1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_h__ 8 #define __iwl_trans_h__ 9 10 #include <linux/ieee80211.h> 11 #include <linux/mm.h> /* for page_address */ 12 #include <linux/lockdep.h> 13 #include <linux/kernel.h> 14 15 #include "iwl-debug.h" 16 #include "iwl-config.h" 17 #include "fw/img.h" 18 #include "iwl-op-mode.h" 19 #include <linux/firmware.h> 20 #include "fw/api/cmdhdr.h" 21 #include "fw/api/txq.h" 22 #include "fw/api/dbg-tlv.h" 23 #include "iwl-dbg-tlv.h" 24 #if defined(__FreeBSD__) 25 #include <linux/skbuff.h> 26 #include "iwl-modparams.h" 27 #endif 28 29 /** 30 * DOC: Transport layer - what is it ? 31 * 32 * The transport layer is the layer that deals with the HW directly. It provides 33 * an abstraction of the underlying HW to the upper layer. The transport layer 34 * doesn't provide any policy, algorithm or anything of this kind, but only 35 * mechanisms to make the HW do something. It is not completely stateless but 36 * close to it. 37 * We will have an implementation for each different supported bus. 38 */ 39 40 /** 41 * DOC: Life cycle of the transport layer 42 * 43 * The transport layer has a very precise life cycle. 44 * 45 * 1) A helper function is called during the module initialization and 46 * registers the bus driver's ops with the transport's alloc function. 47 * 2) Bus's probe calls to the transport layer's allocation functions. 48 * Of course this function is bus specific. 49 * 3) This allocation functions will spawn the upper layer which will 50 * register mac80211. 51 * 52 * 4) At some point (i.e. mac80211's start call), the op_mode will call 53 * the following sequence: 54 * start_hw 55 * start_fw 56 * 57 * 5) Then when finished (or reset): 58 * stop_device 59 * 60 * 6) Eventually, the free function will be called. 61 */ 62 63 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON 64 65 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 66 #define FH_RSCSR_FRAME_INVALID 0x55550000 67 #define FH_RSCSR_FRAME_ALIGN 0x40 68 #define FH_RSCSR_RPA_EN BIT(25) 69 #define FH_RSCSR_RADA_EN BIT(26) 70 #define FH_RSCSR_RXQ_POS 16 71 #define FH_RSCSR_RXQ_MASK 0x3F0000 72 73 struct iwl_rx_packet { 74 /* 75 * The first 4 bytes of the RX frame header contain both the RX frame 76 * size and some flags. 77 * Bit fields: 78 * 31: flag flush RB request 79 * 30: flag ignore TC (terminal counter) request 80 * 29: flag fast IRQ request 81 * 28-27: Reserved 82 * 26: RADA enabled 83 * 25: Offload enabled 84 * 24: RPF enabled 85 * 23: RSS enabled 86 * 22: Checksum enabled 87 * 21-16: RX queue 88 * 15-14: Reserved 89 * 13-00: RX frame size 90 */ 91 __le32 len_n_flags; 92 struct iwl_cmd_header hdr; 93 u8 data[]; 94 } __packed; 95 96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 97 { 98 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 99 } 100 101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 102 { 103 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 104 } 105 106 /** 107 * enum CMD_MODE - how to send the host commands ? 108 * 109 * @CMD_ASYNC: Return right away and don't wait for the response 110 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 111 * the response. The caller needs to call iwl_free_resp when done. 112 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 113 * called after this command completes. Valid only with CMD_ASYNC. 114 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to 115 * SUSPEND and RESUME commands. We are in D3 mode when we set 116 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. 117 */ 118 enum CMD_MODE { 119 CMD_ASYNC = BIT(0), 120 CMD_WANT_SKB = BIT(1), 121 CMD_SEND_IN_RFKILL = BIT(2), 122 CMD_WANT_ASYNC_CALLBACK = BIT(3), 123 CMD_SEND_IN_D3 = BIT(4), 124 }; 125 126 #define DEF_CMD_PAYLOAD_SIZE 320 127 128 /** 129 * struct iwl_device_cmd 130 * 131 * For allocation of the command and tx queues, this establishes the overall 132 * size of the largest command we send to uCode, except for commands that 133 * aren't fully copied and use other TFD space. 134 */ 135 struct iwl_device_cmd { 136 union { 137 struct { 138 struct iwl_cmd_header hdr; /* uCode API */ 139 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 140 }; 141 struct { 142 struct iwl_cmd_header_wide hdr_wide; 143 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 144 sizeof(struct iwl_cmd_header_wide) + 145 sizeof(struct iwl_cmd_header)]; 146 }; 147 }; 148 } __packed; 149 150 /** 151 * struct iwl_device_tx_cmd - buffer for TX command 152 * @hdr: the header 153 * @payload: the payload placeholder 154 * 155 * The actual structure is sized dynamically according to need. 156 */ 157 struct iwl_device_tx_cmd { 158 struct iwl_cmd_header hdr; 159 u8 payload[]; 160 } __packed; 161 162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 163 164 /* 165 * number of transfer buffers (fragments) per transmit frame descriptor; 166 * this is just the driver's idea, the hardware supports 20 167 */ 168 #define IWL_MAX_CMD_TBS_PER_TFD 2 169 170 /* We need 2 entries for the TX command and header, and another one might 171 * be needed for potential data in the SKB's head. The remaining ones can 172 * be used for frags. 173 */ 174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) 175 176 /** 177 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 178 * 179 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 180 * ring. The transport layer doesn't map the command's buffer to DMA, but 181 * rather copies it to a previously allocated DMA buffer. This flag tells 182 * the transport layer not to copy the command, but to map the existing 183 * buffer (that is passed in) instead. This saves the memcpy and allows 184 * commands that are bigger than the fixed buffer to be submitted. 185 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 186 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 187 * chunk internally and free it again after the command completes. This 188 * can (currently) be used only once per command. 