1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #if defined(__FreeBSD__) 10 #include <net/ieee80211_radiotap.h> 11 #endif 12 #include "iwl-trans.h" 13 #include "mvm.h" 14 #include "fw-api.h" 15 16 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 17 { 18 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 19 u8 *data = skb->data; 20 21 /* Alignment concerns */ 22 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 23 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 24 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 25 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 26 27 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 28 data += sizeof(struct ieee80211_radiotap_he); 29 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 30 data += sizeof(struct ieee80211_radiotap_he_mu); 31 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 32 data += sizeof(struct ieee80211_radiotap_lsig); 33 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 34 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 35 36 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 37 } 38 39 return data; 40 } 41 42 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 43 int queue, struct ieee80211_sta *sta) 44 { 45 struct iwl_mvm_sta *mvmsta; 46 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 47 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 48 struct iwl_mvm_key_pn *ptk_pn; 49 int res; 50 u8 tid, keyidx; 51 u8 pn[IEEE80211_CCMP_PN_LEN]; 52 u8 *extiv; 53 54 /* do PN checking */ 55 56 /* multicast and non-data only arrives on default queue */ 57 if (!ieee80211_is_data(hdr->frame_control) || 58 is_multicast_ether_addr(hdr->addr1)) 59 return 0; 60 61 /* do not check PN for open AP */ 62 if (!(stats->flag & RX_FLAG_DECRYPTED)) 63 return 0; 64 65 /* 66 * avoid checking for default queue - we don't want to replicate 67 * all the logic that's necessary for checking the PN on fragmented 68 * frames, leave that to mac80211 69 */ 70 if (queue == 0) 71 return 0; 72 73 /* if we are here - this for sure is either CCMP or GCMP */ 74 if (IS_ERR_OR_NULL(sta)) { 75 IWL_DEBUG_DROP(mvm, 76 "expected hw-decrypted unicast frame for station\n"); 77 return -1; 78 } 79 80 mvmsta = iwl_mvm_sta_from_mac80211(sta); 81 82 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 83 keyidx = extiv[3] >> 6; 84 85 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 86 if (!ptk_pn) 87 return -1; 88 89 if (ieee80211_is_data_qos(hdr->frame_control)) 90 tid = ieee80211_get_tid(hdr); 91 else 92 tid = 0; 93 94 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 95 if (tid >= IWL_MAX_TID_COUNT) 96 return -1; 97 98 /* load pn */ 99 pn[0] = extiv[7]; 100 pn[1] = extiv[6]; 101 pn[2] = extiv[5]; 102 pn[3] = extiv[4]; 103 pn[4] = extiv[1]; 104 pn[5] = extiv[0]; 105 106 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 107 if (res < 0) 108 return -1; 109 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 110 return -1; 111 112 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 113 stats->flag |= RX_FLAG_PN_VALIDATED; 114 115 return 0; 116 } 117 118 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 119 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 120 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 121 struct iwl_rx_cmd_buffer *rxb) 122 { 123 struct iwl_rx_packet *pkt = rxb_addr(rxb); 124 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 125 unsigned int headlen, fraglen, pad_len = 0; 126 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 127 128 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 129 len -= 2; 130 pad_len = 2; 131 } 132 133 /* If frame is small enough to fit in skb->head, pull it completely. 134 * If not, only pull ieee80211_hdr (including crypto if present, and 135 * an additional 8 bytes for SNAP/ethertype, see below) so that 136 * splice() or TCP coalesce are more efficient. 137 * 138 * Since, in addition, ieee80211_data_to_8023() always pull in at 139 * least 8 bytes (possibly more for mesh) we can do the same here 140 * to save the cost of doing it later. That still doesn't pull in 141 * the actual IP header since the typical case has a SNAP header. 142 * If the latter changes (there are efforts in the standards group 143 * to do so) we should revisit this and ieee80211_data_to_8023(). 144 */ 145 headlen = (len <= skb_tailroom(skb)) ? len : 146 hdrlen + crypt_len + 8; 147 148 /* The firmware may align the packet to DWORD. 149 * The padding is inserted after the IV. 150 * After copying the header + IV skip the padding if 151 * present before copying packet data. 152 */ 153 hdrlen += crypt_len; 154 155 if (WARN_ONCE(headlen < hdrlen, 156 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 157 hdrlen, len, crypt_len)) { 158 /* 159 * We warn and trace because we want to be able to see 160 * it in trace-cmd as well. 161 */ 162 IWL_DEBUG_RX(mvm, 163 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 164 hdrlen, len, crypt_len); 165 return -EINVAL; 166 } 167 168 skb_put_data(skb, hdr, hdrlen); 169 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 170 171 /* 172 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 173 * certain cases and starts the checksum after the SNAP. Check if 174 * this is the case - it's easier to just bail out to CHECKSUM_NONE 175 * in the cases the hardware didn't handle, since it's rare to see 176 * such packets, even though the hardware did calculate the checksum 177 * in this case, just starting after the MAC header instead. 178 */ 179 if (skb->ip_summed == CHECKSUM_COMPLETE) { 180 struct { 181 u8 hdr[6]; 182 __be16 type; 183 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 184 185 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 186 !ether_addr_equal(shdr->hdr, rfc1042_header) || 187 (shdr->type != htons(ETH_P_IP) && 188 shdr->type != htons(ETH_P_ARP) && 189 shdr->type != htons(ETH_P_IPV6) && 190 shdr->type != htons(ETH_P_8021Q) && 191 shdr->type != htons(ETH_P_PAE) && 192 shdr->type != htons(ETH_P_TDLS)))) 193 skb->ip_summed = CHECKSUM_NONE; 194 } 195 196 fraglen = len - headlen; 197 198 if (fraglen) { 199 int offset = (u8 *)hdr + headlen + pad_len - 200 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 201 202 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 203 fraglen, rxb->truesize); 204 } 205 206 return 0; 207 } 208 209 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 210 struct sk_buff *skb) 211 { 212 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 213 struct ieee80211_vendor_radiotap *radiotap; 214 const int size = sizeof(*radiotap) + sizeof(__le16); 215 216 if (!mvm->cur_aid) 217 return; 218 219 /* ensure alignment */ 220 BUILD_BUG_ON((size + 2) % 4); 221 222 radiotap = skb_put(skb, size + 2); 223 radiotap->align = 1; 224 /* Intel OUI */ 225 radiotap->oui[0] = 0xf6; 226 radiotap->oui[1] = 0x54; 227 radiotap->oui[2] = 0x25; 228 /* radiotap sniffer config sub-namespace */ 229 radiotap->subns = 1; 230 radiotap->present = 0x1; 231 radiotap->len = size - sizeof(*radiotap); 232 radiotap->pad = 2; 233 234 /* fill the data now */ 235 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 236 /* and clear the padding */ 237 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 238 239 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 240 } 241 242 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 243 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 244 struct napi_struct *napi, 245 struct sk_buff *skb, int queue, 246 struct ieee80211_sta *sta) 247 { 248 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 249 kfree_skb(skb); 250 else 251 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 252 } 253 254 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 255 struct ieee80211_rx_status *rx_status, 256 u32 rate_n_flags, int energy_a, 257 int energy_b) 258 { 259 int max_energy; 260 u32 rate_flags = rate_n_flags; 261 262 energy_a = energy_a ? -energy_a : S8_MIN; 263 energy_b = energy_b ? -energy_b : S8_MIN; 264 max_energy = max(energy_a, energy_b); 265 266 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 267 energy_a, energy_b, max_energy); 268 269 rx_status->signal = max_energy; 270 rx_status->chains = 271 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 272 rx_status->chain_signal[0] = energy_a; 273 rx_status->chain_signal[1] = energy_b; 274 } 275 276 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 277 struct ieee80211_hdr *hdr, 278 struct iwl_rx_mpdu_desc *desc, 279 u32 status) 280 { 281 struct iwl_mvm_sta *mvmsta; 282 struct iwl_mvm_vif *mvmvif; 283 u8 keyid; 284 struct ieee80211_key_conf *key; 285 u32 len = le16_to_cpu(desc->mpdu_len); 286 const u8 *frame = (void *)hdr; 287 288 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 289 return 0; 290 291 /* 292 * For non-beacon, we don't really care. But beacons may 293 * be filtered out, and we thus need the firmware's replay 294 * detection, otherwise beacons the firmware previously 295 * filtered could be replayed, or something like that, and 296 * it can filter a lot - though usually only if nothing has 297 * changed. 