xref: /freebsd/sys/contrib/dev/athk/ath10k/pci.c (revision b3e7694832e81d7a904a10f525f8797b753bf0d3)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #if defined(__FreeBSD__)
8 #define	LINUXKPI_PARAM_PREFIX	ath10k_pci_
9 #endif
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock.h>
15 #include <linux/bitops.h>
16 #if defined(__FreeBSD__)
17 #include <linux/delay.h>
18 #endif
19 
20 #include "core.h"
21 #include "debug.h"
22 #include "coredump.h"
23 
24 #include "targaddrs.h"
25 #include "bmi.h"
26 
27 #include "hif.h"
28 #include "htc.h"
29 
30 #include "ce.h"
31 #include "pci.h"
32 
33 enum ath10k_pci_reset_mode {
34 	ATH10K_PCI_RESET_AUTO = 0,
35 	ATH10K_PCI_RESET_WARM_ONLY = 1,
36 };
37 
38 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
39 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
40 
41 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
42 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
43 
44 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
45 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
46 
47 /* how long wait to wait for target to initialise, in ms */
48 #define ATH10K_PCI_TARGET_WAIT 3000
49 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
50 
51 /* Maximum number of bytes that can be handled atomically by
52  * diag read and write.
53  */
54 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
55 
56 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
57 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
58 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
62 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
63 
64 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
66 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
67 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
68 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
72 	{0}
73 };
74 
75 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
76 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
77 	 * hacks. ath10k doesn't have them and these devices crash horribly
78 	 * because of that.
79 	 */
80 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
81 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
82 
83 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88 
89 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
90 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
91 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
92 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
94 
95 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
96 
97 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
98 
99 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
102 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
103 
104 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
105 };
106 
107 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
108 static int ath10k_pci_cold_reset(struct ath10k *ar);
109 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
110 static int ath10k_pci_init_irq(struct ath10k *ar);
111 static int ath10k_pci_deinit_irq(struct ath10k *ar);
112 static int ath10k_pci_request_irq(struct ath10k *ar);
113 static void ath10k_pci_free_irq(struct ath10k *ar);
114 static int ath10k_pci_bmi_wait(struct ath10k *ar,
115 			       struct ath10k_ce_pipe *tx_pipe,
116 			       struct ath10k_ce_pipe *rx_pipe,
117 			       struct bmi_xfer *xfer);
118 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
119 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
120 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
121 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
122 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
123 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
125 
126 static const struct ce_attr pci_host_ce_config_wlan[] = {
127 	/* CE0: host->target HTC control and raw streams */
128 	{
129 		.flags = CE_ATTR_FLAGS,
130 		.src_nentries = 16,
131 		.src_sz_max = 256,
132 		.dest_nentries = 0,
133 		.send_cb = ath10k_pci_htc_tx_cb,
134 	},
135 
136 	/* CE1: target->host HTT + HTC control */
137 	{
138 		.flags = CE_ATTR_FLAGS,
139 		.src_nentries = 0,
140 		.src_sz_max = 2048,
141 		.dest_nentries = 512,
142 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
143 	},
144 
145 	/* CE2: target->host WMI */
146 	{
147 		.flags = CE_ATTR_FLAGS,
148 		.src_nentries = 0,
149 		.src_sz_max = 2048,
150 		.dest_nentries = 128,
151 		.recv_cb = ath10k_pci_htc_rx_cb,
152 	},
153 
154 	/* CE3: host->target WMI */
155 	{
156 		.flags = CE_ATTR_FLAGS,
157 		.src_nentries = 32,
158 		.src_sz_max = 2048,
159 		.dest_nentries = 0,
160 		.send_cb = ath10k_pci_htc_tx_cb,
161 	},
162 
163 	/* CE4: host->target HTT */
164 	{
165 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
166 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
167 		.src_sz_max = 256,
168 		.dest_nentries = 0,
169 		.send_cb = ath10k_pci_htt_tx_cb,
170 	},
171 
172 	/* CE5: target->host HTT (HIF->HTT) */
173 	{
174 		.flags = CE_ATTR_FLAGS,
175 		.src_nentries = 0,
176 		.src_sz_max = 512,
177 		.dest_nentries = 512,
178 		.recv_cb = ath10k_pci_htt_rx_cb,
179 	},
180 
181 	/* CE6: target autonomous hif_memcpy */
182 	{
183 		.flags = CE_ATTR_FLAGS,
184 		.src_nentries = 0,
185 		.src_sz_max = 0,
186 		.dest_nentries = 0,
187 	},
188 
189 	/* CE7: ce_diag, the Diagnostic Window */
190 	{
191 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
192 		.src_nentries = 2,
193 		.src_sz_max = DIAG_TRANSFER_LIMIT,
194 		.dest_nentries = 2,
195 	},
196 
197 	/* CE8: target->host pktlog */
198 	{
199 		.flags = CE_ATTR_FLAGS,
200 		.src_nentries = 0,
201 		.src_sz_max = 2048,
202 		.dest_nentries = 128,
203 		.recv_cb = ath10k_pci_pktlog_rx_cb,
204 	},
205 
206 	/* CE9 target autonomous qcache memcpy */
207 	{
208 		.flags = CE_ATTR_FLAGS,
209 		.src_nentries = 0,
210 		.src_sz_max = 0,
211 		.dest_nentries = 0,
212 	},
213 
214 	/* CE10: target autonomous hif memcpy */
215 	{
216 		.flags = CE_ATTR_FLAGS,
217 		.src_nentries = 0,
218 		.src_sz_max = 0,
219 		.dest_nentries = 0,
220 	},
221 
222 	/* CE11: target autonomous hif memcpy */
223 	{
224 		.flags = CE_ATTR_FLAGS,
225 		.src_nentries = 0,
226 		.src_sz_max = 0,
227 		.dest_nentries = 0,
228 	},
229 };
230 
231 /* Target firmware's Copy Engine configuration. */
232 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
233 	/* CE0: host->target HTC control and raw streams */
234 	{
235 		.pipenum = __cpu_to_le32(0),
236 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(256),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE1: target->host HTT + HTC control */
244 	{
245 		.pipenum = __cpu_to_le32(1),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE2: target->host WMI */
254 	{
255 		.pipenum = __cpu_to_le32(2),
256 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
257 		.nentries = __cpu_to_le32(64),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE3: host->target WMI */
264 	{
265 		.pipenum = __cpu_to_le32(3),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(32),
268 		.nbytes_max = __cpu_to_le32(2048),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* CE4: host->target HTT */
274 	{
275 		.pipenum = __cpu_to_le32(4),
276 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
277 		.nentries = __cpu_to_le32(256),
278 		.nbytes_max = __cpu_to_le32(256),
279 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
280 		.reserved = __cpu_to_le32(0),
281 	},
282 
283 	/* NB: 50% of src nentries, since tx has 2 frags */
284 
285 	/* CE5: target->host HTT (HIF->HTT) */
286 	{
287 		.pipenum = __cpu_to_le32(5),
288 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(512),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE6: Reserved for target autonomous hif_memcpy */
296 	{
297 		.pipenum = __cpu_to_le32(6),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(32),
300 		.nbytes_max = __cpu_to_le32(4096),
301 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE7 used only by Host */
306 	{
307 		.pipenum = __cpu_to_le32(7),
308 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
309 		.nentries = __cpu_to_le32(0),
310 		.nbytes_max = __cpu_to_le32(0),
311 		.flags = __cpu_to_le32(0),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE8 target->host packtlog */
316 	{
317 		.pipenum = __cpu_to_le32(8),
318 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
319 		.nentries = __cpu_to_le32(64),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* CE9 target autonomous qcache memcpy */
326 	{
327 		.pipenum = __cpu_to_le32(9),
328 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
329 		.nentries = __cpu_to_le32(32),
330 		.nbytes_max = __cpu_to_le32(2048),
331 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
332 		.reserved = __cpu_to_le32(0),
333 	},
334 
335 	/* It not necessary to send target wlan configuration for CE10 & CE11
336 	 * as these CEs are not actively used in target.
337 	 */
338 };
339 
340 /*
341  * Map from service/endpoint to Copy Engine.
342  * This table is derived from the CE_PCI TABLE, above.
343  * It is passed to the Target at startup for use by firmware.
344  */
345 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(3),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(2),
395 	},
396 	{
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{ /* not used */
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(0),
410 	},
411 	{ /* not used */
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(1),
415 	},
416 	{
417 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
418 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
419 		__cpu_to_le32(4),
420 	},
421 	{
422 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
423 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
424 		__cpu_to_le32(5),
425 	},
426 
427 	/* (Additions here) */
428 
429 	{ /* must be last */
430 		__cpu_to_le32(0),
431 		__cpu_to_le32(0),
432 		__cpu_to_le32(0),
433 	},
434 };
435 
436 static bool ath10k_pci_is_awake(struct ath10k *ar)
437 {
438 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
439 #if defined(__linux__)
440 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
441 			   RTC_STATE_ADDRESS);
442 #elif defined(__FreeBSD__)
443 	u32 val = bus_read_4((struct resource *)ar_pci->mem, PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 #endif
446 
447 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
448 }
449 
450 static void __ath10k_pci_wake(struct ath10k *ar)
451 {
452 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
453 
454 	lockdep_assert_held(&ar_pci->ps_lock);
455 
456 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
457 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
458 
459 #if defined(__linux__)
460 	iowrite32(PCIE_SOC_WAKE_V_MASK,
461 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
462 		  PCIE_SOC_WAKE_ADDRESS);
463 #elif defined(__FreeBSD__)
464 	bus_write_4((struct resource *)ar_pci->mem,
465 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
466 	    PCIE_SOC_WAKE_V_MASK);
467 #endif
468 }
469 
470 static void __ath10k_pci_sleep(struct ath10k *ar)
471 {
472 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
473 
474 	lockdep_assert_held(&ar_pci->ps_lock);
475 
476 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
477 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
478 
479 #if defined(__linux__)
480 	iowrite32(PCIE_SOC_WAKE_RESET,
481 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
482 		  PCIE_SOC_WAKE_ADDRESS);
483 #elif defined(__FreeBSD__)
484 	bus_write_4((struct resource *)ar_pci->mem,
485 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
486 	    PCIE_SOC_WAKE_RESET);
487 #endif
488 	ar_pci->ps_awake = false;
489 }
490 
491 static int ath10k_pci_wake_wait(struct ath10k *ar)
492 {
493 	int tot_delay = 0;
494 	int curr_delay = 5;
495 
496 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
497 		if (ath10k_pci_is_awake(ar)) {
498 			if (tot_delay > PCIE_WAKE_LATE_US)
499 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
500 					    tot_delay / 1000);
501 			return 0;
502 		}
503 
504 		udelay(curr_delay);
505 		tot_delay += curr_delay;
506 
507 		if (curr_delay < 50)
508 			curr_delay += 5;
509 	}
510 
511 	return -ETIMEDOUT;
512 }
513 
514 static int ath10k_pci_force_wake(struct ath10k *ar)
515 {
516 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
517 	unsigned long flags;
518 	int ret = 0;
519 
520 	if (ar_pci->pci_ps)
521 		return ret;
522 
523 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
524 
525 	if (!ar_pci->ps_awake) {
526 #if defined(__linux__)
527 		iowrite32(PCIE_SOC_WAKE_V_MASK,
528 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
529 			  PCIE_SOC_WAKE_ADDRESS);
530 #elif defined(__FreeBSD__)
531 		bus_write_4((struct resource *)ar_pci->mem,
532 		    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
533 		    PCIE_SOC_WAKE_V_MASK);
534 #endif
535 
536 		ret = ath10k_pci_wake_wait(ar);
537 		if (ret == 0)
538 			ar_pci->ps_awake = true;
539 	}
540 
541 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
542 
543 	return ret;
544 }
545 
546 static void ath10k_pci_force_sleep(struct ath10k *ar)
547 {
548 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 #if defined(__linux__)
554 	iowrite32(PCIE_SOC_WAKE_RESET,
555 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
556 		  PCIE_SOC_WAKE_ADDRESS);
557 #elif defined(__FreeBSD__)
558 	bus_write_4((struct resource *)ar_pci->mem,
559 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
560 	    PCIE_SOC_WAKE_RESET);
561 #endif
562 	ar_pci->ps_awake = false;
563 
564 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
565 }
566 
567 static int ath10k_pci_wake(struct ath10k *ar)
568 {
569 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
570 	unsigned long flags;
571 	int ret = 0;
572 
573 	if (ar_pci->pci_ps == 0)
574 		return ret;
575 
576 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
577 
578 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
579 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
580 
581 	/* This function can be called very frequently. To avoid excessive
582 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
583 	 */
584 	if (!ar_pci->ps_awake) {
585 		__ath10k_pci_wake(ar);
586 
587 		ret = ath10k_pci_wake_wait(ar);
588 		if (ret == 0)
589 			ar_pci->ps_awake = true;
590 	}
591 
592 	if (ret == 0) {
593 		ar_pci->ps_wake_refcount++;
594 		WARN_ON(ar_pci->ps_wake_refcount == 0);
595 	}
596 
597 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
598 
599 	return ret;
600 }
601 
602 static void ath10k_pci_sleep(struct ath10k *ar)
603 {
604 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
605 	unsigned long flags;
606 
607 	if (ar_pci->pci_ps == 0)
608 		return;
609 
610 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
611 
612 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
613 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
614 
615 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
616 		goto skip;
617 
618 	ar_pci->ps_wake_refcount--;
619 
620 	mod_timer(&ar_pci->ps_timer, jiffies +
621 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
622 
623 skip:
624 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
625 }
626 
627 static void ath10k_pci_ps_timer(struct timer_list *t)
628 {
629 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
630 	struct ath10k *ar = ar_pci->ar;
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
634 
635 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
636 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
637 
638 	if (ar_pci->ps_wake_refcount > 0)
639 		goto skip;
640 
641 	__ath10k_pci_sleep(ar);
642 
643 skip:
644 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
645 }
646 
647 static void ath10k_pci_sleep_sync(struct ath10k *ar)
648 {
649 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 	unsigned long flags;
651 
652 	if (ar_pci->pci_ps == 0) {
653 		ath10k_pci_force_sleep(ar);
654 		return;
655 	}
656 
657 	del_timer_sync(&ar_pci->ps_timer);
658 
659 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
660 	WARN_ON(ar_pci->ps_wake_refcount > 0);
661 	__ath10k_pci_sleep(ar);
662 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
663 }
664 
665 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
666 {
667 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
668 	int ret;
669 
670 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
671 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
672 			    offset, offset + sizeof(value), ar_pci->mem_len);
673 		return;
674 	}
675 
676 	ret = ath10k_pci_wake(ar);
677 	if (ret) {
678 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
679 			    value, offset, ret);
680 		return;
681 	}
682 
683 #if defined(__linux__)
684 	iowrite32(value, ar_pci->mem + offset);
685 #elif defined(__FreeBSD__)
686 	bus_write_4((struct resource *)ar_pci->mem, offset, value);
687 #endif
688 	ath10k_pci_sleep(ar);
689 }
690 
691 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
692 {
693 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
694 	u32 val;
695 	int ret;
696 
697 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
698 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
699 			    offset, offset + sizeof(val), ar_pci->mem_len);
700 		return 0;
701 	}
702 
703 	ret = ath10k_pci_wake(ar);
704 	if (ret) {
705 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
706 			    offset, ret);
707 		return 0xffffffff;
708 	}
709 
710 #if defined(__linux__)
711 	val = ioread32(ar_pci->mem + offset);
712 #elif defined(__FreeBSD__)
713 	val = bus_read_4((struct resource *)ar_pci->mem, offset);
714 #endif
715 	ath10k_pci_sleep(ar);
716 
717 	return val;
718 }
719 
720 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
721 {
722 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
723 
724 	ce->bus_ops->write32(ar, offset, value);
725 }
726 
727 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
728 {
729 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
730 
731 	return ce->bus_ops->read32(ar, offset);
732 }
733 
734 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
735 {
736 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
737 }
738 
739 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
740 {
741 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
742 }
743 
744 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
745 {
746 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
747 }
748 
749 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
750 {
751 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
752 }
753 
754 bool ath10k_pci_irq_pending(struct ath10k *ar)
755 {
756 	u32 cause;
757 
758 	/* Check if the shared legacy irq is for us */
759 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
760 				  PCIE_INTR_CAUSE_ADDRESS);
761 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
762 		return true;
763 
764 	return false;
765 }
766 
767 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
768 {
769 	/* IMPORTANT: INTR_CLR register has to be set after
770 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
771 	 * really cleared.
