xref: /freebsd/sys/contrib/dev/iwlwifi/iwl-trans.h (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 #if defined(__FreeBSD__)
25 #include <linux/skbuff.h>
26 #include "iwl-modparams.h"
27 #endif
28 
29 /**
30  * DOC: Transport layer - what is it ?
31  *
32  * The transport layer is the layer that deals with the HW directly. It provides
33  * an abstraction of the underlying HW to the upper layer. The transport layer
34  * doesn't provide any policy, algorithm or anything of this kind, but only
35  * mechanisms to make the HW do something. It is not completely stateless but
36  * close to it.
37  * We will have an implementation for each different supported bus.
38  */
39 
40 /**
41  * DOC: Life cycle of the transport layer
42  *
43  * The transport layer has a very precise life cycle.
44  *
45  *	1) A helper function is called during the module initialization and
46  *	   registers the bus driver's ops with the transport's alloc function.
47  *	2) Bus's probe calls to the transport layer's allocation functions.
48  *	   Of course this function is bus specific.
49  *	3) This allocation functions will spawn the upper layer which will
50  *	   register mac80211.
51  *
52  *	4) At some point (i.e. mac80211's start call), the op_mode will call
53  *	   the following sequence:
54  *	   start_hw
55  *	   start_fw
56  *
57  *	5) Then when finished (or reset):
58  *	   stop_device
59  *
60  *	6) Eventually, the free function will be called.
61  */
62 
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
64 
65 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID		0x55550000
67 #define FH_RSCSR_FRAME_ALIGN		0x40
68 #define FH_RSCSR_RPA_EN			BIT(25)
69 #define FH_RSCSR_RADA_EN		BIT(26)
70 #define FH_RSCSR_RXQ_POS		16
71 #define FH_RSCSR_RXQ_MASK		0x3F0000
72 
73 struct iwl_rx_packet {
74 	/*
75 	 * The first 4 bytes of the RX frame header contain both the RX frame
76 	 * size and some flags.
77 	 * Bit fields:
78 	 * 31:    flag flush RB request
79 	 * 30:    flag ignore TC (terminal counter) request
80 	 * 29:    flag fast IRQ request
81 	 * 28-27: Reserved
82 	 * 26:    RADA enabled
83 	 * 25:    Offload enabled
84 	 * 24:    RPF enabled
85 	 * 23:    RSS enabled
86 	 * 22:    Checksum enabled
87 	 * 21-16: RX queue
88 	 * 15-14: Reserved
89 	 * 13-00: RX frame size
90 	 */
91 	__le32 len_n_flags;
92 	struct iwl_cmd_header hdr;
93 	u8 data[];
94 } __packed;
95 
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100 
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105 
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *	the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
113  *	called after this command completes. Valid only with CMD_ASYNC.
114  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115  *	SUSPEND and RESUME commands. We are in D3 mode when we set
116  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117  */
118 enum CMD_MODE {
119 	CMD_ASYNC		= BIT(0),
120 	CMD_WANT_SKB		= BIT(1),
121 	CMD_SEND_IN_RFKILL	= BIT(2),
122 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
123 	CMD_SEND_IN_D3          = BIT(4),
124 };
125 
126 #define DEF_CMD_PAYLOAD_SIZE 320
127 
128 /**
129  * struct iwl_device_cmd
130  *
131  * For allocation of the command and tx queues, this establishes the overall
132  * size of the largest command we send to uCode, except for commands that
133  * aren't fully copied and use other TFD space.
134  */
135 struct iwl_device_cmd {
136 	union {
137 		struct {
138 			struct iwl_cmd_header hdr;	/* uCode API */
139 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 		};
141 		struct {
142 			struct iwl_cmd_header_wide hdr_wide;
143 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 					sizeof(struct iwl_cmd_header_wide) +
145 					sizeof(struct iwl_cmd_header)];
146 		};
147 	};
148 } __packed;
149 
150 /**
151  * struct iwl_device_tx_cmd - buffer for TX command
152  * @hdr: the header
153  * @payload: the payload placeholder
154  *
155  * The actual structure is sized dynamically according to need.
156  */
157 struct iwl_device_tx_cmd {
158 	struct iwl_cmd_header hdr;
159 	u8 payload[];
160 } __packed;
161 
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163 
164 /*
165  * number of transfer buffers (fragments) per transmit frame descriptor;
166  * this is just the driver's idea, the hardware supports 20
167  */
168 #define IWL_MAX_CMD_TBS_PER_TFD	2
169 
170 /* We need 2 entries for the TX command and header, and another one might
171  * be needed for potential data in the SKB's head. The remaining ones can
172  * be used for frags.
173  */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175 
176 /**
177  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178  *
179  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180  *	ring. The transport layer doesn't map the command's buffer to DMA, but
181  *	rather copies it to a previously allocated DMA buffer. This flag tells
182  *	the transport layer not to copy the command, but to map the existing
183  *	buffer (that is passed in) instead. This saves the memcpy and allows
184  *	commands that are bigger than the fixed buffer to be submitted.
185  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187  *	chunk internally and free it again after the command completes. This
188  *	can (currently) be used only once per command.
189  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
190  */
191 enum iwl_hcmd_dataflag {
192 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
193 	IWL_HCMD_DFL_DUP	= BIT(1),
194 };
195 
196 enum iwl_error_event_table_status {
197 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205 
206 /**
207  * struct iwl_host_cmd - Host command to the uCode
208  *
209  * @data: array of chunks that composes the data of the host command
210  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211  * @_rx_page_order: (internally used to free response packet);
212  *      FreeBSD uses _page instead.
