_hw_init(struct iwl_trans *trans) 908bfcc09ddSBjoern A. Zeeb { 909bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 910bfcc09ddSBjoern A. Zeeb u32 rb_size, enabled = 0; 911bfcc09ddSBjoern A. Zeeb int i; 912bfcc09ddSBjoern A. Zeeb 913bfcc09ddSBjoern A. Zeeb switch (trans_pcie->rx_buf_size) { 914bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_2K: 915bfcc09ddSBjoern A. Zeeb rb_size = RFH_RXF_DMA_RB_SIZE_2K; 916bfcc09ddSBjoern A. Zeeb break; 917bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_4K: 918bfcc09ddSBjoern A. Zeeb rb_size = RFH_RXF_DMA_RB_SIZE_4K; 919bfcc09ddSBjoern A. Zeeb break; 920bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_8K: 921bfcc09ddSBjoern A. Zeeb rb_size = RFH_RXF_DMA_RB_SIZE_8K; 922bfcc09ddSBjoern A. Zeeb break; 923bfcc09ddSBjoern A. Zeeb case IWL_AMSDU_12K: 924bfcc09ddSBjoern A. Zeeb rb_size = RFH_RXF_DMA_RB_SIZE_12K; 925bfcc09ddSBjoern A. Zeeb break; 926bfcc09ddSBjoern A. Zeeb default: 927bfcc09ddSBjoern A. Zeeb WARN_ON(1); 928bfcc09ddSBjoern A. Zeeb rb_size = RFH_RXF_DMA_RB_SIZE_4K; 929bfcc09ddSBjoern A. Zeeb } 930bfcc09ddSBjoern A. Zeeb 931bfcc09ddSBjoern A. Zeeb if (!iwl_trans_grab_nic_access(trans)) 932bfcc09ddSBjoern A. Zeeb return; 933bfcc09ddSBjoern A. Zeeb 934bfcc09ddSBjoern A. Zeeb /* Stop Rx DMA */ 935bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 0); 936bfcc09ddSBjoern A. Zeeb /* disable free amd used rx queue operation */ 937bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, 0); 938bfcc09ddSBjoern A. Zeeb 939bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 940bfcc09ddSBjoern A. Zeeb /* Tell device where to find RBD free table in DRAM */ 941bfcc09ddSBjoern A. Zeeb iwl_write_prph64_no_grab(trans, 942bfcc09ddSBjoern A. Zeeb RFH_Q_FRBDCB_BA_LSB(i), 943bfcc09ddSBjoern A. Zeeb trans_pcie->rxq[i].bd_dma); 944bfcc09ddSBjoern A. Zeeb /* Tell device where to find RBD used table in DRAM */ 945bfcc09ddSBjoern A. Zeeb iwl_write_prph64_no_grab(trans, 946bfcc09ddSBjoern A. Zeeb RFH_Q_URBDCB_BA_LSB(i), 947bfcc09ddSBjoern A. Zeeb trans_pcie->rxq[i].used_bd_dma); 948bfcc09ddSBjoern A. Zeeb /* Tell device where in DRAM to update its Rx status */ 949bfcc09ddSBjoern A. Zeeb iwl_write_prph64_no_grab(trans, 950bfcc09ddSBjoern A. Zeeb RFH_Q_URBD_STTS_WPTR_LSB(i), 951bfcc09ddSBjoern A. Zeeb trans_pcie->rxq[i].rb_stts_dma); 952bfcc09ddSBjoern A. Zeeb /* Reset device indice tables */ 953bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_WIDX(i), 0); 954bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_Q_FRBDCB_RIDX(i), 0); 955bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_Q_URBDCB_WIDX(i), 0); 956bfcc09ddSBjoern A. Zeeb 957bfcc09ddSBjoern A. Zeeb enabled |= BIT(i) | BIT(i + 16); 958bfcc09ddSBjoern A. Zeeb } 959bfcc09ddSBjoern A. Zeeb 960bfcc09ddSBjoern A. Zeeb /* 961bfcc09ddSBjoern A. Zeeb * Enable Rx DMA 962bfcc09ddSBjoern A. Zeeb * Rx buffer size 4 or 8k or 12k 963bfcc09ddSBjoern A. Zeeb * Min RB size 4 or 8 964bfcc09ddSBjoern A. Zeeb * Drop frames that exceed RB size 965bfcc09ddSBjoern A. Zeeb * 512 RBDs 966bfcc09ddSBjoern A. Zeeb */ 967bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_RXF_DMA_CFG, 968bfcc09ddSBjoern A. Zeeb RFH_DMA_EN_ENABLE_VAL | rb_size | 969bfcc09ddSBjoern A. Zeeb RFH_RXF_DMA_MIN_RB_4_8 | 970bfcc09ddSBjoern A. Zeeb RFH_RXF_DMA_DROP_TOO_LARGE_MASK | 971bfcc09ddSBjoern A. Zeeb RFH_RXF_DMA_RBDCB_SIZE_512); 972bfcc09ddSBjoern A. Zeeb 973bfcc09ddSBjoern A. Zeeb /* 974bfcc09ddSBjoern A. Zeeb * Activate DMA snooping. 975bfcc09ddSBjoern A. Zeeb * Set RX DMA chunk size to 64B for IOSF and 128B for PCIe 976bfcc09ddSBjoern A. Zeeb * Default queue is 0 977bfcc09ddSBjoern A. Zeeb */ 978bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_GEN_CFG, 979bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_RFH_DMA_SNOOP | 980bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_VAL(DEFAULT_RXQ_NUM, 0) | 981bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_SERVICE_DMA_SNOOP | 982bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_VAL(RB_CHUNK_SIZE, 983bfcc09ddSBjoern A. Zeeb trans->trans_cfg->integrated ? 984bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_RB_CHUNK_SIZE_64 : 985bfcc09ddSBjoern A. Zeeb RFH_GEN_CFG_RB_CHUNK_SIZE_128)); 986bfcc09ddSBjoern A. Zeeb /* Enable the relevant rx queues */ 987bfcc09ddSBjoern A. Zeeb iwl_write_prph_no_grab(trans, RFH_RXF_RXQ_ACTIVE, enabled); 988bfcc09ddSBjoern A. Zeeb 989bfcc09ddSBjoern A. Zeeb iwl_trans_release_nic_access(trans); 990bfcc09ddSBjoern A. Zeeb 991bfcc09ddSBjoern A. Zeeb /* Set interrupt coalescing timer to default (2048 usecs) */ 992bfcc09ddSBjoern A. Zeeb iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 993bfcc09ddSBjoern A. Zeeb } 994bfcc09ddSBjoern A. Zeeb 995bfcc09ddSBjoern A. Zeeb void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq) 996bfcc09ddSBjoern A. Zeeb { 997bfcc09ddSBjoern A. Zeeb lockdep_assert_held(&rxq->lock); 998bfcc09ddSBjoern A. Zeeb 999bfcc09ddSBjoern A. Zeeb INIT_LIST_HEAD(&rxq->rx_free); 1000bfcc09ddSBjoern A. Zeeb INIT_LIST_HEAD(&rxq->rx_used); 1001bfcc09ddSBjoern A. Zeeb rxq->free_count = 0; 1002bfcc09ddSBjoern A. Zeeb rxq->used_count = 0; 1003bfcc09ddSBjoern A. Zeeb } 1004bfcc09ddSBjoern A. Zeeb 1005bfcc09ddSBjoern A. Zeeb static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget); 1006bfcc09ddSBjoern A. Zeeb 1007bfcc09ddSBjoern A. Zeeb static int iwl_pcie_napi_poll(struct napi_struct *napi, int budget) 1008bfcc09ddSBjoern A. Zeeb { 1009bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1010bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie; 1011bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans; 1012bfcc09ddSBjoern A. Zeeb int ret; 1013bfcc09ddSBjoern A. Zeeb 1014bfcc09ddSBjoern A. Zeeb trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1015bfcc09ddSBjoern A. Zeeb trans = trans_pcie->trans; 1016bfcc09ddSBjoern A. Zeeb 1017bfcc09ddSBjoern A. Zeeb ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1018bfcc09ddSBjoern A. Zeeb 1019bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", 1020bfcc09ddSBjoern A. Zeeb rxq->id, ret, budget); 1021bfcc09ddSBjoern A. Zeeb 1022bfcc09ddSBjoern A. Zeeb if (ret < budget) { 1023bfcc09ddSBjoern A. Zeeb spin_lock(&trans_pcie->irq_lock); 1024bfcc09ddSBjoern A. Zeeb if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1025bfcc09ddSBjoern A. Zeeb _iwl_enable_interrupts(trans); 1026bfcc09ddSBjoern A. Zeeb spin_unlock(&trans_pcie->irq_lock); 1027bfcc09ddSBjoern A. Zeeb 1028bfcc09ddSBjoern A. Zeeb napi_complete_done(&rxq->napi, ret); 1029bfcc09ddSBjoern A. Zeeb } 1030bfcc09ddSBjoern A. Zeeb 1031bfcc09ddSBjoern A. Zeeb return ret; 1032bfcc09ddSBjoern A. Zeeb } 1033bfcc09ddSBjoern A. Zeeb 1034bfcc09ddSBjoern A. Zeeb static int iwl_pcie_napi_poll_msix(struct napi_struct *napi, int budget) 1035bfcc09ddSBjoern A. Zeeb { 1036bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = container_of(napi, struct iwl_rxq, napi); 1037bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie; 1038bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans; 1039bfcc09ddSBjoern A. Zeeb int ret; 1040bfcc09ddSBjoern A. Zeeb 1041bfcc09ddSBjoern A. Zeeb trans_pcie = container_of(napi->dev, struct iwl_trans_pcie, napi_dev); 1042bfcc09ddSBjoern A. Zeeb trans = trans_pcie->trans; 1043bfcc09ddSBjoern A. Zeeb 1044bfcc09ddSBjoern A. Zeeb ret = iwl_pcie_rx_handle(trans, rxq->id, budget); 1045bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "[%d] handled %d, budget %d\n", rxq->id, ret, 1046bfcc09ddSBjoern A. Zeeb budget); 1047bfcc09ddSBjoern A. Zeeb 1048bfcc09ddSBjoern A. Zeeb if (ret < budget) { 1049bfcc09ddSBjoern A. Zeeb int irq_line = rxq->id; 1050bfcc09ddSBjoern A. Zeeb 1051bfcc09ddSBjoern A. Zeeb /* FIRST_RSS is shared with line 0 */ 1052bfcc09ddSBjoern A. Zeeb if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS && 1053bfcc09ddSBjoern A. Zeeb rxq->id == 1) 1054bfcc09ddSBjoern A. Zeeb irq_line = 0; 1055bfcc09ddSBjoern A. Zeeb 1056bfcc09ddSBjoern A. Zeeb spin_lock(&trans_pcie->irq_lock); 1057bfcc09ddSBjoern A. Zeeb iwl_pcie_clear_irq(trans, irq_line); 1058bfcc09ddSBjoern A. Zeeb spin_unlock(&trans_pcie->irq_lock); 1059bfcc09ddSBjoern A. Zeeb 1060bfcc09ddSBjoern A. Zeeb napi_complete_done(&rxq->napi, ret); 1061bfcc09ddSBjoern A. Zeeb } 1062bfcc09ddSBjoern A. Zeeb 1063bfcc09ddSBjoern A. Zeeb return ret; 1064bfcc09ddSBjoern A. Zeeb } 1065bfcc09ddSBjoern A. Zeeb 1066*9af1bba4SBjoern A. Zeeb void iwl_pcie_rx_napi_sync(struct iwl_trans *trans) 1067*9af1bba4SBjoern A. Zeeb { 1068*9af1bba4SBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1069*9af1bba4SBjoern A. Zeeb int i; 1070*9af1bba4SBjoern A. Zeeb 1071*9af1bba4SBjoern A. Zeeb if (unlikely(!trans_pcie->rxq)) 1072*9af1bba4SBjoern A. Zeeb return; 1073*9af1bba4SBjoern A. Zeeb 1074*9af1bba4SBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 1075*9af1bba4SBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1076*9af1bba4SBjoern A. Zeeb 1077*9af1bba4SBjoern A. Zeeb if (rxq && rxq->napi.poll) 1078*9af1bba4SBjoern A. Zeeb napi_synchronize(&rxq->napi); 1079*9af1bba4SBjoern A. Zeeb } 1080*9af1bba4SBjoern A. Zeeb } 1081*9af1bba4SBjoern A. Zeeb 1082bfcc09ddSBjoern A. Zeeb static int _iwl_pcie_rx_init(struct iwl_trans *trans) 1083bfcc09ddSBjoern A. Zeeb { 1084bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1085bfcc09ddSBjoern A. Zeeb struct iwl_rxq *def_rxq; 1086bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 1087bfcc09ddSBjoern A. Zeeb int i, err, queue_size, allocator_pool_size, num_alloc; 1088bfcc09ddSBjoern A. Zeeb 1089bfcc09ddSBjoern A. Zeeb if (!trans_pcie->rxq) { 1090bfcc09ddSBjoern A. Zeeb err = iwl_pcie_rx_alloc(trans); 1091bfcc09ddSBjoern A. Zeeb if (err) 1092bfcc09ddSBjoern A. Zeeb return err; 1093bfcc09ddSBjoern A. Zeeb } 1094bfcc09ddSBjoern A. Zeeb def_rxq = trans_pcie->rxq; 1095bfcc09ddSBjoern A. Zeeb 1096bfcc09ddSBjoern A. Zeeb cancel_work_sync(&rba->rx_alloc); 1097bfcc09ddSBjoern A. Zeeb 1098bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rba->lock); 1099bfcc09ddSBjoern A. Zeeb atomic_set(&rba->req_pending, 0); 1100bfcc09ddSBjoern A. Zeeb atomic_set(&rba->req_ready, 0); 1101bfcc09ddSBjoern A. Zeeb INIT_LIST_HEAD(&rba->rbd_allocated); 1102bfcc09ddSBjoern A. Zeeb INIT_LIST_HEAD(&rba->rbd_empty); 1103bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rba->lock); 1104bfcc09ddSBjoern A. Zeeb 1105bfcc09ddSBjoern A. Zeeb /* free all first - we overwrite everything here */ 1106bfcc09ddSBjoern A. Zeeb iwl_pcie_free_rbs_pool(trans); 1107bfcc09ddSBjoern A. Zeeb 1108bfcc09ddSBjoern A. Zeeb for (i = 0; i < RX_QUEUE_SIZE; i++) 1109bfcc09ddSBjoern A. Zeeb def_rxq->queue[i] = NULL; 1110bfcc09ddSBjoern A. Zeeb 1111bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 1112bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1113bfcc09ddSBjoern A. Zeeb 1114bfcc09ddSBjoern A. Zeeb spin_lock_bh(&rxq->lock); 1115bfcc09ddSBjoern A. Zeeb /* 1116bfcc09ddSBjoern A. Zeeb * Set read write pointer to reflect that we have processed 1117bfcc09ddSBjoern A. Zeeb * and used all buffers, but have not restocked the Rx queue 1118bfcc09ddSBjoern A. Zeeb * with fresh buffers 1119bfcc09ddSBjoern A. Zeeb */ 1120bfcc09ddSBjoern A. Zeeb rxq->read = 0; 1121bfcc09ddSBjoern A. Zeeb rxq->write = 0; 1122bfcc09ddSBjoern A. Zeeb rxq->write_actual = 0; 1123bfcc09ddSBjoern A. Zeeb memset(rxq->rb_stts, 0, 1124bfcc09ddSBjoern A. Zeeb (trans->trans_cfg->device_family >= 1125bfcc09ddSBjoern A. Zeeb IWL_DEVICE_FAMILY_AX210) ? 