1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */ 2 /* 3 * Copyright (C) 2005-2014, 2018-2022 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2016-2017 Intel Deutschland GmbH 6 */ 7 #ifndef __iwl_trans_h__ 8 #define __iwl_trans_h__ 9 10 #include <linux/ieee80211.h> 11 #include <linux/mm.h> /* for page_address */ 12 #include <linux/lockdep.h> 13 #include <linux/kernel.h> 14 15 #include "iwl-debug.h" 16 #include "iwl-config.h" 17 #include "fw/img.h" 18 #include "iwl-op-mode.h" 19 #include <linux/firmware.h> 20 #include "fw/api/cmdhdr.h" 21 #include "fw/api/txq.h" 22 #include "fw/api/dbg-tlv.h" 23 #include "iwl-dbg-tlv.h" 24 #if defined(__FreeBSD__) 25 #include <linux/skbuff.h> 26 #include "iwl-modparams.h" 27 #endif 28 29 /** 30 * DOC: Transport layer - what is it ? 31 * 32 * The transport layer is the layer that deals with the HW directly. It provides 33 * an abstraction of the underlying HW to the upper layer. The transport layer 34 * doesn't provide any policy, algorithm or anything of this kind, but only 35 * mechanisms to make the HW do something. It is not completely stateless but 36 * close to it. 37 * We will have an implementation for each different supported bus. 38 */ 39 40 /** 41 * DOC: Life cycle of the transport layer 42 * 43 * The transport layer has a very precise life cycle. 44 * 45 * 1) A helper function is called during the module initialization and 46 * registers the bus driver's ops with the transport's alloc function. 47 * 2) Bus's probe calls to the transport layer's allocation functions. 48 * Of course this function is bus specific. 49 * 3) This allocation functions will spawn the upper layer which will 50 * register mac80211. 51 * 52 * 4) At some point (i.e. mac80211's start call), the op_mode will call 53 * the following sequence: 54 * start_hw 55 * start_fw 56 * 57 * 5) Then when finished (or reset): 58 * stop_device 59 * 60 * 6) Eventually, the free function will be called. 61 */ 62 63 #define IWL_TRANS_FW_DBG_DOMAIN(trans) IWL_FW_INI_DOMAIN_ALWAYS_ON 64 65 #define FH_RSCSR_FRAME_SIZE_MSK 0x00003FFF /* bits 0-13 */ 66 #define FH_RSCSR_FRAME_INVALID 0x55550000 67 #define FH_RSCSR_FRAME_ALIGN 0x40 68 #define FH_RSCSR_RPA_EN BIT(25) 69 #define FH_RSCSR_RADA_EN BIT(26) 70 #define FH_RSCSR_RXQ_POS 16 71 #define FH_RSCSR_RXQ_MASK 0x3F0000 72 73 struct iwl_rx_packet { 74 /* 75 * The first 4 bytes of the RX frame header contain both the RX frame 76 * size and some flags. 77 * Bit fields: 78 * 31: flag flush RB request 79 * 30: flag ignore TC (terminal counter) request 80 * 29: flag fast IRQ request 81 * 28-27: Reserved 82 * 26: RADA enabled 83 * 25: Offload enabled 84 * 24: RPF enabled 85 * 23: RSS enabled 86 * 22: Checksum enabled 87 * 21-16: RX queue 88 * 15-14: Reserved 89 * 13-00: RX frame size 90 */ 91 __le32 len_n_flags; 92 struct iwl_cmd_header hdr; 93 u8 data[]; 94 } __packed; 95 96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt) 97 { 98 return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK; 99 } 100 101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt) 102 { 103 return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr); 104 } 105 106 /** 107 * enum CMD_MODE - how to send the host commands ? 108 * 109 * @CMD_ASYNC: Return right away and don't wait for the response 110 * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of 111 * the response. The caller needs to call iwl_free_resp when done. 112 * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be 113 * called after this command completes. Valid only with CMD_ASYNC. 114 * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to 115 * SUSPEND and RESUME commands. We are in D3 mode when we set 116 * trans->system_pm_mode to IWL_PLAT_PM_MODE_D3. 117 */ 118 enum CMD_MODE { 119 CMD_ASYNC = BIT(0), 120 CMD_WANT_SKB = BIT(1), 121 CMD_SEND_IN_RFKILL = BIT(2), 122 CMD_WANT_ASYNC_CALLBACK = BIT(3), 123 CMD_SEND_IN_D3 = BIT(4), 124 }; 125 126 #define DEF_CMD_PAYLOAD_SIZE 320 127 128 /** 129 * struct iwl_device_cmd 130 * 131 * For allocation of the command and tx queues, this establishes the overall 132 * size of the largest command we send to uCode, except for commands that 133 * aren't fully copied and use other TFD space. 134 */ 135 struct iwl_device_cmd { 136 union { 137 struct { 138 struct iwl_cmd_header hdr; /* uCode API */ 139 u8 payload[DEF_CMD_PAYLOAD_SIZE]; 140 }; 141 struct { 142 struct iwl_cmd_header_wide hdr_wide; 143 u8 payload_wide[DEF_CMD_PAYLOAD_SIZE - 144 sizeof(struct iwl_cmd_header_wide) + 145 sizeof(struct iwl_cmd_header)]; 146 }; 147 }; 148 } __packed; 149 150 /** 151 * struct iwl_device_tx_cmd - buffer for TX command 152 * @hdr: the header 153 * @payload: the payload placeholder 154 * 155 * The actual structure is sized dynamically according to need. 156 */ 157 struct iwl_device_tx_cmd { 158 struct iwl_cmd_header hdr; 159 u8 payload[]; 160 } __packed; 161 162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd)) 163 164 /* 165 * number of transfer buffers (fragments) per transmit frame descriptor; 166 * this is just the driver's idea, the hardware supports 20 167 */ 168 #define IWL_MAX_CMD_TBS_PER_TFD 2 169 170 /* We need 2 entries for the TX command and header, and another one might 171 * be needed for potential data in the SKB's head. The remaining ones can 172 * be used for frags. 173 */ 174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3) 175 176 /** 177 * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command 178 * 179 * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's 180 * ring. The transport layer doesn't map the command's buffer to DMA, but 181 * rather copies it to a previously allocated DMA buffer. This flag tells 182 * the transport layer not to copy the command, but to map the existing 183 * buffer (that is passed in) instead. This saves the memcpy and allows 184 * commands that are bigger than the fixed buffer to be submitted. 185 * Note that a TFD entry after a NOCOPY one cannot be a normal copied one. 186 * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this 187 * chunk internally and free it again after the command completes. This 188 * can (currently) be used only once per command. 189 * Note that a TFD entry after a DUP one cannot be a normal copied one. 190 */ 191 enum iwl_hcmd_dataflag { 192 IWL_HCMD_DFL_NOCOPY = BIT(0), 193 IWL_HCMD_DFL_DUP = BIT(1), 194 }; 195 196 enum iwl_error_event_table_status { 197 IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0), 198 IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1), 199 IWL_ERROR_EVENT_TABLE_UMAC = BIT(2), 200 IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3), 201 IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4), 202 IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5), 203 IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6), 204 }; 205 206 /** 207 * struct iwl_host_cmd - Host command to the uCode 208 * 209 * @data: array of chunks that composes the data of the host command 210 * @resp_pkt: response packet, if %CMD_WANT_SKB was set 211 * @_rx_page_order: (internally used to free response packet); 212 * FreeBSD uses _page instead. 