xref: /freebsd/sys/contrib/dev/athk/ath10k/pci.c (revision 22cf89c938886d14f5796fc49f9f020c23ea8eaf)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2005-2011 Atheros Communications Inc.
4  * Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
5  */
6 
7 #if defined(__FreeBSD__)
8 #define	LINUXKPI_PARAM_PREFIX	ath10k_pci_
9 #endif
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/spinlock.h>
15 #include <linux/bitops.h>
16 #if defined(__FreeBSD__)
17 #include <linux/delay.h>
18 #endif
19 
20 #include "core.h"
21 #include "debug.h"
22 #include "coredump.h"
23 
24 #include "targaddrs.h"
25 #include "bmi.h"
26 
27 #include "hif.h"
28 #include "htc.h"
29 
30 #include "ce.h"
31 #include "pci.h"
32 
33 enum ath10k_pci_reset_mode {
34 	ATH10K_PCI_RESET_AUTO = 0,
35 	ATH10K_PCI_RESET_WARM_ONLY = 1,
36 };
37 
38 static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
39 static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
40 
41 module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
42 MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
43 
44 module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
45 MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
46 
47 /* how long wait to wait for target to initialise, in ms */
48 #define ATH10K_PCI_TARGET_WAIT 3000
49 #define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
50 
51 /* Maximum number of bytes that can be handled atomically by
52  * diag read and write.
53  */
54 #define ATH10K_DIAG_TRANSFER_LIMIT	0x5000
55 
56 #define QCA99X0_PCIE_BAR0_START_REG    0x81030
57 #define QCA99X0_CPU_MEM_ADDR_REG       0x4d00c
58 #define QCA99X0_CPU_MEM_DATA_REG       0x4d010
59 
60 static const struct pci_device_id ath10k_pci_id_table[] = {
61 	/* PCI-E QCA988X V2 (Ubiquiti branded) */
62 	{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
63 
64 	{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
65 	{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
66 	{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
67 	{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
68 	{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
69 	{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
70 	{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
71 	{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
72 	{0}
73 };
74 
75 static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
76 	/* QCA988X pre 2.0 chips are not supported because they need some nasty
77 	 * hacks. ath10k doesn't have them and these devices crash horribly
78 	 * because of that.
79 	 */
80 	{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
81 	{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
82 
83 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
84 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
85 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
86 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
87 	{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
88 
89 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
90 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
91 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
92 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
93 	{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
94 
95 	{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
96 
97 	{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
98 
99 	{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
100 
101 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
102 	{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
103 
104 	{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
105 };
106 
107 static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
108 static int ath10k_pci_cold_reset(struct ath10k *ar);
109 static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
110 static int ath10k_pci_init_irq(struct ath10k *ar);
111 static int ath10k_pci_deinit_irq(struct ath10k *ar);
112 static int ath10k_pci_request_irq(struct ath10k *ar);
113 static void ath10k_pci_free_irq(struct ath10k *ar);
114 static int ath10k_pci_bmi_wait(struct ath10k *ar,
115 			       struct ath10k_ce_pipe *tx_pipe,
116 			       struct ath10k_ce_pipe *rx_pipe,
117 			       struct bmi_xfer *xfer);
118 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
119 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
120 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
121 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
122 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
123 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
124 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
125 
126 static const struct ce_attr pci_host_ce_config_wlan[] = {
127 	/* CE0: host->target HTC control and raw streams */
128 	{
129 		.flags = CE_ATTR_FLAGS,
130 		.src_nentries = 16,
131 		.src_sz_max = 256,
132 		.dest_nentries = 0,
133 		.send_cb = ath10k_pci_htc_tx_cb,
134 	},
135 
136 	/* CE1: target->host HTT + HTC control */
137 	{
138 		.flags = CE_ATTR_FLAGS,
139 		.src_nentries = 0,
140 		.src_sz_max = 2048,
141 		.dest_nentries = 512,
142 		.recv_cb = ath10k_pci_htt_htc_rx_cb,
143 	},
144 
145 	/* CE2: target->host WMI */
146 	{
147 		.flags = CE_ATTR_FLAGS,
148 		.src_nentries = 0,
149 		.src_sz_max = 2048,
150 		.dest_nentries = 128,
151 		.recv_cb = ath10k_pci_htc_rx_cb,
152 	},
153 
154 	/* CE3: host->target WMI */
155 	{
156 		.flags = CE_ATTR_FLAGS,
157 		.src_nentries = 32,
158 		.src_sz_max = 2048,
159 		.dest_nentries = 0,
160 		.send_cb = ath10k_pci_htc_tx_cb,
161 	},
162 
163 	/* CE4: host->target HTT */
164 	{
165 		.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
166 		.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
167 		.src_sz_max = 256,
168 		.dest_nentries = 0,
169 		.send_cb = ath10k_pci_htt_tx_cb,
170 	},
171 
172 	/* CE5: target->host HTT (HIF->HTT) */
173 	{
174 		.flags = CE_ATTR_FLAGS,
175 		.src_nentries = 0,
176 		.src_sz_max = 512,
177 		.dest_nentries = 512,
178 		.recv_cb = ath10k_pci_htt_rx_cb,
179 	},
180 
181 	/* CE6: target autonomous hif_memcpy */
182 	{
183 		.flags = CE_ATTR_FLAGS,
184 		.src_nentries = 0,
185 		.src_sz_max = 0,
186 		.dest_nentries = 0,
187 	},
188 
189 	/* CE7: ce_diag, the Diagnostic Window */
190 	{
191 		.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
192 		.src_nentries = 2,
193 		.src_sz_max = DIAG_TRANSFER_LIMIT,
194 		.dest_nentries = 2,
195 	},
196 
197 	/* CE8: target->host pktlog */
198 	{
199 		.flags = CE_ATTR_FLAGS,
200 		.src_nentries = 0,
201 		.src_sz_max = 2048,
202 		.dest_nentries = 128,
203 		.recv_cb = ath10k_pci_pktlog_rx_cb,
204 	},
205 
206 	/* CE9 target autonomous qcache memcpy */
207 	{
208 		.flags = CE_ATTR_FLAGS,
209 		.src_nentries = 0,
210 		.src_sz_max = 0,
211 		.dest_nentries = 0,
212 	},
213 
214 	/* CE10: target autonomous hif memcpy */
215 	{
216 		.flags = CE_ATTR_FLAGS,
217 		.src_nentries = 0,
218 		.src_sz_max = 0,
219 		.dest_nentries = 0,
220 	},
221 
222 	/* CE11: target autonomous hif memcpy */
223 	{
224 		.flags = CE_ATTR_FLAGS,
225 		.src_nentries = 0,
226 		.src_sz_max = 0,
227 		.dest_nentries = 0,
228 	},
229 };
230 
231 /* Target firmware's Copy Engine configuration. */
232 static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
233 	/* CE0: host->target HTC control and raw streams */
234 	{
235 		.pipenum = __cpu_to_le32(0),
236 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
237 		.nentries = __cpu_to_le32(32),
238 		.nbytes_max = __cpu_to_le32(256),
239 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
240 		.reserved = __cpu_to_le32(0),
241 	},
242 
243 	/* CE1: target->host HTT + HTC control */
244 	{
245 		.pipenum = __cpu_to_le32(1),
246 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
247 		.nentries = __cpu_to_le32(32),
248 		.nbytes_max = __cpu_to_le32(2048),
249 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
250 		.reserved = __cpu_to_le32(0),
251 	},
252 
253 	/* CE2: target->host WMI */
254 	{
255 		.pipenum = __cpu_to_le32(2),
256 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
257 		.nentries = __cpu_to_le32(64),
258 		.nbytes_max = __cpu_to_le32(2048),
259 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
260 		.reserved = __cpu_to_le32(0),
261 	},
262 
263 	/* CE3: host->target WMI */
264 	{
265 		.pipenum = __cpu_to_le32(3),
266 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
267 		.nentries = __cpu_to_le32(32),
268 		.nbytes_max = __cpu_to_le32(2048),
269 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
270 		.reserved = __cpu_to_le32(0),
271 	},
272 
273 	/* CE4: host->target HTT */
274 	{
275 		.pipenum = __cpu_to_le32(4),
276 		.pipedir = __cpu_to_le32(PIPEDIR_OUT),
277 		.nentries = __cpu_to_le32(256),
278 		.nbytes_max = __cpu_to_le32(256),
279 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
280 		.reserved = __cpu_to_le32(0),
281 	},
282 
283 	/* NB: 50% of src nentries, since tx has 2 frags */
284 
285 	/* CE5: target->host HTT (HIF->HTT) */
286 	{
287 		.pipenum = __cpu_to_le32(5),
288 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
289 		.nentries = __cpu_to_le32(32),
290 		.nbytes_max = __cpu_to_le32(512),
291 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
292 		.reserved = __cpu_to_le32(0),
293 	},
294 
295 	/* CE6: Reserved for target autonomous hif_memcpy */
296 	{
297 		.pipenum = __cpu_to_le32(6),
298 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
299 		.nentries = __cpu_to_le32(32),
300 		.nbytes_max = __cpu_to_le32(4096),
301 		.flags = __cpu_to_le32(CE_ATTR_FLAGS),
302 		.reserved = __cpu_to_le32(0),
303 	},
304 
305 	/* CE7 used only by Host */
306 	{
307 		.pipenum = __cpu_to_le32(7),
308 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
309 		.nentries = __cpu_to_le32(0),
310 		.nbytes_max = __cpu_to_le32(0),
311 		.flags = __cpu_to_le32(0),
312 		.reserved = __cpu_to_le32(0),
313 	},
314 
315 	/* CE8 target->host packtlog */
316 	{
317 		.pipenum = __cpu_to_le32(8),
318 		.pipedir = __cpu_to_le32(PIPEDIR_IN),
319 		.nentries = __cpu_to_le32(64),
320 		.nbytes_max = __cpu_to_le32(2048),
321 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
322 		.reserved = __cpu_to_le32(0),
323 	},
324 
325 	/* CE9 target autonomous qcache memcpy */
326 	{
327 		.pipenum = __cpu_to_le32(9),
328 		.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
329 		.nentries = __cpu_to_le32(32),
330 		.nbytes_max = __cpu_to_le32(2048),
331 		.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
332 		.reserved = __cpu_to_le32(0),
333 	},
334 
335 	/* It not necessary to send target wlan configuration for CE10 & CE11
336 	 * as these CEs are not actively used in target.
337 	 */
338 };
339 
340 /*
341  * Map from service/endpoint to Copy Engine.
342  * This table is derived from the CE_PCI TABLE, above.
343  * It is passed to the Target at startup for use by firmware.
344  */
345 static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
346 	{
347 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
348 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
349 		__cpu_to_le32(3),
350 	},
351 	{
352 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
353 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
354 		__cpu_to_le32(2),
355 	},
356 	{
357 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
358 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
359 		__cpu_to_le32(3),
360 	},
361 	{
362 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
363 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
364 		__cpu_to_le32(2),
365 	},
366 	{
367 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
368 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
369 		__cpu_to_le32(3),
370 	},
371 	{
372 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
373 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
374 		__cpu_to_le32(2),
375 	},
376 	{
377 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
378 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
379 		__cpu_to_le32(3),
380 	},
381 	{
382 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
383 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
384 		__cpu_to_le32(2),
385 	},
386 	{
387 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
388 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
389 		__cpu_to_le32(3),
390 	},
391 	{
392 		__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
393 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
394 		__cpu_to_le32(2),
395 	},
396 	{
397 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
398 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
399 		__cpu_to_le32(0),
400 	},
401 	{
402 		__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
403 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
404 		__cpu_to_le32(1),
405 	},
406 	{ /* not used */
407 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
408 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
409 		__cpu_to_le32(0),
410 	},
411 	{ /* not used */
412 		__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
413 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
414 		__cpu_to_le32(1),
415 	},
416 	{
417 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
418 		__cpu_to_le32(PIPEDIR_OUT),	/* out = UL = host -> target */
419 		__cpu_to_le32(4),
420 	},
421 	{
422 		__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
423 		__cpu_to_le32(PIPEDIR_IN),	/* in = DL = target -> host */
424 		__cpu_to_le32(5),
425 	},
426 
427 	/* (Additions here) */
428 
429 	{ /* must be last */
430 		__cpu_to_le32(0),
431 		__cpu_to_le32(0),
432 		__cpu_to_le32(0),
433 	},
434 };
435 
436 static bool ath10k_pci_is_awake(struct ath10k *ar)
437 {
438 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
439 #if defined(__linux__)
440 	u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
441 			   RTC_STATE_ADDRESS);
442 #elif defined(__FreeBSD__)
443 	u32 val = bus_read_4((struct resource *)ar_pci->mem, PCIE_LOCAL_BASE_ADDRESS +
444 			   RTC_STATE_ADDRESS);
445 #endif
446 
447 	return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
448 }
449 
450 static void __ath10k_pci_wake(struct ath10k *ar)
451 {
452 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
453 
454 	lockdep_assert_held(&ar_pci->ps_lock);
455 
456 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
457 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
458 
459 #if defined(__linux__)
460 	iowrite32(PCIE_SOC_WAKE_V_MASK,
461 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
462 		  PCIE_SOC_WAKE_ADDRESS);
463 #elif defined(__FreeBSD__)
464 	bus_write_4((struct resource *)ar_pci->mem,
465 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
466 	    PCIE_SOC_WAKE_V_MASK);
467 #endif
468 }
469 
470 static void __ath10k_pci_sleep(struct ath10k *ar)
471 {
472 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
473 
474 	lockdep_assert_held(&ar_pci->ps_lock);
475 
476 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
477 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
478 
479 #if defined(__linux__)
480 	iowrite32(PCIE_SOC_WAKE_RESET,
481 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
482 		  PCIE_SOC_WAKE_ADDRESS);
483 #elif defined(__FreeBSD__)
484 	bus_write_4((struct resource *)ar_pci->mem,
485 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
486 	    PCIE_SOC_WAKE_RESET);
487 #endif
488 	ar_pci->ps_awake = false;
489 }
490 
491 static int ath10k_pci_wake_wait(struct ath10k *ar)
492 {
493 	int tot_delay = 0;
494 	int curr_delay = 5;
495 
496 	while (tot_delay < PCIE_WAKE_TIMEOUT) {
497 		if (ath10k_pci_is_awake(ar)) {
498 			if (tot_delay > PCIE_WAKE_LATE_US)
499 				ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
500 					    tot_delay / 1000);
501 			return 0;
502 		}
503 
504 		udelay(curr_delay);
505 		tot_delay += curr_delay;
506 
507 		if (curr_delay < 50)
508 			curr_delay += 5;
509 	}
510 
511 	return -ETIMEDOUT;
512 }
513 
514 static int ath10k_pci_force_wake(struct ath10k *ar)
515 {
516 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
517 	unsigned long flags;
518 	int ret = 0;
519 
520 	if (ar_pci->pci_ps)
521 		return ret;
522 
523 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
524 
525 	if (!ar_pci->ps_awake) {
526 #if defined(__linux__)
527 		iowrite32(PCIE_SOC_WAKE_V_MASK,
528 			  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
529 			  PCIE_SOC_WAKE_ADDRESS);
530 #elif defined(__FreeBSD__)
531 		bus_write_4((struct resource *)ar_pci->mem,
532 		    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
533 		    PCIE_SOC_WAKE_V_MASK);
534 #endif
535 
536 		ret = ath10k_pci_wake_wait(ar);
537 		if (ret == 0)
538 			ar_pci->ps_awake = true;
539 	}
540 
541 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
542 
543 	return ret;
544 }
545 
546 static void ath10k_pci_force_sleep(struct ath10k *ar)
547 {
548 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
549 	unsigned long flags;
550 
551 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
552 
553 #if defined(__linux__)
554 	iowrite32(PCIE_SOC_WAKE_RESET,
555 		  ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
556 		  PCIE_SOC_WAKE_ADDRESS);
557 #elif defined(__FreeBSD__)
558 	bus_write_4((struct resource *)ar_pci->mem,
559 	    PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS,
560 	    PCIE_SOC_WAKE_RESET);
561 #endif
562 	ar_pci->ps_awake = false;
563 
564 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
565 }
566 
567 static int ath10k_pci_wake(struct ath10k *ar)
568 {
569 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
570 	unsigned long flags;
571 	int ret = 0;
572 
573 	if (ar_pci->pci_ps == 0)
574 		return ret;
575 
576 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
577 
578 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
579 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
580 
581 	/* This function can be called very frequently. To avoid excessive
582 	 * CPU stalls for MMIO reads use a cache var to hold the device state.
