xref: /freebsd/sys/contrib/dev/ath/ath_hal/ar9300/ar9300_misc.c (revision dd21556857e8d40f66bf5ad54754d9d52669ebf7)
1 /*
2  * Copyright (c) 2013 Qualcomm Atheros, Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9  * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10  * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11  * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12  * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13  * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14  * PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "opt_ah.h"
18 
19 #include "ah.h"
20 #include "ah_internal.h"
21 #include "ah_devid.h"
22 #ifdef AH_DEBUG
23 #include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24 #endif
25 
26 #include "ar9300/ar9300.h"
27 #include "ar9300/ar9300reg.h"
28 #include "ar9300/ar9300phy.h"
29 #include "ar9300/ar9300desc.h"
30 
31 static u_int32_t ar9300_read_loc_timer(struct ath_hal *ah);
32 
33 void
34 ar9300_get_hw_hangs(struct ath_hal *ah, hal_hw_hangs_t *hangs)
35 {
36     struct ath_hal_9300 *ahp = AH9300(ah);
37     *hangs = 0;
38 
39     if (ar9300_get_capability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL) == HAL_OK) {
40         *hangs |= HAL_RIFS_BB_HANG_WAR;
41     }
42     if (ar9300_get_capability(ah, HAL_CAP_BB_DFS_HANG, 0, AH_NULL) == HAL_OK) {
43         *hangs |= HAL_DFS_BB_HANG_WAR;
44     }
45     if (ar9300_get_capability(ah, HAL_CAP_BB_RX_CLEAR_STUCK_HANG, 0, AH_NULL)
46         == HAL_OK)
47     {
48         *hangs |= HAL_RX_STUCK_LOW_BB_HANG_WAR;
49     }
50     if (ar9300_get_capability(ah, HAL_CAP_MAC_HANG, 0, AH_NULL) == HAL_OK) {
51         *hangs |= HAL_MAC_HANG_WAR;
52     }
53     if (ar9300_get_capability(ah, HAL_CAP_PHYRESTART_CLR_WAR, 0, AH_NULL)
54         == HAL_OK)
55     {
56         *hangs |= HAL_PHYRESTART_CLR_WAR;
57     }
58 
59     ahp->ah_hang_wars = *hangs;
60 }
61 
62 /*
63  * XXX FreeBSD: the HAL version of ath_hal_mac_usec() knows about
64  * HT20, HT40, fast-clock, turbo mode, etc.
65  */
66 static u_int
67 ar9300_mac_to_usec(struct ath_hal *ah, u_int clks)
68 {
69 #if 0
70     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
71 
72     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
73         return (ath_hal_mac_usec(ah, clks) / 2);
74     } else {
75         return (ath_hal_mac_usec(ah, clks));
76     }
77 #endif
78     return (ath_hal_mac_usec(ah, clks));
79 }
80 
81 u_int
82 ar9300_mac_to_clks(struct ath_hal *ah, u_int usecs)
83 {
84 #if 0
85     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
86 
87     if (chan && IEEE80211_IS_CHAN_HT40(chan)) {
88         return (ath_hal_mac_clks(ah, usecs) * 2);
89     } else {
90         return (ath_hal_mac_clks(ah, usecs));
91     }
92 #endif
93     return (ath_hal_mac_clks(ah, usecs));
94 }
95 
96 void
97 ar9300_get_mac_address(struct ath_hal *ah, u_int8_t *mac)
98 {
99     struct ath_hal_9300 *ahp = AH9300(ah);
100 
101     OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
102 }
103 
104 HAL_BOOL
105 ar9300_set_mac_address(struct ath_hal *ah, const u_int8_t *mac)
106 {
107     struct ath_hal_9300 *ahp = AH9300(ah);
108 
109     OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
110     return AH_TRUE;
111 }
112 
113 void
114 ar9300_get_bss_id_mask(struct ath_hal *ah, u_int8_t *mask)
115 {
116     struct ath_hal_9300 *ahp = AH9300(ah);
117 
118     OS_MEMCPY(mask, ahp->ah_bssid_mask, IEEE80211_ADDR_LEN);
119 }
120 
121 HAL_BOOL
122 ar9300_set_bss_id_mask(struct ath_hal *ah, const u_int8_t *mask)
123 {
124     struct ath_hal_9300 *ahp = AH9300(ah);
125 
126     /* save it since it must be rewritten on reset */
127     OS_MEMCPY(ahp->ah_bssid_mask, mask, IEEE80211_ADDR_LEN);
128 
129     OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssid_mask));
130     OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssid_mask + 4));
131     return AH_TRUE;
132 }
133 
134 /*
135  * Attempt to change the cards operating regulatory domain to the given value
136  * Returns: A_EINVAL for an unsupported regulatory domain.
137  *          A_HARDWARE for an unwritable EEPROM or bad EEPROM version
138  */
139 HAL_BOOL
140 ar9300_set_regulatory_domain(struct ath_hal *ah,
141         u_int16_t reg_domain, HAL_STATUS *status)
142 {
143     HAL_STATUS ecode;
144 
145     if (AH_PRIVATE(ah)->ah_currentRD == 0) {
146         AH_PRIVATE(ah)->ah_currentRD = reg_domain;
147         return AH_TRUE;
148     }
149     ecode = HAL_EIO;
150 
151 #if 0
152 bad:
153 #endif
154     if (status) {
155         *status = ecode;
156     }
157     return AH_FALSE;
158 }
159 
160 /*
161  * Return the wireless modes (a,b,g,t) supported by hardware.
162  *
163  * This value is what is actually supported by the hardware
164  * and is unaffected by regulatory/country code settings.
165  *
166  */
167 u_int
168 ar9300_get_wireless_modes(struct ath_hal *ah)
169 {
170     return AH_PRIVATE(ah)->ah_caps.halWirelessModes;
171 }
172 
173 /*
174  * Set the interrupt and GPIO values so the ISR can disable RF
175  * on a switch signal.  Assumes GPIO port and interrupt polarity
176  * are set prior to call.
177  */
178 void
179 ar9300_enable_rf_kill(struct ath_hal *ah)
180 {
181     /* TODO - can this really be above the hal on the GPIO interface for
182      * TODO - the client only?
183      */
184     struct ath_hal_9300    *ahp = AH9300(ah);
185 
186     if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
187     	/* Check RF kill GPIO before set/clear RFSILENT bits. */
188     	if (ar9300_gpio_get(ah, ahp->ah_gpio_select) == ahp->ah_polarity) {
189             OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
190                            AR_RFSILENT_FORCE);
191             OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
192         }
193         else {
194             OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_RFSILENT),
195                            AR_RFSILENT_FORCE);
196             OS_REG_CLR_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
197         }
198     }
199     else {
200         /* Connect rfsilent_bb_l to baseband */
201         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
202             AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
203 
204         /* Set input mux for rfsilent_bb_l to GPIO #0 */
205         OS_REG_CLR_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
206             AR_GPIO_INPUT_MUX2_RFSILENT);
207         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX2),
208             (ahp->ah_gpio_select & 0x0f) << 4);
209 
210         /*
211          * Configure the desired GPIO port for input and
212          * enable baseband rf silence
213          */
214         ath_hal_gpioCfgInput(ah, ahp->ah_gpio_select);
215         OS_REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
216     }
217 
218     /*
219      * If radio disable switch connection to GPIO bit x is enabled
220      * program GPIO interrupt.
221      * If rfkill bit on eeprom is 1, setupeeprommap routine has already
222      * verified that it is a later version of eeprom, it has a place for
223      * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
224      * connection is present.
225      */
226      /*
227       * RFKill uses polling not interrupt,
228       * disable interrupt to avoid Eee PC 2.6.21.4 hang up issue
229       */
230     if (ath_hal_hasrfkill_int(ah)) {
231         if (ahp->ah_gpio_bit == ar9300_gpio_get(ah, ahp->ah_gpio_select)) {
232             /* switch already closed, set to interrupt upon open */
233             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, !ahp->ah_gpio_bit);
234         } else {
235             ar9300_gpio_set_intr(ah, ahp->ah_gpio_select, ahp->ah_gpio_bit);
236         }
237     }
238 }
239 
240 /*
241  * Change the LED blinking pattern to correspond to the connectivity
242  */
243 void
244 ar9300_set_led_state(struct ath_hal *ah, HAL_LED_STATE state)
245 {
246     static const u_int32_t ledbits[8] = {
247         AR_CFG_LED_ASSOC_NONE,     /* HAL_LED_RESET */
248         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_INIT  */
249         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_READY */
250         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_SCAN  */
251         AR_CFG_LED_ASSOC_PENDING,  /* HAL_LED_AUTH  */
252         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_ASSOC */
253         AR_CFG_LED_ASSOC_ACTIVE,   /* HAL_LED_RUN   */
254         AR_CFG_LED_ASSOC_NONE,
255     };
256 
257     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_ASSOC_CTL, ledbits[state]);
258 }
259 
260 /*
261  * Sets the Power LED on the cardbus without affecting the Network LED.