213  * @_rx_page_addr: (internally used to free response packet)
214  * @flags: can be CMD_*
215  * @len: array of the lengths of the chunks in data
216  * @dataflags: IWL_HCMD_DFL_*
217  * @id: command id of the host command, for wide commands encoding the
218  *	version and group as well
219  */
220 struct iwl_host_cmd {
221 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
222 	struct iwl_rx_packet *resp_pkt;
223 #if defined(__linux__)
224 	unsigned long _rx_page_addr;
225 #elif defined(__FreeBSD__)
226 	struct page *_page;
227 #endif
228 	u32 _rx_page_order;
229 
230 	u32 flags;
231 	u32 id;
232 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
233 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
234 };
235 
236 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
237 {
238 #if defined(__linux__)
239 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
240 #elif defined(__FreeBSD__)
241 	__free_pages(cmd->_page, cmd->_rx_page_order);
242 #endif
243 }
244 
245 struct iwl_rx_cmd_buffer {
246 	struct page *_page;
247 	int _offset;
248 	bool _page_stolen;
249 	u32 _rx_page_order;
250 	unsigned int truesize;
251 };
252 
253 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
254 {
255 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
256 }
257 
258 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
259 {
260 	return r->_offset;
261 }
262 
263 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
264 {
265 	r->_page_stolen = true;
266 	get_page(r->_page);
267 	return r->_page;
268 }
269 
270 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
271 {
272 	__free_pages(r->_page, r->_rx_page_order);
273 }
274 
275 #define MAX_NO_RECLAIM_CMDS	6
276 
277 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
278 
279 /*
280  * Maximum number of HW queues the transport layer
281  * currently supports
282  */
283 #define IWL_MAX_HW_QUEUES		32
284 #define IWL_MAX_TVQM_QUEUES		512
285 
286 #define IWL_MAX_TID_COUNT	8
287 #define IWL_MGMT_TID		15
288 #define IWL_FRAME_LIMIT	64
289 #define IWL_MAX_RX_HW_QUEUES	16
290 #define IWL_9000_MAX_RX_HW_QUEUES	6
291 
292 /**
293  * enum iwl_wowlan_status - WoWLAN image/device status
294  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
295  * @IWL_D3_STATUS_RESET: device was reset while suspended
296  */
297 enum iwl_d3_status {
298 	IWL_D3_STATUS_ALIVE,
299 	IWL_D3_STATUS_RESET,
300 };
301 
302 /**
303  * enum iwl_trans_status: transport status flags
304  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
305  * @STATUS_DEVICE_ENABLED: APM is enabled
306  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
307  * @STATUS_INT_ENABLED: interrupts are enabled
308  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
309  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
310  * @STATUS_FW_ERROR: the fw is in error state
311  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
312  *	are sent
313  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
314  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
315  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
316  *	e.g. for testing
317  */
318 enum iwl_trans_status {
319 	STATUS_SYNC_HCMD_ACTIVE,
320 	STATUS_DEVICE_ENABLED,
321 	STATUS_TPOWER_PMI,
322 	STATUS_INT_ENABLED,
323 	STATUS_RFKILL_HW,
324 	STATUS_RFKILL_OPMODE,
325 	STATUS_FW_ERROR,
326 	STATUS_TRANS_GOING_IDLE,
327 	STATUS_TRANS_IDLE,
328 	STATUS_TRANS_DEAD,
329 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
330 };
331 
332 static inline int
333 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
334 {
335 	switch (rb_size) {
336 	case IWL_AMSDU_2K:
337 		return get_order(2 * 1024);
338 	case IWL_AMSDU_4K:
339 		return get_order(4 * 1024);
340 	case IWL_AMSDU_8K:
341 		return get_order(8 * 1024);
342 	case IWL_AMSDU_12K:
343 		return get_order(16 * 1024);
344 	default:
345 		WARN_ON(1);
346 		return -1;
347 	}
348 }
349 
350 static inline int
351 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
352 {
353 	switch (rb_size) {
354 	case IWL_AMSDU_2K:
355 		return 2 * 1024;
356 	case IWL_AMSDU_4K:
357 		return 4 * 1024;
358 	case IWL_AMSDU_8K:
359 		return 8 * 1024;
360 	case IWL_AMSDU_12K:
361 		return 16 * 1024;
362 	default:
363 		WARN_ON(1);
364 		return 0;
365 	}
366 }
367 
368 struct iwl_hcmd_names {
369 	u8 cmd_id;
370 	const char *const cmd_name;
371 };
372 
373 #define HCMD_NAME(x)	\
374 	{ .cmd_id = x, .cmd_name = #x }
375 
376 struct iwl_hcmd_arr {
377 	const struct iwl_hcmd_names *arr;
378 	int size;
379 };
380 
381 #define HCMD_ARR(x)	\
382 	{ .arr = x, .size = ARRAY_SIZE(x) }
383 
384 /**
385  * struct iwl_dump_sanitize_ops - dump sanitization operations
386  * @frob_txf: Scrub the TX FIFO data
387  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
388  *	but that might be short or long (&struct iwl_cmd_header or
389  *	&struct iwl_cmd_header_wide)
390  * @frob_mem: Scrub memory data
391  */
392 struct iwl_dump_sanitize_ops {
393 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
394 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
395 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
396 };
397 
398 /**
399  * struct iwl_trans_config - transport configuration
400  *
401  * @op_mode: pointer to the upper layer.
402  * @cmd_queue: the index of the command queue.
403  *	Must be set before start_fw.
404  * @cmd_fifo: the fifo for host commands
405  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
406  * @no_reclaim_cmds: Some devices erroneously don't set the
407  *	SEQ_RX_FRAME bit on some notifications, this is the
408  *	list of such notifications to filter. Max length is
409  *	%MAX_NO_RECLAIM_CMDS.
