1 /* 2 * Copyright (c) 2013 Qualcomm Atheros, Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH 9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY 10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, 11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM 12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR 13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR 14 * PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 18 19 #include "opt_ah.h" 20 21 #include "ah.h" 22 #include "ah_internal.h" 23 #include "ah_devid.h" 24 #include "ah_desc.h" 25 26 #include "ar9300.h" 27 #include "ar9300reg.h" 28 #include "ar9300phy.h" 29 #include "ar9300desc.h" 30 31 #define FIX_NOISE_FLOOR 1 32 33 34 /* Additional Time delay to wait after activiting the Base band */ 35 #define BASE_ACTIVATE_DELAY 100 /* usec */ 36 #define RTC_PLL_SETTLE_DELAY 100 /* usec */ 37 #define COEF_SCALE_S 24 38 #define HT40_CHANNEL_CENTER_SHIFT 10 /* MHz */ 39 40 #define DELPT 32 41 42 /* XXX Duplicates! (in ar9300desc.h) */ 43 #if 0 44 extern HAL_BOOL ar9300_reset_tx_queue(struct ath_hal *ah, u_int q); 45 extern u_int32_t ar9300_num_tx_pending(struct ath_hal *ah, u_int q); 46 #endif 47 48 49 #define MAX_MEASUREMENT 8 50 #define MAXIQCAL 3 51 struct coeff_t { 52 int32_t mag_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL]; 53 int32_t phs_coeff[AR9300_MAX_CHAINS][MAX_MEASUREMENT][MAXIQCAL]; 54 int32_t iqc_coeff[2]; 55 int last_nmeasurement; 56 HAL_BOOL last_cal; 57 }; 58 59 static HAL_BOOL ar9300_tx_iq_cal_hw_run(struct ath_hal *ah); 60 static void ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan, 61 int iqcal_idx, int max_iqcal, HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr); 62 static void ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan, 63 u_int32_t num_chains, struct coeff_t *coeff, HAL_BOOL is_cal_reusable); 64 #if ATH_SUPPORT_CAL_REUSE 65 static void ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan); 66 #endif 67 68 69 static inline void ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr, int column); 70 static inline void ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan); 71 static inline HAL_BOOL ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_corr); 72 static inline void ar9300_init_user_settings(struct ath_hal *ah); 73 74 #ifdef HOST_OFFLOAD 75 /* 76 * For usb offload solution, some USB registers must be tuned 77 * to gain better stability/performance but these registers 78 * might be changed while doing wlan reset so do this here 79 */ 80 #define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah) \ 81 do { \ 82 if (AR_SREV_HORNET(__ah) || AR_SREV_WASP(__ah)) { \ 83 volatile u_int32_t *usb_ctrl_r1 = (u_int32_t *) 0xb8116c84; \ 84 volatile u_int32_t *usb_ctrl_r2 = (u_int32_t *) 0xb8116c88; \ 85 *usb_ctrl_r1 = (*usb_ctrl_r1 & 0xffefffff); \ 86 *usb_ctrl_r2 = (*usb_ctrl_r2 & 0xfc1fffff) | (1 << 21) | (3 << 22); \ 87 } \ 88 } while (0) 89 #else 90 #define WAR_USB_DISABLE_PLL_LOCK_DETECT(__ah) 91 #endif 92 93 /* 94 * Note: the below is the version that ships with ath9k. 95 * The original HAL version is above. 96 */ 97 98 static void 99 ar9300_disable_pll_lock_detect(struct ath_hal *ah) 100 { 101 /* 102 * On AR9330 and AR9340 devices, some PHY registers must be 103 * tuned to gain better stability/performance. These registers 104 * might be changed while doing wlan reset so the registers must 105 * be reprogrammed after each reset. 106 */ 107 if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah)) { 108 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: called\n", __func__); 109 OS_REG_CLR_BIT(ah, AR_PHY_USB_CTRL1, (1 << 20)); 110 OS_REG_RMW(ah, AR_PHY_USB_CTRL2, 111 (1 << 21) | (0xf << 22), 112 (1 << 21) | (0x3 << 22)); 113 } 114 } 115 116 static inline void 117 ar9300_attach_hw_platform(struct ath_hal *ah) 118 { 119 struct ath_hal_9300 *ahp = AH9300(ah); 120 121 ahp->ah_hwp = HAL_TRUE_CHIP; 122 return; 123 } 124 125 /* Adjust various register settings based on half/quarter rate clock setting. 126 * This includes: +USEC, TX/RX latency, 127 * + IFS params: slot, eifs, misc etc. 128 * SIFS stays the same. 129 */ 130 static void 131 ar9300_set_ifs_timing(struct ath_hal *ah, struct ieee80211_channel *chan) 132 { 133 u_int32_t tx_lat, rx_lat, usec, slot, regval, eifs; 134 135 regval = OS_REG_READ(ah, AR_USEC); 136 regval &= ~(AR_USEC_RX_LATENCY | AR_USEC_TX_LATENCY | AR_USEC_USEC); 137 if (IEEE80211_IS_CHAN_HALF(chan)) { /* half rates */ 138 slot = ar9300_mac_to_clks(ah, AR_SLOT_HALF); 139 eifs = ar9300_mac_to_clks(ah, AR_EIFS_HALF); 140 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */ 141 rx_lat = SM(AR_RX_LATENCY_HALF_FAST_CLOCK, AR_USEC_RX_LATENCY); 142 tx_lat = SM(AR_TX_LATENCY_HALF_FAST_CLOCK, AR_USEC_TX_LATENCY); 143 usec = SM(AR_USEC_HALF_FAST_CLOCK, AR_USEC_USEC); 144 } else { 145 rx_lat = SM(AR_RX_LATENCY_HALF, AR_USEC_RX_LATENCY); 146 tx_lat = SM(AR_TX_LATENCY_HALF, AR_USEC_TX_LATENCY); 147 usec = SM(AR_USEC_HALF, AR_USEC_USEC); 148 } 149 } else { /* quarter rate */ 150 slot = ar9300_mac_to_clks(ah, AR_SLOT_QUARTER); 151 eifs = ar9300_mac_to_clks(ah, AR_EIFS_QUARTER); 152 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { /* fast clock */ 153 rx_lat = SM(AR_RX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_RX_LATENCY); 154 tx_lat = SM(AR_TX_LATENCY_QUARTER_FAST_CLOCK, AR_USEC_TX_LATENCY); 155 usec = SM(AR_USEC_QUARTER_FAST_CLOCK, AR_USEC_USEC); 156 } else { 157 rx_lat = SM(AR_RX_LATENCY_QUARTER, AR_USEC_RX_LATENCY); 158 tx_lat = SM(AR_TX_LATENCY_QUARTER, AR_USEC_TX_LATENCY); 159 usec = SM(AR_USEC_QUARTER, AR_USEC_USEC); 160 } 161 } 162 163 OS_REG_WRITE(ah, AR_USEC, (usec | regval | tx_lat | rx_lat)); 164 OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot); 165 OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs); 166 } 167 168 169 /* 170 * This inline function configures the chip either 171 * to encrypt/decrypt management frames or pass thru 172 */ 173 static inline void 174 ar9300_init_mfp(struct ath_hal * ah) 175 { 176 u_int32_t mfpcap, mfp_qos; 177 178 ath_hal_getcapability(ah, HAL_CAP_MFP, 0, &mfpcap); 179 180 if (mfpcap == HAL_MFP_QOSDATA) { 181 /* Treat like legacy hardware. Do not touch the MFP registers. */ 182 HALDEBUG(ah, HAL_DEBUG_RESET, "%s forced to use QOSDATA\n", __func__); 183 return; 184 } 185 186 /* MFP support (Sowl 1.0 or greater) */ 187 if (mfpcap == HAL_MFP_HW_CRYPTO) { 188 /* configure hardware MFP support */ 189 HALDEBUG(ah, HAL_DEBUG_RESET, "%s using HW crypto\n", __func__); 190 OS_REG_RMW_FIELD(ah, 191 AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, AR_AES_MUTE_MASK1_FC_MGMT_MFP); 192 OS_REG_RMW(ah, 193 AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE, 194 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 195 /* 196 * Mask used to construct AAD for CCMP-AES 197 * Cisco spec defined bits 0-3 as mask 198 * IEEE802.11w defined as bit 4. 199 */ 200 if (ath_hal_get_mfp_qos(ah)) { 201 mfp_qos = AR_MFP_QOS_MASK_IEEE; 202 } else { 203 mfp_qos = AR_MFP_QOS_MASK_CISCO; 204 } 205 OS_REG_RMW_FIELD(ah, 206 AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_QOS, mfp_qos); 207 } else if (mfpcap == HAL_MFP_PASSTHRU) { 208 /* Disable en/decrypt by hardware */ 209 HALDEBUG(ah, HAL_DEBUG_RESET, "%s using passthru\n", __func__); 210 OS_REG_RMW(ah, 211 AR_PCU_MISC_MODE2, 212 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT, 213 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 214 } 215 } 216 217 void 218 ar9300_get_channel_centers(struct ath_hal *ah, const struct ieee80211_channel *chan, 219 CHAN_CENTERS *centers) 220 { 221 int8_t extoff; 222 struct ath_hal_9300 *ahp = AH9300(ah); 223 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 224 225 if (!IEEE80211_IS_CHAN_HT40(chan)) { 226 centers->ctl_center = centers->ext_center = 227 centers->synth_center = ichan->channel; 228 return; 229 } 230 231 HALASSERT(IEEE80211_IS_CHAN_HT40(chan)); 232 233 /* 234 * In 20/40 phy mode, the center frequency is 235 * "between" the primary and extension channels. 236 */ 237 if (IEEE80211_IS_CHAN_HT40U(chan)) { 238 centers->synth_center = ichan->channel + HT40_CHANNEL_CENTER_SHIFT; 239 extoff = 1; 240 } else { 241 centers->synth_center = ichan->channel - HT40_CHANNEL_CENTER_SHIFT; 242 extoff = -1; 243 } 244 245 centers->ctl_center = 246 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 247 centers->ext_center = 248 centers->synth_center + 249 (extoff * ((ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_20) ? 250 HT40_CHANNEL_CENTER_SHIFT : 15)); 251 } 252 253 /* 254 * Read the noise-floor values from the HW. 255 * Specifically, read the minimum clear-channel assessment value for 256 * each chain, for both the control and extension channels. 257 * (The received power level during clear-channel periods is the 258 * noise floor.) 259 * These noise floor values computed by the HW will be stored in the 260 * NF history buffer. 261 * The HW sometimes produces bogus NF values. To avoid using these 262 * bogus values, the NF data is (a) range-limited, and (b) filtered. 263 * However, this data-processing is done when reading the NF values 264 * out of the history buffer. The history buffer stores the raw values. 265 * This allows the NF history buffer to be used to check for interference. 266 * A single high NF reading might be a bogus HW value, but if the NF 267 * readings are consistently high, it must be due to interference. 268 * This is the purpose of storing raw NF values in the history buffer, 269 * rather than processed values. By looking at a history of NF values 270 * that have not been range-limited, we can check if they are consistently 271 * high (due to interference). 272 */ 273 #define AH_NF_SIGN_EXTEND(nf) \ 274 ((nf) & 0x100) ? \ 275 0 - (((nf) ^ 0x1ff) + 1) : \ 276 (nf) 277 void 278 ar9300_upload_noise_floor(struct ath_hal *ah, int is_2g, 279 int16_t nfarray[HAL_NUM_NF_READINGS]) 280 { 281 int16_t nf; 282 int chan, chain; 283 u_int32_t regs[HAL_NUM_NF_READINGS] = { 284 /* control channel */ 285 AR_PHY_CCA_0, /* chain 0 */ 286 AR_PHY_CCA_1, /* chain 1 */ 287 AR_PHY_CCA_2, /* chain 2 */ 288 /* extension channel */ 289 AR_PHY_EXT_CCA, /* chain 0 */ 290 AR_PHY_EXT_CCA_1, /* chain 1 */ 291 AR_PHY_EXT_CCA_2, /* chain 2 */ 292 }; 293 u_int8_t chainmask; 294 295 /* 296 * Within a given channel (ctl vs. ext), the CH0, CH1, and CH2 297 * masks and shifts are the same, though they differ for the 298 * control vs. extension channels. 299 */ 300 u_int32_t masks[2] = { 301 AR_PHY_MINCCA_PWR, /* control channel */ 302 AR_PHY_EXT_MINCCA_PWR, /* extention channel */ 303 }; 304 u_int8_t shifts[2] = { 305 AR_PHY_MINCCA_PWR_S, /* control channel */ 306 AR_PHY_EXT_MINCCA_PWR_S, /* extention channel */ 307 }; 308 309 /* 310 * Force NF calibration for all chains. 311 */ 312 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) { 313 chainmask = 0x01; 314 } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) { 315 chainmask = 0x03; 316 } else { 317 chainmask = 0x07; 318 } 319 320 for (chan = 0; chan < 2 /*ctl,ext*/; chan++) { 321 for (chain = 0; chain < AR9300_MAX_CHAINS; chain++) { 322 int i; 323 324 if (!((chainmask >> chain) & 0x1)) { 325 continue; 326 } 327 i = chan * AR9300_MAX_CHAINS + chain; 328 nf = (OS_REG_READ(ah, regs[i]) & masks[chan]) >> shifts[chan]; 329 nfarray[i] = AH_NF_SIGN_EXTEND(nf); 330 } 331 } 332 } 333 334 /* ar9300_get_min_cca_pwr - 335 * Used by the scan function for a quick read of the noise floor. 336 * This is used to detect presence of CW interference such as video bridge. 337 * The noise floor is assumed to have been already started during reset 338 * called during channel change. The function checks if the noise floor 339 * reading is done. In case it has been done, it reads the noise floor value. 340 * If the noise floor calibration has not been finished, it assumes this is 341 * due to presence of CW interference an returns a high value for noise floor, 342 * derived from the CW interference threshold + margin fudge factor. 343 */ 344 #define BAD_SCAN_NF_MARGIN (30) 345 int16_t ar9300_get_min_cca_pwr(struct ath_hal *ah) 346 { 347 int16_t nf; 348 // struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 349 350 351 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0) { 352 nf = MS(OS_REG_READ(ah, AR_PHY_CCA_0), AR9280_PHY_MINCCA_PWR); 353 if (nf & 0x100) { 354 nf = 0 - ((nf ^ 0x1ff) + 1); 355 } 356 } else { 357 /* NF calibration is not done, assume CW interference */ 358 nf = AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta + 359 BAD_SCAN_NF_MARGIN; 360 } 361 return nf; 362 } 363 364 365 /* 366 * Noise Floor values for all chains. 367 * Most recently updated values from the NF history buffer are used. 368 */ 369 void ar9300_chain_noise_floor(struct ath_hal *ah, int16_t *nf_buf, 370 struct ieee80211_channel *chan, int is_scan) 371 { 372 struct ath_hal_9300 *ahp = AH9300(ah); 373 int i, nf_hist_len, recent_nf_index = 0; 374 HAL_NFCAL_HIST_FULL *h; 375 u_int8_t rx_chainmask = ahp->ah_rx_chainmask | (ahp->ah_rx_chainmask << 3); 376 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 377 HALASSERT(ichan); 378 379 #ifdef ATH_NF_PER_CHAN 380 /* Fill 0 if valid internal channel is not found */ 381 if (ichan == AH_NULL) { 382 OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS); 383 return; 384 } 385 h = &ichan->nf_cal_hist; 386 nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL; 387 #else 388 /* 389 * If a scan is not in progress, then the most recent value goes 390 * into ahpriv->nf_cal_hist. If a scan is in progress, then 391 * the most recent value goes into ichan->nf_cal_hist. 392 * Thus, return the value from ahpriv->nf_cal_hist if there's 393 * no scan, and if the specified channel is the current channel. 394 * Otherwise, return the noise floor from ichan->nf_cal_hist. 395 */ 396 if ((!is_scan) && chan == AH_PRIVATE(ah)->ah_curchan) { 397 h = &AH_PRIVATE(ah)->nf_cal_hist; 398 nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL; 399 } else { 400 /* Fill 0 if valid internal channel is not found */ 401 if (ichan == AH_NULL) { 402 OS_MEMZERO(nf_buf, sizeof(nf_buf[0])*HAL_NUM_NF_READINGS); 403 return; 404 } 405 /* 406 * It is okay to treat a HAL_NFCAL_HIST_SMALL struct as if it were a 407 * HAL_NFCAL_HIST_FULL struct, as long as only the index 0 of the 408 * nf_cal_buffer is used (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]) 409 */ 410 h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist; 411 nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL; 412 } 413 #endif 414 /* Get most recently updated values from nf cal history buffer */ 415 recent_nf_index = 416 (h->base.curr_index) ? h->base.curr_index - 1 : nf_hist_len - 1; 417 418 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 419 /* Fill 0 for unsupported chains */ 420 if (!(rx_chainmask & (1 << i))) { 421 nf_buf[i] = 0; 422 continue; 423 } 424 nf_buf[i] = h->nf_cal_buffer[recent_nf_index][i]; 425 } 426 } 427 428 /* 429 * Return the current NF value in register. 430 * If the current NF cal is not completed, return 0. 431 */ 432 int16_t ar9300_get_nf_from_reg(struct ath_hal *ah, struct ieee80211_channel *chan, int wait_time) 433 { 434 int16_t nfarray[HAL_NUM_NF_READINGS] = {0}; 435 int is_2g = 0; 436 HAL_CHANNEL_INTERNAL *ichan = NULL; 437 438 ichan = ath_hal_checkchannel(ah, chan); 439 if (ichan == NULL) 440 return (0); 441 442 if (wait_time <= 0) { 443 return 0; 444 } 445 446 if (!ath_hal_waitfor(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF, 0, wait_time)) { 447 ath_hal_printf(ah, "%s: NF cal is not complete in %dus", __func__, wait_time); 448 return 0; 449 } 450 is_2g = !! (IS_CHAN_2GHZ(ichan)); 451 ar9300_upload_noise_floor(ah, is_2g, nfarray); 452 453 return nfarray[0]; 454 } 455 456 /* 457 * Pick up the medium one in the noise floor buffer and update the 458 * corresponding range for valid noise floor values 459 */ 460 static int16_t 461 ar9300_get_nf_hist_mid(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h, int reading, 462 int hist_len) 463 { 464 int16_t nfval; 465 int16_t sort[HAL_NF_CAL_HIST_LEN_FULL]; /* upper bound for hist_len */ 466 int i, j; 467 468 469 for (i = 0; i < hist_len; i++) { 470 sort[i] = h->nf_cal_buffer[i][reading]; 471 HALDEBUG(ah, HAL_DEBUG_NFCAL, 472 "nf_cal_buffer[%d][%d] = %d\n", i, reading, (int)sort[i]); 473 } 474 for (i = 0; i < hist_len - 1; i++) { 475 for (j = 1; j < hist_len - i; j++) { 476 if (sort[j] > sort[j - 1]) { 477 nfval = sort[j]; 478 sort[j] = sort[j - 1]; 479 sort[j - 1] = nfval; 480 } 481 } 482 } 483 nfval = sort[(hist_len - 1) >> 1]; 484 485 return nfval; 486 } 487 488 static int16_t ar9300_limit_nf_range(struct ath_hal *ah, int16_t nf) 489 { 490 if (nf < AH9300(ah)->nfp->min) { 491 return AH9300(ah)->nfp->nominal; 492 } else if (nf > AH9300(ah)->nfp->max) { 493 return AH9300(ah)->nfp->max; 494 } 495 return nf; 496 } 497 498 #ifndef ATH_NF_PER_CHAN 499 inline static void 500 ar9300_reset_nf_hist_buff(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 501 { 502 HAL_CHAN_NFCAL_HIST *h = &ichan->nf_cal_hist; 503 HAL_NFCAL_HIST_FULL *home = &AH_PRIVATE(ah)->nf_cal_hist; 504 int i; 505 506 /* 507 * Copy the value for the channel in question into the home-channel 508 * NF history buffer. The channel NF is probably a value filled in by 509 * a prior background channel scan, but if no scan has been done then 510 * it is the nominal noise floor filled in by ath_hal_init_NF_buffer 511 * for this chip and the channel's band. 512 * Replicate this channel NF into all entries of the home-channel NF 513 * history buffer. 514 * If the channel NF was filled in by a channel scan, it has not had 515 * bounds limits applied to it yet - do so now. It is important to 516 * apply bounds limits to the priv_nf value that gets loaded into the 517 * WLAN chip's min_cca_pwr register field. It is also necessary to 518 * apply bounds limits to the nf_cal_buffer[] elements. Since we are 519 * replicating a single NF reading into all nf_cal_buffer elements, 520 * if the single reading were above the CW_INT threshold, the CW_INT 521 * check in ar9300_get_nf would immediately conclude that CW interference 522 * is present, even though we're not supposed to set CW_INT unless 523 * NF values are _consistently_ above the CW_INT threshold. 524 * Applying the bounds limits to the nf_cal_buffer contents fixes this 525 * problem. 526 */ 527 for (i = 0; i < HAL_NUM_NF_READINGS; i ++) { 528 int j; 529 int16_t nf; 530 /* 531 * No need to set curr_index, since it already has a value in 532 * the range [0..HAL_NF_CAL_HIST_LEN_FULL), and all nf_cal_buffer 533 * values will be the same. 534 */ 535 nf = ar9300_limit_nf_range(ah, h->nf_cal_buffer[0][i]); 536 for (j = 0; j < HAL_NF_CAL_HIST_LEN_FULL; j++) { 537 home->nf_cal_buffer[j][i] = nf; 538 } 539 AH_PRIVATE(ah)->nf_cal_hist.base.priv_nf[i] = nf; 540 } 541 } 542 #endif 543 544 /* 545 * Update the noise floor buffer as a ring buffer 546 */ 547 static int16_t 548 ar9300_update_nf_hist_buff(struct ath_hal *ah, HAL_NFCAL_HIST_FULL *h, 549 int16_t *nfarray, int hist_len) 550 { 551 int i, nr; 552 int16_t nf_no_lim_chain0; 553 554 nf_no_lim_chain0 = ar9300_get_nf_hist_mid(ah, h, 0, hist_len); 555 556 HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] BEFORE\n", __func__, __LINE__); 557 for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) { 558 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 559 HALDEBUG(ah, HAL_DEBUG_NFCAL, 560 "nf_cal_buffer[%d][%d] = %d\n", 561 nr, i, (int)h->nf_cal_buffer[nr][i]); 562 } 563 } 564 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 565 h->nf_cal_buffer[h->base.curr_index][i] = nfarray[i]; 566 h->base.priv_nf[i] = ar9300_limit_nf_range( 567 ah, ar9300_get_nf_hist_mid(ah, h, i, hist_len)); 568 } 569 HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s[%d] AFTER\n", __func__, __LINE__); 570 for (nr = 0; nr < HAL_NF_CAL_HIST_LEN_FULL; nr++) { 571 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 572 HALDEBUG(ah, HAL_DEBUG_NFCAL, 573 "nf_cal_buffer[%d][%d] = %d\n", 574 nr, i, (int)h->nf_cal_buffer[nr][i]); 575 } 576 } 577 578 if (++h->base.curr_index >= hist_len) { 579 h->base.curr_index = 0; 580 } 581 582 return nf_no_lim_chain0; 583 } 584 585 #ifdef UNUSED 586 static HAL_BOOL 587 get_noise_floor_thresh(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *chan, 588 int16_t *nft) 589 { 590 struct ath_hal_9300 *ahp = AH9300(ah); 591 592 593 switch (chan->channel_flags & CHANNEL_ALL_NOTURBO) { 594 case CHANNEL_A: 595 case CHANNEL_A_HT20: 596 case CHANNEL_A_HT40PLUS: 597 case CHANNEL_A_HT40MINUS: 598 *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_5); 599 break; 600 case CHANNEL_B: 601 case CHANNEL_G: 602 case CHANNEL_G_HT20: 603 case CHANNEL_G_HT40PLUS: 604 case CHANNEL_G_HT40MINUS: 605 *nft = (int8_t)ar9300_eeprom_get(ahp, EEP_NFTHRESH_2); 606 break; 607 default: 608 HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel flags 0x%x\n", 609 __func__, chan->channel_flags); 610 return AH_FALSE; 611 } 612 return AH_TRUE; 613 } 614 #endif 615 616 /* 617 * Read the NF and check it against the noise floor threshhold 618 */ 619 #define IS(_c, _f) (((_c)->channel_flags & _f) || 0) 620 static int 621 ar9300_store_new_nf(struct ath_hal *ah, struct ieee80211_channel *chan, 622 int is_scan) 623 { 624 // struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 625 int nf_hist_len; 626 int16_t nf_no_lim; 627 int16_t nfarray[HAL_NUM_NF_READINGS] = {0}; 628 HAL_NFCAL_HIST_FULL *h; 629 int is_2g = 0; 630 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 631 struct ath_hal_9300 *ahp = AH9300(ah); 632 633 if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) { 634 u_int32_t tsf32, nf_cal_dur_tsf; 635 /* 636 * The reason the NF calibration did not complete may just be that 637 * not enough time has passed since the NF calibration was started, 638 * because under certain conditions (when first moving to a new 639 * channel) the NF calibration may be checked very repeatedly. 640 * Or, there may be CW interference keeping the NF calibration 641 * from completing. Check the delta time between when the NF 642 * calibration was started and now to see whether the NF calibration 643 * should have already completed (but hasn't, probably due to CW 644 * interference), or hasn't had enough time to finish yet. 645 */ 646 /* 647 * AH_NF_CAL_DUR_MAX_TSF - A conservative maximum time that the 648 * HW should need to finish a NF calibration. If the HW 649 * does not complete a NF calibration within this time period, 650 * there must be a problem - probably CW interference. 651 * AH_NF_CAL_PERIOD_MAX_TSF - A conservative maximum time between 652 * check of the HW's NF calibration being finished. 653 * If the difference between the current TSF and the TSF 654 * recorded when the NF calibration started is larger than this 655 * value, the TSF must have been reset. 656 * In general, we expect the TSF to only be reset during 657 * regular operation for STAs, not for APs. However, an 658 * AP's TSF could be reset when joining an IBSS. 659 * There's an outside chance that this could result in the 660 * CW_INT flag being erroneously set, if the TSF adjustment 661 * is smaller than AH_NF_CAL_PERIOD_MAX_TSF but larger than 662 * AH_NF_CAL_DUR_TSF. However, even if this does happen, 663 * it shouldn't matter, as the IBSS case shouldn't be 664 * concerned about CW_INT. 665 */ 666 /* AH_NF_CAL_DUR_TSF - 90 sec in usec units */ 667 #define AH_NF_CAL_DUR_TSF (90 * 1000 * 1000) 668 /* AH_NF_CAL_PERIOD_MAX_TSF - 180 sec in usec units */ 669 #define AH_NF_CAL_PERIOD_MAX_TSF (180 * 1000 * 1000) 670 /* wraparound handled by using unsigned values */ 671 tsf32 = ar9300_get_tsf32(ah); 672 nf_cal_dur_tsf = tsf32 - AH9300(ah)->nf_tsf32; 673 if (nf_cal_dur_tsf > AH_NF_CAL_PERIOD_MAX_TSF) { 674 /* 675 * The TSF must have gotten reset during the NF cal - 676 * just reset the NF TSF timestamp, so the next time 677 * this function is called, the timestamp comparison 678 * will be valid. 679 */ 680 AH9300(ah)->nf_tsf32 = tsf32; 681 } else if (nf_cal_dur_tsf > AH_NF_CAL_DUR_TSF) { 682 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 683 "%s: NF did not complete in calibration window\n", __func__); 684 /* the NF incompletion is probably due to CW interference */ 685 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 686 } 687 return 0; /* HW's NF measurement not finished */ 688 } 689 HALDEBUG(ah, HAL_DEBUG_NFCAL, 690 "%s[%d] chan %d\n", __func__, __LINE__, ichan->channel); 691 is_2g = !! IS_CHAN_2GHZ(ichan); 692 ar9300_upload_noise_floor(ah, is_2g, nfarray); 693 694 /* Update the NF buffer for each chain masked by chainmask */ 695 #ifdef ATH_NF_PER_CHAN 696 h = &ichan->nf_cal_hist; 697 nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL; 698 #else 699 if (is_scan) { 700 /* 701 * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct 702 * rather than a HAL_NFCAL_HIST_FULL struct. 703 * As long as we only use the first history element of nf_cal_buffer 704 * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use 705 * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably. 706 */ 707 h = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist; 708 nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL; 709 } else { 710 h = &AH_PRIVATE(ah)->nf_cal_hist; 711 nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL; 712 } 713 #endif 714 715 /* 716 * nf_no_lim = median value from NF history buffer without bounds limits, 717 * priv_nf = median value from NF history buffer with bounds limits. 718 */ 719 nf_no_lim = ar9300_update_nf_hist_buff(ah, h, nfarray, nf_hist_len); 720 ichan->rawNoiseFloor = h->base.priv_nf[0]; 721 722 /* check if there is interference */ 723 // ichan->channel_flags &= (~CHANNEL_CW_INT); 724 /* 725 * Use AR9300_EMULATION to check for emulation purpose as PCIE Device ID 726 * 0xABCD is recognized as valid Osprey as WAR in some EVs. 727 */ 728 if (nf_no_lim > ahp->nfp->nominal + ahp->nf_cw_int_delta) { 729 /* 730 * Since this CW interference check is being applied to the 731 * median element of the NF history buffer, this indicates that 732 * the CW interference is persistent. A single high NF reading 733 * will not show up in the median, and thus will not cause the 734 * CW_INT flag to be set. 735 */ 736 HALDEBUG(ah, HAL_DEBUG_NFCAL, 737 "%s: NF Cal: CW interferer detected through NF: %d\n", 738 __func__, nf_no_lim); 739 chan->ic_state |= IEEE80211_CHANSTATE_CWINT; 740 } 741 return 1; /* HW's NF measurement finished */ 742 } 743 #undef IS 744 745 static inline void 746 ar9300_get_delta_slope_values(struct ath_hal *ah, u_int32_t coef_scaled, 747 u_int32_t *coef_mantissa, u_int32_t *coef_exponent) 748 { 749 u_int32_t coef_exp, coef_man; 750 751 /* 752 * ALGO -> coef_exp = 14-floor(log2(coef)); 753 * floor(log2(x)) is the highest set bit position 754 */ 755 for (coef_exp = 31; coef_exp > 0; coef_exp--) { 756 if ((coef_scaled >> coef_exp) & 0x1) { 757 break; 758 } 759 } 760 /* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */ 761 HALASSERT(coef_exp); 762 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 763 764 765 /* 766 * ALGO -> coef_man = floor(coef* 2^coef_exp+0.5); 767 * The coefficient is already shifted up for scaling 768 */ 769 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 770 771 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 772 *coef_exponent = coef_exp - 16; 773 } 774 775 #define MAX_ANALOG_START 319 /* XXX */ 776 777 /* 778 * Delta slope coefficient computation. 779 * Required for OFDM operation. 