583 	 */
584 	if (!ar_pci->ps_awake) {
585 		__ath10k_pci_wake(ar);
586 
587 		ret = ath10k_pci_wake_wait(ar);
588 		if (ret == 0)
589 			ar_pci->ps_awake = true;
590 	}
591 
592 	if (ret == 0) {
593 		ar_pci->ps_wake_refcount++;
594 		WARN_ON(ar_pci->ps_wake_refcount == 0);
595 	}
596 
597 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
598 
599 	return ret;
600 }
601 
602 static void ath10k_pci_sleep(struct ath10k *ar)
603 {
604 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
605 	unsigned long flags;
606 
607 	if (ar_pci->pci_ps == 0)
608 		return;
609 
610 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
611 
612 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
613 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
614 
615 	if (WARN_ON(ar_pci->ps_wake_refcount == 0))
616 		goto skip;
617 
618 	ar_pci->ps_wake_refcount--;
619 
620 	mod_timer(&ar_pci->ps_timer, jiffies +
621 		  msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
622 
623 skip:
624 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
625 }
626 
627 static void ath10k_pci_ps_timer(struct timer_list *t)
628 {
629 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
630 	struct ath10k *ar = ar_pci->ar;
631 	unsigned long flags;
632 
633 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
634 
635 	ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
636 		   ar_pci->ps_wake_refcount, ar_pci->ps_awake);
637 
638 	if (ar_pci->ps_wake_refcount > 0)
639 		goto skip;
640 
641 	__ath10k_pci_sleep(ar);
642 
643 skip:
644 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
645 }
646 
647 static void ath10k_pci_sleep_sync(struct ath10k *ar)
648 {
649 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
650 	unsigned long flags;
651 
652 	if (ar_pci->pci_ps == 0) {
653 		ath10k_pci_force_sleep(ar);
654 		return;
655 	}
656 
657 	del_timer_sync(&ar_pci->ps_timer);
658 
659 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
660 	WARN_ON(ar_pci->ps_wake_refcount > 0);
661 	__ath10k_pci_sleep(ar);
662 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
663 }
664 
665 static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
666 {
667 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
668 	int ret;
669 
670 	if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
671 		ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
672 			    offset, offset + sizeof(value), ar_pci->mem_len);
673 		return;
674 	}
675 
676 	ret = ath10k_pci_wake(ar);
677 	if (ret) {
678 		ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
679 			    value, offset, ret);
680 		return;
681 	}
682 
683 #if defined(__linux__)
684 	iowrite32(value, ar_pci->mem + offset);
685 #elif defined(__FreeBSD__)
686 	bus_write_4((struct resource *)ar_pci->mem, offset, value);
687 #endif
688 	ath10k_pci_sleep(ar);
689 }
690 
691 static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
692 {
693 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
694 	u32 val;
695 	int ret;
696 
697 	if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
698 		ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
699 			    offset, offset + sizeof(val), ar_pci->mem_len);
700 		return 0;
701 	}
702 
703 	ret = ath10k_pci_wake(ar);
704 	if (ret) {
705 		ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
706 			    offset, ret);
707 		return 0xffffffff;
708 	}
709 
710 #if defined(__linux__)
711 	val = ioread32(ar_pci->mem + offset);
712 #elif defined(__FreeBSD__)
713 	val = bus_read_4((struct resource *)ar_pci->mem, offset);
714 #endif
715 	ath10k_pci_sleep(ar);
716 
717 	return val;
718 }
719 
720 inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
721 {
722 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
723 
724 	ce->bus_ops->write32(ar, offset, value);
725 }
726 
727 inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
728 {
729 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
730 
731 	return ce->bus_ops->read32(ar, offset);
732 }
733 
734 u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
735 {
736 	return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
737 }
738 
739 void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
740 {
741 	ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
742 }
743 
744 u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
745 {
746 	return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
747 }
748 
749 void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
750 {
751 	ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
752 }
753 
754 bool ath10k_pci_irq_pending(struct ath10k *ar)
755 {
756 	u32 cause;
757 
758 	/* Check if the shared legacy irq is for us */
759 	cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
760 				  PCIE_INTR_CAUSE_ADDRESS);
761 	if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
762 		return true;
763 
764 	return false;
765 }
766 
767 void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
768 {
769 	/* IMPORTANT: INTR_CLR register has to be set after
770 	 * INTR_ENABLE is set to 0, otherwise interrupt can not be
771 	 * really cleared.
772 	 */
773 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
774 			   0);
775 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
776 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
777 
778 	/* IMPORTANT: this extra read transaction is required to
779 	 * flush the posted write buffer.
780 	 */
781 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
782 				PCIE_INTR_ENABLE_ADDRESS);
783 }
784 
785 void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
786 {
787 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
788 			   PCIE_INTR_ENABLE_ADDRESS,
789 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
790 
791 	/* IMPORTANT: this extra read transaction is required to
792 	 * flush the posted write buffer.
793 	 */
794 	(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
795 				PCIE_INTR_ENABLE_ADDRESS);
796 }
797 
798 static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
799 {
800 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
801 
802 	if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
803 		return "msi";
804 
805 	return "legacy";
806 }
807 
808 static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
809 {
810 	struct ath10k *ar = pipe->hif_ce_state;
811 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
812 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
813 	struct sk_buff *skb;
814 	dma_addr_t paddr;
815 	int ret;
816 
817 	skb = dev_alloc_skb(pipe->buf_sz);
818 	if (!skb)
819 		return -ENOMEM;
820 
821 	WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
822 
823 	paddr = dma_map_single(ar->dev, skb->data,
824 			       skb->len + skb_tailroom(skb),
825 			       DMA_FROM_DEVICE);
826 	if (unlikely(dma_mapping_error(ar->dev, paddr))) {
827 		ath10k_warn(ar, "failed to dma map pci rx buf\n");
828 		dev_kfree_skb_any(skb);
829 		return -EIO;
830 	}
831 
832 	ATH10K_SKB_RXCB(skb)->paddr = paddr;
833 
834 	spin_lock_bh(&ce->ce_lock);
835 	ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
836 	spin_unlock_bh(&ce->ce_lock);
837 	if (ret) {
838 		dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
839 				 DMA_FROM_DEVICE);
840 		dev_kfree_skb_any(skb);
841 		return ret;
842 	}
843 
844 	return 0;
845 }
846 
847 static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
848 {
849 	struct ath10k *ar = pipe->hif_ce_state;
850 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
851 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
852 	struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
853 	int ret, num;
854 
855 	if (pipe->buf_sz == 0)
856 		return;
857 
858 	if (!ce_pipe->dest_ring)
859 		return;
860 
861 	spin_lock_bh(&ce->ce_lock);
862 	num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
863 	spin_unlock_bh(&ce->ce_lock);
864 
865 	while (num >= 0) {
866 		ret = __ath10k_pci_rx_post_buf(pipe);
867 		if (ret) {
868 			if (ret == -ENOSPC)
869 				break;
870 			ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
871 			mod_timer(&ar_pci->rx_post_retry, jiffies +
872 				  ATH10K_PCI_RX_POST_RETRY_MS);
873 			break;
874 		}
875 		num--;
876 	}
877 }
878 
879 void ath10k_pci_rx_post(struct ath10k *ar)
880 {
881 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
882 	int i;
883 
884 	for (i = 0; i < CE_COUNT; i++)
885 		ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
886 }
887 
888 void ath10k_pci_rx_replenish_retry(struct timer_list *t)
889 {
890 	struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
891 	struct ath10k *ar = ar_pci->ar;
892 
893 	ath10k_pci_rx_post(ar);
894 }
895 
896 static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
897 {
898 	u32 val = 0, region = addr & 0xfffff;
899 
900 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
901 				 & 0x7ff) << 21;
902 	val |= 0x100000 | region;
903 	return val;
904 }
905 
906 /* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
907  * Support to access target space below 1M for qca6174 and qca9377.
908  * If target space is below 1M, the bit[20] of converted CE addr is 0.
909  * Otherwise bit[20] of converted CE addr is 1.
910  */
911 static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
912 {
913 	u32 val = 0, region = addr & 0xfffff;
914 
915 	val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
916 				 & 0x7ff) << 21;
917 	val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
918 	return val;
919 }
920 
921 static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
922 {
923 	u32 val = 0, region = addr & 0xfffff;
924 
925 	val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
926 	val |= 0x100000 | region;
927 	return val;
928 }
929 
930 static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
931 {
932 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
933 
934 	if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
935 		return -ENOTSUPP;
936 
937 	return ar_pci->targ_cpu_to_ce_addr(ar, addr);
938 }
939 
940 /*
941  * Diagnostic read/write access is provided for startup/config/debug usage.
942  * Caller must guarantee proper alignment, when applicable, and single user
943  * at any moment.
944  */
945 #if defined(__linux__)
946 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
947 #elif defined(__FreeBSD__)
948 static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, u8 *data,
949 #endif
950 				    int nbytes)
951 {
952 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
953 	int ret = 0;
954 	u32 *buf;
955 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
956 	struct ath10k_ce_pipe *ce_diag;
957 	/* Host buffer address in CE space */
958 	u32 ce_data;
959 	dma_addr_t ce_data_base = 0;
960 	void *data_buf;
961 	int i;
962 
963 	mutex_lock(&ar_pci->ce_diag_mutex);
964 	ce_diag = ar_pci->ce_diag;
965 
966 	/*
967 	 * Allocate a temporary bounce buffer to hold caller's data
968 	 * to be DMA'ed from Target. This guarantees
969 	 *   1) 4-byte alignment
970 	 *   2) Buffer in DMA-able space
971 	 */
972 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
973 
974 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
975 				      GFP_ATOMIC);
976 	if (!data_buf) {
977 		ret = -ENOMEM;
978 		goto done;
979 	}
980 
981 	/* The address supplied by the caller is in the
982 	 * Target CPU virtual address space.
983 	 *
984 	 * In order to use this address with the diagnostic CE,
985 	 * convert it from Target CPU virtual address space
986 	 * to CE address space
987 	 */
988 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
989 
990 	remaining_bytes = nbytes;
991 	ce_data = ce_data_base;
992 	while (remaining_bytes) {
993 		nbytes = min_t(unsigned int, remaining_bytes,
994 			       DIAG_TRANSFER_LIMIT);
995 
996 		ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
997 		if (ret != 0)
998 			goto done;
999 
1000 		/* Request CE to send from Target(!) address to Host buffer */
1001 		ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
1002 		if (ret)
1003 			goto done;
1004 
1005 		i = 0;
1006 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1007 			udelay(DIAG_ACCESS_CE_WAIT_US);
1008 			i += DIAG_ACCESS_CE_WAIT_US;
1009 
1010 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1011 				ret = -EBUSY;
1012 				goto done;
1013 			}
1014 		}
1015 
1016 		i = 0;
1017 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1018 						     &completed_nbytes) != 0) {
1019 			udelay(DIAG_ACCESS_CE_WAIT_US);
1020 			i += DIAG_ACCESS_CE_WAIT_US;
1021 
1022 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1023 				ret = -EBUSY;
1024 				goto done;
1025 			}
1026 		}
1027 
1028 		if (nbytes != completed_nbytes) {
1029 			ret = -EIO;
1030 			goto done;
1031 		}
1032 
1033 		if (*buf != ce_data) {
1034 			ret = -EIO;
1035 			goto done;
1036 		}
1037 
1038 		remaining_bytes -= nbytes;
1039 		memcpy(data, data_buf, nbytes);
1040 
1041 		address += nbytes;
1042 		data += nbytes;
1043 	}
1044 
1045 done:
1046 
1047 	if (data_buf)
1048 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1049 				  ce_data_base);
1050 
1051 	mutex_unlock(&ar_pci->ce_diag_mutex);
1052 
1053 	return ret;
1054 }
1055 
1056 static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
1057 {
1058 	__le32 val = 0;
1059 	int ret;
1060 
1061 #if defined(__linux__)
1062 	ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
1063 #elif defined(__FreeBSD__)
1064 	ret = ath10k_pci_diag_read_mem(ar, address, (u8 *)&val, sizeof(val));
1065 #endif
1066 	*value = __le32_to_cpu(val);
1067 
1068 	return ret;
1069 }
1070 
1071 static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
1072 				     u32 src, u32 len)
1073 {
1074 	u32 host_addr, addr;
1075 	int ret;
1076 
1077 	host_addr = host_interest_item_address(src);
1078 
1079 	ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
1080 	if (ret != 0) {
1081 		ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
1082 			    src, ret);
1083 		return ret;
1084 	}
1085 
1086 	ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
1087 	if (ret != 0) {
1088 		ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
1089 			    addr, len, ret);
1090 		return ret;
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 #define ath10k_pci_diag_read_hi(ar, dest, src, len)		\
1097 	__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
1098 
1099 int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
1100 #if defined(__linux__)
1101 			      const void *data, int nbytes)
1102 #elif defined(__FreeBSD__)
1103 			      const void *_d, int nbytes)
1104 #endif
1105 {
1106 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1107 	int ret = 0;
1108 	u32 *buf;
1109 	unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
1110 	struct ath10k_ce_pipe *ce_diag;
1111 	void *data_buf;
1112 	dma_addr_t ce_data_base = 0;
1113 	int i;
1114 #if defined(__FreeBSD__)
1115 	const u8 *data = _d;
1116 #endif
1117 
1118 	mutex_lock(&ar_pci->ce_diag_mutex);
1119 	ce_diag = ar_pci->ce_diag;
1120 
1121 	/*
1122 	 * Allocate a temporary bounce buffer to hold caller's data
1123 	 * to be DMA'ed to Target. This guarantees
1124 	 *   1) 4-byte alignment
1125 	 *   2) Buffer in DMA-able space
1126 	 */
1127 	alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
1128 
1129 	data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
1130 				      GFP_ATOMIC);
1131 	if (!data_buf) {
1132 		ret = -ENOMEM;
1133 		goto done;
1134 	}
1135 
1136 	/*
1137 	 * The address supplied by the caller is in the
1138 	 * Target CPU virtual address space.