262  */
263 void
264 ar9300_set_power_led_state(struct ath_hal *ah, u_int8_t enabled)
265 {
266     u_int32_t    val;
267 
268     val = enabled ? AR_CFG_LED_MODE_POWER_ON : AR_CFG_LED_MODE_POWER_OFF;
269     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_POWER, val);
270 }
271 
272 /*
273  * Sets the Network LED on the cardbus without affecting the Power LED.
274  */
275 void
276 ar9300_set_network_led_state(struct ath_hal *ah, u_int8_t enabled)
277 {
278     u_int32_t    val;
279 
280     val = enabled ? AR_CFG_LED_MODE_NETWORK_ON : AR_CFG_LED_MODE_NETWORK_OFF;
281     OS_REG_RMW_FIELD(ah, AR_CFG_LED, AR_CFG_LED_NETWORK, val);
282 }
283 
284 /*
285  * Change association related fields programmed into the hardware.
286  * Writing a valid BSSID to the hardware effectively enables the hardware
287  * to synchronize its TSF to the correct beacons and receive frames coming
288  * from that BSSID. It is called by the SME JOIN operation.
289  */
290 void
291 ar9300_write_associd(struct ath_hal *ah, const u_int8_t *bssid,
292     u_int16_t assoc_id)
293 {
294     struct ath_hal_9300 *ahp = AH9300(ah);
295 
296     /* save bssid and assoc_id for restore on reset */
297     OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
298     ahp->ah_assoc_id = assoc_id;
299 
300     OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
301     OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
302                                  ((assoc_id & 0x3fff) << AR_BSS_ID1_AID_S));
303 }
304 
305 /*
306  * Get the current hardware tsf for stamlme
307  */
308 u_int64_t
309 ar9300_get_tsf64(struct ath_hal *ah)
310 {
311     u_int64_t tsf;
312 
313     /* XXX sync multi-word read? */
314     tsf = OS_REG_READ(ah, AR_TSF_U32);
315     tsf = (tsf << 32) | OS_REG_READ(ah, AR_TSF_L32);
316     return tsf;
317 }
318 
319 void
320 ar9300_set_tsf64(struct ath_hal *ah, u_int64_t tsf)
321 {
322     OS_REG_WRITE(ah, AR_TSF_L32, (tsf & 0xffffffff));
323     OS_REG_WRITE(ah, AR_TSF_U32, ((tsf >> 32) & 0xffffffff));
324 }
325 
326 /*
327  * Get the current hardware tsf for stamlme
328  */
329 u_int32_t
330 ar9300_get_tsf32(struct ath_hal *ah)
331 {
332     return OS_REG_READ(ah, AR_TSF_L32);
333 }
334 
335 u_int32_t
336 ar9300_get_tsf2_32(struct ath_hal *ah)
337 {
338     return OS_REG_READ(ah, AR_TSF2_L32);
339 }
340 
341 /*
342  * Reset the current hardware tsf for stamlme.
343  */
344 void
345 ar9300_reset_tsf(struct ath_hal *ah)
346 {
347     int count;
348 
349     count = 0;
350     while (OS_REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
351         count++;
352         if (count > 10) {
353             HALDEBUG(ah, HAL_DEBUG_RESET,
354                 "%s: AR_SLP32_TSF_WRITE_STATUS limit exceeded\n", __func__);
355             break;
356         }
357         OS_DELAY(10);
358     }
359     OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
360 }
361 
362 /*
363  * Set or clear hardware basic rate bit
364  * Set hardware basic rate set if basic rate is found
365  * and basic rate is equal or less than 2Mbps
366  */
367 void
368 ar9300_set_basic_rate(struct ath_hal *ah, HAL_RATE_SET *rs)
369 {
370     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
371     u_int32_t reg;
372     u_int8_t xset;
373     int i;
374 
375     if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan)) {
376         return;
377     }
378     xset = 0;
379     for (i = 0; i < rs->rs_count; i++) {
380         u_int8_t rset = rs->rs_rates[i];
381         /* Basic rate defined? */
382         if ((rset & 0x80) && (rset &= 0x7f) >= xset) {
383             xset = rset;
384         }
385     }
386     /*
387      * Set the h/w bit to reflect whether or not the basic
388      * rate is found to be equal or less than 2Mbps.
389      */
390     reg = OS_REG_READ(ah, AR_STA_ID1);
391     if (xset && xset / 2 <= 2) {
392         OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
393     } else {
394         OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
395     }
396 }
397 
398 /*
399  * Grab a semi-random value from hardware registers - may not
400  * change often
401  */
402 u_int32_t
403 ar9300_get_random_seed(struct ath_hal *ah)
404 {
405     u_int32_t nf;
406 
407     nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
408     if (nf & 0x100) {
409         nf = 0 - ((nf ^ 0x1ff) + 1);
410     }
411     return (OS_REG_READ(ah, AR_TSF_U32) ^
412         OS_REG_READ(ah, AR_TSF_L32) ^ nf);
413 }
414 
415 /*
416  * Detect if our card is present
417  */
418 HAL_BOOL
419 ar9300_detect_card_present(struct ath_hal *ah)
420 {
421     u_int16_t mac_version, mac_rev;
422     u_int32_t v;
423 
424     /*
425      * Read the Silicon Revision register and compare that
426      * to what we read at attach time.  If the same, we say
427      * a card/device is present.
428      */
429     v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV)) & AR_SREV_ID;
430     if (v == 0xFF) {
431         /* new SREV format */
432         v = OS_REG_READ(ah, AR_HOSTIF_REG(ah, AR_SREV));
433         /*
434          * Include 6-bit Chip Type (masked to 0) to differentiate
435          * from pre-Sowl versions
436          */
437         mac_version = (v & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
438         mac_rev = MS(v, AR_SREV_REVISION2);
439     } else {
440         mac_version = MS(v, AR_SREV_VERSION);
441         mac_rev = v & AR_SREV_REVISION;
442     }
443     return (AH_PRIVATE(ah)->ah_macVersion == mac_version &&
444             AH_PRIVATE(ah)->ah_macRev == mac_rev);
445 }
446 
447 /*
448  * Update MIB Counters
449  */
450 void
451 ar9300_update_mib_mac_stats(struct ath_hal *ah)
452 {
453     struct ath_hal_9300 *ahp = AH9300(ah);
454     HAL_MIB_STATS* stats = &ahp->ah_stats.ast_mibstats;
455 
456     stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
457     stats->rts_bad    += OS_REG_READ(ah, AR_RTS_FAIL);
458     stats->fcs_bad    += OS_REG_READ(ah, AR_FCS_FAIL);
459     stats->rts_good   += OS_REG_READ(ah, AR_RTS_OK);
460     stats->beacons    += OS_REG_READ(ah, AR_BEACON_CNT);
461 }
462 
463 void
464 ar9300_get_mib_mac_stats(struct ath_hal *ah, HAL_MIB_STATS* stats)
465 {
466     struct ath_hal_9300 *ahp = AH9300(ah);
467     HAL_MIB_STATS* istats = &ahp->ah_stats.ast_mibstats;
468 
469     stats->ackrcv_bad = istats->ackrcv_bad;
470     stats->rts_bad    = istats->rts_bad;
471     stats->fcs_bad    = istats->fcs_bad;
472     stats->rts_good   = istats->rts_good;
473     stats->beacons    = istats->beacons;
474 }
475 
476 /*
477  * Detect if the HW supports spreading a CCK signal on channel 14
478  */
479 HAL_BOOL
480 ar9300_is_japan_channel_spread_supported(struct ath_hal *ah)
481 {
482     return AH_TRUE;
483 }
484 
485 /*
486  * Get the rssi of frame curently being received.
487  */
488 u_int32_t
489 ar9300_get_cur_rssi(struct ath_hal *ah)
490 {
491     /* XXX return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff); */
492     /* get combined RSSI */
493     return (OS_REG_READ(ah, AR_PHY_RSSI_3) & 0xff);
494 }
495 
496 #if ATH_GEN_RANDOMNESS
497 /*
498  * Get the rssi value from BB on ctl chain0.
