1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2025 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #if defined(__FreeBSD__) 10 #include <net/ieee80211_radiotap.h> 11 #endif 12 #include "iwl-trans.h" 13 #include "mvm.h" 14 #include "fw-api.h" 15 #include "time-sync.h" 16 17 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 18 int queue, struct ieee80211_sta *sta) 19 { 20 struct iwl_mvm_sta *mvmsta; 21 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 22 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 23 struct iwl_mvm_key_pn *ptk_pn; 24 int res; 25 u8 tid, keyidx; 26 u8 pn[IEEE80211_CCMP_PN_LEN]; 27 u8 *extiv; 28 29 /* do PN checking */ 30 31 /* multicast and non-data only arrives on default queue */ 32 if (!ieee80211_is_data(hdr->frame_control) || 33 is_multicast_ether_addr(hdr->addr1)) 34 return 0; 35 36 /* do not check PN for open AP */ 37 if (!(stats->flag & RX_FLAG_DECRYPTED)) 38 return 0; 39 40 /* 41 * avoid checking for default queue - we don't want to replicate 42 * all the logic that's necessary for checking the PN on fragmented 43 * frames, leave that to mac80211 44 */ 45 if (queue == 0) 46 return 0; 47 48 /* if we are here - this for sure is either CCMP or GCMP */ 49 if (IS_ERR_OR_NULL(sta)) { 50 IWL_DEBUG_DROP(mvm, 51 "expected hw-decrypted unicast frame for station\n"); 52 return -1; 53 } 54 55 mvmsta = iwl_mvm_sta_from_mac80211(sta); 56 57 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 58 keyidx = extiv[3] >> 6; 59 60 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 61 if (!ptk_pn) 62 return -1; 63 64 if (ieee80211_is_data_qos(hdr->frame_control)) 65 tid = ieee80211_get_tid(hdr); 66 else 67 tid = 0; 68 69 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 70 if (tid >= IWL_MAX_TID_COUNT) 71 return -1; 72 73 /* load pn */ 74 pn[0] = extiv[7]; 75 pn[1] = extiv[6]; 76 pn[2] = extiv[5]; 77 pn[3] = extiv[4]; 78 pn[4] = extiv[1]; 79 pn[5] = extiv[0]; 80 81 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 82 if (res < 0) 83 return -1; 84 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 85 return -1; 86 87 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 88 stats->flag |= RX_FLAG_PN_VALIDATED; 89 90 return 0; 91 } 92 93 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 94 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 95 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 96 struct iwl_rx_cmd_buffer *rxb) 97 { 98 struct iwl_rx_packet *pkt = rxb_addr(rxb); 99 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 100 unsigned int headlen, fraglen, pad_len = 0; 101 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 102 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 103 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 104 105 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 106 len -= 2; 107 pad_len = 2; 108 } 109 110 /* 111 * For non monitor interface strip the bytes the RADA might not have 112 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 113 * interface cannot exist with other interfaces, this removal is safe 114 * and sufficient, in monitor mode there's no decryption being done. 115 */ 116 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 117 len -= mic_crc_len; 118 119 /* If frame is small enough to fit in skb->head, pull it completely. 120 * If not, only pull ieee80211_hdr (including crypto if present, and 121 * an additional 8 bytes for SNAP/ethertype, see below) so that 122 * splice() or TCP coalesce are more efficient. 123 * 124 * Since, in addition, ieee80211_data_to_8023() always pull in at 125 * least 8 bytes (possibly more for mesh) we can do the same here 126 * to save the cost of doing it later. That still doesn't pull in 127 * the actual IP header since the typical case has a SNAP header. 128 * If the latter changes (there are efforts in the standards group 129 * to do so) we should revisit this and ieee80211_data_to_8023(). 130 */ 131 headlen = (len <= skb_tailroom(skb)) ? len : 132 hdrlen + crypt_len + 8; 133 134 /* The firmware may align the packet to DWORD. 135 * The padding is inserted after the IV. 136 * After copying the header + IV skip the padding if 137 * present before copying packet data. 138 */ 139 hdrlen += crypt_len; 140 141 if (unlikely(headlen < hdrlen)) 142 return -EINVAL; 143 144 /* Since data doesn't move data while putting data on skb and that is 145 * the only way we use, data + len is the next place that hdr would be put 146 */ 147 skb_set_mac_header(skb, skb->len); 148 skb_put_data(skb, hdr, hdrlen); 149 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 150 151 /* 152 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 153 * certain cases and starts the checksum after the SNAP. Check if 154 * this is the case - it's easier to just bail out to CHECKSUM_NONE 155 * in the cases the hardware didn't handle, since it's rare to see 156 * such packets, even though the hardware did calculate the checksum 157 * in this case, just starting after the MAC header instead. 158 * 159 * Starting from Bz hardware, it calculates starting directly after 160 * the MAC header, so that matches mac80211's expectation. 161 */ 162 if (skb->ip_summed == CHECKSUM_COMPLETE) { 163 struct { 164 u8 hdr[6]; 165 __be16 type; 166 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 167 168 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 169 !ether_addr_equal(shdr->hdr, rfc1042_header) || 170 (shdr->type != htons(ETH_P_IP) && 171 shdr->type != htons(ETH_P_ARP) && 172 shdr->type != htons(ETH_P_IPV6) && 173 shdr->type != htons(ETH_P_8021Q) && 174 shdr->type != htons(ETH_P_PAE) && 175 shdr->type != htons(ETH_P_TDLS)))) 176 skb->ip_summed = CHECKSUM_NONE; 177 else if (mvm->trans->mac_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 178 /* mac80211 assumes full CSUM including SNAP header */ 179 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 180 } 181 182 fraglen = len - headlen; 183 184 if (fraglen) { 185 int offset = (u8 *)hdr + headlen + pad_len - 186 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 187 188 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 189 fraglen, rxb->truesize); 190 } 191 192 return 0; 193 } 194 195 /* put a TLV on the skb and return data pointer 196 * 197 * Also pad to 4 the len and zero out all data part 198 */ 199 static void * 200 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 201 { 202 struct ieee80211_radiotap_tlv *tlv; 203 204 tlv = skb_put(skb, sizeof(*tlv)); 205 tlv->type = cpu_to_le16(type); 206 tlv->len = cpu_to_le16(len); 207 return skb_put_zero(skb, ALIGN(len, 4)); 208 } 209 210 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 211 struct sk_buff *skb) 212 { 213 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 214 struct ieee80211_radiotap_vendor_content *radiotap; 215 const u16 vendor_data_len = sizeof(mvm->cur_aid); 216 217 if (!mvm->cur_aid) 218 return; 219 220 radiotap = iwl_mvm_radiotap_put_tlv(skb, 221 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 222 sizeof(*radiotap) + vendor_data_len); 223 224 /* Intel OUI */ 225 radiotap->oui[0] = 0xf6; 226 radiotap->oui[1] = 0x54; 227 radiotap->oui[2] = 0x25; 228 /* radiotap sniffer config sub-namespace */ 229 radiotap->oui_subtype = 1; 230 radiotap->vendor_type = 0; 231 232 /* fill the data now */ 233 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 234 235 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 236 } 237 238 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 239 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 240 struct napi_struct *napi, 241 struct sk_buff *skb, int queue, 242 struct ieee80211_sta *sta) 243 { 244 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 245 kfree_skb(skb); 246 return; 247 } 248 249 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 250 } 251 252 static bool iwl_mvm_used_average_energy(struct iwl_mvm *mvm, 253 struct iwl_rx_mpdu_desc *desc, 254 struct ieee80211_hdr *hdr, 255 struct ieee80211_rx_status *rx_status) 256 { 257 struct iwl_mvm_vif *mvm_vif; 258 struct ieee80211_vif *vif; 259 u32 id; 260 261 if (unlikely(!hdr || !desc)) 262 return false; 263 264 if (likely(!ieee80211_is_beacon(hdr->frame_control))) 265 return false; 266 267 /* for the link conf lookup */ 268 guard(rcu)(); 269 270 /* MAC or link ID depending on FW, but driver has them equal */ 271 id = u8_get_bits(desc->mac_phy_band, 272 IWL_RX_MPDU_MAC_PHY_BAND_MAC_MASK); 273 274 /* >= means AUX MAC/link ID, no energy correction needed then */ 275 if (id >= ARRAY_SIZE(mvm->vif_id_to_mac)) 276 return false; 277 278 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, true); 279 if (!vif) 280 return false; 281 282 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 283 284 /* 285 * If we know the MAC by MAC or link ID then the frame was 286 * received for the link, so by filtering it means it was 287 * from the AP the link is connected to. 288 */ 289 290 /* skip also in case we don't have it (yet) */ 291 if (!mvm_vif->deflink.average_beacon_energy) 292 return false; 293 294 IWL_DEBUG_STATS(mvm, "energy override by average %d\n", 295 mvm_vif->deflink.average_beacon_energy); 296 rx_status->signal = -mvm_vif->deflink.average_beacon_energy; 297 return true; 298 } 299 300 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 301 struct iwl_rx_mpdu_desc *desc, 302 struct ieee80211_hdr *hdr, 303 struct ieee80211_rx_status *rx_status, 304 u32 rate_n_flags, int energy_a, 305 int energy_b) 306 { 307 int max_energy; 308 309 energy_a = energy_a ? -energy_a : S8_MIN; 310 energy_b = energy_b ? -energy_b : S8_MIN; 311 max_energy = max(energy_a, energy_b); 312 313 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 314 energy_a, energy_b, max_energy); 315 316 if (iwl_mvm_used_average_energy(mvm, desc, hdr, rx_status)) 317 return; 318 319 rx_status->signal = max_energy; 320 rx_status->chains = u32_get_bits(rate_n_flags, RATE_MCS_ANT_AB_MSK); 321 rx_status->chain_signal[0] = energy_a; 322 rx_status->chain_signal[1] = energy_b; 323 } 324 325 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 326 struct ieee80211_hdr *hdr, 327 struct iwl_rx_mpdu_desc *desc, 328 u32 status, 329 struct ieee80211_rx_status *stats) 330 { 331 struct wireless_dev *wdev; 332 struct iwl_mvm_sta *mvmsta; 333 struct iwl_mvm_vif *mvmvif; 334 u8 keyid; 335 struct ieee80211_key_conf *key; 336 u32 len = le16_to_cpu(desc->mpdu_len); 337 const u8 *frame = (void *)hdr; 338 339 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 340 return 0; 341 342 /* 343 * For non-beacon, we don't really care. But beacons may 344 * be filtered out, and we thus need the firmware's replay 345 * detection, otherwise beacons the firmware previously 346 * filtered could be replayed, or something like that, and 347 * it can filter a lot - though usually only if nothing has 348 * changed. 