1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2014 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #if defined(__FreeBSD__) 8 #include <linux/math64.h> 9 #endif 10 #include <net/mac80211.h> 11 12 #include "iwl-debug.h" 13 #include "iwl-io.h" 14 #include "iwl-prph.h" 15 #include "iwl-csr.h" 16 #include "mvm.h" 17 #include "fw/api/rs.h" 18 #include "fw/img.h" 19 20 /* 21 * Will return 0 even if the cmd failed when RFKILL is asserted unless 22 * CMD_WANT_SKB is set in cmd->flags. 23 */ 24 int iwl_mvm_send_cmd(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd) 25 { 26 int ret; 27 28 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 29 if (WARN_ON(mvm->d3_test_active)) 30 return -EIO; 31 #endif 32 33 /* 34 * Synchronous commands from this op-mode must hold 35 * the mutex, this ensures we don't try to send two 36 * (or more) synchronous commands at a time. 37 */ 38 if (!(cmd->flags & CMD_ASYNC)) 39 lockdep_assert_held(&mvm->mutex); 40 41 ret = iwl_trans_send_cmd(mvm->trans, cmd); 42 43 /* 44 * If the caller wants the SKB, then don't hide any problems, the 45 * caller might access the response buffer which will be NULL if 46 * the command failed. 47 */ 48 if (cmd->flags & CMD_WANT_SKB) 49 return ret; 50 51 /* 52 * Silently ignore failures if RFKILL is asserted or 53 * we are in suspend\resume process 54 */ 55 if (!ret || ret == -ERFKILL || ret == -EHOSTDOWN) 56 return 0; 57 return ret; 58 } 59 60 int iwl_mvm_send_cmd_pdu(struct iwl_mvm *mvm, u32 id, 61 u32 flags, u16 len, const void *data) 62 { 63 struct iwl_host_cmd cmd = { 64 .id = id, 65 .len = { len, }, 66 .data = { data, }, 67 .flags = flags, 68 }; 69 70 return iwl_mvm_send_cmd(mvm, &cmd); 71 } 72 73 /* 74 * We assume that the caller set the status to the success value 75 */ 76 int iwl_mvm_send_cmd_status(struct iwl_mvm *mvm, struct iwl_host_cmd *cmd, 77 u32 *status) 78 { 79 struct iwl_rx_packet *pkt; 80 struct iwl_cmd_response *resp; 81 int ret, resp_len; 82 83 lockdep_assert_held(&mvm->mutex); 84 85 #if defined(CONFIG_IWLWIFI_DEBUGFS) && defined(CONFIG_PM_SLEEP) 86 if (WARN_ON(mvm->d3_test_active)) 87 return -EIO; 88 #endif 89 90 /* 91 * Only synchronous commands can wait for status, 92 * we use WANT_SKB so the caller can't. 93 */ 94 if (WARN_ONCE(cmd->flags & (CMD_ASYNC | CMD_WANT_SKB), 95 "cmd flags %x", cmd->flags)) 96 return -EINVAL; 97 98 cmd->flags |= CMD_WANT_SKB; 99 100 ret = iwl_trans_send_cmd(mvm->trans, cmd); 101 if (ret == -ERFKILL) { 102 /* 103 * The command failed because of RFKILL, don't update 104 * the status, leave it as success and return 0. 105 */ 106 return 0; 107 } else if (ret) { 108 return ret; 109 } 110 111 pkt = cmd->resp_pkt; 112 113 resp_len = iwl_rx_packet_payload_len(pkt); 114 if (WARN_ON_ONCE(resp_len != sizeof(*resp))) { 115 ret = -EIO; 116 goto out_free_resp; 117 } 118 119 resp = (void *)pkt->data; 120 *status = le32_to_cpu(resp->status); 121 out_free_resp: 122 iwl_free_resp(cmd); 123 return ret; 124 } 125 126 /* 127 * We assume that the caller set the status to the sucess value 128 */ 129 int iwl_mvm_send_cmd_pdu_status(struct iwl_mvm *mvm, u32 id, u16 len, 130 const void *data, u32 *status) 131 { 132 struct iwl_host_cmd cmd = { 133 .id = id, 134 .len = { len, }, 135 .data = { data, }, 136 }; 137 138 return iwl_mvm_send_cmd_status(mvm, &cmd, status); 139 } 140 141 int iwl_mvm_legacy_hw_idx_to_mac80211_idx(u32 rate_n_flags, 142 enum nl80211_band band) 143 { 144 int format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 145 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK; 146 bool is_LB = band == NL80211_BAND_2GHZ; 147 148 if (format == RATE_MCS_LEGACY_OFDM_MSK) 149 return is_LB ? rate + IWL_FIRST_OFDM_RATE : 150 rate; 151 152 /* CCK is not allowed in HB */ 153 return is_LB ? rate : -1; 154 } 155 156 int iwl_mvm_legacy_rate_to_mac80211_idx(u32 rate_n_flags, 157 enum nl80211_band band) 158 { 159 int rate = rate_n_flags & RATE_LEGACY_RATE_MSK_V1; 160 int idx; 161 int band_offset = 0; 162 163 /* Legacy rate format, search for match in table */ 164 if (band != NL80211_BAND_2GHZ) 165 band_offset = IWL_FIRST_OFDM_RATE; 166 for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++) 167 if (iwl_fw_rate_idx_to_plcp(idx) == rate) 168 return idx - band_offset; 169 170 return -1; 171 } 172 173 u8 iwl_mvm_mac80211_idx_to_hwrate(const struct iwl_fw *fw, int rate_idx) 174 { 175 if (iwl_fw_lookup_cmd_ver(fw, LONG_GROUP, 176 TX_CMD, 0) > 8) 177 /* In the new rate legacy rates are indexed: 178 * 0 - 3 for CCK and 0 - 7 for OFDM. 179 */ 180 return (rate_idx >= IWL_FIRST_OFDM_RATE ? 