780 */ 781 static void 782 ar9300_set_delta_slope(struct ath_hal *ah, struct ieee80211_channel *chan) 783 { 784 u_int32_t coef_scaled, ds_coef_exp, ds_coef_man; 785 u_int32_t fclk = COEFF; /* clock * 2.5 */ 786 787 u_int32_t clock_mhz_scaled = 0x1000000 * fclk; 788 CHAN_CENTERS centers; 789 790 /* 791 * half and quarter rate can divide the scaled clock by 2 or 4 792 * scale for selected channel bandwidth 793 */ 794 if (IEEE80211_IS_CHAN_HALF(chan)) { 795 clock_mhz_scaled = clock_mhz_scaled >> 1; 796 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 797 clock_mhz_scaled = clock_mhz_scaled >> 2; 798 } 799 800 /* 801 * ALGO -> coef = 1e8/fcarrier*fclock/40; 802 * scaled coef to provide precision for this floating calculation 803 */ 804 ar9300_get_channel_centers(ah, chan, ¢ers); 805 coef_scaled = clock_mhz_scaled / centers.synth_center; 806 807 ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 808 809 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_MAN, ds_coef_man); 810 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3, AR_PHY_TIMING3_DSC_EXP, ds_coef_exp); 811 812 /* 813 * For Short GI, 814 * scaled coeff is 9/10 that of normal coeff 815 */ 816 coef_scaled = (9 * coef_scaled) / 10; 817 818 ar9300_get_delta_slope_values(ah, coef_scaled, &ds_coef_man, &ds_coef_exp); 819 820 /* for short gi */ 821 OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_MAN, ds_coef_man); 822 OS_REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA, AR_PHY_SGI_DSC_EXP, ds_coef_exp); 823 } 824 825 #define IS(_c, _f) (IEEE80211_IS_ ## _f(_c)) 826 827 /* 828 * XXX FreeBSD: This should be turned into something generic in ath_hal! 829 */ 830 HAL_CHANNEL_INTERNAL * 831 ar9300_check_chan(struct ath_hal *ah, const struct ieee80211_channel *chan) 832 { 833 834 if (chan == NULL) { 835 return AH_NULL; 836 } 837 838 if ((IS(chan, CHAN_2GHZ) ^ IS(chan, CHAN_5GHZ)) == 0) { 839 HALDEBUG(ah, HAL_DEBUG_CHANNEL, 840 "%s: invalid channel %u/0x%x; not marked as 2GHz or 5GHz\n", 841 __func__, chan->ic_freq , chan->ic_flags); 842 return AH_NULL; 843 } 844 845 /* 846 * FreeBSD sets multiple flags, so this will fail. 847 */ 848 #if 0 849 if ((IS(chan, CHAN_OFDM) ^ IS(chan, CHAN_CCK) ^ IS(chan, CHAN_DYN) ^ 850 IS(chan, CHAN_HT20) ^ IS(chan, CHAN_HT40U) ^ 851 IS(chan, CHAN_HT40D)) == 0) 852 { 853 HALDEBUG(ah, HAL_DEBUG_CHANNEL, 854 "%s: invalid channel %u/0x%x; not marked as " 855 "OFDM or CCK or DYN or HT20 or HT40PLUS or HT40MINUS\n", 856 __func__, chan->ic_freq , chan->ic_flags); 857 return AH_NULL; 858 } 859 #endif 860 861 return (ath_hal_checkchannel(ah, chan)); 862 } 863 #undef IS 864 865 static void 866 ar9300_set_11n_regs(struct ath_hal *ah, struct ieee80211_channel *chan, 867 HAL_HT_MACMODE macmode) 868 { 869 u_int32_t phymode; 870 // struct ath_hal_9300 *ahp = AH9300(ah); 871 u_int32_t enable_dac_fifo; 872 873 /* XXX */ 874 enable_dac_fifo = 875 OS_REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO; 876 877 /* Enable 11n HT, 20 MHz */ 878 phymode = 879 AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_SHORT_GI_40 880 | enable_dac_fifo; 881 /* Configure baseband for dynamic 20/40 operation */ 882 if (IEEE80211_IS_CHAN_HT40(chan)) { 883 phymode |= AR_PHY_GC_DYN2040_EN; 884 /* Configure control (primary) channel at +-10MHz */ 885 if (IEEE80211_IS_CHAN_HT40U(chan)) { 886 phymode |= AR_PHY_GC_DYN2040_PRI_CH; 887 } 888 889 #if 0 890 /* Configure 20/25 spacing */ 891 if (ahp->ah_ext_prot_spacing == HAL_HT_EXTPROTSPACING_25) { 892 phymode |= AR_PHY_GC_DYN2040_EXT_CH; 893 } 894 #endif 895 } 896 897 /* make sure we preserve INI settings */ 898 phymode |= OS_REG_READ(ah, AR_PHY_GEN_CTRL); 899 900 /* EV 62881/64991 - turn off Green Field detection for Maverick STA beta */ 901 phymode &= ~AR_PHY_GC_GF_DETECT_EN; 902 903 OS_REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode); 904 905 /* Set IFS timing for half/quarter rates */ 906 if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) { 907 u_int32_t modeselect = OS_REG_READ(ah, AR_PHY_MODE); 908 909 if (IEEE80211_IS_CHAN_HALF(chan)) { 910 modeselect |= AR_PHY_MS_HALF_RATE; 911 } else if (IEEE80211_IS_CHAN_QUARTER(chan)) { 912 modeselect |= AR_PHY_MS_QUARTER_RATE; 913 } 914 OS_REG_WRITE(ah, AR_PHY_MODE, modeselect); 915 916 ar9300_set_ifs_timing(ah, chan); 917 OS_REG_RMW_FIELD( 918 ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_CF_OVERLAP_WINDOW, 0x3); 919 } 920 921 /* Configure MAC for 20/40 operation */ 922 ar9300_set_11n_mac2040(ah, macmode); 923 924 /* global transmit timeout (25 TUs default)*/ 925 /* XXX - put this elsewhere??? */ 926 OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S); 927 928 /* carrier sense timeout */ 929 OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S); 930 } 931 932 /* 933 * Spur mitigation for MRC CCK 934 */ 935 static void 936 ar9300_spur_mitigate_mrc_cck(struct ath_hal *ah, struct ieee80211_channel *chan) 937 { 938 int i; 939 /* spur_freq_for_osprey - hardcoded by Systems team for now. */ 940 u_int32_t spur_freq_for_osprey[4] = { 2420, 2440, 2464, 2480 }; 941 u_int32_t spur_freq_for_jupiter[2] = { 2440, 2464}; 942 int cur_bb_spur, negative = 0, cck_spur_freq; 943 u_int8_t* spur_fbin_ptr = NULL; 944 int synth_freq; 945 int range = 10; 946 int max_spurcounts = OSPREY_EEPROM_MODAL_SPURS; 947 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 948 949 /* 950 * Need to verify range +/- 10 MHz in control channel, otherwise spur 951 * is out-of-band and can be ignored. 952 */ 953 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || 954 AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) { 955 spur_fbin_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1); 956 if (spur_fbin_ptr[0] == 0) { 957 return; /* No spur in the mode */ 958 } 959 if (IEEE80211_IS_CHAN_HT40(chan)) { 960 range = 19; 961 if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) 962 == 0x0) 963 { 964 synth_freq = ichan->channel + 10; 965 } else { 966 synth_freq = ichan->channel - 10; 967 } 968 } else { 969 range = 10; 970 synth_freq = ichan->channel; 971 } 972 } else if(AR_SREV_JUPITER(ah)) { 973 range = 5; 974 max_spurcounts = 2; /* Hardcoded by Jupiter Systems team for now. */ 975 synth_freq = ichan->channel; 976 } else { 977 range = 10; 978 max_spurcounts = 4; /* Hardcoded by Osprey Systems team for now. */ 979 synth_freq = ichan->channel; 980 } 981 982 for (i = 0; i < max_spurcounts; i++) { 983 negative = 0; 984 985 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || 986 AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) { 987 cur_bb_spur = 988 FBIN2FREQ(spur_fbin_ptr[i], HAL_FREQ_BAND_2GHZ) - synth_freq; 989 } else if(AR_SREV_JUPITER(ah)) { 990 cur_bb_spur = spur_freq_for_jupiter[i] - synth_freq; 991 } else { 992 cur_bb_spur = spur_freq_for_osprey[i] - synth_freq; 993 } 994 995 if (cur_bb_spur < 0) { 996 negative = 1; 997 cur_bb_spur = -cur_bb_spur; 998 } 999 if (cur_bb_spur < range) { 1000 cck_spur_freq = (int)((cur_bb_spur << 19) / 11); 1001 if (negative == 1) { 1002 cck_spur_freq = -cck_spur_freq; 1003 } 1004 cck_spur_freq = cck_spur_freq & 0xfffff; 1005 /*OS_REG_WRITE_field(ah, BB_agc_control.ycok_max, 0x7);*/ 1006 OS_REG_RMW_FIELD(ah, 1007 AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7); 1008 /*OS_REG_WRITE_field(ah, BB_cck_spur_mit.spur_rssi_thr, 0x7f);*/ 1009 OS_REG_RMW_FIELD(ah, 1010 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f); 1011 /*OS_REG_WRITE(ah, BB_cck_spur_mit.spur_filter_type, 0x2);*/ 1012 OS_REG_RMW_FIELD(ah, 1013 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE, 0x2); 1014 /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x1);*/ 1015 OS_REG_RMW_FIELD(ah, 1016 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x1); 1017 /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, cck_spur_freq);*/ 1018 OS_REG_RMW_FIELD(ah, 1019 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 1020 cck_spur_freq); 1021 return; 1022 } 1023 } 1024 1025 /*OS_REG_WRITE(ah, BB_agc_control.ycok_max, 0x5);*/ 1026 OS_REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5); 1027 /*OS_REG_WRITE(ah, BB_cck_spur_mit.use_cck_spur_mit, 0x0);*/ 1028 OS_REG_RMW_FIELD(ah, 1029 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0); 1030 /*OS_REG_WRITE(ah, BB_cck_spur_mit.cck_spur_freq, 0x0);*/ 1031 OS_REG_RMW_FIELD(ah, 1032 AR_PHY_CCK_SPUR_MIT, AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0); 1033 } 1034 1035 /* Spur mitigation for OFDM */ 1036 static void 1037 ar9300_spur_mitigate_ofdm(struct ath_hal *ah, struct ieee80211_channel *chan) 1038 { 1039 int synth_freq; 1040 int range = 10; 1041 int freq_offset = 0; 1042 int spur_freq_sd = 0; 1043 int spur_subchannel_sd = 0; 1044 int spur_delta_phase = 0; 1045 int mask_index = 0; 1046 int i; 1047 int mode; 1048 u_int8_t* spur_chans_ptr; 1049 struct ath_hal_9300 *ahp; 1050 ahp = AH9300(ah); 1051 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 1052 1053 if (IS_CHAN_5GHZ(ichan)) { 1054 spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 0); 1055 mode = 0; 1056 } else { 1057 spur_chans_ptr = ar9300_eeprom_get_spur_chans_ptr(ah, 1); 1058 mode = 1; 1059 } 1060 1061 if (IEEE80211_IS_CHAN_HT40(chan)) { 1062 range = 19; 1063 if (OS_REG_READ_FIELD(ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) 1064 == 0x0) 1065 { 1066 synth_freq = ichan->channel - 10; 1067 } else { 1068 synth_freq = ichan->channel + 10; 1069 } 1070 } else { 1071 range = 10; 1072 synth_freq = ichan->channel; 1073 } 1074 1075 /* Clean all spur register fields */ 1076 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0); 1077 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, 0); 1078 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0); 1079 OS_REG_RMW_FIELD(ah, 1080 AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0); 1081 OS_REG_RMW_FIELD(ah, 1082 AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0); 1083 OS_REG_RMW_FIELD(ah, 1084 AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0); 1085 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0); 1086 OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0); 1087 OS_REG_RMW_FIELD(ah, 1088 AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0); 1089 OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0); 1090 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0); 1091 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0); 1092 OS_REG_RMW_FIELD(ah, 1093 AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0); 1094 OS_REG_RMW_FIELD(ah, 1095 AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0); 1096 OS_REG_RMW_FIELD(ah, 1097 AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0); 1098 OS_REG_RMW_FIELD(ah, 1099 AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0); 1100 OS_REG_RMW_FIELD(ah, 1101 AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0); 1102 OS_REG_RMW_FIELD(ah, 1103 AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0); 1104 OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0); 1105 1106 i = 0; 1107 while (spur_chans_ptr[i] && i < 5) { 1108 freq_offset = FBIN2FREQ(spur_chans_ptr[i], mode) - synth_freq; 1109 if (abs(freq_offset) < range) { 1110 /* 1111 printf( 1112 "Spur Mitigation for OFDM: Synth Frequency = %d, " 1113 "Spur Frequency = %d\n", 1114 synth_freq, FBIN2FREQ(spur_chans_ptr[i], mode)); 1115 */ 1116 if (IEEE80211_IS_CHAN_HT40(chan)) { 1117 if (freq_offset < 0) { 1118 if (OS_REG_READ_FIELD( 1119 ah, AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) 1120 { 1121 spur_subchannel_sd = 1; 1122 } else { 1123 spur_subchannel_sd = 0; 1124 } 1125 spur_freq_sd = ((freq_offset + 10) << 9) / 11; 1126 } else { 1127 if (OS_REG_READ_FIELD(ah, 1128 AR_PHY_GEN_CTRL, AR_PHY_GC_DYN2040_PRI_CH) == 0x0) 1129 { 1130 spur_subchannel_sd = 0; 1131 } else { 1132 spur_subchannel_sd = 1; 1133 } 1134 spur_freq_sd = ((freq_offset - 10) << 9) / 11; 1135 } 1136 spur_delta_phase = (freq_offset << 17) / 5; 1137 } else { 1138 spur_subchannel_sd = 0; 1139 spur_freq_sd = (freq_offset << 9) / 11; 1140 spur_delta_phase = (freq_offset << 18) / 5; 1141 } 1142 spur_freq_sd = spur_freq_sd & 0x3ff; 1143 spur_delta_phase = spur_delta_phase & 0xfffff; 1144 /* 1145 printf( 1146 "spur_subchannel_sd = %d, spur_freq_sd = 0x%x, " 1147 "spur_delta_phase = 0x%x\n", spur_subchannel_sd, 1148 spur_freq_sd, spur_delta_phase); 1149 */ 1150 1151 /* OFDM Spur mitigation */ 1152 OS_REG_RMW_FIELD(ah, 1153 AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1); 1154 OS_REG_RMW_FIELD(ah, 1155 AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd); 1156 OS_REG_RMW_FIELD(ah, 1157 AR_PHY_TIMING11, AR_PHY_TIMING11_SPUR_DELTA_PHASE, 1158 spur_delta_phase); 1159 OS_REG_RMW_FIELD(ah, 1160 AR_PHY_SFCORR_EXT, AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 1161 spur_subchannel_sd); 1162 OS_REG_RMW_FIELD(ah, 1163 AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1); 1164 OS_REG_RMW_FIELD(ah, 1165 AR_PHY_TIMING11, AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 1166 0x1); 1167 OS_REG_RMW_FIELD(ah, 1168 AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1); 1169 OS_REG_RMW_FIELD(ah, 1170 AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34); 1171 OS_REG_RMW_FIELD(ah, 1172 AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1); 1173 1174 /* 1175 * Do not subtract spur power from noise floor for wasp. 1176 * This causes the maximum client test (on Veriwave) to fail 1177 * when run on spur channel (2464 MHz). 1178 * Refer to ev#82746 and ev#82744. 1179 */ 1180 if (!AR_SREV_WASP(ah) && (OS_REG_READ_FIELD(ah, AR_PHY_MODE, 1181 AR_PHY_MODE_DYNAMIC) == 0x1)) { 1182 OS_REG_RMW_FIELD(ah, AR_PHY_SPUR_REG, 1183 AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1); 1184 } 1185 1186 mask_index = (freq_offset << 4) / 5; 1187 if (mask_index < 0) { 1188 mask_index = mask_index - 1; 1189 } 1190 mask_index = mask_index & 0x7f; 1191 /*printf("Bin 0x%x\n", mask_index);*/ 1192 1193 OS_REG_RMW_FIELD(ah, 1194 AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1); 1195 OS_REG_RMW_FIELD(ah, 1196 AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1); 1197 OS_REG_RMW_FIELD(ah, 1198 AR_PHY_TIMING4, AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1); 1199 OS_REG_RMW_FIELD(ah, 1200 AR_PHY_PILOT_SPUR_MASK, 1201 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index); 1202 OS_REG_RMW_FIELD(ah, 1203 AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 1204 mask_index); 1205 OS_REG_RMW_FIELD(ah, 1206 AR_PHY_CHAN_SPUR_MASK, 1207 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index); 1208 OS_REG_RMW_FIELD(ah, 1209 AR_PHY_PILOT_SPUR_MASK, AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 1210 0xc); 1211 OS_REG_RMW_FIELD(ah, 1212 AR_PHY_CHAN_SPUR_MASK, AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 1213 0xc); 1214 OS_REG_RMW_FIELD(ah, 1215 AR_PHY_SPUR_MASK_A, AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0); 1216 OS_REG_RMW_FIELD(ah, 1217 AR_PHY_SPUR_REG, AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff); 1218 /* 1219 printf("BB_timing_control_4 = 0x%x\n", 1220 OS_REG_READ(ah, AR_PHY_TIMING4)); 1221 printf("BB_timing_control_11 = 0x%x\n", 1222 OS_REG_READ(ah, AR_PHY_TIMING11)); 1223 printf("BB_ext_chan_scorr_thr = 0x%x\n", 1224 OS_REG_READ(ah, AR_PHY_SFCORR_EXT)); 1225 printf("BB_spur_mask_controls = 0x%x\n", 1226 OS_REG_READ(ah, AR_PHY_SPUR_REG)); 1227 printf("BB_pilot_spur_mask = 0x%x\n", 1228 OS_REG_READ(ah, AR_PHY_PILOT_SPUR_MASK)); 1229 printf("BB_chan_spur_mask = 0x%x\n", 1230 OS_REG_READ(ah, AR_PHY_CHAN_SPUR_MASK)); 1231 printf("BB_vit_spur_mask_A = 0x%x\n", 1232 OS_REG_READ(ah, AR_PHY_SPUR_MASK_A)); 1233 */ 1234 break; 1235 } 1236 i++; 1237 } 1238 } 1239 1240 1241 /* 1242 * Convert to baseband spur frequency given input channel frequency 1243 * and compute register settings below. 1244 */ 1245 static void 1246 ar9300_spur_mitigate(struct ath_hal *ah, struct ieee80211_channel *chan) 1247 { 1248 ar9300_spur_mitigate_ofdm(ah, chan); 1249 ar9300_spur_mitigate_mrc_cck(ah, chan); 1250 } 1251 1252 /************************************************************** 1253 * ar9300_channel_change 1254 * Assumes caller wants to change channel, and not reset. 1255 */ 1256 static inline HAL_BOOL 1257 ar9300_channel_change(struct ath_hal *ah, struct ieee80211_channel *chan, 1258 HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode) 1259 { 1260 1261 u_int32_t synth_delay, qnum; 1262 struct ath_hal_9300 *ahp = AH9300(ah); 1263 1264 /* TX must be stopped by now */ 1265 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1266 if (ar9300_num_tx_pending(ah, qnum)) { 1267 HALDEBUG(ah, HAL_DEBUG_QUEUE, 1268 "%s: Transmit frames pending on queue %d\n", __func__, qnum); 1269 HALASSERT(0); 1270 return AH_FALSE; 1271 } 1272 } 1273 1274 1275 /* 1276 * Kill last Baseband Rx Frame - Request analog bus grant 1277 */ 1278 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN); 1279 if (!ath_hal_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN, 1280 AR_PHY_RFBUS_GRANT_EN)) 1281 { 1282 HALDEBUG(ah, HAL_DEBUG_PHYIO, 1283 "%s: Could not kill baseband RX\n", __func__); 1284 return AH_FALSE; 1285 } 1286 1287 1288 /* Setup 11n MAC/Phy mode registers */ 1289 ar9300_set_11n_regs(ah, chan, macmode); 1290 1291 /* 1292 * Change the synth 1293 */ 1294 if (!ahp->ah_rf_hal.set_channel(ah, chan)) { 1295 HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: failed to set channel\n", __func__); 1296 return AH_FALSE; 1297 } 1298 1299 /* 1300 * Some registers get reinitialized during ATH_INI_POST INI programming. 1301 */ 1302 ar9300_init_user_settings(ah); 1303 1304 /* 1305 * Setup the transmit power values. 1306 * 1307 * After the public to private hal channel mapping, ichan contains the 1308 * valid regulatory power value. 1309 * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan. 1310 */ 1311 if (ar9300_eeprom_set_transmit_power( 1312 ah, &ahp->ah_eeprom, chan, ath_hal_getctl(ah, chan), 1313 ath_hal_getantennaallowed(ah, chan), 1314 ath_hal_get_twice_max_regpower(AH_PRIVATE(ah), ichan, chan), 1315 AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit)) != HAL_OK) 1316 { 1317 HALDEBUG(ah, HAL_DEBUG_EEPROM, 1318 "%s: error init'ing transmit power\n", __func__); 1319 return AH_FALSE; 1320 } 1321 1322 /* 1323 * Release the RFBus Grant. 1324 */ 1325 OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0); 1326 1327 /* 1328 * Write spur immunity and delta slope for OFDM enabled modes (A, G, Turbo) 1329 */ 1330 if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) { 1331 ar9300_set_delta_slope(ah, chan); 1332 } else { 1333 /* Set to Ini default */ 1334 OS_REG_WRITE(ah, AR_PHY_TIMING3, 0x9c0a9f6b); 1335 OS_REG_WRITE(ah, AR_PHY_SGI_DELTA, 0x00046384); 1336 } 1337 1338 ar9300_spur_mitigate(ah, chan); 1339 1340 1341 /* 1342 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN). 1343 * Read the phy active delay register. Value is in 100ns increments. 1344 */ 1345 synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 1346 if (IEEE80211_IS_CHAN_CCK(chan)) { 1347 synth_delay = (4 * synth_delay) / 22; 1348 } else { 1349 synth_delay /= 10; 1350 } 1351 1352 OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY); 1353 1354 /* 1355 * Do calibration. 1356 */ 1357 1358 return AH_TRUE; 1359 } 1360 1361 void 1362 ar9300_set_operating_mode(struct ath_hal *ah, int opmode) 1363 { 1364 u_int32_t val; 1365 1366 val = OS_REG_READ(ah, AR_STA_ID1); 1367 val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC); 1368 switch (opmode) { 1369 case HAL_M_HOSTAP: 1370 OS_REG_WRITE(ah, AR_STA_ID1, 1371 val | AR_STA_ID1_STA_AP | AR_STA_ID1_KSRCH_MODE); 1372 OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1373 break; 1374 case HAL_M_IBSS: 1375 OS_REG_WRITE(ah, AR_STA_ID1, 1376 val | AR_STA_ID1_ADHOC | AR_STA_ID1_KSRCH_MODE); 1377 OS_REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1378 break; 1379 case HAL_M_STA: 1380 case HAL_M_MONITOR: 1381 OS_REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE); 1382 break; 1383 } 1384 } 1385 1386 /* XXX need the logic for Osprey */ 1387 void 1388 ar9300_init_pll(struct ath_hal *ah, struct ieee80211_channel *chan) 1389 { 1390 u_int32_t pll; 1391 u_int8_t clk_25mhz = AH9300(ah)->clk_25mhz; 1392 HAL_CHANNEL_INTERNAL *ichan = NULL; 1393 1394 if (chan) 1395 ichan = ath_hal_checkchannel(ah, chan); 1396 1397 if (AR_SREV_HORNET(ah)) { 1398 if (clk_25mhz) { 1399 /* Hornet uses PLL_CONTROL_2. Xtal is 25MHz for Hornet. 1400 * REFDIV set to 0x1. 1401 * $xtal_freq = 25; 1402 * $PLL2_div = (704/$xtal_freq); # 176 * 4 = 704. 1403 * MAC and BB run at 176 MHz. 1404 * $PLL2_divint = int($PLL2_div); 1405 * $PLL2_divfrac = $PLL2_div - $PLL2_divint; 1406 * $PLL2_divfrac = int($PLL2_divfrac * 0x4000); # 2^14 1407 * $PLL2_Val = ($PLL2_divint & 0x3f) << 19 | (0x1) << 14 | 1408 * $PLL2_divfrac & 0x3fff; 1409 * Therefore, $PLL2_Val = 0xe04a3d 1410 */ 1411 #define DPLL2_KD_VAL 0x1D 1412 #define DPLL2_KI_VAL 0x06 1413 #define DPLL3_PHASE_SHIFT_VAL 0x1 1414 1415 /* Rewrite DDR PLL2 and PLL3 */ 1416 /* program DDR PLL ki and kd value, ki=0x6, kd=0x1d */ 1417 OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x18e82f01); 1418 1419 /* program DDR PLL phase_shift to 0x1 */ 1420 OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3, 1421 AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 1422 1423 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 1424 OS_DELAY(1000); 1425 1426 /* program refdiv, nint, frac to RTC register */ 1427 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0xe04a3d); 1428 1429 /* program BB PLL ki and kd value, ki=0x6, kd=0x1d */ 1430 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1431 AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL); 1432 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1433 AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL); 1434 1435 /* program BB PLL phase_shift to 0x1 */ 1436 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3, 1437 AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 1438 } else { /* 40MHz */ 1439 #undef DPLL2_KD_VAL 1440 #undef DPLL2_KI_VAL 1441 #define DPLL2_KD_VAL 0x3D 1442 #define DPLL2_KI_VAL 0x06 1443 /* Rewrite DDR PLL2 and PLL3 */ 1444 /* program DDR PLL ki and kd value, ki=0x6, kd=0x3d */ 1445 OS_REG_WRITE(ah, AR_HORNET_CH0_DDR_DPLL2, 0x19e82f01); 1446 1447 /* program DDR PLL phase_shift to 0x1 */ 1448 OS_REG_RMW_FIELD(ah, AR_HORNET_CH0_DDR_DPLL3, 1449 AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 1450 1451 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 1452 OS_DELAY(1000); 1453 1454 /* program refdiv, nint, frac to RTC register */ 1455 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666); 1456 1457 /* program BB PLL ki and kd value, ki=0x6, kd=0x3d */ 1458 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1459 AR_PHY_BB_DPLL2_KD, DPLL2_KD_VAL); 1460 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1461 AR_PHY_BB_DPLL2_KI, DPLL2_KI_VAL); 1462 1463 /* program BB PLL phase_shift to 0x1 */ 1464 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3, 1465 AR_PHY_BB_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL); 1466 } 1467 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c); 1468 OS_DELAY(1000); 1469 } else if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) { 1470 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, AR_PHY_BB_DPLL2_PLL_PWD, 0x1); 1471 1472 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 1473 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1474 AR_PHY_BB_DPLL2_KD, 0x40); 1475 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1476 AR_PHY_BB_DPLL2_KI, 0x4); 1477 1478 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 1479 AR_PHY_BB_DPLL1_REFDIV, 0x5); 1480 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 1481 AR_PHY_BB_DPLL1_NINI, 0x58); 1482 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL1, 1483 AR_PHY_BB_DPLL1_NFRAC, 0x0); 1484 1485 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1486 AR_PHY_BB_DPLL2_OUTDIV, 0x1); 1487 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1488 AR_PHY_BB_DPLL2_LOCAL_PLL, 0x1); 1489 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1490 AR_PHY_BB_DPLL2_EN_NEGTRIG, 0x1); 1491 1492 /* program BB PLL phase_shift to 0x6 */ 1493 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL3, 1494 AR_PHY_BB_DPLL3_PHASE_SHIFT, 0x6); 1495 1496 OS_REG_RMW_FIELD(ah, AR_PHY_BB_DPLL2, 1497 AR_PHY_BB_DPLL2_PLL_PWD, 0x0); 1498 OS_DELAY(1000); 1499 1500 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c); 1501 OS_DELAY(1000); 1502 } else if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) { 1503 #define SRIF_PLL 1 1504 u_int32_t regdata, pll2_divint, pll2_divfrac; 1505 1506 #ifndef SRIF_PLL 1507 u_int32_t pll2_clkmode; 1508 #endif 1509 1510 #ifdef SRIF_PLL 1511 u_int32_t refdiv; 1512 #endif 1513 if (clk_25mhz) { 1514 #ifndef SRIF_PLL 1515 pll2_divint = 0x1c; 1516 pll2_divfrac = 0xa3d7; 1517 #else 1518 if (AR_SREV_HONEYBEE(ah)) { 1519 pll2_divint = 0x1c; 1520 pll2_divfrac = 0xa3d2; 1521 refdiv = 1; 1522 } else { 1523 pll2_divint = 0x54; 1524 pll2_divfrac = 0x1eb85; 1525 refdiv = 3; 1526 } 1527 #endif 1528 } else { 1529 #ifndef SRIF_PLL 1530 pll2_divint = 0x11; 1531 pll2_divfrac = 0x26666; 1532 #else 1533 if (AR_SREV_WASP(ah)) { 1534 pll2_divint = 88; 1535 pll2_divfrac = 0; 1536 refdiv = 5; 1537 } else { 1538 pll2_divint = 0x11; 1539 pll2_divfrac = 0x26666; 1540 refdiv = 1; 1541 } 1542 #endif 1543 } 1544 #ifndef SRIF_PLL 1545 pll2_clkmode = 0x3d; 1546 #endif 1547 /* PLL programming through SRIF Local Mode */ 1548 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); /* Bypass mode */ 1549 OS_DELAY(1000); 1550 do { 1551 regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE); 1552 if (AR_SREV_HONEYBEE(ah)) { 1553 regdata = regdata | (0x1 << 22); 1554 } else { 1555 regdata = regdata | (0x1 << 16); 1556 } 1557 OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 1 */ 1558 OS_DELAY(100); 1559 /* override int, frac, refdiv */ 1560 #ifndef SRIF_PLL 1561 OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL, 1562 ((1 << 27) | (pll2_divint << 18) | pll2_divfrac)); 1563 #else 1564 OS_REG_WRITE(ah, AR_PHY_PLL_CONTROL, 1565 ((refdiv << 27) | (pll2_divint << 18) | pll2_divfrac)); 1566 #endif 1567 OS_DELAY(100); 1568 regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE); 1569 #ifndef SRIF_PLL 1570 regdata = (regdata & 0x80071fff) | 1571 (0x1 << 30) | (0x1 << 13) | (0x6 << 26) | (pll2_clkmode << 19); 1572 #else 1573 if (AR_SREV_WASP(ah)) { 1574 regdata = (regdata & 0x80071fff) | 1575 (0x1 << 30) | (0x1 << 13) | (0x4 << 26) | (0x18 << 19); 1576 } else if (AR_SREV_HONEYBEE(ah)) { 1577 /* 1578 * Kd=10, Ki=2, Outdiv=1, Local PLL=0, Phase Shift=4 1579 */ 1580 regdata = (regdata & 0x01c00fff) | 1581 (0x1 << 31) | (0x2 << 29) | (0xa << 25) | (0x1 << 19) | (0x6 << 12); 1582 } else { 1583 regdata = (regdata & 0x80071fff) | 1584 (0x3 << 30) | (0x1 << 13) | (0x4 << 26) | (0x60 << 19); 1585 } 1586 #endif 1587 /* Ki, Kd, Local PLL, Outdiv */ 1588 OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); 1589 regdata = OS_REG_READ(ah, AR_PHY_PLL_MODE); 1590 if (AR_SREV_HONEYBEE(ah)) { 1591 regdata = (regdata & 0xffbfffff); 1592 } else { 1593 regdata = (regdata & 0xfffeffff); 1594 } 1595 OS_REG_WRITE(ah, AR_PHY_PLL_MODE, regdata); /* PWD_PLL set to 0 */ 1596 OS_DELAY(1000); 1597 if (AR_SREV_WASP(ah)) { 1598 /* clear do measure */ 1599 regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3); 1600 regdata &= ~(1 << 30); 1601 OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata); 1602 OS_DELAY(100); 1603 1604 /* set do measure */ 1605 regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3); 1606 regdata |= (1 << 30); 1607 OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata); 1608 1609 /* wait for measure done */ 1610 do { 1611 regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL4); 1612 } while ((regdata & (1 << 3)) == 0); 1613 1614 /* clear do measure */ 1615 regdata = OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3); 1616 regdata &= ~(1 << 30); 1617 OS_REG_WRITE(ah, AR_PHY_PLL_BB_DPLL3, regdata); 1618 1619 /* get measure sqsum dvc */ 1620 regdata = (OS_REG_READ(ah, AR_PHY_PLL_BB_DPLL3) & 0x007FFFF8) >> 3; 1621 } else { 1622 break; 1623 } 1624 } while (regdata >= 0x40000); 1625 1626 /* Remove from Bypass mode */ 1627 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c); 1628 OS_DELAY(1000); 1629 } else { 1630 pll = SM(0x5, AR_RTC_PLL_REFDIV); 1631 1632 /* Supposedly not needed on Osprey */ 1633 #if 0 1634 if (chan && IS_CHAN_HALF_RATE(chan)) { 1635 pll |= SM(0x1, AR_RTC_PLL_CLKSEL); 1636 } else if (chan && IS_CHAN_QUARTER_RATE(chan)) { 1637 pll |= SM(0x2, AR_RTC_PLL_CLKSEL); 1638 } 1639 #endif 1640 if (ichan && IS_CHAN_5GHZ(ichan)) { 1641 pll |= SM(0x28, AR_RTC_PLL_DIV); 1642 /* 1643 * When doing fast clock, set PLL to 0x142c 1644 */ 1645 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 1646 pll = 0x142c; 1647 } 1648 } else { 1649 pll |= SM(0x2c, AR_RTC_PLL_DIV); 1650 } 1651 1652 OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 1653 } 1654 1655 /* TODO: 1656 * For multi-band owl, switch between bands by reiniting the PLL. 1657 */ 1658 OS_DELAY(RTC_PLL_SETTLE_DELAY); 1659 1660 OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, 1661 AR_RTC_FORCE_DERIVED_CLK | AR_RTC_PCIE_RST_PWDN_EN); 1662 1663 /* XXX TODO: honeybee? */ 1664 if (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) { 1665 if (clk_25mhz) { 1666 OS_REG_WRITE(ah, 1667 AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); /* 32KHz sleep clk */ 1668 OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 1669 OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 1670 } else { 1671 OS_REG_WRITE(ah, 1672 AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); /* 32KHz sleep clk */ 1673 OS_REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 1674 OS_REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 1675 } 1676 OS_DELAY(100); 1677 } 1678 } 1679 1680 static inline HAL_BOOL 1681 ar9300_set_reset(struct ath_hal *ah, int type) 1682 { 1683 u_int32_t rst_flags; 1684 u_int32_t tmp_reg; 1685 struct ath_hal_9300 *ahp = AH9300(ah); 1686 1687 HALASSERT(type == HAL_RESET_WARM || type == HAL_RESET_COLD); 1688 1689 /* 1690 * RTC Force wake should be done before resetting the MAC. 1691 * MDK/ART does it that way. 1692 */ 1693 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val); 1694 OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */ 1695 OS_REG_WRITE(ah, 1696 AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1697 1698 /* Reset AHB */ 1699 /* Bug26871 */ 1700 tmp_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE)); 1701 if (AR_SREV_WASP(ah)) { 1702 if (tmp_reg & (AR9340_INTR_SYNC_LOCAL_TIMEOUT)) { 1703 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0); 1704 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF); 1705 } 1706 } else { 1707 if (tmp_reg & (AR9300_INTR_SYNC_LOCAL_TIMEOUT | AR9300_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1708 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), 0); 1709 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_HOSTIF); 1710 } 1711 else { 1712 /* NO AR_RC_AHB in Osprey */ 1713 /*OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), AR_RC_AHB);*/ 1714 } 1715 } 1716 1717 rst_flags = AR_RTC_RC_MAC_WARM; 1718 if (type == HAL_RESET_COLD) { 1719 rst_flags |= AR_RTC_RC_MAC_COLD; 1720 } 1721 1722 #ifdef AH_SUPPORT_HORNET 1723 /* Hornet WAR: trigger SoC to reset WMAC if ... 