189 * Note that a TFD entry after a DUP one cannot be a normal copied one. 190 */ 191 enum iwl_hcmd_dataflag { 192 IWL_HCMD_DFL_NOCOPY = BIT(0), 193 IWL_HCMD_DFL_DUP = BIT(1), 194 }; 195 196 enum iwl_error_event_table_status { 197 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), 198 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), 199 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), 200 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3), 201 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4), 202 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5), 203 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6), 204 }; 205 206 /** 207 * struct iwl_host_cmd - Host command to the uCode 208 * 209 * @data: array of chunks that composes the data of the host command 210 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 211 * @_rx_page_order: (internally used to free response packet); 212 * FreeBSD uses _page instead. 213 * @_rx_page_addr: (internally used to free response packet) 214 * @flags: can be CMD_* 215 * @len: array of the lengths of the chunks in data 216 * @dataflags: IWL_HCMD_DFL_* 217 * @id: command id of the host command, for wide commands encoding the 218 * version and group as well 219 */ 220 struct iwl_host_cmd { 221 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 222 struct iwl_rx_packet *resp_pkt; 223 #if defined(__linux__) 224 unsigned long _rx_page_addr; 225 #elif defined(__FreeBSD__) 226 struct page *_page; 227 #endif 228 u32 _rx_page_order; 229 230 u32 flags; 231 u32 id; 232 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 233 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 234 }; 235 236 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 237 { 238 #if defined(__linux__) 239 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 240 #elif defined(__FreeBSD__) 241 __free_pages(cmd->_page, cmd->_rx_page_order); 242 #endif 243 } 244 245 struct iwl_rx_cmd_buffer { 246 struct page *_page; 247 int _offset; 248 bool _page_stolen; 249 u32 _rx_page_order; 250 unsigned int truesize; 251 }; 252 253 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 254 { 255 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 256 } 257 258 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 259 { 260 return r->_offset; 261 } 262 263 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 264 { 265 r->_page_stolen = true; 266 get_page(r->_page); 267 return r->_page; 268 } 269 270 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 271 { 272 __free_pages(r->_page, r->_rx_page_order); 273 } 274 275 #define MAX_NO_RECLAIM_CMDS 6 276 277 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 278 279 /* 280 * Maximum number of HW queues the transport layer 281 * currently supports 282 */ 283 #define IWL_MAX_HW_QUEUES 32 284 #define IWL_MAX_TVQM_QUEUES 512 285 286 #define IWL_MAX_TID_COUNT 8 287 #define IWL_MGMT_TID 15 288 #define IWL_FRAME_LIMIT 64 289 #define IWL_MAX_RX_HW_QUEUES 16 290 #define IWL_9000_MAX_RX_HW_QUEUES 6 291 292 /** 293 * enum iwl_wowlan_status - WoWLAN image/device status 294 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 295 * @IWL_D3_STATUS_RESET: device was reset while suspended 296 */ 297 enum iwl_d3_status { 298 IWL_D3_STATUS_ALIVE, 299 IWL_D3_STATUS_RESET, 300 }; 301 302 /** 303 * enum iwl_trans_status: transport status flags 304 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 305 * @STATUS_DEVICE_ENABLED: APM is enabled 306 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 307 * @STATUS_INT_ENABLED: interrupts are enabled 308 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 309 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 310 * @STATUS_FW_ERROR: the fw is in error state 311 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 312 * are sent 313 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 314 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 315 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once, 316 * e.g. for testing 317 */ 318 enum iwl_trans_status { 319 STATUS_SYNC_HCMD_ACTIVE, 320 STATUS_DEVICE_ENABLED, 321 STATUS_TPOWER_PMI, 322 STATUS_INT_ENABLED, 323 STATUS_RFKILL_HW, 324 STATUS_RFKILL_OPMODE, 325 STATUS_FW_ERROR, 326 STATUS_TRANS_GOING_IDLE, 327 STATUS_TRANS_IDLE, 328 STATUS_TRANS_DEAD, 329 STATUS_SUPPRESS_CMD_ERROR_ONCE, 330 }; 331 332 static inline int 333 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 334 { 335 switch (rb_size) { 336 case IWL_AMSDU_2K: 337 return get_order(2 * 1024); 338 case IWL_AMSDU_4K: 339 return get_order(4 * 1024); 340 case IWL_AMSDU_8K: 341 return get_order(8 * 1024); 342 case IWL_AMSDU_12K: 343 return get_order(16 * 1024); 344 default: 345 WARN_ON(1); 346 return -1; 347 } 348 } 349 350 static inline int 351 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) 352 { 353 switch (rb_size) { 354 case IWL_AMSDU_2K: 355 return 2 * 1024; 356 case IWL_AMSDU_4K: 357 return 4 * 1024; 358 case IWL_AMSDU_8K: 359 return 8 * 1024; 360 case IWL_AMSDU_12K: 361 return 16 * 1024; 362 default: 363 WARN_ON(1); 364 return 0; 365 } 366 } 367 368 struct iwl_hcmd_names { 369 u8 cmd_id; 370 const char *const cmd_name; 371 }; 372 373 #define HCMD_NAME(x) \ 374 { .cmd_id = x, .cmd_name = #x } 375 376 struct iwl_hcmd_arr { 377 const struct iwl_hcmd_names *arr; 378 int size; 379 }; 380 381 #define HCMD_ARR(x) \ 382 { .arr = x, .size = ARRAY_SIZE(x) } 383 384 /** 385 * struct iwl_dump_sanitize_ops - dump sanitization operations 386 * @frob_txf: Scrub the TX FIFO data 387 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header 388 * but that might be short or long (&struct iwl_cmd_header or 389 * &struct iwl_cmd_header_wide) 390 * @frob_mem: Scrub memory data 391 */ 392 struct iwl_dump_sanitize_ops { 393 void (*frob_txf)(void *ctx, void *buf, size_t buflen); 394 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen); 395 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen); 396 }; 397 398 /** 399 * struct iwl_trans_config - transport configuration 400 * 401 * @op_mode: pointer to the upper layer. 402 * @cmd_queue: the index of the command queue. 