xref: /freebsd/sys/contrib/dev/iwlwifi/iwl-trans.h (revision 5e3934b15a2741b2de6b217e77dc9d798d740804)
1 /* SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause */
2 /*
3  * Copyright (C) 2005-2014, 2018-2022 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #ifndef __iwl_trans_h__
8 #define __iwl_trans_h__
9 
10 #include <linux/ieee80211.h>
11 #include <linux/mm.h> /* for page_address */
12 #include <linux/lockdep.h>
13 #include <linux/kernel.h>
14 
15 #include "iwl-debug.h"
16 #include "iwl-config.h"
17 #include "fw/img.h"
18 #include "iwl-op-mode.h"
19 #include <linux/firmware.h>
20 #include "fw/api/cmdhdr.h"
21 #include "fw/api/txq.h"
22 #include "fw/api/dbg-tlv.h"
23 #include "iwl-dbg-tlv.h"
24 #if defined(__FreeBSD__)
25 #include <linux/skbuff.h>
26 #include "iwl-modparams.h"
27 #endif
28 
29 /**
30  * DOC: Transport layer - what is it ?
31  *
32  * The transport layer is the layer that deals with the HW directly. It provides
33  * an abstraction of the underlying HW to the upper layer. The transport layer
34  * doesn't provide any policy, algorithm or anything of this kind, but only
35  * mechanisms to make the HW do something. It is not completely stateless but
36  * close to it.
37  * We will have an implementation for each different supported bus.
38  */
39 
40 /**
41  * DOC: Life cycle of the transport layer
42  *
43  * The transport layer has a very precise life cycle.
44  *
45  *	1) A helper function is called during the module initialization and
46  *	   registers the bus driver's ops with the transport's alloc function.
47  *	2) Bus's probe calls to the transport layer's allocation functions.
48  *	   Of course this function is bus specific.
49  *	3) This allocation functions will spawn the upper layer which will
50  *	   register mac80211.
51  *
52  *	4) At some point (i.e. mac80211's start call), the op_mode will call
53  *	   the following sequence:
54  *	   start_hw
55  *	   start_fw
56  *
57  *	5) Then when finished (or reset):
58  *	   stop_device
59  *
60  *	6) Eventually, the free function will be called.
61  */
62 
63 #define IWL_TRANS_FW_DBG_DOMAIN(trans)	IWL_FW_INI_DOMAIN_ALWAYS_ON
64 
65 #define FH_RSCSR_FRAME_SIZE_MSK		0x00003FFF	/* bits 0-13 */
66 #define FH_RSCSR_FRAME_INVALID		0x55550000
67 #define FH_RSCSR_FRAME_ALIGN		0x40
68 #define FH_RSCSR_RPA_EN			BIT(25)
69 #define FH_RSCSR_RADA_EN		BIT(26)
70 #define FH_RSCSR_RXQ_POS		16
71 #define FH_RSCSR_RXQ_MASK		0x3F0000
72 
73 struct iwl_rx_packet {
74 	/*
75 	 * The first 4 bytes of the RX frame header contain both the RX frame
76 	 * size and some flags.
77 	 * Bit fields:
78 	 * 31:    flag flush RB request
79 	 * 30:    flag ignore TC (terminal counter) request
80 	 * 29:    flag fast IRQ request
81 	 * 28-27: Reserved
82 	 * 26:    RADA enabled
83 	 * 25:    Offload enabled
84 	 * 24:    RPF enabled
85 	 * 23:    RSS enabled
86 	 * 22:    Checksum enabled
87 	 * 21-16: RX queue
88 	 * 15-14: Reserved
89 	 * 13-00: RX frame size
90 	 */
91 	__le32 len_n_flags;
92 	struct iwl_cmd_header hdr;
93 	u8 data[];
94 } __packed;
95 
96 static inline u32 iwl_rx_packet_len(const struct iwl_rx_packet *pkt)
97 {
98 	return le32_to_cpu(pkt->len_n_flags) & FH_RSCSR_FRAME_SIZE_MSK;
99 }
100 
101 static inline u32 iwl_rx_packet_payload_len(const struct iwl_rx_packet *pkt)
102 {
103 	return iwl_rx_packet_len(pkt) - sizeof(pkt->hdr);
104 }
105 
106 /**
107  * enum CMD_MODE - how to send the host commands ?
108  *
109  * @CMD_ASYNC: Return right away and don't wait for the response
110  * @CMD_WANT_SKB: Not valid with CMD_ASYNC. The caller needs the buffer of
111  *	the response. The caller needs to call iwl_free_resp when done.
112  * @CMD_WANT_ASYNC_CALLBACK: the op_mode's async callback function must be
113  *	called after this command completes. Valid only with CMD_ASYNC.
114  * @CMD_SEND_IN_D3: Allow the command to be sent in D3 mode, relevant to
115  *	SUSPEND and RESUME commands. We are in D3 mode when we set
116  *	trans->system_pm_mode to IWL_PLAT_PM_MODE_D3.
117  */
118 enum CMD_MODE {
119 	CMD_ASYNC		= BIT(0),
120 	CMD_WANT_SKB		= BIT(1),
121 	CMD_SEND_IN_RFKILL	= BIT(2),
122 	CMD_WANT_ASYNC_CALLBACK	= BIT(3),
123 	CMD_SEND_IN_D3          = BIT(4),
124 };
125 
126 #define DEF_CMD_PAYLOAD_SIZE 320
127 
128 /**
129  * struct iwl_device_cmd
130  *
131  * For allocation of the command and tx queues, this establishes the overall
132  * size of the largest command we send to uCode, except for commands that
133  * aren't fully copied and use other TFD space.
134  */
135 struct iwl_device_cmd {
136 	union {
137 		struct {
138 			struct iwl_cmd_header hdr;	/* uCode API */
139 			u8 payload[DEF_CMD_PAYLOAD_SIZE];
140 		};
141 		struct {
142 			struct iwl_cmd_header_wide hdr_wide;
143 			u8 payload_wide[DEF_CMD_PAYLOAD_SIZE -
144 					sizeof(struct iwl_cmd_header_wide) +
145 					sizeof(struct iwl_cmd_header)];
146 		};
147 	};
148 } __packed;
149 
150 /**
151  * struct iwl_device_tx_cmd - buffer for TX command
152  * @hdr: the header
153  * @payload: the payload placeholder
154  *
155  * The actual structure is sized dynamically according to need.
156  */
157 struct iwl_device_tx_cmd {
158 	struct iwl_cmd_header hdr;
159 	u8 payload[];
160 } __packed;
161 
162 #define TFD_MAX_PAYLOAD_SIZE (sizeof(struct iwl_device_cmd))
163 
164 /*
165  * number of transfer buffers (fragments) per transmit frame descriptor;
166  * this is just the driver's idea, the hardware supports 20
167  */
168 #define IWL_MAX_CMD_TBS_PER_TFD	2
169 
170 /* We need 2 entries for the TX command and header, and another one might
171  * be needed for potential data in the SKB's head. The remaining ones can
172  * be used for frags.
173  */
174 #define IWL_TRANS_MAX_FRAGS(trans) ((trans)->txqs.tfd.max_tbs - 3)
175 
176 /**
177  * enum iwl_hcmd_dataflag - flag for each one of the chunks of the command
178  *
179  * @IWL_HCMD_DFL_NOCOPY: By default, the command is copied to the host command's
180  *	ring. The transport layer doesn't map the command's buffer to DMA, but
181  *	rather copies it to a previously allocated DMA buffer. This flag tells
182  *	the transport layer not to copy the command, but to map the existing
183  *	buffer (that is passed in) instead. This saves the memcpy and allows
184  *	commands that are bigger than the fixed buffer to be submitted.
185  *	Note that a TFD entry after a NOCOPY one cannot be a normal copied one.
186  * @IWL_HCMD_DFL_DUP: Only valid without NOCOPY, duplicate the memory for this
187  *	chunk internally and free it again after the command completes. This
188  *	can (currently) be used only once per command.
189  *	Note that a TFD entry after a DUP one cannot be a normal copied one.
190  */
191 enum iwl_hcmd_dataflag {
192 	IWL_HCMD_DFL_NOCOPY	= BIT(0),
193 	IWL_HCMD_DFL_DUP	= BIT(1),
194 };
195 
196 enum iwl_error_event_table_status {
197 	IWL_ERROR_EVENT_TABLE_LMAC1 = BIT(0),
198 	IWL_ERROR_EVENT_TABLE_LMAC2 = BIT(1),
199 	IWL_ERROR_EVENT_TABLE_UMAC = BIT(2),
200 	IWL_ERROR_EVENT_TABLE_TCM1 = BIT(3),
201 	IWL_ERROR_EVENT_TABLE_TCM2 = BIT(4),
202 	IWL_ERROR_EVENT_TABLE_RCM1 = BIT(5),
203 	IWL_ERROR_EVENT_TABLE_RCM2 = BIT(6),
204 };
205 
206 /**
207  * struct iwl_host_cmd - Host command to the uCode
208  *
209  * @data: array of chunks that composes the data of the host command
210  * @resp_pkt: response packet, if %CMD_WANT_SKB was set
211  * @_rx_page_order: (internally used to free response packet);
212  *      FreeBSD uses _page instead.