1139 	 *
1140 	 * In order to use this address with the diagnostic CE,
1141 	 * convert it from
1142 	 *    Target CPU virtual address space
1143 	 * to
1144 	 *    CE address space
1145 	 */
1146 	address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
1147 
1148 	remaining_bytes = nbytes;
1149 	while (remaining_bytes) {
1150 		/* FIXME: check cast */
1151 		nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
1152 
1153 		/* Copy caller's data to allocated DMA buf */
1154 		memcpy(data_buf, data, nbytes);
1155 
1156 		/* Set up to receive directly into Target(!) address */
1157 		ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
1158 		if (ret != 0)
1159 			goto done;
1160 
1161 		/*
1162 		 * Request CE to send caller-supplied data that
1163 		 * was copied to bounce buffer to Target(!) address.
1164 		 */
1165 		ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
1166 		if (ret != 0)
1167 			goto done;
1168 
1169 		i = 0;
1170 		while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
1171 			udelay(DIAG_ACCESS_CE_WAIT_US);
1172 			i += DIAG_ACCESS_CE_WAIT_US;
1173 
1174 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1175 				ret = -EBUSY;
1176 				goto done;
1177 			}
1178 		}
1179 
1180 		i = 0;
1181 		while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
1182 						     &completed_nbytes) != 0) {
1183 			udelay(DIAG_ACCESS_CE_WAIT_US);
1184 			i += DIAG_ACCESS_CE_WAIT_US;
1185 
1186 			if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
1187 				ret = -EBUSY;
1188 				goto done;
1189 			}
1190 		}
1191 
1192 		if (nbytes != completed_nbytes) {
1193 			ret = -EIO;
1194 			goto done;
1195 		}
1196 
1197 		if (*buf != address) {
1198 			ret = -EIO;
1199 			goto done;
1200 		}
1201 
1202 		remaining_bytes -= nbytes;
1203 		address += nbytes;
1204 		data += nbytes;
1205 	}
1206 
1207 done:
1208 	if (data_buf) {
1209 		dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
1210 				  ce_data_base);
1211 	}
1212 
1213 	if (ret != 0)
1214 		ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
1215 			    address, ret);
1216 
1217 	mutex_unlock(&ar_pci->ce_diag_mutex);
1218 
1219 	return ret;
1220 }
1221 
1222 static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
1223 {
1224 	__le32 val = __cpu_to_le32(value);
1225 
1226 	return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
1227 }
1228 
1229 /* Called by lower (CE) layer when a send to Target completes. */
1230 static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
1231 {
1232 	struct ath10k *ar = ce_state->ar;
1233 	struct sk_buff_head list;
1234 	struct sk_buff *skb;
1235 
1236 	__skb_queue_head_init(&list);
1237 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1238 		/* no need to call tx completion for NULL pointers */
1239 		if (skb == NULL)
1240 			continue;
1241 
1242 		__skb_queue_tail(&list, skb);
1243 	}
1244 
1245 	while ((skb = __skb_dequeue(&list)))
1246 		ath10k_htc_tx_completion_handler(ar, skb);
1247 }
1248 
1249 static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
1250 				     void (*callback)(struct ath10k *ar,
1251 						      struct sk_buff *skb))
1252 {
1253 	struct ath10k *ar = ce_state->ar;
1254 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1255 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1256 	struct sk_buff *skb;
1257 	struct sk_buff_head list;
1258 	void *transfer_context;
1259 	unsigned int nbytes, max_nbytes;
1260 
1261 	__skb_queue_head_init(&list);
1262 	while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
1263 					     &nbytes) == 0) {
1264 		skb = transfer_context;
1265 		max_nbytes = skb->len + skb_tailroom(skb);
1266 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1267 				 max_nbytes, DMA_FROM_DEVICE);
1268 
1269 		if (unlikely(max_nbytes < nbytes)) {
1270 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1271 				    nbytes, max_nbytes);
1272 			dev_kfree_skb_any(skb);
1273 			continue;
1274 		}
1275 
1276 		skb_put(skb, nbytes);
1277 		__skb_queue_tail(&list, skb);
1278 	}
1279 
1280 	while ((skb = __skb_dequeue(&list))) {
1281 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1282 			   ce_state->id, skb->len);
1283 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1284 				skb->data, skb->len);
1285 
1286 		callback(ar, skb);
1287 	}
1288 
1289 	ath10k_pci_rx_post_pipe(pipe_info);
1290 }
1291 
1292 static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
1293 					 void (*callback)(struct ath10k *ar,
1294 							  struct sk_buff *skb))
1295 {
1296 	struct ath10k *ar = ce_state->ar;
1297 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1298 	struct ath10k_pci_pipe *pipe_info =  &ar_pci->pipe_info[ce_state->id];
1299 	struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
1300 	struct sk_buff *skb;
1301 	struct sk_buff_head list;
1302 	void *transfer_context;
1303 	unsigned int nbytes, max_nbytes, nentries;
1304 	int orig_len;
1305 
1306 	/* No need to acquire ce_lock for CE5, since this is the only place CE5
1307 	 * is processed other than init and deinit. Before releasing CE5
1308 	 * buffers, interrupts are disabled. Thus CE5 access is serialized.
1309 	 */
1310 	__skb_queue_head_init(&list);
1311 	while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
1312 						    &nbytes) == 0) {
1313 		skb = transfer_context;
1314 		max_nbytes = skb->len + skb_tailroom(skb);
1315 
1316 		if (unlikely(max_nbytes < nbytes)) {
1317 			ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
1318 				    nbytes, max_nbytes);
1319 			continue;
1320 		}
1321 
1322 		dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1323 					max_nbytes, DMA_FROM_DEVICE);
1324 		skb_put(skb, nbytes);
1325 		__skb_queue_tail(&list, skb);
1326 	}
1327 
1328 	nentries = skb_queue_len(&list);
1329 	while ((skb = __skb_dequeue(&list))) {
1330 		ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
1331 			   ce_state->id, skb->len);
1332 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
1333 				skb->data, skb->len);
1334 
1335 		orig_len = skb->len;
1336 		callback(ar, skb);
1337 		skb_push(skb, orig_len - skb->len);
1338 		skb_reset_tail_pointer(skb);
1339 		skb_trim(skb, 0);
1340 
1341 		/*let device gain the buffer again*/
1342 		dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
1343 					   skb->len + skb_tailroom(skb),
1344 					   DMA_FROM_DEVICE);
1345 	}
1346 	ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
1347 }
1348 
1349 /* Called by lower (CE) layer when data is received from the Target. */
1350 static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1351 {
1352 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1353 }
1354 
1355 static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
1356 {
1357 	/* CE4 polling needs to be done whenever CE pipe which transports
1358 	 * HTT Rx (target->host) is processed.
1359 	 */
1360 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1361 
1362 	ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
1363 }
1364 
1365 /* Called by lower (CE) layer when data is received from the Target.
1366  * Only 10.4 firmware uses separate CE to transfer pktlog data.
1367  */
1368 static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
1369 {
1370 	ath10k_pci_process_rx_cb(ce_state,
1371 				 ath10k_htt_rx_pktlog_completion_handler);
1372 }
1373 
1374 /* Called by lower (CE) layer when a send to HTT Target completes. */
1375 static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
1376 {
1377 	struct ath10k *ar = ce_state->ar;
1378 	struct sk_buff *skb;
1379 
1380 	while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
1381 		/* no need to call tx completion for NULL pointers */
1382 		if (!skb)
1383 			continue;
1384 
1385 		dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
1386 				 skb->len, DMA_TO_DEVICE);
1387 		ath10k_htt_hif_tx_complete(ar, skb);
1388 	}
1389 }
1390 
1391 static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
1392 {
1393 	skb_pull(skb, sizeof(struct ath10k_htc_hdr));
1394 	ath10k_htt_t2h_msg_handler(ar, skb);
1395 }
1396 
1397 /* Called by lower (CE) layer when HTT data is received from the Target. */
1398 static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
1399 {
1400 	/* CE4 polling needs to be done whenever CE pipe which transports
1401 	 * HTT Rx (target->host) is processed.
1402 	 */
1403 	ath10k_ce_per_engine_service(ce_state->ar, 4);
1404 
1405 	ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
1406 }
1407 
1408 int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
1409 			 struct ath10k_hif_sg_item *items, int n_items)
1410 {
1411 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1412 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
1413 	struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
1414 	struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
1415 	struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
1416 	unsigned int nentries_mask;
1417 	unsigned int sw_index;
1418 	unsigned int write_index;
1419 	int err, i = 0;
1420 
1421 	spin_lock_bh(&ce->ce_lock);
1422 
1423 	nentries_mask = src_ring->nentries_mask;
1424 	sw_index = src_ring->sw_index;
1425 	write_index = src_ring->write_index;
1426 
1427 	if (unlikely(CE_RING_DELTA(nentries_mask,
1428 				   write_index, sw_index - 1) < n_items)) {
1429 		err = -ENOBUFS;
1430 		goto err;
1431 	}
1432 
1433 	for (i = 0; i < n_items - 1; i++) {
1434 		ath10k_dbg(ar, ATH10K_DBG_PCI,
1435 			   "pci tx item %d paddr %pad len %d n_items %d\n",
1436 			   i, &items[i].paddr, items[i].len, n_items);
1437 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1438 				items[i].vaddr, items[i].len);
1439 
1440 		err = ath10k_ce_send_nolock(ce_pipe,
1441 					    items[i].transfer_context,
1442 					    items[i].paddr,
1443 					    items[i].len,
1444 					    items[i].transfer_id,
1445 					    CE_SEND_FLAG_GATHER);
1446 		if (err)
1447 			goto err;
1448 	}
1449 
1450 	/* `i` is equal to `n_items -1` after for() */
1451 
1452 	ath10k_dbg(ar, ATH10K_DBG_PCI,
1453 #if defined(__linux__)
1454 		   "pci tx item %d paddr %pad len %d n_items %d\n",
1455 		   i, &items[i].paddr, items[i].len, n_items);
1456 #elif defined(__FreeBSD__)
1457 		   "pci tx item %d paddr %pad len %d n_items %d pipe_id %u\n",
1458 		   i, &items[i].paddr, items[i].len, n_items, pipe_id);
1459 	/*
1460 	 * XXX-BZ specific debug; the DELAY makes things work for one chipset.
1461 	 * There's likely a race somewhere (here or LinuxKPI).
