1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #if defined(__FreeBSD__) 10 #include <net/ieee80211_radiotap.h> 11 #endif 12 #include "iwl-trans.h" 13 #include "mvm.h" 14 #include "fw-api.h" 15 16 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb) 17 { 18 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 19 u8 *data = skb->data; 20 21 /* Alignment concerns */ 22 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4); 23 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4); 24 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4); 25 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4); 26 27 if (rx_status->flag & RX_FLAG_RADIOTAP_HE) 28 data += sizeof(struct ieee80211_radiotap_he); 29 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU) 30 data += sizeof(struct ieee80211_radiotap_he_mu); 31 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG) 32 data += sizeof(struct ieee80211_radiotap_lsig); 33 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) { 34 struct ieee80211_vendor_radiotap *radiotap = (void *)data; 35 36 data += sizeof(*radiotap) + radiotap->len + radiotap->pad; 37 } 38 39 return data; 40 } 41 42 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 43 int queue, struct ieee80211_sta *sta) 44 { 45 struct iwl_mvm_sta *mvmsta; 46 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 47 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 48 struct iwl_mvm_key_pn *ptk_pn; 49 int res; 50 u8 tid, keyidx; 51 u8 pn[IEEE80211_CCMP_PN_LEN]; 52 u8 *extiv; 53 54 /* do PN checking */ 55 56 /* multicast and non-data only arrives on default queue */ 57 if (!ieee80211_is_data(hdr->frame_control) || 58 is_multicast_ether_addr(hdr->addr1)) 59 return 0; 60 61 /* do not check PN for open AP */ 62 if (!(stats->flag & RX_FLAG_DECRYPTED)) 63 return 0; 64 65 /* 66 * avoid checking for default queue - we don't want to replicate 67 * all the logic that's necessary for checking the PN on fragmented 68 * frames, leave that to mac80211 69 */ 70 if (queue == 0) 71 return 0; 72 73 /* if we are here - this for sure is either CCMP or GCMP */ 74 if (IS_ERR_OR_NULL(sta)) { 75 IWL_DEBUG_DROP(mvm, 76 "expected hw-decrypted unicast frame for station\n"); 77 return -1; 78 } 79 80 mvmsta = iwl_mvm_sta_from_mac80211(sta); 81 82 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 83 keyidx = extiv[3] >> 6; 84 85 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 86 if (!ptk_pn) 87 return -1; 88 89 if (ieee80211_is_data_qos(hdr->frame_control)) 90 tid = ieee80211_get_tid(hdr); 91 else 92 tid = 0; 93 94 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 95 if (tid >= IWL_MAX_TID_COUNT) 96 return -1; 97 98 /* load pn */ 99 pn[0] = extiv[7]; 100 pn[1] = extiv[6]; 101 pn[2] = extiv[5]; 102 pn[3] = extiv[4]; 103 pn[4] = extiv[1]; 104 pn[5] = extiv[0]; 105 106 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 107 if (res < 0) 108 return -1; 109 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 110 return -1; 111 112 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 113 stats->flag |= RX_FLAG_PN_VALIDATED; 114 115 return 0; 116 } 117 118 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 119 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 120 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 121 struct iwl_rx_cmd_buffer *rxb) 122 { 123 struct iwl_rx_packet *pkt = rxb_addr(rxb); 124 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 125 unsigned int headlen, fraglen, pad_len = 0; 126 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 127 128 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 129 len -= 2; 130 pad_len = 2; 131 } 132 133 /* If frame is small enough to fit in skb->head, pull it completely. 134 * If not, only pull ieee80211_hdr (including crypto if present, and 135 * an additional 8 bytes for SNAP/ethertype, see below) so that 136 * splice() or TCP coalesce are more efficient. 137 * 138 * Since, in addition, ieee80211_data_to_8023() always pull in at 139 * least 8 bytes (possibly more for mesh) we can do the same here 140 * to save the cost of doing it later. That still doesn't pull in 141 * the actual IP header since the typical case has a SNAP header. 142 * If the latter changes (there are efforts in the standards group 143 * to do so) we should revisit this and ieee80211_data_to_8023(). 144 */ 145 headlen = (len <= skb_tailroom(skb)) ? len : 146 hdrlen + crypt_len + 8; 147 148 /* The firmware may align the packet to DWORD. 149 * The padding is inserted after the IV. 150 * After copying the header + IV skip the padding if 151 * present before copying packet data. 152 */ 153 hdrlen += crypt_len; 154 155 if (WARN_ONCE(headlen < hdrlen, 156 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 157 hdrlen, len, crypt_len)) { 158 /* 159 * We warn and trace because we want to be able to see 160 * it in trace-cmd as well. 161 */ 162 IWL_DEBUG_RX(mvm, 163 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n", 164 hdrlen, len, crypt_len); 165 return -EINVAL; 166 } 167 168 skb_put_data(skb, hdr, hdrlen); 169 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 170 171 /* 172 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 173 * certain cases and starts the checksum after the SNAP. Check if 174 * this is the case - it's easier to just bail out to CHECKSUM_NONE 175 * in the cases the hardware didn't handle, since it's rare to see 176 * such packets, even though the hardware did calculate the checksum 177 * in this case, just starting after the MAC header instead. 178 */ 179 if (skb->ip_summed == CHECKSUM_COMPLETE) { 180 struct { 181 u8 hdr[6]; 182 __be16 type; 183 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 184 185 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 186 !ether_addr_equal(shdr->hdr, rfc1042_header) || 187 (shdr->type != htons(ETH_P_IP) && 188 shdr->type != htons(ETH_P_ARP) && 189 shdr->type != htons(ETH_P_IPV6) && 190 shdr->type != htons(ETH_P_8021Q) && 191 shdr->type != htons(ETH_P_PAE) && 192 shdr->type != htons(ETH_P_TDLS)))) 193 skb->ip_summed = CHECKSUM_NONE; 194 } 195 196 fraglen = len - headlen; 197 198 if (fraglen) { 199 int offset = (u8 *)hdr + headlen + pad_len - 200 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 201 202 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 203 fraglen, rxb->truesize); 204 } 205 206 return 0; 207 } 208 209 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 210 struct sk_buff *skb) 211 { 212 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 213 struct ieee80211_vendor_radiotap *radiotap; 214 const int size = sizeof(*radiotap) + sizeof(__le16); 215 216 if (!mvm->cur_aid) 217 return; 218 219 /* ensure alignment */ 220 BUILD_BUG_ON((size + 2) % 4); 221 222 radiotap = skb_put(skb, size + 2); 223 radiotap->align = 1; 224 /* Intel OUI */ 225 radiotap->oui[0] = 0xf6; 226 radiotap->oui[1] = 0x54; 227 radiotap->oui[2] = 0x25; 228 /* radiotap sniffer config sub-namespace */ 229 radiotap->subns = 1; 230 radiotap->present = 0x1; 231 radiotap->len = size - sizeof(*radiotap); 232 radiotap->pad = 2; 233 234 /* fill the data now */ 235 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 236 /* and clear the padding */ 237 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad); 238 239 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA; 240 } 241 242 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 243 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 244 struct napi_struct *napi, 245 struct sk_buff *skb, int queue, 246 struct ieee80211_sta *sta) 247 { 248 if (iwl_mvm_check_pn(mvm, skb, queue, sta)) 249 kfree_skb(skb); 250 else 251 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 252 } 253 254 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 255 struct ieee80211_rx_status *rx_status, 256 u32 rate_n_flags, int energy_a, 257 int energy_b) 258 { 259 int max_energy; 260 u32 rate_flags = rate_n_flags; 261 262 energy_a = energy_a ? -energy_a : S8_MIN; 263 energy_b = energy_b ? -energy_b : S8_MIN; 264 max_energy = max(energy_a, energy_b); 265 266 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 267 energy_a, energy_b, max_energy); 268 269 rx_status->signal = max_energy; 270 rx_status->chains = 271 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 272 rx_status->chain_signal[0] = energy_a; 273 rx_status->chain_signal[1] = energy_b; 274 } 275 276 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 277 struct ieee80211_hdr *hdr, 278 struct iwl_rx_mpdu_desc *desc, 279 u32 status) 280 { 281 struct iwl_mvm_sta *mvmsta; 282 struct iwl_mvm_vif *mvmvif; 283 u8 keyid; 284 struct ieee80211_key_conf *key; 285 u32 len = le16_to_cpu(desc->mpdu_len); 286 const u8 *frame = (void *)hdr; 287 288 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 289 return 0; 290 291 /* 292 * For non-beacon, we don't really care. But beacons may 293 * be filtered out, and we thus need the firmware's replay 294 * detection, otherwise beacons the firmware previously 295 * filtered could be replayed, or something like that, and 296 * it can filter a lot - though usually only if nothing has 297 * changed. 