772 	 */
773 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
774 			   0);
775 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
776 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
777 
778 	/* IMPORTANT: this extra read transaction is required to
779 	 * flush the posted write buffer.
780 	 */
781 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
782 				PCIE_INTR_ENABLE_ADDRESS);
783 }
784 
785 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
786 {
787 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
788 			   PCIE_INTR_ENABLE_ADDRESS,
789 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
790 
791 	/* IMPORTANT: this extra read transaction is required to
792 	 * flush the posted write buffer.
793 	 */
794 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
795 				PCIE_INTR_ENABLE_ADDRESS);
796 }
797 
798 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
799 {
800 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
801 
802 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
803 		return "msi";
804 
805 	return "legacy";
806 }
807 
808 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
809 {
810 	struct ath10k *ar = pipe->hif_ce_state;
811 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
812 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
813 	struct sk_buff *skb;
814 	dma_addr_t paddr;
815 	int ret;
816 
817 	skb = dev_alloc_skb(pipe->buf_sz);
818 	if (!skb)
819 		return -ENOMEM;
820 
821 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
822 
823 	paddr = dma_map_single(ar->dev, skb->data,
824 			       skb->len + skb_tailroom(skb),
825 			       DMA_FROM_DEVICE);
826 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
827 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
828 		dev_kfree_skb_any(skb);
829 		return -EIO;
830 	}
831 
832 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
833 
834 	spin_lock_bh(&ce->ce_lock);
835 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
836 	spin_unlock_bh(&ce->ce_lock);
837 	if (ret) {
838 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
839 				 DMA_FROM_DEVICE);
840 		dev_kfree_skb_any(skb);
841 		return ret;
842 	}
843 
844 	return 0;
845 }
846 
847 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
848 {
849 	struct ath10k *ar = pipe->hif_ce_state;
850 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
851 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
852 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
853 	int ret, num;
854 
855 	if (pipe->buf_sz == 0)
856 		return;
857 
858 	if (!ce_pipe->dest_ring)
859 		return;
860 
861 	spin_lock_bh(&ce->ce_lock);
862 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
863 	spin_unlock_bh(&ce->ce_lock);
864 
865 	while (num >= 0) {
866 		ret = __ath10k_pci_rx_post_buf(pipe);
867 		if (ret) {
868 			if (ret == -ENOSPC)
869 				break;
870 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
871 			mod_timer(&ar_pci->rx_post_retry, jiffies +
872 				  ATH10K_PCI_RX_POST_RETRY_MS);
873 			break;
874 		}
875 		num--;
876 	}
877 }
878 
879 void ath10k_pci_rx_post(struct ath10k *ar)
880 {
881 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
882 	int i;
883 
884 	for (i = 0; i < CE_COUNT; i++)
885 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
886 }
887 
888 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
889 {
890 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
891 	struct ath10k *ar = ar_pci->ar;
892 
893 	ath10k_pci_rx_post(ar);
894 }
895 
896 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
897 {
898 	u32 val = 0, region = addr & 0xfffff;
899 
900 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
901 				 & 0x7ff) << 21;
902 	val |= 0x100000 | region;
903 	return val;
904 }
905 
906 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
907  * Support to access target space below 1M for qca6174 and qca9377.
908  * If target space is below 1M, the bit[20] of converted CE addr is 0.
909  * Otherwise bit[20] of converted CE addr is 1.
910  */
911 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
912 {
913 	u32 val = 0, region = addr & 0xfffff;
914 
915 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
916 				 & 0x7ff) << 21;
917 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
918 	return val;
919 }
920 
921 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
922 {
923 	u32 val = 0, region = addr & 0xfffff;
924 
925 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
926 	val |= 0x100000 | region;
927 	return val;
928 }
929 
930 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
931 {
932 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
933 
934 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
935 		return -ENOTSUPP;
936 
937 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
938 }
939 
940 /*
941  * Diagnostic read/write access is provided for startup/config/debug usage.
942  * Caller must guarantee proper alignment, when applicable, and single user
943  * at any moment.
944  */
945 #if defined(__linux__)
946 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
947 #elif defined(__FreeBSD__)
948 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, u8 *data,
949 #endif
950 				    int nbytes)
951 {
952 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
953 	int ret = 0;
954 	u32 *buf;
955 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
956 	struct ath10k_ce_pipe *ce_diag;
957 	/* Host buffer address in CE space */
958 	u32 ce_data;
959 	dma_addr_t ce_data_base = 0;
960 	void *data_buf;
961 	int i;
962 
963 	mutex_lock(&ar_pci->ce_diag_mutex);
964 	ce_diag = ar_pci->ce_diag;
965 
966 	/*
967 	 * Allocate a temporary bounce buffer to hold caller's data
968 	 * to be DMA'ed from Target. This guarantees
969 	 *   1) 4-byte alignment
970 	 *   2) Buffer in DMA-able space
971 	 */
972 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
973 
974 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
975 				      GFP_ATOMIC);
976 	if (!data_buf) {
977 		ret = -ENOMEM;
978 		goto done;
979 	}
980 
981 	/* The address supplied by the caller is in the
982 	 * Target CPU virtual address space.
983 	 *
984 	 * In order to use this address with the diagnostic CE,
985 	 * convert it from Target CPU virtual address space
986 	 * to CE address space
987 	 */
988 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
989 
990 	remaining_bytes = nbytes;
991 	ce_data = ce_data_base;
992 	while (remaining_bytes) {
993 		nbytes = min_t(unsigned int, remaining_bytes,
994 			       DIAG_TRANSFER_LIMIT);
995 
996 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
997 		if (ret != 0)
998 			goto done;
999 
1000 		/* Request CE to send from Target(!) address to Host buffer */
1001 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
1002 		if (ret)
1003 			goto done;
1004 
1005 		i = 0;
1006 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1007 			udelay(DIAG_ACCESS_CE_WAIT_US);
1008 			i += DIAG_ACCESS_CE_WAIT_US;
1009 
1010 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1011 				ret = -EBUSY;
1012 				goto done;
1013 			}
1014 		}
1015 
1016 		i = 0;
1017 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1018 						     &completed_nbytes) != 0) {
1019 			udelay(DIAG_ACCESS_CE_WAIT_US);
1020 			i += DIAG_ACCESS_CE_WAIT_US;
1021 
1022 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1023 				ret = -EBUSY;
1024 				goto done;
1025 			}
1026 		}
1027 
1028 		if (nbytes != completed_nbytes) {
1029 			ret = -EIO;
1030 			goto done;
1031 		}
1032 
1033 		if (*buf != ce_data) {
1034 			ret = -EIO;
1035 			goto done;
1036 		}
1037 
1038 		remaining_bytes -= nbytes;
1039 		memcpy(data, data_buf, nbytes);
1040 
1041 		address += nbytes;
1042 		data += nbytes;
1043 	}
1044 
1045 done:
1046 
1047 	if (data_buf)
1048 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1049 				  ce_data_base);
1050 
1051 	mutex_unlock(&ar_pci->ce_diag_mutex);
1052 
1053 	return ret;
1054 }
1055 
1056 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1057 {
1058 	__le32 val = 0;
1059 	int ret;
1060 
1061 #if defined(__linux__)
1062 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1063 #elif defined(__FreeBSD__)
1064 	ret = ath10k_pci_diag_read_mem(ar, address, (u8 *)&val, sizeof(val));
1065 #endif
1066 	*value = __le32_to_cpu(val);
1067 
1068 	return ret;
1069 }
1070 
1071 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1072 				     u32 src, u32 len)
1073 {
1074 	u32 host_addr, addr;
1075 	int ret;
1076 
1077 	host_addr = host_interest_item_address(src);
1078 
1079 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1080 	if (ret != 0) {
1081 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1082 			    src, ret);
1083 		return ret;
1084 	}
1085 
1086 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1087 	if (ret != 0) {
1088 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1089 			    addr, len, ret);
1090 		return ret;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1097 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1098 
1099 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1100 #if defined(__linux__)
1101 			      const void *data, int nbytes)
1102 #elif defined(__FreeBSD__)
1103 			      const void *_d, int nbytes)
1104 #endif
1105 {
1106 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1107 	int ret = 0;
1108 	u32 *buf;
1109 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1110 	struct ath10k_ce_pipe *ce_diag;
1111 	void *data_buf;
1112 	dma_addr_t ce_data_base = 0;
1113 	int i;
1114 #if defined(__FreeBSD__)
1115 	const u8 *data = _d;
1116 #endif
1117 
1118 	mutex_lock(&ar_pci->ce_diag_mutex);
1119 	ce_diag = ar_pci->ce_diag;
1120 
1121 	/*
1122 	 * Allocate a temporary bounce buffer to hold caller's data
1123 	 * to be DMA'ed to Target. This guarantees
1124 	 *   1) 4-byte alignment
1125 	 *   2) Buffer in DMA-able space
1126 	 */
1127 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1128 
1129 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1130 				      GFP_ATOMIC);
1131 	if (!data_buf) {
1132 		ret = -ENOMEM;
1133 		goto done;
1134 	}
1135 
1136 	/*
1137 	 * The address supplied by the caller is in the
1138 	 * Target CPU virtual address space.
1139 	 *
1140 	 * In order to use this address with the diagnostic CE,
1141 	 * convert it from
1142 	 *    Target CPU virtual address space
1143 	 * to
1144 	 *    CE address space
1145 	 */
1146 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1147 
1148 	remaining_bytes = nbytes;
1149 	while (remaining_bytes) {
1150 		/* FIXME: check cast */
1151 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1152 
1153 		/* Copy caller's data to allocated DMA buf */
1154 		memcpy(data_buf, data, nbytes);
1155 
1156 		/* Set up to receive directly into Target(!) address */
1157 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1158 		if (ret != 0)
1159 			goto done;
1160 
1161 		/*
1162 		 * Request CE to send caller-supplied data that
1163 		 * was copied to bounce buffer to Target(!) address.