1126bfcc09ddSBjoern A. Zeeb sizeof(__le16) : sizeof(struct iwl_rb_status)); 1127bfcc09ddSBjoern A. Zeeb 1128bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_init_rxb_lists(rxq); 1129bfcc09ddSBjoern A. Zeeb 1130bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&rxq->lock); 1131bfcc09ddSBjoern A. Zeeb 1132bfcc09ddSBjoern A. Zeeb if (!rxq->napi.poll) { 1133bfcc09ddSBjoern A. Zeeb int (*poll)(struct napi_struct *, int) = iwl_pcie_napi_poll; 1134bfcc09ddSBjoern A. Zeeb 1135bfcc09ddSBjoern A. Zeeb if (trans_pcie->msix_enabled) 1136bfcc09ddSBjoern A. Zeeb poll = iwl_pcie_napi_poll_msix; 1137bfcc09ddSBjoern A. Zeeb 1138*9af1bba4SBjoern A. Zeeb netif_napi_add(&trans_pcie->napi_dev, &rxq->napi, 1139*9af1bba4SBjoern A. Zeeb poll); 1140bfcc09ddSBjoern A. Zeeb napi_enable(&rxq->napi); 1141bfcc09ddSBjoern A. Zeeb } 1142bfcc09ddSBjoern A. Zeeb 1143bfcc09ddSBjoern A. Zeeb } 1144bfcc09ddSBjoern A. Zeeb 1145bfcc09ddSBjoern A. Zeeb /* move the pool to the default queue and allocator ownerships */ 1146bfcc09ddSBjoern A. Zeeb queue_size = trans->trans_cfg->mq_rx_supported ? 1147bfcc09ddSBjoern A. Zeeb trans_pcie->num_rx_bufs - 1 : RX_QUEUE_SIZE; 1148bfcc09ddSBjoern A. Zeeb allocator_pool_size = trans->num_rx_queues * 1149bfcc09ddSBjoern A. Zeeb (RX_CLAIM_REQ_ALLOC - RX_POST_REQ_ALLOC); 1150bfcc09ddSBjoern A. Zeeb num_alloc = queue_size + allocator_pool_size; 1151bfcc09ddSBjoern A. Zeeb 1152bfcc09ddSBjoern A. Zeeb for (i = 0; i < num_alloc; i++) { 1153bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb = &trans_pcie->rx_pool[i]; 1154bfcc09ddSBjoern A. Zeeb 1155bfcc09ddSBjoern A. Zeeb if (i < allocator_pool_size) 1156bfcc09ddSBjoern A. Zeeb list_add(&rxb->list, &rba->rbd_empty); 1157bfcc09ddSBjoern A. Zeeb else 1158bfcc09ddSBjoern A. Zeeb list_add(&rxb->list, &def_rxq->rx_used); 1159bfcc09ddSBjoern A. Zeeb trans_pcie->global_table[i] = rxb; 1160bfcc09ddSBjoern A. Zeeb rxb->vid = (u16)(i + 1); 1161bfcc09ddSBjoern A. Zeeb rxb->invalid = true; 1162bfcc09ddSBjoern A. Zeeb } 1163bfcc09ddSBjoern A. Zeeb 1164bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_alloc_rbs(trans, GFP_KERNEL, def_rxq); 1165bfcc09ddSBjoern A. Zeeb 1166bfcc09ddSBjoern A. Zeeb return 0; 1167bfcc09ddSBjoern A. Zeeb } 1168bfcc09ddSBjoern A. Zeeb 1169bfcc09ddSBjoern A. Zeeb int iwl_pcie_rx_init(struct iwl_trans *trans) 1170bfcc09ddSBjoern A. Zeeb { 1171bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1172bfcc09ddSBjoern A. Zeeb int ret = _iwl_pcie_rx_init(trans); 1173bfcc09ddSBjoern A. Zeeb 1174bfcc09ddSBjoern A. Zeeb if (ret) 1175bfcc09ddSBjoern A. Zeeb return ret; 1176bfcc09ddSBjoern A. Zeeb 1177bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->mq_rx_supported) 1178bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_mq_hw_init(trans); 1179bfcc09ddSBjoern A. Zeeb else 1180bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_hw_init(trans, trans_pcie->rxq); 1181bfcc09ddSBjoern A. Zeeb 1182bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_restock(trans, trans_pcie->rxq); 1183bfcc09ddSBjoern A. Zeeb 1184bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->rxq->lock); 1185bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_inc_wr_ptr(trans, trans_pcie->rxq); 1186bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->rxq->lock); 1187bfcc09ddSBjoern A. Zeeb 1188bfcc09ddSBjoern A. Zeeb return 0; 1189bfcc09ddSBjoern A. Zeeb } 1190bfcc09ddSBjoern A. Zeeb 1191bfcc09ddSBjoern A. Zeeb int iwl_pcie_gen2_rx_init(struct iwl_trans *trans) 1192bfcc09ddSBjoern A. Zeeb { 1193bfcc09ddSBjoern A. Zeeb /* Set interrupt coalescing timer to default (2048 usecs) */ 1194bfcc09ddSBjoern A. Zeeb iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF); 1195bfcc09ddSBjoern A. Zeeb 1196bfcc09ddSBjoern A. Zeeb /* 1197bfcc09ddSBjoern A. Zeeb * We don't configure the RFH. 1198bfcc09ddSBjoern A. Zeeb * Restock will be done at alive, after firmware configured the RFH. 1199bfcc09ddSBjoern A. Zeeb */ 1200bfcc09ddSBjoern A. Zeeb return _iwl_pcie_rx_init(trans); 1201bfcc09ddSBjoern A. Zeeb } 1202bfcc09ddSBjoern A. Zeeb 1203bfcc09ddSBjoern A. Zeeb void iwl_pcie_rx_free(struct iwl_trans *trans) 1204bfcc09ddSBjoern A. Zeeb { 1205bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1206*9af1bba4SBjoern A. Zeeb size_t rb_stts_size = iwl_pcie_rb_stts_size(trans); 1207bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 1208bfcc09ddSBjoern A. Zeeb int i; 1209bfcc09ddSBjoern A. Zeeb 1210bfcc09ddSBjoern A. Zeeb /* 1211bfcc09ddSBjoern A. Zeeb * if rxq is NULL, it means that nothing has been allocated, 1212bfcc09ddSBjoern A. Zeeb * exit now 1213bfcc09ddSBjoern A. Zeeb */ 1214bfcc09ddSBjoern A. Zeeb if (!trans_pcie->rxq) { 1215bfcc09ddSBjoern A. Zeeb IWL_DEBUG_INFO(trans, "Free NULL rx context\n"); 1216bfcc09ddSBjoern A. Zeeb return; 1217bfcc09ddSBjoern A. Zeeb } 1218bfcc09ddSBjoern A. Zeeb 1219bfcc09ddSBjoern A. Zeeb cancel_work_sync(&rba->rx_alloc); 1220bfcc09ddSBjoern A. Zeeb 1221bfcc09ddSBjoern A. Zeeb iwl_pcie_free_rbs_pool(trans); 1222bfcc09ddSBjoern A. Zeeb 1223bfcc09ddSBjoern A. Zeeb if (trans_pcie->base_rb_stts) { 1224bfcc09ddSBjoern A. Zeeb dma_free_coherent(trans->dev, 1225bfcc09ddSBjoern A. Zeeb rb_stts_size * trans->num_rx_queues, 1226bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts, 1227bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts_dma); 1228bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts = NULL; 1229bfcc09ddSBjoern A. Zeeb trans_pcie->base_rb_stts_dma = 0; 1230bfcc09ddSBjoern A. Zeeb } 1231bfcc09ddSBjoern A. Zeeb 1232bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->num_rx_queues; i++) { 1233bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq = &trans_pcie->rxq[i]; 1234bfcc09ddSBjoern A. Zeeb 1235bfcc09ddSBjoern A. Zeeb iwl_pcie_free_rxq_dma(trans, rxq); 1236bfcc09ddSBjoern A. Zeeb 1237bfcc09ddSBjoern A. Zeeb if (rxq->napi.poll) { 1238bfcc09ddSBjoern A. Zeeb napi_disable(&rxq->napi); 1239bfcc09ddSBjoern A. Zeeb netif_napi_del(&rxq->napi); 1240bfcc09ddSBjoern A. Zeeb } 1241bfcc09ddSBjoern A. Zeeb } 1242bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->rx_pool); 1243bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->global_table); 1244bfcc09ddSBjoern A. Zeeb kfree(trans_pcie->rxq); 1245bfcc09ddSBjoern A. Zeeb 1246bfcc09ddSBjoern A. Zeeb if (trans_pcie->alloc_page) 1247bfcc09ddSBjoern A. Zeeb __free_pages(trans_pcie->alloc_page, trans_pcie->rx_page_order); 1248bfcc09ddSBjoern A. Zeeb } 1249bfcc09ddSBjoern A. Zeeb 1250bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_move_to_allocator(struct iwl_rxq *rxq, 1251bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba) 1252bfcc09ddSBjoern A. Zeeb { 1253bfcc09ddSBjoern A. Zeeb spin_lock(&rba->lock); 1254bfcc09ddSBjoern A. Zeeb list_splice_tail_init(&rxq->rx_used, &rba->rbd_empty); 1255bfcc09ddSBjoern A. Zeeb spin_unlock(&rba->lock); 1256bfcc09ddSBjoern A. Zeeb } 1257bfcc09ddSBjoern A. Zeeb 1258bfcc09ddSBjoern A. Zeeb /* 1259bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_reuse_rbd - Recycle used RBDs 1260bfcc09ddSBjoern A. Zeeb * 1261bfcc09ddSBjoern A. Zeeb * Called when a RBD can be reused. The RBD is transferred to the allocator. 1262bfcc09ddSBjoern A. Zeeb * When there are 2 empty RBDs - a request for allocation is posted 1263bfcc09ddSBjoern A. Zeeb */ 1264bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_reuse_rbd(struct iwl_trans *trans, 1265bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb, 1266bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq, bool emergency) 1267bfcc09ddSBjoern A. Zeeb { 1268bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1269bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 1270bfcc09ddSBjoern A. Zeeb 1271bfcc09ddSBjoern A. Zeeb /* Move the RBD to the used list, will be moved to allocator in batches 1272bfcc09ddSBjoern A. Zeeb * before claiming or posting a request*/ 1273bfcc09ddSBjoern A. Zeeb list_add_tail(&rxb->list, &rxq->rx_used); 1274bfcc09ddSBjoern A. Zeeb 1275bfcc09ddSBjoern A. Zeeb if (unlikely(emergency)) 1276bfcc09ddSBjoern A. Zeeb return; 1277bfcc09ddSBjoern A. Zeeb 1278bfcc09ddSBjoern A. Zeeb /* Count the allocator owned RBDs */ 1279bfcc09ddSBjoern A. Zeeb rxq->used_count++; 1280bfcc09ddSBjoern A. Zeeb 1281bfcc09ddSBjoern A. Zeeb /* If we have RX_POST_REQ_ALLOC new released rx buffers - 1282bfcc09ddSBjoern A. Zeeb * issue a request for allocator. Modulo RX_CLAIM_REQ_ALLOC is 1283bfcc09ddSBjoern A. Zeeb * used for the case we failed to claim RX_CLAIM_REQ_ALLOC, 1284bfcc09ddSBjoern A. Zeeb * after but we still need to post another request. 1285bfcc09ddSBjoern A. Zeeb */ 1286bfcc09ddSBjoern A. Zeeb if ((rxq->used_count % RX_CLAIM_REQ_ALLOC) == RX_POST_REQ_ALLOC) { 1287bfcc09ddSBjoern A. Zeeb /* Move the 2 RBDs to the allocator ownership. 