213 * @_rx_page_addr: (internally used to free response packet) 214 * @flags: can be CMD_* 215 * @len: array of the lengths of the chunks in data 216 * @dataflags: IWL_HCMD_DFL_* 217 * @id: command id of the host command, for wide commands encoding the 218 * version and group as well 219 */ 220 struct iwl_host_cmd { 221 const void *data[IWL_MAX_CMD_TBS_PER_TFD]; 222 struct iwl_rx_packet *resp_pkt; 223 #if defined(__linux__) 224 unsigned long _rx_page_addr; 225 #elif defined(__FreeBSD__) 226 struct page *_page; 227 #endif 228 u32 _rx_page_order; 229 230 u32 flags; 231 u32 id; 232 u16 len[IWL_MAX_CMD_TBS_PER_TFD]; 233 u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD]; 234 }; 235 236 static inline void iwl_free_resp(struct iwl_host_cmd *cmd) 237 { 238 #if defined(__linux__) 239 free_pages(cmd->_rx_page_addr, cmd->_rx_page_order); 240 #elif defined(__FreeBSD__) 241 __free_pages(cmd->_page, cmd->_rx_page_order); 242 #endif 243 } 244 245 struct iwl_rx_cmd_buffer { 246 struct page *_page; 247 int _offset; 248 bool _page_stolen; 249 u32 _rx_page_order; 250 unsigned int truesize; 251 }; 252 253 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r) 254 { 255 return (void *)((unsigned long)page_address(r->_page) + r->_offset); 256 } 257 258 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r) 259 { 260 return r->_offset; 261 } 262 263 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r) 264 { 265 r->_page_stolen = true; 266 get_page(r->_page); 267 return r->_page; 268 } 269 270 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r) 271 { 272 __free_pages(r->_page, r->_rx_page_order); 273 } 274 275 #define MAX_NO_RECLAIM_CMDS 6 276 277 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo)))) 278 279 /* 280 * Maximum number of HW queues the transport layer 281 * currently supports 282 */ 283 #define IWL_MAX_HW_QUEUES 32 284 #define IWL_MAX_TVQM_QUEUES 512 285 286 #define IWL_MAX_TID_COUNT 8 287 #define IWL_MGMT_TID 15 288 #define IWL_FRAME_LIMIT 64 289 #define IWL_MAX_RX_HW_QUEUES 16 290 #define IWL_9000_MAX_RX_HW_QUEUES 6 291 292 /** 293 * enum iwl_wowlan_status - WoWLAN image/device status 294 * @IWL_D3_STATUS_ALIVE: firmware is still running after resume 295 * @IWL_D3_STATUS_RESET: device was reset while suspended 296 */ 297 enum iwl_d3_status { 298 IWL_D3_STATUS_ALIVE, 299 IWL_D3_STATUS_RESET, 300 }; 301 302 /** 303 * enum iwl_trans_status: transport status flags 304 * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed 305 * @STATUS_DEVICE_ENABLED: APM is enabled 306 * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up) 307 * @STATUS_INT_ENABLED: interrupts are enabled 308 * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch 309 * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode 310 * @STATUS_FW_ERROR: the fw is in error state 311 * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands 312 * are sent 313 * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent 314 * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation 315 * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once, 316 * e.g. for testing 317 */ 318 enum iwl_trans_status { 319 STATUS_SYNC_HCMD_ACTIVE, 320 STATUS_DEVICE_ENABLED, 321 STATUS_TPOWER_PMI, 322 STATUS_INT_ENABLED, 323 STATUS_RFKILL_HW, 324 STATUS_RFKILL_OPMODE, 325 STATUS_FW_ERROR, 326 STATUS_TRANS_GOING_IDLE, 327 STATUS_TRANS_IDLE, 328 STATUS_TRANS_DEAD, 329 STATUS_SUPPRESS_CMD_ERROR_ONCE, 330 }; 331 332 static inline int 333 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size) 334 { 335 switch (rb_size) { 336 case IWL_AMSDU_2K: 337 return get_order(2 * 1024); 338 case IWL_AMSDU_4K: 339 return get_order(4 * 1024); 340 case IWL_AMSDU_8K: 341 return get_order(8 * 1024); 342 case IWL_AMSDU_12K: 343 return get_order(16 * 1024); 344 default: 345 WARN_ON(1); 346 return -1; 347 } 348 } 349 350 static inline int 351 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size) 352 { 353 switch (rb_size) { 354 case IWL_AMSDU_2K: 355 return 2 * 1024; 356 case IWL_AMSDU_4K: 357 return 4 * 1024; 358 case IWL_AMSDU_8K: 359 return 8 * 1024; 360 case IWL_AMSDU_12K: 361 return 16 * 1024; 362 default: 363 WARN_ON(1); 364 return 0; 365 } 366 } 367 368 struct iwl_hcmd_names { 369 u8 cmd_id; 370 const char *const cmd_name; 371 }; 372 373 #define HCMD_NAME(x) \ 374 { .cmd_id = x, .cmd_name = #x } 375 376 struct iwl_hcmd_arr { 377 const struct iwl_hcmd_names *arr; 378 int size; 379 }; 380 381 #define HCMD_ARR(x) \ 382 { .arr = x, .size = ARRAY_SIZE(x) } 383 384 /** 385 * struct iwl_dump_sanitize_ops - dump sanitization operations 386 * @frob_txf: Scrub the TX FIFO data 387 * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header 388 * but that might be short or long (&struct iwl_cmd_header or 389 * &struct iwl_cmd_header_wide) 390 * @frob_mem: Scrub memory data 391 */ 392 struct iwl_dump_sanitize_ops { 393 void (*frob_txf)(void *ctx, void *buf, size_t buflen); 394 void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen); 395 void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen); 396 }; 397 398 /** 399 * struct iwl_trans_config - transport configuration 400 * 401 * @op_mode: pointer to the upper layer. 402 * @cmd_queue: the index of the command queue. 403 * Must be set before start_fw. 404 * @cmd_fifo: the fifo for host commands 405 * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue. 406 * @no_reclaim_cmds: Some devices erroneously don't set the 407 * SEQ_RX_FRAME bit on some notifications, this is the 408 * list of such notifications to filter. Max length is 409 * %MAX_NO_RECLAIM_CMDS. 410 * @n_no_reclaim_cmds: # of commands in list 411 * @rx_buf_size: RX buffer size needed for A-MSDUs 412 * if unset 4k will be the RX buffer size 413 * @bc_table_dword: set to true if the BC table expects the byte count to be 414 * in DWORD (as opposed to bytes) 415 * @scd_set_active: should the transport configure the SCD for HCMD queue 416 * @command_groups: array of command groups, each member is an array of the 417 * commands in the group; for debugging only 418 * @command_groups_size: number of command groups, to avoid illegal access 419 * @cb_data_offs: offset inside skb->cb to store transport data at, must have 420 * space for at least two pointers 421 * @fw_reset_handshake: firmware supports reset flow handshake 422 * @queue_alloc_cmd_ver: queue allocation command version, set to 0 423 * for using the older SCD_QUEUE_CFG, set to the version of 424 * SCD_QUEUE_CONFIG_CMD otherwise. 