1 // SPDX-License-Identifier: ISC 2 /* 3 * Copyright (c) 2005-2011 Atheros Communications Inc. 4 * Copyright (c) 2011-2017 Qualcomm Atheros, Inc. 5 * Copyright (c) 2018, The Linux Foundation. All rights reserved. 6 */ 7 8 #include "core.h" 9 #include "htc.h" 10 #include "htt.h" 11 #include "txrx.h" 12 #include "debug.h" 13 #include "trace.h" 14 #include "mac.h" 15 16 #include <linux/log2.h> 17 #include <linux/bitfield.h> 18 19 /* when under memory pressure rx ring refill may fail and needs a retry */ 20 #define HTT_RX_RING_REFILL_RETRY_MS 50 21 22 #define HTT_RX_RING_REFILL_RESCHED_MS 5 23 24 /* shortcut to interpret a raw memory buffer as a rx descriptor */ 25 #define HTT_RX_BUF_TO_RX_DESC(hw, buf) ath10k_htt_rx_desc_from_raw_buffer(hw, buf) 26 27 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb); 28 29 static struct sk_buff * 30 ath10k_htt_rx_find_skb_paddr(struct ath10k *ar, u64 paddr) 31 { 32 struct ath10k_skb_rxcb *rxcb; 33 34 hash_for_each_possible(ar->htt.rx_ring.skb_table, rxcb, hlist, paddr) 35 if (rxcb->paddr == paddr) 36 return ATH10K_RXCB_SKB(rxcb); 37 38 WARN_ON_ONCE(1); 39 return NULL; 40 } 41 42 static void ath10k_htt_rx_ring_free(struct ath10k_htt *htt) 43 { 44 struct sk_buff *skb; 45 struct ath10k_skb_rxcb *rxcb; 46 struct hlist_node *n; 47 int i; 48 49 if (htt->rx_ring.in_ord_rx) { 50 hash_for_each_safe(htt->rx_ring.skb_table, i, n, rxcb, hlist) { 51 skb = ATH10K_RXCB_SKB(rxcb); 52 dma_unmap_single(htt->ar->dev, rxcb->paddr, 53 skb->len + skb_tailroom(skb), 54 DMA_FROM_DEVICE); 55 hash_del(&rxcb->hlist); 56 dev_kfree_skb_any(skb); 57 } 58 } else { 59 for (i = 0; i < htt->rx_ring.size; i++) { 60 skb = htt->rx_ring.netbufs_ring[i]; 61 if (!skb) 62 continue; 63 64 rxcb = ATH10K_SKB_RXCB(skb); 65 dma_unmap_single(htt->ar->dev, rxcb->paddr, 66 skb->len + skb_tailroom(skb), 67 DMA_FROM_DEVICE); 68 dev_kfree_skb_any(skb); 69 } 70 } 71 72 htt->rx_ring.fill_cnt = 0; 73 hash_init(htt->rx_ring.skb_table); 74 memset(htt->rx_ring.netbufs_ring, 0, 75 htt->rx_ring.size * sizeof(htt->rx_ring.netbufs_ring[0])); 76 } 77 78 static size_t ath10k_htt_get_rx_ring_size_32(struct ath10k_htt *htt) 79 { 80 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_32); 81 } 82 83 static size_t ath10k_htt_get_rx_ring_size_64(struct ath10k_htt *htt) 84 { 85 return htt->rx_ring.size * sizeof(htt->rx_ring.paddrs_ring_64); 86 } 87 88 static void ath10k_htt_config_paddrs_ring_32(struct ath10k_htt *htt, 89 void *vaddr) 90 { 91 htt->rx_ring.paddrs_ring_32 = vaddr; 92 } 93 94 static void ath10k_htt_config_paddrs_ring_64(struct ath10k_htt *htt, 95 void *vaddr) 96 { 97 htt->rx_ring.paddrs_ring_64 = vaddr; 98 } 99 100 static void ath10k_htt_set_paddrs_ring_32(struct ath10k_htt *htt, 101 dma_addr_t paddr, int idx) 102 { 103 htt->rx_ring.paddrs_ring_32[idx] = __cpu_to_le32(paddr); 104 } 105 106 static void ath10k_htt_set_paddrs_ring_64(struct ath10k_htt *htt, 107 dma_addr_t paddr, int idx) 108 { 109 htt->rx_ring.paddrs_ring_64[idx] = __cpu_to_le64(paddr); 110 } 111 112 static void ath10k_htt_reset_paddrs_ring_32(struct ath10k_htt *htt, int idx) 113 { 114 htt->rx_ring.paddrs_ring_32[idx] = 0; 115 } 116 117 static void ath10k_htt_reset_paddrs_ring_64(struct ath10k_htt *htt, int idx) 118 { 119 htt->rx_ring.paddrs_ring_64[idx] = 0; 120 } 121 122 static void *ath10k_htt_get_vaddr_ring_32(struct ath10k_htt *htt) 123 { 124 return (void *)htt->rx_ring.paddrs_ring_32; 125 } 126 127 static void *ath10k_htt_get_vaddr_ring_64(struct ath10k_htt *htt) 128 { 129 return (void *)htt->rx_ring.paddrs_ring_64; 130 } 131 132 static int __ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 133 { 134 struct ath10k_hw_params *hw = &htt->ar->hw_params; 135 struct htt_rx_desc *rx_desc; 136 struct ath10k_skb_rxcb *rxcb; 137 struct sk_buff *skb; 138 dma_addr_t paddr; 139 int ret = 0, idx; 140 141 /* The Full Rx Reorder firmware has no way of telling the host 142 * implicitly when it copied HTT Rx Ring buffers to MAC Rx Ring. 143 * To keep things simple make sure ring is always half empty. This 144 * guarantees there'll be no replenishment overruns possible. 145 */ 146 BUILD_BUG_ON(HTT_RX_RING_FILL_LEVEL >= HTT_RX_RING_SIZE / 2); 147 148 idx = __le32_to_cpu(*htt->rx_ring.alloc_idx.vaddr); 149 150 if (idx < 0 || idx >= htt->rx_ring.size) { 151 ath10k_err(htt->ar, "rx ring index is not valid, firmware malfunctioning?\n"); 152 idx &= htt->rx_ring.size_mask; 153 ret = -ENOMEM; 154 goto fail; 155 } 156 157 while (num > 0) { 158 skb = dev_alloc_skb(HTT_RX_BUF_SIZE + HTT_RX_DESC_ALIGN); 159 if (!skb) { 160 ret = -ENOMEM; 161 goto fail; 162 } 163 164 if (!IS_ALIGNED((unsigned long)skb->data, HTT_RX_DESC_ALIGN)) 165 skb_pull(skb, 166 PTR_ALIGN(skb->data, HTT_RX_DESC_ALIGN) - 167 skb->data); 168 169 /* Clear rx_desc attention word before posting to Rx ring */ 170 rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, skb->data); 171 ath10k_htt_rx_desc_get_attention(hw, rx_desc)->flags = __cpu_to_le32(0); 172 173 paddr = dma_map_single(htt->ar->dev, skb->data, 174 skb->len + skb_tailroom(skb), 175 DMA_FROM_DEVICE); 176 177 if (unlikely(dma_mapping_error(htt->ar->dev, paddr))) { 178 dev_kfree_skb_any(skb); 179 ret = -ENOMEM; 180 goto fail; 181 } 182 183 rxcb = ATH10K_SKB_RXCB(skb); 184 rxcb->paddr = paddr; 185 htt->rx_ring.netbufs_ring[idx] = skb; 186 ath10k_htt_set_paddrs_ring(htt, paddr, idx); 187 htt->rx_ring.fill_cnt++; 188 189 if (htt->rx_ring.in_ord_rx) { 190 hash_add(htt->rx_ring.skb_table, 191 &ATH10K_SKB_RXCB(skb)->hlist, 192 paddr); 193 } 194 195 num--; 196 idx++; 197 idx &= htt->rx_ring.size_mask; 198 } 199 200 fail: 201 /* 202 * Make sure the rx buffer is updated before available buffer 203 * index to avoid any potential rx ring corruption. 204 */ 205 mb(); 206 *htt->rx_ring.alloc_idx.vaddr = __cpu_to_le32(idx); 207 return ret; 208 } 209 210 static int ath10k_htt_rx_ring_fill_n(struct ath10k_htt *htt, int num) 211 { 212 lockdep_assert_held(&htt->rx_ring.lock); 213 return __ath10k_htt_rx_ring_fill_n(htt, num); 214 } 215 216 static void ath10k_htt_rx_msdu_buff_replenish(struct ath10k_htt *htt) 217 { 218 int ret, num_deficit, num_to_fill; 219 220 /* Refilling the whole RX ring buffer proves to be a bad idea. The 221 * reason is RX may take up significant amount of CPU cycles and starve 222 * other tasks, e.g. TX on an ethernet device while acting as a bridge 223 * with ath10k wlan interface. This ended up with very poor performance 224 * once CPU the host system was overwhelmed with RX on ath10k. 225 * 226 * By limiting the number of refills the replenishing occurs 227 * progressively. This in turns makes use of the fact tasklets are 228 * processed in FIFO order. This means actual RX processing can starve 229 * out refilling. If there's not enough buffers on RX ring FW will not 230 * report RX until it is refilled with enough buffers. This 231 * automatically balances load wrt to CPU power. 232 * 233 * This probably comes at a cost of lower maximum throughput but 234 * improves the average and stability. 235 */ 236 spin_lock_bh(&htt->rx_ring.lock); 237 num_deficit = htt->rx_ring.fill_level - htt->rx_ring.fill_cnt; 238 num_to_fill = min(ATH10K_HTT_MAX_NUM_REFILL, num_deficit); 239 num_deficit -= num_to_fill; 240 ret = ath10k_htt_rx_ring_fill_n(htt, num_to_fill); 241 if (ret == -ENOMEM) { 242 /* 243 * Failed to fill it to the desired level - 244 * we'll start a timer and try again next time. 245 * As long as enough buffers are left in the ring for 246 * another A-MPDU rx, no special recovery is needed. 247 */ 248 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 249 msecs_to_jiffies(HTT_RX_RING_REFILL_RETRY_MS)); 250 } else if (num_deficit > 0) { 251 mod_timer(&htt->rx_ring.refill_retry_timer, jiffies + 252 msecs_to_jiffies(HTT_RX_RING_REFILL_RESCHED_MS)); 253 } 254 spin_unlock_bh(&htt->rx_ring.lock); 255 } 256 257 static void ath10k_htt_rx_ring_refill_retry(struct timer_list *t) 258 { 259 struct ath10k_htt *htt = from_timer(htt, t, rx_ring.refill_retry_timer); 260 261 ath10k_htt_rx_msdu_buff_replenish(htt); 262 } 263 264 int ath10k_htt_rx_ring_refill(struct ath10k *ar) 265 { 266 struct ath10k_htt *htt = &ar->htt; 267 int ret; 268 269 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 270 return 0; 271 272 spin_lock_bh(&htt->rx_ring.lock); 273 ret = ath10k_htt_rx_ring_fill_n(htt, (htt->rx_ring.fill_level - 274 htt->rx_ring.fill_cnt)); 275 276 if (ret) 277 ath10k_htt_rx_ring_free(htt); 278 279 spin_unlock_bh(&htt->rx_ring.lock); 280 281 return ret; 282 } 283 284 void ath10k_htt_rx_free(struct ath10k_htt *htt) 285 { 286 if (htt->ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 287 return; 288 289 del_timer_sync(&htt->rx_ring.refill_retry_timer); 290 291 skb_queue_purge(&htt->rx_msdus_q); 292 skb_queue_purge(&htt->rx_in_ord_compl_q); 293 skb_queue_purge(&htt->tx_fetch_ind_q); 294 295 spin_lock_bh(&htt->rx_ring.lock); 296 ath10k_htt_rx_ring_free(htt); 297 spin_unlock_bh(&htt->rx_ring.lock); 298 299 dma_free_coherent(htt->ar->dev, 300 ath10k_htt_get_rx_ring_size(htt), 301 ath10k_htt_get_vaddr_ring(htt), 302 htt->rx_ring.base_paddr); 303 304 ath10k_htt_config_paddrs_ring(htt, NULL); 305 306 dma_free_coherent(htt->ar->dev, 307 sizeof(*htt->rx_ring.alloc_idx.vaddr), 308 htt->rx_ring.alloc_idx.vaddr, 309 htt->rx_ring.alloc_idx.paddr); 310 htt->rx_ring.alloc_idx.vaddr = NULL; 311 312 kfree(htt->rx_ring.netbufs_ring); 313 htt->rx_ring.netbufs_ring = NULL; 314 } 315 316 static inline struct sk_buff *ath10k_htt_rx_netbuf_pop(struct ath10k_htt *htt) 317 { 318 struct ath10k *ar = htt->ar; 319 int idx; 320 struct sk_buff *msdu; 321 322 lockdep_assert_held(&htt->rx_ring.lock); 323 324 if (htt->rx_ring.fill_cnt == 0) { 325 ath10k_warn(ar, "tried to pop sk_buff from an empty rx ring\n"); 326 return NULL; 327 } 328 329 idx = htt->rx_ring.sw_rd_idx.msdu_payld; 330 msdu = htt->rx_ring.netbufs_ring[idx]; 331 htt->rx_ring.netbufs_ring[idx] = NULL; 332 ath10k_htt_reset_paddrs_ring(htt, idx); 333 334 idx++; 335 idx &= htt->rx_ring.size_mask; 336 htt->rx_ring.sw_rd_idx.msdu_payld = idx; 337 htt->rx_ring.fill_cnt--; 338 339 dma_unmap_single(htt->ar->dev, 340 ATH10K_SKB_RXCB(msdu)->paddr, 341 msdu->len + skb_tailroom(msdu), 342 DMA_FROM_DEVICE); 343 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 344 msdu->data, msdu->len + skb_tailroom(msdu)); 345 346 return msdu; 347 } 348 349 /* return: < 0 fatal error, 0 - non chained msdu, 1 chained msdu */ 350 static int ath10k_htt_rx_amsdu_pop(struct ath10k_htt *htt, 351 struct sk_buff_head *amsdu) 352 { 353 struct ath10k *ar = htt->ar; 354 struct ath10k_hw_params *hw = &ar->hw_params; 355 int msdu_len, msdu_chaining = 0; 356 struct sk_buff *msdu; 357 struct htt_rx_desc *rx_desc; 358 struct rx_attention *rx_desc_attention; 359 struct rx_frag_info_common *rx_desc_frag_info_common; 360 struct rx_msdu_start_common *rx_desc_msdu_start_common; 361 struct rx_msdu_end_common *rx_desc_msdu_end_common; 362 363 lockdep_assert_held(&htt->rx_ring.lock); 364 365 for (;;) { 366 int last_msdu, msdu_len_invalid, msdu_chained; 367 368 msdu = ath10k_htt_rx_netbuf_pop(htt); 369 if (!msdu) { 370 __skb_queue_purge(amsdu); 371 return -ENOENT; 372 } 373 374 __skb_queue_tail(amsdu, msdu); 375 376 rx_desc = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 377 rx_desc_attention = ath10k_htt_rx_desc_get_attention(hw, rx_desc); 378 rx_desc_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, 379 rx_desc); 380 rx_desc_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rx_desc); 381 rx_desc_frag_info_common = ath10k_htt_rx_desc_get_frag_info(hw, rx_desc); 382 383 /* FIXME: we must report msdu payload since this is what caller 384 * expects now 385 */ 386 skb_put(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset); 387 skb_pull(msdu, hw->rx_desc_ops->rx_desc_msdu_payload_offset); 388 389 /* 390 * Sanity check - confirm the HW is finished filling in the 391 * rx data. 392 * If the HW and SW are working correctly, then it's guaranteed 393 * that the HW's MAC DMA is done before this point in the SW. 394 * To prevent the case that we handle a stale Rx descriptor, 395 * just assert for now until we have a way to recover. 396 */ 397 if (!(__le32_to_cpu(rx_desc_attention->flags) 398 & RX_ATTENTION_FLAGS_MSDU_DONE)) { 399 __skb_queue_purge(amsdu); 400 return -EIO; 401 } 402 403 msdu_len_invalid = !!(__le32_to_cpu(rx_desc_attention->flags) 404 & (RX_ATTENTION_FLAGS_MPDU_LENGTH_ERR | 405 RX_ATTENTION_FLAGS_MSDU_LENGTH_ERR)); 406 msdu_len = MS(__le32_to_cpu(rx_desc_msdu_start_common->info0), 407 RX_MSDU_START_INFO0_MSDU_LENGTH); 408 msdu_chained = rx_desc_frag_info_common->ring2_more_count; 409 410 if (msdu_len_invalid) 411 msdu_len = 0; 412 413 skb_trim(msdu, 0); 414 skb_put(msdu, min(msdu_len, ath10k_htt_rx_msdu_size(hw))); 415 msdu_len -= msdu->len; 416 417 /* Note: Chained buffers do not contain rx descriptor */ 418 while (msdu_chained--) { 419 msdu = ath10k_htt_rx_netbuf_pop(htt); 420 if (!msdu) { 421 __skb_queue_purge(amsdu); 422 return -ENOENT; 423 } 424 425 __skb_queue_tail(amsdu, msdu); 426 skb_trim(msdu, 0); 427 skb_put(msdu, min(msdu_len, HTT_RX_BUF_SIZE)); 428 msdu_len -= msdu->len; 429 msdu_chaining = 1; 430 } 431 432 last_msdu = __le32_to_cpu(rx_desc_msdu_end_common->info0) & 433 RX_MSDU_END_INFO0_LAST_MSDU; 434 435 /* FIXME: why are we skipping the first part of the rx_desc? */ 436 #if defined(__linux__) 437 trace_ath10k_htt_rx_desc(ar, (void *)rx_desc + sizeof(u32), 438 #elif defined(__FreeBSD__) 439 trace_ath10k_htt_rx_desc(ar, (u8 *)rx_desc + sizeof(u32), 440 #endif 441 hw->rx_desc_ops->rx_desc_size - sizeof(u32)); 442 443 if (last_msdu) 444 break; 445 } 446 447 if (skb_queue_empty(amsdu)) 448 msdu_chaining = -1; 449 450 /* 451 * Don't refill the ring yet. 452 * 453 * First, the elements popped here are still in use - it is not 454 * safe to overwrite them until the matching call to 455 * mpdu_desc_list_next. Second, for efficiency it is preferable to 456 * refill the rx ring with 1 PPDU's worth of rx buffers (something 457 * like 32 x 3 buffers), rather than one MPDU's worth of rx buffers 458 * (something like 3 buffers). Consequently, we'll rely on the txrx 459 * SW to tell us when it is done pulling all the PPDU's rx buffers 460 * out of the rx ring, and then refill it just once. 461 */ 462 463 return msdu_chaining; 464 } 465 466 static struct sk_buff *ath10k_htt_rx_pop_paddr(struct ath10k_htt *htt, 467 u64 paddr) 468 { 469 struct ath10k *ar = htt->ar; 470 struct ath10k_skb_rxcb *rxcb; 471 struct sk_buff *msdu; 472 473 lockdep_assert_held(&htt->rx_ring.lock); 474 475 msdu = ath10k_htt_rx_find_skb_paddr(ar, paddr); 476 if (!msdu) 477 return NULL; 478 479 rxcb = ATH10K_SKB_RXCB(msdu); 480 hash_del(&rxcb->hlist); 481 htt->rx_ring.fill_cnt--; 482 483 dma_unmap_single(htt->ar->dev, rxcb->paddr, 484 msdu->len + skb_tailroom(msdu), 485 DMA_FROM_DEVICE); 486 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx netbuf pop: ", 487 msdu->data, msdu->len + skb_tailroom(msdu)); 488 489 return msdu; 490 } 491 492 static inline void ath10k_htt_append_frag_list(struct sk_buff *skb_head, 493 struct sk_buff *frag_list, 494 unsigned int frag_len) 495 { 496 skb_shinfo(skb_head)->frag_list = frag_list; 497 skb_head->data_len = frag_len; 498 skb_head->len += skb_head->data_len; 499 } 500 501 static int ath10k_htt_rx_handle_amsdu_mon_32(struct ath10k_htt *htt, 502 struct sk_buff *msdu, 503 struct htt_rx_in_ord_msdu_desc **msdu_desc) 504 { 505 struct ath10k *ar = htt->ar; 506 struct ath10k_hw_params *hw = &ar->hw_params; 507 u32 paddr; 508 struct sk_buff *frag_buf; 509 struct sk_buff *prev_frag_buf; 510 u8 last_frag; 511 struct htt_rx_in_ord_msdu_desc *ind_desc = *msdu_desc; 512 struct htt_rx_desc *rxd; 513 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 514 515 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 516 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 517 518 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 519 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 520 skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw))); 521 amsdu_len -= msdu->len; 522 523 last_frag = ind_desc->reserved; 524 if (last_frag) { 525 if (amsdu_len) { 526 ath10k_warn(ar, "invalid amsdu len %u, left %d", 527 __le16_to_cpu(ind_desc->msdu_len), 528 amsdu_len); 529 } 530 return 0; 531 } 532 533 ind_desc++; 534 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 535 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 536 if (!frag_buf) { 537 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%x", paddr); 538 return -ENOENT; 539 } 540 541 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 542 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 543 544 amsdu_len -= frag_buf->len; 545 prev_frag_buf = frag_buf; 546 last_frag = ind_desc->reserved; 547 while (!last_frag) { 548 ind_desc++; 549 paddr = __le32_to_cpu(ind_desc->msdu_paddr); 550 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 551 if (!frag_buf) { 552 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%x", 553 paddr); 554 prev_frag_buf->next = NULL; 555 return -ENOENT; 556 } 557 558 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 559 last_frag = ind_desc->reserved; 560 amsdu_len -= frag_buf->len; 561 562 prev_frag_buf->next = frag_buf; 563 prev_frag_buf = frag_buf; 564 } 565 566 if (amsdu_len) { 567 ath10k_warn(ar, "invalid amsdu len %u, left %d", 568 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 569 } 570 571 *msdu_desc = ind_desc; 572 573 prev_frag_buf->next = NULL; 574 return 0; 575 } 576 577 static int 578 ath10k_htt_rx_handle_amsdu_mon_64(struct ath10k_htt *htt, 579 struct sk_buff *msdu, 580 struct htt_rx_in_ord_msdu_desc_ext **msdu_desc) 581 { 582 struct ath10k *ar = htt->ar; 583 struct ath10k_hw_params *hw = &ar->hw_params; 584 u64 paddr; 585 struct sk_buff *frag_buf; 586 struct sk_buff *prev_frag_buf; 587 u8 last_frag; 588 struct htt_rx_in_ord_msdu_desc_ext *ind_desc = *msdu_desc; 589 struct htt_rx_desc *rxd; 590 int amsdu_len = __le16_to_cpu(ind_desc->msdu_len); 591 592 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 593 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 594 595 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 596 