298 */ 299 if (!ieee80211_is_beacon(hdr->frame_control)) 300 return 0; 301 302 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 303 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 304 return -1; 305 306 /* good cases */ 307 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 308 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) 309 return 0; 310 311 if (!sta) 312 return -1; 313 314 mvmsta = iwl_mvm_sta_from_mac80211(sta); 315 316 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 317 318 /* 319 * both keys will have the same cipher and MIC length, use 320 * whichever one is available 321 */ 322 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 323 if (!key) { 324 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 325 if (!key) 326 return -1; 327 } 328 329 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 330 return -1; 331 332 /* get the real key ID */ 333 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 334 /* and if that's the other key, look it up */ 335 if (keyid != key->keyidx) { 336 /* 337 * shouldn't happen since firmware checked, but be safe 338 * in case the MIC length is wrong too, for example 339 */ 340 if (keyid != 6 && keyid != 7) 341 return -1; 342 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 343 if (!key) 344 return -1; 345 } 346 347 /* Report status to mac80211 */ 348 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 349 ieee80211_key_mic_failure(key); 350 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 351 ieee80211_key_replay(key); 352 353 return -1; 354 } 355 356 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 357 struct ieee80211_hdr *hdr, 358 struct ieee80211_rx_status *stats, u16 phy_info, 359 struct iwl_rx_mpdu_desc *desc, 360 u32 pkt_flags, int queue, u8 *crypt_len) 361 { 362 u32 status = le32_to_cpu(desc->status); 363 364 /* 365 * Drop UNKNOWN frames in aggregation, unless in monitor mode 366 * (where we don't have the keys). 367 * We limit this to aggregation because in TKIP this is a valid 368 * scenario, since we may not have the (correct) TTAK (phase 1 369 * key) in the firmware. 370 */ 371 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 372 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 373 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 374 return -1; 375 376 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 377 !ieee80211_has_protected(hdr->frame_control))) 378 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status); 379 380 if (!ieee80211_has_protected(hdr->frame_control) || 381 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 382 IWL_RX_MPDU_STATUS_SEC_NONE) 383 return 0; 384 385 /* TODO: handle packets encrypted with unknown alg */ 386 #if defined(__FreeBSD__) 387 /* XXX-BZ do similar to rx.c for now as these are plenty. */ 388 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 389 IWL_RX_MPDU_STATUS_SEC_ENC_ERR) 390 return (0); 391 #endif 392 393 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 394 case IWL_RX_MPDU_STATUS_SEC_CCM: 395 case IWL_RX_MPDU_STATUS_SEC_GCM: 396 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 397 /* alg is CCM: check MIC only */ 398 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 399 return -1; 400 401 stats->flag |= RX_FLAG_DECRYPTED; 402 if (pkt_flags & FH_RSCSR_RADA_EN) 403 stats->flag |= RX_FLAG_MIC_STRIPPED; 404 *crypt_len = IEEE80211_CCMP_HDR_LEN; 405 return 0; 406 case IWL_RX_MPDU_STATUS_SEC_TKIP: 407 /* Don't drop the frame and decrypt it in SW */ 408 if (!fw_has_api(&mvm->fw->ucode_capa, 409 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 410 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 411 return 0; 412 413 if (mvm->trans->trans_cfg->gen2 && 414 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 415 stats->flag |= RX_FLAG_MMIC_ERROR; 416 417 *crypt_len = IEEE80211_TKIP_IV_LEN; 418 fallthrough; 419 case IWL_RX_MPDU_STATUS_SEC_WEP: 420 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 421 return -1; 422 423 stats->flag |= RX_FLAG_DECRYPTED; 424 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 425 IWL_RX_MPDU_STATUS_SEC_WEP) 426 *crypt_len = IEEE80211_WEP_IV_LEN; 427 428 if (pkt_flags & FH_RSCSR_RADA_EN) { 429 stats->flag |= RX_FLAG_ICV_STRIPPED; 430 if (mvm->trans->trans_cfg->gen2) 431 stats->flag |= RX_FLAG_MMIC_STRIPPED; 432 } 433 434 return 0; 435 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 436 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 437 return -1; 438 stats->flag |= RX_FLAG_DECRYPTED; 439 return 0; 440 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 441 break; 442 default: 443 /* 444 * Sometimes we can get frames that were not decrypted 445 * because the firmware didn't have the keys yet. This can 446 * happen after connection where we can get multicast frames 447 * before the GTK is installed. 448 * Silently drop those frames. 449 * Also drop un-decrypted frames in monitor mode. 450 */ 451 if (!is_multicast_ether_addr(hdr->addr1) && 452 !mvm->monitor_on && net_ratelimit()) 453 IWL_ERR(mvm, "%s: Unhandled alg: 0x%x\n", 454 __func__, status); 455 } 456 457 return 0; 458 } 459 460 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 461 struct ieee80211_sta *sta, 462 struct sk_buff *skb, 463 struct iwl_rx_packet *pkt) 464 { 465 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 466 467 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 468 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 469 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 470 471 skb->ip_summed = CHECKSUM_COMPLETE; 472 skb->csum = csum_unfold(~(__force __sum16)hwsum); 473 } 474 } else { 475 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 476 struct iwl_mvm_vif *mvmvif; 477 u16 flags = le16_to_cpu(desc->l3l4_flags); 478 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 479 IWL_RX_L3_PROTO_POS); 480 481 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 482 483 if (mvmvif->features & NETIF_F_RXCSUM && 484 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 485 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 486 l3_prot == IWL_RX_L3_TYPE_IPV6 || 487 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 488 skb->ip_summed = CHECKSUM_UNNECESSARY; 489 } 490 } 491 492 /* 493 * returns true if a packet is a duplicate and should be dropped. 494 * Updates AMSDU PN tracking info 495 */ 496 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 497 struct ieee80211_rx_status *rx_status, 498 struct ieee80211_hdr *hdr, 499 struct iwl_rx_mpdu_desc *desc) 500 { 501 struct iwl_mvm_sta *mvm_sta; 502 struct iwl_mvm_rxq_dup_data *dup_data; 503 u8 tid, sub_frame_idx; 504 505 if (WARN_ON(IS_ERR_OR_NULL(sta))) 506 return false; 507 508 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 509 if (WARN_ON(mvm_sta->dup_data == NULL)) 510 return false; 511 dup_data = &mvm_sta->dup_data[queue]; 512 513 /* 514 * Drop duplicate 802.11 retransmissions 515 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 516 */ 517 if (ieee80211_is_ctl(hdr->frame_control) || 518 ieee80211_is_qos_nullfunc(hdr->frame_control) || 519 is_multicast_ether_addr(hdr->addr1)) { 520 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 521 return false; 522 } 523 524 if (ieee80211_is_data_qos(hdr->frame_control)) 525 /* frame has qos control */ 526 tid = ieee80211_get_tid(hdr); 527 else 528 tid = IWL_MAX_TID_COUNT; 529 530 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 531 sub_frame_idx = desc->amsdu_info & 532 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 533 534 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 535 dup_data->last_seq[tid] == hdr->seq_ctrl && 536 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 537 return true; 538 539 /* Allow same PN as the first subframe for following sub frames */ 540 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 541 sub_frame_idx > dup_data->last_sub_frame[tid] && 542 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 543 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 544 545 dup_data->last_seq[tid] = hdr->seq_ctrl; 546 dup_data->last_sub_frame[tid] = sub_frame_idx; 547 548 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 549 550 return false; 551 } 552 553 /* 554 * Returns true if sn2 - buffer_size < sn1 < sn2. 555 * To be used only in order to compare reorder buffer head with NSSN. 556 * We fully trust NSSN unless it is behind us due to reorder timeout. 557 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 558 */ 559 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 560 { 561 return ieee80211_sn_less(sn1, sn2) && 562 !ieee80211_sn_less(sn1, sn2 - buffer_size); 563 } 564 565 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 566 { 567 if (IWL_MVM_USE_NSSN_SYNC) { 568 struct iwl_mvm_nssn_sync_data notif = { 569 .baid = baid, 570 .nssn = nssn, 571 }; 572 573 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 574 ¬if, sizeof(notif)); 575 } 576 } 577 578 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 579 580 enum iwl_mvm_release_flags { 581 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 582 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 583 }; 584 585 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 586 struct ieee80211_sta *sta, 587 struct napi_struct *napi, 588 struct iwl_mvm_baid_data *baid_data, 589 struct iwl_mvm_reorder_buffer *reorder_buf, 590 u16 nssn, u32 flags) 591 { 592 struct iwl_mvm_reorder_buf_entry *entries = 593 &baid_data->entries[reorder_buf->queue * 594 baid_data->entries_per_queue]; 595 u16 ssn = reorder_buf->head_sn; 596 597 lockdep_assert_held(&reorder_buf->lock); 598 599 /* 600 * We keep the NSSN not too far behind, if we are sync'ing it and it 601 * is more than 2048 ahead of us, it must be behind us. Discard it. 602 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 603 * behind and this queue already processed packets. The next if 604 * would have caught cases where this queue would have processed less 605 * than 64 packets, but it may have processed more than 64 packets. 