1724 * (1) doing cold reset. Ref: EV 69254 1725 * (2) beacon pending. Ref: EV 70983 1726 */ 1727 if (AR_SREV_HORNET(ah) && 1728 (ar9300_num_tx_pending( 1729 ah, AH_PRIVATE(ah)->ah_caps.halTotalQueues - 1) != 0 || 1730 type == HAL_RESET_COLD)) 1731 { 1732 u_int32_t time_out; 1733 #define AR_SOC_RST_RESET 0xB806001C 1734 #define AR_SOC_BOOT_STRAP 0xB80600AC 1735 #define AR_SOC_WLAN_RST 0x00000800 /* WLAN reset */ 1736 #define REG_WRITE(_reg, _val) *((volatile u_int32_t *)(_reg)) = (_val); 1737 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 1738 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Hornet SoC reset WMAC.\n", __func__); 1739 1740 REG_WRITE(AR_SOC_RST_RESET, 1741 REG_READ(AR_SOC_RST_RESET) | AR_SOC_WLAN_RST); 1742 REG_WRITE(AR_SOC_RST_RESET, 1743 REG_READ(AR_SOC_RST_RESET) & (~AR_SOC_WLAN_RST)); 1744 1745 time_out = 0; 1746 1747 while (1) { 1748 tmp_reg = REG_READ(AR_SOC_BOOT_STRAP); 1749 if ((tmp_reg & 0x10) == 0) { 1750 break; 1751 } 1752 if (time_out > 20) { 1753 break; 1754 } 1755 OS_DELAY(10000); 1756 time_out++; 1757 } 1758 1759 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1760 #undef REG_READ 1761 #undef REG_WRITE 1762 #undef AR_SOC_WLAN_RST 1763 #undef AR_SOC_RST_RESET 1764 #undef AR_SOC_BOOT_STRAP 1765 } 1766 #endif /* AH_SUPPORT_HORNET */ 1767 1768 #ifdef AH_SUPPORT_SCORPION 1769 if (AR_SREV_SCORPION(ah)) { 1770 #define DDR_CTL_CONFIG_ADDRESS 0xb8000000 1771 #define DDR_CTL_CONFIG_OFFSET 0x0108 1772 #define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MSB 29 1773 #define DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB 21 1774 #define DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK 0x3fe00000 1775 #define DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(x) (((x) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK) >> DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB) 1776 #define DDR_CTL_CONFIG_CLIENT_ACTIVITY_SET(x) (((x) << DDR_CTL_CONFIG_CLIENT_ACTIVITY_LSB) & DDR_CTL_CONFIG_CLIENT_ACTIVITY_MASK) 1777 #define MAC_DMA_CFG_ADDRESS 0xb8100000 1778 #define MAC_DMA_CFG_OFFSET 0x0014 1779 1780 #define MAC_DMA_CFG_HALT_REQ_MSB 11 1781 #define MAC_DMA_CFG_HALT_REQ_LSB 11 1782 #define MAC_DMA_CFG_HALT_REQ_MASK 0x00000800 1783 #define MAC_DMA_CFG_HALT_REQ_GET(x) (((x) & MAC_DMA_CFG_HALT_REQ_MASK) >> MAC_DMA_CFG_HALT_REQ_LSB) 1784 #define MAC_DMA_CFG_HALT_REQ_SET(x) (((x) << MAC_DMA_CFG_HALT_REQ_LSB) & MAC_DMA_CFG_HALT_REQ_MASK) 1785 #define MAC_DMA_CFG_HALT_ACK_MSB 12 1786 #define MAC_DMA_CFG_HALT_ACK_LSB 12 1787 #define MAC_DMA_CFG_HALT_ACK_MASK 0x00001000 1788 #define MAC_DMA_CFG_HALT_ACK_GET(x) (((x) & MAC_DMA_CFG_HALT_ACK_MASK) >> MAC_DMA_CFG_HALT_ACK_LSB) 1789 #define MAC_DMA_CFG_HALT_ACK_SET(x) (((x) << MAC_DMA_CFG_HALT_ACK_LSB) & MAC_DMA_CFG_HALT_ACK_MASK) 1790 1791 #define RST_RESET 0xB806001c 1792 #define RTC_RESET (1<<27) 1793 1794 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 1795 #define REG_WRITE(_reg, _val) *((volatile u_int32_t *)(_reg)) = (_val); 1796 1797 #define DDR_REG_READ(_ah, _reg) \ 1798 *((volatile u_int32_t *)( DDR_CTL_CONFIG_ADDRESS + (_reg))) 1799 #define DDR_REG_WRITE(_ah, _reg, _val) \ 1800 *((volatile u_int32_t *)(DDR_CTL_CONFIG_ADDRESS + (_reg))) = (_val) 1801 1802 OS_REG_WRITE(ah,MAC_DMA_CFG_OFFSET, (OS_REG_READ(ah,MAC_DMA_CFG_OFFSET) & ~MAC_DMA_CFG_HALT_REQ_MASK) | 1803 MAC_DMA_CFG_HALT_REQ_SET(1)); 1804 1805 { 1806 int count; 1807 u_int32_t data; 1808 1809 count = 0; 1810 while (!MAC_DMA_CFG_HALT_ACK_GET(OS_REG_READ(ah, MAC_DMA_CFG_OFFSET) )) 1811 { 1812 count++; 1813 if (count > 10) { 1814 ath_hal_printf(ah, "Halt ACK timeout\n"); 1815 break; 1816 } 1817 OS_DELAY(10); 1818 } 1819 1820 data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET); 1821 HALDEBUG(ah, HAL_DEBUG_RESET, "check DDR Activity - HIGH\n"); 1822 1823 count = 0; 1824 while (DDR_CTL_CONFIG_CLIENT_ACTIVITY_GET(data)) { 1825 // AVE_DEBUG(0,"DDR Activity - HIGH\n"); 1826 HALDEBUG(ah, HAL_DEBUG_RESET, "DDR Activity - HIGH\n"); 1827 count++; 1828 OS_DELAY(10); 1829 data = DDR_REG_READ(ah,DDR_CTL_CONFIG_OFFSET); 1830 if (count > 10) { 1831 ath_hal_printf(ah, "DDR Activity timeout\n"); 1832 break; 1833 } 1834 } 1835 } 1836 1837 1838 { 1839 //Force RTC reset 1840 REG_WRITE(RST_RESET, (REG_READ(RST_RESET) | RTC_RESET)); 1841 OS_DELAY(10); 1842 REG_WRITE(RST_RESET, (REG_READ(RST_RESET) & ~RTC_RESET)); 1843 OS_DELAY(10); 1844 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1845 OS_DELAY(10); 1846 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1847 OS_DELAY(10); 1848 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Scorpion SoC RTC reset done.\n", __func__); 1849 } 1850 #undef REG_READ 1851 #undef REG_WRITE 1852 } 1853 #endif /* AH_SUPPORT_SCORPION */ 1854 1855 /* 1856 * Set Mac(BB,Phy) Warm Reset 1857 */ 1858 OS_REG_WRITE(ah, AR_RTC_RC, rst_flags); 1859 1860 OS_DELAY(50); /* XXX 50 usec */ 1861 1862 /* 1863 * Clear resets and force wakeup 1864 */ 1865 OS_REG_WRITE(ah, AR_RTC_RC, 0); 1866 if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) { 1867 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 1868 "%s: RTC stuck in MAC reset\n", __FUNCTION__); 1869 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 1870 "%s: AR_RTC_RC = 0x%x\n", __func__, OS_REG_READ(ah, AR_RTC_RC)); 1871 return AH_FALSE; 1872 } 1873 1874 /* Clear AHB reset */ 1875 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_RC), 0); 1876 ar9300_disable_pll_lock_detect(ah); 1877 1878 ar9300_attach_hw_platform(ah); 1879 1880 ahp->ah_chip_reset_done = 1; 1881 return AH_TRUE; 1882 } 1883 1884 static inline HAL_BOOL 1885 ar9300_set_reset_power_on(struct ath_hal *ah) 1886 { 1887 /* Force wake */ 1888 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val); 1889 OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */ 1890 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1891 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1892 /* 1893 * RTC reset and clear. Some delay in between is needed 1894 * to give the chip time to settle. 1895 */ 1896 OS_REG_WRITE(ah, AR_RTC_RESET, 0); 1897 OS_DELAY(2); 1898 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 1899 1900 /* 1901 * Poll till RTC is ON 1902 */ 1903 if (!ath_hal_wait(ah, 1904 AR_RTC_STATUS, AR_RTC_STATUS_M, 1905 AR_RTC_STATUS_ON)) 1906 { 1907 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 1908 "%s: RTC not waking up for %d\n", __FUNCTION__, 1000); 1909 return AH_FALSE; 1910 } 1911 1912 /* 1913 * Read Revisions from Chip right after RTC is on for the first time. 1914 * This helps us detect the chip type early and initialize it accordingly. 1915 */ 1916 ar9300_read_revisions(ah); 1917 1918 /* 1919 * Warm reset if we aren't really powering on, 1920 * just restarting the driver. 1921 */ 1922 return ar9300_set_reset(ah, HAL_RESET_WARM); 1923 } 1924 1925 /* 1926 * Write the given reset bit mask into the reset register 1927 */ 1928 HAL_BOOL 1929 ar9300_set_reset_reg(struct ath_hal *ah, u_int32_t type) 1930 { 1931 HAL_BOOL ret = AH_FALSE; 1932 1933 /* 1934 * Set force wake 1935 */ 1936 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_WA), AH9300(ah)->ah_wa_reg_val); 1937 OS_DELAY(10); /* delay to allow AR_WA reg write to kick in */ 1938 OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1939 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1940 1941 switch (type) { 1942 case HAL_RESET_POWER_ON: 1943 ret = ar9300_set_reset_power_on(ah); 1944 break; 1945 case HAL_RESET_WARM: 1946 case HAL_RESET_COLD: 1947 ret = ar9300_set_reset(ah, type); 1948 break; 1949 default: 1950 break; 1951 } 1952 1953 #if ATH_SUPPORT_MCI 1954 if (AH_PRIVATE(ah)->ah_caps.halMciSupport) { 1955 OS_REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2); 1956 } 1957 #endif 1958 1959 return ret; 1960 } 1961 1962 /* 1963 * Places the PHY and Radio chips into reset. A full reset 1964 * must be called to leave this state. The PCI/MAC/PCU are 1965 * not placed into reset as we must receive interrupt to 1966 * re-enable the hardware. 1967 */ 1968 HAL_BOOL 1969 ar9300_phy_disable(struct ath_hal *ah) 1970 { 1971 if (!ar9300_set_reset_reg(ah, HAL_RESET_WARM)) { 1972 return AH_FALSE; 1973 } 1974 1975 #ifdef ATH_SUPPORT_LED 1976 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 1977 #define REG_WRITE(_reg, _val) *((volatile u_int32_t *)(_reg)) = (_val); 1978 #define ATH_GPIO_OE 0xB8040000 1979 #define ATH_GPIO_OUT 0xB8040008 /* GPIO Ouput Value reg.*/ 1980 if (AR_SREV_WASP(ah)) { 1981 if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) { 1982 REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13))); 1983 } 1984 else { 1985 REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12))); 1986 } 1987 } 1988 else if (AR_SREV_SCORPION(ah)) { 1989 if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) { 1990 REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 13))); 1991 } 1992 else { 1993 REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12))); 1994 } 1995 /* Turn off JMPST led */ 1996 REG_WRITE(ATH_GPIO_OUT, (REG_READ(ATH_GPIO_OUT) | (0x1 << 15))); 1997 } 1998 else if (AR_SREV_HONEYBEE(ah)) { 1999 REG_WRITE(ATH_GPIO_OE, (REG_READ(ATH_GPIO_OE) | (0x1 << 12))); 2000 } 2001 #undef REG_READ 2002 #undef REG_WRITE 2003 #endif 2004 2005 if ( AR_SREV_OSPREY(ah) ) { 2006 OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_OUTPUT_MUX1), 0x0, 0x1f); 2007 } 2008 2009 2010 ar9300_init_pll(ah, AH_NULL); 2011 ar9300_disable_pll_lock_detect(ah); 2012 2013 return AH_TRUE; 2014 } 2015 2016 /* 2017 * Places all of hardware into reset 2018 */ 2019 HAL_BOOL 2020 ar9300_disable(struct ath_hal *ah) 2021 { 2022 if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) { 2023 return AH_FALSE; 2024 } 2025 if (!ar9300_set_reset_reg(ah, HAL_RESET_COLD)) { 2026 return AH_FALSE; 2027 } 2028 2029 ar9300_init_pll(ah, AH_NULL); 2030 2031 return AH_TRUE; 2032 } 2033 2034 /* 2035 * TODO: Only write the PLL if we're changing to or from CCK mode 2036 * 2037 * WARNING: The order of the PLL and mode registers must be correct. 2038 */ 2039 static inline void 2040 ar9300_set_rf_mode(struct ath_hal *ah, struct ieee80211_channel *chan) 2041 { 2042 u_int32_t rf_mode = 0; 2043 2044 if (chan == AH_NULL) { 2045 return; 2046 } 2047 switch (AH9300(ah)->ah_hwp) { 2048 case HAL_TRUE_CHIP: 2049 rf_mode |= (IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_G(chan)) ? 2050 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM; 2051 break; 2052 default: 2053 HALASSERT(0); 2054 break; 2055 } 2056 /* Phy mode bits for 5GHz channels requiring Fast Clock */ 2057 if ( IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 2058 rf_mode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE); 2059 } 2060 OS_REG_WRITE(ah, AR_PHY_MODE, rf_mode); 2061 } 2062 2063 /* 2064 * Places the hardware into reset and then pulls it out of reset 2065 */ 2066 HAL_BOOL 2067 ar9300_chip_reset(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_RESET_TYPE reset_type) 2068 { 2069 struct ath_hal_9300 *ahp = AH9300(ah); 2070 int type = HAL_RESET_WARM; 2071 2072 OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0); 2073 2074 /* 2075 * Warm reset is optimistic. 2076 * 2077 * If the TX/RX DMA engines aren't shut down (eg, they're 2078 * wedged) then we're better off doing a full cold reset 2079 * to try and shake that condition. 2080 */ 2081 if (ahp->ah_chip_full_sleep || 2082 (ah->ah_config.ah_force_full_reset == 1) || 2083 (reset_type == HAL_RESET_FORCE_COLD) || 2084 (reset_type == HAL_RESET_BBPANIC) || 2085 OS_REG_READ(ah, AR_Q_TXE) || 2086 (OS_REG_READ(ah, AR_CR) & AR_CR_RXE)) { 2087 HALDEBUG(ah, HAL_DEBUG_RESET, 2088 "%s: full reset; reset_type=%d, full_sleep=%d\n", 2089 __func__, reset_type, ahp->ah_chip_full_sleep); 2090 type = HAL_RESET_COLD; 2091 } 2092 2093 if (!ar9300_set_reset_reg(ah, type)) { 2094 return AH_FALSE; 2095 } 2096 2097 /* Bring out of sleep mode (AGAIN) */ 2098 if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) { 2099 return AH_FALSE; 2100 } 2101 2102 ahp->ah_chip_full_sleep = AH_FALSE; 2103 2104 if (AR_SREV_HORNET(ah)) { 2105 ar9300_internal_regulator_apply(ah); 2106 } 2107 2108 ar9300_init_pll(ah, chan); 2109 2110 /* 2111 * Perform warm reset before the mode/PLL/turbo registers 2112 * are changed in order to deactivate the radio. Mode changes 2113 * with an active radio can result in corrupted shifts to the 2114 * radio device. 2115 */ 2116 ar9300_set_rf_mode(ah, chan); 2117 2118 return AH_TRUE; 2119 } 2120 2121 /* ar9300_setup_calibration 2122 * Setup HW to collect samples used for current cal 2123 */ 2124 inline static void 2125 ar9300_setup_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal) 2126 { 2127 /* Select calibration to run */ 2128 switch (curr_cal->cal_data->cal_type) { 2129 case IQ_MISMATCH_CAL: 2130 /* Start calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */ 2131 OS_REG_RMW_FIELD(ah, AR_PHY_TIMING4, 2132 AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 2133 curr_cal->cal_data->cal_count_max); 2134 OS_REG_WRITE(ah, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ); 2135 2136 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2137 "%s: starting IQ Mismatch Calibration\n", __func__); 2138 2139 /* Kick-off cal */ 2140 OS_REG_SET_BIT(ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL); 2141 2142 break; 2143 case TEMP_COMP_CAL: 2144 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || 2145 AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) { 2146 OS_REG_RMW_FIELD(ah, 2147 AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1); 2148 OS_REG_RMW_FIELD(ah, 2149 AR_HORNET_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1); 2150 } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { 2151 OS_REG_RMW_FIELD(ah, 2152 AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_LOCAL, 1); 2153 OS_REG_RMW_FIELD(ah, 2154 AR_PHY_65NM_CH0_THERM_JUPITER, AR_PHY_65NM_CH0_THERM_START, 1); 2155 } else { 2156 OS_REG_RMW_FIELD(ah, 2157 AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_LOCAL, 1); 2158 OS_REG_RMW_FIELD(ah, 2159 AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_START, 1); 2160 } 2161 2162 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2163 "%s: starting Temperature Compensation Calibration\n", __func__); 2164 break; 2165 default: 2166 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 2167 "%s called with incorrect calibration type.\n", __func__); 2168 } 2169 } 2170 2171 /* ar9300_reset_calibration 2172 * Initialize shared data structures and prepare a cal to be run. 2173 */ 2174 inline static void 2175 ar9300_reset_calibration(struct ath_hal *ah, HAL_CAL_LIST *curr_cal) 2176 { 2177 struct ath_hal_9300 *ahp = AH9300(ah); 2178 int i; 2179 2180 /* Setup HW for new calibration */ 2181 ar9300_setup_calibration(ah, curr_cal); 2182 2183 /* Change SW state to RUNNING for this calibration */ 2184 curr_cal->cal_state = CAL_RUNNING; 2185 2186 /* Reset data structures shared between different calibrations */ 2187 for (i = 0; i < AR9300_MAX_CHAINS; i++) { 2188 ahp->ah_meas0.sign[i] = 0; 2189 ahp->ah_meas1.sign[i] = 0; 2190 ahp->ah_meas2.sign[i] = 0; 2191 ahp->ah_meas3.sign[i] = 0; 2192 } 2193 2194 ahp->ah_cal_samples = 0; 2195 } 2196 2197 #ifdef XXX_UNUSED_FUNCTION 2198 /* 2199 * Find out which of the RX chains are enabled 2200 */ 2201 static u_int32_t 2202 ar9300_get_rx_chain_mask(struct ath_hal *ah) 2203 { 2204 u_int32_t ret_val = OS_REG_READ(ah, AR_PHY_RX_CHAINMASK); 2205 /* The bits [2:0] indicate the rx chain mask and are to be 2206 * interpreted as follows: 2207 * 00x => Only chain 0 is enabled 2208 * 01x => Chain 1 and 0 enabled 2209 * 1xx => Chain 2,1 and 0 enabled 2210 */ 2211 return (ret_val & 0x7); 2212 } 2213 #endif 2214 2215 static void 2216 ar9300_get_nf_hist_base(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *chan, 2217 int is_scan, int16_t nf[]) 2218 { 2219 HAL_NFCAL_BASE *h_base; 2220 2221 #ifdef ATH_NF_PER_CHAN 2222 h_base = &chan->nf_cal_hist.base; 2223 #else 2224 if (is_scan) { 2225 /* 2226 * The channel we are currently on is not the home channel, 2227 * so we shouldn't use the home channel NF buffer's values on 2228 * this channel. Instead, use the NF single value already 2229 * read for this channel. (Or, if we haven't read the NF for 2230 * this channel yet, the SW default for this chip/band will 2231 * be used.) 2232 */ 2233 h_base = &chan->nf_cal_hist.base; 2234 } else { 2235 /* use the home channel NF info */ 2236 h_base = &AH_PRIVATE(ah)->nf_cal_hist.base; 2237 } 2238 #endif 2239 OS_MEMCPY(nf, h_base->priv_nf, sizeof(h_base->priv_nf)); 2240 } 2241 2242 HAL_BOOL 2243 ar9300_load_nf(struct ath_hal *ah, int16_t nf[]) 2244 { 2245 int i, j; 2246 int32_t val; 2247 /* XXX where are EXT regs defined */ 2248 const u_int32_t ar9300_cca_regs[] = { 2249 AR_PHY_CCA_0, 2250 AR_PHY_CCA_1, 2251 AR_PHY_CCA_2, 2252 AR_PHY_EXT_CCA, 2253 AR_PHY_EXT_CCA_1, 2254 AR_PHY_EXT_CCA_2, 2255 }; 2256 u_int8_t chainmask; 2257 2258 /* 2259 * Force NF calibration for all chains, otherwise Vista station 2260 * would conduct a bad performance 2261 */ 2262 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) { 2263 chainmask = 0x9; 2264 } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) { 2265 chainmask = 0x1b; 2266 } else { 2267 chainmask = 0x3F; 2268 } 2269 2270 /* 2271 * Write filtered NF values into max_cca_pwr register parameter 2272 * so we can load below. 2273 */ 2274 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 2275 if (chainmask & (1 << i)) { 2276 val = OS_REG_READ(ah, ar9300_cca_regs[i]); 2277 val &= 0xFFFFFE00; 2278 val |= (((u_int32_t)(nf[i]) << 1) & 0x1ff); 2279 OS_REG_WRITE(ah, ar9300_cca_regs[i], val); 2280 } 2281 } 2282 2283 HALDEBUG(ah, HAL_DEBUG_NFCAL, "%s: load %d %d %d %d %d %d\n", 2284 __func__, 2285 nf[0], nf[1], nf[2], 2286 nf[3], nf[4], nf[5]); 2287 2288 /* 2289 * Load software filtered NF value into baseband internal min_cca_pwr 2290 * variable. 2291 */ 2292 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 2293 OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 2294 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 2295 2296 /* Wait for load to complete, should be fast, a few 10s of us. */ 2297 /* Changed the max delay 250us back to 10000us, since 250us often 2298 * results in NF load timeout and causes deaf condition 2299 * during stress testing 12/12/2009 2300 */ 2301 for (j = 0; j < 10000; j++) { 2302 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){ 2303 break; 2304 } 2305 OS_DELAY(10); 2306 } 2307 if (j == 10000) { 2308 /* 2309 * We timed out waiting for the noisefloor to load, probably 2310 * due to an in-progress rx. Simply return here and allow 2311 * the load plenty of time to complete before the next 2312 * calibration interval. We need to avoid trying to load -50 2313 * (which happens below) while the previous load is still in 2314 * progress as this can cause rx deafness (see EV 66368,62830). 2315 * Instead by returning here, the baseband nf cal will 2316 * just be capped by our present noisefloor until the next 2317 * calibration timer. 2318 */ 2319 HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, 2320 "%s: *** TIMEOUT while waiting for nf to load: " 2321 "AR_PHY_AGC_CONTROL=0x%x ***\n", 2322 __func__, OS_REG_READ(ah, AR_PHY_AGC_CONTROL)); 2323 return AH_FALSE; 2324 } 2325 2326 /* 2327 * Restore max_cca_power register parameter again so that we're not capped 2328 * by the median we just loaded. This will be initial (and max) value 2329 * of next noise floor calibration the baseband does. 2330 */ 2331 for (i = 0; i < HAL_NUM_NF_READINGS; i++) { 2332 if (chainmask & (1 << i)) { 2333 val = OS_REG_READ(ah, ar9300_cca_regs[i]); 2334 val &= 0xFFFFFE00; 2335 val |= (((u_int32_t)(-50) << 1) & 0x1ff); 2336 OS_REG_WRITE(ah, ar9300_cca_regs[i], val); 2337 } 2338 } 2339 return AH_TRUE; 2340 } 2341 2342 /* ar9300_per_calibration 2343 * Generic calibration routine. 2344 * Recalibrate the lower PHY chips to account for temperature/environment 2345 * changes. 2346 */ 2347 inline static void 2348 ar9300_per_calibration(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, 2349 u_int8_t rxchainmask, HAL_CAL_LIST *curr_cal, HAL_BOOL *is_cal_done) 2350 { 2351 struct ath_hal_9300 *ahp = AH9300(ah); 2352 2353 /* Cal is assumed not done until explicitly set below */ 2354 *is_cal_done = AH_FALSE; 2355 2356 /* Calibration in progress. */ 2357 if (curr_cal->cal_state == CAL_RUNNING) { 2358 /* Check to see if it has finished. */ 2359 if (!(OS_REG_READ(ah, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) { 2360 int i, num_chains = 0; 2361 for (i = 0; i < AR9300_MAX_CHAINS; i++) { 2362 if (rxchainmask & (1 << i)) { 2363 num_chains++; 2364 } 2365 } 2366 2367 /* 2368 * Accumulate cal measures for active chains 2369 */ 2370 curr_cal->cal_data->cal_collect(ah, num_chains); 2371 2372 ahp->ah_cal_samples++; 2373 2374 if (ahp->ah_cal_samples >= curr_cal->cal_data->cal_num_samples) { 2375 /* 2376 * Process accumulated data 2377 */ 2378 curr_cal->cal_data->cal_post_proc(ah, num_chains); 2379 2380 /* Calibration has finished. */ 2381 ichan->calValid |= curr_cal->cal_data->cal_type; 2382 curr_cal->cal_state = CAL_DONE; 2383 *is_cal_done = AH_TRUE; 2384 } else { 2385 /* Set-up collection of another sub-sample until we 2386 * get desired number 2387 */ 2388 ar9300_setup_calibration(ah, curr_cal); 2389 } 2390 } 2391 } else if (!(ichan->calValid & curr_cal->cal_data->cal_type)) { 2392 /* If current cal is marked invalid in channel, kick it off */ 2393 ar9300_reset_calibration(ah, curr_cal); 2394 } 2395 } 2396 2397 static void 2398 ar9300_start_nf_cal(struct ath_hal *ah) 2399 { 2400 struct ath_hal_9300 *ahp = AH9300(ah); 2401 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF); 2402 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF); 2403 OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF); 2404 AH9300(ah)->nf_tsf32 = ar9300_get_tsf32(ah); 2405 2406 /* 2407 * We are reading the NF values before we start the NF operation, because 2408 * of that we are getting very high values like -45. 2409 * This triggers the CW_INT detected and EACS module triggers the channel change 2410 * chip_reset_done value is used to fix this issue. 2411 * chip_reset_flag is set during the RTC reset. 2412 * chip_reset_flag is cleared during the starting NF operation. 2413 * if flag is set we will clear the flag and will not read the NF values. 2414 */ 2415 ahp->ah_chip_reset_done = 0; 2416 } 2417 2418 /* ar9300_calibration 2419 * Wrapper for a more generic Calibration routine. Primarily to abstract to 2420 * upper layers whether there is 1 or more calibrations to be run. 2421 */ 2422 HAL_BOOL 2423 ar9300_calibration(struct ath_hal *ah, struct ieee80211_channel *chan, u_int8_t rxchainmask, 2424 HAL_BOOL do_nf_cal, HAL_BOOL *is_cal_done, int is_scan, 2425 u_int32_t *sched_cals) 2426 { 2427 struct ath_hal_9300 *ahp = AH9300(ah); 2428 HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr; 2429 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 2430 int16_t nf_buf[HAL_NUM_NF_READINGS]; 2431 2432 *is_cal_done = AH_TRUE; 2433 2434 2435 /* XXX: For initial wasp bringup - disable periodic calibration */ 2436 /* Invalid channel check */ 2437 if (ichan == AH_NULL) { 2438 HALDEBUG(ah, HAL_DEBUG_CHANNEL, 2439 "%s: invalid channel %u/0x%x; no mapping\n", 2440 __func__, chan->ic_freq, chan->ic_flags); 2441 return AH_FALSE; 2442 } 2443 2444 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2445 "%s: Entering, Doing NF Cal = %d\n", __func__, do_nf_cal); 2446 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Chain 0 Rx IQ Cal Correction 0x%08x\n", 2447 __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0)); 2448 if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) { 2449 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2450 "%s: Chain 1 Rx IQ Cal Correction 0x%08x\n", 2451 __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B1)); 2452 if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah) && !AR_SREV_HONEYBEE(ah)) { 2453 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2454 "%s: Chain 2 Rx IQ Cal Correction 0x%08x\n", 2455 __func__, OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B2)); 2456 } 2457 } 2458 2459 OS_MARK(ah, AH_MARK_PERCAL, chan->ic_freq); 2460 2461 /* For given calibration: 2462 * 1. Call generic cal routine 2463 * 2. When this cal is done (is_cal_done) if we have more cals waiting 2464 * (eg after reset), mask this to upper layers by not propagating 2465 * is_cal_done if it is set to TRUE. 2466 * Instead, change is_cal_done to FALSE and setup the waiting cal(s) 2467 * to be run. 2468 */ 2469 if (curr_cal && (curr_cal->cal_data->cal_type & *sched_cals) && 2470 (curr_cal->cal_state == CAL_RUNNING || 2471 curr_cal->cal_state == CAL_WAITING)) 2472 { 2473 ar9300_per_calibration(ah, ichan, rxchainmask, curr_cal, is_cal_done); 2474 2475 if (*is_cal_done == AH_TRUE) { 2476 ahp->ah_cal_list_curr = curr_cal = curr_cal->cal_next; 2477 2478 if (curr_cal && curr_cal->cal_state == CAL_WAITING) { 2479 *is_cal_done = AH_FALSE; 2480 ar9300_reset_calibration(ah, curr_cal); 2481 } else { 2482 *sched_cals &= ~IQ_MISMATCH_CAL; 2483 } 2484 } 2485 } 2486 2487 /* Do NF cal only at longer intervals */ 2488 if (do_nf_cal) { 2489 int nf_done; 2490 2491 /* Get the value from the previous NF cal and update history buffer */ 2492 nf_done = ar9300_store_new_nf(ah, chan, is_scan); 2493 #if 0 2494 if (ichan->channel_flags & CHANNEL_CW_INT) { 2495 chan->channel_flags |= CHANNEL_CW_INT; 2496 } 2497 #endif 2498 chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT; 2499 2500 if (nf_done) { 2501 int ret; 2502 /* 2503 * Load the NF from history buffer of the current channel. 