410  * @n_no_reclaim_cmds: # of commands in list
411  * @rx_buf_size: RX buffer size needed for A-MSDUs
412  *	if unset 4k will be the RX buffer size
413  * @bc_table_dword: set to true if the BC table expects the byte count to be
414  *	in DWORD (as opposed to bytes)
415  * @scd_set_active: should the transport configure the SCD for HCMD queue
416  * @command_groups: array of command groups, each member is an array of the
417  *	commands in the group; for debugging only
418  * @command_groups_size: number of command groups, to avoid illegal access
419  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
420  *	space for at least two pointers
421  * @fw_reset_handshake: firmware supports reset flow handshake
422  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
423  *	for using the older SCD_QUEUE_CFG, set to the version of
424  *	SCD_QUEUE_CONFIG_CMD otherwise.
425  */
426 struct iwl_trans_config {
427 	struct iwl_op_mode *op_mode;
428 
429 	u8 cmd_queue;
430 	u8 cmd_fifo;
431 	unsigned int cmd_q_wdg_timeout;
432 	const u8 *no_reclaim_cmds;
433 	unsigned int n_no_reclaim_cmds;
434 
435 	enum iwl_amsdu_size rx_buf_size;
436 	bool bc_table_dword;
437 	bool scd_set_active;
438 	const struct iwl_hcmd_arr *command_groups;
439 	int command_groups_size;
440 
441 	u8 cb_data_offs;
442 	bool fw_reset_handshake;
443 	u8 queue_alloc_cmd_ver;
444 };
445 
446 struct iwl_trans_dump_data {
447 	u32 len;
448 	u8 data[];
449 };
450 
451 struct iwl_trans;
452 
453 struct iwl_trans_txq_scd_cfg {
454 	u8 fifo;
455 	u8 sta_id;
456 	u8 tid;
457 	bool aggregate;
458 	int frame_limit;
459 };
460 
461 /**
462  * struct iwl_trans_rxq_dma_data - RX queue DMA data
463  * @fr_bd_cb: DMA address of free BD cyclic buffer
464  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
465  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
466  * @ur_bd_cb: DMA address of used BD cyclic buffer
467  */
468 struct iwl_trans_rxq_dma_data {
469 	u64 fr_bd_cb;
470 	u32 fr_bd_wid;
471 	u64 urbd_stts_wrptr;
472 	u64 ur_bd_cb;
473 };
474 
475 /**
476  * struct iwl_trans_ops - transport specific operations
477  *
478  * All the handlers MUST be implemented
479  *
480  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
481  *	May sleep.
482  * @op_mode_leave: Turn off the HW RF kill indication if on
483  *	May sleep
484  * @start_fw: allocates and inits all the resources for the transport
485  *	layer. Also kick a fw image.
486  *	May sleep
487  * @fw_alive: called when the fw sends alive notification. If the fw provides
488  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
489  *	May sleep
490  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
491  *	the HW. From that point on, the HW will be stopped but will still issue
492  *	an interrupt if the HW RF kill switch is triggered.
493  *	This callback must do the right thing and not crash even if %start_hw()
494  *	was called but not &start_fw(). May sleep.
495  * @d3_suspend: put the device into the correct mode for WoWLAN during
496  *	suspend. This is optional, if not implemented WoWLAN will not be
497  *	supported. This callback may sleep.
498  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
499  *	talk to the WoWLAN image to get its status. This is optional, if not
500  *	implemented WoWLAN will not be supported. This callback may sleep.
501  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
502  *	If RFkill is asserted in the middle of a SYNC host command, it must
503  *	return -ERFKILL straight away.
504  *	May sleep only if CMD_ASYNC is not set
505  * @tx: send an skb. The transport relies on the op_mode to zero the
506  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
507  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
508  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
509  *	header if it is IPv4.
510  *	Must be atomic
511  * @reclaim: free packet until ssn. Returns a list of freed packets.
512  *	Must be atomic
513  * @txq_enable: setup a queue. To setup an AC queue, use the
514  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
515  *	this one. The op_mode must not configure the HCMD queue. The scheduler
516  *	configuration may be %NULL, in which case the hardware will not be
517  *	configured. If true is returned, the operation mode needs to increment
518  *	the sequence number of the packets routed to this queue because of a
519  *	hardware scheduler bug. May sleep.
520  * @txq_disable: de-configure a Tx queue to send AMPDUs
521  *	Must be atomic
522  * @txq_set_shared_mode: change Tx queue shared/unshared marking
523  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
524  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
525  * @freeze_txq_timer: prevents the timer of the queue from firing until the
526  *	queue is set to awake. Must be atomic.
527  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
528  *	that the transport needs to refcount the calls since this function
529  *	will be called several times with block = true, and then the queues
530  *	need to be unblocked only after the same number of calls with
531  *	block = false.
532  * @write8: write a u8 to a register at offset ofs from the BAR
533  * @write32: write a u32 to a register at offset ofs from the BAR
534  * @read32: read a u32 register at offset ofs from the BAR
535  * @read_prph: read a DWORD from a periphery register
536  * @write_prph: write a DWORD to a periphery register
537  * @read_mem: read device's SRAM in DWORD
538  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
539  *	will be zeroed.
540  * @read_config32: read a u32 value from the device's config space at
541  *	the given offset.
542  * @configure: configure parameters required by the transport layer from
543  *	the op_mode. May be called several times before start_fw, can't be
544  *	called after that.
545  * @set_pmi: set the power pmi state
546  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
547  *	Sleeping is not allowed between grab_nic_access and
548  *	release_nic_access.
549  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
550  *	must be the same one that was sent before to the grab_nic_access.
551  * @set_bits_mask - set SRAM register according to value and mask.
552  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
553  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
554  *	Note that the transport must fill in the proper file headers.
555  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
556  *	of the trans debugfs
557  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
558  *	context info.