606 */ 607 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 608 ieee80211_sn_less(nssn, ssn)) 609 goto set_timer; 610 611 /* ignore nssn smaller than head sn - this can happen due to timeout */ 612 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 613 goto set_timer; 614 615 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 616 int index = ssn % reorder_buf->buf_size; 617 struct sk_buff_head *skb_list = &entries[index].e.frames; 618 struct sk_buff *skb; 619 620 ssn = ieee80211_sn_inc(ssn); 621 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 622 (ssn == 2048 || ssn == 0)) 623 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 624 625 /* 626 * Empty the list. Will have more than one frame for A-MSDU. 627 * Empty list is valid as well since nssn indicates frames were 628 * received. 629 */ 630 while ((skb = __skb_dequeue(skb_list))) { 631 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 632 reorder_buf->queue, 633 sta); 634 reorder_buf->num_stored--; 635 } 636 } 637 reorder_buf->head_sn = nssn; 638 639 set_timer: 640 if (reorder_buf->num_stored && !reorder_buf->removed) { 641 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 642 643 while (skb_queue_empty(&entries[index].e.frames)) 644 index = (index + 1) % reorder_buf->buf_size; 645 /* modify timer to match next frame's expiration time */ 646 mod_timer(&reorder_buf->reorder_timer, 647 entries[index].e.reorder_time + 1 + 648 RX_REORDER_BUF_TIMEOUT_MQ); 649 } else { 650 del_timer(&reorder_buf->reorder_timer); 651 } 652 } 653 654 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 655 { 656 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 657 struct iwl_mvm_baid_data *baid_data = 658 iwl_mvm_baid_data_from_reorder_buf(buf); 659 struct iwl_mvm_reorder_buf_entry *entries = 660 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 661 int i; 662 u16 sn = 0, index = 0; 663 bool expired = false; 664 bool cont = false; 665 666 spin_lock(&buf->lock); 667 668 if (!buf->num_stored || buf->removed) { 669 spin_unlock(&buf->lock); 670 return; 671 } 672 673 for (i = 0; i < buf->buf_size ; i++) { 674 index = (buf->head_sn + i) % buf->buf_size; 675 676 if (skb_queue_empty(&entries[index].e.frames)) { 677 /* 678 * If there is a hole and the next frame didn't expire 679 * we want to break and not advance SN 680 */ 681 cont = false; 682 continue; 683 } 684 if (!cont && 685 !time_after(jiffies, entries[index].e.reorder_time + 686 RX_REORDER_BUF_TIMEOUT_MQ)) 687 break; 688 689 expired = true; 690 /* continue until next hole after this expired frames */ 691 cont = true; 692 sn = ieee80211_sn_add(buf->head_sn, i + 1); 693 } 694 695 if (expired) { 696 struct ieee80211_sta *sta; 697 struct iwl_mvm_sta *mvmsta; 698 u8 sta_id = baid_data->sta_id; 699 700 rcu_read_lock(); 701 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 702 mvmsta = iwl_mvm_sta_from_mac80211(sta); 703 704 /* SN is set to the last expired frame + 1 */ 705 IWL_DEBUG_HT(buf->mvm, 706 "Releasing expired frames for sta %u, sn %d\n", 707 sta_id, sn); 708 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 709 sta, baid_data->tid); 710 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 711 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 712 rcu_read_unlock(); 713 } else { 714 /* 715 * If no frame expired and there are stored frames, index is now 716 * pointing to the first unexpired frame - modify timer 717 * accordingly to this frame. 718 */ 719 mod_timer(&buf->reorder_timer, 720 entries[index].e.reorder_time + 721 1 + RX_REORDER_BUF_TIMEOUT_MQ); 722 } 723 spin_unlock(&buf->lock); 724 } 725 726 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 727 struct iwl_mvm_delba_data *data) 728 { 729 struct iwl_mvm_baid_data *ba_data; 730 struct ieee80211_sta *sta; 731 struct iwl_mvm_reorder_buffer *reorder_buf; 732 u8 baid = data->baid; 733 734 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 735 return; 736 737 rcu_read_lock(); 738 739 ba_data = rcu_dereference(mvm->baid_map[baid]); 740 if (WARN_ON_ONCE(!ba_data)) 741 goto out; 742 743 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 744 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 745 goto out; 746 747 reorder_buf = &ba_data->reorder_buf[queue]; 748 749 /* release all frames that are in the reorder buffer to the stack */ 750 spin_lock_bh(&reorder_buf->lock); 751 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 752 ieee80211_sn_add(reorder_buf->head_sn, 753 reorder_buf->buf_size), 754 0); 755 spin_unlock_bh(&reorder_buf->lock); 756 del_timer_sync(&reorder_buf->reorder_timer); 757 758 out: 759 rcu_read_unlock(); 760 } 761 762 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 763 struct napi_struct *napi, 764 u8 baid, u16 nssn, int queue, 765 u32 flags) 766 { 767 struct ieee80211_sta *sta; 768 struct iwl_mvm_reorder_buffer *reorder_buf; 769 struct iwl_mvm_baid_data *ba_data; 770 771 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 772 baid, nssn); 773 774 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 775 baid >= ARRAY_SIZE(mvm->baid_map))) 776 return; 777 778 rcu_read_lock(); 779 780 ba_data = rcu_dereference(mvm->baid_map[baid]); 781 if (WARN_ON_ONCE(!ba_data)) 782 goto out; 783 784 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]); 785 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 786 goto out; 787 788 reorder_buf = &ba_data->reorder_buf[queue]; 789 790 spin_lock_bh(&reorder_buf->lock); 791 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 792 reorder_buf, nssn, flags); 793 spin_unlock_bh(&reorder_buf->lock); 794 795 out: 796 rcu_read_unlock(); 797 } 798 799 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 800 struct napi_struct *napi, int queue, 801 const struct iwl_mvm_nssn_sync_data *data) 802 { 803 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 804 data->nssn, queue, 805 IWL_MVM_RELEASE_FROM_RSS_SYNC); 806 } 807 808 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 809 struct iwl_rx_cmd_buffer *rxb, int queue) 810 { 811 struct iwl_rx_packet *pkt = rxb_addr(rxb); 812 struct iwl_rxq_sync_notification *notif; 813 struct iwl_mvm_internal_rxq_notif *internal_notif; 814 u32 len = iwl_rx_packet_payload_len(pkt); 815 816 notif = (void *)pkt->data; 817 internal_notif = (void *)notif->payload; 818 819 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 820 "invalid notification size %d (%d)", 821 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 822 return; 823 len -= sizeof(*notif) + sizeof(*internal_notif); 824 825 if (internal_notif->sync && 826 mvm->queue_sync_cookie != internal_notif->cookie) { 827 WARN_ONCE(1, "Received expired RX queue sync message\n"); 828 return; 829 } 830 831 switch (internal_notif->type) { 832 case IWL_MVM_RXQ_EMPTY: 833 WARN_ONCE(len, "invalid empty notification size %d", len); 834 break; 835 case IWL_MVM_RXQ_NOTIF_DEL_BA: 836 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 837 "invalid delba notification size %d (%d)", 838 len, (int)sizeof(struct iwl_mvm_delba_data))) 839 break; 840 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 841 break; 842 case IWL_MVM_RXQ_NSSN_SYNC: 843 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 844 "invalid nssn sync notification size %d (%d)", 845 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 846 break; 847 iwl_mvm_nssn_sync(mvm, napi, queue, 848 (void *)internal_notif->data); 849 break; 850 default: 851 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 852 } 853 854 if (internal_notif->sync) { 855 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 856 "queue sync: queue %d responded a second time!\n", 857 queue); 858 if (READ_ONCE(mvm->queue_sync_state) == 0) 859 wake_up(&mvm->rx_sync_waitq); 860 } 861 } 862 863 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 864 struct ieee80211_sta *sta, int tid, 865 struct iwl_mvm_reorder_buffer *buffer, 866 u32 reorder, u32 gp2, int queue) 867 { 868 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 869 870 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 871 /* we have a new (A-)MPDU ... */ 872 873 /* 874 * reset counter to 0 if we didn't have any oldsn in 875 * the last A-MPDU (as detected by GP2 being identical) 876 */ 877 if (!buffer->consec_oldsn_prev_drop) 878 buffer->consec_oldsn_drops = 0; 879 880 /* either way, update our tracking state */ 881 buffer->consec_oldsn_ampdu_gp2 = gp2; 882 } else if (buffer->consec_oldsn_prev_drop) { 883 /* 884 * tracking state didn't change, and we had an old SN 885 * indication before - do nothing in this case, we 886 * already noted this one down and are waiting for the 887 * next A-MPDU (by GP2) 888 */ 889 return; 890 } 891 892 /* return unless this MPDU has old SN */ 893 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 894 return; 895 896 /* update state */ 897 buffer->consec_oldsn_prev_drop = 1; 898 buffer->consec_oldsn_drops++; 899 900 /* if limit is reached, send del BA and reset state */ 901 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 902 IWL_WARN(mvm, 903 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 904 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 905 sta->addr, queue, tid); 906 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 907 buffer->consec_oldsn_prev_drop = 0; 908 buffer->consec_oldsn_drops = 0; 909 } 910 } 911 912 /* 913 * Returns true if the MPDU was buffered\dropped, false if it should be passed 914 * to upper layer. 