213  * @_rx_page_addr: (internally used to free response packet)
214  * @flags: can be CMD_*
215  * @len: array of the lengths of the chunks in data
216  * @dataflags: IWL_HCMD_DFL_*
217  * @id: command id of the host command, for wide commands encoding the
218  *	version and group as well
219  */
220 struct iwl_host_cmd {
221 	const void *data[IWL_MAX_CMD_TBS_PER_TFD];
222 	struct iwl_rx_packet *resp_pkt;
223 #if defined(__linux__)
224 	unsigned long _rx_page_addr;
225 #elif defined(__FreeBSD__)
226 	struct page *_page;
227 #endif
228 	u32 _rx_page_order;
229 
230 	u32 flags;
231 	u32 id;
232 	u16 len[IWL_MAX_CMD_TBS_PER_TFD];
233 	u8 dataflags[IWL_MAX_CMD_TBS_PER_TFD];
234 };
235 
236 static inline void iwl_free_resp(struct iwl_host_cmd *cmd)
237 {
238 #if defined(__linux__)
239 	free_pages(cmd->_rx_page_addr, cmd->_rx_page_order);
240 #elif defined(__FreeBSD__)
241 	__free_pages(cmd->_page, cmd->_rx_page_order);
242 #endif
243 }
244 
245 struct iwl_rx_cmd_buffer {
246 	struct page *_page;
247 	int _offset;
248 	bool _page_stolen;
249 	u32 _rx_page_order;
250 	unsigned int truesize;
251 };
252 
253 static inline void *rxb_addr(struct iwl_rx_cmd_buffer *r)
254 {
255 	return (void *)((unsigned long)page_address(r->_page) + r->_offset);
256 }
257 
258 static inline int rxb_offset(struct iwl_rx_cmd_buffer *r)
259 {
260 	return r->_offset;
261 }
262 
263 static inline struct page *rxb_steal_page(struct iwl_rx_cmd_buffer *r)
264 {
265 	r->_page_stolen = true;
266 	get_page(r->_page);
267 	return r->_page;
268 }
269 
270 static inline void iwl_free_rxb(struct iwl_rx_cmd_buffer *r)
271 {
272 	__free_pages(r->_page, r->_rx_page_order);
273 }
274 
275 #define MAX_NO_RECLAIM_CMDS	6
276 
277 #define IWL_MASK(lo, hi) ((1 << (hi)) | ((1 << (hi)) - (1 << (lo))))
278 
279 /*
280  * Maximum number of HW queues the transport layer
281  * currently supports
282  */
283 #define IWL_MAX_HW_QUEUES		32
284 #define IWL_MAX_TVQM_QUEUES		512
285 
286 #define IWL_MAX_TID_COUNT	8
287 #define IWL_MGMT_TID		15
288 #define IWL_FRAME_LIMIT	64
289 #define IWL_MAX_RX_HW_QUEUES	16
290 #define IWL_9000_MAX_RX_HW_QUEUES	6
291 
292 /**
293  * enum iwl_wowlan_status - WoWLAN image/device status
294  * @IWL_D3_STATUS_ALIVE: firmware is still running after resume
295  * @IWL_D3_STATUS_RESET: device was reset while suspended
296  */
297 enum iwl_d3_status {
298 	IWL_D3_STATUS_ALIVE,
299 	IWL_D3_STATUS_RESET,
300 };
301 
302 /**
303  * enum iwl_trans_status: transport status flags
304  * @STATUS_SYNC_HCMD_ACTIVE: a SYNC command is being processed
305  * @STATUS_DEVICE_ENABLED: APM is enabled
306  * @STATUS_TPOWER_PMI: the device might be asleep (need to wake it up)
307  * @STATUS_INT_ENABLED: interrupts are enabled
308  * @STATUS_RFKILL_HW: the actual HW state of the RF-kill switch
309  * @STATUS_RFKILL_OPMODE: RF-kill state reported to opmode
310  * @STATUS_FW_ERROR: the fw is in error state
311  * @STATUS_TRANS_GOING_IDLE: shutting down the trans, only special commands
312  *	are sent
313  * @STATUS_TRANS_IDLE: the trans is idle - general commands are not to be sent
314  * @STATUS_TRANS_DEAD: trans is dead - avoid any read/write operation
315  * @STATUS_SUPPRESS_CMD_ERROR_ONCE: suppress "FW error in SYNC CMD" once,
316  *	e.g. for testing
317  */
318 enum iwl_trans_status {
319 	STATUS_SYNC_HCMD_ACTIVE,
320 	STATUS_DEVICE_ENABLED,
321 	STATUS_TPOWER_PMI,
322 	STATUS_INT_ENABLED,
323 	STATUS_RFKILL_HW,
324 	STATUS_RFKILL_OPMODE,
325 	STATUS_FW_ERROR,
326 	STATUS_TRANS_GOING_IDLE,
327 	STATUS_TRANS_IDLE,
328 	STATUS_TRANS_DEAD,
329 	STATUS_SUPPRESS_CMD_ERROR_ONCE,
330 };
331 
332 static inline int
333 iwl_trans_get_rb_size_order(enum iwl_amsdu_size rb_size)
334 {
335 	switch (rb_size) {
336 	case IWL_AMSDU_2K:
337 		return get_order(2 * 1024);
338 	case IWL_AMSDU_4K:
339 		return get_order(4 * 1024);
340 	case IWL_AMSDU_8K:
341 		return get_order(8 * 1024);
342 	case IWL_AMSDU_12K:
343 		return get_order(16 * 1024);
344 	default:
345 		WARN_ON(1);
346 		return -1;
347 	}
348 }
349 
350 static inline int
351 iwl_trans_get_rb_size(enum iwl_amsdu_size rb_size)
352 {
353 	switch (rb_size) {
354 	case IWL_AMSDU_2K:
355 		return 2 * 1024;
356 	case IWL_AMSDU_4K:
357 		return 4 * 1024;
358 	case IWL_AMSDU_8K:
359 		return 8 * 1024;
360 	case IWL_AMSDU_12K:
361 		return 16 * 1024;
362 	default:
363 		WARN_ON(1);
364 		return 0;
365 	}
366 }
367 
368 struct iwl_hcmd_names {
369 	u8 cmd_id;
370 	const char *const cmd_name;
371 };
372 
373 #define HCMD_NAME(x)	\
374 	{ .cmd_id = x, .cmd_name = #x }
375 
376 struct iwl_hcmd_arr {
377 	const struct iwl_hcmd_names *arr;
378 	int size;
379 };
380 
381 #define HCMD_ARR(x)	\
382 	{ .arr = x, .size = ARRAY_SIZE(x) }
383 
384 /**
385  * struct iwl_dump_sanitize_ops - dump sanitization operations
386  * @frob_txf: Scrub the TX FIFO data
387  * @frob_hcmd: Scrub a host command, the %hcmd pointer is to the header
388  *	but that might be short or long (&struct iwl_cmd_header or
389  *	&struct iwl_cmd_header_wide)
390  * @frob_mem: Scrub memory data
391  */
392 struct iwl_dump_sanitize_ops {
393 	void (*frob_txf)(void *ctx, void *buf, size_t buflen);
394 	void (*frob_hcmd)(void *ctx, void *hcmd, size_t buflen);
395 	void (*frob_mem)(void *ctx, u32 mem_addr, void *mem, size_t buflen);
396 };
397 
398 /**
399  * struct iwl_trans_config - transport configuration
400  *
401  * @op_mode: pointer to the upper layer.
402  * @cmd_queue: the index of the command queue.
403  *	Must be set before start_fw.
404  * @cmd_fifo: the fifo for host commands
405  * @cmd_q_wdg_timeout: the timeout of the watchdog timer for the command queue.
406  * @no_reclaim_cmds: Some devices erroneously don't set the
407  *	SEQ_RX_FRAME bit on some notifications, this is the
408  *	list of such notifications to filter. Max length is
409  *	%MAX_NO_RECLAIM_CMDS.
410  * @n_no_reclaim_cmds: # of commands in list
411  * @rx_buf_size: RX buffer size needed for A-MSDUs
412  *	if unset 4k will be the RX buffer size
413  * @bc_table_dword: set to true if the BC table expects the byte count to be
414  *	in DWORD (as opposed to bytes)
415  * @scd_set_active: should the transport configure the SCD for HCMD queue
416  * @command_groups: array of command groups, each member is an array of the
417  *	commands in the group; for debugging only
418  * @command_groups_size: number of command groups, to avoid illegal access
419  * @cb_data_offs: offset inside skb->cb to store transport data at, must have
420  *	space for at least two pointers
421  * @fw_reset_handshake: firmware supports reset flow handshake
422  * @queue_alloc_cmd_ver: queue allocation command version, set to 0
423  *	for using the older SCD_QUEUE_CFG, set to the version of
424  *	SCD_QUEUE_CONFIG_CMD otherwise.