1164 		 */
1165 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1166 		if (ret != 0)
1167 			goto done;
1168 
1169 		i = 0;
1170 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1171 			udelay(DIAG_ACCESS_CE_WAIT_US);
1172 			i += DIAG_ACCESS_CE_WAIT_US;
1173 
1174 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1175 				ret = -EBUSY;
1176 				goto done;
1177 			}
1178 		}
1179 
1180 		i = 0;
1181 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1182 						     &completed_nbytes) != 0) {
1183 			udelay(DIAG_ACCESS_CE_WAIT_US);
1184 			i += DIAG_ACCESS_CE_WAIT_US;
1185 
1186 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1187 				ret = -EBUSY;
1188 				goto done;
1189 			}
1190 		}
1191 
1192 		if (nbytes != completed_nbytes) {
1193 			ret = -EIO;
1194 			goto done;
1195 		}
1196 
1197 		if (*buf != address) {
1198 			ret = -EIO;
1199 			goto done;
1200 		}
1201 
1202 		remaining_bytes -= nbytes;
1203 		address += nbytes;
1204 		data += nbytes;
1205 	}
1206 
1207 done:
1208 	if (data_buf) {
1209 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1210 				  ce_data_base);
1211 	}
1212 
1213 	if (ret != 0)
1214 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1215 			    address, ret);
1216 
1217 	mutex_unlock(&ar_pci->ce_diag_mutex);
1218 
1219 	return ret;
1220 }
1221 
1222 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1223 {
1224 	__le32 val = __cpu_to_le32(value);
1225 
1226 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1227 }
1228 
1229 /* Called by lower (CE) layer when a send to Target completes. */
1230 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1231 {
1232 	struct ath10k *ar = ce_state->ar;
1233 	struct sk_buff_head list;
1234 	struct sk_buff *skb;
1235 
1236 	__skb_queue_head_init(&list);
1237 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1238 		/* no need to call tx completion for NULL pointers */
1239 		if (skb == NULL)
1240 			continue;
1241 
1242 		__skb_queue_tail(&list, skb);
1243 	}
1244 
1245 	while ((skb = __skb_dequeue(&list)))
1246 		ath10k_htc_tx_completion_handler(ar, skb);
1247 }
1248 
1249 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1250 				     void (*callback)(struct ath10k *ar,
1251 						      struct sk_buff *skb))
1252 {
1253 	struct ath10k *ar = ce_state->ar;
1254 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1255 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1256 	struct sk_buff *skb;
1257 	struct sk_buff_head list;
1258 	void *transfer_context;
1259 	unsigned int nbytes, max_nbytes;
1260 
1261 	__skb_queue_head_init(&list);
1262 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1263 					     &nbytes) == 0) {
1264 		skb = transfer_context;
1265 		max_nbytes = skb->len + skb_tailroom(skb);
1266 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1267 				 max_nbytes, DMA_FROM_DEVICE);
1268 
1269 		if (unlikely(max_nbytes < nbytes)) {
1270 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1271 				    nbytes, max_nbytes);
1272 			dev_kfree_skb_any(skb);
1273 			continue;
1274 		}
1275 
1276 		skb_put(skb, nbytes);
1277 		__skb_queue_tail(&list, skb);
1278 	}
1279 
1280 	while ((skb = __skb_dequeue(&list))) {
1281 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1282 			   ce_state->id, skb->len);
1283 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1284 				skb->data, skb->len);
1285 
1286 		callback(ar, skb);
1287 	}
1288 
1289 	ath10k_pci_rx_post_pipe(pipe_info);
1290 }
1291 
1292 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1293 					 void (*callback)(struct ath10k *ar,
1294 							  struct sk_buff *skb))
1295 {
1296 	struct ath10k *ar = ce_state->ar;
1297 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1298 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1299 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1300 	struct sk_buff *skb;
1301 	struct sk_buff_head list;
1302 	void *transfer_context;
1303 	unsigned int nbytes, max_nbytes, nentries;
1304 	int orig_len;
1305 
1306 	/* No need to aquire ce_lock for CE5, since this is the only place CE5
1307 	 * is processed other than init and deinit. Before releasing CE5
1308 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1309 	 */
1310 	__skb_queue_head_init(&list);
1311 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1312 						    &nbytes) == 0) {
1313 		skb = transfer_context;
1314 		max_nbytes = skb->len + skb_tailroom(skb);
1315 
1316 		if (unlikely(max_nbytes < nbytes)) {
1317 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1318 				    nbytes, max_nbytes);
1319 			continue;
1320 		}
1321 
1322 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1323 					max_nbytes, DMA_FROM_DEVICE);
1324 		skb_put(skb, nbytes);
1325 		__skb_queue_tail(&list, skb);
1326 	}
1327 
1328 	nentries = skb_queue_len(&list);
1329 	while ((skb = __skb_dequeue(&list))) {
1330 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1331 			   ce_state->id, skb->len);
1332 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1333 				skb->data, skb->len);
1334 
1335 		orig_len = skb->len;
1336 		callback(ar, skb);
1337 		skb_push(skb, orig_len - skb->len);
1338 		skb_reset_tail_pointer(skb);
1339 		skb_trim(skb, 0);
1340 
1341 		/*let device gain the buffer again*/
1342 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1343 					   skb->len + skb_tailroom(skb),
1344 					   DMA_FROM_DEVICE);
1345 	}
1346 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1347 }
1348 
1349 /* Called by lower (CE) layer when data is received from the Target. */
1350 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1351 {
1352 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1353 }
1354 
1355 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1356 {
1357 	/* CE4 polling needs to be done whenever CE pipe which transports
1358 	 * HTT Rx (target->host) is processed.
1359 	 */
1360 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1361 
1362 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1363 }
1364 
1365 /* Called by lower (CE) layer when data is received from the Target.
1366  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1367  */
1368 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1369 {
1370 	ath10k_pci_process_rx_cb(ce_state,
1371 				 ath10k_htt_rx_pktlog_completion_handler);
1372 }
1373 
1374 /* Called by lower (CE) layer when a send to HTT Target completes. */
1375 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1376 {
1377 	struct ath10k *ar = ce_state->ar;
1378 	struct sk_buff *skb;
1379 
1380 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1381 		/* no need to call tx completion for NULL pointers */
1382 		if (!skb)
1383 			continue;
1384 
1385 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1386 				 skb->len, DMA_TO_DEVICE);
1387 		ath10k_htt_hif_tx_complete(ar, skb);
1388 	}
1389 }
1390 
1391 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1392 {
1393 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1394 	ath10k_htt_t2h_msg_handler(ar, skb);
1395 }
1396 
1397 /* Called by lower (CE) layer when HTT data is received from the Target. */
1398 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1399 {
1400 	/* CE4 polling needs to be done whenever CE pipe which transports
1401 	 * HTT Rx (target->host) is processed.
1402 	 */
1403 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1404 
1405 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1406 }
1407 
1408 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1409 			 struct ath10k_hif_sg_item *items, int n_items)
1410 {
1411 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1412 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1413 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1414 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1415 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1416 	unsigned int nentries_mask;
1417 	unsigned int sw_index;
1418 	unsigned int write_index;
1419 	int err, i = 0;
1420 
1421 	spin_lock_bh(&ce->ce_lock);
1422 
1423 	nentries_mask = src_ring->nentries_mask;
1424 	sw_index = src_ring->sw_index;
1425 	write_index = src_ring->write_index;
1426 
1427 	if (unlikely(CE_RING_DELTA(nentries_mask,
1428 				   write_index, sw_index - 1) < n_items)) {
1429 		err = -ENOBUFS;
1430 		goto err;
1431 	}
1432 
1433 	for (i = 0; i < n_items - 1; i++) {
1434 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1435 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1436 			   i, &items[i].paddr, items[i].len, n_items);
1437 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1438 				items[i].vaddr, items[i].len);
1439 
1440 		err = ath10k_ce_send_nolock(ce_pipe,
1441 					    items[i].transfer_context,
1442 					    items[i].paddr,
1443 					    items[i].len,
1444 					    items[i].transfer_id,
1445 					    CE_SEND_FLAG_GATHER);
1446 		if (err)
1447 			goto err;
1448 	}
1449 
1450 	/* `i` is equal to `n_items -1` after for() */
1451 
1452 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1453 		   "pci tx item %d paddr %pad len %d n_items %d pipe_id %u\n",
1454 		   i, &items[i].paddr, items[i].len, n_items, pipe_id);
1455 	if (n_items == 1 && items[i].len == 140) {
1456 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI, NULL, "pci tx data: ",
1457 				items[i].vaddr, items[i].len);
1458 		dump_stack();
1459 		DELAY(500);
1460 	}
1461 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1462 			items[i].vaddr, items[i].len);
1463 
1464 	err = ath10k_ce_send_nolock(ce_pipe,
1465 				    items[i].transfer_context,
1466 				    items[i].paddr,
1467 				    items[i].len,
1468 				    items[i].transfer_id,
1469 				    0);
1470 	if (err)
1471 		goto err;
1472 
1473 	spin_unlock_bh(&ce->ce_lock);
1474 	return 0;
1475 
1476 err:
1477 	for (; i > 0; i--)
1478 		__ath10k_ce_send_revert(ce_pipe);
1479 
1480 	spin_unlock_bh(&ce->ce_lock);
1481 	return err;
1482 }
1483 
1484 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1485 			     size_t buf_len)
1486 {
1487 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1488 }
1489 
1490 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1491 {
1492 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1493 
1494 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1495 
1496 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1497 }
1498 
1499 static void ath10k_pci_dump_registers(struct ath10k *ar,
1500 				      struct ath10k_fw_crash_data *crash_data)
1501 {
1502 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1503 	int i, ret;
1504 
1505 	lockdep_assert_held(&ar->dump_mutex);
1506 
1507 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1508 				      hi_failure_state,
1509 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1510 	if (ret) {
1511 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1512 		return;
1513 	}
1514 
1515 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1516 
1517 	ath10k_err(ar, "firmware register dump:\n");
1518 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1519 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1520 			   i,
1521 			   __le32_to_cpu(reg_dump_values[i]),
1522 			   __le32_to_cpu(reg_dump_values[i + 1]),
1523 			   __le32_to_cpu(reg_dump_values[i + 2]),
1524 			   __le32_to_cpu(reg_dump_values[i + 3]));
1525 
1526 	if (!crash_data)
1527 		return;
1528 
1529 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1530 		crash_data->registers[i] = reg_dump_values[i];
1531 }
1532 
1533 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1534 					  const struct ath10k_mem_region *mem_region,
1535 					  u8 *buf, size_t buf_len)
1536 {
1537 	const struct ath10k_mem_section *cur_section, *next_section;
1538 	unsigned int count, section_size, skip_size;
1539 	int ret, i, j;
1540 
1541 	if (!mem_region || !buf)
1542 		return 0;
1543 
1544 	cur_section = &mem_region->section_table.sections[0];
1545 
1546 	if (mem_region->start > cur_section->start) {
1547 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1548 			    mem_region->start, cur_section->start);
1549 		return 0;
1550 	}
1551 
1552 	skip_size = cur_section->start - mem_region->start;
1553 
1554 	/* fill the gap between the first register section and register
1555 	 * start address
1556 	 */
1557 	for (i = 0; i < skip_size; i++) {
1558 		*buf = ATH10K_MAGIC_NOT_COPIED;
1559 		buf++;
1560 	}
1561 
1562 	count = 0;
1563 
1564 	for (i = 0; cur_section != NULL; i++) {
1565 		section_size = cur_section->end - cur_section->start;
1566 
1567 		if (section_size <= 0) {
1568 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1569 				    cur_section->start,
1570 				    cur_section->end);
1571 			break;
1572 		}
1573 
1574 		if ((i + 1) == mem_region->section_table.size) {
1575 			/* last section */
1576 			next_section = NULL;
1577 			skip_size = 0;
1578 		} else {
1579 			next_section = cur_section + 1;
1580 
1581 			if (cur_section->end > next_section->start) {
1582 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1583 					    next_section->start,
1584 					    cur_section->end);
1585 				break;
1586 			}
1587 
1588 			skip_size = next_section->start - cur_section->end;
1589 		}
1590 
1591 		if (buf_len < (skip_size + section_size)) {
1592 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1593 			break;
1594 		}
1595 
1596 		buf_len -= skip_size + section_size;
1597 
1598 		/* read section to dest memory */
1599 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1600 					       buf, section_size);
1601 		if (ret) {
1602 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1603 				    cur_section->start, ret);
1604 			break;
1605 		}
1606 
1607 		buf += section_size;
1608 		count += section_size;
1609 
1610 		/* fill in the gap between this section and the next */
1611 		for (j = 0; j < skip_size; j++) {
1612 			*buf = ATH10K_MAGIC_NOT_COPIED;
1613 			buf++;
1614 		}
1615 
1616 		count += skip_size;
1617 
1618 		if (!next_section)
1619 			/* this was the last section */
1620 			break;
1621 
1622 		cur_section = next_section;
1623 	}
1624 
1625 	return count;
1626 }
1627 
1628 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1629 {
1630 	u32 val;
1631 
1632 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1633 			   FW_RAM_CONFIG_ADDRESS, config);
1634 
1635 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1636 				FW_RAM_CONFIG_ADDRESS);
1637 	if (val != config) {
1638 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1639 			    val, config);
1640 		return -EIO;
1641 	}
1642 
1643 	return 0;
1644 }
1645 
1646 /* Always returns the length */
1647 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1648 				       const struct ath10k_mem_region *region,
1649 				       u8 *buf)
1650 {
1651 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1652 	u32 base_addr, i;
1653 
1654 #if defined(__linux__)
1655 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1656 #elif defined(__FreeBSD__)
1657 	base_addr = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_PCIE_BAR0_START_REG);
1658 #endif
1659 	base_addr += region->start;
1660 
1661 	for (i = 0; i < region->len; i += 4) {
1662 #if defined(__linux__)
1663 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1664 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1665 #elif defined(__FreeBSD__)
1666 		bus_write_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_ADDR_REG, base_addr + i);
1667 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_DATA_REG);
1668 #endif
1669 	}
1670 
1671 	return region->len;
1672 }
1673 
1674 /* if an error happened returns < 0, otherwise the length */
1675 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1676 				      const struct ath10k_mem_region *region,
1677 				      u8 *buf)
1678 {
1679 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1680 	u32 i;
1681 	int ret;
1682 
1683 	mutex_lock(&ar->conf_mutex);
1684 	if (ar->state != ATH10K_STATE_ON) {
1685 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1686 		ret = -EIO;
1687 		goto done;
1688 	}
1689 
1690 	for (i = 0; i < region->len; i += 4)
1691 #if defined(__linux__)
1692 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1693 #elif defined(__FreeBSD__)
1694 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, region->start + i);
1695 #endif
1696 
1697 	ret = region->len;
1698 done:
1699 	mutex_unlock(&ar->conf_mutex);
1700 	return ret;
1701 }
1702 
1703 /* if an error happened returns < 0, otherwise the length */
1704 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1705 					  const struct ath10k_mem_region *current_region,
1706 					  u8 *buf)
1707 {
1708 	int ret;
1709 
1710 	if (current_region->section_table.size > 0)
1711 		/* Copy each section individually. */
1712 		return ath10k_pci_dump_memory_section(ar,
1713 						      current_region,
1714 						      buf,
1715 						      current_region->len);
1716 
1717 	/* No individiual memory sections defined so we can
1718 	 * copy the entire memory region.