181 rate_idx - IWL_FIRST_OFDM_RATE : 182 rate_idx); 183 184 return iwl_fw_rate_idx_to_plcp(rate_idx); 185 } 186 187 u8 iwl_mvm_mac80211_ac_to_ucode_ac(enum ieee80211_ac_numbers ac) 188 { 189 static const u8 mac80211_ac_to_ucode_ac[] = { 190 AC_VO, 191 AC_VI, 192 AC_BE, 193 AC_BK 194 }; 195 196 return mac80211_ac_to_ucode_ac[ac]; 197 } 198 199 void iwl_mvm_rx_fw_error(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb) 200 { 201 struct iwl_rx_packet *pkt = rxb_addr(rxb); 202 struct iwl_error_resp *err_resp = (void *)pkt->data; 203 204 IWL_ERR(mvm, "FW Error notification: type 0x%08X cmd_id 0x%02X\n", 205 le32_to_cpu(err_resp->error_type), err_resp->cmd_id); 206 IWL_ERR(mvm, "FW Error notification: seq 0x%04X service 0x%08X\n", 207 le16_to_cpu(err_resp->bad_cmd_seq_num), 208 le32_to_cpu(err_resp->error_service)); 209 IWL_ERR(mvm, "FW Error notification: timestamp 0x%016llX\n", 210 le64_to_cpu(err_resp->timestamp)); 211 } 212 213 /* 214 * Returns the first antenna as ANT_[ABC], as defined in iwl-config.h. 215 * The parameter should also be a combination of ANT_[ABC]. 216 */ 217 u8 first_antenna(u8 mask) 218 { 219 BUILD_BUG_ON(ANT_A != BIT(0)); /* using ffs is wrong if not */ 220 if (WARN_ON_ONCE(!mask)) /* ffs will return 0 if mask is zeroed */ 221 return BIT(0); 222 return BIT(ffs(mask) - 1); 223 } 224 225 #define MAX_ANT_NUM 2 226 /* 227 * Toggles between TX antennas to send the probe request on. 228 * Receives the bitmask of valid TX antennas and the *index* used 229 * for the last TX, and returns the next valid *index* to use. 230 * In order to set it in the tx_cmd, must do BIT(idx). 231 */ 232 u8 iwl_mvm_next_antenna(struct iwl_mvm *mvm, u8 valid, u8 last_idx) 233 { 234 u8 ind = last_idx; 235 int i; 236 237 for (i = 0; i < MAX_ANT_NUM; i++) { 238 ind = (ind + 1) % MAX_ANT_NUM; 239 if (valid & BIT(ind)) 240 return ind; 241 } 242 243 WARN_ONCE(1, "Failed to toggle between antennas 0x%x", valid); 244 return last_idx; 245 } 246 247 int iwl_mvm_reconfig_scd(struct iwl_mvm *mvm, int queue, int fifo, int sta_id, 248 int tid, int frame_limit, u16 ssn) 249 { 250 struct iwl_scd_txq_cfg_cmd cmd = { 251 .scd_queue = queue, 252 .action = SCD_CFG_ENABLE_QUEUE, 253 .window = frame_limit, 254 .sta_id = sta_id, 255 .ssn = cpu_to_le16(ssn), 256 .tx_fifo = fifo, 257 .aggregate = (queue >= IWL_MVM_DQA_MIN_DATA_QUEUE || 258 queue == IWL_MVM_DQA_BSS_CLIENT_QUEUE), 259 .tid = tid, 260 }; 261 int ret; 262 263 if (WARN_ON(iwl_mvm_has_new_tx_api(mvm))) 264 return -EINVAL; 265 266 if (WARN(mvm->queue_info[queue].tid_bitmap == 0, 267 "Trying to reconfig unallocated queue %d\n", queue)) 268 return -ENXIO; 269 270 IWL_DEBUG_TX_QUEUES(mvm, "Reconfig SCD for TXQ #%d\n", queue); 271 272 ret = iwl_mvm_send_cmd_pdu(mvm, SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); 273 WARN_ONCE(ret, "Failed to re-configure queue %d on FIFO %d, ret=%d\n", 274 queue, fifo, ret); 275 276 return ret; 277 } 278 279 /** 280 * iwl_mvm_send_lq_cmd() - Send link quality command 281 * @mvm: Driver data. 282 * @lq: Link quality command to send. 283 * 284 * The link quality command is sent as the last step of station creation. 285 * This is the special case in which init is set and we call a callback in 286 * this case to clear the state indicating that station creation is in 287 * progress. 