425  */
426 struct iwl_trans_config {
427 	struct iwl_op_mode *op_mode;
428 
429 	u8 cmd_queue;
430 	u8 cmd_fifo;
431 	unsigned int cmd_q_wdg_timeout;
432 	const u8 *no_reclaim_cmds;
433 	unsigned int n_no_reclaim_cmds;
434 
435 	enum iwl_amsdu_size rx_buf_size;
436 	bool bc_table_dword;
437 	bool scd_set_active;
438 	const struct iwl_hcmd_arr *command_groups;
439 	int command_groups_size;
440 
441 	u8 cb_data_offs;
442 	bool fw_reset_handshake;
443 	u8 queue_alloc_cmd_ver;
444 };
445 
446 struct iwl_trans_dump_data {
447 	u32 len;
448 	u8 data[];
449 };
450 
451 struct iwl_trans;
452 
453 struct iwl_trans_txq_scd_cfg {
454 	u8 fifo;
455 	u8 sta_id;
456 	u8 tid;
457 	bool aggregate;
458 	int frame_limit;
459 };
460 
461 /**
462  * struct iwl_trans_rxq_dma_data - RX queue DMA data
463  * @fr_bd_cb: DMA address of free BD cyclic buffer
464  * @fr_bd_wid: Initial write index of the free BD cyclic buffer
465  * @urbd_stts_wrptr: DMA address of urbd_stts_wrptr
466  * @ur_bd_cb: DMA address of used BD cyclic buffer
467  */
468 struct iwl_trans_rxq_dma_data {
469 	u64 fr_bd_cb;
470 	u32 fr_bd_wid;
471 	u64 urbd_stts_wrptr;
472 	u64 ur_bd_cb;
473 };
474 
475 /* maximal number of DRAM MAP entries supported by FW */
476 #define IPC_DRAM_MAP_ENTRY_NUM_MAX 64
477 
478 /**
479  * struct iwl_pnvm_image - contains info about the parsed pnvm image
480  * @chunks: array of pointers to pnvm payloads and their sizes
481  * @n_chunks: the number of the pnvm payloads.
482  * @version: the version of the loaded PNVM image
483  */
484 struct iwl_pnvm_image {
485 	struct {
486 		const void *data;
487 		u32 len;
488 	} chunks[IPC_DRAM_MAP_ENTRY_NUM_MAX];
489 	u32 n_chunks;
490 	u32 version;
491 };
492 
493 /**
494  * struct iwl_trans_ops - transport specific operations
495  *
496  * All the handlers MUST be implemented
497  *
498  * @start_hw: starts the HW. From that point on, the HW can send interrupts.
499  *	May sleep.
500  * @op_mode_leave: Turn off the HW RF kill indication if on
501  *	May sleep
502  * @start_fw: allocates and inits all the resources for the transport
503  *	layer. Also kick a fw image.
504  *	May sleep
505  * @fw_alive: called when the fw sends alive notification. If the fw provides
506  *	the SCD base address in SRAM, then provide it here, or 0 otherwise.
507  *	May sleep
508  * @stop_device: stops the whole device (embedded CPU put to reset) and stops
509  *	the HW. From that point on, the HW will be stopped but will still issue
510  *	an interrupt if the HW RF kill switch is triggered.
511  *	This callback must do the right thing and not crash even if %start_hw()
512  *	was called but not &start_fw(). May sleep.
513  * @d3_suspend: put the device into the correct mode for WoWLAN during
514  *	suspend. This is optional, if not implemented WoWLAN will not be
515  *	supported. This callback may sleep.
516  * @d3_resume: resume the device after WoWLAN, enabling the opmode to
517  *	talk to the WoWLAN image to get its status. This is optional, if not
518  *	implemented WoWLAN will not be supported. This callback may sleep.
519  * @send_cmd:send a host command. Must return -ERFKILL if RFkill is asserted.
520  *	If RFkill is asserted in the middle of a SYNC host command, it must
521  *	return -ERFKILL straight away.
522  *	May sleep only if CMD_ASYNC is not set
523  * @tx: send an skb. The transport relies on the op_mode to zero the
524  *	the ieee80211_tx_info->driver_data. If the MPDU is an A-MSDU, all
525  *	the CSUM will be taken care of (TCP CSUM and IP header in case of
526  *	IPv4). If the MPDU is a single MSDU, the op_mode must compute the IP
527  *	header if it is IPv4.
528  *	Must be atomic
529  * @reclaim: free packet until ssn. Returns a list of freed packets.
530  *	Must be atomic
531  * @txq_enable: setup a queue. To setup an AC queue, use the
532  *	iwl_trans_ac_txq_enable wrapper. fw_alive must have been called before
533  *	this one. The op_mode must not configure the HCMD queue. The scheduler
534  *	configuration may be %NULL, in which case the hardware will not be
535  *	configured. If true is returned, the operation mode needs to increment
536  *	the sequence number of the packets routed to this queue because of a
537  *	hardware scheduler bug. May sleep.
538  * @txq_disable: de-configure a Tx queue to send AMPDUs
539  *	Must be atomic
540  * @txq_set_shared_mode: change Tx queue shared/unshared marking
541  * @wait_tx_queues_empty: wait until tx queues are empty. May sleep.
542  * @wait_txq_empty: wait until specific tx queue is empty. May sleep.
543  * @freeze_txq_timer: prevents the timer of the queue from firing until the
544  *	queue is set to awake. Must be atomic.
545  * @block_txq_ptrs: stop updating the write pointers of the Tx queues. Note
546  *	that the transport needs to refcount the calls since this function
547  *	will be called several times with block = true, and then the queues
548  *	need to be unblocked only after the same number of calls with
549  *	block = false.
550  * @write8: write a u8 to a register at offset ofs from the BAR
551  * @write32: write a u32 to a register at offset ofs from the BAR
552  * @read32: read a u32 register at offset ofs from the BAR
553  * @read_prph: read a DWORD from a periphery register
554  * @write_prph: write a DWORD to a periphery register
555  * @read_mem: read device's SRAM in DWORD
556  * @write_mem: write device's SRAM in DWORD. If %buf is %NULL, then the memory
557  *	will be zeroed.
558  * @read_config32: read a u32 value from the device's config space at
559  *	the given offset.
560  * @configure: configure parameters required by the transport layer from
561  *	the op_mode. May be called several times before start_fw, can't be
562  *	called after that.
563  * @set_pmi: set the power pmi state
564  * @grab_nic_access: wake the NIC to be able to access non-HBUS regs.
565  *	Sleeping is not allowed between grab_nic_access and
566  *	release_nic_access.
567  * @release_nic_access: let the NIC go to sleep. The "flags" parameter
568  *	must be the same one that was sent before to the grab_nic_access.
569  * @set_bits_mask - set SRAM register according to value and mask.
570  * @dump_data: return a vmalloc'ed buffer with debug data, maybe containing last
571  *	TX'ed commands and similar. The buffer will be vfree'd by the caller.
572  *	Note that the transport must fill in the proper file headers.
573  * @debugfs_cleanup: used in the driver unload flow to make a proper cleanup
574  *	of the trans debugfs
575  * @load_pnvm: save the pnvm data in DRAM
576  * @set_pnvm: set the pnvm data in the prph scratch buffer, inside the
577  *	context info.