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 597 skb_put(msdu, min(amsdu_len, ath10k_htt_rx_msdu_size(hw))); 598 amsdu_len -= msdu->len; 599 600 last_frag = ind_desc->reserved; 601 if (last_frag) { 602 if (amsdu_len) { 603 ath10k_warn(ar, "invalid amsdu len %u, left %d", 604 __le16_to_cpu(ind_desc->msdu_len), 605 amsdu_len); 606 } 607 return 0; 608 } 609 610 ind_desc++; 611 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 612 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 613 if (!frag_buf) { 614 #if defined(__linux__) 615 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%llx", paddr); 616 #elif defined(__FreeBSD__) 617 ath10k_warn(ar, "failed to pop frag-1 paddr: 0x%jx", (uintmax_t)paddr); 618 #endif 619 return -ENOENT; 620 } 621 622 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 623 ath10k_htt_append_frag_list(msdu, frag_buf, amsdu_len); 624 625 amsdu_len -= frag_buf->len; 626 prev_frag_buf = frag_buf; 627 last_frag = ind_desc->reserved; 628 while (!last_frag) { 629 ind_desc++; 630 paddr = __le64_to_cpu(ind_desc->msdu_paddr); 631 frag_buf = ath10k_htt_rx_pop_paddr(htt, paddr); 632 if (!frag_buf) { 633 #if defined(__linux__) 634 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%llx", 635 paddr); 636 #elif defined(__FreeBSD__) 637 ath10k_warn(ar, "failed to pop frag-n paddr: 0x%jx", 638 (uintmax_t)paddr); 639 #endif 640 prev_frag_buf->next = NULL; 641 return -ENOENT; 642 } 643 644 skb_put(frag_buf, min(amsdu_len, HTT_RX_BUF_SIZE)); 645 last_frag = ind_desc->reserved; 646 amsdu_len -= frag_buf->len; 647 648 prev_frag_buf->next = frag_buf; 649 prev_frag_buf = frag_buf; 650 } 651 652 if (amsdu_len) { 653 ath10k_warn(ar, "invalid amsdu len %u, left %d", 654 __le16_to_cpu(ind_desc->msdu_len), amsdu_len); 655 } 656 657 *msdu_desc = ind_desc; 658 659 prev_frag_buf->next = NULL; 660 return 0; 661 } 662 663 static int ath10k_htt_rx_pop_paddr32_list(struct ath10k_htt *htt, 664 struct htt_rx_in_ord_ind *ev, 665 struct sk_buff_head *list) 666 { 667 struct ath10k *ar = htt->ar; 668 struct ath10k_hw_params *hw = &ar->hw_params; 669 struct htt_rx_in_ord_msdu_desc *msdu_desc = ev->msdu_descs32; 670 struct htt_rx_desc *rxd; 671 struct rx_attention *rxd_attention; 672 struct sk_buff *msdu; 673 int msdu_count, ret; 674 bool is_offload; 675 u32 paddr; 676 677 lockdep_assert_held(&htt->rx_ring.lock); 678 679 msdu_count = __le16_to_cpu(ev->msdu_count); 680 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 681 682 while (msdu_count--) { 683 paddr = __le32_to_cpu(msdu_desc->msdu_paddr); 684 685 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 686 if (!msdu) { 687 __skb_queue_purge(list); 688 return -ENOENT; 689 } 690 691 if (!is_offload && ar->monitor_arvif) { 692 ret = ath10k_htt_rx_handle_amsdu_mon_32(htt, msdu, 693 &msdu_desc); 694 if (ret) { 695 __skb_queue_purge(list); 696 return ret; 697 } 698 __skb_queue_tail(list, msdu); 699 msdu_desc++; 700 continue; 701 } 702 703 __skb_queue_tail(list, msdu); 704 705 if (!is_offload) { 706 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 707 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 708 709 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 710 711 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 712 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 713 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 714 715 if (!(__le32_to_cpu(rxd_attention->flags) & 716 RX_ATTENTION_FLAGS_MSDU_DONE)) { 717 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 718 return -EIO; 719 } 720 } 721 722 msdu_desc++; 723 } 724 725 return 0; 726 } 727 728 static int ath10k_htt_rx_pop_paddr64_list(struct ath10k_htt *htt, 729 struct htt_rx_in_ord_ind *ev, 730 struct sk_buff_head *list) 731 { 732 struct ath10k *ar = htt->ar; 733 struct ath10k_hw_params *hw = &ar->hw_params; 734 struct htt_rx_in_ord_msdu_desc_ext *msdu_desc = ev->msdu_descs64; 735 struct htt_rx_desc *rxd; 736 struct rx_attention *rxd_attention; 737 struct sk_buff *msdu; 738 int msdu_count, ret; 739 bool is_offload; 740 u64 paddr; 741 742 lockdep_assert_held(&htt->rx_ring.lock); 743 744 msdu_count = __le16_to_cpu(ev->msdu_count); 745 is_offload = !!(ev->info & HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 746 747 while (msdu_count--) { 748 paddr = __le64_to_cpu(msdu_desc->msdu_paddr); 749 msdu = ath10k_htt_rx_pop_paddr(htt, paddr); 750 if (!msdu) { 751 __skb_queue_purge(list); 752 return -ENOENT; 753 } 754 755 if (!is_offload && ar->monitor_arvif) { 756 ret = ath10k_htt_rx_handle_amsdu_mon_64(htt, msdu, 757 &msdu_desc); 758 if (ret) { 759 __skb_queue_purge(list); 760 return ret; 761 } 762 __skb_queue_tail(list, msdu); 763 msdu_desc++; 764 continue; 765 } 766 767 __skb_queue_tail(list, msdu); 768 769 if (!is_offload) { 770 rxd = HTT_RX_BUF_TO_RX_DESC(hw, msdu->data); 771 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 772 773 trace_ath10k_htt_rx_desc(ar, rxd, hw->rx_desc_ops->rx_desc_size); 774 775 skb_put(msdu, hw->rx_desc_ops->rx_desc_size); 776 skb_pull(msdu, hw->rx_desc_ops->rx_desc_size); 777 skb_put(msdu, __le16_to_cpu(msdu_desc->msdu_len)); 778 779 if (!(__le32_to_cpu(rxd_attention->flags) & 780 RX_ATTENTION_FLAGS_MSDU_DONE)) { 781 ath10k_warn(htt->ar, "tried to pop an incomplete frame, oops!\n"); 782 return -EIO; 783 } 784 } 785 786 msdu_desc++; 787 } 788 789 return 0; 790 } 791 792 int ath10k_htt_rx_alloc(struct ath10k_htt *htt) 793 { 794 struct ath10k *ar = htt->ar; 795 dma_addr_t paddr; 796 void *vaddr, *vaddr_ring; 797 size_t size; 798 struct timer_list *timer = &htt->rx_ring.refill_retry_timer; 799 800 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 801 return 0; 802 803 htt->rx_confused = false; 804 805 /* XXX: The fill level could be changed during runtime in response to 806 * the host processing latency. Is this really worth it? 807 */ 808 htt->rx_ring.size = HTT_RX_RING_SIZE; 809 htt->rx_ring.size_mask = htt->rx_ring.size - 1; 810 htt->rx_ring.fill_level = ar->hw_params.rx_ring_fill_level; 811 812 if (!is_power_of_2(htt->rx_ring.size)) { 813 ath10k_warn(ar, "htt rx ring size is not power of 2\n"); 814 return -EINVAL; 815 } 816 817 htt->rx_ring.netbufs_ring = 818 kcalloc(htt->rx_ring.size, sizeof(struct sk_buff *), 819 GFP_KERNEL); 820 if (!htt->rx_ring.netbufs_ring) 821 goto err_netbuf; 822 823 size = ath10k_htt_get_rx_ring_size(htt); 824 825 vaddr_ring = dma_alloc_coherent(htt->ar->dev, size, &paddr, GFP_KERNEL); 826 if (!vaddr_ring) 827 goto err_dma_ring; 828 829 ath10k_htt_config_paddrs_ring(htt, vaddr_ring); 830 htt->rx_ring.base_paddr = paddr; 831 832 vaddr = dma_alloc_coherent(htt->ar->dev, 833 sizeof(*htt->rx_ring.alloc_idx.vaddr), 834 &paddr, GFP_KERNEL); 835 if (!vaddr) 836 goto err_dma_idx; 837 838 htt->rx_ring.alloc_idx.vaddr = vaddr; 839 htt->rx_ring.alloc_idx.paddr = paddr; 840 htt->rx_ring.sw_rd_idx.msdu_payld = htt->rx_ring.size_mask; 841 *htt->rx_ring.alloc_idx.vaddr = 0; 842 843 /* Initialize the Rx refill retry timer */ 844 timer_setup(timer, ath10k_htt_rx_ring_refill_retry, 0); 845 846 spin_lock_init(&htt->rx_ring.lock); 847 #if defined(__FreeBSD__) 848 spin_lock_init(&htt->tx_fetch_ind_q.lock); 849 #endif 850 851 htt->rx_ring.fill_cnt = 0; 852 htt->rx_ring.sw_rd_idx.msdu_payld = 0; 853 hash_init(htt->rx_ring.skb_table); 854 855 skb_queue_head_init(&htt->rx_msdus_q); 856 skb_queue_head_init(&htt->rx_in_ord_compl_q); 857 skb_queue_head_init(&htt->tx_fetch_ind_q); 858 atomic_set(&htt->num_mpdus_ready, 0); 859 860 ath10k_dbg(ar, ATH10K_DBG_BOOT, "htt rx ring size %d fill_level %d\n", 861 htt->rx_ring.size, htt->rx_ring.fill_level); 862 return 0; 863 864 err_dma_idx: 865 dma_free_coherent(htt->ar->dev, 866 ath10k_htt_get_rx_ring_size(htt), 867 vaddr_ring, 868 htt->rx_ring.base_paddr); 869 ath10k_htt_config_paddrs_ring(htt, NULL); 870 err_dma_ring: 871 kfree(htt->rx_ring.netbufs_ring); 872 htt->rx_ring.netbufs_ring = NULL; 873 err_netbuf: 874 return -ENOMEM; 875 } 876 877 static int ath10k_htt_rx_crypto_param_len(struct ath10k *ar, 878 enum htt_rx_mpdu_encrypt_type type) 879 { 880 switch (type) { 881 case HTT_RX_MPDU_ENCRYPT_NONE: 882 return 0; 883 case HTT_RX_MPDU_ENCRYPT_WEP40: 884 case HTT_RX_MPDU_ENCRYPT_WEP104: 885 return IEEE80211_WEP_IV_LEN; 886 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 887 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 888 return IEEE80211_TKIP_IV_LEN; 889 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 890 return IEEE80211_CCMP_HDR_LEN; 891 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 892 return IEEE80211_CCMP_256_HDR_LEN; 893 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 894 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 895 return IEEE80211_GCMP_HDR_LEN; 896 case HTT_RX_MPDU_ENCRYPT_WEP128: 897 case HTT_RX_MPDU_ENCRYPT_WAPI: 898 break; 899 } 900 901 ath10k_warn(ar, "unsupported encryption type %d\n", type); 902 return 0; 903 } 904 905 #define MICHAEL_MIC_LEN 8 906 907 static int ath10k_htt_rx_crypto_mic_len(struct ath10k *ar, 908 enum htt_rx_mpdu_encrypt_type type) 909 { 910 switch (type) { 911 case HTT_RX_MPDU_ENCRYPT_NONE: 912 case HTT_RX_MPDU_ENCRYPT_WEP40: 913 case HTT_RX_MPDU_ENCRYPT_WEP104: 914 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 915 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 916 return 0; 917 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 918 return IEEE80211_CCMP_MIC_LEN; 919 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 920 return IEEE80211_CCMP_256_MIC_LEN; 921 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 922 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 923 return IEEE80211_GCMP_MIC_LEN; 924 case HTT_RX_MPDU_ENCRYPT_WEP128: 925 case HTT_RX_MPDU_ENCRYPT_WAPI: 926 break; 927 } 928 929 ath10k_warn(ar, "unsupported encryption type %d\n", type); 930 return 0; 931 } 932 933 static int ath10k_htt_rx_crypto_icv_len(struct ath10k *ar, 934 enum htt_rx_mpdu_encrypt_type type) 935 { 936 switch (type) { 937 case HTT_RX_MPDU_ENCRYPT_NONE: 938 case HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2: 939 case HTT_RX_MPDU_ENCRYPT_AES_CCM256_WPA2: 940 case HTT_RX_MPDU_ENCRYPT_AES_GCMP_WPA2: 941 case HTT_RX_MPDU_ENCRYPT_AES_GCMP256_WPA2: 942 return 0; 943 case HTT_RX_MPDU_ENCRYPT_WEP40: 944 case HTT_RX_MPDU_ENCRYPT_WEP104: 945 return IEEE80211_WEP_ICV_LEN; 946 case HTT_RX_MPDU_ENCRYPT_TKIP_WITHOUT_MIC: 947 case HTT_RX_MPDU_ENCRYPT_TKIP_WPA: 948 return IEEE80211_TKIP_ICV_LEN; 949 case HTT_RX_MPDU_ENCRYPT_WEP128: 950 case HTT_RX_MPDU_ENCRYPT_WAPI: 951 break; 952 } 953 954 ath10k_warn(ar, "unsupported encryption type %d\n", type); 955 return 0; 956 } 957 958 struct amsdu_subframe_hdr { 959 u8 dst[ETH_ALEN]; 960 u8 src[ETH_ALEN]; 961 __be16 len; 962 } __packed; 963 964 #define GROUP_ID_IS_SU_MIMO(x) ((x) == 0 || (x) == 63) 965 966 static inline u8 ath10k_bw_to_mac80211_bw(u8 bw) 967 { 968 u8 ret = 0; 969 970 switch (bw) { 971 case 0: 972 ret = RATE_INFO_BW_20; 973 break; 974 case 1: 975 ret = RATE_INFO_BW_40; 976 break; 977 case 2: 978 ret = RATE_INFO_BW_80; 979 break; 980 case 3: 981 ret = RATE_INFO_BW_160; 982 break; 983 } 984 985 return ret; 986 } 987 988 static void ath10k_htt_rx_h_rates(struct ath10k *ar, 989 struct ieee80211_rx_status *status, 990 struct htt_rx_desc *rxd) 991 { 992 struct ath10k_hw_params *hw = &ar->hw_params; 993 struct rx_attention *rxd_attention; 994 struct rx_mpdu_start *rxd_mpdu_start; 995 struct rx_mpdu_end *rxd_mpdu_end; 996 struct rx_msdu_start_common *rxd_msdu_start_common; 997 struct rx_msdu_end_common *rxd_msdu_end_common; 998 struct rx_ppdu_start *rxd_ppdu_start; 999 struct ieee80211_supported_band *sband; 1000 u8 cck, rate, bw, sgi, mcs, nss; 1001 u8 *rxd_msdu_payload; 1002 u8 preamble = 0; 1003 u8 group_id; 1004 u32 info1, info2, info3; 1005 u32 stbc, nsts_su; 1006 1007 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1008 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 1009 rxd_mpdu_end = ath10k_htt_rx_desc_get_mpdu_end(hw, rxd); 1010 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1011 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1012 rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd); 1013 rxd_msdu_payload = ath10k_htt_rx_desc_get_msdu_payload(hw, rxd); 1014 1015 info1 = __le32_to_cpu(rxd_ppdu_start->info1); 1016 info2 = __le32_to_cpu(rxd_ppdu_start->info2); 1017 info3 = __le32_to_cpu(rxd_ppdu_start->info3); 1018 1019 preamble = MS(info1, RX_PPDU_START_INFO1_PREAMBLE_TYPE); 1020 1021 switch (preamble) { 1022 case HTT_RX_LEGACY: 1023 /* To get legacy rate index band is required. Since band can't 1024 * be undefined check if freq is non-zero. 1025 */ 1026 if (!status->freq) 1027 return; 1028 1029 cck = info1 & RX_PPDU_START_INFO1_L_SIG_RATE_SELECT; 1030 rate = MS(info1, RX_PPDU_START_INFO1_L_SIG_RATE); 1031 rate &= ~RX_PPDU_START_RATE_FLAG; 1032 1033 sband = &ar->mac.sbands[status->band]; 1034 status->rate_idx = ath10k_mac_hw_rate_to_idx(sband, rate, cck); 1035 break; 1036 case HTT_RX_HT: 1037 case HTT_RX_HT_WITH_TXBF: 1038 /* HT-SIG - Table 20-11 in info2 and info3 */ 1039 mcs = info2 & 0x1F; 1040 nss = mcs >> 3; 1041 bw = (info2 >> 7) & 1; 1042 sgi = (info3 >> 7) & 1; 1043 1044 status->rate_idx = mcs; 1045 status->encoding = RX_ENC_HT; 1046 if (sgi) 1047 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1048 if (bw) 1049 status->bw = RATE_INFO_BW_40; 1050 break; 1051 case HTT_RX_VHT: 1052 case HTT_RX_VHT_WITH_TXBF: 1053 /* VHT-SIG-A1 in info2, VHT-SIG-A2 in info3 1054 * TODO check this 1055 */ 1056 bw = info2 & 3; 1057 sgi = info3 & 1; 1058 stbc = (info2 >> 3) & 1; 1059 group_id = (info2 >> 4) & 0x3F; 1060 1061 if (GROUP_ID_IS_SU_MIMO(group_id)) { 1062 mcs = (info3 >> 4) & 0x0F; 1063 nsts_su = ((info2 >> 10) & 0x07); 1064 if (stbc) 1065 nss = (nsts_su >> 2) + 1; 1066 else 1067 nss = (nsts_su + 1); 1068 } else { 1069 /* Hardware doesn't decode VHT-SIG-B into Rx descriptor 1070 * so it's impossible to decode MCS. Also since 1071 * firmware consumes Group Id Management frames host 1072 * has no knowledge regarding group/user position 1073 * mapping so it's impossible to pick the correct Nsts 1074 * from VHT-SIG-A1. 1075 * 1076 * Bandwidth and SGI are valid so report the rateinfo 1077 * on best-effort basis. 1078 */ 1079 mcs = 0; 1080 nss = 1; 1081 } 1082 1083 if (mcs > 0x09) { 1084 ath10k_warn(ar, "invalid MCS received %u\n", mcs); 1085 ath10k_warn(ar, "rxd %08x mpdu start %08x %08x msdu start %08x %08x ppdu start %08x %08x %08x %08x %08x\n", 1086 __le32_to_cpu(rxd_attention->flags), 1087 __le32_to_cpu(rxd_mpdu_start->info0), 1088 __le32_to_cpu(rxd_mpdu_start->info1), 1089 __le32_to_cpu(rxd_msdu_start_common->info0), 1090 __le32_to_cpu(rxd_msdu_start_common->info1), 1091 rxd_ppdu_start->info0, 1092 __le32_to_cpu(rxd_ppdu_start->info1), 1093 __le32_to_cpu(rxd_ppdu_start->info2), 1094 __le32_to_cpu(rxd_ppdu_start->info3), 1095 __le32_to_cpu(rxd_ppdu_start->info4)); 1096 1097 ath10k_warn(ar, "msdu end %08x mpdu end %08x\n", 1098 __le32_to_cpu(rxd_msdu_end_common->info0), 1099 __le32_to_cpu(rxd_mpdu_end->info0)); 1100 1101 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, 1102 "rx desc msdu payload: ", 1103 rxd_msdu_payload, 50); 1104 } 1105 1106 status->rate_idx = mcs; 1107 status->nss = nss; 1108 1109 if (sgi) 1110 status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 1111 1112 status->bw = ath10k_bw_to_mac80211_bw(bw); 1113 status->encoding = RX_ENC_VHT; 1114 break; 1115 default: 1116 break; 1117 } 1118 } 1119 1120 static struct ieee80211_channel * 1121 ath10k_htt_rx_h_peer_channel(struct ath10k *ar, struct htt_rx_desc *rxd) 1122 { 1123 struct ath10k_hw_params *hw = &ar->hw_params; 1124 struct rx_attention *rxd_attention; 1125 struct rx_msdu_end_common *rxd_msdu_end_common; 1126 struct rx_mpdu_start *rxd_mpdu_start; 1127 struct ath10k_peer *peer; 1128 struct ath10k_vif *arvif; 1129 struct cfg80211_chan_def def; 1130 u16 peer_id; 1131 1132 lockdep_assert_held(&ar->data_lock); 1133 1134 if (!rxd) 1135 return NULL; 1136 1137 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1138 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1139 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 1140 1141 if (rxd_attention->flags & 1142 __cpu_to_le32(RX_ATTENTION_FLAGS_PEER_IDX_INVALID)) 1143 return NULL; 1144 1145 if (!(rxd_msdu_end_common->info0 & 1146 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU))) 1147 return NULL; 1148 1149 peer_id = MS(__le32_to_cpu(rxd_mpdu_start->info0), 1150 RX_MPDU_START_INFO0_PEER_IDX); 1151 1152 peer = ath10k_peer_find_by_id(ar, peer_id); 1153 if (!peer) 1154 return NULL; 1155 1156 arvif = ath10k_get_arvif(ar, peer->vdev_id); 1157 if (WARN_ON_ONCE(!arvif)) 1158 return NULL; 1159 1160 if (ath10k_mac_vif_chan(arvif->vif, &def)) 1161 return NULL; 1162 1163 return def.chan; 1164 } 1165 1166 static struct ieee80211_channel * 1167 ath10k_htt_rx_h_vdev_channel(struct ath10k *ar, u32 vdev_id) 1168 { 1169 struct ath10k_vif *arvif; 1170 struct cfg80211_chan_def def; 1171 1172 lockdep_assert_held(&ar->data_lock); 1173 1174 list_for_each_entry(arvif, &ar->arvifs, list) { 1175 if (arvif->vdev_id == vdev_id && 1176 ath10k_mac_vif_chan(arvif->vif, &def) == 0) 1177 return def.chan; 1178 } 1179 1180 return NULL; 1181 } 1182 1183 static void 1184 ath10k_htt_rx_h_any_chan_iter(struct ieee80211_hw *hw, 1185 struct ieee80211_chanctx_conf *conf, 1186 void *data) 1187 { 1188 struct cfg80211_chan_def *def = data; 1189 1190 *def = conf->def; 1191 } 1192 1193 static struct ieee80211_channel * 1194 ath10k_htt_rx_h_any_channel(struct ath10k *ar) 1195 { 1196 struct cfg80211_chan_def def = {}; 1197 1198 ieee80211_iter_chan_contexts_atomic(ar->hw, 1199 ath10k_htt_rx_h_any_chan_iter, 1200 &def); 1201 1202 return def.chan; 1203 } 1204 1205 static bool ath10k_htt_rx_h_channel(struct ath10k *ar, 1206 struct ieee80211_rx_status *status, 1207 struct htt_rx_desc *rxd, 1208 u32 vdev_id) 1209 { 1210 struct ieee80211_channel *ch; 1211 1212 spin_lock_bh(&ar->data_lock); 1213 ch = ar->scan_channel; 1214 if (!ch) 1215 ch = ar->rx_channel; 1216 if (!ch) 1217 ch = ath10k_htt_rx_h_peer_channel(ar, rxd); 1218 if (!ch) 1219 ch = ath10k_htt_rx_h_vdev_channel(ar, vdev_id); 1220 if (!ch) 1221 ch = ath10k_htt_rx_h_any_channel(ar); 1222 if (!ch) 1223 ch = ar->tgt_oper_chan; 1224 spin_unlock_bh(&ar->data_lock); 1225 1226 if (!ch) 1227 return false; 1228 1229 status->band = ch->band; 1230 status->freq = ch->center_freq; 1231 1232 return true; 1233 } 1234 1235 static void ath10k_htt_rx_h_signal(struct ath10k *ar, 1236 struct ieee80211_rx_status *status, 1237 struct htt_rx_desc *rxd) 1238 { 1239 struct ath10k_hw_params *hw = &ar->hw_params; 1240 struct rx_ppdu_start *rxd_ppdu_start = ath10k_htt_rx_desc_get_ppdu_start(hw, rxd); 1241 int i; 1242 1243 for (i = 0; i < IEEE80211_MAX_CHAINS ; i++) { 1244 status->chains &= ~BIT(i); 1245 1246 if (rxd_ppdu_start->rssi_chains[i].pri20_mhz != 0x80) { 1247 status->chain_signal[i] = ATH10K_DEFAULT_NOISE_FLOOR + 1248 rxd_ppdu_start->rssi_chains[i].pri20_mhz; 1249 1250 status->chains |= BIT(i); 1251 } 1252 } 1253 1254 /* FIXME: Get real NF */ 1255 status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 1256 rxd_ppdu_start->rssi_comb; 1257 status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 1258 } 1259 1260 static void ath10k_htt_rx_h_mactime(struct ath10k *ar, 1261 struct ieee80211_rx_status *status, 1262 struct htt_rx_desc *rxd) 1263 { 1264 struct ath10k_hw_params *hw = &ar->hw_params; 1265 struct rx_ppdu_end_common *rxd_ppdu_end_common; 1266 1267 rxd_ppdu_end_common = ath10k_htt_rx_desc_get_ppdu_end(hw, rxd); 1268 1269 /* FIXME: TSF is known only at the end of PPDU, in the last MPDU. This 1270 * means all prior MSDUs in a PPDU are reported to mac80211 without the 1271 * TSF. Is it worth holding frames until end of PPDU is known? 