499  */
500 u_int32_t
501 ar9300_get_rssi_chain0(struct ath_hal *ah)
502 {
503     /* get ctl chain0 RSSI */
504     return OS_REG_READ(ah, AR_PHY_RSSI_0) & 0xff;
505 }
506 #endif
507 
508 u_int
509 ar9300_get_def_antenna(struct ath_hal *ah)
510 {
511     return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
512 }
513 
514 /* Setup coverage class */
515 void
516 ar9300_set_coverage_class(struct ath_hal *ah, u_int8_t coverageclass, int now)
517 {
518 }
519 
520 void
521 ar9300_set_def_antenna(struct ath_hal *ah, u_int antenna)
522 {
523     OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
524 }
525 
526 HAL_BOOL
527 ar9300_set_antenna_switch(struct ath_hal *ah,
528     HAL_ANT_SETTING settings, const struct ieee80211_channel *chan,
529     u_int8_t *tx_chainmask, u_int8_t *rx_chainmask, u_int8_t *antenna_cfgd)
530 {
531     struct ath_hal_9300 *ahp = AH9300(ah);
532 
533     /*
534      * Owl does not support diversity or changing antennas.
535      *
536      * Instead this API and function are defined differently for AR9300.
537      * To support Tablet PC's, this interface allows the system
538      * to dramatically reduce the TX power on a particular chain.
539      *
540      * Based on the value of (redefined) diversity_control, the
541      * reset code will decrease power on chain 0 or chain 1/2.
542      *
543      * Based on the value of bit 0 of antenna_switch_swap,
544      * the mapping between OID call and chain is defined as:
545      *  0:  map A -> 0, B -> 1;
546      *  1:  map A -> 1, B -> 0;
547      *
548      * NOTE:
549      *   The devices that use this OID should use a tx_chain_mask and
550      *   tx_chain_select_legacy setting of 5 or 3 if ANTENNA_FIXED_B is
551      *   used in order to ensure an active transmit antenna.  This
552      *   API will allow the host to turn off the only transmitting
553      *   antenna to ensure the antenna closest to the user's body is
554      *   powered-down.
555      */
556     /*
557      * Set antenna control for use during reset sequence by
558      * ar9300_decrease_chain_power()
559      */
560     ahp->ah_diversity_control = settings;
561 
562     return AH_TRUE;
563 }
564 
565 HAL_BOOL
566 ar9300_is_sleep_after_beacon_broken(struct ath_hal *ah)
567 {
568     return AH_TRUE;
569 }
570 
571 HAL_BOOL
572 ar9300_set_slot_time(struct ath_hal *ah, u_int us)
573 {
574     struct ath_hal_9300 *ahp = AH9300(ah);
575     if (us < HAL_SLOT_TIME_9 || us > ar9300_mac_to_usec(ah, 0xffff)) {
576         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad slot time %u\n", __func__, us);
577         ahp->ah_slot_time = (u_int) -1;  /* restore default handling */
578         return AH_FALSE;
579     } else {
580         /* convert to system clocks */
581         OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ar9300_mac_to_clks(ah, us));
582         ahp->ah_slot_time = us;
583         return AH_TRUE;
584     }
585 }
586 
587 HAL_BOOL
588 ar9300_set_ack_timeout(struct ath_hal *ah, u_int us)
589 {
590     struct ath_hal_9300 *ahp = AH9300(ah);
591 
592     if (us > ar9300_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
593         HALDEBUG(ah, HAL_DEBUG_RESET, "%s: bad ack timeout %u\n", __func__, us);
594         ahp->ah_ack_timeout = (u_int) -1; /* restore default handling */
595         return AH_FALSE;
596     } else {
597         /* convert to system clocks */
598         OS_REG_RMW_FIELD(ah,
599             AR_TIME_OUT, AR_TIME_OUT_ACK, ar9300_mac_to_clks(ah, us));
600         ahp->ah_ack_timeout = us;
601         return AH_TRUE;
602     }
603 }
604 
605 u_int
606 ar9300_get_ack_timeout(struct ath_hal *ah)
607 {
608     u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
609     return ar9300_mac_to_usec(ah, clks);      /* convert from system clocks */
610 }
611 
612 HAL_STATUS
613 ar9300_set_quiet(struct ath_hal *ah, u_int32_t period, u_int32_t duration,
614                  u_int32_t next_start, HAL_QUIET_FLAG flag)
615 {
616 #define	TU_TO_USEC(_tu)		((_tu) << 10)
617     HAL_STATUS status = HAL_EIO;
618     u_int32_t tsf = 0, j, next_start_us = 0;
619     if (flag & HAL_QUIET_ENABLE) {
620         for (j = 0; j < 2; j++) {
621             next_start_us = TU_TO_USEC(next_start);
622             tsf = OS_REG_READ(ah, AR_TSF_L32);
623             if ((!next_start) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
624                 next_start_us += tsf;
625             }
626             if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
627                 next_start_us +=
628                     ah->ah_config.ah_sw_beacon_response_time;
629             }
630             OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
631             OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
632             OS_REG_WRITE(ah, AR_QUIET_PERIOD, TU_TO_USEC(period));
633             OS_REG_WRITE(ah, AR_NEXT_QUIET_TIMER, next_start_us);
634             OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
635             if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == tsf >> 10) {
636                 status = HAL_OK;
637                 break;
638             }
639             HALDEBUG(ah, HAL_DEBUG_QUEUE, "%s: TSF have moved "
640                 "while trying to set quiet time TSF: 0x%08x\n", __func__, tsf);
641             /* TSF shouldn't count twice or reg access is taking forever */
642             HALASSERT(j < 1);
643         }
644     } else {
645         OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_QUIET_TIMER_EN);
646         status = HAL_OK;
647     }
648 
649     return status;
650 #undef	TU_TO_USEC
651 }
652 
653 //#ifdef ATH_SUPPORT_DFS
654 void
655 ar9300_cac_tx_quiet(struct ath_hal *ah, HAL_BOOL enable)
656 {
657     uint32_t reg1, reg2;
658 
659     reg1 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE));
660     reg2 = OS_REG_READ(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1));
661     AH9300(ah)->ah_cac_quiet_enabled = enable;
662 
663     if (enable) {
664         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
665                      reg1 | AR_PCU_FORCE_QUIET_COLL);
666         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
667                      reg2 & ~AR_QUIET1_QUIET_ACK_CTS_ENABLE);
668     } else {
669         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_MISC_MODE),
670                      reg1 & ~AR_PCU_FORCE_QUIET_COLL);
671         OS_REG_WRITE(ah, AR_MAC_PCU_OFFSET(MAC_PCU_QUIET_TIME_1),
672                      reg2 | AR_QUIET1_QUIET_ACK_CTS_ENABLE);
673     }
674 }
675 //#endif /* ATH_SUPPORT_DFS */
676 
677 void
678 ar9300_set_pcu_config(struct ath_hal *ah)
679 {
680     ar9300_set_operating_mode(ah, AH_PRIVATE(ah)->ah_opmode);
681 }
682 
683 HAL_STATUS
684 ar9300_get_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
685     u_int32_t capability, u_int32_t *result)
686 {
687     struct ath_hal_9300 *ahp = AH9300(ah);
688     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
689     struct ar9300_ani_state *ani;
690 
691     switch (type) {
692     case HAL_CAP_CIPHER:            /* cipher handled in hardware */
693         switch (capability) {
694         case HAL_CIPHER_AES_CCM:
695         case HAL_CIPHER_AES_OCB:
696         case HAL_CIPHER_TKIP:
697         case HAL_CIPHER_WEP:
698         case HAL_CIPHER_MIC:
699         case HAL_CIPHER_CLR:
700             return HAL_OK;
701         default:
702             return HAL_ENOTSUPP;
703         }
704     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
705         switch (capability) {
706         case 0:         /* hardware capability */
707             return HAL_OK;
708         case 1:
709             return (ahp->ah_sta_id1_defaults &
710                     AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
711         default:
712             return HAL_ENOTSUPP;
713         }
714     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
715         switch (capability) {
716         case 0: /* hardware capability */
717             return p_cap->halTkipMicTxRxKeySupport ? HAL_ENXIO : HAL_OK;
718         case 1: /* current setting */
719             return (ahp->ah_misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
720                 HAL_ENXIO : HAL_OK;
721         default:
722             return HAL_ENOTSUPP;
723         }
724     case HAL_CAP_WME_TKIPMIC:
725         /* hardware can do TKIP MIC when WMM is turned on */
726         return HAL_OK;
727     case HAL_CAP_PHYCOUNTERS:       /* hardware PHY error counters */
728         return HAL_OK;
729     case HAL_CAP_DIVERSITY:         /* hardware supports fast diversity */
730         switch (capability) {
731         case 0:                 /* hardware capability */
732             return HAL_OK;
733         case 1:                 /* current setting */
734             return (OS_REG_READ(ah, AR_PHY_CCK_DETECT) &
735                             AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
736                             HAL_OK : HAL_ENXIO;
737         }
738         return HAL_EINVAL;
739     case HAL_CAP_TPC:
740         switch (capability) {
741         case 0:                 /* hardware capability */
742             return HAL_OK;
743         case 1:
744             return ah->ah_config.ath_hal_desc_tpc ?