915 */ 916 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 917 struct napi_struct *napi, 918 int queue, 919 struct ieee80211_sta *sta, 920 struct sk_buff *skb, 921 struct iwl_rx_mpdu_desc *desc) 922 { 923 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 924 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb); 925 struct iwl_mvm_sta *mvm_sta; 926 struct iwl_mvm_baid_data *baid_data; 927 struct iwl_mvm_reorder_buffer *buffer; 928 struct sk_buff *tail; 929 u32 reorder = le32_to_cpu(desc->reorder_data); 930 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 931 bool last_subframe = 932 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 933 u8 tid = ieee80211_get_tid(hdr); 934 u8 sub_frame_idx = desc->amsdu_info & 935 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 936 struct iwl_mvm_reorder_buf_entry *entries; 937 int index; 938 u16 nssn, sn; 939 u8 baid; 940 941 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 942 IWL_RX_MPDU_REORDER_BAID_SHIFT; 943 944 /* 945 * This also covers the case of receiving a Block Ack Request 946 * outside a BA session; we'll pass it to mac80211 and that 947 * then sends a delBA action frame. 948 * This also covers pure monitor mode, in which case we won't 949 * have any BA sessions. 950 */ 951 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 952 return false; 953 954 /* no sta yet */ 955 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 956 "Got valid BAID without a valid station assigned\n")) 957 return false; 958 959 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 960 961 /* not a data packet or a bar */ 962 if (!ieee80211_is_back_req(hdr->frame_control) && 963 (!ieee80211_is_data_qos(hdr->frame_control) || 964 is_multicast_ether_addr(hdr->addr1))) 965 return false; 966 967 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 968 return false; 969 970 baid_data = rcu_dereference(mvm->baid_map[baid]); 971 if (!baid_data) { 972 IWL_DEBUG_RX(mvm, 973 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 974 baid, reorder); 975 return false; 976 } 977 978 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id, 979 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n", 980 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, 981 tid)) 982 return false; 983 984 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 985 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 986 IWL_RX_MPDU_REORDER_SN_SHIFT; 987 988 buffer = &baid_data->reorder_buf[queue]; 989 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 990 991 spin_lock_bh(&buffer->lock); 992 993 if (!buffer->valid) { 994 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 995 spin_unlock_bh(&buffer->lock); 996 return false; 997 } 998 buffer->valid = true; 999 } 1000 1001 if (ieee80211_is_back_req(hdr->frame_control)) { 1002 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1003 buffer, nssn, 0); 1004 goto drop; 1005 } 1006 1007 /* 1008 * If there was a significant jump in the nssn - adjust. 1009 * If the SN is smaller than the NSSN it might need to first go into 1010 * the reorder buffer, in which case we just release up to it and the 1011 * rest of the function will take care of storing it and releasing up to 1012 * the nssn. 1013 * This should not happen. This queue has been lagging and it should 1014 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1015 * and update the other queues. 1016 */ 1017 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1018 buffer->buf_size) || 1019 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1020 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1021 1022 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1023 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1024 } 1025 1026 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1027 rx_status->device_timestamp, queue); 1028 1029 /* drop any oudated packets */ 1030 if (ieee80211_sn_less(sn, buffer->head_sn)) 1031 goto drop; 1032 1033 /* release immediately if allowed by nssn and no stored frames */ 1034 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1035 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1036 buffer->buf_size) && 1037 (!amsdu || last_subframe)) { 1038 /* 1039 * If we crossed the 2048 or 0 SN, notify all the 1040 * queues. This is done in order to avoid having a 1041 * head_sn that lags behind for too long. When that 1042 * happens, we can get to a situation where the head_sn 1043 * is within the interval [nssn - buf_size : nssn] 1044 * which will make us think that the nssn is a packet 1045 * that we already freed because of the reordering 1046 * buffer and we will ignore it. So maintain the 1047 * head_sn somewhat updated across all the queues: 1048 * when it crosses 0 and 2048. 1049 */ 1050 if (sn == 2048 || sn == 0) 1051 iwl_mvm_sync_nssn(mvm, baid, sn); 1052 buffer->head_sn = nssn; 1053 } 1054 /* No need to update AMSDU last SN - we are moving the head */ 1055 spin_unlock_bh(&buffer->lock); 1056 return false; 1057 } 1058 1059 /* 1060 * release immediately if there are no stored frames, and the sn is 1061 * equal to the head. 1062 * This can happen due to reorder timer, where NSSN is behind head_sn. 1063 * When we released everything, and we got the next frame in the 1064 * sequence, according to the NSSN we can't release immediately, 1065 * while technically there is no hole and we can move forward. 1066 */ 1067 if (!buffer->num_stored && sn == buffer->head_sn) { 1068 if (!amsdu || last_subframe) { 1069 if (sn == 2048 || sn == 0) 1070 iwl_mvm_sync_nssn(mvm, baid, sn); 1071 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1072 } 1073 /* No need to update AMSDU last SN - we are moving the head */ 1074 spin_unlock_bh(&buffer->lock); 1075 return false; 1076 } 1077 1078 index = sn % buffer->buf_size; 1079 1080 /* 1081 * Check if we already stored this frame 1082 * As AMSDU is either received or not as whole, logic is simple: 1083 * If we have frames in that position in the buffer and the last frame 1084 * originated from AMSDU had a different SN then it is a retransmission. 1085 * If it is the same SN then if the subframe index is incrementing it 1086 * is the same AMSDU - otherwise it is a retransmission. 1087 */ 1088 tail = skb_peek_tail(&entries[index].e.frames); 1089 if (tail && !amsdu) 1090 goto drop; 1091 else if (tail && (sn != buffer->last_amsdu || 1092 buffer->last_sub_index >= sub_frame_idx)) 1093 goto drop; 1094 1095 /* put in reorder buffer */ 1096 __skb_queue_tail(&entries[index].e.frames, skb); 1097 buffer->num_stored++; 1098 entries[index].e.reorder_time = jiffies; 1099 1100 if (amsdu) { 1101 buffer->last_amsdu = sn; 1102 buffer->last_sub_index = sub_frame_idx; 1103 } 1104 1105 /* 1106 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1107 * The reason is that NSSN advances on the first sub-frame, and may 1108 * cause the reorder buffer to advance before all the sub-frames arrive. 1109 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1110 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1111 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1112 * already ahead and it will be dropped. 1113 * If the last sub-frame is not on this queue - we will get frame 1114 * release notification with up to date NSSN. 1115 */ 1116 if (!amsdu || last_subframe) 1117 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1118 buffer, nssn, 1119 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1120 1121 spin_unlock_bh(&buffer->lock); 1122 return true; 1123 1124 drop: 1125 kfree_skb(skb); 1126 spin_unlock_bh(&buffer->lock); 1127 return true; 1128 } 1129 1130 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1131 u32 reorder_data, u8 baid) 1132 { 1133 unsigned long now = jiffies; 1134 unsigned long timeout; 1135 struct iwl_mvm_baid_data *data; 1136 1137 rcu_read_lock(); 1138 1139 data = rcu_dereference(mvm->baid_map[baid]); 1140 if (!data) { 1141 IWL_DEBUG_RX(mvm, 1142 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1143 baid, reorder_data); 1144 goto out; 1145 } 1146 1147 if (!data->timeout) 1148 goto out; 1149 1150 timeout = data->timeout; 1151 /* 1152 * Do not update last rx all the time to avoid cache bouncing 1153 * between the rx queues. 