1272 * 1273 * FIXME: Can we get/compute 64bit TSF? 1274 */ 1275 status->mactime = __le32_to_cpu(rxd_ppdu_end_common->tsf_timestamp); 1276 status->flag |= RX_FLAG_MACTIME_END; 1277 } 1278 1279 static void ath10k_htt_rx_h_ppdu(struct ath10k *ar, 1280 struct sk_buff_head *amsdu, 1281 struct ieee80211_rx_status *status, 1282 u32 vdev_id) 1283 { 1284 struct sk_buff *first; 1285 struct ath10k_hw_params *hw = &ar->hw_params; 1286 struct htt_rx_desc *rxd; 1287 struct rx_attention *rxd_attention; 1288 bool is_first_ppdu; 1289 bool is_last_ppdu; 1290 1291 if (skb_queue_empty(amsdu)) 1292 return; 1293 1294 first = skb_peek(amsdu); 1295 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1296 #if defined(__linux__) 1297 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 1298 #elif defined(__FreeBSD__) 1299 (u8 *)first->data - hw->rx_desc_ops->rx_desc_size); 1300 #endif 1301 1302 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1303 1304 is_first_ppdu = !!(rxd_attention->flags & 1305 __cpu_to_le32(RX_ATTENTION_FLAGS_FIRST_MPDU)); 1306 is_last_ppdu = !!(rxd_attention->flags & 1307 __cpu_to_le32(RX_ATTENTION_FLAGS_LAST_MPDU)); 1308 1309 if (is_first_ppdu) { 1310 /* New PPDU starts so clear out the old per-PPDU status. */ 1311 status->freq = 0; 1312 status->rate_idx = 0; 1313 status->nss = 0; 1314 status->encoding = RX_ENC_LEGACY; 1315 status->bw = RATE_INFO_BW_20; 1316 1317 status->flag &= ~RX_FLAG_MACTIME_END; 1318 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 1319 1320 status->flag &= ~(RX_FLAG_AMPDU_IS_LAST); 1321 status->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1322 status->ampdu_reference = ar->ampdu_reference; 1323 1324 ath10k_htt_rx_h_signal(ar, status, rxd); 1325 ath10k_htt_rx_h_channel(ar, status, rxd, vdev_id); 1326 ath10k_htt_rx_h_rates(ar, status, rxd); 1327 } 1328 1329 if (is_last_ppdu) { 1330 ath10k_htt_rx_h_mactime(ar, status, rxd); 1331 1332 /* set ampdu last segment flag */ 1333 status->flag |= RX_FLAG_AMPDU_IS_LAST; 1334 ar->ampdu_reference++; 1335 } 1336 } 1337 1338 static const char * const tid_to_ac[] = { 1339 "BE", 1340 "BK", 1341 "BK", 1342 "BE", 1343 "VI", 1344 "VI", 1345 "VO", 1346 "VO", 1347 }; 1348 1349 static char *ath10k_get_tid(struct ieee80211_hdr *hdr, char *out, size_t size) 1350 { 1351 u8 *qc; 1352 int tid; 1353 1354 if (!ieee80211_is_data_qos(hdr->frame_control)) 1355 return ""; 1356 1357 qc = ieee80211_get_qos_ctl(hdr); 1358 tid = *qc & IEEE80211_QOS_CTL_TID_MASK; 1359 if (tid < 8) 1360 snprintf(out, size, "tid %d (%s)", tid, tid_to_ac[tid]); 1361 else 1362 snprintf(out, size, "tid %d", tid); 1363 1364 return out; 1365 } 1366 1367 static void ath10k_htt_rx_h_queue_msdu(struct ath10k *ar, 1368 struct ieee80211_rx_status *rx_status, 1369 struct sk_buff *skb) 1370 { 1371 struct ieee80211_rx_status *status; 1372 1373 status = IEEE80211_SKB_RXCB(skb); 1374 *status = *rx_status; 1375 1376 skb_queue_tail(&ar->htt.rx_msdus_q, skb); 1377 } 1378 1379 static void ath10k_process_rx(struct ath10k *ar, struct sk_buff *skb) 1380 { 1381 struct ieee80211_rx_status *status; 1382 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1383 char tid[32]; 1384 1385 status = IEEE80211_SKB_RXCB(skb); 1386 1387 if (!(ar->filter_flags & FIF_FCSFAIL) && 1388 status->flag & RX_FLAG_FAILED_FCS_CRC) { 1389 ar->stats.rx_crc_err_drop++; 1390 dev_kfree_skb_any(skb); 1391 return; 1392 } 1393 1394 ath10k_dbg(ar, ATH10K_DBG_DATA, 1395 "rx skb %pK len %u peer %pM %s %s sn %u %s%s%s%s%s%s %srate_idx %u vht_nss %u freq %u band %u flag 0x%x fcs-err %i mic-err %i amsdu-more %i\n", 1396 skb, 1397 skb->len, 1398 ieee80211_get_SA(hdr), 1399 ath10k_get_tid(hdr, tid, sizeof(tid)), 1400 is_multicast_ether_addr(ieee80211_get_DA(hdr)) ? 1401 "mcast" : "ucast", 1402 IEEE80211_SEQ_TO_SN(__le16_to_cpu(hdr->seq_ctrl)), 1403 (status->encoding == RX_ENC_LEGACY) ? "legacy" : "", 1404 (status->encoding == RX_ENC_HT) ? "ht" : "", 1405 (status->encoding == RX_ENC_VHT) ? "vht" : "", 1406 (status->bw == RATE_INFO_BW_40) ? "40" : "", 1407 (status->bw == RATE_INFO_BW_80) ? "80" : "", 1408 (status->bw == RATE_INFO_BW_160) ? "160" : "", 1409 status->enc_flags & RX_ENC_FLAG_SHORT_GI ? "sgi " : "", 1410 status->rate_idx, 1411 status->nss, 1412 status->freq, 1413 status->band, status->flag, 1414 !!(status->flag & RX_FLAG_FAILED_FCS_CRC), 1415 !!(status->flag & RX_FLAG_MMIC_ERROR), 1416 !!(status->flag & RX_FLAG_AMSDU_MORE)); 1417 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "rx skb: ", 1418 skb->data, skb->len); 1419 trace_ath10k_rx_hdr(ar, skb->data, skb->len); 1420 trace_ath10k_rx_payload(ar, skb->data, skb->len); 1421 1422 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 1423 } 1424 1425 static int ath10k_htt_rx_nwifi_hdrlen(struct ath10k *ar, 1426 struct ieee80211_hdr *hdr) 1427 { 1428 int len = ieee80211_hdrlen(hdr->frame_control); 1429 1430 if (!test_bit(ATH10K_FW_FEATURE_NO_NWIFI_DECAP_4ADDR_PADDING, 1431 ar->running_fw->fw_file.fw_features)) 1432 len = round_up(len, 4); 1433 1434 return len; 1435 } 1436 1437 static void ath10k_htt_rx_h_undecap_raw(struct ath10k *ar, 1438 struct sk_buff *msdu, 1439 struct ieee80211_rx_status *status, 1440 enum htt_rx_mpdu_encrypt_type enctype, 1441 bool is_decrypted, 1442 const u8 first_hdr[64]) 1443 { 1444 struct ieee80211_hdr *hdr; 1445 struct ath10k_hw_params *hw = &ar->hw_params; 1446 struct htt_rx_desc *rxd; 1447 struct rx_msdu_end_common *rxd_msdu_end_common; 1448 size_t hdr_len; 1449 size_t crypto_len; 1450 bool is_first; 1451 bool is_last; 1452 bool msdu_limit_err; 1453 int bytes_aligned = ar->hw_params.decap_align_bytes; 1454 u8 *qos; 1455 1456 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1457 #if defined(__linux__) 1458 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1459 #elif defined(__FreeBSD__) 1460 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1461 #endif 1462 1463 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1464 is_first = !!(rxd_msdu_end_common->info0 & 1465 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1466 is_last = !!(rxd_msdu_end_common->info0 & 1467 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1468 1469 /* Delivered decapped frame: 1470 * [802.11 header] 1471 * [crypto param] <-- can be trimmed if !fcs_err && 1472 * !decrypt_err && !peer_idx_invalid 1473 * [amsdu header] <-- only if A-MSDU 1474 * [rfc1042/llc] 1475 * [payload] 1476 * [FCS] <-- at end, needs to be trimmed 1477 */ 1478 1479 /* Some hardwares(QCA99x0 variants) limit number of msdus in a-msdu when 1480 * deaggregate, so that unwanted MSDU-deaggregation is avoided for 1481 * error packets. If limit exceeds, hw sends all remaining MSDUs as 1482 * a single last MSDU with this msdu limit error set. 1483 */ 1484 msdu_limit_err = ath10k_htt_rx_desc_msdu_limit_error(hw, rxd); 1485 1486 /* If MSDU limit error happens, then don't warn on, the partial raw MSDU 1487 * without first MSDU is expected in that case, and handled later here. 1488 */ 1489 /* This probably shouldn't happen but warn just in case */ 1490 if (WARN_ON_ONCE(!is_first && !msdu_limit_err)) 1491 return; 1492 1493 /* This probably shouldn't happen but warn just in case */ 1494 if (WARN_ON_ONCE(!(is_first && is_last) && !msdu_limit_err)) 1495 return; 1496 1497 skb_trim(msdu, msdu->len - FCS_LEN); 1498 1499 /* Push original 80211 header */ 1500 if (unlikely(msdu_limit_err)) { 1501 #if defined(__linux__) 1502 hdr = (struct ieee80211_hdr *)first_hdr; 1503 #elif defined(__FreeBSD__) 1504 hdr = __DECONST(struct ieee80211_hdr *, first_hdr); 1505 #endif 1506 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1507 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1508 1509 if (ieee80211_is_data_qos(hdr->frame_control)) { 1510 qos = ieee80211_get_qos_ctl(hdr); 1511 qos[0] |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; 1512 } 1513 1514 if (crypto_len) 1515 memcpy(skb_push(msdu, crypto_len), 1516 #if defined(__linux__) 1517 (void *)hdr + round_up(hdr_len, bytes_aligned), 1518 #elif defined(__FreeBSD__) 1519 (u8 *)hdr + round_up(hdr_len, bytes_aligned), 1520 #endif 1521 crypto_len); 1522 1523 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1524 } 1525 1526 /* In most cases this will be true for sniffed frames. It makes sense 1527 * to deliver them as-is without stripping the crypto param. This is 1528 * necessary for software based decryption. 1529 * 1530 * If there's no error then the frame is decrypted. At least that is 1531 * the case for frames that come in via fragmented rx indication. 1532 */ 1533 if (!is_decrypted) 1534 return; 1535 1536 /* The payload is decrypted so strip crypto params. Start from tail 1537 * since hdr is used to compute some stuff. 1538 */ 1539 1540 hdr = (void *)msdu->data; 1541 1542 /* Tail */ 1543 if (status->flag & RX_FLAG_IV_STRIPPED) { 1544 skb_trim(msdu, msdu->len - 1545 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1546 1547 skb_trim(msdu, msdu->len - 1548 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1549 } else { 1550 /* MIC */ 1551 if (status->flag & RX_FLAG_MIC_STRIPPED) 1552 skb_trim(msdu, msdu->len - 1553 ath10k_htt_rx_crypto_mic_len(ar, enctype)); 1554 1555 /* ICV */ 1556 if (status->flag & RX_FLAG_ICV_STRIPPED) 1557 skb_trim(msdu, msdu->len - 1558 ath10k_htt_rx_crypto_icv_len(ar, enctype)); 1559 } 1560 1561 /* MMIC */ 1562 if ((status->flag & RX_FLAG_MMIC_STRIPPED) && 1563 !ieee80211_has_morefrags(hdr->frame_control) && 1564 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 1565 skb_trim(msdu, msdu->len - MICHAEL_MIC_LEN); 1566 1567 /* Head */ 1568 if (status->flag & RX_FLAG_IV_STRIPPED) { 1569 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1570 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1571 1572 #if defined(__linux__) 1573 memmove((void *)msdu->data + crypto_len, 1574 #elif defined(__FreeBSD__) 1575 memmove((u8 *)msdu->data + crypto_len, 1576 #endif 1577 (void *)msdu->data, hdr_len); 1578 skb_pull(msdu, crypto_len); 1579 } 1580 } 1581 1582 static void ath10k_htt_rx_h_undecap_nwifi(struct ath10k *ar, 1583 struct sk_buff *msdu, 1584 struct ieee80211_rx_status *status, 1585 const u8 first_hdr[64], 1586 enum htt_rx_mpdu_encrypt_type enctype) 1587 { 1588 struct ath10k_hw_params *hw = &ar->hw_params; 1589 #if defined(__linux__) 1590 struct ieee80211_hdr *hdr; 1591 #elif defined(__FreeBSD__) 1592 const struct ieee80211_hdr *hdr; 1593 struct ieee80211_hdr *hdr2; 1594 #endif 1595 struct htt_rx_desc *rxd; 1596 size_t hdr_len; 1597 u8 da[ETH_ALEN]; 1598 u8 sa[ETH_ALEN]; 1599 int l3_pad_bytes; 1600 int bytes_aligned = ar->hw_params.decap_align_bytes; 1601 1602 /* Delivered decapped frame: 1603 * [nwifi 802.11 header] <-- replaced with 802.11 hdr 1604 * [rfc1042/llc] 1605 * 1606 * Note: The nwifi header doesn't have QoS Control and is 1607 * (always?) a 3addr frame. 1608 * 1609 * Note2: There's no A-MSDU subframe header. Even if it's part 1610 * of an A-MSDU. 1611 */ 1612 1613 /* pull decapped header and copy SA & DA */ 1614 #if defined(__linux__) 1615 rxd = HTT_RX_BUF_TO_RX_DESC(hw, (void *)msdu->data - 1616 #elif defined(__FreeBSD__) 1617 rxd = HTT_RX_BUF_TO_RX_DESC(hw, (u8 *)msdu->data - 1618 #endif 1619 hw->rx_desc_ops->rx_desc_size); 1620 1621 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1622 skb_put(msdu, l3_pad_bytes); 1623 1624 #if defined(__linux__) 1625 hdr = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1626 1627 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr); 1628 ether_addr_copy(da, ieee80211_get_DA(hdr)); 1629 ether_addr_copy(sa, ieee80211_get_SA(hdr)); 1630 #elif defined(__FreeBSD__) 1631 hdr2 = (struct ieee80211_hdr *)(msdu->data + l3_pad_bytes); 1632 1633 hdr_len = ath10k_htt_rx_nwifi_hdrlen(ar, hdr2); 1634 ether_addr_copy(da, ieee80211_get_DA(hdr2)); 1635 ether_addr_copy(sa, ieee80211_get_SA(hdr2)); 1636 #endif 1637 skb_pull(msdu, hdr_len); 1638 1639 /* push original 802.11 header */ 1640 #if defined(__linux__) 1641 hdr = (struct ieee80211_hdr *)first_hdr; 1642 #elif defined(__FreeBSD__) 1643 hdr = (const struct ieee80211_hdr *)first_hdr; 1644 #endif 1645 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1646 1647 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1648 memcpy(skb_push(msdu, 1649 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1650 #if defined(__linux__) 1651 (void *)hdr + round_up(hdr_len, bytes_aligned), 1652 #elif defined(__FreeBSD__) 1653 (const u8 *)hdr + round_up(hdr_len, bytes_aligned), 1654 #endif 1655 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1656 } 1657 1658 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1659 1660 /* original 802.11 header has a different DA and in 1661 * case of 4addr it may also have different SA 1662 */ 1663 #if defined(__linux__) 1664 hdr = (struct ieee80211_hdr *)msdu->data; 1665 ether_addr_copy(ieee80211_get_DA(hdr), da); 1666 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1667 #elif defined(__FreeBSD__) 1668 hdr2 = (struct ieee80211_hdr *)msdu->data; 1669 ether_addr_copy(ieee80211_get_DA(hdr2), da); 1670 ether_addr_copy(ieee80211_get_SA(hdr2), sa); 1671 #endif 1672 } 1673 1674 static void *ath10k_htt_rx_h_find_rfc1042(struct ath10k *ar, 1675 struct sk_buff *msdu, 1676 enum htt_rx_mpdu_encrypt_type enctype) 1677 { 1678 struct ieee80211_hdr *hdr; 1679 struct ath10k_hw_params *hw = &ar->hw_params; 1680 struct htt_rx_desc *rxd; 1681 struct rx_msdu_end_common *rxd_msdu_end_common; 1682 u8 *rxd_rx_hdr_status; 1683 size_t hdr_len, crypto_len; 1684 #if defined(__linux__) 1685 void *rfc1042; 1686 #elif defined(__FreeBSD__) 1687 u8 *rfc1042; 1688 #endif 1689 bool is_first, is_last, is_amsdu; 1690 int bytes_aligned = ar->hw_params.decap_align_bytes; 1691 1692 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1693 #if defined(__linux__) 1694 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1695 #elif defined(__FreeBSD__) 1696 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1697 #endif 1698 1699 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 1700 rxd_rx_hdr_status = ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 1701 hdr = (void *)rxd_rx_hdr_status; 1702 1703 is_first = !!(rxd_msdu_end_common->info0 & 1704 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 1705 is_last = !!(rxd_msdu_end_common->info0 & 1706 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 1707 is_amsdu = !