1288bfcc09ddSBjoern A. Zeeb Allocator has another 6 from pool for the request completion*/ 1289bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_move_to_allocator(rxq, rba); 1290bfcc09ddSBjoern A. Zeeb 1291bfcc09ddSBjoern A. Zeeb atomic_inc(&rba->req_pending); 1292bfcc09ddSBjoern A. Zeeb queue_work(rba->alloc_wq, &rba->rx_alloc); 1293bfcc09ddSBjoern A. Zeeb } 1294bfcc09ddSBjoern A. Zeeb } 1295bfcc09ddSBjoern A. Zeeb 1296bfcc09ddSBjoern A. Zeeb static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans, 1297bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq, 1298bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb, 1299bfcc09ddSBjoern A. Zeeb bool emergency, 1300bfcc09ddSBjoern A. Zeeb int i) 1301bfcc09ddSBjoern A. Zeeb { 1302bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1303bfcc09ddSBjoern A. Zeeb struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id]; 1304bfcc09ddSBjoern A. Zeeb bool page_stolen = false; 1305bfcc09ddSBjoern A. Zeeb int max_len = trans_pcie->rx_buf_bytes; 1306bfcc09ddSBjoern A. Zeeb u32 offset = 0; 1307bfcc09ddSBjoern A. Zeeb 1308bfcc09ddSBjoern A. Zeeb if (WARN_ON(!rxb)) 1309bfcc09ddSBjoern A. Zeeb return; 1310bfcc09ddSBjoern A. Zeeb 1311bfcc09ddSBjoern A. Zeeb dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE); 1312bfcc09ddSBjoern A. Zeeb 1313bfcc09ddSBjoern A. Zeeb while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) { 1314bfcc09ddSBjoern A. Zeeb struct iwl_rx_packet *pkt; 1315bfcc09ddSBjoern A. Zeeb bool reclaim; 1316bfcc09ddSBjoern A. Zeeb int len; 1317bfcc09ddSBjoern A. Zeeb struct iwl_rx_cmd_buffer rxcb = { 1318bfcc09ddSBjoern A. Zeeb ._offset = rxb->offset + offset, 1319bfcc09ddSBjoern A. Zeeb ._rx_page_order = trans_pcie->rx_page_order, 1320bfcc09ddSBjoern A. Zeeb ._page = rxb->page, 1321bfcc09ddSBjoern A. Zeeb ._page_stolen = false, 1322bfcc09ddSBjoern A. Zeeb .truesize = max_len, 1323bfcc09ddSBjoern A. Zeeb }; 1324bfcc09ddSBjoern A. Zeeb 1325bfcc09ddSBjoern A. Zeeb pkt = rxb_addr(&rxcb); 1326bfcc09ddSBjoern A. Zeeb 1327bfcc09ddSBjoern A. Zeeb if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID)) { 1328bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RX(trans, 1329bfcc09ddSBjoern A. Zeeb "Q %d: RB end marker at offset %d\n", 1330bfcc09ddSBjoern A. Zeeb rxq->id, offset); 1331bfcc09ddSBjoern A. Zeeb break; 1332bfcc09ddSBjoern A. Zeeb } 1333bfcc09ddSBjoern A. Zeeb 1334bfcc09ddSBjoern A. Zeeb WARN((le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1335bfcc09ddSBjoern A. Zeeb FH_RSCSR_RXQ_POS != rxq->id, 1336bfcc09ddSBjoern A. Zeeb "frame on invalid queue - is on %d and indicates %d\n", 1337bfcc09ddSBjoern A. Zeeb rxq->id, 1338bfcc09ddSBjoern A. Zeeb (le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_RXQ_MASK) >> 1339bfcc09ddSBjoern A. Zeeb FH_RSCSR_RXQ_POS); 1340bfcc09ddSBjoern A. Zeeb 1341bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RX(trans, 1342bfcc09ddSBjoern A. Zeeb "Q %d: cmd at offset %d: %s (%.2x.%2x, seq 0x%x)\n", 1343bfcc09ddSBjoern A. Zeeb rxq->id, offset, 1344bfcc09ddSBjoern A. Zeeb iwl_get_cmd_string(trans, 1345d9836fb4SBjoern A. Zeeb WIDE_ID(pkt->hdr.group_id, pkt->hdr.cmd)), 1346bfcc09ddSBjoern A. Zeeb pkt->hdr.group_id, pkt->hdr.cmd, 1347bfcc09ddSBjoern A. Zeeb le16_to_cpu(pkt->hdr.sequence)); 1348bfcc09ddSBjoern A. Zeeb 1349bfcc09ddSBjoern A. Zeeb len = iwl_rx_packet_len(pkt); 1350bfcc09ddSBjoern A. Zeeb len += sizeof(u32); /* account for status word */ 1351bfcc09ddSBjoern A. Zeeb 1352bfcc09ddSBjoern A. Zeeb offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN); 1353bfcc09ddSBjoern A. Zeeb 1354bfcc09ddSBjoern A. Zeeb /* check that what the device tells us made sense */ 1355d9836fb4SBjoern A. Zeeb if (len < sizeof(*pkt) || offset > max_len) 1356bfcc09ddSBjoern A. Zeeb break; 1357bfcc09ddSBjoern A. Zeeb 1358bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len); 1359bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len); 1360bfcc09ddSBjoern A. Zeeb 1361bfcc09ddSBjoern A. Zeeb /* Reclaim a command buffer only if this packet is a response 1362bfcc09ddSBjoern A. Zeeb * to a (driver-originated) command. 1363bfcc09ddSBjoern A. Zeeb * If the packet (e.g. Rx frame) originated from uCode, 1364bfcc09ddSBjoern A. Zeeb * there is no command buffer to reclaim. 1365bfcc09ddSBjoern A. Zeeb * Ucode should set SEQ_RX_FRAME bit if ucode-originated, 1366bfcc09ddSBjoern A. Zeeb * but apparently a few don't get set; catch them here. */ 1367bfcc09ddSBjoern A. Zeeb reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME); 1368bfcc09ddSBjoern A. Zeeb if (reclaim && !pkt->hdr.group_id) { 1369bfcc09ddSBjoern A. Zeeb int i; 1370bfcc09ddSBjoern A. Zeeb 1371bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) { 1372bfcc09ddSBjoern A. Zeeb if (trans_pcie->no_reclaim_cmds[i] == 1373bfcc09ddSBjoern A. Zeeb pkt->hdr.cmd) { 1374bfcc09ddSBjoern A. Zeeb reclaim = false; 1375bfcc09ddSBjoern A. Zeeb break; 1376bfcc09ddSBjoern A. Zeeb } 1377bfcc09ddSBjoern A. Zeeb } 1378bfcc09ddSBjoern A. Zeeb } 1379bfcc09ddSBjoern A. Zeeb 1380bfcc09ddSBjoern A. Zeeb if (rxq->id == trans_pcie->def_rx_queue) 1381bfcc09ddSBjoern A. Zeeb iwl_op_mode_rx(trans->op_mode, &rxq->napi, 1382bfcc09ddSBjoern A. Zeeb &rxcb); 1383bfcc09ddSBjoern A. Zeeb else 1384bfcc09ddSBjoern A. Zeeb iwl_op_mode_rx_rss(trans->op_mode, &rxq->napi, 1385bfcc09ddSBjoern A. Zeeb &rxcb, rxq->id); 1386bfcc09ddSBjoern A. Zeeb 1387bfcc09ddSBjoern A. Zeeb /* 1388bfcc09ddSBjoern A. Zeeb * After here, we should always check rxcb._page_stolen, 1389bfcc09ddSBjoern A. Zeeb * if it is true then one of the handlers took the page. 1390bfcc09ddSBjoern A. Zeeb */ 1391bfcc09ddSBjoern A. Zeeb 1392bfcc09ddSBjoern A. Zeeb if (reclaim) { 1393bfcc09ddSBjoern A. Zeeb u16 sequence = le16_to_cpu(pkt->hdr.sequence); 1394bfcc09ddSBjoern A. Zeeb int index = SEQ_TO_INDEX(sequence); 1395bfcc09ddSBjoern A. Zeeb int cmd_index = iwl_txq_get_cmd_index(txq, index); 1396bfcc09ddSBjoern A. Zeeb 1397bfcc09ddSBjoern A. Zeeb kfree_sensitive(txq->entries[cmd_index].free_buf); 1398bfcc09ddSBjoern A. Zeeb txq->entries[cmd_index].free_buf = NULL; 1399bfcc09ddSBjoern A. Zeeb 1400bfcc09ddSBjoern A. Zeeb /* Invoke any callbacks, transfer the buffer to caller, 1401bfcc09ddSBjoern A. Zeeb * and fire off the (possibly) blocking 1402bfcc09ddSBjoern A. Zeeb * iwl_trans_send_cmd() 1403bfcc09ddSBjoern A. Zeeb * as we reclaim the driver command queue */ 1404bfcc09ddSBjoern A. Zeeb if (!rxcb._page_stolen) 1405bfcc09ddSBjoern A. Zeeb iwl_pcie_hcmd_complete(trans, &rxcb); 1406bfcc09ddSBjoern A. Zeeb else 1407bfcc09ddSBjoern A. Zeeb IWL_WARN(trans, "Claim null rxb?\n"); 1408bfcc09ddSBjoern A. Zeeb } 1409bfcc09ddSBjoern A. Zeeb 1410bfcc09ddSBjoern A. Zeeb page_stolen |= rxcb._page_stolen; 1411bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1412bfcc09ddSBjoern A. Zeeb break; 1413bfcc09ddSBjoern A. Zeeb } 1414bfcc09ddSBjoern A. Zeeb 1415bfcc09ddSBjoern A. Zeeb /* page was stolen from us -- free our reference */ 1416bfcc09ddSBjoern A. Zeeb if (page_stolen) { 1417bfcc09ddSBjoern A. Zeeb __free_pages(rxb->page, trans_pcie->rx_page_order); 1418bfcc09ddSBjoern A. Zeeb rxb->page = NULL; 1419bfcc09ddSBjoern A. Zeeb } 1420bfcc09ddSBjoern A. Zeeb 1421bfcc09ddSBjoern A. Zeeb /* Reuse the page if possible. For notification packets and 1422bfcc09ddSBjoern A. Zeeb * SKBs that fail to Rx correctly, add them back into the 1423bfcc09ddSBjoern A. Zeeb * rx_free list for reuse later. */ 1424bfcc09ddSBjoern A. Zeeb if (rxb->page != NULL) { 1425bfcc09ddSBjoern A. Zeeb rxb->page_dma = 1426bfcc09ddSBjoern A. Zeeb dma_map_page(trans->dev, rxb->page, rxb->offset, 1427bfcc09ddSBjoern A. Zeeb trans_pcie->rx_buf_bytes, 1428bfcc09ddSBjoern A. Zeeb DMA_FROM_DEVICE); 1429bfcc09ddSBjoern A. Zeeb if (dma_mapping_error(trans->dev, rxb->page_dma)) { 1430bfcc09ddSBjoern A. Zeeb /* 1431bfcc09ddSBjoern A. Zeeb * free the page(s) as well to not break 1432bfcc09ddSBjoern A. Zeeb * the invariant that the items on the used 1433bfcc09ddSBjoern A. Zeeb * list have no page(s) 1434bfcc09ddSBjoern A. Zeeb */ 1435bfcc09ddSBjoern A. Zeeb __free_pages(rxb->page, trans_pcie->rx_page_order); 1436bfcc09ddSBjoern A. Zeeb rxb->page = NULL; 1437bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1438bfcc09ddSBjoern A. Zeeb } else { 1439bfcc09ddSBjoern A. Zeeb list_add_tail(&rxb->list, &rxq->rx_free); 1440bfcc09ddSBjoern A. Zeeb rxq->free_count++; 1441bfcc09ddSBjoern A. Zeeb } 1442bfcc09ddSBjoern A. Zeeb } else 1443bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_reuse_rbd(trans, rxb, rxq, emergency); 1444bfcc09ddSBjoern A. Zeeb } 1445bfcc09ddSBjoern A. Zeeb 1446bfcc09ddSBjoern A. Zeeb static struct iwl_rx_mem_buffer *iwl_pcie_get_rxb(struct iwl_trans *trans, 1447bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq, int i, 1448bfcc09ddSBjoern A. Zeeb bool *join) 1449bfcc09ddSBjoern A. Zeeb { 1450bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1451bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 1452bfcc09ddSBjoern A. Zeeb u16 vid; 1453bfcc09ddSBjoern A. Zeeb 1454bfcc09ddSBjoern A. Zeeb BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc) != 32); 1455d9836fb4SBjoern A. Zeeb BUILD_BUG_ON(sizeof(struct iwl_rx_completion_desc_bz) != 4); 1456bfcc09ddSBjoern A. Zeeb 1457bfcc09ddSBjoern A. Zeeb if (!trans->trans_cfg->mq_rx_supported) { 1458bfcc09ddSBjoern A. Zeeb rxb = rxq->queue[i]; 1459bfcc09ddSBjoern A. Zeeb rxq->queue[i] = NULL; 1460bfcc09ddSBjoern A. Zeeb return rxb; 1461bfcc09ddSBjoern A. Zeeb } 1462bfcc09ddSBjoern A. Zeeb 1463d9836fb4SBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) { 1464d9836fb4SBjoern A. Zeeb struct iwl_rx_completion_desc_bz *cd = rxq->used_bd; 1465d9836fb4SBjoern A. Zeeb 1466d9836fb4SBjoern A. Zeeb vid = le16_to_cpu(cd[i].rbid); 1467d9836fb4SBjoern A. Zeeb *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1468d9836fb4SBjoern A. Zeeb } else if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1469d9836fb4SBjoern A. Zeeb struct iwl_rx_completion_desc *cd = rxq->used_bd; 1470d9836fb4SBjoern A. Zeeb 1471d9836fb4SBjoern A. Zeeb vid = le16_to_cpu(cd[i].rbid); 1472d9836fb4SBjoern A. Zeeb *join = cd[i].flags & IWL_RX_CD_FLAGS_FRAGMENTED; 1473bfcc09ddSBjoern A. Zeeb } else { 1474d9836fb4SBjoern A. Zeeb __le32 *cd = rxq->used_bd; 1475d9836fb4SBjoern A. Zeeb 1476d9836fb4SBjoern A. Zeeb vid = le32_to_cpu(cd[i]) & 0x0FFF; /* 12-bit VID */ 1477bfcc09ddSBjoern A. Zeeb } 1478bfcc09ddSBjoern A. Zeeb 1479bfcc09ddSBjoern A. Zeeb if (!vid || vid > RX_POOL_SIZE(trans_pcie->num_rx_bufs)) 1480bfcc09ddSBjoern A. Zeeb goto out_err; 1481bfcc09ddSBjoern A. Zeeb 1482bfcc09ddSBjoern A. Zeeb rxb = trans_pcie->global_table[vid - 1]; 1483bfcc09ddSBjoern A. Zeeb if (rxb->invalid) 1484bfcc09ddSBjoern A. Zeeb goto out_err; 1485bfcc09ddSBjoern A. Zeeb 1486bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RX(trans, "Got virtual RB ID %u\n", (u32)rxb->vid); 1487bfcc09ddSBjoern A. Zeeb 1488bfcc09ddSBjoern A. Zeeb rxb->invalid = true; 