745                                HAL_OK : HAL_ENXIO;
746         }
747         return HAL_OK;
748     case HAL_CAP_PHYDIAG:           /* radar pulse detection capability */
749         return HAL_OK;
750     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
751         switch (capability) {
752         case 0:                 /* hardware capability */
753             return HAL_OK;
754         case 1:
755             if (OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
756                 /*
757                  * Owl and Merlin have problems in mcast key search.
758                  * Disable this cap. in Ad-hoc mode. see Bug 25776 and
759                  * 26802
760                  */
761                 return HAL_ENXIO;
762             } else {
763                 return (ahp->ah_sta_id1_defaults &
764                         AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
765             }
766         }
767         return HAL_EINVAL;
768     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
769         switch (capability) {
770         case 0:                 /* hardware capability */
771             return p_cap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
772         case 1:
773             return (ahp->ah_misc_mode & AR_PCU_TX_ADD_TSF) ?
774                 HAL_OK : HAL_ENXIO;
775         }
776         return HAL_EINVAL;
777     case HAL_CAP_RFSILENT:      /* rfsilent support  */
778         if (capability == 3) {  /* rfkill interrupt */
779             /*
780              * XXX: Interrupt-based notification of RF Kill state
781              *      changes not working yet. Report that this feature
782              *      is not supported so that polling is used instead.
783              */
784             return (HAL_ENOTSUPP);
785         }
786         return ath_hal_getcapability(ah, type, capability, result);
787     case HAL_CAP_4ADDR_AGGR:
788         return HAL_OK;
789     case HAL_CAP_BB_RIFS_HANG:
790         return HAL_ENOTSUPP;
791     case HAL_CAP_BB_DFS_HANG:
792         return HAL_ENOTSUPP;
793     case HAL_CAP_BB_RX_CLEAR_STUCK_HANG:
794         /* Track chips that are known to have BB hangs related
795          * to rx_clear stuck low.
796          */
797         return HAL_ENOTSUPP;
798     case HAL_CAP_MAC_HANG:
799         /* Track chips that are known to have MAC hangs.
800          */
801         return HAL_OK;
802     case HAL_CAP_RIFS_RX_ENABLED:
803         /* Is RIFS RX currently enabled */
804         return (ahp->ah_rifs_enabled == AH_TRUE) ?  HAL_OK : HAL_ENOTSUPP;
805 #if 0
806     case HAL_CAP_ANT_CFG_2GHZ:
807         *result = p_cap->halNumAntCfg2Ghz;
808         return HAL_OK;
809     case HAL_CAP_ANT_CFG_5GHZ:
810         *result = p_cap->halNumAntCfg5Ghz;
811         return HAL_OK;
812     case HAL_CAP_RX_STBC:
813         *result = p_cap->hal_rx_stbc_support;
814         return HAL_OK;
815     case HAL_CAP_TX_STBC:
816         *result = p_cap->hal_tx_stbc_support;
817         return HAL_OK;
818 #endif
819     case HAL_CAP_LDPC:
820         *result = p_cap->halLDPCSupport;
821         return HAL_OK;
822     case HAL_CAP_DYNAMIC_SMPS:
823         return HAL_OK;
824     case HAL_CAP_DS:
825         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
826                 (p_cap->halTxChainMask & 0x3) != 0x3 ||
827                 (p_cap->halRxChainMask & 0x3) != 0x3) ?
828             HAL_ENOTSUPP : HAL_OK;
829     case HAL_CAP_TS:
830         return (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah) ||
831                 (p_cap->halTxChainMask & 0x7) != 0x7 ||
832                 (p_cap->halRxChainMask & 0x7) != 0x7) ?
833             HAL_ENOTSUPP : HAL_OK;
834     case HAL_CAP_OL_PWRCTRL:
835         return (ar9300_eeprom_get(ahp, EEP_OL_PWRCTRL)) ?
836             HAL_OK : HAL_ENOTSUPP;
837     case HAL_CAP_CRDC:
838 #if ATH_SUPPORT_CRDC
839         return (AR_SREV_WASP(ah) &&
840                 ah->ah_config.ath_hal_crdc_enable) ?
841                     HAL_OK : HAL_ENOTSUPP;
842 #else
843         return HAL_ENOTSUPP;
844 #endif
845 #if 0
846     case HAL_CAP_MAX_WEP_TKIP_HT20_TX_RATEKBPS:
847         *result = (u_int32_t)(-1);
848         return HAL_OK;
849     case HAL_CAP_MAX_WEP_TKIP_HT40_TX_RATEKBPS:
850         *result = (u_int32_t)(-1);
851         return HAL_OK;
852 #endif
853     case HAL_CAP_BB_PANIC_WATCHDOG:
854         return HAL_OK;
855     case HAL_CAP_PHYRESTART_CLR_WAR:
856         if ((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_OSPREY) &&
857             (AH_PRIVATE((ah))->ah_macRev < AR_SREV_REVISION_AR9580_10))
858         {
859             return HAL_OK;
860         }
861         else
862         {
863             return HAL_ENOTSUPP;
864         }
865     case HAL_CAP_ENTERPRISE_MODE:
866         *result = ahp->ah_enterprise_mode >> 16;
867         /*
868          * WAR for EV 77658 - Add delimiters to first sub-frame when using
869          * RTS/CTS with aggregation and non-enterprise Osprey.
870          *
871          * Bug fixed in AR9580/Peacock, Wasp1.1 and later
872          */
873         if ((ahp->ah_enterprise_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE) &&
874                 !AR_SREV_AR9580_10_OR_LATER(ah) && (!AR_SREV_WASP(ah) ||
875                 AR_SREV_WASP_10(ah))) {
876             *result |= AH_ENT_RTSCTS_DELIM_WAR;
877         }
878         return HAL_OK;
879     case HAL_CAP_LDPCWAR:
880         /* WAR for RIFS+LDPC issue is required for all chips currently
881          * supported by ar9300 HAL.
882          */
883         return HAL_OK;
884     case HAL_CAP_ENABLE_APM:
885         *result = p_cap->halApmEnable;
886         return HAL_OK;
887     case HAL_CAP_PCIE_LCR_EXTSYNC_EN:
888         return (p_cap->hal_pcie_lcr_extsync_en == AH_TRUE) ? HAL_OK : HAL_ENOTSUPP;
889     case HAL_CAP_PCIE_LCR_OFFSET:
890         *result = p_cap->hal_pcie_lcr_offset;
891         return HAL_OK;
892     case HAL_CAP_SMARTANTENNA:
893         /* FIXME A request is pending with h/w team to add feature bit in
894          * caldata to detect if board has smart antenna or not, once added
895          * we need to fix his piece of code to read and return value without
896          * any compile flags
897          */
898 #if UMAC_SUPPORT_SMARTANTENNA
899         /* enable smart antenna for  Peacock, Wasp and scorpion
900            for future chips need to modify */
901         if (AR_SREV_AR9580_10(ah) || (AR_SREV_WASP(ah)) || AR_SREV_SCORPION(ah)) {
902             return HAL_OK;
903         } else {
904             return HAL_ENOTSUPP;
905         }
906 #else
907         return HAL_ENOTSUPP;
908 #endif
909 
910 #ifdef ATH_TRAFFIC_FAST_RECOVER
911     case HAL_CAP_TRAFFIC_FAST_RECOVER:
912         if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP_11(ah)) {
913             return HAL_OK;
914         } else {
915             return HAL_ENOTSUPP;
916         }
917 #endif
918 
919     /* FreeBSD ANI */
920     case HAL_CAP_INTMIT:            /* interference mitigation */
921             switch (capability) {
922             case HAL_CAP_INTMIT_PRESENT:            /* hardware capability */
923                     return HAL_OK;
924             case HAL_CAP_INTMIT_ENABLE:
925                     return (ahp->ah_proc_phy_err & HAL_PROCESS_ANI) ?