403 * Must be set before start_fw. 404 * @cmd_fifo: the fifo for host commands 405 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 406 * @no_reclaim_cmds: Some devices erroneously don't set the 407 * SEQ_RX_FRAME bit on some notifications, this is the 408 * list of such notifications to filter. Max length is 409 * %MAX_NO_RECLAIM_CMDS. 410 * @n_no_reclaim_cmds: # of commands in list 411 * @rx_buf_size: RX buffer size needed for A-MSDUs 412 * if unset 4k will be the RX buffer size 413 * @bc_table_dword: set to true if the BC table expects the byte count to be 414 * in DWORD (as opposed to bytes) 415 * @scd_set_active: should the transport configure the SCD for HCMD queue 416 * @command_groups: array of command groups, each member is an array of the 417 * commands in the group; for debugging only 418 * @command_groups_size: number of command groups, to avoid illegal access 419 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 420 * space for at least two pointers 421 * @fw_reset_handshake: firmware supports reset flow handshake 422 * @queue_alloc_cmd_ver: queue allocation command version, set to 0 423 * for using the older SCD_QUEUE_CFG, set to the version of 424 * SCD_QUEUE_CONFIG_CMD otherwise. 425 */ 426 struct iwl_trans_config { 427 struct iwl_op_mode *op_mode; 428 429 u8 cmd_queue; 430 u8 cmd_fifo; 431 unsigned int cmd_q_wdg_timeout; 432 const u8 *no_reclaim_cmds; 433 unsigned int n_no_reclaim_cmds; 434 435 enum iwl_amsdu_size rx_buf_size; 436 bool bc_table_dword; 437 bool scd_set_active; 438 const struct iwl_hcmd_arr *command_groups; 439 int command_groups_size; 440 441 u8 cb_data_offs; 442 bool fw_reset_handshake; 443 u8 queue_alloc_cmd_ver; 444 }; 445 446 struct iwl_trans_dump_data { 447 u32 len; 448 u8 data[]; 449 }; 450 451 struct iwl_trans; 452 453 struct iwl_trans_txq_scd_cfg { 454 u8 fifo; 455 u8 sta_id; 456 u8 tid; 457 bool aggregate; 458 int frame_limit; 459 }; 460 461 /** 462 * struct iwl_trans_rxq_dma_data - RX queue DMA data 463 * @fr_bd_cb: DMA address of free BD cyclic buffer 464 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 465 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 466 * @ur_bd_cb: DMA address of used BD cyclic buffer 467 */ 468 struct iwl_trans_rxq_dma_data { 469 u64 fr_bd_cb; 470 u32 fr_bd_wid; 471 u64 urbd_stts_wrptr; 472 u64 ur_bd_cb; 473 }; 474 475 /** 476 * struct iwl_trans_ops - transport specific operations 477 * 478 * All the handlers MUST be implemented 479 * 480 * @start_hw: starts the HW. From that point on, the HW can send interrupts. 481 * May sleep. 482 * @op_mode_leave: Turn off the HW RF kill indication if on 483 * May sleep 484 * @start_fw: allocates and inits all the resources for the transport 485 * layer. Also kick a fw image. 486 * May sleep 487 * @fw_alive: called when the fw sends alive notification. If the fw provides 488 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 489 * May sleep 490 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 491 * the HW. From that point on, the HW will be stopped but will still issue 492 * an interrupt if the HW RF kill switch is triggered. 493 * This callback must do the right thing and not crash even if %start_hw() 494 * was called but not &start_fw(). May sleep. 495 * @d3_suspend: put the device into the correct mode for WoWLAN during 496 * suspend. This is optional, if not implemented WoWLAN will not be 497 * supported. This callback may sleep. 498 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 499 * talk to the WoWLAN image to get its status. This is optional, if not 500 * implemented WoWLAN will not be supported. This callback may sleep. 501 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 502 * If RFkill is asserted in the middle of a SYNC host command, it must 503 * return -ERFKILL straight away. 504 * May sleep only if CMD_ASYNC is not set 505 * @tx: send an skb. The transport relies on the op_mode to zero the 506 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 507 * the CSUM will be taken care of (TCP CSUM and IP header in case of 508 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 509 * header if it is IPv4. 510 * Must be atomic 511 * @reclaim: free packet until ssn. Returns a list of freed packets. 512 * Must be atomic 513 * @txq_enable: setup a queue. To setup an AC queue, use the 514 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 515 * this one. The op_mode must not configure the HCMD queue. The scheduler 516 * configuration may be %NULL, in which case the hardware will not be 517 * configured. If true is returned, the operation mode needs to increment 518 * the sequence number of the packets routed to this queue because of a 519 * hardware scheduler bug. May sleep. 520 * @txq_disable: de-configure a Tx queue to send AMPDUs 521 * Must be atomic 522 * @txq_set_shared_mode: change Tx queue shared/unshared marking 523 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 524 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 525 * @freeze_txq_timer: prevents the timer of the queue from firing until the 526 * queue is set to awake. Must be atomic. 527 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 528 * that the transport needs to refcount the calls since this function 529 * will be called several times with block = true, and then the queues 530 * need to be unblocked only after the same number of calls with 531 * block = false. 532 * @write8: write a u8 to a register at offset ofs from the BAR 533 * @write32: write a u32 to a register at offset ofs from the BAR 534 * @read32: read a u32 register at offset ofs from the BAR 535 * @read_prph: read a DWORD from a periphery register 536 * @write_prph: write a DWORD to a periphery register 537 * @read_mem: read device's SRAM in DWORD 538 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 539 * will be zeroed. 540 * @read_config32: read a u32 value from the device's config space at 541 * the given offset. 542 * @configure: configure parameters required by the transport layer from 543 * the op_mode. May be called several times before start_fw, can't be 544 * called after that. 545 * @set_pmi: set the power pmi state 546 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 547 * Sleeping is not allowed between grab_nic_access and 548 * release_nic_access. 549 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 550 * must be the same one that was sent before to the grab_nic_access. 551 * @set_bits_mask - set SRAM register according to value and mask. 552 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 553 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 554 * Note that the transport must fill in the proper file headers. 