1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #if defined(__FreeBSD__) 10 #include <net/ieee80211_radiotap.h> 11 #endif 12 #include "iwl-trans.h" 13 #include "mvm.h" 14 #include "fw-api.h" 15 #include "time-sync.h" 16 17 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 18 int queue, struct ieee80211_sta *sta) 19 { 20 struct iwl_mvm_sta *mvmsta; 21 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 22 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 23 struct iwl_mvm_key_pn *ptk_pn; 24 int res; 25 u8 tid, keyidx; 26 u8 pn[IEEE80211_CCMP_PN_LEN]; 27 u8 *extiv; 28 29 /* do PN checking */ 30 31 /* multicast and non-data only arrives on default queue */ 32 if (!ieee80211_is_data(hdr->frame_control) || 33 is_multicast_ether_addr(hdr->addr1)) 34 return 0; 35 36 /* do not check PN for open AP */ 37 if (!(stats->flag & RX_FLAG_DECRYPTED)) 38 return 0; 39 40 /* 41 * avoid checking for default queue - we don't want to replicate 42 * all the logic that's necessary for checking the PN on fragmented 43 * frames, leave that to mac80211 44 */ 45 if (queue == 0) 46 return 0; 47 48 /* if we are here - this for sure is either CCMP or GCMP */ 49 if (IS_ERR_OR_NULL(sta)) { 50 IWL_DEBUG_DROP(mvm, 51 "expected hw-decrypted unicast frame for station\n"); 52 return -1; 53 } 54 55 mvmsta = iwl_mvm_sta_from_mac80211(sta); 56 57 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 58 keyidx = extiv[3] >> 6; 59 60 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 61 if (!ptk_pn) 62 return -1; 63 64 if (ieee80211_is_data_qos(hdr->frame_control)) 65 tid = ieee80211_get_tid(hdr); 66 else 67 tid = 0; 68 69 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 70 if (tid >= IWL_MAX_TID_COUNT) 71 return -1; 72 73 /* load pn */ 74 pn[0] = extiv[7]; 75 pn[1] = extiv[6]; 76 pn[2] = extiv[5]; 77 pn[3] = extiv[4]; 78 pn[4] = extiv[1]; 79 pn[5] = extiv[0]; 80 81 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 82 if (res < 0) 83 return -1; 84 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 85 return -1; 86 87 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 88 stats->flag |= RX_FLAG_PN_VALIDATED; 89 90 return 0; 91 } 92 93 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 94 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 95 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 96 struct iwl_rx_cmd_buffer *rxb) 97 { 98 struct iwl_rx_packet *pkt = rxb_addr(rxb); 99 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 100 unsigned int headlen, fraglen, pad_len = 0; 101 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 102 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 103 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 104 105 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 106 len -= 2; 107 pad_len = 2; 108 } 109 110 /* 111 * For non monitor interface strip the bytes the RADA might not have 112 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 113 * interface cannot exist with other interfaces, this removal is safe 114 * and sufficient, in monitor mode there's no decryption being done. 115 */ 116 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 117 len -= mic_crc_len; 118 119 /* If frame is small enough to fit in skb->head, pull it completely. 120 * If not, only pull ieee80211_hdr (including crypto if present, and 121 * an additional 8 bytes for SNAP/ethertype, see below) so that 122 * splice() or TCP coalesce are more efficient. 123 * 124 * Since, in addition, ieee80211_data_to_8023() always pull in at 125 * least 8 bytes (possibly more for mesh) we can do the same here 126 * to save the cost of doing it later. That still doesn't pull in 127 * the actual IP header since the typical case has a SNAP header. 128 * If the latter changes (there are efforts in the standards group 129 * to do so) we should revisit this and ieee80211_data_to_8023(). 130 */ 131 headlen = (len <= skb_tailroom(skb)) ? len : 132 hdrlen + crypt_len + 8; 133 134 /* The firmware may align the packet to DWORD. 135 * The padding is inserted after the IV. 136 * After copying the header + IV skip the padding if 137 * present before copying packet data. 138 */ 139 hdrlen += crypt_len; 140 141 if (unlikely(headlen < hdrlen)) 142 return -EINVAL; 143 144 /* Since data doesn't move data while putting data on skb and that is 145 * the only way we use, data + len is the next place that hdr would be put 146 */ 147 skb_set_mac_header(skb, skb->len); 148 skb_put_data(skb, hdr, hdrlen); 149 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 150 151 /* 152 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 153 * certain cases and starts the checksum after the SNAP. Check if 154 * this is the case - it's easier to just bail out to CHECKSUM_NONE 155 * in the cases the hardware didn't handle, since it's rare to see 156 * such packets, even though the hardware did calculate the checksum 157 * in this case, just starting after the MAC header instead. 158 * 159 * Starting from Bz hardware, it calculates starting directly after 160 * the MAC header, so that matches mac80211's expectation. 161 */ 162 if (skb->ip_summed == CHECKSUM_COMPLETE) { 163 struct { 164 u8 hdr[6]; 165 __be16 type; 166 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 167 168 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 169 !ether_addr_equal(shdr->hdr, rfc1042_header) || 170 (shdr->type != htons(ETH_P_IP) && 171 shdr->type != htons(ETH_P_ARP) && 172 shdr->type != htons(ETH_P_IPV6) && 173 shdr->type != htons(ETH_P_8021Q) && 174 shdr->type != htons(ETH_P_PAE) && 175 shdr->type != htons(ETH_P_TDLS)))) 176 skb->ip_summed = CHECKSUM_NONE; 177 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 178 /* mac80211 assumes full CSUM including SNAP header */ 179 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 180 } 181 182 fraglen = len - headlen; 183 184 if (fraglen) { 185 int offset = (u8 *)hdr + headlen + pad_len - 186 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 187 188 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 189 fraglen, rxb->truesize); 190 } 191 192 return 0; 193 } 194 195 /* put a TLV on the skb and return data pointer 196 * 197 * Also pad to 4 the len and zero out all data part 198 */ 199 static void * 200 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 201 { 202 struct ieee80211_radiotap_tlv *tlv; 203 204 tlv = skb_put(skb, sizeof(*tlv)); 205 tlv->type = cpu_to_le16(type); 206 tlv->len = cpu_to_le16(len); 207 return skb_put_zero(skb, ALIGN(len, 4)); 208 } 209 210 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 211 struct sk_buff *skb) 212 { 213 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 214 struct ieee80211_radiotap_vendor_content *radiotap; 215 const u16 vendor_data_len = sizeof(mvm->cur_aid); 216 217 if (!mvm->cur_aid) 218 return; 219 220 radiotap = iwl_mvm_radiotap_put_tlv(skb, 221 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 222 sizeof(*radiotap) + vendor_data_len); 223 224 /* Intel OUI */ 225 radiotap->oui[0] = 0xf6; 226 radiotap->oui[1] = 0x54; 227 radiotap->oui[2] = 0x25; 228 /* radiotap sniffer config sub-namespace */ 229 radiotap->oui_subtype = 1; 230 radiotap->vendor_type = 0; 231 232 /* fill the data now */ 233 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 234 235 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 236 } 237 238 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 239 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 240 struct napi_struct *napi, 241 struct sk_buff *skb, int queue, 242 struct ieee80211_sta *sta, 243 struct ieee80211_link_sta *link_sta) 244 { 245 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 246 kfree_skb(skb); 247 return; 248 } 249 250 if (sta && sta->valid_links && link_sta) { 251 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 252 253 rx_status->link_valid = 1; 254 rx_status->link_id = link_sta->link_id; 255 } 256 257 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 258 } 259 260 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 261 struct ieee80211_rx_status *rx_status, 262 u32 rate_n_flags, int energy_a, 263 int energy_b) 264 { 265 int max_energy; 266 u32 rate_flags = rate_n_flags; 267 268 energy_a = energy_a ? -energy_a : S8_MIN; 269 energy_b = energy_b ? -energy_b : S8_MIN; 270 max_energy = max(energy_a, energy_b); 271 272 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 273 energy_a, energy_b, max_energy); 274 275 rx_status->signal = max_energy; 276 rx_status->chains = 277 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 278 rx_status->chain_signal[0] = energy_a; 279 rx_status->chain_signal[1] = energy_b; 280 } 281 282 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 283 struct ieee80211_hdr *hdr, 284 struct iwl_rx_mpdu_desc *desc, 285 u32 status, 286 struct ieee80211_rx_status *stats) 287 { 288 struct iwl_mvm_sta *mvmsta; 289 struct iwl_mvm_vif *mvmvif; 290 u8 keyid; 291 struct ieee80211_key_conf *key; 292 u32 len = le16_to_cpu(desc->mpdu_len); 293 const u8 *frame = (void *)hdr; 294 295 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 296 return 0; 297 298 /* 299 * For non-beacon, we don't really care. But beacons may 300 * be filtered out, and we thus need the firmware's replay 301 * detection, otherwise beacons the firmware previously 302 * filtered could be replayed, or something like that, and 303 * it can filter a lot - though usually only if nothing has 304 * changed. 305 */ 306 if (!ieee80211_is_beacon(hdr->frame_control)) 307 return 0; 308 309 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 310 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 311 return -1; 312 313 /* good cases */ 314 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 315 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 316 stats->flag |= RX_FLAG_DECRYPTED; 317 return 0; 318 } 319 320 if (!sta) 321 return -1; 322 323 mvmsta = iwl_mvm_sta_from_mac80211(sta); 324 325 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 326 327 /* 328 * both keys will have the same cipher and MIC length, use 329 * whichever one is available 330 */ 331 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 332 if (!key) { 333 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 334 if (!key) 335 return -1; 336 } 337 338 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 339 return -1; 340 341 /* get the real key ID */ 342 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 343 /* and if that's the other key, look it up */ 344 if (keyid != key->keyidx) { 345 /* 346 * shouldn't happen since firmware checked, but be safe 347 * in case the MIC length is wrong too, for example 348 */ 349 if (keyid != 6 && keyid != 7) 350 return -1; 351 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 352 if (!key) 353 return -1; 354 } 355 356 /* Report status to mac80211 */ 357 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 358 ieee80211_key_mic_failure(key); 359 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 360 ieee80211_key_replay(key); 361 362 return -1; 363 } 364 365 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 366 struct ieee80211_hdr *hdr, 367 struct ieee80211_rx_status *stats, u16 phy_info, 368 struct iwl_rx_mpdu_desc *desc, 369 u32 pkt_flags, int queue, u8 *crypt_len) 370 { 371 u32 status = le32_to_cpu(desc->status); 372 373 /* 374 * Drop UNKNOWN frames in aggregation, unless in monitor mode 375 * (where we don't have the keys). 376 * We limit this to aggregation because in TKIP this is a valid 377 * scenario, since we may not have the (correct) TTAK (phase 1 378 * key) in the firmware. 