1462 	 */
1463 	if (n_items == 1 && items[i].len == 140) {
1464 		ath10k_dbg_dump(ar, ATH10K_DBG_PCI, NULL, "pci tx data: ",
1465 				items[i].vaddr, items[i].len);
1466 		dump_stack();
1467 		DELAY(500);
1468 	}
1469 #endif
1470 	ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
1471 			items[i].vaddr, items[i].len);
1472 
1473 	err = ath10k_ce_send_nolock(ce_pipe,
1474 				    items[i].transfer_context,
1475 				    items[i].paddr,
1476 				    items[i].len,
1477 				    items[i].transfer_id,
1478 				    0);
1479 	if (err)
1480 		goto err;
1481 
1482 	spin_unlock_bh(&ce->ce_lock);
1483 	return 0;
1484 
1485 err:
1486 	for (; i > 0; i--)
1487 		__ath10k_ce_send_revert(ce_pipe);
1488 
1489 	spin_unlock_bh(&ce->ce_lock);
1490 	return err;
1491 }
1492 
1493 int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
1494 			     size_t buf_len)
1495 {
1496 	return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
1497 }
1498 
1499 u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
1500 {
1501 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1502 
1503 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
1504 
1505 	return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
1506 }
1507 
1508 static void ath10k_pci_dump_registers(struct ath10k *ar,
1509 				      struct ath10k_fw_crash_data *crash_data)
1510 {
1511 	__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
1512 	int i, ret;
1513 
1514 	lockdep_assert_held(&ar->dump_mutex);
1515 
1516 	ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
1517 				      hi_failure_state,
1518 				      REG_DUMP_COUNT_QCA988X * sizeof(__le32));
1519 	if (ret) {
1520 		ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
1521 		return;
1522 	}
1523 
1524 	BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
1525 
1526 	ath10k_err(ar, "firmware register dump:\n");
1527 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
1528 		ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
1529 			   i,
1530 			   __le32_to_cpu(reg_dump_values[i]),
1531 			   __le32_to_cpu(reg_dump_values[i + 1]),
1532 			   __le32_to_cpu(reg_dump_values[i + 2]),
1533 			   __le32_to_cpu(reg_dump_values[i + 3]));
1534 
1535 	if (!crash_data)
1536 		return;
1537 
1538 	for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
1539 		crash_data->registers[i] = reg_dump_values[i];
1540 }
1541 
1542 static int ath10k_pci_dump_memory_section(struct ath10k *ar,
1543 					  const struct ath10k_mem_region *mem_region,
1544 					  u8 *buf, size_t buf_len)
1545 {
1546 	const struct ath10k_mem_section *cur_section, *next_section;
1547 	unsigned int count, section_size, skip_size;
1548 	int ret, i, j;
1549 
1550 	if (!mem_region || !buf)
1551 		return 0;
1552 
1553 	cur_section = &mem_region->section_table.sections[0];
1554 
1555 	if (mem_region->start > cur_section->start) {
1556 		ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
1557 			    mem_region->start, cur_section->start);
1558 		return 0;
1559 	}
1560 
1561 	skip_size = cur_section->start - mem_region->start;
1562 
1563 	/* fill the gap between the first register section and register
1564 	 * start address
1565 	 */
1566 	for (i = 0; i < skip_size; i++) {
1567 		*buf = ATH10K_MAGIC_NOT_COPIED;
1568 		buf++;
1569 	}
1570 
1571 	count = 0;
1572 
1573 	for (i = 0; cur_section != NULL; i++) {
1574 		section_size = cur_section->end - cur_section->start;
1575 
1576 		if (section_size <= 0) {
1577 			ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
1578 				    cur_section->start,
1579 				    cur_section->end);
1580 			break;
1581 		}
1582 
1583 		if ((i + 1) == mem_region->section_table.size) {
1584 			/* last section */
1585 			next_section = NULL;
1586 			skip_size = 0;
1587 		} else {
1588 			next_section = cur_section + 1;
1589 
1590 			if (cur_section->end > next_section->start) {
1591 				ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
1592 					    next_section->start,
1593 					    cur_section->end);
1594 				break;
1595 			}
1596 
1597 			skip_size = next_section->start - cur_section->end;
1598 		}
1599 
1600 		if (buf_len < (skip_size + section_size)) {
1601 			ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
1602 			break;
1603 		}
1604 
1605 		buf_len -= skip_size + section_size;
1606 
1607 		/* read section to dest memory */
1608 		ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
1609 					       buf, section_size);
1610 		if (ret) {
1611 			ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
1612 				    cur_section->start, ret);
1613 			break;
1614 		}
1615 
1616 		buf += section_size;
1617 		count += section_size;
1618 
1619 		/* fill in the gap between this section and the next */
1620 		for (j = 0; j < skip_size; j++) {
1621 			*buf = ATH10K_MAGIC_NOT_COPIED;
1622 			buf++;
1623 		}
1624 
1625 		count += skip_size;
1626 
1627 		if (!next_section)
1628 			/* this was the last section */
1629 			break;
1630 
1631 		cur_section = next_section;
1632 	}
1633 
1634 	return count;
1635 }
1636 
1637 static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
1638 {
1639 	u32 val;
1640 
1641 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1642 			   FW_RAM_CONFIG_ADDRESS, config);
1643 
1644 	val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1645 				FW_RAM_CONFIG_ADDRESS);
1646 	if (val != config) {
1647 		ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
1648 			    val, config);
1649 		return -EIO;
1650 	}
1651 
1652 	return 0;
1653 }
1654 
1655 /* Always returns the length */
1656 static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
1657 				       const struct ath10k_mem_region *region,
1658 				       u8 *buf)
1659 {
1660 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1661 	u32 base_addr, i;
1662 
1663 #if defined(__linux__)
1664 	base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
1665 #elif defined(__FreeBSD__)
1666 	base_addr = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_PCIE_BAR0_START_REG);
1667 #endif
1668 	base_addr += region->start;
1669 
1670 	for (i = 0; i < region->len; i += 4) {
1671 #if defined(__linux__)
1672 		iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
1673 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
1674 #elif defined(__FreeBSD__)
1675 		bus_write_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_ADDR_REG, base_addr + i);
1676 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, QCA99X0_CPU_MEM_DATA_REG);
1677 #endif
1678 	}
1679 
1680 	return region->len;
1681 }
1682 
1683 /* if an error happened returns < 0, otherwise the length */
1684 static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
1685 				      const struct ath10k_mem_region *region,
1686 				      u8 *buf)
1687 {
1688 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1689 	u32 i;
1690 	int ret;
1691 
1692 	mutex_lock(&ar->conf_mutex);
1693 	if (ar->state != ATH10K_STATE_ON) {
1694 		ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
1695 		ret = -EIO;
1696 		goto done;
1697 	}
1698 
1699 	for (i = 0; i < region->len; i += 4)
1700 #if defined(__linux__)
1701 		*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
1702 #elif defined(__FreeBSD__)
1703 		*(u32 *)(buf + i) = bus_read_4((struct resource *)ar_pci->mem, region->start + i);
1704 #endif
1705 
1706 	ret = region->len;
1707 done:
1708 	mutex_unlock(&ar->conf_mutex);
1709 	return ret;
1710 }
1711 
1712 /* if an error happened returns < 0, otherwise the length */
1713 static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
1714 					  const struct ath10k_mem_region *current_region,
1715 					  u8 *buf)
1716 {
1717 	int ret;
1718 
1719 	if (current_region->section_table.size > 0)
1720 		/* Copy each section individually. */
1721 		return ath10k_pci_dump_memory_section(ar,
1722 						      current_region,
1723 						      buf,
1724 						      current_region->len);
1725 
1726 	/* No individiual memory sections defined so we can
1727 	 * copy the entire memory region.
1728 	 */
1729 	ret = ath10k_pci_diag_read_mem(ar,
1730 				       current_region->start,
1731 				       buf,
1732 				       current_region->len);
1733 	if (ret) {
1734 		ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
1735 			    current_region->name, ret);
1736 		return ret;
1737 	}
1738 
1739 	return current_region->len;
1740 }
1741 
1742 static void ath10k_pci_dump_memory(struct ath10k *ar,
1743 				   struct ath10k_fw_crash_data *crash_data)
1744 {
1745 	const struct ath10k_hw_mem_layout *mem_layout;
1746 	const struct ath10k_mem_region *current_region;
1747 	struct ath10k_dump_ram_data_hdr *hdr;
1748 	u32 count, shift;
1749 	size_t buf_len;
1750 	int ret, i;
1751 	u8 *buf;
1752 
1753 	lockdep_assert_held(&ar->dump_mutex);
1754 
1755 	if (!crash_data)
1756 		return;
1757 
1758 	mem_layout = ath10k_coredump_get_mem_layout(ar);
1759 	if (!mem_layout)
1760 		return;
1761 
1762 	current_region = &mem_layout->region_table.regions[0];
1763 
1764 	buf = crash_data->ramdump_buf;
1765 	buf_len = crash_data->ramdump_buf_len;
1766 
1767 	memset(buf, 0, buf_len);
1768 
1769 	for (i = 0; i < mem_layout->region_table.size; i++) {
1770 		count = 0;
1771 
1772 		if (current_region->len > buf_len) {
1773 			ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
1774 				    current_region->name,
1775 				    current_region->len,
1776 				    buf_len);
1777 			break;
1778 		}
1779 
1780 		/* To get IRAM dump, the host driver needs to switch target
1781 		 * ram config from DRAM to IRAM.
1782 		 */
1783 		if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
1784 		    current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
1785 			shift = current_region->start >> 20;
1786 
1787 			ret = ath10k_pci_set_ram_config(ar, shift);
1788 			if (ret) {
1789 				ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
1790 					    current_region->name, ret);
1791 				break;
1792 			}
1793 		}
1794 
1795 		/* Reserve space for the header. */
1796 		hdr = (void *)buf;
1797 		buf += sizeof(*hdr);
1798 		buf_len -= sizeof(*hdr);
1799 
1800 		switch (current_region->type) {
1801 		case ATH10K_MEM_REGION_TYPE_IOSRAM:
1802 			count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
1803 			break;
1804 		case ATH10K_MEM_REGION_TYPE_IOREG:
1805 			ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
1806 			if (ret < 0)
1807 				break;
1808 
1809 			count = ret;
1810 			break;
1811 		default:
1812 			ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
1813 			if (ret < 0)
1814 				break;
1815 
1816 			count = ret;
1817 			break;
1818 		}
1819 
1820 		hdr->region_type = cpu_to_le32(current_region->type);
1821 		hdr->start = cpu_to_le32(current_region->start);
1822 		hdr->length = cpu_to_le32(count);
1823 
1824 		if (count == 0)
1825 			/* Note: the header remains, just with zero length. */
1826 			break;
1827 
1828 		buf += count;
1829 		buf_len -= count;
1830 
1831 		current_region++;
1832 	}
1833 }
1834 
1835 static void ath10k_pci_fw_dump_work(struct work_struct *work)
1836 {
1837 	struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
1838 						 dump_work);
1839 	struct ath10k_fw_crash_data *crash_data;
1840 	struct ath10k *ar = ar_pci->ar;
1841 	char guid[UUID_STRING_LEN + 1];
1842 
1843 	mutex_lock(&ar->dump_mutex);
1844 
1845 	spin_lock_bh(&ar->data_lock);
1846 	ar->stats.fw_crash_counter++;
1847 	spin_unlock_bh(&ar->data_lock);
1848 
1849 	crash_data = ath10k_coredump_new(ar);
1850 
1851 	if (crash_data)
1852 		scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
1853 	else
1854 		scnprintf(guid, sizeof(guid), "n/a");
1855 
1856 	ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
1857 	ath10k_print_driver_info(ar);
1858 	ath10k_pci_dump_registers(ar, crash_data);
1859 	ath10k_ce_dump_registers(ar, crash_data);
1860 	ath10k_pci_dump_memory(ar, crash_data);
1861 
1862 	mutex_unlock(&ar->dump_mutex);
1863 
1864 	ath10k_core_start_recovery(ar);
1865 }
1866 
1867 static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
1868 {
1869 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1870 
1871 	queue_work(ar->workqueue, &ar_pci->dump_work);
1872 }
1873 
1874 void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
1875 					int force)
1876 {
1877 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1878 
1879 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
1880 
1881 	if (!force) {
1882 		int resources;
1883 		/*
1884 		 * Decide whether to actually poll for completions, or just
1885 		 * wait for a later chance.
1886 		 * If there seem to be plenty of resources left, then just wait
1887 		 * since checking involves reading a CE register, which is a
1888 		 * relatively expensive operation.
1889 		 */
1890 		resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
1891 
1892 		/*
1893 		 * If at least 50% of the total resources are still available,
1894 		 * don't bother checking again yet.
1895 		 */
1896 		if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
1897 			return;
1898 	}
1899 	ath10k_ce_per_engine_service(ar, pipe);
1900 }
1901 
1902 static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
1903 {
1904 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1905 
1906 	del_timer_sync(&ar_pci->rx_post_retry);
1907 }
1908 
1909 int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
1910 				       u8 *ul_pipe, u8 *dl_pipe)
1911 {
1912 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1913 	const struct ce_service_to_pipe *entry;
1914 	bool ul_set = false, dl_set = false;
1915 	int i;
1916 
1917 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
1918 
1919 	for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
1920 		entry = &ar_pci->serv_to_pipe[i];
1921 
1922 		if (__le32_to_cpu(entry->service_id) != service_id)
1923 			continue;
1924 
1925 		switch (__le32_to_cpu(entry->pipedir)) {
1926 		case PIPEDIR_NONE:
1927 			break;
1928 		case PIPEDIR_IN:
1929 			WARN_ON(dl_set);
1930 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1931 			dl_set = true;
1932 			break;
1933 		case PIPEDIR_OUT:
1934 			WARN_ON(ul_set);
1935 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1936 			ul_set = true;
1937 			break;
1938 		case PIPEDIR_INOUT:
1939 			WARN_ON(dl_set);
1940 			WARN_ON(ul_set);
1941 			*dl_pipe = __le32_to_cpu(entry->pipenum);
1942 			*ul_pipe = __le32_to_cpu(entry->pipenum);
1943 			dl_set = true;
1944 			ul_set = true;
1945 			break;
1946 		}
1947 	}
1948 
1949 	if (!ul_set || !dl_set)
1950 		return -ENOENT;
1951 
1952 	return 0;
1953 }
1954 
1955 void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
1956 				     u8 *ul_pipe, u8 *dl_pipe)
1957 {
1958 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
1959 
1960 	(void)ath10k_pci_hif_map_service_to_pipe(ar,
1961 						 ATH10K_HTC_SVC_ID_RSVD_CTRL,
1962 						 ul_pipe, dl_pipe);
1963 }
1964 
1965 void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
1966 {
1967 	u32 val;
1968 
1969 	switch (ar->hw_rev) {
1970 	case ATH10K_HW_QCA988X:
1971 	case ATH10K_HW_QCA9887:
1972 	case ATH10K_HW_QCA6174:
1973 	case ATH10K_HW_QCA9377:
1974 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
1975 					CORE_CTRL_ADDRESS);
1976 		val &= ~CORE_CTRL_PCIE_REG_31_MASK;
1977 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
1978 				   CORE_CTRL_ADDRESS, val);
1979 		break;
1980 	case ATH10K_HW_QCA99X0:
1981 	case ATH10K_HW_QCA9984:
1982 	case ATH10K_HW_QCA9888:
1983 	case ATH10K_HW_QCA4019:
1984 		/* TODO: Find appropriate register configuration for QCA99X0
1985 		 *  to mask irq/MSI.
1986 		 */
1987 		break;
1988 	case ATH10K_HW_WCN3990:
1989 		break;
1990 	}
1991 }
1992 
1993 static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
1994 {
1995 	u32 val;
1996 
1997 	switch (ar->hw_rev) {
1998 	case ATH10K_HW_QCA988X:
1999 	case ATH10K_HW_QCA9887:
2000 	case ATH10K_HW_QCA6174:
2001 	case ATH10K_HW_QCA9377:
2002 		val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
2003 					CORE_CTRL_ADDRESS);
2004 		val |= CORE_CTRL_PCIE_REG_31_MASK;
2005 		ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
2006 				   CORE_CTRL_ADDRESS, val);
2007 		break;
2008 	case ATH10K_HW_QCA99X0:
2009 	case ATH10K_HW_QCA9984:
2010 	case ATH10K_HW_QCA9888:
2011 	case ATH10K_HW_QCA4019:
2012 		/* TODO: Find appropriate register configuration for QCA99X0
2013 		 *  to unmask irq/MSI.