298 */ 299 if (!ieee80211_is_beacon(hdr->frame_control)) 300 return 0; 301 302 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 303 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 304 return -1; 305 306 /* good cases */ 307 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 308 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 309 return 0; 310 311 if (!sta) 312 return -1; 313 314 mvmsta = iwl_mvm_sta_from_mac80211(sta); 315 316 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 317 318 /* 319 * both keys will have the same cipher and MIC length, use 320 * whichever one is available 321 */ 322 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 323 if (!key) { 324 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 325 if (!key) 326 return -1; 327 } 328 329 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 330 return -1; 331 332 /* get the real key ID */ 333 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 334 /* and if that's the other key, look it up */ 335 if (keyid != key->keyidx) { 336 /* 337 * shouldn't happen since firmware checked, but be safe 338 * in case the MIC length is wrong too, for example 339 */ 340 if (keyid != 6 && keyid != 7) 341 return -1; 342 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 343 if (!key) 344 return -1; 345 } 346 347 /* Report status to mac80211 */ 348 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 349 ieee80211_key_mic_failure(key); 350 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 351 ieee80211_key_replay(key); 352 353 return -1; 354 } 355 356 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 357 struct ieee80211_hdr *hdr, 358 struct ieee80211_rx_status *stats, u16 phy_info, 359 struct iwl_rx_mpdu_desc *desc, 360 u32 pkt_flags, int queue, u8 *crypt_len) 361 { 362 u32 status = le32_to_cpu(desc->status); 363 364 /* 365 * Drop UNKNOWN frames in aggregation, unless in monitor mode 366 * (where we don't have the keys). 367 * We limit this to aggregation because in TKIP this is a valid 368 * scenario, since we may not have the (correct) TTAK (phase 1 369 * key) in the firmware. 370 */ 371 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 372 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 373 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 374 return -1; 375 376 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 377 !ieee80211_has_protected(hdr->frame_control))) 378 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 379 380 if (!ieee80211_has_protected(hdr->frame_control) || 381 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 382 IWL_RX_MPDU_STATUS_SEC_NONE) 383 return 0; 384 385 /* TODO: handle packets encrypted with unknown alg */ 386 #if defined(__FreeBSD__) 387 /* XXX-BZ do similar to rx.c for now as these are plenty. */ 388 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 389 IWL_RX_MPDU_STATUS_SEC_ENC_ERR) 390 return (0); 391 #endif 392 393 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 394 case IWL_RX_MPDU_STATUS_SEC_CCM: 395 case IWL_RX_MPDU_STATUS_SEC_GCM: 396 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 397 /* alg is CCM: check MIC only */ 398 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 399 return -1; 400 401 stats->flag |= RX_FLAG_DECRYPTED; 402 if (pkt_flags & FH_RSCSR_RADA_EN) 403 stats->flag |= RX_FLAG_MIC_STRIPPED; 404 *crypt_len = IEEE80211_CCMP_HDR_LEN; 405 return 0; 406 case IWL_RX_MPDU_STATUS_SEC_TKIP: 407 /* Don't drop the frame and decrypt it in SW */ 408 if (!fw_has_api(&mvm->fw->ucode_capa, 409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 411 return 0; 412 413 if (mvm->trans->trans_cfg->gen2 && 414 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 415 stats->flag |= RX_FLAG_MMIC_ERROR; 416 417 *crypt_len = IEEE80211_TKIP_IV_LEN; 418 fallthrough; 419 case IWL_RX_MPDU_STATUS_SEC_WEP: 420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 421 return -1; 422 423 stats->flag |= RX_FLAG_DECRYPTED; 424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 425 IWL_RX_MPDU_STATUS_SEC_WEP) 426 *crypt_len = IEEE80211_WEP_IV_LEN; 427 428 if (pkt_flags & FH_RSCSR_RADA_EN) { 429 stats->flag |= RX_FLAG_ICV_STRIPPED; 430 if (mvm->trans->trans_cfg->gen2) 431 stats->flag |= RX_FLAG_MMIC_STRIPPED; 432 } 433 434 return 0; 435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 437 return -1; 438 stats->flag |= RX_FLAG_DECRYPTED; 439 return 0; 440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 441 break; 442 default: 443 /* 444 * Sometimes we can get frames that were not decrypted 445 * because the firmware didn't have the keys yet. This can 446 * happen after connection where we can get multicast frames 447 * before the GTK is installed. 448 * Silently drop those frames. 449 * Also drop un-decrypted frames in monitor mode. 450 */ 451 if (!is_multicast_ether_addr(hdr->addr1) && 452 !mvm->monitor_on && net_ratelimit()) 453 IWL_ERR(mvm, "%s: Unhandled alg: 0x%x\n", 454 __func__, status); 455 } 456 457 return 0; 458 } 459 460 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 461 struct ieee80211_sta *sta, 462 struct sk_buff *skb, 463 struct iwl_rx_packet *pkt) 464 { 465 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 466 467 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 468 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 469 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 470 471 skb->ip_summed = CHECKSUM_COMPLETE; 472 skb->csum = csum_unfold(~(__force __sum16)hwsum); 473 } 474 } else { 475 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 476 struct iwl_mvm_vif *mvmvif; 477 u16 flags = le16_to_cpu(desc->l3l4_flags); 478 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 479 IWL_RX_L3_PROTO_POS); 480 481 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 482 483 if (mvmvif->features & NETIF_F_RXCSUM && 484 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 485 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 486 l3_prot == IWL_RX_L3_TYPE_IPV6 || 487 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 488 skb->ip_summed = CHECKSUM_UNNECESSARY; 489 } 490 } 491 492 /* 493 * returns true if a packet is a duplicate and should be dropped. 494 * Updates AMSDU PN tracking info 495 */ 496 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 497 struct ieee80211_rx_status *rx_status, 498 struct ieee80211_hdr *hdr, 499 struct iwl_rx_mpdu_desc *desc) 500 { 501 struct iwl_mvm_sta *mvm_sta; 502 struct iwl_mvm_rxq_dup_data *dup_data; 503 u8 tid, sub_frame_idx; 504 505 if (WARN_ON(IS_ERR_OR_NULL(sta))) 506 return false; 507 508 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 509 dup_data = &mvm_sta->dup_data[queue]; 510 511 /* 512 * Drop duplicate 802.11 retransmissions 513 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 514 */ 515 if (ieee80211_is_ctl(hdr->frame_control) || 516 ieee80211_is_qos_nullfunc(hdr->frame_control) || 517 is_multicast_ether_addr(hdr->addr1)) { 518 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 519 return false; 520 } 521 522 if (ieee80211_is_data_qos(hdr->frame_control)) 523 /* frame has qos control */ 524 tid = ieee80211_get_tid(hdr); 525 else 526 tid = IWL_MAX_TID_COUNT; 527 528 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 529 sub_frame_idx = desc->amsdu_info & 530 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 531 532 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 533 dup_data->last_seq[tid] == hdr->seq_ctrl && 534 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 535 return true; 536 537 /* Allow same PN as the first subframe for following sub frames */ 538 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 539 sub_frame_idx > dup_data->last_sub_frame[tid] && 540 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 541 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 542 543 dup_data->last_seq[tid] = hdr->seq_ctrl; 544 dup_data->last_sub_frame[tid] = sub_frame_idx; 545 546 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 547 548 return false; 549 } 550 551 /* 552 * Returns true if sn2 - buffer_size < sn1 < sn2. 553 * To be used only in order to compare reorder buffer head with NSSN. 554 * We fully trust NSSN unless it is behind us due to reorder timeout. 555 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 556 */ 557 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 558 { 559 return ieee80211_sn_less(sn1, sn2) && 560 !ieee80211_sn_less(sn1, sn2 - buffer_size); 561 } 562 563 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 564 { 565 if (IWL_MVM_USE_NSSN_SYNC) { 566 struct iwl_mvm_nssn_sync_data notif = { 567 .baid = baid, 568 .nssn = nssn, 569 }; 570 571 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 572 ¬if, sizeof(notif)); 573 } 574 } 575 576 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 577 578 enum iwl_mvm_release_flags { 579 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 580 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 581 }; 582 583 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 584 struct ieee80211_sta *sta, 585 struct napi_struct *napi, 586 struct iwl_mvm_baid_data *baid_data, 587 struct iwl_mvm_reorder_buffer *reorder_buf, 588 u16 nssn, u32 flags) 589 { 590 struct iwl_mvm_reorder_buf_entry *entries = 591 &baid_data->entries[reorder_buf->queue * 592 baid_data->entries_per_queue]; 593 u16 ssn = reorder_buf->head_sn; 594 595 lockdep_assert_held(&reorder_buf->lock); 596 597 /* 598 * We keep the NSSN not too far behind, if we are sync'ing it and it 599 * is more than 2048 ahead of us, it must be behind us. Discard it. 600 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 601 * behind and this queue already processed packets. The next if 602 * would have caught cases where this queue would have processed less 603 * than 64 packets, but it may have processed more than 64 packets. 