425 */ 426 struct iwl_trans_config { 427 struct iwl_op_mode *op_mode; 428 429 u8 cmd_queue; 430 u8 cmd_fifo; 431 unsigned int cmd_q_wdg_timeout; 432 const u8 *no_reclaim_cmds; 433 unsigned int n_no_reclaim_cmds; 434 435 enum iwl_amsdu_size rx_buf_size; 436 bool bc_table_dword; 437 bool scd_set_active; 438 const struct iwl_hcmd_arr *command_groups; 439 int command_groups_size; 440 441 u8 cb_data_offs; 442 bool fw_reset_handshake; 443 u8 queue_alloc_cmd_ver; 444 }; 445 446 struct iwl_trans_dump_data { 447 u32 len; 448 u8 data[]; 449 }; 450 451 struct iwl_trans; 452 453 struct iwl_trans_txq_scd_cfg { 454 u8 fifo; 455 u8 sta_id; 456 u8 tid; 457 bool aggregate; 458 int frame_limit; 459 }; 460 461 /** 462 * struct iwl_trans_rxq_dma_data - RX queue DMA data 463 * @fr_bd_cb: DMA address of free BD cyclic buffer 464 * @fr_bd_wid: Initial write index of the free BD cyclic buffer 465 * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr 466 * @ur_bd_cb: DMA address of used BD cyclic buffer 467 */ 468 struct iwl_trans_rxq_dma_data { 469 u64 fr_bd_cb; 470 u32 fr_bd_wid; 471 u64 urbd_stts_wrptr; 472 u64 ur_bd_cb; 473 }; 474 475 /* maximal number of DRAM MAP entries supported by FW */ 476 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64 477 478 /** 479 * struct iwl_pnvm_image - contains info about the parsed pnvm image 480 * @chunks: array of pointers to pnvm payloads and their sizes 481 * @n_chunks: the number of the pnvm payloads. 482 * @version: the version of the loaded PNVM image 483 */ 484 struct iwl_pnvm_image { 485 struct { 486 const void *data; 487 u32 len; 488 } chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX]; 489 u32 n_chunks; 490 u32 version; 491 }; 492 493 /** 494 * struct iwl_trans_ops - transport specific operations 495 * 496 * All the handlers MUST be implemented 497 * 498 * @start_hw: starts the HW. From that point on, the HW can send interrupts. 499 * May sleep. 500 * @op_mode_leave: Turn off the HW RF kill indication if on 501 * May sleep 502 * @start_fw: allocates and inits all the resources for the transport 503 * layer. Also kick a fw image. 504 * May sleep 505 * @fw_alive: called when the fw sends alive notification. If the fw provides 506 * the SCD base address in SRAM, then provide it here, or 0 otherwise. 507 * May sleep 508 * @stop_device: stops the whole device (embedded CPU put to reset) and stops 509 * the HW. From that point on, the HW will be stopped but will still issue 510 * an interrupt if the HW RF kill switch is triggered. 511 * This callback must do the right thing and not crash even if %start_hw() 512 * was called but not &start_fw(). May sleep. 513 * @d3_suspend: put the device into the correct mode for WoWLAN during 514 * suspend. This is optional, if not implemented WoWLAN will not be 515 * supported. This callback may sleep. 516 * @d3_resume: resume the device after WoWLAN, enabling the opmode to 517 * talk to the WoWLAN image to get its status. This is optional, if not 518 * implemented WoWLAN will not be supported. This callback may sleep. 519 * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted. 520 * If RFkill is asserted in the middle of a SYNC host command, it must 521 * return -ERFKILL straight away. 522 * May sleep only if CMD_ASYNC is not set 523 * @tx: send an skb. The transport relies on the op_mode to zero the 524 * the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all 525 * the CSUM will be taken care of (TCP CSUM and IP header in case of 526 * IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP 527 * header if it is IPv4. 528 * Must be atomic 529 * @reclaim: free packet until ssn. Returns a list of freed packets. 530 * Must be atomic 531 * @txq_enable: setup a queue. To setup an AC queue, use the 532 * iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before 533 * this one. The op_mode must not configure the HCMD queue. The scheduler 534 * configuration may be %NULL, in which case the hardware will not be 535 * configured. If true is returned, the operation mode needs to increment 536 * the sequence number of the packets routed to this queue because of a 537 * hardware scheduler bug. May sleep. 538 * @txq_disable: de-configure a Tx queue to send AMPDUs 539 * Must be atomic 540 * @txq_set_shared_mode: change Tx queue shared/unshared marking 541 * @wait_tx_queues_empty: wait until tx queues are empty. May sleep. 542 * @wait_txq_empty: wait until specific tx queue is empty. May sleep. 543 * @freeze_txq_timer: prevents the timer of the queue from firing until the 544 * queue is set to awake. Must be atomic. 545 * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note 546 * that the transport needs to refcount the calls since this function 547 * will be called several times with block = true, and then the queues 548 * need to be unblocked only after the same number of calls with 549 * block = false. 550 * @write8: write a u8 to a register at offset ofs from the BAR 551 * @write32: write a u32 to a register at offset ofs from the BAR 552 * @read32: read a u32 register at offset ofs from the BAR 553 * @read_prph: read a DWORD from a periphery register 554 * @write_prph: write a DWORD to a periphery register 555 * @read_mem: read device's SRAM in DWORD 556 * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory 557 * will be zeroed. 558 * @read_config32: read a u32 value from the device's config space at 559 * the given offset. 560 * @configure: configure parameters required by the transport layer from 561 * the op_mode. May be called several times before start_fw, can't be 562 * called after that. 563 * @set_pmi: set the power pmi state 564 * @grab_nic_access: wake the NIC to be able to access non-HBUS regs. 565 * Sleeping is not allowed between grab_nic_access and 566 * release_nic_access. 567 * @release_nic_access: let the NIC go to sleep. The "flags" parameter 568 * must be the same one that was sent before to the grab_nic_access. 569 * @set_bits_mask - set SRAM register according to value and mask. 570 * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last 571 * TX'ed commands and similar. The buffer will be vfree'd by the caller. 572 * Note that the transport must fill in the proper file headers. 