288 */ 289 int iwl_mvm_send_lq_cmd(struct iwl_mvm *mvm, struct iwl_lq_cmd *lq) 290 { 291 struct iwl_host_cmd cmd = { 292 .id = LQ_CMD, 293 .len = { sizeof(struct iwl_lq_cmd), }, 294 .flags = CMD_ASYNC, 295 .data = { lq, }, 296 }; 297 298 if (WARN_ON(lq->sta_id == IWL_MVM_INVALID_STA || 299 iwl_mvm_has_tlc_offload(mvm))) 300 return -EINVAL; 301 302 return iwl_mvm_send_cmd(mvm, &cmd); 303 } 304 305 /** 306 * iwl_mvm_update_smps - Get a request to change the SMPS mode 307 * @mvm: Driver data. 308 * @vif: Pointer to the ieee80211_vif structure 309 * @req_type: The part of the driver who call for a change. 310 * @smps_request: The request to change the SMPS mode. 311 * 312 * Get a requst to change the SMPS mode, 313 * and change it according to all other requests in the driver. 314 */ 315 void iwl_mvm_update_smps(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 316 enum iwl_mvm_smps_type_request req_type, 317 enum ieee80211_smps_mode smps_request) 318 { 319 struct iwl_mvm_vif *mvmvif; 320 enum ieee80211_smps_mode smps_mode = IEEE80211_SMPS_AUTOMATIC; 321 int i; 322 323 lockdep_assert_held(&mvm->mutex); 324 325 /* SMPS is irrelevant for NICs that don't have at least 2 RX antenna */ 326 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 327 return; 328 329 if (vif->type != NL80211_IFTYPE_STATION) 330 return; 331 332 mvmvif = iwl_mvm_vif_from_mac80211(vif); 333 mvmvif->smps_requests[req_type] = smps_request; 334 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 335 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC) { 336 smps_mode = IEEE80211_SMPS_STATIC; 337 break; 338 } 339 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) 340 smps_mode = IEEE80211_SMPS_DYNAMIC; 341 } 342 343 ieee80211_request_smps(vif, smps_mode); 344 } 345 346 int iwl_mvm_request_statistics(struct iwl_mvm *mvm, bool clear) 347 { 348 struct iwl_statistics_cmd scmd = { 349 .flags = clear ? cpu_to_le32(IWL_STATISTICS_FLG_CLEAR) : 0, 350 }; 351 struct iwl_host_cmd cmd = { 352 .id = STATISTICS_CMD, 353 .len[0] = sizeof(scmd), 354 .data[0] = &scmd, 355 .flags = CMD_WANT_SKB, 356 }; 357 int ret; 358 359 ret = iwl_mvm_send_cmd(mvm, &cmd); 360 if (ret) 361 return ret; 362 363 iwl_mvm_handle_rx_statistics(mvm, cmd.resp_pkt); 364 iwl_free_resp(&cmd); 365 366 if (clear) 367 iwl_mvm_accu_radio_stats(mvm); 368 369 return 0; 370 } 371 372 void iwl_mvm_accu_radio_stats(struct iwl_mvm *mvm) 373 { 374 mvm->accu_radio_stats.rx_time += mvm->radio_stats.rx_time; 375 mvm->accu_radio_stats.tx_time += mvm->radio_stats.tx_time; 376 mvm->accu_radio_stats.on_time_rf += mvm->radio_stats.on_time_rf; 377 mvm->accu_radio_stats.on_time_scan += mvm->radio_stats.on_time_scan; 378 } 379 380 struct iwl_mvm_diversity_iter_data { 381 struct iwl_mvm_phy_ctxt *ctxt; 382 bool result; 383 }; 384 385 static void iwl_mvm_diversity_iter(void *_data, u8 *mac, 386 struct ieee80211_vif *vif) 387 { 388 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 389 struct iwl_mvm_diversity_iter_data *data = _data; 390 int i; 391 392 if (mvmvif->phy_ctxt != data->ctxt) 393 return; 394 395 for (i = 0; i < NUM_IWL_MVM_SMPS_REQ; i++) { 396 if (mvmvif->smps_requests[i] == IEEE80211_SMPS_STATIC || 397 mvmvif->smps_requests[i] == IEEE80211_SMPS_DYNAMIC) { 398 data->result = false; 399 break; 400 } 401 } 402 } 403 404 bool iwl_mvm_rx_diversity_allowed(struct iwl_mvm *mvm, 405 struct iwl_mvm_phy_ctxt *ctxt) 406 { 407 struct iwl_mvm_diversity_iter_data data = { 408 .ctxt = ctxt, 409 .result = true, 410 }; 411 412 lockdep_assert_held(&mvm->mutex); 413 414 if (iwlmvm_mod_params.power_scheme != IWL_POWER_SCHEME_CAM) 415 return false; 416 417 if (num_of_ant(iwl_mvm_get_valid_rx_ant(mvm)) == 1) 418 return false; 419 420 if (mvm->cfg->rx_with_siso_diversity) 421 return false; 422 423 ieee80211_iterate_active_interfaces_atomic( 424 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 425 iwl_mvm_diversity_iter, &data); 426 427 return data.result; 428 } 429 430 void iwl_mvm_send_low_latency_cmd(struct iwl_mvm *mvm, 431 bool low_latency, u16 mac_id) 432 { 433 struct iwl_mac_low_latency_cmd cmd = { 434 .mac_id = cpu_to_le32(mac_id) 435 }; 436 437 if (!fw_has_capa(&mvm->fw->ucode_capa, 438 IWL_UCODE_TLV_CAPA_DYNAMIC_QUOTA)) 439 return; 440 441 if (low_latency) { 442 /* currently we don't