555 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup 556 * of the trans debugfs 557 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the 558 * context info. 559 * @interrupts: disable/enable interrupts to transport 560 */ 561 struct iwl_trans_ops { 562 563 int (*start_hw)(struct iwl_trans *iwl_trans); 564 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 565 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 566 bool run_in_rfkill); 567 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 568 void (*stop_device)(struct iwl_trans *trans); 569 570 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 571 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 572 bool test, bool reset); 573 574 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 575 576 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 577 struct iwl_device_tx_cmd *dev_cmd, int queue); 578 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 579 struct sk_buff_head *skbs); 580 581 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); 582 583 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 584 const struct iwl_trans_txq_scd_cfg *cfg, 585 unsigned int queue_wdg_timeout); 586 void (*txq_disable)(struct iwl_trans *trans, int queue, 587 bool configure_scd); 588 /* 22000 functions */ 589 int (*txq_alloc)(struct iwl_trans *trans, u32 flags, 590 u32 sta_mask, u8 tid, 591 int size, unsigned int queue_wdg_timeout); 592 void (*txq_free)(struct iwl_trans *trans, int queue); 593 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 594 struct iwl_trans_rxq_dma_data *data); 595 596 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 597 bool shared); 598 599 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 600 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 601 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 602 bool freeze); 603 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 604 605 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 606 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 607 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 608 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 609 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 610 int (*read_mem)(struct iwl_trans *trans, u32 addr, 611 void *buf, int dwords); 612 int (*write_mem)(struct iwl_trans *trans, u32 addr, 613 const void *buf, int dwords); 614 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); 615 void (*configure)(struct iwl_trans *trans, 616 const struct iwl_trans_config *trans_cfg); 617 void (*set_pmi)(struct iwl_trans *trans, bool state); 618 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership); 619 bool (*grab_nic_access)(struct iwl_trans *trans); 620 void (*release_nic_access)(struct iwl_trans *trans); 621 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 622 u32 value); 623 624 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 625 u32 dump_mask, 626 const struct iwl_dump_sanitize_ops *sanitize_ops, 627 void *sanitize_ctx); 628 void (*debugfs_cleanup)(struct iwl_trans *trans); 629 void (*sync_nmi)(struct iwl_trans *trans); 630 int (*set_pnvm)(struct iwl_trans *trans, const void *data, u32 len); 631 int (*set_reduce_power)(struct iwl_trans *trans, 632 const void *data, u32 len); 633 void (*interrupts)(struct iwl_trans *trans, bool enable); 634 int (*imr_dma_data)(struct iwl_trans *trans, 635 u32 dst_addr, u64 src_addr, 636 u32 byte_cnt); 637 638 }; 639 640 /** 641 * enum iwl_trans_state - state of the transport layer 642 * 643 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed 644 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet 645 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response 646 */ 647 enum iwl_trans_state { 648 IWL_TRANS_NO_FW, 649 IWL_TRANS_FW_STARTED, 650 IWL_TRANS_FW_ALIVE, 651 }; 652 653 /** 654 * DOC: Platform power management 655 * 656 * In system-wide power management the entire platform goes into a low 657 * power state (e.g. idle or suspend to RAM) at the same time and the 658 * device is configured as a wakeup source for the entire platform. 659 * This is usually triggered by userspace activity (e.g. the user 660 * presses the suspend button or a power management daemon decides to 661 * put the platform in low power mode). The device's behavior in this 662 * mode is dictated by the wake-on-WLAN configuration. 663 * 664 * The terms used for the device's behavior are as follows: 665 * 666 * - D0: the device is fully powered and the host is awake; 667 * - D3: the device is in low power mode and only reacts to 668 * specific events (e.g. magic-packet received or scan 669 * results found); 670 * 671 * These terms reflect the power modes in the firmware and are not to 672 * be confused with the physical device power state. 673 */ 674 675 /** 676 * enum iwl_plat_pm_mode - platform power management mode 677 * 678 * This enumeration describes the device's platform power management 679 * behavior when in system-wide suspend (i.e WoWLAN). 680 * 681 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 682 * device. In system-wide suspend mode, it means that the all 683 * connections will be closed automatically by mac80211 before 684 * the platform is suspended. 685 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 686 */ 687 enum iwl_plat_pm_mode { 688 IWL_PLAT_PM_MODE_DISABLED, 689 IWL_PLAT_PM_MODE_D3, 690 }; 691 692 /** 693 * enum iwl_ini_cfg_state 694 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given 695 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded 696 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs 697 * are corrupted. The rest of the debug TLVs will still be used 698 */ 699 enum iwl_ini_cfg_state { 700 IWL_INI_CFG_STATE_NOT_LOADED, 701 IWL_INI_CFG_STATE_LOADED, 702 IWL_INI_CFG_STATE_CORRUPTED, 703 }; 704 705 /* Max time to wait for nmi interrupt */ 706 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) 707 708 /** 709 * struct iwl_dram_data 710 * @physical: page phy pointer 711 * @block: pointer to the allocated block/page 712 * @size: size of the block/page 713 */ 714 struct iwl_dram_data { 715 dma_addr_t physical; 716 void *block; 717 int size; 718 }; 719 720 /** 721 * struct iwl_fw_mon - fw monitor per allocation id 722 * @num_frags: number of fragments 723 * @frags: an array of DRAM buffer fragments 724 */ 725 struct iwl_fw_mon { 726 u32 num_frags; 727 struct iwl_dram_data *frags; 728 }; 729 730 /** 731 * struct iwl_self_init_dram - dram data used by self init process 732 * @fw: lmac and umac dram data 733 * @fw_cnt: total number of items in array 734 * @paging: paging dram data 735 * @paging_cnt: total number of items in array 736 */ 737 struct iwl_self_init_dram { 738 struct iwl_dram_data *fw; 739 int fw_cnt; 740 struct iwl_dram_data *paging; 741 int paging_cnt; 742 }; 743 744 /** 745 * struct iwl_imr_data - imr dram data used during debug process 746 * @imr_enable: imr enable status received from fw 747 * @imr_size: imr dram size received from fw 748 * @sram_addr: sram address from debug tlv 749 * @sram_size: sram size from debug tlv 750 * @imr2sram_remainbyte`: size remained after each dma transfer 751 * @imr_curr_addr: current dst address used during dma transfer 752 * @imr_base_addr: imr address received from fw 753 */ 754 struct iwl_imr_data { 755 u32 imr_enable; 756 u32 imr_size; 757 u32 sram_addr; 758 u32 sram_size; 759 u32 imr2sram_remainbyte; 760 u64 imr_curr_addr; 761 __le64 imr_base_addr; 762 }; 763 764 /** 765 * struct iwl_trans_debug - transport debug related data 766 * 767 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv 768 * @rec_on: true iff there is a fw debug recording currently active 769 * @dest_tlv: points to the destination TLV for debug 770 * @conf_tlv: array of pointers to configuration TLVs for debug 771 * @trigger_tlv: array of pointers to triggers TLVs for debug 772 * @lmac_error_event_table: addrs of lmacs error tables 773 * @umac_error_event_table: addr of umac error table 774 * @tcm_error_event_table: address(es) of TCM error table(s) 775 * @rcm_error_event_table: address(es) of RCM error table(s) 776 * @error_event_table_tlv_status: bitmap that indicates what error table 777 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status 778 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state 779 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state 780 * @fw_mon_cfg: debug buffer allocation configuration 781 * @fw_mon_ini: DRAM buffer fragments per allocation id 782 * @fw_mon: DRAM buffer for firmware monitor 783 * @hw_error: equals true if hw error interrupt was received from the FW 784 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location 785 * @active_regions: active regions 786 * @debug_info_tlv_list: list of debug info TLVs 787 * @time_point: array of debug time points 788 * @periodic_trig_list: periodic triggers list 789 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON 790 * @ucode_preset: preset based on ucode 791 */ 792 struct iwl_trans_debug { 793 u8 n_dest_reg; 794 bool rec_on; 795 796 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; 797 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; 798 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; 799 800 u32 lmac_error_event_table[2]; 801 u32 umac_error_event_table; 802 u32 tcm_error_event_table[2]; 803 u32 rcm_error_event_table[2]; 804 unsigned int error_event_table_tlv_status; 805 806 enum iwl_ini_cfg_state internal_ini_cfg; 807 enum iwl_ini_cfg_state external_ini_cfg; 808 809 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; 810 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; 811 812 struct iwl_dram_data fw_mon; 813 814 bool hw_error; 815 enum iwl_fw_ini_buffer_location ini_dest; 816 817 u64 unsupported_region_msk; 818 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; 819 struct list_head debug_info_tlv_list; 820 struct iwl_dbg_tlv_time_point_data 821 time_point[IWL_FW_INI_TIME_POINT_NUM]; 822 struct list_head periodic_trig_list; 823 824 u32 domains_bitmap; 825 u32 ucode_preset; 826 bool restart_required; 827 u32 last_tp_resetfw; 828 struct iwl_imr_data imr_data; 829 }; 830 831 struct iwl_dma_ptr { 832 dma_addr_t dma; 833 void *addr; 834 size_t size; 835 }; 836 837 struct iwl_cmd_meta { 838 /* only for SYNC commands, iff the reply skb is wanted */ 839 struct iwl_host_cmd *source; 840 u32 flags; 841 u32 tbs; 842 }; 843 844 /* 845 * The FH will write back to the first TB only, so we need to copy some data 846 * into the buffer regardless of whether it should be mapped or not. 847 * This indicates how big the first TB must be to include the scratch buffer 848 * and the assigned PN. 849 * Since PN location is 8 bytes at offset 12, it's 20 now. 850 * If we make it bigger then allocations will be bigger and copy slower, so 851 * that's probably not useful. 852 */ 853 #define IWL_FIRST_TB_SIZE 20 854 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) 855 856 struct iwl_pcie_txq_entry { 857 void *cmd; 858 struct sk_buff *skb; 859 /* buffer to free after command completes */ 860 const void *free_buf; 861 struct iwl_cmd_meta meta; 862 }; 863 864 struct iwl_pcie_first_tb_buf { 865 u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; 866 }; 867 868 /** 869 * struct iwl_txq - Tx Queue for DMA 870 * @q: generic Rx/Tx queue descriptor 871 * @tfds: transmit frame descriptors (DMA memory) 872 * @first_tb_bufs: start of command headers, including scratch buffers, for 873 * the writeback -- this is DMA memory and an array holding one buffer 874 * for each command on the queue 875 * @first_tb_dma: DMA address for the first_tb_bufs start 876 * @entries: transmit entries (driver state) 877 * @lock: queue lock 878 * @stuck_timer: timer that fires if queue gets stuck 879 * @trans: pointer back to transport (for timer) 880 * @need_update: indicates need to update read/write index 881 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID 882 * @wd_timeout: queue watchdog timeout (jiffies) - per queue 883 * @frozen: tx stuck queue timer is frozen 884 * @frozen_expiry_remainder: remember how long until the timer fires 885 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) 886 * @write_ptr: 1-st empty entry (index) host_w 887 * @read_ptr: last used entry (index) host_r 888 * @dma_addr: physical addr for BD's 889 * @n_window: safe queue window 890 * @id: queue id 891 * @low_mark: low watermark, resume queue if free space more than this 892 * @high_mark: high watermark, stop queue if free space less than this 893 * 894 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame 895 * descriptors) and required locking structures. 