604 */ 605 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 606 ieee80211_sn_less(nssn, ssn)) 607 goto set_timer; 608 609 /* ignore nssn smaller than head sn - this can happen due to timeout */ 610 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 611 goto set_timer; 612 613 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 614 int index = ssn % reorder_buf->buf_size; 615 struct sk_buff_head *skb_list = &entries[index].e.frames; 616 struct sk_buff *skb; 617 618 ssn = ieee80211_sn_inc(ssn); 619 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 620 (ssn == 2048 || ssn == 0)) 621 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 622 623 /* 624 * Empty the list. Will have more than one frame for A-MSDU. 625 * Empty list is valid as well since nssn indicates frames were 626 * received. 627 */ 628 while ((skb = __skb_dequeue(skb_list))) { 629 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 630 reorder_buf->queue, 631 sta); 632 reorder_buf->num_stored--; 633 } 634 } 635 reorder_buf->head_sn = nssn; 636 637 set_timer: 638 if (reorder_buf->num_stored && !reorder_buf->removed) { 639 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 640 641 while (skb_queue_empty(&entries[index].e.frames)) 642 index = (index + 1) % reorder_buf->buf_size; 643 /* modify timer to match next frame's expiration time */ 644 mod_timer(&reorder_buf->reorder_timer, 645 entries[index].e.reorder_time + 1 + 646 RX_REORDER_BUF_TIMEOUT_MQ); 647 } else { 648 del_timer(&reorder_buf->reorder_timer); 649 } 650 } 651 652 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 653 { 654 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 655 struct iwl_mvm_baid_data *baid_data = 656 iwl_mvm_baid_data_from_reorder_buf(buf); 657 struct iwl_mvm_reorder_buf_entry *entries = 658 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 659 int i; 660 u16 sn = 0, index = 0; 661 bool expired = false; 662 bool cont = false; 663 664 spin_lock(&buf->lock); 665 666 if (!buf->num_stored || buf->removed) { 667 spin_unlock(&buf->lock); 668 return; 669 } 670 671 for (i = 0; i < buf->buf_size ; i++) { 672 index = (buf->head_sn + i) % buf->buf_size; 673 674 if (skb_queue_empty(&entries[index].e.frames)) { 675 /* 676 * If there is a hole and the next frame didn't expire 677 * we want to break and not advance SN 678 */ 679 cont = false; 680 continue; 681 } 682 if (!cont && 683 !time_after(jiffies, entries[index].e.reorder_time + 684 RX_REORDER_BUF_TIMEOUT_MQ)) 685 break; 686 687 expired = true; 688 /* continue until next hole after this expired frames */ 689 cont = true; 690 sn = ieee80211_sn_add(buf->head_sn, i + 1); 691 } 692 693 if (expired) { 694 struct ieee80211_sta *sta; 695 struct iwl_mvm_sta *mvmsta; 696 u8 sta_id = baid_data->sta_id; 697 698 rcu_read_lock(); 699 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 700 mvmsta = iwl_mvm_sta_from_mac80211(sta); 701 702 /* SN is set to the last expired frame + 1 */ 703 IWL_DEBUG_HT(buf->mvm, 704 "Releasing expired frames for sta %u, sn %d\n", 705 sta_id, sn); 706 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 707 sta, baid_data->tid); 708 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 709 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 710 rcu_read_unlock(); 711 } else { 712 /* 713 * If no frame expired and there are stored frames, index is now 714 * pointing to the first unexpired frame - modify timer 715 * accordingly to this frame. 716 */ 717 mod_timer(&buf->reorder_timer, 718 entries[index].e.reorder_time + 719 1 + RX_REORDER_BUF_TIMEOUT_MQ); 720 } 721 spin_unlock(&buf->lock); 722 } 723 724 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 725 struct iwl_mvm_delba_data *data) 726 { 727 struct iwl_mvm_baid_data *ba_data; 728 struct ieee80211_sta *sta; 729 struct iwl_mvm_reorder_buffer *reorder_buf; 730 u8 baid = data->baid; 731 732 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 733 return; 734 735 rcu_read_lock(); 736 737 ba_data = rcu_dereference(mvm->baid_map[baid]); 738 if (WARN_ON_ONCE(!ba_data)) 739 goto out; 740 741 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 742 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 743 goto out; 744 745 reorder_buf = &ba_data->reorder_buf[queue]; 746 747 /* release all frames that are in the reorder buffer to the stack */ 748 spin_lock_bh(&reorder_buf->lock); 749 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 750 ieee80211_sn_add(reorder_buf->head_sn, 751 reorder_buf->buf_size), 752 0); 753 spin_unlock_bh(&reorder_buf->lock); 754 del_timer_sync(&reorder_buf->reorder_timer); 755 756 out: 757 rcu_read_unlock(); 758 } 759 760 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 761 struct napi_struct *napi, 762 u8 baid, u16 nssn, int queue, 763 u32 flags) 764 { 765 struct ieee80211_sta *sta; 766 struct iwl_mvm_reorder_buffer *reorder_buf; 767 struct iwl_mvm_baid_data *ba_data; 768 769 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 770 baid, nssn); 771 772 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 773 baid >= ARRAY_SIZE(mvm->baid_map))) 774 return; 775 776 rcu_read_lock(); 777 778 ba_data = rcu_dereference(mvm->baid_map[baid]); 779 if (WARN_ON_ONCE(!ba_data)) 780 goto out; 781 782 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 783 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 784 goto out; 785 786 reorder_buf = &ba_data->reorder_buf[queue]; 787 788 spin_lock_bh(&reorder_buf->lock); 789 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 790 reorder_buf, nssn, flags); 791 spin_unlock_bh(&reorder_buf->lock); 792 793 out: 794 rcu_read_unlock(); 795 } 796 797 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 798 struct napi_struct *napi, int queue, 799 const struct iwl_mvm_nssn_sync_data *data) 800 { 801 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 802 data->nssn, queue, 803 IWL_MVM_RELEASE_FROM_RSS_SYNC); 804 } 805 806 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 807 struct iwl_rx_cmd_buffer *rxb, int queue) 808 { 809 struct iwl_rx_packet *pkt = rxb_addr(rxb); 810 struct iwl_rxq_sync_notification *notif; 811 struct iwl_mvm_internal_rxq_notif *internal_notif; 812 u32 len = iwl_rx_packet_payload_len(pkt); 813 814 notif = (void *)pkt->data; 815 internal_notif = (void *)notif->payload; 816 817 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 818 "invalid notification size %d (%d)", 819 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 820 return; 821 len -= sizeof(*notif) + sizeof(*internal_notif); 822 823 if (internal_notif->sync && 824 mvm->queue_sync_cookie != internal_notif->cookie) { 825 WARN_ONCE(1, "Received expired RX queue sync message\n"); 826 return; 827 } 828 829 switch (internal_notif->type) { 830 case IWL_MVM_RXQ_EMPTY: 831 WARN_ONCE(len, "invalid empty notification size %d", len); 832 break; 833 case IWL_MVM_RXQ_NOTIF_DEL_BA: 834 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 835 "invalid delba notification size %d (%d)", 836 len, (int)sizeof(struct iwl_mvm_delba_data))) 837 break; 838 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 839 break; 840 case IWL_MVM_RXQ_NSSN_SYNC: 841 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 842 "invalid nssn sync notification size %d (%d)", 843 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 844 break; 845 iwl_mvm_nssn_sync(mvm, napi, queue, 846 (void *)internal_notif->data); 847 break; 848 default: 849 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 850 } 851 852 if (internal_notif->sync) { 853 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 854 "queue sync: queue %d responded a second time!\n", 855 queue); 856 if (READ_ONCE(mvm->queue_sync_state) == 0) 857 wake_up(&mvm->rx_sync_waitq); 858 } 859 } 860 861 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 862 struct ieee80211_sta *sta, int tid, 863 struct iwl_mvm_reorder_buffer *buffer, 864 u32 reorder, u32 gp2, int queue) 865 { 866 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 867 868 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 869 /* we have a new (A-)MPDU ... */ 870 871 /* 872 * reset counter to 0 if we didn't have any oldsn in 873 * the last A-MPDU (as detected by GP2 being identical) 874 */ 875 if (!buffer->consec_oldsn_prev_drop) 876 buffer->consec_oldsn_drops = 0; 877 878 /* either way, update our tracking state */ 879 buffer->consec_oldsn_ampdu_gp2 = gp2; 880 } else if (buffer->consec_oldsn_prev_drop) { 881 /* 882 * tracking state didn't change, and we had an old SN 883 * indication before - do nothing in this case, we 884 * already noted this one down and are waiting for the 885 * next A-MPDU (by GP2) 886 */ 887 return; 888 } 889 890 /* return unless this MPDU has old SN */ 891 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 892 return; 893 894 /* update state */ 895 buffer->consec_oldsn_prev_drop = 1; 896 buffer->consec_oldsn_drops++; 897 898 /* if limit is reached, send del BA and reset state */ 899 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 900 IWL_WARN(mvm, 901 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 902 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 903 sta->addr, queue, tid); 904 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 905 buffer->consec_oldsn_prev_drop = 0; 906 buffer->consec_oldsn_drops = 0; 907 } 908 } 909 910 /* 911 * Returns true if the MPDU was buffered\dropped, false if it should be passed 912 * to upper layer. 