578  * @load_reduce_power: copy reduce power table to the corresponding DRAM memory
579  * @set_reduce_power: set reduce power table addresses in the sratch buffer
580  * @interrupts: disable/enable interrupts to transport
581  */
582 struct iwl_trans_ops {
583 
584 	int (*start_hw)(struct iwl_trans *iwl_trans);
585 	void (*op_mode_leave)(struct iwl_trans *iwl_trans);
586 	int (*start_fw)(struct iwl_trans *trans, const struct fw_img *fw,
587 			bool run_in_rfkill);
588 	void (*fw_alive)(struct iwl_trans *trans, u32 scd_addr);
589 	void (*stop_device)(struct iwl_trans *trans);
590 
591 	int (*d3_suspend)(struct iwl_trans *trans, bool test, bool reset);
592 	int (*d3_resume)(struct iwl_trans *trans, enum iwl_d3_status *status,
593 			 bool test, bool reset);
594 
595 	int (*send_cmd)(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
596 
597 	int (*tx)(struct iwl_trans *trans, struct sk_buff *skb,
598 		  struct iwl_device_tx_cmd *dev_cmd, int queue);
599 	void (*reclaim)(struct iwl_trans *trans, int queue, int ssn,
600 			struct sk_buff_head *skbs);
601 
602 	void (*set_q_ptrs)(struct iwl_trans *trans, int queue, int ptr);
603 
604 	bool (*txq_enable)(struct iwl_trans *trans, int queue, u16 ssn,
605 			   const struct iwl_trans_txq_scd_cfg *cfg,
606 			   unsigned int queue_wdg_timeout);
607 	void (*txq_disable)(struct iwl_trans *trans, int queue,
608 			    bool configure_scd);
609 	/* 22000 functions */
610 	int (*txq_alloc)(struct iwl_trans *trans, u32 flags,
611 			 u32 sta_mask, u8 tid,
612 			 int size, unsigned int queue_wdg_timeout);
613 	void (*txq_free)(struct iwl_trans *trans, int queue);
614 	int (*rxq_dma_data)(struct iwl_trans *trans, int queue,
615 			    struct iwl_trans_rxq_dma_data *data);
616 
617 	void (*txq_set_shared_mode)(struct iwl_trans *trans, u32 txq_id,
618 				    bool shared);
619 
620 	int (*wait_tx_queues_empty)(struct iwl_trans *trans, u32 txq_bm);
621 	int (*wait_txq_empty)(struct iwl_trans *trans, int queue);
622 	void (*freeze_txq_timer)(struct iwl_trans *trans, unsigned long txqs,
623 				 bool freeze);
624 	void (*block_txq_ptrs)(struct iwl_trans *trans, bool block);
625 
626 	void (*write8)(struct iwl_trans *trans, u32 ofs, u8 val);
627 	void (*write32)(struct iwl_trans *trans, u32 ofs, u32 val);
628 	u32 (*read32)(struct iwl_trans *trans, u32 ofs);
629 	u32 (*read_prph)(struct iwl_trans *trans, u32 ofs);
630 	void (*write_prph)(struct iwl_trans *trans, u32 ofs, u32 val);
631 	int (*read_mem)(struct iwl_trans *trans, u32 addr,
632 			void *buf, int dwords);
633 	int (*write_mem)(struct iwl_trans *trans, u32 addr,
634 			 const void *buf, int dwords);
635 	int (*read_config32)(struct iwl_trans *trans, u32 ofs, u32 *val);
636 	void (*configure)(struct iwl_trans *trans,
637 			  const struct iwl_trans_config *trans_cfg);
638 	void (*set_pmi)(struct iwl_trans *trans, bool state);
639 	int (*sw_reset)(struct iwl_trans *trans, bool retake_ownership);
640 	bool (*grab_nic_access)(struct iwl_trans *trans);
641 	void (*release_nic_access)(struct iwl_trans *trans);
642 	void (*set_bits_mask)(struct iwl_trans *trans, u32 reg, u32 mask,
643 			      u32 value);
644 
645 	struct iwl_trans_dump_data *(*dump_data)(struct iwl_trans *trans,
646 						 u32 dump_mask,
647 						 const struct iwl_dump_sanitize_ops *sanitize_ops,
648 						 void *sanitize_ctx);
649 	void (*debugfs_cleanup)(struct iwl_trans *trans);
650 	void (*sync_nmi)(struct iwl_trans *trans);
651 	int (*load_pnvm)(struct iwl_trans *trans,
652 			 const struct iwl_pnvm_image *pnvm_payloads,
653 			 const struct iwl_ucode_capabilities *capa);
654 	void (*set_pnvm)(struct iwl_trans *trans,
655 			 const struct iwl_ucode_capabilities *capa);
656 	int (*load_reduce_power)(struct iwl_trans *trans,
657 				 const struct iwl_pnvm_image *payloads,
658 				 const struct iwl_ucode_capabilities *capa);
659 	void (*set_reduce_power)(struct iwl_trans *trans,
660 				 const struct iwl_ucode_capabilities *capa);
661 
662 	void (*interrupts)(struct iwl_trans *trans, bool enable);
663 	int (*imr_dma_data)(struct iwl_trans *trans,
664 			    u32 dst_addr, u64 src_addr,
665 			    u32 byte_cnt);
666 
667 };
668 
669 /**
670  * enum iwl_trans_state - state of the transport layer
671  *
672  * @IWL_TRANS_NO_FW: firmware wasn't started yet, or crashed
673  * @IWL_TRANS_FW_STARTED: FW was started, but not alive yet
674  * @IWL_TRANS_FW_ALIVE: FW has sent an alive response
675  */
676 enum iwl_trans_state {
677 	IWL_TRANS_NO_FW,
678 	IWL_TRANS_FW_STARTED,
679 	IWL_TRANS_FW_ALIVE,
680 };
681 
682 /**
683  * DOC: Platform power management
684  *
685  * In system-wide power management the entire platform goes into a low
686  * power state (e.g. idle or suspend to RAM) at the same time and the
687  * device is configured as a wakeup source for the entire platform.
688  * This is usually triggered by userspace activity (e.g. the user
689  * presses the suspend button or a power management daemon decides to
690  * put the platform in low power mode).  The device's behavior in this
691  * mode is dictated by the wake-on-WLAN configuration.
692  *
693  * The terms used for the device's behavior are as follows:
694  *
695  *	- D0: the device is fully powered and the host is awake;
696  *	- D3: the device is in low power mode and only reacts to
697  *		specific events (e.g. magic-packet received or scan
698  *		results found);
699  *
700  * These terms reflect the power modes in the firmware and are not to
701  * be confused with the physical device power state.
702  */
703 
704 /**
705  * enum iwl_plat_pm_mode - platform power management mode
706  *
707  * This enumeration describes the device's platform power management
708  * behavior when in system-wide suspend (i.e WoWLAN).
709  *
710  * @IWL_PLAT_PM_MODE_DISABLED: power management is disabled for this
711  *	device.  In system-wide suspend mode, it means that the all
712  *	connections will be closed automatically by mac80211 before
713  *	the platform is suspended.
714  * @IWL_PLAT_PM_MODE_D3: the device goes into D3 mode (i.e. WoWLAN).
715  */
716 enum iwl_plat_pm_mode {
717 	IWL_PLAT_PM_MODE_DISABLED,
718 	IWL_PLAT_PM_MODE_D3,
719 };
720 
721 /**
722  * enum iwl_ini_cfg_state
723  * @IWL_INI_CFG_STATE_NOT_LOADED: no debug cfg was given
724  * @IWL_INI_CFG_STATE_LOADED: debug cfg was found and loaded
725  * @IWL_INI_CFG_STATE_CORRUPTED: debug cfg was found and some of the TLVs
726  *	are corrupted. The rest of the debug TLVs will still be used
727  */
728 enum iwl_ini_cfg_state {
729 	IWL_INI_CFG_STATE_NOT_LOADED,
730 	IWL_INI_CFG_STATE_LOADED,
731 	IWL_INI_CFG_STATE_CORRUPTED,
732 };
733 
734 /* Max time to wait for nmi interrupt */
735 #define IWL_TRANS_NMI_TIMEOUT (HZ / 4)
736 
737 /**
738  * struct iwl_dram_data
739  * @physical: page phy pointer
740  * @block: pointer to the allocated block/page
741  * @size: size of the block/page
742  */
743 struct iwl_dram_data {
744 	dma_addr_t physical;
745 	void *block;
746 	int size;
747 };
748 
749 /**
750  * @drams: array of several DRAM areas that contains the pnvm and power
751  *	reduction table payloads.
752  * @n_regions: number of DRAM regions that were allocated
753  * @prph_scratch_mem_desc: points to a structure allocated in dram,
754  *	designed to show FW where all the payloads are.