(is_first && is_last); 1708 1709 #if defined(__linux__) 1710 rfc1042 = hdr; 1711 #elif defined(__FreeBSD__) 1712 rfc1042 = (void *)hdr; 1713 #endif 1714 1715 if (is_first) { 1716 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1717 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 1718 1719 rfc1042 += round_up(hdr_len, bytes_aligned) + 1720 round_up(crypto_len, bytes_aligned); 1721 } 1722 1723 if (is_amsdu) 1724 rfc1042 += sizeof(struct amsdu_subframe_hdr); 1725 1726 return rfc1042; 1727 } 1728 1729 static void ath10k_htt_rx_h_undecap_eth(struct ath10k *ar, 1730 struct sk_buff *msdu, 1731 struct ieee80211_rx_status *status, 1732 const u8 first_hdr[64], 1733 enum htt_rx_mpdu_encrypt_type enctype) 1734 { 1735 struct ath10k_hw_params *hw = &ar->hw_params; 1736 #if defined(__linux__) 1737 struct ieee80211_hdr *hdr; 1738 #elif defined(__FreeBSD__) 1739 const struct ieee80211_hdr *hdr; 1740 struct ieee80211_hdr *hdr2; 1741 #endif 1742 struct ethhdr *eth; 1743 size_t hdr_len; 1744 void *rfc1042; 1745 u8 da[ETH_ALEN]; 1746 u8 sa[ETH_ALEN]; 1747 int l3_pad_bytes; 1748 struct htt_rx_desc *rxd; 1749 int bytes_aligned = ar->hw_params.decap_align_bytes; 1750 1751 /* Delivered decapped frame: 1752 * [eth header] <-- replaced with 802.11 hdr & rfc1042/llc 1753 * [payload] 1754 */ 1755 1756 rfc1042 = ath10k_htt_rx_h_find_rfc1042(ar, msdu, enctype); 1757 if (WARN_ON_ONCE(!rfc1042)) 1758 return; 1759 1760 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1761 #if defined(__linux__) 1762 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1763 #elif defined(__FreeBSD__) 1764 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1765 #endif 1766 1767 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1768 skb_put(msdu, l3_pad_bytes); 1769 skb_pull(msdu, l3_pad_bytes); 1770 1771 /* pull decapped header and copy SA & DA */ 1772 eth = (struct ethhdr *)msdu->data; 1773 ether_addr_copy(da, eth->h_dest); 1774 ether_addr_copy(sa, eth->h_source); 1775 skb_pull(msdu, sizeof(struct ethhdr)); 1776 1777 /* push rfc1042/llc/snap */ 1778 memcpy(skb_push(msdu, sizeof(struct rfc1042_hdr)), rfc1042, 1779 sizeof(struct rfc1042_hdr)); 1780 1781 /* push original 802.11 header */ 1782 #if defined(__linux__) 1783 hdr = (struct ieee80211_hdr *)first_hdr; 1784 #elif defined(__FreeBSD__) 1785 hdr = (const struct ieee80211_hdr *)first_hdr; 1786 #endif 1787 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1788 1789 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1790 memcpy(skb_push(msdu, 1791 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1792 #if defined(__linux__) 1793 (void *)hdr + round_up(hdr_len, bytes_aligned), 1794 #elif defined(__FreeBSD__) 1795 (const u8 *)hdr + round_up(hdr_len, bytes_aligned), 1796 #endif 1797 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1798 } 1799 1800 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1801 1802 /* original 802.11 header has a different DA and in 1803 * case of 4addr it may also have different SA 1804 */ 1805 #if defined(__linux__) 1806 hdr = (struct ieee80211_hdr *)msdu->data; 1807 ether_addr_copy(ieee80211_get_DA(hdr), da); 1808 ether_addr_copy(ieee80211_get_SA(hdr), sa); 1809 #elif defined(__FreeBSD__) 1810 hdr2 = (struct ieee80211_hdr *)msdu->data; 1811 ether_addr_copy(ieee80211_get_DA(hdr2), da); 1812 ether_addr_copy(ieee80211_get_SA(hdr2), sa); 1813 #endif 1814 } 1815 1816 static void ath10k_htt_rx_h_undecap_snap(struct ath10k *ar, 1817 struct sk_buff *msdu, 1818 struct ieee80211_rx_status *status, 1819 const u8 first_hdr[64], 1820 enum htt_rx_mpdu_encrypt_type enctype) 1821 { 1822 struct ath10k_hw_params *hw = &ar->hw_params; 1823 #if defined(__linux__) 1824 struct ieee80211_hdr *hdr; 1825 #elif defined(__FreeBSD__) 1826 const struct ieee80211_hdr *hdr; 1827 #endif 1828 size_t hdr_len; 1829 int l3_pad_bytes; 1830 struct htt_rx_desc *rxd; 1831 int bytes_aligned = ar->hw_params.decap_align_bytes; 1832 1833 /* Delivered decapped frame: 1834 * [amsdu header] <-- replaced with 802.11 hdr 1835 * [rfc1042/llc] 1836 * [payload] 1837 */ 1838 1839 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1840 #if defined(__linux__) 1841 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1842 #elif defined(__FreeBSD__) 1843 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1844 #endif 1845 1846 l3_pad_bytes = ath10k_htt_rx_desc_get_l3_pad_bytes(&ar->hw_params, rxd); 1847 1848 skb_put(msdu, l3_pad_bytes); 1849 skb_pull(msdu, sizeof(struct amsdu_subframe_hdr) + l3_pad_bytes); 1850 1851 #if defined(__linux__) 1852 hdr = (struct ieee80211_hdr *)first_hdr; 1853 #elif defined(__FreeBSD__) 1854 hdr = (const struct ieee80211_hdr *)first_hdr; 1855 #endif 1856 hdr_len = ieee80211_hdrlen(hdr->frame_control); 1857 1858 if (!(status->flag & RX_FLAG_IV_STRIPPED)) { 1859 memcpy(skb_push(msdu, 1860 ath10k_htt_rx_crypto_param_len(ar, enctype)), 1861 #if defined(__linux__) 1862 (void *)hdr + round_up(hdr_len, bytes_aligned), 1863 #elif defined(__FreeBSD__) 1864 (const u8 *)hdr + round_up(hdr_len, bytes_aligned), 1865 #endif 1866 ath10k_htt_rx_crypto_param_len(ar, enctype)); 1867 } 1868 1869 memcpy(skb_push(msdu, hdr_len), hdr, hdr_len); 1870 } 1871 1872 static void ath10k_htt_rx_h_undecap(struct ath10k *ar, 1873 struct sk_buff *msdu, 1874 struct ieee80211_rx_status *status, 1875 u8 first_hdr[64], 1876 enum htt_rx_mpdu_encrypt_type enctype, 1877 bool is_decrypted) 1878 { 1879 struct ath10k_hw_params *hw = &ar->hw_params; 1880 struct htt_rx_desc *rxd; 1881 struct rx_msdu_start_common *rxd_msdu_start_common; 1882 enum rx_msdu_decap_format decap; 1883 1884 /* First msdu's decapped header: 1885 * [802.11 header] <-- padded to 4 bytes long 1886 * [crypto param] <-- padded to 4 bytes long 1887 * [amsdu header] <-- only if A-MSDU 1888 * [rfc1042/llc] 1889 * 1890 * Other (2nd, 3rd, ..) msdu's decapped header: 1891 * [amsdu header] <-- only if A-MSDU 1892 * [rfc1042/llc] 1893 */ 1894 1895 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1896 #if defined(__linux__) 1897 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1898 #elif defined(__FreeBSD__) 1899 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 1900 #endif 1901 1902 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1903 decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1), 1904 RX_MSDU_START_INFO1_DECAP_FORMAT); 1905 1906 switch (decap) { 1907 case RX_MSDU_DECAP_RAW: 1908 ath10k_htt_rx_h_undecap_raw(ar, msdu, status, enctype, 1909 is_decrypted, first_hdr); 1910 break; 1911 case RX_MSDU_DECAP_NATIVE_WIFI: 1912 ath10k_htt_rx_h_undecap_nwifi(ar, msdu, status, first_hdr, 1913 enctype); 1914 break; 1915 case RX_MSDU_DECAP_ETHERNET2_DIX: 1916 ath10k_htt_rx_h_undecap_eth(ar, msdu, status, first_hdr, enctype); 1917 break; 1918 case RX_MSDU_DECAP_8023_SNAP_LLC: 1919 ath10k_htt_rx_h_undecap_snap(ar, msdu, status, first_hdr, 1920 enctype); 1921 break; 1922 } 1923 } 1924 1925 static int ath10k_htt_rx_get_csum_state(struct ath10k_hw_params *hw, struct sk_buff *skb) 1926 { 1927 struct htt_rx_desc *rxd; 1928 struct rx_attention *rxd_attention; 1929 struct rx_msdu_start_common *rxd_msdu_start_common; 1930 u32 flags, info; 1931 bool is_ip4, is_ip6; 1932 bool is_tcp, is_udp; 1933 bool ip_csum_ok, tcpudp_csum_ok; 1934 1935 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 1936 #if defined(__linux__) 1937 (void *)skb->data - hw->rx_desc_ops->rx_desc_size); 1938 #elif defined(__FreeBSD__) 1939 (u8 *)skb->data - hw->rx_desc_ops->rx_desc_size); 1940 #endif 1941 1942 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 1943 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 1944 flags = __le32_to_cpu(rxd_attention->flags); 1945 info = __le32_to_cpu(rxd_msdu_start_common->info1); 1946 1947 is_ip4 = !!(info & RX_MSDU_START_INFO1_IPV4_PROTO); 1948 is_ip6 = !!(info & RX_MSDU_START_INFO1_IPV6_PROTO); 1949 is_tcp = !!(info & RX_MSDU_START_INFO1_TCP_PROTO); 1950 is_udp = !!(info & RX_MSDU_START_INFO1_UDP_PROTO); 1951 ip_csum_ok = !(flags & RX_ATTENTION_FLAGS_IP_CHKSUM_FAIL); 1952 tcpudp_csum_ok = !(flags & RX_ATTENTION_FLAGS_TCP_UDP_CHKSUM_FAIL); 1953 1954 if (!is_ip4 && !is_ip6) 1955 return CHECKSUM_NONE; 1956 if (!is_tcp && !is_udp) 1957 return CHECKSUM_NONE; 1958 if (!ip_csum_ok) 1959 return CHECKSUM_NONE; 1960 if (!tcpudp_csum_ok) 1961 return CHECKSUM_NONE; 1962 1963 return CHECKSUM_UNNECESSARY; 1964 } 1965 1966 static void ath10k_htt_rx_h_csum_offload(struct ath10k_hw_params *hw, 1967 struct sk_buff *msdu) 1968 { 1969 msdu->ip_summed = ath10k_htt_rx_get_csum_state(hw, msdu); 1970 } 1971 1972 static u64 ath10k_htt_rx_h_get_pn(struct ath10k *ar, struct sk_buff *skb, 1973 enum htt_rx_mpdu_encrypt_type enctype) 1974 { 1975 struct ieee80211_hdr *hdr; 1976 u64 pn = 0; 1977 u8 *ehdr; 1978 1979 hdr = (struct ieee80211_hdr *)skb->data; 1980 ehdr = skb->data + ieee80211_hdrlen(hdr->frame_control); 1981 1982 if (enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) { 1983 pn = ehdr[0]; 1984 pn |= (u64)ehdr[1] << 8; 1985 pn |= (u64)ehdr[4] << 16; 1986 pn |= (u64)ehdr[5] << 24; 1987 pn |= (u64)ehdr[6] << 32; 1988 pn |= (u64)ehdr[7] << 40; 1989 } 1990 return pn; 1991 } 1992 1993 static bool ath10k_htt_rx_h_frag_multicast_check(struct ath10k *ar, 1994 struct sk_buff *skb) 1995 { 1996 struct ieee80211_hdr *hdr; 1997 1998 hdr = (struct ieee80211_hdr *)skb->data; 1999 return !is_multicast_ether_addr(hdr->addr1); 2000 } 2001 2002 static bool ath10k_htt_rx_h_frag_pn_check(struct ath10k *ar, 2003 struct sk_buff *skb, 2004 u16 peer_id, 2005 enum htt_rx_mpdu_encrypt_type enctype) 2006 { 2007 struct ath10k_peer *peer; 2008 union htt_rx_pn_t *last_pn, new_pn = {0}; 2009 struct ieee80211_hdr *hdr; 2010 u8 tid, frag_number; 2011 u32 seq; 2012 2013 peer = ath10k_peer_find_by_id(ar, peer_id); 2014 if (!peer) { 2015 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer for frag pn check\n"); 2016 return false; 2017 } 2018 2019 hdr = (struct ieee80211_hdr *)skb->data; 2020 if (ieee80211_is_data_qos(hdr->frame_control)) 2021 tid = ieee80211_get_tid(hdr); 2022 else 2023 tid = ATH10K_TXRX_NON_QOS_TID; 2024 2025 last_pn = &peer->frag_tids_last_pn[tid]; 2026 new_pn.pn48 = ath10k_htt_rx_h_get_pn(ar, skb, enctype); 2027 frag_number = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2028 seq = IEEE80211_SEQ_TO_SN(__le16_to_cpu(hdr->seq_ctrl)); 2029 2030 if (frag_number == 0) { 2031 last_pn->pn48 = new_pn.pn48; 2032 peer->frag_tids_seq[tid] = seq; 2033 } else { 2034 if (seq != peer->frag_tids_seq[tid]) 2035 return false; 2036 2037 if (new_pn.pn48 != last_pn->pn48 + 1) 2038 return false; 2039 2040 last_pn->pn48 = new_pn.pn48; 2041 } 2042 2043 return true; 2044 } 2045 2046 static void ath10k_htt_rx_h_mpdu(struct ath10k *ar, 2047 struct sk_buff_head *amsdu, 2048 struct ieee80211_rx_status *status, 2049 bool fill_crypt_header, 2050 u8 *rx_hdr, 2051 enum ath10k_pkt_rx_err *err, 2052 u16 peer_id, 2053 bool frag) 2054 { 2055 struct sk_buff *first; 2056 struct sk_buff *last; 2057 struct sk_buff *msdu, *temp; 2058 struct ath10k_hw_params *hw = &ar->hw_params; 2059 struct htt_rx_desc *rxd; 2060 struct rx_attention *rxd_attention; 2061 struct rx_mpdu_start *rxd_mpdu_start; 2062 2063 struct ieee80211_hdr *hdr; 2064 enum htt_rx_mpdu_encrypt_type enctype; 2065 u8 first_hdr[64]; 2066 u8 *qos; 2067 bool has_fcs_err; 2068 bool has_crypto_err; 2069 bool has_tkip_err; 2070 bool has_peer_idx_invalid; 2071 bool is_decrypted; 2072 bool is_mgmt; 2073 u32 attention; 2074 bool frag_pn_check = true, multicast_check = true; 2075 2076 if (skb_queue_empty(amsdu)) 2077 return; 2078 2079 first = skb_peek(amsdu); 2080 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2081 #if defined(__linux__) 2082 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 2083 #elif defined(__FreeBSD__) 2084 (u8 *)first->data - hw->rx_desc_ops->rx_desc_size); 2085 #endif 2086 2087 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 2088 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 2089 2090 is_mgmt = !!(rxd_attention->flags & 2091 __cpu_to_le32(RX_ATTENTION_FLAGS_MGMT_TYPE)); 2092 2093 enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0), 2094 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 2095 2096 /* First MSDU's Rx descriptor in an A-MSDU contains full 802.11 2097 * decapped header. It'll be used for undecapping of each MSDU. 2098 */ 2099 hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 2100 memcpy(first_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 2101 2102 if (rx_hdr) 2103 memcpy(rx_hdr, hdr, RX_HTT_HDR_STATUS_LEN); 2104 2105 /* Each A-MSDU subframe will use the original header as the base and be 2106 * reported as a separate MSDU so strip the A-MSDU bit from QoS Ctl. 2107 */ 2108 hdr = (void *)first_hdr; 2109 2110 if (ieee80211_is_data_qos(hdr->frame_control)) { 2111 qos = ieee80211_get_qos_ctl(hdr); 2112 qos[0] &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2113 } 2114 2115 /* Some attention flags are valid only in the last MSDU. */ 2116 last = skb_peek_tail(amsdu); 2117 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2118 #if defined(__linux__) 2119 (void *)last->data - hw->rx_desc_ops->rx_desc_size); 2120 #elif defined(__FreeBSD__) 2121 (u8 *)last->data - hw->rx_desc_ops->rx_desc_size); 2122 #endif 2123 2124 rxd_attention = ath10k_htt_rx_desc_get_attention(hw, rxd); 2125 attention = __le32_to_cpu(rxd_attention->flags); 2126 2127 has_fcs_err = !!(attention & RX_ATTENTION_FLAGS_FCS_ERR); 2128 has_crypto_err = !!(attention & RX_ATTENTION_FLAGS_DECRYPT_ERR); 2129 has_tkip_err = !!(attention & RX_ATTENTION_FLAGS_TKIP_MIC_ERR); 2130 has_peer_idx_invalid = !!(attention & RX_ATTENTION_FLAGS_PEER_IDX_INVALID); 2131 2132 /* Note: If hardware captures an encrypted frame that it can't decrypt, 2133 * e.g. due to fcs error, missing peer or invalid key data it will 2134 * report the frame as raw. 2135 */ 2136 is_decrypted = (enctype != HTT_RX_MPDU_ENCRYPT_NONE && 2137 !has_fcs_err && 2138 !has_crypto_err && 2139 !has_peer_idx_invalid); 2140 2141 /* Clear per-MPDU flags while leaving per-PPDU flags intact. */ 2142 status->flag &= ~(RX_FLAG_FAILED_FCS_CRC | 2143 RX_FLAG_MMIC_ERROR | 2144 RX_FLAG_DECRYPTED | 2145 RX_FLAG_IV_STRIPPED | 2146 RX_FLAG_ONLY_MONITOR | 2147 RX_FLAG_MMIC_STRIPPED); 2148 2149 if (has_fcs_err) 2150 status->flag |= RX_FLAG_FAILED_FCS_CRC; 2151 2152 if (has_tkip_err) 2153 status->flag |= RX_FLAG_MMIC_ERROR; 2154 2155 if (err) { 2156 if (has_fcs_err) 2157 *err = ATH10K_PKT_RX_ERR_FCS; 2158 else if (has_tkip_err) 2159 *err = ATH10K_PKT_RX_ERR_TKIP; 2160 else if (has_crypto_err) 2161 *err = ATH10K_PKT_RX_ERR_CRYPT; 2162 else if (has_peer_idx_invalid) 2163 *err = ATH10K_PKT_RX_ERR_PEER_IDX_INVAL; 2164 } 2165 2166 /* Firmware reports all necessary management frames via WMI already. 2167 * They are not reported to monitor interfaces at all so pass the ones 2168 * coming via HTT to monitor interfaces instead. This simplifies 2169 * matters a lot. 2170 */ 2171 if (is_mgmt) 2172 status->flag |= RX_FLAG_ONLY_MONITOR; 2173 2174 if (is_decrypted) { 2175 status->flag |= RX_FLAG_DECRYPTED; 2176 2177 if (likely(!is_mgmt)) 2178 status->flag |= RX_FLAG_MMIC_STRIPPED; 2179 2180 if (fill_crypt_header) 2181 status->flag |= RX_FLAG_MIC_STRIPPED | 2182 RX_FLAG_ICV_STRIPPED; 2183 else 2184 status->flag |= RX_FLAG_IV_STRIPPED; 2185 } 2186 2187 skb_queue_walk(amsdu, msdu) { 2188 if (frag && !fill_crypt_header && is_decrypted && 2189 enctype == HTT_RX_MPDU_ENCRYPT_AES_CCM_WPA2) 2190 frag_pn_check = ath10k_htt_rx_h_frag_pn_check(ar, 2191 msdu, 2192 peer_id, 2193 enctype); 2194 2195 if (frag) 2196 multicast_check = ath10k_htt_rx_h_frag_multicast_check(ar, 2197 msdu); 2198 2199 if (!frag_pn_check || !multicast_check) { 2200 /* Discard the fragment with invalid PN or multicast DA 2201 */ 2202 temp = msdu->prev; 2203 __skb_unlink(msdu, amsdu); 2204 dev_kfree_skb_any(msdu); 2205 msdu = temp; 2206 frag_pn_check = true; 2207 multicast_check = true; 2208 continue; 2209 } 2210 2211 ath10k_htt_rx_h_csum_offload(&ar->hw_params, msdu); 2212 2213 if (frag && !fill_crypt_header && 2214 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 2215 status->flag &= ~RX_FLAG_MMIC_STRIPPED; 2216 2217 ath10k_htt_rx_h_undecap(ar, msdu, status, first_hdr, enctype, 2218 is_decrypted); 2219 2220 /* Undecapping involves copying the original 802.11 header back 2221 * to sk_buff. If frame is protected and hardware has decrypted 2222 * it then remove the protected bit. 2223 */ 2224 if (!is_decrypted) 2225 continue; 2226 if (is_mgmt) 2227 continue; 2228 2229 if (fill_crypt_header) 2230 continue; 2231 2232 hdr = (void *)msdu->data; 2233 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2234 2235 if (frag && !fill_crypt_header && 2236 enctype == HTT_RX_MPDU_ENCRYPT_TKIP_WPA) 2237 status->flag &= ~RX_FLAG_IV_STRIPPED & 2238 ~RX_FLAG_MMIC_STRIPPED; 2239 } 2240 } 2241 2242 static void ath10k_htt_rx_h_enqueue(struct ath10k *ar, 2243 struct sk_buff_head *amsdu, 2244 struct ieee80211_rx_status *status) 2245 { 2246 struct sk_buff *msdu; 2247 struct sk_buff *first_subframe; 2248 2249 first_subframe = skb_peek(amsdu); 2250 2251 while ((msdu = __skb_dequeue(amsdu))) { 2252 /* Setup per-MSDU flags */ 2253 if (skb_queue_empty(amsdu)) 2254 status->flag &= ~RX_FLAG_AMSDU_MORE; 2255 else 2256 status->flag |= RX_FLAG_AMSDU_MORE; 2257 2258 if (msdu == first_subframe) { 2259 first_subframe = NULL; 2260 status->flag &= ~RX_FLAG_ALLOW_SAME_PN; 2261 } else { 2262 status->flag |= RX_FLAG_ALLOW_SAME_PN; 2263 } 2264 2265 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 2266 } 2267 } 2268 2269 static int ath10k_unchain_msdu(struct sk_buff_head *amsdu, 2270 unsigned long *unchain_cnt) 2271 { 2272 struct sk_buff *skb, *first; 2273 int space; 2274 int total_len = 0; 2275 int amsdu_len = skb_queue_len(amsdu); 2276 2277 /* TODO: Might could optimize this by using 2278 * skb_try_coalesce or similar method to 2279 * decrease copying, or maybe get mac80211 to 2280 * provide a way to just receive a list of 2281 * skb? 2282 */ 2283 2284 first = __skb_dequeue(amsdu); 2285 2286 /* Allocate total length all at once. */ 2287 skb_queue_walk(amsdu, skb) 2288 total_len += skb->len; 2289 2290 space = total_len - skb_tailroom(first); 2291 if ((space > 0) && 2292 (pskb_expand_head(first, 0, space, GFP_ATOMIC) < 0)) { 2293 /* TODO: bump some rx-oom error stat */ 2294 /* put it back together so we can free the 2295 * whole list at once. 2296 */ 2297 __skb_queue_head(amsdu, first); 2298 return -1; 2299 } 2300 2301 /* Walk list again, copying contents into 2302 * msdu_head 2303 */ 2304 while ((skb = __skb_dequeue(amsdu))) { 2305 skb_copy_from_linear_data(skb, skb_put(first, skb->len), 2306 skb->len); 2307 dev_kfree_skb_any(skb); 2308 } 2309 2310 __skb_queue_head(amsdu, first); 2311 2312 *unchain_cnt += amsdu_len - 1; 2313 2314 return 0; 2315 } 2316 2317 static void ath10k_htt_rx_h_unchain(struct ath10k *ar, 2318 struct sk_buff_head *amsdu, 2319 unsigned long *drop_cnt, 2320 unsigned long *unchain_cnt) 2321 { 2322 struct sk_buff *first; 2323 struct ath10k_hw_params *hw = &ar->hw_params; 2324 struct htt_rx_desc *rxd; 2325 struct rx_msdu_start_common *rxd_msdu_start_common; 2326 struct rx_frag_info_common *rxd_frag_info; 2327 enum rx_msdu_decap_format decap; 2328 2329 first = skb_peek(amsdu); 2330 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2331 #if defined(__linux__) 2332 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 2333 #elif defined(__FreeBSD__) 2334 (u8 *)first->data - hw->rx_desc_ops->rx_desc_size); 2335 #endif 2336 2337 rxd_msdu_start_common = ath10k_htt_rx_desc_get_msdu_start(hw, rxd); 2338 rxd_frag_info = ath10k_htt_rx_desc_get_frag_info(hw, rxd); 2339 decap = MS(__le32_to_cpu(rxd_msdu_start_common->info1), 2340 RX_MSDU_START_INFO1_DECAP_FORMAT); 2341 2342 /* FIXME: Current unchaining logic can only handle simple case of raw 2343 * msdu chaining. If decapping is other than raw the chaining may be 2344 * more complex and this isn't handled by the current code. Don't even 2345 * try re-constructing such frames - it'll be pretty much garbage. 