2504 * NF is slow time-variant, so it is OK to use a historical value. 2505 */ 2506 ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf); 2507 2508 ret = ar9300_load_nf(ah, nf_buf); 2509 /* start NF calibration, without updating BB NF register*/ 2510 ar9300_start_nf_cal(ah); 2511 2512 /* 2513 * If we failed the NF cal then tell the upper layer that we 2514 * failed so we can do a full reset 2515 */ 2516 if (! ret) 2517 return AH_FALSE; 2518 } 2519 } 2520 return AH_TRUE; 2521 } 2522 2523 /* ar9300_iq_cal_collect 2524 * Collect data from HW to later perform IQ Mismatch Calibration 2525 */ 2526 void 2527 ar9300_iq_cal_collect(struct ath_hal *ah, u_int8_t num_chains) 2528 { 2529 struct ath_hal_9300 *ahp = AH9300(ah); 2530 int i; 2531 2532 /* 2533 * Accumulate IQ cal measures for active chains 2534 */ 2535 for (i = 0; i < num_chains; i++) { 2536 ahp->ah_total_power_meas_i[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_0(i)); 2537 ahp->ah_total_power_meas_q[i] = OS_REG_READ(ah, AR_PHY_CAL_MEAS_1(i)); 2538 ahp->ah_total_iq_corr_meas[i] = 2539 (int32_t) OS_REG_READ(ah, AR_PHY_CAL_MEAS_2(i)); 2540 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2541 "%d: Chn %d " 2542 "Reg Offset(0x%04x)pmi=0x%08x; " 2543 "Reg Offset(0x%04x)pmq=0x%08x; " 2544 "Reg Offset (0x%04x)iqcm=0x%08x;\n", 2545 ahp->ah_cal_samples, 2546 i, 2547 (unsigned) AR_PHY_CAL_MEAS_0(i), 2548 ahp->ah_total_power_meas_i[i], 2549 (unsigned) AR_PHY_CAL_MEAS_1(i), 2550 ahp->ah_total_power_meas_q[i], 2551 (unsigned) AR_PHY_CAL_MEAS_2(i), 2552 ahp->ah_total_iq_corr_meas[i]); 2553 } 2554 } 2555 2556 /* ar9300_iq_calibration 2557 * Use HW data to perform IQ Mismatch Calibration 2558 */ 2559 void 2560 ar9300_iq_calibration(struct ath_hal *ah, u_int8_t num_chains) 2561 { 2562 struct ath_hal_9300 *ahp = AH9300(ah); 2563 u_int32_t power_meas_q, power_meas_i, iq_corr_meas; 2564 u_int32_t q_coff_denom, i_coff_denom; 2565 int32_t q_coff, i_coff; 2566 int iq_corr_neg, i; 2567 HAL_CHANNEL_INTERNAL *ichan; 2568 static const u_int32_t offset_array[3] = { 2569 AR_PHY_RX_IQCAL_CORR_B0, 2570 AR_PHY_RX_IQCAL_CORR_B1, 2571 AR_PHY_RX_IQCAL_CORR_B2, 2572 }; 2573 2574 ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan); 2575 2576 for (i = 0; i < num_chains; i++) { 2577 power_meas_i = ahp->ah_total_power_meas_i[i]; 2578 power_meas_q = ahp->ah_total_power_meas_q[i]; 2579 iq_corr_meas = ahp->ah_total_iq_corr_meas[i]; 2580 2581 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2582 "Starting IQ Cal and Correction for Chain %d\n", i); 2583 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2584 "Orignal: Chn %diq_corr_meas = 0x%08x\n", 2585 i, ahp->ah_total_iq_corr_meas[i]); 2586 2587 iq_corr_neg = 0; 2588 2589 /* iq_corr_meas is always negative. */ 2590 if (iq_corr_meas > 0x80000000) { 2591 iq_corr_meas = (0xffffffff - iq_corr_meas) + 1; 2592 iq_corr_neg = 1; 2593 } 2594 2595 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2596 "Chn %d pwr_meas_i = 0x%08x\n", i, power_meas_i); 2597 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2598 "Chn %d pwr_meas_q = 0x%08x\n", i, power_meas_q); 2599 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2600 "iq_corr_neg is 0x%08x\n", iq_corr_neg); 2601 2602 i_coff_denom = (power_meas_i / 2 + power_meas_q / 2) / 256; 2603 q_coff_denom = power_meas_q / 64; 2604 2605 /* Protect against divide-by-0 */ 2606 if ((i_coff_denom != 0) && (q_coff_denom != 0)) { 2607 /* IQ corr_meas is already negated if iqcorr_neg == 1 */ 2608 i_coff = iq_corr_meas / i_coff_denom; 2609 q_coff = power_meas_i / q_coff_denom - 64; 2610 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2611 "Chn %d i_coff = 0x%08x\n", i, i_coff); 2612 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2613 "Chn %d q_coff = 0x%08x\n", i, q_coff); 2614 2615 /* Force bounds on i_coff */ 2616 if (i_coff >= 63) { 2617 i_coff = 63; 2618 } else if (i_coff <= -63) { 2619 i_coff = -63; 2620 } 2621 2622 /* Negate i_coff if iq_corr_neg == 0 */ 2623 if (iq_corr_neg == 0x0) { 2624 i_coff = -i_coff; 2625 } 2626 2627 /* Force bounds on q_coff */ 2628 if (q_coff >= 63) { 2629 q_coff = 63; 2630 } else if (q_coff <= -63) { 2631 q_coff = -63; 2632 } 2633 2634 i_coff = i_coff & 0x7f; 2635 q_coff = q_coff & 0x7f; 2636 2637 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2638 "Chn %d : i_coff = 0x%x q_coff = 0x%x\n", i, i_coff, q_coff); 2639 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2640 "Register offset (0x%04x) before update = 0x%x\n", 2641 offset_array[i], OS_REG_READ(ah, offset_array[i])); 2642 2643 OS_REG_RMW_FIELD(ah, offset_array[i], 2644 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff); 2645 OS_REG_RMW_FIELD(ah, offset_array[i], 2646 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff); 2647 2648 /* store the RX cal results */ 2649 if (ichan != NULL) { 2650 ahp->ah_rx_cal_corr[i] = OS_REG_READ(ah, offset_array[i]) & 0x7fff; 2651 ahp->ah_rx_cal_complete = AH_TRUE; 2652 ahp->ah_rx_cal_chan = ichan->channel; 2653 // ahp->ah_rx_cal_chan_flag = ichan->channel_flags &~ CHANNEL_PASSIVE; 2654 ahp->ah_rx_cal_chan_flag = 0; /* XXX */ 2655 } else { 2656 /* XXX? Is this what I should do? */ 2657 ahp->ah_rx_cal_complete = AH_FALSE; 2658 2659 } 2660 2661 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2662 "Register offset (0x%04x) QI COFF (bitfields 0x%08x) " 2663 "after update = 0x%x\n", 2664 offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, 2665 OS_REG_READ(ah, offset_array[i])); 2666 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2667 "Register offset (0x%04x) QQ COFF (bitfields 0x%08x) " 2668 "after update = 0x%x\n", 2669 offset_array[i], AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, 2670 OS_REG_READ(ah, offset_array[i])); 2671 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2672 "IQ Cal and Correction done for Chain %d\n", i); 2673 } 2674 } 2675 2676 OS_REG_SET_BIT(ah, 2677 AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE); 2678 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2679 "IQ Cal and Correction (offset 0x%04x) enabled " 2680 "(bit position 0x%08x). New Value 0x%08x\n", 2681 (unsigned) (AR_PHY_RX_IQCAL_CORR_B0), 2682 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE, 2683 OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0)); 2684 } 2685 2686 /* 2687 * When coming back from offchan, we do not perform RX IQ Cal. 2688 * But the chip reset will clear all previous results 2689 * We store the previous results and restore here. 2690 */ 2691 static void 2692 ar9300_rx_iq_cal_restore(struct ath_hal *ah) 2693 { 2694 struct ath_hal_9300 *ahp = AH9300(ah); 2695 u_int32_t i_coff, q_coff; 2696 HAL_BOOL is_restore = AH_FALSE; 2697 int i; 2698 static const u_int32_t offset_array[3] = { 2699 AR_PHY_RX_IQCAL_CORR_B0, 2700 AR_PHY_RX_IQCAL_CORR_B1, 2701 AR_PHY_RX_IQCAL_CORR_B2, 2702 }; 2703 2704 for (i=0; i<AR9300_MAX_CHAINS; i++) { 2705 if (ahp->ah_rx_cal_corr[i]) { 2706 i_coff = (ahp->ah_rx_cal_corr[i] & 2707 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF) >> 2708 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF_S; 2709 q_coff = (ahp->ah_rx_cal_corr[i] & 2710 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF) >> 2711 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF_S; 2712 2713 OS_REG_RMW_FIELD(ah, offset_array[i], 2714 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff); 2715 OS_REG_RMW_FIELD(ah, offset_array[i], 2716 AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff); 2717 2718 is_restore = AH_TRUE; 2719 } 2720 } 2721 2722 if (is_restore) 2723 OS_REG_SET_BIT(ah, 2724 AR_PHY_RX_IQCAL_CORR_B0, AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE); 2725 2726 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 2727 "%s: IQ Cal and Correction (offset 0x%04x) enabled " 2728 "(bit position 0x%08x). New Value 0x%08x\n", 2729 __func__, 2730 (unsigned) (AR_PHY_RX_IQCAL_CORR_B0), 2731 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE, 2732 OS_REG_READ(ah, AR_PHY_RX_IQCAL_CORR_B0)); 2733 } 2734 2735 /* 2736 * Set a limit on the overall output power. Used for dynamic 2737 * transmit power control and the like. 2738 * 2739 * NB: limit is in units of 0.5 dbM. 2740 */ 2741 HAL_BOOL 2742 ar9300_set_tx_power_limit(struct ath_hal *ah, u_int32_t limit, 2743 u_int16_t extra_txpow, u_int16_t tpc_in_db) 2744 { 2745 struct ath_hal_9300 *ahp = AH9300(ah); 2746 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 2747 const struct ieee80211_channel *chan = ahpriv->ah_curchan; 2748 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 2749 2750 if (NULL == chan) { 2751 return AH_FALSE; 2752 } 2753 2754 ahpriv->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER); 2755 ahpriv->ah_extraTxPow = extra_txpow; 2756 2757 if(chan == NULL) { 2758 return AH_FALSE; 2759 } 2760 if (ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan, 2761 ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan), 2762 ath_hal_get_twice_max_regpower(ahpriv, ichan, chan), 2763 AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit)) != HAL_OK) 2764 { 2765 return AH_FALSE; 2766 } 2767 return AH_TRUE; 2768 } 2769 2770 /* 2771 * Exported call to check for a recent gain reading and return 2772 * the current state of the thermal calibration gain engine. 2773 */ 2774 HAL_RFGAIN 2775 ar9300_get_rfgain(struct ath_hal *ah) 2776 { 2777 return HAL_RFGAIN_INACTIVE; 2778 } 2779 2780 #define HAL_GREEN_AP_RX_MASK 0x1 2781 2782 static inline void 2783 ar9300_init_chain_masks(struct ath_hal *ah, int rx_chainmask, int tx_chainmask) 2784 { 2785 if (AH9300(ah)->green_ap_ps_on) { 2786 rx_chainmask = HAL_GREEN_AP_RX_MASK; 2787 } 2788 if (rx_chainmask == 0x5) { 2789 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 2790 } 2791 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 2792 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 2793 2794 /* 2795 * Adaptive Power Management: 2796 * Some 3 stream chips exceed the PCIe power requirements. 2797 * This workaround will reduce power consumption by using 2 tx chains 2798 * for 1 and 2 stream rates (5 GHz only). 2799 * 2800 * Set the self gen mask to 2 tx chains when APM is enabled. 2801 * 2802 */ 2803 if (AH_PRIVATE(ah)->ah_caps.halApmEnable && (tx_chainmask == 0x7)) { 2804 OS_REG_WRITE(ah, AR_SELFGEN_MASK, 0x3); 2805 } 2806 else { 2807 OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask); 2808 } 2809 2810 if (tx_chainmask == 0x5) { 2811 OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN); 2812 } 2813 } 2814 2815 /* 2816 * Override INI values with chip specific configuration. 2817 */ 2818 static inline void 2819 ar9300_override_ini(struct ath_hal *ah, struct ieee80211_channel *chan) 2820 { 2821 u_int32_t val; 2822 HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps; 2823 2824 /* 2825 * Set the RX_ABORT and RX_DIS and clear it only after 2826 * RXE is set for MAC. This prevents frames with 2827 * corrupted descriptor status. 2828 */ 2829 OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT)); 2830 /* 2831 * For Merlin and above, there is a new feature that allows Multicast 2832 * search based on both MAC Address and Key ID. 2833 * By default, this feature is enabled. 2834 * But since the driver is not using this feature, we switch it off; 2835 * otherwise multicast search based on MAC addr only will fail. 2836 */ 2837 val = OS_REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE); 2838 OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, 2839 val | AR_BUG_58603_FIX_ENABLE | AR_AGG_WEP_ENABLE); 2840 2841 2842 /* Osprey revision specific configuration */ 2843 2844 /* Osprey 2.0+ - if SW RAC support is disabled, must also disable 2845 * the Osprey 2.0 hardware RAC fix. 2846 */ 2847 if (p_cap->halIsrRacSupport == AH_FALSE) { 2848 OS_REG_CLR_BIT(ah, AR_CFG, AR_CFG_MISSING_TX_INTR_FIX_ENABLE); 2849 } 2850 2851 /* try to enable old pal if it is needed for h/w green tx */ 2852 ar9300_hwgreentx_set_pal_spare(ah, 1); 2853 } 2854 2855 static inline void 2856 ar9300_prog_ini(struct ath_hal *ah, struct ar9300_ini_array *ini_arr, 2857 int column) 2858 { 2859 int i, reg_writes = 0; 2860 2861 /* New INI format: Array may be undefined (pre, core, post arrays) */ 2862 if (ini_arr->ia_array == NULL) { 2863 return; 2864 } 2865 2866 /* 2867 * New INI format: Pre, core, and post arrays for a given subsystem may be 2868 * modal (> 2 columns) or non-modal (2 columns). 2869 * Determine if the array is non-modal and force the column to 1. 2870 */ 2871 if (column >= ini_arr->ia_columns) { 2872 column = 1; 2873 } 2874 2875 for (i = 0; i < ini_arr->ia_rows; i++) { 2876 u_int32_t reg = INI_RA(ini_arr, i, 0); 2877 u_int32_t val = INI_RA(ini_arr, i, column); 2878 2879 /* 2880 ** Determine if this is a shift register value 2881 ** (reg >= 0x16000 && reg < 0x17000 for Osprey) , 2882 ** and insert the configured delay if so. 2883 ** -this delay is not required for Osprey (EV#71410) 2884 */ 2885 OS_REG_WRITE(ah, reg, val); 2886 WAR_6773(reg_writes); 2887 2888 } 2889 } 2890 2891 static inline HAL_STATUS 2892 ar9300_process_ini(struct ath_hal *ah, struct ieee80211_channel *chan, 2893 HAL_CHANNEL_INTERNAL *ichan, HAL_HT_MACMODE macmode) 2894 { 2895 int reg_writes = 0; 2896 struct ath_hal_9300 *ahp = AH9300(ah); 2897 u_int modes_index, modes_txgaintable_index = 0; 2898 int i; 2899 HAL_STATUS status; 2900 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 2901 /* Setup the indices for the next set of register array writes */ 2902 /* TODO: 2903 * If the channel marker is indicative of the current mode rather 2904 * than capability, we do not need to check the phy mode below. 2905 */ 2906 #if 0 2907 switch (chan->channel_flags & CHANNEL_ALL) { 2908 case CHANNEL_A: 2909 case CHANNEL_A_HT20: 2910 if (AR_SREV_SCORPION(ah)){ 2911 if (chan->channel <= 5350){ 2912 modes_txgaintable_index = 1; 2913 }else if ((chan->channel > 5350) && (chan->channel <= 5600)){ 2914 modes_txgaintable_index = 3; 2915 }else if (chan->channel > 5600){ 2916 modes_txgaintable_index = 5; 2917 } 2918 } 2919 modes_index = 1; 2920 freq_index = 1; 2921 break; 2922 2923 case CHANNEL_A_HT40PLUS: 2924 case CHANNEL_A_HT40MINUS: 2925 if (AR_SREV_SCORPION(ah)){ 2926 if (chan->channel <= 5350){ 2927 modes_txgaintable_index = 2; 2928 }else if ((chan->channel > 5350) && (chan->channel <= 5600)){ 2929 modes_txgaintable_index = 4; 2930 }else if (chan->channel > 5600){ 2931 modes_txgaintable_index = 6; 2932 } 2933 } 2934 modes_index = 2; 2935 freq_index = 1; 2936 break; 2937 2938 case CHANNEL_PUREG: 2939 case CHANNEL_G_HT20: 2940 case CHANNEL_B: 2941 if (AR_SREV_SCORPION(ah)){ 2942 modes_txgaintable_index = 8; 2943 }else if (AR_SREV_HONEYBEE(ah)){ 2944 modes_txgaintable_index = 1; 2945 } 2946 modes_index = 4; 2947 freq_index = 2; 2948 break; 2949 2950 case CHANNEL_G_HT40PLUS: 2951 case CHANNEL_G_HT40MINUS: 2952 if (AR_SREV_SCORPION(ah)){ 2953 modes_txgaintable_index = 7; 2954 }else if (AR_SREV_HONEYBEE(ah)){ 2955 modes_txgaintable_index = 1; 2956 } 2957 modes_index = 3; 2958 freq_index = 2; 2959 break; 2960 2961 case CHANNEL_108G: 2962 modes_index = 5; 2963 freq_index = 2; 2964 break; 2965 2966 default: 2967 HALASSERT(0); 2968 return HAL_EINVAL; 2969 } 2970 #endif 2971 2972 /* FreeBSD */ 2973 if (IS_CHAN_5GHZ(ichan)) { 2974 if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) { 2975 if (AR_SREV_SCORPION(ah)){ 2976 if (ichan->channel <= 5350){ 2977 modes_txgaintable_index = 2; 2978 }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){ 2979 modes_txgaintable_index = 4; 2980 }else if (ichan->channel > 5600){ 2981 modes_txgaintable_index = 6; 2982 } 2983 } 2984 modes_index = 2; 2985 } else if (IEEE80211_IS_CHAN_A(chan) || IEEE80211_IS_CHAN_HT20(chan)) { 2986 if (AR_SREV_SCORPION(ah)){ 2987 if (ichan->channel <= 5350){ 2988 modes_txgaintable_index = 1; 2989 }else if ((ichan->channel > 5350) && (ichan->channel <= 5600)){ 2990 modes_txgaintable_index = 3; 2991 }else if (ichan->channel > 5600){ 2992 modes_txgaintable_index = 5; 2993 } 2994 } 2995 modes_index = 1; 2996 } else 2997 return HAL_EINVAL; 2998 } else if (IS_CHAN_2GHZ(ichan)) { 2999 if (IEEE80211_IS_CHAN_108G(chan)) { 3000 modes_index = 5; 3001 } else if (IEEE80211_IS_CHAN_HT40U(chan) || IEEE80211_IS_CHAN_HT40D(chan)) { 3002 if (AR_SREV_SCORPION(ah)){ 3003 modes_txgaintable_index = 7; 3004 } else if (AR_SREV_HONEYBEE(ah)){ 3005 modes_txgaintable_index = 1; 3006 } 3007 modes_index = 3; 3008 } else if (IEEE80211_IS_CHAN_HT20(chan) || IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_B(chan) || IEEE80211_IS_CHAN_PUREG(chan)) { 3009 if (AR_SREV_SCORPION(ah)){ 3010 modes_txgaintable_index = 8; 3011 } else if (AR_SREV_HONEYBEE(ah)){ 3012 modes_txgaintable_index = 1; 3013 } 3014 modes_index = 4; 3015 } else 3016 return HAL_EINVAL; 3017 } else 3018 return HAL_EINVAL; 3019 3020 #if 0 3021 /* Set correct Baseband to analog shift setting to access analog chips. */ 3022 OS_REG_WRITE(ah, AR_PHY(0), 0x00000007); 3023 #endif 3024 3025 HALDEBUG(ah, HAL_DEBUG_RESET, 3026 "ar9300_process_ini: " 3027 "Skipping OS-REG-WRITE(ah, AR-PHY(0), 0x00000007)\n"); 3028 HALDEBUG(ah, HAL_DEBUG_RESET, 3029 "ar9300_process_ini: no ADDac programming\n"); 3030 3031 3032 /* 3033 * Osprey 2.0+ - new INI format. 3034 * Each subsystem has a pre, core, and post array. 3035 */ 3036 for (i = 0; i < ATH_INI_NUM_SPLIT; i++) { 3037 ar9300_prog_ini(ah, &ahp->ah_ini_soc[i], modes_index); 3038 ar9300_prog_ini(ah, &ahp->ah_ini_mac[i], modes_index); 3039 ar9300_prog_ini(ah, &ahp->ah_ini_bb[i], modes_index); 3040 ar9300_prog_ini(ah, &ahp->ah_ini_radio[i], modes_index); 3041 if ((i == ATH_INI_POST) && (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah))) { 3042 ar9300_prog_ini(ah, &ahp->ah_ini_radio_post_sys2ant, modes_index); 3043 } 3044 3045 } 3046 3047 if (!(AR_SREV_SOC(ah))) { 3048 /* Doubler issue : Some board doesn't work well with MCS15. Turn off doubler after freq locking is complete*/ 3049 //ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3050 OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3051 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */ 3052 //ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3053 3054 OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3055 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */ 3056 OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3057 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S, 0); /*Set synthon, synthover */ 3058 OS_DELAY(200); 3059 3060 //ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3061 OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */ 3062 OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */ 3063 OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK); /* clr synthon */ 3064 //ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3065 3066 OS_DELAY(1); 3067 3068 //ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3069 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */ 3070 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH1_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */ 3071 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX2, AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK, 1); /* set synthon */ 3072 //ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3073 3074 OS_DELAY(200); 3075 3076 //ath_hal_printf(ah, "%s[%d] ==== before reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12)); 3077 OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH12, AR_PHY_65NM_CH0_SYNTH12_VREFMUL3, 0xf); 3078 //OS_REG_CLR_BIT(ah, AR_PHY_65NM_CH0_SYNTH12, 1<< 16); /* clr charge pump */ 3079 //ath_hal_printf(ah, "%s[%d] ==== After reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_SYNTH12, OS_REG_READ(ah, AR_PHY_65NM_CH0_SYNTH12)); 3080 3081 OS_REG_RMW(ah, AR_PHY_65NM_CH0_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3082 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */ 3083 OS_REG_RMW(ah, AR_PHY_65NM_CH1_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3084 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */ 3085 OS_REG_RMW(ah, AR_PHY_65NM_CH2_RXTX2, 0, 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHON_MASK_S | 3086 1 << AR_PHY_65NM_CH0_RXTX2_SYNTHOVR_MASK_S); /*Clr synthon, synthover */ 3087 //ath_hal_printf(ah, "%s[%d] ==== after reg[0x%08x] = 0x%08x\n", __func__, __LINE__, AR_PHY_65NM_CH0_RXTX2, OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)); 3088 } 3089 3090 /* Write rxgain Array Parameters */ 3091 REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain, 1, reg_writes); 3092 HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain programming\n"); 3093 3094 if (AR_SREV_JUPITER_20_OR_LATER(ah)) { 3095 /* 3096 * CUS217 mix LNA mode. 3097 */ 3098 if (ar9300_rx_gain_index_get(ah) == 2) { 3099 REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_core, 1, reg_writes); 3100 REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bb_postamble, 3101 modes_index, reg_writes); 3102 } 3103 3104 /* 3105 * 5G-XLNA 3106 */ 3107 if ((ar9300_rx_gain_index_get(ah) == 2) || 3108 (ar9300_rx_gain_index_get(ah) == 3)) { 3109 REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_xlna, modes_index, 3110 reg_writes); 3111 } 3112 } 3113 3114 if (AR_SREV_SCORPION(ah)) { 3115 /* Write rxgain bounds Array */ 3116 REG_WRITE_ARRAY(&ahp->ah_ini_modes_rxgain_bounds, modes_index, reg_writes); 3117 HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Rx Gain table bounds programming\n"); 3118 } 3119 /* UB124 xLNA settings */ 3120 if (AR_SREV_WASP(ah) && ar9300_rx_gain_index_get(ah) == 2) { 3121 #define REG_WRITE(_reg,_val) *((volatile u_int32_t *)(_reg)) = (_val); 3122 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 3123 u_int32_t val; 3124 /* B8040000: bit[0]=0, bit[3]=0; */ 3125 val = REG_READ(0xB8040000); 3126 val &= 0xfffffff6; 3127 REG_WRITE(0xB8040000, val); 3128 /* B804002c: bit[31:24]=0x2e; bit[7:0]=0x2f; */ 3129 val = REG_READ(0xB804002c); 3130 val &= 0x00ffff00; 3131 val |= 0x2e00002f; 3132 REG_WRITE(0xB804002c, val); 3133 /* B804006c: bit[1]=1; */ 3134 val = REG_READ(0xB804006c); 3135 val |= 0x2; 3136 REG_WRITE(0xB804006c, val); 3137 #undef REG_READ 3138 #undef REG_WRITE 3139 } 3140 3141 3142 /* Write txgain Array Parameters */ 3143 if (AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) { 3144 REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_txgaintable_index, 3145 reg_writes); 3146 }else{ 3147 REG_WRITE_ARRAY(&ahp->ah_ini_modes_txgain, modes_index, reg_writes); 3148 } 3149 HALDEBUG(ah, HAL_DEBUG_RESET, "ar9300_process_ini: Tx Gain programming\n"); 3150 3151 3152 /* For 5GHz channels requiring Fast Clock, apply different modal values */ 3153 if (IS_5GHZ_FAST_CLOCK_EN(ah, chan)) { 3154 HALDEBUG(ah, HAL_DEBUG_RESET, 3155 "%s: Fast clock enabled, use special ini values\n", __func__); 3156 REG_WRITE_ARRAY(&ahp->ah_ini_modes_additional, modes_index, reg_writes); 3157 } 3158 3159 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) { 3160 HALDEBUG(ah, HAL_DEBUG_RESET, 3161 "%s: use xtal ini for AH9300(ah)->clk_25mhz: %d\n", 3162 __func__, AH9300(ah)->clk_25mhz); 3163 REG_WRITE_ARRAY( 3164 &ahp->ah_ini_modes_additional, 1/*modes_index*/, reg_writes); 3165 } 3166 3167 if (AR_SREV_WASP(ah) && (AH9300(ah)->clk_25mhz == 0)) { 3168 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Apply 40MHz ini settings\n", __func__); 3169 REG_WRITE_ARRAY( 3170 &ahp->ah_ini_modes_additional_40mhz, 1/*modesIndex*/, reg_writes); 3171 } 3172 3173 /* Handle Japan Channel 14 channel spreading */ 3174 if (2484 == ichan->channel) { 3175 ar9300_prog_ini(ah, &ahp->ah_ini_japan2484, 1); 3176 } 3177 3178 #if 0 3179 /* XXX TODO! */ 3180 if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) { 3181 ar9300_prog_ini(ah, &ahp->ah_ini_BTCOEX_MAX_TXPWR, 1); 3182 } 3183 #endif 3184 3185 /* Override INI with chip specific configuration */ 3186 ar9300_override_ini(ah, chan); 3187 3188 /* Setup 11n MAC/Phy mode registers */ 3189 ar9300_set_11n_regs(ah, chan, macmode); 3190 3191 /* 3192 * Moved ar9300_init_chain_masks() here to ensure the swap bit is set before 3193 * the pdadc table is written. Swap must occur before any radio dependent 3194 * replicated register access. The pdadc curve addressing in particular 3195 * depends on the consistent setting of the swap bit. 3196 */ 3197 ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask); 3198 3199 /* 3200 * Setup the transmit power values. 3201 * 3202 * After the public to private hal channel mapping, ichan contains the 3203 * valid regulatory power value. 