926                             HAL_OK : HAL_ENXIO;
927             case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
928             case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
929 //            case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
930             case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
931             case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
932                     ani = ar9300_ani_get_current_state(ah);
933                     if (ani == AH_NULL)
934                             return HAL_ENXIO;
935                     switch (capability) {
936                     /* XXX AR9300 HAL has OFDM/CCK noise immunity level params? */
937                     case 2: *result = ani->ofdm_noise_immunity_level; break;
938                     case 3: *result = !ani->ofdm_weak_sig_detect_off; break;
939  //                   case 4: *result = ani->cck_weak_sig_threshold; break;
940                     case 5: *result = ani->firstep_level; break;
941                     case 6: *result = ani->spur_immunity_level; break;
942                     }
943                     return HAL_OK;
944             }
945             return HAL_EINVAL;
946     case HAL_CAP_ENFORCE_TXOP:
947         if (capability == 0)
948             return (HAL_OK);
949         if (capability != 1)
950             return (HAL_ENOTSUPP);
951         (*result) = !! (ahp->ah_misc_mode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
952         return (HAL_OK);
953     case HAL_CAP_TOA_LOCATIONING:
954         if (capability == 0)
955             return HAL_OK;
956         if (capability == 2) {
957             *result = ar9300_read_loc_timer(ah);
958             return (HAL_OK);
959         }
960         return HAL_ENOTSUPP;
961     default:
962         return ath_hal_getcapability(ah, type, capability, result);
963     }
964 }
965 
966 HAL_BOOL
967 ar9300_set_capability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
968         u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
969 {
970     struct ath_hal_9300 *ahp = AH9300(ah);
971     HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
972     u_int32_t v;
973 
974     switch (type) {
975     case HAL_CAP_TKIP_SPLIT:        /* hardware TKIP uses split keys */
976         if (! p_cap->halTkipMicTxRxKeySupport)
977             return AH_FALSE;
978 
979         if (setting)
980             ahp->ah_misc_mode &= ~AR_PCU_MIC_NEW_LOC_ENA;
981         else
982             ahp->ah_misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
983 
984         OS_REG_WRITE(ah, AR_PCU_MISC, ahp->ah_misc_mode);
985         return AH_TRUE;
986 
987     case HAL_CAP_TKIP_MIC:          /* handle TKIP MIC in hardware */
988         if (setting) {
989             ahp->ah_sta_id1_defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
990         } else {
991             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
992         }
993         return AH_TRUE;
994     case HAL_CAP_DIVERSITY:
995         v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
996         if (setting) {
997             v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
998         } else {
999             v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
1000         }
1001         OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
1002         return AH_TRUE;
1003     case HAL_CAP_DIAG:              /* hardware diagnostic support */
1004         /*
1005          * NB: could split this up into virtual capabilities,
1006          *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
1007          *     seems worth the additional complexity.
1008          */
1009 #ifdef AH_DEBUG
1010         AH_PRIVATE(ah)->ah_diagreg = setting;
1011 #else
1012         AH_PRIVATE(ah)->ah_diagreg = setting & 0x6;     /* ACK+CTS */
1013 #endif
1014         OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
1015         return AH_TRUE;
1016     case HAL_CAP_TPC:
1017         ah->ah_config.ath_hal_desc_tpc = (setting != 0);
1018         return AH_TRUE;
1019     case HAL_CAP_MCAST_KEYSRCH:     /* multicast frame keycache search */
1020         if (setting) {
1021             ahp->ah_sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
1022         } else {
1023             ahp->ah_sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1024         }
1025         return AH_TRUE;
1026     case HAL_CAP_TSF_ADJUST:        /* hardware has beacon tsf adjust */
1027         if (p_cap->halTsfAddSupport) {
1028             if (setting) {
1029                 ahp->ah_misc_mode |= AR_PCU_TX_ADD_TSF;
1030             } else {
1031                 ahp->ah_misc_mode &= ~AR_PCU_TX_ADD_TSF;
1032             }
1033             return AH_TRUE;
1034         }
1035         return AH_FALSE;
1036 
1037     /* FreeBSD interrupt mitigation / ANI */
1038     case HAL_CAP_INTMIT: {          /* interference mitigation */
1039             /* This maps the public ANI commands to the internal ANI commands */
1040             /* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1041             static const HAL_ANI_CMD cmds[] = {
1042                     HAL_ANI_PRESENT,
1043                     HAL_ANI_MODE,
1044                     HAL_ANI_NOISE_IMMUNITY_LEVEL,
1045                     HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1046                     HAL_ANI_CCK_WEAK_SIGNAL_THR,
1047                     HAL_ANI_FIRSTEP_LEVEL,
1048                     HAL_ANI_SPUR_IMMUNITY_LEVEL,
1049             };
1050 #define N(a)    (sizeof(a) / sizeof(a[0]))
1051             return capability < N(cmds) ?
1052                     ar9300_ani_control(ah, cmds[capability], setting) :
1053                     AH_FALSE;
1054 #undef N
1055     }
1056 
1057     case HAL_CAP_RXBUFSIZE:         /* set MAC receive buffer size */
1058         ahp->rx_buf_size = setting & AR_DATABUF_MASK;
1059         OS_REG_WRITE(ah, AR_DATABUF, ahp->rx_buf_size);
1060         return AH_TRUE;
1061 
1062     case HAL_CAP_ENFORCE_TXOP:
1063         if (capability != 1)
1064             return AH_FALSE;
1065         if (setting) {
1066             ahp->ah_misc_mode |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
1067             OS_REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1068         } else {
1069             ahp->ah_misc_mode &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
1070             OS_REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_TXOP_TBTT_LIMIT_ENA);
1071         }
1072         return AH_TRUE;
1073 
1074     case HAL_CAP_TOA_LOCATIONING:
1075         if (capability == 0)
1076             return AH_TRUE;
1077         if (capability == 1) {
1078             ar9300_update_loc_ctl_reg(ah, setting);
1079             return AH_TRUE;
1080         }
1081         return AH_FALSE;
1082 
1083 #define owl_get_ntxchains(_txchainmask) \
1084         (((_txchainmask >> 2) & 1) + ((_txchainmask >> 1) & 1) + \
1085         (_txchainmask & 1))
1086 
1087     case HAL_CAP_RX_CHAINMASK:
1088         setting &= ar9300_eeprom_get(ahp, EEP_RX_MASK);
1089         p_cap->halRxChainMask = setting;
1090         p_cap->halRxStreams = owl_get_ntxchains(setting);
1091         if (p_cap->halRxStreams > 3)
1092             p_cap->halRxStreams = 3;
1093         else if (p_cap->halRxStreams < 1)
1094             p_cap->halRxStreams = 1;
1095         return AH_TRUE;
1096 
1097     case HAL_CAP_TX_CHAINMASK:
1098         setting &= ar9300_eeprom_get(ahp, EEP_TX_MASK);
1099         p_cap->halTxChainMask = setting;
1100         p_cap->halTxStreams = owl_get_ntxchains(setting);
1101         if (p_cap->halTxStreams > 3)
1102             p_cap->halTxStreams = 3;
1103         else if (p_cap->halTxStreams < 1)
1104             p_cap->halTxStreams = 1;
1105         return AH_TRUE;
1106 
1107 #undef owl_get_ntxchains
1108 
1109         /* fall thru... */
1110     default:
1111         return ath_hal_setcapability(ah, type, capability, setting, status);
1112     }
1113 }
1114 
1115 #ifdef AH_DEBUG
1116 static void
1117 ar9300_print_reg(struct ath_hal *ah, u_int32_t args)
1118 {
1119     u_int32_t i = 0;
1120 
1121     /* Read 0x80d0 to trigger pcie analyzer */
1122     HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1123         "0x%04x 0x%08x\n", 0x80d0, OS_REG_READ(ah, 0x80d0));