379 */ 380 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 381 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 382 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 383 return -1; 384 385 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 386 !ieee80211_has_protected(hdr->frame_control))) 387 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 388 389 if (!ieee80211_has_protected(hdr->frame_control) || 390 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 391 IWL_RX_MPDU_STATUS_SEC_NONE) 392 return 0; 393 394 /* TODO: handle packets encrypted with unknown alg */ 395 #if defined(__FreeBSD__) 396 /* XXX-BZ do similar to rx.c for now as these are plenty. */ 397 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 398 IWL_RX_MPDU_STATUS_SEC_ENC_ERR) 399 return (0); 400 #endif 401 402 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 403 case IWL_RX_MPDU_STATUS_SEC_CCM: 404 case IWL_RX_MPDU_STATUS_SEC_GCM: 405 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 406 /* alg is CCM: check MIC only */ 407 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 408 return -1; 409 410 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 411 *crypt_len = IEEE80211_CCMP_HDR_LEN; 412 return 0; 413 case IWL_RX_MPDU_STATUS_SEC_TKIP: 414 /* Don't drop the frame and decrypt it in SW */ 415 if (!fw_has_api(&mvm->fw->ucode_capa, 416 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 417 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 418 return 0; 419 420 if (mvm->trans->trans_cfg->gen2 && 421 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 422 stats->flag |= RX_FLAG_MMIC_ERROR; 423 424 *crypt_len = IEEE80211_TKIP_IV_LEN; 425 fallthrough; 426 case IWL_RX_MPDU_STATUS_SEC_WEP: 427 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 428 return -1; 429 430 stats->flag |= RX_FLAG_DECRYPTED; 431 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 432 IWL_RX_MPDU_STATUS_SEC_WEP) 433 *crypt_len = IEEE80211_WEP_IV_LEN; 434 435 if (pkt_flags & FH_RSCSR_RADA_EN) { 436 stats->flag |= RX_FLAG_ICV_STRIPPED; 437 if (mvm->trans->trans_cfg->gen2) 438 stats->flag |= RX_FLAG_MMIC_STRIPPED; 439 } 440 441 return 0; 442 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 443 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 444 return -1; 445 stats->flag |= RX_FLAG_DECRYPTED; 446 return 0; 447 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 448 break; 449 default: 450 /* 451 * Sometimes we can get frames that were not decrypted 452 * because the firmware didn't have the keys yet. This can 453 * happen after connection where we can get multicast frames 454 * before the GTK is installed. 455 * Silently drop those frames. 456 * Also drop un-decrypted frames in monitor mode. 457 */ 458 if (!is_multicast_ether_addr(hdr->addr1) && 459 !mvm->monitor_on && net_ratelimit()) 460 #if defined(__linux__) 461 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 462 #elif defined(__FreeBSD__) 463 IWL_WARN(mvm, "%s: Unhandled alg: 0x%x\n", __func__, status); 464 #endif 465 } 466 467 return 0; 468 } 469 470 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 471 struct ieee80211_sta *sta, 472 struct sk_buff *skb, 473 struct iwl_rx_packet *pkt) 474 { 475 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 476 477 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 478 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 479 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 480 481 skb->ip_summed = CHECKSUM_COMPLETE; 482 skb->csum = csum_unfold(~(__force __sum16)hwsum); 483 } 484 } else { 485 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 486 struct iwl_mvm_vif *mvmvif; 487 u16 flags = le16_to_cpu(desc->l3l4_flags); 488 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 489 IWL_RX_L3_PROTO_POS); 490 491 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 492 493 if (mvmvif->features & NETIF_F_RXCSUM && 494 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 495 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 496 l3_prot == IWL_RX_L3_TYPE_IPV6 || 497 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 498 skb->ip_summed = CHECKSUM_UNNECESSARY; 499 } 500 } 501 502 /* 503 * returns true if a packet is a duplicate or invalid tid and should be dropped. 504 * Updates AMSDU PN tracking info 505 */ 506 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 507 struct ieee80211_rx_status *rx_status, 508 struct ieee80211_hdr *hdr, 509 struct iwl_rx_mpdu_desc *desc) 510 { 511 struct iwl_mvm_sta *mvm_sta; 512 struct iwl_mvm_rxq_dup_data *dup_data; 513 u8 tid, sub_frame_idx; 514 515 if (WARN_ON(IS_ERR_OR_NULL(sta))) 516 return false; 517 518 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 519 #if defined(__FreeBSD__) 520 if (WARN_ON(mvm_sta->dup_data == NULL)) 521 return false; 522 #endif 523 dup_data = &mvm_sta->dup_data[queue]; 524 525 /* 526 * Drop duplicate 802.11 retransmissions 527 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 528 */ 529 if (ieee80211_is_ctl(hdr->frame_control) || 530 ieee80211_is_qos_nullfunc(hdr->frame_control) || 531 is_multicast_ether_addr(hdr->addr1)) { 532 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 533 return false; 534 } 535 536 if (ieee80211_is_data_qos(hdr->frame_control)) { 537 /* frame has qos control */ 538 tid = ieee80211_get_tid(hdr); 539 if (tid >= IWL_MAX_TID_COUNT) 540 return true; 541 } else { 542 tid = IWL_MAX_TID_COUNT; 543 } 544 545 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 546 sub_frame_idx = desc->amsdu_info & 547 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 548 549 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 550 dup_data->last_seq[tid] == hdr->seq_ctrl && 551 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 552 return true; 553 554 /* Allow same PN as the first subframe for following sub frames */ 555 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 556 sub_frame_idx > dup_data->last_sub_frame[tid] && 557 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 558 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 559 560 dup_data->last_seq[tid] = hdr->seq_ctrl; 561 dup_data->last_sub_frame[tid] = sub_frame_idx; 562 563 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 564 565 return false; 566 } 567 568 /* 569 * Returns true if sn2 - buffer_size < sn1 < sn2. 570 * To be used only in order to compare reorder buffer head with NSSN. 571 * We fully trust NSSN unless it is behind us due to reorder timeout. 572 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 573 */ 574 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 575 { 576 return ieee80211_sn_less(sn1, sn2) && 577 !ieee80211_sn_less(sn1, sn2 - buffer_size); 578 } 579 580 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 581 { 582 if (IWL_MVM_USE_NSSN_SYNC) { 583 struct iwl_mvm_nssn_sync_data notif = { 584 .baid = baid, 585 .nssn = nssn, 586 }; 587 588 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 589 ¬if, sizeof(notif)); 590 } 591 } 592 593 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 594 595 enum iwl_mvm_release_flags { 596 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 597 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 598 }; 599 600 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 601 struct ieee80211_sta *sta, 602 struct napi_struct *napi, 603 struct iwl_mvm_baid_data *baid_data, 604 struct iwl_mvm_reorder_buffer *reorder_buf, 605 u16 nssn, u32 flags) 606 { 607 struct iwl_mvm_reorder_buf_entry *entries = 608 &baid_data->entries[reorder_buf->queue * 609 baid_data->entries_per_queue]; 610 u16 ssn = reorder_buf->head_sn; 611 612 lockdep_assert_held(&reorder_buf->lock); 613 614 /* 615 * We keep the NSSN not too far behind, if we are sync'ing it and it 616 * is more than 2048 ahead of us, it must be behind us. Discard it. 617 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 618 * behind and this queue already processed packets. The next if 619 * would have caught cases where this queue would have processed less 620 * than 64 packets, but it may have processed more than 64 packets. 621 */ 622 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 623 ieee80211_sn_less(nssn, ssn)) 624 goto set_timer; 625 626 /* ignore nssn smaller than head sn - this can happen due to timeout */ 627 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 628 goto set_timer; 629 630 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 631 int index = ssn % reorder_buf->buf_size; 632 struct sk_buff_head *skb_list = &entries[index].e.frames; 633 struct sk_buff *skb; 634 635 ssn = ieee80211_sn_inc(ssn); 636 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 637 (ssn == 2048 || ssn == 0)) 638 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 639 640 /* 641 * Empty the list. Will have more than one frame for A-MSDU. 642 * Empty list is valid as well since nssn indicates frames were 643 * received. 644 */ 645 while ((skb = __skb_dequeue(skb_list))) { 646 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 647 reorder_buf->queue, 648 sta, NULL /* FIXME */); 649 reorder_buf->num_stored--; 650 } 651 } 652 reorder_buf->head_sn = nssn; 653 654 set_timer: 655 if (reorder_buf->num_stored && !reorder_buf->removed) { 656 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 657 658 while (skb_queue_empty(&entries[index].e.frames)) 659 index = (index + 1) % reorder_buf->buf_size; 660 /* modify timer to match next frame's expiration time */ 661 mod_timer(&reorder_buf->reorder_timer, 662 entries[index].e.reorder_time + 1 + 663 RX_REORDER_BUF_TIMEOUT_MQ); 664 } else { 665 del_timer(&reorder_buf->reorder_timer); 666 } 667 } 668 669 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 670 { 671 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 672 struct iwl_mvm_baid_data *baid_data = 673 iwl_mvm_baid_data_from_reorder_buf(buf); 674 struct iwl_mvm_reorder_buf_entry *entries = 675 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 676 int i; 677 u16 sn = 0, index = 0; 678 bool expired = false; 679 bool cont = false; 680 681 spin_lock(&buf->lock); 682 683 if (!buf->num_stored || buf->removed) { 684 spin_unlock(&buf->lock); 685 return; 686 } 687 688 for (i = 0; i < buf->buf_size ; i++) { 689 index = (buf->head_sn + i) % buf->buf_size; 690 691 if (skb_queue_empty(&entries[index].e.frames)) { 692 /* 693 * If there is a hole and the next frame didn't expire 694 * we want to break and not advance SN 695 */ 696 cont = false; 697 continue; 698 } 699 if (!cont && 700 !time_after(jiffies, entries[index].e.reorder_time + 701 RX_REORDER_BUF_TIMEOUT_MQ)) 702 break; 703 704 expired = true; 705 /* continue until next hole after this expired frames */ 706 cont = true; 707 sn = ieee80211_sn_add(buf->head_sn, i + 1); 708 } 709 710 if (expired) { 711 struct ieee80211_sta *sta; 712 struct iwl_mvm_sta *mvmsta; 713 u8 sta_id = ffs(baid_data->sta_mask) - 1; 714 715 rcu_read_lock(); 716 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 717 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { 718 rcu_read_unlock(); 719 goto out; 720 } 721 722 mvmsta = iwl_mvm_sta_from_mac80211(sta); 723 724 /* SN is set to the last expired frame + 1 */ 725 IWL_DEBUG_HT(buf->mvm, 726 "Releasing expired frames for sta %u, sn %d\n", 727 sta_id, sn); 728 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 729 sta, baid_data->tid); 730 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 731 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 732 rcu_read_unlock(); 733 } else { 734 /* 735 * If no frame expired and there are stored frames, index is now 736 * pointing to the first unexpired frame - modify timer 737 * accordingly to this frame. 