349 */ 350 if (!ieee80211_is_beacon(hdr->frame_control)) 351 return 0; 352 353 if (!sta) 354 return -1; 355 356 mvmsta = iwl_mvm_sta_from_mac80211(sta); 357 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 358 359 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 360 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 361 goto report; 362 363 /* good cases */ 364 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 365 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 366 stats->flag |= RX_FLAG_DECRYPTED; 367 return 0; 368 } 369 370 /* 371 * both keys will have the same cipher and MIC length, use 372 * whichever one is available 373 */ 374 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 375 if (!key) { 376 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 377 if (!key) 378 goto report; 379 } 380 381 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 382 goto report; 383 384 /* get the real key ID */ 385 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 386 /* and if that's the other key, look it up */ 387 if (keyid != key->keyidx) { 388 /* 389 * shouldn't happen since firmware checked, but be safe 390 * in case the MIC length is wrong too, for example 391 */ 392 if (keyid != 6 && keyid != 7) 393 return -1; 394 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 395 if (!key) 396 goto report; 397 } 398 399 /* Report status to mac80211 */ 400 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 401 ieee80211_key_mic_failure(key); 402 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 403 ieee80211_key_replay(key); 404 report: 405 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 406 if (wdev->netdev) 407 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 408 409 return -1; 410 } 411 412 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 413 struct ieee80211_hdr *hdr, 414 struct ieee80211_rx_status *stats, u16 phy_info, 415 struct iwl_rx_mpdu_desc *desc, 416 u32 pkt_flags, int queue, u8 *crypt_len) 417 { 418 u32 status = le32_to_cpu(desc->status); 419 420 /* 421 * Drop UNKNOWN frames in aggregation, unless in monitor mode 422 * (where we don't have the keys). 423 * We limit this to aggregation because in TKIP this is a valid 424 * scenario, since we may not have the (correct) TTAK (phase 1 425 * key) in the firmware. 426 */ 427 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 428 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 429 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) { 430 IWL_DEBUG_DROP(mvm, "Dropping packets, bad enc status\n"); 431 return -1; 432 } 433 434 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 435 !ieee80211_has_protected(hdr->frame_control))) 436 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 437 438 if (!ieee80211_has_protected(hdr->frame_control) || 439 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 440 IWL_RX_MPDU_STATUS_SEC_NONE) 441 return 0; 442 443 /* TODO: handle packets encrypted with unknown alg */ 444 #if defined(__FreeBSD__) 445 /* XXX-BZ do similar to rx.c for now as these are plenty. */ 446 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 447 IWL_RX_MPDU_STATUS_SEC_ENC_ERR) 448 return (0); 449 #endif 450 451 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 452 case IWL_RX_MPDU_STATUS_SEC_CCM: 453 case IWL_RX_MPDU_STATUS_SEC_GCM: 454 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 455 /* alg is CCM: check MIC only */ 456 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { 457 IWL_DEBUG_DROP(mvm, 458 "Dropping packet, bad MIC (CCM/GCM)\n"); 459 return -1; 460 } 461 462 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 463 *crypt_len = IEEE80211_CCMP_HDR_LEN; 464 return 0; 465 case IWL_RX_MPDU_STATUS_SEC_TKIP: 466 /* Don't drop the frame and decrypt it in SW */ 467 if (!fw_has_api(&mvm->fw->ucode_capa, 468 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 469 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 470 return 0; 471 472 if (mvm->trans->mac_cfg->gen2 && 473 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 474 stats->flag |= RX_FLAG_MMIC_ERROR; 475 476 *crypt_len = IEEE80211_TKIP_IV_LEN; 477 fallthrough; 478 case IWL_RX_MPDU_STATUS_SEC_WEP: 479 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 480 return -1; 481 482 stats->flag |= RX_FLAG_DECRYPTED; 483 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 484 IWL_RX_MPDU_STATUS_SEC_WEP) 485 *crypt_len = IEEE80211_WEP_IV_LEN; 486 487 if (pkt_flags & FH_RSCSR_RADA_EN) { 488 stats->flag |= RX_FLAG_ICV_STRIPPED; 489 if (mvm->trans->mac_cfg->gen2) 490 stats->flag |= RX_FLAG_MMIC_STRIPPED; 491 } 492 493 return 0; 494 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 495 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 496 return -1; 497 stats->flag |= RX_FLAG_DECRYPTED; 498 return 0; 499 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 500 break; 501 default: 502 /* 503 * Sometimes we can get frames that were not decrypted 504 * because the firmware didn't have the keys yet. This can 505 * happen after connection where we can get multicast frames 506 * before the GTK is installed. 507 * Silently drop those frames. 508 * Also drop un-decrypted frames in monitor mode. 509 */ 510 if (!is_multicast_ether_addr(hdr->addr1) && 511 !mvm->monitor_on && net_ratelimit()) 512 #if defined(__linux__) 513 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 514 #elif defined(__FreeBSD__) 515 IWL_WARN(mvm, "%s: Unhandled alg: 0x%x\n", __func__, status); 516 #endif 517 } 518 519 return 0; 520 } 521 522 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 523 struct ieee80211_sta *sta, 524 struct sk_buff *skb, 525 struct iwl_rx_packet *pkt) 526 { 527 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 528 529 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 530 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 531 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 532 533 skb->ip_summed = CHECKSUM_COMPLETE; 534 skb->csum = csum_unfold(~(__force __sum16)hwsum); 535 } 536 } else { 537 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 538 struct iwl_mvm_vif *mvmvif; 539 u16 flags = le16_to_cpu(desc->l3l4_flags); 540 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 541 IWL_RX_L3_PROTO_POS); 542 543 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 544 545 if (mvmvif->features & NETIF_F_RXCSUM && 546 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 547 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 548 l3_prot == IWL_RX_L3_TYPE_IPV6 || 549 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 550 skb->ip_summed = CHECKSUM_UNNECESSARY; 551 } 552 } 553 554 /* 555 * returns true if a packet is a duplicate or invalid tid and should be dropped. 556 * Updates AMSDU PN tracking info 557 */ 558 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 559 struct ieee80211_rx_status *rx_status, 560 struct ieee80211_hdr *hdr, 561 struct iwl_rx_mpdu_desc *desc) 562 { 563 struct iwl_mvm_sta *mvm_sta; 564 struct iwl_mvm_rxq_dup_data *dup_data; 565 u8 tid, sub_frame_idx; 566 567 if (WARN_ON(IS_ERR_OR_NULL(sta))) 568 return false; 569 570 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 571 572 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 573 return false; 574 575 dup_data = &mvm_sta->dup_data[queue]; 576 577 /* 578 * Drop duplicate 802.11 retransmissions 579 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 580 */ 581 if (ieee80211_is_ctl(hdr->frame_control) || 582 ieee80211_is_any_nullfunc(hdr->frame_control) || 583 is_multicast_ether_addr(hdr->addr1)) 584 return false; 585 586 if (ieee80211_is_data_qos(hdr->frame_control)) { 587 /* frame has qos control */ 588 tid = ieee80211_get_tid(hdr); 589 if (tid >= IWL_MAX_TID_COUNT) 590 return true; 591 } else { 592 tid = IWL_MAX_TID_COUNT; 593 } 594 595 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 596 sub_frame_idx = desc->amsdu_info & 597 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 598 599 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 600 dup_data->last_seq[tid] == hdr->seq_ctrl && 601 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 602 return true; 603 604 /* Allow same PN as the first subframe for following sub frames */ 605 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 606 sub_frame_idx > dup_data->last_sub_frame[tid] && 607 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 608 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 609 610 dup_data->last_seq[tid] = hdr->seq_ctrl; 611 dup_data->last_sub_frame[tid] = sub_frame_idx; 612 613 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 614 615 return false; 616 } 617 618 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 619 struct ieee80211_sta *sta, 620 struct napi_struct *napi, 621 struct iwl_mvm_baid_data *baid_data, 622 struct iwl_mvm_reorder_buffer *reorder_buf, 623 u16 nssn) 624 { 625 struct iwl_mvm_reorder_buf_entry *entries = 626 &baid_data->entries[reorder_buf->queue * 627 baid_data->entries_per_queue]; 628 u16 ssn = reorder_buf->head_sn; 629 630 lockdep_assert_held(&reorder_buf->lock); 631 632 while (ieee80211_sn_less(ssn, nssn)) { 633 int index = ssn % baid_data->buf_size; 634 struct sk_buff_head *skb_list = &entries[index].frames; 635 struct sk_buff *skb; 636 637 ssn = ieee80211_sn_inc(ssn); 638 639 /* 640 * Empty the list. Will have more than one frame for A-MSDU. 641 * Empty list is valid as well since nssn indicates frames were 642 * received. 643 */ 644 while ((skb = __skb_dequeue(skb_list))) { 645 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 646 reorder_buf->queue, 647 sta); 648 reorder_buf->num_stored--; 649 } 650 } 651 reorder_buf->head_sn = nssn; 652 } 653 654 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 655 struct iwl_mvm_delba_data *data) 656 { 657 struct iwl_mvm_baid_data *ba_data; 658 struct ieee80211_sta *sta; 659 struct iwl_mvm_reorder_buffer *reorder_buf; 660 u8 baid = data->baid; 661 u32 sta_id; 662 663 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 664 return; 665 666 rcu_read_lock(); 667 668 ba_data = rcu_dereference(mvm->baid_map[baid]); 669 if (WARN_ON_ONCE(!ba_data)) 670 goto out; 671 672 /* pick any STA ID to find the pointer */ 673 sta_id = ffs(ba_data->sta_mask) - 1; 674 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 675 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 676 goto out; 677 678 reorder_buf = &ba_data->reorder_buf[queue]; 679 680 /* release all frames that are in the reorder buffer to the stack */ 681 spin_lock_bh(&reorder_buf->lock); 682 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 683 ieee80211_sn_add(reorder_buf->head_sn, 684 ba_data->buf_size)); 685 spin_unlock_bh(&reorder_buf->lock); 686 687 out: 688 rcu_read_unlock(); 689 } 690 691 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 692 struct napi_struct *napi, 693 u8 baid, u16 nssn, int queue) 694 { 695 struct ieee80211_sta *sta; 696 struct iwl_mvm_reorder_buffer *reorder_buf; 697 struct iwl_mvm_baid_data *ba_data; 698 u32 sta_id; 699 700 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 701 baid, nssn); 702 703 if (IWL_FW_CHECK(mvm, 704 baid == IWL_RX_REORDER_DATA_INVALID_BAID || 705 baid >= ARRAY_SIZE(mvm->baid_map), 706 "invalid BAID from FW: %d\n", baid)) 707 return; 708 709 rcu_read_lock(); 710 711 ba_data = rcu_dereference(mvm->baid_map[baid]); 712 if (!ba_data) { 713 IWL_DEBUG_RX(mvm, 714 "Got valid BAID %d but not allocated, invalid frame release!