1124 
1125     if (args & HAL_DIAG_PRINT_REG_COUNTER) {
1126         struct ath_hal_9300 *ahp = AH9300(ah);
1127         u_int32_t tf, rf, rc, cc;
1128 
1129         tf = OS_REG_READ(ah, AR_TFCNT);
1130         rf = OS_REG_READ(ah, AR_RFCNT);
1131         rc = OS_REG_READ(ah, AR_RCCNT);
1132         cc = OS_REG_READ(ah, AR_CCCNT);
1133 
1134         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1135             "AR_TFCNT Diff= 0x%x\n", tf - ahp->last_tf);
1136         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1137             "AR_RFCNT Diff= 0x%x\n", rf - ahp->last_rf);
1138         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1139             "AR_RCCNT Diff= 0x%x\n", rc - ahp->last_rc);
1140         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1141             "AR_CCCNT Diff= 0x%x\n", cc - ahp->last_cc);
1142 
1143         ahp->last_tf = tf;
1144         ahp->last_rf = rf;
1145         ahp->last_rc = rc;
1146         ahp->last_cc = cc;
1147 
1148         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1149             "DMADBG0 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_0));
1150         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1151             "DMADBG1 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_1));
1152         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1153             "DMADBG2 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_2));
1154         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1155             "DMADBG3 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_3));
1156         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1157             "DMADBG4 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_4));
1158         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1159             "DMADBG5 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_5));
1160         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1161             "DMADBG6 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_6));
1162         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1163             "DMADBG7 = 0x%x\n", OS_REG_READ(ah, AR_DMADBG_7));
1164     }
1165 
1166     if (args & HAL_DIAG_PRINT_REG_ALL) {
1167         for (i = 0x8; i <= 0xB8; i += sizeof(u_int32_t)) {
1168             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1169                 i, OS_REG_READ(ah, i));
1170         }
1171 
1172         for (i = 0x800; i <= (0x800 + (10 << 2)); i += sizeof(u_int32_t)) {
1173             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1174                 i, OS_REG_READ(ah, i));
1175         }
1176 
1177         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1178             "0x%04x 0x%08x\n", 0x840, OS_REG_READ(ah, i));
1179 
1180         HALDEBUG(ah, HAL_DEBUG_PRINT_REG,
1181             "0x%04x 0x%08x\n", 0x880, OS_REG_READ(ah, i));
1182 
1183         for (i = 0x8C0; i <= (0x8C0 + (10 << 2)); i += sizeof(u_int32_t)) {
1184             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1185                 i, OS_REG_READ(ah, i));
1186         }
1187 
1188         for (i = 0x1F00; i <= 0x1F04; i += sizeof(u_int32_t)) {
1189             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1190                 i, OS_REG_READ(ah, i));
1191         }
1192 
1193         for (i = 0x4000; i <= 0x408C; i += sizeof(u_int32_t)) {
1194             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1195                 i, OS_REG_READ(ah, i));
1196         }
1197 
1198         for (i = 0x5000; i <= 0x503C; i += sizeof(u_int32_t)) {
1199             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1200                 i, OS_REG_READ(ah, i));
1201         }
1202 
1203         for (i = 0x7040; i <= 0x7058; i += sizeof(u_int32_t)) {
1204             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1205                 i, OS_REG_READ(ah, i));
1206         }
1207 
1208         for (i = 0x8000; i <= 0x8098; i += sizeof(u_int32_t)) {
1209             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1210                 i, OS_REG_READ(ah, i));
1211         }
1212 
1213         for (i = 0x80D4; i <= 0x8200; i += sizeof(u_int32_t)) {
1214             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1215                 i, OS_REG_READ(ah, i));
1216         }
1217 
1218         for (i = 0x8240; i <= 0x97FC; i += sizeof(u_int32_t)) {
1219             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1220                 i, OS_REG_READ(ah, i));
1221         }
1222 
1223         for (i = 0x9800; i <= 0x99f0; i += sizeof(u_int32_t)) {
1224             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1225                 i, OS_REG_READ(ah, i));
1226         }
1227 
1228         for (i = 0x9c10; i <= 0x9CFC; i += sizeof(u_int32_t)) {
1229             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1230                 i, OS_REG_READ(ah, i));
1231         }
1232 
1233         for (i = 0xA200; i <= 0xA26C; i += sizeof(u_int32_t)) {
1234             HALDEBUG(ah, HAL_DEBUG_PRINT_REG, "0x%04x 0x%08x\n",
1235                 i, OS_REG_READ(ah, i));
1236         }
1237     }
1238 }
1239 #endif
1240 
1241 HAL_BOOL
1242 ar9300_get_diag_state(struct ath_hal *ah, int request,
1243         const void *args, u_int32_t argsize,
1244         void **result, u_int32_t *resultsize)
1245 {
1246     struct ath_hal_9300 *ahp = AH9300(ah);
1247     struct ar9300_ani_state *ani;
1248 
1249     (void) ahp;
1250     if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize)) {
1251         return AH_TRUE;
1252     }
1253     switch (request) {
1254 #ifdef AH_PRIVATE_DIAG
1255     case HAL_DIAG_EEPROM:
1256         *result = &ahp->ah_eeprom;
1257         *resultsize = sizeof(ar9300_eeprom_t);
1258         return AH_TRUE;
1259 
1260 #if 0   /* XXX - TODO */
1261     case HAL_DIAG_EEPROM_EXP_11A:
1262     case HAL_DIAG_EEPROM_EXP_11B:
1263     case HAL_DIAG_EEPROM_EXP_11G:
1264         pe = &ahp->ah_mode_power_array2133[request - HAL_DIAG_EEPROM_EXP_11A];
1265         *result = pe->p_channels;
1266         *resultsize = (*result == AH_NULL) ? 0 :
1267             roundup(sizeof(u_int16_t) * pe->num_channels,
1268             sizeof(u_int32_t)) +
1269                 sizeof(EXPN_DATA_PER_CHANNEL_2133) * pe->num_channels;
1270         return AH_TRUE;
1271 #endif
1272     case HAL_DIAG_RFGAIN:
1273         *result = &ahp->ah_gain_values;
1274         *resultsize = sizeof(GAIN_VALUES);
1275         return AH_TRUE;
1276     case HAL_DIAG_RFGAIN_CURSTEP:
1277         *result = (void *) ahp->ah_gain_values.curr_step;
1278         *resultsize = (*result == AH_NULL) ?
1279                 0 : sizeof(GAIN_OPTIMIZATION_STEP);
1280         return AH_TRUE;
1281 #if 0   /* XXX - TODO */
1282     case HAL_DIAG_PCDAC:
1283         *result = ahp->ah_pcdac_table;
1284         *resultsize = ahp->ah_pcdac_table_size;
1285         return AH_TRUE;
1286 #endif
1287     case HAL_DIAG_ANI_CURRENT:
1288 
1289         ani = ar9300_ani_get_current_state(ah);
1290         if (ani == AH_NULL)
1291             return AH_FALSE;
1292         /* Convert ar9300 HAL to FreeBSD HAL ANI state */
1293         bzero(&ahp->ext_ani_state, sizeof(ahp->ext_ani_state));
1294         ahp->ext_ani_state.noiseImmunityLevel = ani->ofdm_noise_immunity_level;
1295         ahp->ext_ani_state.spurImmunityLevel = ani->spur_immunity_level;
1296         ahp->ext_ani_state.firstepLevel = ani->firstep_level;
1297         ahp->ext_ani_state.ofdmWeakSigDetectOff = ani->ofdm_weak_sig_detect_off;
1298         ahp->ext_ani_state.mrcCck = !! ani->mrc_cck_off;
1299         ahp->ext_ani_state.cckNoiseImmunityLevel = ani->cck_noise_immunity_level;
1300 
1301         ahp->ext_ani_state.listenTime = ani->listen_time;
1302 
1303         *result = &ahp->ext_ani_state;
1304         *resultsize = sizeof(ahp->ext_ani_state);
1305 #if 0
1306         *result = ar9300_ani_get_current_state(ah);
1307         *resultsize = (*result == AH_NULL) ?
1308             0 : sizeof(struct ar9300_ani_state);
1309 #endif
1310         return AH_TRUE;
1311     case HAL_DIAG_ANI_STATS:
1312         *result = ar9300_ani_get_current_stats(ah);
1313         *resultsize = (*result == AH_NULL) ?