913 */ 914 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 915 struct napi_struct *napi, 916 int queue, 917 struct ieee80211_sta *sta, 918 struct sk_buff *skb, 919 struct iwl_rx_mpdu_desc *desc) 920 { 921 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 922 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 923 struct iwl_mvm_sta *mvm_sta; 924 struct iwl_mvm_baid_data *baid_data; 925 struct iwl_mvm_reorder_buffer *buffer; 926 struct sk_buff *tail; 927 u32 reorder = le32_to_cpu(desc->reorder_data); 928 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 929 bool last_subframe = 930 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 931 u8 tid = ieee80211_get_tid(hdr); 932 u8 sub_frame_idx = desc->amsdu_info & 933 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 934 struct iwl_mvm_reorder_buf_entry *entries; 935 int index; 936 u16 nssn, sn; 937 u8 baid; 938 939 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 940 IWL_RX_MPDU_REORDER_BAID_SHIFT; 941 942 /* 943 * This also covers the case of receiving a Block Ack Request 944 * outside a BA session; we'll pass it to mac80211 and that 945 * then sends a delBA action frame. 946 * This also covers pure monitor mode, in which case we won't 947 * have any BA sessions. 948 */ 949 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 950 return false; 951 952 /* no sta yet */ 953 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 954 "Got valid BAID without a valid station assigned\n")) 955 return false; 956 957 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 958 959 /* not a data packet or a bar */ 960 if (!ieee80211_is_back_req(hdr->frame_control) && 961 (!ieee80211_is_data_qos(hdr->frame_control) || 962 is_multicast_ether_addr(hdr->addr1))) 963 return false; 964 965 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 966 return false; 967 968 baid_data = rcu_dereference(mvm->baid_map[baid]); 969 if (!baid_data) { 970 IWL_DEBUG_RX(mvm, 971 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 972 baid, reorder); 973 return false; 974 } 975 976 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 977 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 978 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 979 tid)) 980 return false; 981 982 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 983 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 984 IWL_RX_MPDU_REORDER_SN_SHIFT; 985 986 buffer = &baid_data->reorder_buf[queue]; 987 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 988 989 spin_lock_bh(&buffer->lock); 990 991 if (!buffer->valid) { 992 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 993 spin_unlock_bh(&buffer->lock); 994 return false; 995 } 996 buffer->valid = true; 997 } 998 999 if (ieee80211_is_back_req(hdr->frame_control)) { 1000 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1001 buffer, nssn, 0); 1002 goto drop; 1003 } 1004 1005 /* 1006 * If there was a significant jump in the nssn - adjust. 1007 * If the SN is smaller than the NSSN it might need to first go into 1008 * the reorder buffer, in which case we just release up to it and the 1009 * rest of the function will take care of storing it and releasing up to 1010 * the nssn. 1011 * This should not happen. This queue has been lagging and it should 1012 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1013 * and update the other queues. 1014 */ 1015 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1016 buffer->buf_size) || 1017 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1018 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1019 1020 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1021 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1022 } 1023 1024 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1025 rx_status->device_timestamp, queue); 1026 1027 /* drop any oudated packets */ 1028 if (ieee80211_sn_less(sn, buffer->head_sn)) 1029 goto drop; 1030 1031 /* release immediately if allowed by nssn and no stored frames */ 1032 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1033 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1034 buffer->buf_size) && 1035 (!amsdu || last_subframe)) { 1036 /* 1037 * If we crossed the 2048 or 0 SN, notify all the 1038 * queues. This is done in order to avoid having a 1039 * head_sn that lags behind for too long. When that 1040 * happens, we can get to a situation where the head_sn 1041 * is within the interval [nssn - buf_size : nssn] 1042 * which will make us think that the nssn is a packet 1043 * that we already freed because of the reordering 1044 * buffer and we will ignore it. So maintain the 1045 * head_sn somewhat updated across all the queues: 1046 * when it crosses 0 and 2048. 1047 */ 1048 if (sn == 2048 || sn == 0) 1049 iwl_mvm_sync_nssn(mvm, baid, sn); 1050 buffer->head_sn = nssn; 1051 } 1052 /* No need to update AMSDU last SN - we are moving the head */ 1053 spin_unlock_bh(&buffer->lock); 1054 return false; 1055 } 1056 1057 /* 1058 * release immediately if there are no stored frames, and the sn is 1059 * equal to the head. 1060 * This can happen due to reorder timer, where NSSN is behind head_sn. 1061 * When we released everything, and we got the next frame in the 1062 * sequence, according to the NSSN we can't release immediately, 1063 * while technically there is no hole and we can move forward. 1064 */ 1065 if (!buffer->num_stored && sn == buffer->head_sn) { 1066 if (!amsdu || last_subframe) { 1067 if (sn == 2048 || sn == 0) 1068 iwl_mvm_sync_nssn(mvm, baid, sn); 1069 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1070 } 1071 /* No need to update AMSDU last SN - we are moving the head */ 1072 spin_unlock_bh(&buffer->lock); 1073 return false; 1074 } 1075 1076 index = sn % buffer->buf_size; 1077 1078 /* 1079 * Check if we already stored this frame 1080 * As AMSDU is either received or not as whole, logic is simple: 1081 * If we have frames in that position in the buffer and the last frame 1082 * originated from AMSDU had a different SN then it is a retransmission. 1083 * If it is the same SN then if the subframe index is incrementing it 1084 * is the same AMSDU - otherwise it is a retransmission. 1085 */ 1086 tail = skb_peek_tail(&entries[index].e.frames); 1087 if (tail && !amsdu) 1088 goto drop; 1089 else if (tail && (sn != buffer->last_amsdu || 1090 buffer->last_sub_index >= sub_frame_idx)) 1091 goto drop; 1092 1093 /* put in reorder buffer */ 1094 __skb_queue_tail(&entries[index].e.frames, skb); 1095 buffer->num_stored++; 1096 entries[index].e.reorder_time = jiffies; 1097 1098 if (amsdu) { 1099 buffer->last_amsdu = sn; 1100 buffer->last_sub_index = sub_frame_idx; 1101 } 1102 1103 /* 1104 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1105 * The reason is that NSSN advances on the first sub-frame, and may 1106 * cause the reorder buffer to advance before all the sub-frames arrive. 1107 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1108 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1109 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1110 * already ahead and it will be dropped. 1111 * If the last sub-frame is not on this queue - we will get frame 1112 * release notification with up to date NSSN. 1113 */ 1114 if (!amsdu || last_subframe) 1115 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1116 buffer, nssn, 1117 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1118 1119 spin_unlock_bh(&buffer->lock); 1120 return true; 1121 1122 drop: 1123 kfree_skb(skb); 1124 spin_unlock_bh(&buffer->lock); 1125 return true; 1126 } 1127 1128 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1129 u32 reorder_data, u8 baid) 1130 { 1131 unsigned long now = jiffies; 1132 unsigned long timeout; 1133 struct iwl_mvm_baid_data *data; 1134 1135 rcu_read_lock(); 1136 1137 data = rcu_dereference(mvm->baid_map[baid]); 1138 if (!data) { 1139 IWL_DEBUG_RX(mvm, 1140 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1141 baid, reorder_data); 1142 goto out; 1143 } 1144 1145 if (!data->timeout) 1146 goto out; 1147 1148 timeout = data->timeout; 1149 /* 1150 * Do not update last rx all the time to avoid cache bouncing 1151 * between the rx queues. 