\n", 715 baid); 716 goto out; 717 } 718 719 /* pick any STA ID to find the pointer */ 720 sta_id = ffs(ba_data->sta_mask) - 1; 721 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 722 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 723 goto out; 724 725 reorder_buf = &ba_data->reorder_buf[queue]; 726 727 spin_lock_bh(&reorder_buf->lock); 728 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 729 reorder_buf, nssn); 730 spin_unlock_bh(&reorder_buf->lock); 731 732 out: 733 rcu_read_unlock(); 734 } 735 736 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 737 struct iwl_rx_cmd_buffer *rxb, int queue) 738 { 739 struct iwl_rx_packet *pkt = rxb_addr(rxb); 740 struct iwl_rxq_sync_notification *notif; 741 struct iwl_mvm_internal_rxq_notif *internal_notif; 742 u32 len = iwl_rx_packet_payload_len(pkt); 743 744 notif = (void *)pkt->data; 745 internal_notif = (void *)notif->payload; 746 747 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 748 "invalid notification size %d (%d)", 749 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 750 return; 751 len -= sizeof(*notif) + sizeof(*internal_notif); 752 753 if (WARN_ONCE(internal_notif->sync && 754 mvm->queue_sync_cookie != internal_notif->cookie, 755 "Received expired RX queue sync message (cookie %d but wanted %d, queue %d)\n", 756 internal_notif->cookie, mvm->queue_sync_cookie, queue)) 757 return; 758 759 switch (internal_notif->type) { 760 case IWL_MVM_RXQ_EMPTY: 761 WARN_ONCE(len, "invalid empty notification size %d", len); 762 break; 763 case IWL_MVM_RXQ_NOTIF_DEL_BA: 764 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 765 "invalid delba notification size %d (%d)", 766 len, (int)sizeof(struct iwl_mvm_delba_data))) 767 break; 768 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 769 break; 770 default: 771 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 772 } 773 774 if (internal_notif->sync) { 775 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 776 "queue sync: queue %d responded a second time!\n", 777 queue); 778 if (READ_ONCE(mvm->queue_sync_state) == 0) 779 wake_up(&mvm->rx_sync_waitq); 780 } 781 } 782 783 /* 784 * Returns true if the MPDU was buffered\dropped, false if it should be passed 785 * to upper layer. 786 */ 787 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 788 struct napi_struct *napi, 789 int queue, 790 struct ieee80211_sta *sta, 791 struct sk_buff *skb, 792 struct iwl_rx_mpdu_desc *desc) 793 { 794 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 795 struct iwl_mvm_baid_data *baid_data; 796 struct iwl_mvm_reorder_buffer *buffer; 797 u32 reorder = le32_to_cpu(desc->reorder_data); 798 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 799 bool last_subframe = 800 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 801 #if defined(__linux__) 802 u8 tid = ieee80211_get_tid(hdr); 803 #elif defined(__FreeBSD__) 804 u8 tid; 805 #endif 806 struct iwl_mvm_reorder_buf_entry *entries; 807 u32 sta_mask; 808 int index; 809 u16 nssn, sn; 810 u8 baid; 811 812 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 813 IWL_RX_MPDU_REORDER_BAID_SHIFT; 814 815 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000) 816 return false; 817 818 /* 819 * This also covers the case of receiving a Block Ack Request 820 * outside a BA session; we'll pass it to mac80211 and that 821 * then sends a delBA action frame. 822 * This also covers pure monitor mode, in which case we won't 823 * have any BA sessions. 824 */ 825 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 826 return false; 827 828 /* no sta yet */ 829 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 830 "Got valid BAID without a valid station assigned\n")) 831 return false; 832 833 /* not a data packet or a bar */ 834 if (!ieee80211_is_back_req(hdr->frame_control) && 835 (!ieee80211_is_data_qos(hdr->frame_control) || 836 is_multicast_ether_addr(hdr->addr1))) 837 return false; 838 839 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 840 return false; 841 842 baid_data = rcu_dereference(mvm->baid_map[baid]); 843 if (!baid_data) { 844 IWL_DEBUG_RX(mvm, 845 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 846 baid, reorder); 847 return false; 848 } 849 850 #if defined(__FreeBSD__) 851 tid = ieee80211_get_tid(hdr); 852 #endif 853 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 854 855 if (IWL_FW_CHECK(mvm, 856 tid != baid_data->tid || 857 !(sta_mask & baid_data->sta_mask), 858 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 859 baid, baid_data->sta_mask, baid_data->tid, 860 sta_mask, tid)) 861 return false; 862 863 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 864 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 865 IWL_RX_MPDU_REORDER_SN_SHIFT; 866 867 buffer = &baid_data->reorder_buf[queue]; 868 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 869 870 spin_lock_bh(&buffer->lock); 871 872 if (!buffer->valid) { 873 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 874 spin_unlock_bh(&buffer->lock); 875 return false; 876 } 877 buffer->valid = true; 878 } 879 880 /* drop any duplicated packets */ 881 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_DUPLICATE)) 882 goto drop; 883 884 /* drop any oudated packets */ 885 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) 886 goto drop; 887 888 /* release immediately if allowed by nssn and no stored frames */ 889 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 890 if (!amsdu || last_subframe) 891 buffer->head_sn = nssn; 892 893 spin_unlock_bh(&buffer->lock); 894 return false; 895 } 896 897 /* 898 * release immediately if there are no stored frames, and the sn is 899 * equal to the head. 900 * This can happen due to reorder timer, where NSSN is behind head_sn. 901 * When we released everything, and we got the next frame in the 902 * sequence, according to the NSSN we can't release immediately, 903 * while technically there is no hole and we can move forward. 904 */ 905 if (!buffer->num_stored && sn == buffer->head_sn) { 906 if (!amsdu || last_subframe) 907 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 908 909 spin_unlock_bh(&buffer->lock); 910 return false; 911 } 912 913 /* put in reorder buffer */ 914 index = sn % baid_data->buf_size; 915 __skb_queue_tail(&entries[index].frames, skb); 916 buffer->num_stored++; 917 918 /* 919 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 920 * The reason is that NSSN advances on the first sub-frame, and may 921 * cause the reorder buffer to advance before all the sub-frames arrive. 922 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 923 * SN 1. NSSN for first sub frame will be 3 with the result of driver 924 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 925 * already ahead and it will be dropped. 926 * If the last sub-frame is not on this queue - we will get frame 927 * release notification with up to date NSSN. 928 * If this is the first frame that is stored in the buffer, the head_sn 929 * may be outdated. Update it based on the last NSSN to make sure it 930 * will be released when the frame release notification arrives. 931 */ 932 if (!amsdu || last_subframe) 933 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 934 buffer, nssn); 935 else if (buffer->num_stored == 1) 936 buffer->head_sn = nssn; 937 938 spin_unlock_bh(&buffer->lock); 939 return true; 940 941 drop: 942 kfree_skb(skb); 943 spin_unlock_bh(&buffer->lock); 944 return true; 945 } 946 947 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 948 u32 reorder_data, u8 baid) 949 { 950 unsigned long now = jiffies; 951 unsigned long timeout; 952 struct iwl_mvm_baid_data *data; 953 954 rcu_read_lock(); 955 956 data = rcu_dereference(mvm->baid_map[baid]); 957 if (!data) { 958 IWL_DEBUG_RX(mvm, 959 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 960 baid, reorder_data); 961 goto out; 962 } 963 964 if (!data->timeout) 965 goto out; 966 967 timeout = data->timeout; 968 /* 969 * Do not update last rx all the time to avoid cache bouncing 970 * between the rx queues. 971 * Update it every timeout. Worst case is the session will 972 * expire after ~ 2 * timeout, which doesn't matter that much. 973 */ 974 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 975 /* Update is atomic */ 976 data->last_rx = now; 977 978 out: 979 rcu_read_unlock(); 980 } 981 982 static void iwl_mvm_flip_address(u8 *addr) 983 { 984 int i; 985 u8 mac_addr[ETH_ALEN]; 986 987 for (i = 0; i < ETH_ALEN; i++) 988 mac_addr[i] = addr[ETH_ALEN - i - 1]; 989 ether_addr_copy(addr, mac_addr); 990 } 991 992 struct iwl_mvm_rx_phy_data { 993 enum iwl_rx_phy_info_type info_type; 994 __le32 d0, d1, d2, d3, eht_d4, d5; 995 __le16 d4; 996 bool with_data; 997 bool first_subframe; 998 __le32 rx_vec[4]; 999 1000 u32 rate_n_flags; 1001 u32 gp2_on_air_rise; 1002 u16 phy_info; 1003 u8 energy_a, energy_b; 1004 u8 channel; 1005 }; 1006 1007 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1008 struct iwl_mvm_rx_phy_data *phy_data, 1009 struct ieee80211_radiotap_he_mu *he_mu) 1010 { 1011 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1012 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1013 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1014 u32 rate_n_flags = phy_data->rate_n_flags; 1015 1016 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1017 he_mu->flags1 |= 1018 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1019 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1020 1021 he_mu->flags1 |= 1022 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1023 phy_data4), 1024 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1025 1026 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1027 phy_data2); 1028 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1029 phy_data3); 1030 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1031 phy_data2); 1032 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1033 phy_data3); 1034 } 1035 1036 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1037 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1038 he_mu->flags1 |= 1039 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1040 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1041 1042 he_mu->flags2 |= 1043 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1044 phy_data4), 1045 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1046 1047 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1048 phy_data2); 1049 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1050 phy_data3); 1051 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1052 phy_data2); 1053 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1054 phy_data3); 1055 } 1056 } 1057 1058 static void 1059 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1060 struct ieee80211_radiotap_he *he, 1061 struct ieee80211_radiotap_he_mu *he_mu, 1062 struct ieee80211_rx_status *rx_status) 1063 { 1064 /* 1065 * Unfortunately, we have to leave the mac80211 data 1066 * incorrect for the case that we receive an HE-MU 1067 * transmission and *don't* have the HE phy data (due 1068 * to the bits being used for TSF). This shouldn't 1069 * happen though as management frames where we need 1070 * the TSF/timers are not be transmitted in HE-MU. 1071 */ 1072 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1073 u32 rate_n_flags = phy_data->rate_n_flags; 1074 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1075 u8 offs = 0; 1076 1077 rx_status->bw = RATE_INFO_BW_HE_RU; 1078 1079 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1080 1081 switch (ru) { 1082 case 0 ... 36: 1083 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1084 offs = ru; 1085 break; 1086 case 37 ... 52: 1087 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1088 offs = ru - 37; 1089 break; 1090 case 53 ... 60: 1091 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1092 offs = ru - 53; 1093 break; 1094 case 61 ... 64: 1095 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1096 offs = ru - 61; 1097 break; 1098 case 65 ... 