1314             0 : sizeof(HAL_ANI_STATS);
1315         return AH_TRUE;
1316     case HAL_DIAG_ANI_CMD:
1317     {
1318         HAL_ANI_CMD savefunc = ahp->ah_ani_function;
1319         if (argsize != 2*sizeof(u_int32_t)) {
1320             return AH_FALSE;
1321         }
1322         /* temporarly allow all functions so we can override */
1323         ahp->ah_ani_function = HAL_ANI_ALL;
1324         ar9300_ani_control(
1325             ah, ((const u_int32_t *)args)[0], ((const u_int32_t *)args)[1]);
1326         ahp->ah_ani_function = savefunc;
1327         return AH_TRUE;
1328     }
1329 #if 0
1330     case HAL_DIAG_TXCONT:
1331         /*AR9300_CONTTXMODE(ah, (struct ath_desc *)args, argsize );*/
1332         return AH_TRUE;
1333 #endif /* 0 */
1334 #endif /* AH_PRIVATE_DIAG */
1335     case HAL_DIAG_CHANNELS:
1336 #if 0
1337         *result = &(ahp->ah_priv.ah_channels[0]);
1338         *resultsize =
1339             sizeof(ahp->ah_priv.ah_channels[0]) * ahp->ah_priv.priv.ah_nchan;
1340 #endif
1341         return AH_TRUE;
1342 #ifdef AH_DEBUG
1343     case HAL_DIAG_PRINT_REG:
1344         ar9300_print_reg(ah, *((const u_int32_t *)args));
1345         return AH_TRUE;
1346 #endif
1347     default:
1348         break;
1349     }
1350 
1351     return AH_FALSE;
1352 }
1353 
1354 void
1355 ar9300_dma_reg_dump(struct ath_hal *ah)
1356 {
1357 #ifdef AH_DEBUG
1358 #define NUM_DMA_DEBUG_REGS  8
1359 #define NUM_QUEUES          10
1360 
1361     u_int32_t val[NUM_DMA_DEBUG_REGS];
1362     int       qcu_offset = 0, dcu_offset = 0;
1363     u_int32_t *qcu_base  = &val[0], *dcu_base = &val[4], reg;
1364     int       i, j, k;
1365     int16_t nfarray[HAL_NUM_NF_READINGS];
1366 #ifdef	ATH_NF_PER_CHAN
1367     HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
1368 #endif	/* ATH_NF_PER_CHAN */
1369     HAL_NFCAL_HIST_FULL *h = AH_HOME_CHAN_NFCAL_HIST(ah, ichan);
1370 
1371      /* selecting DMA OBS 8 */
1372     OS_REG_WRITE(ah, AR_MACMISC,
1373         ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
1374          (AR_MACMISC_MISC_OBS_BUS_1 << AR_MACMISC_MISC_OBS_BUS_MSB_S)));
1375 
1376     ath_hal_printf(ah, "Raw DMA Debug values:\n");
1377     for (i = 0; i < NUM_DMA_DEBUG_REGS; i++) {
1378         if (i % 4 == 0) {
1379             ath_hal_printf(ah, "\n");
1380         }
1381 
1382         val[i] = OS_REG_READ(ah, AR_DMADBG_0 + (i * sizeof(u_int32_t)));
1383         ath_hal_printf(ah, "%d: %08x ", i, val[i]);
1384     }
1385 
1386     ath_hal_printf(ah, "\n\n");
1387     ath_hal_printf(ah, "Num QCU: chain_st fsp_ok fsp_st DCU: chain_st\n");
1388 
1389     for (i = 0; i < NUM_QUEUES; i++, qcu_offset += 4, dcu_offset += 5) {
1390         if (i == 8) {
1391             /* only 8 QCU entries in val[0] */
1392             qcu_offset = 0;
1393             qcu_base++;
1394         }
1395 
1396         if (i == 6) {
1397             /* only 6 DCU entries in val[4] */
1398             dcu_offset = 0;
1399             dcu_base++;
1400         }
1401 
1402         ath_hal_printf(ah,
1403             "%2d          %2x      %1x     %2x           %2x\n",
1404             i,
1405             (*qcu_base & (0x7 << qcu_offset)) >> qcu_offset,
1406             (*qcu_base & (0x8 << qcu_offset)) >> (qcu_offset + 3),
1407             val[2] & (0x7 << (i * 3)) >> (i * 3),
1408             (*dcu_base & (0x1f << dcu_offset)) >> dcu_offset);
1409     }
1410 
1411     ath_hal_printf(ah, "\n");
1412     ath_hal_printf(ah,
1413         "qcu_stitch state:   %2x    qcu_fetch state:        %2x\n",
1414         (val[3] & 0x003c0000) >> 18, (val[3] & 0x03c00000) >> 22);
1415     ath_hal_printf(ah,
1416         "qcu_complete state: %2x    dcu_complete state:     %2x\n",
1417         (val[3] & 0x1c000000) >> 26, (val[6] & 0x3));
1418     ath_hal_printf(ah,
1419         "dcu_arb state:      %2x    dcu_fp state:           %2x\n",
1420         (val[5] & 0x06000000) >> 25, (val[5] & 0x38000000) >> 27);
1421     ath_hal_printf(ah,
1422         "chan_idle_dur:     %3d    chan_idle_dur_valid:     %1d\n",
1423         (val[6] & 0x000003fc) >> 2, (val[6] & 0x00000400) >> 10);
1424     ath_hal_printf(ah,
1425         "txfifo_valid_0:      %1d    txfifo_valid_1:          %1d\n",
1426         (val[6] & 0x00000800) >> 11, (val[6] & 0x00001000) >> 12);
1427     ath_hal_printf(ah,
1428         "txfifo_dcu_num_0:   %2d    txfifo_dcu_num_1:       %2d\n",
1429         (val[6] & 0x0001e000) >> 13, (val[6] & 0x001e0000) >> 17);
1430     ath_hal_printf(ah, "pcu observe 0x%x \n", OS_REG_READ(ah, AR_OBS_BUS_1));
1431     ath_hal_printf(ah, "AR_CR 0x%x \n", OS_REG_READ(ah, AR_CR));
1432 
1433     ar9300_upload_noise_floor(ah, 1, nfarray);
1434     ath_hal_printf(ah, "2G:\n");
1435     ath_hal_printf(ah, "Min CCA Out:\n");
1436     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1437     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1438                    nfarray[0], nfarray[1], nfarray[2]);
1439     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1440                    nfarray[3], nfarray[4], nfarray[5]);
1441 
1442     ar9300_upload_noise_floor(ah, 0, nfarray);
1443     ath_hal_printf(ah, "5G:\n");
1444     ath_hal_printf(ah, "Min CCA Out:\n");
1445     ath_hal_printf(ah, "\t\tChain 0\t\tChain 1\t\tChain 2\n");
1446     ath_hal_printf(ah, "Control:\t%8d\t%8d\t%8d\n",
1447                    nfarray[0], nfarray[1], nfarray[2]);
1448     ath_hal_printf(ah, "Extension:\t%8d\t%8d\t%8d\n\n",
1449                    nfarray[3], nfarray[4], nfarray[5]);
1450 
1451     for (i = 0; i < HAL_NUM_NF_READINGS; i++) {
1452         ath_hal_printf(ah, "%s Chain %d NF History:\n",
1453                        ((i < 3) ? "Control " : "Extension "), i%3);
1454         for (j = 0, k = h->base.curr_index;
1455              j < HAL_NF_CAL_HIST_LEN_FULL;
1456              j++, k++) {
1457             ath_hal_printf(ah, "Element %d: %d\n",
1458                 j, h->nf_cal_buffer[k % HAL_NF_CAL_HIST_LEN_FULL][i]);
1459         }
1460         ath_hal_printf(ah, "Last Programmed NF: %d\n\n", h->base.priv_nf[i]);
1461     }
1462 
1463     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG_LOW);
1464     ath_hal_printf(ah, "FIRStep Low = 0x%x (%d)\n",
1465                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW),
1466                    MS(reg, AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW));
1467     reg = OS_REG_READ(ah, AR_PHY_DESIRED_SZ);
1468     ath_hal_printf(ah, "Total Desired = 0x%x (%d)\n",
1469                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES),
1470                    MS(reg, AR_PHY_DESIRED_SZ_TOT_DES));
1471     ath_hal_printf(ah, "ADC Desired = 0x%x (%d)\n",
1472                    MS(reg, AR_PHY_DESIRED_SZ_ADC),
1473                    MS(reg, AR_PHY_DESIRED_SZ_ADC));
1474     reg = OS_REG_READ(ah, AR_PHY_FIND_SIG);
1475     ath_hal_printf(ah, "FIRStep = 0x%x (%d)\n",