care about the direction */ 443 cmd.low_latency_rx = 1; 444 cmd.low_latency_tx = 1; 445 } 446 447 if (iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(LOW_LATENCY_CMD, 448 MAC_CONF_GROUP, 0), 449 0, sizeof(cmd), &cmd)) 450 IWL_ERR(mvm, "Failed to send low latency command\n"); 451 } 452 453 int iwl_mvm_update_low_latency(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 454 bool low_latency, 455 enum iwl_mvm_low_latency_cause cause) 456 { 457 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 458 int res; 459 bool prev; 460 461 lockdep_assert_held(&mvm->mutex); 462 463 prev = iwl_mvm_vif_low_latency(mvmvif); 464 iwl_mvm_vif_set_low_latency(mvmvif, low_latency, cause); 465 466 low_latency = iwl_mvm_vif_low_latency(mvmvif); 467 468 if (low_latency == prev) 469 return 0; 470 471 iwl_mvm_send_low_latency_cmd(mvm, low_latency, mvmvif->id); 472 473 res = iwl_mvm_update_quotas(mvm, false, NULL); 474 if (res) 475 return res; 476 477 iwl_mvm_bt_coex_vif_change(mvm); 478 479 return iwl_mvm_power_update_mac(mvm); 480 } 481 482 struct iwl_mvm_low_latency_iter { 483 bool result; 484 bool result_per_band[NUM_NL80211_BANDS]; 485 }; 486 487 static void iwl_mvm_ll_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 488 { 489 struct iwl_mvm_low_latency_iter *result = _data; 490 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 491 enum nl80211_band band; 492 493 if (iwl_mvm_vif_low_latency(mvmvif)) { 494 result->result = true; 495 496 if (!mvmvif->phy_ctxt) 497 return; 498 499 band = mvmvif->phy_ctxt->channel->band; 500 result->result_per_band[band] = true; 501 } 502 } 503 504 bool iwl_mvm_low_latency(struct iwl_mvm *mvm) 505 { 506 struct iwl_mvm_low_latency_iter data = {}; 507 508 ieee80211_iterate_active_interfaces_atomic( 509 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 510 iwl_mvm_ll_iter, &data); 511 512 return data.result; 513 } 514 515 bool iwl_mvm_low_latency_band(struct iwl_mvm *mvm, enum nl80211_band band) 516 { 517 struct iwl_mvm_low_latency_iter data = {}; 518 519 ieee80211_iterate_active_interfaces_atomic( 520 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 521 iwl_mvm_ll_iter, &data); 522 523 return data.result_per_band[band]; 524 } 525 526 struct iwl_bss_iter_data { 527 struct ieee80211_vif *vif; 528 bool error; 529 }; 530 531 static void iwl_mvm_bss_iface_iterator(void *_data, u8 *mac, 532 struct ieee80211_vif *vif) 533 { 534 struct iwl_bss_iter_data *data = _data; 535 536 if (vif->type != NL80211_IFTYPE_STATION || vif->p2p) 537 return; 538 539 if (data->vif) { 540 data->error = true; 541 return; 542 } 543 544 data->vif = vif; 545 } 546 547 struct ieee80211_vif *iwl_mvm_get_bss_vif(struct iwl_mvm *mvm) 548 { 549 struct iwl_bss_iter_data bss_iter_data = {}; 550 551 ieee80211_iterate_active_interfaces_atomic( 552 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 553 iwl_mvm_bss_iface_iterator, &bss_iter_data); 554 555 if (bss_iter_data.error) { 556 IWL_ERR(mvm, "More than one managed interface active!\n"); 557 return ERR_PTR(-EINVAL); 558 } 559 560 return bss_iter_data.vif; 561 } 562 563 struct iwl_bss_find_iter_data { 564 struct ieee80211_vif *vif; 565 u32 macid; 566 }; 567 568 static void iwl_mvm_bss_find_iface_iterator(void *_data, u8 *mac, 569 struct ieee80211_vif *vif) 570 { 571 struct iwl_bss_find_iter_data *data = _data; 572 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 573 574 if (mvmvif->id == data->macid) 575 data->vif = vif; 576 } 577 578 struct ieee80211_vif *iwl_mvm_get_vif_by_macid(struct iwl_mvm *mvm, u32 macid) 579 { 580 struct iwl_bss_find_iter_data data = { 581 .macid = macid, 582 }; 583 584 lockdep_assert_held(&mvm->mutex); 585 586 ieee80211_iterate_active_interfaces_atomic( 587 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 588 iwl_mvm_bss_find_iface_iterator, &data); 589 590 return data.vif; 591 } 592 593 struct iwl_sta_iter_data { 594 bool assoc; 595 }; 596 597 static void iwl_mvm_sta_iface_iterator(void *_data, u8 *mac, 598 struct ieee80211_vif *vif) 599 { 600 struct iwl_sta_iter_data *data = _data; 601 602 