3204 * ath_hal_getctl and ath_hal_getantennaallowed look up ichan from chan. 3205 */ 3206 status = ar9300_eeprom_set_transmit_power(ah, &ahp->ah_eeprom, chan, 3207 ath_hal_getctl(ah, chan), ath_hal_getantennaallowed(ah, chan), 3208 ath_hal_get_twice_max_regpower(ahpriv, ichan, chan), 3209 AH_MIN(MAX_RATE_POWER, ahpriv->ah_powerLimit)); 3210 if (status != HAL_OK) { 3211 HALDEBUG(ah, HAL_DEBUG_POWER_MGMT, 3212 "%s: error init'ing transmit power\n", __func__); 3213 return HAL_EIO; 3214 } 3215 3216 3217 return HAL_OK; 3218 #undef N 3219 } 3220 3221 /* ar9300_is_cal_supp 3222 * Determine if calibration is supported by device and channel flags 3223 */ 3224 inline static HAL_BOOL 3225 ar9300_is_cal_supp(struct ath_hal *ah, const struct ieee80211_channel *chan, 3226 HAL_CAL_TYPES cal_type) 3227 { 3228 struct ath_hal_9300 *ahp = AH9300(ah); 3229 HAL_BOOL retval = AH_FALSE; 3230 3231 switch (cal_type & ahp->ah_supp_cals) { 3232 case IQ_MISMATCH_CAL: 3233 /* Run IQ Mismatch for non-CCK only */ 3234 if (!IEEE80211_IS_CHAN_B(chan)) { 3235 retval = AH_TRUE; 3236 } 3237 break; 3238 case TEMP_COMP_CAL: 3239 retval = AH_TRUE; 3240 break; 3241 } 3242 3243 return retval; 3244 } 3245 3246 3247 #if 0 3248 /* ar9285_pa_cal 3249 * PA Calibration for Kite 1.1 and later versions of Kite. 3250 * - from system's team. 3251 */ 3252 static inline void 3253 ar9285_pa_cal(struct ath_hal *ah) 3254 { 3255 u_int32_t reg_val; 3256 int i, lo_gn, offs_6_1, offs_0; 3257 u_int8_t reflo; 3258 u_int32_t phy_test2_reg_val, phy_adc_ctl_reg_val; 3259 u_int32_t an_top2_reg_val, phy_tst_dac_reg_val; 3260 3261 3262 /* Kite 1.1 WAR for Bug 35666 3263 * Increase the LDO value to 1.28V before accessing analog Reg */ 3264 if (AR_SREV_KITE_11(ah)) { 3265 OS_REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14) ); 3266 } 3267 an_top2_reg_val = OS_REG_READ(ah, AR9285_AN_TOP2); 3268 3269 /* set pdv2i pdrxtxbb */ 3270 reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1); 3271 reg_val |= ((0x1 << 5) | (0x1 << 7)); 3272 OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val); 3273 3274 /* clear pwddb */ 3275 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G7); 3276 reg_val &= 0xfffffffd; 3277 OS_REG_WRITE(ah, AR9285_AN_RF2G7, reg_val); 3278 3279 /* clear enpacal */ 3280 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1); 3281 reg_val &= 0xfffff7ff; 3282 OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val); 3283 3284 /* set offcal */ 3285 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2); 3286 reg_val |= (0x1 << 12); 3287 OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val); 3288 3289 /* set pdpadrv1=pdpadrv2=pdpaout=1 */ 3290 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1); 3291 reg_val |= (0x7 << 23); 3292 OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val); 3293 3294 /* Read back reflo, increase it by 1 and write it. */ 3295 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3296 reflo = ((reg_val >> 26) & 0x7); 3297 3298 if (reflo < 0x7) { 3299 reflo++; 3300 } 3301 reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26)); 3302 OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val); 3303 3304 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3305 reflo = ((reg_val >> 26) & 0x7); 3306 3307 /* use TX single carrier to transmit 3308 * dac const 3309 * reg. 15 3310 */ 3311 phy_tst_dac_reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST); 3312 OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, ((0x7ff << 11) | 0x7ff)); 3313 reg_val = OS_REG_READ(ah, AR_PHY_TSTDAC_CONST); 3314 3315 /* source is dac const 3316 * reg. 2 3317 */ 3318 phy_test2_reg_val = OS_REG_READ(ah, AR_PHY_TEST2); 3319 OS_REG_WRITE(ah, AR_PHY_TEST2, ((0x1 << 7) | (0x1 << 1))); 3320 reg_val = OS_REG_READ(ah, AR_PHY_TEST2); 3321 3322 /* set dac on 3323 * reg. 11 3324 */ 3325 phy_adc_ctl_reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL); 3326 OS_REG_WRITE(ah, AR_PHY_ADC_CTL, 0x80008000); 3327 reg_val = OS_REG_READ(ah, AR_PHY_ADC_CTL); 3328 3329 OS_REG_WRITE(ah, AR9285_AN_TOP2, (0x1 << 27) | (0x1 << 17) | (0x1 << 16) | 3330 (0x1 << 14) | (0x1 << 12) | (0x1 << 11) | 3331 (0x1 << 7) | (0x1 << 5)); 3332 3333 OS_DELAY(10); /* 10 usec */ 3334 3335 /* clear off[6:0] */ 3336 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6); 3337 reg_val &= 0xfc0fffff; 3338 OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val); 3339 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3340 reg_val &= 0xfdffffff; 3341 OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val); 3342 3343 offs_6_1 = 0; 3344 for (i = 6; i > 0; i--) { 3345 /* sef off[$k]==1 */ 3346 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6); 3347 reg_val &= 0xfc0fffff; 3348 reg_val = reg_val | (0x1 << (19 + i)) | ((offs_6_1) << 20); 3349 OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val); 3350 lo_gn = (OS_REG_READ(ah, AR9285_AN_RF2G9)) & 0x1; 3351 offs_6_1 = offs_6_1 | (lo_gn << (i - 1)); 3352 } 3353 3354 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G6); 3355 reg_val &= 0xfc0fffff; 3356 reg_val = reg_val | ((offs_6_1 - 1) << 20); 3357 OS_REG_WRITE(ah, AR9285_AN_RF2G6, reg_val); 3358 3359 /* set off_0=1; */ 3360 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3361 reg_val &= 0xfdffffff; 3362 reg_val = reg_val | (0x1 << 25); 3363 OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val); 3364 3365 lo_gn = OS_REG_READ(ah, AR9285_AN_RF2G9) & 0x1; 3366 offs_0 = lo_gn; 3367 3368 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3369 reg_val &= 0xfdffffff; 3370 reg_val = reg_val | (offs_0 << 25); 3371 OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val); 3372 3373 /* clear pdv2i */ 3374 reg_val = OS_REG_READ(ah, AR9285_AN_RXTXBB1); 3375 reg_val &= 0xffffff5f; 3376 OS_REG_WRITE(ah, AR9285_AN_RXTXBB1, reg_val); 3377 3378 /* set enpacal */ 3379 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1); 3380 reg_val |= (0x1 << 11); 3381 OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val); 3382 3383 /* clear offcal */ 3384 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G2); 3385 reg_val &= 0xffffefff; 3386 OS_REG_WRITE(ah, AR9285_AN_RF2G2, reg_val); 3387 3388 /* set pdpadrv1=pdpadrv2=pdpaout=0 */ 3389 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G1); 3390 reg_val &= 0xfc7fffff; 3391 OS_REG_WRITE(ah, AR9285_AN_RF2G1, reg_val); 3392 3393 /* Read back reflo, decrease it by 1 and write it. */ 3394 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3395 reflo = (reg_val >> 26) & 0x7; 3396 if (reflo) { 3397 reflo--; 3398 } 3399 reg_val = ((reg_val & 0xe3ffffff) | (reflo << 26)); 3400 OS_REG_WRITE(ah, AR9285_AN_RF2G3, reg_val); 3401 reg_val = OS_REG_READ(ah, AR9285_AN_RF2G3); 3402 reflo = (reg_val >> 26) & 0x7; 3403 3404 /* write back registers */ 3405 OS_REG_WRITE(ah, AR_PHY_TSTDAC_CONST, phy_tst_dac_reg_val); 3406 OS_REG_WRITE(ah, AR_PHY_TEST2, phy_test2_reg_val); 3407 OS_REG_WRITE(ah, AR_PHY_ADC_CTL, phy_adc_ctl_reg_val); 3408 OS_REG_WRITE(ah, AR9285_AN_TOP2, an_top2_reg_val); 3409 3410 /* Kite 1.1 WAR for Bug 35666 3411 * Decrease the LDO value back to 1.20V */ 3412 if (AR_SREV_KITE_11(ah)) { 3413 OS_REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT); 3414 } 3415 } 3416 #endif 3417 3418 /* ar9300_run_init_cals 3419 * Runs non-periodic calibrations 3420 */ 3421 inline static HAL_BOOL 3422 ar9300_run_init_cals(struct ath_hal *ah, int init_cal_count) 3423 { 3424 struct ath_hal_9300 *ahp = AH9300(ah); 3425 HAL_CHANNEL_INTERNAL ichan; /* bogus */ 3426 HAL_BOOL is_cal_done; 3427 HAL_CAL_LIST *curr_cal; 3428 const HAL_PERCAL_DATA *cal_data; 3429 int i; 3430 3431 curr_cal = ahp->ah_cal_list_curr; 3432 if (curr_cal == AH_NULL) { 3433 return AH_FALSE; 3434 } 3435 cal_data = curr_cal->cal_data; 3436 ichan.calValid = 0; 3437 3438 for (i = 0; i < init_cal_count; i++) { 3439 /* Reset this Cal */ 3440 ar9300_reset_calibration(ah, curr_cal); 3441 /* Poll for offset calibration complete */ 3442 if (!ath_hal_wait( 3443 ah, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL, 0)) 3444 { 3445 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3446 "%s: Cal %d failed to complete in 100ms.\n", 3447 __func__, curr_cal->cal_data->cal_type); 3448 /* Re-initialize list pointers for periodic cals */ 3449 ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr 3450 = AH_NULL; 3451 return AH_FALSE; 3452 } 3453 /* Run this cal */ 3454 ar9300_per_calibration( 3455 ah, &ichan, ahp->ah_rx_chainmask, curr_cal, &is_cal_done); 3456 if (is_cal_done == AH_FALSE) { 3457 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3458 "%s: Not able to run Init Cal %d.\n", __func__, 3459 curr_cal->cal_data->cal_type); 3460 } 3461 if (curr_cal->cal_next) { 3462 curr_cal = curr_cal->cal_next; 3463 } 3464 } 3465 3466 /* Re-initialize list pointers for periodic cals */ 3467 ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL; 3468 return AH_TRUE; 3469 } 3470 3471 #if 0 3472 static void 3473 ar9300_tx_carrier_leak_war(struct ath_hal *ah) 3474 { 3475 unsigned long tx_gain_table_max; 3476 unsigned long reg_bb_cl_map_0_b0 = 0xffffffff; 3477 unsigned long reg_bb_cl_map_1_b0 = 0xffffffff; 3478 unsigned long reg_bb_cl_map_2_b0 = 0xffffffff; 3479 unsigned long reg_bb_cl_map_3_b0 = 0xffffffff; 3480 unsigned long tx_gain, cal_run = 0; 3481 unsigned long cal_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1]; 3482 unsigned long cal_gain_index[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1]; 3483 unsigned long new_gain[AR_PHY_TPC_7_TX_GAIN_TABLE_MAX + 1]; 3484 int i, j; 3485 3486 OS_MEMSET(new_gain, 0, sizeof(new_gain)); 3487 /*printf(" Running TxCarrierLeakWAR\n");*/ 3488 3489 /* process tx gain table, we use cl_map_hw_gen=0. */ 3490 OS_REG_RMW_FIELD(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_MAP_HW_GEN, 0); 3491 3492 //the table we used is txbb_gc[2:0], 1dB[2:1]. 3493 tx_gain_table_max = OS_REG_READ_FIELD(ah, 3494 AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX); 3495 3496 for (i = 0; i <= tx_gain_table_max; i++) { 3497 tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4); 3498 cal_gain[i] = (((tx_gain >> 5)& 0x7) << 2) | 3499 (((tx_gain >> 1) & 0x3) << 0); 3500 if (i == 0) { 3501 cal_gain_index[i] = cal_run; 3502 new_gain[i] = 1; 3503 cal_run++; 3504 } else { 3505 new_gain[i] = 1; 3506 for (j = 0; j < i; j++) { 3507 /* 3508 printf("i=%d, j=%d cal_gain[$i]=0x%04x\n", i, j, cal_gain[i]); 3509 */ 3510 if (new_gain[i]) { 3511 if ((cal_gain[i] != cal_gain[j])) { 3512 new_gain[i] = 1; 3513 } else { 3514 /* if old gain found, use old cal_run value. */ 3515 new_gain[i] = 0; 3516 cal_gain_index[i] = cal_gain_index[j]; 3517 } 3518 } 3519 } 3520 /* if new gain found, increase cal_run */ 3521 if (new_gain[i] == 1) { 3522 cal_gain_index[i] = cal_run; 3523 cal_run++; 3524 } 3525 } 3526 3527 reg_bb_cl_map_0_b0 = (reg_bb_cl_map_0_b0 & ~(0x1 << i)) | 3528 ((cal_gain_index[i] >> 0 & 0x1) << i); 3529 reg_bb_cl_map_1_b0 = (reg_bb_cl_map_1_b0 & ~(0x1 << i)) | 3530 ((cal_gain_index[i] >> 1 & 0x1) << i); 3531 reg_bb_cl_map_2_b0 = (reg_bb_cl_map_2_b0 & ~(0x1 << i)) | 3532 ((cal_gain_index[i] >> 2 & 0x1) << i); 3533 reg_bb_cl_map_3_b0 = (reg_bb_cl_map_3_b0 & ~(0x1 << i)) | 3534 ((cal_gain_index[i] >> 3 & 0x1) << i); 3535 3536 /* 3537 printf("i=%2d, cal_gain[$i]= 0x%04x, cal_run= %d, " 3538 "cal_gain_index[i]=%d, new_gain[i] = %d\n", 3539 i, cal_gain[i], cal_run, cal_gain_index[i], new_gain[i]); 3540 */ 3541 } 3542 OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B0, reg_bb_cl_map_0_b0); 3543 OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B0, reg_bb_cl_map_1_b0); 3544 OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B0, reg_bb_cl_map_2_b0); 3545 OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B0, reg_bb_cl_map_3_b0); 3546 if (AR_SREV_WASP(ah)) { 3547 OS_REG_WRITE(ah, AR_PHY_CL_MAP_0_B1, reg_bb_cl_map_0_b0); 3548 OS_REG_WRITE(ah, AR_PHY_CL_MAP_1_B1, reg_bb_cl_map_1_b0); 3549 OS_REG_WRITE(ah, AR_PHY_CL_MAP_2_B1, reg_bb_cl_map_2_b0); 3550 OS_REG_WRITE(ah, AR_PHY_CL_MAP_3_B1, reg_bb_cl_map_3_b0); 3551 } 3552 } 3553 #endif 3554 3555 3556 static inline void 3557 ar9300_invalidate_saved_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 3558 { 3559 #if ATH_SUPPORT_CAL_REUSE 3560 if (AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse & 3561 ATH_CAL_REUSE_REDO_IN_FULL_RESET) 3562 { 3563 ichan->one_time_txiqcal_done = AH_FALSE; 3564 ichan->one_time_txclcal_done = AH_FALSE; 3565 } 3566 #endif 3567 } 3568 3569 static inline HAL_BOOL 3570 ar9300_restore_rtt_cals(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 3571 { 3572 HAL_BOOL restore_status = AH_FALSE; 3573 3574 return restore_status; 3575 } 3576 3577 /* ar9300_init_cal 3578 * Initialize Calibration infrastructure 3579 */ 3580 static inline HAL_BOOL 3581 ar9300_init_cal_internal(struct ath_hal *ah, struct ieee80211_channel *chan, 3582 HAL_CHANNEL_INTERNAL *ichan, 3583 HAL_BOOL enable_rtt, HAL_BOOL do_rtt_cal, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr) 3584 { 3585 struct ath_hal_9300 *ahp = AH9300(ah); 3586 HAL_BOOL txiqcal_success_flag = AH_FALSE; 3587 HAL_BOOL cal_done = AH_FALSE; 3588 int iqcal_idx = 0; 3589 HAL_BOOL do_sep_iq_cal = AH_FALSE; 3590 HAL_BOOL do_agc_cal = do_rtt_cal; 3591 HAL_BOOL is_cal_reusable = AH_TRUE; 3592 #if ATH_SUPPORT_CAL_REUSE 3593 HAL_BOOL cal_reuse_enable = AH_PRIVATE(ah)->ah_config.ath_hal_cal_reuse & 3594 ATH_CAL_REUSE_ENABLE; 3595 HAL_BOOL clc_success = AH_FALSE; 3596 int32_t ch_idx, j, cl_tab_reg; 3597 u_int32_t BB_cl_tab_entry = MAX_BB_CL_TABLE_ENTRY; 3598 u_int32_t BB_cl_tab_b[AR9300_MAX_CHAINS] = { 3599 AR_PHY_CL_TAB_0, 3600 AR_PHY_CL_TAB_1, 3601 AR_PHY_CL_TAB_2 3602 }; 3603 #endif 3604 3605 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) { 3606 /* Hornet: 1 x 1 */ 3607 ahp->ah_rx_cal_chainmask = 0x1; 3608 ahp->ah_tx_cal_chainmask = 0x1; 3609 } else if (AR_SREV_WASP(ah) || AR_SREV_JUPITER(ah) || AR_SREV_HONEYBEE(ah)) { 3610 /* Wasp/Jupiter: 2 x 2 */ 3611 ahp->ah_rx_cal_chainmask = 0x3; 3612 ahp->ah_tx_cal_chainmask = 0x3; 3613 } else { 3614 /* 3615 * Osprey needs to be configured for the correct chain mode 3616 * before running AGC/TxIQ cals. 3617 */ 3618 if (ahp->ah_enterprise_mode & AR_ENT_OTP_CHAIN2_DISABLE) { 3619 /* chain 2 disabled - 2 chain mode */ 3620 ahp->ah_rx_cal_chainmask = 0x3; 3621 ahp->ah_tx_cal_chainmask = 0x3; 3622 } else { 3623 ahp->ah_rx_cal_chainmask = 0x7; 3624 ahp->ah_tx_cal_chainmask = 0x7; 3625 } 3626 } 3627 ar9300_init_chain_masks(ah, ahp->ah_rx_cal_chainmask, ahp->ah_tx_cal_chainmask); 3628 3629 3630 if (ahp->tx_cl_cal_enable) { 3631 #if ATH_SUPPORT_CAL_REUSE 3632 /* disable Carrie Leak or set do_agc_cal accordingly */ 3633 if (cal_reuse_enable && ichan->one_time_txclcal_done) 3634 { 3635 OS_REG_CLR_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 3636 } else 3637 #endif /* ATH_SUPPORT_CAL_REUSE */ 3638 { 3639 OS_REG_SET_BIT(ah, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 3640 do_agc_cal = AH_TRUE; 3641 } 3642 } 3643 3644 /* Do Tx IQ Calibration here for osprey hornet and wasp */ 3645 /* XXX: For initial wasp bringup - check and enable this */ 3646 /* EV 74233: Tx IQ fails to complete for half/quarter rates */ 3647 if (!(IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan))) { 3648 if (ahp->tx_iq_cal_enable) { 3649 /* this should be eventually moved to INI file */ 3650 OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_1(ah), 3651 AR_PHY_TX_IQCAL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT); 3652 3653 /* 3654 * For poseidon and later chips, 3655 * Tx IQ cal HW run will be a part of AGC calibration 3656 */ 3657 if (ahp->tx_iq_cal_during_agc_cal) { 3658 /* 3659 * txiqcal_success_flag always set to 1 to run 3660 * ar9300_tx_iq_cal_post_proc 3661 * if following AGC cal passes 3662 */ 3663 #if ATH_SUPPORT_CAL_REUSE 3664 if (!cal_reuse_enable || !ichan->one_time_txiqcal_done) 3665 { 3666 txiqcal_success_flag = AH_TRUE; 3667 OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah), 3668 OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) | 3669 AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); 3670 } else { 3671 OS_REG_WRITE(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah), 3672 OS_REG_READ(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah)) & 3673 (~AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)); 3674 } 3675 #else 3676 if (OS_REG_READ_FIELD(ah, 3677 AR_PHY_TX_IQCAL_CONTROL_0(ah), 3678 AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL)){ 3679 if (apply_last_iqcorr == AH_TRUE) { 3680 OS_REG_CLR_BIT(ah, AR_PHY_TX_IQCAL_CONTROL_0(ah), 3681 AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL); 3682 txiqcal_success_flag = AH_FALSE; 3683 } else { 3684 txiqcal_success_flag = AH_TRUE; 3685 } 3686 }else{ 3687 txiqcal_success_flag = AH_FALSE; 3688 } 3689 #endif 3690 if (txiqcal_success_flag) { 3691 do_agc_cal = AH_TRUE; 3692 } 3693 } else 3694 #if ATH_SUPPORT_CAL_REUSE 3695 if (!cal_reuse_enable || !ichan->one_time_txiqcal_done) 3696 #endif 3697 { 3698 do_sep_iq_cal = AH_TRUE; 3699 do_agc_cal = AH_TRUE; 3700 } 3701 } 3702 } 3703 3704 #if ATH_SUPPORT_MCI 3705 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && 3706 IS_CHAN_2GHZ(ichan) && 3707 (ahp->ah_mci_bt_state == MCI_BT_AWAKE) && 3708 do_agc_cal && 3709 !(ah->ah_config.ath_hal_mci_config & 3710 ATH_MCI_CONFIG_DISABLE_MCI_CAL)) 3711 { 3712 u_int32_t payload[4] = {0, 0, 0, 0}; 3713 3714 /* Send CAL_REQ only when BT is AWAKE. */ 3715 HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_REQ 0x%X\n", 3716 __func__, ahp->ah_mci_wlan_cal_seq); 3717 MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_REQ); 3718 payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_seq++; 3719 ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE); 3720 3721 /* Wait BT_CAL_GRANT for 50ms */ 3722 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 3723 "(MCI) %s: Wait for BT_CAL_GRANT\n", __func__); 3724 if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_GRANT, 0, 50000)) 3725 { 3726 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 3727 "(MCI) %s: Got BT_CAL_GRANT.\n", __func__); 3728 } 3729 else { 3730 is_cal_reusable = AH_FALSE; 3731 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 3732 "(MCI) %s: BT is not responding.\n", __func__); 3733 } 3734 } 3735 #endif /* ATH_SUPPORT_MCI */ 3736 3737 if (do_sep_iq_cal) 3738 { 3739 /* enable Tx IQ Calibration HW for osprey/hornet/wasp */ 3740 txiqcal_success_flag = ar9300_tx_iq_cal_hw_run(ah); 3741 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS); 3742 OS_DELAY(5); 3743 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 3744 } 3745 #if 0 3746 if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) { 3747 ar9300_tx_carrier_leak_war(ah); 3748 } 3749 #endif 3750 /* 3751 * Calibrate the AGC 3752 * 3753 * Tx IQ cal is a part of AGC cal for Jupiter/Poseidon, etc. 3754 * please enable the bit of txiqcal_control_0[31] in INI file 3755 * for Jupiter/Poseidon/etc. 3756 */ 3757 if(!AR_SREV_SCORPION(ah)) { 3758 if (do_agc_cal || !skip_if_none) { 3759 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 3760 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); 3761 3762 /* Poll for offset calibration complete */ 3763 cal_done = ath_hal_wait(ah, 3764 AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0); 3765 if (!cal_done) { 3766 HALDEBUG(ah, HAL_DEBUG_FCS_RTT, 3767 "(FCS) CAL NOT DONE!!! - %d\n", ichan->channel); 3768 } 3769 } else { 3770 cal_done = AH_TRUE; 3771 } 3772 /* 3773 * Tx IQ cal post-processing in SW 3774 * This part of code should be common to all chips, 3775 * no chip specific code for Jupiter/Posdeion except for register names. 3776 */ 3777 if (txiqcal_success_flag) { 3778 ar9300_tx_iq_cal_post_proc(ah,ichan, 1, 1,is_cal_reusable, AH_FALSE); 3779 } 3780 } else { 3781 if (!txiqcal_success_flag) { 3782 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 3783 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); 3784 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 3785 0)) { 3786 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3787 "%s: offset calibration failed to complete in 1ms; " 3788 "noisy environment?\n", __func__); 3789 return AH_FALSE; 3790 } 3791 if (apply_last_iqcorr == AH_TRUE) { 3792 ar9300_tx_iq_cal_post_proc(ah, ichan, 0, 0, is_cal_reusable, AH_TRUE); 3793 } 3794 } else { 3795 for (iqcal_idx=0;iqcal_idx<MAXIQCAL;iqcal_idx++) { 3796 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 3797 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL); 3798 3799 /* Poll for offset calibration complete */ 3800 if (!ath_hal_wait(ah, AR_PHY_AGC_CONTROL, 3801 AR_PHY_AGC_CONTROL_CAL, 0)) { 3802 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3803 "%s: offset calibration failed to complete in 1ms; " 3804 "noisy environment?\n", __func__); 3805 return AH_FALSE; 3806 } 3807 /* 3808 * Tx IQ cal post-processing in SW 3809 * This part of code should be common to all chips, 3810 * no chip specific code for Jupiter/Posdeion except for register names. 3811 */ 3812 ar9300_tx_iq_cal_post_proc(ah, ichan, iqcal_idx+1, MAXIQCAL, is_cal_reusable, AH_FALSE); 3813 } 3814 } 3815 } 3816 3817 3818 #if ATH_SUPPORT_MCI 3819 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && 3820 IS_CHAN_2GHZ(ichan) && 3821 (ahp->ah_mci_bt_state == MCI_BT_AWAKE) && 3822 do_agc_cal && 3823 !(ah->ah_config.ath_hal_mci_config & 3824 ATH_MCI_CONFIG_DISABLE_MCI_CAL)) 3825 { 3826 u_int32_t payload[4] = {0, 0, 0, 0}; 3827 3828 HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Send WLAN_CAL_DONE 0x%X\n", 3829 __func__, ahp->ah_mci_wlan_cal_done); 3830 MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_DONE); 3831 payload[MCI_GPM_WLAN_CAL_W_SEQUENCE] = ahp->ah_mci_wlan_cal_done++; 3832 ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE); 3833 } 3834 #endif /* ATH_SUPPORT_MCI */ 3835 3836 3837 if (!cal_done && !AR_SREV_SCORPION(ah) ) 3838 { 3839 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3840 "%s: offset calibration failed to complete in 1ms; " 3841 "noisy environment?\n", __func__); 3842 return AH_FALSE; 3843 } 3844 3845 #if 0 3846 /* Beacon stuck fix, refer to EV 120056 */ 3847 if(IS_CHAN_2GHZ(chan) && AR_SREV_SCORPION(ah)) 3848 OS_REG_WRITE(ah, AR_PHY_TIMING5, OS_REG_READ(ah,AR_PHY_TIMING5) & ~AR_PHY_TIMING5_CYCPWR_THR1_ENABLE); 3849 #endif 3850 3851 #if 0 3852 /* Do PA Calibration */ 3853 if (AR_SREV_KITE(ah) && AR_SREV_KITE_11_OR_LATER(ah)) { 3854 ar9285_pa_cal(ah); 3855 } 3856 #endif 3857 3858 #if ATH_SUPPORT_CAL_REUSE 3859 if (ichan->one_time_txiqcal_done) { 3860 ar9300_tx_iq_cal_apply(ah, ichan); 3861 HALDEBUG(ah, HAL_DEBUG_FCS_RTT, 3862 "(FCS) TXIQCAL applied - %d\n", ichan->channel); 3863 } 3864 #endif /* ATH_SUPPORT_CAL_REUSE */ 3865 3866 #if ATH_SUPPORT_CAL_REUSE 3867 if (cal_reuse_enable && ahp->tx_cl_cal_enable) 3868 { 3869 clc_success = (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & 3870 AR_PHY_AGC_CONTROL_CLC_SUCCESS) ? 1 : 0; 3871 3872 if (ichan->one_time_txclcal_done) 3873 { 3874 /* reapply CL cal results */ 3875 for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) { 3876 if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) { 3877 continue; 3878 } 3879 cl_tab_reg = BB_cl_tab_b[ch_idx]; 3880 for (j = 0; j < BB_cl_tab_entry; j++) { 3881 OS_REG_WRITE(ah, cl_tab_reg, ichan->tx_clcal[ch_idx][j]); 3882 cl_tab_reg += 4;; 3883 } 3884 } 3885 HALDEBUG(ah, HAL_DEBUG_FCS_RTT, 3886 "(FCS) TX CL CAL applied - %d\n", ichan->channel); 3887 } 3888 else if (is_cal_reusable && clc_success) { 3889 /* save CL cal results */ 3890 for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) { 3891 if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) { 3892 continue; 3893 } 3894 cl_tab_reg = BB_cl_tab_b[ch_idx]; 3895 for (j = 0; j < BB_cl_tab_entry; j++) { 3896 ichan->tx_clcal[ch_idx][j] = OS_REG_READ(ah, cl_tab_reg); 3897 cl_tab_reg += 4; 3898 } 3899 } 3900 ichan->one_time_txclcal_done = AH_TRUE; 3901 HALDEBUG(ah, HAL_DEBUG_FCS_RTT, 3902 "(FCS) TX CL CAL saved - %d\n", ichan->channel); 3903 } 3904 } 3905 #endif /* ATH_SUPPORT_CAL_REUSE */ 3906 3907 /* Revert chainmasks to their original values before NF cal */ 3908 ar9300_init_chain_masks(ah, ahp->ah_rx_chainmask, ahp->ah_tx_chainmask); 3909 3910 #if !FIX_NOISE_FLOOR 3911 /* 3912 * Do NF calibration after DC offset and other CALs. 3913 * Per system engineers, noise floor value can sometimes be 20 dB 3914 * higher than normal value if DC offset and noise floor cal are 3915 * triggered at the same time. 3916 */ 3917 OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL, 3918 OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF); 3919 #endif 3920 3921 /* Initialize list pointers */ 3922 ahp->ah_cal_list = ahp->ah_cal_list_last = ahp->ah_cal_list_curr = AH_NULL; 3923 3924 /* 3925 * Enable IQ, ADC Gain, ADC DC Offset Cals 3926 */ 3927 /* Setup all non-periodic, init time only calibrations */ 3928 /* XXX: Init DC Offset not working yet */ 3929 #ifdef not_yet 3930 if (AH_TRUE == ar9300_is_cal_supp(ah, chan, ADC_DC_INIT_CAL)) { 3931 INIT_CAL(&ahp->ah_adc_dc_cal_init_data); 3932 INSERT_CAL(ahp, &ahp->ah_adc_dc_cal_init_data); 3933 } 3934 3935 /* Initialize current pointer to first element in list */ 3936 ahp->ah_cal_list_curr = ahp->ah_cal_list; 3937 3938 if (ahp->ah_cal_list_curr) { 3939 if (ar9300_run_init_cals(ah, 0) == AH_FALSE) { 3940 return AH_FALSE; 3941 } 3942 } 3943 #endif 3944 /* end - Init time calibrations */ 3945 3946 /* Do not do RX cal in case of offchan, or cal data already exists on same channel*/ 3947 if (ahp->ah_skip_rx_iq_cal) { 3948 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3949 "Skip RX IQ Cal\n"); 3950 return AH_TRUE; 3951 } 3952 3953 /* If Cals are supported, add them to list via INIT/INSERT_CAL */ 3954 if (AH_TRUE == ar9300_is_cal_supp(ah, chan, IQ_MISMATCH_CAL)) { 3955 INIT_CAL(&ahp->ah_iq_cal_data); 3956 INSERT_CAL(ahp, &ahp->ah_iq_cal_data); 3957 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3958 "%s: enabling IQ Calibration.\n", __func__); 3959 } 3960 if (AH_TRUE == ar9300_is_cal_supp(ah, chan, TEMP_COMP_CAL)) { 3961 INIT_CAL(&ahp->ah_temp_comp_cal_data); 3962 INSERT_CAL(ahp, &ahp->ah_temp_comp_cal_data); 3963 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 3964 "%s: enabling Temperature Compensation Calibration.\n", __func__); 3965 } 3966 3967 /* Initialize current pointer to first element in list */ 3968 ahp->ah_cal_list_curr = ahp->ah_cal_list; 3969 3970 /* Reset state within current cal */ 3971 if (ahp->ah_cal_list_curr) { 3972 ar9300_reset_calibration(ah, ahp->ah_cal_list_curr); 3973 } 3974 3975 /* Mark all calibrations on this channel as being invalid */ 3976 ichan->calValid = 0; 3977 3978 return AH_TRUE; 3979 } 3980 3981 static inline HAL_BOOL 3982 ar9300_init_cal(struct ath_hal *ah, struct ieee80211_channel *chan, HAL_BOOL skip_if_none, HAL_BOOL apply_last_iqcorr) 3983 { 3984 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 3985 HAL_BOOL do_rtt_cal = AH_TRUE; 3986 HAL_BOOL enable_rtt = AH_FALSE; 3987 3988 HALASSERT(ichan); 3989 3990 return ar9300_init_cal_internal(ah, chan, ichan, enable_rtt, do_rtt_cal, skip_if_none, apply_last_iqcorr); 3991 } 3992 3993 /* ar9300_reset_cal_valid 3994 * Entry point for upper layers to restart current cal. 3995 * Reset the calibration valid bit in channel. 3996 */ 3997 void 3998 ar9300_reset_cal_valid(struct ath_hal *ah, const struct ieee80211_channel *chan, 3999 HAL_BOOL *is_cal_done, u_int32_t cal_type) 4000 { 4001 struct ath_hal_9300 *ahp = AH9300(ah); 4002 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 4003 HAL_CAL_LIST *curr_cal = ahp->ah_cal_list_curr; 4004 4005 *is_cal_done = AH_TRUE; 4006 4007 if (curr_cal == AH_NULL) { 4008 return; 4009 } 4010 if (ichan == AH_NULL) { 4011 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 4012 "%s: invalid channel %u/0x%x; no mapping\n", 4013 __func__, chan->ic_freq, chan->ic_flags); 4014 return; 4015 } 4016 4017 if (!(cal_type & IQ_MISMATCH_CAL)) { 4018 *is_cal_done = AH_FALSE; 4019 return; 4020 } 4021 4022 /* Expected that this calibration has run before, post-reset. 4023 * Current state should be done 4024 */ 4025 if (curr_cal->cal_state != CAL_DONE) { 4026 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 4027 "%s: Calibration state incorrect, %d\n", 4028 __func__, curr_cal->cal_state); 4029 return; 4030 } 4031 4032 /* Verify Cal is supported on this channel */ 4033 if (ar9300_is_cal_supp(ah, chan, curr_cal->cal_data->cal_type) == AH_FALSE) { 4034 return; 4035 } 4036 4037 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 4038 "%s: Resetting Cal %d state for channel %u/0x%x\n", __func__, 4039 curr_cal->cal_data->cal_type, chan->ic_freq, chan->ic_flags); 4040 4041 /* Disable cal validity in channel */ 4042 ichan->calValid &= ~curr_cal->cal_data->cal_type; 4043 curr_cal->cal_state = CAL_WAITING; 4044 /* Indicate to upper layers that we need polling */ 4045 *is_cal_done = AH_FALSE; 4046 } 4047 4048 static inline void 4049 ar9300_set_dma(struct ath_hal *ah) 4050 { 4051 u_int32_t regval; 4052 struct ath_hal_9300 *ahp = AH9300(ah); 4053 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 4054 HAL_CAPABILITIES *pCap = &ahpriv->ah_caps; 4055 4056 #if 0 4057 /* 4058 * set AHB_MODE not to do cacheline prefetches 4059 */ 4060 regval = OS_REG_READ(ah, AR_AHB_MODE); 4061 OS_REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN); 4062 #endif 4063 4064 /* 4065 * let mac dma reads be in 128 byte chunks 4066 */ 4067 regval = OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK; 4068 OS_REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B); 4069 4070 /* 4071 * Restore TX Trigger Level to its pre-reset value. 4072 * The initial value depends on whether aggregation is enabled, and is 4073 * adjusted whenever underruns are detected. 4074 */ 4075 /* 4076 OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, AH_PRIVATE(ah)->ah_tx_trig_level); 4077 */ 4078 /* 4079 * Osprey 1.0 bug (EV 61936). Don't change trigger level from .ini default. 4080 * Osprey 2.0 - hardware recommends using the default INI settings. 4081 */ 4082 #if 0 4083 OS_REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, 0x3f); 4084 #endif 4085 /* 4086 * let mac dma writes be in 128 byte chunks 4087 */ 4088 regval = OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK; 4089 OS_REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B); 4090 4091 /* 4092 * Setup receive FIFO threshold to hold off TX activities 4093 */ 4094 OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 4095 4096 /* 4097 * reduce the number of usable entries in PCU TXBUF to avoid 4098 * wrap around bugs. (bug 20428) 4099 */ 4100 4101 if (AR_SREV_WASP(ah) && 4102 (AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_12)) { 4103 /* Wasp 1.3 fix for EV#85395 requires usable entries 4104 * to be set to 0x500 4105 */ 4106 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 0x500); 4107 } else { 4108 OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE); 4109 } 4110 4111 /* 4112 * Enable HPQ for UAPSD 4113 */ 4114 if (pCap->halHwUapsdTrig == AH_TRUE) { 4115 /* Only enable this if HAL capabilities says it is OK */ 4116 if (AH_PRIVATE(ah)->ah_opmode == HAL_M_HOSTAP) { 4117 OS_REG_WRITE(ah, AR_HP_Q_CONTROL, 4118 AR_HPQ_ENABLE | AR_HPQ_UAPSD | AR_HPQ_UAPSD_TRIGGER_EN); 4119 } 4120 } else { 4121 /* use default value from ini file - which disable HPQ queue usage */ 4122 } 4123 4124 /* 4125 * set the transmit status ring 4126 */ 4127 ar9300_reset_tx_status_ring(ah); 4128 4129 /* 4130 * set rxbp threshold. Must be non-zero for RX_EOL to occur. 