1152 * Update it every timeout. Worst case is the session will 1153 * expire after ~ 2 * timeout, which doesn't matter that much. 1154 */ 1155 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1156 /* Update is atomic */ 1157 data->last_rx = now; 1158 1159 out: 1160 rcu_read_unlock(); 1161 } 1162 1163 static void iwl_mvm_flip_address(u8 *addr) 1164 { 1165 int i; 1166 u8 mac_addr[ETH_ALEN]; 1167 1168 for (i = 0; i < ETH_ALEN; i++) 1169 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1170 ether_addr_copy(addr, mac_addr); 1171 } 1172 1173 struct iwl_mvm_rx_phy_data { 1174 enum iwl_rx_phy_info_type info_type; 1175 __le32 d0, d1, d2, d3; 1176 __le16 d4; 1177 }; 1178 1179 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1180 struct iwl_mvm_rx_phy_data *phy_data, 1181 u32 rate_n_flags, 1182 struct ieee80211_radiotap_he_mu *he_mu) 1183 { 1184 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1185 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1186 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1187 1188 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1189 he_mu->flags1 |= 1190 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1191 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1192 1193 he_mu->flags1 |= 1194 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1195 phy_data4), 1196 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1197 1198 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1199 phy_data2); 1200 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1201 phy_data3); 1202 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1203 phy_data2); 1204 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1205 phy_data3); 1206 } 1207 1208 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1209 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1210 he_mu->flags1 |= 1211 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1212 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1213 1214 he_mu->flags2 |= 1215 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1216 phy_data4), 1217 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1218 1219 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1220 phy_data2); 1221 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1222 phy_data3); 1223 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1224 phy_data2); 1225 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1226 phy_data3); 1227 } 1228 } 1229 1230 static void 1231 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1232 u32 rate_n_flags, 1233 struct ieee80211_radiotap_he *he, 1234 struct ieee80211_radiotap_he_mu *he_mu, 1235 struct ieee80211_rx_status *rx_status) 1236 { 1237 /* 1238 * Unfortunately, we have to leave the mac80211 data 1239 * incorrect for the case that we receive an HE-MU 1240 * transmission and *don't* have the HE phy data (due 1241 * to the bits being used for TSF). This shouldn't 1242 * happen though as management frames where we need 1243 * the TSF/timers are not be transmitted in HE-MU. 1244 */ 1245 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1246 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1247 u8 offs = 0; 1248 1249 rx_status->bw = RATE_INFO_BW_HE_RU; 1250 1251 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1252 1253 switch (ru) { 1254 case 0 ... 36: 1255 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1256 offs = ru; 1257 break; 1258 case 37 ... 52: 1259 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1260 offs = ru - 37; 1261 break; 1262 case 53 ... 60: 1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1264 offs = ru - 53; 1265 break; 1266 case 61 ... 64: 1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1268 offs = ru - 61; 1269 break; 1270 case 65 ... 66: 1271 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1272 offs = ru - 65; 1273 break; 1274 case 67: 1275 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1276 break; 1277 case 68: 1278 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1279 break; 1280 } 1281 he->data2 |= le16_encode_bits(offs, 1282 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1283 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1284 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1285 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1286 he->data2 |= 1287 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1288 1289 #define CHECK_BW(bw) \ 1290 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1291 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1292 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1293 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1294 CHECK_BW(20); 1295 CHECK_BW(40); 1296 CHECK_BW(80); 1297 CHECK_BW(160); 1298 1299 if (he_mu) 1300 he_mu->flags2 |= 1301 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1302 rate_n_flags), 1303 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1304 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1305 he->data6 |= 1306 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1307 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1308 rate_n_flags), 1309 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1310 } 1311 1312 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1313 struct iwl_mvm_rx_phy_data *phy_data, 1314 struct ieee80211_radiotap_he *he, 1315 struct ieee80211_radiotap_he_mu *he_mu, 1316 struct ieee80211_rx_status *rx_status, 1317 u32 rate_n_flags, int queue) 1318 { 1319 switch (phy_data->info_type) { 1320 case IWL_RX_PHY_INFO_TYPE_NONE: 1321 case IWL_RX_PHY_INFO_TYPE_CCK: 1322 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1323 case IWL_RX_PHY_INFO_TYPE_HT: 1324 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1325 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1326 return; 1327 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1328 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1329 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1330 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1331 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1332 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1333 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1334 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1335 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1336 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1337 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1338 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1339 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1340 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1341 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1342 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1343 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1344 fallthrough; 1345 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1346 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1347 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1348 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1349 /* HE common */ 1350 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1351 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1352 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1353 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1354 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1355 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1356 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1357 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1358 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1359 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1360 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1361 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1362 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1363 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1364 IWL_RX_PHY_DATA0_HE_UPLINK), 1365 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1366 } 1367 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1368 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1369 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1370 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1371 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1372 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1373 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1374 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1375 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1376 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1377 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1378 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1379 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1380 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1381 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1382 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1383 IWL_RX_PHY_DATA0_HE_DOPPLER), 1384 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1385 break; 1386 } 1387 1388 switch (phy_data->info_type) { 1389 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1390 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1391 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1392 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1393 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1394 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1395 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1396 break; 1397 default: 1398 /* nothing here */ 1399 break; 1400 } 1401 1402 switch (phy_data->info_type) { 1403 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1404 he_mu->flags1 |= 1405 le16_encode_bits(le16_get_bits(phy_data->d4, 1406 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1407 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1408 he_mu->flags1 |= 1409 le16_encode_bits(le16_get_bits(phy_data->d4, 1410 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1411 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1412 he_mu->flags2 |= 1413 le16_encode_bits(le16_get_bits(phy_data->d4, 1414 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1415 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1416 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1417 fallthrough; 1418 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1419 