2014 		 */
2015 		break;
2016 	case ATH10K_HW_WCN3990:
2017 		break;
2018 	}
2019 }
2020 
2021 static void ath10k_pci_irq_disable(struct ath10k *ar)
2022 {
2023 	ath10k_ce_disable_interrupts(ar);
2024 	ath10k_pci_disable_and_clear_legacy_irq(ar);
2025 	ath10k_pci_irq_msi_fw_mask(ar);
2026 }
2027 
2028 static void ath10k_pci_irq_sync(struct ath10k *ar)
2029 {
2030 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2031 
2032 	synchronize_irq(ar_pci->pdev->irq);
2033 }
2034 
2035 static void ath10k_pci_irq_enable(struct ath10k *ar)
2036 {
2037 	ath10k_ce_enable_interrupts(ar);
2038 	ath10k_pci_enable_legacy_irq(ar);
2039 	ath10k_pci_irq_msi_fw_unmask(ar);
2040 }
2041 
2042 static int ath10k_pci_hif_start(struct ath10k *ar)
2043 {
2044 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2045 
2046 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
2047 
2048 	ath10k_core_napi_enable(ar);
2049 
2050 	ath10k_pci_irq_enable(ar);
2051 	ath10k_pci_rx_post(ar);
2052 
2053 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2054 				   ar_pci->link_ctl);
2055 
2056 	return 0;
2057 }
2058 
2059 static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2060 {
2061 	struct ath10k *ar;
2062 	struct ath10k_ce_pipe *ce_pipe;
2063 	struct ath10k_ce_ring *ce_ring;
2064 	struct sk_buff *skb;
2065 	int i;
2066 
2067 	ar = pci_pipe->hif_ce_state;
2068 	ce_pipe = pci_pipe->ce_hdl;
2069 	ce_ring = ce_pipe->dest_ring;
2070 
2071 	if (!ce_ring)
2072 		return;
2073 
2074 	if (!pci_pipe->buf_sz)
2075 		return;
2076 
2077 	for (i = 0; i < ce_ring->nentries; i++) {
2078 		skb = ce_ring->per_transfer_context[i];
2079 		if (!skb)
2080 			continue;
2081 
2082 		ce_ring->per_transfer_context[i] = NULL;
2083 
2084 		dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
2085 				 skb->len + skb_tailroom(skb),
2086 				 DMA_FROM_DEVICE);
2087 		dev_kfree_skb_any(skb);
2088 	}
2089 }
2090 
2091 static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
2092 {
2093 	struct ath10k *ar;
2094 	struct ath10k_ce_pipe *ce_pipe;
2095 	struct ath10k_ce_ring *ce_ring;
2096 	struct sk_buff *skb;
2097 	int i;
2098 
2099 	ar = pci_pipe->hif_ce_state;
2100 	ce_pipe = pci_pipe->ce_hdl;
2101 	ce_ring = ce_pipe->src_ring;
2102 
2103 	if (!ce_ring)
2104 		return;
2105 
2106 	if (!pci_pipe->buf_sz)
2107 		return;
2108 
2109 	for (i = 0; i < ce_ring->nentries; i++) {
2110 		skb = ce_ring->per_transfer_context[i];
2111 		if (!skb)
2112 			continue;
2113 
2114 		ce_ring->per_transfer_context[i] = NULL;
2115 
2116 		ath10k_htc_tx_completion_handler(ar, skb);
2117 	}
2118 }
2119 
2120 /*
2121  * Cleanup residual buffers for device shutdown:
2122  *    buffers that were enqueued for receive
2123  *    buffers that were to be sent
2124  * Note: Buffers that had completed but which were
2125  * not yet processed are on a completion queue. They
2126  * are handled when the completion thread shuts down.
2127  */
2128 static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
2129 {
2130 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2131 	int pipe_num;
2132 
2133 	for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
2134 		struct ath10k_pci_pipe *pipe_info;
2135 
2136 		pipe_info = &ar_pci->pipe_info[pipe_num];
2137 		ath10k_pci_rx_pipe_cleanup(pipe_info);
2138 		ath10k_pci_tx_pipe_cleanup(pipe_info);
2139 	}
2140 }
2141 
2142 void ath10k_pci_ce_deinit(struct ath10k *ar)
2143 {
2144 	int i;
2145 
2146 	for (i = 0; i < CE_COUNT; i++)
2147 		ath10k_ce_deinit_pipe(ar, i);
2148 }
2149 
2150 void ath10k_pci_flush(struct ath10k *ar)
2151 {
2152 	ath10k_pci_rx_retry_sync(ar);
2153 	ath10k_pci_buffer_cleanup(ar);
2154 }
2155 
2156 static void ath10k_pci_hif_stop(struct ath10k *ar)
2157 {
2158 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2159 	unsigned long flags;
2160 
2161 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
2162 
2163 	ath10k_pci_irq_disable(ar);
2164 	ath10k_pci_irq_sync(ar);
2165 
2166 	ath10k_core_napi_sync_disable(ar);
2167 
2168 	cancel_work_sync(&ar_pci->dump_work);
2169 
2170 	/* Most likely the device has HTT Rx ring configured. The only way to
2171 	 * prevent the device from accessing (and possible corrupting) host
2172 	 * memory is to reset the chip now.
2173 	 *
2174 	 * There's also no known way of masking MSI interrupts on the device.
2175 	 * For ranged MSI the CE-related interrupts can be masked. However
2176 	 * regardless how many MSI interrupts are assigned the first one
2177 	 * is always used for firmware indications (crashes) and cannot be
2178 	 * masked. To prevent the device from asserting the interrupt reset it
2179 	 * before proceeding with cleanup.
2180 	 */
2181 	ath10k_pci_safe_chip_reset(ar);
2182 
2183 	ath10k_pci_flush(ar);
2184 
2185 	spin_lock_irqsave(&ar_pci->ps_lock, flags);
2186 	WARN_ON(ar_pci->ps_wake_refcount > 0);
2187 	spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
2188 }
2189 
2190 int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
2191 				    void *req, u32 req_len,
2192 				    void *resp, u32 *resp_len)
2193 {
2194 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2195 	struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
2196 	struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
2197 	struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
2198 	struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
2199 	dma_addr_t req_paddr = 0;
2200 	dma_addr_t resp_paddr = 0;
2201 	struct bmi_xfer xfer = {};
2202 	void *treq, *tresp = NULL;
2203 	int ret = 0;
2204 
2205 	might_sleep();
2206 
2207 	if (resp && !resp_len)
2208 		return -EINVAL;
2209 
2210 	if (resp && resp_len && *resp_len == 0)
2211 		return -EINVAL;
2212 
2213 	treq = kmemdup(req, req_len, GFP_KERNEL);
2214 	if (!treq)
2215 		return -ENOMEM;
2216 
2217 	req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
2218 	ret = dma_mapping_error(ar->dev, req_paddr);
2219 	if (ret) {
2220 		ret = -EIO;
2221 		goto err_dma;
2222 	}
2223 
2224 	if (resp && resp_len) {
2225 		tresp = kzalloc(*resp_len, GFP_KERNEL);
2226 		if (!tresp) {
2227 			ret = -ENOMEM;
2228 			goto err_req;
2229 		}
2230 
2231 		resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
2232 					    DMA_FROM_DEVICE);
2233 		ret = dma_mapping_error(ar->dev, resp_paddr);
2234 		if (ret) {
2235 			ret = -EIO;
2236 			goto err_req;
2237 		}
2238 
2239 		xfer.wait_for_resp = true;
2240 		xfer.resp_len = 0;
2241 
2242 		ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
2243 	}
2244 
2245 	ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
2246 	if (ret)
2247 		goto err_resp;
2248 
2249 	ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
2250 	if (ret) {
2251 		dma_addr_t unused_buffer;
2252 		unsigned int unused_nbytes;
2253 		unsigned int unused_id;
2254 
2255 		ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
2256 					   &unused_nbytes, &unused_id);
2257 	} else {
2258 		/* non-zero means we did not time out */
2259 		ret = 0;
2260 	}
2261 
2262 err_resp:
2263 	if (resp) {
2264 		dma_addr_t unused_buffer;
2265 
2266 		ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
2267 		dma_unmap_single(ar->dev, resp_paddr,
2268 				 *resp_len, DMA_FROM_DEVICE);
2269 	}
2270 err_req:
2271 	dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
2272 
2273 	if (ret == 0 && resp_len) {
2274 		*resp_len = min(*resp_len, xfer.resp_len);
2275 		memcpy(resp, tresp, *resp_len);
2276 	}
2277 err_dma:
2278 	kfree(treq);
2279 	kfree(tresp);
2280 
2281 	return ret;
2282 }
2283 
2284 static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
2285 {
2286 	struct bmi_xfer *xfer;
2287 
2288 	if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
2289 		return;
2290 
2291 	xfer->tx_done = true;
2292 }
2293 
2294 static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
2295 {
2296 	struct ath10k *ar = ce_state->ar;
2297 	struct bmi_xfer *xfer;
2298 	unsigned int nbytes;
2299 
2300 	if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
2301 					  &nbytes))
2302 		return;
2303 
2304 	if (WARN_ON_ONCE(!xfer))
2305 		return;
2306 
2307 	if (!xfer->wait_for_resp) {
2308 		ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
2309 		return;
2310 	}
2311 
2312 	xfer->resp_len = nbytes;
2313 	xfer->rx_done = true;
2314 }
2315 
2316 static int ath10k_pci_bmi_wait(struct ath10k *ar,
2317 			       struct ath10k_ce_pipe *tx_pipe,
2318 			       struct ath10k_ce_pipe *rx_pipe,
2319 			       struct bmi_xfer *xfer)
2320 {
2321 	unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
2322 	unsigned long started = jiffies;
2323 	unsigned long dur;
2324 	int ret;
2325 
2326 	while (time_before_eq(jiffies, timeout)) {
2327 		ath10k_pci_bmi_send_done(tx_pipe);
2328 		ath10k_pci_bmi_recv_data(rx_pipe);
2329 
2330 		if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
2331 			ret = 0;
2332 			goto out;
2333 		}
2334 
2335 #if defined(__linux__)
2336 		schedule();
2337 #elif defined(__FreeBSD__)
2338 		/* Using LinuxKPI we'll hang for-ever as there's no wake_up */
2339 		kern_yield(PRI_USER);
2340 #endif
2341 	}
2342 
2343 	ret = -ETIMEDOUT;
2344 
2345 out:
2346 	dur = jiffies - started;
2347 	if (dur > HZ)
2348 		ath10k_dbg(ar, ATH10K_DBG_BMI,
2349 			   "bmi cmd took %lu jiffies hz %d ret %d\n",
2350 			   dur, HZ, ret);
2351 	return ret;
2352 }
2353 
2354 /*
2355  * Send an interrupt to the device to wake up the Target CPU
2356  * so it has an opportunity to notice any changed state.
2357  */
2358 static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
2359 {
2360 	u32 addr, val;
2361 
2362 	addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
2363 	val = ath10k_pci_read32(ar, addr);
2364 	val |= CORE_CTRL_CPU_INTR_MASK;
2365 	ath10k_pci_write32(ar, addr, val);
2366 
2367 	return 0;
2368 }
2369 
2370 static int ath10k_pci_get_num_banks(struct ath10k *ar)
2371 {
2372 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2373 
2374 	switch (ar_pci->pdev->device) {
2375 	case QCA988X_2_0_DEVICE_ID_UBNT:
2376 	case QCA988X_2_0_DEVICE_ID:
2377 	case QCA99X0_2_0_DEVICE_ID:
2378 	case QCA9888_2_0_DEVICE_ID:
2379 	case QCA9984_1_0_DEVICE_ID:
2380 	case QCA9887_1_0_DEVICE_ID:
2381 		return 1;
2382 	case QCA6164_2_1_DEVICE_ID:
2383 	case QCA6174_2_1_DEVICE_ID:
2384 		switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
2385 		case QCA6174_HW_1_0_CHIP_ID_REV:
2386 		case QCA6174_HW_1_1_CHIP_ID_REV:
2387 		case QCA6174_HW_2_1_CHIP_ID_REV:
2388 		case QCA6174_HW_2_2_CHIP_ID_REV:
2389 			return 3;
2390 		case QCA6174_HW_1_3_CHIP_ID_REV:
2391 			return 2;
2392 		case QCA6174_HW_3_0_CHIP_ID_REV:
2393 		case QCA6174_HW_3_1_CHIP_ID_REV:
2394 		case QCA6174_HW_3_2_CHIP_ID_REV:
2395 			return 9;
2396 		}
2397 		break;
2398 	case QCA9377_1_0_DEVICE_ID:
2399 		return 9;
2400 	}
2401 
2402 	ath10k_warn(ar, "unknown number of banks, assuming 1\n");
2403 	return 1;
2404 }
2405 
2406 static int ath10k_bus_get_num_banks(struct ath10k *ar)
2407 {
2408 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2409 
2410 	return ce->bus_ops->get_num_banks(ar);
2411 }
2412 
2413 int ath10k_pci_init_config(struct ath10k *ar)
2414 {
2415 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2416 	u32 interconnect_targ_addr;
2417 	u32 pcie_state_targ_addr = 0;
2418 	u32 pipe_cfg_targ_addr = 0;
2419 	u32 svc_to_pipe_map = 0;
2420 	u32 pcie_config_flags = 0;
2421 	u32 ealloc_value;
2422 	u32 ealloc_targ_addr;
2423 	u32 flag2_value;
2424 	u32 flag2_targ_addr;
2425 	int ret = 0;
2426 
2427 	/* Download to Target the CE Config and the service-to-CE map */
2428 	interconnect_targ_addr =
2429 		host_interest_item_address(HI_ITEM(hi_interconnect_state));
2430 
2431 	/* Supply Target-side CE configuration */
2432 	ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
2433 				     &pcie_state_targ_addr);
2434 	if (ret != 0) {
2435 		ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
2436 		return ret;
2437 	}
2438 
2439 	if (pcie_state_targ_addr == 0) {
2440 		ret = -EIO;
2441 		ath10k_err(ar, "Invalid pcie state addr\n");
2442 		return ret;
2443 	}
2444 
2445 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2446 					  offsetof(struct pcie_state,
2447 						   pipe_cfg_addr)),
2448 				     &pipe_cfg_targ_addr);
2449 	if (ret != 0) {
2450 		ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
2451 		return ret;
2452 	}
2453 
2454 	if (pipe_cfg_targ_addr == 0) {
2455 		ret = -EIO;
2456 		ath10k_err(ar, "Invalid pipe cfg addr\n");
2457 		return ret;
2458 	}
2459 
2460 	ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
2461 					ar_pci->pipe_config,
2462 					sizeof(struct ce_pipe_config) *
2463 					NUM_TARGET_CE_CONFIG_WLAN);
2464 
2465 	if (ret != 0) {
2466 		ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
2467 		return ret;
2468 	}
2469 
2470 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2471 					  offsetof(struct pcie_state,
2472 						   svc_to_pipe_map)),
2473 				     &svc_to_pipe_map);
2474 	if (ret != 0) {
2475 		ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
2476 		return ret;
2477 	}
2478 
2479 	if (svc_to_pipe_map == 0) {
2480 		ret = -EIO;
2481 		ath10k_err(ar, "Invalid svc_to_pipe map\n");
2482 		return ret;
2483 	}
2484 
2485 	ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
2486 					ar_pci->serv_to_pipe,
2487 					sizeof(pci_target_service_to_ce_map_wlan));
2488 	if (ret != 0) {
2489 		ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
2490 		return ret;
2491 	}
2492 
2493 	ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
2494 					  offsetof(struct pcie_state,
2495 						   config_flags)),
2496 				     &pcie_config_flags);
2497 	if (ret != 0) {
2498 		ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
2499 		return ret;
2500 	}
2501 
2502 	pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
2503 
2504 	ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
2505 					   offsetof(struct pcie_state,
2506 						    config_flags)),
2507 				      pcie_config_flags);
2508 	if (ret != 0) {
2509 		ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
2510 		return ret;
2511 	}
2512 
2513 	/* configure early allocation */
2514 	ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
2515 
2516 	ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
2517 	if (ret != 0) {
2518 		ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
2519 		return ret;
2520 	}
2521 
2522 	/* first bank is switched to IRAM */
2523 	ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
2524 			 HI_EARLY_ALLOC_MAGIC_MASK);
2525 	ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
2526 			  HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
2527 			 HI_EARLY_ALLOC_IRAM_BANKS_MASK);
2528 
2529 	ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
2530 	if (ret != 0) {
2531 		ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
2532 		return ret;
2533 	}
2534 
2535 	/* Tell Target to proceed with initialization */
2536 	flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
2537 
2538 	ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
2539 	if (ret != 0) {
2540 		ath10k_err(ar, "Failed to get option val: %d\n", ret);
2541 		return ret;
2542 	}
2543 
2544 	flag2_value |= HI_OPTION_EARLY_CFG_DONE;
2545 
2546 	ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
2547 	if (ret != 0) {
2548 		ath10k_err(ar, "Failed to set option val: %d\n", ret);
2549 		return ret;
2550 	}
2551 
2552 	return 0;
2553 }
2554 
2555 static void ath10k_pci_override_ce_config(struct ath10k *ar)
2556 {
2557 	struct ce_attr *attr;
2558 	struct ce_pipe_config *config;
2559 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2560 
2561 	/* For QCA6174 we're overriding the Copy Engine 5 configuration,
2562 	 * since it is currently used for other feature.