573 * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup 574 * of the trans debugfs 575 * @load_pnvm: save the pnvm data in DRAM 576 * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the 577 * context info. 578 * @load_reduce_power: copy reduce power table to the corresponding DRAM memory 579 * @set_reduce_power: set reduce power table addresses in the sratch buffer 580 * @interrupts: disable/enable interrupts to transport 581 */ 582 struct iwl_trans_ops { 583 584 int (*start_hw)(struct iwl_trans *iwl_trans); 585 void (*op_mode_leave)(struct iwl_trans *iwl_trans); 586 int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw, 587 bool run_in_rfkill); 588 void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr); 589 void (*stop_device)(struct iwl_trans *trans); 590 591 int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset); 592 int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status, 593 bool test, bool reset); 594 595 int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 596 597 int (*tx)(struct iwl_trans *trans, struct sk_buff *skb, 598 struct iwl_device_tx_cmd *dev_cmd, int queue); 599 void (*reclaim)(struct iwl_trans *trans, int queue, int ssn, 600 struct sk_buff_head *skbs); 601 602 void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr); 603 604 bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn, 605 const struct iwl_trans_txq_scd_cfg *cfg, 606 unsigned int queue_wdg_timeout); 607 void (*txq_disable)(struct iwl_trans *trans, int queue, 608 bool configure_scd); 609 /* 22000 functions */ 610 int (*txq_alloc)(struct iwl_trans *trans, u32 flags, 611 u32 sta_mask, u8 tid, 612 int size, unsigned int queue_wdg_timeout); 613 void (*txq_free)(struct iwl_trans *trans, int queue); 614 int (*rxq_dma_data)(struct iwl_trans *trans, int queue, 615 struct iwl_trans_rxq_dma_data *data); 616 617 void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id, 618 bool shared); 619 620 int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm); 621 int (*wait_txq_empty)(struct iwl_trans *trans, int queue); 622 void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs, 623 bool freeze); 624 void (*block_txq_ptrs)(struct iwl_trans *trans, bool block); 625 626 void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val); 627 void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val); 628 u32 (*read32)(struct iwl_trans *trans, u32 ofs); 629 u32 (*read_prph)(struct iwl_trans *trans, u32 ofs); 630 void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val); 631 int (*read_mem)(struct iwl_trans *trans, u32 addr, 632 void *buf, int dwords); 633 int (*write_mem)(struct iwl_trans *trans, u32 addr, 634 const void *buf, int dwords); 635 int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val); 636 void (*configure)(struct iwl_trans *trans, 637 const struct iwl_trans_config *trans_cfg); 638 void (*set_pmi)(struct iwl_trans *trans, bool state); 639 int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership); 640 bool (*grab_nic_access)(struct iwl_trans *trans); 641 void (*release_nic_access)(struct iwl_trans *trans); 642 void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask, 643 u32 value); 644 645 struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans, 646 u32 dump_mask, 647 const struct iwl_dump_sanitize_ops *sanitize_ops, 648 void *sanitize_ctx); 649 void (*debugfs_cleanup)(struct iwl_trans *trans); 650 void (*sync_nmi)(struct iwl_trans *trans); 651 int (*load_pnvm)(struct iwl_trans *trans, 652 const struct iwl_pnvm_image *pnvm_payloads, 653 const struct iwl_ucode_capabilities *capa); 654 void (*set_pnvm)(struct iwl_trans *trans, 655 const struct iwl_ucode_capabilities *capa); 656 int (*load_reduce_power)(struct iwl_trans *trans, 657 const struct iwl_pnvm_image *payloads, 658 const struct iwl_ucode_capabilities *capa); 659 void (*set_reduce_power)(struct iwl_trans *trans, 660 const struct iwl_ucode_capabilities *capa); 661 662 void (*interrupts)(struct iwl_trans *trans, bool enable); 663 int (*imr_dma_data)(struct iwl_trans *trans, 664 u32 dst_addr, u64 src_addr, 665 u32 byte_cnt); 666 667 }; 668 669 /** 670 * enum iwl_trans_state - state of the transport layer 671 * 672 * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed 673 * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet 674 * @IWL_TRANS_FW_ALIVE: FW has sent an alive response 675 */ 676 enum iwl_trans_state { 677 IWL_TRANS_NO_FW, 678 IWL_TRANS_FW_STARTED, 679 IWL_TRANS_FW_ALIVE, 680 }; 681 682 /** 683 * DOC: Platform power management 684 * 685 * In system-wide power management the entire platform goes into a low 686 * power state (e.g. idle or suspend to RAM) at the same time and the 687 * device is configured as a wakeup source for the entire platform. 688 * This is usually triggered by userspace activity (e.g. the user 689 * presses the suspend button or a power management daemon decides to 690 * put the platform in low power mode). The device's behavior in this 691 * mode is dictated by the wake-on-WLAN configuration. 692 * 693 * The terms used for the device's behavior are as follows: 694 * 695 * - D0: the device is fully powered and the host is awake; 696 * - D3: the device is in low power mode and only reacts to 697 * specific events (e.g. magic-packet received or scan 698 * results found); 699 * 700 * These terms reflect the power modes in the firmware and are not to 701 * be confused with the physical device power state. 702 */ 703 704 /** 705 * enum iwl_plat_pm_mode - platform power management mode 706 * 707 * This enumeration describes the device's platform power management 708 * behavior when in system-wide suspend (i.e WoWLAN). 709 * 710 * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this 711 * device. In system-wide suspend mode, it means that the all 712 * connections will be closed automatically by mac80211 before 713 * the platform is suspended. 714 * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN). 715 */ 716 enum iwl_plat_pm_mode { 717 IWL_PLAT_PM_MODE_DISABLED, 718 IWL_PLAT_PM_MODE_D3, 719 }; 720 721 /** 722 * enum iwl_ini_cfg_state 723 * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given 724 * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded 725 * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs 726 * are corrupted. The rest of the debug TLVs will still be used 727 */ 728 enum iwl_ini_cfg_state { 729 IWL_INI_CFG_STATE_NOT_LOADED, 730 IWL_INI_CFG_STATE_LOADED, 731 IWL_INI_CFG_STATE_CORRUPTED, 732 }; 733 734 /* Max time to wait for nmi interrupt */ 735 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4) 736 737 /** 738 * struct iwl_dram_data 739 * @physical: page phy pointer 740 * @block: pointer to the allocated block/page 741 * @size: size of the block/page 742 */ 743 struct iwl_dram_data { 744 dma_addr_t physical; 745 void *block; 746 int size; 747 }; 748 749 /** 750 * @drams: array of several DRAM areas that contains the pnvm and power 751 * reduction table payloads. 