he_mu->flags2 |= 1420 le16_encode_bits(le32_get_bits(phy_data->d1, 1421 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1422 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1423 he_mu->flags2 |= 1424 le16_encode_bits(le32_get_bits(phy_data->d1, 1425 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1426 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1427 fallthrough; 1428 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1429 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1430 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1431 he, he_mu, rx_status); 1432 break; 1433 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1434 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1435 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1436 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1437 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1438 break; 1439 default: 1440 /* nothing */ 1441 break; 1442 } 1443 } 1444 1445 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1446 struct iwl_mvm_rx_phy_data *phy_data, 1447 u32 rate_n_flags, u16 phy_info, int queue) 1448 { 1449 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1450 struct ieee80211_radiotap_he *he = NULL; 1451 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1452 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1453 u8 stbc, ltf; 1454 static const struct ieee80211_radiotap_he known = { 1455 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1456 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1457 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1458 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1459 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1460 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1461 }; 1462 static const struct ieee80211_radiotap_he_mu mu_known = { 1463 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1464 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1465 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1466 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1467 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1468 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1469 }; 1470 1471 he = skb_put_data(skb, &known, sizeof(known)); 1472 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1473 1474 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1475 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1476 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1477 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1478 } 1479 1480 /* report the AMPDU-EOF bit on single frames */ 1481 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1482 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1483 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1484 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1485 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1486 } 1487 1488 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1489 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1490 rate_n_flags, queue); 1491 1492 /* update aggregation data for monitor sake on default queue */ 1493 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1494 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1495 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1496 1497 /* toggle is switched whenever new aggregation starts */ 1498 if (toggle_bit != mvm->ampdu_toggle) { 1499 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1500 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1501 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1502 } 1503 } 1504 1505 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1506 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1507 rx_status->bw = RATE_INFO_BW_HE_RU; 1508 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1509 } 1510 1511 /* actually data is filled in mac80211 */ 1512 if (he_type == RATE_MCS_HE_TYPE_SU || 1513 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1514 he->data1 |= 1515 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1516 1517 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1518 rx_status->nss = 1519 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1520 RATE_MCS_NSS_POS) + 1; 1521 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1522 rx_status->encoding = RX_ENC_HE; 1523 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1524 if (rate_n_flags & RATE_MCS_BF_MSK) 1525 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1526 1527 rx_status->he_dcm = 1528 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1529 1530 #define CHECK_TYPE(F) \ 1531 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1532 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1533 1534 CHECK_TYPE(SU); 1535 CHECK_TYPE(EXT_SU); 1536 CHECK_TYPE(MU); 1537 CHECK_TYPE(TRIG); 1538 1539 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1540 1541 if (rate_n_flags & RATE_MCS_BF_MSK) 1542 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1543 1544 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1545 RATE_MCS_HE_GI_LTF_POS) { 1546 case 0: 1547 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1548 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1549 else 1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1551 if (he_type == RATE_MCS_HE_TYPE_MU) 1552 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1553 else 1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1555 break; 1556 case 1: 1557 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1558 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1559 else 1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1561 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1562 break; 1563 case 2: 1564 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1565 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1566 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1567 } else { 1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1569 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1570 } 1571 break; 1572 case 3: 1573 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1574 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1575 break; 1576 case 4: 1577 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1578 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1579 break; 1580 default: 1581 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1582 } 1583 1584 he->data5 |= le16_encode_bits(ltf, 1585 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1586 } 1587 1588 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1589 struct iwl_mvm_rx_phy_data *phy_data) 1590 { 1591 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1592 struct ieee80211_radiotap_lsig *lsig; 1593 1594 switch (phy_data->info_type) { 1595 case IWL_RX_PHY_INFO_TYPE_HT: 1596 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1597 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1598 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1599 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1600 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1601 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1602 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1603 lsig = skb_put(skb, sizeof(*lsig)); 1604 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1605 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1606 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1607 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1608 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1609 break; 1610 default: 1611 break; 1612 } 1613 } 1614 1615 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1616 { 1617 switch (phy_band) { 1618 case PHY_BAND_24: 1619 return NL80211_BAND_2GHZ; 1620 case PHY_BAND_5: 1621 return NL80211_BAND_5GHZ; 1622 case PHY_BAND_6: 1623 return NL80211_BAND_6GHZ; 1624 default: 1625 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1626 return NL80211_BAND_5GHZ; 1627 } 1628 } 1629 1630 struct iwl_rx_sta_csa { 1631 bool all_sta_unblocked; 1632 struct ieee80211_vif *vif; 1633 }; 1634 1635 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1636 { 1637 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1638 struct iwl_rx_sta_csa *rx_sta_csa = data; 1639 1640 if (mvmsta->vif != rx_sta_csa->vif) 1641 return; 1642 1643 if (mvmsta->disable_tx) 1644 rx_sta_csa->all_sta_unblocked = false; 1645 } 1646 1647 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1648 struct iwl_rx_cmd_buffer *rxb, int queue) 1649 { 1650 struct ieee80211_rx_status *rx_status; 1651 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1652 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1653 struct ieee80211_hdr *hdr; 1654 u32 len; 1655 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1656 u32 rate_n_flags, gp2_on_air_rise; 1657 u16 phy_info; 1658 struct ieee80211_sta *sta = NULL; 1659 struct sk_buff *skb; 1660 u8 crypt_len = 0, channel, energy_a, energy_b; 1661 size_t desc_size; 1662 struct iwl_mvm_rx_phy_data phy_data = { 1663 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1664 }; 1665 u32 format; 1666 bool is_sgi; 1667 1668 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1669 return; 1670 1671 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1672 desc_size = sizeof(*desc); 1673 else 1674 desc_size = IWL_RX_DESC_SIZE_V1; 