559  * @interrupts: disable/enable interrupts to transport
560  */
561 struct iwl_trans_ops {
562 
563 	int (*start_hw)(struct iwl_trans *iwl_trans);
564 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
565 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
566 			bool run_in_rfkill);
567 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
568 	void (*stop_device)(struct iwl_trans *trans);
569 
570 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
571 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
572 			 bool test, bool reset);
573 
574 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
575 
576 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
577 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
578 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
579 			struct sk_buff_head *skbs);
580 
581 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
582 
583 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
584 			   const struct iwl_trans_txq_scd_cfg *cfg,
585 			   unsigned int queue_wdg_timeout);
586 	void (*txq_disable)(struct iwl_trans *trans, int queue,
587 			    bool configure_scd);
588 	/* 22000 functions */
589 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
590 			 u32 sta_mask, u8 tid,
591 			 int size, unsigned int queue_wdg_timeout);
592 	void (*txq_free)(struct iwl_trans *trans, int queue);
593 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
594 			    struct iwl_trans_rxq_dma_data *data);
595 
596 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
597 				    bool shared);
598 
599 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
600 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
601 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
602 				 bool freeze);
603 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
604 
605 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
606 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
607 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
608 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
609 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
610 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
611 			void *buf, int dwords);
612 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
613 			 const void *buf, int dwords);
614 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
615 	void (*configure)(struct iwl_trans *trans,
616 			  const struct iwl_trans_config *trans_cfg);
617 	void (*set_pmi)(struct iwl_trans *trans, bool state);
618 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
619 	bool (*grab_nic_access)(struct iwl_trans *trans);
620 	void (*release_nic_access)(struct iwl_trans *trans);
621 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
622 			      u32 value);
623 
624 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
625 						 u32 dump_mask,
626 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
627 						 void *sanitize_ctx);
628 	void (*debugfs_cleanup)(struct iwl_trans *trans);
629 	void (*sync_nmi)(struct iwl_trans *trans);
630 	int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len);
631 	int (*set_reduce_power)(struct iwl_trans *trans,
632 				const void *data, u32 len);
633 	void (*interrupts)(struct iwl_trans *trans, bool enable);
634 	int (*imr_dma_data)(struct iwl_trans *trans,
635 			    u32 dst_addr, u64 src_addr,
636 			    u32 byte_cnt);
637 
638 };
639 
640 /**
641  * enum iwl_trans_state - state of the transport layer
642  *
643  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
644  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
645  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
646  */
647 enum iwl_trans_state {
648 	IWL_TRANS_NO_FW,
649 	IWL_TRANS_FW_STARTED,
650 	IWL_TRANS_FW_ALIVE,
651 };
652 
653 /**
654  * DOC: Platform power management
655  *
656  * In system-wide power management the entire platform goes into a low
657  * power state (e.g. idle or suspend to RAM) at the same time and the
658  * device is configured as a wakeup source for the entire platform.
659  * This is usually triggered by userspace activity (e.g. the user
660  * presses the suspend button or a power management daemon decides to
661  * put the platform in low power mode).  The device's behavior in this
662  * mode is dictated by the wake-on-WLAN configuration.
663  *
664  * The terms used for the device's behavior are as follows:
665  *
666  *	- D0: the device is fully powered and the host is awake;
667  *	- D3: the device is in low power mode and only reacts to
668  *		specific events (e.g. magic-packet received or scan
669  *		results found);
670  *
671  * These terms reflect the power modes in the firmware and are not to
672  * be confused with the physical device power state.
673  */
674 
675 /**
676  * enum iwl_plat_pm_mode - platform power management mode
677  *
678  * This enumeration describes the device's platform power management
679  * behavior when in system-wide suspend (i.e WoWLAN).
680  *
681  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
682  *	device.  In system-wide suspend mode, it means that the all
683  *	connections will be closed automatically by mac80211 before
684  *	the platform is suspended.
685  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
686  */
687 enum iwl_plat_pm_mode {
688 	IWL_PLAT_PM_MODE_DISABLED,
689 	IWL_PLAT_PM_MODE_D3,
690 };
691 
692 /**
693  * enum iwl_ini_cfg_state
694  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
695  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
696  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
697  *	are corrupted. The rest of the debug TLVs will still be used
698  */
699 enum iwl_ini_cfg_state {
700 	IWL_INI_CFG_STATE_NOT_LOADED,
701 	IWL_INI_CFG_STATE_LOADED,
702 	IWL_INI_CFG_STATE_CORRUPTED,
703 };
704 
705 /* Max time to wait for nmi interrupt */
706 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
707 
708 /**
709  * struct iwl_dram_data
710  * @physical: page phy pointer
711  * @block: pointer to the allocated block/page
712  * @size: size of the block/page
713  */
714 struct iwl_dram_data {
715 	dma_addr_t physical;
716 	void *block;
717 	int size;
718 };
719 
720 /**
721  * struct iwl_fw_mon - fw monitor per allocation id
722  * @num_frags: number of fragments
723  * @frags: an array of DRAM buffer fragments
724  */
725 struct iwl_fw_mon {
726 	u32 num_frags;
727 	struct iwl_dram_data *frags;
728 };
729 
730 /**
731  * struct iwl_self_init_dram - dram data used by self init process
732  * @fw: lmac and umac dram data
733  * @fw_cnt: total number of items in array
734  * @paging: paging dram data
735  * @paging_cnt: total number of items in array
736  */
737 struct iwl_self_init_dram {