1719 	 */
1720 	ret = ath10k_pci_diag_read_mem(ar,
1721 				       current_region->start,
1722 				       buf,
1723 				       current_region->len);
1724 	if (ret) {
1725 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1726 			    current_region->name, ret);
1727 		return ret;
1728 	}
1729 
1730 	return current_region->len;
1731 }
1732 
1733 static void ath10k_pci_dump_memory(struct ath10k *ar,
1734 				   struct ath10k_fw_crash_data *crash_data)
1735 {
1736 	const struct ath10k_hw_mem_layout *mem_layout;
1737 	const struct ath10k_mem_region *current_region;
1738 	struct ath10k_dump_ram_data_hdr *hdr;
1739 	u32 count, shift;
1740 	size_t buf_len;
1741 	int ret, i;
1742 	u8 *buf;
1743 
1744 	lockdep_assert_held(&ar->dump_mutex);
1745 
1746 	if (!crash_data)
1747 		return;
1748 
1749 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1750 	if (!mem_layout)
1751 		return;
1752 
1753 	current_region = &mem_layout->region_table.regions[0];
1754 
1755 	buf = crash_data->ramdump_buf;
1756 	buf_len = crash_data->ramdump_buf_len;
1757 
1758 	memset(buf, 0, buf_len);
1759 
1760 	for (i = 0; i < mem_layout->region_table.size; i++) {
1761 		count = 0;
1762 
1763 		if (current_region->len > buf_len) {
1764 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1765 				    current_region->name,
1766 				    current_region->len,
1767 				    buf_len);
1768 			break;
1769 		}
1770 
1771 		/* To get IRAM dump, the host driver needs to switch target
1772 		 * ram config from DRAM to IRAM.
1773 		 */
1774 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1775 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1776 			shift = current_region->start >> 20;
1777 
1778 			ret = ath10k_pci_set_ram_config(ar, shift);
1779 			if (ret) {
1780 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1781 					    current_region->name, ret);
1782 				break;
1783 			}
1784 		}
1785 
1786 		/* Reserve space for the header. */
1787 		hdr = (void *)buf;
1788 		buf += sizeof(*hdr);
1789 		buf_len -= sizeof(*hdr);
1790 
1791 		switch (current_region->type) {
1792 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1793 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1794 			break;
1795 		case ATH10K_MEM_REGION_TYPE_IOREG:
1796 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1797 			if (ret < 0)
1798 				break;
1799 
1800 			count = ret;
1801 			break;
1802 		default:
1803 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1804 			if (ret < 0)
1805 				break;
1806 
1807 			count = ret;
1808 			break;
1809 		}
1810 
1811 		hdr->region_type = cpu_to_le32(current_region->type);
1812 		hdr->start = cpu_to_le32(current_region->start);
1813 		hdr->length = cpu_to_le32(count);
1814 
1815 		if (count == 0)
1816 			/* Note: the header remains, just with zero length. */
1817 			break;
1818 
1819 		buf += count;
1820 		buf_len -= count;
1821 
1822 		current_region++;
1823 	}
1824 }
1825 
1826 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1827 {
1828 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1829 						 dump_work);
1830 	struct ath10k_fw_crash_data *crash_data;
1831 	struct ath10k *ar = ar_pci->ar;
1832 	char guid[UUID_STRING_LEN + 1];
1833 
1834 	mutex_lock(&ar->dump_mutex);
1835 
1836 	spin_lock_bh(&ar->data_lock);
1837 	ar->stats.fw_crash_counter++;
1838 	spin_unlock_bh(&ar->data_lock);
1839 
1840 	crash_data = ath10k_coredump_new(ar);
1841 
1842 	if (crash_data)
1843 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1844 	else
1845 		scnprintf(guid, sizeof(guid), "n/a");
1846 
1847 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1848 	ath10k_print_driver_info(ar);
1849 	ath10k_pci_dump_registers(ar, crash_data);
1850 	ath10k_ce_dump_registers(ar, crash_data);
1851 	ath10k_pci_dump_memory(ar, crash_data);
1852 
1853 	mutex_unlock(&ar->dump_mutex);
1854 
1855 	ath10k_core_start_recovery(ar);
1856 }
1857 
1858 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1859 {
1860 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1861 
1862 	queue_work(ar->workqueue, &ar_pci->dump_work);
1863 }
1864 
1865 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1866 					int force)
1867 {
1868 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1869 
1870 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1871 
1872 	if (!force) {
1873 		int resources;
1874 		/*
1875 		 * Decide whether to actually poll for completions, or just
1876 		 * wait for a later chance.
1877 		 * If there seem to be plenty of resources left, then just wait
1878 		 * since checking involves reading a CE register, which is a
1879 		 * relatively expensive operation.
1880 		 */
1881 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1882 
1883 		/*
1884 		 * If at least 50% of the total resources are still available,
1885 		 * don't bother checking again yet.
1886 		 */
1887 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1888 			return;
1889 	}
1890 	ath10k_ce_per_engine_service(ar, pipe);
1891 }
1892 
1893 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1894 {
1895 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1896 
1897 	del_timer_sync(&ar_pci->rx_post_retry);
1898 }
1899 
1900 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1901 				       u8 *ul_pipe, u8 *dl_pipe)
1902 {
1903 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1904 	const struct ce_service_to_pipe *entry;
1905 	bool ul_set = false, dl_set = false;
1906 	int i;
1907 
1908 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1909 
1910 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1911 		entry = &ar_pci->serv_to_pipe[i];
1912 
1913 		if (__le32_to_cpu(entry->service_id) != service_id)
1914 			continue;
1915 
1916 		switch (__le32_to_cpu(entry->pipedir)) {
1917 		case PIPEDIR_NONE:
1918 			break;
1919 		case PIPEDIR_IN:
1920 			WARN_ON(dl_set);
1921 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1922 			dl_set = true;
1923 			break;
1924 		case PIPEDIR_OUT:
1925 			WARN_ON(ul_set);
1926 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1927 			ul_set = true;
1928 			break;
1929 		case PIPEDIR_INOUT:
1930 			WARN_ON(dl_set);
1931 			WARN_ON(ul_set);
1932 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1933 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1934 			dl_set = true;
1935 			ul_set = true;
1936 			break;
1937 		}
1938 	}
1939 
1940 	if (!ul_set || !dl_set)
1941 		return -ENOENT;
1942 
1943 	return 0;
1944 }
1945 
1946 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1947 				     u8 *ul_pipe, u8 *dl_pipe)
1948 {
1949 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1950 
1951 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1952 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1953 						 ul_pipe, dl_pipe);
1954 }
1955 
1956 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1957 {
1958 	u32 val;
1959 
1960 	switch (ar->hw_rev) {
1961 	case ATH10K_HW_QCA988X:
1962 	case ATH10K_HW_QCA9887:
1963 	case ATH10K_HW_QCA6174:
1964 	case ATH10K_HW_QCA9377:
1965 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1966 					CORE_CTRL_ADDRESS);
1967 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1968 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1969 				   CORE_CTRL_ADDRESS, val);
1970 		break;
1971 	case ATH10K_HW_QCA99X0:
1972 	case ATH10K_HW_QCA9984:
1973 	case ATH10K_HW_QCA9888:
1974 	case ATH10K_HW_QCA4019:
1975 		/* TODO: Find appropriate register configuration for QCA99X0
1976 		 *  to mask irq/MSI.
1977 		 */
1978 		break;
1979 	case ATH10K_HW_WCN3990:
1980 		break;
1981 	}
1982 }
1983 
1984 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1985 {
1986 	u32 val;
1987 
1988 	switch (ar->hw_rev) {
1989 	case ATH10K_HW_QCA988X:
1990 	case ATH10K_HW_QCA9887:
1991 	case ATH10K_HW_QCA6174:
1992 	case ATH10K_HW_QCA9377:
1993 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1994 					CORE_CTRL_ADDRESS);
1995 		val |= CORE_CTRL_PCIE_REG_31_MASK;
1996 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1997 				   CORE_CTRL_ADDRESS, val);
1998 		break;
1999 	case ATH10K_HW_QCA99X0:
2000 	case ATH10K_HW_QCA9984:
2001 	case ATH10K_HW_QCA9888:
2002 	case ATH10K_HW_QCA4019:
2003 		/* TODO: Find appropriate register configuration for QCA99X0
2004 		 *  to unmask irq/MSI.
2005 		 */
2006 		break;
2007 	case ATH10K_HW_WCN3990:
2008 		break;
2009 	}
2010 }
2011 
2012 static void ath10k_pci_irq_disable(struct ath10k *ar)
2013 {
2014 	ath10k_ce_disable_interrupts(ar);
2015 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2016 	ath10k_pci_irq_msi_fw_mask(ar);
2017 }
2018 
2019 static void ath10k_pci_irq_sync(struct ath10k *ar)
2020 {
2021 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2022 
2023 	synchronize_irq(ar_pci->pdev->irq);
2024 }
2025 
2026 static void ath10k_pci_irq_enable(struct ath10k *ar)
2027 {
2028 	ath10k_ce_enable_interrupts(ar);
2029 	ath10k_pci_enable_legacy_irq(ar);
2030 	ath10k_pci_irq_msi_fw_unmask(ar);
2031 }
2032 
2033 static int ath10k_pci_hif_start(struct ath10k *ar)
2034 {
2035 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2036 
2037 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
2038 
2039 	ath10k_core_napi_enable(ar);
2040 
2041 	ath10k_pci_irq_enable(ar);
2042 	ath10k_pci_rx_post(ar);
2043 
2044 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2045 				   ar_pci->link_ctl);
2046 
2047 	return 0;
2048 }
2049 
2050 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2051 {
2052 	struct ath10k *ar;
2053 	struct ath10k_ce_pipe *ce_pipe;
2054 	struct ath10k_ce_ring *ce_ring;
2055 	struct sk_buff *skb;
2056 	int i;
2057 
2058 	ar = pci_pipe->hif_ce_state;
2059 	ce_pipe = pci_pipe->ce_hdl;
2060 	ce_ring = ce_pipe->dest_ring;
2061 
2062 	if (!ce_ring)
2063 		return;
2064 
2065 	if (!pci_pipe->buf_sz)
2066 		return;
2067 
2068 	for (i = 0; i < ce_ring->nentries; i++) {
2069 		skb = ce_ring->per_transfer_context[i];
2070 		if (!skb)
2071 			continue;
2072 
2073 		ce_ring->per_transfer_context[i] = NULL;
2074 
2075 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2076 				 skb->len + skb_tailroom(skb),
2077 				 DMA_FROM_DEVICE);
2078 		dev_kfree_skb_any(skb);
2079 	}
2080 }
2081 
2082 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2083 {
2084 	struct ath10k *ar;
2085 	struct ath10k_ce_pipe *ce_pipe;
2086 	struct ath10k_ce_ring *ce_ring;
2087 	struct sk_buff *skb;
2088 	int i;
2089 
2090 	ar = pci_pipe->hif_ce_state;
2091 	ce_pipe = pci_pipe->ce_hdl;
2092 	ce_ring = ce_pipe->src_ring;
2093 
2094 	if (!ce_ring)
2095 		return;
2096 
2097 	if (!pci_pipe->buf_sz)
2098 		return;
2099 
2100 	for (i = 0; i < ce_ring->nentries; i++) {
2101 		skb = ce_ring->per_transfer_context[i];
2102 		if (!skb)
2103 			continue;
2104 
2105 		ce_ring->per_transfer_context[i] = NULL;
2106 
2107 		ath10k_htc_tx_completion_handler(ar, skb);
2108 	}
2109 }
2110 
2111 /*
2112  * Cleanup residual buffers for device shutdown:
2113  *    buffers that were enqueued for receive
2114  *    buffers that were to be sent
2115  * Note: Buffers that had completed but which were
2116  * not yet processed are on a completion queue. They
2117  * are handled when the completion thread shuts down.