66: 1099 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1100 offs = ru - 65; 1101 break; 1102 case 67: 1103 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1104 break; 1105 case 68: 1106 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1107 break; 1108 } 1109 he->data2 |= le16_encode_bits(offs, 1110 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1111 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1112 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1113 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1114 he->data2 |= 1115 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1116 1117 #define CHECK_BW(bw) \ 1118 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1119 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1120 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1121 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1122 CHECK_BW(20); 1123 CHECK_BW(40); 1124 CHECK_BW(80); 1125 CHECK_BW(160); 1126 1127 if (he_mu) 1128 he_mu->flags2 |= 1129 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1130 rate_n_flags), 1131 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1132 else if (he_type == RATE_MCS_HE_TYPE_TRIG) 1133 he->data6 |= 1134 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1135 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, 1136 rate_n_flags), 1137 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1138 } 1139 1140 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1141 struct iwl_mvm_rx_phy_data *phy_data, 1142 struct ieee80211_radiotap_he *he, 1143 struct ieee80211_radiotap_he_mu *he_mu, 1144 struct ieee80211_rx_status *rx_status, 1145 int queue) 1146 { 1147 switch (phy_data->info_type) { 1148 case IWL_RX_PHY_INFO_TYPE_NONE: 1149 case IWL_RX_PHY_INFO_TYPE_CCK: 1150 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1151 case IWL_RX_PHY_INFO_TYPE_HT: 1152 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1153 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1154 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1155 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1156 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1157 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1158 return; 1159 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1160 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1161 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1162 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1163 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1164 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1165 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1166 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1167 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1168 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1169 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1170 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1171 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1172 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1173 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1174 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1175 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1176 fallthrough; 1177 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1178 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1179 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1180 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1181 /* HE common */ 1182 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1183 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1184 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1185 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1186 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1187 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1188 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1189 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1190 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1191 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1192 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1193 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1194 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1195 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1196 IWL_RX_PHY_DATA0_HE_UPLINK), 1197 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1198 } 1199 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1200 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1201 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1202 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1203 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1204 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1205 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1206 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1207 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1208 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1209 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1210 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1211 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1212 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1213 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1214 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1215 IWL_RX_PHY_DATA0_HE_DOPPLER), 1216 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1217 break; 1218 } 1219 1220 switch (phy_data->info_type) { 1221 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1222 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1223 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1224 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1225 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1226 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1227 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1228 break; 1229 default: 1230 /* nothing here */ 1231 break; 1232 } 1233 1234 switch (phy_data->info_type) { 1235 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1236 he_mu->flags1 |= 1237 le16_encode_bits(le16_get_bits(phy_data->d4, 1238 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1239 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1240 he_mu->flags1 |= 1241 le16_encode_bits(le16_get_bits(phy_data->d4, 1242 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1243 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1244 he_mu->flags2 |= 1245 le16_encode_bits(le16_get_bits(phy_data->d4, 1246 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1247 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1248 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1249 fallthrough; 1250 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1251 he_mu->flags2 |= 1252 le16_encode_bits(le32_get_bits(phy_data->d1, 1253 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1254 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1255 he_mu->flags2 |= 1256 le16_encode_bits(le32_get_bits(phy_data->d1, 1257 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1258 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1259 fallthrough; 1260 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1261 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1262 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1263 break; 1264 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1265 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1266 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1267 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1268 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1269 break; 1270 default: 1271 /* nothing */ 1272 break; 1273 } 1274 } 1275 1276 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1277 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1278 1279 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1280 typeof(enc_bits) _enc_bits = enc_bits; \ 1281 typeof(usig) _usig = usig; \ 1282 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1283 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1284 } while (0) 1285 1286 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1287 eht->data[(rt_data)] |= \ 1288 (cpu_to_le32 \ 1289 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1290 LE32_DEC_ENC(data ## fw_data, \ 1291 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1292 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1293 1294 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1295 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1296 1297 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1298 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1299 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1300 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1301 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1302 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1303 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1304 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1305 1306 #define IWL_RX_RU_DATA_A1 2 1307 #define IWL_RX_RU_DATA_A2 2 1308 #define IWL_RX_RU_DATA_B1 2 1309 #define IWL_RX_RU_DATA_B2 4 1310 #define IWL_RX_RU_DATA_C1 3 1311 #define IWL_RX_RU_DATA_C2 3 1312 #define IWL_RX_RU_DATA_D1 4 1313 #define IWL_RX_RU_DATA_D2 4 1314 1315 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1316 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1317 rt_ru, \ 1318 IWL_RX_RU_DATA_ ## fw_ru, \ 1319 fw_ru) 1320 1321 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1322 struct iwl_mvm_rx_phy_data *phy_data, 1323 struct ieee80211_rx_status *rx_status, 1324 struct ieee80211_radiotap_eht *eht, 1325 struct ieee80211_radiotap_eht_usig *usig) 1326 { 1327 if (phy_data->with_data) { 1328 __le32 data1 = phy_data->d1; 1329 __le32 data2 = phy_data->d2; 1330 __le32 data3 = phy_data->d3; 1331 __le32 data4 = phy_data->eht_d4; 1332 __le32 data5 = phy_data->d5; 1333 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1334 1335 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1336 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1337 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1338 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1339 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1340 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1341 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1342 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1343 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1344 IWL_MVM_ENC_USIG_VALUE_MASK 1345 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1346 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1347 1348 eht->user_info[0] |= 1349 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1350 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1351 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1352 1353 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1354 eht->data[7] |= LE32_DEC_ENC 1355 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1356 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1357 1358 /* 1359 * Hardware labels the content channels/RU allocation values 1360 * as follows: 1361 * Content Channel 1 Content Channel 2 1362 * 20 MHz: A1 1363 * 40 MHz: A1 B1 1364 * 80 MHz: A1 C1 B1 D1 1365 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1366 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1367 * 1368 * However firmware can only give us A1-D2, so the higher 1369 * frequencies are missing. 