1154 * Update it every timeout. Worst case is the session will 1155 * expire after ~ 2 * timeout, which doesn't matter that much. 1156 */ 1157 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1158 /* Update is atomic */ 1159 data->last_rx = now; 1160 1161 out: 1162 rcu_read_unlock(); 1163 } 1164 1165 static void iwl_mvm_flip_address(u8 *addr) 1166 { 1167 int i; 1168 u8 mac_addr[ETH_ALEN]; 1169 1170 for (i = 0; i < ETH_ALEN; i++) 1171 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1172 ether_addr_copy(addr, mac_addr); 1173 } 1174 1175 struct iwl_mvm_rx_phy_data { 1176 enum iwl_rx_phy_info_type info_type; 1177 __le32 d0, d1, d2, d3; 1178 __le16 d4; 1179 }; 1180 1181 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1182 struct iwl_mvm_rx_phy_data *phy_data, 1183 u32 rate_n_flags, 1184 struct ieee80211_radiotap_he_mu *he_mu) 1185 { 1186 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1187 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1188 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1189 1190 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1191 he_mu->flags1 |= 1192 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1193 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1194 1195 he_mu->flags1 |= 1196 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1197 phy_data4), 1198 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1199 1200 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1201 phy_data2); 1202 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1203 phy_data3); 1204 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1205 phy_data2); 1206 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1207 phy_data3); 1208 } 1209 1210 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1211 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1212 he_mu->flags1 |= 1213 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1214 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1215 1216 he_mu->flags2 |= 1217 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1218 phy_data4), 1219 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1220 1221 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1222 phy_data2); 1223 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1224 phy_data3); 1225 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1226 phy_data2); 1227 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1228 phy_data3); 1229 } 1230 } 1231 1232 static void 1233 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1234 u32 rate_n_flags, 1235 struct ieee80211_radiotap_he *he, 1236 struct ieee80211_radiotap_he_mu *he_mu, 1237 struct ieee80211_rx_status *rx_status) 1238 { 1239 /* 1240 * Unfortunately, we have to leave the mac80211 data 1241 * incorrect for the case that we receive an HE-MU 1242 * transmission and *don't* have the HE phy data (due 1243 * to the bits being used for TSF). This shouldn't 1244 * happen though as management frames where we need 1245 * the TSF/timers are not be transmitted in HE-MU. 1246 */ 1247 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1248 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1249 u8 offs = 0; 1250 1251 rx_status->bw = RATE_INFO_BW_HE_RU; 1252 1253 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1254 1255 switch (ru) { 1256 case 0 ... 36: 1257 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1258 offs = ru; 1259 break; 1260 case 37 ... 52: 1261 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1262 offs = ru - 37; 1263 break; 1264 case 53 ... 60: 1265 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1266 offs = ru - 53; 1267 break; 1268 case 61 ... 64: 1269 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1270 offs = ru - 61; 1271 break; 1272 case 65 ... 66: 1273 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1274 offs = ru - 65; 1275 break; 1276 case 67: 1277 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1278 break; 1279 case 68: 1280 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1281 break; 1282 } 1283 he->data2 |= le16_encode_bits(offs, 1284 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1285 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1286 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1287 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1288 he->data2 |= 1289 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1290 1291 #define CHECK_BW(bw) \ 1292 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1293 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1294 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1295 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1296 CHECK_BW(20); 1297 CHECK_BW(40); 1298 CHECK_BW(80); 1299 CHECK_BW(160); 1300 1301 if (he_mu) 1302 he_mu->flags2 |= 1303 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1304 rate_n_flags), 1305 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1306 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1307 he->data6 |= 1308 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1309 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1310 rate_n_flags), 1311 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1312 } 1313 1314 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1315 struct iwl_mvm_rx_phy_data *phy_data, 1316 struct ieee80211_radiotap_he *he, 1317 struct ieee80211_radiotap_he_mu *he_mu, 1318 struct ieee80211_rx_status *rx_status, 1319 u32 rate_n_flags, int queue) 1320 { 1321 switch (phy_data->info_type) { 1322 case IWL_RX_PHY_INFO_TYPE_NONE: 1323 case IWL_RX_PHY_INFO_TYPE_CCK: 1324 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1325 case IWL_RX_PHY_INFO_TYPE_HT: 1326 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1327 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1328 return; 1329 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1330 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1331 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1332 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1333 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1334 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1335 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1336 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1337 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1338 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1339 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1340 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1341 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1342 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1343 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1344 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1345 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1346 fallthrough; 1347 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1348 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1349 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1350 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1351 /* HE common */ 1352 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1353 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1354 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1355 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1356 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1357 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1358 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1359 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1360 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1361 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1362 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1363 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1364 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1365 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1366 IWL_RX_PHY_DATA0_HE_UPLINK), 1367 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1368 } 1369 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1370 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1371 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1372 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1373 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1374 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1375 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1376 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1377 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1378 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1379 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1380 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1381 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1382 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1383 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1384 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1385 IWL_RX_PHY_DATA0_HE_DOPPLER), 1386 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1387 break; 1388 } 1389 1390 switch (phy_data->info_type) { 1391 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1392 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1393 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1394 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1395 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1396 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1397 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1398 break; 1399 default: 1400 /* nothing here */ 1401 break; 1402 } 1403 1404 switch (phy_data->info_type) { 1405 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1406 he_mu->flags1 |= 1407 le16_encode_bits(le16_get_bits(phy_data->d4, 1408 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1409 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1410 he_mu->flags1 |= 1411 le16_encode_bits(le16_get_bits(phy_data->d4, 1412 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1413 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1414 he_mu->flags2 |= 1415 le16_encode_bits(le16_get_bits(phy_data->d4, 1416 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1417 