755  */
756 struct iwl_dram_regions {
757 	struct iwl_dram_data drams[IPC_DRAM_MAP_ENTRY_NUM_MAX];
758 	struct iwl_dram_data prph_scratch_mem_desc;
759 	u8 n_regions;
760 };
761 
762 /**
763  * struct iwl_fw_mon - fw monitor per allocation id
764  * @num_frags: number of fragments
765  * @frags: an array of DRAM buffer fragments
766  */
767 struct iwl_fw_mon {
768 	u32 num_frags;
769 	struct iwl_dram_data *frags;
770 };
771 
772 /**
773  * struct iwl_self_init_dram - dram data used by self init process
774  * @fw: lmac and umac dram data
775  * @fw_cnt: total number of items in array
776  * @paging: paging dram data
777  * @paging_cnt: total number of items in array
778  */
779 struct iwl_self_init_dram {
780 	struct iwl_dram_data *fw;
781 	int fw_cnt;
782 	struct iwl_dram_data *paging;
783 	int paging_cnt;
784 };
785 
786 /**
787  * struct iwl_imr_data - imr dram data used during debug process
788  * @imr_enable: imr enable status received from fw
789  * @imr_size: imr dram size received from fw
790  * @sram_addr: sram address from debug tlv
791  * @sram_size: sram size from debug tlv
792  * @imr2sram_remainbyte`: size remained after each dma transfer
793  * @imr_curr_addr: current dst address used during dma transfer
794  * @imr_base_addr: imr address received from fw
795  */
796 struct iwl_imr_data {
797 	u32 imr_enable;
798 	u32 imr_size;
799 	u32 sram_addr;
800 	u32 sram_size;
801 	u32 imr2sram_remainbyte;
802 	u64 imr_curr_addr;
803 	__le64 imr_base_addr;
804 };
805 
806 #define IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES      32
807 
808 /**
809  * struct iwl_pc_data - program counter details
810  * @pc_name: cpu name
811  * @pc_address: cpu program counter
812  */
813 struct iwl_pc_data {
814 	u8  pc_name[IWL_TRANS_CURRENT_PC_NAME_MAX_BYTES];
815 	u32 pc_address;
816 };
817 
818 /**
819  * struct iwl_trans_debug - transport debug related data
820  *
821  * @n_dest_reg: num of reg_ops in %dbg_dest_tlv
822  * @rec_on: true iff there is a fw debug recording currently active
823  * @dest_tlv: points to the destination TLV for debug
824  * @conf_tlv: array of pointers to configuration TLVs for debug
825  * @trigger_tlv: array of pointers to triggers TLVs for debug
826  * @lmac_error_event_table: addrs of lmacs error tables
827  * @umac_error_event_table: addr of umac error table
828  * @tcm_error_event_table: address(es) of TCM error table(s)
829  * @rcm_error_event_table: address(es) of RCM error table(s)
830  * @error_event_table_tlv_status: bitmap that indicates what error table
831  *	pointers was recevied via TLV. uses enum &iwl_error_event_table_status
832  * @internal_ini_cfg: internal debug cfg state. Uses &enum iwl_ini_cfg_state
833  * @external_ini_cfg: external debug cfg state. Uses &enum iwl_ini_cfg_state
834  * @fw_mon_cfg: debug buffer allocation configuration
835  * @fw_mon_ini: DRAM buffer fragments per allocation id
836  * @fw_mon: DRAM buffer for firmware monitor
837  * @hw_error: equals true if hw error interrupt was received from the FW
838  * @ini_dest: debug monitor destination uses &enum iwl_fw_ini_buffer_location
839  * @active_regions: active regions
840  * @debug_info_tlv_list: list of debug info TLVs
841  * @time_point: array of debug time points
842  * @periodic_trig_list: periodic triggers list
843  * @domains_bitmap: bitmap of active domains other than &IWL_FW_INI_DOMAIN_ALWAYS_ON
844  * @ucode_preset: preset based on ucode
845  * @dump_file_name_ext: dump file name extension
846  * @dump_file_name_ext_valid: dump file name extension if valid or not
847  * @num_pc: number of program counter for cpu
848  * @pc_data: details of the program counter
849  */
850 struct iwl_trans_debug {
851 	u8 n_dest_reg;
852 	bool rec_on;
853 
854 	const struct iwl_fw_dbg_dest_tlv_v1 *dest_tlv;
855 	const struct iwl_fw_dbg_conf_tlv *conf_tlv[FW_DBG_CONF_MAX];
856 	struct iwl_fw_dbg_trigger_tlv * const *trigger_tlv;
857 
858 	u32 lmac_error_event_table[2];
859 	u32 umac_error_event_table;
860 	u32 tcm_error_event_table[2];
861 	u32 rcm_error_event_table[2];
862 	unsigned int error_event_table_tlv_status;
863 
864 	enum iwl_ini_cfg_state internal_ini_cfg;
865 	enum iwl_ini_cfg_state external_ini_cfg;
866 
867 	struct iwl_fw_ini_allocation_tlv fw_mon_cfg[IWL_FW_INI_ALLOCATION_NUM];
868 	struct iwl_fw_mon fw_mon_ini[IWL_FW_INI_ALLOCATION_NUM];
869 
870 	struct iwl_dram_data fw_mon;
871 
872 	bool hw_error;
873 	enum iwl_fw_ini_buffer_location ini_dest;
874 
875 	u64 unsupported_region_msk;
876 	struct iwl_ucode_tlv *active_regions[IWL_FW_INI_MAX_REGION_ID];
877 	struct list_head debug_info_tlv_list;
878 	struct iwl_dbg_tlv_time_point_data
879 		time_point[IWL_FW_INI_TIME_POINT_NUM];
880 	struct list_head periodic_trig_list;
881 
882 	u32 domains_bitmap;
883 	u32 ucode_preset;
884 	bool restart_required;
885 	u32 last_tp_resetfw;
886 	struct iwl_imr_data imr_data;
887 	u8 dump_file_name_ext[IWL_FW_INI_MAX_NAME];
888 	bool dump_file_name_ext_valid;
889 	u32 num_pc;
890 	struct iwl_pc_data *pc_data;
891 };
892 
893 struct iwl_dma_ptr {
894 	dma_addr_t dma;
895 	void *addr;
896 	size_t size;
897 };
898 
899 struct iwl_cmd_meta {
900 	/* only for SYNC commands, iff the reply skb is wanted */
901 	struct iwl_host_cmd *source;
902 	u32 flags;
903 	u32 tbs;
904 };
905 
906 /*
907  * The FH will write back to the first TB only, so we need to copy some data
908  * into the buffer regardless of whether it should be mapped or not.
909  * This indicates how big the first TB must be to include the scratch buffer
910  * and the assigned PN.
911  * Since PN location is 8 bytes at offset 12, it's 20 now.
912  * If we make it bigger then allocations will be bigger and copy slower, so
913  * that's probably not useful.
914  */
915 #define IWL_FIRST_TB_SIZE	20
916 #define IWL_FIRST_TB_SIZE_ALIGN ALIGN(IWL_FIRST_TB_SIZE, 64)
917 
918 struct iwl_pcie_txq_entry {
919 	void *cmd;
920 	struct sk_buff *skb;
921 	/* buffer to free after command completes */
922 	const void *free_buf;
923 	struct iwl_cmd_meta meta;
924 };
925 
926 struct iwl_pcie_first_tb_buf {
927 	u8 buf[IWL_FIRST_TB_SIZE_ALIGN];
928 };
929 
930 /**
931  * struct iwl_txq - Tx Queue for DMA
932  * @q: generic Rx/Tx queue descriptor
933  * @tfds: transmit frame descriptors (DMA memory)
934  * @first_tb_bufs: start of command headers, including scratch buffers, for
935  *	the writeback -- this is DMA memory and an array holding one buffer
936  *	for each command on the queue
937  * @first_tb_dma: DMA address for the first_tb_bufs start
938  * @entries: transmit entries (driver state)
939  * @lock: queue lock
940  * @stuck_timer: timer that fires if queue gets stuck
941  * @trans: pointer back to transport (for timer)
942  * @need_update: indicates need to update read/write index
943  * @ampdu: true if this queue is an ampdu queue for an specific RA/TID
944  * @wd_timeout: queue watchdog timeout (jiffies) - per queue
945  * @frozen: tx stuck queue timer is frozen
946  * @frozen_expiry_remainder: remember how long until the timer fires
947  * @bc_tbl: byte count table of the queue (relevant only for gen2 transport)
948  * @write_ptr: 1-st empty entry (index) host_w
949  * @read_ptr: last used entry (index) host_r
950  * @dma_addr:  physical addr for BD's
951  * @n_window: safe queue window
952  * @id: queue id
953  * @low_mark: low watermark, resume queue if free space more than this
954  * @high_mark: high watermark, stop queue if free space less than this
955  *
956  * A Tx queue consists of circular buffer of BDs (a.k.a. TFDs, transmit frame
957  * descriptors) and required locking structures.
958  *
959  * Note the difference between TFD_QUEUE_SIZE_MAX and n_window: the hardware
960  * always assumes 256 descriptors, so TFD_QUEUE_SIZE_MAX is always 256 (unless
961  * there might be HW changes in the future). For the normal TX
962  * queues, n_window, which is the size of the software queue data
963  * is also 256; however, for the command queue, n_window is only
964  * 32 since we don't need so many commands pending. Since the HW
965  * still uses 256 BDs for DMA though, TFD_QUEUE_SIZE_MAX stays 256.
966  * This means that we end up with the following:
967  *  HW entries: | 0 | ... | N * 32 | ... | N * 32 + 31 | ... | 255 |
968  *  SW entries:           | 0      | ... | 31          |
969  * where N is a number between 0 and 7. This means that the SW
970  * data is a window overlayed over the HW queue.