1489bfcc09ddSBjoern A. Zeeb 1490bfcc09ddSBjoern A. Zeeb return rxb; 1491bfcc09ddSBjoern A. Zeeb 1492bfcc09ddSBjoern A. Zeeb out_err: 1493bfcc09ddSBjoern A. Zeeb WARN(1, "Invalid rxb from HW %u\n", (u32)vid); 1494bfcc09ddSBjoern A. Zeeb iwl_force_nmi(trans); 1495bfcc09ddSBjoern A. Zeeb return NULL; 1496bfcc09ddSBjoern A. Zeeb } 1497bfcc09ddSBjoern A. Zeeb 1498bfcc09ddSBjoern A. Zeeb /* 1499bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_handle - Main entry function for receiving responses from fw 1500bfcc09ddSBjoern A. Zeeb */ 1501bfcc09ddSBjoern A. Zeeb static int iwl_pcie_rx_handle(struct iwl_trans *trans, int queue, int budget) 1502bfcc09ddSBjoern A. Zeeb { 1503bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1504bfcc09ddSBjoern A. Zeeb struct iwl_rxq *rxq; 1505bfcc09ddSBjoern A. Zeeb u32 r, i, count = 0, handled = 0; 1506bfcc09ddSBjoern A. Zeeb bool emergency = false; 1507bfcc09ddSBjoern A. Zeeb 1508bfcc09ddSBjoern A. Zeeb if (WARN_ON_ONCE(!trans_pcie->rxq || !trans_pcie->rxq[queue].bd)) 1509bfcc09ddSBjoern A. Zeeb return budget; 1510bfcc09ddSBjoern A. Zeeb 1511bfcc09ddSBjoern A. Zeeb rxq = &trans_pcie->rxq[queue]; 1512bfcc09ddSBjoern A. Zeeb 1513bfcc09ddSBjoern A. Zeeb restart: 1514bfcc09ddSBjoern A. Zeeb spin_lock(&rxq->lock); 1515bfcc09ddSBjoern A. Zeeb /* uCode's read index (stored in shared DRAM) indicates the last Rx 1516bfcc09ddSBjoern A. Zeeb * buffer that the driver may process (last buffer filled by ucode). */ 1517bfcc09ddSBjoern A. Zeeb r = le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq)) & 0x0FFF; 1518bfcc09ddSBjoern A. Zeeb i = rxq->read; 1519bfcc09ddSBjoern A. Zeeb 1520bfcc09ddSBjoern A. Zeeb /* W/A 9000 device step A0 wrap-around bug */ 1521bfcc09ddSBjoern A. Zeeb r &= (rxq->queue_size - 1); 1522bfcc09ddSBjoern A. Zeeb 1523bfcc09ddSBjoern A. Zeeb /* Rx interrupt, but nothing sent from uCode */ 1524bfcc09ddSBjoern A. Zeeb if (i == r) 1525bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RX(trans, "Q %d: HW = SW = %d\n", rxq->id, r); 1526bfcc09ddSBjoern A. Zeeb 1527bfcc09ddSBjoern A. Zeeb while (i != r && ++handled < budget) { 1528bfcc09ddSBjoern A. Zeeb struct iwl_rb_allocator *rba = &trans_pcie->rba; 1529bfcc09ddSBjoern A. Zeeb struct iwl_rx_mem_buffer *rxb; 1530bfcc09ddSBjoern A. Zeeb /* number of RBDs still waiting for page allocation */ 1531bfcc09ddSBjoern A. Zeeb u32 rb_pending_alloc = 1532bfcc09ddSBjoern A. Zeeb atomic_read(&trans_pcie->rba.req_pending) * 1533bfcc09ddSBjoern A. Zeeb RX_CLAIM_REQ_ALLOC; 1534bfcc09ddSBjoern A. Zeeb bool join = false; 1535bfcc09ddSBjoern A. Zeeb 1536bfcc09ddSBjoern A. Zeeb if (unlikely(rb_pending_alloc >= rxq->queue_size / 2 && 1537bfcc09ddSBjoern A. Zeeb !emergency)) { 1538bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_move_to_allocator(rxq, rba); 1539bfcc09ddSBjoern A. Zeeb emergency = true; 1540bfcc09ddSBjoern A. Zeeb IWL_DEBUG_TPT(trans, 1541bfcc09ddSBjoern A. Zeeb "RX path is in emergency. Pending allocations %d\n", 1542bfcc09ddSBjoern A. Zeeb rb_pending_alloc); 1543bfcc09ddSBjoern A. Zeeb } 1544bfcc09ddSBjoern A. Zeeb 1545bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RX(trans, "Q %d: HW = %d, SW = %d\n", rxq->id, r, i); 1546bfcc09ddSBjoern A. Zeeb 1547bfcc09ddSBjoern A. Zeeb rxb = iwl_pcie_get_rxb(trans, rxq, i, &join); 1548bfcc09ddSBjoern A. Zeeb if (!rxb) 1549bfcc09ddSBjoern A. Zeeb goto out; 1550bfcc09ddSBjoern A. Zeeb 1551bfcc09ddSBjoern A. Zeeb if (unlikely(join || rxq->next_rb_is_fragment)) { 1552bfcc09ddSBjoern A. Zeeb rxq->next_rb_is_fragment = join; 1553bfcc09ddSBjoern A. Zeeb /* 1554bfcc09ddSBjoern A. Zeeb * We can only get a multi-RB in the following cases: 1555bfcc09ddSBjoern A. Zeeb * - firmware issue, sending a too big notification 1556bfcc09ddSBjoern A. Zeeb * - sniffer mode with a large A-MSDU 1557bfcc09ddSBjoern A. Zeeb * - large MTU frames (>2k) 1558bfcc09ddSBjoern A. Zeeb * since the multi-RB functionality is limited to newer 1559bfcc09ddSBjoern A. Zeeb * hardware that cannot put multiple entries into a 1560bfcc09ddSBjoern A. Zeeb * single RB. 1561bfcc09ddSBjoern A. Zeeb * 1562bfcc09ddSBjoern A. Zeeb * Right now, the higher layers aren't set up to deal 1563bfcc09ddSBjoern A. Zeeb * with that, so discard all of these. 1564bfcc09ddSBjoern A. Zeeb */ 1565bfcc09ddSBjoern A. Zeeb list_add_tail(&rxb->list, &rxq->rx_free); 1566bfcc09ddSBjoern A. Zeeb rxq->free_count++; 1567bfcc09ddSBjoern A. Zeeb } else { 1568bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_handle_rb(trans, rxq, rxb, emergency, i); 1569bfcc09ddSBjoern A. Zeeb } 1570bfcc09ddSBjoern A. Zeeb 1571bfcc09ddSBjoern A. Zeeb i = (i + 1) & (rxq->queue_size - 1); 1572bfcc09ddSBjoern A. Zeeb 1573bfcc09ddSBjoern A. Zeeb /* 1574bfcc09ddSBjoern A. Zeeb * If we have RX_CLAIM_REQ_ALLOC released rx buffers - 1575bfcc09ddSBjoern A. Zeeb * try to claim the pre-allocated buffers from the allocator. 1576bfcc09ddSBjoern A. Zeeb * If not ready - will try to reclaim next time. 1577bfcc09ddSBjoern A. Zeeb * There is no need to reschedule work - allocator exits only 1578bfcc09ddSBjoern A. Zeeb * on success 1579bfcc09ddSBjoern A. Zeeb */ 1580bfcc09ddSBjoern A. Zeeb if (rxq->used_count >= RX_CLAIM_REQ_ALLOC) 1581bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_allocator_get(trans, rxq); 1582bfcc09ddSBjoern A. Zeeb 1583bfcc09ddSBjoern A. Zeeb if (rxq->used_count % RX_CLAIM_REQ_ALLOC == 0 && !emergency) { 1584bfcc09ddSBjoern A. Zeeb /* Add the remaining empty RBDs for allocator use */ 1585bfcc09ddSBjoern A. Zeeb iwl_pcie_rx_move_to_allocator(rxq, rba); 1586bfcc09ddSBjoern A. Zeeb } else if (emergency) { 1587bfcc09ddSBjoern A. Zeeb count++; 1588bfcc09ddSBjoern A. Zeeb if (count == 8) { 1589bfcc09ddSBjoern A. Zeeb count = 0; 1590bfcc09ddSBjoern A. Zeeb if (rb_pending_alloc < rxq->queue_size / 3) { 1591bfcc09ddSBjoern A. Zeeb IWL_DEBUG_TPT(trans, 1592bfcc09ddSBjoern A. Zeeb "RX path exited emergency. Pending allocations %d\n", 1593bfcc09ddSBjoern A. Zeeb rb_pending_alloc); 1594bfcc09ddSBjoern A. Zeeb emergency = false; 1595bfcc09ddSBjoern A. Zeeb } 1596bfcc09ddSBjoern A. Zeeb 1597bfcc09ddSBjoern A. Zeeb rxq->read = i; 1598bfcc09ddSBjoern A. Zeeb spin_unlock(&rxq->lock); 1599bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1600bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_restock(trans, rxq); 1601bfcc09ddSBjoern A. Zeeb goto restart; 1602bfcc09ddSBjoern A. Zeeb } 1603bfcc09ddSBjoern A. Zeeb } 1604bfcc09ddSBjoern A. Zeeb } 1605bfcc09ddSBjoern A. Zeeb out: 1606bfcc09ddSBjoern A. Zeeb /* Backtrack one entry */ 1607bfcc09ddSBjoern A. Zeeb rxq->read = i; 1608bfcc09ddSBjoern A. Zeeb spin_unlock(&rxq->lock); 1609bfcc09ddSBjoern A. Zeeb 1610bfcc09ddSBjoern A. Zeeb /* 1611bfcc09ddSBjoern A. Zeeb * handle a case where in emergency there are some unallocated RBDs. 1612bfcc09ddSBjoern A. Zeeb * those RBDs are in the used list, but are not tracked by the queue's 1613bfcc09ddSBjoern A. Zeeb * used_count which counts allocator owned RBDs. 1614bfcc09ddSBjoern A. Zeeb * unallocated emergency RBDs must be allocated on exit, otherwise 1615bfcc09ddSBjoern A. Zeeb * when called again the function may not be in emergency mode and 1616bfcc09ddSBjoern A. Zeeb * they will be handed to the allocator with no tracking in the RBD 1617bfcc09ddSBjoern A. Zeeb * allocator counters, which will lead to them never being claimed back 1618bfcc09ddSBjoern A. Zeeb * by the queue. 1619bfcc09ddSBjoern A. Zeeb * by allocating them here, they are now in the queue free list, and 1620bfcc09ddSBjoern A. Zeeb * will be restocked by the next call of iwl_pcie_rxq_restock. 1621bfcc09ddSBjoern A. Zeeb */ 1622bfcc09ddSBjoern A. Zeeb if (unlikely(emergency && count)) 1623bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_alloc_rbs(trans, GFP_ATOMIC, rxq); 1624bfcc09ddSBjoern A. Zeeb 1625bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_restock(trans, rxq); 1626bfcc09ddSBjoern A. Zeeb 1627bfcc09ddSBjoern A. Zeeb return handled; 1628bfcc09ddSBjoern A. Zeeb } 1629bfcc09ddSBjoern A. Zeeb 1630bfcc09ddSBjoern A. Zeeb static struct iwl_trans_pcie *iwl_pcie_get_trans_pcie(struct msix_entry *entry) 1631bfcc09ddSBjoern A. Zeeb { 1632bfcc09ddSBjoern A. Zeeb u8 queue = entry->entry; 1633bfcc09ddSBjoern A. Zeeb struct msix_entry *entries = entry - queue; 1634bfcc09ddSBjoern A. Zeeb 1635bfcc09ddSBjoern A. Zeeb return container_of(entries, struct iwl_trans_pcie, msix_entries[0]); 1636bfcc09ddSBjoern A. Zeeb } 1637bfcc09ddSBjoern A. Zeeb 1638bfcc09ddSBjoern A. Zeeb /* 1639bfcc09ddSBjoern A. Zeeb * iwl_pcie_rx_msix_handle - Main entry function for receiving responses from fw 1640bfcc09ddSBjoern A. Zeeb * This interrupt handler should be used with RSS queue only. 1641bfcc09ddSBjoern A. Zeeb */ 1642bfcc09ddSBjoern A. Zeeb irqreturn_t iwl_pcie_irq_rx_msix_handler(int irq, void *dev_id) 1643bfcc09ddSBjoern A. Zeeb { 1644bfcc09ddSBjoern A. Zeeb struct msix_entry *entry = dev_id; 1645bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 1646bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans = trans_pcie->trans; 1647*9af1bba4SBjoern A. Zeeb struct iwl_rxq *rxq; 1648bfcc09ddSBjoern A. Zeeb 1649bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_irq_msix(trans->dev, entry, false, 0, 0); 1650bfcc09ddSBjoern A. Zeeb 1651bfcc09ddSBjoern A. Zeeb if (WARN_ON(entry->entry >= trans->num_rx_queues)) 1652bfcc09ddSBjoern A. Zeeb return IRQ_NONE; 1653bfcc09ddSBjoern A. Zeeb 1654*9af1bba4SBjoern A. Zeeb if (!trans_pcie->rxq) { 1655d9836fb4SBjoern A. Zeeb if (net_ratelimit()) 1656d9836fb4SBjoern A. Zeeb IWL_ERR(trans, 1657d9836fb4SBjoern A. Zeeb "[%d] Got MSI-X interrupt before we have Rx queues\n", 1658d9836fb4SBjoern A. Zeeb entry->entry); 1659bfcc09ddSBjoern A. Zeeb return IRQ_NONE; 1660d9836fb4SBjoern A. Zeeb } 1661bfcc09ddSBjoern A. Zeeb 1662*9af1bba4SBjoern A. Zeeb rxq = &trans_pcie->rxq[entry->entry]; 1663bfcc09ddSBjoern A. Zeeb lock_map_acquire(&trans->sync_cmd_lockdep_map); 1664bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "[%d] Got interrupt\n", entry->entry); 1665bfcc09ddSBjoern A. Zeeb 1666bfcc09ddSBjoern A. Zeeb local_bh_disable(); 1667bfcc09ddSBjoern A. Zeeb if (napi_schedule_prep(&rxq->napi)) 1668bfcc09ddSBjoern A. Zeeb __napi_schedule(&rxq->napi); 1669bfcc09ddSBjoern A. Zeeb else 1670bfcc09ddSBjoern A. Zeeb iwl_pcie_clear_irq(trans, entry->entry); 1671bfcc09ddSBjoern A. Zeeb local_bh_enable(); 1672bfcc09ddSBjoern