752 * @n_regions: number of DRAM regions that were allocated 753 * @prph_scratch_mem_desc: points to a structure allocated in dram, 754 * designed to show FW where all the payloads are. 755 */ 756 struct iwl_dram_regions { 757 struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX]; 758 struct iwl_dram_data prph_scratch_mem_desc; 759 u8 n_regions; 760 }; 761 762 /** 763 * struct iwl_fw_mon - fw monitor per allocation id 764 * @num_frags: number of fragments 765 * @frags: an array of DRAM buffer fragments 766 */ 767 struct iwl_fw_mon { 768 u32 num_frags; 769 struct iwl_dram_data *frags; 770 }; 771 772 /** 773 * struct iwl_self_init_dram - dram data used by self init process 774 * @fw: lmac and umac dram data 775 * @fw_cnt: total number of items in array 776 * @paging: paging dram data 777 * @paging_cnt: total number of items in array 778 */ 779 struct iwl_self_init_dram { 780 struct iwl_dram_data *fw; 781 int fw_cnt; 782 struct iwl_dram_data *paging; 783 int paging_cnt; 784 }; 785 786 /** 787 * struct iwl_imr_data - imr dram data used during debug process 788 * @imr_enable: imr enable status received from fw 789 * @imr_size: imr dram size received from fw 790 * @sram_addr: sram address from debug tlv 791 * @sram_size: sram size from debug tlv 792 * @imr2sram_remainbyte`: size remained after each dma transfer 793 * @imr_curr_addr: current dst address used during dma transfer 794 * @imr_base_addr: imr address received from fw 795 */ 796 struct iwl_imr_data { 797 u32 imr_enable; 798 u32 imr_size; 799 u32 sram_addr; 800 u32 sram_size; 801 u32 imr2sram_remainbyte; 802 u64 imr_curr_addr; 803 __le64 imr_base_addr; 804 }; 805 806 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES 32 807 808 /** 809 * struct iwl_pc_data - program counter details 810 * @pc_name: cpu name 811 * @pc_address: cpu program counter 812 */ 813 struct iwl_pc_data { 814 u8 pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES]; 815 u32 pc_address; 816 }; 817 818 /** 819 * struct iwl_trans_debug - transport debug related data 820 * 821 * @n_dest_reg: num of reg_ops in %dbg_dest_tlv 822 * @rec_on: true iff there is a fw debug recording currently active 823 * @dest_tlv: points to the destination TLV for debug 824 * @conf_tlv: array of pointers to configuration TLVs for debug 825 * @trigger_tlv: array of pointers to triggers TLVs for debug 826 * @lmac_error_event_table: addrs of lmacs error tables 827 * @umac_error_event_table: addr of umac error table 828 * @tcm_error_event_table: address(es) of TCM error table(s) 829 * @rcm_error_event_table: address(es) of RCM error table(s) 830 * @error_event_table_tlv_status: bitmap that indicates what error table 831 * pointers was recevied via TLV. uses enum &iwl_error_event_table_status 832 * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state 833 * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state 834 * @fw_mon_cfg: debug buffer allocation configuration 835 * @fw_mon_ini: DRAM buffer fragments per allocation id 836 * @fw_mon: DRAM buffer for firmware monitor 837 * @hw_error: equals true if hw error interrupt was received from the FW 838 * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location 839 * @active_regions: active regions 840 * @debug_info_tlv_list: list of debug info TLVs 841 * @time_point: array of debug time points 842 * @periodic_trig_list: periodic triggers list 843 * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON 844 * @ucode_preset: preset based on ucode 845 * @dump_file_name_ext: dump file name extension 846 * @dump_file_name_ext_valid: dump file name extension if valid or not 847 * @num_pc: number of program counter for cpu 848 * @pc_data: details of the program counter 849 */ 850 struct iwl_trans_debug { 851 u8 n_dest_reg; 852 bool rec_on; 853 854 const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv; 855 const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX]; 856 struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv; 857 858 u32 lmac_error_event_table[2]; 859 u32 umac_error_event_table; 860 u32 tcm_error_event_table[2]; 861 u32 rcm_error_event_table[2]; 862 unsigned int error_event_table_tlv_status; 863 864 enum iwl_ini_cfg_state internal_ini_cfg; 865 enum iwl_ini_cfg_state external_ini_cfg; 866 867 struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM]; 868 struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM]; 869 870 struct iwl_dram_data fw_mon; 871 872 bool hw_error; 873 enum iwl_fw_ini_buffer_location ini_dest; 874 875 u64 unsupported_region_msk; 876 struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID]; 877 struct list_head debug_info_tlv_list; 878 struct iwl_dbg_tlv_time_point_data 879 time_point[IWL_FW_INI_TIME_POINT_NUM]; 880 struct list_head periodic_trig_list; 881 882 u32 domains_bitmap; 883 u32 ucode_preset; 884 bool restart_required; 885 u32 last_tp_resetfw; 886 struct iwl_imr_data imr_data; 887 u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME]; 888 bool dump_file_name_ext_valid; 889 u32 num_pc; 890 struct iwl_pc_data *pc_data; 891 }; 892 893 struct iwl_dma_ptr { 894 dma_addr_t dma; 895 void *addr; 896 size_t size; 897 }; 898 899 struct iwl_cmd_meta { 900 /* only for SYNC commands, iff the reply skb is wanted */ 901 struct iwl_host_cmd *source; 902 u32 flags; 903 u32 tbs; 904 }; 905 906 /* 907 * The FH will write back to the first TB only, so we need to copy some data 908 * into the buffer regardless of whether it should be mapped or not. 909 * This indicates how big the first TB must be to include the scratch buffer 910 * and the assigned PN. 911 * Since PN location is 8 bytes at offset 12, it's 20 now. 912 * If we make it bigger then allocations will be bigger and copy slower, so 913 * that's probably not useful. 914 */ 915 #define IWL_FIRST_TB_SIZE 20 916 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64) 917 918 struct iwl_pcie_txq_entry { 919 void *cmd; 920 struct sk_buff *skb; 921 /* buffer to free after command completes */ 922 const void *free_buf; 923 struct iwl_cmd_meta meta; 924 }; 925 926 struct iwl_pcie_first_tb_buf { 927 u8 buf[IWL_FIRST_TB_SIZE_ALIGN]; 928 }; 929 930 /** 931 * struct iwl_txq - Tx Queue for DMA 932 * @q: generic Rx/Tx queue descriptor 933 * @tfds: transmit frame descriptors (DMA memory) 934 * @first_tb_bufs: start of command headers, including scratch buffers, for 935 * the writeback -- this is DMA memory and an array holding one buffer 936 * for each command on the queue 937 * @first_tb_dma: DMA address for the first_tb_bufs start 938 * @entries: transmit entries (driver state) 939 * @lock: queue lock 940 * @stuck_timer: timer that fires if queue gets stuck 941 * @trans: pointer back to transport (for timer) 942 * @need_update: indicates need to update read/write index 943 * @ampdu: true if this queue is an ampdu queue for an specific RA/TID 944 * @wd_timeout: queue watchdog timeout (jiffies) - per queue 945 * @frozen: tx stuck queue timer is frozen 946 * @frozen_expiry_remainder: remember how long until the timer fires 947 * @bc_tbl: byte count table of the queue (relevant only for gen2 transport) 948 * @write_ptr: 1-st empty entry (index) host_w 949 * @read_ptr: last used entry (index) host_r 950 * @dma_addr: physical addr for BD's 951 * @n_window: safe queue window 952 * @id: queue id 953 * @low_mark: low watermark, resume queue if free space more than this 954 * @high_mark: high watermark, stop queue if free space less than this 955 * 956 * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame 957 * descriptors) and required locking structures. 