971  */
972 struct iwl_txq {
973 	void *tfds;
974 	struct iwl_pcie_first_tb_buf *first_tb_bufs;
975 	dma_addr_t first_tb_dma;
976 	struct iwl_pcie_txq_entry *entries;
977 	/* lock for syncing changes on the queue */
978 	spinlock_t lock;
979 	unsigned long frozen_expiry_remainder;
980 	struct timer_list stuck_timer;
981 	struct iwl_trans *trans;
982 	bool need_update;
983 	bool frozen;
984 	bool ampdu;
985 	int block;
986 	unsigned long wd_timeout;
987 	struct sk_buff_head overflow_q;
988 	struct iwl_dma_ptr bc_tbl;
989 
990 	int write_ptr;
991 	int read_ptr;
992 	dma_addr_t dma_addr;
993 	int n_window;
994 	u32 id;
995 	int low_mark;
996 	int high_mark;
997 
998 	bool overflow_tx;
999 };
1000 
1001 /**
1002  * struct iwl_trans_txqs - transport tx queues data
1003  *
1004  * @bc_table_dword: true if the BC table expects DWORD (as opposed to bytes)
1005  * @page_offs: offset from skb->cb to mac header page pointer
1006  * @dev_cmd_offs: offset from skb->cb to iwl_device_tx_cmd pointer
1007  * @queue_used - bit mask of used queues
1008  * @queue_stopped - bit mask of stopped queues
1009  * @scd_bc_tbls: gen1 pointer to the byte count table of the scheduler
1010  * @queue_alloc_cmd_ver: queue allocation command version
1011  */
1012 struct iwl_trans_txqs {
1013 	unsigned long queue_used[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1014 	unsigned long queue_stopped[BITS_TO_LONGS(IWL_MAX_TVQM_QUEUES)];
1015 	struct iwl_txq *txq[IWL_MAX_TVQM_QUEUES];
1016 	struct dma_pool *bc_pool;
1017 	size_t bc_tbl_size;
1018 	bool bc_table_dword;
1019 	u8 page_offs;
1020 	u8 dev_cmd_offs;
1021 	struct iwl_tso_hdr_page __percpu *tso_hdr_page;
1022 
1023 	struct {
1024 		u8 fifo;
1025 		u8 q_id;
1026 		unsigned int wdg_timeout;
1027 	} cmd;
1028 
1029 	struct {
1030 		u8 max_tbs;
1031 		u16 size;
1032 		u8 addr_size;
1033 	} tfd;
1034 
1035 	struct iwl_dma_ptr scd_bc_tbls;
1036 
1037 	u8 queue_alloc_cmd_ver;
1038 };
1039 
1040 /**
1041  * struct iwl_trans - transport common data
1042  *
1043  * @csme_own - true if we couldn't get ownership on the device
1044  * @ops - pointer to iwl_trans_ops
1045  * @op_mode - pointer to the op_mode
1046  * @trans_cfg: the trans-specific configuration part
1047  * @cfg - pointer to the configuration
1048  * @drv - pointer to iwl_drv
1049  * @status: a bit-mask of transport status flags
1050  * @dev - pointer to struct device * that represents the device
1051  * @max_skb_frags: maximum number of fragments an SKB can have when transmitted.
1052  *	0 indicates that frag SKBs (NETIF_F_SG) aren't supported.
1053  * @hw_rf_id a u32 with the device RF ID
1054  * @hw_crf_id a u32 with the device CRF ID
1055  * @hw_wfpm_id a u32 with the device wfpm ID
1056  * @hw_id: a u32 with the ID of the device / sub-device.
1057  *	Set during transport allocation.
1058  * @hw_id_str: a string with info about HW ID. Set during transport allocation.
1059  * @hw_rev_step: The mac step of the HW
1060  * @pm_support: set to true in start_hw if link pm is supported
1061  * @ltr_enabled: set to true if the LTR is enabled
1062  * @fail_to_parse_pnvm_image: set to true if pnvm parsing failed
1063  * @failed_to_load_reduce_power_image: set to true if pnvm loading failed
1064  * @wide_cmd_header: true when ucode supports wide command header format
1065  * @wait_command_queue: wait queue for sync commands
1066  * @num_rx_queues: number of RX queues allocated by the transport;
1067  *	the transport must set this before calling iwl_drv_start()
1068  * @iml_len: the length of the image loader
1069  * @iml: a pointer to the image loader itself
1070  * @dev_cmd_pool: pool for Tx cmd allocation - for internal use only.
1071  *	The user should use iwl_trans_{alloc,free}_tx_cmd.
1072  * @rx_mpdu_cmd: MPDU RX command ID, must be assigned by opmode before
1073  *	starting the firmware, used for tracing
1074  * @rx_mpdu_cmd_hdr_size: used for tracing, amount of data before the
1075  *	start of the 802.11 header in the @rx_mpdu_cmd
1076  * @dflt_pwr_limit: default power limit fetched from the platform (ACPI)
1077  * @system_pm_mode: the system-wide power management mode in use.
1078  *	This mode is set dynamically, depending on the WoWLAN values
1079  *	configured from the userspace at runtime.
1080  * @iwl_trans_txqs: transport tx queues data.
1081  * @mbx_addr_0_step: step address data 0
1082  * @mbx_addr_1_step: step address data 1
1083  * @pcie_link_speed: current PCIe link speed (%PCI_EXP_LNKSTA_CLS_*),
1084  *	only valid for discrete (not integrated) NICs
1085  */
1086 struct iwl_trans {
1087 	bool csme_own;
1088 	const struct iwl_trans_ops *ops;
1089 	struct iwl_op_mode *op_mode;
1090 	const struct iwl_cfg_trans_params *trans_cfg;
1091 	const struct iwl_cfg *cfg;
1092 	struct iwl_drv *drv;
1093 	enum iwl_trans_state state;
1094 	unsigned long status;
1095 
1096 	struct device *dev;
1097 	u32 max_skb_frags;
1098 	u32 hw_rev;
1099 	u32 hw_rev_step;
1100 	u32 hw_rf_id;
1101 	u32 hw_crf_id;
1102 	u32 hw_cnv_id;
1103 	u32 hw_wfpm_id;
1104 	u32 hw_id;
1105 	char hw_id_str[52];
1106 	u32 sku_id[3];
1107 
1108 	u8 rx_mpdu_cmd, rx_mpdu_cmd_hdr_size;
1109 
1110 	bool pm_support;
1111 	bool ltr_enabled;
1112 	u8 pnvm_loaded:1;
1113 	u8 fail_to_parse_pnvm_image:1;
1114 	u8 reduce_power_loaded:1;
1115 	u8 failed_to_load_reduce_power_image:1;
1116 
1117 	const struct iwl_hcmd_arr *command_groups;
1118 	int command_groups_size;
1119 	bool wide_cmd_header;
1120 
1121 	wait_queue_head_t wait_command_queue;
1122 	u8 num_rx_queues;
1123 
1124 	size_t iml_len;
1125 	u8 *iml;
1126 
1127 	/* The following fields are internal only */
1128 	struct kmem_cache *dev_cmd_pool;
1129 	char dev_cmd_pool_name[50];
1130 
1131 	struct dentry *dbgfs_dir;
1132 
1133 #ifdef CONFIG_LOCKDEP
1134 	struct lockdep_map sync_cmd_lockdep_map;
1135 #endif
1136 
1137 	struct iwl_trans_debug dbg;
1138 	struct iwl_self_init_dram init_dram;
1139 
1140 	enum iwl_plat_pm_mode system_pm_mode;
1141 
1142 	const char *name;
1143 	struct iwl_trans_txqs txqs;
1144 	u32 mbx_addr_0_step;
1145 	u32 mbx_addr_1_step;
1146 
1147 	u8 pcie_link_speed;
1148 
1149 	/* pointer to trans specific struct */
1150 	/*Ensure that this pointer will always be aligned to sizeof pointer */
1151 	char trans_specific[] __aligned(sizeof(void *));
1152 };
1153 
1154 const char *iwl_get_cmd_string(struct iwl_trans *trans, u32 id);
1155 int iwl_cmd_groups_verify_sorted(const struct iwl_trans_config *trans);
1156 
1157 static inline void iwl_trans_configure(struct iwl_trans *trans,
1158 				       const struct iwl_trans_config *trans_cfg)
1159 {
1160 	trans->op_mode = trans_cfg->op_mode;
1161 
1162 	trans->ops->configure(trans, trans_cfg);
1163 	WARN_ON(iwl_cmd_groups_verify_sorted(trans_cfg));
1164 }
1165 
1166 static inline int iwl_trans_start_hw(struct iwl_trans *trans)
1167 {
1168 	might_sleep();
1169 
1170 	return trans->ops->start_hw(trans);
1171 }
1172 
1173 static inline void iwl_trans_op_mode_leave(struct iwl_trans *trans)
1174 {
1175 	might_sleep();
1176 
1177 	if (trans->ops->op_mode_leave)
1178 		trans->ops->op_mode_leave(trans);
1179 
1180 	trans->op_mode = NULL;
1181 
1182 	trans->state = IWL_TRANS_NO_FW;