2118  */
2119 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2120 {
2121 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2122 	int pipe_num;
2123 
2124 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2125 		struct ath10k_pci_pipe *pipe_info;
2126 
2127 		pipe_info = &ar_pci->pipe_info[pipe_num];
2128 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2129 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2130 	}
2131 }
2132 
2133 void ath10k_pci_ce_deinit(struct ath10k *ar)
2134 {
2135 	int i;
2136 
2137 	for (i = 0; i < CE_COUNT; i++)
2138 		ath10k_ce_deinit_pipe(ar, i);
2139 }
2140 
2141 void ath10k_pci_flush(struct ath10k *ar)
2142 {
2143 	ath10k_pci_rx_retry_sync(ar);
2144 	ath10k_pci_buffer_cleanup(ar);
2145 }
2146 
2147 static void ath10k_pci_hif_stop(struct ath10k *ar)
2148 {
2149 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2150 	unsigned long flags;
2151 
2152 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2153 
2154 	ath10k_pci_irq_disable(ar);
2155 	ath10k_pci_irq_sync(ar);
2156 
2157 	ath10k_core_napi_sync_disable(ar);
2158 
2159 	cancel_work_sync(&ar_pci->dump_work);
2160 
2161 	/* Most likely the device has HTT Rx ring configured. The only way to
2162 	 * prevent the device from accessing (and possible corrupting) host
2163 	 * memory is to reset the chip now.
2164 	 *
2165 	 * There's also no known way of masking MSI interrupts on the device.
2166 	 * For ranged MSI the CE-related interrupts can be masked. However
2167 	 * regardless how many MSI interrupts are assigned the first one
2168 	 * is always used for firmware indications (crashes) and cannot be
2169 	 * masked. To prevent the device from asserting the interrupt reset it
2170 	 * before proceeding with cleanup.
2171 	 */
2172 	ath10k_pci_safe_chip_reset(ar);
2173 
2174 	ath10k_pci_flush(ar);
2175 
2176 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2177 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2178 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2179 }
2180 
2181 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2182 				    void *req, u32 req_len,
2183 				    void *resp, u32 *resp_len)
2184 {
2185 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2186 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2187 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2188 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2189 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2190 	dma_addr_t req_paddr = 0;
2191 	dma_addr_t resp_paddr = 0;
2192 	struct bmi_xfer xfer = {};
2193 	void *treq, *tresp = NULL;
2194 	int ret = 0;
2195 
2196 	might_sleep();
2197 
2198 	if (resp && !resp_len)
2199 		return -EINVAL;
2200 
2201 	if (resp && resp_len && *resp_len == 0)
2202 		return -EINVAL;
2203 
2204 	treq = kmemdup(req, req_len, GFP_KERNEL);
2205 	if (!treq)
2206 		return -ENOMEM;
2207 
2208 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2209 	ret = dma_mapping_error(ar->dev, req_paddr);
2210 	if (ret) {
2211 		ret = -EIO;
2212 		goto err_dma;
2213 	}
2214 
2215 	if (resp && resp_len) {
2216 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2217 		if (!tresp) {
2218 			ret = -ENOMEM;
2219 			goto err_req;
2220 		}
2221 
2222 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2223 					    DMA_FROM_DEVICE);
2224 		ret = dma_mapping_error(ar->dev, resp_paddr);
2225 		if (ret) {
2226 			ret = -EIO;
2227 			goto err_req;
2228 		}
2229 
2230 		xfer.wait_for_resp = true;
2231 		xfer.resp_len = 0;
2232 
2233 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2234 	}
2235 
2236 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2237 	if (ret)
2238 		goto err_resp;
2239 
2240 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2241 	if (ret) {
2242 		dma_addr_t unused_buffer;
2243 		unsigned int unused_nbytes;
2244 		unsigned int unused_id;
2245 
2246 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2247 					   &unused_nbytes, &unused_id);
2248 	} else {
2249 		/* non-zero means we did not time out */
2250 		ret = 0;
2251 	}
2252 
2253 err_resp:
2254 	if (resp) {
2255 		dma_addr_t unused_buffer;
2256 
2257 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2258 		dma_unmap_single(ar->dev, resp_paddr,
2259 				 *resp_len, DMA_FROM_DEVICE);
2260 	}
2261 err_req:
2262 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2263 
2264 	if (ret == 0 && resp_len) {
2265 		*resp_len = min(*resp_len, xfer.resp_len);
2266 		memcpy(resp, tresp, *resp_len);
2267 	}
2268 err_dma:
2269 	kfree(treq);
2270 	kfree(tresp);
2271 
2272 	return ret;
2273 }
2274 
2275 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2276 {
2277 	struct bmi_xfer *xfer;
2278 
2279 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2280 		return;
2281 
2282 	xfer->tx_done = true;
2283 }
2284 
2285 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2286 {
2287 	struct ath10k *ar = ce_state->ar;
2288 	struct bmi_xfer *xfer;
2289 	unsigned int nbytes;
2290 
2291 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2292 					  &nbytes))
2293 		return;
2294 
2295 	if (WARN_ON_ONCE(!xfer))
2296 		return;
2297 
2298 	if (!xfer->wait_for_resp) {
2299 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2300 		return;
2301 	}
2302 
2303 	xfer->resp_len = nbytes;
2304 	xfer->rx_done = true;
2305 }
2306 
2307 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2308 			       struct ath10k_ce_pipe *tx_pipe,
2309 			       struct ath10k_ce_pipe *rx_pipe,
2310 			       struct bmi_xfer *xfer)
2311 {
2312 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2313 	unsigned long started = jiffies;
2314 	unsigned long dur;
2315 	int ret;
2316 
2317 	while (time_before_eq(jiffies, timeout)) {
2318 		ath10k_pci_bmi_send_done(tx_pipe);
2319 		ath10k_pci_bmi_recv_data(rx_pipe);
2320 
2321 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2322 			ret = 0;
2323 			goto out;
2324 		}
2325 
2326 #if defined(__linux__)
2327 		schedule();
2328 #elif defined(__FreeBSD__)
2329 		/* Using LinuxKPI we'll hang for-ever as there's no wake_up */
2330 		kern_yield(PRI_USER);
2331 #endif
2332 	}
2333 
2334 	ret = -ETIMEDOUT;
2335 
2336 out:
2337 	dur = jiffies - started;
2338 	if (dur > HZ)
2339 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2340 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2341 			   dur, HZ, ret);
2342 	return ret;
2343 }
2344 
2345 /*
2346  * Send an interrupt to the device to wake up the Target CPU
2347  * so it has an opportunity to notice any changed state.
2348  */
2349 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2350 {
2351 	u32 addr, val;
2352 
2353 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2354 	val = ath10k_pci_read32(ar, addr);
2355 	val |= CORE_CTRL_CPU_INTR_MASK;
2356 	ath10k_pci_write32(ar, addr, val);
2357 
2358 	return 0;
2359 }
2360 
2361 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2362 {
2363 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2364 
2365 	switch (ar_pci->pdev->device) {
2366 	case QCA988X_2_0_DEVICE_ID_UBNT:
2367 	case QCA988X_2_0_DEVICE_ID:
2368 	case QCA99X0_2_0_DEVICE_ID:
2369 	case QCA9888_2_0_DEVICE_ID:
2370 	case QCA9984_1_0_DEVICE_ID:
2371 	case QCA9887_1_0_DEVICE_ID:
2372 		return 1;
2373 	case QCA6164_2_1_DEVICE_ID:
2374 	case QCA6174_2_1_DEVICE_ID:
2375 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2376 		case QCA6174_HW_1_0_CHIP_ID_REV:
2377 		case QCA6174_HW_1_1_CHIP_ID_REV:
2378 		case QCA6174_HW_2_1_CHIP_ID_REV:
2379 		case QCA6174_HW_2_2_CHIP_ID_REV:
2380 			return 3;
2381 		case QCA6174_HW_1_3_CHIP_ID_REV:
2382 			return 2;
2383 		case QCA6174_HW_3_0_CHIP_ID_REV:
2384 		case QCA6174_HW_3_1_CHIP_ID_REV:
2385 		case QCA6174_HW_3_2_CHIP_ID_REV:
2386 			return 9;
2387 		}
2388 		break;
2389 	case QCA9377_1_0_DEVICE_ID:
2390 		return 9;
2391 	}
2392 
2393 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2394 	return 1;
2395 }
2396 
2397 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2398 {
2399 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2400 
2401 	return ce->bus_ops->get_num_banks(ar);
2402 }
2403 
2404 int ath10k_pci_init_config(struct ath10k *ar)
2405 {
2406 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2407 	u32 interconnect_targ_addr;
2408 	u32 pcie_state_targ_addr = 0;
2409 	u32 pipe_cfg_targ_addr = 0;
2410 	u32 svc_to_pipe_map = 0;
2411 	u32 pcie_config_flags = 0;
2412 	u32 ealloc_value;
2413 	u32 ealloc_targ_addr;
2414 	u32 flag2_value;
2415 	u32 flag2_targ_addr;
2416 	int ret = 0;
2417 
2418 	/* Download to Target the CE Config and the service-to-CE map */
2419 	interconnect_targ_addr =
2420 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2421 
2422 	/* Supply Target-side CE configuration */
2423 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2424 				     &pcie_state_targ_addr);
2425 	if (ret != 0) {
2426 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2427 		return ret;
2428 	}
2429 
2430 	if (pcie_state_targ_addr == 0) {
2431 		ret = -EIO;
2432 		ath10k_err(ar, "Invalid pcie state addr\n");
2433 		return ret;
2434 	}
2435 
2436 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2437 					  offsetof(struct pcie_state,
2438 						   pipe_cfg_addr)),
2439 				     &pipe_cfg_targ_addr);
2440 	if (ret != 0) {
2441 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2442 		return ret;
2443 	}
2444 
2445 	if (pipe_cfg_targ_addr == 0) {
2446 		ret = -EIO;
2447 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2448 		return ret;
2449 	}
2450 
2451 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2452 					ar_pci->pipe_config,
2453 					sizeof(struct ce_pipe_config) *
2454 					NUM_TARGET_CE_CONFIG_WLAN);
2455 
2456 	if (ret != 0) {
2457 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2458 		return ret;
2459 	}
2460 
2461 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2462 					  offsetof(struct pcie_state,
2463 						   svc_to_pipe_map)),
2464 				     &svc_to_pipe_map);
2465 	if (ret != 0) {
2466 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2467 		return ret;
2468 	}
2469 
2470 	if (svc_to_pipe_map == 0) {
2471 		ret = -EIO;
2472 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2473 		return ret;
2474 	}
2475 
2476 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2477 					ar_pci->serv_to_pipe,
2478 					sizeof(pci_target_service_to_ce_map_wlan));
2479 	if (ret != 0) {
2480 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2481 		return ret;
2482 	}
2483 
2484 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2485 					  offsetof(struct pcie_state,
2486 						   config_flags)),
2487 				     &pcie_config_flags);
2488 	if (ret != 0) {
2489 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2490 		return ret;
2491 	}
2492 
2493 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2494 
2495 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2496 					   offsetof(struct pcie_state,
2497 						    config_flags)),
2498 				      pcie_config_flags);
2499 	if (ret != 0) {
2500 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2501 		return ret;
2502 	}
2503 
2504 	/* configure early allocation */
2505 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2506 
2507 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2508 	if (ret != 0) {
2509 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2510 		return ret;
2511 	}
2512 
2513 	/* first bank is switched to IRAM */
2514 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2515 			 HI_EARLY_ALLOC_MAGIC_MASK);
2516 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2517 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2518 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2519 
2520 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2521 	if (ret != 0) {
2522 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2523 		return ret;
2524 	}
2525 
2526 	/* Tell Target to proceed with initialization */
2527 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2528 
2529 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2530 	if (ret != 0) {
2531 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2532 		return ret;
2533 	}
2534 
2535 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2536 
2537 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2538 	if (ret != 0) {
2539 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2540 		return ret;
2541 	}
2542 
2543 	return 0;
2544 }
2545 
2546 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2547 {
2548 	struct ce_attr *attr;
2549 	struct ce_pipe_config *config;
2550 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2551 
2552 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2553 	 * since it is currently used for other feature.