738 */ 739 mod_timer(&buf->reorder_timer, 740 entries[index].e.reorder_time + 741 1 + RX_REORDER_BUF_TIMEOUT_MQ); 742 } 743 744 out: 745 spin_unlock(&buf->lock); 746 } 747 748 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 749 struct iwl_mvm_delba_data *data) 750 { 751 struct iwl_mvm_baid_data *ba_data; 752 struct ieee80211_sta *sta; 753 struct iwl_mvm_reorder_buffer *reorder_buf; 754 u8 baid = data->baid; 755 u32 sta_id; 756 757 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 758 return; 759 760 rcu_read_lock(); 761 762 ba_data = rcu_dereference(mvm->baid_map[baid]); 763 if (WARN_ON_ONCE(!ba_data)) 764 goto out; 765 766 /* pick any STA ID to find the pointer */ 767 sta_id = ffs(ba_data->sta_mask) - 1; 768 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 769 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 770 goto out; 771 772 reorder_buf = &ba_data->reorder_buf[queue]; 773 774 /* release all frames that are in the reorder buffer to the stack */ 775 spin_lock_bh(&reorder_buf->lock); 776 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 777 ieee80211_sn_add(reorder_buf->head_sn, 778 reorder_buf->buf_size), 779 0); 780 spin_unlock_bh(&reorder_buf->lock); 781 del_timer_sync(&reorder_buf->reorder_timer); 782 783 out: 784 rcu_read_unlock(); 785 } 786 787 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 788 struct napi_struct *napi, 789 u8 baid, u16 nssn, int queue, 790 u32 flags) 791 { 792 struct ieee80211_sta *sta; 793 struct iwl_mvm_reorder_buffer *reorder_buf; 794 struct iwl_mvm_baid_data *ba_data; 795 u32 sta_id; 796 797 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 798 baid, nssn); 799 800 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 801 baid >= ARRAY_SIZE(mvm->baid_map))) 802 return; 803 804 rcu_read_lock(); 805 806 ba_data = rcu_dereference(mvm->baid_map[baid]); 807 if (!ba_data) { 808 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 809 "BAID %d not found in map\n", baid); 810 goto out; 811 } 812 813 /* pick any STA ID to find the pointer */ 814 sta_id = ffs(ba_data->sta_mask) - 1; 815 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 816 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 817 goto out; 818 819 reorder_buf = &ba_data->reorder_buf[queue]; 820 821 spin_lock_bh(&reorder_buf->lock); 822 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 823 reorder_buf, nssn, flags); 824 spin_unlock_bh(&reorder_buf->lock); 825 826 out: 827 rcu_read_unlock(); 828 } 829 830 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 831 struct napi_struct *napi, int queue, 832 const struct iwl_mvm_nssn_sync_data *data) 833 { 834 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 835 data->nssn, queue, 836 IWL_MVM_RELEASE_FROM_RSS_SYNC); 837 } 838 839 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 840 struct iwl_rx_cmd_buffer *rxb, int queue) 841 { 842 struct iwl_rx_packet *pkt = rxb_addr(rxb); 843 struct iwl_rxq_sync_notification *notif; 844 struct iwl_mvm_internal_rxq_notif *internal_notif; 845 u32 len = iwl_rx_packet_payload_len(pkt); 846 847 notif = (void *)pkt->data; 848 internal_notif = (void *)notif->payload; 849 850 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 851 "invalid notification size %d (%d)", 852 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 853 return; 854 len -= sizeof(*notif) + sizeof(*internal_notif); 855 856 if (internal_notif->sync && 857 mvm->queue_sync_cookie != internal_notif->cookie) { 858 WARN_ONCE(1, "Received expired RX queue sync message\n"); 859 return; 860 } 861 862 switch (internal_notif->type) { 863 case IWL_MVM_RXQ_EMPTY: 864 WARN_ONCE(len, "invalid empty notification size %d", len); 865 break; 866 case IWL_MVM_RXQ_NOTIF_DEL_BA: 867 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 868 "invalid delba notification size %d (%d)", 869 len, (int)sizeof(struct iwl_mvm_delba_data))) 870 break; 871 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 872 break; 873 case IWL_MVM_RXQ_NSSN_SYNC: 874 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 875 "invalid nssn sync notification size %d (%d)", 876 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 877 break; 878 iwl_mvm_nssn_sync(mvm, napi, queue, 879 (void *)internal_notif->data); 880 break; 881 default: 882 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 883 } 884 885 if (internal_notif->sync) { 886 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 887 "queue sync: queue %d responded a second time!\n", 888 queue); 889 if (READ_ONCE(mvm->queue_sync_state) == 0) 890 wake_up(&mvm->rx_sync_waitq); 891 } 892 } 893 894 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 895 struct ieee80211_sta *sta, int tid, 896 struct iwl_mvm_reorder_buffer *buffer, 897 u32 reorder, u32 gp2, int queue) 898 { 899 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 900 901 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 902 /* we have a new (A-)MPDU ... */ 903 904 /* 905 * reset counter to 0 if we didn't have any oldsn in 906 * the last A-MPDU (as detected by GP2 being identical) 907 */ 908 if (!buffer->consec_oldsn_prev_drop) 909 buffer->consec_oldsn_drops = 0; 910 911 /* either way, update our tracking state */ 912 buffer->consec_oldsn_ampdu_gp2 = gp2; 913 } else if (buffer->consec_oldsn_prev_drop) { 914 /* 915 * tracking state didn't change, and we had an old SN 916 * indication before - do nothing in this case, we 917 * already noted this one down and are waiting for the 918 * next A-MPDU (by GP2) 919 */ 920 return; 921 } 922 923 /* return unless this MPDU has old SN */ 924 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 925 return; 926 927 /* update state */ 928 buffer->consec_oldsn_prev_drop = 1; 929 buffer->consec_oldsn_drops++; 930 931 /* if limit is reached, send del BA and reset state */ 932 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 933 IWL_WARN(mvm, 934 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 935 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 936 sta->addr, queue, tid); 937 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 938 buffer->consec_oldsn_prev_drop = 0; 939 buffer->consec_oldsn_drops = 0; 940 } 941 } 942 943 /* 944 * Returns true if the MPDU was buffered\dropped, false if it should be passed 945 * to upper layer. 946 */ 947 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 948 struct napi_struct *napi, 949 int queue, 950 struct ieee80211_sta *sta, 951 struct sk_buff *skb, 952 struct iwl_rx_mpdu_desc *desc) 953 { 954 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 955 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 956 struct iwl_mvm_baid_data *baid_data; 957 struct iwl_mvm_reorder_buffer *buffer; 958 struct sk_buff *tail; 959 u32 reorder = le32_to_cpu(desc->reorder_data); 960 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 961 bool last_subframe = 962 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 963 #if defined(__linux__) 964 u8 tid = ieee80211_get_tid(hdr); 965 #elif defined(__FreeBSD__) 966 u8 tid; 967 #endif 968 u8 sub_frame_idx = desc->amsdu_info & 969 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 970 struct iwl_mvm_reorder_buf_entry *entries; 971 u32 sta_mask; 972 int index; 973 u16 nssn, sn; 974 u8 baid; 975 976 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 977 IWL_RX_MPDU_REORDER_BAID_SHIFT; 978 979 /* 980 * This also covers the case of receiving a Block Ack Request 981 * outside a BA session; we'll pass it to mac80211 and that 982 * then sends a delBA action frame. 983 * This also covers pure monitor mode, in which case we won't 984 * have any BA sessions. 985 */ 986 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 987 return false; 988 989 /* no sta yet */ 990 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 991 "Got valid BAID without a valid station assigned\n")) 992 return false; 993 994 /* not a data packet or a bar */ 995 if (!ieee80211_is_back_req(hdr->frame_control) && 996 (!ieee80211_is_data_qos(hdr->frame_control) || 997 is_multicast_ether_addr(hdr->addr1))) 998 return false; 999 1000 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 1001 return false; 1002 1003 baid_data = rcu_dereference(mvm->baid_map[baid]); 1004 if (!baid_data) { 1005 IWL_DEBUG_RX(mvm, 1006 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1007 baid, reorder); 1008 return false; 1009 } 1010 1011 #if defined(__FreeBSD__) 1012 tid = ieee80211_get_tid(hdr); 1013 #endif 1014 rcu_read_lock(); 1015 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 1016 rcu_read_unlock(); 1017 1018 if (IWL_FW_CHECK(mvm, 1019 tid != baid_data->tid || 1020 !(sta_mask & baid_data->sta_mask), 1021 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 1022 baid, baid_data->sta_mask, baid_data->tid, 1023 sta_mask, tid)) 1024 return false; 1025 1026 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1027 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1028 IWL_RX_MPDU_REORDER_SN_SHIFT; 1029 1030 buffer = &baid_data->reorder_buf[queue]; 1031 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1032 1033 spin_lock_bh(&buffer->lock); 1034 1035 if (!buffer->valid) { 1036 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1037 spin_unlock_bh(&buffer->lock); 1038 return false; 1039 } 1040 buffer->valid = true; 1041 } 1042 1043 if (ieee80211_is_back_req(hdr->frame_control)) { 1044 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1045 buffer, nssn, 0); 1046 goto drop; 1047 } 1048 1049 /* 1050 * If there was a significant jump in the nssn - adjust. 1051 * If the SN is smaller than the NSSN it might need to first go into 1052 * the reorder buffer, in which case we just release up to it and the 1053 * rest of the function will take care of storing it and releasing up to 1054 * the nssn. 1055 * This should not happen. This queue has been lagging and it should 1056 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1057 * and update the other queues. 1058 */ 1059 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1060 buffer->buf_size) || 1061 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1062 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1063 1064 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1065 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1066 } 1067 1068 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1069 rx_status->device_timestamp, queue); 1070 1071 /* drop any oudated packets */ 1072 if (ieee80211_sn_less(sn, buffer->head_sn)) 1073 goto drop; 1074 1075 /* release immediately if allowed by nssn and no stored frames */ 1076 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1077 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1078 buffer->buf_size) && 1079 (!amsdu || last_subframe)) { 1080 /* 1081 * If we crossed the 2048 or 0 SN, notify all the 1082 * queues. This is done in order to avoid having a 1083 * head_sn that lags behind for too long. When that 1084 * happens, we can get to a situation where the head_sn 1085 * is within the interval [nssn - buf_size : nssn] 1086 * which will make us think that the nssn is a packet 1087 * that we already freed because of the reordering 1088 * buffer and we will ignore it. So maintain the 1089 * head_sn somewhat updated across all the queues: 1090 * when it crosses 0 and 2048. 1091 */ 1092 if (sn == 2048 || sn == 0) 1093 iwl_mvm_sync_nssn(mvm, baid, sn); 1094 buffer->head_sn = nssn; 1095 } 1096 /* No need to update AMSDU last SN - we are moving the head */ 1097 spin_unlock_bh(&buffer->lock); 1098 return false; 1099 } 1100 1101 /* 1102 * release immediately if there are no stored frames, and the sn is 1103 * equal to the head. 1104 * This can happen due to reorder timer, where NSSN is behind head_sn. 1105 * When we released everything, and we got the next frame in the 1106 * sequence, according to the NSSN we can't release immediately, 1107 * while technically there is no hole and we can move forward. 1108 */ 1109 if (!buffer->num_stored && sn == buffer->head_sn) { 1110 if (!amsdu || last_subframe) { 1111 if (sn == 2048 || sn == 0) 1112 iwl_mvm_sync_nssn(mvm, baid, sn); 1113 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1114 } 1115 /* No need to update AMSDU last SN - we are moving the head */ 1116 spin_unlock_bh(&buffer->lock); 1117 return false; 1118 } 1119 1120 index = sn % buffer->buf_size; 1121 1122 /* 1123 * Check if we already stored this frame 1124 * As AMSDU is either received or not as whole, logic is simple: 1125 * If we have frames in that position in the buffer and the last frame 1126 * originated from AMSDU had a different SN then it is a retransmission. 1127 * If it is the same SN then if the subframe index is incrementing it 1128 * is the same AMSDU - otherwise it is a retransmission. 1129 */ 1130 tail = skb_peek_tail(&entries[index].e.frames); 1131 if (tail && !amsdu) 1132 goto drop; 1133 else if (tail && (sn != buffer->last_amsdu || 1134 buffer->last_sub_index >= sub_frame_idx)) 1135 goto drop; 1136 1137 /* put in reorder buffer */ 1138 __skb_queue_tail(&entries[index].e.frames, skb); 1139 buffer->num_stored++; 1140 entries[index].e.reorder_time = jiffies; 1141 1142 if (amsdu) { 1143 buffer->last_amsdu = sn; 1144 buffer->last_sub_index = sub_frame_idx; 1145 } 1146 1147 /* 1148 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1149 * The reason is that NSSN advances on the first sub-frame, and may 1150 * cause the reorder buffer to advance before all the sub-frames arrive. 