2346 */ 2347 if (decap != RX_MSDU_DECAP_RAW || 2348 skb_queue_len(amsdu) != 1 + rxd_frag_info->ring2_more_count) { 2349 *drop_cnt += skb_queue_len(amsdu); 2350 __skb_queue_purge(amsdu); 2351 return; 2352 } 2353 2354 ath10k_unchain_msdu(amsdu, unchain_cnt); 2355 } 2356 2357 static bool ath10k_htt_rx_validate_amsdu(struct ath10k *ar, 2358 struct sk_buff_head *amsdu) 2359 { 2360 u8 *subframe_hdr; 2361 struct sk_buff *first; 2362 bool is_first, is_last; 2363 struct ath10k_hw_params *hw = &ar->hw_params; 2364 struct htt_rx_desc *rxd; 2365 struct rx_msdu_end_common *rxd_msdu_end_common; 2366 struct rx_mpdu_start *rxd_mpdu_start; 2367 struct ieee80211_hdr *hdr; 2368 size_t hdr_len, crypto_len; 2369 enum htt_rx_mpdu_encrypt_type enctype; 2370 int bytes_aligned = ar->hw_params.decap_align_bytes; 2371 2372 first = skb_peek(amsdu); 2373 2374 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 2375 #if defined(__linux__) 2376 (void *)first->data - hw->rx_desc_ops->rx_desc_size); 2377 #elif defined(__FreeBSD__) 2378 (u8 *)first->data - hw->rx_desc_ops->rx_desc_size); 2379 #endif 2380 2381 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 2382 rxd_mpdu_start = ath10k_htt_rx_desc_get_mpdu_start(hw, rxd); 2383 hdr = (void *)ath10k_htt_rx_desc_get_rx_hdr_status(hw, rxd); 2384 2385 is_first = !!(rxd_msdu_end_common->info0 & 2386 __cpu_to_le32(RX_MSDU_END_INFO0_FIRST_MSDU)); 2387 is_last = !!(rxd_msdu_end_common->info0 & 2388 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)); 2389 2390 /* Return in case of non-aggregated msdu */ 2391 if (is_first && is_last) 2392 return true; 2393 2394 /* First msdu flag is not set for the first msdu of the list */ 2395 if (!is_first) 2396 return false; 2397 2398 enctype = MS(__le32_to_cpu(rxd_mpdu_start->info0), 2399 RX_MPDU_START_INFO0_ENCRYPT_TYPE); 2400 2401 hdr_len = ieee80211_hdrlen(hdr->frame_control); 2402 crypto_len = ath10k_htt_rx_crypto_param_len(ar, enctype); 2403 2404 subframe_hdr = (u8 *)hdr + round_up(hdr_len, bytes_aligned) + 2405 crypto_len; 2406 2407 /* Validate if the amsdu has a proper first subframe. 2408 * There are chances a single msdu can be received as amsdu when 2409 * the unauthenticated amsdu flag of a QoS header 2410 * gets flipped in non-SPP AMSDU's, in such cases the first 2411 * subframe has llc/snap header in place of a valid da. 2412 * return false if the da matches rfc1042 pattern 2413 */ 2414 if (ether_addr_equal(subframe_hdr, rfc1042_header)) 2415 return false; 2416 2417 return true; 2418 } 2419 2420 static bool ath10k_htt_rx_amsdu_allowed(struct ath10k *ar, 2421 struct sk_buff_head *amsdu, 2422 struct ieee80211_rx_status *rx_status) 2423 { 2424 if (!rx_status->freq) { 2425 ath10k_dbg(ar, ATH10K_DBG_HTT, "no channel configured; ignoring frame(s)!\n"); 2426 return false; 2427 } 2428 2429 if (test_bit(ATH10K_CAC_RUNNING, &ar->dev_flags)) { 2430 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx cac running\n"); 2431 return false; 2432 } 2433 2434 if (!ath10k_htt_rx_validate_amsdu(ar, amsdu)) { 2435 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid amsdu received\n"); 2436 return false; 2437 } 2438 2439 return true; 2440 } 2441 2442 static void ath10k_htt_rx_h_filter(struct ath10k *ar, 2443 struct sk_buff_head *amsdu, 2444 struct ieee80211_rx_status *rx_status, 2445 unsigned long *drop_cnt) 2446 { 2447 if (skb_queue_empty(amsdu)) 2448 return; 2449 2450 if (ath10k_htt_rx_amsdu_allowed(ar, amsdu, rx_status)) 2451 return; 2452 2453 if (drop_cnt) 2454 *drop_cnt += skb_queue_len(amsdu); 2455 2456 __skb_queue_purge(amsdu); 2457 } 2458 2459 static int ath10k_htt_rx_handle_amsdu(struct ath10k_htt *htt) 2460 { 2461 struct ath10k *ar = htt->ar; 2462 struct ieee80211_rx_status *rx_status = &htt->rx_status; 2463 struct sk_buff_head amsdu; 2464 int ret; 2465 unsigned long drop_cnt = 0; 2466 unsigned long unchain_cnt = 0; 2467 unsigned long drop_cnt_filter = 0; 2468 unsigned long msdus_to_queue, num_msdus; 2469 enum ath10k_pkt_rx_err err = ATH10K_PKT_RX_ERR_MAX; 2470 u8 first_hdr[RX_HTT_HDR_STATUS_LEN]; 2471 2472 __skb_queue_head_init(&amsdu); 2473 2474 spin_lock_bh(&htt->rx_ring.lock); 2475 if (htt->rx_confused) { 2476 spin_unlock_bh(&htt->rx_ring.lock); 2477 return -EIO; 2478 } 2479 ret = ath10k_htt_rx_amsdu_pop(htt, &amsdu); 2480 spin_unlock_bh(&htt->rx_ring.lock); 2481 2482 if (ret < 0) { 2483 ath10k_warn(ar, "rx ring became corrupted: %d\n", ret); 2484 __skb_queue_purge(&amsdu); 2485 /* FIXME: It's probably a good idea to reboot the 2486 * device instead of leaving it inoperable. 2487 */ 2488 htt->rx_confused = true; 2489 return ret; 2490 } 2491 2492 num_msdus = skb_queue_len(&amsdu); 2493 2494 ath10k_htt_rx_h_ppdu(ar, &amsdu, rx_status, 0xffff); 2495 2496 /* only for ret = 1 indicates chained msdus */ 2497 if (ret > 0) 2498 ath10k_htt_rx_h_unchain(ar, &amsdu, &drop_cnt, &unchain_cnt); 2499 2500 ath10k_htt_rx_h_filter(ar, &amsdu, rx_status, &drop_cnt_filter); 2501 ath10k_htt_rx_h_mpdu(ar, &amsdu, rx_status, true, first_hdr, &err, 0, 2502 false); 2503 msdus_to_queue = skb_queue_len(&amsdu); 2504 ath10k_htt_rx_h_enqueue(ar, &amsdu, rx_status); 2505 2506 ath10k_sta_update_rx_tid_stats(ar, first_hdr, num_msdus, err, 2507 unchain_cnt, drop_cnt, drop_cnt_filter, 2508 msdus_to_queue); 2509 2510 return 0; 2511 } 2512 2513 static void ath10k_htt_rx_mpdu_desc_pn_hl(struct htt_hl_rx_desc *rx_desc, 2514 union htt_rx_pn_t *pn, 2515 int pn_len_bits) 2516 { 2517 switch (pn_len_bits) { 2518 case 48: 2519 pn->pn48 = __le32_to_cpu(rx_desc->pn_31_0) + 2520 ((u64)(__le32_to_cpu(rx_desc->u0.pn_63_32) & 0xFFFF) << 32); 2521 break; 2522 case 24: 2523 pn->pn24 = __le32_to_cpu(rx_desc->pn_31_0); 2524 break; 2525 } 2526 } 2527 2528 static bool ath10k_htt_rx_pn_cmp48(union htt_rx_pn_t *new_pn, 2529 union htt_rx_pn_t *old_pn) 2530 { 2531 return ((new_pn->pn48 & 0xffffffffffffULL) <= 2532 (old_pn->pn48 & 0xffffffffffffULL)); 2533 } 2534 2535 static bool ath10k_htt_rx_pn_check_replay_hl(struct ath10k *ar, 2536 struct ath10k_peer *peer, 2537 struct htt_rx_indication_hl *rx) 2538 { 2539 bool last_pn_valid, pn_invalid = false; 2540 enum htt_txrx_sec_cast_type sec_index; 2541 enum htt_security_types sec_type; 2542 union htt_rx_pn_t new_pn = {0}; 2543 struct htt_hl_rx_desc *rx_desc; 2544 union htt_rx_pn_t *last_pn; 2545 u32 rx_desc_info, tid; 2546 int num_mpdu_ranges; 2547 2548 lockdep_assert_held(&ar->data_lock); 2549 2550 if (!peer) 2551 return false; 2552 2553 if (!(rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU)) 2554 return false; 2555 2556 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2557 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2558 2559 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2560 rx_desc_info = __le32_to_cpu(rx_desc->info); 2561 2562 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) 2563 return false; 2564 2565 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2566 last_pn_valid = peer->tids_last_pn_valid[tid]; 2567 last_pn = &peer->tids_last_pn[tid]; 2568 2569 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2570 sec_index = HTT_TXRX_SEC_MCAST; 2571 else 2572 sec_index = HTT_TXRX_SEC_UCAST; 2573 2574 sec_type = peer->rx_pn[sec_index].sec_type; 2575 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2576 2577 if (sec_type != HTT_SECURITY_AES_CCMP && 2578 sec_type != HTT_SECURITY_TKIP && 2579 sec_type != HTT_SECURITY_TKIP_NOMIC) 2580 return false; 2581 2582 if (last_pn_valid) 2583 pn_invalid = ath10k_htt_rx_pn_cmp48(&new_pn, last_pn); 2584 else 2585 peer->tids_last_pn_valid[tid] = true; 2586 2587 if (!pn_invalid) 2588 last_pn->pn48 = new_pn.pn48; 2589 2590 return pn_invalid; 2591 } 2592 2593 static bool ath10k_htt_rx_proc_rx_ind_hl(struct ath10k_htt *htt, 2594 struct htt_rx_indication_hl *rx, 2595 struct sk_buff *skb, 2596 enum htt_rx_pn_check_type check_pn_type, 2597 enum htt_rx_tkip_demic_type tkip_mic_type) 2598 { 2599 struct ath10k *ar = htt->ar; 2600 struct ath10k_peer *peer; 2601 struct htt_rx_indication_mpdu_range *mpdu_ranges; 2602 struct fw_rx_desc_hl *fw_desc; 2603 enum htt_txrx_sec_cast_type sec_index; 2604 enum htt_security_types sec_type; 2605 union htt_rx_pn_t new_pn = {0}; 2606 struct htt_hl_rx_desc *rx_desc; 2607 struct ieee80211_hdr *hdr; 2608 struct ieee80211_rx_status *rx_status; 2609 u16 peer_id; 2610 u8 rx_desc_len; 2611 int num_mpdu_ranges; 2612 size_t tot_hdr_len; 2613 struct ieee80211_channel *ch; 2614 bool pn_invalid, qos, first_msdu; 2615 u32 tid, rx_desc_info; 2616 2617 peer_id = __le16_to_cpu(rx->hdr.peer_id); 2618 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2619 2620 spin_lock_bh(&ar->data_lock); 2621 peer = ath10k_peer_find_by_id(ar, peer_id); 2622 spin_unlock_bh(&ar->data_lock); 2623 if (!peer && peer_id != HTT_INVALID_PEERID) 2624 ath10k_warn(ar, "Got RX ind from invalid peer: %u\n", peer_id); 2625 2626 if (!peer) 2627 return true; 2628 2629 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 2630 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2631 mpdu_ranges = htt_rx_ind_get_mpdu_ranges_hl(rx); 2632 fw_desc = &rx->fw_desc; 2633 rx_desc_len = fw_desc->len; 2634 2635 if (fw_desc->u.bits.discard) { 2636 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt discard mpdu\n"); 2637 goto err; 2638 } 2639 2640 /* I have not yet seen any case where num_mpdu_ranges > 1. 2641 * qcacld does not seem handle that case either, so we introduce the 2642 * same limitation here as well. 2643 */ 2644 if (num_mpdu_ranges > 1) 2645 ath10k_warn(ar, 2646 "Unsupported number of MPDU ranges: %d, ignoring all but the first\n", 2647 num_mpdu_ranges); 2648 2649 if (mpdu_ranges->mpdu_range_status != 2650 HTT_RX_IND_MPDU_STATUS_OK && 2651 mpdu_ranges->mpdu_range_status != 2652 HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) { 2653 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt mpdu_range_status %d\n", 2654 mpdu_ranges->mpdu_range_status); 2655 goto err; 2656 } 2657 2658 rx_desc = (struct htt_hl_rx_desc *)&rx->mpdu_ranges[num_mpdu_ranges]; 2659 rx_desc_info = __le32_to_cpu(rx_desc->info); 2660 2661 if (MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST)) 2662 sec_index = HTT_TXRX_SEC_MCAST; 2663 else 2664 sec_index = HTT_TXRX_SEC_UCAST; 2665 2666 sec_type = peer->rx_pn[sec_index].sec_type; 2667 first_msdu = rx->fw_desc.flags & FW_RX_DESC_FLAGS_FIRST_MSDU; 2668 2669 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2670 2671 if (check_pn_type == HTT_RX_PN_CHECK && tid >= IEEE80211_NUM_TIDS) { 2672 spin_lock_bh(&ar->data_lock); 2673 pn_invalid = ath10k_htt_rx_pn_check_replay_hl(ar, peer, rx); 2674 spin_unlock_bh(&ar->data_lock); 2675 2676 if (pn_invalid) 2677 goto err; 2678 } 2679 2680 /* Strip off all headers before the MAC header before delivery to 2681 * mac80211 2682 */ 2683 tot_hdr_len = sizeof(struct htt_resp_hdr) + sizeof(rx->hdr) + 2684 sizeof(rx->ppdu) + sizeof(rx->prefix) + 2685 sizeof(rx->fw_desc) + 2686 sizeof(*mpdu_ranges) * num_mpdu_ranges + rx_desc_len; 2687 2688 skb_pull(skb, tot_hdr_len); 2689 2690 hdr = (struct ieee80211_hdr *)skb->data; 2691 qos = ieee80211_is_data_qos(hdr->frame_control); 2692 2693 rx_status = IEEE80211_SKB_RXCB(skb); 2694 memset(rx_status, 0, sizeof(*rx_status)); 2695 2696 if (rx->ppdu.combined_rssi == 0) { 2697 /* SDIO firmware does not provide signal */ 2698 rx_status->signal = 0; 2699 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 2700 } else { 2701 rx_status->signal = ATH10K_DEFAULT_NOISE_FLOOR + 2702 rx->ppdu.combined_rssi; 2703 rx_status->flag &= ~RX_FLAG_NO_SIGNAL_VAL; 2704 } 2705 2706 spin_lock_bh(&ar->data_lock); 2707 ch = ar->scan_channel; 2708 if (!ch) 2709 ch = ar->rx_channel; 2710 if (!ch) 2711 ch = ath10k_htt_rx_h_any_channel(ar); 2712 if (!ch) 2713 ch = ar->tgt_oper_chan; 2714 spin_unlock_bh(&ar->data_lock); 2715 2716 if (ch) { 2717 rx_status->band = ch->band; 2718 rx_status->freq = ch->center_freq; 2719 } 2720 if (rx->fw_desc.flags & FW_RX_DESC_FLAGS_LAST_MSDU) 2721 rx_status->flag &= ~RX_FLAG_AMSDU_MORE; 2722 else 2723 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2724 2725 /* Not entirely sure about this, but all frames from the chipset has 2726 * the protected flag set even though they have already been decrypted. 2727 * Unmasking this flag is necessary in order for mac80211 not to drop 2728 * the frame. 2729 * TODO: Verify this is always the case or find out a way to check 2730 * if there has been hw decryption. 2731 */ 2732 if (ieee80211_has_protected(hdr->frame_control)) { 2733 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2734 rx_status->flag |= RX_FLAG_DECRYPTED | 2735 RX_FLAG_IV_STRIPPED | 2736 RX_FLAG_MMIC_STRIPPED; 2737 2738 if (tid < IEEE80211_NUM_TIDS && 2739 first_msdu && 2740 check_pn_type == HTT_RX_PN_CHECK && 2741 (sec_type == HTT_SECURITY_AES_CCMP || 2742 sec_type == HTT_SECURITY_TKIP || 2743 sec_type == HTT_SECURITY_TKIP_NOMIC)) { 2744 u8 offset, *ivp, i; 2745 s8 keyidx = 0; 2746 __le64 pn48 = cpu_to_le64(new_pn.pn48); 2747 2748 hdr = (struct ieee80211_hdr *)skb->data; 2749 offset = ieee80211_hdrlen(hdr->frame_control); 2750 hdr->frame_control |= __cpu_to_le16(IEEE80211_FCTL_PROTECTED); 2751 rx_status->flag &= ~RX_FLAG_IV_STRIPPED; 2752 2753 memmove(skb->data - IEEE80211_CCMP_HDR_LEN, 2754 skb->data, offset); 2755 skb_push(skb, IEEE80211_CCMP_HDR_LEN); 2756 ivp = skb->data + offset; 2757 memset(skb->data + offset, 0, IEEE80211_CCMP_HDR_LEN); 2758 /* Ext IV */ 2759 ivp[IEEE80211_WEP_IV_LEN - 1] |= ATH10K_IEEE80211_EXTIV; 2760 2761 for (i = 0; i < ARRAY_SIZE(peer->keys); i++) { 2762 if (peer->keys[i] && 2763 peer->keys[i]->flags & IEEE80211_KEY_FLAG_PAIRWISE) 2764 keyidx = peer->keys[i]->keyidx; 2765 } 2766 2767 /* Key ID */ 2768 ivp[IEEE80211_WEP_IV_LEN - 1] |= keyidx << 6; 2769 2770 if (sec_type == HTT_SECURITY_AES_CCMP) { 2771 rx_status->flag |= RX_FLAG_MIC_STRIPPED; 2772 /* pn 0, pn 1 */ 2773 memcpy(skb->data + offset, &pn48, 2); 2774 /* pn 1, pn 3 , pn 34 , pn 5 */ 2775 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2776 } else { 2777 rx_status->flag |= RX_FLAG_ICV_STRIPPED; 2778 /* TSC 0 */ 2779 memcpy(skb->data + offset + 2, &pn48, 1); 2780 /* TSC 1 */ 2781 memcpy(skb->data + offset, ((u8 *)&pn48) + 1, 1); 2782 /* TSC 2 , TSC 3 , TSC 4 , TSC 5*/ 2783 memcpy(skb->data + offset + 4, ((u8 *)&pn48) + 2, 4); 2784 } 2785 } 2786 } 2787 2788 if (tkip_mic_type == HTT_RX_TKIP_MIC) 2789 rx_status->flag &= ~RX_FLAG_IV_STRIPPED & 2790 ~RX_FLAG_MMIC_STRIPPED; 2791 2792 if (mpdu_ranges->mpdu_range_status == HTT_RX_IND_MPDU_STATUS_TKIP_MIC_ERR) 2793 rx_status->flag |= RX_FLAG_MMIC_ERROR; 2794 2795 if (!qos && tid < IEEE80211_NUM_TIDS) { 2796 u8 offset; 2797 __le16 qos_ctrl = 0; 2798 2799 hdr = (struct ieee80211_hdr *)skb->data; 2800 offset = ieee80211_hdrlen(hdr->frame_control); 2801 2802 hdr->frame_control |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); 2803 memmove(skb->data - IEEE80211_QOS_CTL_LEN, skb->data, offset); 2804 skb_push(skb, IEEE80211_QOS_CTL_LEN); 2805 qos_ctrl = cpu_to_le16(tid); 2806 memcpy(skb->data + offset, &qos_ctrl, IEEE80211_QOS_CTL_LEN); 2807 } 2808 2809 if (ar->napi.dev) 2810 ieee80211_rx_napi(ar->hw, NULL, skb, &ar->napi); 2811 else 2812 ieee80211_rx_ni(ar->hw, skb); 2813 2814 /* We have delivered the skb to the upper layers (mac80211) so we 2815 * must not free it. 2816 */ 2817 return false; 2818 err: 2819 /* Tell the caller that it must free the skb since we have not 2820 * consumed it 2821 */ 2822 return true; 2823 } 2824 2825 static int ath10k_htt_rx_frag_tkip_decap_nomic(struct sk_buff *skb, 2826 u16 head_len, 2827 u16 hdr_len) 2828 { 2829 u8 *ivp, *orig_hdr; 2830 2831 orig_hdr = skb->data; 2832 ivp = orig_hdr + hdr_len + head_len; 2833 2834 /* the ExtIV bit is always set to 1 for TKIP */ 2835 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2836 return -EINVAL; 2837 2838 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2839 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2840 skb_trim(skb, skb->len - ATH10K_IEEE80211_TKIP_MICLEN); 2841 return 0; 2842 } 2843 2844 static int ath10k_htt_rx_frag_tkip_decap_withmic(struct sk_buff *skb, 2845 u16 head_len, 2846 u16 hdr_len) 2847 { 2848 u8 *ivp, *orig_hdr; 2849 2850 orig_hdr = skb->data; 2851 ivp = orig_hdr + hdr_len + head_len; 2852 2853 /* the ExtIV bit is always set to 1 for TKIP */ 2854 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2855 return -EINVAL; 2856 2857 memmove(orig_hdr + IEEE80211_TKIP_IV_LEN, orig_hdr, head_len + hdr_len); 2858 skb_pull(skb, IEEE80211_TKIP_IV_LEN); 2859 skb_trim(skb, skb->len - IEEE80211_TKIP_ICV_LEN); 2860 return 0; 2861 } 2862 2863 static int ath10k_htt_rx_frag_ccmp_decap(struct sk_buff *skb, 2864 u16 head_len, 2865 u16 hdr_len) 2866 { 2867 u8 *ivp, *orig_hdr; 2868 2869 orig_hdr = skb->data; 2870 ivp = orig_hdr + hdr_len + head_len; 2871 2872 /* the ExtIV bit is always set to 1 for CCMP */ 2873 if (!(ivp[IEEE80211_WEP_IV_LEN - 1] & ATH10K_IEEE80211_EXTIV)) 2874 return -EINVAL; 2875 2876 skb_trim(skb, skb->len - IEEE80211_CCMP_MIC_LEN); 2877 memmove(orig_hdr + IEEE80211_CCMP_HDR_LEN, orig_hdr, head_len + hdr_len); 2878 skb_pull(skb, IEEE80211_CCMP_HDR_LEN); 2879 return 0; 2880 } 2881 2882 static int ath10k_htt_rx_frag_wep_decap(struct sk_buff *skb, 2883 u16 head_len, 2884 u16 hdr_len) 2885 { 2886 u8 *orig_hdr; 2887 2888 orig_hdr = skb->data; 2889 2890 memmove(orig_hdr + IEEE80211_WEP_IV_LEN, 2891 orig_hdr, head_len + hdr_len); 2892 skb_pull(skb, IEEE80211_WEP_IV_LEN); 2893 skb_trim(skb, skb->len - IEEE80211_WEP_ICV_LEN); 2894 return 0; 2895 } 2896 2897 static bool ath10k_htt_rx_proc_rx_frag_ind_hl(struct ath10k_htt *htt, 2898 struct htt_rx_fragment_indication *rx, 2899 struct sk_buff *skb) 2900 { 2901 struct ath10k *ar = htt->ar; 2902 enum htt_rx_tkip_demic_type tkip_mic = HTT_RX_NON_TKIP_MIC; 2903 enum htt_txrx_sec_cast_type sec_index; 2904 struct htt_rx_indication_hl *rx_hl; 2905 enum htt_security_types sec_type; 2906 u32 tid, frag, seq, rx_desc_info; 2907 union htt_rx_pn_t new_pn = {0}; 2908 struct htt_hl_rx_desc *rx_desc; 2909 u16 peer_id, sc, hdr_space; 2910 union htt_rx_pn_t *last_pn; 2911 struct ieee80211_hdr *hdr; 2912 int ret, num_mpdu_ranges; 2913 struct ath10k_peer *peer; 2914 struct htt_resp *resp; 2915 size_t tot_hdr_len; 2916 2917 resp = (struct htt_resp *)(skb->data + HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2918 skb_pull(skb, HTT_RX_FRAG_IND_INFO0_HEADER_LEN); 2919 skb_trim(skb, skb->len - FCS_LEN); 2920 2921 peer_id = __le16_to_cpu(rx->peer_id); 2922 rx_hl = (struct htt_rx_indication_hl *)(&resp->rx_ind_hl); 2923 2924 spin_lock_bh(&ar->data_lock); 2925 peer = ath10k_peer_find_by_id(ar, peer_id); 2926 if (!peer) { 2927 ath10k_dbg(ar, ATH10K_DBG_HTT, "invalid peer: %u\n", peer_id); 2928 goto err; 2929 } 2930 2931 num_mpdu_ranges = MS(__le32_to_cpu(rx_hl->hdr.info1), 2932 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 2933 2934 tot_hdr_len = sizeof(struct htt_resp_hdr) + 2935 sizeof(rx_hl->hdr) + 2936 sizeof(rx_hl->ppdu) + 2937 sizeof(rx_hl->prefix) + 2938 sizeof(rx_hl->fw_desc) + 2939 sizeof(struct htt_rx_indication_mpdu_range) * num_mpdu_ranges; 2940 2941 tid = MS(rx_hl->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 2942 rx_desc = (struct htt_hl_rx_desc *)(skb->data + tot_hdr_len); 2943 rx_desc_info = __le32_to_cpu(rx_desc->info); 2944 2945 hdr = (struct ieee80211_hdr *)((u8 *)rx_desc + rx_hl->fw_desc.len); 2946 2947 if (is_multicast_ether_addr(hdr->addr1)) { 2948 /* Discard the fragment with multicast DA */ 2949 goto err; 2950 } 2951 2952 if (!MS(rx_desc_info, HTT_RX_DESC_HL_INFO_ENCRYPTED)) { 2953 spin_unlock_bh(&ar->data_lock); 2954 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 2955 HTT_RX_NON_PN_CHECK, 2956 HTT_RX_NON_TKIP_MIC); 2957 } 2958 2959 if (ieee80211_has_retry(hdr->frame_control)) 2960 goto err; 2961 2962 hdr_space = ieee80211_hdrlen(hdr->frame_control); 2963 sc = __le16_to_cpu(hdr->seq_ctrl); 2964 seq = IEEE80211_SEQ_TO_SN(sc); 2965 frag = sc & IEEE80211_SCTL_FRAG; 2966 2967 sec_index = MS(rx_desc_info, HTT_RX_DESC_HL_INFO_MCAST_BCAST) ? 