4131 * For Osprey 2.0+, keep the original thresholds 4132 * otherwise performance is lost due to excessive RX EOL interrupts. 4133 */ 4134 OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 4135 OS_REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 4136 4137 /* 4138 * set receive buffer size. 4139 */ 4140 if (ahp->rx_buf_size) { 4141 OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size); 4142 } 4143 } 4144 4145 static inline void 4146 ar9300_init_bb(struct ath_hal *ah, struct ieee80211_channel *chan) 4147 { 4148 u_int32_t synth_delay; 4149 4150 /* 4151 * Wait for the frequency synth to settle (synth goes on 4152 * via AR_PHY_ACTIVE_EN). Read the phy active delay register. 4153 * Value is in 100ns increments. 4154 */ 4155 synth_delay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY; 4156 if (IEEE80211_IS_CHAN_CCK(chan)) { 4157 synth_delay = (4 * synth_delay) / 22; 4158 } else { 4159 synth_delay /= 10; 4160 } 4161 4162 /* Activate the PHY (includes baseband activate + synthesizer on) */ 4163 OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN); 4164 4165 /* 4166 * There is an issue if the AP starts the calibration before 4167 * the base band timeout completes. This could result in the 4168 * rx_clear false triggering. As a workaround we add delay an 4169 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition 4170 * does not happen. 4171 */ 4172 OS_DELAY(synth_delay + BASE_ACTIVATE_DELAY); 4173 } 4174 4175 static inline void 4176 ar9300_init_interrupt_masks(struct ath_hal *ah, HAL_OPMODE opmode) 4177 { 4178 struct ath_hal_9300 *ahp = AH9300(ah); 4179 u_int32_t msi_cfg = 0; 4180 u_int32_t sync_en_def = AR9300_INTR_SYNC_DEFAULT; 4181 4182 /* 4183 * Setup interrupt handling. Note that ar9300_reset_tx_queue 4184 * manipulates the secondary IMR's as queues are enabled 4185 * and disabled. This is done with RMW ops to insure the 4186 * settings we make here are preserved. 4187 */ 4188 ahp->ah_mask_reg = 4189 AR_IMR_TXERR | AR_IMR_TXURN | 4190 AR_IMR_RXERR | AR_IMR_RXORN | 4191 AR_IMR_BCNMISC; 4192 4193 if (ahp->ah_intr_mitigation_rx) { 4194 /* enable interrupt mitigation for rx */ 4195 ahp->ah_mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR | AR_IMR_RXOK_HP; 4196 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR; 4197 } else { 4198 ahp->ah_mask_reg |= AR_IMR_RXOK_LP | AR_IMR_RXOK_HP; 4199 msi_cfg |= AR_INTCFG_MSI_RXOK; 4200 } 4201 if (ahp->ah_intr_mitigation_tx) { 4202 /* enable interrupt mitigation for tx */ 4203 ahp->ah_mask_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 4204 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR; 4205 } else { 4206 ahp->ah_mask_reg |= AR_IMR_TXOK; 4207 msi_cfg |= AR_INTCFG_MSI_TXOK; 4208 } 4209 if (opmode == HAL_M_HOSTAP) { 4210 ahp->ah_mask_reg |= AR_IMR_MIB; 4211 } 4212 4213 OS_REG_WRITE(ah, AR_IMR, ahp->ah_mask_reg); 4214 OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT); 4215 ahp->ah_mask2Reg = OS_REG_READ(ah, AR_IMR_S2); 4216 4217 if (ah->ah_config.ath_hal_enable_msi) { 4218 /* Cache MSI register value */ 4219 ahp->ah_msi_reg = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_PCIE_MSI)); 4220 ahp->ah_msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN; 4221 if (AR_SREV_POSEIDON(ah)) { 4222 ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64; 4223 } else { 4224 ahp->ah_msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR; 4225 } 4226 /* Program MSI configuration */ 4227 OS_REG_WRITE(ah, AR_INTCFG, msi_cfg); 4228 } 4229 4230 /* 4231 * debug - enable to see all synchronous interrupts status 4232 */ 4233 /* Clear any pending sync cause interrupts */ 4234 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_CAUSE), 0xFFFFFFFF); 4235 4236 /* Allow host interface sync interrupt sources to set cause bit */ 4237 if (AR_SREV_POSEIDON(ah)) { 4238 sync_en_def = AR9300_INTR_SYNC_DEF_NO_HOST1_PERR; 4239 } 4240 else if (AR_SREV_WASP(ah)) { 4241 sync_en_def = AR9340_INTR_SYNC_DEFAULT; 4242 } 4243 OS_REG_WRITE(ah, 4244 AR_HOSTIF_REG(ah, AR_INTR_SYNC_ENABLE), sync_en_def); 4245 4246 /* _Disable_ host interface sync interrupt when cause bits set */ 4247 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_SYNC_MASK), 0); 4248 4249 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_ENABLE), 0); 4250 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_ASYNC_MASK), 0); 4251 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_ENABLE), 0); 4252 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_INTR_PRIO_SYNC_MASK), 0); 4253 } 4254 4255 static inline void 4256 ar9300_init_qos(struct ath_hal *ah) 4257 { 4258 OS_REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); /* XXX magic */ 4259 OS_REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); /* XXX magic */ 4260 4261 /* Turn on NOACK Support for QoS packets */ 4262 OS_REG_WRITE(ah, AR_QOS_NO_ACK, 4263 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 4264 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 4265 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 4266 4267 /* 4268 * initialize TXOP for all TIDs 4269 */ 4270 OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 4271 OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 4272 OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 4273 OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 4274 OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 4275 } 4276 4277 static inline void 4278 ar9300_init_user_settings(struct ath_hal *ah) 4279 { 4280 struct ath_hal_9300 *ahp = AH9300(ah); 4281 4282 /* Restore user-specified settings */ 4283 HALDEBUG(ah, HAL_DEBUG_RESET, 4284 "--AP %s ahp->ah_misc_mode 0x%x\n", __func__, ahp->ah_misc_mode); 4285 if (ahp->ah_misc_mode != 0) { 4286 OS_REG_WRITE(ah, 4287 AR_PCU_MISC, OS_REG_READ(ah, AR_PCU_MISC) | ahp->ah_misc_mode); 4288 } 4289 if (ahp->ah_get_plcp_hdr) { 4290 OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_SEL_EVM); 4291 } 4292 if (ahp->ah_slot_time != (u_int) -1) { 4293 ar9300_set_slot_time(ah, ahp->ah_slot_time); 4294 } 4295 if (ahp->ah_ack_timeout != (u_int) -1) { 4296 ar9300_set_ack_timeout(ah, ahp->ah_ack_timeout); 4297 } 4298 if (AH_PRIVATE(ah)->ah_diagreg != 0) { 4299 OS_REG_SET_BIT(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg); 4300 } 4301 if (ahp->ah_beacon_rssi_threshold != 0) { 4302 ar9300_set_hw_beacon_rssi_threshold(ah, ahp->ah_beacon_rssi_threshold); 4303 } 4304 //#ifdef ATH_SUPPORT_DFS 4305 if (ahp->ah_cac_quiet_enabled) { 4306 ar9300_cac_tx_quiet(ah, 1); 4307 } 4308 //#endif /* ATH_SUPPORT_DFS */ 4309 } 4310 4311 int 4312 ar9300_get_spur_info(struct ath_hal * ah, int *enable, int len, u_int16_t *freq) 4313 { 4314 // struct ath_hal_private *ap = AH_PRIVATE(ah); 4315 int i, j; 4316 4317 for (i = 0; i < len; i++) { 4318 freq[i] = 0; 4319 } 4320 4321 *enable = ah->ah_config.ath_hal_spur_mode; 4322 for (i = 0, j = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 4323 if (AH9300(ah)->ath_hal_spur_chans[i][0] != AR_NO_SPUR) { 4324 freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][0]; 4325 HALDEBUG(ah, HAL_DEBUG_ANI, 4326 "1. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][0]); 4327 } 4328 if (AH9300(ah)->ath_hal_spur_chans[i][1] != AR_NO_SPUR) { 4329 freq[j++] = AH9300(ah)->ath_hal_spur_chans[i][1]; 4330 HALDEBUG(ah, HAL_DEBUG_ANI, 4331 "2. get spur %d\n", AH9300(ah)->ath_hal_spur_chans[i][1]); 4332 } 4333 } 4334 4335 return 0; 4336 } 4337 4338 #define ATH_HAL_2GHZ_FREQ_MIN 20000 4339 #define ATH_HAL_2GHZ_FREQ_MAX 29999 4340 #define ATH_HAL_5GHZ_FREQ_MIN 50000 4341 #define ATH_HAL_5GHZ_FREQ_MAX 59999 4342 4343 #if 0 4344 int 4345 ar9300_set_spur_info(struct ath_hal * ah, int enable, int len, u_int16_t *freq) 4346 { 4347 struct ath_hal_private *ap = AH_PRIVATE(ah); 4348 int i, j, k; 4349 4350 ap->ah_config.ath_hal_spur_mode = enable; 4351 4352 if (ap->ah_config.ath_hal_spur_mode == SPUR_ENABLE_IOCTL) { 4353 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 4354 AH9300(ah)->ath_hal_spur_chans[i][0] = AR_NO_SPUR; 4355 AH9300(ah)->ath_hal_spur_chans[i][1] = AR_NO_SPUR; 4356 } 4357 for (i = 0, j = 0, k = 0; i < len; i++) { 4358 if (freq[i] > ATH_HAL_2GHZ_FREQ_MIN && 4359 freq[i] < ATH_HAL_2GHZ_FREQ_MAX) 4360 { 4361 /* 2GHz Spur */ 4362 if (j < AR_EEPROM_MODAL_SPURS) { 4363 AH9300(ah)->ath_hal_spur_chans[j++][1] = freq[i]; 4364 HALDEBUG(ah, HAL_DEBUG_ANI, "1 set spur %d\n", freq[i]); 4365 } 4366 } else if (freq[i] > ATH_HAL_5GHZ_FREQ_MIN && 4367 freq[i] < ATH_HAL_5GHZ_FREQ_MAX) 4368 { 4369 /* 5Ghz Spur */ 4370 if (k < AR_EEPROM_MODAL_SPURS) { 4371 AH9300(ah)->ath_hal_spur_chans[k++][0] = freq[i]; 4372 HALDEBUG(ah, HAL_DEBUG_ANI, "2 set spur %d\n", freq[i]); 4373 } 4374 } 4375 } 4376 } 4377 4378 return 0; 4379 } 4380 #endif 4381 4382 #define ar9300_check_op_mode(_opmode) \ 4383 ((_opmode == HAL_M_STA) || (_opmode == HAL_M_IBSS) ||\ 4384 (_opmode == HAL_M_HOSTAP) || (_opmode == HAL_M_MONITOR)) 4385 4386 4387 4388 4389 #ifndef ATH_NF_PER_CHAN 4390 /* 4391 * To fixed first reset noise floor value not correct issue 4392 * For ART need it to fixed low rate sens too low issue 4393 */ 4394 static int 4395 First_NFCal(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, 4396 int is_scan, struct ieee80211_channel *chan) 4397 { 4398 HAL_NFCAL_HIST_FULL *nfh; 4399 int i, j, k; 4400 int16_t nfarray[HAL_NUM_NF_READINGS] = {0}; 4401 int is_2g = 0; 4402 int nf_hist_len; 4403 int stats = 0; 4404 4405 int16_t nf_buf[HAL_NUM_NF_READINGS]; 4406 #define IS(_c, _f) (((_c)->channel_flags & _f) || 0) 4407 4408 4409 if ((!is_scan) && 4410 chan->ic_freq == AH_PRIVATE(ah)->ah_curchan->ic_freq) 4411 { 4412 nfh = &AH_PRIVATE(ah)->nf_cal_hist; 4413 } else { 4414 nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist; 4415 } 4416 4417 ar9300_start_nf_cal(ah); 4418 for (j = 0; j < 10000; j++) { 4419 if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0){ 4420 break; 4421 } 4422 OS_DELAY(10); 4423 } 4424 if (j < 10000) { 4425 is_2g = IEEE80211_IS_CHAN_2GHZ(chan); 4426 ar9300_upload_noise_floor(ah, is_2g, nfarray); 4427 4428 if (is_scan) { 4429 /* 4430 * This channel's NF cal info is just a HAL_NFCAL_HIST_SMALL struct 4431 * rather than a HAL_NFCAL_HIST_FULL struct. 4432 * As long as we only use the first history element of nf_cal_buffer 4433 * (nf_cal_buffer[0][0:HAL_NUM_NF_READINGS-1]), we can use 4434 * HAL_NFCAL_HIST_SMALL and HAL_NFCAL_HIST_FULL interchangeably. 4435 */ 4436 nfh = (HAL_NFCAL_HIST_FULL *) &ichan->nf_cal_hist; 4437 nf_hist_len = HAL_NF_CAL_HIST_LEN_SMALL; 4438 } else { 4439 nfh = &AH_PRIVATE(ah)->nf_cal_hist; 4440 nf_hist_len = HAL_NF_CAL_HIST_LEN_FULL; 4441 } 4442 4443 for (i = 0; i < HAL_NUM_NF_READINGS; i ++) { 4444 for (k = 0; k < HAL_NF_CAL_HIST_LEN_FULL; k++) { 4445 nfh->nf_cal_buffer[k][i] = nfarray[i]; 4446 } 4447 nfh->base.priv_nf[i] = ar9300_limit_nf_range(ah, 4448 ar9300_get_nf_hist_mid(ah, nfh, i, nf_hist_len)); 4449 } 4450 4451 4452 //ar9300StoreNewNf(ah, ichan, is_scan); 4453 4454 /* 4455 * See if the NF value from the old channel should be 4456 * retained when switching to a new channel. 4457 * TBD: this may need to be changed, as it wipes out the 4458 * purpose of saving NF values for each channel. 4459 */ 4460 for (i = 0; i < HAL_NUM_NF_READINGS; i++) 4461 { 4462 if (IEEE80211_IS_CHAN_2GHZ(chan)) 4463 { 4464 if (nfh->nf_cal_buffer[0][i] < 4465 AR_PHY_CCA_MAX_GOOD_VAL_OSPREY_2GHZ) 4466 { 4467 ichan->nf_cal_hist.nf_cal_buffer[0][i] = 4468 AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i]; 4469 } 4470 } else { 4471 if (AR_SREV_AR9580(ah)) { 4472 if (nfh->nf_cal_buffer[0][i] < 4473 AR_PHY_CCA_NOM_VAL_PEACOCK_5GHZ) 4474 { 4475 ichan->nf_cal_hist.nf_cal_buffer[0][i] = 4476 AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i]; 4477 } 4478 } else { 4479 if (nfh->nf_cal_buffer[0][i] < 4480 AR_PHY_CCA_NOM_VAL_OSPREY_5GHZ) 4481 { 4482 ichan->nf_cal_hist.nf_cal_buffer[0][i] = 4483 AH_PRIVATE(ah)->nf_cal_hist.nf_cal_buffer[0][i]; 4484 } 4485 } 4486 } 4487 } 4488 /* 4489 * Copy the channel's NF buffer, which may have been modified 4490 * just above here, to the full NF history buffer. 4491 */ 4492 ar9300_reset_nf_hist_buff(ah, ichan); 4493 ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf); 4494 ar9300_load_nf(ah, nf_buf); 4495 /* XXX TODO: handle failure from load_nf */ 4496 stats = 0; 4497 } else { 4498 stats = 1; 4499 } 4500 #undef IS 4501 return stats; 4502 } 4503 #endif 4504 4505 4506 /* 4507 * Places the device in and out of reset and then places sane 4508 * values in the registers based on EEPROM config, initialization 4509 * vectors (as determined by the mode), and station configuration 4510 * 4511 * b_channel_change is used to preserve DMA/PCU registers across 4512 * a HW Reset during channel change. 4513 */ 4514 HAL_BOOL 4515 ar9300_reset(struct ath_hal *ah, HAL_OPMODE opmode, struct ieee80211_channel *chan, 4516 HAL_HT_MACMODE macmode, u_int8_t txchainmask, u_int8_t rxchainmask, 4517 HAL_HT_EXTPROTSPACING extprotspacing, HAL_BOOL b_channel_change, 4518 HAL_STATUS *status, HAL_RESET_TYPE reset_type, int is_scan) 4519 { 4520 #define FAIL(_code) do { ecode = _code; goto bad; } while (0) 4521 u_int32_t save_led_state; 4522 struct ath_hal_9300 *ahp = AH9300(ah); 4523 struct ath_hal_private *ap = AH_PRIVATE(ah); 4524 HAL_CHANNEL_INTERNAL *ichan; 4525 //const struct ieee80211_channel *curchan = ap->ah_curchan; 4526 #if ATH_SUPPORT_MCI 4527 HAL_BOOL save_full_sleep = ahp->ah_chip_full_sleep; 4528 #endif 4529 u_int32_t save_def_antenna; 4530 u_int32_t mac_sta_id1; 4531 HAL_STATUS ecode; 4532 int i, rx_chainmask; 4533 int nf_hist_buff_reset = 0; 4534 int16_t nf_buf[HAL_NUM_NF_READINGS]; 4535 #ifdef ATH_FORCE_PPM 4536 u_int32_t save_force_val, tmp_reg; 4537 #endif 4538 u_int8_t clk_25mhz = AH9300(ah)->clk_25mhz; 4539 HAL_BOOL stopped, cal_ret; 4540 HAL_BOOL apply_last_iqcorr = AH_FALSE; 4541 4542 4543 if (OS_REG_READ(ah, AR_IER) == AR_IER_ENABLE) { 4544 HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE, "** Reset called with WLAN " 4545 "interrupt enabled %08x **\n", ar9300_get_interrupts(ah)); 4546 } 4547 4548 /* 4549 * Set the status to "ok" by default to cover the cases 4550 * where we return false without going to "bad" 4551 */ 4552 HALASSERT(status); 4553 *status = HAL_OK; 4554 if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable)) { 4555 AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_NONE; 4556 } 4557 4558 #if ATH_SUPPORT_MCI 4559 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && 4560 (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah))) 4561 { 4562 ar9300_mci_2g5g_changed(ah, IEEE80211_IS_CHAN_2GHZ(chan)); 4563 } 4564 #endif 4565 4566 ahp->ah_ext_prot_spacing = extprotspacing; 4567 ahp->ah_tx_chainmask = txchainmask & ap->ah_caps.halTxChainMask; 4568 ahp->ah_rx_chainmask = rxchainmask & ap->ah_caps.halRxChainMask; 4569 ahp->ah_tx_cal_chainmask = ap->ah_caps.halTxChainMask; 4570 ahp->ah_rx_cal_chainmask = ap->ah_caps.halRxChainMask; 4571 4572 /* 4573 * Keep the previous optinal txchainmask value 4574 */ 4575 4576 HALASSERT(ar9300_check_op_mode(opmode)); 4577 4578 OS_MARK(ah, AH_MARK_RESET, b_channel_change); 4579 4580 /* 4581 * Map public channel to private. 4582 */ 4583 ichan = ar9300_check_chan(ah, chan); 4584 if (ichan == AH_NULL) { 4585 HALDEBUG(ah, HAL_DEBUG_CHANNEL, 4586 "%s: invalid channel %u/0x%x; no mapping\n", 4587 __func__, chan->ic_freq, chan->ic_flags); 4588 FAIL(HAL_EINVAL); 4589 } 4590 4591 ichan->paprd_table_write_done = 0; /* Clear PAPRD table write flag */ 4592 #if 0 4593 chan->paprd_table_write_done = 0; /* Clear PAPRD table write flag */ 4594 #endif 4595 4596 if (ar9300_get_power_mode(ah) != HAL_PM_FULL_SLEEP) { 4597 /* Need to stop RX DMA before reset otherwise chip might hang */ 4598 stopped = ar9300_set_rx_abort(ah, AH_TRUE); /* abort and disable PCU */ 4599 ar9300_set_rx_filter(ah, 0); 4600 stopped &= ar9300_stop_dma_receive(ah, 0); /* stop and disable RX DMA */ 4601 if (!stopped) { 4602 /* 4603 * During the transition from full sleep to reset, 4604 * recv DMA regs are not available to be read 4605 */ 4606 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 4607 "%s[%d]: ar9300_stop_dma_receive failed\n", __func__, __LINE__); 4608 b_channel_change = AH_FALSE; 4609 } 4610 } else { 4611 HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, 4612 "%s[%d]: Chip is already in full sleep\n", __func__, __LINE__); 4613 } 4614 4615 #if ATH_SUPPORT_MCI 4616 if ((AH_PRIVATE(ah)->ah_caps.halMciSupport) && 4617 (ahp->ah_mci_bt_state == MCI_BT_CAL_START)) 4618 { 4619 u_int32_t payload[4] = {0, 0, 0, 0}; 4620 4621 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 4622 "(MCI) %s: Stop rx for BT cal.\n", __func__); 4623 ahp->ah_mci_bt_state = MCI_BT_CAL; 4624 4625 /* 4626 * MCIFIX: disable mci interrupt here. This is to avoid SW_MSG_DONE or 4627 * RX_MSG bits to trigger MCI_INT and lead to mci_intr reentry. 4628 */ 4629 ar9300_mci_disable_interrupt(ah); 4630 4631 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 4632 "(MCI) %s: Send WLAN_CAL_GRANT\n", __func__); 4633 MCI_GPM_SET_CAL_TYPE(payload, MCI_GPM_WLAN_CAL_GRANT); 4634 ar9300_mci_send_message(ah, MCI_GPM, 0, payload, 16, AH_TRUE, AH_FALSE); 4635 4636 /* Wait BT calibration to be completed for 25ms */ 4637 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 4638 "(MCI) %s: BT is calibrating.\n", __func__); 4639 if (ar9300_mci_wait_for_gpm(ah, MCI_GPM_BT_CAL_DONE, 0, 25000)) { 4640 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 4641 "(MCI) %s: Got BT_CAL_DONE.\n", __func__); 4642 } 4643 else { 4644 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 4645 "(MCI) %s: ### BT cal takes too long. Force bt_state to be bt_awake.\n", 4646 __func__); 4647 } 4648 ahp->ah_mci_bt_state = MCI_BT_AWAKE; 4649 /* MCIFIX: enable mci interrupt here */ 4650 ar9300_mci_enable_interrupt(ah); 4651 4652 return AH_TRUE; 4653 } 4654 #endif 4655 4656 /* Bring out of sleep mode */ 4657 if (!ar9300_set_power_mode(ah, HAL_PM_AWAKE, AH_TRUE)) { 4658 *status = HAL_INV_PMODE; 4659 return AH_FALSE; 4660 } 4661 4662 /* Check the Rx mitigation config again, it might have changed 4663 * during attach in ath_vap_attach. 4664 */ 4665 if (ah->ah_config.ath_hal_intr_mitigation_rx != 0) { 4666 ahp->ah_intr_mitigation_rx = AH_TRUE; 4667 } else { 4668 ahp->ah_intr_mitigation_rx = AH_FALSE; 4669 } 4670 4671 /* 4672 * XXX TODO FreeBSD: 4673 * 4674 * This is painful because we don't have a non-const channel pointer 4675 * at this stage. 4676 * 4677 * Make sure this gets fixed! 4678 */ 4679 #if 0 4680 /* Get the value from the previous NF cal and update history buffer */ 4681 if (curchan && (ahp->ah_chip_full_sleep != AH_TRUE)) { 4682 4683 if(ahp->ah_chip_reset_done){ 4684 ahp->ah_chip_reset_done = 0; 4685 } else { 4686 /* 4687 * is_scan controls updating NF for home channel or off channel. 4688 * Home -> Off, update home channel 4689 * Off -> Home, update off channel 4690 * Home -> Home, uppdate home channel 4691 */ 4692 if (ap->ah_curchan->channel != chan->channel) 4693 ar9300_store_new_nf(ah, curchan, !is_scan); 4694 else 4695 ar9300_store_new_nf(ah, curchan, is_scan); 4696 } 4697 } 4698 #endif 4699 4700 /* 4701 * Account for the effect of being in either the 2 GHz or 5 GHz band 4702 * on the nominal, max allowable, and min allowable noise floor values. 4703 */ 4704 AH9300(ah)->nfp = IS_CHAN_2GHZ(ichan) ? &ahp->nf_2GHz : &ahp->nf_5GHz; 4705 4706 /* 4707 * XXX FreeBSD For now, don't apply the last IQ correction. 4708 * 4709 * This should be done when scorpion is enabled on FreeBSD; just be 4710 * sure to fix this channel match code so it uses net80211 flags 4711 * instead. 4712 */ 4713 #if 0 4714 if (AR_SREV_SCORPION(ah) && curchan && (chan->channel == curchan->channel) && 4715 ((chan->channel_flags & (CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER)) == 4716 (curchan->channel_flags & 4717 (CHANNEL_ALL | CHANNEL_HALF | CHANNEL_QUARTER)))) { 4718 apply_last_iqcorr = AH_TRUE; 4719 } 4720 #endif 4721 apply_last_iqcorr = AH_FALSE; 4722 4723 4724 #ifndef ATH_NF_PER_CHAN 4725 /* 4726 * If there's only one full-size home-channel NF history buffer 4727 * rather than a full-size NF history buffer per channel, decide 4728 * whether to (re)initialize the home-channel NF buffer. 4729 * If this is just a channel change for a scan, or if the channel 4730 * is not being changed, don't mess up the home channel NF history 4731 * buffer with NF values from this scanned channel. If we're 4732 * changing the home channel to a new channel, reset the home-channel 4733 * NF history buffer with the most accurate NF known for the new channel. 4734 */ 4735 if (!is_scan && (!ap->ah_curchan || 4736 ap->ah_curchan->ic_freq != chan->ic_freq)) // || 4737 // ap->ah_curchan->channel_flags != chan->channel_flags)) 4738 { 4739 nf_hist_buff_reset = 1; 4740 ar9300_reset_nf_hist_buff(ah, ichan); 4741 } 4742 #endif 4743 /* 4744 * In case of 4745 * - offchan scan, or 4746 * - same channel and RX IQ Cal already available 4747 * disable RX IQ Cal. 4748 */ 4749 if (is_scan) { 4750 ahp->ah_skip_rx_iq_cal = AH_TRUE; 4751 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 4752 "Skip RX IQ Cal due to scanning\n"); 4753 } else { 4754 #if 0 4755 /* XXX FreeBSD: always just do the RX IQ cal */ 4756 /* XXX I think it's just going to speed things up; I don't think it's to avoid chan bugs */ 4757 if (ahp->ah_rx_cal_complete && 4758 ahp->ah_rx_cal_chan == ichan->channel && 4759 ahp->ah_rx_cal_chan_flag == chan->channel_flags) { 4760 ahp->ah_skip_rx_iq_cal = AH_TRUE; 4761 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 4762 "Skip RX IQ Cal due to same channel with completed RX IQ Cal\n"); 4763 } else 4764 #endif 4765 ahp->ah_skip_rx_iq_cal = AH_FALSE; 4766 } 4767 4768 /* FreeBSD: clear the channel survey data */ 4769 ath_hal_survey_clear(ah); 4770 4771 /* 4772 * Fast channel change (Change synthesizer based on channel freq 4773 * without resetting chip) 4774 * Don't do it when 4775 * - Flag is not set 4776 * - Chip is just coming out of full sleep 4777 * - Channel to be set is same as current channel 4778 * - Channel flags are different, like when moving from 2GHz to 5GHz 4779 * channels 4780 * - Merlin: Switching in/out of fast clock enabled channels 4781 * (not currently coded, since fast clock is enabled 4782 * across the 5GHz band 4783 * and we already do a full reset when switching in/out 4784 * of 5GHz channels) 4785 */ 4786 #if 0 4787 if (b_channel_change && 4788 (ahp->ah_chip_full_sleep != AH_TRUE) && 4789 (AH_PRIVATE(ah)->ah_curchan != AH_NULL) && 4790 ((chan->channel != AH_PRIVATE(ah)->ah_curchan->channel) && 4791 (((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & chan->channel_flags) == 4792 ((CHANNEL_ALL|CHANNEL_HALF|CHANNEL_QUARTER) & AH_PRIVATE(ah)->ah_curchan->channel_flags)))) 4793 { 4794 if (ar9300_channel_change(ah, chan, ichan, macmode)) { 4795 chan->channel_flags = ichan->channel_flags; 4796 chan->priv_flags = ichan->priv_flags; 4797 AH_PRIVATE(ah)->ah_curchan->ah_channel_time = 0; 4798 AH_PRIVATE(ah)->ah_curchan->ah_tsf_last = ar9300_get_tsf64(ah); 4799 4800 /* 4801 * Load the NF from history buffer of the current channel. 4802 * NF is slow time-variant, so it is OK to use a historical value. 4803 */ 4804 ar9300_get_nf_hist_base(ah, 4805 AH_PRIVATE(ah)->ah_curchan, is_scan, nf_buf); 4806 ar9300_load_nf(ah, nf_buf); 4807 4808 /* start NF calibration, without updating BB NF register*/ 4809 ar9300_start_nf_cal(ah); 4810 4811 /* 4812 * If channel_change completed and DMA was stopped 4813 * successfully - skip the rest of reset 4814 */ 4815 if (AH9300(ah)->ah_dma_stuck != AH_TRUE) { 4816 ar9300_disable_pll_lock_detect(ah); 4817 #if ATH_SUPPORT_MCI 4818 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) 4819 { 4820 ar9300_mci_2g5g_switch(ah, AH_TRUE); 4821 } 4822 #endif 4823 return HAL_OK; 4824 } 4825 } 4826 } 4827 #endif /* #if 0 */ 4828 4829 #if ATH_SUPPORT_MCI 4830 if (AH_PRIVATE(ah)->ah_caps.halMciSupport) { 4831 ar9300_mci_disable_interrupt(ah); 4832 if (ahp->ah_mci_ready && !save_full_sleep) { 4833 ar9300_mci_mute_bt(ah); 4834 OS_DELAY(20); 4835 OS_REG_WRITE(ah, AR_BTCOEX_CTRL, 0); 4836 } 4837 4838 ahp->ah_mci_bt_state = MCI_BT_SLEEP; 4839 ahp->ah_mci_ready = AH_FALSE; 4840 } 4841 #endif 4842 4843 AH9300(ah)->ah_dma_stuck = AH_FALSE; 4844 #ifdef ATH_FORCE_PPM 4845 /* Preserve force ppm state */ 4846 save_force_val = 4847 OS_REG_READ(ah, AR_PHY_TIMING2) & 4848 (AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL); 4849 #endif 4850 /* 4851 * Preserve the antenna on a channel change 4852 */ 4853 save_def_antenna = OS_REG_READ(ah, AR_DEF_ANTENNA); 4854 if (0 == ahp->ah_smartantenna_enable ) 4855 { 4856 if (save_def_antenna == 0) { 4857 save_def_antenna = 1; 4858 } 4859 } 4860 4861 /* Save hardware flag before chip reset clears the register */ 4862 mac_sta_id1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 4863 4864 /* Save led state from pci config register */ 4865 save_led_state = OS_REG_READ(ah, AR_CFG_LED) & 4866 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 4867 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 4868 4869 /* Mark PHY inactive prior to reset, to be undone in ar9300_init_bb () */ 4870 ar9300_mark_phy_inactive(ah); 4871 4872 if (!ar9300_chip_reset(ah, chan, reset_type)) { 4873 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: chip reset failed\n", __func__); 4874 FAIL(HAL_EIO); 4875 } 4876 4877 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 4878 4879 4880 /* Disable JTAG */ 4881 OS_REG_SET_BIT(ah, 4882 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL), AR_GPIO_JTAG_DISABLE); 4883 4884 /* 4885 * Note that ar9300_init_chain_masks() is called from within 4886 * ar9300_process_ini() to ensure the swap bit is set before 4887 * the pdadc table is written. 4888 */ 4889 ecode = ar9300_process_ini(ah, chan, ichan, macmode); 4890 if (ecode != HAL_OK) { 4891 goto bad; 4892 } 4893 4894 /* 4895 * Configuring WMAC PLL values for 25/40 MHz 4896 */ 4897 if(AR_SREV_WASP(ah) || AR_SREV_HONEYBEE(ah) || AR_SREV_SCORPION(ah) ) { 4898 if(clk_25mhz) { 4899 OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x17c << 1)); // 32KHz sleep clk 4900 } else { 4901 OS_REG_WRITE(ah, AR_RTC_DERIVED_RTC_CLK, (0x261 << 1)); // 32KHz sleep clk 4902 } 4903 OS_DELAY(100); 4904 } 4905 4906 ahp->ah_immunity_on = AH_FALSE; 4907 4908 if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) { 4909 ahp->tx_iq_cal_enable = OS_REG_READ_FIELD(ah, 4910 AR_PHY_TX_IQCAL_CONTROL_0(ah), 4911 AR_PHY_TX_IQCAL_CONTROL_0_ENABLE_TXIQ_CAL) ? 4912 1 : 0; 4913 } 4914 ahp->tx_cl_cal_enable = (OS_REG_READ(ah, AR_PHY_CL_CAL_CTL) & 4915 AR_PHY_CL_CAL_ENABLE) ? 1 : 0; 4916 4917 /* For devices with full HW RIFS Rx support (Sowl/Howl/Merlin, etc), 4918 * restore register settings from prior to reset. 