738 	struct iwl_dram_data *fw;
739 	int fw_cnt;
740 	struct iwl_dram_data *paging;
741 	int paging_cnt;
742 };
743 
744 /**
745  * struct iwl_imr_data - imr dram data used during debug process
746  * @imr_enable: imr enable status received from fw
747  * @imr_size: imr dram size received from fw
748  * @sram_addr: sram address from debug tlv
749  * @sram_size: sram size from debug tlv
750  * @imr2sram_remainbyte`: size remained after each dma transfer
751  * @imr_curr_addr: current dst address used during dma transfer
752  * @imr_base_addr: imr address received from fw
753  */
754 struct iwl_imr_data {
755 	u32 imr_enable;
756 	u32 imr_size;
757 	u32 sram_addr;
758 	u32 sram_size;
759 	u32 imr2sram_remainbyte;
760 	u64 imr_curr_addr;
761 	__le64 imr_base_addr;
762 };
763 
764 /**
765  * struct iwl_trans_debug - transport debug related data
766  *
767  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
768  * @rec_on: true iff there is a fw debug recording currently active
769  * @dest_tlv: points to the destination TLV for debug
770  * @conf_tlv: array of pointers to configuration TLVs for debug
771  * @trigger_tlv: array of pointers to triggers TLVs for debug
772  * @lmac_error_event_table: addrs of lmacs error tables
773  * @umac_error_event_table: addr of umac error table
774  * @tcm_error_event_table: address(es) of TCM error table(s)
775  * @rcm_error_event_table: address(es) of RCM error table(s)
776  * @error_event_table_tlv_status: bitmap that indicates what error table
777  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
778  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
779  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
780  * @fw_mon_cfg: debug buffer allocation configuration
781  * @fw_mon_ini: DRAM buffer fragments per allocation id
782  * @fw_mon: DRAM buffer for firmware monitor
783  * @hw_error: equals true if hw error interrupt was received from the FW
784  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
785  * @active_regions: active regions
786  * @debug_info_tlv_list: list of debug info TLVs
787  * @time_point: array of debug time points
788  * @periodic_trig_list: periodic triggers list
789  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
790  * @ucode_preset: preset based on ucode
791  */
792 struct iwl_trans_debug {
793 	u8 n_dest_reg;
794 	bool rec_on;
795 
796 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
797 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
798 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
799 
800 	u32 lmac_error_event_table[2];
801 	u32 umac_error_event_table;
802 	u32 tcm_error_event_table[2];
803 	u32 rcm_error_event_table[2];
804 	unsigned int error_event_table_tlv_status;
805 
806 	enum iwl_ini_cfg_state internal_ini_cfg;
807 	enum iwl_ini_cfg_state external_ini_cfg;
808 
809 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
810 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
811 
812 	struct iwl_dram_data fw_mon;
813 
814 	bool hw_error;
815 	enum iwl_fw_ini_buffer_location ini_dest;
816 
817 	u64 unsupported_region_msk;
818 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
819 	struct list_head debug_info_tlv_list;
820 	struct iwl_dbg_tlv_time_point_data
821 		time_point[IWL_FW_INI_TIME_POINT_NUM];
822 	struct list_head periodic_trig_list;
823 
824 	u32 domains_bitmap;
825 	u32 ucode_preset;
826 	bool restart_required;
827 	u32 last_tp_resetfw;
828 	struct iwl_imr_data imr_data;
829 };
830 
831 struct iwl_dma_ptr {
832 	dma_addr_t dma;
833 	void *addr;
834 	size_t size;
835 };
836 
837 struct iwl_cmd_meta {
838 	/* only for SYNC commands, iff the reply skb is wanted */
839 	struct iwl_host_cmd *source;
840 	u32 flags;
841 	u32 tbs;
842 };
843 
844 /*
845  * The FH will write back to the first TB only, so we need to copy some data
846  * into the buffer regardless of whether it should be mapped or not.
847  * This indicates how big the first TB must be to include the scratch buffer
848  * and the assigned PN.
849  * Since PN location is 8 bytes at offset 12, it's 20 now.
850  * If we make it bigger then allocations will be bigger and copy slower, so
851  * that's probably not useful.
852  */
853 #define IWL_FIRST_TB_SIZE	20
854 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
855 
856 struct iwl_pcie_txq_entry {
857 	void *cmd;
858 	struct sk_buff *skb;
859 	/* buffer to free after command completes */
860 	const void *free_buf;
861 	struct iwl_cmd_meta meta;
862 };
863 
864 struct iwl_pcie_first_tb_buf {
865 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
866 };
867 
868 /**
869  * struct iwl_txq - Tx Queue for DMA
870  * @q: generic Rx/Tx queue descriptor
871  * @tfds: transmit frame descriptors (DMA memory)
872  * @first_tb_bufs: start of command headers, including scratch buffers, for
873  *	the writeback -- this is DMA memory and an array holding one buffer
874  *	for each command on the queue
875  * @first_tb_dma: DMA address for the first_tb_bufs start
876  * @entries: transmit entries (driver state)
877  * @lock: queue lock
878  * @stuck_timer: timer that fires if queue gets stuck
879  * @trans: pointer back to transport (for timer)
880  * @need_update: indicates need to update read/write index
881  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
882  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
883  * @frozen: tx stuck queue timer is frozen
884  * @frozen_expiry_remainder: remember how long until the timer fires
885  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
886  * @write_ptr: 1-st empty entry (index) host_w
887  * @read_ptr: last used entry (index) host_r
888  * @dma_addr:  physical addr for BD's
889  * @n_window: safe queue window
890  * @id: queue id
891  * @low_mark: low watermark, resume queue if free space more than this
892  * @high_mark: high watermark, stop queue if free space less than this
893  *
894  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
895  * descriptors) and required locking structures.
896  *
897  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
898  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
899  * there might be HW changes in the future). For the normal TX
900  * queues, n_window, which is the size of the software queue data
901  * is also 256; however, for the command queue, n_window is only
902  * 32 since we don't need so many commands pending. Since the HW
903  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
904  * This means that we end up with the following:
905  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
906  *  SW entries:           | 0      | ... | 31          |
907  * where N is a number between 0 and 7. This means that the SW
908  * data is a window overlayed over the HW queue.