if (vif->type != NL80211_IFTYPE_STATION) 603 return; 604 605 if (vif->bss_conf.assoc) 606 data->assoc = true; 607 } 608 609 bool iwl_mvm_is_vif_assoc(struct iwl_mvm *mvm) 610 { 611 struct iwl_sta_iter_data data = { 612 .assoc = false, 613 }; 614 615 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 616 IEEE80211_IFACE_ITER_NORMAL, 617 iwl_mvm_sta_iface_iterator, 618 &data); 619 return data.assoc; 620 } 621 622 unsigned int iwl_mvm_get_wd_timeout(struct iwl_mvm *mvm, 623 struct ieee80211_vif *vif, 624 bool tdls, bool cmd_q) 625 { 626 struct iwl_fw_dbg_trigger_tlv *trigger; 627 struct iwl_fw_dbg_trigger_txq_timer *txq_timer; 628 unsigned int default_timeout = cmd_q ? 629 IWL_DEF_WD_TIMEOUT : 630 mvm->trans->trans_cfg->base_params->wd_timeout; 631 632 if (!iwl_fw_dbg_trigger_enabled(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS)) { 633 /* 634 * We can't know when the station is asleep or awake, so we 635 * must disable the queue hang detection. 636 */ 637 if (fw_has_capa(&mvm->fw->ucode_capa, 638 IWL_UCODE_TLV_CAPA_STA_PM_NOTIF) && 639 vif && vif->type == NL80211_IFTYPE_AP) 640 return IWL_WATCHDOG_DISABLED; 641 return default_timeout; 642 } 643 644 trigger = iwl_fw_dbg_get_trigger(mvm->fw, FW_DBG_TRIGGER_TXQ_TIMERS); 645 txq_timer = (void *)trigger->data; 646 647 if (tdls) 648 return le32_to_cpu(txq_timer->tdls); 649 650 if (cmd_q) 651 return le32_to_cpu(txq_timer->command_queue); 652 653 if (WARN_ON(!vif)) 654 return default_timeout; 655 656 switch (ieee80211_vif_type_p2p(vif)) { 657 case NL80211_IFTYPE_ADHOC: 658 return le32_to_cpu(txq_timer->ibss); 659 case NL80211_IFTYPE_STATION: 660 return le32_to_cpu(txq_timer->bss); 661 case NL80211_IFTYPE_AP: 662 return le32_to_cpu(txq_timer->softap); 663 case NL80211_IFTYPE_P2P_CLIENT: 664 return le32_to_cpu(txq_timer->p2p_client); 665 case NL80211_IFTYPE_P2P_GO: 666 return le32_to_cpu(txq_timer->p2p_go); 667 case NL80211_IFTYPE_P2P_DEVICE: 668 return le32_to_cpu(txq_timer->p2p_device); 669 case NL80211_IFTYPE_MONITOR: 670 return default_timeout; 671 default: 672 WARN_ON(1); 673 return mvm->trans->trans_cfg->base_params->wd_timeout; 674 } 675 } 676 677 void iwl_mvm_connection_loss(struct iwl_mvm *mvm, struct ieee80211_vif *vif, 678 const char *errmsg) 679 { 680 struct iwl_fw_dbg_trigger_tlv *trig; 681 struct iwl_fw_dbg_trigger_mlme *trig_mlme; 682 683 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 684 FW_DBG_TRIGGER_MLME); 685 if (!trig) 686 goto out; 687 688 trig_mlme = (void *)trig->data; 689 690 if (trig_mlme->stop_connection_loss && 691 --trig_mlme->stop_connection_loss) 692 goto out; 693 694 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, "%s", errmsg); 695 696 out: 697 ieee80211_connection_loss(vif); 698 } 699 700 void iwl_mvm_event_frame_timeout_callback(struct iwl_mvm *mvm, 701 struct ieee80211_vif *vif, 702 const struct ieee80211_sta *sta, 703 u16 tid) 704 { 705 struct iwl_fw_dbg_trigger_tlv *trig; 706 struct iwl_fw_dbg_trigger_ba *ba_trig; 707 708 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, ieee80211_vif_to_wdev(vif), 709 FW_DBG_TRIGGER_BA); 710 if (!trig) 711 return; 712 713 ba_trig = (void *)trig->data; 714 715 if (!(le16_to_cpu(ba_trig->frame_timeout) & BIT(tid))) 716 return; 717 718 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 719 "Frame from %pM timed out, tid %d", 720 sta->addr, tid); 721 } 722 723 u8 iwl_mvm_tcm_load_percentage(u32 airtime, u32 elapsed) 724 { 725 if (!elapsed) 726 return 0; 727 728 return (100 * airtime / elapsed) / USEC_PER_MSEC; 729 } 730 731 static enum iwl_mvm_traffic_load 732 iwl_mvm_tcm_load(struct iwl_mvm *mvm, u32 airtime, unsigned long elapsed) 733 { 734 u8 load = iwl_mvm_tcm_load_percentage(airtime, elapsed); 735 736 if (load > IWL_MVM_TCM_LOAD_HIGH_THRESH) 737 return IWL_MVM_TRAFFIC_HIGH; 738 if (load > IWL_MVM_TCM_LOAD_MEDIUM_THRESH) 739 return IWL_MVM_TRAFFIC_MEDIUM; 740 741 return IWL_MVM_TRAFFIC_LOW; 742 } 743 744 static void iwl_mvm_tcm_iter(void *_data, u8 *mac, struct ieee80211_vif *vif) 745 { 746 struct iwl_mvm *mvm = _data; 747 