A. Zeeb 1673bfcc09ddSBjoern A. Zeeb lock_map_release(&trans->sync_cmd_lockdep_map); 1674bfcc09ddSBjoern A. Zeeb 1675bfcc09ddSBjoern A. Zeeb return IRQ_HANDLED; 1676bfcc09ddSBjoern A. Zeeb } 1677bfcc09ddSBjoern A. Zeeb 1678bfcc09ddSBjoern A. Zeeb /* 1679bfcc09ddSBjoern A. Zeeb * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card 1680bfcc09ddSBjoern A. Zeeb */ 1681bfcc09ddSBjoern A. Zeeb static void iwl_pcie_irq_handle_error(struct iwl_trans *trans) 1682bfcc09ddSBjoern A. Zeeb { 1683bfcc09ddSBjoern A. Zeeb int i; 1684bfcc09ddSBjoern A. Zeeb 1685bfcc09ddSBjoern A. Zeeb /* W/A for WiFi/WiMAX coex and WiMAX own the RF */ 1686bfcc09ddSBjoern A. Zeeb if (trans->cfg->internal_wimax_coex && 1687bfcc09ddSBjoern A. Zeeb !trans->cfg->apmg_not_supported && 1688bfcc09ddSBjoern A. Zeeb (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) & 1689bfcc09ddSBjoern A. Zeeb APMS_CLK_VAL_MRB_FUNC_MODE) || 1690bfcc09ddSBjoern A. Zeeb (iwl_read_prph(trans, APMG_PS_CTRL_REG) & 1691bfcc09ddSBjoern A. Zeeb APMG_PS_CTRL_VAL_RESET_REQ))) { 1692bfcc09ddSBjoern A. Zeeb clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1693bfcc09ddSBjoern A. Zeeb iwl_op_mode_wimax_active(trans->op_mode); 1694bfcc09ddSBjoern A. Zeeb wake_up(&trans->wait_command_queue); 1695bfcc09ddSBjoern A. Zeeb return; 1696bfcc09ddSBjoern A. Zeeb } 1697bfcc09ddSBjoern A. Zeeb 1698bfcc09ddSBjoern A. Zeeb for (i = 0; i < trans->trans_cfg->base_params->num_of_queues; i++) { 1699bfcc09ddSBjoern A. Zeeb if (!trans->txqs.txq[i]) 1700bfcc09ddSBjoern A. Zeeb continue; 1701bfcc09ddSBjoern A. Zeeb del_timer(&trans->txqs.txq[i]->stuck_timer); 1702bfcc09ddSBjoern A. Zeeb } 1703bfcc09ddSBjoern A. Zeeb 1704bfcc09ddSBjoern A. Zeeb /* The STATUS_FW_ERROR bit is set in this function. This must happen 1705bfcc09ddSBjoern A. Zeeb * before we wake up the command caller, to ensure a proper cleanup. */ 1706bfcc09ddSBjoern A. Zeeb iwl_trans_fw_error(trans, false); 1707bfcc09ddSBjoern A. Zeeb 1708bfcc09ddSBjoern A. Zeeb clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status); 1709bfcc09ddSBjoern A. Zeeb wake_up(&trans->wait_command_queue); 1710bfcc09ddSBjoern A. Zeeb } 1711bfcc09ddSBjoern A. Zeeb 1712bfcc09ddSBjoern A. Zeeb static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans) 1713bfcc09ddSBjoern A. Zeeb { 1714bfcc09ddSBjoern A. Zeeb u32 inta; 1715bfcc09ddSBjoern A. Zeeb 1716bfcc09ddSBjoern A. Zeeb lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock); 1717bfcc09ddSBjoern A. Zeeb 1718bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_irq(trans->dev); 1719bfcc09ddSBjoern A. Zeeb 1720bfcc09ddSBjoern A. Zeeb /* Discover which interrupts are active/pending */ 1721bfcc09ddSBjoern A. Zeeb inta = iwl_read32(trans, CSR_INT); 1722bfcc09ddSBjoern A. Zeeb 1723bfcc09ddSBjoern A. Zeeb /* the thread will service interrupts and re-enable them */ 1724bfcc09ddSBjoern A. Zeeb return inta; 1725bfcc09ddSBjoern A. Zeeb } 1726bfcc09ddSBjoern A. Zeeb 1727bfcc09ddSBjoern A. Zeeb /* a device (PCI-E) page is 4096 bytes long */ 1728bfcc09ddSBjoern A. Zeeb #define ICT_SHIFT 12 1729bfcc09ddSBjoern A. Zeeb #define ICT_SIZE (1 << ICT_SHIFT) 1730bfcc09ddSBjoern A. Zeeb #define ICT_COUNT (ICT_SIZE / sizeof(u32)) 1731bfcc09ddSBjoern A. Zeeb 1732bfcc09ddSBjoern A. Zeeb /* interrupt handler using ict table, with this interrupt driver will 1733bfcc09ddSBjoern A. Zeeb * stop using INTA register to get device's interrupt, reading this register 1734bfcc09ddSBjoern A. Zeeb * is expensive, device will write interrupts in ICT dram table, increment 1735bfcc09ddSBjoern A. Zeeb * index then will fire interrupt to driver, driver will OR all ICT table 1736bfcc09ddSBjoern A. Zeeb * entries from current index up to table entry with 0 value. the result is 1737bfcc09ddSBjoern A. Zeeb * the interrupt we need to service, driver will set the entries back to 0 and 1738bfcc09ddSBjoern A. Zeeb * set index. 1739bfcc09ddSBjoern A. Zeeb */ 1740bfcc09ddSBjoern A. Zeeb static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans) 1741bfcc09ddSBjoern A. Zeeb { 1742bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1743bfcc09ddSBjoern A. Zeeb u32 inta; 1744bfcc09ddSBjoern A. Zeeb u32 val = 0; 1745bfcc09ddSBjoern A. Zeeb u32 read; 1746bfcc09ddSBjoern A. Zeeb 1747bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_irq(trans->dev); 1748bfcc09ddSBjoern A. Zeeb 1749bfcc09ddSBjoern A. Zeeb /* Ignore interrupt if there's nothing in NIC to service. 1750bfcc09ddSBjoern A. Zeeb * This may be due to IRQ shared with another device, 1751bfcc09ddSBjoern A. Zeeb * or due to sporadic interrupts thrown from our NIC. */ 1752bfcc09ddSBjoern A. Zeeb read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1753bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read); 1754bfcc09ddSBjoern A. Zeeb if (!read) 1755bfcc09ddSBjoern A. Zeeb return 0; 1756bfcc09ddSBjoern A. Zeeb 1757bfcc09ddSBjoern A. Zeeb /* 1758bfcc09ddSBjoern A. Zeeb * Collect all entries up to the first 0, starting from ict_index; 1759bfcc09ddSBjoern A. Zeeb * note we already read at ict_index. 1760bfcc09ddSBjoern A. Zeeb */ 1761bfcc09ddSBjoern A. Zeeb do { 1762bfcc09ddSBjoern A. Zeeb val |= read; 1763bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n", 1764bfcc09ddSBjoern A. Zeeb trans_pcie->ict_index, read); 1765bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl[trans_pcie->ict_index] = 0; 1766bfcc09ddSBjoern A. Zeeb trans_pcie->ict_index = 1767bfcc09ddSBjoern A. Zeeb ((trans_pcie->ict_index + 1) & (ICT_COUNT - 1)); 1768bfcc09ddSBjoern A. Zeeb 1769bfcc09ddSBjoern A. Zeeb read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]); 1770bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, 1771bfcc09ddSBjoern A. Zeeb read); 1772bfcc09ddSBjoern A. Zeeb } while (read); 1773bfcc09ddSBjoern A. Zeeb 1774bfcc09ddSBjoern A. Zeeb /* We should not get this value, just ignore it. */ 1775bfcc09ddSBjoern A. Zeeb if (val == 0xffffffff) 1776bfcc09ddSBjoern A. Zeeb val = 0; 1777bfcc09ddSBjoern A. Zeeb 1778bfcc09ddSBjoern A. Zeeb /* 1779bfcc09ddSBjoern A. Zeeb * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit 1780bfcc09ddSBjoern A. Zeeb * (bit 15 before shifting it to 31) to clear when using interrupt 1781bfcc09ddSBjoern A. Zeeb * coalescing. fortunately, bits 18 and 19 stay set when this happens 1782bfcc09ddSBjoern A. Zeeb * so we use them to decide on the real state of the Rx bit. 1783bfcc09ddSBjoern A. Zeeb * In order words, bit 15 is set if bit 18 or bit 19 are set. 1784bfcc09ddSBjoern A. Zeeb */ 1785bfcc09ddSBjoern A. Zeeb if (val & 0xC0000) 1786bfcc09ddSBjoern A. Zeeb val |= 0x8000; 1787bfcc09ddSBjoern A. Zeeb 1788bfcc09ddSBjoern A. Zeeb inta = (0xff & val) | ((0xff00 & val) << 16); 1789bfcc09ddSBjoern A. Zeeb return inta; 1790bfcc09ddSBjoern A. Zeeb } 1791bfcc09ddSBjoern A. Zeeb 1792bfcc09ddSBjoern A. Zeeb void iwl_pcie_handle_rfkill_irq(struct iwl_trans *trans) 1793bfcc09ddSBjoern A. Zeeb { 1794bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1795bfcc09ddSBjoern A. Zeeb struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1796bfcc09ddSBjoern A. Zeeb bool hw_rfkill, prev, report; 1797bfcc09ddSBjoern A. Zeeb 1798bfcc09ddSBjoern A. Zeeb mutex_lock(&trans_pcie->mutex); 1799bfcc09ddSBjoern A. Zeeb prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1800bfcc09ddSBjoern A. Zeeb hw_rfkill = iwl_is_rfkill_set(trans); 1801bfcc09ddSBjoern A. Zeeb if (hw_rfkill) { 1802bfcc09ddSBjoern A. Zeeb set_bit(STATUS_RFKILL_OPMODE, &trans->status); 1803bfcc09ddSBjoern A. Zeeb set_bit(STATUS_RFKILL_HW, &trans->status); 1804bfcc09ddSBjoern A. Zeeb } 1805bfcc09ddSBjoern A. Zeeb if (trans_pcie->opmode_down) 1806bfcc09ddSBjoern A. Zeeb report = hw_rfkill; 1807bfcc09ddSBjoern A. Zeeb else 1808bfcc09ddSBjoern A. Zeeb report = test_bit(STATUS_RFKILL_OPMODE, &trans->status); 1809bfcc09ddSBjoern A. Zeeb 1810bfcc09ddSBjoern A. Zeeb IWL_WARN(trans, "RF_KILL bit toggled to %s.\n", 1811bfcc09ddSBjoern A. Zeeb hw_rfkill ? "disable radio" : "enable radio"); 1812bfcc09ddSBjoern A. Zeeb 1813bfcc09ddSBjoern A. Zeeb isr_stats->rfkill++; 1814bfcc09ddSBjoern A. Zeeb 1815bfcc09ddSBjoern A. Zeeb if (prev != report) 1816bfcc09ddSBjoern A. Zeeb iwl_trans_pcie_rf_kill(trans, report); 1817bfcc09ddSBjoern A. Zeeb mutex_unlock(&trans_pcie->mutex); 1818bfcc09ddSBjoern A. Zeeb 1819bfcc09ddSBjoern A. Zeeb if (hw_rfkill) { 1820bfcc09ddSBjoern A. Zeeb if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE, 1821bfcc09ddSBjoern A. Zeeb &trans->status)) 1822bfcc09ddSBjoern A. Zeeb IWL_DEBUG_RF_KILL(trans, 1823bfcc09ddSBjoern A. Zeeb "Rfkill while SYNC HCMD in flight\n"); 1824bfcc09ddSBjoern A. Zeeb wake_up(&trans->wait_command_queue); 1825bfcc09ddSBjoern A. Zeeb } else { 1826bfcc09ddSBjoern A. Zeeb clear_bit(STATUS_RFKILL_HW, &trans->status); 1827bfcc09ddSBjoern A. Zeeb if (trans_pcie->opmode_down) 1828bfcc09ddSBjoern A. Zeeb clear_bit(STATUS_RFKILL_OPMODE, &trans->status); 1829bfcc09ddSBjoern A. Zeeb } 1830bfcc09ddSBjoern A. Zeeb } 1831bfcc09ddSBjoern A. Zeeb 1832bfcc09ddSBjoern A. Zeeb irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id) 1833bfcc09ddSBjoern A. Zeeb { 1834bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans = dev_id; 1835bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 1836bfcc09ddSBjoern A. Zeeb struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 1837bfcc09ddSBjoern A. Zeeb u32 inta = 0; 1838bfcc09ddSBjoern A. Zeeb u32 handled = 0; 1839bfcc09ddSBjoern A. Zeeb bool polling = false; 1840bfcc09ddSBjoern A. Zeeb 1841bfcc09ddSBjoern A. Zeeb lock_map_acquire(&trans->sync_cmd_lockdep_map); 1842bfcc09ddSBjoern A. Zeeb 1843bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->irq_lock); 1844bfcc09ddSBjoern A. Zeeb 1845bfcc09ddSBjoern A. Zeeb /* dram interrupt table not set yet, 1846bfcc09ddSBjoern A. Zeeb * use legacy interrupt. 