909  */
910 struct iwl_txq {
911 	void *tfds;
912 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
913 	dma_addr_t first_tb_dma;
914 	struct iwl_pcie_txq_entry *entries;
915 	/* lock for syncing changes on the queue */
916 	spinlock_t lock;
917 	unsigned long frozen_expiry_remainder;
918 	struct timer_list stuck_timer;
919 	struct iwl_trans *trans;
920 	bool need_update;
921 	bool frozen;
922 	bool ampdu;
923 	int block;
924 	unsigned long wd_timeout;
925 	struct sk_buff_head overflow_q;
926 	struct iwl_dma_ptr bc_tbl;
927 
928 	int write_ptr;
929 	int read_ptr;
930 	dma_addr_t dma_addr;
931 	int n_window;
932 	u32 id;
933 	int low_mark;
934 	int high_mark;
935 
936 	bool overflow_tx;
937 };
938 
939 /**
940  * struct iwl_trans_txqs - transport tx queues data
941  *
942  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
943  * @page_offs: offset from skb->cb to mac header page pointer
944  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
945  * @queue_used - bit mask of used queues
946  * @queue_stopped - bit mask of stopped queues
947  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
948  * @queue_alloc_cmd_ver: queue allocation command version
949  */
950 struct iwl_trans_txqs {
951 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
952 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
953 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
954 	struct dma_pool *bc_pool;
955 	size_t bc_tbl_size;
956 	bool bc_table_dword;
957 	u8 page_offs;
958 	u8 dev_cmd_offs;
959 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
960 
961 	struct {
962 		u8 fifo;
963 		u8 q_id;
964 		unsigned int wdg_timeout;
965 	} cmd;
966 
967 	struct {
968 		u8 max_tbs;
969 		u16 size;
970 		u8 addr_size;
971 	} tfd;
972 
973 	struct iwl_dma_ptr scd_bc_tbls;
974 
975 	u8 queue_alloc_cmd_ver;
976 };
977 
978 /**
979  * struct iwl_trans - transport common data
980  *
981  * @csme_own - true if we couldn't get ownership on the device
982  * @ops - pointer to iwl_trans_ops
983  * @op_mode - pointer to the op_mode
984  * @trans_cfg: the trans-specific configuration part
985  * @cfg - pointer to the configuration
986  * @drv - pointer to iwl_drv
987  * @status: a bit-mask of transport status flags
988  * @dev - pointer to struct device * that represents the device
989  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
990  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
991  * @hw_rf_id a u32 with the device RF ID
992  * @hw_id: a u32 with the ID of the device / sub-device.
993  *	Set during transport allocation.
994  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
995  * @hw_rev_step: The mac step of the HW
996  * @pm_support: set to true in start_hw if link pm is supported
997  * @ltr_enabled: set to true if the LTR is enabled
998  * @wide_cmd_header: true when ucode supports wide command header format
999  * @wait_command_queue: wait queue for sync commands
1000  * @num_rx_queues: number of RX queues allocated by the transport;
1001  *	the transport must set this before calling iwl_drv_start()
1002  * @iml_len: the length of the image loader
1003  * @iml: a pointer to the image loader itself
1004  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1005  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
1006  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1007  *	starting the firmware, used for tracing
1008  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1009  *	start of the 802.11 header in the @rx_mpdu_cmd
1010  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1011  * @system_pm_mode: the system-wide power management mode in use.
1012  *	This mode is set dynamically, depending on the WoWLAN values
1013  *	configured from the userspace at runtime.
1014  * @iwl_trans_txqs: transport tx queues data.
1015  */
1016 struct iwl_trans {
1017 	bool csme_own;
1018 	const struct iwl_trans_ops *ops;
1019 	struct iwl_op_mode *op_mode;
1020 	const struct iwl_cfg_trans_params *trans_cfg;
1021 	const struct iwl_cfg *cfg;
1022 	struct iwl_drv *drv;
1023 	enum iwl_trans_state state;
1024 	unsigned long status;
1025 
1026 	struct device *dev;
1027 	u32 max_skb_frags;
1028 	u32 hw_rev;
1029 	u32 hw_rev_step;
1030 	u32 hw_rf_id;
1031 	u32 hw_id;
1032 	char hw_id_str[52];
1033 	u32 sku_id[3];
1034 
1035 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1036 
1037 	bool pm_support;
1038 	bool ltr_enabled;
1039 	u8 pnvm_loaded:1;
1040 	u8 reduce_power_loaded:1;
1041 
1042 	const struct iwl_hcmd_arr *command_groups;
1043 	int command_groups_size;
1044 	bool wide_cmd_header;
1045 
1046 	wait_queue_head_t wait_command_queue;
1047 	u8 num_rx_queues;
1048 
1049 	size_t iml_len;
1050 	u8 *iml;
1051 
1052 	/* The following fields are internal only */
1053 	struct kmem_cache *dev_cmd_pool;
1054 	char dev_cmd_pool_name[50];
1055 
1056 	struct dentry *dbgfs_dir;
1057 
1058 #ifdef CONFIG_LOCKDEP
1059 	struct lockdep_map sync_cmd_lockdep_map;
1060 #endif
1061 
1062 	struct iwl_trans_debug dbg;
1063 	struct iwl_self_init_dram init_dram;
1064 
1065 	enum iwl_plat_pm_mode system_pm_mode;
1066 
1067 	const char *name;
1068 	struct iwl_trans_txqs txqs;
1069 
1070 	/* pointer to trans specific struct */
1071 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1072 	char trans_specific[] __aligned(sizeof(void *));
1073 };
1074 
1075 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1076 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1077 
1078 static inline void iwl_trans_configure(struct iwl_trans *trans,
1079 				       const struct iwl_trans_config *trans_cfg)
1080 {
1081 	trans->op_mode = trans_cfg->op_mode;
1082 
1083 	trans->ops->configure(trans, trans_cfg);
1084 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1085 }
1086 
1087 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1088 {
1089 	might_sleep();
1090 
1091 	return trans->ops->start_hw(trans);
1092 }
1093 
1094 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1095 {
1096 	might_sleep();
1097 
1098 	if (trans->ops->op_mode_leave)
1099 		trans->ops->op_mode_leave(trans);
1100 
1101 	trans->op_mode = NULL;
1102 
1103 	trans->state = IWL_TRANS_NO_FW;
1104 }
1105 
1106 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1107 {
1108 	might_sleep();
1109 
1110 	trans->state = IWL_TRANS_FW_ALIVE;
1111 
1112 	trans->ops->fw_alive(trans, scd_addr);