1370 */ 1371 1372 switch (phy_bw) { 1373 case RATE_MCS_CHAN_WIDTH_320: 1374 /* additional values are missing in RX metadata */ 1375 case RATE_MCS_CHAN_WIDTH_160: 1376 /* content channel 1 */ 1377 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1378 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1379 /* content channel 2 */ 1380 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1381 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1382 fallthrough; 1383 case RATE_MCS_CHAN_WIDTH_80: 1384 /* content channel 1 */ 1385 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1386 /* content channel 2 */ 1387 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1388 fallthrough; 1389 case RATE_MCS_CHAN_WIDTH_40: 1390 /* content channel 2 */ 1391 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1392 fallthrough; 1393 case RATE_MCS_CHAN_WIDTH_20: 1394 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1395 break; 1396 } 1397 } else { 1398 __le32 usig_a1 = phy_data->rx_vec[0]; 1399 __le32 usig_a2 = phy_data->rx_vec[1]; 1400 1401 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1402 IWL_RX_USIG_A1_DISREGARD, 1403 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1404 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1405 IWL_RX_USIG_A1_VALIDATE, 1406 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1407 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1408 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1409 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1410 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1411 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1412 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1413 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1414 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1415 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1416 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1417 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1418 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1419 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1420 IWL_RX_USIG_A2_EHT_SIG_MCS, 1421 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1422 IWL_MVM_ENC_USIG_VALUE_MASK 1423 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1424 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1425 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1426 IWL_RX_USIG_A2_EHT_CRC_OK, 1427 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1428 } 1429 } 1430 1431 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1432 struct iwl_mvm_rx_phy_data *phy_data, 1433 struct ieee80211_rx_status *rx_status, 1434 struct ieee80211_radiotap_eht *eht, 1435 struct ieee80211_radiotap_eht_usig *usig) 1436 { 1437 if (phy_data->with_data) { 1438 __le32 data5 = phy_data->d5; 1439 1440 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1441 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1442 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1443 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1444 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1445 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1446 1447 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1448 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1449 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1450 } else { 1451 __le32 usig_a1 = phy_data->rx_vec[0]; 1452 __le32 usig_a2 = phy_data->rx_vec[1]; 1453 1454 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1455 IWL_RX_USIG_A1_DISREGARD, 1456 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1457 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1458 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1459 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1460 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1461 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1462 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1463 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1464 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1465 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1466 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1467 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1468 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1469 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1470 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1471 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1472 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1473 IWL_RX_USIG_A2_EHT_CRC_OK, 1474 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1475 } 1476 } 1477 1478 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1479 struct ieee80211_rx_status *rx_status, 1480 struct ieee80211_radiotap_eht *eht) 1481 { 1482 u32 ru = le32_get_bits(eht->data[8], 1483 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1484 enum nl80211_eht_ru_alloc nl_ru; 1485 1486 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1487 * in an EHT variant User Info field 1488 */ 1489 1490 switch (ru) { 1491 case 0 ... 36: 1492 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1493 break; 1494 case 37 ... 52: 1495 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1496 break; 1497 case 53 ... 60: 1498 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1499 break; 1500 case 61 ... 64: 1501 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1502 break; 1503 case 65 ... 66: 1504 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1505 break; 1506 case 67: 1507 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1508 break; 1509 case 68: 1510 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1511 break; 1512 case 69: 1513 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1514 break; 1515 case 70 ... 81: 1516 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1517 break; 1518 case 82 ... 89: 1519 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1520 break; 1521 case 90 ... 93: 1522 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1523 break; 1524 case 94 ... 95: 1525 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1526 break; 1527 case 96 ... 99: 1528 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1529 break; 1530 case 100 ... 103: 1531 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1532 break; 1533 case 104: 1534 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1535 break; 1536 case 105 ... 106: 1537 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1538 break; 1539 default: 1540 return; 1541 } 1542 1543 rx_status->bw = RATE_INFO_BW_EHT_RU; 1544 rx_status->eht.ru = nl_ru; 1545 } 1546 1547 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1548 struct iwl_mvm_rx_phy_data *phy_data, 1549 struct ieee80211_rx_status *rx_status, 1550 struct ieee80211_radiotap_eht *eht, 1551 struct ieee80211_radiotap_eht_usig *usig) 1552 1553 { 1554 __le32 data0 = phy_data->d0; 1555 __le32 data1 = phy_data->d1; 1556 __le32 usig_a1 = phy_data->rx_vec[0]; 1557 u8 info_type = phy_data->info_type; 1558 1559 /* Not in EHT range */ 1560 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1561 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1562 return; 1563 1564 usig->common |= cpu_to_le32 1565 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1566 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1567 if (phy_data->with_data) { 1568 usig->common |= LE32_DEC_ENC(data0, 1569 IWL_RX_PHY_DATA0_EHT_UPLINK, 1570 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1571 usig->common |= LE32_DEC_ENC(data0, 1572 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1573 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1574 } else { 1575 usig->common |= LE32_DEC_ENC(usig_a1, 1576 IWL_RX_USIG_A1_UL_FLAG, 1577 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1578 usig->common |= LE32_DEC_ENC(usig_a1, 1579 IWL_RX_USIG_A1_BSS_COLOR, 1580 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1581 } 1582 1583 if (fw_has_capa(&mvm->fw->ucode_capa, 1584 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1585 usig->common |= 1586 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1587 usig->common |= 1588 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1589 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1590 } 1591 1592 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1593 eht->data[0] |= LE32_DEC_ENC(data0, 1594 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1595 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1596 1597 /* All RU allocating size/index is in TB format */ 1598 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1599 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1600 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1601 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1602 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1603 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1604 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1605 1606 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1607 1608 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1609 * which is on only in case of monitor mode so no need to check monitor 1610 * mode 1611 */ 1612 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1613 eht->data[1] |= 1614 le32_encode_bits(mvm->monitor_p80, 1615 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1616 1617 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1618 if (phy_data->with_data) 1619 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1620 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1621 else 1622 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1623 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1624 1625 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1626 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1627 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1628 1629 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1630 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1631 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1632 1633 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1634 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1635 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1636 1637 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1638 1639 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1640 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1641 1642 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1643 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1644 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1645 1646 /* 1647 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1648 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1649 */ 1650 1651 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1652 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1653 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1654 1655 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1656 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1657 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1658 1659 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1660 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1661 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1662 } 1663 1664 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1665 struct iwl_mvm_rx_phy_data *phy_data, 1666 int queue) 1667 { 1668 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1669 1670 struct ieee80211_radiotap_eht *eht; 1671 struct ieee80211_radiotap_eht_usig *usig; 1672 size_t eht_len = sizeof(*eht); 1673 1674 u32 rate_n_flags = phy_data->rate_n_flags; 1675 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1676 /* EHT and HE have the same valus for LTF */ 1677 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1678 u16 phy_info = phy_data->phy_info; 1679 u32 bw; 1680 1681 /* u32 for 1 user_info */ 1682 if (phy_data->with_data) 1683 eht_len += sizeof(u32); 1684 1685 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1686 1687 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1688 sizeof(*usig)); 1689 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1690 usig->common |= 1691 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1692 1693 /* specific handling for 320MHz */ 1694 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1695 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1696 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1697 le32_to_cpu(phy_data->d0)); 1698 1699 usig->common |= cpu_to_le32 1700 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1701 1702 /* report the AMPDU-EOF bit on single frames */ 1703 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1704 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1705 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1706 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1707 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1708 } 1709 1710 /* update aggregation data for monitor sake on default queue */ 1711 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1712 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1713 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1714 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1715 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1716 } 1717 1718 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1719 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1720 1721 #define CHECK_TYPE(F) \ 1722 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1723 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1724 1725 CHECK_TYPE(SU); 1726 CHECK_TYPE(EXT_SU); 1727 CHECK_TYPE(MU); 1728 CHECK_TYPE(TRIG); 1729 1730 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1731 case 0: 1732 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1733 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1734 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1735 } else { 1736 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1737 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1738 } 1739 break; 1740 case 1: 1741 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1742 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1743 break; 1744 case 2: 1745 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1746 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1747 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1748 else 1749 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1750 break; 1751 case 3: 1752 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1753 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1754 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1755 } 1756 break; 1757 default: 1758 /* nothing here */ 1759 break; 1760 } 1761 1762 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1763 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1764 eht->data[0] |= cpu_to_le32 1765 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1766 ltf) | 1767 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1768 rx_status->eht.gi)); 1769 } 1770 1771 1772 if (!phy_data->with_data) { 1773 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1774 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1775 eht->data[7] |= 1776 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1777 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1778 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1779 if (rate_n_flags & RATE_MCS_BF_MSK) 1780 eht->data[7] |= 1781 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1782 } else { 1783 eht->user_info[0] |= 1784 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1785 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1786 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1787 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 1788 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 1789 1790 if (rate_n_flags & RATE_MCS_BF_MSK) 1791 eht->user_info[0] |= 1792 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 1793 1794 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1795 eht->user_info[0] |= 1796 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 1797 1798 eht->user_info[0] |= cpu_to_le32 1799 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 1800 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 1801 rate_n_flags)) | 1802 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 1803 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 1804 } 1805 } 1806 1807 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1808 struct iwl_mvm_rx_phy_data *phy_data, 1809 int queue) 1810 { 1811 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1812 struct ieee80211_radiotap_he *he = NULL; 1813 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1814 u32 rate_n_flags = phy_data->rate_n_flags; 1815 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1816 u8 ltf; 1817 static const struct ieee80211_radiotap_he known = { 1818 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1819 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1820 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1821 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1822 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1823 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1824 }; 1825 static const struct ieee80211_radiotap_he_mu mu_known = { 1826 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1827 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1828 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1829 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1830 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1831 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1832 }; 1833 u16 phy_info = phy_data->phy_info; 1834 1835 he = skb_put_data(skb, &known, sizeof(known)); 1836 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1837 1838 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1839 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1840 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1841 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1842 } 1843 1844 /* report the AMPDU-EOF bit on single frames */ 1845 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1846 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1847 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1848 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1849 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1850 } 1851 1852 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1853 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1854 queue); 1855 1856 /* update aggregation data for monitor sake on default queue */ 1857 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1858 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1859 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1860 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1861 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1862 } 1863 1864 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1865 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1866 rx_status->bw = RATE_INFO_BW_HE_RU; 1867 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1868 } 1869 1870 /* actually data is filled in mac80211 */ 1871 if (he_type == RATE_MCS_HE_TYPE_SU || 1872 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1873 he->data1 |= 1874 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1875 1876 #define CHECK_TYPE(F) \ 1877 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1878 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1879 1880 CHECK_TYPE(SU); 1881 CHECK_TYPE(EXT_SU); 1882 CHECK_TYPE(MU); 1883 CHECK_TYPE(TRIG); 1884 1885 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1886 1887 if (rate_n_flags & RATE_MCS_BF_MSK) 1888 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1889 1890 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1891 RATE_MCS_HE_GI_LTF_POS) { 1892 case 0: 1893 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1894 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1895 else 1896 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1897 if (he_type == RATE_MCS_HE_TYPE_MU) 1898 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1899 else 1900 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1901 break; 1902 case 1: 1903 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1904 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1905 else 1906 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1907 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1908 break; 1909 case 2: 1910 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1911 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1912 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1913 } else { 1914 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1915 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1916 } 1917 break; 1918 case 3: 1919 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1920 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1921 break; 1922 case 4: 1923 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1924 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1925 break; 1926 default: 1927 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1928 } 1929 1930 he->data5 |= le16_encode_bits(ltf, 1931 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1932 } 1933 1934 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1935 struct iwl_mvm_rx_phy_data *phy_data) 1936 { 1937 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1938 struct ieee80211_radiotap_lsig *lsig; 1939 1940 switch (phy_data->info_type) { 1941 case IWL_RX_PHY_INFO_TYPE_HT: 1942 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1943 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1944 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1945 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1946 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1947 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1948 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1949 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1950 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1951 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1952 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1953 lsig = skb_put(skb, sizeof(*lsig)); 1954 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1955 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1956 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1957 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1958 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1959 break; 1960 default: 1961 break; 1962 } 1963 } 1964 1965 struct iwl_rx_sta_csa { 1966 bool all_sta_unblocked; 1967 struct ieee80211_vif *vif; 1968 }; 1969 1970 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1971 { 1972 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1973 struct iwl_rx_sta_csa *rx_sta_csa = data; 1974 1975 if (mvmsta->vif != rx_sta_csa->vif) 1976 return; 1977 1978 if (mvmsta->disable_tx) 1979 rx_sta_csa->all_sta_unblocked = false; 1980 } 1981 1982 /* 1983 * Note: requires also rx_status->band to be prefilled, as well 1984 * as phy_data (apart from phy_data->info_type) 1985 * Note: desc/hdr may be NULL 1986 */ 1987 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 1988 struct iwl_rx_mpdu_desc *desc, 1989 struct ieee80211_hdr *hdr, 1990 struct sk_buff *skb, 1991 struct iwl_mvm_rx_phy_data *phy_data, 1992 int queue) 1993 { 1994 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1995 u32 rate_n_flags = phy_data->rate_n_flags; 1996 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 1997 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1998 bool is_sgi; 1999 2000 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2001 2002 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2003 phy_data->info_type = 2004 le32_get_bits(phy_data->d1, 2005 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2006 2007 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2008 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2009 case RATE_MCS_CHAN_WIDTH_20: 2010 break; 2011 case RATE_MCS_CHAN_WIDTH_40: 2012 rx_status->bw = RATE_INFO_BW_40; 2013 break; 2014 case RATE_MCS_CHAN_WIDTH_80: 2015 rx_status->bw = RATE_INFO_BW_80; 2016 break; 2017 case RATE_MCS_CHAN_WIDTH_160: 2018 rx_status->bw = RATE_INFO_BW_160; 2019 break; 2020 case RATE_MCS_CHAN_WIDTH_320: 2021 rx_status->bw = RATE_INFO_BW_320; 2022 break; 2023 } 2024 2025 /* must be before L-SIG data */ 2026 if (format == RATE_MCS_MOD_TYPE_HE) 2027 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2028 2029 iwl_mvm_decode_lsig(skb, phy_data); 2030 2031 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2032 2033 if (mvm->rx_ts_ptp && mvm->monitor_on) { 2034 u64 adj_time = 2035 iwl_mvm_ptp_get_adj_time(mvm, phy_data->gp2_on_air_rise * NSEC_PER_USEC); 2036 2037 rx_status->mactime = div64_u64(adj_time, NSEC_PER_USEC); 2038 rx_status->flag |= RX_FLAG_MACTIME_IS_RTAP_TS64; 2039 rx_status->flag &= ~RX_FLAG_MACTIME; 2040 } 2041 2042 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2043 rx_status->band); 2044 iwl_mvm_get_signal_strength(mvm, desc, hdr, rx_status, rate_n_flags, 2045 phy_data->energy_a, phy_data->energy_b); 2046 2047 /* using TLV format and must be after all fixed len fields */ 2048 if (format == RATE_MCS_MOD_TYPE_EHT) 2049 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2050 2051 if (unlikely(mvm->monitor_on)) 2052 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2053 2054 is_sgi = format == RATE_MCS_MOD_TYPE_HE ? 2055 iwl_he_is_sgi(rate_n_flags) : 2056 rate_n_flags & RATE_MCS_SGI_MSK; 2057 2058 if (!(format == RATE_MCS_MOD_TYPE_CCK) && is_sgi) 2059 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2060 2061 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2062 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2063 2064 switch (format) { 2065 case RATE_MCS_MOD_TYPE_VHT: 2066 rx_status->encoding = RX_ENC_VHT; 2067 break; 2068 case RATE_MCS_MOD_TYPE_HE: 2069 rx_status->encoding = RX_ENC_HE; 2070 rx_status->he_dcm = 2071 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2072 break; 2073 case RATE_MCS_MOD_TYPE_EHT: 2074 rx_status->encoding = RX_ENC_EHT; 2075 break; 2076 } 2077 2078 switch (format) { 2079 case RATE_MCS_MOD_TYPE_HT: 2080 rx_status->encoding = RX_ENC_HT; 2081 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2082 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2083 break; 2084 case RATE_MCS_MOD_TYPE_VHT: 2085 case RATE_MCS_MOD_TYPE_HE: 2086 case RATE_MCS_MOD_TYPE_EHT: 2087 rx_status->nss = 2088 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2089 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2090 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2091 break; 2092 default: { 2093 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2094 rx_status->band); 2095 2096 rx_status->rate_idx = rate; 2097 2098 if ((rate < 0 || rate > 0xFF)) { 2099 rx_status->rate_idx = 0; 2100 if (net_ratelimit()) 2101 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2102 rate_n_flags, rx_status->band); 2103 } 2104 2105 break; 2106 } 2107 } 2108 } 2109 2110 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2111 struct iwl_rx_cmd_buffer *rxb, int queue) 2112 { 2113 struct ieee80211_rx_status *rx_status; 2114 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2115 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2116 struct ieee80211_hdr *hdr; 2117 u32 len; 2118 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2119 struct ieee80211_sta *sta = NULL; 2120 struct sk_buff *skb; 2121 u8 crypt_len = 0; 2122 u8 sta_id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2123 size_t desc_size; 2124 struct iwl_mvm_rx_phy_data phy_data = {}; 2125 u32 format; 2126 2127 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2128 return; 2129 2130 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2131 desc_size = sizeof(*desc); 2132 else 2133 desc_size = IWL_RX_DESC_SIZE_V1; 2134 2135 if (unlikely(pkt_len < desc_size)) { 2136 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2137 return; 2138 } 2139 2140 if (mvm->trans->mac_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2141 phy_data.rate_n_flags = 2142 iwl_mvm_v3_rate_from_fw(desc->v3.rate_n_flags, 2143 mvm->fw_rates_ver); 2144 phy_data.channel = desc->v3.channel; 2145 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2146 phy_data.energy_a = desc->v3.energy_a; 2147 phy_data.energy_b = desc->v3.energy_b; 2148 2149 phy_data.d0 = desc->v3.phy_data0; 2150 phy_data.d1 = desc->v3.phy_data1; 2151 phy_data.d2 = desc->v3.phy_data2; 2152 phy_data.d3 = desc->v3.phy_data3; 2153 phy_data.eht_d4 = desc->phy_eht_data4; 2154 phy_data.d5 = desc->v3.phy_data5; 2155 } else { 2156 phy_data.rate_n_flags = 2157 iwl_mvm_v3_rate_from_fw(desc->v1.rate_n_flags, 2158 mvm->fw_rates_ver); 2159 phy_data.channel = desc->v1.channel; 2160 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2161 phy_data.energy_a = desc->v1.energy_a; 2162 phy_data.energy_b = desc->v1.energy_b; 2163 2164 phy_data.d0 = desc->v1.phy_data0; 2165 phy_data.d1 = desc->v1.phy_data1; 2166 phy_data.d2 = desc->v1.phy_data2; 2167 phy_data.d3 = desc->v1.phy_data3; 2168 } 2169 2170 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2171 2172 len = le16_to_cpu(desc->mpdu_len); 2173 2174 if (unlikely(len + desc_size > pkt_len)) { 2175 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2176 return; 2177 } 2178 2179 phy_data.with_data = true; 2180 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2181 phy_data.d4 = desc->phy_data4; 2182 2183 hdr = (void *)(pkt->data + desc_size); 2184 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2185 * ieee80211_hdr pulled. 2186 */ 2187 skb = alloc_skb(128, GFP_ATOMIC); 2188 if (!skb) { 2189 IWL_ERR(mvm, "alloc_skb failed\n"); 2190 return; 2191 } 2192 2193 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2194 /* 2195 * If the device inserted padding it means that (it thought) 2196 * the 802.11 header wasn't a multiple of 4 bytes long. In 2197 * this case, reserve two bytes at the start of the SKB to 2198 * align the payload properly in case we end up copying it. 2199 */ 2200 skb_reserve(skb, 2); 2201 } 2202 2203 rx_status = IEEE80211_SKB_RXCB(skb); 2204 2205 /* 2206 * Keep packets with CRC errors (and with overrun) for monitor mode 2207 * (otherwise the firmware discards them) but mark them as bad. 2208 */ 2209 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2210 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2211 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2212 le32_to_cpu(desc->status)); 2213 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2214 } 2215 2216 /* set the preamble flag if appropriate */ 2217 if (format == RATE_MCS_MOD_TYPE_CCK && 2218 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2219 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2220 2221 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2222 u64 tsf_on_air_rise; 2223 2224 if (mvm->trans->mac_cfg->device_family >= 2225 IWL_DEVICE_FAMILY_AX210) 2226 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2227 else 2228 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2229 2230 rx_status->mactime = tsf_on_air_rise; 2231 /* TSF as indicated by the firmware is at INA time */ 2232 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2233 } 2234 2235 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2236 u8 band = u8_get_bits(desc->mac_phy_band, 2237 IWL_RX_MPDU_MAC_PHY_BAND_BAND_MASK); 2238 2239 rx_status->band = iwl_mvm_nl80211_band_from_phy(band); 2240 } else { 2241 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2242 NL80211_BAND_2GHZ; 2243 } 2244 2245 /* update aggregation data for monitor sake on default queue */ 2246 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2247 bool toggle_bit; 2248 2249 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2250 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2251 /* 2252 * Toggle is switched whenever new aggregation starts. Make 2253 * sure ampdu_reference is never 0 so we can later use it to 2254 * see if the frame was really part of an A-MPDU or not. 2255 */ 2256 if (toggle_bit != mvm->ampdu_toggle) { 2257 mvm->ampdu_ref++; 2258 if (mvm->ampdu_ref == 0) 2259 mvm->ampdu_ref++; 2260 mvm->ampdu_toggle = toggle_bit; 2261 phy_data.first_subframe = true; 2262 } 2263 rx_status->ampdu_reference = mvm->ampdu_ref; 2264 } 2265 2266 rcu_read_lock(); 2267 2268 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2269 if (!WARN_ON_ONCE(sta_id >= mvm->fw->ucode_capa.num_stations)) { 2270 struct ieee80211_link_sta *link_sta; 2271 2272 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 2273 if (IS_ERR(sta)) 2274 sta = NULL; 2275 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[sta_id]); 2276 2277 if (sta && sta->valid_links && link_sta) { 2278 rx_status->link_valid = 1; 2279 rx_status->link_id = link_sta->link_id; 2280 } 2281 } 2282 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2283 /* 2284 * This is fine since we prevent two stations with the same 2285 * address from being added. 2286 */ 2287 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2288 } 2289 2290 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2291 le32_to_cpu(pkt->len_n_flags), queue, 2292 &crypt_len)) { 2293 kfree_skb(skb); 2294 goto out; 2295 } 2296 2297 iwl_mvm_rx_fill_status(mvm, desc, hdr, skb, &phy_data, queue); 2298 2299 if (sta) { 2300 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2301 struct ieee80211_vif *tx_blocked_vif = 2302 rcu_dereference(mvm->csa_tx_blocked_vif); 2303 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2304 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2305 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2306 struct iwl_fw_dbg_trigger_tlv *trig; 2307 struct ieee80211_vif *vif = mvmsta->vif; 2308 2309 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2310 !is_multicast_ether_addr(hdr->addr1) && 2311 ieee80211_is_data(hdr->frame_control) && 2312 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2313 schedule_delayed_work(&mvm->tcm.work, 0); 2314 2315 /* 2316 * We have tx blocked stations (with CS bit). If we heard 2317 * frames from a blocked station on a new channel we can 2318 * TX to it again. 