2968 HTT_TXRX_SEC_MCAST : HTT_TXRX_SEC_UCAST; 2969 sec_type = peer->rx_pn[sec_index].sec_type; 2970 ath10k_htt_rx_mpdu_desc_pn_hl(rx_desc, &new_pn, peer->rx_pn[sec_index].pn_len); 2971 2972 switch (sec_type) { 2973 case HTT_SECURITY_TKIP: 2974 tkip_mic = HTT_RX_TKIP_MIC; 2975 ret = ath10k_htt_rx_frag_tkip_decap_withmic(skb, 2976 tot_hdr_len + 2977 rx_hl->fw_desc.len, 2978 hdr_space); 2979 if (ret) 2980 goto err; 2981 break; 2982 case HTT_SECURITY_TKIP_NOMIC: 2983 ret = ath10k_htt_rx_frag_tkip_decap_nomic(skb, 2984 tot_hdr_len + 2985 rx_hl->fw_desc.len, 2986 hdr_space); 2987 if (ret) 2988 goto err; 2989 break; 2990 case HTT_SECURITY_AES_CCMP: 2991 ret = ath10k_htt_rx_frag_ccmp_decap(skb, 2992 tot_hdr_len + rx_hl->fw_desc.len, 2993 hdr_space); 2994 if (ret) 2995 goto err; 2996 break; 2997 case HTT_SECURITY_WEP128: 2998 case HTT_SECURITY_WEP104: 2999 case HTT_SECURITY_WEP40: 3000 ret = ath10k_htt_rx_frag_wep_decap(skb, 3001 tot_hdr_len + rx_hl->fw_desc.len, 3002 hdr_space); 3003 if (ret) 3004 goto err; 3005 break; 3006 default: 3007 break; 3008 } 3009 3010 resp = (struct htt_resp *)(skb->data); 3011 3012 if (sec_type != HTT_SECURITY_AES_CCMP && 3013 sec_type != HTT_SECURITY_TKIP && 3014 sec_type != HTT_SECURITY_TKIP_NOMIC) { 3015 spin_unlock_bh(&ar->data_lock); 3016 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 3017 HTT_RX_NON_PN_CHECK, 3018 HTT_RX_NON_TKIP_MIC); 3019 } 3020 3021 last_pn = &peer->frag_tids_last_pn[tid]; 3022 3023 if (frag == 0) { 3024 if (ath10k_htt_rx_pn_check_replay_hl(ar, peer, &resp->rx_ind_hl)) 3025 goto err; 3026 3027 last_pn->pn48 = new_pn.pn48; 3028 peer->frag_tids_seq[tid] = seq; 3029 } else if (sec_type == HTT_SECURITY_AES_CCMP) { 3030 if (seq != peer->frag_tids_seq[tid]) 3031 goto err; 3032 3033 if (new_pn.pn48 != last_pn->pn48 + 1) 3034 goto err; 3035 3036 last_pn->pn48 = new_pn.pn48; 3037 last_pn = &peer->tids_last_pn[tid]; 3038 last_pn->pn48 = new_pn.pn48; 3039 } 3040 3041 spin_unlock_bh(&ar->data_lock); 3042 3043 return ath10k_htt_rx_proc_rx_ind_hl(htt, &resp->rx_ind_hl, skb, 3044 HTT_RX_NON_PN_CHECK, tkip_mic); 3045 3046 err: 3047 spin_unlock_bh(&ar->data_lock); 3048 3049 /* Tell the caller that it must free the skb since we have not 3050 * consumed it 3051 */ 3052 return true; 3053 } 3054 3055 static void ath10k_htt_rx_proc_rx_ind_ll(struct ath10k_htt *htt, 3056 struct htt_rx_indication *rx) 3057 { 3058 struct ath10k *ar = htt->ar; 3059 struct htt_rx_indication_mpdu_range *mpdu_ranges; 3060 int num_mpdu_ranges; 3061 int i, mpdu_count = 0; 3062 u16 peer_id; 3063 u8 tid; 3064 3065 num_mpdu_ranges = MS(__le32_to_cpu(rx->hdr.info1), 3066 HTT_RX_INDICATION_INFO1_NUM_MPDU_RANGES); 3067 peer_id = __le16_to_cpu(rx->hdr.peer_id); 3068 tid = MS(rx->hdr.info0, HTT_RX_INDICATION_INFO0_EXT_TID); 3069 3070 mpdu_ranges = htt_rx_ind_get_mpdu_ranges(rx); 3071 3072 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt rx ind: ", 3073 rx, struct_size(rx, mpdu_ranges, num_mpdu_ranges)); 3074 3075 for (i = 0; i < num_mpdu_ranges; i++) 3076 mpdu_count += mpdu_ranges[i].mpdu_count; 3077 3078 atomic_add(mpdu_count, &htt->num_mpdus_ready); 3079 3080 ath10k_sta_update_rx_tid_stats_ampdu(ar, peer_id, tid, mpdu_ranges, 3081 num_mpdu_ranges); 3082 } 3083 3084 static void ath10k_htt_rx_tx_compl_ind(struct ath10k *ar, 3085 struct sk_buff *skb) 3086 { 3087 struct ath10k_htt *htt = &ar->htt; 3088 struct htt_resp *resp = (struct htt_resp *)skb->data; 3089 struct htt_tx_done tx_done = {}; 3090 int status = MS(resp->data_tx_completion.flags, HTT_DATA_TX_STATUS); 3091 __le16 msdu_id, *msdus; 3092 bool rssi_enabled = false; 3093 u8 msdu_count = 0, num_airtime_records, tid; 3094 int i, htt_pad = 0; 3095 struct htt_data_tx_compl_ppdu_dur *ppdu_info; 3096 struct ath10k_peer *peer; 3097 u16 ppdu_info_offset = 0, peer_id; 3098 u32 tx_duration; 3099 3100 switch (status) { 3101 case HTT_DATA_TX_STATUS_NO_ACK: 3102 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 3103 break; 3104 case HTT_DATA_TX_STATUS_OK: 3105 tx_done.status = HTT_TX_COMPL_STATE_ACK; 3106 break; 3107 case HTT_DATA_TX_STATUS_DISCARD: 3108 case HTT_DATA_TX_STATUS_POSTPONE: 3109 case HTT_DATA_TX_STATUS_DOWNLOAD_FAIL: 3110 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 3111 break; 3112 default: 3113 ath10k_warn(ar, "unhandled tx completion status %d\n", status); 3114 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 3115 break; 3116 } 3117 3118 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx completion num_msdus %d\n", 3119 resp->data_tx_completion.num_msdus); 3120 3121 msdu_count = resp->data_tx_completion.num_msdus; 3122 msdus = resp->data_tx_completion.msdus; 3123 rssi_enabled = ath10k_is_rssi_enable(&ar->hw_params, resp); 3124 3125 if (rssi_enabled) 3126 htt_pad = ath10k_tx_data_rssi_get_pad_bytes(&ar->hw_params, 3127 resp); 3128 3129 for (i = 0; i < msdu_count; i++) { 3130 msdu_id = msdus[i]; 3131 tx_done.msdu_id = __le16_to_cpu(msdu_id); 3132 3133 if (rssi_enabled) { 3134 /* Total no of MSDUs should be even, 3135 * if odd MSDUs are sent firmware fills 3136 * last msdu id with 0xffff 3137 */ 3138 if (msdu_count & 0x01) { 3139 msdu_id = msdus[msdu_count + i + 1 + htt_pad]; 3140 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 3141 } else { 3142 msdu_id = msdus[msdu_count + i + htt_pad]; 3143 tx_done.ack_rssi = __le16_to_cpu(msdu_id); 3144 } 3145 } 3146 3147 /* kfifo_put: In practice firmware shouldn't fire off per-CE 3148 * interrupt and main interrupt (MSI/-X range case) for the same 3149 * HTC service so it should be safe to use kfifo_put w/o lock. 3150 * 3151 * From kfifo_put() documentation: 3152 * Note that with only one concurrent reader and one concurrent 3153 * writer, you don't need extra locking to use these macro. 3154 */ 3155 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) { 3156 ath10k_txrx_tx_unref(htt, &tx_done); 3157 } else if (!kfifo_put(&htt->txdone_fifo, tx_done)) { 3158 ath10k_warn(ar, "txdone fifo overrun, msdu_id %d status %d\n", 3159 tx_done.msdu_id, tx_done.status); 3160 ath10k_txrx_tx_unref(htt, &tx_done); 3161 } 3162 } 3163 3164 if (!(resp->data_tx_completion.flags2 & HTT_TX_CMPL_FLAG_PPDU_DURATION_PRESENT)) 3165 return; 3166 3167 ppdu_info_offset = (msdu_count & 0x01) ? msdu_count + 1 : msdu_count; 3168 3169 if (rssi_enabled) 3170 ppdu_info_offset += ppdu_info_offset; 3171 3172 if (resp->data_tx_completion.flags2 & 3173 (HTT_TX_CMPL_FLAG_PPID_PRESENT | HTT_TX_CMPL_FLAG_PA_PRESENT)) 3174 ppdu_info_offset += 2; 3175 3176 ppdu_info = (struct htt_data_tx_compl_ppdu_dur *)&msdus[ppdu_info_offset]; 3177 num_airtime_records = FIELD_GET(HTT_TX_COMPL_PPDU_DUR_INFO0_NUM_ENTRIES_MASK, 3178 __le32_to_cpu(ppdu_info->info0)); 3179 3180 for (i = 0; i < num_airtime_records; i++) { 3181 struct htt_data_tx_ppdu_dur *ppdu_dur; 3182 u32 info0; 3183 3184 ppdu_dur = &ppdu_info->ppdu_dur[i]; 3185 info0 = __le32_to_cpu(ppdu_dur->info0); 3186 3187 peer_id = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_PEER_ID_MASK, 3188 info0); 3189 rcu_read_lock(); 3190 spin_lock_bh(&ar->data_lock); 3191 3192 peer = ath10k_peer_find_by_id(ar, peer_id); 3193 if (!peer || !peer->sta) { 3194 spin_unlock_bh(&ar->data_lock); 3195 rcu_read_unlock(); 3196 continue; 3197 } 3198 3199 tid = FIELD_GET(HTT_TX_PPDU_DUR_INFO0_TID_MASK, info0) & 3200 IEEE80211_QOS_CTL_TID_MASK; 3201 tx_duration = __le32_to_cpu(ppdu_dur->tx_duration); 3202 3203 ieee80211_sta_register_airtime(peer->sta, tid, tx_duration, 0); 3204 3205 spin_unlock_bh(&ar->data_lock); 3206 rcu_read_unlock(); 3207 } 3208 } 3209 3210 static void ath10k_htt_rx_addba(struct ath10k *ar, struct htt_resp *resp) 3211 { 3212 struct htt_rx_addba *ev = &resp->rx_addba; 3213 struct ath10k_peer *peer; 3214 struct ath10k_vif *arvif; 3215 u16 info0, tid, peer_id; 3216 3217 info0 = __le16_to_cpu(ev->info0); 3218 tid = MS(info0, HTT_RX_BA_INFO0_TID); 3219 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 3220 3221 ath10k_dbg(ar, ATH10K_DBG_HTT, 3222 "htt rx addba tid %u peer_id %u size %u\n", 3223 tid, peer_id, ev->window_size); 3224 3225 spin_lock_bh(&ar->data_lock); 3226 peer = ath10k_peer_find_by_id(ar, peer_id); 3227 if (!peer) { 3228 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 3229 peer_id); 3230 spin_unlock_bh(&ar->data_lock); 3231 return; 3232 } 3233 3234 arvif = ath10k_get_arvif(ar, peer->vdev_id); 3235 if (!arvif) { 3236 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 3237 peer->vdev_id); 3238 spin_unlock_bh(&ar->data_lock); 3239 return; 3240 } 3241 3242 ath10k_dbg(ar, ATH10K_DBG_HTT, 3243 "htt rx start rx ba session sta %pM tid %u size %u\n", 3244 peer->addr, tid, ev->window_size); 3245 3246 ieee80211_start_rx_ba_session_offl(arvif->vif, peer->addr, tid); 3247 spin_unlock_bh(&ar->data_lock); 3248 } 3249 3250 static void ath10k_htt_rx_delba(struct ath10k *ar, struct htt_resp *resp) 3251 { 3252 struct htt_rx_delba *ev = &resp->rx_delba; 3253 struct ath10k_peer *peer; 3254 struct ath10k_vif *arvif; 3255 u16 info0, tid, peer_id; 3256 3257 info0 = __le16_to_cpu(ev->info0); 3258 tid = MS(info0, HTT_RX_BA_INFO0_TID); 3259 peer_id = MS(info0, HTT_RX_BA_INFO0_PEER_ID); 3260 3261 ath10k_dbg(ar, ATH10K_DBG_HTT, 3262 "htt rx delba tid %u peer_id %u\n", 3263 tid, peer_id); 3264 3265 spin_lock_bh(&ar->data_lock); 3266 peer = ath10k_peer_find_by_id(ar, peer_id); 3267 if (!peer) { 3268 ath10k_warn(ar, "received addba event for invalid peer_id: %u\n", 3269 peer_id); 3270 spin_unlock_bh(&ar->data_lock); 3271 return; 3272 } 3273 3274 arvif = ath10k_get_arvif(ar, peer->vdev_id); 3275 if (!arvif) { 3276 ath10k_warn(ar, "received addba event for invalid vdev_id: %u\n", 3277 peer->vdev_id); 3278 spin_unlock_bh(&ar->data_lock); 3279 return; 3280 } 3281 3282 ath10k_dbg(ar, ATH10K_DBG_HTT, 3283 "htt rx stop rx ba session sta %pM tid %u\n", 3284 peer->addr, tid); 3285 3286 ieee80211_stop_rx_ba_session_offl(arvif->vif, peer->addr, tid); 3287 spin_unlock_bh(&ar->data_lock); 3288 } 3289 3290 static int ath10k_htt_rx_extract_amsdu(struct ath10k_hw_params *hw, 3291 struct sk_buff_head *list, 3292 struct sk_buff_head *amsdu) 3293 { 3294 struct sk_buff *msdu; 3295 struct htt_rx_desc *rxd; 3296 struct rx_msdu_end_common *rxd_msdu_end_common; 3297 3298 if (skb_queue_empty(list)) 3299 return -ENOBUFS; 3300 3301 if (WARN_ON(!skb_queue_empty(amsdu))) 3302 return -EINVAL; 3303 3304 while ((msdu = __skb_dequeue(list))) { 3305 __skb_queue_tail(amsdu, msdu); 3306 3307 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 3308 #if defined(__linux__) 3309 (void *)msdu->data - 3310 #elif defined(__FreeBSD__) 3311 (u8 *)msdu->data - 3312 #endif 3313 hw->rx_desc_ops->rx_desc_size); 3314 3315 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 3316 if (rxd_msdu_end_common->info0 & 3317 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU)) 3318 break; 3319 } 3320 3321 msdu = skb_peek_tail(amsdu); 3322 rxd = HTT_RX_BUF_TO_RX_DESC(hw, 3323 #if defined(__linux__) 3324 (void *)msdu->data - hw->rx_desc_ops->rx_desc_size); 3325 #elif defined(__FreeBSD__) 3326 (u8 *)msdu->data - hw->rx_desc_ops->rx_desc_size); 3327 #endif 3328 3329 rxd_msdu_end_common = ath10k_htt_rx_desc_get_msdu_end(hw, rxd); 3330 if (!(rxd_msdu_end_common->info0 & 3331 __cpu_to_le32(RX_MSDU_END_INFO0_LAST_MSDU))) { 3332 skb_queue_splice_init(amsdu, list); 3333 return -EAGAIN; 3334 } 3335 3336 return 0; 3337 } 3338 3339 static void ath10k_htt_rx_h_rx_offload_prot(struct ieee80211_rx_status *status, 3340 struct sk_buff *skb) 3341 { 3342 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 3343 3344 if (!ieee80211_has_protected(hdr->frame_control)) 3345 return; 3346 3347 /* Offloaded frames are already decrypted but firmware insists they are 3348 * protected in the 802.11 header. Strip the flag. Otherwise mac80211 3349 * will drop the frame. 3350 */ 3351 3352 hdr->frame_control &= ~__cpu_to_le16(IEEE80211_FCTL_PROTECTED); 3353 status->flag |= RX_FLAG_DECRYPTED | 3354 RX_FLAG_IV_STRIPPED | 3355 RX_FLAG_MMIC_STRIPPED; 3356 } 3357 3358 static void ath10k_htt_rx_h_rx_offload(struct ath10k *ar, 3359 struct sk_buff_head *list) 3360 { 3361 struct ath10k_htt *htt = &ar->htt; 3362 struct ieee80211_rx_status *status = &htt->rx_status; 3363 struct htt_rx_offload_msdu *rx; 3364 struct sk_buff *msdu; 3365 size_t offset; 3366 3367 while ((msdu = __skb_dequeue(list))) { 3368 /* Offloaded frames don't have Rx descriptor. Instead they have 3369 * a short meta information header. 3370 */ 3371 3372 rx = (void *)msdu->data; 3373 3374 skb_put(msdu, sizeof(*rx)); 3375 skb_pull(msdu, sizeof(*rx)); 3376 3377 if (skb_tailroom(msdu) < __le16_to_cpu(rx->msdu_len)) { 3378 ath10k_warn(ar, "dropping frame: offloaded rx msdu is too long!\n"); 3379 dev_kfree_skb_any(msdu); 3380 continue; 3381 } 3382 3383 skb_put(msdu, __le16_to_cpu(rx->msdu_len)); 3384 3385 /* Offloaded rx header length isn't multiple of 2 nor 4 so the 3386 * actual payload is unaligned. Align the frame. Otherwise 3387 * mac80211 complains. This shouldn't reduce performance much 3388 * because these offloaded frames are rare. 3389 */ 3390 offset = 4 - ((unsigned long)msdu->data & 3); 3391 skb_put(msdu, offset); 3392 memmove(msdu->data + offset, msdu->data, msdu->len); 3393 skb_pull(msdu, offset); 3394 3395 /* FIXME: The frame is NWifi. Re-construct QoS Control 3396 * if possible later. 3397 */ 3398 3399 memset(status, 0, sizeof(*status)); 3400 status->flag |= RX_FLAG_NO_SIGNAL_VAL; 3401 3402 ath10k_htt_rx_h_rx_offload_prot(status, msdu); 3403 ath10k_htt_rx_h_channel(ar, status, NULL, rx->vdev_id); 3404 ath10k_htt_rx_h_queue_msdu(ar, status, msdu); 3405 } 3406 } 3407 3408 static int ath10k_htt_rx_in_ord_ind(struct ath10k *ar, struct sk_buff *skb) 3409 { 3410 struct ath10k_htt *htt = &ar->htt; 3411 struct htt_resp *resp = (void *)skb->data; 3412 struct ieee80211_rx_status *status = &htt->rx_status; 3413 struct sk_buff_head list; 3414 struct sk_buff_head amsdu; 3415 u16 peer_id; 3416 u16 msdu_count; 3417 u8 vdev_id; 3418 u8 tid; 3419 bool offload; 3420 bool frag; 3421 int ret; 3422 3423 lockdep_assert_held(&htt->rx_ring.lock); 3424 3425 if (htt->rx_confused) 3426 return -EIO; 3427 3428 skb_pull(skb, sizeof(resp->hdr)); 3429 skb_pull(skb, sizeof(resp->rx_in_ord_ind)); 3430 3431 peer_id = __le16_to_cpu(resp->rx_in_ord_ind.peer_id); 3432 msdu_count = __le16_to_cpu(resp->rx_in_ord_ind.msdu_count); 3433 vdev_id = resp->rx_in_ord_ind.vdev_id; 3434 tid = SM(resp->rx_in_ord_ind.info, HTT_RX_IN_ORD_IND_INFO_TID); 3435 offload = !!(resp->rx_in_ord_ind.info & 3436 HTT_RX_IN_ORD_IND_INFO_OFFLOAD_MASK); 3437 frag = !!(resp->rx_in_ord_ind.info & HTT_RX_IN_ORD_IND_INFO_FRAG_MASK); 3438 3439 ath10k_dbg(ar, ATH10K_DBG_HTT, 3440 "htt rx in ord vdev %i peer %i tid %i offload %i frag %i msdu count %i\n", 3441 vdev_id, peer_id, tid, offload, frag, msdu_count); 3442 3443 if (skb->len < msdu_count * sizeof(*resp->rx_in_ord_ind.msdu_descs32)) { 3444 ath10k_warn(ar, "dropping invalid in order rx indication\n"); 3445 return -EINVAL; 3446 } 3447 3448 /* The event can deliver more than 1 A-MSDU. Each A-MSDU is later 3449 * extracted and processed. 3450 */ 3451 __skb_queue_head_init(&list); 3452 if (ar->hw_params.target_64bit) 3453 ret = ath10k_htt_rx_pop_paddr64_list(htt, &resp->rx_in_ord_ind, 3454 &list); 3455 else 3456 ret = ath10k_htt_rx_pop_paddr32_list(htt, &resp->rx_in_ord_ind, 3457 &list); 3458 3459 if (ret < 0) { 3460 ath10k_warn(ar, "failed to pop paddr list: %d\n", ret); 3461 htt->rx_confused = true; 3462 return -EIO; 3463 } 3464 3465 /* Offloaded frames are very different and need to be handled 3466 * separately. 