1151 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1152 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1153 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1154 * already ahead and it will be dropped. 1155 * If the last sub-frame is not on this queue - we will get frame 1156 * release notification with up to date NSSN. 1157 */ 1158 if (!amsdu || last_subframe) 1159 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1160 buffer, nssn, 1161 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1162 1163 spin_unlock_bh(&buffer->lock); 1164 return true; 1165 1166 drop: 1167 kfree_skb(skb); 1168 spin_unlock_bh(&buffer->lock); 1169 return true; 1170 } 1171 1172 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1173 u32 reorder_data, u8 baid) 1174 { 1175 unsigned long now = jiffies; 1176 unsigned long timeout; 1177 struct iwl_mvm_baid_data *data; 1178 1179 rcu_read_lock(); 1180 1181 data = rcu_dereference(mvm->baid_map[baid]); 1182 if (!data) { 1183 IWL_DEBUG_RX(mvm, 1184 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1185 baid, reorder_data); 1186 goto out; 1187 } 1188 1189 if (!data->timeout) 1190 goto out; 1191 1192 timeout = data->timeout; 1193 /* 1194 * Do not update last rx all the time to avoid cache bouncing 1195 * between the rx queues. 1196 * Update it every timeout. Worst case is the session will 1197 * expire after ~ 2 * timeout, which doesn't matter that much. 1198 */ 1199 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1200 /* Update is atomic */ 1201 data->last_rx = now; 1202 1203 out: 1204 rcu_read_unlock(); 1205 } 1206 1207 static void iwl_mvm_flip_address(u8 *addr) 1208 { 1209 int i; 1210 u8 mac_addr[ETH_ALEN]; 1211 1212 for (i = 0; i < ETH_ALEN; i++) 1213 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1214 ether_addr_copy(addr, mac_addr); 1215 } 1216 1217 struct iwl_mvm_rx_phy_data { 1218 enum iwl_rx_phy_info_type info_type; 1219 __le32 d0, d1, d2, d3, eht_d4, d5; 1220 __le16 d4; 1221 bool with_data; 1222 bool first_subframe; 1223 __le32 rx_vec[4]; 1224 1225 u32 rate_n_flags; 1226 u32 gp2_on_air_rise; 1227 u16 phy_info; 1228 u8 energy_a, energy_b; 1229 u8 channel; 1230 }; 1231 1232 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1233 struct iwl_mvm_rx_phy_data *phy_data, 1234 struct ieee80211_radiotap_he_mu *he_mu) 1235 { 1236 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1237 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1238 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1239 u32 rate_n_flags = phy_data->rate_n_flags; 1240 1241 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1242 he_mu->flags1 |= 1243 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1244 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1245 1246 he_mu->flags1 |= 1247 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1248 phy_data4), 1249 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1250 1251 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1252 phy_data2); 1253 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1254 phy_data3); 1255 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1256 phy_data2); 1257 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1258 phy_data3); 1259 } 1260 1261 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1262 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1263 he_mu->flags1 |= 1264 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1265 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1266 1267 he_mu->flags2 |= 1268 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1269 phy_data4), 1270 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1271 1272 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1273 phy_data2); 1274 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1275 phy_data3); 1276 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1277 phy_data2); 1278 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1279 phy_data3); 1280 } 1281 } 1282 1283 static void 1284 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1285 struct ieee80211_radiotap_he *he, 1286 struct ieee80211_radiotap_he_mu *he_mu, 1287 struct ieee80211_rx_status *rx_status) 1288 { 1289 /* 1290 * Unfortunately, we have to leave the mac80211 data 1291 * incorrect for the case that we receive an HE-MU 1292 * transmission and *don't* have the HE phy data (due 1293 * to the bits being used for TSF). This shouldn't 1294 * happen though as management frames where we need 1295 * the TSF/timers are not be transmitted in HE-MU. 1296 */ 1297 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1298 u32 rate_n_flags = phy_data->rate_n_flags; 1299 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1300 u8 offs = 0; 1301 1302 rx_status->bw = RATE_INFO_BW_HE_RU; 1303 1304 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1305 1306 switch (ru) { 1307 case 0 ... 36: 1308 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1309 offs = ru; 1310 break; 1311 case 37 ... 52: 1312 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1313 offs = ru - 37; 1314 break; 1315 case 53 ... 60: 1316 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1317 offs = ru - 53; 1318 break; 1319 case 61 ... 64: 1320 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1321 offs = ru - 61; 1322 break; 1323 case 65 ... 66: 1324 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1325 offs = ru - 65; 1326 break; 1327 case 67: 1328 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1329 break; 1330 case 68: 1331 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1332 break; 1333 } 1334 he->data2 |= le16_encode_bits(offs, 1335 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1336 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1337 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1338 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1339 he->data2 |= 1340 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1341 1342 #define CHECK_BW(bw) \ 1343 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1344 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1345 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1346 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1347 CHECK_BW(20); 1348 CHECK_BW(40); 1349 CHECK_BW(80); 1350 CHECK_BW(160); 1351 1352 if (he_mu) 1353 he_mu->flags2 |= 1354 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1355 rate_n_flags), 1356 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1357 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1358 he->data6 |= 1359 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1360 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1361 rate_n_flags), 1362 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1363 } 1364 1365 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1366 struct iwl_mvm_rx_phy_data *phy_data, 1367 struct ieee80211_radiotap_he *he, 1368 struct ieee80211_radiotap_he_mu *he_mu, 1369 struct ieee80211_rx_status *rx_status, 1370 int queue) 1371 { 1372 switch (phy_data->info_type) { 1373 case IWL_RX_PHY_INFO_TYPE_NONE: 1374 case IWL_RX_PHY_INFO_TYPE_CCK: 1375 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1376 case IWL_RX_PHY_INFO_TYPE_HT: 1377 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1378 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1379 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1380 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1381 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1382 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1383 return; 1384 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1385 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1386 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1387 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1388 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1389 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1390 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1391 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1392 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1393 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1394 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1395 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1396 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1397 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1398 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1399 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1400 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1401 fallthrough; 1402 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1403 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1404 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1405 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1406 /* HE common */ 1407 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1408 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1409 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1410 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1411 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1412 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1413 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1414 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1415 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1416 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1417 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1418 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1419 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1420 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1421 IWL_RX_PHY_DATA0_HE_UPLINK), 1422 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1423 } 1424 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1425 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1426 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1427 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1428 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1429 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1430 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1431 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1432 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1433 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1434 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1435 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1436 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1437 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1438 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1439 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1440 IWL_RX_PHY_DATA0_HE_DOPPLER), 1441 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1442 break; 1443 } 1444 1445 switch (phy_data->info_type) { 1446 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1447 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1448 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1449 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1450 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1451 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1452 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1453 break; 1454 default: 1455 /* nothing here */ 1456 break; 1457 } 1458 1459 switch (phy_data->info_type) { 1460 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1461 he_mu->flags1 |= 1462 le16_encode_bits(le16_get_bits(phy_data->d4, 1463 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1464 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1465 he_mu->flags1 |= 1466 le16_encode_bits(le16_get_bits(phy_data->d4, 1467 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1468 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1469 he_mu->flags2 |= 1470 le16_encode_bits(le16_get_bits(phy_data->d4, 1471 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1472 