1675 1676 if (unlikely(pkt_len < desc_size)) { 1677 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1678 return; 1679 } 1680 1681 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1682 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1683 channel = desc->v3.channel; 1684 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1685 energy_a = desc->v3.energy_a; 1686 energy_b = desc->v3.energy_b; 1687 1688 phy_data.d0 = desc->v3.phy_data0; 1689 phy_data.d1 = desc->v3.phy_data1; 1690 phy_data.d2 = desc->v3.phy_data2; 1691 phy_data.d3 = desc->v3.phy_data3; 1692 } else { 1693 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1694 channel = desc->v1.channel; 1695 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1696 energy_a = desc->v1.energy_a; 1697 energy_b = desc->v1.energy_b; 1698 1699 phy_data.d0 = desc->v1.phy_data0; 1700 phy_data.d1 = desc->v1.phy_data1; 1701 phy_data.d2 = desc->v1.phy_data2; 1702 phy_data.d3 = desc->v1.phy_data3; 1703 } 1704 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 1705 REPLY_RX_MPDU_CMD, 0) < 4) { 1706 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 1707 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 1708 rate_n_flags); 1709 } 1710 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1711 1712 len = le16_to_cpu(desc->mpdu_len); 1713 1714 if (unlikely(len + desc_size > pkt_len)) { 1715 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1716 return; 1717 } 1718 1719 phy_info = le16_to_cpu(desc->phy_info); 1720 phy_data.d4 = desc->phy_data4; 1721 1722 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1723 phy_data.info_type = 1724 le32_get_bits(phy_data.d1, 1725 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1726 1727 hdr = (void *)(pkt->data + desc_size); 1728 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1729 * ieee80211_hdr pulled. 1730 */ 1731 skb = alloc_skb(128, GFP_ATOMIC); 1732 if (!skb) { 1733 IWL_ERR(mvm, "alloc_skb failed\n"); 1734 return; 1735 } 1736 1737 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1738 /* 1739 * If the device inserted padding it means that (it thought) 1740 * the 802.11 header wasn't a multiple of 4 bytes long. In 1741 * this case, reserve two bytes at the start of the SKB to 1742 * align the payload properly in case we end up copying it. 1743 */ 1744 skb_reserve(skb, 2); 1745 } 1746 1747 rx_status = IEEE80211_SKB_RXCB(skb); 1748 1749 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1750 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1751 case RATE_MCS_CHAN_WIDTH_20: 1752 break; 1753 case RATE_MCS_CHAN_WIDTH_40: 1754 rx_status->bw = RATE_INFO_BW_40; 1755 break; 1756 case RATE_MCS_CHAN_WIDTH_80: 1757 rx_status->bw = RATE_INFO_BW_80; 1758 break; 1759 case RATE_MCS_CHAN_WIDTH_160: 1760 rx_status->bw = RATE_INFO_BW_160; 1761 break; 1762 } 1763 1764 if (format == RATE_MCS_HE_MSK) 1765 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1766 phy_info, queue); 1767 1768 iwl_mvm_decode_lsig(skb, &phy_data); 1769 1770 /* 1771 * Keep packets with CRC errors (and with overrun) for monitor mode 1772 * (otherwise the firmware discards them) but mark them as bad. 1773 */ 1774 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1775 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1776 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1777 le32_to_cpu(desc->status)); 1778 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1779 } 1780 /* set the preamble flag if appropriate */ 1781 if (format == RATE_MCS_CCK_MSK && 1782 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1783 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1784 1785 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1786 u64 tsf_on_air_rise; 1787 1788 if (mvm->trans->trans_cfg->device_family >= 1789 IWL_DEVICE_FAMILY_AX210) 1790 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1791 else 1792 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1793 1794 rx_status->mactime = tsf_on_air_rise; 1795 /* TSF as indicated by the firmware is at INA time */ 1796 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1797 } 1798 1799 rx_status->device_timestamp = gp2_on_air_rise; 1800 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1801 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1802 1803 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1804 } else { 1805 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1806 NL80211_BAND_2GHZ; 1807 } 1808 rx_status->freq = ieee80211_channel_to_frequency(channel, 1809 rx_status->band); 1810 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1811 energy_b); 1812 1813 /* update aggregation data for monitor sake on default queue */ 1814 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1815 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1816 1817 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1818 /* 1819 * Toggle is switched whenever new aggregation starts. Make 1820 * sure ampdu_reference is never 0 so we can later use it to 1821 * see if the frame was really part of an A-MPDU or not. 1822 */ 1823 if (toggle_bit != mvm->ampdu_toggle) { 1824 mvm->ampdu_ref++; 1825 if (mvm->ampdu_ref == 0) 1826 mvm->ampdu_ref++; 1827 mvm->ampdu_toggle = toggle_bit; 1828 } 1829 rx_status->ampdu_reference = mvm->ampdu_ref; 1830 } 1831 1832 if (unlikely(mvm->monitor_on)) 1833 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1834 1835 rcu_read_lock(); 1836 1837 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1838 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1839 1840 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1841 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1842 if (IS_ERR(sta)) 1843 sta = NULL; 1844 } 1845 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1846 /* 1847 * This is fine since we prevent two stations with the same 1848 * address from being added. 1849 */ 1850 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1851 } 1852 1853 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1854 le32_to_cpu(pkt->len_n_flags), queue, 1855 &crypt_len)) { 1856 kfree_skb(skb); 1857 goto out; 1858 } 1859 1860 if (sta) { 1861 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1862 struct ieee80211_vif *tx_blocked_vif = 1863 rcu_dereference(mvm->csa_tx_blocked_vif); 1864 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1865 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1866 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1867 struct iwl_fw_dbg_trigger_tlv *trig; 1868 struct ieee80211_vif *vif = mvmsta->vif; 1869 1870 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1871 !is_multicast_ether_addr(hdr->addr1) && 1872 ieee80211_is_data(hdr->frame_control) && 1873 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1874 schedule_delayed_work(&mvm->tcm.work, 0); 1875 1876 /* 1877 * We have tx blocked stations (with CS bit). If we heard 1878 * frames from a blocked station on a new channel we can 1879 * TX to it again. 1880 */ 1881 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1882 struct iwl_mvm_vif *mvmvif = 1883 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1884 struct iwl_rx_sta_csa rx_sta_csa = { 1885 .all_sta_unblocked = true, 1886 .vif = tx_blocked_vif, 1887 }; 1888 1889 if (mvmvif->csa_target_freq == rx_status->freq) 1890 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1891 false); 1892 ieee80211_iterate_stations_atomic(mvm->hw, 1893 iwl_mvm_rx_get_sta_block_tx, 1894 &rx_sta_csa); 1895 1896 if (rx_sta_csa.all_sta_unblocked) { 1897 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1898 /* Unblock BCAST / MCAST station */ 1899 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1900 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1901 } 1902 } 1903 1904 rs_update_last_rssi(mvm, mvmsta, rx_status); 1905 1906 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1907 ieee80211_vif_to_wdev(vif), 1908 FW_DBG_TRIGGER_RSSI); 1909 1910 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1911 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1912 s32 rssi; 1913 1914 rssi_trig = (void *)trig->data; 1915 rssi = le32_to_cpu(rssi_trig->rssi); 1916 1917 if (rx_status->signal < rssi) 1918 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1919 NULL); 1920 } 1921 1922 if (ieee80211_is_data(hdr->frame_control)) 1923 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1924 1925 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1926 kfree_skb(skb); 1927 goto out; 1928 } 1929 1930 /* 1931 * Our hardware de-aggregates AMSDUs but copies the mac header 1932 * as it to the de-aggregated MPDUs. We need to turn off the 1933 * AMSDU bit in the QoS control ourselves. 1934 * In addition, HW reverses addr3 and addr4 - reverse it back. 1935 */ 1936 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1937 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1938 u8 *qc = ieee80211_get_qos_ctl(hdr); 1939 1940 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1941 1942 if (mvm->trans->trans_cfg->device_family == 1943 IWL_DEVICE_FAMILY_9000) { 1944 iwl_mvm_flip_address(hdr->addr3); 1945 1946 if (ieee80211_has_a4(hdr->frame_control)) 1947 iwl_mvm_flip_address(hdr->addr4); 1948 } 1949 } 1950 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1951 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1952 1953 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1954 } 1955 } 1956 1957 is_sgi = format == RATE_MCS_HE_MSK ? 