1847bfcc09ddSBjoern A. Zeeb */ 1848bfcc09ddSBjoern A. Zeeb if (likely(trans_pcie->use_ict)) 1849bfcc09ddSBjoern A. Zeeb inta = iwl_pcie_int_cause_ict(trans); 1850bfcc09ddSBjoern A. Zeeb else 1851bfcc09ddSBjoern A. Zeeb inta = iwl_pcie_int_cause_non_ict(trans); 1852bfcc09ddSBjoern A. Zeeb 1853bfcc09ddSBjoern A. Zeeb #ifdef CONFIG_IWLWIFI_DEBUG 1854bfcc09ddSBjoern A. Zeeb if (iwl_have_debug_level(IWL_DL_ISR)) { 1855bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 1856bfcc09ddSBjoern A. Zeeb "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n", 1857bfcc09ddSBjoern A. Zeeb inta, trans_pcie->inta_mask, 1858bfcc09ddSBjoern A. Zeeb iwl_read32(trans, CSR_INT_MASK), 1859bfcc09ddSBjoern A. Zeeb iwl_read32(trans, CSR_FH_INT_STATUS)); 1860bfcc09ddSBjoern A. Zeeb if (inta & (~trans_pcie->inta_mask)) 1861bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 1862bfcc09ddSBjoern A. Zeeb "We got a masked interrupt (0x%08x)\n", 1863bfcc09ddSBjoern A. Zeeb inta & (~trans_pcie->inta_mask)); 1864bfcc09ddSBjoern A. Zeeb } 1865bfcc09ddSBjoern A. Zeeb #endif 1866bfcc09ddSBjoern A. Zeeb 1867bfcc09ddSBjoern A. Zeeb inta &= trans_pcie->inta_mask; 1868bfcc09ddSBjoern A. Zeeb 1869bfcc09ddSBjoern A. Zeeb /* 1870bfcc09ddSBjoern A. Zeeb * Ignore interrupt if there's nothing in NIC to service. 1871bfcc09ddSBjoern A. Zeeb * This may be due to IRQ shared with another device, 1872bfcc09ddSBjoern A. Zeeb * or due to sporadic interrupts thrown from our NIC. 1873bfcc09ddSBjoern A. Zeeb */ 1874bfcc09ddSBjoern A. Zeeb if (unlikely(!inta)) { 1875bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 1876bfcc09ddSBjoern A. Zeeb /* 1877bfcc09ddSBjoern A. Zeeb * Re-enable interrupts here since we don't 1878bfcc09ddSBjoern A. Zeeb * have anything to service 1879bfcc09ddSBjoern A. Zeeb */ 1880bfcc09ddSBjoern A. Zeeb if (test_bit(STATUS_INT_ENABLED, &trans->status)) 1881bfcc09ddSBjoern A. Zeeb _iwl_enable_interrupts(trans); 1882bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 1883bfcc09ddSBjoern A. Zeeb lock_map_release(&trans->sync_cmd_lockdep_map); 1884bfcc09ddSBjoern A. Zeeb return IRQ_NONE; 1885bfcc09ddSBjoern A. Zeeb } 1886bfcc09ddSBjoern A. Zeeb 1887*9af1bba4SBjoern A. Zeeb if (unlikely(inta == 0xFFFFFFFF || iwl_trans_is_hw_error_value(inta))) { 1888bfcc09ddSBjoern A. Zeeb /* 1889bfcc09ddSBjoern A. Zeeb * Hardware disappeared. It might have 1890bfcc09ddSBjoern A. Zeeb * already raised an interrupt. 1891bfcc09ddSBjoern A. Zeeb */ 1892bfcc09ddSBjoern A. Zeeb IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta); 1893bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 1894bfcc09ddSBjoern A. Zeeb goto out; 1895bfcc09ddSBjoern A. Zeeb } 1896bfcc09ddSBjoern A. Zeeb 1897bfcc09ddSBjoern A. Zeeb /* Ack/clear/reset pending uCode interrupts. 1898bfcc09ddSBjoern A. Zeeb * Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS, 1899bfcc09ddSBjoern A. Zeeb */ 1900bfcc09ddSBjoern A. Zeeb /* There is a hardware bug in the interrupt mask function that some 1901bfcc09ddSBjoern A. Zeeb * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if 1902bfcc09ddSBjoern A. Zeeb * they are disabled in the CSR_INT_MASK register. Furthermore the 1903bfcc09ddSBjoern A. Zeeb * ICT interrupt handling mechanism has another bug that might cause 1904bfcc09ddSBjoern A. Zeeb * these unmasked interrupts fail to be detected. We workaround the 1905bfcc09ddSBjoern A. Zeeb * hardware bugs here by ACKing all the possible interrupts so that 1906bfcc09ddSBjoern A. Zeeb * interrupt coalescing can still be achieved. 1907bfcc09ddSBjoern A. Zeeb */ 1908bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask); 1909bfcc09ddSBjoern A. Zeeb 1910bfcc09ddSBjoern A. Zeeb #ifdef CONFIG_IWLWIFI_DEBUG 1911bfcc09ddSBjoern A. Zeeb if (iwl_have_debug_level(IWL_DL_ISR)) 1912bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n", 1913bfcc09ddSBjoern A. Zeeb inta, iwl_read32(trans, CSR_INT_MASK)); 1914bfcc09ddSBjoern A. Zeeb #endif 1915bfcc09ddSBjoern A. Zeeb 1916bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 1917bfcc09ddSBjoern A. Zeeb 1918bfcc09ddSBjoern A. Zeeb /* Now service all interrupt bits discovered above. */ 1919bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_HW_ERR) { 1920bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, "Hardware error detected. Restarting.\n"); 1921bfcc09ddSBjoern A. Zeeb 1922bfcc09ddSBjoern A. Zeeb /* Tell the device to stop sending interrupts */ 1923bfcc09ddSBjoern A. Zeeb iwl_disable_interrupts(trans); 1924bfcc09ddSBjoern A. Zeeb 1925bfcc09ddSBjoern A. Zeeb isr_stats->hw++; 1926bfcc09ddSBjoern A. Zeeb iwl_pcie_irq_handle_error(trans); 1927bfcc09ddSBjoern A. Zeeb 1928bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_HW_ERR; 1929bfcc09ddSBjoern A. Zeeb 1930bfcc09ddSBjoern A. Zeeb goto out; 1931bfcc09ddSBjoern A. Zeeb } 1932bfcc09ddSBjoern A. Zeeb 1933bfcc09ddSBjoern A. Zeeb /* NIC fires this, but we don't use it, redundant with WAKEUP */ 1934bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_SCD) { 1935bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 1936bfcc09ddSBjoern A. Zeeb "Scheduler finished to transmit the frame/frames.\n"); 1937bfcc09ddSBjoern A. Zeeb isr_stats->sch++; 1938bfcc09ddSBjoern A. Zeeb } 1939bfcc09ddSBjoern A. Zeeb 1940bfcc09ddSBjoern A. Zeeb /* Alive notification via Rx interrupt will do the real work */ 1941bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_ALIVE) { 1942bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 1943bfcc09ddSBjoern A. Zeeb isr_stats->alive++; 1944bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->gen2) { 1945bfcc09ddSBjoern A. Zeeb /* 1946bfcc09ddSBjoern A. Zeeb * We can restock, since firmware configured 1947bfcc09ddSBjoern A. Zeeb * the RFH 1948bfcc09ddSBjoern A. Zeeb */ 1949bfcc09ddSBjoern A. Zeeb iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 1950bfcc09ddSBjoern A. Zeeb } 1951bfcc09ddSBjoern A. Zeeb 1952bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_ALIVE; 1953bfcc09ddSBjoern A. Zeeb } 1954bfcc09ddSBjoern A. Zeeb 1955bfcc09ddSBjoern A. Zeeb /* Safely ignore these bits for debug checks below */ 1956bfcc09ddSBjoern A. Zeeb inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE); 1957bfcc09ddSBjoern A. Zeeb 1958bfcc09ddSBjoern A. Zeeb /* HW RF KILL switch toggled */ 1959bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_RF_KILL) { 1960bfcc09ddSBjoern A. Zeeb iwl_pcie_handle_rfkill_irq(trans); 1961bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_RF_KILL; 1962bfcc09ddSBjoern A. Zeeb } 1963bfcc09ddSBjoern A. Zeeb 1964bfcc09ddSBjoern A. Zeeb /* Chip got too hot and stopped itself */ 1965bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_CT_KILL) { 1966bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, "Microcode CT kill error detected.\n"); 1967bfcc09ddSBjoern A. Zeeb isr_stats->ctkill++; 1968bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_CT_KILL; 1969bfcc09ddSBjoern A. Zeeb } 1970bfcc09ddSBjoern A. Zeeb 1971bfcc09ddSBjoern A. Zeeb /* Error detected by uCode */ 1972bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_SW_ERR) { 1973bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, "Microcode SW error detected. " 1974bfcc09ddSBjoern A. Zeeb " Restarting 0x%X.\n", inta); 1975bfcc09ddSBjoern A. Zeeb isr_stats->sw++; 1976bfcc09ddSBjoern A. Zeeb iwl_pcie_irq_handle_error(trans); 1977bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_SW_ERR; 1978bfcc09ddSBjoern A. Zeeb } 1979bfcc09ddSBjoern A. Zeeb 1980bfcc09ddSBjoern A. Zeeb /* uCode wakes up after power-down sleep */ 1981bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_WAKEUP) { 1982bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 1983bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_check_wrptr(trans); 1984bfcc09ddSBjoern A. Zeeb iwl_pcie_txq_check_wrptrs(trans); 1985bfcc09ddSBjoern A. Zeeb 1986bfcc09ddSBjoern A. Zeeb isr_stats->wakeup++; 1987bfcc09ddSBjoern A. Zeeb 1988bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_WAKEUP; 1989bfcc09ddSBjoern A. Zeeb } 1990bfcc09ddSBjoern A. Zeeb 1991bfcc09ddSBjoern A. Zeeb /* All uCode command responses, including Tx command responses, 1992bfcc09ddSBjoern A. Zeeb * Rx "responses" (frame-received notification), and other 1993bfcc09ddSBjoern A. Zeeb * notifications from uCode come through here*/ 1994bfcc09ddSBjoern A. Zeeb if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX | 1995bfcc09ddSBjoern A. Zeeb CSR_INT_BIT_RX_PERIODIC)) { 1996bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Rx interrupt\n"); 1997bfcc09ddSBjoern A. Zeeb if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) { 1998bfcc09ddSBjoern A. Zeeb handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX); 1999bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_FH_INT_STATUS, 2000bfcc09ddSBjoern A. Zeeb CSR_FH_INT_RX_MASK); 2001bfcc09ddSBjoern A. Zeeb } 2002bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_RX_PERIODIC) { 2003bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_RX_PERIODIC; 2004bfcc09ddSBjoern A. Zeeb iwl_write32(trans, 2005bfcc09ddSBjoern A. Zeeb CSR_INT, CSR_INT_BIT_RX_PERIODIC); 2006bfcc09ddSBjoern A. Zeeb } 2007bfcc09ddSBjoern A. Zeeb /* Sending RX interrupt require many steps to be done in the 2008d9836fb4SBjoern A. Zeeb * device: 2009bfcc09ddSBjoern A. Zeeb * 1- write interrupt to current index in ICT table. 2010bfcc09ddSBjoern A. Zeeb * 2- dma RX frame. 2011bfcc09ddSBjoern A. Zeeb * 3- update RX shared data to indicate last write index. 2012bfcc09ddSBjoern A. Zeeb * 4- send interrupt. 2013bfcc09ddSBjoern A. Zeeb * This could lead to RX race, driver could receive RX interrupt 2014bfcc09ddSBjoern A. Zeeb * but the shared data changes does not reflect this; 2015bfcc09ddSBjoern A. Zeeb * periodic interrupt will detect any dangling Rx activity. 2016bfcc09ddSBjoern A. Zeeb */ 2017bfcc09ddSBjoern A. Zeeb 2018bfcc09ddSBjoern A. Zeeb /* Disable periodic interrupt; we use it as just a one-shot. */ 2019bfcc09ddSBjoern A. Zeeb iwl_write8(trans, CSR_INT_PERIODIC_REG, 2020bfcc09ddSBjoern A. Zeeb CSR_INT_PERIODIC_DIS); 2021bfcc09ddSBjoern A. Zeeb 2022bfcc09ddSBjoern A. Zeeb /* 2023bfcc09ddSBjoern A. Zeeb * Enable periodic interrupt in 8 msec only if we received 2024bfcc09ddSBjoern A. Zeeb * real RX interrupt (instead of just periodic int), to catch 2025bfcc09ddSBjoern A. Zeeb * any dangling Rx interrupt. If it was just the periodic 2026bfcc09ddSBjoern A. Zeeb * interrupt, there was no dangling Rx activity, and no need 2027bfcc09ddSBjoern A. Zeeb * to extend the periodic interrupt; one-shot is enough. 