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1473 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1474 fallthrough; 1475 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1476 he_mu->flags2 |= 1477 le16_encode_bits(le32_get_bits(phy_data->d1, 1478 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1479 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1480 he_mu->flags2 |= 1481 le16_encode_bits(le32_get_bits(phy_data->d1, 1482 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1483 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1484 fallthrough; 1485 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1486 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1487 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1488 break; 1489 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1490 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1491 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1492 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1493 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1494 break; 1495 default: 1496 /* nothing */ 1497 break; 1498 } 1499 } 1500 1501 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1502 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1503 1504 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1505 typeof(enc_bits) _enc_bits = enc_bits; \ 1506 typeof(usig) _usig = usig; \ 1507 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1508 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1509 } while (0) 1510 1511 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1512 eht->data[(rt_data)] |= \ 1513 (cpu_to_le32 \ 1514 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1515 LE32_DEC_ENC(data ## fw_data, \ 1516 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1517 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1518 1519 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1520 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1521 1522 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1523 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1524 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1525 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1526 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1527 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1528 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1529 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1530 1531 #define IWL_RX_RU_DATA_A1 2 1532 #define IWL_RX_RU_DATA_A2 2 1533 #define IWL_RX_RU_DATA_B1 2 1534 #define IWL_RX_RU_DATA_B2 3 1535 #define IWL_RX_RU_DATA_C1 3 1536 #define IWL_RX_RU_DATA_C2 3 1537 #define IWL_RX_RU_DATA_D1 4 1538 #define IWL_RX_RU_DATA_D2 4 1539 1540 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1541 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1542 rt_ru, \ 1543 IWL_RX_RU_DATA_ ## fw_ru, \ 1544 fw_ru) 1545 1546 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1547 struct iwl_mvm_rx_phy_data *phy_data, 1548 struct ieee80211_rx_status *rx_status, 1549 struct ieee80211_radiotap_eht *eht, 1550 struct ieee80211_radiotap_eht_usig *usig) 1551 { 1552 if (phy_data->with_data) { 1553 __le32 data1 = phy_data->d1; 1554 __le32 data2 = phy_data->d2; 1555 __le32 data3 = phy_data->d3; 1556 __le32 data4 = phy_data->eht_d4; 1557 __le32 data5 = phy_data->d5; 1558 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1559 1560 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1561 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1562 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1563 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1564 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1565 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1566 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1567 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1568 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1569 IWL_MVM_ENC_USIG_VALUE_MASK 1570 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1571 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1572 1573 eht->user_info[0] |= 1574 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1575 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1576 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1577 1578 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1579 eht->data[7] |= LE32_DEC_ENC 1580 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1581 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1582 1583 /* 1584 * Hardware labels the content channels/RU allocation values 1585 * as follows: 1586 * Content Channel 1 Content Channel 2 1587 * 20 MHz: A1 1588 * 40 MHz: A1 B1 1589 * 80 MHz: A1 C1 B1 D1 1590 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1591 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1592 * 1593 * However firmware can only give us A1-D2, so the higher 1594 * frequencies are missing. 1595 */ 1596 1597 switch (phy_bw) { 1598 case RATE_MCS_CHAN_WIDTH_320: 1599 /* additional values are missing in RX metadata */ 1600 case RATE_MCS_CHAN_WIDTH_160: 1601 /* content channel 1 */ 1602 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1603 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1604 /* content channel 2 */ 1605 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1606 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1607 fallthrough; 1608 case RATE_MCS_CHAN_WIDTH_80: 1609 /* content channel 1 */ 1610 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1611 /* content channel 2 */ 1612 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1613 fallthrough; 1614 case RATE_MCS_CHAN_WIDTH_40: 1615 /* content channel 2 */ 1616 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1617 fallthrough; 1618 case RATE_MCS_CHAN_WIDTH_20: 1619 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1620 break; 1621 } 1622 } else { 1623 __le32 usig_a1 = phy_data->rx_vec[0]; 1624 __le32 usig_a2 = phy_data->rx_vec[1]; 1625 1626 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1627 IWL_RX_USIG_A1_DISREGARD, 1628 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1629 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1630 IWL_RX_USIG_A1_VALIDATE, 1631 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1632 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1633 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1634 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1635 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1636 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1637 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1638 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1639 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1640 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1641 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1642 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1643 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1644 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1645 IWL_RX_USIG_A2_EHT_SIG_MCS, 1646 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1647 IWL_MVM_ENC_USIG_VALUE_MASK 1648 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1649 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1650 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1651 IWL_RX_USIG_A2_EHT_CRC_OK, 1652 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1653 } 1654 } 1655 1656 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1657 struct iwl_mvm_rx_phy_data *phy_data, 1658 struct ieee80211_rx_status *rx_status, 1659 struct ieee80211_radiotap_eht *eht, 1660 struct ieee80211_radiotap_eht_usig *usig) 1661 { 1662 if (phy_data->with_data) { 1663 __le32 data5 = phy_data->d5; 1664 1665 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1666 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1667 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1668 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1669 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1670 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1671 1672 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1673 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1674 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1675 } else { 1676 __le32 usig_a1 = phy_data->rx_vec[0]; 1677 __le32 usig_a2 = phy_data->rx_vec[1]; 1678 1679 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1680 IWL_RX_USIG_A1_DISREGARD, 1681 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1682 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1683 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1684 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1685 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1686 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1687 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1688 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1689 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1690 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1691 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1692 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1693 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1694 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1695 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1696 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1697 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1698 IWL_RX_USIG_A2_EHT_CRC_OK, 1699 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1700 } 1701 } 1702 1703 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1704 struct ieee80211_rx_status *rx_status, 1705 struct ieee80211_radiotap_eht *eht) 1706 { 1707 u32 ru = le32_get_bits(eht->data[8], 1708 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1709 enum nl80211_eht_ru_alloc nl_ru; 1710 1711 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1712 * in an EHT variant User Info field 1713 */ 1714 1715 switch (ru) { 1716 case 0 ... 36: 1717 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1718 break; 1719 case 37 ... 52: 1720 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1721 break; 1722 case 53 ... 60: 1723 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1724 break; 1725 case 61 ... 64: 1726 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1727 break; 1728 case 65 ... 66: 1729 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1730 break; 1731 case 67: 1732 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1733 break; 1734 case 68: 1735 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1736 break; 1737 case 69: 1738 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1739 break; 1740 case 70 ... 81: 1741 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1742 break; 1743 case 82 ... 89: 1744 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1745 break; 1746 case 90 ... 93: 1747 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1748 break; 1749 case 94 ... 95: 1750 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1751 break; 1752 case 96 ... 99: 1753 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1754 break; 1755 case 100 ... 103: 1756 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1757 break; 1758 case 104: 1759 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1760 break; 1761 case 105 ... 