896 * 897 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware 898 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless 899 * there might be HW changes in the future). For the normal TX 900 * queues, n_window, which is the size of the software queue data 901 * is also 256; however, for the command queue, n_window is only 902 * 32 since we don't need so many commands pending. Since the HW 903 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. 904 * This means that we end up with the following: 905 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | 906 * SW entries: | 0 | ... | 31 | 907 * where N is a number between 0 and 7. This means that the SW 908 * data is a window overlayed over the HW queue. 909 */ 910 struct iwl_txq { 911 void *tfds; 912 struct iwl_pcie_first_tb_buf *first_tb_bufs; 913 dma_addr_t first_tb_dma; 914 struct iwl_pcie_txq_entry *entries; 915 /* lock for syncing changes on the queue */ 916 spinlock_t lock; 917 unsigned long frozen_expiry_remainder; 918 struct timer_list stuck_timer; 919 struct iwl_trans *trans; 920 bool need_update; 921 bool frozen; 922 bool ampdu; 923 int block; 924 unsigned long wd_timeout; 925 struct sk_buff_head overflow_q; 926 struct iwl_dma_ptr bc_tbl; 927 928 int write_ptr; 929 int read_ptr; 930 dma_addr_t dma_addr; 931 int n_window; 932 u32 id; 933 int low_mark; 934 int high_mark; 935 936 bool overflow_tx; 937 }; 938 939 /** 940 * struct iwl_trans_txqs - transport tx queues data 941 * 942 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) 943 * @page_offs: offset from skb->cb to mac header page pointer 944 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer 945 * @queue_used - bit mask of used queues 946 * @queue_stopped - bit mask of stopped queues 947 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 948 * @queue_alloc_cmd_ver: queue allocation command version 949 */ 950 struct iwl_trans_txqs { 951 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 952 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 953 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 954 struct dma_pool *bc_pool; 955 size_t bc_tbl_size; 956 bool bc_table_dword; 957 u8 page_offs; 958 u8 dev_cmd_offs; 959 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 960 961 struct { 962 u8 fifo; 963 u8 q_id; 964 unsigned int wdg_timeout; 965 } cmd; 966 967 struct { 968 u8 max_tbs; 969 u16 size; 970 u8 addr_size; 971 } tfd; 972 973 struct iwl_dma_ptr scd_bc_tbls; 974 975 u8 queue_alloc_cmd_ver; 976 }; 977 978 /** 979 * struct iwl_trans - transport common data 980 * 981 * @csme_own - true if we couldn't get ownership on the device 982 * @ops - pointer to iwl_trans_ops 983 * @op_mode - pointer to the op_mode 984 * @trans_cfg: the trans-specific configuration part 985 * @cfg - pointer to the configuration 986 * @drv - pointer to iwl_drv 987 * @status: a bit-mask of transport status flags 988 * @dev - pointer to struct device * that represents the device 989 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 990 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 991 * @hw_rf_id a u32 with the device RF ID 992 * @hw_id: a u32 with the ID of the device / sub-device. 993 * Set during transport allocation. 994 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 995 * @hw_rev_step: The mac step of the HW 996 * @pm_support: set to true in start_hw if link pm is supported 997 * @ltr_enabled: set to true if the LTR is enabled 998 * @wide_cmd_header: true when ucode supports wide command header format 999 * @wait_command_queue: wait queue for sync commands 1000 * @num_rx_queues: number of RX queues allocated by the transport; 1001 * the transport must set this before calling iwl_drv_start() 1002 * @iml_len: the length of the image loader 1003 * @iml: a pointer to the image loader itself 1004 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 1005 * The user should use iwl_trans_{alloc,free}_tx_cmd. 1006 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 1007 * starting the firmware, used for tracing 1008 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 1009 * start of the 802.11 header in the @rx_mpdu_cmd 1010 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 1011 * @system_pm_mode: the system-wide power management mode in use. 1012 * This mode is set dynamically, depending on the WoWLAN values 1013 * configured from the userspace at runtime. 1014 * @iwl_trans_txqs: transport tx queues data. 1015 */ 1016 struct iwl_trans { 1017 bool csme_own; 1018 const struct iwl_trans_ops *ops; 1019 struct iwl_op_mode *op_mode; 1020 const struct iwl_cfg_trans_params *trans_cfg; 1021 const struct iwl_cfg *cfg; 1022 struct iwl_drv *drv; 1023 enum iwl_trans_state state; 1024 unsigned long status; 1025 1026 struct device *dev; 1027 u32 max_skb_frags; 1028 u32 hw_rev; 1029 u32 hw_rev_step; 1030 u32 hw_rf_id; 1031 u32 hw_id; 1032 char hw_id_str[52]; 1033 u32 sku_id[3]; 1034 1035 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 1036 1037 bool pm_support; 1038 bool ltr_enabled; 1039 u8 pnvm_loaded:1; 1040 u8 reduce_power_loaded:1; 1041 1042 const struct iwl_hcmd_arr *command_groups; 1043 int command_groups_size; 1044 bool wide_cmd_header; 1045 1046 wait_queue_head_t wait_command_queue; 1047 u8 num_rx_queues; 1048 1049 size_t iml_len; 1050 u8 *iml; 1051 1052 /* The following fields are internal only */ 1053 struct kmem_cache *dev_cmd_pool; 1054 char dev_cmd_pool_name[50]; 1055 1056 struct dentry *dbgfs_dir; 1057 1058 #ifdef CONFIG_LOCKDEP 1059 struct lockdep_map sync_cmd_lockdep_map; 1060 #endif 1061 1062 struct iwl_trans_debug dbg; 1063 struct iwl_self_init_dram init_dram; 1064 1065 enum iwl_plat_pm_mode system_pm_mode; 1066 1067 const char *name; 1068 struct iwl_trans_txqs txqs; 1069 1070 /* pointer to trans specific struct */ 1071 /*Ensure that this pointer will always be aligned to sizeof pointer */ 1072 char trans_specific[] __aligned(sizeof(void *)); 1073 }; 1074 1075 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 1076 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 1077 1078 static inline void iwl_trans_configure(struct iwl_trans *trans, 1079 const struct iwl_trans_config *trans_cfg) 1080 { 1081 trans->op_mode = trans_cfg->op_mode; 1082 1083 trans->ops->configure(trans, trans_cfg); 1084 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 1085 } 1086 1087 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 1088 { 1089 might_sleep(); 1090 1091 return