1113 }
1114 
1115 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1116 				     const struct fw_img *fw,
1117 				     bool run_in_rfkill)
1118 {
1119 	int ret;
1120 
1121 	might_sleep();
1122 
1123 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1124 
1125 	clear_bit(STATUS_FW_ERROR, &trans->status);
1126 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1127 	if (ret == 0)
1128 		trans->state = IWL_TRANS_FW_STARTED;
1129 
1130 	return ret;
1131 }
1132 
1133 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1134 {
1135 	might_sleep();
1136 
1137 	trans->ops->stop_device(trans);
1138 
1139 	trans->state = IWL_TRANS_NO_FW;
1140 }
1141 
1142 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1143 				       bool reset)
1144 {
1145 	might_sleep();
1146 	if (!trans->ops->d3_suspend)
1147 		return 0;
1148 
1149 	return trans->ops->d3_suspend(trans, test, reset);
1150 }
1151 
1152 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1153 				      enum iwl_d3_status *status,
1154 				      bool test, bool reset)
1155 {
1156 	might_sleep();
1157 	if (!trans->ops->d3_resume)
1158 		return 0;
1159 
1160 	return trans->ops->d3_resume(trans, status, test, reset);
1161 }
1162 
1163 static inline struct iwl_trans_dump_data *
1164 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1165 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1166 		    void *sanitize_ctx)
1167 {
1168 	if (!trans->ops->dump_data)
1169 		return NULL;
1170 	return trans->ops->dump_data(trans, dump_mask,
1171 				     sanitize_ops, sanitize_ctx);
1172 }
1173 
1174 static inline struct iwl_device_tx_cmd *
1175 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1176 {
1177 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1178 }
1179 
1180 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1181 
1182 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1183 					 struct iwl_device_tx_cmd *dev_cmd)
1184 {
1185 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1186 }
1187 
1188 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1189 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1190 {
1191 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1192 		return -EIO;
1193 
1194 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1195 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1196 		return -EIO;
1197 	}
1198 
1199 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1200 }
1201 
1202 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1203 				     int ssn, struct sk_buff_head *skbs)
1204 {
1205 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1206 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1207 		return;
1208 	}
1209 
1210 	trans->ops->reclaim(trans, queue, ssn, skbs);
1211 }
1212 
1213 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1214 					int ptr)
1215 {
1216 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1217 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1218 		return;
1219 	}
1220 
1221 	trans->ops->set_q_ptrs(trans, queue, ptr);
1222 }
1223 
1224 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1225 					 bool configure_scd)
1226 {
1227 	trans->ops->txq_disable(trans, queue, configure_scd);
1228 }
1229 
1230 static inline bool
1231 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1232 			 const struct iwl_trans_txq_scd_cfg *cfg,
1233 			 unsigned int queue_wdg_timeout)
1234 {
1235 	might_sleep();
1236 
1237 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1238 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1239 		return false;
1240 	}
1241 
1242 	return trans->ops->txq_enable(trans, queue, ssn,
1243 				      cfg, queue_wdg_timeout);
1244 }
1245 
1246 static inline int
1247 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1248 			   struct iwl_trans_rxq_dma_data *data)
1249 {
1250 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1251 		return -ENOTSUPP;
1252 
1253 	return trans->ops->rxq_dma_data(trans, queue, data);
1254 }
1255 
1256 static inline void
1257 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1258 {
1259 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1260 		return;
1261 
1262 	trans->ops->txq_free(trans, queue);
1263 }
1264 
1265 static inline int
1266 iwl_trans_txq_alloc(struct iwl_trans *trans,
1267 		    u32 flags, u32 sta_mask, u8 tid,
1268 		    int size, unsigned int wdg_timeout)
1269 {
1270 	might_sleep();
1271 
1272 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1273 		return -ENOTSUPP;
1274 
1275 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1276 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1277 		return -EIO;
1278 	}
1279 
1280 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1281 				     size, wdg_timeout);
1282 }
1283 
1284 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1285 						 int queue, bool shared_mode)
1286 {
1287 	if (trans->ops->txq_set_shared_mode)
1288 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1289 }
1290 
1291 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1292 					int fifo, int sta_id, int tid,
1293 					int frame_limit, u16 ssn,
1294 					unsigned int queue_wdg_timeout)
1295 {
1296 	struct iwl_trans_txq_scd_cfg cfg = {
1297 		.fifo = fifo,
1298 		.sta_id = sta_id,
1299 		.tid = tid,
1300 		.frame_limit = frame_limit,
1301 		.aggregate = sta_id >= 0,
1302 	};
1303 
1304 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1305 }
1306 
1307 static inline
1308 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1309 			     unsigned int queue_wdg_timeout)
1310 {
1311 	struct iwl_trans_txq_scd_cfg cfg = {
1312 		.fifo = fifo,
1313 		.sta_id = -1,
1314 		.tid = IWL_MAX_TID_COUNT,
1315 		.frame_limit = IWL_FRAME_LIMIT,
1316 		.aggregate = false,
1317 	};
1318 
1319 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1320 }
1321 
1322 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1323 					      unsigned long txqs,
1324 					      bool freeze)
1325 {
1326 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1327 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1328 		return;
1329 	}
1330 
1331 	if (trans->ops->freeze_txq_timer)
1332 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1333 }
1334 
1335 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1336 					    bool block)
1337 {