106: 1762 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1763 break; 1764 default: 1765 return; 1766 } 1767 1768 rx_status->bw = RATE_INFO_BW_EHT_RU; 1769 rx_status->eht.ru = nl_ru; 1770 } 1771 1772 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1773 struct iwl_mvm_rx_phy_data *phy_data, 1774 struct ieee80211_rx_status *rx_status, 1775 struct ieee80211_radiotap_eht *eht, 1776 struct ieee80211_radiotap_eht_usig *usig) 1777 1778 { 1779 __le32 data0 = phy_data->d0; 1780 __le32 data1 = phy_data->d1; 1781 __le32 usig_a1 = phy_data->rx_vec[0]; 1782 u8 info_type = phy_data->info_type; 1783 1784 /* Not in EHT range */ 1785 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1786 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1787 return; 1788 1789 usig->common |= cpu_to_le32 1790 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1791 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1792 if (phy_data->with_data) { 1793 usig->common |= LE32_DEC_ENC(data0, 1794 IWL_RX_PHY_DATA0_EHT_UPLINK, 1795 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1796 usig->common |= LE32_DEC_ENC(data0, 1797 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1798 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1799 } else { 1800 usig->common |= LE32_DEC_ENC(usig_a1, 1801 IWL_RX_USIG_A1_UL_FLAG, 1802 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1803 usig->common |= LE32_DEC_ENC(usig_a1, 1804 IWL_RX_USIG_A1_BSS_COLOR, 1805 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1806 } 1807 1808 if (fw_has_capa(&mvm->fw->ucode_capa, 1809 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1810 usig->common |= 1811 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1812 usig->common |= 1813 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1814 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1815 } 1816 1817 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1818 eht->data[0] |= LE32_DEC_ENC(data0, 1819 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1820 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1821 1822 /* All RU allocating size/index is in TB format */ 1823 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1824 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1825 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1826 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1827 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1828 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1829 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1830 1831 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1832 1833 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1834 * which is on only in case of monitor mode so no need to check monitor 1835 * mode 1836 */ 1837 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1838 eht->data[1] |= 1839 le32_encode_bits(mvm->monitor_p80, 1840 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1841 1842 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1843 if (phy_data->with_data) 1844 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1845 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1846 else 1847 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1848 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1849 1850 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1851 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1852 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1853 1854 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1855 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1856 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1857 1858 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1859 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1860 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1861 1862 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1863 1864 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1865 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1866 1867 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1868 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1869 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1870 1871 /* 1872 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1873 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1874 */ 1875 1876 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1877 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1878 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1879 1880 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1881 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1882 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1883 1884 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1885 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1886 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1887 } 1888 1889 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1890 struct iwl_mvm_rx_phy_data *phy_data, 1891 int queue) 1892 { 1893 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1894 1895 struct ieee80211_radiotap_eht *eht; 1896 struct ieee80211_radiotap_eht_usig *usig; 1897 size_t eht_len = sizeof(*eht); 1898 1899 u32 rate_n_flags = phy_data->rate_n_flags; 1900 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1901 /* EHT and HE have the same valus for LTF */ 1902 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1903 u16 phy_info = phy_data->phy_info; 1904 u32 bw; 1905 1906 /* u32 for 1 user_info */ 1907 if (phy_data->with_data) 1908 eht_len += sizeof(u32); 1909 1910 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1911 1912 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1913 sizeof(*usig)); 1914 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1915 usig->common |= 1916 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1917 1918 /* specific handling for 320MHz */ 1919 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1920 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1921 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1922 le32_to_cpu(phy_data->d0)); 1923 1924 usig->common |= cpu_to_le32 1925 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1926 1927 /* report the AMPDU-EOF bit on single frames */ 1928 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1929 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1930 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1931 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1932 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1933 } 1934 1935 /* update aggregation data for monitor sake on default queue */ 1936 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1937 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1938 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1939 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1940 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1941 } 1942 1943 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1944 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1945 1946 #define CHECK_TYPE(F) \ 1947 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1948 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1949 1950 CHECK_TYPE(SU); 1951 CHECK_TYPE(EXT_SU); 1952 CHECK_TYPE(MU); 1953 CHECK_TYPE(TRIG); 1954 1955 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1956 case 0: 1957 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1958 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1959 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1960 } else { 1961 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1962 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1963 } 1964 break; 1965 case 1: 1966 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1967 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1968 break; 1969 case 2: 1970 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1971 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1972 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1973 else 1974 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1975 break; 1976 case 3: 1977 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1978 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1979 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1980 } 1981 break; 1982 default: 1983 /* nothing here */ 1984 break; 1985 } 1986 1987 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1988 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1989 eht->data[0] |= cpu_to_le32 1990 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1991 ltf) | 1992 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1993 rx_status->eht.gi)); 1994 } 1995 1996 1997 if (!phy_data->with_data) { 1998 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1999 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 2000 eht->data[7] |= 2001 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 2002 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 2003 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 2004 if (rate_n_flags & RATE_MCS_BF_MSK) 2005 eht->data[7] |= 2006 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 2007 } else { 2008 eht->user_info[0] |= 2009 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 2010 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 2011 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 2012 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 2013 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 2014 2015 if (rate_n_flags & RATE_MCS_BF_MSK) 2016 eht->user_info[0] |= 2017 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 2018 2019 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2020 eht->user_info[0] |= 2021 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 2022 2023 eht->user_info[0] |= cpu_to_le32 2024 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 2025 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 2026 rate_n_flags)) | 2027 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 2028 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 2029 } 2030 } 2031 2032 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 2033 struct iwl_mvm_rx_phy_data *phy_data, 2034 int queue) 2035 { 2036 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2037 struct ieee80211_radiotap_he *he = NULL; 2038 struct ieee80211_radiotap_he_mu *he_mu = NULL; 2039 u32 rate_n_flags = phy_data->rate_n_flags; 2040 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 2041 u8 ltf; 2042 static const struct ieee80211_radiotap_he known = { 2043 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2044 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 2045 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 2046 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 2047 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2048 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2049 }; 2050 static const struct ieee80211_radiotap_he_mu mu_known = { 2051 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2052 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2053 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2054 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2055 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2056 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2057 }; 2058 u16 phy_info = phy_data->phy_info; 2059 2060 he = skb_put_data(skb, &known, sizeof(known)); 2061 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2062 2063 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2064 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2065 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2066 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2067 } 2068 2069 /* report the AMPDU-EOF bit on single frames */ 2070 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2071 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2072 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2073 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2074 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2075 } 2076 2077 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2078 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2079 queue); 2080 2081 /* update aggregation data for monitor sake on default queue */ 2082 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2083 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2084 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2085 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2086 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2087 } 2088 2089 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2090 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2091 rx_status->bw = RATE_INFO_BW_HE_RU; 2092 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2093 } 2094 2095 /* actually data is filled in mac80211 */ 2096 if (he_type == RATE_MCS_HE_TYPE_SU || 2097 