958 * 959 * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware 960 * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless 961 * there might be HW changes in the future). For the normal TX 962 * queues, n_window, which is the size of the software queue data 963 * is also 256; however, for the command queue, n_window is only 964 * 32 since we don't need so many commands pending. Since the HW 965 * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256. 966 * This means that we end up with the following: 967 * HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 | 968 * SW entries: | 0 | ... | 31 | 969 * where N is a number between 0 and 7. This means that the SW 970 * data is a window overlayed over the HW queue. 971 */ 972 struct iwl_txq { 973 void *tfds; 974 struct iwl_pcie_first_tb_buf *first_tb_bufs; 975 dma_addr_t first_tb_dma; 976 struct iwl_pcie_txq_entry *entries; 977 /* lock for syncing changes on the queue */ 978 spinlock_t lock; 979 unsigned long frozen_expiry_remainder; 980 struct timer_list stuck_timer; 981 struct iwl_trans *trans; 982 bool need_update; 983 bool frozen; 984 bool ampdu; 985 int block; 986 unsigned long wd_timeout; 987 struct sk_buff_head overflow_q; 988 struct iwl_dma_ptr bc_tbl; 989 990 int write_ptr; 991 int read_ptr; 992 dma_addr_t dma_addr; 993 int n_window; 994 u32 id; 995 int low_mark; 996 int high_mark; 997 998 bool overflow_tx; 999 }; 1000 1001 /** 1002 * struct iwl_trans_txqs - transport tx queues data 1003 * 1004 * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes) 1005 * @page_offs: offset from skb->cb to mac header page pointer 1006 * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer 1007 * @queue_used - bit mask of used queues 1008 * @queue_stopped - bit mask of stopped queues 1009 * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler 1010 * @queue_alloc_cmd_ver: queue allocation command version 1011 */ 1012 struct iwl_trans_txqs { 1013 unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 1014 unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)]; 1015 struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES]; 1016 struct dma_pool *bc_pool; 1017 size_t bc_tbl_size; 1018 bool bc_table_dword; 1019 u8 page_offs; 1020 u8 dev_cmd_offs; 1021 struct iwl_tso_hdr_page __percpu *tso_hdr_page; 1022 1023 struct { 1024 u8 fifo; 1025 u8 q_id; 1026 unsigned int wdg_timeout; 1027 } cmd; 1028 1029 struct { 1030 u8 max_tbs; 1031 u16 size; 1032 u8 addr_size; 1033 } tfd; 1034 1035 struct iwl_dma_ptr scd_bc_tbls; 1036 1037 u8 queue_alloc_cmd_ver; 1038 }; 1039 1040 /** 1041 * struct iwl_trans - transport common data 1042 * 1043 * @csme_own - true if we couldn't get ownership on the device 1044 * @ops - pointer to iwl_trans_ops 1045 * @op_mode - pointer to the op_mode 1046 * @trans_cfg: the trans-specific configuration part 1047 * @cfg - pointer to the configuration 1048 * @drv - pointer to iwl_drv 1049 * @status: a bit-mask of transport status flags 1050 * @dev - pointer to struct device * that represents the device 1051 * @max_skb_frags: maximum number of fragments an SKB can have when transmitted. 1052 * 0 indicates that frag SKBs (NETIF_F_SG) aren't supported. 1053 * @hw_rf_id a u32 with the device RF ID 1054 * @hw_crf_id a u32 with the device CRF ID 1055 * @hw_wfpm_id a u32 with the device wfpm ID 1056 * @hw_id: a u32 with the ID of the device / sub-device. 1057 * Set during transport allocation. 1058 * @hw_id_str: a string with info about HW ID. Set during transport allocation. 1059 * @hw_rev_step: The mac step of the HW 1060 * @pm_support: set to true in start_hw if link pm is supported 1061 * @ltr_enabled: set to true if the LTR is enabled 1062 * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed 1063 * @failed_to_load_reduce_power_image: set to true if pnvm loading failed 1064 * @wide_cmd_header: true when ucode supports wide command header format 1065 * @wait_command_queue: wait queue for sync commands 1066 * @num_rx_queues: number of RX queues allocated by the transport; 1067 * the transport must set this before calling iwl_drv_start() 1068 * @iml_len: the length of the image loader 1069 * @iml: a pointer to the image loader itself 1070 * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only. 1071 * The user should use iwl_trans_{alloc,free}_tx_cmd. 1072 * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before 1073 * starting the firmware, used for tracing 1074 * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the 1075 * start of the 802.11 header in the @rx_mpdu_cmd 1076 * @dflt_pwr_limit: default power limit fetched from the platform (ACPI) 1077 * @system_pm_mode: the system-wide power management mode in use. 1078 * This mode is set dynamically, depending on the WoWLAN values 1079 * configured from the userspace at runtime. 1080 * @iwl_trans_txqs: transport tx queues data. 1081 * @mbx_addr_0_step: step address data 0 1082 * @mbx_addr_1_step: step address data 1 1083 * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*), 1084 * only valid for discrete (not integrated) NICs 1085 */ 1086 struct iwl_trans { 1087 bool csme_own; 1088 const struct iwl_trans_ops *ops; 1089 struct iwl_op_mode *op_mode; 1090 const struct iwl_cfg_trans_params *trans_cfg; 1091 const struct iwl_cfg *cfg; 1092 struct iwl_drv *drv; 1093 enum iwl_trans_state state; 1094 unsigned long status; 1095 1096 struct device *dev; 1097 u32 max_skb_frags; 1098 u32 hw_rev; 1099 u32 hw_rev_step; 1100 u32 hw_rf_id; 1101 u32 hw_crf_id; 1102 u32 hw_cnv_id; 1103 u32 hw_wfpm_id; 1104 u32 hw_id; 1105 char hw_id_str[52]; 1106 u32 sku_id[3]; 1107 1108 u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size; 1109 1110 bool pm_support; 1111 bool ltr_enabled; 1112 u8 pnvm_loaded:1; 1113 u8 fail_to_parse_pnvm_image:1; 1114 u8 reduce_power_loaded:1; 1115 u8 failed_to_load_reduce_power_image:1; 1116 1117 const struct iwl_hcmd_arr *command_groups; 1118 int command_groups_size; 1119 bool wide_cmd_header; 1120 1121 wait_queue_head_t wait_command_queue; 1122 u8 num_rx_queues; 1123 1124 size_t iml_len; 1125 u8 *iml; 1126 1127 /* The following fields are internal only */ 1128 struct kmem_cache *dev_cmd_pool; 1129 char dev_cmd_pool_name[50]; 1130 1131 struct dentry *dbgfs_dir; 1132 1133 #ifdef CONFIG_LOCKDEP 1134 struct lockdep_map sync_cmd_lockdep_map; 1135 #endif 1136 1137 struct iwl_trans_debug dbg; 1138 struct iwl_self_init_dram init_dram; 1139 1140 enum iwl_plat_pm_mode system_pm_mode; 1141 1142 const char *name; 1143 struct iwl_trans_txqs txqs; 1144 u32 mbx_addr_0_step; 1145 u32 mbx_addr_1_step; 1146 1147 u8 pcie_link_speed; 1148 1149 /* pointer to trans specific struct */ 1150 /*Ensure that this pointer will always be aligned to sizeof pointer */ 1151 char trans_specific[] __aligned(sizeof(void *)); 1152 }; 1153 1154 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id); 1155 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans); 1156 