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1418 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu); 1419 fallthrough; 1420 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1421 he_mu->flags2 |= 1422 le16_encode_bits(le32_get_bits(phy_data->d1, 1423 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1424 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1425 he_mu->flags2 |= 1426 le16_encode_bits(le32_get_bits(phy_data->d1, 1427 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1428 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1429 fallthrough; 1430 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1431 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1432 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags, 1433 he, he_mu, rx_status); 1434 break; 1435 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1436 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1437 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1438 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1439 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1440 break; 1441 default: 1442 /* nothing */ 1443 break; 1444 } 1445 } 1446 1447 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 1448 struct iwl_mvm_rx_phy_data *phy_data, 1449 u32 rate_n_flags, u16 phy_info, int queue) 1450 { 1451 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1452 struct ieee80211_radiotap_he *he = NULL; 1453 struct ieee80211_radiotap_he_mu *he_mu = NULL; 1454 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1455 u8 stbc, ltf; 1456 static const struct ieee80211_radiotap_he known = { 1457 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 1458 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 1459 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 1460 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 1461 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 1462 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 1463 }; 1464 static const struct ieee80211_radiotap_he_mu mu_known = { 1465 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 1466 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 1467 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 1468 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 1469 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 1470 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 1471 }; 1472 1473 he = skb_put_data(skb, &known, sizeof(known)); 1474 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 1475 1476 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 1477 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 1478 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 1479 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 1480 } 1481 1482 /* report the AMPDU-EOF bit on single frames */ 1483 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1484 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1485 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1486 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1487 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1488 } 1489 1490 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1491 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 1492 rate_n_flags, queue); 1493 1494 /* update aggregation data for monitor sake on default queue */ 1495 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1496 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1497 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1498 1499 /* toggle is switched whenever new aggregation starts */ 1500 if (toggle_bit != mvm->ampdu_toggle) { 1501 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1502 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 1503 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1504 } 1505 } 1506 1507 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 1508 rate_n_flags & RATE_MCS_HE_106T_MSK) { 1509 rx_status->bw = RATE_INFO_BW_HE_RU; 1510 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1511 } 1512 1513 /* actually data is filled in mac80211 */ 1514 if (he_type == RATE_MCS_HE_TYPE_SU || 1515 he_type == RATE_MCS_HE_TYPE_EXT_SU) 1516 he->data1 |= 1517 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1518 1519 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS; 1520 rx_status->nss = 1521 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1522 RATE_MCS_NSS_POS) + 1; 1523 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1524 rx_status->encoding = RX_ENC_HE; 1525 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1526 if (rate_n_flags & RATE_MCS_BF_MSK) 1527 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1528 1529 rx_status->he_dcm = 1530 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 1531 1532 #define CHECK_TYPE(F) \ 1533 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1534 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1535 1536 CHECK_TYPE(SU); 1537 CHECK_TYPE(EXT_SU); 1538 CHECK_TYPE(MU); 1539 CHECK_TYPE(TRIG); 1540 1541 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 1542 1543 if (rate_n_flags & RATE_MCS_BF_MSK) 1544 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 1545 1546 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 1547 RATE_MCS_HE_GI_LTF_POS) { 1548 case 0: 1549 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1551 else 1552 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1553 if (he_type == RATE_MCS_HE_TYPE_MU) 1554 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1555 else 1556 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1557 break; 1558 case 1: 1559 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1561 else 1562 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1563 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1564 break; 1565 case 2: 1566 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1567 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1568 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1569 } else { 1570 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1572 } 1573 break; 1574 case 3: 1575 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 1576 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1577 break; 1578 case 4: 1579 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 1580 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1581 break; 1582 default: 1583 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1584 } 1585 1586 he->data5 |= le16_encode_bits(ltf, 1587 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 1588 } 1589 1590 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 1591 struct iwl_mvm_rx_phy_data *phy_data) 1592 { 1593 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1594 struct ieee80211_radiotap_lsig *lsig; 1595 1596 switch (phy_data->info_type) { 1597 case IWL_RX_PHY_INFO_TYPE_HT: 1598 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1599 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1600 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1601 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1602 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1603 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1604 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1605 lsig = skb_put(skb, sizeof(*lsig)); 1606 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 1607 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 1608 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 1609 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 1610 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 1611 break; 1612 default: 1613 break; 1614 } 1615 } 1616 1617 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 1618 { 1619 switch (phy_band) { 1620 case PHY_BAND_24: 1621 return NL80211_BAND_2GHZ; 1622 case PHY_BAND_5: 1623 return NL80211_BAND_5GHZ; 1624 case PHY_BAND_6: 1625 return NL80211_BAND_6GHZ; 1626 default: 1627 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 1628 return NL80211_BAND_5GHZ; 1629 } 1630 } 1631 1632 struct iwl_rx_sta_csa { 1633 bool all_sta_unblocked; 1634 struct ieee80211_vif *vif; 1635 }; 1636 1637 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 1638 { 1639 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1640 struct iwl_rx_sta_csa *rx_sta_csa = data; 1641 1642 if (mvmsta->vif != rx_sta_csa->vif) 1643 return; 1644 1645 if (mvmsta->disable_tx) 1646 rx_sta_csa->all_sta_unblocked = false; 1647 } 1648 1649 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 1650 struct iwl_rx_cmd_buffer *rxb, int queue) 1651 { 1652 struct ieee80211_rx_status *rx_status; 1653 struct iwl_rx_packet *pkt = rxb_addr(rxb); 1654 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 1655 struct ieee80211_hdr *hdr; 1656 u32 len; 1657 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 1658 u32 rate_n_flags, gp2_on_air_rise; 1659 u16 phy_info; 1660 struct ieee80211_sta *sta = NULL; 1661 struct sk_buff *skb; 1662 u8 crypt_len = 0, channel, energy_a, energy_b; 1663 size_t desc_size; 1664 struct iwl_mvm_rx_phy_data phy_data = { 1665 .info_type = IWL_RX_PHY_INFO_TYPE_NONE, 1666 }; 1667 u32 format; 1668 bool is_sgi; 1669 1670 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 1671 return; 1672 1673 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 1674 desc_size = sizeof(*desc); 1675 else 1676 desc_size = IWL_RX_DESC_SIZE_V1; 