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 748 bool low_latency, prev = mvmvif->low_latency & LOW_LATENCY_TRAFFIC; 749 750 if (mvmvif->id >= NUM_MAC_INDEX_DRIVER) 751 return; 752 753 low_latency = mvm->tcm.result.low_latency[mvmvif->id]; 754 755 if (!mvm->tcm.result.change[mvmvif->id] && 756 prev == low_latency) { 757 iwl_mvm_update_quotas(mvm, false, NULL); 758 return; 759 } 760 761 if (prev != low_latency) { 762 /* this sends traffic load and updates quota as well */ 763 iwl_mvm_update_low_latency(mvm, vif, low_latency, 764 LOW_LATENCY_TRAFFIC); 765 } else { 766 iwl_mvm_update_quotas(mvm, false, NULL); 767 } 768 } 769 770 static void iwl_mvm_tcm_results(struct iwl_mvm *mvm) 771 { 772 mutex_lock(&mvm->mutex); 773 774 ieee80211_iterate_active_interfaces( 775 mvm->hw, IEEE80211_IFACE_ITER_NORMAL, 776 iwl_mvm_tcm_iter, mvm); 777 778 if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) 779 iwl_mvm_config_scan(mvm); 780 781 mutex_unlock(&mvm->mutex); 782 } 783 784 static void iwl_mvm_tcm_uapsd_nonagg_detected_wk(struct work_struct *wk) 785 { 786 struct iwl_mvm *mvm; 787 struct iwl_mvm_vif *mvmvif; 788 struct ieee80211_vif *vif; 789 790 mvmvif = container_of(wk, struct iwl_mvm_vif, 791 uapsd_nonagg_detected_wk.work); 792 vif = container_of((void *)mvmvif, struct ieee80211_vif, drv_priv); 793 mvm = mvmvif->mvm; 794 795 if (mvm->tcm.data[mvmvif->id].opened_rx_ba_sessions) 796 return; 797 798 /* remember that this AP is broken */ 799 memcpy(mvm->uapsd_noagg_bssids[mvm->uapsd_noagg_bssid_write_idx].addr, 800 vif->bss_conf.bssid, ETH_ALEN); 801 mvm->uapsd_noagg_bssid_write_idx++; 802 if (mvm->uapsd_noagg_bssid_write_idx >= IWL_MVM_UAPSD_NOAGG_LIST_LEN) 803 mvm->uapsd_noagg_bssid_write_idx = 0; 804 805 iwl_mvm_connection_loss(mvm, vif, 806 "AP isn't using AMPDU with uAPSD enabled"); 807 } 808 809 static void iwl_mvm_uapsd_agg_disconnect(struct iwl_mvm *mvm, 810 struct ieee80211_vif *vif) 811 { 812 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 813 814 if (vif->type != NL80211_IFTYPE_STATION) 815 return; 816 817 if (!vif->bss_conf.assoc) 818 return; 819 820 if (!mvmvif->queue_params[IEEE80211_AC_VO].uapsd && 821 !mvmvif->queue_params[IEEE80211_AC_VI].uapsd && 822 !mvmvif->queue_params[IEEE80211_AC_BE].uapsd && 823 !mvmvif->queue_params[IEEE80211_AC_BK].uapsd) 824 return; 825 826 if (mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected) 827 return; 828 829 mvm->tcm.data[mvmvif->id].uapsd_nonagg_detect.detected = true; 830 IWL_INFO(mvm, 831 "detected AP should do aggregation but isn't, likely due to U-APSD\n"); 832 schedule_delayed_work(&mvmvif->uapsd_nonagg_detected_wk, 15 * HZ); 833 } 834 835 static void iwl_mvm_check_uapsd_agg_expected_tpt(struct iwl_mvm *mvm, 836 unsigned int elapsed, 837 int mac) 838 { 839 u64 bytes = mvm->tcm.data[mac].uapsd_nonagg_detect.rx_bytes; 840 u64 tpt; 841 unsigned long rate; 842 struct ieee80211_vif *vif; 843 844 rate = ewma_rate_read(&mvm->tcm.data[mac].uapsd_nonagg_detect.rate); 845 846 if (!rate || mvm->tcm.data[mac].opened_rx_ba_sessions || 847 mvm->tcm.data[mac].uapsd_nonagg_detect.detected) 848 return; 849 850 if (iwl_mvm_has_new_rx_api(mvm)) { 851 tpt = 8 * bytes; /* kbps */ 852 do_div(tpt, elapsed); 853 rate *= 1000; /* kbps */ 854 if (tpt < 22 * rate / 100) 855 return; 856 } else { 857 /* 858 * the rate here is actually the threshold, in 100Kbps units, 859 * so do the needed conversion from bytes to 100Kbps: 860 * 100kb = bits / (100 * 1000), 861 * 100kbps = 100kb / (msecs / 1000) == 862 * (bits / (100 * 1000)) / (msecs / 1000) == 863 * bits / (100 * msecs) 864 */ 865 tpt = (8 * bytes); 866 do_div(tpt, elapsed * 100); 867 if (tpt < rate) 868 return; 869 } 870 871 rcu_read_lock(); 872 vif = rcu_dereference(mvm->vif_id_to_mac[mac]); 873 if (vif) 874 iwl_mvm_uapsd_agg_disconnect(mvm, vif); 875 rcu_read_unlock(); 876 } 877 878 static void iwl_mvm_tcm_iterator(void *_data, u8 *mac, 879 struct ieee80211_vif *vif) 880 { 881 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 882 u32 *band = _data; 883 884 if (!mvmvif->phy_ctxt) 885 