2563 	 */
2564 
2565 	/* Override Host's Copy Engine 5 configuration */
2566 	attr = &ar_pci->attr[5];
2567 	attr->src_sz_max = 0;
2568 	attr->dest_nentries = 0;
2569 
2570 	/* Override Target firmware's Copy Engine configuration */
2571 	config = &ar_pci->pipe_config[5];
2572 	config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
2573 	config->nbytes_max = __cpu_to_le32(2048);
2574 
2575 	/* Map from service/endpoint to Copy Engine */
2576 	ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
2577 }
2578 
2579 int ath10k_pci_alloc_pipes(struct ath10k *ar)
2580 {
2581 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2582 	struct ath10k_pci_pipe *pipe;
2583 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
2584 	int i, ret;
2585 
2586 	for (i = 0; i < CE_COUNT; i++) {
2587 		pipe = &ar_pci->pipe_info[i];
2588 		pipe->ce_hdl = &ce->ce_states[i];
2589 		pipe->pipe_num = i;
2590 		pipe->hif_ce_state = ar;
2591 
2592 		ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
2593 		if (ret) {
2594 			ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
2595 				   i, ret);
2596 			return ret;
2597 		}
2598 
2599 		/* Last CE is Diagnostic Window */
2600 		if (i == CE_DIAG_PIPE) {
2601 			ar_pci->ce_diag = pipe->ce_hdl;
2602 			continue;
2603 		}
2604 
2605 		pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 void ath10k_pci_free_pipes(struct ath10k *ar)
2612 {
2613 	int i;
2614 
2615 	for (i = 0; i < CE_COUNT; i++)
2616 		ath10k_ce_free_pipe(ar, i);
2617 }
2618 
2619 int ath10k_pci_init_pipes(struct ath10k *ar)
2620 {
2621 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2622 	int i, ret;
2623 
2624 	for (i = 0; i < CE_COUNT; i++) {
2625 		ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
2626 		if (ret) {
2627 			ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
2628 				   i, ret);
2629 			return ret;
2630 		}
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
2637 {
2638 	return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
2639 	       FW_IND_EVENT_PENDING;
2640 }
2641 
2642 static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
2643 {
2644 	u32 val;
2645 
2646 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2647 	val &= ~FW_IND_EVENT_PENDING;
2648 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
2649 }
2650 
2651 static bool ath10k_pci_has_device_gone(struct ath10k *ar)
2652 {
2653 	u32 val;
2654 
2655 	val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
2656 	return (val == 0xffffffff);
2657 }
2658 
2659 /* this function effectively clears target memory controller assert line */
2660 static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
2661 {
2662 	u32 val;
2663 
2664 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2665 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2666 			       val | SOC_RESET_CONTROL_SI0_RST_MASK);
2667 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2668 
2669 	msleep(10);
2670 
2671 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2672 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2673 			       val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
2674 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2675 
2676 	msleep(10);
2677 }
2678 
2679 static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
2680 {
2681 	u32 val;
2682 
2683 	ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
2684 
2685 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2686 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2687 			       val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
2688 }
2689 
2690 static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
2691 {
2692 	u32 val;
2693 
2694 	val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
2695 
2696 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2697 			       val | SOC_RESET_CONTROL_CE_RST_MASK);
2698 	msleep(10);
2699 	ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
2700 			       val & ~SOC_RESET_CONTROL_CE_RST_MASK);
2701 }
2702 
2703 static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
2704 {
2705 	u32 val;
2706 
2707 	val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
2708 	ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
2709 			       val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
2710 }
2711 
2712 static int ath10k_pci_warm_reset(struct ath10k *ar)
2713 {
2714 	int ret;
2715 
2716 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
2717 
2718 	spin_lock_bh(&ar->data_lock);
2719 	ar->stats.fw_warm_reset_counter++;
2720 	spin_unlock_bh(&ar->data_lock);
2721 
2722 	ath10k_pci_irq_disable(ar);
2723 
2724 	/* Make sure the target CPU is not doing anything dangerous, e.g. if it
2725 	 * were to access copy engine while host performs copy engine reset
2726 	 * then it is possible for the device to confuse pci-e controller to
2727 	 * the point of bringing host system to a complete stop (i.e. hang).
2728 	 */
2729 	ath10k_pci_warm_reset_si0(ar);
2730 	ath10k_pci_warm_reset_cpu(ar);
2731 	ath10k_pci_init_pipes(ar);
2732 	ath10k_pci_wait_for_target_init(ar);
2733 
2734 	ath10k_pci_warm_reset_clear_lf(ar);
2735 	ath10k_pci_warm_reset_ce(ar);
2736 	ath10k_pci_warm_reset_cpu(ar);
2737 	ath10k_pci_init_pipes(ar);
2738 
2739 	ret = ath10k_pci_wait_for_target_init(ar);
2740 	if (ret) {
2741 		ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
2742 		return ret;
2743 	}
2744 
2745 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
2746 
2747 	return 0;
2748 }
2749 
2750 static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
2751 {
2752 	ath10k_pci_irq_disable(ar);
2753 	return ath10k_pci_qca99x0_chip_reset(ar);
2754 }
2755 
2756 static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
2757 {
2758 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2759 
2760 	if (!ar_pci->pci_soft_reset)
2761 		return -ENOTSUPP;
2762 
2763 	return ar_pci->pci_soft_reset(ar);
2764 }
2765 
2766 static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
2767 {
2768 	int i, ret;
2769 	u32 val;
2770 
2771 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
2772 
2773 	/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
2774 	 * It is thus preferred to use warm reset which is safer but may not be
2775 	 * able to recover the device from all possible fail scenarios.
2776 	 *
2777 	 * Warm reset doesn't always work on first try so attempt it a few
2778 	 * times before giving up.
2779 	 */
2780 	for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
2781 		ret = ath10k_pci_warm_reset(ar);
2782 		if (ret) {
2783 			ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
2784 				    i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
2785 				    ret);
2786 			continue;
2787 		}
2788 
2789 		/* FIXME: Sometimes copy engine doesn't recover after warm
2790 		 * reset. In most cases this needs cold reset. In some of these
2791 		 * cases the device is in such a state that a cold reset may
2792 		 * lock up the host.
2793 		 *
2794 		 * Reading any host interest register via copy engine is
2795 		 * sufficient to verify if device is capable of booting
2796 		 * firmware blob.
2797 		 */
2798 		ret = ath10k_pci_init_pipes(ar);
2799 		if (ret) {
2800 			ath10k_warn(ar, "failed to init copy engine: %d\n",
2801 				    ret);
2802 			continue;
2803 		}
2804 
2805 		ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
2806 					     &val);
2807 		if (ret) {
2808 			ath10k_warn(ar, "failed to poke copy engine: %d\n",
2809 				    ret);
2810 			continue;
2811 		}
2812 
2813 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
2814 		return 0;
2815 	}
2816 
2817 	if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
2818 		ath10k_warn(ar, "refusing cold reset as requested\n");
2819 		return -EPERM;
2820 	}
2821 
2822 	ret = ath10k_pci_cold_reset(ar);
2823 	if (ret) {
2824 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2825 		return ret;
2826 	}
2827 
2828 	ret = ath10k_pci_wait_for_target_init(ar);
2829 	if (ret) {
2830 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2831 			    ret);
2832 		return ret;
2833 	}
2834 
2835 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
2836 
2837 	return 0;
2838 }
2839 
2840 static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
2841 {
2842 	int ret;
2843 
2844 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
2845 
2846 	/* FIXME: QCA6174 requires cold + warm reset to work. */
2847 
2848 	ret = ath10k_pci_cold_reset(ar);
2849 	if (ret) {
2850 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2851 		return ret;
2852 	}
2853 
2854 	ret = ath10k_pci_wait_for_target_init(ar);
2855 	if (ret) {
2856 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2857 			    ret);
2858 		return ret;
2859 	}
2860 
2861 	ret = ath10k_pci_warm_reset(ar);
2862 	if (ret) {
2863 		ath10k_warn(ar, "failed to warm reset: %d\n", ret);
2864 		return ret;
2865 	}
2866 
2867 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
2868 
2869 	return 0;
2870 }
2871 
2872 static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
2873 {
2874 	int ret;
2875 
2876 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
2877 
2878 	ret = ath10k_pci_cold_reset(ar);
2879 	if (ret) {
2880 		ath10k_warn(ar, "failed to cold reset: %d\n", ret);
2881 		return ret;
2882 	}
2883 
2884 	ret = ath10k_pci_wait_for_target_init(ar);
2885 	if (ret) {
2886 		ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
2887 			    ret);
2888 		return ret;
2889 	}
2890 
2891 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
2892 
2893 	return 0;
2894 }
2895 
2896 static int ath10k_pci_chip_reset(struct ath10k *ar)
2897 {
2898 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2899 
2900 	if (WARN_ON(!ar_pci->pci_hard_reset))
2901 		return -ENOTSUPP;
2902 
2903 	return ar_pci->pci_hard_reset(ar);
2904 }
2905 
2906 static int ath10k_pci_hif_power_up(struct ath10k *ar,
2907 				   enum ath10k_firmware_mode fw_mode)
2908 {
2909 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
2910 	int ret;
2911 
2912 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
2913 
2914 	pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2915 				  &ar_pci->link_ctl);
2916 	pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
2917 				   ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
2918 
2919 	/*
2920 	 * Bring the target up cleanly.
2921 	 *
2922 	 * The target may be in an undefined state with an AUX-powered Target
2923 	 * and a Host in WoW mode. If the Host crashes, loses power, or is
2924 	 * restarted (without unloading the driver) then the Target is left
2925 	 * (aux) powered and running. On a subsequent driver load, the Target
2926 	 * is in an unexpected state. We try to catch that here in order to
2927 	 * reset the Target and retry the probe.
2928 	 */
2929 	ret = ath10k_pci_chip_reset(ar);
2930 	if (ret) {
2931 		if (ath10k_pci_has_fw_crashed(ar)) {
2932 			ath10k_warn(ar, "firmware crashed during chip reset\n");
2933 			ath10k_pci_fw_crashed_clear(ar);
2934 			ath10k_pci_fw_crashed_dump(ar);
2935 		}
2936 
2937 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
2938 		goto err_sleep;
2939 	}
2940 
2941 	ret = ath10k_pci_init_pipes(ar);
2942 	if (ret) {
2943 		ath10k_err(ar, "failed to initialize CE: %d\n", ret);
2944 		goto err_sleep;
2945 	}
2946 
2947 	ret = ath10k_pci_init_config(ar);
2948 	if (ret) {
2949 		ath10k_err(ar, "failed to setup init config: %d\n", ret);
2950 		goto err_ce;
2951 	}
2952 
2953 	ret = ath10k_pci_wake_target_cpu(ar);
2954 	if (ret) {
2955 		ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
2956 		goto err_ce;
2957 	}
2958 
2959 	return 0;
2960 
2961 err_ce:
2962 	ath10k_pci_ce_deinit(ar);
2963 
2964 err_sleep:
2965 	return ret;
2966 }
2967 
2968 void ath10k_pci_hif_power_down(struct ath10k *ar)
2969 {
2970 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
2971 
2972 	/* Currently hif_power_up performs effectively a reset and hif_stop
2973 	 * resets the chip as well so there's no point in resetting here.
2974 	 */
2975 }
2976 
2977 static int ath10k_pci_hif_suspend(struct ath10k *ar)
2978 {
2979 	/* Nothing to do; the important stuff is in the driver suspend. */
2980 	return 0;
2981 }
2982 
2983 #ifdef CONFIG_PM
2984 static int ath10k_pci_suspend(struct ath10k *ar)
2985 {
2986 	/* The grace timer can still be counting down and ar->ps_awake be true.
2987 	 * It is known that the device may be asleep after resuming regardless
2988 	 * of the SoC powersave state before suspending. Hence make sure the
2989 	 * device is asleep before proceeding.
2990 	 */
2991 	ath10k_pci_sleep_sync(ar);
2992 
2993 	return 0;
2994 }
2995 #endif
2996 
2997 static int ath10k_pci_hif_resume(struct ath10k *ar)
2998 {
2999 	/* Nothing to do; the important stuff is in the driver resume. */
3000 	return 0;
3001 }
3002 
3003 #ifdef CONFIG_PM
3004 static int ath10k_pci_resume(struct ath10k *ar)
3005 {
3006 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3007 	struct pci_dev *pdev = ar_pci->pdev;
3008 	u32 val;
3009 	int ret = 0;
3010 
3011 	ret = ath10k_pci_force_wake(ar);
3012 	if (ret) {
3013 		ath10k_err(ar, "failed to wake up target: %d\n", ret);
3014 		return ret;
3015 	}
3016 
3017 	/* Suspend/Resume resets the PCI configuration space, so we have to
3018 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
3019 	 * from interfering with C3 CPU state. pci_restore_state won't help
3020 	 * here since it only restores the first 64 bytes pci config header.