2554 	 */
2555 
2556 	/* Override Host's Copy Engine 5 configuration */
2557 	attr = &ar_pci->attr[5];
2558 	attr->src_sz_max = 0;
2559 	attr->dest_nentries = 0;
2560 
2561 	/* Override Target firmware's Copy Engine configuration */
2562 	config = &ar_pci->pipe_config[5];
2563 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2564 	config->nbytes_max = __cpu_to_le32(2048);
2565 
2566 	/* Map from service/endpoint to Copy Engine */
2567 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2568 }
2569 
2570 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2571 {
2572 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2573 	struct ath10k_pci_pipe *pipe;
2574 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2575 	int i, ret;
2576 
2577 	for (i = 0; i < CE_COUNT; i++) {
2578 		pipe = &ar_pci->pipe_info[i];
2579 		pipe->ce_hdl = &ce->ce_states[i];
2580 		pipe->pipe_num = i;
2581 		pipe->hif_ce_state = ar;
2582 
2583 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2584 		if (ret) {
2585 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2586 				   i, ret);
2587 			return ret;
2588 		}
2589 
2590 		/* Last CE is Diagnostic Window */
2591 		if (i == CE_DIAG_PIPE) {
2592 			ar_pci->ce_diag = pipe->ce_hdl;
2593 			continue;
2594 		}
2595 
2596 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 void ath10k_pci_free_pipes(struct ath10k *ar)
2603 {
2604 	int i;
2605 
2606 	for (i = 0; i < CE_COUNT; i++)
2607 		ath10k_ce_free_pipe(ar, i);
2608 }
2609 
2610 int ath10k_pci_init_pipes(struct ath10k *ar)
2611 {
2612 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2613 	int i, ret;
2614 
2615 	for (i = 0; i < CE_COUNT; i++) {
2616 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2617 		if (ret) {
2618 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2619 				   i, ret);
2620 			return ret;
2621 		}
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2628 {
2629 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2630 	       FW_IND_EVENT_PENDING;
2631 }
2632 
2633 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2634 {
2635 	u32 val;
2636 
2637 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2638 	val &= ~FW_IND_EVENT_PENDING;
2639 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2640 }
2641 
2642 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2643 {
2644 	u32 val;
2645 
2646 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2647 	return (val == 0xffffffff);
2648 }
2649 
2650 /* this function effectively clears target memory controller assert line */
2651 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2652 {
2653 	u32 val;
2654 
2655 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2656 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2657 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2658 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2659 
2660 	msleep(10);
2661 
2662 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2663 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2664 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2665 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2666 
2667 	msleep(10);
2668 }
2669 
2670 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2671 {
2672 	u32 val;
2673 
2674 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2675 
2676 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2677 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2678 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2679 }
2680 
2681 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2682 {
2683 	u32 val;
2684 
2685 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2686 
2687 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2688 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2689 	msleep(10);
2690 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2691 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2692 }
2693 
2694 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2695 {
2696 	u32 val;
2697 
2698 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2699 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2700 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2701 }
2702 
2703 static int ath10k_pci_warm_reset(struct ath10k *ar)
2704 {
2705 	int ret;
2706 
2707 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2708 
2709 	spin_lock_bh(&ar->data_lock);
2710 	ar->stats.fw_warm_reset_counter++;
2711 	spin_unlock_bh(&ar->data_lock);
2712 
2713 	ath10k_pci_irq_disable(ar);
2714 
2715 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2716 	 * were to access copy engine while host performs copy engine reset
2717 	 * then it is possible for the device to confuse pci-e controller to
2718 	 * the point of bringing host system to a complete stop (i.e. hang).
2719 	 */
2720 	ath10k_pci_warm_reset_si0(ar);
2721 	ath10k_pci_warm_reset_cpu(ar);
2722 	ath10k_pci_init_pipes(ar);
2723 	ath10k_pci_wait_for_target_init(ar);
2724 
2725 	ath10k_pci_warm_reset_clear_lf(ar);
2726 	ath10k_pci_warm_reset_ce(ar);
2727 	ath10k_pci_warm_reset_cpu(ar);
2728 	ath10k_pci_init_pipes(ar);
2729 
2730 	ret = ath10k_pci_wait_for_target_init(ar);
2731 	if (ret) {
2732 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2733 		return ret;
2734 	}
2735 
2736 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2737 
2738 	return 0;
2739 }
2740 
2741 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2742 {
2743 	ath10k_pci_irq_disable(ar);
2744 	return ath10k_pci_qca99x0_chip_reset(ar);
2745 }
2746 
2747 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2748 {
2749 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2750 
2751 	if (!ar_pci->pci_soft_reset)
2752 		return -ENOTSUPP;
2753 
2754 	return ar_pci->pci_soft_reset(ar);
2755 }
2756 
2757 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2758 {
2759 	int i, ret;
2760 	u32 val;
2761 
2762 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2763 
2764 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2765 	 * It is thus preferred to use warm reset which is safer but may not be
2766 	 * able to recover the device from all possible fail scenarios.
2767 	 *
2768 	 * Warm reset doesn't always work on first try so attempt it a few
2769 	 * times before giving up.
2770 	 */
2771 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2772 		ret = ath10k_pci_warm_reset(ar);
2773 		if (ret) {
2774 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2775 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2776 				    ret);
2777 			continue;
2778 		}
2779 
2780 		/* FIXME: Sometimes copy engine doesn't recover after warm
2781 		 * reset. In most cases this needs cold reset. In some of these
2782 		 * cases the device is in such a state that a cold reset may
2783 		 * lock up the host.
2784 		 *
2785 		 * Reading any host interest register via copy engine is
2786 		 * sufficient to verify if device is capable of booting
2787 		 * firmware blob.
2788 		 */
2789 		ret = ath10k_pci_init_pipes(ar);
2790 		if (ret) {
2791 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2792 				    ret);
2793 			continue;
2794 		}
2795 
2796 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2797 					     &val);
2798 		if (ret) {
2799 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2800 				    ret);
2801 			continue;
2802 		}
2803 
2804 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2805 		return 0;
2806 	}
2807 
2808 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2809 		ath10k_warn(ar, "refusing cold reset as requested\n");
2810 		return -EPERM;
2811 	}
2812 
2813 	ret = ath10k_pci_cold_reset(ar);
2814 	if (ret) {
2815 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2816 		return ret;
2817 	}
2818 
2819 	ret = ath10k_pci_wait_for_target_init(ar);
2820 	if (ret) {
2821 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2822 			    ret);
2823 		return ret;
2824 	}
2825 
2826 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2827 
2828 	return 0;
2829 }
2830 
2831 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2832 {
2833 	int ret;
2834 
2835 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2836 
2837 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2838 
2839 	ret = ath10k_pci_cold_reset(ar);
2840 	if (ret) {
2841 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2842 		return ret;
2843 	}
2844 
2845 	ret = ath10k_pci_wait_for_target_init(ar);
2846 	if (ret) {
2847 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2848 			    ret);
2849 		return ret;
2850 	}
2851 
2852 	ret = ath10k_pci_warm_reset(ar);
2853 	if (ret) {
2854 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2855 		return ret;
2856 	}
2857 
2858 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2859 
2860 	return 0;
2861 }
2862 
2863 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2864 {
2865 	int ret;
2866 
2867 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2868 
2869 	ret = ath10k_pci_cold_reset(ar);
2870 	if (ret) {
2871 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2872 		return ret;
2873 	}
2874 
2875 	ret = ath10k_pci_wait_for_target_init(ar);
2876 	if (ret) {
2877 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2878 			    ret);
2879 		return ret;
2880 	}
2881 
2882 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2883 
2884 	return 0;
2885 }
2886 
2887 static int ath10k_pci_chip_reset(struct ath10k *ar)
2888 {
2889 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2890 
2891 	if (WARN_ON(!ar_pci->pci_hard_reset))
2892 		return -ENOTSUPP;
2893 
2894 	return ar_pci->pci_hard_reset(ar);
2895 }
2896 
2897 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2898 				   enum ath10k_firmware_mode fw_mode)
2899 {
2900 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2901 	int ret;
2902 
2903 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2904 
2905 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2906 				  &ar_pci->link_ctl);
2907 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2908 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2909 
2910 	/*
2911 	 * Bring the target up cleanly.
2912 	 *
2913 	 * The target may be in an undefined state with an AUX-powered Target
2914 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2915 	 * restarted (without unloading the driver) then the Target is left
2916 	 * (aux) powered and running. On a subsequent driver load, the Target
2917 	 * is in an unexpected state. We try to catch that here in order to
2918 	 * reset the Target and retry the probe.
2919 	 */
2920 	ret = ath10k_pci_chip_reset(ar);
2921 	if (ret) {
2922 		if (ath10k_pci_has_fw_crashed(ar)) {
2923 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2924 			ath10k_pci_fw_crashed_clear(ar);
2925 			ath10k_pci_fw_crashed_dump(ar);
2926 		}
2927 
2928 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2929 		goto err_sleep;
2930 	}
2931 
2932 	ret = ath10k_pci_init_pipes(ar);
2933 	if (ret) {
2934 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2935 		goto err_sleep;
2936 	}
2937 
2938 	ret = ath10k_pci_init_config(ar);
2939 	if (ret) {
2940 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2941 		goto err_ce;
2942 	}
2943 
2944 	ret = ath10k_pci_wake_target_cpu(ar);
2945 	if (ret) {
2946 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2947 		goto err_ce;
2948 	}
2949 
2950 	return 0;
2951 
2952 err_ce:
2953 	ath10k_pci_ce_deinit(ar);
2954 
2955 err_sleep:
2956 	return ret;
2957 }
2958 
2959 void ath10k_pci_hif_power_down(struct ath10k *ar)
2960 {
2961 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2962 
2963 	/* Currently hif_power_up performs effectively a reset and hif_stop
2964 	 * resets the chip as well so there's no point in resetting here.
2965 	 */
2966 }
2967 
2968 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2969 {
2970 	/* Nothing to do; the important stuff is in the driver suspend. */
2971 	return 0;
2972 }
2973 
2974 #ifdef CONFIG_PM
2975 static int ath10k_pci_suspend(struct ath10k *ar)
2976 {
2977 	/* The grace timer can still be counting down and ar->ps_awake be true.
2978 	 * It is known that the device may be asleep after resuming regardless
2979 	 * of the SoC powersave state before suspending. Hence make sure the
2980 	 * device is asleep before proceeding.
2981 	 */
2982 	ath10k_pci_sleep_sync(ar);
2983 
2984 	return 0;
2985 }
2986 #endif
2987 
2988 static int ath10k_pci_hif_resume(struct ath10k *ar)
2989 {
2990 	/* Nothing to do; the important stuff is in the driver resume. */
2991 	return 0;
2992 }
2993 
2994 #ifdef CONFIG_PM
2995 static int ath10k_pci_resume(struct ath10k *ar)
2996 {
2997 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2998 	struct pci_dev *pdev = ar_pci->pdev;
2999 	u32 val;
3000 	int ret = 0;
3001 
3002 	ret = ath10k_pci_force_wake(ar);
3003 	if (ret) {
3004 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
3005 		return ret;
3006 	}
3007 
3008 	/* Suspend/Resume resets the PCI configuration space, so we have to
3009 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
3010 	 * from interfering with C3 CPU state. pci_restore_state won't help
3011 	 * here since it only restores the first 64 bytes pci config header.