2028bfcc09ddSBjoern A. Zeeb */ 2029bfcc09ddSBjoern A. Zeeb if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) 2030bfcc09ddSBjoern A. Zeeb iwl_write8(trans, CSR_INT_PERIODIC_REG, 2031bfcc09ddSBjoern A. Zeeb CSR_INT_PERIODIC_ENA); 2032bfcc09ddSBjoern A. Zeeb 2033bfcc09ddSBjoern A. Zeeb isr_stats->rx++; 2034bfcc09ddSBjoern A. Zeeb 2035bfcc09ddSBjoern A. Zeeb local_bh_disable(); 2036bfcc09ddSBjoern A. Zeeb if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2037bfcc09ddSBjoern A. Zeeb polling = true; 2038bfcc09ddSBjoern A. Zeeb __napi_schedule(&trans_pcie->rxq[0].napi); 2039bfcc09ddSBjoern A. Zeeb } 2040bfcc09ddSBjoern A. Zeeb local_bh_enable(); 2041bfcc09ddSBjoern A. Zeeb } 2042bfcc09ddSBjoern A. Zeeb 2043bfcc09ddSBjoern A. Zeeb /* This "Tx" DMA channel is used only for loading uCode */ 2044bfcc09ddSBjoern A. Zeeb if (inta & CSR_INT_BIT_FH_TX) { 2045bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK); 2046bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2047bfcc09ddSBjoern A. Zeeb isr_stats->tx++; 2048bfcc09ddSBjoern A. Zeeb handled |= CSR_INT_BIT_FH_TX; 2049bfcc09ddSBjoern A. Zeeb /* Wake up uCode load routine, now that load is complete */ 2050bfcc09ddSBjoern A. Zeeb trans_pcie->ucode_write_complete = true; 2051bfcc09ddSBjoern A. Zeeb wake_up(&trans_pcie->ucode_write_waitq); 2052d9836fb4SBjoern A. Zeeb /* Wake up IMR write routine, now that write to SRAM is complete */ 2053d9836fb4SBjoern A. Zeeb if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2054d9836fb4SBjoern A. Zeeb trans_pcie->imr_status = IMR_D2S_COMPLETED; 2055d9836fb4SBjoern A. Zeeb wake_up(&trans_pcie->ucode_write_waitq); 2056d9836fb4SBjoern A. Zeeb } 2057bfcc09ddSBjoern A. Zeeb } 2058bfcc09ddSBjoern A. Zeeb 2059bfcc09ddSBjoern A. Zeeb if (inta & ~handled) { 2060bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled); 2061bfcc09ddSBjoern A. Zeeb isr_stats->unhandled++; 2062bfcc09ddSBjoern A. Zeeb } 2063bfcc09ddSBjoern A. Zeeb 2064bfcc09ddSBjoern A. Zeeb if (inta & ~(trans_pcie->inta_mask)) { 2065bfcc09ddSBjoern A. Zeeb IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n", 2066bfcc09ddSBjoern A. Zeeb inta & ~trans_pcie->inta_mask); 2067bfcc09ddSBjoern A. Zeeb } 2068bfcc09ddSBjoern A. Zeeb 2069bfcc09ddSBjoern A. Zeeb if (!polling) { 2070bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->irq_lock); 2071bfcc09ddSBjoern A. Zeeb /* only Re-enable all interrupt if disabled by irq */ 2072bfcc09ddSBjoern A. Zeeb if (test_bit(STATUS_INT_ENABLED, &trans->status)) 2073bfcc09ddSBjoern A. Zeeb _iwl_enable_interrupts(trans); 2074bfcc09ddSBjoern A. Zeeb /* we are loading the firmware, enable FH_TX interrupt only */ 2075bfcc09ddSBjoern A. Zeeb else if (handled & CSR_INT_BIT_FH_TX) 2076bfcc09ddSBjoern A. Zeeb iwl_enable_fw_load_int(trans); 2077bfcc09ddSBjoern A. Zeeb /* Re-enable RF_KILL if it occurred */ 2078bfcc09ddSBjoern A. Zeeb else if (handled & CSR_INT_BIT_RF_KILL) 2079bfcc09ddSBjoern A. Zeeb iwl_enable_rfkill_int(trans); 2080bfcc09ddSBjoern A. Zeeb /* Re-enable the ALIVE / Rx interrupt if it occurred */ 2081bfcc09ddSBjoern A. Zeeb else if (handled & (CSR_INT_BIT_ALIVE | CSR_INT_BIT_FH_RX)) 2082bfcc09ddSBjoern A. Zeeb iwl_enable_fw_load_int_ctx_info(trans); 2083bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 2084bfcc09ddSBjoern A. Zeeb } 2085bfcc09ddSBjoern A. Zeeb 2086bfcc09ddSBjoern A. Zeeb out: 2087bfcc09ddSBjoern A. Zeeb lock_map_release(&trans->sync_cmd_lockdep_map); 2088bfcc09ddSBjoern A. Zeeb return IRQ_HANDLED; 2089bfcc09ddSBjoern A. Zeeb } 2090bfcc09ddSBjoern A. Zeeb 2091bfcc09ddSBjoern A. Zeeb /****************************************************************************** 2092bfcc09ddSBjoern A. Zeeb * 2093bfcc09ddSBjoern A. Zeeb * ICT functions 2094bfcc09ddSBjoern A. Zeeb * 2095bfcc09ddSBjoern A. Zeeb ******************************************************************************/ 2096bfcc09ddSBjoern A. Zeeb 2097bfcc09ddSBjoern A. Zeeb /* Free dram table */ 2098bfcc09ddSBjoern A. Zeeb void iwl_pcie_free_ict(struct iwl_trans *trans) 2099bfcc09ddSBjoern A. Zeeb { 2100bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2101bfcc09ddSBjoern A. Zeeb 2102bfcc09ddSBjoern A. Zeeb if (trans_pcie->ict_tbl) { 2103bfcc09ddSBjoern A. Zeeb dma_free_coherent(trans->dev, ICT_SIZE, 2104bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl, 2105bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl_dma); 2106bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl = NULL; 2107bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl_dma = 0; 2108bfcc09ddSBjoern A. Zeeb } 2109bfcc09ddSBjoern A. Zeeb } 2110bfcc09ddSBjoern A. Zeeb 2111bfcc09ddSBjoern A. Zeeb /* 2112bfcc09ddSBjoern A. Zeeb * allocate dram shared table, it is an aligned memory 2113bfcc09ddSBjoern A. Zeeb * block of ICT_SIZE. 2114bfcc09ddSBjoern A. Zeeb * also reset all data related to ICT table interrupt. 2115bfcc09ddSBjoern A. Zeeb */ 2116bfcc09ddSBjoern A. Zeeb int iwl_pcie_alloc_ict(struct iwl_trans *trans) 2117bfcc09ddSBjoern A. Zeeb { 2118bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2119bfcc09ddSBjoern A. Zeeb 2120bfcc09ddSBjoern A. Zeeb trans_pcie->ict_tbl = 2121bfcc09ddSBjoern A. Zeeb dma_alloc_coherent(trans->dev, ICT_SIZE, 2122bfcc09ddSBjoern A. Zeeb &trans_pcie->ict_tbl_dma, GFP_KERNEL); 2123bfcc09ddSBjoern A. Zeeb if (!trans_pcie->ict_tbl) 2124bfcc09ddSBjoern A. Zeeb return -ENOMEM; 2125bfcc09ddSBjoern A. Zeeb 2126bfcc09ddSBjoern A. Zeeb /* just an API sanity check ... it is guaranteed to be aligned */ 2127bfcc09ddSBjoern A. Zeeb if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) { 2128bfcc09ddSBjoern A. Zeeb iwl_pcie_free_ict(trans); 2129bfcc09ddSBjoern A. Zeeb return -EINVAL; 2130bfcc09ddSBjoern A. Zeeb } 2131bfcc09ddSBjoern A. Zeeb 2132bfcc09ddSBjoern A. Zeeb return 0; 2133bfcc09ddSBjoern A. Zeeb } 2134bfcc09ddSBjoern A. Zeeb 2135bfcc09ddSBjoern A. Zeeb /* Device is going up inform it about using ICT interrupt table, 2136bfcc09ddSBjoern A. Zeeb * also we need to tell the driver to start using ICT interrupt. 2137bfcc09ddSBjoern A. Zeeb */ 2138bfcc09ddSBjoern A. Zeeb void iwl_pcie_reset_ict(struct iwl_trans *trans) 2139bfcc09ddSBjoern A. Zeeb { 2140bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2141bfcc09ddSBjoern A. Zeeb u32 val; 2142bfcc09ddSBjoern A. Zeeb 2143bfcc09ddSBjoern A. Zeeb if (!trans_pcie->ict_tbl) 2144bfcc09ddSBjoern A. Zeeb return; 2145bfcc09ddSBjoern A. Zeeb 2146bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->irq_lock); 2147bfcc09ddSBjoern A. Zeeb _iwl_disable_interrupts(trans); 2148bfcc09ddSBjoern A. Zeeb 2149bfcc09ddSBjoern A. Zeeb memset(trans_pcie->ict_tbl, 0, ICT_SIZE); 2150bfcc09ddSBjoern A. Zeeb 2151bfcc09ddSBjoern A. Zeeb val = trans_pcie->ict_tbl_dma >> ICT_SHIFT; 2152bfcc09ddSBjoern A. Zeeb 2153bfcc09ddSBjoern A. Zeeb val |= CSR_DRAM_INT_TBL_ENABLE | 2154bfcc09ddSBjoern A. Zeeb CSR_DRAM_INIT_TBL_WRAP_CHECK | 2155bfcc09ddSBjoern A. Zeeb CSR_DRAM_INIT_TBL_WRITE_POINTER; 2156bfcc09ddSBjoern A. Zeeb 2157bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val); 2158bfcc09ddSBjoern A. Zeeb 2159bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val); 2160bfcc09ddSBjoern A. Zeeb trans_pcie->use_ict = true; 2161bfcc09ddSBjoern A. Zeeb trans_pcie->ict_index = 0; 2162bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_INT, trans_pcie->inta_mask); 2163bfcc09ddSBjoern A. Zeeb _iwl_enable_interrupts(trans); 2164bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 2165bfcc09ddSBjoern A. Zeeb } 2166bfcc09ddSBjoern A. Zeeb 2167bfcc09ddSBjoern A. Zeeb /* Device is going down disable ict interrupt usage */ 2168bfcc09ddSBjoern A. Zeeb void iwl_pcie_disable_ict(struct iwl_trans *trans) 2169bfcc09ddSBjoern A. Zeeb { 2170bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans); 2171bfcc09ddSBjoern A. Zeeb 2172bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->irq_lock); 2173bfcc09ddSBjoern A. Zeeb trans_pcie->use_ict = false; 2174bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 2175bfcc09ddSBjoern A. Zeeb } 2176bfcc09ddSBjoern A. Zeeb 2177bfcc09ddSBjoern A. Zeeb irqreturn_t iwl_pcie_isr(int irq, void *data) 2178bfcc09ddSBjoern A. Zeeb { 2179bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans = data; 2180bfcc09ddSBjoern A. Zeeb 2181bfcc09ddSBjoern A. Zeeb if (!trans) 2182bfcc09ddSBjoern A. Zeeb return IRQ_NONE; 2183bfcc09ddSBjoern A. Zeeb 2184bfcc09ddSBjoern A. Zeeb /* Disable (but don't clear!) interrupts here to avoid 2185bfcc09ddSBjoern A. Zeeb * back-to-back ISRs and sporadic interrupts from our NIC. 2186bfcc09ddSBjoern A. Zeeb * If we have something to service, the tasklet will re-enable ints. 2187bfcc09ddSBjoern A. Zeeb * If we *don't* have something, we'll re-enable before leaving here. 2188bfcc09ddSBjoern A. Zeeb */ 2189bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_INT_MASK, 0x00000000); 2190bfcc09ddSBjoern A. Zeeb 2191bfcc09ddSBjoern A. Zeeb return IRQ_WAKE_THREAD; 2192bfcc09ddSBjoern A. Zeeb } 2193bfcc09ddSBjoern A. Zeeb 2194bfcc09ddSBjoern A. Zeeb irqreturn_t iwl_pcie_msix_isr(int irq, void *data) 2195bfcc09ddSBjoern A. Zeeb { 2196bfcc09ddSBjoern A. Zeeb return IRQ_WAKE_THREAD; 2197bfcc09ddSBjoern A. Zeeb } 2198bfcc09ddSBjoern A. Zeeb 2199bfcc09ddSBjoern A. Zeeb irqreturn_t iwl_pcie_irq_msix_handler(int irq, void *dev_id) 2200bfcc09ddSBjoern A. Zeeb { 2201bfcc09ddSBjoern A. Zeeb struct msix_entry *entry = dev_id; 2202bfcc09ddSBjoern A. Zeeb struct iwl_trans_pcie *trans_pcie = iwl_pcie_get_trans_pcie(entry); 2203bfcc09ddSBjoern A. Zeeb struct iwl_trans *trans = trans_pcie->trans; 2204bfcc09ddSBjoern A. Zeeb struct isr_statistics *isr_stats = &trans_pcie->isr_stats; 2205bfcc09ddSBjoern A. Zeeb u32 inta_fh_msk = ~MSIX_FH_INT_CAUSES_DATA_QUEUE; 2206bfcc09ddSBjoern A. Zeeb u32 inta_fh, inta_hw; 2207bfcc09ddSBjoern A. Zeeb bool polling = false; 2208bfcc09ddSBjoern A. Zeeb bool sw_err; 2209bfcc09ddSBjoern A. Zeeb 2210bfcc09ddSBjoern A. Zeeb if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) 2211bfcc09ddSBjoern A. Zeeb inta_fh_msk |= MSIX_FH_INT_CAUSES_Q0; 2212bfcc09ddSBjoern A. Zeeb 2213bfcc09ddSBjoern A. Zeeb if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) 2214bfcc09ddSBjoern A. Zeeb inta_fh_msk |= MSIX_FH_INT_CAUSES_Q1; 2215bfcc09ddSBjoern A. Zeeb 2216bfcc09ddSBjoern A. Zeeb lock_map_acquire(&trans->sync_cmd_lockdep_map); 2217bfcc09ddSBjoern A. Zeeb 2218bfcc09ddSBjoern A. Zeeb spin_lock_bh(&trans_pcie->irq_lock); 2219bfcc09ddSBjoern A. Zeeb inta_fh = iwl_read32(trans, CSR_MSIX_FH_INT_CAUSES_AD); 2220bfcc09ddSBjoern A. Zeeb inta_hw = iwl_read32(trans, CSR_MSIX_HW_INT_CAUSES_AD); 2221bfcc09ddSBjoern A. Zeeb /* 2222bfcc09ddSBjoern A. Zeeb * Clear causes registers to avoid being handling the same cause. 