3021 	 */
3022 	pci_read_config_dword(pdev, 0x40, &val);
3023 	if ((val & 0x0000ff00) != 0)
3024 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
3025 
3026 	return ret;
3027 }
3028 #endif
3029 
3030 static bool ath10k_pci_validate_cal(void *data, size_t size)
3031 {
3032 	__le16 *cal_words = data;
3033 	u16 checksum = 0;
3034 	size_t i;
3035 
3036 	if (size % 2 != 0)
3037 		return false;
3038 
3039 	for (i = 0; i < size / 2; i++)
3040 		checksum ^= le16_to_cpu(cal_words[i]);
3041 
3042 	return checksum == 0xffff;
3043 }
3044 
3045 static void ath10k_pci_enable_eeprom(struct ath10k *ar)
3046 {
3047 	/* Enable SI clock */
3048 	ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
3049 
3050 	/* Configure GPIOs for I2C operation */
3051 	ath10k_pci_write32(ar,
3052 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3053 			   4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
3054 			   SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
3055 			      GPIO_PIN0_CONFIG) |
3056 			   SM(1, GPIO_PIN0_PAD_PULL));
3057 
3058 	ath10k_pci_write32(ar,
3059 			   GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
3060 			   4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
3061 			   SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
3062 			   SM(1, GPIO_PIN0_PAD_PULL));
3063 
3064 	ath10k_pci_write32(ar,
3065 			   GPIO_BASE_ADDRESS +
3066 			   QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
3067 			   1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
3068 
3069 	/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
3070 	ath10k_pci_write32(ar,
3071 			   SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
3072 			   SM(1, SI_CONFIG_ERR_INT) |
3073 			   SM(1, SI_CONFIG_BIDIR_OD_DATA) |
3074 			   SM(1, SI_CONFIG_I2C) |
3075 			   SM(1, SI_CONFIG_POS_SAMPLE) |
3076 			   SM(1, SI_CONFIG_INACTIVE_DATA) |
3077 			   SM(1, SI_CONFIG_INACTIVE_CLK) |
3078 			   SM(8, SI_CONFIG_DIVIDER));
3079 }
3080 
3081 static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
3082 {
3083 	u32 reg;
3084 	int wait_limit;
3085 
3086 	/* set device select byte and for the read operation */
3087 	reg = QCA9887_EEPROM_SELECT_READ |
3088 	      SM(addr, QCA9887_EEPROM_ADDR_LO) |
3089 	      SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
3090 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
3091 
3092 	/* write transmit data, transfer length, and START bit */
3093 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
3094 			   SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
3095 			   SM(4, SI_CS_TX_CNT));
3096 
3097 	/* wait max 1 sec */
3098 	wait_limit = 100000;
3099 
3100 	/* wait for SI_CS_DONE_INT */
3101 	do {
3102 		reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
3103 		if (MS(reg, SI_CS_DONE_INT))
3104 			break;
3105 
3106 		wait_limit--;
3107 		udelay(10);
3108 	} while (wait_limit > 0);
3109 
3110 	if (!MS(reg, SI_CS_DONE_INT)) {
3111 		ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
3112 			   addr);
3113 		return -ETIMEDOUT;
3114 	}
3115 
3116 	/* clear SI_CS_DONE_INT */
3117 	ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
3118 
3119 	if (MS(reg, SI_CS_DONE_ERR)) {
3120 		ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
3121 		return -EIO;
3122 	}
3123 
3124 	/* extract receive data */
3125 	reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
3126 	*out = reg;
3127 
3128 	return 0;
3129 }
3130 
3131 static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
3132 					   size_t *data_len)
3133 {
3134 	u8 *caldata = NULL;
3135 	size_t calsize, i;
3136 	int ret;
3137 
3138 	if (!QCA_REV_9887(ar))
3139 		return -EOPNOTSUPP;
3140 
3141 	calsize = ar->hw_params.cal_data_len;
3142 	caldata = kmalloc(calsize, GFP_KERNEL);
3143 	if (!caldata)
3144 		return -ENOMEM;
3145 
3146 	ath10k_pci_enable_eeprom(ar);
3147 
3148 	for (i = 0; i < calsize; i++) {
3149 		ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
3150 		if (ret)
3151 			goto err_free;
3152 	}
3153 
3154 	if (!ath10k_pci_validate_cal(caldata, calsize))
3155 		goto err_free;
3156 
3157 	*data = caldata;
3158 	*data_len = calsize;
3159 
3160 	return 0;
3161 
3162 err_free:
3163 	kfree(caldata);
3164 
3165 	return -EINVAL;
3166 }
3167 
3168 static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
3169 	.tx_sg			= ath10k_pci_hif_tx_sg,
3170 	.diag_read		= ath10k_pci_hif_diag_read,
3171 	.diag_write		= ath10k_pci_diag_write_mem,
3172 	.exchange_bmi_msg	= ath10k_pci_hif_exchange_bmi_msg,
3173 	.start			= ath10k_pci_hif_start,
3174 	.stop			= ath10k_pci_hif_stop,
3175 	.map_service_to_pipe	= ath10k_pci_hif_map_service_to_pipe,
3176 	.get_default_pipe	= ath10k_pci_hif_get_default_pipe,
3177 	.send_complete_check	= ath10k_pci_hif_send_complete_check,
3178 	.get_free_queue_number	= ath10k_pci_hif_get_free_queue_number,
3179 	.power_up		= ath10k_pci_hif_power_up,
3180 	.power_down		= ath10k_pci_hif_power_down,
3181 	.read32			= ath10k_pci_read32,
3182 	.write32		= ath10k_pci_write32,
3183 	.suspend		= ath10k_pci_hif_suspend,
3184 	.resume			= ath10k_pci_hif_resume,
3185 	.fetch_cal_eeprom	= ath10k_pci_hif_fetch_cal_eeprom,
3186 };
3187 
3188 /*
3189  * Top-level interrupt handler for all PCI interrupts from a Target.
3190  * When a block of MSI interrupts is allocated, this top-level handler
3191  * is not used; instead, we directly call the correct sub-handler.
3192  */
3193 static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
3194 {
3195 	struct ath10k *ar = arg;
3196 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3197 	int ret;
3198 
3199 	if (ath10k_pci_has_device_gone(ar))
3200 		return IRQ_NONE;
3201 
3202 	ret = ath10k_pci_force_wake(ar);
3203 	if (ret) {
3204 		ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
3205 		return IRQ_NONE;
3206 	}
3207 
3208 	if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
3209 	    !ath10k_pci_irq_pending(ar))
3210 		return IRQ_NONE;
3211 
3212 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3213 	ath10k_pci_irq_msi_fw_mask(ar);
3214 	napi_schedule(&ar->napi);
3215 
3216 	return IRQ_HANDLED;
3217 }
3218 
3219 static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
3220 {
3221 	struct ath10k *ar = container_of(ctx, struct ath10k, napi);
3222 	int done = 0;
3223 
3224 	if (ath10k_pci_has_fw_crashed(ar)) {
3225 		ath10k_pci_fw_crashed_clear(ar);
3226 		ath10k_pci_fw_crashed_dump(ar);
3227 		napi_complete(ctx);
3228 		return done;
3229 	}
3230 
3231 	ath10k_ce_per_engine_service_any(ar);
3232 
3233 	done = ath10k_htt_txrx_compl_task(ar, budget);
3234 
3235 	if (done < budget) {
3236 		napi_complete_done(ctx, done);
3237 		/* In case of MSI, it is possible that interrupts are received
3238 		 * while NAPI poll is inprogress. So pending interrupts that are
3239 		 * received after processing all copy engine pipes by NAPI poll
3240 		 * will not be handled again. This is causing failure to
3241 		 * complete boot sequence in x86 platform. So before enabling
3242 		 * interrupts safer to check for pending interrupts for
3243 		 * immediate servicing.
3244 		 */
3245 		if (ath10k_ce_interrupt_summary(ar)) {
3246 			napi_reschedule(ctx);
3247 			goto out;
3248 		}
3249 		ath10k_pci_enable_legacy_irq(ar);
3250 		ath10k_pci_irq_msi_fw_unmask(ar);
3251 	}
3252 
3253 out:
3254 	return done;
3255 }
3256 
3257 static int ath10k_pci_request_irq_msi(struct ath10k *ar)
3258 {
3259 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3260 	int ret;
3261 
3262 	ret = request_irq(ar_pci->pdev->irq,
3263 			  ath10k_pci_interrupt_handler,
3264 			  IRQF_SHARED, "ath10k_pci", ar);
3265 	if (ret) {
3266 		ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
3267 			    ar_pci->pdev->irq, ret);
3268 		return ret;
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
3275 {
3276 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3277 	int ret;
3278 
3279 	ret = request_irq(ar_pci->pdev->irq,
3280 			  ath10k_pci_interrupt_handler,
3281 			  IRQF_SHARED, "ath10k_pci", ar);
3282 	if (ret) {
3283 		ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
3284 			    ar_pci->pdev->irq, ret);
3285 		return ret;
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 static int ath10k_pci_request_irq(struct ath10k *ar)
3292 {
3293 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3294 
3295 	switch (ar_pci->oper_irq_mode) {
3296 	case ATH10K_PCI_IRQ_LEGACY:
3297 		return ath10k_pci_request_irq_legacy(ar);
3298 	case ATH10K_PCI_IRQ_MSI:
3299 		return ath10k_pci_request_irq_msi(ar);
3300 	default:
3301 		return -EINVAL;
3302 	}
3303 }
3304 
3305 static void ath10k_pci_free_irq(struct ath10k *ar)
3306 {
3307 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3308 
3309 	free_irq(ar_pci->pdev->irq, ar);
3310 }
3311 
3312 void ath10k_pci_init_napi(struct ath10k *ar)
3313 {
3314 	netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
3315 }
3316 
3317 static int ath10k_pci_init_irq(struct ath10k *ar)
3318 {
3319 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3320 	int ret;
3321 
3322 	ath10k_pci_init_napi(ar);
3323 
3324 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
3325 		ath10k_info(ar, "limiting irq mode to: %d\n",
3326 			    ath10k_pci_irq_mode);
3327 
3328 	/* Try MSI */
3329 	if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
3330 		ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
3331 		ret = pci_enable_msi(ar_pci->pdev);
3332 		if (ret == 0)
3333 			return 0;
3334 
3335 		/* MHI failed, try legacy irq next */
3336 	}
3337 
3338 	/* Try legacy irq
3339 	 *
3340 	 * A potential race occurs here: The CORE_BASE write
3341 	 * depends on target correctly decoding AXI address but
3342 	 * host won't know when target writes BAR to CORE_CTRL.
3343 	 * This write might get lost if target has NOT written BAR.
3344 	 * For now, fix the race by repeating the write in below
3345 	 * synchronization checking.
3346 	 */
3347 	ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
3348 
3349 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3350 			   PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
3351 
3352 	return 0;
3353 }
3354 
3355 static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
3356 {
3357 	ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
3358 			   0);
3359 }
3360 
3361 static int ath10k_pci_deinit_irq(struct ath10k *ar)
3362 {
3363 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3364 
3365 	switch (ar_pci->oper_irq_mode) {
3366 	case ATH10K_PCI_IRQ_LEGACY:
3367 		ath10k_pci_deinit_irq_legacy(ar);
3368 		break;
3369 	default:
3370 		pci_disable_msi(ar_pci->pdev);
3371 		break;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 int ath10k_pci_wait_for_target_init(struct ath10k *ar)
3378 {
3379 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3380 	unsigned long timeout;
3381 	u32 val;
3382 
3383 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
3384 
3385 	timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
3386 
3387 	do {
3388 		val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
3389 
3390 		ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
3391 			   val);
3392 
3393 		/* target should never return this */
3394 		if (val == 0xffffffff)
3395 			continue;
3396 
3397 		/* the device has crashed so don't bother trying anymore */
3398 		if (val & FW_IND_EVENT_PENDING)
3399 			break;
3400 
3401 		if (val & FW_IND_INITIALIZED)
3402 			break;
3403 
3404 		if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
3405 			/* Fix potential race by repeating CORE_BASE writes */
3406 			ath10k_pci_enable_legacy_irq(ar);
3407 
3408 		mdelay(10);
3409 	} while (time_before(jiffies, timeout));
3410 
3411 	ath10k_pci_disable_and_clear_legacy_irq(ar);
3412 	ath10k_pci_irq_msi_fw_mask(ar);
3413 
3414 	if (val == 0xffffffff) {
3415 		ath10k_err(ar, "failed to read device register, device is gone\n");
3416 		return -EIO;
3417 	}
3418 
3419 	if (val & FW_IND_EVENT_PENDING) {
3420 		ath10k_warn(ar, "device has crashed during init\n");
3421 		return -ECOMM;
3422 	}
3423 
3424 	if (!(val & FW_IND_INITIALIZED)) {
3425 		ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
3426 			   val);
3427 		return -ETIMEDOUT;
3428 	}
3429 
3430 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
3431 	return 0;
3432 }
3433 
3434 static int ath10k_pci_cold_reset(struct ath10k *ar)
3435 {
3436 	u32 val;
3437 
3438 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
3439 
3440 	spin_lock_bh(&ar->data_lock);
3441 
3442 	ar->stats.fw_cold_reset_counter++;
3443 
3444 	spin_unlock_bh(&ar->data_lock);
3445 
3446 	/* Put Target, including PCIe, into RESET. */
3447 	val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
3448 	val |= 1;
3449 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3450 
3451 	/* After writing into SOC_GLOBAL_RESET to put device into
3452 	 * reset and pulling out of reset pcie may not be stable
3453 	 * for any immediate pcie register access and cause bus error,
3454 	 * add delay before any pcie access request to fix this issue.