3012 	 */
3013 	pci_read_config_dword(pdev, 0x40, &val);
3014 	if ((val & 0x0000ff00) != 0)
3015 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
3016 
3017 	return ret;
3018 }
3019 #endif
3020 
3021 static bool ath10k_pci_validate_cal(void *data, size_t size)
3022 {
3023 	__le16 *cal_words = data;
3024 	u16 checksum = 0;
3025 	size_t i;
3026 
3027 	if (size % 2 != 0)
3028 		return false;
3029 
3030 	for (i = 0; i < size / 2; i++)
3031 		checksum ^= le16_to_cpu(cal_words[i]);
3032 
3033 	return checksum == 0xffff;
3034 }
3035 
3036 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
3037 {
3038 	/* Enable SI clock */
3039 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
3040 
3041 	/* Configure GPIOs for I2C operation */
3042 	ath10k_pci_write32(ar,
3043 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3044 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
3045 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
3046 			      GPIO_PIN0_CONFIG) |
3047 			   SM(1, GPIO_PIN0_PAD_PULL));
3048 
3049 	ath10k_pci_write32(ar,
3050 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3051 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
3052 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
3053 			   SM(1, GPIO_PIN0_PAD_PULL));
3054 
3055 	ath10k_pci_write32(ar,
3056 			   GPIO_BASE_ADDRESS +
3057 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
3058 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
3059 
3060 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
3061 	ath10k_pci_write32(ar,
3062 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
3063 			   SM(1, SI_CONFIG_ERR_INT) |
3064 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
3065 			   SM(1, SI_CONFIG_I2C) |
3066 			   SM(1, SI_CONFIG_POS_SAMPLE) |
3067 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
3068 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
3069 			   SM(8, SI_CONFIG_DIVIDER));
3070 }
3071 
3072 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
3073 {
3074 	u32 reg;
3075 	int wait_limit;
3076 
3077 	/* set device select byte and for the read operation */
3078 	reg = QCA9887_EEPROM_SELECT_READ |
3079 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
3080 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
3081 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
3082 
3083 	/* write transmit data, transfer length, and START bit */
3084 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3085 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3086 			   SM(4, SI_CS_TX_CNT));
3087 
3088 	/* wait max 1 sec */
3089 	wait_limit = 100000;
3090 
3091 	/* wait for SI_CS_DONE_INT */
3092 	do {
3093 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3094 		if (MS(reg, SI_CS_DONE_INT))
3095 			break;
3096 
3097 		wait_limit--;
3098 		udelay(10);
3099 	} while (wait_limit > 0);
3100 
3101 	if (!MS(reg, SI_CS_DONE_INT)) {
3102 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3103 			   addr);
3104 		return -ETIMEDOUT;
3105 	}
3106 
3107 	/* clear SI_CS_DONE_INT */
3108 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3109 
3110 	if (MS(reg, SI_CS_DONE_ERR)) {
3111 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3112 		return -EIO;
3113 	}
3114 
3115 	/* extract receive data */
3116 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3117 	*out = reg;
3118 
3119 	return 0;
3120 }
3121 
3122 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3123 					   size_t *data_len)
3124 {
3125 	u8 *caldata = NULL;
3126 	size_t calsize, i;
3127 	int ret;
3128 
3129 	if (!QCA_REV_9887(ar))
3130 		return -EOPNOTSUPP;
3131 
3132 	calsize = ar->hw_params.cal_data_len;
3133 	caldata = kmalloc(calsize, GFP_KERNEL);
3134 	if (!caldata)
3135 		return -ENOMEM;
3136 
3137 	ath10k_pci_enable_eeprom(ar);
3138 
3139 	for (i = 0; i < calsize; i++) {
3140 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3141 		if (ret)
3142 			goto err_free;
3143 	}
3144 
3145 	if (!ath10k_pci_validate_cal(caldata, calsize))
3146 		goto err_free;
3147 
3148 	*data = caldata;
3149 	*data_len = calsize;
3150 
3151 	return 0;
3152 
3153 err_free:
3154 	kfree(caldata);
3155 
3156 	return -EINVAL;
3157 }
3158 
3159 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3160 	.tx_sg			= ath10k_pci_hif_tx_sg,
3161 	.diag_read		= ath10k_pci_hif_diag_read,
3162 	.diag_write		= ath10k_pci_diag_write_mem,
3163 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3164 	.start			= ath10k_pci_hif_start,
3165 	.stop			= ath10k_pci_hif_stop,
3166 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3167 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3168 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3169 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3170 	.power_up		= ath10k_pci_hif_power_up,
3171 	.power_down		= ath10k_pci_hif_power_down,
3172 	.read32			= ath10k_pci_read32,
3173 	.write32		= ath10k_pci_write32,
3174 	.suspend		= ath10k_pci_hif_suspend,
3175 	.resume			= ath10k_pci_hif_resume,
3176 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3177 };
3178 
3179 /*
3180  * Top-level interrupt handler for all PCI interrupts from a Target.
3181  * When a block of MSI interrupts is allocated, this top-level handler
3182  * is not used; instead, we directly call the correct sub-handler.
3183  */
3184 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3185 {
3186 	struct ath10k *ar = arg;
3187 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3188 	int ret;
3189 
3190 	if (ath10k_pci_has_device_gone(ar))
3191 		return IRQ_NONE;
3192 
3193 	ret = ath10k_pci_force_wake(ar);
3194 	if (ret) {
3195 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3196 		return IRQ_NONE;
3197 	}
3198 
3199 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3200 	    !ath10k_pci_irq_pending(ar))
3201 		return IRQ_NONE;
3202 
3203 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3204 	ath10k_pci_irq_msi_fw_mask(ar);
3205 	napi_schedule(&ar->napi);
3206 
3207 	return IRQ_HANDLED;
3208 }
3209 
3210 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3211 {
3212 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3213 	int done = 0;
3214 
3215 	if (ath10k_pci_has_fw_crashed(ar)) {
3216 		ath10k_pci_fw_crashed_clear(ar);
3217 		ath10k_pci_fw_crashed_dump(ar);
3218 		napi_complete(ctx);
3219 		return done;
3220 	}
3221 
3222 	ath10k_ce_per_engine_service_any(ar);
3223 
3224 	done = ath10k_htt_txrx_compl_task(ar, budget);
3225 
3226 	if (done < budget) {
3227 		napi_complete_done(ctx, done);
3228 		/* In case of MSI, it is possible that interrupts are received
3229 		 * while NAPI poll is inprogress. So pending interrupts that are
3230 		 * received after processing all copy engine pipes by NAPI poll
3231 		 * will not be handled again. This is causing failure to
3232 		 * complete boot sequence in x86 platform. So before enabling
3233 		 * interrupts safer to check for pending interrupts for
3234 		 * immediate servicing.
3235 		 */
3236 		if (ath10k_ce_interrupt_summary(ar)) {
3237 			napi_reschedule(ctx);
3238 			goto out;
3239 		}
3240 		ath10k_pci_enable_legacy_irq(ar);
3241 		ath10k_pci_irq_msi_fw_unmask(ar);
3242 	}
3243 
3244 out:
3245 	return done;
3246 }
3247 
3248 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3249 {
3250 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3251 	int ret;
3252 
3253 	ret = request_irq(ar_pci->pdev->irq,
3254 			  ath10k_pci_interrupt_handler,
3255 			  IRQF_SHARED, "ath10k_pci", ar);
3256 	if (ret) {
3257 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3258 			    ar_pci->pdev->irq, ret);
3259 		return ret;
3260 	}
3261 
3262 	return 0;
3263 }
3264 
3265 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3266 {
3267 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3268 	int ret;
3269 
3270 	ret = request_irq(ar_pci->pdev->irq,
3271 			  ath10k_pci_interrupt_handler,
3272 			  IRQF_SHARED, "ath10k_pci", ar);
3273 	if (ret) {
3274 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3275 			    ar_pci->pdev->irq, ret);
3276 		return ret;
3277 	}
3278 
3279 	return 0;
3280 }
3281 
3282 static int ath10k_pci_request_irq(struct ath10k *ar)
3283 {
3284 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3285 
3286 	switch (ar_pci->oper_irq_mode) {
3287 	case ATH10K_PCI_IRQ_LEGACY:
3288 		return ath10k_pci_request_irq_legacy(ar);
3289 	case ATH10K_PCI_IRQ_MSI:
3290 		return ath10k_pci_request_irq_msi(ar);
3291 	default:
3292 		return -EINVAL;
3293 	}
3294 }
3295 
3296 static void ath10k_pci_free_irq(struct ath10k *ar)
3297 {
3298 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3299 
3300 	free_irq(ar_pci->pdev->irq, ar);
3301 }
3302 
3303 void ath10k_pci_init_napi(struct ath10k *ar)
3304 {
3305 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3306 }
3307 
3308 static int ath10k_pci_init_irq(struct ath10k *ar)
3309 {
3310 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3311 	int ret;
3312 
3313 	ath10k_pci_init_napi(ar);
3314 
3315 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3316 		ath10k_info(ar, "limiting irq mode to: %d\n",
3317 			    ath10k_pci_irq_mode);
3318 
3319 	/* Try MSI */
3320 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3321 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3322 		ret = pci_enable_msi(ar_pci->pdev);
3323 		if (ret == 0)
3324 			return 0;
3325 
3326 		/* MHI failed, try legacy irq next */
3327 	}
3328 
3329 	/* Try legacy irq
3330 	 *
3331 	 * A potential race occurs here: The CORE_BASE write
3332 	 * depends on target correctly decoding AXI address but
3333 	 * host won't know when target writes BAR to CORE_CTRL.
3334 	 * This write might get lost if target has NOT written BAR.
3335 	 * For now, fix the race by repeating the write in below
3336 	 * synchronization checking.
3337 	 */
3338 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3339 
3340 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3341 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3342 
3343 	return 0;
3344 }
3345 
3346 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3347 {
3348 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3349 			   0);
3350 }
3351 
3352 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3353 {
3354 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3355 
3356 	switch (ar_pci->oper_irq_mode) {
3357 	case ATH10K_PCI_IRQ_LEGACY:
3358 		ath10k_pci_deinit_irq_legacy(ar);
3359 		break;
3360 	default:
3361 		pci_disable_msi(ar_pci->pdev);
3362 		break;
3363 	}
3364 
3365 	return 0;
3366 }
3367 
3368 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3369 {
3370 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3371 	unsigned long timeout;
3372 	u32 val;
3373 
3374 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3375 
3376 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3377 
3378 	do {
3379 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3380 
3381 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3382 			   val);
3383 
3384 		/* target should never return this */
3385 		if (val == 0xffffffff)
3386 			continue;
3387 
3388 		/* the device has crashed so don't bother trying anymore */
3389 		if (val & FW_IND_EVENT_PENDING)
3390 			break;
3391 
3392 		if (val & FW_IND_INITIALIZED)
3393 			break;
3394 
3395 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3396 			/* Fix potential race by repeating CORE_BASE writes */
3397 			ath10k_pci_enable_legacy_irq(ar);
3398 
3399 		mdelay(10);
3400 	} while (time_before(jiffies, timeout));
3401 
3402 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3403 	ath10k_pci_irq_msi_fw_mask(ar);
3404 
3405 	if (val == 0xffffffff) {
3406 		ath10k_err(ar, "failed to read device register, device is gone\n");
3407 		return -EIO;
3408 	}
3409 
3410 	if (val & FW_IND_EVENT_PENDING) {
3411 		ath10k_warn(ar, "device has crashed during init\n");
3412 		return -ECOMM;
3413 	}
3414 
3415 	if (!(val & FW_IND_INITIALIZED)) {
3416 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3417 			   val);
3418 		return -ETIMEDOUT;
3419 	}
3420 
3421 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3422 	return 0;
3423 }
3424 
3425 static int ath10k_pci_cold_reset(struct ath10k *ar)
3426 {
3427 	u32 val;
3428 
3429 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3430 
3431 	spin_lock_bh(&ar->data_lock);
3432 
3433 	ar->stats.fw_cold_reset_counter++;
3434 
3435 	spin_unlock_bh(&ar->data_lock);
3436 
3437 	/* Put Target, including PCIe, into RESET. */
3438 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3439 	val |= 1;
3440 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3441 
3442 	/* After writing into SOC_GLOBAL_RESET to put device into
3443 	 * reset and pulling out of reset pcie may not be stable
3444 	 * for any immediate pcie register access and cause bus error,
3445 	 * add delay before any pcie access request to fix this issue.