return; 886 887 band[mvmvif->id] = mvmvif->phy_ctxt->channel->band; 888 } 889 890 static unsigned long iwl_mvm_calc_tcm_stats(struct iwl_mvm *mvm, 891 unsigned long ts, 892 bool handle_uapsd) 893 { 894 unsigned int elapsed = jiffies_to_msecs(ts - mvm->tcm.ts); 895 unsigned int uapsd_elapsed = 896 jiffies_to_msecs(ts - mvm->tcm.uapsd_nonagg_ts); 897 u32 total_airtime = 0; 898 u32 band_airtime[NUM_NL80211_BANDS] = {0}; 899 u32 band[NUM_MAC_INDEX_DRIVER] = {0}; 900 int ac, mac, i; 901 bool low_latency = false; 902 enum iwl_mvm_traffic_load load, band_load; 903 bool handle_ll = time_after(ts, mvm->tcm.ll_ts + MVM_LL_PERIOD); 904 905 if (handle_ll) 906 mvm->tcm.ll_ts = ts; 907 if (handle_uapsd) 908 mvm->tcm.uapsd_nonagg_ts = ts; 909 910 mvm->tcm.result.elapsed = elapsed; 911 912 ieee80211_iterate_active_interfaces_atomic(mvm->hw, 913 IEEE80211_IFACE_ITER_NORMAL, 914 iwl_mvm_tcm_iterator, 915 &band); 916 917 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 918 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 919 u32 vo_vi_pkts = 0; 920 u32 airtime = mdata->rx.airtime + mdata->tx.airtime; 921 922 total_airtime += airtime; 923 band_airtime[band[mac]] += airtime; 924 925 load = iwl_mvm_tcm_load(mvm, airtime, elapsed); 926 mvm->tcm.result.change[mac] = load != mvm->tcm.result.load[mac]; 927 mvm->tcm.result.load[mac] = load; 928 mvm->tcm.result.airtime[mac] = airtime; 929 930 for (ac = IEEE80211_AC_VO; ac <= IEEE80211_AC_VI; ac++) 931 vo_vi_pkts += mdata->rx.pkts[ac] + 932 mdata->tx.pkts[ac]; 933 934 /* enable immediately with enough packets but defer disabling */ 935 if (vo_vi_pkts > IWL_MVM_TCM_LOWLAT_ENABLE_THRESH) 936 mvm->tcm.result.low_latency[mac] = true; 937 else if (handle_ll) 938 mvm->tcm.result.low_latency[mac] = false; 939 940 if (handle_ll) { 941 /* clear old data */ 942 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 943 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 944 } 945 low_latency |= mvm->tcm.result.low_latency[mac]; 946 947 if (!mvm->tcm.result.low_latency[mac] && handle_uapsd) 948 iwl_mvm_check_uapsd_agg_expected_tpt(mvm, uapsd_elapsed, 949 mac); 950 /* clear old data */ 951 if (handle_uapsd) 952 mdata->uapsd_nonagg_detect.rx_bytes = 0; 953 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 954 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 955 } 956 957 load = iwl_mvm_tcm_load(mvm, total_airtime, elapsed); 958 mvm->tcm.result.global_load = load; 959 960 for (i = 0; i < NUM_NL80211_BANDS; i++) { 961 band_load = iwl_mvm_tcm_load(mvm, band_airtime[i], elapsed); 962 mvm->tcm.result.band_load[i] = band_load; 963 } 964 965 /* 966 * If the current load isn't low we need to force re-evaluation 967 * in the TCM period, so that we can return to low load if there 968 * was no traffic at all (and thus iwl_mvm_recalc_tcm didn't get 969 * triggered by traffic). 970 */ 971 if (load != IWL_MVM_TRAFFIC_LOW) 972 return MVM_TCM_PERIOD; 973 /* 974 * If low-latency is active we need to force re-evaluation after 975 * (the longer) MVM_LL_PERIOD, so that we can disable low-latency 976 * when there's no traffic at all. 977 */ 978 if (low_latency) 979 return MVM_LL_PERIOD; 980 /* 981 * Otherwise, we don't need to run the work struct because we're 982 * in the default "idle" state - traffic indication is low (which 983 * also covers the "no traffic" case) and low-latency is disabled 984 * so there's no state that may need to be disabled when there's 985 * no traffic at all. 986 * 987 * Note that this has no impact on the regular scheduling of the 988 * updates triggered by traffic - those happen whenever one of the 989 * two timeouts expire (if there's traffic at all.) 990 */ 991 return 0; 992 } 993 994 void iwl_mvm_recalc_tcm(struct iwl_mvm *mvm) 995 { 996 unsigned long ts = jiffies; 997 bool handle_uapsd = 998 time_after(ts, mvm->tcm.uapsd_nonagg_ts + 999 msecs_to_jiffies(IWL_MVM_UAPSD_NONAGG_PERIOD)); 1000 1001 spin_lock(&mvm->tcm.lock); 1002 if (mvm->tcm.paused || !time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1003 spin_unlock(&mvm->tcm.lock); 