2319 */ 2320 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2321 struct iwl_mvm_vif *mvmvif = 2322 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2323 struct iwl_rx_sta_csa rx_sta_csa = { 2324 .all_sta_unblocked = true, 2325 .vif = tx_blocked_vif, 2326 }; 2327 2328 if (mvmvif->csa_target_freq == rx_status->freq) 2329 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2330 false); 2331 ieee80211_iterate_stations_atomic(mvm->hw, 2332 iwl_mvm_rx_get_sta_block_tx, 2333 &rx_sta_csa); 2334 2335 if (rx_sta_csa.all_sta_unblocked) { 2336 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2337 /* Unblock BCAST / MCAST station */ 2338 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2339 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2340 } 2341 } 2342 2343 rs_update_last_rssi(mvm, mvmsta, rx_status); 2344 2345 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2346 ieee80211_vif_to_wdev(vif), 2347 FW_DBG_TRIGGER_RSSI); 2348 2349 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2350 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2351 s32 rssi; 2352 2353 rssi_trig = (void *)trig->data; 2354 rssi = le32_to_cpu(rssi_trig->rssi); 2355 2356 if (rx_status->signal < rssi) 2357 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2358 #if defined(__linux__) 2359 NULL); 2360 #elif defined(__FreeBSD__) 2361 ""); 2362 #endif 2363 } 2364 2365 if (ieee80211_is_data(hdr->frame_control)) 2366 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2367 2368 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2369 IWL_DEBUG_DROP(mvm, "Dropping duplicate packet 0x%x\n", 2370 le16_to_cpu(hdr->seq_ctrl)); 2371 kfree_skb(skb); 2372 goto out; 2373 } 2374 2375 /* 2376 * Our hardware de-aggregates AMSDUs but copies the mac header 2377 * as it to the de-aggregated MPDUs. We need to turn off the 2378 * AMSDU bit in the QoS control ourselves. 2379 * In addition, HW reverses addr3 and addr4 - reverse it back. 2380 */ 2381 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2382 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2383 u8 *qc = ieee80211_get_qos_ctl(hdr); 2384 2385 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2386 2387 if (mvm->trans->mac_cfg->device_family == 2388 IWL_DEVICE_FAMILY_9000) { 2389 iwl_mvm_flip_address(hdr->addr3); 2390 2391 if (ieee80211_has_a4(hdr->frame_control)) 2392 iwl_mvm_flip_address(hdr->addr4); 2393 } 2394 } 2395 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2396 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2397 2398 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2399 } 2400 2401 if (ieee80211_is_data(hdr->frame_control)) { 2402 u8 sub_frame_idx = desc->amsdu_info & 2403 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 2404 2405 /* 0 means not an A-MSDU, and 1 means a new A-MSDU */ 2406 if (!sub_frame_idx || sub_frame_idx == 1) 2407 iwl_mvm_count_mpdu(mvmsta, sta_id, 1, false, 2408 queue); 2409 } 2410 } 2411 2412 /* management stuff on default queue */ 2413 if (!queue) { 2414 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2415 ieee80211_is_probe_resp(hdr->frame_control)) && 2416 mvm->sched_scan_pass_all == 2417 SCHED_SCAN_PASS_ALL_ENABLED)) 2418 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2419 2420 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2421 ieee80211_is_probe_resp(hdr->frame_control))) 2422 rx_status->boottime_ns = ktime_get_boottime_ns(); 2423 } 2424 2425 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2426 kfree_skb(skb); 2427 goto out; 2428 } 2429 2430 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2431 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2432 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2433 if (mvm->trans->mac_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2434 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2435 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2436 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2437 2438 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta); 2439 } 2440 out: 2441 rcu_read_unlock(); 2442 } 2443 2444 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2445 struct iwl_rx_cmd_buffer *rxb, int queue) 2446 { 2447 struct ieee80211_rx_status *rx_status; 2448 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2449 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2450 u32 rssi; 2451 struct ieee80211_sta *sta = NULL; 2452 struct sk_buff *skb; 2453 struct iwl_mvm_rx_phy_data phy_data; 2454 u32 format; 2455 2456 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2457 return; 2458 2459 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2460 return; 2461 2462 rssi = le32_to_cpu(desc->rssi); 2463 phy_data.d0 = desc->phy_info[0]; 2464 phy_data.d1 = desc->phy_info[1]; 2465 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2466 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2467 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2468 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2469 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2470 phy_data.with_data = false; 2471 phy_data.rx_vec[0] = desc->rx_vec[0]; 2472 phy_data.rx_vec[1] = desc->rx_vec[1]; 2473 2474 phy_data.rate_n_flags = iwl_mvm_v3_rate_from_fw(desc->rate, 2475 mvm->fw_rates_ver); 2476 2477 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2478 2479 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2480 RX_NO_DATA_NOTIF, 0) >= 3) { 2481 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2482 sizeof(struct iwl_rx_no_data_ver_3))) 2483 /* invalid len for ver 3 */ 2484 return; 2485 phy_data.rx_vec[2] = desc->rx_vec[2]; 2486 phy_data.rx_vec[3] = desc->rx_vec[3]; 2487 } else { 2488 if (format == RATE_MCS_MOD_TYPE_EHT) 2489 /* no support for EHT before version 3 API */ 2490 return; 2491 } 2492 2493 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2494 * ieee80211_hdr pulled. 2495 */ 2496 skb = alloc_skb(128, GFP_ATOMIC); 2497 if (!skb) { 2498 IWL_ERR(mvm, "alloc_skb failed\n"); 2499 return; 2500 } 2501 2502 rx_status = IEEE80211_SKB_RXCB(skb); 2503 2504 /* 0-length PSDU */ 2505 rx_status->flag |= RX_FLAG_NO_PSDU; 2506 2507 /* mark as failed PLCP on any errors to skip checks in mac80211 */ 2508 if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) != 2509 RX_NO_DATA_INFO_ERR_NONE) 2510 rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC; 2511 2512 switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) { 2513 case RX_NO_DATA_INFO_TYPE_NDP: 2514 rx_status->zero_length_psdu_type = 2515 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2516 break; 2517 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2518 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2519 rx_status->zero_length_psdu_type = 2520 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2521 break; 2522 default: 2523 rx_status->zero_length_psdu_type = 2524 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2525 break; 2526 } 2527 2528 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2529 NL80211_BAND_2GHZ; 2530 2531 iwl_mvm_rx_fill_status(mvm, NULL, NULL, skb, &phy_data, queue); 2532 2533 /* no more radio tap info should be put after this point. 2534 * 2535 * We mark it as mac header, for upper layers to know where 2536 * all radio tap header ends. 2537 * 2538 * Since data doesn't move data while putting data on skb and that is 2539 * the only way we use, data + len is the next place that hdr would be put 2540 */ 2541 skb_set_mac_header(skb, skb->len); 2542 2543 /* 2544 * Override the nss from the rx_vec since the rate_n_flags has 2545 * only 2 bits for the nss which gives a max of 4 ss but there 2546 * may be up to 8 spatial streams. 2547 */ 2548 switch (format) { 2549 case RATE_MCS_MOD_TYPE_VHT: 2550 rx_status->nss = 2551 le32_get_bits(desc->rx_vec[0], 2552 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2553 break; 2554 case RATE_MCS_MOD_TYPE_HE: 2555 rx_status->nss = 2556 le32_get_bits(desc->rx_vec[0], 2557 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2558 break; 2559 case RATE_MCS_MOD_TYPE_EHT: 2560 rx_status->nss = 2561 le32_get_bits(desc->rx_vec[2], 2562 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2563 } 2564 2565 rcu_read_lock(); 2566 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2567 rcu_read_unlock(); 2568 } 2569 2570 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2571 struct iwl_rx_cmd_buffer *rxb, int queue) 2572 { 2573 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2574 struct iwl_frame_release *release = (void *)pkt->data; 2575 2576 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2577 return; 2578 2579 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2580 le16_to_cpu(release->nssn), 2581 queue); 2582 } 2583 2584 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2585 struct iwl_rx_cmd_buffer *rxb, int queue) 2586 { 2587 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2588 struct iwl_bar_frame_release *release = (void *)pkt->data; 2589 struct iwl_mvm_baid_data *baid_data; 2590 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2591 unsigned int baid, nssn, sta_id, tid; 2592 2593 if (IWL_FW_CHECK(mvm, pkt_len < sizeof(*release), 2594 "Unexpected frame release notif size %d (expected %zu)\n", 2595 pkt_len, sizeof(*release))) 2596 return; 2597 2598 baid = le32_get_bits(release->ba_info, 2599 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2600 nssn = le32_get_bits(release->ba_info, 2601 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2602 sta_id = le32_get_bits(release->sta_tid, 2603 IWL_BAR_FRAME_RELEASE_STA_MASK); 2604 tid = le32_get_bits(release->sta_tid, 2605 IWL_BAR_FRAME_RELEASE_TID_MASK); 2606 2607 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2608 baid >= ARRAY_SIZE(mvm->baid_map))) 2609 return; 2610 2611 rcu_read_lock(); 2612 baid_data = rcu_dereference(mvm->baid_map[baid]); 2613 if (!baid_data) { 2614 IWL_DEBUG_RX(mvm, 2615 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2616 baid); 2617 goto out; 2618 } 2619 2620 if (WARN(tid != baid_data->tid || sta_id > IWL_STATION_COUNT_MAX || 2621 !(baid_data->sta_mask & BIT(sta_id)), 2622 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2623 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2624 tid)) 2625 goto out; 2626 2627 IWL_DEBUG_DROP(mvm, "Received a BAR, expect packet loss: nssn %d\n", 2628 nssn); 2629 2630 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue); 2631 out: 2632 rcu_read_unlock(); 2633 } 2634 2635 void iwl_mvm_rx_beacon_filter_notif(struct iwl_mvm *mvm, 2636 struct iwl_rx_cmd_buffer *rxb) 2637 { 2638 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2639 /* MAC or link ID in v1/v2, but driver has the IDs equal */ 2640 struct iwl_beacon_filter_notif *notif = (void *)pkt->data; 2641 u32 id = le32_to_cpu(notif->link_id); 2642 struct iwl_mvm_vif *mvm_vif; 2643 struct ieee80211_vif *vif; 2644 2645 /* >= means AUX MAC/link ID, no energy correction needed then */ 2646 if (IWL_FW_CHECK(mvm, id >= ARRAY_SIZE(mvm->vif_id_to_mac), 2647 "invalid link ID %d\n", id)) 2648 return; 2649 2650 vif = iwl_mvm_rcu_dereference_vif_id(mvm, id, false); 2651 if (!vif) 2652 return; 2653 2654 mvm_vif = iwl_mvm_vif_from_mac80211(vif); 2655 2656 mvm_vif->deflink.average_beacon_energy = 2657 le32_to_cpu(notif->average_energy); 2658 } 2659