1338 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1339 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1340 		return;
1341 	}
1342 
1343 	if (trans->ops->block_txq_ptrs)
1344 		trans->ops->block_txq_ptrs(trans, block);
1345 }
1346 
1347 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1348 						 u32 txqs)
1349 {
1350 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1351 		return -ENOTSUPP;
1352 
1353 	/* No need to wait if the firmware is not alive */
1354 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1355 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1356 		return -EIO;
1357 	}
1358 
1359 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1360 }
1361 
1362 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1363 {
1364 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1365 		return -ENOTSUPP;
1366 
1367 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1368 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1369 		return -EIO;
1370 	}
1371 
1372 	return trans->ops->wait_txq_empty(trans, queue);
1373 }
1374 
1375 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1376 {
1377 	trans->ops->write8(trans, ofs, val);
1378 }
1379 
1380 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1381 {
1382 	trans->ops->write32(trans, ofs, val);
1383 }
1384 
1385 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1386 {
1387 	return trans->ops->read32(trans, ofs);
1388 }
1389 
1390 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1391 {
1392 	return trans->ops->read_prph(trans, ofs);
1393 }
1394 
1395 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1396 					u32 val)
1397 {
1398 	return trans->ops->write_prph(trans, ofs, val);
1399 }
1400 
1401 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1402 				     void *buf, int dwords)
1403 {
1404 	return trans->ops->read_mem(trans, addr, buf, dwords);
1405 }
1406 
1407 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1408 	do {								      \
1409 		if (__builtin_constant_p(bufsize))			      \
1410 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1411 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1412 	} while (0)
1413 
1414 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1415 					  u32 dst_addr, u64 src_addr,
1416 					  u32 byte_cnt)
1417 {
1418 	if (trans->ops->imr_dma_data)
1419 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1420 	return 0;
1421 }
1422 
1423 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1424 {
1425 	u32 value;
1426 
1427 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1428 		return 0xa5a5a5a5;
1429 
1430 	return value;
1431 }
1432 
1433 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1434 				      const void *buf, int dwords)
1435 {
1436 	return trans->ops->write_mem(trans, addr, buf, dwords);
1437 }
1438 
1439 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1440 					u32 val)
1441 {
1442 	return iwl_trans_write_mem(trans, addr, &val, 1);
1443 }
1444 
1445 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1446 {
1447 	if (trans->ops->set_pmi)
1448 		trans->ops->set_pmi(trans, state);
1449 }
1450 
1451 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1452 				     bool retake_ownership)
1453 {
1454 	if (trans->ops->sw_reset)
1455 		return trans->ops->sw_reset(trans, retake_ownership);
1456 	return 0;
1457 }
1458 
1459 static inline void
1460 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1461 {
1462 	trans->ops->set_bits_mask(trans, reg, mask, value);
1463 }
1464 
1465 #define iwl_trans_grab_nic_access(trans)		\
1466 	__cond_lock(nic_access,				\
1467 		    likely((trans)->ops->grab_nic_access(trans)))
1468 
1469 static inline void __releases(nic_access)
1470 iwl_trans_release_nic_access(struct iwl_trans *trans)
1471 {
1472 	trans->ops->release_nic_access(trans);
1473 	__release(nic_access);
1474 }
1475 
1476 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1477 {
1478 	if (WARN_ON_ONCE(!trans->op_mode))
1479 		return;
1480 
1481 	/* prevent double restarts due to the same erroneous FW */
1482 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1483 		iwl_op_mode_nic_error(trans->op_mode, sync);
1484 		trans->state = IWL_TRANS_NO_FW;
1485 	}
1486 }
1487 
1488 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1489 {
1490 	return trans->state == IWL_TRANS_FW_ALIVE;
1491 }
1492 
1493 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1494 {
1495 	if (trans->ops->sync_nmi)
1496 		trans->ops->sync_nmi(trans);
1497 }
1498 
1499 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1500 				  u32 sw_err_bit);
1501 
1502 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans,
1503 				     const void *data, u32 len)
1504 {
1505 	if (trans->ops->set_pnvm) {
1506 		int ret = trans->ops->set_pnvm(trans, data, len);
1507 
1508 		if (ret)
1509 			return ret;
1510 	}
1511 
1512 	trans->pnvm_loaded = true;
1513 
1514 	return 0;
1515 }
1516 
1517 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans,
1518 					     const void *data, u32 len)
1519 {
1520 	if (trans->ops->set_reduce_power) {
1521 		int ret = trans->ops->set_reduce_power(trans, data, len);
1522 
1523 		if (ret)
1524 			return ret;
1525 	}
1526 
1527 	trans->reduce_power_loaded = true;
1528 	return 0;
1529 }
1530 
1531 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1532 {
1533 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1534 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1535 }
1536 
1537 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1538 {
1539 	if (trans->ops->interrupts)
1540 		trans->ops->interrupts(trans, enable);
1541 }
1542 
1543 /*****************************************************
1544  * transport helper functions
1545  *****************************************************/
1546 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1547 			  struct device *dev,
1548 			  const struct iwl_trans_ops *ops,
1549 			  const struct iwl_cfg_trans_params *cfg_trans);
1550 int iwl_trans_init(struct iwl_trans *trans);
1551 void iwl_trans_free(struct iwl_trans *trans);
1552 
1553 /*****************************************************
1554 * driver (transport) register/unregister functions
1555 ******************************************************/
1556 int __must_check iwl_pci_register_driver(void);
1557 void iwl_pci_unregister_driver(void);
1558 
1559 #endif /* __iwl_trans_h__ */
1560