2223bfcc09ddSBjoern A. Zeeb */ 2224bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_MSIX_FH_INT_CAUSES_AD, inta_fh & inta_fh_msk); 2225bfcc09ddSBjoern A. Zeeb iwl_write32(trans, CSR_MSIX_HW_INT_CAUSES_AD, inta_hw); 2226bfcc09ddSBjoern A. Zeeb spin_unlock_bh(&trans_pcie->irq_lock); 2227bfcc09ddSBjoern A. Zeeb 2228bfcc09ddSBjoern A. Zeeb trace_iwlwifi_dev_irq_msix(trans->dev, entry, true, inta_fh, inta_hw); 2229bfcc09ddSBjoern A. Zeeb 2230bfcc09ddSBjoern A. Zeeb if (unlikely(!(inta_fh | inta_hw))) { 2231bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n"); 2232bfcc09ddSBjoern A. Zeeb lock_map_release(&trans->sync_cmd_lockdep_map); 2233bfcc09ddSBjoern A. Zeeb return IRQ_NONE; 2234bfcc09ddSBjoern A. Zeeb } 2235bfcc09ddSBjoern A. Zeeb 2236bfcc09ddSBjoern A. Zeeb #ifdef CONFIG_IWLWIFI_DEBUG 2237bfcc09ddSBjoern A. Zeeb if (iwl_have_debug_level(IWL_DL_ISR)) { 2238bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 2239bfcc09ddSBjoern A. Zeeb "ISR[%d] inta_fh 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2240bfcc09ddSBjoern A. Zeeb entry->entry, inta_fh, trans_pcie->fh_mask, 2241bfcc09ddSBjoern A. Zeeb iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD)); 2242bfcc09ddSBjoern A. Zeeb if (inta_fh & ~trans_pcie->fh_mask) 2243bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 2244bfcc09ddSBjoern A. Zeeb "We got a masked interrupt (0x%08x)\n", 2245bfcc09ddSBjoern A. Zeeb inta_fh & ~trans_pcie->fh_mask); 2246bfcc09ddSBjoern A. Zeeb } 2247bfcc09ddSBjoern A. Zeeb #endif 2248bfcc09ddSBjoern A. Zeeb 2249bfcc09ddSBjoern A. Zeeb inta_fh &= trans_pcie->fh_mask; 2250bfcc09ddSBjoern A. Zeeb 2251bfcc09ddSBjoern A. Zeeb if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) && 2252bfcc09ddSBjoern A. Zeeb inta_fh & MSIX_FH_INT_CAUSES_Q0) { 2253bfcc09ddSBjoern A. Zeeb local_bh_disable(); 2254bfcc09ddSBjoern A. Zeeb if (napi_schedule_prep(&trans_pcie->rxq[0].napi)) { 2255bfcc09ddSBjoern A. Zeeb polling = true; 2256bfcc09ddSBjoern A. Zeeb __napi_schedule(&trans_pcie->rxq[0].napi); 2257bfcc09ddSBjoern A. Zeeb } 2258bfcc09ddSBjoern A. Zeeb local_bh_enable(); 2259bfcc09ddSBjoern A. Zeeb } 2260bfcc09ddSBjoern A. Zeeb 2261bfcc09ddSBjoern A. Zeeb if ((trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) && 2262bfcc09ddSBjoern A. Zeeb inta_fh & MSIX_FH_INT_CAUSES_Q1) { 2263bfcc09ddSBjoern A. Zeeb local_bh_disable(); 2264bfcc09ddSBjoern A. Zeeb if (napi_schedule_prep(&trans_pcie->rxq[1].napi)) { 2265bfcc09ddSBjoern A. Zeeb polling = true; 2266bfcc09ddSBjoern A. Zeeb __napi_schedule(&trans_pcie->rxq[1].napi); 2267bfcc09ddSBjoern A. Zeeb } 2268bfcc09ddSBjoern A. Zeeb local_bh_enable(); 2269bfcc09ddSBjoern A. Zeeb } 2270bfcc09ddSBjoern A. Zeeb 2271bfcc09ddSBjoern A. Zeeb /* This "Tx" DMA channel is used only for loading uCode */ 2272d9836fb4SBjoern A. Zeeb if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM && 2273d9836fb4SBjoern A. Zeeb trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2274d9836fb4SBjoern A. Zeeb IWL_DEBUG_ISR(trans, "IMR Complete interrupt\n"); 2275d9836fb4SBjoern A. Zeeb isr_stats->tx++; 2276d9836fb4SBjoern A. Zeeb 2277d9836fb4SBjoern A. Zeeb /* Wake up IMR routine once write to SRAM is complete */ 2278d9836fb4SBjoern A. Zeeb if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2279d9836fb4SBjoern A. Zeeb trans_pcie->imr_status = IMR_D2S_COMPLETED; 2280d9836fb4SBjoern A. Zeeb wake_up(&trans_pcie->ucode_write_waitq); 2281d9836fb4SBjoern A. Zeeb } 2282d9836fb4SBjoern A. Zeeb } else if (inta_fh & MSIX_FH_INT_CAUSES_D2S_CH0_NUM) { 2283bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "uCode load interrupt\n"); 2284bfcc09ddSBjoern A. Zeeb isr_stats->tx++; 2285bfcc09ddSBjoern A. Zeeb /* 2286bfcc09ddSBjoern A. Zeeb * Wake up uCode load routine, 2287bfcc09ddSBjoern A. Zeeb * now that load is complete 2288bfcc09ddSBjoern A. Zeeb */ 2289bfcc09ddSBjoern A. Zeeb trans_pcie->ucode_write_complete = true; 2290bfcc09ddSBjoern A. Zeeb wake_up(&trans_pcie->ucode_write_waitq); 2291d9836fb4SBjoern A. Zeeb 2292d9836fb4SBjoern A. Zeeb /* Wake up IMR routine once write to SRAM is complete */ 2293d9836fb4SBjoern A. Zeeb if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2294d9836fb4SBjoern A. Zeeb trans_pcie->imr_status = IMR_D2S_COMPLETED; 2295d9836fb4SBjoern A. Zeeb wake_up(&trans_pcie->ucode_write_waitq); 2296d9836fb4SBjoern A. Zeeb } 2297bfcc09ddSBjoern A. Zeeb } 2298bfcc09ddSBjoern A. Zeeb 2299bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_BZ) 2300bfcc09ddSBjoern A. Zeeb sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR_BZ; 2301bfcc09ddSBjoern A. Zeeb else 2302bfcc09ddSBjoern A. Zeeb sw_err = inta_hw & MSIX_HW_INT_CAUSES_REG_SW_ERR; 2303bfcc09ddSBjoern A. Zeeb 2304bfcc09ddSBjoern A. Zeeb /* Error detected by uCode */ 2305bfcc09ddSBjoern A. Zeeb if ((inta_fh & MSIX_FH_INT_CAUSES_FH_ERR) || sw_err) { 2306bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, 2307bfcc09ddSBjoern A. Zeeb "Microcode SW error detected. Restarting 0x%X.\n", 2308bfcc09ddSBjoern A. Zeeb inta_fh); 2309bfcc09ddSBjoern A. Zeeb isr_stats->sw++; 2310bfcc09ddSBjoern A. Zeeb /* during FW reset flow report errors from there */ 2311d9836fb4SBjoern A. Zeeb if (trans_pcie->imr_status == IMR_D2S_REQUESTED) { 2312d9836fb4SBjoern A. Zeeb trans_pcie->imr_status = IMR_D2S_ERROR; 2313d9836fb4SBjoern A. Zeeb wake_up(&trans_pcie->imr_waitq); 2314d9836fb4SBjoern A. Zeeb } else if (trans_pcie->fw_reset_state == FW_RESET_REQUESTED) { 2315bfcc09ddSBjoern A. Zeeb trans_pcie->fw_reset_state = FW_RESET_ERROR; 2316bfcc09ddSBjoern A. Zeeb wake_up(&trans_pcie->fw_reset_waitq); 2317bfcc09ddSBjoern A. Zeeb } else { 2318bfcc09ddSBjoern A. Zeeb iwl_pcie_irq_handle_error(trans); 2319bfcc09ddSBjoern A. Zeeb } 2320bfcc09ddSBjoern A. Zeeb } 2321bfcc09ddSBjoern A. Zeeb 2322bfcc09ddSBjoern A. Zeeb /* After checking FH register check HW register */ 2323bfcc09ddSBjoern A. Zeeb #ifdef CONFIG_IWLWIFI_DEBUG 2324bfcc09ddSBjoern A. Zeeb if (iwl_have_debug_level(IWL_DL_ISR)) { 2325bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 2326bfcc09ddSBjoern A. Zeeb "ISR[%d] inta_hw 0x%08x, enabled (sw) 0x%08x (hw) 0x%08x\n", 2327bfcc09ddSBjoern A. Zeeb entry->entry, inta_hw, trans_pcie->hw_mask, 2328bfcc09ddSBjoern A. Zeeb iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD)); 2329bfcc09ddSBjoern A. Zeeb if (inta_hw & ~trans_pcie->hw_mask) 2330bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 2331bfcc09ddSBjoern A. Zeeb "We got a masked interrupt 0x%08x\n", 2332bfcc09ddSBjoern A. Zeeb inta_hw & ~trans_pcie->hw_mask); 2333bfcc09ddSBjoern A. Zeeb } 2334bfcc09ddSBjoern A. Zeeb #endif 2335bfcc09ddSBjoern A. Zeeb 2336bfcc09ddSBjoern A. Zeeb inta_hw &= trans_pcie->hw_mask; 2337bfcc09ddSBjoern A. Zeeb 2338bfcc09ddSBjoern A. Zeeb /* Alive notification via Rx interrupt will do the real work */ 2339bfcc09ddSBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_ALIVE) { 2340bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Alive interrupt\n"); 2341bfcc09ddSBjoern A. Zeeb isr_stats->alive++; 2342bfcc09ddSBjoern A. Zeeb if (trans->trans_cfg->gen2) { 2343bfcc09ddSBjoern A. Zeeb /* We can restock, since firmware configured the RFH */ 2344bfcc09ddSBjoern A. Zeeb iwl_pcie_rxmq_restock(trans, trans_pcie->rxq); 2345bfcc09ddSBjoern A. Zeeb } 2346bfcc09ddSBjoern A. Zeeb } 2347bfcc09ddSBjoern A. Zeeb 2348d9836fb4SBjoern A. Zeeb /* 2349d9836fb4SBjoern A. Zeeb * In some rare cases when the HW is in a bad state, we may 2350d9836fb4SBjoern A. Zeeb * get this interrupt too early, when prph_info is still NULL. 2351d9836fb4SBjoern A. Zeeb * So make sure that it's not NULL to prevent crashing. 2352d9836fb4SBjoern A. Zeeb */ 2353d9836fb4SBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_WAKEUP && trans_pcie->prph_info) { 2354bfcc09ddSBjoern A. Zeeb u32 sleep_notif = 2355bfcc09ddSBjoern A. Zeeb le32_to_cpu(trans_pcie->prph_info->sleep_notif); 2356bfcc09ddSBjoern A. Zeeb if (sleep_notif == IWL_D3_SLEEP_STATUS_SUSPEND || 2357bfcc09ddSBjoern A. Zeeb sleep_notif == IWL_D3_SLEEP_STATUS_RESUME) { 2358bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, 2359bfcc09ddSBjoern A. Zeeb "Sx interrupt: sleep notification = 0x%x\n", 2360bfcc09ddSBjoern A. Zeeb sleep_notif); 2361bfcc09ddSBjoern A. Zeeb trans_pcie->sx_complete = true; 2362bfcc09ddSBjoern A. Zeeb wake_up(&trans_pcie->sx_waitq); 2363bfcc09ddSBjoern A. Zeeb } else { 2364bfcc09ddSBjoern A. Zeeb /* uCode wakes up after power-down sleep */ 2365bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Wakeup interrupt\n"); 2366bfcc09ddSBjoern A. Zeeb iwl_pcie_rxq_check_wrptr(trans); 2367bfcc09ddSBjoern A. Zeeb iwl_pcie_txq_check_wrptrs(trans); 2368bfcc09ddSBjoern A. Zeeb 2369bfcc09ddSBjoern A. Zeeb isr_stats->wakeup++; 2370bfcc09ddSBjoern A. Zeeb } 2371bfcc09ddSBjoern A. Zeeb } 2372bfcc09ddSBjoern A. Zeeb 2373bfcc09ddSBjoern A. Zeeb /* Chip got too hot and stopped itself */ 2374bfcc09ddSBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_CT_KILL) { 2375bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, "Microcode CT kill error detected.\n"); 2376bfcc09ddSBjoern A. Zeeb isr_stats->ctkill++; 2377bfcc09ddSBjoern A. Zeeb } 2378bfcc09ddSBjoern A. Zeeb 2379bfcc09ddSBjoern A. Zeeb /* HW RF KILL switch toggled */ 2380bfcc09ddSBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_RF_KILL) 2381bfcc09ddSBjoern A. Zeeb iwl_pcie_handle_rfkill_irq(trans); 2382bfcc09ddSBjoern A. Zeeb 2383bfcc09ddSBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_HW_ERR) { 2384bfcc09ddSBjoern A. Zeeb IWL_ERR(trans, 2385bfcc09ddSBjoern A. Zeeb "Hardware error detected. Restarting.\n"); 2386bfcc09ddSBjoern A. Zeeb 2387bfcc09ddSBjoern A. Zeeb isr_stats->hw++; 2388bfcc09ddSBjoern A. Zeeb trans->dbg.hw_error = true; 2389bfcc09ddSBjoern A. Zeeb iwl_pcie_irq_handle_error(trans); 2390bfcc09ddSBjoern A. Zeeb } 2391bfcc09ddSBjoern A. Zeeb 2392bfcc09ddSBjoern A. Zeeb if (inta_hw & MSIX_HW_INT_CAUSES_REG_RESET_DONE) { 2393bfcc09ddSBjoern A. Zeeb IWL_DEBUG_ISR(trans, "Reset flow completed\n"); 2394bfcc09ddSBjoern A. Zeeb trans_pcie->fw_reset_state = FW_RESET_OK; 2395bfcc09ddSBjoern A. Zeeb wake_up(&trans_pcie->fw_reset_waitq); 2396bfcc09ddSBjoern A. Zeeb } 2397bfcc09ddSBjoern A. Zeeb 2398bfcc09ddSBjoern A. Zeeb if (!polling) 2399bfcc09ddSBjoern A. Zeeb iwl_pcie_clear_irq(trans, entry->entry); 2400bfcc09ddSBjoern A. Zeeb 2401bfcc09ddSBjoern A. Zeeb lock_map_release(&trans->sync_cmd_lockdep_map); 2402bfcc09ddSBjoern A. Zeeb 2403bfcc09ddSBjoern A. Zeeb return IRQ_HANDLED; 2404bfcc09ddSBjoern A. Zeeb } 2405