1157 static inline void iwl_trans_configure(struct iwl_trans *trans, 1158 const struct iwl_trans_config *trans_cfg) 1159 { 1160 trans->op_mode = trans_cfg->op_mode; 1161 1162 trans->ops->configure(trans, trans_cfg); 1163 WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg)); 1164 } 1165 1166 static inline int iwl_trans_start_hw(struct iwl_trans *trans) 1167 { 1168 might_sleep(); 1169 1170 return trans->ops->start_hw(trans); 1171 } 1172 1173 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans) 1174 { 1175 might_sleep(); 1176 1177 if (trans->ops->op_mode_leave) 1178 trans->ops->op_mode_leave(trans); 1179 1180 trans->op_mode = NULL; 1181 1182 trans->state = IWL_TRANS_NO_FW; 1183 } 1184 1185 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr) 1186 { 1187 might_sleep(); 1188 1189 trans->state = IWL_TRANS_FW_ALIVE; 1190 1191 trans->ops->fw_alive(trans, scd_addr); 1192 } 1193 1194 static inline int iwl_trans_start_fw(struct iwl_trans *trans, 1195 const struct fw_img *fw, 1196 bool run_in_rfkill) 1197 { 1198 int ret; 1199 1200 might_sleep(); 1201 1202 WARN_ON_ONCE(!trans->rx_mpdu_cmd); 1203 1204 clear_bit(STATUS_FW_ERROR, &trans->status); 1205 ret = trans->ops->start_fw(trans, fw, run_in_rfkill); 1206 if (ret == 0) 1207 trans->state = IWL_TRANS_FW_STARTED; 1208 1209 return ret; 1210 } 1211 1212 static inline void iwl_trans_stop_device(struct iwl_trans *trans) 1213 { 1214 might_sleep(); 1215 1216 trans->ops->stop_device(trans); 1217 1218 trans->state = IWL_TRANS_NO_FW; 1219 } 1220 1221 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test, 1222 bool reset) 1223 { 1224 might_sleep(); 1225 if (!trans->ops->d3_suspend) 1226 return -EOPNOTSUPP; 1227 1228 return trans->ops->d3_suspend(trans, test, reset); 1229 } 1230 1231 static inline int iwl_trans_d3_resume(struct iwl_trans *trans, 1232 enum iwl_d3_status *status, 1233 bool test, bool reset) 1234 { 1235 might_sleep(); 1236 if (!trans->ops->d3_resume) 1237 return -EOPNOTSUPP; 1238 1239 return trans->ops->d3_resume(trans, status, test, reset); 1240 } 1241 1242 static inline struct iwl_trans_dump_data * 1243 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask, 1244 const struct iwl_dump_sanitize_ops *sanitize_ops, 1245 void *sanitize_ctx) 1246 { 1247 if (!trans->ops->dump_data) 1248 return NULL; 1249 return trans->ops->dump_data(trans, dump_mask, 1250 sanitize_ops, sanitize_ctx); 1251 } 1252 1253 static inline struct iwl_device_tx_cmd * 1254 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans) 1255 { 1256 return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC); 1257 } 1258 1259 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd); 1260 1261 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans, 1262 struct iwl_device_tx_cmd *dev_cmd) 1263 { 1264 kmem_cache_free(trans->dev_cmd_pool, dev_cmd); 1265 } 1266 1267 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb, 1268 struct iwl_device_tx_cmd *dev_cmd, int queue) 1269 { 1270 if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status))) 1271 return -EIO; 1272 1273 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1274 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1275 return -EIO; 1276 } 1277 1278 return trans->ops->tx(trans, skb, dev_cmd, queue); 1279 } 1280 1281 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue, 1282 int ssn, struct sk_buff_head *skbs) 1283 { 1284 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1285 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1286 return; 1287 } 1288 1289 trans->ops->reclaim(trans, queue, ssn, skbs); 1290 } 1291 1292 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue, 1293 int ptr) 1294 { 1295 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1296 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1297 return; 1298 } 1299 1300 trans->ops->set_q_ptrs(trans, queue, ptr); 1301 } 1302 1303 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue, 1304 bool configure_scd) 1305 { 1306 trans->ops->txq_disable(trans, queue, configure_scd); 1307 } 1308 1309 static inline bool 1310 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn, 1311 const struct iwl_trans_txq_scd_cfg *cfg, 1312 unsigned int queue_wdg_timeout) 1313 { 1314 might_sleep(); 1315 1316 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1317 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1318 return false; 1319 } 1320 1321 return trans->ops->txq_enable(trans, queue, ssn, 1322 cfg, queue_wdg_timeout); 1323 } 1324 1325 static inline int 1326 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue, 1327 struct iwl_trans_rxq_dma_data *data) 1328 { 1329 if (WARN_ON_ONCE(!trans->ops->rxq_dma_data)) 1330 return -ENOTSUPP; 1331 1332 return trans->ops->rxq_dma_data(trans, queue, data); 1333 } 1334 1335 static inline void 1336 iwl_trans_txq_free(struct iwl_trans *trans, int queue) 1337 { 1338 if (WARN_ON_ONCE(!trans->ops->txq_free)) 1339 return; 1340 1341 trans->ops->txq_free(trans, queue); 1342 } 1343 1344 static inline int 1345 iwl_trans_txq_alloc(struct iwl_trans *trans, 1346 u32 flags, u32 sta_mask, u8 tid, 1347 int size, unsigned int wdg_timeout) 1348 { 1349 might_sleep(); 1350 1351 if (WARN_ON_ONCE(!trans->ops->txq_alloc)) 1352 return -ENOTSUPP; 1353 1354 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1355 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1356 return -EIO; 1357 } 1358 1359 return trans->ops->txq_alloc(trans, flags, sta_mask, tid, 1360 size, wdg_timeout); 1361 } 1362 1363 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans, 1364 int queue, bool shared_mode) 1365 { 1366 if (trans->ops->txq_set_shared_mode) 1367 trans->ops->txq_set_shared_mode(trans, queue, shared_mode); 1368 } 1369 1370 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue, 1371 int fifo, int sta_id, int tid, 1372 int frame_limit, u16 ssn, 1373 unsigned int queue_wdg_timeout) 1374 { 1375 struct iwl_trans_txq_scd_cfg cfg = { 1376 .fifo = fifo, 1377 .sta_id = sta_id, 1378 .tid = tid, 1379 .frame_limit = frame_limit, 1380 .aggregate = sta_id >= 0, 1381 }; 1382 1383 iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout); 1384 } 1385 1386 static inline 1387 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo, 1388 unsigned int queue_wdg_timeout) 1389 { 1390 struct iwl_trans_txq_scd_cfg cfg = { 1391 .fifo = fifo, 1392 .sta_id = -1, 1393 .tid = IWL_MAX_TID_COUNT, 1394 .frame_limit = IWL_FRAME_LIMIT, 1395 .aggregate = false, 1396 }; 1397 1398 iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout); 1399 } 1400 1401 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans, 1402 unsigned long txqs, 1403 bool freeze) 1404 { 1405 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1406 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1407 return; 1408 } 1409 1410 if (trans->ops->freeze_txq_timer) 1411 trans->ops->freeze_txq_timer(trans, txqs, freeze); 1412 } 1413 1414 