trans->ops->start_hw(trans); 1092 } 1093 1094 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 1095 { 1096 might_sleep(); 1097 1098 if (trans->ops->op_mode_leave) 1099 trans->ops->op_mode_leave(trans); 1100 1101 trans->op_mode = NULL; 1102 1103 trans->state = IWL_TRANS_NO_FW; 1104 } 1105 1106 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 1107 { 1108 might_sleep(); 1109 1110 trans->state = IWL_TRANS_FW_ALIVE; 1111 1112 trans->ops->fw_alive(trans, scd_addr); 1113 } 1114 1115 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 1116 const struct fw_img *fw, 1117 bool run_in_rfkill) 1118 { 1119 int ret; 1120 1121 might_sleep(); 1122 1123 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 1124 1125 clear_bit(STATUS_FW_ERROR, &trans->status); 1126 ret = trans->ops->start_fw(trans, fw, run_in_rfkill); 1127 if (ret == 0) 1128 trans->state = IWL_TRANS_FW_STARTED; 1129 1130 return ret; 1131 } 1132 1133 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 1134 { 1135 might_sleep(); 1136 1137 trans->ops->stop_device(trans); 1138 1139 trans->state = IWL_TRANS_NO_FW; 1140 } 1141 1142 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 1143 bool reset) 1144 { 1145 might_sleep(); 1146 if (!trans->ops->d3_suspend) 1147 return 0; 1148 1149 return trans->ops->d3_suspend(trans, test, reset); 1150 } 1151 1152 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 1153 enum iwl_d3_status *status, 1154 bool test, bool reset) 1155 { 1156 might_sleep(); 1157 if (!trans->ops->d3_resume) 1158 return 0; 1159 1160 return trans->ops->d3_resume(trans, status, test, reset); 1161 } 1162 1163 static inline struct iwl_trans_dump_data * 1164 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask, 1165 const struct iwl_dump_sanitize_ops *sanitize_ops, 1166 void *sanitize_ctx) 1167 { 1168 if (!trans->ops->dump_data) 1169 return NULL; 1170 return trans->ops->dump_data(trans, dump_mask, 1171 sanitize_ops, sanitize_ctx); 1172 } 1173 1174 static inline struct iwl_device_tx_cmd * 1175 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1176 { 1177 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); 1178 } 1179 1180 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1181 1182 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1183 struct iwl_device_tx_cmd *dev_cmd) 1184 { 1185 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1186 } 1187 1188 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1189 struct iwl_device_tx_cmd *dev_cmd, int queue) 1190 { 1191 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1192 return -EIO; 1193 1194 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1195 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1196 return -EIO; 1197 } 1198 1199 return trans->ops->tx(trans, skb, dev_cmd, queue); 1200 } 1201 1202 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1203 int ssn, struct sk_buff_head *skbs) 1204 { 1205 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1206 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1207 return; 1208 } 1209 1210 trans->ops->reclaim(trans, queue, ssn, skbs); 1211 } 1212 1213 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, 1214 int ptr) 1215 { 1216 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1217 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1218 return; 1219 } 1220 1221 trans->ops->set_q_ptrs(trans, queue, ptr); 1222 } 1223 1224 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1225 bool configure_scd) 1226 { 1227 trans->ops->txq_disable(trans, queue, configure_scd); 1228 } 1229 1230 static inline bool 1231 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1232 const struct iwl_trans_txq_scd_cfg *cfg, 1233 unsigned int queue_wdg_timeout) 1234 { 1235 might_sleep(); 1236 1237 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1238 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1239 return false; 1240 } 1241 1242 return trans->ops->txq_enable(trans, queue, ssn, 1243 cfg, queue_wdg_timeout); 1244 } 1245 1246 static inline int 1247 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 1248 struct iwl_trans_rxq_dma_data *data) 1249 { 1250 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 1251 return -ENOTSUPP; 1252 1253 return trans->ops->rxq_dma_data(trans, queue, data); 1254 } 1255 1256 static inline void 1257 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1258 { 1259 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1260 return; 1261 1262 trans->ops->txq_free(trans, queue); 1263 } 1264 1265 static inline int 1266 iwl_trans_txq_alloc(struct iwl_trans *trans, 1267 u32 flags, u32 sta_mask, u8 tid, 1268 int size, unsigned int wdg_timeout) 1269 { 1270 might_sleep(); 1271 1272 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1273 return -ENOTSUPP; 1274 1275 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1276 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1277 return -EIO; 1278 } 1279 1280 return trans->ops->txq_alloc(trans, flags, sta_mask, tid, 1281 size, wdg_timeout); 1282 } 1283 1284 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1285 int queue, bool shared_mode) 1286 { 1287 if (trans->ops->txq_set_shared_mode) 1288 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1289 } 1290 1291 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1292 int fifo, int sta_id, int tid, 1293 int frame_limit, u16 ssn, 1294 unsigned int queue_wdg_timeout) 1295 { 1296 struct iwl_trans_txq_scd_cfg cfg = { 1297 .fifo = fifo, 1298 .sta_id = sta_id, 1299 .tid = tid, 1300 .frame_limit = frame_limit, 1301 .aggregate = sta_id >= 0, 1302 }; 1303 1304 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1305 } 1306 1307 static inline 1308 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1309 unsigned int queue_wdg_timeout) 1310 { 1311 struct iwl_trans_txq_scd_cfg cfg = { 1312 .fifo = fifo, 1313 .sta_id = -1, 1314 .tid = IWL_MAX_TID_COUNT, 1315 .frame_limit = IWL_FRAME_LIMIT, 1316 .aggregate = false, 1317 }; 1318 1319 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1320 } 1321 1322 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1323 unsigned long txqs, 1324 bool freeze) 1325 { 1326 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1327 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1328 return; 1329 } 1330 1331 if (trans->ops->freeze_txq_timer) 1332 