1958 iwl_he_is_sgi(rate_n_flags) : 1959 rate_n_flags & RATE_MCS_SGI_MSK; 1960 1961 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1962 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1963 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1964 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1965 if (format == RATE_MCS_HT_MSK) { 1966 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1967 RATE_MCS_STBC_POS; 1968 rx_status->encoding = RX_ENC_HT; 1969 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1970 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1971 } else if (format == RATE_MCS_VHT_MSK) { 1972 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1973 RATE_MCS_STBC_POS; 1974 rx_status->nss = 1975 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1976 RATE_MCS_NSS_POS) + 1; 1977 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1978 rx_status->encoding = RX_ENC_VHT; 1979 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1980 if (rate_n_flags & RATE_MCS_BF_MSK) 1981 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1982 } else if (!(format == RATE_MCS_HE_MSK)) { 1983 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 1984 rx_status->band); 1985 1986 if (WARN(rate < 0 || rate > 0xFF, 1987 "Invalid rate flags 0x%x, band %d,\n", 1988 rate_n_flags, rx_status->band)) { 1989 kfree_skb(skb); 1990 goto out; 1991 } 1992 rx_status->rate_idx = rate; 1993 } 1994 1995 /* management stuff on default queue */ 1996 if (!queue) { 1997 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 1998 ieee80211_is_probe_resp(hdr->frame_control)) && 1999 mvm->sched_scan_pass_all == 2000 SCHED_SCAN_PASS_ALL_ENABLED)) 2001 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2002 2003 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2004 ieee80211_is_probe_resp(hdr->frame_control))) 2005 rx_status->boottime_ns = ktime_get_boottime_ns(); 2006 } 2007 2008 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2009 kfree_skb(skb); 2010 goto out; 2011 } 2012 2013 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2014 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2015 sta); 2016 out: 2017 rcu_read_unlock(); 2018 } 2019 2020 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2021 struct iwl_rx_cmd_buffer *rxb, int queue) 2022 { 2023 struct ieee80211_rx_status *rx_status; 2024 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2025 struct iwl_rx_no_data *desc = (void *)pkt->data; 2026 u32 rate_n_flags = le32_to_cpu(desc->rate); 2027 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2028 u32 rssi = le32_to_cpu(desc->rssi); 2029 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2030 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2031 struct ieee80211_sta *sta = NULL; 2032 struct sk_buff *skb; 2033 u8 channel, energy_a, energy_b; 2034 u32 format; 2035 struct iwl_mvm_rx_phy_data phy_data = { 2036 .info_type = le32_get_bits(desc->phy_info[1], 2037 IWL_RX_PHY_DATA1_INFO_TYPE_MASK), 2038 .d0 = desc->phy_info[0], 2039 .d1 = desc->phy_info[1], 2040 }; 2041 bool is_sgi; 2042 2043 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2044 RX_NO_DATA_NOTIF, 0) < 2) { 2045 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2046 rate_n_flags); 2047 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 2048 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2049 rate_n_flags); 2050 } 2051 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2052 2053 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2054 return; 2055 2056 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2057 return; 2058 2059 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2060 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2061 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2062 2063 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2064 * ieee80211_hdr pulled. 2065 */ 2066 skb = alloc_skb(128, GFP_ATOMIC); 2067 if (!skb) { 2068 IWL_ERR(mvm, "alloc_skb failed\n"); 2069 return; 2070 } 2071 2072 rx_status = IEEE80211_SKB_RXCB(skb); 2073 2074 /* 0-length PSDU */ 2075 rx_status->flag |= RX_FLAG_NO_PSDU; 2076 2077 switch (info_type) { 2078 case RX_NO_DATA_INFO_TYPE_NDP: 2079 rx_status->zero_length_psdu_type = 2080 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2081 break; 2082 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2083 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2084 rx_status->zero_length_psdu_type = 2085 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2086 break; 2087 default: 2088 rx_status->zero_length_psdu_type = 2089 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2090 break; 2091 } 2092 2093 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2094 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2095 case RATE_MCS_CHAN_WIDTH_20: 2096 break; 2097 case RATE_MCS_CHAN_WIDTH_40: 2098 rx_status->bw = RATE_INFO_BW_40; 2099 break; 2100 case RATE_MCS_CHAN_WIDTH_80: 2101 rx_status->bw = RATE_INFO_BW_80; 2102 break; 2103 case RATE_MCS_CHAN_WIDTH_160: 2104 rx_status->bw = RATE_INFO_BW_160; 2105 break; 2106 } 2107 2108 if (format == RATE_MCS_HE_MSK) 2109 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2110 phy_info, queue); 2111 2112 iwl_mvm_decode_lsig(skb, &phy_data); 2113 2114 rx_status->device_timestamp = gp2_on_air_rise; 2115 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2116 NL80211_BAND_2GHZ; 2117 rx_status->freq = ieee80211_channel_to_frequency(channel, 2118 rx_status->band); 2119 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2120 energy_b); 2121 2122 rcu_read_lock(); 2123 2124 is_sgi = format == RATE_MCS_HE_MSK ? 2125 iwl_he_is_sgi(rate_n_flags) : 2126 rate_n_flags & RATE_MCS_SGI_MSK; 2127 2128 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2129 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2130 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2131 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2132 if (format == RATE_MCS_HT_MSK) { 2133 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2134 RATE_MCS_STBC_POS; 2135 rx_status->encoding = RX_ENC_HT; 2136 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2137 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2138 } else if (format == RATE_MCS_VHT_MSK) { 2139 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2140 RATE_MCS_STBC_POS; 2141 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2142 rx_status->encoding = RX_ENC_VHT; 2143 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2144 if (rate_n_flags & RATE_MCS_BF_MSK) 2145 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2146 /* 2147 * take the nss from the rx_vec since the rate_n_flags has 2148 * only 2 bits for the nss which gives a max of 4 ss but 2149 * there may be up to 8 spatial streams 2150 */ 2151 rx_status->nss = 2152 le32_get_bits(desc->rx_vec[0], 2153 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2154 } else if (format == RATE_MCS_HE_MSK) { 2155 rx_status->nss = 2156 le32_get_bits(desc->rx_vec[0], 2157 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2158 } else { 2159 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2160 rx_status->band); 2161 2162 if (WARN(rate < 0 || rate > 0xFF, 2163 "Invalid rate flags 0x%x, band %d,\n", 2164 rate_n_flags, rx_status->band)) { 2165 kfree_skb(skb); 2166 goto out; 2167 } 2168 rx_status->rate_idx = rate; 2169 } 2170 2171 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2172 out: 2173 rcu_read_unlock(); 2174 } 2175 2176 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2177 struct iwl_rx_cmd_buffer *rxb, int queue) 2178 { 2179 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2180 struct iwl_frame_release *release = (void *)pkt->data; 2181 2182 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2183 return; 2184 2185 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2186 le16_to_cpu(release->nssn), 2187 queue, 0); 2188 } 2189 2190 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2191 struct iwl_rx_cmd_buffer *rxb, int queue) 2192 { 2193 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2194 struct iwl_bar_frame_release *release = (void *)pkt->data; 2195 unsigned int baid = le32_get_bits(release->ba_info, 2196 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2197 unsigned int nssn = le32_get_bits(release->ba_info, 2198 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2199 unsigned int sta_id = le32_get_bits(release->sta_tid, 2200 IWL_BAR_FRAME_RELEASE_STA_MASK); 2201 unsigned int tid = le32_get_bits(release->sta_tid, 2202 IWL_BAR_FRAME_RELEASE_TID_MASK); 2203 struct iwl_mvm_baid_data *baid_data; 2204 2205 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2206 return; 2207 2208 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2209 baid >= ARRAY_SIZE(mvm->baid_map))) 2210 return; 2211 2212 rcu_read_lock(); 2213 baid_data = rcu_dereference(mvm->baid_map[baid]); 2214 if (!baid_data) { 2215 IWL_DEBUG_RX(mvm, 2216 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2217 baid); 2218 goto out; 2219 } 2220 2221 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2222 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2223 baid, baid_data->sta_id, baid_data->tid, sta_id, 2224 tid)) 2225 goto out; 2226 2227 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2228 out: 2229 rcu_read_unlock(); 2230 } 2231