1183 }
1184 
1185 static inline void iwl_trans_fw_alive(struct iwl_trans *trans, u32 scd_addr)
1186 {
1187 	might_sleep();
1188 
1189 	trans->state = IWL_TRANS_FW_ALIVE;
1190 
1191 	trans->ops->fw_alive(trans, scd_addr);
1192 }
1193 
1194 static inline int iwl_trans_start_fw(struct iwl_trans *trans,
1195 				     const struct fw_img *fw,
1196 				     bool run_in_rfkill)
1197 {
1198 	int ret;
1199 
1200 	might_sleep();
1201 
1202 	WARN_ON_ONCE(!trans->rx_mpdu_cmd);
1203 
1204 	clear_bit(STATUS_FW_ERROR, &trans->status);
1205 	ret = trans->ops->start_fw(trans, fw, run_in_rfkill);
1206 	if (ret == 0)
1207 		trans->state = IWL_TRANS_FW_STARTED;
1208 
1209 	return ret;
1210 }
1211 
1212 static inline void iwl_trans_stop_device(struct iwl_trans *trans)
1213 {
1214 	might_sleep();
1215 
1216 	trans->ops->stop_device(trans);
1217 
1218 	trans->state = IWL_TRANS_NO_FW;
1219 }
1220 
1221 static inline int iwl_trans_d3_suspend(struct iwl_trans *trans, bool test,
1222 				       bool reset)
1223 {
1224 	might_sleep();
1225 	if (!trans->ops->d3_suspend)
1226 		return -EOPNOTSUPP;
1227 
1228 	return trans->ops->d3_suspend(trans, test, reset);
1229 }
1230 
1231 static inline int iwl_trans_d3_resume(struct iwl_trans *trans,
1232 				      enum iwl_d3_status *status,
1233 				      bool test, bool reset)
1234 {
1235 	might_sleep();
1236 	if (!trans->ops->d3_resume)
1237 		return -EOPNOTSUPP;
1238 
1239 	return trans->ops->d3_resume(trans, status, test, reset);
1240 }
1241 
1242 static inline struct iwl_trans_dump_data *
1243 iwl_trans_dump_data(struct iwl_trans *trans, u32 dump_mask,
1244 		    const struct iwl_dump_sanitize_ops *sanitize_ops,
1245 		    void *sanitize_ctx)
1246 {
1247 	if (!trans->ops->dump_data)
1248 		return NULL;
1249 	return trans->ops->dump_data(trans, dump_mask,
1250 				     sanitize_ops, sanitize_ctx);
1251 }
1252 
1253 static inline struct iwl_device_tx_cmd *
1254 iwl_trans_alloc_tx_cmd(struct iwl_trans *trans)
1255 {
1256 	return kmem_cache_zalloc(trans->dev_cmd_pool, GFP_ATOMIC);
1257 }
1258 
1259 int iwl_trans_send_cmd(struct iwl_trans *trans, struct iwl_host_cmd *cmd);
1260 
1261 static inline void iwl_trans_free_tx_cmd(struct iwl_trans *trans,
1262 					 struct iwl_device_tx_cmd *dev_cmd)
1263 {
1264 	kmem_cache_free(trans->dev_cmd_pool, dev_cmd);
1265 }
1266 
1267 static inline int iwl_trans_tx(struct iwl_trans *trans, struct sk_buff *skb,
1268 			       struct iwl_device_tx_cmd *dev_cmd, int queue)
1269 {
1270 	if (unlikely(test_bit(STATUS_FW_ERROR, &trans->status)))
1271 		return -EIO;
1272 
1273 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1274 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1275 		return -EIO;
1276 	}
1277 
1278 	return trans->ops->tx(trans, skb, dev_cmd, queue);
1279 }
1280 
1281 static inline void iwl_trans_reclaim(struct iwl_trans *trans, int queue,
1282 				     int ssn, struct sk_buff_head *skbs)
1283 {
1284 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1285 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1286 		return;
1287 	}
1288 
1289 	trans->ops->reclaim(trans, queue, ssn, skbs);
1290 }
1291 
1292 static inline void iwl_trans_set_q_ptrs(struct iwl_trans *trans, int queue,
1293 					int ptr)
1294 {
1295 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1296 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1297 		return;
1298 	}
1299 
1300 	trans->ops->set_q_ptrs(trans, queue, ptr);
1301 }
1302 
1303 static inline void iwl_trans_txq_disable(struct iwl_trans *trans, int queue,
1304 					 bool configure_scd)
1305 {
1306 	trans->ops->txq_disable(trans, queue, configure_scd);
1307 }
1308 
1309 static inline bool
1310 iwl_trans_txq_enable_cfg(struct iwl_trans *trans, int queue, u16 ssn,
1311 			 const struct iwl_trans_txq_scd_cfg *cfg,
1312 			 unsigned int queue_wdg_timeout)
1313 {
1314 	might_sleep();
1315 
1316 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1317 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1318 		return false;
1319 	}
1320 
1321 	return trans->ops->txq_enable(trans, queue, ssn,
1322 				      cfg, queue_wdg_timeout);
1323 }
1324 
1325 static inline int
1326 iwl_trans_get_rxq_dma_data(struct iwl_trans *trans, int queue,
1327 			   struct iwl_trans_rxq_dma_data *data)
1328 {
1329 	if (WARN_ON_ONCE(!trans->ops->rxq_dma_data))
1330 		return -ENOTSUPP;
1331 
1332 	return trans->ops->rxq_dma_data(trans, queue, data);
1333 }
1334 
1335 static inline void
1336 iwl_trans_txq_free(struct iwl_trans *trans, int queue)
1337 {
1338 	if (WARN_ON_ONCE(!trans->ops->txq_free))
1339 		return;
1340 
1341 	trans->ops->txq_free(trans, queue);
1342 }
1343 
1344 static inline int
1345 iwl_trans_txq_alloc(struct iwl_trans *trans,
1346 		    u32 flags, u32 sta_mask, u8 tid,
1347 		    int size, unsigned int wdg_timeout)
1348 {
1349 	might_sleep();
1350 
1351 	if (WARN_ON_ONCE(!trans->ops->txq_alloc))
1352 		return -ENOTSUPP;
1353 
1354 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1355 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1356 		return -EIO;
1357 	}
1358 
1359 	return trans->ops->txq_alloc(trans, flags, sta_mask, tid,
1360 				     size, wdg_timeout);
1361 }
1362 
1363 static inline void iwl_trans_txq_set_shared_mode(struct iwl_trans *trans,
1364 						 int queue, bool shared_mode)
1365 {
1366 	if (trans->ops->txq_set_shared_mode)
1367 		trans->ops->txq_set_shared_mode(trans, queue, shared_mode);
1368 }
1369 
1370 static inline void iwl_trans_txq_enable(struct iwl_trans *trans, int queue,
1371 					int fifo, int sta_id, int tid,
1372 					int frame_limit, u16 ssn,
1373 					unsigned int queue_wdg_timeout)
1374 {
1375 	struct iwl_trans_txq_scd_cfg cfg = {
1376 		.fifo = fifo,
1377 		.sta_id = sta_id,
1378 		.tid = tid,
1379 		.frame_limit = frame_limit,
1380 		.aggregate = sta_id >= 0,
1381 	};
1382 
1383 	iwl_trans_txq_enable_cfg(trans, queue, ssn, &cfg, queue_wdg_timeout);
1384 }
1385 
1386 static inline
1387 void iwl_trans_ac_txq_enable(struct iwl_trans *trans, int queue, int fifo,
1388 			     unsigned int queue_wdg_timeout)
1389 {
1390 	struct iwl_trans_txq_scd_cfg cfg = {
1391 		.fifo = fifo,
1392 		.sta_id = -1,
1393 		.tid = IWL_MAX_TID_COUNT,
1394 		.frame_limit = IWL_FRAME_LIMIT,
1395 		.aggregate = false,
1396 	};
1397 
1398 	iwl_trans_txq_enable_cfg(trans, queue, 0, &cfg, queue_wdg_timeout);
1399 }
1400 
1401 static inline void iwl_trans_freeze_txq_timer(struct iwl_trans *trans,
1402 					      unsigned long txqs,
1403 					      bool freeze)
1404 {
1405 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1406 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1407 		return;
1408 	}
1409 
1410 	if (trans->ops->freeze_txq_timer)
1411 		trans->ops->freeze_txq_timer(trans, txqs, freeze);
1412 }
1413 
1414 static inline void iwl_trans_block_txq_ptrs(struct iwl_trans *trans,
1415 					    bool block)
1416 {
1417 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1418 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1419 		return;
1420 	}
1421 
1422 	if (trans->ops->block_txq_ptrs)
1423 		trans->ops->block_txq_ptrs(trans, block);
1424 }
1425 
1426 static inline int iwl_trans_wait_tx_queues_empty(struct iwl_trans *trans,