4919 */ 4920 if ((AH_PRIVATE(ah)->ah_curchan != AH_NULL) && 4921 (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK)) 4922 { 4923 /* Re-program RIFS Rx policy after reset */ 4924 ar9300_set_rifs_delay(ah, ahp->ah_rifs_enabled); 4925 } 4926 4927 #if ATH_SUPPORT_MCI 4928 if (AH_PRIVATE(ah)->ah_caps.halMciSupport) { 4929 ar9300_mci_reset(ah, AH_FALSE, IS_CHAN_2GHZ(ichan), save_full_sleep); 4930 } 4931 #endif 4932 4933 /* Initialize Management Frame Protection */ 4934 ar9300_init_mfp(ah); 4935 4936 ahp->ah_immunity_vals[0] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW, 4937 AR_PHY_SFCORR_LOW_M1_THRESH_LOW); 4938 ahp->ah_immunity_vals[1] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW, 4939 AR_PHY_SFCORR_LOW_M2_THRESH_LOW); 4940 ahp->ah_immunity_vals[2] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR, 4941 AR_PHY_SFCORR_M1_THRESH); 4942 ahp->ah_immunity_vals[3] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR, 4943 AR_PHY_SFCORR_M2_THRESH); 4944 ahp->ah_immunity_vals[4] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR, 4945 AR_PHY_SFCORR_M2COUNT_THR); 4946 ahp->ah_immunity_vals[5] = OS_REG_READ_FIELD(ah, AR_PHY_SFCORR_LOW, 4947 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW); 4948 4949 /* Write delta slope for OFDM enabled modes (A, G, Turbo) */ 4950 if (IEEE80211_IS_CHAN_OFDM(chan) || IEEE80211_IS_CHAN_HT(chan)) { 4951 ar9300_set_delta_slope(ah, chan); 4952 } 4953 4954 ar9300_spur_mitigate(ah, chan); 4955 if (!ar9300_eeprom_set_board_values(ah, chan)) { 4956 HALDEBUG(ah, HAL_DEBUG_EEPROM, 4957 "%s: error setting board options\n", __func__); 4958 FAIL(HAL_EIO); 4959 } 4960 4961 #ifdef ATH_HAL_WAR_REG16284_APH128 4962 /* temp work around, will be removed. */ 4963 if (AR_SREV_WASP(ah)) { 4964 OS_REG_WRITE(ah, 0x16284, 0x1553e000); 4965 } 4966 #endif 4967 4968 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 4969 4970 OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr)); 4971 OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4) 4972 | mac_sta_id1 4973 | AR_STA_ID1_RTS_USE_DEF 4974 | (ah->ah_config.ath_hal_6mb_ack ? AR_STA_ID1_ACKCTS_6MB : 0) 4975 | ahp->ah_sta_id1_defaults 4976 ); 4977 ar9300_set_operating_mode(ah, opmode); 4978 4979 /* Set Venice BSSID mask according to current state */ 4980 OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask)); 4981 OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4)); 4982 4983 /* Restore previous antenna */ 4984 OS_REG_WRITE(ah, AR_DEF_ANTENNA, save_def_antenna); 4985 #ifdef ATH_FORCE_PPM 4986 /* Restore force ppm state */ 4987 tmp_reg = OS_REG_READ(ah, AR_PHY_TIMING2) & 4988 ~(AR_PHY_TIMING2_USE_FORCE | AR_PHY_TIMING2_FORCE_VAL); 4989 OS_REG_WRITE(ah, AR_PHY_TIMING2, tmp_reg | save_force_val); 4990 #endif 4991 4992 /* then our BSSID and assocID */ 4993 OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid)); 4994 OS_REG_WRITE(ah, AR_BSS_ID1, 4995 LE_READ_2(ahp->ah_bssid + 4) | 4996 ((ahp->ah_assoc_id & 0x3fff) << AR_BSS_ID1_AID_S)); 4997 4998 OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */ 4999 5000 OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, INIT_RSSI_THR); 5001 5002 /* HW beacon processing */ 5003 /* 5004 * XXX what happens if I just leave filter_interval=0? 5005 * it stays disabled? 5006 */ 5007 OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_BCN_WEIGHT, 5008 INIT_RSSI_BEACON_WEIGHT); 5009 OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE | 5010 AR_HWBCNPROC1_EXCLUDE_TIM_ELM); 5011 if (ah->ah_config.ath_hal_beacon_filter_interval) { 5012 OS_REG_RMW_FIELD(ah, AR_HWBCNPROC2, AR_HWBCNPROC2_FILTER_INTERVAL, 5013 ah->ah_config.ath_hal_beacon_filter_interval); 5014 OS_REG_SET_BIT(ah, AR_HWBCNPROC2, 5015 AR_HWBCNPROC2_FILTER_INTERVAL_ENABLE); 5016 } 5017 5018 5019 /* 5020 * Set Channel now modifies bank 6 parameters for FOWL workaround 5021 * to force rf_pwd_icsyndiv bias current as function of synth 5022 * frequency.Thus must be called after ar9300_process_ini() to ensure 5023 * analog register cache is valid. 5024 */ 5025 if (!ahp->ah_rf_hal.set_channel(ah, chan)) { 5026 FAIL(HAL_EIO); 5027 } 5028 5029 5030 OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__); 5031 5032 /* Set 1:1 QCU to DCU mapping for all queues */ 5033 for (i = 0; i < AR_NUM_DCU; i++) { 5034 OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 5035 } 5036 5037 ahp->ah_intr_txqs = 0; 5038 for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++) { 5039 ar9300_reset_tx_queue(ah, i); 5040 } 5041 5042 ar9300_init_interrupt_masks(ah, opmode); 5043 5044 /* Reset ier reference count to disabled */ 5045 // OS_ATOMIC_SET(&ahp->ah_ier_ref_count, 1); 5046 if (ath_hal_isrfkillenabled(ah)) { 5047 ar9300_enable_rf_kill(ah); 5048 } 5049 5050 /* must be called AFTER ini is processed */ 5051 ar9300_ani_init_defaults(ah, macmode); 5052 5053 ar9300_init_qos(ah); 5054 5055 ar9300_init_user_settings(ah); 5056 5057 5058 AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */ 5059 5060 OS_MARK(ah, AH_MARK_RESET_DONE, 0); 5061 5062 /* 5063 * disable seq number generation in hw 5064 */ 5065 OS_REG_WRITE(ah, AR_STA_ID1, 5066 OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM); 5067 5068 ar9300_set_dma(ah); 5069 5070 /* 5071 * program OBS bus to see MAC interrupts 5072 */ 5073 #if ATH_SUPPORT_MCI 5074 if (!AH_PRIVATE(ah)->ah_caps.halMciSupport) { 5075 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8); 5076 } 5077 #else 5078 OS_REG_WRITE(ah, AR_HOSTIF_REG(ah, AR_OBS), 8); 5079 #endif 5080 5081 5082 /* enabling AR_GTTM_IGNORE_IDLE in GTTM register so that 5083 GTT timer will not increment if the channel idle indicates 5084 the air is busy or NAV is still counting down */ 5085 OS_REG_WRITE(ah, AR_GTTM, AR_GTTM_IGNORE_IDLE); 5086 5087 /* 5088 * GTT debug mode setting 5089 */ 5090 /* 5091 OS_REG_WRITE(ah, 0x64, 0x00320000); 5092 OS_REG_WRITE(ah, 0x68, 7); 5093 OS_REG_WRITE(ah, 0x4080, 0xC); 5094 */ 5095 /* 5096 * Disable general interrupt mitigation by setting MIRT = 0x0 5097 * Rx and tx interrupt mitigation are conditionally enabled below. 5098 */ 5099 OS_REG_WRITE(ah, AR_MIRT, 0); 5100 if (ahp->ah_intr_mitigation_rx) { 5101 /* 5102 * Enable Interrupt Mitigation for Rx. 5103 * If no build-specific limits for the rx interrupt mitigation 5104 * timer have been specified, use conservative defaults. 5105 */ 5106 #ifndef AH_RIMT_VAL_LAST 5107 #define AH_RIMT_LAST_MICROSEC 500 5108 #endif 5109 #ifndef AH_RIMT_VAL_FIRST 5110 #define AH_RIMT_FIRST_MICROSEC 2000 5111 #endif 5112 #ifndef HOST_OFFLOAD 5113 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC); 5114 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC); 5115 #else 5116 /* lower mitigation level to reduce latency for offload arch. */ 5117 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 5118 (AH_RIMT_LAST_MICROSEC >> 2)); 5119 OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 5120 (AH_RIMT_FIRST_MICROSEC >> 2)); 5121 #endif 5122 } 5123 5124 if (ahp->ah_intr_mitigation_tx) { 5125 /* 5126 * Enable Interrupt Mitigation for Tx. 5127 * If no build-specific limits for the tx interrupt mitigation 5128 * timer have been specified, use the values preferred for 5129 * the carrier group's products. 5130 */ 5131 #ifndef AH_TIMT_LAST 5132 #define AH_TIMT_LAST_MICROSEC 300 5133 #endif 5134 #ifndef AH_TIMT_FIRST 5135 #define AH_TIMT_FIRST_MICROSEC 750 5136 #endif 5137 OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, AH_TIMT_LAST_MICROSEC); 5138 OS_REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, AH_TIMT_FIRST_MICROSEC); 5139 } 5140 5141 rx_chainmask = ahp->ah_rx_chainmask; 5142 5143 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 5144 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 5145 5146 ar9300_init_bb(ah, chan); 5147 5148 /* BB Step 7: Calibration */ 5149 /* 5150 * Only kick off calibration not on offchan. 5151 * If coming back from offchan, restore prevous Cal results 5152 * since chip reset will clear existings. 5153 */ 5154 if (!ahp->ah_skip_rx_iq_cal) { 5155 int i; 5156 /* clear existing RX cal data */ 5157 for (i=0; i<AR9300_MAX_CHAINS; i++) 5158 ahp->ah_rx_cal_corr[i] = 0; 5159 5160 ahp->ah_rx_cal_complete = AH_FALSE; 5161 // ahp->ah_rx_cal_chan = chan->channel; 5162 // ahp->ah_rx_cal_chan_flag = ichan->channel_flags; 5163 ahp->ah_rx_cal_chan = 0; 5164 ahp->ah_rx_cal_chan_flag = 0; /* XXX FreeBSD */ 5165 } 5166 ar9300_invalidate_saved_cals(ah, ichan); 5167 cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr); 5168 5169 #if ATH_SUPPORT_MCI 5170 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) { 5171 if (IS_CHAN_2GHZ(ichan) && 5172 (ahp->ah_mci_bt_state == MCI_BT_SLEEP)) 5173 { 5174 if (ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET) || 5175 ar9300_mci_check_int(ah, AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE)) 5176 { 5177 /* 5178 * BT is sleeping. Check if BT wakes up duing WLAN 5179 * calibration. If BT wakes up during WLAN calibration, need 5180 * to go through all message exchanges again and recal. 5181 */ 5182 HALDEBUG(ah, HAL_DEBUG_BT_COEX, 5183 "(MCI) ### %s: BT wakes up during WLAN calibration.\n", 5184 __func__); 5185 OS_REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_RAW, 5186 AR_MCI_INTERRUPT_RX_MSG_REMOTE_RESET | 5187 AR_MCI_INTERRUPT_RX_MSG_REQ_WAKE); 5188 HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) send REMOTE_RESET\n"); 5189 ar9300_mci_remote_reset(ah, AH_TRUE); 5190 ar9300_mci_send_sys_waking(ah, AH_TRUE); 5191 OS_DELAY(1); 5192 if (IS_CHAN_2GHZ(ichan)) { 5193 ar9300_mci_send_lna_transfer(ah, AH_TRUE); 5194 } 5195 ahp->ah_mci_bt_state = MCI_BT_AWAKE; 5196 5197 /* Redo calibration */ 5198 HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) %s: Re-calibrate.\n", 5199 __func__); 5200 ar9300_invalidate_saved_cals(ah, ichan); 5201 cal_ret = ar9300_init_cal(ah, chan, AH_FALSE, apply_last_iqcorr); 5202 } 5203 } 5204 ar9300_mci_enable_interrupt(ah); 5205 } 5206 #endif 5207 5208 if (!cal_ret) { 5209 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: Init Cal Failed\n", __func__); 5210 FAIL(HAL_ESELFTEST); 5211 } 5212 5213 ar9300_init_txbf(ah); 5214 #if 0 5215 /* 5216 * WAR for owl 1.0 - restore chain mask for 2-chain cfgs after cal 5217 */ 5218 rx_chainmask = ahp->ah_rx_chainmask; 5219 if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) { 5220 OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask); 5221 OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask); 5222 } 5223 #endif 5224 5225 /* Restore previous led state */ 5226 OS_REG_WRITE(ah, AR_CFG_LED, save_led_state | AR_CFG_SCLK_32KHZ); 5227 5228 #if ATH_BT_COEX 5229 if (ahp->ah_bt_coex_config_type != HAL_BT_COEX_CFG_NONE) { 5230 ar9300_init_bt_coex(ah); 5231 5232 #if ATH_SUPPORT_MCI 5233 if (AH_PRIVATE(ah)->ah_caps.halMciSupport && ahp->ah_mci_ready) { 5234 /* Check BT state again to make sure it's not changed. */ 5235 ar9300_mci_sync_bt_state(ah); 5236 ar9300_mci_2g5g_switch(ah, AH_TRUE); 5237 5238 if ((ahp->ah_mci_bt_state == MCI_BT_AWAKE) && 5239 (ahp->ah_mci_query_bt == AH_TRUE)) 5240 { 5241 ahp->ah_mci_need_flush_btinfo = AH_TRUE; 5242 } 5243 } 5244 #endif 5245 } 5246 #endif 5247 5248 /* Start TSF2 for generic timer 8-15. */ 5249 ar9300_start_tsf2(ah); 5250 5251 /* MIMO Power save setting */ 5252 if (ar9300_get_capability(ah, HAL_CAP_DYNAMIC_SMPS, 0, AH_NULL) == HAL_OK) { 5253 ar9300_set_sm_power_mode(ah, ahp->ah_sm_power_mode); 5254 } 5255 5256 /* 5257 * For big endian systems turn on swapping for descriptors 5258 */ 5259 #if AH_BYTE_ORDER == AH_BIG_ENDIAN 5260 if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah)) { 5261 OS_REG_RMW(ah, AR_CFG, AR_CFG_SWTB | AR_CFG_SWRB, 0); 5262 } else { 5263 ar9300_init_cfg_reg(ah); 5264 } 5265 #endif 5266 5267 if ( AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah) || AR_SREV_HONEYBEE(ah) ) { 5268 OS_REG_RMW(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, AR_CFG_LED_ASSOC_CTL); 5269 } 5270 5271 #if !(defined(ART_BUILD)) && defined(ATH_SUPPORT_LED) 5272 #define REG_WRITE(_reg, _val) *((volatile u_int32_t *)(_reg)) = (_val); 5273 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 5274 #define ATH_GPIO_OUT_FUNCTION3 0xB8040038 5275 #define ATH_GPIO_OE 0xB8040000 5276 if ( AR_SREV_WASP(ah)) { 5277 if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) { 5278 REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x33 << 8) ); 5279 REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) ))); 5280 } 5281 else { 5282 5283 /* Disable 2G WLAN LED. During ath_open, reset function is called even before channel is set. 5284 So 2GHz is taken as default and it also blinks. Hence 5285 to avoid both from blinking, disable 2G led while in 5G mode */ 5286 5287 REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) | (1 << 13) )); 5288 REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x33) ); 5289 REG_WRITE(ATH_GPIO_OE, ( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) ))); 5290 } 5291 5292 } 5293 else if (AR_SREV_SCORPION(ah)) { 5294 if (IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan))) { 5295 REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff << 8))) | (0x2F << 8) ); 5296 REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 13) )) | (0x1 << 12))); 5297 } else if (IS_CHAN_5GHZ((AH_PRIVATE(ah)->ah_curchan))) { 5298 REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x2F) ); 5299 REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )) | (0x1 << 13))); 5300 } 5301 } 5302 else if (AR_SREV_HONEYBEE(ah)) { 5303 REG_WRITE(ATH_GPIO_OUT_FUNCTION3, ( REG_READ(ATH_GPIO_OUT_FUNCTION3) & (~(0xff))) | (0x32) ); 5304 REG_WRITE(ATH_GPIO_OE, (( REG_READ(ATH_GPIO_OE) & (~(0x1 << 12) )))); 5305 } 5306 #undef REG_READ 5307 #undef REG_WRITE 5308 #endif 5309 5310 /* XXX FreeBSD What's this? -adrian */ 5311 #if 0 5312 chan->channel_flags = ichan->channel_flags; 5313 chan->priv_flags = ichan->priv_flags; 5314 #endif 5315 5316 #if FIX_NOISE_FLOOR 5317 /* XXX FreeBSD is ichan appropariate? It was curchan.. */ 5318 ar9300_get_nf_hist_base(ah, ichan, is_scan, nf_buf); 5319 ar9300_load_nf(ah, nf_buf); 5320 /* XXX TODO: handle NF load failure */ 5321 if (nf_hist_buff_reset == 1) 5322 { 5323 nf_hist_buff_reset = 0; 5324 #ifndef ATH_NF_PER_CHAN 5325 if (First_NFCal(ah, ichan, is_scan, chan)){ 5326 if (ahp->ah_skip_rx_iq_cal && !is_scan) { 5327 /* restore RX Cal result if existing */ 5328 ar9300_rx_iq_cal_restore(ah); 5329 ahp->ah_skip_rx_iq_cal = AH_FALSE; 5330 } 5331 } 5332 #endif /* ATH_NF_PER_CHAN */ 5333 } 5334 else{ 5335 ar9300_start_nf_cal(ah); 5336 } 5337 #endif 5338 5339 #ifdef AH_SUPPORT_AR9300 5340 /* BB Panic Watchdog */ 5341 if (ar9300_get_capability(ah, HAL_CAP_BB_PANIC_WATCHDOG, 0, AH_NULL) == 5342 HAL_OK) 5343 { 5344 ar9300_config_bb_panic_watchdog(ah); 5345 } 5346 #endif 5347 5348 /* While receiving unsupported rate frame receive state machine 5349 * gets into a state 0xb and if phy_restart happens when rx 5350 * state machine is in 0xb state, BB would go hang, if we 5351 * see 0xb state after first bb panic, make sure that we 5352 * disable the phy_restart. 5353 * 5354 * There may be multiple panics, make sure that we always do 5355 * this if we see this panic at least once. This is required 5356 * because reset seems to be writing from INI file. 5357 */ 5358 if ((ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL) 5359 == HAL_OK) && (((MS((AH9300(ah)->ah_bb_panic_last_status), 5360 AR_PHY_BB_WD_RX_OFDM_SM)) == 0xb) || 5361 AH9300(ah)->ah_phyrestart_disabled) ) 5362 { 5363 ar9300_disable_phy_restart(ah, 1); 5364 } 5365 5366 5367 5368 ahp->ah_radar1 = MS(OS_REG_READ(ah, AR_PHY_RADAR_1), 5369 AR_PHY_RADAR_1_CF_BIN_THRESH); 5370 ahp->ah_dc_offset = MS(OS_REG_READ(ah, AR_PHY_TIMING2), 5371 AR_PHY_TIMING2_DC_OFFSET); 5372 ahp->ah_disable_cck = MS(OS_REG_READ(ah, AR_PHY_MODE), 5373 AR_PHY_MODE_DISABLE_CCK); 5374 5375 if (AH9300(ah)->ah_enable_keysearch_always) { 5376 ar9300_enable_keysearch_always(ah, 1); 5377 } 5378 5379 #if ATH_LOW_POWER_ENABLE 5380 #define REG_WRITE(_reg, _val) *((volatile u_int32_t *)(_reg)) = (_val) 5381 #define REG_READ(_reg) *((volatile u_int32_t *)(_reg)) 5382 if (AR_SREV_OSPREY(ah)) { 5383 REG_WRITE(0xb4000080, REG_READ(0xb4000080) | 3); 5384 OS_REG_WRITE(ah, AR_RTC_RESET, 1); 5385 OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_PCIE_PM_CTRL), 5386 AR_PCIE_PM_CTRL_ENA); 5387 OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_SPARE), 0xffffffff); 5388 } 5389 #undef REG_READ 5390 #undef REG_WRITE 5391 #endif /* ATH_LOW_POWER_ENABLE */ 5392 5393 ar9300_disable_pll_lock_detect(ah); 5394 5395 /* H/W Green TX */ 5396 ar9300_control_signals_for_green_tx_mode(ah); 5397 /* Smart Antenna, only for 5GHz on Scropion */ 5398 if (IEEE80211_IS_CHAN_2GHZ((AH_PRIVATE(ah)->ah_curchan)) && AR_SREV_SCORPION(ah)) { 5399 ahp->ah_smartantenna_enable = 0; 5400 } 5401 5402 ar9300_set_smart_antenna(ah, ahp->ah_smartantenna_enable); 5403 5404 if (AR_SREV_APHRODITE(ah) && ahp->ah_lna_div_use_bt_ant_enable) 5405 OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 5406 5407 if (ahp->ah_skip_rx_iq_cal && !is_scan) { 5408 /* restore RX Cal result if existing */ 5409 ar9300_rx_iq_cal_restore(ah); 5410 ahp->ah_skip_rx_iq_cal = AH_FALSE; 5411 } 5412 5413 5414 return AH_TRUE; 5415 bad: 5416 OS_MARK(ah, AH_MARK_RESET_DONE, ecode); 5417 *status = ecode; 5418 5419 if (ahp->ah_skip_rx_iq_cal && !is_scan) { 5420 /* restore RX Cal result if existing */ 5421 ar9300_rx_iq_cal_restore(ah); 5422 ahp->ah_skip_rx_iq_cal = AH_FALSE; 5423 } 5424 5425 return AH_FALSE; 5426 #undef FAIL 5427 } 5428 5429 void 5430 ar9300_green_ap_ps_on_off( struct ath_hal *ah, u_int16_t on_off) 5431 { 5432 /* Set/reset the ps flag */ 5433 AH9300(ah)->green_ap_ps_on = !!on_off; 5434 } 5435 5436 /* 5437 * This function returns 1, where it is possible to do 5438 * single-chain power save. 5439 */ 5440 u_int16_t 5441 ar9300_is_single_ant_power_save_possible(struct ath_hal *ah) 5442 { 5443 return AH_TRUE; 5444 } 5445 5446 /* To avoid compilation warnings. Functions not used when EMULATION. */ 5447 /* 5448 * ar9300_find_mag_approx() 5449 */ 5450 static int32_t 5451 ar9300_find_mag_approx(struct ath_hal *ah, int32_t in_re, int32_t in_im) 5452 { 5453 int32_t abs_i = abs(in_re); 5454 int32_t abs_q = abs(in_im); 5455 int32_t max_abs, min_abs; 5456 5457 if (abs_i > abs_q) { 5458 max_abs = abs_i; 5459 min_abs = abs_q; 5460 } else { 5461 max_abs = abs_q; 5462 min_abs = abs_i; 5463 } 5464 5465 return (max_abs - (max_abs / 32) + (min_abs / 8) + (min_abs / 4)); 5466 } 5467 5468 /* 5469 * ar9300_solve_iq_cal() 5470 * solve 4x4 linear equation used in loopback iq cal. 5471 */ 5472 static HAL_BOOL 5473 ar9300_solve_iq_cal( 5474 struct ath_hal *ah, 5475 int32_t sin_2phi_1, 5476 int32_t cos_2phi_1, 5477 int32_t sin_2phi_2, 5478 int32_t cos_2phi_2, 5479 int32_t mag_a0_d0, 5480 int32_t phs_a0_d0, 5481 int32_t mag_a1_d0, 5482 int32_t phs_a1_d0, 5483 int32_t solved_eq[]) 5484 { 5485 int32_t f1 = cos_2phi_1 - cos_2phi_2; 5486 int32_t f3 = sin_2phi_1 - sin_2phi_2; 5487 int32_t f2; 5488 int32_t mag_tx, phs_tx, mag_rx, phs_rx; 5489 const int32_t result_shift = 1 << 15; 5490 5491 f2 = (((int64_t)f1 * (int64_t)f1) / result_shift) + (((int64_t)f3 * (int64_t)f3) / result_shift); 5492 5493 if (0 == f2) { 5494 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: Divide by 0(%d).\n", 5495 __func__, __LINE__); 5496 return AH_FALSE; 5497 } 5498 5499 /* magnitude mismatch, tx */ 5500 mag_tx = f1 * (mag_a0_d0 - mag_a1_d0) + f3 * (phs_a0_d0 - phs_a1_d0); 5501 /* phase mismatch, tx */ 5502 phs_tx = f3 * (-mag_a0_d0 + mag_a1_d0) + f1 * (phs_a0_d0 - phs_a1_d0); 5503 5504 mag_tx = (mag_tx / f2); 5505 phs_tx = (phs_tx / f2); 5506 5507 /* magnitude mismatch, rx */ 5508 mag_rx = 5509 mag_a0_d0 - (cos_2phi_1 * mag_tx + sin_2phi_1 * phs_tx) / result_shift; 5510 /* phase mismatch, rx */ 5511 phs_rx = 5512 phs_a0_d0 + (sin_2phi_1 * mag_tx - cos_2phi_1 * phs_tx) / result_shift; 5513 5514 solved_eq[0] = mag_tx; 5515 solved_eq[1] = phs_tx; 5516 solved_eq[2] = mag_rx; 5517 solved_eq[3] = phs_rx; 5518 5519 return AH_TRUE; 5520 } 5521 5522 /* 5523 * ar9300_calc_iq_corr() 5524 */ 5525 static HAL_BOOL 5526 ar9300_calc_iq_corr(struct ath_hal *ah, int32_t chain_idx, 5527 const int32_t iq_res[], int32_t iqc_coeff[]) 5528 { 5529 int32_t i2_m_q2_a0_d0, i2_p_q2_a0_d0, iq_corr_a0_d0; 5530 int32_t i2_m_q2_a0_d1, i2_p_q2_a0_d1, iq_corr_a0_d1; 5531 int32_t i2_m_q2_a1_d0, i2_p_q2_a1_d0, iq_corr_a1_d0; 5532 int32_t i2_m_q2_a1_d1, i2_p_q2_a1_d1, iq_corr_a1_d1; 5533 int32_t mag_a0_d0, mag_a1_d0, mag_a0_d1, mag_a1_d1; 5534 int32_t phs_a0_d0, phs_a1_d0, phs_a0_d1, phs_a1_d1; 5535 int32_t sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2; 5536 int32_t mag_tx, phs_tx, mag_rx, phs_rx; 5537 int32_t solved_eq[4], mag_corr_tx, phs_corr_tx, mag_corr_rx, phs_corr_rx; 5538 int32_t q_q_coff, q_i_coff; 5539 const int32_t res_scale = 1 << 15; 5540 const int32_t delpt_shift = 1 << 8; 5541 int32_t mag1, mag2; 5542 5543 i2_m_q2_a0_d0 = iq_res[0] & 0xfff; 5544 i2_p_q2_a0_d0 = (iq_res[0] >> 12) & 0xfff; 5545 iq_corr_a0_d0 = ((iq_res[0] >> 24) & 0xff) + ((iq_res[1] & 0xf) << 8); 5546 5547 if (i2_m_q2_a0_d0 > 0x800) { 5548 i2_m_q2_a0_d0 = -((0xfff - i2_m_q2_a0_d0) + 1); 5549 } 5550 if (iq_corr_a0_d0 > 0x800) { 5551 iq_corr_a0_d0 = -((0xfff - iq_corr_a0_d0) + 1); 5552 } 5553 5554 i2_m_q2_a0_d1 = (iq_res[1] >> 4) & 0xfff; 5555 i2_p_q2_a0_d1 = (iq_res[2] & 0xfff); 5556 iq_corr_a0_d1 = (iq_res[2] >> 12) & 0xfff; 5557 5558 if (i2_m_q2_a0_d1 > 0x800) { 5559 i2_m_q2_a0_d1 = -((0xfff - i2_m_q2_a0_d1) + 1); 5560 } 5561 if (iq_corr_a0_d1 > 0x800) { 5562 iq_corr_a0_d1 = -((0xfff - iq_corr_a0_d1) + 1); 5563 } 5564 5565 i2_m_q2_a1_d0 = ((iq_res[2] >> 24) & 0xff) + ((iq_res[3] & 0xf) << 8); 5566 i2_p_q2_a1_d0 = (iq_res[3] >> 4) & 0xfff; 5567 iq_corr_a1_d0 = iq_res[4] & 0xfff; 5568 5569 if (i2_m_q2_a1_d0 > 0x800) { 5570 i2_m_q2_a1_d0 = -((0xfff - i2_m_q2_a1_d0) + 1); 5571 } 5572 if (iq_corr_a1_d0 > 0x800) { 5573 iq_corr_a1_d0 = -((0xfff - iq_corr_a1_d0) + 1); 5574 } 5575 5576 i2_m_q2_a1_d1 = (iq_res[4] >> 12) & 0xfff; 5577 i2_p_q2_a1_d1 = ((iq_res[4] >> 24) & 0xff) + ((iq_res[5] & 0xf) << 8); 5578 iq_corr_a1_d1 = (iq_res[5] >> 4) & 0xfff; 5579 5580 if (i2_m_q2_a1_d1 > 0x800) { 5581 i2_m_q2_a1_d1 = -((0xfff - i2_m_q2_a1_d1) + 1); 5582 } 5583 if (iq_corr_a1_d1 > 0x800) { 5584 iq_corr_a1_d1 = -((0xfff - iq_corr_a1_d1) + 1); 5585 } 5586 5587 if ((i2_p_q2_a0_d0 == 0) || 5588 (i2_p_q2_a0_d1 == 0) || 5589 (i2_p_q2_a1_d0 == 0) || 5590 (i2_p_q2_a1_d1 == 0)) { 5591 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5592 "%s: Divide by 0(%d):\na0_d0=%d\na0_d1=%d\na2_d0=%d\na1_d1=%d\n", 5593 __func__, __LINE__, 5594 i2_p_q2_a0_d0, i2_p_q2_a0_d1, i2_p_q2_a1_d0, i2_p_q2_a1_d1); 5595 return AH_FALSE; 5596 } 5597 5598 if ((i2_p_q2_a0_d0 <= 1024) || (i2_p_q2_a0_d0 > 2047) || 5599 (i2_p_q2_a1_d0 < 0) || (i2_p_q2_a1_d1 < 0) || 5600 (i2_p_q2_a0_d0 <= i2_m_q2_a0_d0) || 5601 (i2_p_q2_a0_d0 <= iq_corr_a0_d0) || 5602 (i2_p_q2_a0_d1 <= i2_m_q2_a0_d1) || 5603 (i2_p_q2_a0_d1 <= iq_corr_a0_d1) || 5604 (i2_p_q2_a1_d0 <= i2_m_q2_a1_d0) || 5605 (i2_p_q2_a1_d0 <= iq_corr_a1_d0) || 5606 (i2_p_q2_a1_d1 <= i2_m_q2_a1_d1) || 5607 (i2_p_q2_a1_d1 <= iq_corr_a1_d1)) { 5608 return AH_FALSE; 5609 } 5610 5611 mag_a0_d0 = (i2_m_q2_a0_d0 * res_scale) / i2_p_q2_a0_d0; 5612 phs_a0_d0 = (iq_corr_a0_d0 * res_scale) / i2_p_q2_a0_d0; 5613 5614 mag_a0_d1 = (i2_m_q2_a0_d1 * res_scale) / i2_p_q2_a0_d1; 5615 phs_a0_d1 = (iq_corr_a0_d1 * res_scale) / i2_p_q2_a0_d1; 5616 5617 mag_a1_d0 = (i2_m_q2_a1_d0 * res_scale) / i2_p_q2_a1_d0; 5618 phs_a1_d0 = (iq_corr_a1_d0 * res_scale) / i2_p_q2_a1_d0; 5619 5620 mag_a1_d1 = (i2_m_q2_a1_d1 * res_scale) / i2_p_q2_a1_d1; 5621 phs_a1_d1 = (iq_corr_a1_d1 * res_scale) / i2_p_q2_a1_d1; 5622 5623 /* without analog phase shift */ 5624 sin_2phi_1 = (((mag_a0_d0 - mag_a0_d1) * delpt_shift) / DELPT); 5625 /* without analog phase shift */ 5626 cos_2phi_1 = (((phs_a0_d1 - phs_a0_d0) * delpt_shift) / DELPT); 5627 /* with analog phase shift */ 5628 sin_2phi_2 = (((mag_a1_d0 - mag_a1_d1) * delpt_shift) / DELPT); 5629 /* with analog phase shift */ 5630 cos_2phi_2 = (((phs_a1_d1 - phs_a1_d0) * delpt_shift) / DELPT); 5631 5632 /* force sin^2 + cos^2 = 1; */ 5633 /* find magnitude by approximation */ 5634 mag1 = ar9300_find_mag_approx(ah, cos_2phi_1, sin_2phi_1); 5635 mag2 = ar9300_find_mag_approx(ah, cos_2phi_2, sin_2phi_2); 5636 5637 if ((mag1 == 0) || (mag2 == 0)) { 5638 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5639 "%s: Divide by 0(%d): mag1=%d, mag2=%d\n", 5640 __func__, __LINE__, mag1, mag2); 5641 return AH_FALSE; 5642 } 5643 5644 /* normalization sin and cos by mag */ 5645 sin_2phi_1 = (sin_2phi_1 * res_scale / mag1); 5646 cos_2phi_1 = (cos_2phi_1 * res_scale / mag1); 5647 sin_2phi_2 = (sin_2phi_2 * res_scale / mag2); 5648 cos_2phi_2 = (cos_2phi_2 * res_scale / mag2); 5649 5650 /* calculate IQ mismatch */ 5651 if (AH_FALSE == ar9300_solve_iq_cal(ah, 5652 sin_2phi_1, cos_2phi_1, sin_2phi_2, cos_2phi_2, mag_a0_d0, 5653 phs_a0_d0, mag_a1_d0, phs_a1_d0, solved_eq)) 5654 { 5655 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5656 "%s: Call to ar9300_solve_iq_cal failed.