3455 	 */
3456 	msleep(20);
3457 
3458 	/* Pull Target, including PCIe, out of RESET. */
3459 	val &= ~1;
3460 	ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
3461 
3462 	msleep(20);
3463 
3464 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
3465 
3466 	return 0;
3467 }
3468 
3469 static int ath10k_pci_claim(struct ath10k *ar)
3470 {
3471 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3472 	struct pci_dev *pdev = ar_pci->pdev;
3473 	int ret;
3474 
3475 	pci_set_drvdata(pdev, ar);
3476 
3477 	ret = pci_enable_device(pdev);
3478 	if (ret) {
3479 		ath10k_err(ar, "failed to enable pci device: %d\n", ret);
3480 		return ret;
3481 	}
3482 
3483 	ret = pci_request_region(pdev, BAR_NUM, "ath");
3484 	if (ret) {
3485 		ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
3486 			   ret);
3487 		goto err_device;
3488 	}
3489 
3490 	/* Target expects 32 bit DMA. Enforce it. */
3491 	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3492 	if (ret) {
3493 		ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
3494 		goto err_region;
3495 	}
3496 
3497 	pci_set_master(pdev);
3498 
3499 #if defined(__FreeBSD__)
3500 	linuxkpi_pcim_want_to_use_bus_functions(pdev);
3501 #endif
3502 
3503 	/* Arrange for access to Target SoC registers. */
3504 	ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
3505 	ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
3506 	if (!ar_pci->mem) {
3507 		ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
3508 		ret = -EIO;
3509 		goto err_region;
3510 	}
3511 
3512 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
3513 	return 0;
3514 
3515 err_region:
3516 	pci_release_region(pdev, BAR_NUM);
3517 
3518 err_device:
3519 	pci_disable_device(pdev);
3520 
3521 	return ret;
3522 }
3523 
3524 static void ath10k_pci_release(struct ath10k *ar)
3525 {
3526 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3527 	struct pci_dev *pdev = ar_pci->pdev;
3528 
3529 	pci_iounmap(pdev, ar_pci->mem);
3530 	pci_release_region(pdev, BAR_NUM);
3531 	pci_disable_device(pdev);
3532 }
3533 
3534 static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
3535 {
3536 	const struct ath10k_pci_supp_chip *supp_chip;
3537 	int i;
3538 	u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
3539 
3540 	for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
3541 		supp_chip = &ath10k_pci_supp_chips[i];
3542 
3543 		if (supp_chip->dev_id == dev_id &&
3544 		    supp_chip->rev_id == rev_id)
3545 			return true;
3546 	}
3547 
3548 	return false;
3549 }
3550 
3551 int ath10k_pci_setup_resource(struct ath10k *ar)
3552 {
3553 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3554 	struct ath10k_ce *ce = ath10k_ce_priv(ar);
3555 	int ret;
3556 
3557 	spin_lock_init(&ce->ce_lock);
3558 	spin_lock_init(&ar_pci->ps_lock);
3559 	mutex_init(&ar_pci->ce_diag_mutex);
3560 
3561 	INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
3562 
3563 	timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
3564 
3565 	ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
3566 			       sizeof(pci_host_ce_config_wlan),
3567 			       GFP_KERNEL);
3568 	if (!ar_pci->attr)
3569 		return -ENOMEM;
3570 
3571 	ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
3572 				      sizeof(pci_target_ce_config_wlan),
3573 				      GFP_KERNEL);
3574 	if (!ar_pci->pipe_config) {
3575 		ret = -ENOMEM;
3576 		goto err_free_attr;
3577 	}
3578 
3579 	ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
3580 				       sizeof(pci_target_service_to_ce_map_wlan),
3581 				       GFP_KERNEL);
3582 	if (!ar_pci->serv_to_pipe) {
3583 		ret = -ENOMEM;
3584 		goto err_free_pipe_config;
3585 	}
3586 
3587 	if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
3588 		ath10k_pci_override_ce_config(ar);
3589 
3590 	ret = ath10k_pci_alloc_pipes(ar);
3591 	if (ret) {
3592 		ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
3593 			   ret);
3594 		goto err_free_serv_to_pipe;
3595 	}
3596 
3597 	return 0;
3598 
3599 err_free_serv_to_pipe:
3600 	kfree(ar_pci->serv_to_pipe);
3601 err_free_pipe_config:
3602 	kfree(ar_pci->pipe_config);
3603 err_free_attr:
3604 	kfree(ar_pci->attr);
3605 	return ret;
3606 }
3607 
3608 void ath10k_pci_release_resource(struct ath10k *ar)
3609 {
3610 	struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
3611 
3612 	ath10k_pci_rx_retry_sync(ar);
3613 	netif_napi_del(&ar->napi);
3614 	ath10k_pci_ce_deinit(ar);
3615 	ath10k_pci_free_pipes(ar);
3616 	kfree(ar_pci->attr);
3617 	kfree(ar_pci->pipe_config);
3618 	kfree(ar_pci->serv_to_pipe);
3619 }
3620 
3621 static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
3622 	.read32		= ath10k_bus_pci_read32,
3623 	.write32	= ath10k_bus_pci_write32,
3624 	.get_num_banks	= ath10k_pci_get_num_banks,
3625 };
3626 
3627 static int ath10k_pci_probe(struct pci_dev *pdev,
3628 			    const struct pci_device_id *pci_dev)
3629 {
3630 	int ret = 0;
3631 	struct ath10k *ar;
3632 	struct ath10k_pci *ar_pci;
3633 	enum ath10k_hw_rev hw_rev;
3634 	struct ath10k_bus_params bus_params = {};
3635 	bool pci_ps, is_qca988x = false;
3636 	int (*pci_soft_reset)(struct ath10k *ar);
3637 	int (*pci_hard_reset)(struct ath10k *ar);
3638 	u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
3639 
3640 	switch (pci_dev->device) {
3641 	case QCA988X_2_0_DEVICE_ID_UBNT:
3642 	case QCA988X_2_0_DEVICE_ID:
3643 		hw_rev = ATH10K_HW_QCA988X;
3644 		pci_ps = false;
3645 		is_qca988x = true;
3646 		pci_soft_reset = ath10k_pci_warm_reset;
3647 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3648 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3649 		break;
3650 	case QCA9887_1_0_DEVICE_ID:
3651 		hw_rev = ATH10K_HW_QCA9887;
3652 		pci_ps = false;
3653 		pci_soft_reset = ath10k_pci_warm_reset;
3654 		pci_hard_reset = ath10k_pci_qca988x_chip_reset;
3655 		targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
3656 		break;
3657 	case QCA6164_2_1_DEVICE_ID:
3658 	case QCA6174_2_1_DEVICE_ID:
3659 		hw_rev = ATH10K_HW_QCA6174;
3660 		pci_ps = true;
3661 		pci_soft_reset = ath10k_pci_warm_reset;
3662 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3663 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3664 		break;
3665 	case QCA99X0_2_0_DEVICE_ID:
3666 		hw_rev = ATH10K_HW_QCA99X0;
3667 		pci_ps = false;
3668 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3669 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3670 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3671 		break;
3672 	case QCA9984_1_0_DEVICE_ID:
3673 		hw_rev = ATH10K_HW_QCA9984;
3674 		pci_ps = false;
3675 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3676 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3677 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3678 		break;
3679 	case QCA9888_2_0_DEVICE_ID:
3680 		hw_rev = ATH10K_HW_QCA9888;
3681 		pci_ps = false;
3682 		pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
3683 		pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
3684 		targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
3685 		break;
3686 	case QCA9377_1_0_DEVICE_ID:
3687 		hw_rev = ATH10K_HW_QCA9377;
3688 		pci_ps = true;
3689 		pci_soft_reset = ath10k_pci_warm_reset;
3690 		pci_hard_reset = ath10k_pci_qca6174_chip_reset;
3691 		targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
3692 		break;
3693 	default:
3694 		WARN_ON(1);
3695 		return -ENOTSUPP;
3696 	}
3697 
3698 	ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
3699 				hw_rev, &ath10k_pci_hif_ops);
3700 	if (!ar) {
3701 		dev_err(&pdev->dev, "failed to allocate core\n");
3702 		return -ENOMEM;
3703 	}
3704 
3705 	ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
3706 		   pdev->vendor, pdev->device,
3707 		   pdev->subsystem_vendor, pdev->subsystem_device);
3708 
3709 	ar_pci = ath10k_pci_priv(ar);
3710 	ar_pci->pdev = pdev;
3711 	ar_pci->dev = &pdev->dev;
3712 	ar_pci->ar = ar;
3713 	ar->dev_id = pci_dev->device;
3714 	ar_pci->pci_ps = pci_ps;
3715 	ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
3716 	ar_pci->pci_soft_reset = pci_soft_reset;
3717 	ar_pci->pci_hard_reset = pci_hard_reset;
3718 	ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
3719 	ar->ce_priv = &ar_pci->ce;
3720 
3721 	ar->id.vendor = pdev->vendor;
3722 	ar->id.device = pdev->device;
3723 	ar->id.subsystem_vendor = pdev->subsystem_vendor;
3724 	ar->id.subsystem_device = pdev->subsystem_device;
3725 
3726 	timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
3727 
3728 	ret = ath10k_pci_setup_resource(ar);
3729 	if (ret) {
3730 		ath10k_err(ar, "failed to setup resource: %d\n", ret);
3731 		goto err_core_destroy;
3732 	}
3733 
3734 	ret = ath10k_pci_claim(ar);
3735 	if (ret) {
3736 		ath10k_err(ar, "failed to claim device: %d\n", ret);
3737 		goto err_free_pipes;
3738 	}
3739 
3740 	ret = ath10k_pci_force_wake(ar);
3741 	if (ret) {
3742 		ath10k_warn(ar, "failed to wake up device : %d\n", ret);
3743 		goto err_sleep;
3744 	}
3745 
3746 	ath10k_pci_ce_deinit(ar);
3747 	ath10k_pci_irq_disable(ar);
3748 
3749 	ret = ath10k_pci_init_irq(ar);
3750 	if (ret) {
3751 		ath10k_err(ar, "failed to init irqs: %d\n", ret);
3752 		goto err_sleep;
3753 	}
3754 
3755 	ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
3756 		    ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
3757 		    ath10k_pci_irq_mode, ath10k_pci_reset_mode);
3758 
3759 	ret = ath10k_pci_request_irq(ar);
3760 	if (ret) {
3761 		ath10k_warn(ar, "failed to request irqs: %d\n", ret);
3762 		goto err_deinit_irq;
3763 	}
3764 
3765 	bus_params.dev_type = ATH10K_DEV_TYPE_LL;
3766 	bus_params.link_can_suspend = true;
3767 	/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
3768 	 * fall off the bus during chip_reset. These chips have the same pci
3769 	 * device id as the QCA9880 BR4A or 2R4E. So that's why the check.
3770 	 */
3771 	if (is_qca988x) {
3772 		bus_params.chip_id =
3773 			ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3774 		if (bus_params.chip_id != 0xffffffff) {
3775 			if (!ath10k_pci_chip_is_supported(pdev->device,
3776 							  bus_params.chip_id)) {
3777 				ret = -ENODEV;
3778 				goto err_unsupported;
3779 			}
3780 		}
3781 	}
3782 
3783 	ret = ath10k_pci_chip_reset(ar);
3784 	if (ret) {
3785 		ath10k_err(ar, "failed to reset chip: %d\n", ret);
3786 		goto err_free_irq;
3787 	}
3788 
3789 	bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
3790 	if (bus_params.chip_id == 0xffffffff) {
3791 		ret = -ENODEV;
3792 		goto err_unsupported;
3793 	}
3794 
3795 	if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
3796 		ret = -ENODEV;
3797 		goto err_unsupported;
3798 	}
3799 
3800 	ret = ath10k_core_register(ar, &bus_params);
3801 	if (ret) {
3802 		ath10k_err(ar, "failed to register driver core: %d\n", ret);
3803 		goto err_free_irq;
3804 	}
3805 
3806 	return 0;
3807 
3808 err_unsupported:
3809 	ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
3810 		   pdev->device, bus_params.chip_id);
3811 
3812 err_free_irq:
3813 	ath10k_pci_free_irq(ar);
3814 
3815 err_deinit_irq:
3816 	ath10k_pci_release_resource(ar);
3817 
3818 err_sleep:
3819 	ath10k_pci_sleep_sync(ar);
3820 	ath10k_pci_release(ar);
3821 
3822 err_free_pipes:
3823 	ath10k_pci_free_pipes(ar);
3824 
3825 err_core_destroy:
3826 	ath10k_core_destroy(ar);
3827 
3828 	return ret;
3829 }
3830 
3831 static void ath10k_pci_remove(struct pci_dev *pdev)
3832 {
3833 	struct ath10k *ar = pci_get_drvdata(pdev);
3834 
3835 	ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
3836 
3837 	if (!ar)
3838 		return;
3839 
3840 	ath10k_core_unregister(ar);
3841 	ath10k_pci_free_irq(ar);
3842 	ath10k_pci_deinit_irq(ar);
3843 	ath10k_pci_release_resource(ar);
3844 	ath10k_pci_sleep_sync(ar);
3845 	ath10k_pci_release(ar);
3846 	ath10k_core_destroy(ar);
3847 }
3848 
3849 MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
3850 
3851 #ifdef CONFIG_PM
3852 static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
3853 {
3854 	struct ath10k *ar = dev_get_drvdata(dev);
3855 	int ret;
3856 
3857 	ret = ath10k_pci_suspend(ar);
3858 	if (ret)
3859 		ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
3860 
3861 	return ret;
3862 }
3863 
3864 static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
3865 {
3866 	struct ath10k *ar = dev_get_drvdata(dev);
3867 	int ret;
3868 
3869 	ret = ath10k_pci_resume(ar);
3870 	if (ret)
3871 		ath10k_warn(ar, "failed to resume hif: %d\n", ret);
3872 
3873 	return ret;
3874 }
3875 
3876 static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
3877 			 ath10k_pci_pm_suspend,
3878 			 ath10k_pci_pm_resume);
3879 #endif
3880 
3881 static struct pci_driver ath10k_pci_driver = {
3882 	.name = "ath10k_pci",
3883 	.id_table = ath10k_pci_id_table,
3884 	.probe = ath10k_pci_probe,
3885 	.remove = ath10k_pci_remove,
3886 #ifdef CONFIG_PM
3887 	.driver.pm = &ath10k_pci_pm_ops,
3888 #endif
3889 #if defined(__FreeBSD__)
3890 	.bsddriver.name	= KBUILD_MODNAME,
3891 	/* Allow a possible native driver to attach. */
3892 	.bsd_probe_return = (BUS_PROBE_DEFAULT - 1),
3893 #endif
3894 };
3895 
3896 static int __init ath10k_pci_init(void)
3897 {
3898 	int ret1, ret2;
3899 
3900 	ret1 = pci_register_driver(&ath10k_pci_driver);
3901 	if (ret1)
3902 		printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
3903 		       ret1);
3904 
3905 	ret2 = ath10k_ahb_init();
3906 	if (ret2)
3907 		printk(KERN_ERR "ahb init failed: %d\n", ret2);
3908 
3909 	if (ret1 && ret2)
3910 		return ret1;
3911 
3912 	/* registered to at least one bus */
3913 	return 0;
3914 }
3915 module_init(ath10k_pci_init);
3916 
3917 static void __exit ath10k_pci_exit(void)
3918 {
3919 	pci_unregister_driver(&ath10k_pci_driver);
3920 	ath10k_ahb_exit();
3921 }
3922 
3923 module_exit(ath10k_pci_exit);
3924 
3925 MODULE_AUTHOR("Qualcomm Atheros");
3926 MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
3927 MODULE_LICENSE("Dual BSD/GPL");
3928 #if defined(__FreeBSD__)
3929 MODULE_VERSION(ath10k_pci, 1);
3930 MODULE_DEPEND(ath10k_pci, linuxkpi, 1, 1, 1);
3931 MODULE_DEPEND(ath10k_pci, linuxkpi_wlan, 1, 1, 1);
3932 MODULE_DEPEND(ath10k_pci, athk_common, 1, 1, 1);
3933 #ifdef CONFIG_ATH10K_DEBUGFS
3934 MODULE_DEPEND(ath10k_pci, debugfs, 1, 1, 1);
3935 #endif
3936 #endif
3937 
3938 /* QCA988x 2.0 firmware files */
3939 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
3940 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
3941 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3942 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3943 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
3944 MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3945 
3946 /* QCA9887 1.0 firmware files */
3947 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3948 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
3949 MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3950 
3951 /* QCA6174 2.1 firmware files */
3952 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
3953 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
3954 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
3955 MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3956 
3957 /* QCA6174 3.1 firmware files */
3958 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
3959 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3960 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3961 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
3962 MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
3963 
3964 /* QCA9377 1.0 firmware files */
3965 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
3966 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
3967 MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);
3968