1004 return; 1005 } 1006 spin_unlock(&mvm->tcm.lock); 1007 1008 if (handle_uapsd && iwl_mvm_has_new_rx_api(mvm)) { 1009 mutex_lock(&mvm->mutex); 1010 if (iwl_mvm_request_statistics(mvm, true)) 1011 handle_uapsd = false; 1012 mutex_unlock(&mvm->mutex); 1013 } 1014 1015 spin_lock(&mvm->tcm.lock); 1016 /* re-check if somebody else won the recheck race */ 1017 if (!mvm->tcm.paused && time_after(ts, mvm->tcm.ts + MVM_TCM_PERIOD)) { 1018 /* calculate statistics */ 1019 unsigned long work_delay = iwl_mvm_calc_tcm_stats(mvm, ts, 1020 handle_uapsd); 1021 1022 /* the memset needs to be visible before the timestamp */ 1023 smp_mb(); 1024 mvm->tcm.ts = ts; 1025 if (work_delay) 1026 schedule_delayed_work(&mvm->tcm.work, work_delay); 1027 } 1028 spin_unlock(&mvm->tcm.lock); 1029 1030 iwl_mvm_tcm_results(mvm); 1031 } 1032 1033 void iwl_mvm_tcm_work(struct work_struct *work) 1034 { 1035 struct delayed_work *delayed_work = to_delayed_work(work); 1036 struct iwl_mvm *mvm = container_of(delayed_work, struct iwl_mvm, 1037 tcm.work); 1038 1039 iwl_mvm_recalc_tcm(mvm); 1040 } 1041 1042 void iwl_mvm_pause_tcm(struct iwl_mvm *mvm, bool with_cancel) 1043 { 1044 spin_lock_bh(&mvm->tcm.lock); 1045 mvm->tcm.paused = true; 1046 spin_unlock_bh(&mvm->tcm.lock); 1047 if (with_cancel) 1048 cancel_delayed_work_sync(&mvm->tcm.work); 1049 } 1050 1051 void iwl_mvm_resume_tcm(struct iwl_mvm *mvm) 1052 { 1053 int mac; 1054 bool low_latency = false; 1055 1056 spin_lock_bh(&mvm->tcm.lock); 1057 mvm->tcm.ts = jiffies; 1058 mvm->tcm.ll_ts = jiffies; 1059 for (mac = 0; mac < NUM_MAC_INDEX_DRIVER; mac++) { 1060 struct iwl_mvm_tcm_mac *mdata = &mvm->tcm.data[mac]; 1061 1062 memset(&mdata->rx.pkts, 0, sizeof(mdata->rx.pkts)); 1063 memset(&mdata->tx.pkts, 0, sizeof(mdata->tx.pkts)); 1064 memset(&mdata->rx.airtime, 0, sizeof(mdata->rx.airtime)); 1065 memset(&mdata->tx.airtime, 0, sizeof(mdata->tx.airtime)); 1066 1067 if (mvm->tcm.result.low_latency[mac]) 1068 low_latency = true; 1069 } 1070 /* The TCM data needs to be reset before "paused" flag changes */ 1071 smp_mb(); 1072 mvm->tcm.paused = false; 1073 1074 /* 1075 * if the current load is not low or low latency is active, force 1076 * re-evaluation to cover the case of no traffic. 1077 */ 1078 if (mvm->tcm.result.global_load > IWL_MVM_TRAFFIC_LOW) 1079 schedule_delayed_work(&mvm->tcm.work, MVM_TCM_PERIOD); 1080 else if (low_latency) 1081 schedule_delayed_work(&mvm->tcm.work, MVM_LL_PERIOD); 1082 1083 spin_unlock_bh(&mvm->tcm.lock); 1084 } 1085 1086 void iwl_mvm_tcm_add_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1087 { 1088 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1089 1090 INIT_DELAYED_WORK(&mvmvif->uapsd_nonagg_detected_wk, 1091 iwl_mvm_tcm_uapsd_nonagg_detected_wk); 1092 } 1093 1094 void iwl_mvm_tcm_rm_vif(struct iwl_mvm *mvm, struct ieee80211_vif *vif) 1095 { 1096 struct iwl_mvm_vif *mvmvif = iwl_mvm_vif_from_mac80211(vif); 1097 1098 cancel_delayed_work_sync(&mvmvif->uapsd_nonagg_detected_wk); 1099 } 1100 1101 u32 iwl_mvm_get_systime(struct iwl_mvm *mvm) 1102 { 1103 u32 reg_addr = DEVICE_SYSTEM_TIME_REG; 1104 1105 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_22000 && 1106 mvm->trans->cfg->gp2_reg_addr) 1107 reg_addr = mvm->trans->cfg->gp2_reg_addr; 1108 1109 return iwl_read_prph(mvm->trans, reg_addr); 1110 } 1111 1112 void iwl_mvm_get_sync_time(struct iwl_mvm *mvm, int clock_type, 1113 u32 *gp2, u64 *boottime, ktime_t *realtime) 1114 { 1115 bool ps_disabled; 1116 1117 lockdep_assert_held(&mvm->mutex); 1118 1119 /* Disable power save when reading GP2 */ 1120 ps_disabled = mvm->ps_disabled; 1121 if (!ps_disabled) { 1122 mvm->ps_disabled = true; 1123 iwl_mvm_power_update_device(mvm); 1124 } 1125 1126 *gp2 = iwl_mvm_get_systime(mvm); 1127 1128 if (clock_type == CLOCK_BOOTTIME && boottime) 1129 *boottime = ktime_get_boottime_ns(); 1130 else if (clock_type == CLOCK_REALTIME && realtime) 1131 *realtime = ktime_get_real(); 1132 1133 if (!ps_disabled) { 1134 mvm->ps_disabled = ps_disabled; 1135 iwl_mvm_power_update_device(mvm); 1136 } 1137 } 1138