1677 1678 if (unlikely(pkt_len < desc_size)) { 1679 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 1680 return; 1681 } 1682 1683 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 1684 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 1685 channel = desc->v3.channel; 1686 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 1687 energy_a = desc->v3.energy_a; 1688 energy_b = desc->v3.energy_b; 1689 1690 phy_data.d0 = desc->v3.phy_data0; 1691 phy_data.d1 = desc->v3.phy_data1; 1692 phy_data.d2 = desc->v3.phy_data2; 1693 phy_data.d3 = desc->v3.phy_data3; 1694 } else { 1695 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 1696 channel = desc->v1.channel; 1697 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 1698 energy_a = desc->v1.energy_a; 1699 energy_b = desc->v1.energy_b; 1700 1701 phy_data.d0 = desc->v1.phy_data0; 1702 phy_data.d1 = desc->v1.phy_data1; 1703 phy_data.d2 = desc->v1.phy_data2; 1704 phy_data.d3 = desc->v1.phy_data3; 1705 } 1706 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 1707 REPLY_RX_MPDU_CMD, 0) < 4) { 1708 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 1709 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 1710 rate_n_flags); 1711 } 1712 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 1713 1714 len = le16_to_cpu(desc->mpdu_len); 1715 1716 if (unlikely(len + desc_size > pkt_len)) { 1717 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 1718 return; 1719 } 1720 1721 phy_info = le16_to_cpu(desc->phy_info); 1722 phy_data.d4 = desc->phy_data4; 1723 1724 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1725 phy_data.info_type = 1726 le32_get_bits(phy_data.d1, 1727 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 1728 1729 hdr = (void *)(pkt->data + desc_size); 1730 /* Dont use dev_alloc_skb(), we'll have enough headroom once 1731 * ieee80211_hdr pulled. 1732 */ 1733 skb = alloc_skb(128, GFP_ATOMIC); 1734 if (!skb) { 1735 IWL_ERR(mvm, "alloc_skb failed\n"); 1736 return; 1737 } 1738 1739 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 1740 /* 1741 * If the device inserted padding it means that (it thought) 1742 * the 802.11 header wasn't a multiple of 4 bytes long. In 1743 * this case, reserve two bytes at the start of the SKB to 1744 * align the payload properly in case we end up copying it. 1745 */ 1746 skb_reserve(skb, 2); 1747 } 1748 1749 rx_status = IEEE80211_SKB_RXCB(skb); 1750 1751 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 1752 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 1753 case RATE_MCS_CHAN_WIDTH_20: 1754 break; 1755 case RATE_MCS_CHAN_WIDTH_40: 1756 rx_status->bw = RATE_INFO_BW_40; 1757 break; 1758 case RATE_MCS_CHAN_WIDTH_80: 1759 rx_status->bw = RATE_INFO_BW_80; 1760 break; 1761 case RATE_MCS_CHAN_WIDTH_160: 1762 rx_status->bw = RATE_INFO_BW_160; 1763 break; 1764 } 1765 1766 if (format == RATE_MCS_HE_MSK) 1767 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 1768 phy_info, queue); 1769 1770 iwl_mvm_decode_lsig(skb, &phy_data); 1771 1772 /* 1773 * Keep packets with CRC errors (and with overrun) for monitor mode 1774 * (otherwise the firmware discards them) but mark them as bad. 1775 */ 1776 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 1777 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 1778 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 1779 le32_to_cpu(desc->status)); 1780 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 1781 } 1782 /* set the preamble flag if appropriate */ 1783 if (format == RATE_MCS_CCK_MSK && 1784 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 1785 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 1786 1787 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 1788 u64 tsf_on_air_rise; 1789 1790 if (mvm->trans->trans_cfg->device_family >= 1791 IWL_DEVICE_FAMILY_AX210) 1792 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 1793 else 1794 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 1795 1796 rx_status->mactime = tsf_on_air_rise; 1797 /* TSF as indicated by the firmware is at INA time */ 1798 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 1799 } 1800 1801 rx_status->device_timestamp = gp2_on_air_rise; 1802 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 1803 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 1804 1805 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 1806 } else { 1807 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 1808 NL80211_BAND_2GHZ; 1809 } 1810 rx_status->freq = ieee80211_channel_to_frequency(channel, 1811 rx_status->band); 1812 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 1813 energy_b); 1814 1815 /* update aggregation data for monitor sake on default queue */ 1816 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1817 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 1818 1819 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1820 /* 1821 * Toggle is switched whenever new aggregation starts. Make 1822 * sure ampdu_reference is never 0 so we can later use it to 1823 * see if the frame was really part of an A-MPDU or not. 1824 */ 1825 if (toggle_bit != mvm->ampdu_toggle) { 1826 mvm->ampdu_ref++; 1827 if (mvm->ampdu_ref == 0) 1828 mvm->ampdu_ref++; 1829 mvm->ampdu_toggle = toggle_bit; 1830 } 1831 rx_status->ampdu_reference = mvm->ampdu_ref; 1832 } 1833 1834 if (unlikely(mvm->monitor_on)) 1835 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 1836 1837 rcu_read_lock(); 1838 1839 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 1840 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 1841 1842 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 1843 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 1844 if (IS_ERR(sta)) 1845 sta = NULL; 1846 } 1847 } else if (!is_multicast_ether_addr(hdr->addr2)) { 1848 /* 1849 * This is fine since we prevent two stations with the same 1850 * address from being added. 1851 */ 1852 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 1853 } 1854 1855 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc, 1856 le32_to_cpu(pkt->len_n_flags), queue, 1857 &crypt_len)) { 1858 kfree_skb(skb); 1859 goto out; 1860 } 1861 1862 if (sta) { 1863 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 1864 struct ieee80211_vif *tx_blocked_vif = 1865 rcu_dereference(mvm->csa_tx_blocked_vif); 1866 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 1867 IWL_RX_MPDU_REORDER_BAID_MASK) >> 1868 IWL_RX_MPDU_REORDER_BAID_SHIFT); 1869 struct iwl_fw_dbg_trigger_tlv *trig; 1870 struct ieee80211_vif *vif = mvmsta->vif; 1871 1872 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 1873 !is_multicast_ether_addr(hdr->addr1) && 1874 ieee80211_is_data(hdr->frame_control) && 1875 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 1876 schedule_delayed_work(&mvm->tcm.work, 0); 1877 1878 /* 1879 * We have tx blocked stations (with CS bit). If we heard 1880 * frames from a blocked station on a new channel we can 1881 * TX to it again. 1882 */ 1883 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 1884 struct iwl_mvm_vif *mvmvif = 1885 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 1886 struct iwl_rx_sta_csa rx_sta_csa = { 1887 .all_sta_unblocked = true, 1888 .vif = tx_blocked_vif, 1889 }; 1890 1891 if (mvmvif->csa_target_freq == rx_status->freq) 1892 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 1893 false); 1894 ieee80211_iterate_stations_atomic(mvm->hw, 1895 iwl_mvm_rx_get_sta_block_tx, 1896 &rx_sta_csa); 1897 1898 if (rx_sta_csa.all_sta_unblocked) { 1899 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 1900 /* Unblock BCAST / MCAST station */ 1901 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 1902 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork); 1903 } 1904 } 1905 1906 rs_update_last_rssi(mvm, mvmsta, rx_status); 1907 1908 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 1909 ieee80211_vif_to_wdev(vif), 1910 FW_DBG_TRIGGER_RSSI); 1911 1912 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 1913 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 1914 s32 rssi; 1915 1916 rssi_trig = (void *)trig->data; 1917 rssi = le32_to_cpu(rssi_trig->rssi); 1918 1919 if (rx_status->signal < rssi) 1920 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 1921 NULL); 1922 } 1923 1924 if (ieee80211_is_data(hdr->frame_control)) 1925 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 1926 1927 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 1928 kfree_skb(skb); 1929 goto out; 1930 } 1931 1932 /* 1933 * Our hardware de-aggregates AMSDUs but copies the mac header 1934 * as it to the de-aggregated MPDUs. We need to turn off the 1935 * AMSDU bit in the QoS control ourselves. 1936 * In addition, HW reverses addr3 and addr4 - reverse it back. 1937 */ 1938 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 1939 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 1940 u8 *qc = ieee80211_get_qos_ctl(hdr); 1941 1942 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1943 1944 if (mvm->trans->trans_cfg->device_family == 1945 IWL_DEVICE_FAMILY_9000) { 1946 iwl_mvm_flip_address(hdr->addr3); 1947 1948 if (ieee80211_has_a4(hdr->frame_control)) 1949 iwl_mvm_flip_address(hdr->addr4); 1950 } 1951 } 1952 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 1953 u32 reorder_data = le32_to_cpu(desc->reorder_data); 1954 1955 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 1956 } 1957 } 1958 1959 is_sgi = format == RATE_MCS_HE_MSK ? 