3467 */ 3468 if (offload) 3469 ath10k_htt_rx_h_rx_offload(ar, &list); 3470 3471 while (!skb_queue_empty(&list)) { 3472 __skb_queue_head_init(&amsdu); 3473 ret = ath10k_htt_rx_extract_amsdu(&ar->hw_params, &list, &amsdu); 3474 switch (ret) { 3475 case 0: 3476 /* Note: The in-order indication may report interleaved 3477 * frames from different PPDUs meaning reported rx rate 3478 * to mac80211 isn't accurate/reliable. It's still 3479 * better to report something than nothing though. This 3480 * should still give an idea about rx rate to the user. 3481 */ 3482 ath10k_htt_rx_h_ppdu(ar, &amsdu, status, vdev_id); 3483 ath10k_htt_rx_h_filter(ar, &amsdu, status, NULL); 3484 ath10k_htt_rx_h_mpdu(ar, &amsdu, status, false, NULL, 3485 NULL, peer_id, frag); 3486 ath10k_htt_rx_h_enqueue(ar, &amsdu, status); 3487 break; 3488 case -EAGAIN: 3489 fallthrough; 3490 default: 3491 /* Should not happen. */ 3492 ath10k_warn(ar, "failed to extract amsdu: %d\n", ret); 3493 htt->rx_confused = true; 3494 __skb_queue_purge(&list); 3495 return -EIO; 3496 } 3497 } 3498 return ret; 3499 } 3500 3501 static void ath10k_htt_rx_tx_fetch_resp_id_confirm(struct ath10k *ar, 3502 const __le32 *resp_ids, 3503 int num_resp_ids) 3504 { 3505 int i; 3506 u32 resp_id; 3507 3508 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm num_resp_ids %d\n", 3509 num_resp_ids); 3510 3511 for (i = 0; i < num_resp_ids; i++) { 3512 resp_id = le32_to_cpu(resp_ids[i]); 3513 3514 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm resp_id %u\n", 3515 resp_id); 3516 3517 /* TODO: free resp_id */ 3518 } 3519 } 3520 3521 static void ath10k_htt_rx_tx_fetch_ind(struct ath10k *ar, struct sk_buff *skb) 3522 { 3523 struct ieee80211_hw *hw = ar->hw; 3524 struct ieee80211_txq *txq; 3525 struct htt_resp *resp = (struct htt_resp *)skb->data; 3526 struct htt_tx_fetch_record *record; 3527 size_t len; 3528 size_t max_num_bytes; 3529 size_t max_num_msdus; 3530 size_t num_bytes; 3531 size_t num_msdus; 3532 const __le32 *resp_ids; 3533 u16 num_records; 3534 u16 num_resp_ids; 3535 u16 peer_id; 3536 u8 tid; 3537 int ret; 3538 int i; 3539 bool may_tx; 3540 3541 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind\n"); 3542 3543 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_ind); 3544 if (unlikely(skb->len < len)) { 3545 ath10k_warn(ar, "received corrupted tx_fetch_ind event: buffer too short\n"); 3546 return; 3547 } 3548 3549 num_records = le16_to_cpu(resp->tx_fetch_ind.num_records); 3550 num_resp_ids = le16_to_cpu(resp->tx_fetch_ind.num_resp_ids); 3551 3552 len += sizeof(resp->tx_fetch_ind.records[0]) * num_records; 3553 len += sizeof(resp->tx_fetch_ind.resp_ids[0]) * num_resp_ids; 3554 3555 if (unlikely(skb->len < len)) { 3556 ath10k_warn(ar, "received corrupted tx_fetch_ind event: too many records/resp_ids\n"); 3557 return; 3558 } 3559 3560 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch ind num records %u num resps %u seq %u\n", 3561 num_records, num_resp_ids, 3562 le16_to_cpu(resp->tx_fetch_ind.fetch_seq_num)); 3563 3564 if (!ar->htt.tx_q_state.enabled) { 3565 ath10k_warn(ar, "received unexpected tx_fetch_ind event: not enabled\n"); 3566 return; 3567 } 3568 3569 if (ar->htt.tx_q_state.mode == HTT_TX_MODE_SWITCH_PUSH) { 3570 ath10k_warn(ar, "received unexpected tx_fetch_ind event: in push mode\n"); 3571 return; 3572 } 3573 3574 rcu_read_lock(); 3575 3576 for (i = 0; i < num_records; i++) { 3577 record = &resp->tx_fetch_ind.records[i]; 3578 peer_id = MS(le16_to_cpu(record->info), 3579 HTT_TX_FETCH_RECORD_INFO_PEER_ID); 3580 tid = MS(le16_to_cpu(record->info), 3581 HTT_TX_FETCH_RECORD_INFO_TID); 3582 max_num_msdus = le16_to_cpu(record->num_msdus); 3583 max_num_bytes = le32_to_cpu(record->num_bytes); 3584 3585 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch record %i peer_id %u tid %u msdus %zu bytes %zu\n", 3586 i, peer_id, tid, max_num_msdus, max_num_bytes); 3587 3588 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3589 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3590 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3591 peer_id, tid); 3592 continue; 3593 } 3594 3595 spin_lock_bh(&ar->data_lock); 3596 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3597 spin_unlock_bh(&ar->data_lock); 3598 3599 /* It is okay to release the lock and use txq because RCU read 3600 * lock is held. 3601 */ 3602 3603 if (unlikely(!txq)) { 3604 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3605 peer_id, tid); 3606 continue; 3607 } 3608 3609 num_msdus = 0; 3610 num_bytes = 0; 3611 3612 ieee80211_txq_schedule_start(hw, txq->ac); 3613 may_tx = ieee80211_txq_may_transmit(hw, txq); 3614 while (num_msdus < max_num_msdus && 3615 num_bytes < max_num_bytes) { 3616 if (!may_tx) 3617 break; 3618 3619 ret = ath10k_mac_tx_push_txq(hw, txq); 3620 if (ret < 0) 3621 break; 3622 3623 num_msdus++; 3624 num_bytes += ret; 3625 } 3626 ieee80211_return_txq(hw, txq, false); 3627 ieee80211_txq_schedule_end(hw, txq->ac); 3628 3629 record->num_msdus = cpu_to_le16(num_msdus); 3630 record->num_bytes = cpu_to_le32(num_bytes); 3631 3632 ath10k_htt_tx_txq_recalc(hw, txq); 3633 } 3634 3635 rcu_read_unlock(); 3636 3637 resp_ids = ath10k_htt_get_tx_fetch_ind_resp_ids(&resp->tx_fetch_ind); 3638 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, resp_ids, num_resp_ids); 3639 3640 ret = ath10k_htt_tx_fetch_resp(ar, 3641 resp->tx_fetch_ind.token, 3642 resp->tx_fetch_ind.fetch_seq_num, 3643 resp->tx_fetch_ind.records, 3644 num_records); 3645 if (unlikely(ret)) { 3646 ath10k_warn(ar, "failed to submit tx fetch resp for token 0x%08x: %d\n", 3647 le32_to_cpu(resp->tx_fetch_ind.token), ret); 3648 /* FIXME: request fw restart */ 3649 } 3650 3651 ath10k_htt_tx_txq_sync(ar); 3652 } 3653 3654 static void ath10k_htt_rx_tx_fetch_confirm(struct ath10k *ar, 3655 struct sk_buff *skb) 3656 { 3657 const struct htt_resp *resp = (void *)skb->data; 3658 size_t len; 3659 int num_resp_ids; 3660 3661 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx fetch confirm\n"); 3662 3663 len = sizeof(resp->hdr) + sizeof(resp->tx_fetch_confirm); 3664 if (unlikely(skb->len < len)) { 3665 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: buffer too short\n"); 3666 return; 3667 } 3668 3669 num_resp_ids = le16_to_cpu(resp->tx_fetch_confirm.num_resp_ids); 3670 len += sizeof(resp->tx_fetch_confirm.resp_ids[0]) * num_resp_ids; 3671 3672 if (unlikely(skb->len < len)) { 3673 ath10k_warn(ar, "received corrupted tx_fetch_confirm event: resp_ids buffer overflow\n"); 3674 return; 3675 } 3676 3677 ath10k_htt_rx_tx_fetch_resp_id_confirm(ar, 3678 resp->tx_fetch_confirm.resp_ids, 3679 num_resp_ids); 3680 } 3681 3682 static void ath10k_htt_rx_tx_mode_switch_ind(struct ath10k *ar, 3683 struct sk_buff *skb) 3684 { 3685 const struct htt_resp *resp = (void *)skb->data; 3686 const struct htt_tx_mode_switch_record *record; 3687 struct ieee80211_txq *txq; 3688 struct ath10k_txq *artxq; 3689 size_t len; 3690 size_t num_records; 3691 enum htt_tx_mode_switch_mode mode; 3692 bool enable; 3693 u16 info0; 3694 u16 info1; 3695 u16 threshold; 3696 u16 peer_id; 3697 u8 tid; 3698 int i; 3699 3700 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx tx mode switch ind\n"); 3701 3702 len = sizeof(resp->hdr) + sizeof(resp->tx_mode_switch_ind); 3703 if (unlikely(skb->len < len)) { 3704 ath10k_warn(ar, "received corrupted tx_mode_switch_ind event: buffer too short\n"); 3705 return; 3706 } 3707 3708 info0 = le16_to_cpu(resp->tx_mode_switch_ind.info0); 3709 info1 = le16_to_cpu(resp->tx_mode_switch_ind.info1); 3710 3711 enable = !!(info0 & HTT_TX_MODE_SWITCH_IND_INFO0_ENABLE); 3712 num_records = MS(info0, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3713 mode = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_MODE); 3714 threshold = MS(info1, HTT_TX_MODE_SWITCH_IND_INFO1_THRESHOLD); 3715 3716 ath10k_dbg(ar, ATH10K_DBG_HTT, 3717 "htt rx tx mode switch ind info0 0x%04x info1 0x%04x enable %d num records %zd mode %d threshold %u\n", 3718 info0, info1, enable, num_records, mode, threshold); 3719 3720 len += sizeof(resp->tx_mode_switch_ind.records[0]) * num_records; 3721 3722 if (unlikely(skb->len < len)) { 3723 ath10k_warn(ar, "received corrupted tx_mode_switch_mode_ind event: too many records\n"); 3724 return; 3725 } 3726 3727 switch (mode) { 3728 case HTT_TX_MODE_SWITCH_PUSH: 3729 case HTT_TX_MODE_SWITCH_PUSH_PULL: 3730 break; 3731 default: 3732 ath10k_warn(ar, "received invalid tx_mode_switch_mode_ind mode %d, ignoring\n", 3733 mode); 3734 return; 3735 } 3736 3737 if (!enable) 3738 return; 3739 3740 ar->htt.tx_q_state.enabled = enable; 3741 ar->htt.tx_q_state.mode = mode; 3742 ar->htt.tx_q_state.num_push_allowed = threshold; 3743 3744 rcu_read_lock(); 3745 3746 for (i = 0; i < num_records; i++) { 3747 record = &resp->tx_mode_switch_ind.records[i]; 3748 info0 = le16_to_cpu(record->info0); 3749 peer_id = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_PEER_ID); 3750 tid = MS(info0, HTT_TX_MODE_SWITCH_RECORD_INFO0_TID); 3751 3752 if (unlikely(peer_id >= ar->htt.tx_q_state.num_peers) || 3753 unlikely(tid >= ar->htt.tx_q_state.num_tids)) { 3754 ath10k_warn(ar, "received out of range peer_id %u tid %u\n", 3755 peer_id, tid); 3756 continue; 3757 } 3758 3759 spin_lock_bh(&ar->data_lock); 3760 txq = ath10k_mac_txq_lookup(ar, peer_id, tid); 3761 spin_unlock_bh(&ar->data_lock); 3762 3763 /* It is okay to release the lock and use txq because RCU read 3764 * lock is held. 3765 */ 3766 3767 if (unlikely(!txq)) { 3768 ath10k_warn(ar, "failed to lookup txq for peer_id %u tid %u\n", 3769 peer_id, tid); 3770 continue; 3771 } 3772 3773 spin_lock_bh(&ar->htt.tx_lock); 3774 artxq = (void *)txq->drv_priv; 3775 artxq->num_push_allowed = le16_to_cpu(record->num_max_msdus); 3776 spin_unlock_bh(&ar->htt.tx_lock); 3777 } 3778 3779 rcu_read_unlock(); 3780 3781 ath10k_mac_tx_push_pending(ar); 3782 } 3783 3784 void ath10k_htt_htc_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 3785 { 3786 bool release; 3787 3788 release = ath10k_htt_t2h_msg_handler(ar, skb); 3789 3790 /* Free the indication buffer */ 3791 if (release) 3792 dev_kfree_skb_any(skb); 3793 } 3794 3795 static inline s8 ath10k_get_legacy_rate_idx(struct ath10k *ar, u8 rate) 3796 { 3797 static const u8 legacy_rates[] = {1, 2, 5, 11, 6, 9, 12, 3798 18, 24, 36, 48, 54}; 3799 int i; 3800 3801 for (i = 0; i < ARRAY_SIZE(legacy_rates); i++) { 3802 if (rate == legacy_rates[i]) 3803 return i; 3804 } 3805 3806 ath10k_warn(ar, "Invalid legacy rate %d peer stats", rate); 3807 return -EINVAL; 3808 } 3809 3810 static void 3811 ath10k_accumulate_per_peer_tx_stats(struct ath10k *ar, 3812 struct ath10k_sta *arsta, 3813 struct ath10k_per_peer_tx_stats *pstats, 3814 s8 legacy_rate_idx) 3815 { 3816 struct rate_info *txrate = &arsta->txrate; 3817 struct ath10k_htt_tx_stats *tx_stats; 3818 int idx, ht_idx, gi, mcs, bw, nss; 3819 unsigned long flags; 3820 3821 if (!arsta->tx_stats) 3822 return; 3823 3824 tx_stats = arsta->tx_stats; 3825 flags = txrate->flags; 3826 gi = test_bit(ATH10K_RATE_INFO_FLAGS_SGI_BIT, &flags); 3827 mcs = ATH10K_HW_MCS_RATE(pstats->ratecode); 3828 bw = txrate->bw; 3829 nss = txrate->nss; 3830 ht_idx = mcs + (nss - 1) * 8; 3831 idx = mcs * 8 + 8 * 10 * (nss - 1); 3832 idx += bw * 2 + gi; 3833 3834 #define STATS_OP_FMT(name) tx_stats->stats[ATH10K_STATS_TYPE_##name] 3835 3836 if (txrate->flags & RATE_INFO_FLAGS_VHT_MCS) { 3837 STATS_OP_FMT(SUCC).vht[0][mcs] += pstats->succ_bytes; 3838 STATS_OP_FMT(SUCC).vht[1][mcs] += pstats->succ_pkts; 3839 STATS_OP_FMT(FAIL).vht[0][mcs] += pstats->failed_bytes; 3840 STATS_OP_FMT(FAIL).vht[1][mcs] += pstats->failed_pkts; 3841 STATS_OP_FMT(RETRY).vht[0][mcs] += pstats->retry_bytes; 3842 STATS_OP_FMT(RETRY).vht[1][mcs] += pstats->retry_pkts; 3843 } else if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3844 STATS_OP_FMT(SUCC).ht[0][ht_idx] += pstats->succ_bytes; 3845 STATS_OP_FMT(SUCC).ht[1][ht_idx] += pstats->succ_pkts; 3846 STATS_OP_FMT(FAIL).ht[0][ht_idx] += pstats->failed_bytes; 3847 STATS_OP_FMT(FAIL).ht[1][ht_idx] += pstats->failed_pkts; 3848 STATS_OP_FMT(RETRY).ht[0][ht_idx] += pstats->retry_bytes; 3849 STATS_OP_FMT(RETRY).ht[1][ht_idx] += pstats->retry_pkts; 3850 } else { 3851 mcs = legacy_rate_idx; 3852 3853 STATS_OP_FMT(SUCC).legacy[0][mcs] += pstats->succ_bytes; 3854 STATS_OP_FMT(SUCC).legacy[1][mcs] += pstats->succ_pkts; 3855 STATS_OP_FMT(FAIL).legacy[0][mcs] += pstats->failed_bytes; 3856 STATS_OP_FMT(FAIL).legacy[1][mcs] += pstats->failed_pkts; 3857 STATS_OP_FMT(RETRY).legacy[0][mcs] += pstats->retry_bytes; 3858 STATS_OP_FMT(RETRY).legacy[1][mcs] += pstats->retry_pkts; 3859 } 3860 3861 if (ATH10K_HW_AMPDU(pstats->flags)) { 3862 tx_stats->ba_fails += ATH10K_HW_BA_FAIL(pstats->flags); 3863 3864 if (txrate->flags & RATE_INFO_FLAGS_MCS) { 3865 STATS_OP_FMT(AMPDU).ht[0][ht_idx] += 3866 pstats->succ_bytes + pstats->retry_bytes; 3867 STATS_OP_FMT(AMPDU).ht[1][ht_idx] += 3868 pstats->succ_pkts + pstats->retry_pkts; 3869 } else { 3870 STATS_OP_FMT(AMPDU).vht[0][mcs] += 3871 pstats->succ_bytes + pstats->retry_bytes; 3872 STATS_OP_FMT(AMPDU).vht[1][mcs] += 3873 pstats->succ_pkts + pstats->retry_pkts; 3874 } 3875 STATS_OP_FMT(AMPDU).bw[0][bw] += 3876 pstats->succ_bytes + pstats->retry_bytes; 3877 STATS_OP_FMT(AMPDU).nss[0][nss - 1] += 3878 pstats->succ_bytes + pstats->retry_bytes; 3879 STATS_OP_FMT(AMPDU).gi[0][gi] += 3880 pstats->succ_bytes + pstats->retry_bytes; 3881 STATS_OP_FMT(AMPDU).rate_table[0][idx] += 3882 pstats->succ_bytes + pstats->retry_bytes; 3883 STATS_OP_FMT(AMPDU).bw[1][bw] += 3884 pstats->succ_pkts + pstats->retry_pkts; 3885 STATS_OP_FMT(AMPDU).nss[1][nss - 1] += 3886 pstats->succ_pkts + pstats->retry_pkts; 3887 STATS_OP_FMT(AMPDU).gi[1][gi] += 3888 pstats->succ_pkts + pstats->retry_pkts; 3889 STATS_OP_FMT(AMPDU).rate_table[1][idx] += 3890 pstats->succ_pkts + pstats->retry_pkts; 3891 } else { 3892 tx_stats->ack_fails += 3893 ATH10K_HW_BA_FAIL(pstats->flags); 3894 } 3895 3896 STATS_OP_FMT(SUCC).bw[0][bw] += pstats->succ_bytes; 3897 STATS_OP_FMT(SUCC).nss[0][nss - 1] += pstats->succ_bytes; 3898 STATS_OP_FMT(SUCC).gi[0][gi] += pstats->succ_bytes; 3899 3900 STATS_OP_FMT(SUCC).bw[1][bw] += pstats->succ_pkts; 3901 STATS_OP_FMT(SUCC).nss[1][nss - 1] += pstats->succ_pkts; 3902 STATS_OP_FMT(SUCC).gi[1][gi] += pstats->succ_pkts; 3903 3904 STATS_OP_FMT(FAIL).bw[0][bw] += pstats->failed_bytes; 3905 STATS_OP_FMT(FAIL).nss[0][nss - 1] += pstats->failed_bytes; 3906 STATS_OP_FMT(FAIL).gi[0][gi] += pstats->failed_bytes; 3907 3908 STATS_OP_FMT(FAIL).bw[1][bw] += pstats->failed_pkts; 3909 STATS_OP_FMT(FAIL).nss[1][nss - 1] += pstats->failed_pkts; 3910 STATS_OP_FMT(FAIL).gi[1][gi] += pstats->failed_pkts; 3911 3912 STATS_OP_FMT(RETRY).bw[0][bw] += pstats->retry_bytes; 3913 STATS_OP_FMT(RETRY).nss[0][nss - 1] += pstats->retry_bytes; 3914 STATS_OP_FMT(RETRY).gi[0][gi] += pstats->retry_bytes; 3915 3916 STATS_OP_FMT(RETRY).bw[1][bw] += pstats->retry_pkts; 3917 STATS_OP_FMT(RETRY).nss[1][nss - 1] += pstats->retry_pkts; 3918 STATS_OP_FMT(RETRY).gi[1][gi] += pstats->retry_pkts; 3919 3920 if (txrate->flags >= RATE_INFO_FLAGS_MCS) { 3921 STATS_OP_FMT(SUCC).rate_table[0][idx] += pstats->succ_bytes; 3922 STATS_OP_FMT(SUCC).rate_table[1][idx] += pstats->succ_pkts; 3923 STATS_OP_FMT(FAIL).rate_table[0][idx] += pstats->failed_bytes; 3924 STATS_OP_FMT(FAIL).rate_table[1][idx] += pstats->failed_pkts; 3925 STATS_OP_FMT(RETRY).rate_table[0][idx] += pstats->retry_bytes; 3926 STATS_OP_FMT(RETRY).rate_table[1][idx] += pstats->retry_pkts; 3927 } 3928 3929 tx_stats->tx_duration += pstats->duration; 3930 } 3931 3932 static void 3933 ath10k_update_per_peer_tx_stats(struct ath10k *ar, 3934 struct ieee80211_sta *sta, 3935 struct ath10k_per_peer_tx_stats *peer_stats) 3936 { 3937 struct ath10k_sta *arsta = (struct ath10k_sta *)sta->drv_priv; 3938 struct ieee80211_chanctx_conf *conf = NULL; 3939 u8 rate = 0, sgi; 3940 s8 rate_idx = 0; 3941 bool skip_auto_rate; 3942 struct rate_info txrate; 3943 3944 lockdep_assert_held(&ar->data_lock); 3945 3946 txrate.flags = ATH10K_HW_PREAMBLE(peer_stats->ratecode); 3947 txrate.bw = ATH10K_HW_BW(peer_stats->flags); 3948 txrate.nss = ATH10K_HW_NSS(peer_stats->ratecode); 3949 txrate.mcs = ATH10K_HW_MCS_RATE(peer_stats->ratecode); 3950 sgi = ATH10K_HW_GI(peer_stats->flags); 3951 skip_auto_rate = ATH10K_FW_SKIPPED_RATE_CTRL(peer_stats->flags); 3952 3953 /* Firmware's rate control skips broadcast/management frames, 3954 * if host has configure fixed rates and in some other special cases. 3955 */ 3956 if (skip_auto_rate) 3957 return; 3958 3959 if (txrate.flags == WMI_RATE_PREAMBLE_VHT && txrate.mcs > 9) { 3960 ath10k_warn(ar, "Invalid VHT mcs %d peer stats", txrate.mcs); 3961 return; 3962 } 3963 3964 if (txrate.flags == WMI_RATE_PREAMBLE_HT && 3965 (txrate.mcs > 7 || txrate.nss < 1)) { 3966 ath10k_warn(ar, "Invalid HT mcs %d nss %d peer stats", 3967 txrate.mcs, txrate.nss); 3968 return; 3969 } 3970 3971 memset(&arsta->txrate, 0, sizeof(arsta->txrate)); 3972 memset(&arsta->tx_info.status, 0, sizeof(arsta->tx_info.status)); 3973 if (txrate.flags == WMI_RATE_PREAMBLE_CCK || 3974 txrate.flags == WMI_RATE_PREAMBLE_OFDM) { 3975 rate = ATH10K_HW_LEGACY_RATE(peer_stats->ratecode); 3976 /* This is hacky, FW sends CCK rate 5.5Mbps as 6 */ 3977 if (rate == 6 && txrate.flags == WMI_RATE_PREAMBLE_CCK) 3978 rate = 5; 3979 rate_idx = ath10k_get_legacy_rate_idx(ar, rate); 3980 if (rate_idx < 0) 3981 return; 3982 arsta->txrate.legacy = rate; 3983 } else if (txrate.flags == WMI_RATE_PREAMBLE_HT) { 3984 arsta->txrate.flags = RATE_INFO_FLAGS_MCS; 3985 arsta->txrate.mcs = txrate.mcs + 8 * (txrate.nss - 1); 3986 } else { 3987 arsta->txrate.flags = RATE_INFO_FLAGS_VHT_MCS; 3988 arsta->txrate.mcs = txrate.mcs; 3989 } 3990 3991 switch (txrate.flags) { 3992 case WMI_RATE_PREAMBLE_OFDM: 3993 if (arsta->arvif && arsta->arvif->vif) 3994 conf = rcu_dereference(arsta->arvif->vif->bss_conf.chanctx_conf); 3995 if (conf && conf->def.chan->band == NL80211_BAND_5GHZ) 3996 arsta->tx_info.status.rates[0].idx = rate_idx - 4; 3997 break; 3998 case WMI_RATE_PREAMBLE_CCK: 3999 arsta->tx_info.status.rates[0].idx = rate_idx; 4000 if (sgi) 4001 arsta->tx_info.status.rates[0].flags |= 4002 (IEEE80211_TX_RC_USE_SHORT_PREAMBLE | 4003 IEEE80211_TX_RC_SHORT_GI); 4004 break; 4005 case WMI_RATE_PREAMBLE_HT: 4006 arsta->tx_info.status.rates[0].idx = 4007 txrate.mcs + ((txrate.nss - 1) * 8); 4008 if (sgi) 4009 arsta->tx_info.status.rates[0].flags |= 4010 IEEE80211_TX_RC_SHORT_GI; 4011 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_MCS; 4012 break; 4013 case WMI_RATE_PREAMBLE_VHT: 4014 ieee80211_rate_set_vht(&arsta->tx_info.status.rates[0], 4015 txrate.mcs, txrate.nss); 4016 if (sgi) 4017 arsta->tx_info.status.rates[0].flags |= 4018 IEEE80211_TX_RC_SHORT_GI; 4019 arsta->tx_info.status.rates[0].flags |= IEEE80211_TX_RC_VHT_MCS; 4020 break; 4021 } 4022 4023 arsta->txrate.nss = txrate.nss; 4024 arsta->txrate.bw = ath10k_bw_to_mac80211_bw(txrate.bw); 4025 arsta->last_tx_bitrate = cfg80211_calculate_bitrate(&arsta->txrate); 4026 if (sgi) 4027 arsta->txrate.flags |= RATE_INFO_FLAGS_SHORT_GI; 4028 4029 switch (arsta->txrate.bw) { 4030 case RATE_INFO_BW_40: 4031 arsta->tx_info.status.rates[0].flags |= 4032 IEEE80211_TX_RC_40_MHZ_WIDTH; 4033 break; 4034 case RATE_INFO_BW_80: 4035 arsta->tx_info.status.rates[0].flags |= 4036 IEEE80211_TX_RC_80_MHZ_WIDTH; 4037 break; 4038 case RATE_INFO_BW_160: 4039 arsta->tx_info.status.rates[0].flags |= 4040 IEEE80211_TX_RC_160_MHZ_WIDTH; 4041 break; 4042 } 4043 4044 if (peer_stats->succ_pkts) { 4045 arsta->tx_info.flags = IEEE80211_TX_STAT_ACK; 4046 arsta->tx_info.status.rates[0].count = 1; 4047 ieee80211_tx_rate_update(ar->hw, sta, &arsta->tx_info); 4048 } 4049 4050 if (ar->htt.disable_tx_comp) { 4051 arsta->tx_failed += peer_stats->failed_pkts; 4052 ath10k_dbg(ar, ATH10K_DBG_HTT, "tx failed %d\n", 4053 arsta->tx_failed); 4054 } 4055 4056 arsta->tx_retries += peer_stats->retry_pkts; 4057 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt tx retries %d", arsta->tx_retries); 4058 4059 if (ath10k_debug_is_extd_tx_stats_enabled(ar)) 4060 ath10k_accumulate_per_peer_tx_stats(ar, arsta, peer_stats, 4061 rate_idx); 4062 } 4063 4064 static void ath10k_htt_fetch_peer_stats(struct ath10k *ar, 4065 struct sk_buff *skb) 4066 { 4067 struct htt_resp *resp = (struct htt_resp *)skb->data; 4068 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 4069 struct htt_per_peer_tx_stats_ind *tx_stats; 4070 struct ieee80211_sta *sta; 4071 struct ath10k_peer *peer; 4072 int peer_id, i; 4073 u8 ppdu_len, num_ppdu; 4074 4075 num_ppdu = resp->peer_tx_stats.num_ppdu; 4076 ppdu_len = resp->peer_tx_stats.ppdu_len * sizeof(__le32); 4077 4078 if (skb->len < sizeof(struct htt_resp_hdr) + num_ppdu * ppdu_len) { 4079 ath10k_warn(ar, "Invalid peer stats buf length %d\n", skb->len); 4080 return; 4081 } 4082 4083 tx_stats = (struct htt_per_peer_tx_stats_ind *) 4084 (resp->peer_tx_stats.payload); 4085 peer_id = __le16_to_cpu(tx_stats->peer_id); 4086 4087 rcu_read_lock(); 4088 spin_lock_bh(&ar->data_lock); 4089 peer = ath10k_peer_find_by_id(ar, peer_id); 4090 if (!peer || !peer->sta) { 4091 ath10k_warn(ar, "Invalid peer id %d peer stats buffer\n", 4092 peer_id); 4093 goto out; 4094 } 4095 4096 sta = peer->sta; 4097 for (i = 0; i < num_ppdu; i++) { 4098 tx_stats = (struct htt_per_peer_tx_stats_ind *) 4099 (resp->peer_tx_stats.payload + i * ppdu_len); 4100 4101 p_tx_stats->succ_bytes = __le32_to_cpu(tx_stats->succ_bytes); 4102 p_tx_stats->retry_bytes = __le32_to_cpu(tx_stats->retry_bytes); 4103 p_tx_stats->failed_bytes = 4104 __le32_to_cpu(tx_stats->failed_bytes); 4105 p_tx_stats->ratecode = tx_stats->ratecode; 4106 p_tx_stats->flags = tx_stats->flags; 4107 p_tx_stats->succ_pkts = __le16_to_cpu(tx_stats->succ_pkts); 4108 p_tx_stats->retry_pkts = __le16_to_cpu(tx_stats->retry_pkts); 4109 p_tx_stats->failed_pkts = __le16_to_cpu(tx_stats->failed_pkts); 4110 p_tx_stats->duration = __le16_to_cpu(tx_stats->tx_duration); 4111 4112 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 4113 } 4114 4115 out: 4116 spin_unlock_bh(&ar->data_lock); 4117 rcu_read_unlock(); 4118 } 4119 4120 static void ath10k_fetch_10_2_tx_stats(struct ath10k *ar, u8 *data) 4121 { 4122 struct ath10k_pktlog_hdr *hdr = (struct ath10k_pktlog_hdr *)data; 4123 struct ath10k_per_peer_tx_stats *p_tx_stats = &ar->peer_tx_stats; 4124 struct ath10k_10_2_peer_tx_stats *tx_stats; 4125 struct ieee80211_sta *sta; 4126 struct ath10k_peer *peer; 4127 u16 log_type = __le16_to_cpu(hdr->log_type); 4128 u32 peer_id = 0, i; 4129 4130 if (log_type != ATH_PKTLOG_TYPE_TX_STAT) 4131 return; 4132 4133 tx_stats = (struct ath10k_10_2_peer_tx_stats *)((hdr->payload) + 4134 ATH10K_10_2_TX_STATS_OFFSET); 4135 4136 if (!tx_stats->tx_ppdu_cnt) 4137 return; 4138 4139 peer_id = tx_stats->peer_id; 4140 4141 rcu_read_lock(); 4142 spin_lock_bh(&ar->data_lock); 4143 peer = ath10k_peer_find_by_id(ar, peer_id); 4144 if (!peer || !peer->sta) { 4145 ath10k_warn(ar, "Invalid peer id %d in peer stats buffer\n", 4146 peer_id); 4147 goto out; 4148 } 4149 4150 sta = peer->sta; 4151 for (i = 0; i < tx_stats->tx_ppdu_cnt; i++) { 4152 p_tx_stats->succ_bytes = 4153 __le16_to_cpu(tx_stats->success_bytes[i]); 4154 p_tx_stats->retry_bytes = 4155 __le16_to_cpu(tx_stats->retry_bytes[i]); 4156 p_tx_stats->failed_bytes = 4157 __le16_to_cpu(tx_stats->failed_bytes[i]); 4158 p_tx_stats->ratecode = tx_stats->ratecode[i]; 4159 p_tx_stats->flags = tx_stats->flags[i]; 4160 p_tx_stats->succ_pkts = tx_stats->success_pkts[i]; 4161 p_tx_stats->retry_pkts = tx_stats->retry_pkts[i]; 4162 p_tx_stats->failed_pkts = tx_stats->failed_pkts[i]; 4163 4164 ath10k_update_per_peer_tx_stats(ar, sta, p_tx_stats); 4165 } 4166 spin_unlock_bh(&ar->data_lock); 4167 rcu_read_unlock(); 4168 4169 return; 4170 4171 out: 4172 spin_unlock_bh(&ar->data_lock); 4173 rcu_read_unlock(); 4174 } 4175 4176 static int ath10k_htt_rx_pn_len(enum htt_security_types sec_type) 4177 { 4178 switch (sec_type) { 4179 case HTT_SECURITY_TKIP: 4180 case HTT_SECURITY_TKIP_NOMIC: 4181 case HTT_SECURITY_AES_CCMP: 4182 return 48; 4183 default: 4184 return 0; 4185 } 4186 } 4187 4188 static void ath10k_htt_rx_sec_ind_handler(struct ath10k *ar, 4189 struct htt_security_indication *ev) 4190 { 4191 enum htt_txrx_sec_cast_type sec_index; 4192 enum htt_security_types sec_type; 4193 struct ath10k_peer *peer; 4194 4195 spin_lock_bh(&ar->data_lock); 4196 4197 peer = ath10k_peer_find_by_id(ar, __le16_to_cpu(ev->peer_id)); 4198 if (!peer) { 4199 ath10k_warn(ar, "failed to find peer id %d for security indication", 4200 __le16_to_cpu(ev->peer_id)); 4201 goto out; 4202 } 4203 4204 sec_type = MS(ev->flags, HTT_SECURITY_TYPE); 4205 4206 if (ev->flags & HTT_SECURITY_IS_UNICAST) 4207 sec_index = HTT_TXRX_SEC_UCAST; 4208 else 4209 sec_index = HTT_TXRX_SEC_MCAST; 4210 4211 peer->rx_pn[sec_index].sec_type = sec_type; 4212 peer->rx_pn[sec_index].pn_len = ath10k_htt_rx_pn_len(sec_type); 4213 4214 memset(peer->tids_last_pn_valid, 0, sizeof(peer->tids_last_pn_valid)); 4215 memset(peer->tids_last_pn, 0, sizeof(peer->tids_last_pn)); 4216 4217 out: 4218 spin_unlock_bh(&ar->data_lock); 4219 } 4220 4221 bool ath10k_htt_t2h_msg_handler(struct ath10k *ar, struct sk_buff *skb) 4222 { 4223 struct ath10k_htt *htt = &ar->htt; 4224 struct htt_resp *resp = (struct htt_resp *)skb->data; 4225 enum htt_t2h_msg_type type; 4226 4227 /* confirm alignment */ 4228 if (!IS_ALIGNED((unsigned long)skb->data, 4)) 4229 ath10k_warn(ar, "unaligned htt message, expect trouble\n"); 4230 4231 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, msg_type: 0x%0X\n", 4232 resp->hdr.msg_type); 4233 4234 if (resp->hdr.msg_type >= ar->htt.t2h_msg_types_max) { 4235 ath10k_dbg(ar, ATH10K_DBG_HTT, "htt rx, unsupported msg_type: 0x%0X\n max: 0x%0X", 4236 resp->hdr.msg_type, ar->htt.t2h_msg_types_max); 4237 return true; 4238 } 4239 type = ar->htt.t2h_msg_types[resp->hdr.msg_type]; 4240 4241 switch (type) { 4242 case HTT_T2H_MSG_TYPE_VERSION_CONF: { 4243 htt->target_version_major = resp->ver_resp.major; 4244 htt->target_version_minor = resp->ver_resp.minor; 4245 complete(&htt->target_version_received); 4246 break; 4247 } 4248 case HTT_T2H_MSG_TYPE_RX_IND: 4249 if (ar->bus_param.dev_type != ATH10K_DEV_TYPE_HL) { 4250 ath10k_htt_rx_proc_rx_ind_ll(htt, &resp->rx_ind); 4251 } else { 4252 skb_queue_tail(&htt->rx_indication_head, skb); 4253 return false; 4254 } 4255 break; 4256 case HTT_T2H_MSG_TYPE_PEER_MAP: { 4257 struct htt_peer_map_event ev = { 4258 .vdev_id = resp->peer_map.vdev_id, 4259 .peer_id = __le16_to_cpu(resp->peer_map.peer_id), 4260 }; 4261 memcpy(ev.addr, resp->peer_map.addr, sizeof(ev.addr)); 4262 ath10k_peer_map_event(htt, &ev); 4263 break; 4264 } 4265 case HTT_T2H_MSG_TYPE_PEER_UNMAP: { 4266 struct htt_peer_unmap_event ev = { 4267 .peer_id = __le16_to_cpu(resp->peer_unmap.peer_id), 4268 }; 4269 ath10k_peer_unmap_event(htt, &ev); 4270 break; 4271 } 4272 case HTT_T2H_MSG_TYPE_MGMT_TX_COMPLETION: { 4273 struct htt_tx_done tx_done = {}; 4274 struct ath10k_htt *htt = &ar->htt; 4275 struct ath10k_htc *htc = &ar->htc; 4276 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 4277 int status = __le32_to_cpu(resp->mgmt_tx_completion.status); 4278 int info = __le32_to_cpu(resp->mgmt_tx_completion.info); 4279 4280 tx_done.msdu_id = __le32_to_cpu(resp->mgmt_tx_completion.desc_id); 4281 4282 switch (status) { 4283 case HTT_MGMT_TX_STATUS_OK: 4284 tx_done.status = HTT_TX_COMPL_STATE_ACK; 4285 if (test_bit(WMI_SERVICE_HTT_MGMT_TX_COMP_VALID_FLAGS, 4286 ar->wmi.svc_map) && 4287 (resp->mgmt_tx_completion.flags & 4288 HTT_MGMT_TX_CMPL_FLAG_ACK_RSSI)) { 4289 tx_done.ack_rssi = 4290 FIELD_GET(HTT_MGMT_TX_CMPL_INFO_ACK_RSSI_MASK, 4291 info); 4292 } 4293 break; 4294 case HTT_MGMT_TX_STATUS_RETRY: 4295 tx_done.status = HTT_TX_COMPL_STATE_NOACK; 4296 break; 4297 case HTT_MGMT_TX_STATUS_DROP: 4298 tx_done.status = HTT_TX_COMPL_STATE_DISCARD; 4299 break; 4300 } 4301 4302 if (htt->disable_tx_comp) { 4303 spin_lock_bh(&htc->tx_lock); 4304 ep->tx_credits++; 4305 spin_unlock_bh(&htc->tx_lock); 4306 } 4307 4308 status = ath10k_txrx_tx_unref(htt, &tx_done); 4309 if (!status) { 4310 spin_lock_bh(&htt->tx_lock); 4311 ath10k_htt_tx_mgmt_dec_pending(htt); 4312 spin_unlock_bh(&htt->tx_lock); 4313 } 4314 break; 4315 } 4316 case HTT_T2H_MSG_TYPE_TX_COMPL_IND: 4317 ath10k_htt_rx_tx_compl_ind(htt->ar, skb); 4318 break; 4319 case HTT_T2H_MSG_TYPE_SEC_IND: { 4320 struct ath10k *ar = htt->ar; 4321 struct htt_security_indication *ev = &resp->security_indication; 4322 4323 ath10k_htt_rx_sec_ind_handler(ar, ev); 4324 ath10k_dbg(ar, ATH10K_DBG_HTT, 4325 "sec ind peer_id %d unicast %d type %d\n", 4326 __le16_to_cpu(ev->peer_id), 4327 !!(ev->flags & HTT_SECURITY_IS_UNICAST), 4328 MS(ev->flags, HTT_SECURITY_TYPE)); 4329 complete(&ar->install_key_done); 4330 break; 4331 } 4332 case HTT_T2H_MSG_TYPE_RX_FRAG_IND: { 4333 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4334 skb->data, skb->len); 4335 atomic_inc(&htt->num_mpdus_ready); 4336 4337 return ath10k_htt_rx_proc_rx_frag_ind(htt, 4338 &resp->rx_frag_ind, 4339 skb); 4340 } 4341 case HTT_T2H_MSG_TYPE_TEST: 4342 break; 4343 case HTT_T2H_MSG_TYPE_STATS_CONF: 4344 trace_ath10k_htt_stats(ar, skb->data, skb->len); 4345 break; 4346 case HTT_T2H_MSG_TYPE_TX_INSPECT_IND: 4347 /* Firmware can return tx frames if it's unable to fully 4348 * process them and suspects host may be able to fix it. ath10k 4349 * sends all tx frames as already inspected so this shouldn't 4350 * happen unless fw has a bug. 4351 */ 4352 ath10k_warn(ar, "received an unexpected htt tx inspect event\n"); 4353 break; 4354 case HTT_T2H_MSG_TYPE_RX_ADDBA: 4355 ath10k_htt_rx_addba(ar, resp); 4356 break; 4357 case HTT_T2H_MSG_TYPE_RX_DELBA: 4358 ath10k_htt_rx_delba(ar, resp); 4359 break; 4360 case HTT_T2H_MSG_TYPE_PKTLOG: { 4361 trace_ath10k_htt_pktlog(ar, resp->pktlog_msg.payload, 4362 skb->len - 4363 offsetof(struct htt_resp, 4364 pktlog_msg.payload)); 4365 4366 if (ath10k_peer_stats_enabled(ar)) 4367 ath10k_fetch_10_2_tx_stats(ar, 4368 resp->pktlog_msg.payload); 4369 break; 4370 } 4371 case HTT_T2H_MSG_TYPE_RX_FLUSH: { 4372 /* Ignore this event because mac80211 takes care of Rx 4373 * aggregation reordering. 4374 */ 4375 break; 4376 } 4377 case HTT_T2H_MSG_TYPE_RX_IN_ORD_PADDR_IND: { 4378 skb_queue_tail(&htt->rx_in_ord_compl_q, skb); 4379 return false; 4380 } 4381 case HTT_T2H_MSG_TYPE_TX_CREDIT_UPDATE_IND: { 4382 struct ath10k_htt *htt = &ar->htt; 4383 struct ath10k_htc *htc = &ar->htc; 4384 struct ath10k_htc_ep *ep = &ar->htc.endpoint[htt->eid]; 4385 u32 msg_word = __le32_to_cpu(*(__le32 *)resp); 4386 int htt_credit_delta; 4387 4388 htt_credit_delta = HTT_TX_CREDIT_DELTA_ABS_GET(msg_word); 4389 if (HTT_TX_CREDIT_SIGN_BIT_GET(msg_word)) 4390 htt_credit_delta = -htt_credit_delta; 4391 4392 ath10k_dbg(ar, ATH10K_DBG_HTT, 4393 "htt credit update delta %d\n", 4394 htt_credit_delta); 4395 4396 if (htt->disable_tx_comp) { 4397 spin_lock_bh(&htc->tx_lock); 4398 ep->tx_credits += htt_credit_delta; 4399 spin_unlock_bh(&htc->tx_lock); 4400 ath10k_dbg(ar, ATH10K_DBG_HTT, 4401 "htt credit total %d\n", 4402 ep->tx_credits); 4403 ep->ep_ops.ep_tx_credits(htc->ar); 4404 } 4405 break; 4406 } 4407 case HTT_T2H_MSG_TYPE_CHAN_CHANGE: { 4408 u32 phymode = __le32_to_cpu(resp->chan_change.phymode); 4409 u32 freq = __le32_to_cpu(resp->chan_change.freq); 4410 4411 ar->tgt_oper_chan = ieee80211_get_channel(ar->hw->wiphy, freq); 4412 ath10k_dbg(ar, ATH10K_DBG_HTT, 4413 "htt chan change freq %u phymode %s\n", 4414 freq, ath10k_wmi_phymode_str(phymode)); 4415 break; 4416 } 4417 case HTT_T2H_MSG_TYPE_AGGR_CONF: 4418 break; 4419 case HTT_T2H_MSG_TYPE_TX_FETCH_IND: { 4420 struct sk_buff *tx_fetch_ind = skb_copy(skb, GFP_ATOMIC); 4421 4422 if (!tx_fetch_ind) { 4423 ath10k_warn(ar, "failed to copy htt tx fetch ind\n"); 4424 break; 4425 } 4426 skb_queue_tail(&htt->tx_fetch_ind_q, tx_fetch_ind); 4427 break; 4428 } 4429 case HTT_T2H_MSG_TYPE_TX_FETCH_CONFIRM: 4430 ath10k_htt_rx_tx_fetch_confirm(ar, skb); 4431 break; 4432 case HTT_T2H_MSG_TYPE_TX_MODE_SWITCH_IND: 4433 ath10k_htt_rx_tx_mode_switch_ind(ar, skb); 4434 break; 4435 case HTT_T2H_MSG_TYPE_PEER_STATS: 4436 ath10k_htt_fetch_peer_stats(ar, skb); 4437 break; 4438 case HTT_T2H_MSG_TYPE_EN_STATS: 4439 default: 4440 ath10k_warn(ar, "htt event (%d) not handled\n", 4441 resp->hdr.msg_type); 4442 ath10k_dbg_dump(ar, ATH10K_DBG_HTT_DUMP, NULL, "htt event: ", 4443 skb->data, skb->len); 4444 break; 4445 } 4446 return true; 4447 } 4448 EXPORT_SYMBOL(ath10k_htt_t2h_msg_handler); 4449 4450 void ath10k_htt_rx_pktlog_completion_handler(struct ath10k *ar, 4451 struct sk_buff *skb) 4452 { 4453 trace_ath10k_htt_pktlog(ar, skb->data, skb->len); 4454 dev_kfree_skb_any(skb); 4455 } 4456 EXPORT_SYMBOL(ath10k_htt_rx_pktlog_completion_handler); 4457 4458 static int ath10k_htt_rx_deliver_msdu(struct ath10k *ar, int quota, int budget) 4459 { 4460 struct sk_buff *skb; 4461 4462 while (quota < budget) { 4463 if (skb_queue_empty(&ar->htt.rx_msdus_q)) 4464 break; 4465 4466 skb = skb_dequeue(&ar->htt.rx_msdus_q); 4467 if (!skb) 4468 break; 4469 ath10k_process_rx(ar, skb); 4470 quota++; 4471 } 4472 4473 return quota; 4474 } 4475 4476 int ath10k_htt_rx_hl_indication(struct ath10k *ar, int budget) 4477 { 4478 struct htt_resp *resp; 4479 struct ath10k_htt *htt = &ar->htt; 4480 struct sk_buff *skb; 4481 bool release; 4482 int quota; 4483 4484 for (quota = 0; quota < budget; quota++) { 4485 skb = skb_dequeue(&htt->rx_indication_head); 4486 if (!skb) 4487 break; 4488 4489 resp = (struct htt_resp *)skb->data; 4490 4491 release = ath10k_htt_rx_proc_rx_ind_hl(htt, 4492 &resp->rx_ind_hl, 4493 skb, 4494 HTT_RX_PN_CHECK, 4495 HTT_RX_NON_TKIP_MIC); 4496 4497 if (release) 4498 dev_kfree_skb_any(skb); 4499 4500 ath10k_dbg(ar, ATH10K_DBG_HTT, "rx indication poll pending count:%d\n", 4501 skb_queue_len(&htt->rx_indication_head)); 4502 } 4503 return quota; 4504 } 4505 EXPORT_SYMBOL(ath10k_htt_rx_hl_indication); 4506 4507 int ath10k_htt_txrx_compl_task(struct ath10k *ar, int budget) 4508 { 4509 struct ath10k_htt *htt = &ar->htt; 4510 struct htt_tx_done tx_done = {}; 4511 struct sk_buff_head tx_ind_q; 4512 struct sk_buff *skb; 4513 unsigned long flags; 4514 int quota = 0, done, ret; 4515 bool resched_napi = false; 4516 4517 __skb_queue_head_init(&tx_ind_q); 4518 4519 /* Process pending frames before dequeuing more data 4520 * from hardware. 4521 */ 4522 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4523 if (quota == budget) { 4524 resched_napi = true; 4525 goto exit; 4526 } 4527 4528 while ((skb = skb_dequeue(&htt->rx_in_ord_compl_q))) { 4529 spin_lock_bh(&htt->rx_ring.lock); 4530 ret = ath10k_htt_rx_in_ord_ind(ar, skb); 4531 spin_unlock_bh(&htt->rx_ring.lock); 4532 4533 dev_kfree_skb_any(skb); 4534 if (ret == -EIO) { 4535 resched_napi = true; 4536 goto exit; 4537 } 4538 } 4539 4540 while (atomic_read(&htt->num_mpdus_ready)) { 4541 ret = ath10k_htt_rx_handle_amsdu(htt); 4542 if (ret == -EIO) { 4543 resched_napi = true; 4544 goto exit; 4545 } 4546 atomic_dec(&htt->num_mpdus_ready); 4547 } 4548 4549 /* Deliver received data after processing data from hardware */ 4550 quota = ath10k_htt_rx_deliver_msdu(ar, quota, budget); 4551 4552 /* From NAPI documentation: 4553 * The napi poll() function may also process TX completions, in which 4554 * case if it processes the entire TX ring then it should count that 4555 * work as the rest of the budget. 4556 */ 4557 if ((quota < budget) && !kfifo_is_empty(&htt->txdone_fifo)) 4558 quota = budget; 4559 4560 /* kfifo_get: called only within txrx_tasklet so it's neatly serialized. 4561 * From kfifo_get() documentation: 4562 * Note that with only one concurrent reader and one concurrent writer, 4563 * you don't need extra locking to use these macro. 4564 */ 4565 while (kfifo_get(&htt->txdone_fifo, &tx_done)) 4566 ath10k_txrx_tx_unref(htt, &tx_done); 4567 4568 ath10k_mac_tx_push_pending(ar); 4569 4570 spin_lock_irqsave(&htt->tx_fetch_ind_q.lock, flags); 4571 skb_queue_splice_init(&htt->tx_fetch_ind_q, &tx_ind_q); 4572 spin_unlock_irqrestore(&htt->tx_fetch_ind_q.lock, flags); 4573 4574 while ((skb = __skb_dequeue(&tx_ind_q))) { 4575 ath10k_htt_rx_tx_fetch_ind(ar, skb); 4576 dev_kfree_skb_any(skb); 4577 } 4578 4579 exit: 4580 ath10k_htt_rx_msdu_buff_replenish(htt); 4581 /* In case of rx failure or more data to read, report budget 4582 * to reschedule NAPI poll 4583 */ 4584 done = resched_napi ? budget : quota; 4585 4586 return done; 4587 } 4588 EXPORT_SYMBOL(ath10k_htt_txrx_compl_task); 4589 4590 static const struct ath10k_htt_rx_ops htt_rx_ops_32 = { 4591 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_32, 4592 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_32, 4593 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_32, 4594 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_32, 4595 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_32, 4596 }; 4597 4598 static const struct ath10k_htt_rx_ops htt_rx_ops_64 = { 4599 .htt_get_rx_ring_size = ath10k_htt_get_rx_ring_size_64, 4600 .htt_config_paddrs_ring = ath10k_htt_config_paddrs_ring_64, 4601 .htt_set_paddrs_ring = ath10k_htt_set_paddrs_ring_64, 4602 .htt_get_vaddr_ring = ath10k_htt_get_vaddr_ring_64, 4603 .htt_reset_paddrs_ring = ath10k_htt_reset_paddrs_ring_64, 4604 }; 4605 4606 static const struct ath10k_htt_rx_ops htt_rx_ops_hl = { 4607 .htt_rx_proc_rx_frag_ind = ath10k_htt_rx_proc_rx_frag_ind_hl, 4608 }; 4609 4610 void ath10k_htt_set_rx_ops(struct ath10k_htt *htt) 4611 { 4612 struct ath10k *ar = htt->ar; 4613 4614 if (ar->bus_param.dev_type == ATH10K_DEV_TYPE_HL) 4615 htt->rx_ops = &htt_rx_ops_hl; 4616 else if (ar->hw_params.target_64bit) 4617 htt->rx_ops = &htt_rx_ops_64; 4618 else 4619 htt->rx_ops = &htt_rx_ops_32; 4620 } 4621