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1333 } 1334 1335 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1336 bool block) 1337 { 1338 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1339 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1340 return; 1341 } 1342 1343 if (trans->ops->block_txq_ptrs) 1344 trans->ops->block_txq_ptrs(trans, block); 1345 } 1346 1347 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1348 u32 txqs) 1349 { 1350 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1351 return -ENOTSUPP; 1352 1353 /* No need to wait if the firmware is not alive */ 1354 if (trans->state != IWL_TRANS_FW_ALIVE) { 1355 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1356 return -EIO; 1357 } 1358 1359 return trans->ops->wait_tx_queues_empty(trans, txqs); 1360 } 1361 1362 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1363 { 1364 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1365 return -ENOTSUPP; 1366 1367 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1368 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1369 return -EIO; 1370 } 1371 1372 return trans->ops->wait_txq_empty(trans, queue); 1373 } 1374 1375 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1376 { 1377 trans->ops->write8(trans, ofs, val); 1378 } 1379 1380 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1381 { 1382 trans->ops->write32(trans, ofs, val); 1383 } 1384 1385 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1386 { 1387 return trans->ops->read32(trans, ofs); 1388 } 1389 1390 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1391 { 1392 return trans->ops->read_prph(trans, ofs); 1393 } 1394 1395 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1396 u32 val) 1397 { 1398 return trans->ops->write_prph(trans, ofs, val); 1399 } 1400 1401 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1402 void *buf, int dwords) 1403 { 1404 return trans->ops->read_mem(trans, addr, buf, dwords); 1405 } 1406 1407 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1408 do { \ 1409 if (__builtin_constant_p(bufsize)) \ 1410 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1411 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1412 } while (0) 1413 1414 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans, 1415 u32 dst_addr, u64 src_addr, 1416 u32 byte_cnt) 1417 { 1418 if (trans->ops->imr_dma_data) 1419 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt); 1420 return 0; 1421 } 1422 1423 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1424 { 1425 u32 value; 1426 1427 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1428 return 0xa5a5a5a5; 1429 1430 return value; 1431 } 1432 1433 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1434 const void *buf, int dwords) 1435 { 1436 return trans->ops->write_mem(trans, addr, buf, dwords); 1437 } 1438 1439 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1440 u32 val) 1441 { 1442 return iwl_trans_write_mem(trans, addr, &val, 1); 1443 } 1444 1445 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1446 { 1447 if (trans->ops->set_pmi) 1448 trans->ops->set_pmi(trans, state); 1449 } 1450 1451 static inline int iwl_trans_sw_reset(struct iwl_trans *trans, 1452 bool retake_ownership) 1453 { 1454 if (trans->ops->sw_reset) 1455 return trans->ops->sw_reset(trans, retake_ownership); 1456 return 0; 1457 } 1458 1459 static inline void 1460 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1461 { 1462 trans->ops->set_bits_mask(trans, reg, mask, value); 1463 } 1464 1465 #define iwl_trans_grab_nic_access(trans) \ 1466 __cond_lock(nic_access, \ 1467 likely((trans)->ops->grab_nic_access(trans))) 1468 1469 static inline void __releases(nic_access) 1470 iwl_trans_release_nic_access(struct iwl_trans *trans) 1471 { 1472 trans->ops->release_nic_access(trans); 1473 __release(nic_access); 1474 } 1475 1476 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) 1477 { 1478 if (WARN_ON_ONCE(!trans->op_mode)) 1479 return; 1480 1481 /* prevent double restarts due to the same erroneous FW */ 1482 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { 1483 iwl_op_mode_nic_error(trans->op_mode, sync); 1484 trans->state = IWL_TRANS_NO_FW; 1485 } 1486 } 1487 1488 static inline bool iwl_trans_fw_running(struct iwl_trans *trans) 1489 { 1490 return trans->state == IWL_TRANS_FW_ALIVE; 1491 } 1492 1493 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) 1494 { 1495 if (trans->ops->sync_nmi) 1496 trans->ops->sync_nmi(trans); 1497 } 1498 1499 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, 1500 u32 sw_err_bit); 1501 1502 static inline int iwl_trans_set_pnvm(struct iwl_trans *trans, 1503 const void *data, u32 len) 1504 { 1505 if (trans->ops->set_pnvm) { 1506 int ret = trans->ops->set_pnvm(trans, data, len); 1507 1508 if (ret) 1509 return ret; 1510 } 1511 1512 trans->pnvm_loaded = true; 1513 1514 return 0; 1515 } 1516 1517 static inline int iwl_trans_set_reduce_power(struct iwl_trans *trans, 1518 const void *data, u32 len) 1519 { 1520 if (trans->ops->set_reduce_power) { 1521 int ret = trans->ops->set_reduce_power(trans, data, len); 1522 1523 if (ret) 1524 return ret; 1525 } 1526 1527 trans->reduce_power_loaded = true; 1528 return 0; 1529 } 1530 1531 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) 1532 { 1533 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || 1534 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; 1535 } 1536 1537 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) 1538 { 1539 if (trans->ops->interrupts) 1540 trans->ops->interrupts(trans, enable); 1541 } 1542 1543 /***************************************************** 1544 * transport helper functions 1545 *****************************************************/ 1546 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1547 struct device *dev, 1548 const struct iwl_trans_ops *ops, 1549 const struct iwl_cfg_trans_params *cfg_trans); 1550 int iwl_trans_init(struct iwl_trans *trans); 1551 void iwl_trans_free(struct iwl_trans *trans); 1552 1553 /***************************************************** 1554 * driver (transport) register/unregister functions 1555 ******************************************************/ 1556 int __must_check iwl_pci_register_driver(void); 1557 void iwl_pci_unregister_driver(void); 1558 1559 #endif /* __iwl_trans_h__ */ 1560