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2098 he->data1 |= 2099 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2100 2101 #define CHECK_TYPE(F) \ 2102 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2103 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2104 2105 CHECK_TYPE(SU); 2106 CHECK_TYPE(EXT_SU); 2107 CHECK_TYPE(MU); 2108 CHECK_TYPE(TRIG); 2109 2110 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2111 2112 if (rate_n_flags & RATE_MCS_BF_MSK) 2113 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2114 2115 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2116 RATE_MCS_HE_GI_LTF_POS) { 2117 case 0: 2118 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2119 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2120 else 2121 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2122 if (he_type == RATE_MCS_HE_TYPE_MU) 2123 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2124 else 2125 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2126 break; 2127 case 1: 2128 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2129 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2130 else 2131 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2132 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2133 break; 2134 case 2: 2135 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2136 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2137 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2138 } else { 2139 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2140 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2141 } 2142 break; 2143 case 3: 2144 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2145 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2146 break; 2147 case 4: 2148 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2149 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2150 break; 2151 default: 2152 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2153 } 2154 2155 he->data5 |= le16_encode_bits(ltf, 2156 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2157 } 2158 2159 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2160 struct iwl_mvm_rx_phy_data *phy_data) 2161 { 2162 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2163 struct ieee80211_radiotap_lsig *lsig; 2164 2165 switch (phy_data->info_type) { 2166 case IWL_RX_PHY_INFO_TYPE_HT: 2167 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2168 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2169 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2170 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2171 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2172 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2173 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2174 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2175 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2176 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2177 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2178 lsig = skb_put(skb, sizeof(*lsig)); 2179 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2180 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2181 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2182 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2183 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2184 break; 2185 default: 2186 break; 2187 } 2188 } 2189 2190 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2191 { 2192 switch (phy_band) { 2193 case PHY_BAND_24: 2194 return NL80211_BAND_2GHZ; 2195 case PHY_BAND_5: 2196 return NL80211_BAND_5GHZ; 2197 case PHY_BAND_6: 2198 return NL80211_BAND_6GHZ; 2199 default: 2200 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2201 return NL80211_BAND_5GHZ; 2202 } 2203 } 2204 2205 struct iwl_rx_sta_csa { 2206 bool all_sta_unblocked; 2207 struct ieee80211_vif *vif; 2208 }; 2209 2210 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2211 { 2212 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2213 struct iwl_rx_sta_csa *rx_sta_csa = data; 2214 2215 if (mvmsta->vif != rx_sta_csa->vif) 2216 return; 2217 2218 if (mvmsta->disable_tx) 2219 rx_sta_csa->all_sta_unblocked = false; 2220 } 2221 2222 /* 2223 * Note: requires also rx_status->band to be prefilled, as well 2224 * as phy_data (apart from phy_data->info_type) 2225 */ 2226 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2227 struct sk_buff *skb, 2228 struct iwl_mvm_rx_phy_data *phy_data, 2229 int queue) 2230 { 2231 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2232 u32 rate_n_flags = phy_data->rate_n_flags; 2233 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2234 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2235 bool is_sgi; 2236 2237 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2238 2239 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2240 phy_data->info_type = 2241 le32_get_bits(phy_data->d1, 2242 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2243 2244 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2245 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2246 case RATE_MCS_CHAN_WIDTH_20: 2247 break; 2248 case RATE_MCS_CHAN_WIDTH_40: 2249 rx_status->bw = RATE_INFO_BW_40; 2250 break; 2251 case RATE_MCS_CHAN_WIDTH_80: 2252 rx_status->bw = RATE_INFO_BW_80; 2253 break; 2254 case RATE_MCS_CHAN_WIDTH_160: 2255 rx_status->bw = RATE_INFO_BW_160; 2256 break; 2257 case RATE_MCS_CHAN_WIDTH_320: 2258 rx_status->bw = RATE_INFO_BW_320; 2259 break; 2260 } 2261 2262 /* must be before L-SIG data */ 2263 if (format == RATE_MCS_HE_MSK) 2264 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2265 2266 iwl_mvm_decode_lsig(skb, phy_data); 2267 2268 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2269 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2270 rx_status->band); 2271 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2272 phy_data->energy_a, phy_data->energy_b); 2273 2274 /* using TLV format and must be after all fixed len fields */ 2275 if (format == RATE_MCS_EHT_MSK) 2276 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2277 2278 if (unlikely(mvm->monitor_on)) 2279 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2280 2281 is_sgi = format == RATE_MCS_HE_MSK ? 2282 iwl_he_is_sgi(rate_n_flags) : 2283 rate_n_flags & RATE_MCS_SGI_MSK; 2284 2285 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2286 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2287 2288 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2289 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2290 2291 switch (format) { 2292 case RATE_MCS_VHT_MSK: 2293 rx_status->encoding = RX_ENC_VHT; 2294 break; 2295 case RATE_MCS_HE_MSK: 2296 rx_status->encoding = RX_ENC_HE; 2297 rx_status->he_dcm = 2298 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2299 break; 2300 case RATE_MCS_EHT_MSK: 2301 rx_status->encoding = RX_ENC_EHT; 2302 break; 2303 } 2304 2305 switch (format) { 2306 case RATE_MCS_HT_MSK: 2307 rx_status->encoding = RX_ENC_HT; 2308 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2309 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2310 break; 2311 case RATE_MCS_VHT_MSK: 2312 case RATE_MCS_HE_MSK: 2313 case RATE_MCS_EHT_MSK: 2314 rx_status->nss = 2315 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2316 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2317 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2318 break; 2319 default: { 2320 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2321 rx_status->band); 2322 2323 rx_status->rate_idx = rate; 2324 2325 if ((rate < 0 || rate > 0xFF)) { 2326 rx_status->rate_idx = 0; 2327 if (net_ratelimit()) 2328 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2329 rate_n_flags, rx_status->band); 2330 } 2331 2332 break; 2333 } 2334 } 2335 } 2336 2337 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2338 struct iwl_rx_cmd_buffer *rxb, int queue) 2339 { 2340 struct ieee80211_rx_status *rx_status; 2341 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2342 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2343 struct ieee80211_hdr *hdr; 2344 u32 len; 2345 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2346 struct ieee80211_sta *sta = NULL; 2347 struct ieee80211_link_sta *link_sta = NULL; 2348 struct sk_buff *skb; 2349 u8 crypt_len = 0; 2350 size_t desc_size; 2351 struct iwl_mvm_rx_phy_data phy_data = {}; 2352 u32 format; 2353 2354 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2355 return; 2356 2357 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2358 desc_size = sizeof(*desc); 2359 else 2360 desc_size = IWL_RX_DESC_SIZE_V1; 2361 2362 if (unlikely(pkt_len < desc_size)) { 2363 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2364 return; 2365 } 2366 2367 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2368 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2369 phy_data.channel = desc->v3.channel; 2370 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2371 phy_data.energy_a = desc->v3.energy_a; 2372 phy_data.energy_b = desc->v3.energy_b; 2373 2374 phy_data.d0 = desc->v3.phy_data0; 2375 phy_data.d1 = desc->v3.phy_data1; 2376 phy_data.d2 = desc->v3.phy_data2; 2377 phy_data.d3 = desc->v3.phy_data3; 2378 phy_data.eht_d4 = desc->phy_eht_data4; 2379 phy_data.d5 = desc->v3.phy_data5; 2380 } else { 2381 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2382 phy_data.channel = desc->v1.channel; 2383 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2384 phy_data.energy_a = desc->v1.energy_a; 2385 phy_data.energy_b = desc->v1.energy_b; 2386 2387 phy_data.d0 = desc->v1.phy_data0; 2388 phy_data.d1 = desc->v1.phy_data1; 2389 phy_data.d2 = desc->v1.phy_data2; 2390 phy_data.d3 = desc->v1.phy_data3; 2391 } 2392 2393 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2394 REPLY_RX_MPDU_CMD, 0) < 4) { 2395 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2396 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2397 phy_data.rate_n_flags); 2398 } 2399 2400 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2401 2402 len = le16_to_cpu(desc->mpdu_len); 2403 2404 if (unlikely(len + desc_size > pkt_len)) { 2405 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2406 return; 2407 } 2408 2409 phy_data.with_data = true; 2410 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2411 phy_data.d4 = desc->phy_data4; 2412 2413 hdr = (void *)(pkt->data + desc_size); 2414 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2415 * ieee80211_hdr pulled. 2416 */ 2417 skb = alloc_skb(128, GFP_ATOMIC); 2418 if (!skb) { 2419 IWL_ERR(mvm, "alloc_skb failed\n"); 2420 return; 2421 } 2422 2423 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2424 /* 2425 * If the device inserted padding it means that (it thought) 2426 * the 802.11 header wasn't a multiple of 4 bytes long. In 2427 * this case, reserve two bytes at the start of the SKB to 2428 * align the payload properly in case we end up copying it. 2429 */ 2430 skb_reserve(skb, 2); 2431 } 2432 2433 rx_status = IEEE80211_SKB_RXCB(skb); 2434 2435 /* 2436 * Keep packets with CRC errors (and with overrun) for monitor mode 2437 * (otherwise the firmware discards them) but mark them as bad. 2438 */ 2439 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2440 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2441 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2442 le32_to_cpu(desc->status)); 2443 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2444 } 2445 2446 /* set the preamble flag if appropriate */ 2447 if (format == RATE_MCS_CCK_MSK && 2448 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2449 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2450 2451 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2452 u64 tsf_on_air_rise; 2453 2454 if (mvm->trans->trans_cfg->device_family >= 2455 IWL_DEVICE_FAMILY_AX210) 2456 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2457 else 2458 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2459 2460 rx_status->mactime = tsf_on_air_rise; 2461 /* TSF as indicated by the firmware is at INA time */ 2462 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2463 } 2464 2465 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2466 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2467 2468 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2469 } else { 2470 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2471 NL80211_BAND_2GHZ; 2472 } 2473 2474 /* update aggregation data for monitor sake on default queue */ 2475 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2476 bool toggle_bit; 2477 2478 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2479 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2480 /* 2481 * Toggle is switched whenever new aggregation starts. Make 2482 * sure ampdu_reference is never 0 so we can later use it to 2483 * see if the frame was really part of an A-MPDU or not. 2484 */ 2485 if (toggle_bit != mvm->ampdu_toggle) { 2486 mvm->ampdu_ref++; 2487 if (mvm->ampdu_ref == 0) 2488 mvm->ampdu_ref++; 2489 mvm->ampdu_toggle = toggle_bit; 2490 phy_data.first_subframe = true; 2491 } 2492 rx_status->ampdu_reference = mvm->ampdu_ref; 2493 } 2494 2495 rcu_read_lock(); 2496 2497 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2498 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2499 2500 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2501 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2502 if (IS_ERR(sta)) 2503 sta = NULL; 2504 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2505 } 2506 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2507 /* 2508 * This is fine since we prevent two stations with the same 2509 * address from being added. 