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans, 1415 bool block) 1416 { 1417 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1418 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1419 return; 1420 } 1421 1422 if (trans->ops->block_txq_ptrs) 1423 trans->ops->block_txq_ptrs(trans, block); 1424 } 1425 1426 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans, 1427 u32 txqs) 1428 { 1429 if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty)) 1430 return -ENOTSUPP; 1431 1432 /* No need to wait if the firmware is not alive */ 1433 if (trans->state != IWL_TRANS_FW_ALIVE) { 1434 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1435 return -EIO; 1436 } 1437 1438 return trans->ops->wait_tx_queues_empty(trans, txqs); 1439 } 1440 1441 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue) 1442 { 1443 if (WARN_ON_ONCE(!trans->ops->wait_txq_empty)) 1444 return -ENOTSUPP; 1445 1446 if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) { 1447 IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state); 1448 return -EIO; 1449 } 1450 1451 return trans->ops->wait_txq_empty(trans, queue); 1452 } 1453 1454 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val) 1455 { 1456 trans->ops->write8(trans, ofs, val); 1457 } 1458 1459 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val) 1460 { 1461 trans->ops->write32(trans, ofs, val); 1462 } 1463 1464 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs) 1465 { 1466 return trans->ops->read32(trans, ofs); 1467 } 1468 1469 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs) 1470 { 1471 return trans->ops->read_prph(trans, ofs); 1472 } 1473 1474 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs, 1475 u32 val) 1476 { 1477 return trans->ops->write_prph(trans, ofs, val); 1478 } 1479 1480 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr, 1481 void *buf, int dwords) 1482 { 1483 return trans->ops->read_mem(trans, addr, buf, dwords); 1484 } 1485 1486 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize) \ 1487 do { \ 1488 if (__builtin_constant_p(bufsize)) \ 1489 BUILD_BUG_ON((bufsize) % sizeof(u32)); \ 1490 iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\ 1491 } while (0) 1492 1493 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans, 1494 u32 dst_addr, u64 src_addr, 1495 u32 byte_cnt) 1496 { 1497 if (trans->ops->imr_dma_data) 1498 return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt); 1499 return 0; 1500 } 1501 1502 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr) 1503 { 1504 u32 value; 1505 1506 if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1))) 1507 return 0xa5a5a5a5; 1508 1509 return value; 1510 } 1511 1512 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr, 1513 const void *buf, int dwords) 1514 { 1515 return trans->ops->write_mem(trans, addr, buf, dwords); 1516 } 1517 1518 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr, 1519 u32 val) 1520 { 1521 return iwl_trans_write_mem(trans, addr, &val, 1); 1522 } 1523 1524 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state) 1525 { 1526 if (trans->ops->set_pmi) 1527 trans->ops->set_pmi(trans, state); 1528 } 1529 1530 static inline int iwl_trans_sw_reset(struct iwl_trans *trans, 1531 bool retake_ownership) 1532 { 1533 if (trans->ops->sw_reset) 1534 return trans->ops->sw_reset(trans, retake_ownership); 1535 return 0; 1536 } 1537 1538 static inline void 1539 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value) 1540 { 1541 trans->ops->set_bits_mask(trans, reg, mask, value); 1542 } 1543 1544 #define iwl_trans_grab_nic_access(trans) \ 1545 __cond_lock(nic_access, \ 1546 likely((trans)->ops->grab_nic_access(trans))) 1547 1548 static inline void __releases(nic_access) 1549 iwl_trans_release_nic_access(struct iwl_trans *trans) 1550 { 1551 trans->ops->release_nic_access(trans); 1552 __release(nic_access); 1553 } 1554 1555 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync) 1556 { 1557 if (WARN_ON_ONCE(!trans->op_mode)) 1558 return; 1559 1560 /* prevent double restarts due to the same erroneous FW */ 1561 if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) { 1562 iwl_op_mode_nic_error(trans->op_mode, sync); 1563 trans->state = IWL_TRANS_NO_FW; 1564 } 1565 } 1566 1567 static inline bool iwl_trans_fw_running(struct iwl_trans *trans) 1568 { 1569 return trans->state == IWL_TRANS_FW_ALIVE; 1570 } 1571 1572 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans) 1573 { 1574 if (trans->ops->sync_nmi) 1575 trans->ops->sync_nmi(trans); 1576 } 1577 1578 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr, 1579 u32 sw_err_bit); 1580 1581 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans, 1582 const struct iwl_pnvm_image *pnvm_data, 1583 const struct iwl_ucode_capabilities *capa) 1584 { 1585 return trans->ops->load_pnvm(trans, pnvm_data, capa); 1586 } 1587 1588 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans, 1589 const struct iwl_ucode_capabilities *capa) 1590 { 1591 if (trans->ops->set_pnvm) 1592 trans->ops->set_pnvm(trans, capa); 1593 } 1594 1595 static inline int iwl_trans_load_reduce_power 1596 (struct iwl_trans *trans, 1597 const struct iwl_pnvm_image *payloads, 1598 const struct iwl_ucode_capabilities *capa) 1599 { 1600 return trans->ops->load_reduce_power(trans, payloads, capa); 1601 } 1602 1603 static inline void 1604 iwl_trans_set_reduce_power(struct iwl_trans *trans, 1605 const struct iwl_ucode_capabilities *capa) 1606 { 1607 if (trans->ops->set_reduce_power) 1608 trans->ops->set_reduce_power(trans, capa); 1609 } 1610 1611 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans) 1612 { 1613 return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED || 1614 trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED; 1615 } 1616 1617 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable) 1618 { 1619 if (trans->ops->interrupts) 1620 trans->ops->interrupts(trans, enable); 1621 } 1622 1623 /***************************************************** 1624 * transport helper functions 1625 *****************************************************/ 1626 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size, 1627 struct device *dev, 1628 const struct iwl_trans_ops *ops, 1629 const struct iwl_cfg_trans_params *cfg_trans); 1630 int iwl_trans_init(struct iwl_trans *trans); 1631 void iwl_trans_free(struct iwl_trans *trans); 1632 1633 static inline bool iwl_trans_is_hw_error_value(u32 val) 1634 { 1635 return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50); 1636 } 1637 1638 /***************************************************** 1639 * driver (transport) register/unregister functions 1640 ******************************************************/ 1641 int __must_check iwl_pci_register_driver(void); 1642 void iwl_pci_unregister_driver(void); 1643 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan); 1644 1645 #endif /* __iwl_trans_h__ */ 1646