3446 	 */
3447 	msleep(20);
3448 
3449 	/* Pull Target, including PCIe, out of RESET. */
3450 	val &= ~1;
3451 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3452 
3453 	msleep(20);
3454 
3455 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3456 
3457 	return 0;
3458 }
3459 
3460 static int ath10k_pci_claim(struct ath10k *ar)
3461 {
3462 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3463 	struct pci_dev *pdev = ar_pci->pdev;
3464 	int ret;
3465 
3466 	pci_set_drvdata(pdev, ar);
3467 
3468 	ret = pci_enable_device(pdev);
3469 	if (ret) {
3470 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3471 		return ret;
3472 	}
3473 
3474 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3475 	if (ret) {
3476 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3477 			   ret);
3478 		goto err_device;
3479 	}
3480 
3481 	/* Target expects 32 bit DMA. Enforce it. */
3482 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3483 	if (ret) {
3484 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3485 		goto err_region;
3486 	}
3487 
3488 	pci_set_master(pdev);
3489 
3490 #if defined(__FreeBSD__)
3491 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
3492 #endif
3493 
3494 	/* Arrange for access to Target SoC registers. */
3495 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3496 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3497 	if (!ar_pci->mem) {
3498 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3499 		ret = -EIO;
3500 		goto err_master;
3501 	}
3502 
3503 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3504 	return 0;
3505 
3506 err_master:
3507 	pci_clear_master(pdev);
3508 
3509 err_region:
3510 	pci_release_region(pdev, BAR_NUM);
3511 
3512 err_device:
3513 	pci_disable_device(pdev);
3514 
3515 	return ret;
3516 }
3517 
3518 static void ath10k_pci_release(struct ath10k *ar)
3519 {
3520 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3521 	struct pci_dev *pdev = ar_pci->pdev;
3522 
3523 	pci_iounmap(pdev, ar_pci->mem);
3524 	pci_release_region(pdev, BAR_NUM);
3525 	pci_clear_master(pdev);
3526 	pci_disable_device(pdev);
3527 }
3528 
3529 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3530 {
3531 	const struct ath10k_pci_supp_chip *supp_chip;
3532 	int i;
3533 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3534 
3535 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3536 		supp_chip = &ath10k_pci_supp_chips[i];
3537 
3538 		if (supp_chip->dev_id == dev_id &&
3539 		    supp_chip->rev_id == rev_id)
3540 			return true;
3541 	}
3542 
3543 	return false;
3544 }
3545 
3546 int ath10k_pci_setup_resource(struct ath10k *ar)
3547 {
3548 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3549 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3550 	int ret;
3551 
3552 	spin_lock_init(&ce->ce_lock);
3553 	spin_lock_init(&ar_pci->ps_lock);
3554 	mutex_init(&ar_pci->ce_diag_mutex);
3555 
3556 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3557 
3558 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3559 
3560 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3561 			       sizeof(pci_host_ce_config_wlan),
3562 			       GFP_KERNEL);
3563 	if (!ar_pci->attr)
3564 		return -ENOMEM;
3565 
3566 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3567 				      sizeof(pci_target_ce_config_wlan),
3568 				      GFP_KERNEL);
3569 	if (!ar_pci->pipe_config) {
3570 		ret = -ENOMEM;
3571 		goto err_free_attr;
3572 	}
3573 
3574 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3575 				       sizeof(pci_target_service_to_ce_map_wlan),
3576 				       GFP_KERNEL);
3577 	if (!ar_pci->serv_to_pipe) {
3578 		ret = -ENOMEM;
3579 		goto err_free_pipe_config;
3580 	}
3581 
3582 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3583 		ath10k_pci_override_ce_config(ar);
3584 
3585 	ret = ath10k_pci_alloc_pipes(ar);
3586 	if (ret) {
3587 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3588 			   ret);
3589 		goto err_free_serv_to_pipe;
3590 	}
3591 
3592 	return 0;
3593 
3594 err_free_serv_to_pipe:
3595 	kfree(ar_pci->serv_to_pipe);
3596 err_free_pipe_config:
3597 	kfree(ar_pci->pipe_config);
3598 err_free_attr:
3599 	kfree(ar_pci->attr);
3600 	return ret;
3601 }
3602 
3603 void ath10k_pci_release_resource(struct ath10k *ar)
3604 {
3605 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3606 
3607 	ath10k_pci_rx_retry_sync(ar);
3608 	netif_napi_del(&ar->napi);
3609 	ath10k_pci_ce_deinit(ar);
3610 	ath10k_pci_free_pipes(ar);
3611 	kfree(ar_pci->attr);
3612 	kfree(ar_pci->pipe_config);
3613 	kfree(ar_pci->serv_to_pipe);
3614 }
3615 
3616 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3617 	.read32		= ath10k_bus_pci_read32,
3618 	.write32	= ath10k_bus_pci_write32,
3619 	.get_num_banks	= ath10k_pci_get_num_banks,
3620 };
3621 
3622 static int ath10k_pci_probe(struct pci_dev *pdev,
3623 			    const struct pci_device_id *pci_dev)
3624 {
3625 	int ret = 0;
3626 	struct ath10k *ar;
3627 	struct ath10k_pci *ar_pci;
3628 	enum ath10k_hw_rev hw_rev;
3629 	struct ath10k_bus_params bus_params = {};
3630 	bool pci_ps, is_qca988x = false;
3631 	int (*pci_soft_reset)(struct ath10k *ar);
3632 	int (*pci_hard_reset)(struct ath10k *ar);
3633 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3634 
3635 	switch (pci_dev->device) {
3636 	case QCA988X_2_0_DEVICE_ID_UBNT:
3637 	case QCA988X_2_0_DEVICE_ID:
3638 		hw_rev = ATH10K_HW_QCA988X;
3639 		pci_ps = false;
3640 		is_qca988x = true;
3641 		pci_soft_reset = ath10k_pci_warm_reset;
3642 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3643 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3644 		break;
3645 	case QCA9887_1_0_DEVICE_ID:
3646 		hw_rev = ATH10K_HW_QCA9887;
3647 		pci_ps = false;
3648 		pci_soft_reset = ath10k_pci_warm_reset;
3649 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3650 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3651 		break;
3652 	case QCA6164_2_1_DEVICE_ID:
3653 	case QCA6174_2_1_DEVICE_ID:
3654 		hw_rev = ATH10K_HW_QCA6174;
3655 		pci_ps = true;
3656 		pci_soft_reset = ath10k_pci_warm_reset;
3657 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3658 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3659 		break;
3660 	case QCA99X0_2_0_DEVICE_ID:
3661 		hw_rev = ATH10K_HW_QCA99X0;
3662 		pci_ps = false;
3663 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3664 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3665 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3666 		break;
3667 	case QCA9984_1_0_DEVICE_ID:
3668 		hw_rev = ATH10K_HW_QCA9984;
3669 		pci_ps = false;
3670 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3671 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3672 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3673 		break;
3674 	case QCA9888_2_0_DEVICE_ID:
3675 		hw_rev = ATH10K_HW_QCA9888;
3676 		pci_ps = false;
3677 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3678 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3679 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3680 		break;
3681 	case QCA9377_1_0_DEVICE_ID:
3682 		hw_rev = ATH10K_HW_QCA9377;
3683 		pci_ps = true;
3684 		pci_soft_reset = ath10k_pci_warm_reset;
3685 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3686 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3687 		break;
3688 	default:
3689 		WARN_ON(1);
3690 		return -ENOTSUPP;
3691 	}
3692 
3693 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3694 				hw_rev, &ath10k_pci_hif_ops);
3695 	if (!ar) {
3696 		dev_err(&pdev->dev, "failed to allocate core\n");
3697 		return -ENOMEM;
3698 	}
3699 
3700 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3701 		   pdev->vendor, pdev->device,
3702 		   pdev->subsystem_vendor, pdev->subsystem_device);
3703 
3704 	ar_pci = ath10k_pci_priv(ar);
3705 	ar_pci->pdev = pdev;
3706 	ar_pci->dev = &pdev->dev;
3707 	ar_pci->ar = ar;
3708 	ar->dev_id = pci_dev->device;
3709 	ar_pci->pci_ps = pci_ps;
3710 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3711 	ar_pci->pci_soft_reset = pci_soft_reset;
3712 	ar_pci->pci_hard_reset = pci_hard_reset;
3713 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3714 	ar->ce_priv = &ar_pci->ce;
3715 
3716 	ar->id.vendor = pdev->vendor;
3717 	ar->id.device = pdev->device;
3718 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3719 	ar->id.subsystem_device = pdev->subsystem_device;
3720 
3721 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3722 
3723 	ret = ath10k_pci_setup_resource(ar);
3724 	if (ret) {
3725 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3726 		goto err_core_destroy;
3727 	}
3728 
3729 	ret = ath10k_pci_claim(ar);
3730 	if (ret) {
3731 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3732 		goto err_free_pipes;
3733 	}
3734 
3735 	ret = ath10k_pci_force_wake(ar);
3736 	if (ret) {
3737 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3738 		goto err_sleep;
3739 	}
3740 
3741 	ath10k_pci_ce_deinit(ar);
3742 	ath10k_pci_irq_disable(ar);
3743 
3744 	ret = ath10k_pci_init_irq(ar);
3745 	if (ret) {
3746 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3747 		goto err_sleep;
3748 	}
3749 
3750 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3751 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3752 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3753 
3754 	ret = ath10k_pci_request_irq(ar);
3755 	if (ret) {
3756 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3757 		goto err_deinit_irq;
3758 	}
3759 
3760 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3761 	bus_params.link_can_suspend = true;
3762 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3763 	 * fall off the bus during chip_reset. These chips have the same pci
3764 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3765 	 */
3766 	if (is_qca988x) {
3767 		bus_params.chip_id =
3768 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3769 		if (bus_params.chip_id != 0xffffffff) {
3770 			if (!ath10k_pci_chip_is_supported(pdev->device,
3771 							  bus_params.chip_id)) {
3772 				ret = -ENODEV;
3773 				goto err_unsupported;
3774 			}
3775 		}
3776 	}
3777 
3778 	ret = ath10k_pci_chip_reset(ar);
3779 	if (ret) {
3780 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3781 		goto err_free_irq;
3782 	}
3783 
3784 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3785 	if (bus_params.chip_id == 0xffffffff) {
3786 		ret = -ENODEV;
3787 		goto err_unsupported;
3788 	}
3789 
3790 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3791 		ret = -ENODEV;
3792 		goto err_unsupported;
3793 	}
3794 
3795 	ret = ath10k_core_register(ar, &bus_params);
3796 	if (ret) {
3797 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3798 		goto err_free_irq;
3799 	}
3800 
3801 	return 0;
3802 
3803 err_unsupported:
3804 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3805 		   pdev->device, bus_params.chip_id);
3806 
3807 err_free_irq:
3808 	ath10k_pci_free_irq(ar);
3809 
3810 err_deinit_irq:
3811 	ath10k_pci_release_resource(ar);
3812 
3813 err_sleep:
3814 	ath10k_pci_sleep_sync(ar);
3815 	ath10k_pci_release(ar);
3816 
3817 err_free_pipes:
3818 	ath10k_pci_free_pipes(ar);
3819 
3820 err_core_destroy:
3821 	ath10k_core_destroy(ar);
3822 
3823 	return ret;
3824 }
3825 
3826 static void ath10k_pci_remove(struct pci_dev *pdev)
3827 {
3828 	struct ath10k *ar = pci_get_drvdata(pdev);
3829 
3830 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3831 
3832 	if (!ar)
3833 		return;
3834 
3835 	ath10k_core_unregister(ar);
3836 	ath10k_pci_free_irq(ar);
3837 	ath10k_pci_deinit_irq(ar);
3838 	ath10k_pci_release_resource(ar);
3839 	ath10k_pci_sleep_sync(ar);
3840 	ath10k_pci_release(ar);
3841 	ath10k_core_destroy(ar);
3842 }
3843 
3844 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3845 
3846 #ifdef CONFIG_PM
3847 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3848 {
3849 	struct ath10k *ar = dev_get_drvdata(dev);
3850 	int ret;
3851 
3852 	ret = ath10k_pci_suspend(ar);
3853 	if (ret)
3854 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3855 
3856 	return ret;
3857 }
3858 
3859 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3860 {
3861 	struct ath10k *ar = dev_get_drvdata(dev);
3862 	int ret;
3863 
3864 	ret = ath10k_pci_resume(ar);
3865 	if (ret)
3866 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3867 
3868 	return ret;
3869 }
3870 
3871 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3872 			 ath10k_pci_pm_suspend,
3873 			 ath10k_pci_pm_resume);
3874 #endif
3875 
3876 static struct pci_driver ath10k_pci_driver = {
3877 	.name = "ath10k_pci",
3878 	.id_table = ath10k_pci_id_table,
3879 	.probe = ath10k_pci_probe,
3880 	.remove = ath10k_pci_remove,
3881 #ifdef CONFIG_PM
3882 	.driver.pm = &ath10k_pci_pm_ops,
3883 #endif
3884 #if defined(__FreeBSD__)
3885 	.bsddriver.name	= KBUILD_MODNAME,
3886 	/* Allow a possible native driver to attach. */
3887 	.bsd_probe_return = (BUS_PROBE_DEFAULT - 1),
3888 #endif
3889 };
3890 
3891 static int __init ath10k_pci_init(void)
3892 {
3893 	int ret;
3894 
3895 	ret = pci_register_driver(&ath10k_pci_driver);
3896 	if (ret)
3897 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3898 		       ret);
3899 
3900 	ret = ath10k_ahb_init();
3901 	if (ret)
3902 		printk(KERN_ERR "ahb init failed: %d\n", ret);
3903 
3904 	return ret;
3905 }
3906 module_init(ath10k_pci_init);
3907 
3908 static void __exit ath10k_pci_exit(void)
3909 {
3910 	pci_unregister_driver(&ath10k_pci_driver);
3911 	ath10k_ahb_exit();
3912 }
3913 
3914 module_exit(ath10k_pci_exit);
3915 
3916 MODULE_AUTHOR("Qualcomm Atheros");
3917 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3918 MODULE_LICENSE("Dual BSD/GPL");
3919 #if defined(__FreeBSD__)
3920 MODULE_VERSION(ath10k_pci, 1);
3921 MODULE_DEPEND(ath10k_pci, linuxkpi, 1, 1, 1);
3922 MODULE_DEPEND(ath10k_pci, linuxkpi_wlan, 1, 1, 1);
3923 MODULE_DEPEND(ath10k_pci, athk_common, 1, 1, 1);
3924 #ifdef CONFIG_ATH10K_DEBUGFS
3925 MODULE_DEPEND(ath10k_pci, debugfs, 1, 1, 1);
3926 #endif
3927 #endif
3928 
3929 /* QCA988x 2.0 firmware files */
3930 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3931 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3932 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3933 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3934 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3935 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3936 
3937 /* QCA9887 1.0 firmware files */
3938 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3939 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3940 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3941 
3942 /* QCA6174 2.1 firmware files */
3943 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3944 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3945 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3946 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3947 
3948 /* QCA6174 3.1 firmware files */
3949 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3950 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3951 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3952 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3953 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3954 
3955 /* QCA9377 1.0 firmware files */
3956 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3957 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3958 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3959