1960 iwl_he_is_sgi(rate_n_flags) : 1961 rate_n_flags & RATE_MCS_SGI_MSK; 1962 1963 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 1964 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1965 if (rate_n_flags & RATE_MCS_LDPC_MSK) 1966 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 1967 if (format == RATE_MCS_HT_MSK) { 1968 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1969 RATE_MCS_STBC_POS; 1970 rx_status->encoding = RX_ENC_HT; 1971 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 1972 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1973 } else if (format == RATE_MCS_VHT_MSK) { 1974 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 1975 RATE_MCS_STBC_POS; 1976 rx_status->nss = 1977 ((rate_n_flags & RATE_MCS_NSS_MSK) >> 1978 RATE_MCS_NSS_POS) + 1; 1979 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 1980 rx_status->encoding = RX_ENC_VHT; 1981 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 1982 if (rate_n_flags & RATE_MCS_BF_MSK) 1983 rx_status->enc_flags |= RX_ENC_FLAG_BF; 1984 } else if (!(format == RATE_MCS_HE_MSK)) { 1985 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 1986 rx_status->band); 1987 1988 if (WARN(rate < 0 || rate > 0xFF, 1989 "Invalid rate flags 0x%x, band %d,\n", 1990 rate_n_flags, rx_status->band)) { 1991 kfree_skb(skb); 1992 goto out; 1993 } 1994 rx_status->rate_idx = rate; 1995 } 1996 1997 /* management stuff on default queue */ 1998 if (!queue) { 1999 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2000 ieee80211_is_probe_resp(hdr->frame_control)) && 2001 mvm->sched_scan_pass_all == 2002 SCHED_SCAN_PASS_ALL_ENABLED)) 2003 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2004 2005 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2006 ieee80211_is_probe_resp(hdr->frame_control))) 2007 rx_status->boottime_ns = ktime_get_boottime_ns(); 2008 } 2009 2010 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2011 kfree_skb(skb); 2012 goto out; 2013 } 2014 2015 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc)) 2016 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, 2017 sta); 2018 out: 2019 rcu_read_unlock(); 2020 } 2021 2022 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2023 struct iwl_rx_cmd_buffer *rxb, int queue) 2024 { 2025 struct ieee80211_rx_status *rx_status; 2026 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2027 struct iwl_rx_no_data *desc = (void *)pkt->data; 2028 u32 rate_n_flags = le32_to_cpu(desc->rate); 2029 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2030 u32 rssi = le32_to_cpu(desc->rssi); 2031 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2032 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2033 struct ieee80211_sta *sta = NULL; 2034 struct sk_buff *skb; 2035 u8 channel, energy_a, energy_b; 2036 u32 format; 2037 struct iwl_mvm_rx_phy_data phy_data = { 2038 .info_type = le32_get_bits(desc->phy_info[1], 2039 IWL_RX_PHY_DATA1_INFO_TYPE_MASK), 2040 .d0 = desc->phy_info[0], 2041 .d1 = desc->phy_info[1], 2042 }; 2043 bool is_sgi; 2044 2045 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2046 RX_NO_DATA_NOTIF, 0) < 2) { 2047 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2048 rate_n_flags); 2049 rate_n_flags = iwl_new_rate_from_v1(rate_n_flags); 2050 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2051 rate_n_flags); 2052 } 2053 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2054 2055 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc))) 2056 return; 2057 2058 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2059 return; 2060 2061 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS; 2062 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS; 2063 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS; 2064 2065 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2066 * ieee80211_hdr pulled. 2067 */ 2068 skb = alloc_skb(128, GFP_ATOMIC); 2069 if (!skb) { 2070 IWL_ERR(mvm, "alloc_skb failed\n"); 2071 return; 2072 } 2073 2074 rx_status = IEEE80211_SKB_RXCB(skb); 2075 2076 /* 0-length PSDU */ 2077 rx_status->flag |= RX_FLAG_NO_PSDU; 2078 2079 switch (info_type) { 2080 case RX_NO_DATA_INFO_TYPE_NDP: 2081 rx_status->zero_length_psdu_type = 2082 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2083 break; 2084 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2085 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED: 2086 rx_status->zero_length_psdu_type = 2087 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2088 break; 2089 default: 2090 rx_status->zero_length_psdu_type = 2091 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2092 break; 2093 } 2094 2095 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2096 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2097 case RATE_MCS_CHAN_WIDTH_20: 2098 break; 2099 case RATE_MCS_CHAN_WIDTH_40: 2100 rx_status->bw = RATE_INFO_BW_40; 2101 break; 2102 case RATE_MCS_CHAN_WIDTH_80: 2103 rx_status->bw = RATE_INFO_BW_80; 2104 break; 2105 case RATE_MCS_CHAN_WIDTH_160: 2106 rx_status->bw = RATE_INFO_BW_160; 2107 break; 2108 } 2109 2110 if (format == RATE_MCS_HE_MSK) 2111 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags, 2112 phy_info, queue); 2113 2114 iwl_mvm_decode_lsig(skb, &phy_data); 2115 2116 rx_status->device_timestamp = gp2_on_air_rise; 2117 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ : 2118 NL80211_BAND_2GHZ; 2119 rx_status->freq = ieee80211_channel_to_frequency(channel, 2120 rx_status->band); 2121 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a, 2122 energy_b); 2123 2124 rcu_read_lock(); 2125 2126 is_sgi = format == RATE_MCS_HE_MSK ? 2127 iwl_he_is_sgi(rate_n_flags) : 2128 rate_n_flags & RATE_MCS_SGI_MSK; 2129 2130 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2131 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2132 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2133 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2134 if (format == RATE_MCS_HT_MSK) { 2135 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2136 RATE_MCS_STBC_POS; 2137 rx_status->encoding = RX_ENC_HT; 2138 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2139 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2140 } else if (format == RATE_MCS_VHT_MSK) { 2141 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> 2142 RATE_MCS_STBC_POS; 2143 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2144 rx_status->encoding = RX_ENC_VHT; 2145 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2146 if (rate_n_flags & RATE_MCS_BF_MSK) 2147 rx_status->enc_flags |= RX_ENC_FLAG_BF; 2148 /* 2149 * take the nss from the rx_vec since the rate_n_flags has 2150 * only 2 bits for the nss which gives a max of 4 ss but 2151 * there may be up to 8 spatial streams 2152 */ 2153 rx_status->nss = 2154 le32_get_bits(desc->rx_vec[0], 2155 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2156 } else if (format == RATE_MCS_HE_MSK) { 2157 rx_status->nss = 2158 le32_get_bits(desc->rx_vec[0], 2159 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2160 } else { 2161 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2162 rx_status->band); 2163 2164 if (WARN(rate < 0 || rate > 0xFF, 2165 "Invalid rate flags 0x%x, band %d,\n", 2166 rate_n_flags, rx_status->band)) { 2167 kfree_skb(skb); 2168 goto out; 2169 } 2170 rx_status->rate_idx = rate; 2171 } 2172 2173 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2174 out: 2175 rcu_read_unlock(); 2176 } 2177 2178 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2179 struct iwl_rx_cmd_buffer *rxb, int queue) 2180 { 2181 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2182 struct iwl_frame_release *release = (void *)pkt->data; 2183 2184 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2185 return; 2186 2187 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2188 le16_to_cpu(release->nssn), 2189 queue, 0); 2190 } 2191 2192 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2193 struct iwl_rx_cmd_buffer *rxb, int queue) 2194 { 2195 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2196 struct iwl_bar_frame_release *release = (void *)pkt->data; 2197 unsigned int baid = le32_get_bits(release->ba_info, 2198 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2199 unsigned int nssn = le32_get_bits(release->ba_info, 2200 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2201 unsigned int sta_id = le32_get_bits(release->sta_tid, 2202 IWL_BAR_FRAME_RELEASE_STA_MASK); 2203 unsigned int tid = le32_get_bits(release->sta_tid, 2204 IWL_BAR_FRAME_RELEASE_TID_MASK); 2205 struct iwl_mvm_baid_data *baid_data; 2206 2207 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2208 return; 2209 2210 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2211 baid >= ARRAY_SIZE(mvm->baid_map))) 2212 return; 2213 2214 rcu_read_lock(); 2215 baid_data = rcu_dereference(mvm->baid_map[baid]); 2216 if (!baid_data) { 2217 IWL_DEBUG_RX(mvm, 2218 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2219 baid); 2220 goto out; 2221 } 2222 2223 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id, 2224 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n", 2225 baid, baid_data->sta_id, baid_data->tid, sta_id, 2226 tid)) 2227 goto out; 2228 2229 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2230 out: 2231 rcu_read_unlock(); 2232 } 2233