2510 */ 2511 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2512 } 2513 2514 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2515 le32_to_cpu(pkt->len_n_flags), queue, 2516 &crypt_len)) { 2517 kfree_skb(skb); 2518 goto out; 2519 } 2520 2521 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2522 2523 if (sta) { 2524 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2525 struct ieee80211_vif *tx_blocked_vif = 2526 rcu_dereference(mvm->csa_tx_blocked_vif); 2527 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2528 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2529 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2530 struct iwl_fw_dbg_trigger_tlv *trig; 2531 struct ieee80211_vif *vif = mvmsta->vif; 2532 2533 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2534 !is_multicast_ether_addr(hdr->addr1) && 2535 ieee80211_is_data(hdr->frame_control) && 2536 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2537 schedule_delayed_work(&mvm->tcm.work, 0); 2538 2539 /* 2540 * We have tx blocked stations (with CS bit). If we heard 2541 * frames from a blocked station on a new channel we can 2542 * TX to it again. 2543 */ 2544 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2545 struct iwl_mvm_vif *mvmvif = 2546 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2547 struct iwl_rx_sta_csa rx_sta_csa = { 2548 .all_sta_unblocked = true, 2549 .vif = tx_blocked_vif, 2550 }; 2551 2552 if (mvmvif->csa_target_freq == rx_status->freq) 2553 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2554 false); 2555 ieee80211_iterate_stations_atomic(mvm->hw, 2556 iwl_mvm_rx_get_sta_block_tx, 2557 &rx_sta_csa); 2558 2559 if (rx_sta_csa.all_sta_unblocked) { 2560 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2561 /* Unblock BCAST / MCAST station */ 2562 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2563 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2564 } 2565 } 2566 2567 rs_update_last_rssi(mvm, mvmsta, rx_status); 2568 2569 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2570 ieee80211_vif_to_wdev(vif), 2571 FW_DBG_TRIGGER_RSSI); 2572 2573 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2574 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2575 s32 rssi; 2576 2577 rssi_trig = (void *)trig->data; 2578 rssi = le32_to_cpu(rssi_trig->rssi); 2579 2580 if (rx_status->signal < rssi) 2581 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2582 #if defined(__linux__) 2583 NULL); 2584 #elif defined(__FreeBSD__) 2585 ""); 2586 #endif 2587 } 2588 2589 if (ieee80211_is_data(hdr->frame_control)) 2590 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2591 2592 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2593 kfree_skb(skb); 2594 goto out; 2595 } 2596 2597 /* 2598 * Our hardware de-aggregates AMSDUs but copies the mac header 2599 * as it to the de-aggregated MPDUs. We need to turn off the 2600 * AMSDU bit in the QoS control ourselves. 2601 * In addition, HW reverses addr3 and addr4 - reverse it back. 2602 */ 2603 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2604 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2605 u8 *qc = ieee80211_get_qos_ctl(hdr); 2606 2607 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2608 2609 if (mvm->trans->trans_cfg->device_family == 2610 IWL_DEVICE_FAMILY_9000) { 2611 iwl_mvm_flip_address(hdr->addr3); 2612 2613 if (ieee80211_has_a4(hdr->frame_control)) 2614 iwl_mvm_flip_address(hdr->addr4); 2615 } 2616 } 2617 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2618 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2619 2620 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2621 } 2622 } 2623 2624 /* management stuff on default queue */ 2625 if (!queue) { 2626 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2627 ieee80211_is_probe_resp(hdr->frame_control)) && 2628 mvm->sched_scan_pass_all == 2629 SCHED_SCAN_PASS_ALL_ENABLED)) 2630 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2631 2632 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2633 ieee80211_is_probe_resp(hdr->frame_control))) 2634 rx_status->boottime_ns = ktime_get_boottime_ns(); 2635 } 2636 2637 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2638 kfree_skb(skb); 2639 goto out; 2640 } 2641 2642 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2643 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2644 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) 2645 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2646 link_sta); 2647 out: 2648 rcu_read_unlock(); 2649 } 2650 2651 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2652 struct iwl_rx_cmd_buffer *rxb, int queue) 2653 { 2654 struct ieee80211_rx_status *rx_status; 2655 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2656 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2657 u32 rssi; 2658 u32 info_type; 2659 struct ieee80211_sta *sta = NULL; 2660 struct sk_buff *skb; 2661 struct iwl_mvm_rx_phy_data phy_data; 2662 u32 format; 2663 2664 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2665 return; 2666 2667 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2668 return; 2669 2670 rssi = le32_to_cpu(desc->rssi); 2671 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2672 phy_data.d0 = desc->phy_info[0]; 2673 phy_data.d1 = desc->phy_info[1]; 2674 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2675 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2676 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2677 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2678 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2679 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2680 phy_data.with_data = false; 2681 phy_data.rx_vec[0] = desc->rx_vec[0]; 2682 phy_data.rx_vec[1] = desc->rx_vec[1]; 2683 2684 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2685 RX_NO_DATA_NOTIF, 0) < 2) { 2686 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2687 phy_data.rate_n_flags); 2688 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2689 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2690 phy_data.rate_n_flags); 2691 } 2692 2693 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2694 2695 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2696 RX_NO_DATA_NOTIF, 0) >= 3) { 2697 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2698 sizeof(struct iwl_rx_no_data_ver_3))) 2699 /* invalid len for ver 3 */ 2700 return; 2701 phy_data.rx_vec[2] = desc->rx_vec[2]; 2702 phy_data.rx_vec[3] = desc->rx_vec[3]; 2703 } else { 2704 if (format == RATE_MCS_EHT_MSK) 2705 /* no support for EHT before version 3 API */ 2706 return; 2707 } 2708 2709 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2710 * ieee80211_hdr pulled. 2711 */ 2712 skb = alloc_skb(128, GFP_ATOMIC); 2713 if (!skb) { 2714 IWL_ERR(mvm, "alloc_skb failed\n"); 2715 return; 2716 } 2717 2718 rx_status = IEEE80211_SKB_RXCB(skb); 2719 2720 /* 0-length PSDU */ 2721 rx_status->flag |= RX_FLAG_NO_PSDU; 2722 2723 switch (info_type) { 2724 case RX_NO_DATA_INFO_TYPE_NDP: 2725 rx_status->zero_length_psdu_type = 2726 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2727 break; 2728 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2729 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2730 rx_status->zero_length_psdu_type = 2731 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2732 break; 2733 default: 2734 rx_status->zero_length_psdu_type = 2735 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2736 break; 2737 } 2738 2739 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2740 NL80211_BAND_2GHZ; 2741 2742 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2743 2744 /* no more radio tap info should be put after this point. 2745 * 2746 * We mark it as mac header, for upper layers to know where 2747 * all radio tap header ends. 2748 */ 2749 skb_reset_mac_header(skb); 2750 2751 /* 2752 * Override the nss from the rx_vec since the rate_n_flags has 2753 * only 2 bits for the nss which gives a max of 4 ss but there 2754 * may be up to 8 spatial streams. 2755 */ 2756 switch (format) { 2757 case RATE_MCS_VHT_MSK: 2758 rx_status->nss = 2759 le32_get_bits(desc->rx_vec[0], 2760 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2761 break; 2762 case RATE_MCS_HE_MSK: 2763 rx_status->nss = 2764 le32_get_bits(desc->rx_vec[0], 2765 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2766 break; 2767 case RATE_MCS_EHT_MSK: 2768 rx_status->nss = 2769 le32_get_bits(desc->rx_vec[2], 2770 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2771 } 2772 2773 rcu_read_lock(); 2774 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2775 rcu_read_unlock(); 2776 } 2777 2778 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2779 struct iwl_rx_cmd_buffer *rxb, int queue) 2780 { 2781 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2782 struct iwl_frame_release *release = (void *)pkt->data; 2783 2784 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2785 return; 2786 2787 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2788 le16_to_cpu(release->nssn), 2789 queue, 0); 2790 } 2791 2792 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2793 struct iwl_rx_cmd_buffer *rxb, int queue) 2794 { 2795 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2796 struct iwl_bar_frame_release *release = (void *)pkt->data; 2797 unsigned int baid = le32_get_bits(release->ba_info, 2798 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2799 unsigned int nssn = le32_get_bits(release->ba_info, 2800 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2801 unsigned int sta_id = le32_get_bits(release->sta_tid, 2802 IWL_BAR_FRAME_RELEASE_STA_MASK); 2803 unsigned int tid = le32_get_bits(release->sta_tid, 2804 IWL_BAR_FRAME_RELEASE_TID_MASK); 2805 struct iwl_mvm_baid_data *baid_data; 2806 2807 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2808 return; 2809 2810 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2811 baid >= ARRAY_SIZE(mvm->baid_map))) 2812 return; 2813 2814 rcu_read_lock(); 2815 baid_data = rcu_dereference(mvm->baid_map[baid]); 2816 if (!baid_data) { 2817 IWL_DEBUG_RX(mvm, 2818 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2819 baid); 2820 goto out; 2821 } 2822 2823 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2824 !(baid_data->sta_mask & BIT(sta_id)), 2825 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2826 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2827 tid)) 2828 goto out; 2829 2830 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2831 out: 2832 rcu_read_unlock(); 2833 } 2834