1427 						 u32 txqs)
1428 {
1429 	if (WARN_ON_ONCE(!trans->ops->wait_tx_queues_empty))
1430 		return -ENOTSUPP;
1431 
1432 	/* No need to wait if the firmware is not alive */
1433 	if (trans->state != IWL_TRANS_FW_ALIVE) {
1434 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1435 		return -EIO;
1436 	}
1437 
1438 	return trans->ops->wait_tx_queues_empty(trans, txqs);
1439 }
1440 
1441 static inline int iwl_trans_wait_txq_empty(struct iwl_trans *trans, int queue)
1442 {
1443 	if (WARN_ON_ONCE(!trans->ops->wait_txq_empty))
1444 		return -ENOTSUPP;
1445 
1446 	if (WARN_ON_ONCE(trans->state != IWL_TRANS_FW_ALIVE)) {
1447 		IWL_ERR(trans, "%s bad state = %d\n", __func__, trans->state);
1448 		return -EIO;
1449 	}
1450 
1451 	return trans->ops->wait_txq_empty(trans, queue);
1452 }
1453 
1454 static inline void iwl_trans_write8(struct iwl_trans *trans, u32 ofs, u8 val)
1455 {
1456 	trans->ops->write8(trans, ofs, val);
1457 }
1458 
1459 static inline void iwl_trans_write32(struct iwl_trans *trans, u32 ofs, u32 val)
1460 {
1461 	trans->ops->write32(trans, ofs, val);
1462 }
1463 
1464 static inline u32 iwl_trans_read32(struct iwl_trans *trans, u32 ofs)
1465 {
1466 	return trans->ops->read32(trans, ofs);
1467 }
1468 
1469 static inline u32 iwl_trans_read_prph(struct iwl_trans *trans, u32 ofs)
1470 {
1471 	return trans->ops->read_prph(trans, ofs);
1472 }
1473 
1474 static inline void iwl_trans_write_prph(struct iwl_trans *trans, u32 ofs,
1475 					u32 val)
1476 {
1477 	return trans->ops->write_prph(trans, ofs, val);
1478 }
1479 
1480 static inline int iwl_trans_read_mem(struct iwl_trans *trans, u32 addr,
1481 				     void *buf, int dwords)
1482 {
1483 	return trans->ops->read_mem(trans, addr, buf, dwords);
1484 }
1485 
1486 #define iwl_trans_read_mem_bytes(trans, addr, buf, bufsize)		      \
1487 	do {								      \
1488 		if (__builtin_constant_p(bufsize))			      \
1489 			BUILD_BUG_ON((bufsize) % sizeof(u32));		      \
1490 		iwl_trans_read_mem(trans, addr, buf, (bufsize) / sizeof(u32));\
1491 	} while (0)
1492 
1493 static inline int iwl_trans_write_imr_mem(struct iwl_trans *trans,
1494 					  u32 dst_addr, u64 src_addr,
1495 					  u32 byte_cnt)
1496 {
1497 	if (trans->ops->imr_dma_data)
1498 		return trans->ops->imr_dma_data(trans, dst_addr, src_addr, byte_cnt);
1499 	return 0;
1500 }
1501 
1502 static inline u32 iwl_trans_read_mem32(struct iwl_trans *trans, u32 addr)
1503 {
1504 	u32 value;
1505 
1506 	if (WARN_ON(iwl_trans_read_mem(trans, addr, &value, 1)))
1507 		return 0xa5a5a5a5;
1508 
1509 	return value;
1510 }
1511 
1512 static inline int iwl_trans_write_mem(struct iwl_trans *trans, u32 addr,
1513 				      const void *buf, int dwords)
1514 {
1515 	return trans->ops->write_mem(trans, addr, buf, dwords);
1516 }
1517 
1518 static inline u32 iwl_trans_write_mem32(struct iwl_trans *trans, u32 addr,
1519 					u32 val)
1520 {
1521 	return iwl_trans_write_mem(trans, addr, &val, 1);
1522 }
1523 
1524 static inline void iwl_trans_set_pmi(struct iwl_trans *trans, bool state)
1525 {
1526 	if (trans->ops->set_pmi)
1527 		trans->ops->set_pmi(trans, state);
1528 }
1529 
1530 static inline int iwl_trans_sw_reset(struct iwl_trans *trans,
1531 				     bool retake_ownership)
1532 {
1533 	if (trans->ops->sw_reset)
1534 		return trans->ops->sw_reset(trans, retake_ownership);
1535 	return 0;
1536 }
1537 
1538 static inline void
1539 iwl_trans_set_bits_mask(struct iwl_trans *trans, u32 reg, u32 mask, u32 value)
1540 {
1541 	trans->ops->set_bits_mask(trans, reg, mask, value);
1542 }
1543 
1544 #define iwl_trans_grab_nic_access(trans)		\
1545 	__cond_lock(nic_access,				\
1546 		    likely((trans)->ops->grab_nic_access(trans)))
1547 
1548 static inline void __releases(nic_access)
1549 iwl_trans_release_nic_access(struct iwl_trans *trans)
1550 {
1551 	trans->ops->release_nic_access(trans);
1552 	__release(nic_access);
1553 }
1554 
1555 static inline void iwl_trans_fw_error(struct iwl_trans *trans, bool sync)
1556 {
1557 	if (WARN_ON_ONCE(!trans->op_mode))
1558 		return;
1559 
1560 	/* prevent double restarts due to the same erroneous FW */
1561 	if (!test_and_set_bit(STATUS_FW_ERROR, &trans->status)) {
1562 		iwl_op_mode_nic_error(trans->op_mode, sync);
1563 		trans->state = IWL_TRANS_NO_FW;
1564 	}
1565 }
1566 
1567 static inline bool iwl_trans_fw_running(struct iwl_trans *trans)
1568 {
1569 	return trans->state == IWL_TRANS_FW_ALIVE;
1570 }
1571 
1572 static inline void iwl_trans_sync_nmi(struct iwl_trans *trans)
1573 {
1574 	if (trans->ops->sync_nmi)
1575 		trans->ops->sync_nmi(trans);
1576 }
1577 
1578 void iwl_trans_sync_nmi_with_addr(struct iwl_trans *trans, u32 inta_addr,
1579 				  u32 sw_err_bit);
1580 
1581 static inline int iwl_trans_load_pnvm(struct iwl_trans *trans,
1582 				      const struct iwl_pnvm_image *pnvm_data,
1583 				      const struct iwl_ucode_capabilities *capa)
1584 {
1585 	return trans->ops->load_pnvm(trans, pnvm_data, capa);
1586 }
1587 
1588 static inline void iwl_trans_set_pnvm(struct iwl_trans *trans,
1589 				      const struct iwl_ucode_capabilities *capa)
1590 {
1591 	if (trans->ops->set_pnvm)
1592 		trans->ops->set_pnvm(trans, capa);
1593 }
1594 
1595 static inline int iwl_trans_load_reduce_power
1596 				(struct iwl_trans *trans,
1597 				 const struct iwl_pnvm_image *payloads,
1598 				 const struct iwl_ucode_capabilities *capa)
1599 {
1600 	return trans->ops->load_reduce_power(trans, payloads, capa);
1601 }
1602 
1603 static inline void
1604 iwl_trans_set_reduce_power(struct iwl_trans *trans,
1605 			   const struct iwl_ucode_capabilities *capa)
1606 {
1607 	if (trans->ops->set_reduce_power)
1608 		trans->ops->set_reduce_power(trans, capa);
1609 }
1610 
1611 static inline bool iwl_trans_dbg_ini_valid(struct iwl_trans *trans)
1612 {
1613 	return trans->dbg.internal_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED ||
1614 		trans->dbg.external_ini_cfg != IWL_INI_CFG_STATE_NOT_LOADED;
1615 }
1616 
1617 static inline void iwl_trans_interrupts(struct iwl_trans *trans, bool enable)
1618 {
1619 	if (trans->ops->interrupts)
1620 		trans->ops->interrupts(trans, enable);
1621 }
1622 
1623 /*****************************************************
1624  * transport helper functions
1625  *****************************************************/
1626 struct iwl_trans *iwl_trans_alloc(unsigned int priv_size,
1627 			  struct device *dev,
1628 			  const struct iwl_trans_ops *ops,
1629 			  const struct iwl_cfg_trans_params *cfg_trans);
1630 int iwl_trans_init(struct iwl_trans *trans);
1631 void iwl_trans_free(struct iwl_trans *trans);
1632 
1633 static inline bool iwl_trans_is_hw_error_value(u32 val)
1634 {
1635 	return ((val & ~0xf) == 0xa5a5a5a0) || ((val & ~0xf) == 0x5a5a5a50);
1636 }
1637 
1638 /*****************************************************
1639 * driver (transport) register/unregister functions
1640 ******************************************************/
1641 int __must_check iwl_pci_register_driver(void);
1642 void iwl_pci_unregister_driver(void);
1643 void iwl_trans_pcie_remove(struct iwl_trans *trans, bool rescan);
1644 
1645 #endif /* __iwl_trans_h__ */
1646