\n", __func__); 5657 return AH_FALSE; 5658 } 5659 5660 mag_tx = solved_eq[0]; 5661 phs_tx = solved_eq[1]; 5662 mag_rx = solved_eq[2]; 5663 phs_rx = solved_eq[3]; 5664 5665 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5666 "%s: chain %d: mag mismatch=%d phase mismatch=%d\n", 5667 __func__, chain_idx, mag_tx / res_scale, phs_tx / res_scale); 5668 5669 if (res_scale == mag_tx) { 5670 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5671 "%s: Divide by 0(%d): mag_tx=%d, res_scale=%d\n", 5672 __func__, __LINE__, mag_tx, res_scale); 5673 return AH_FALSE; 5674 } 5675 5676 /* calculate and quantize Tx IQ correction factor */ 5677 mag_corr_tx = (mag_tx * res_scale) / (res_scale - mag_tx); 5678 phs_corr_tx = -phs_tx; 5679 5680 q_q_coff = (mag_corr_tx * 128 / res_scale); 5681 q_i_coff = (phs_corr_tx * 256 / res_scale); 5682 5683 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5684 "%s: tx chain %d: mag corr=%d phase corr=%d\n", 5685 __func__, chain_idx, q_q_coff, q_i_coff); 5686 5687 if (q_i_coff < -63) { 5688 q_i_coff = -63; 5689 } 5690 if (q_i_coff > 63) { 5691 q_i_coff = 63; 5692 } 5693 if (q_q_coff < -63) { 5694 q_q_coff = -63; 5695 } 5696 if (q_q_coff > 63) { 5697 q_q_coff = 63; 5698 } 5699 5700 iqc_coeff[0] = (q_q_coff * 128) + (0x7f & q_i_coff); 5701 5702 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: tx chain %d: iq corr coeff=%x\n", 5703 __func__, chain_idx, iqc_coeff[0]); 5704 5705 if (-mag_rx == res_scale) { 5706 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5707 "%s: Divide by 0(%d): mag_rx=%d, res_scale=%d\n", 5708 __func__, __LINE__, mag_rx, res_scale); 5709 return AH_FALSE; 5710 } 5711 5712 /* calculate and quantize Rx IQ correction factors */ 5713 mag_corr_rx = (-mag_rx * res_scale) / (res_scale + mag_rx); 5714 phs_corr_rx = -phs_rx; 5715 5716 q_q_coff = (mag_corr_rx * 128 / res_scale); 5717 q_i_coff = (phs_corr_rx * 256 / res_scale); 5718 5719 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5720 "%s: rx chain %d: mag corr=%d phase corr=%d\n", 5721 __func__, chain_idx, q_q_coff, q_i_coff); 5722 5723 if (q_i_coff < -63) { 5724 q_i_coff = -63; 5725 } 5726 if (q_i_coff > 63) { 5727 q_i_coff = 63; 5728 } 5729 if (q_q_coff < -63) { 5730 q_q_coff = -63; 5731 } 5732 if (q_q_coff > 63) { 5733 q_q_coff = 63; 5734 } 5735 5736 iqc_coeff[1] = (q_q_coff * 128) + (0x7f & q_i_coff); 5737 5738 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s: rx chain %d: iq corr coeff=%x\n", 5739 __func__, chain_idx, iqc_coeff[1]); 5740 5741 return AH_TRUE; 5742 } 5743 5744 #define MAX_MAG_DELTA 11 //maximum magnitude mismatch delta across gains 5745 #define MAX_PHS_DELTA 10 //maximum phase mismatch delta across gains 5746 #define ABS(x) ((x) >= 0 ? (x) : (-(x))) 5747 5748 u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = { 5749 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 5750 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 5751 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 5752 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 5753 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 5754 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 5755 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 5756 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 5757 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 5758 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 5759 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 5760 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 5761 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 5762 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 5763 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 5764 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 5765 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 5766 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 5767 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 5768 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 5769 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 5770 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 5771 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 5772 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 5773 }; 5774 5775 static void 5776 ar9300_tx_iq_cal_outlier_detection(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan, u_int32_t num_chains, 5777 struct coeff_t *coeff, HAL_BOOL is_cal_reusable) 5778 { 5779 int nmeasurement, ch_idx, im; 5780 int32_t magnitude, phase; 5781 int32_t magnitude_max, phase_max; 5782 int32_t magnitude_min, phase_min; 5783 5784 int32_t magnitude_max_idx, phase_max_idx; 5785 int32_t magnitude_min_idx, phase_min_idx; 5786 5787 int32_t magnitude_avg, phase_avg; 5788 int32_t outlier_mag_idx = 0; 5789 int32_t outlier_phs_idx = 0; 5790 5791 5792 if (AR_SREV_POSEIDON(ah)) { 5793 HALASSERT(num_chains == 0x1); 5794 5795 tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON; 5796 tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON; 5797 tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON; 5798 tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON; 5799 tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON; 5800 tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON; 5801 tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON; 5802 tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON; 5803 } 5804 5805 for (ch_idx = 0; ch_idx < num_chains; ch_idx++) { 5806 nmeasurement = OS_REG_READ_FIELD(ah, 5807 AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0); 5808 if (nmeasurement > MAX_MEASUREMENT) { 5809 nmeasurement = MAX_MEASUREMENT; 5810 } 5811 5812 if (!AR_SREV_SCORPION(ah)) { 5813 /* 5814 * reset max/min variable to min/max values so that 5815 * we always start with 1st calibrated gain value 5816 */ 5817 magnitude_max = -64; 5818 phase_max = -64; 5819 magnitude_min = 63; 5820 phase_min = 63; 5821 magnitude_avg = 0; 5822 phase_avg = 0; 5823 magnitude_max_idx = 0; 5824 magnitude_min_idx = 0; 5825 phase_max_idx = 0; 5826 phase_min_idx = 0; 5827 5828 /* detect outlier only if nmeasurement > 1 */ 5829 if (nmeasurement > 1) { 5830 /* printf("----------- start outlier detection -----------\n"); */ 5831 /* 5832 * find max/min and phase/mag mismatch across all calibrated gains 5833 */ 5834 for (im = 0; im < nmeasurement; im++) { 5835 magnitude = coeff->mag_coeff[ch_idx][im][0]; 5836 phase = coeff->phs_coeff[ch_idx][im][0]; 5837 5838 magnitude_avg = magnitude_avg + magnitude; 5839 phase_avg = phase_avg + phase; 5840 if (magnitude > magnitude_max) { 5841 magnitude_max = magnitude; 5842 magnitude_max_idx = im; 5843 } 5844 if (magnitude < magnitude_min) { 5845 magnitude_min = magnitude; 5846 magnitude_min_idx = im; 5847 } 5848 if (phase > phase_max) { 5849 phase_max = phase; 5850 phase_max_idx = im; 5851 } 5852 if (phase < phase_min) { 5853 phase_min = phase; 5854 phase_min_idx = im; 5855 } 5856 } 5857 /* find average (exclude max abs value) */ 5858 for (im = 0; im < nmeasurement; im++) { 5859 magnitude = coeff->mag_coeff[ch_idx][im][0]; 5860 phase = coeff->phs_coeff[ch_idx][im][0]; 5861 if ((ABS(magnitude) < ABS(magnitude_max)) || 5862 (ABS(magnitude) < ABS(magnitude_min))) 5863 { 5864 magnitude_avg = magnitude_avg + magnitude; 5865 } 5866 if ((ABS(phase) < ABS(phase_max)) || 5867 (ABS(phase) < ABS(phase_min))) 5868 { 5869 phase_avg = phase_avg + phase; 5870 } 5871 } 5872 magnitude_avg = magnitude_avg / (nmeasurement - 1); 5873 phase_avg = phase_avg / (nmeasurement - 1); 5874 5875 /* detect magnitude outlier */ 5876 if (ABS(magnitude_max - magnitude_min) > MAX_MAG_DELTA) { 5877 if (ABS(magnitude_max - magnitude_avg) > 5878 ABS(magnitude_min - magnitude_avg)) 5879 { 5880 /* max is outlier, force to avg */ 5881 outlier_mag_idx = magnitude_max_idx; 5882 } else { 5883 /* min is outlier, force to avg */ 5884 outlier_mag_idx = magnitude_min_idx; 5885 } 5886 coeff->mag_coeff[ch_idx][outlier_mag_idx][0] = magnitude_avg; 5887 coeff->phs_coeff[ch_idx][outlier_mag_idx][0] = phase_avg; 5888 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5889 "[ch%d][outlier mag gain%d]:: " 5890 "mag_avg = %d (/128), phase_avg = %d (/256)\n", 5891 ch_idx, outlier_mag_idx, magnitude_avg, phase_avg); 5892 } 5893 /* detect phase outlier */ 5894 if (ABS(phase_max - phase_min) > MAX_PHS_DELTA) { 5895 if (ABS(phase_max-phase_avg) > ABS(phase_min - phase_avg)) { 5896 /* max is outlier, force to avg */ 5897 outlier_phs_idx = phase_max_idx; 5898 } else{ 5899 /* min is outlier, force to avg */ 5900 outlier_phs_idx = phase_min_idx; 5901 } 5902 coeff->mag_coeff[ch_idx][outlier_phs_idx][0] = magnitude_avg; 5903 coeff->phs_coeff[ch_idx][outlier_phs_idx][0] = phase_avg; 5904 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 5905 "[ch%d][outlier phs gain%d]:: " 5906 "mag_avg = %d (/128), phase_avg = %d (/256)\n", 5907 ch_idx, outlier_phs_idx, magnitude_avg, phase_avg); 5908 } 5909 } 5910 } 5911 5912 /*printf("------------ after outlier detection -------------\n");*/ 5913 for (im = 0; im < nmeasurement; im++) { 5914 magnitude = coeff->mag_coeff[ch_idx][im][0]; 5915 phase = coeff->phs_coeff[ch_idx][im][0]; 5916 5917 #if 0 5918 printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n", 5919 ch_idx, im, magnitude, phase); 5920 #endif 5921 5922 coeff->iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7); 5923 5924 if ((im % 2) == 0) { 5925 OS_REG_RMW_FIELD(ah, 5926 tx_corr_coeff[im][ch_idx], 5927 AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE, 5928 coeff->iqc_coeff[0]); 5929 } else { 5930 OS_REG_RMW_FIELD(ah, 5931 tx_corr_coeff[im][ch_idx], 5932 AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, 5933 coeff->iqc_coeff[0]); 5934 } 5935 #if ATH_SUPPORT_CAL_REUSE 5936 ichan->tx_corr_coeff[im][ch_idx] = coeff->iqc_coeff[0]; 5937 #endif 5938 } 5939 #if ATH_SUPPORT_CAL_REUSE 5940 ichan->num_measures[ch_idx] = nmeasurement; 5941 #endif 5942 } 5943 5944 OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3, 5945 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1); 5946 OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0, 5947 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1); 5948 5949 #if ATH_SUPPORT_CAL_REUSE 5950 if (is_cal_reusable) { 5951 ichan->one_time_txiqcal_done = AH_TRUE; 5952 HALDEBUG(ah, HAL_DEBUG_FCS_RTT, 5953 "(FCS) TXIQCAL saved - %d\n", ichan->channel); 5954 } 5955 #endif 5956 } 5957 5958 #if ATH_SUPPORT_CAL_REUSE 5959 static void 5960 ar9300_tx_iq_cal_apply(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan) 5961 { 5962 struct ath_hal_9300 *ahp = AH9300(ah); 5963 int nmeasurement, ch_idx, im; 5964 5965 u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = { 5966 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 5967 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 5968 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 5969 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 5970 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 5971 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 5972 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 5973 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 5974 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 5975 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 5976 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 5977 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 5978 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 5979 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 5980 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 5981 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 5982 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 5983 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 5984 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 5985 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 5986 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 5987 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 5988 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 5989 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 5990 }; 5991 5992 if (AR_SREV_POSEIDON(ah)) { 5993 HALASSERT(ahp->ah_tx_cal_chainmask == 0x1); 5994 5995 tx_corr_coeff[0][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON; 5996 tx_corr_coeff[1][0] = AR_PHY_TX_IQCAL_CORR_COEFF_01_B0_POSEIDON; 5997 tx_corr_coeff[2][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON; 5998 tx_corr_coeff[3][0] = AR_PHY_TX_IQCAL_CORR_COEFF_23_B0_POSEIDON; 5999 tx_corr_coeff[4][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON; 6000 tx_corr_coeff[5][0] = AR_PHY_TX_IQCAL_CORR_COEFF_45_B0_POSEIDON; 6001 tx_corr_coeff[6][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON; 6002 tx_corr_coeff[7][0] = AR_PHY_TX_IQCAL_CORR_COEFF_67_B0_POSEIDON; 6003 } 6004 6005 for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) { 6006 if ((ahp->ah_tx_cal_chainmask & (1 << ch_idx)) == 0) { 6007 continue; 6008 } 6009 nmeasurement = ichan->num_measures[ch_idx]; 6010 6011 for (im = 0; im < nmeasurement; im++) { 6012 if ((im % 2) == 0) { 6013 OS_REG_RMW_FIELD(ah, 6014 tx_corr_coeff[im][ch_idx], 6015 AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE, 6016 ichan->tx_corr_coeff[im][ch_idx]); 6017 } else { 6018 OS_REG_RMW_FIELD(ah, 6019 tx_corr_coeff[im][ch_idx], 6020 AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, 6021 ichan->tx_corr_coeff[im][ch_idx]); 6022 } 6023 } 6024 } 6025 6026 OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3, 6027 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1); 6028 OS_REG_RMW_FIELD(ah, AR_PHY_RX_IQCAL_CORR_B0, 6029 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN, 0x1); 6030 } 6031 #endif 6032 6033 /* 6034 * ar9300_tx_iq_cal_hw_run is only needed for osprey/wasp/hornet 6035 * It is not needed for jupiter/poseidon. 6036 */ 6037 HAL_BOOL 6038 ar9300_tx_iq_cal_hw_run(struct ath_hal *ah) 6039 { 6040 int is_tx_gain_forced; 6041 6042 is_tx_gain_forced = OS_REG_READ_FIELD(ah, 6043 AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE); 6044 if (is_tx_gain_forced) { 6045 /*printf("Tx gain can not be forced during tx I/Q cal!\n");*/ 6046 OS_REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN, AR_PHY_TXGAIN_FORCE, 0); 6047 } 6048 6049 /* enable tx IQ cal */ 6050 OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_START(ah), 6051 AR_PHY_TX_IQCAL_START_DO_CAL, AR_PHY_TX_IQCAL_START_DO_CAL); 6052 6053 if (!ath_hal_wait(ah, 6054 AR_PHY_TX_IQCAL_START(ah), AR_PHY_TX_IQCAL_START_DO_CAL, 0)) 6055 { 6056 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6057 "%s: Tx IQ Cal is never completed.\n", __func__); 6058 return AH_FALSE; 6059 } 6060 return AH_TRUE; 6061 } 6062 6063 static void 6064 ar9300_tx_iq_cal_post_proc(struct ath_hal *ah,HAL_CHANNEL_INTERNAL *ichan, 6065 int iqcal_idx, int max_iqcal,HAL_BOOL is_cal_reusable, HAL_BOOL apply_last_corr) 6066 { 6067 int nmeasurement=0, im, ix, iy, temp; 6068 struct ath_hal_9300 *ahp = AH9300(ah); 6069 u_int32_t txiqcal_status[AR9300_MAX_CHAINS] = { 6070 AR_PHY_TX_IQCAL_STATUS_B0(ah), 6071 AR_PHY_TX_IQCAL_STATUS_B1, 6072 AR_PHY_TX_IQCAL_STATUS_B2, 6073 }; 6074 const u_int32_t chan_info_tab[] = { 6075 AR_PHY_CHAN_INFO_TAB_0, 6076 AR_PHY_CHAN_INFO_TAB_1, 6077 AR_PHY_CHAN_INFO_TAB_2, 6078 }; 6079 int32_t iq_res[6]; 6080 int32_t ch_idx, j; 6081 u_int32_t num_chains = 0; 6082 static struct coeff_t coeff; 6083 txiqcal_status[0] = AR_PHY_TX_IQCAL_STATUS_B0(ah); 6084 6085 for (ch_idx = 0; ch_idx < AR9300_MAX_CHAINS; ch_idx++) { 6086 if (ahp->ah_tx_chainmask & (1 << ch_idx)) { 6087 num_chains++; 6088 } 6089 } 6090 6091 if (apply_last_corr) { 6092 if (coeff.last_cal == AH_TRUE) { 6093 int32_t magnitude, phase; 6094 int ch_idx, im; 6095 u_int32_t tx_corr_coeff[MAX_MEASUREMENT][AR9300_MAX_CHAINS] = { 6096 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 6097 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 6098 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 6099 { AR_PHY_TX_IQCAL_CORR_COEFF_01_B0, 6100 AR_PHY_TX_IQCAL_CORR_COEFF_01_B1, 6101 AR_PHY_TX_IQCAL_CORR_COEFF_01_B2}, 6102 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 6103 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 6104 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 6105 { AR_PHY_TX_IQCAL_CORR_COEFF_23_B0, 6106 AR_PHY_TX_IQCAL_CORR_COEFF_23_B1, 6107 AR_PHY_TX_IQCAL_CORR_COEFF_23_B2}, 6108 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 6109 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 6110 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 6111 { AR_PHY_TX_IQCAL_CORR_COEFF_45_B0, 6112 AR_PHY_TX_IQCAL_CORR_COEFF_45_B1, 6113 AR_PHY_TX_IQCAL_CORR_COEFF_45_B2}, 6114 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 6115 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 6116 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 6117 { AR_PHY_TX_IQCAL_CORR_COEFF_67_B0, 6118 AR_PHY_TX_IQCAL_CORR_COEFF_67_B1, 6119 AR_PHY_TX_IQCAL_CORR_COEFF_67_B2}, 6120 }; 6121 for (ch_idx = 0; ch_idx < num_chains; ch_idx++) { 6122 for (im = 0; im < coeff.last_nmeasurement; im++) { 6123 magnitude = coeff.mag_coeff[ch_idx][im][0]; 6124 phase = coeff.phs_coeff[ch_idx][im][0]; 6125 6126 #if 0 6127 printf("[ch%d][gain%d]:: mag = %d (/128), phase = %d (/256)\n", 6128 ch_idx, im, magnitude, phase); 6129 #endif 6130 6131 coeff.iqc_coeff[0] = (phase & 0x7f) | ((magnitude & 0x7f) << 7); 6132 if ((im % 2) == 0) { 6133 OS_REG_RMW_FIELD(ah, 6134 tx_corr_coeff[im][ch_idx], 6135 AR_PHY_TX_IQCAL_CORR_COEFF_00_COEFF_TABLE, 6136 coeff.iqc_coeff[0]); 6137 } else { 6138 OS_REG_RMW_FIELD(ah, 6139 tx_corr_coeff[im][ch_idx], 6140 AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE, 6141 coeff.iqc_coeff[0]); 6142 } 6143 } 6144 } 6145 OS_REG_RMW_FIELD(ah, AR_PHY_TX_IQCAL_CONTROL_3, 6146 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN, 0x1); 6147 } 6148 return; 6149 } 6150 6151 6152 for (ch_idx = 0; ch_idx < num_chains; ch_idx++) { 6153 nmeasurement = OS_REG_READ_FIELD(ah, 6154 AR_PHY_TX_IQCAL_STATUS_B0(ah), AR_PHY_CALIBRATED_GAINS_0); 6155 if (nmeasurement > MAX_MEASUREMENT) { 6156 nmeasurement = MAX_MEASUREMENT; 6157 } 6158 6159 for (im = 0; im < nmeasurement; im++) { 6160 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6161 "%s: Doing Tx IQ Cal for chain %d.\n", __func__, ch_idx); 6162 if (OS_REG_READ(ah, txiqcal_status[ch_idx]) & 6163 AR_PHY_TX_IQCAL_STATUS_FAILED) 6164 { 6165 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6166 "%s: Tx IQ Cal failed for chain %d.\n", __func__, ch_idx); 6167 goto TX_IQ_CAL_FAILED_; 6168 } 6169 6170 for (j = 0; j < 3; j++) { 6171 u_int32_t idx = 2 * j; 6172 /* 3 registers for each calibration result */ 6173 u_int32_t offset = 4 * (3 * im + j); 6174 6175 OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY, 6176 AR_PHY_CHAN_INFO_TAB_S2_READ, 0); 6177 /* 32 bits */ 6178 iq_res[idx] = OS_REG_READ(ah, chan_info_tab[ch_idx] + offset); 6179 OS_REG_RMW_FIELD(ah, AR_PHY_CHAN_INFO_MEMORY, 6180 AR_PHY_CHAN_INFO_TAB_S2_READ, 1); 6181 /* 16 bits */ 6182 iq_res[idx + 1] = 0xffff & 6183 OS_REG_READ(ah, chan_info_tab[ch_idx] + offset); 6184 6185 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6186 "%s: IQ RES[%d]=0x%x IQ_RES[%d]=0x%x\n", 6187 __func__, idx, iq_res[idx], idx + 1, iq_res[idx + 1]); 6188 } 6189 6190 if (AH_FALSE == ar9300_calc_iq_corr( 6191 ah, ch_idx, iq_res, coeff.iqc_coeff)) 6192 { 6193 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6194 "%s: Failed in calculation of IQ correction.\n", 6195 __func__); 6196 goto TX_IQ_CAL_FAILED_; 6197 } 6198 6199 coeff.phs_coeff[ch_idx][im][iqcal_idx-1] = coeff.iqc_coeff[0] & 0x7f; 6200 coeff.mag_coeff[ch_idx][im][iqcal_idx-1] = (coeff.iqc_coeff[0] >> 7) & 0x7f; 6201 if (coeff.mag_coeff[ch_idx][im][iqcal_idx-1] > 63) { 6202 coeff.mag_coeff[ch_idx][im][iqcal_idx-1] -= 128; 6203 } 6204 if (coeff.phs_coeff[ch_idx][im][iqcal_idx-1] > 63) { 6205 coeff.phs_coeff[ch_idx][im][iqcal_idx-1] -= 128; 6206 } 6207 #if 0 6208 ath_hal_printf(ah, "IQCAL::[ch%d][gain%d]:: mag = %d phase = %d \n", 6209 ch_idx, im, coeff.mag_coeff[ch_idx][im][iqcal_idx-1], 6210 coeff.phs_coeff[ch_idx][im][iqcal_idx-1]); 6211 #endif 6212 } 6213 } 6214 //last iteration; calculate mag and phs 6215 if (iqcal_idx == max_iqcal) { 6216 if (max_iqcal>1) { 6217 for (ch_idx = 0; ch_idx < num_chains; ch_idx++) { 6218 for (im = 0; im < nmeasurement; im++) { 6219 //sort mag and phs 6220 for( ix=0;ix<max_iqcal-1;ix++){ 6221 for( iy=ix+1;iy<=max_iqcal-1;iy++){ 6222 if(coeff.mag_coeff[ch_idx][im][iy] < 6223 coeff.mag_coeff[ch_idx][im][ix]) { 6224 //swap 6225 temp=coeff.mag_coeff[ch_idx][im][ix]; 6226 coeff.mag_coeff[ch_idx][im][ix] = coeff.mag_coeff[ch_idx][im][iy]; 6227 coeff.mag_coeff[ch_idx][im][iy] = temp; 6228 } 6229 if(coeff.phs_coeff[ch_idx][im][iy] < 6230 coeff.phs_coeff[ch_idx][im][ix]){ 6231 //swap 6232 temp=coeff.phs_coeff[ch_idx][im][ix]; 6233 coeff.phs_coeff[ch_idx][im][ix]=coeff.phs_coeff[ch_idx][im][iy]; 6234 coeff.phs_coeff[ch_idx][im][iy]=temp; 6235 } 6236 } 6237 } 6238 //select median; 3rd entry in the sorted array 6239 coeff.mag_coeff[ch_idx][im][0] = 6240 coeff.mag_coeff[ch_idx][im][max_iqcal/2]; 6241 coeff.phs_coeff[ch_idx][im][0] = 6242 coeff.phs_coeff[ch_idx][im][max_iqcal/2]; 6243 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, 6244 "IQCAL: Median [ch%d][gain%d]:: mag = %d phase = %d \n", 6245 ch_idx, im,coeff.mag_coeff[ch_idx][im][0], 6246 coeff.phs_coeff[ch_idx][im][0]); 6247 } 6248 } 6249 } 6250 ar9300_tx_iq_cal_outlier_detection(ah,ichan, num_chains, &coeff,is_cal_reusable); 6251 } 6252 6253 6254 coeff.last_nmeasurement = nmeasurement; 6255 coeff.last_cal = AH_TRUE; 6256 6257 return; 6258 6259 TX_IQ_CAL_FAILED_: 6260 /* no need to print this, it is AGC failure not chip stuck */ 6261 /*ath_hal_printf(ah, "Tx IQ Cal failed(%d)\n", line);*/ 6262 coeff.last_cal = AH_FALSE; 6263 return; 6264 } 6265 6266 6267 /* 6268 * ar9300_disable_phy_restart 6269 * 6270 * In some BBpanics, we can disable the phyrestart 6271 * disable_phy_restart 6272 * != 0, disable the phy restart in h/w 6273 * == 0, enable the phy restart in h/w 6274 */ 6275 void ar9300_disable_phy_restart(struct ath_hal *ah, int disable_phy_restart) 6276 { 6277 u_int32_t val; 6278 6279 val = OS_REG_READ(ah, AR_PHY_RESTART); 6280 if (disable_phy_restart) { 6281 val &= ~AR_PHY_RESTART_ENA; 6282 AH9300(ah)->ah_phyrestart_disabled = 1; 6283 } else { 6284 val |= AR_PHY_RESTART_ENA; 6285 AH9300(ah)->ah_phyrestart_disabled = 0; 6286 } 6287 OS_REG_WRITE(ah, AR_PHY_RESTART, val); 6288 6289 val = OS_REG_READ(ah, AR_PHY_RESTART); 6290 } 6291 6292 HAL_BOOL 6293 ar9300_interference_is_present(struct ath_hal *ah) 6294 { 6295 int i; 6296 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6297 const struct ieee80211_channel *chan = ahpriv->ah_curchan; 6298 HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan); 6299 6300 if (ichan == NULL) { 6301 ath_hal_printf(ah, "%s: called with ichan=NULL\n", __func__); 6302 return AH_FALSE; 6303 } 6304 6305 /* This function is called after a stuck beacon, if EACS is enabled. 6306 * If CW interference is severe, then HW goes into a loop of continuous 6307 * stuck beacons and resets. On reset the NF cal history is cleared. 6308 * So the median value of the history cannot be used - 6309 * hence check if any value (Chain 0/Primary Channel) 6310 * is outside the bounds. 6311 */ 6312 HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan); 6313 for (i = 0; i < HAL_NF_CAL_HIST_LEN_FULL; i++) { 6314 if (h->nf_cal_buffer[i][0] > 6315 AH9300(ah)->nfp->nominal + AH9300(ah)->nf_cw_int_delta) 6316 { 6317 return AH_TRUE; 6318 } 6319 6320 } 6321 return AH_FALSE; 6322 } 6323 6324 #if ATH_SUPPORT_CRDC 6325 void 6326 ar9300_crdc_rx_notify(struct ath_hal *ah, struct ath_rx_status *rxs) 6327 { 6328 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6329 int rssi_index; 6330 6331 if ((!AR_SREV_WASP(ah)) || 6332 (!ahpriv->ah_config.ath_hal_crdc_enable)) { 6333 return; 6334 } 6335 6336 if (rxs->rs_isaggr && rxs->rs_moreaggr) { 6337 return; 6338 } 6339 6340 if ((rxs->rs_rssi_ctl0 >= HAL_RSSI_BAD) || 6341 (rxs->rs_rssi_ctl1 >= HAL_RSSI_BAD)) { 6342 return; 6343 } 6344 6345 rssi_index = ah->ah_crdc_rssi_ptr % HAL_MAX_CRDC_RSSI_SAMPLE; 6346 6347 ah->ah_crdc_rssi_sample[0][rssi_index] = rxs->rs_rssi_ctl0; 6348 ah->ah_crdc_rssi_sample[1][rssi_index] = rxs->rs_rssi_ctl1; 6349 6350 ah->ah_crdc_rssi_ptr++; 6351 } 6352 6353 static int 6354 ar9300_crdc_avg_rssi(struct ath_hal *ah, int chain) 6355 { 6356 int crdc_rssi_sum = 0; 6357 int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr, i; 6358 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6359 int crdc_window = ahpriv->ah_config.ath_hal_crdc_window; 6360 6361 if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) { 6362 crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE; 6363 } 6364 6365 for (i = 1; i <= crdc_window; i++) { 6366 crdc_rssi_sum += 6367 ah->ah_crdc_rssi_sample[chain] 6368 [(crdc_rssi_ptr - i) % HAL_MAX_CRDC_RSSI_SAMPLE]; 6369 } 6370 6371 return crdc_rssi_sum / crdc_window; 6372 } 6373 6374 static void 6375 ar9300_crdc_activate(struct ath_hal *ah, int rssi_diff, int enable) 6376 { 6377 int val, orig_val; 6378 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6379 int crdc_numerator = ahpriv->ah_config.ath_hal_crdc_numerator; 6380 int crdc_denominator = ahpriv->ah_config.ath_hal_crdc_denominator; 6381 int c = (rssi_diff * crdc_numerator) / crdc_denominator; 6382 6383 val = orig_val = OS_REG_READ(ah, AR_PHY_MULTICHAIN_CTRL); 6384 val &= 0xffffff00; 6385 if (enable) { 6386 val |= 0x1; 6387 val |= ((c << 1) & 0xff); 6388 } 6389 OS_REG_WRITE(ah, AR_PHY_MULTICHAIN_CTRL, val); 6390 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "diff: %02d comp: %02d reg: %08x %08x\n", 6391 rssi_diff, c, orig_val, val); 6392 } 6393 6394 6395 void ar9300_chain_rssi_diff_compensation(struct ath_hal *ah) 6396 { 6397 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6398 int crdc_window = ahpriv->ah_config.ath_hal_crdc_window; 6399 int crdc_rssi_ptr = ah->ah_crdc_rssi_ptr; 6400 int crdc_rssi_thresh = ahpriv->ah_config.ath_hal_crdc_rssithresh; 6401 int crdc_diff_thresh = ahpriv->ah_config.ath_hal_crdc_diffthresh; 6402 int avg_rssi[2], avg_rssi_diff; 6403 6404 if ((!AR_SREV_WASP(ah)) || 6405 (!ahpriv->ah_config.ath_hal_crdc_enable)) { 6406 if (ah->ah_crdc_rssi_ptr) { 6407 ar9300_crdc_activate(ah, 0, 0); 6408 ah->ah_crdc_rssi_ptr = 0; 6409 } 6410 return; 6411 } 6412 6413 if (crdc_window > HAL_MAX_CRDC_RSSI_SAMPLE) { 6414 crdc_window = HAL_MAX_CRDC_RSSI_SAMPLE; 6415 } 6416 6417 if (crdc_rssi_ptr < crdc_window) { 6418 return; 6419 } 6420 6421 avg_rssi[0] = ar9300_crdc_avg_rssi(ah, 0); 6422 avg_rssi[1] = ar9300_crdc_avg_rssi(ah, 1); 6423 avg_rssi_diff = avg_rssi[1] - avg_rssi[0]; 6424 6425 HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "crdc: avg: %02d %02d ", 6426 avg_rssi[0], avg_rssi[1]); 6427 6428 if ((avg_rssi[0] < crdc_rssi_thresh) && 6429 (avg_rssi[1] < crdc_rssi_thresh)) { 6430 ar9300_crdc_activate(ah, 0, 0); 6431 } else { 6432 if (ABS(avg_rssi_diff) >= crdc_diff_thresh) { 6433 ar9300_crdc_activate(ah, avg_rssi_diff, 1); 6434 } else { 6435 ar9300_crdc_activate(ah, 0, 1); 6436 } 6437 } 6438 } 6439 #endif 6440 6441 #if ATH_ANT_DIV_COMB 6442 HAL_BOOL 6443 ar9300_ant_ctrl_set_lna_div_use_bt_ant(struct ath_hal *ah, HAL_BOOL enable, const struct ieee80211_channel *chan) 6444 { 6445 u_int32_t value; 6446 u_int32_t regval; 6447 struct ath_hal_9300 *ahp = AH9300(ah); 6448 HAL_CHANNEL_INTERNAL *ichan; 6449 struct ath_hal_private *ahpriv = AH_PRIVATE(ah); 6450 HAL_CAPABILITIES *pcap = &ahpriv->ah_caps; 6451 6452 HALDEBUG(ah, HAL_DEBUG_RESET | HAL_DEBUG_BT_COEX, 6453 "%s: called; enable=%d\n", __func__, enable); 6454 6455 if (AR_SREV_POSEIDON(ah)) { 6456 // Make sure this scheme is only used for WB225(Astra) 6457 ahp->ah_lna_div_use_bt_ant_enable = enable; 6458 6459 ichan = ar9300_check_chan(ah, chan); 6460 if ( ichan == AH_NULL ) { 6461 HALDEBUG(ah, HAL_DEBUG_CHANNEL, "%s: invalid channel %u/0x%x; no mapping\n", 6462 __func__, chan->ic_freq, chan->ic_flags); 6463 return AH_FALSE; 6464 } 6465 6466 if ( enable == TRUE ) { 6467 pcap->halAntDivCombSupport = TRUE; 6468 } else { 6469 pcap->halAntDivCombSupport = pcap->halAntDivCombSupportOrg; 6470 } 6471 6472 #define AR_SWITCH_TABLE_COM2_ALL (0xffffff) 6473 #define AR_SWITCH_TABLE_COM2_ALL_S (0) 6474 value = ar9300_ant_ctrl_common2_get(ah, IS_CHAN_2GHZ(ichan)); 6475 if ( enable == TRUE ) { 6476 value &= ~AR_SWITCH_TABLE_COM2_ALL; 6477 value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable; 6478 } 6479 HALDEBUG(ah, HAL_DEBUG_RESET, "%s: com2=0x%08x\n", __func__, value); 6480 OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value); 6481 6482 value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control); 6483 /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */ 6484 regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 6485 regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */ 6486 regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S; 6487 /* enable_lnadiv */ 6488 regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK); 6489 regval |= ((value >> 6) & 0x1) << 6490 MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT; 6491 if ( enable == TRUE ) { 6492 regval |= ANT_DIV_ENABLE; 6493 } 6494 OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 6495 6496 /* enable fast_div */ 6497 regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT); 6498 regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK); 6499 regval |= ((value >> 7) & 0x1) << 6500 BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT; 6501 if ( enable == TRUE ) { 6502 regval |= FAST_DIV_ENABLE; 6503 } 6504 OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval); 6505 6506 if ( AR_SREV_POSEIDON_11_OR_LATER(ah) ) { 6507 if (pcap->halAntDivCombSupport) { 6508 /* If support DivComb, set MAIN to LNA1 and ALT to LNA2 at the first beginning */ 6509 regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 6510 /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */ 6511 regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | 6512 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | 6513 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK | 6514 MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK)); 6515 regval |= (HAL_ANT_DIV_COMB_LNA1 << 6516 MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 6517 regval |= (HAL_ANT_DIV_COMB_LNA2 << 6518 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 6519 OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 6520 } 6521 } 6522 6523 return AH_TRUE; 6524 } else if (AR_SREV_APHRODITE(ah)) { 6525 ahp->ah_lna_div_use_bt_ant_enable = enable; 6526 if (enable) { 6527 OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE); 6528 OS_REG_SET_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT)); 6529 OS_REG_SET_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 6530 OS_REG_SET_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK); 6531 OS_REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 6532 } else { 6533 OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, ANT_DIV_ENABLE); 6534 OS_REG_CLR_BIT(ah, AR_PHY_MC_GAIN_CTRL, (1 << MULTICHAIN_GAIN_CTRL__ENABLE_ANT_SW_RX_PROT__SHIFT)); 6535 OS_REG_CLR_BIT(ah, AR_PHY_CCK_DETECT, AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV); 6536 OS_REG_CLR_BIT(ah, AR_PHY_RESTART, RESTART__ENABLE_ANT_FAST_DIV_M2FLAG__MASK); 6537 OS_REG_CLR_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 6538 6539 regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL); 6540 regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK | 6541 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK | 6542 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK | 6543 MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK)); 6544 regval |= (HAL_ANT_DIV_COMB_LNA1 << 6545 MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT); 6546 regval |= (HAL_ANT_DIV_COMB_LNA2 << 6547 MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT); 6548 6549 OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval); 6550 } 6551 return AH_TRUE; 6552 } 6553 return AH_TRUE; 6554 } 6555 #endif /* ATH_ANT_DIV_COMB */ 6556