1476                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP),
1477                    MS(reg, AR_PHY_FIND_SIG_FIRSTEP));
1478     reg = OS_REG_READ(ah, AR_PHY_AGC);
1479     ath_hal_printf(ah, "Coarse High = 0x%x (%d)\n",
1480                    MS(reg, AR_PHY_AGC_COARSE_HIGH),
1481                    MS(reg, AR_PHY_AGC_COARSE_HIGH));
1482     ath_hal_printf(ah, "Coarse Low = 0x%x (%d)\n",
1483                    MS(reg, AR_PHY_AGC_COARSE_LOW),
1484                    MS(reg, AR_PHY_AGC_COARSE_LOW));
1485     ath_hal_printf(ah, "Coarse Power Constant = 0x%x (%d)\n",
1486                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST),
1487                    MS(reg, AR_PHY_AGC_COARSE_PWR_CONST));
1488     reg = OS_REG_READ(ah, AR_PHY_TIMING5);
1489     ath_hal_printf(ah, "Enable Cyclic Power Thresh = %d\n",
1490                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1_ENABLE));
1491     ath_hal_printf(ah, "Cyclic Power Thresh = 0x%x (%d)\n",
1492                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1),
1493                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1));
1494     ath_hal_printf(ah, "Cyclic Power Thresh 1A= 0x%x (%d)\n",
1495                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A),
1496                    MS(reg, AR_PHY_TIMING5_CYCPWR_THR1A));
1497     reg = OS_REG_READ(ah, AR_PHY_DAG_CTRLCCK);
1498     ath_hal_printf(ah, "Barker RSSI Thresh Enable = %d\n",
1499                    MS(reg, AR_PHY_DAG_CTRLCCK_EN_RSSI_THR));
1500     ath_hal_printf(ah, "Barker RSSI Thresh = 0x%x (%d)\n",
1501                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR),
1502                    MS(reg, AR_PHY_DAG_CTRLCCK_RSSI_THR));
1503 
1504 
1505     /* Step 1a: Set bit 23 of register 0xa360 to 0 */
1506     reg = OS_REG_READ(ah, 0xa360);
1507     reg &= ~0x00800000;
1508     OS_REG_WRITE(ah, 0xa360, reg);
1509 
1510     /* Step 2a: Set register 0xa364 to 0x1000 */
1511     reg = 0x1000;
1512     OS_REG_WRITE(ah, 0xa364, reg);
1513 
1514     /* Step 3a: Read bits 17:0 of register 0x9c20 */
1515     reg = OS_REG_READ(ah, 0x9c20);
1516     reg &= 0x0003ffff;
1517     ath_hal_printf(ah,
1518         "%s: Test Control Status [0x1000] 0x9c20[17:0] = 0x%x\n",
1519         __func__, reg);
1520 
1521     /* Step 1b: Set bit 23 of register 0xa360 to 0 */
1522     reg = OS_REG_READ(ah, 0xa360);
1523     reg &= ~0x00800000;
1524     OS_REG_WRITE(ah, 0xa360, reg);
1525 
1526     /* Step 2b: Set register 0xa364 to 0x1400 */
1527     reg = 0x1400;
1528     OS_REG_WRITE(ah, 0xa364, reg);
1529 
1530     /* Step 3b: Read bits 17:0 of register 0x9c20 */
1531     reg = OS_REG_READ(ah, 0x9c20);
1532     reg &= 0x0003ffff;
1533     ath_hal_printf(ah,
1534         "%s: Test Control Status [0x1400] 0x9c20[17:0] = 0x%x\n",
1535         __func__, reg);
1536 
1537     /* Step 1c: Set bit 23 of register 0xa360 to 0 */
1538     reg = OS_REG_READ(ah, 0xa360);
1539     reg &= ~0x00800000;
1540     OS_REG_WRITE(ah, 0xa360, reg);
1541 
1542     /* Step 2c: Set register 0xa364 to 0x3C00 */
1543     reg = 0x3c00;
1544     OS_REG_WRITE(ah, 0xa364, reg);
1545 
1546     /* Step 3c: Read bits 17:0 of register 0x9c20 */
1547     reg = OS_REG_READ(ah, 0x9c20);
1548     reg &= 0x0003ffff;
1549     ath_hal_printf(ah,
1550         "%s: Test Control Status [0x3C00] 0x9c20[17:0] = 0x%x\n",
1551         __func__, reg);
1552 
1553     /* Step 1d: Set bit 24 of register 0xa360 to 0 */
1554     reg = OS_REG_READ(ah, 0xa360);
1555     reg &= ~0x001040000;
1556     OS_REG_WRITE(ah, 0xa360, reg);
1557 
1558     /* Step 2d: Set register 0xa364 to 0x5005D */
1559     reg = 0x5005D;
1560     OS_REG_WRITE(ah, 0xa364, reg);
1561 
1562     /* Step 3d: Read bits 17:0 of register 0xa368 */
1563     reg = OS_REG_READ(ah, 0xa368);
1564     reg &= 0x0003ffff;
1565     ath_hal_printf(ah,
1566         "%s: Test Control Status [0x5005D] 0xa368[17:0] = 0x%x\n",
1567         __func__, reg);
1568 
1569     /* Step 1e: Set bit 24 of register 0xa360 to 0 */
1570     reg = OS_REG_READ(ah, 0xa360);
1571     reg &= ~0x001040000;
1572     OS_REG_WRITE(ah, 0xa360, reg);
1573 
1574     /* Step 2e: Set register 0xa364 to 0x7005D */
1575     reg = 0x7005D;
1576     OS_REG_WRITE(ah, 0xa364, reg);
1577 
1578     /* Step 3e: Read bits 17:0 of register 0xa368 */
1579     reg = OS_REG_READ(ah, 0xa368);
1580     reg &= 0x0003ffff;
1581     ath_hal_printf(ah,
1582         "%s: Test Control Status [0x7005D] 0xa368[17:0] = 0x%x\n",
1583        __func__, reg);
1584 
1585     /* Step 1f: Set bit 24 of register 0xa360 to 0 */
1586     reg = OS_REG_READ(ah, 0xa360);
1587     reg &= ~0x001000000;
1588     reg |= 0x40000;
1589     OS_REG_WRITE(ah, 0xa360, reg);
1590 
1591     /* Step 2f: Set register 0xa364 to 0x3005D */
1592     reg = 0x3005D;
1593     OS_REG_WRITE(ah, 0xa364, reg);
1594 
1595     /* Step 3f: Read bits 17:0 of register 0xa368 */
1596     reg = OS_REG_READ(ah, 0xa368);
1597     reg &= 0x0003ffff;
1598     ath_hal_printf(ah,
1599         "%s: Test Control Status [0x3005D] 0xa368[17:0] = 0x%x\n",
1600         __func__, reg);
1601 
1602     /* Step 1g: Set bit 24 of register 0xa360 to 0 */
1603     reg = OS_REG_READ(ah, 0xa360);
1604     reg &= ~0x001000000;
1605     reg |= 0x40000;
1606     OS_REG_WRITE(ah, 0xa360, reg);
1607 
1608     /* Step 2g: Set register 0xa364 to 0x6005D */
1609     reg = 0x6005D;
1610     OS_REG_WRITE(ah, 0xa364, reg);
1611 
1612     /* Step 3g: Read bits 17:0 of register 0xa368 */
1613     reg = OS_REG_READ(ah, 0xa368);
1614     reg &= 0x0003ffff;
1615     ath_hal_printf(ah,
1616         "%s: Test Control Status [0x6005D] 0xa368[17:0] = 0x%x\n",
1617         __func__, reg);
1618 #endif /* AH_DEBUG */
1619 }
1620 
1621 /*
1622  * Return the busy for rx_frame, rx_clear, and tx_frame
1623  */
1624 u_int32_t
1625 ar9300_get_mib_cycle_counts_pct(struct ath_hal *ah, u_int32_t *rxc_pcnt,
1626     u_int32_t *rxf_pcnt, u_int32_t *txf_pcnt)
1627 {
1628     struct ath_hal_9300 *ahp = AH9300(ah);
1629     u_int32_t good = 1;
1630 
1631     u_int32_t rc = OS_REG_READ(ah, AR_RCCNT);
1632     u_int32_t rf = OS_REG_READ(ah, AR_RFCNT);
1633     u_int32_t tf = OS_REG_READ(ah, AR_TFCNT);
1634     u_int32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1635 
1636     if (ahp->ah_cycles == 0 || ahp->ah_cycles > cc) {
1637         /*
1638          * Cycle counter wrap (or initial call); it's not possible
1639          * to accurately calculate a value because the registers
1640          * right shift rather than wrap--so punt and return 0.
1641          */
1642         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1643             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1644         good = 0;
1645     } else {
1646         u_int32_t cc_d = cc - ahp->ah_cycles;
1647         u_int32_t rc_d = rc - ahp->ah_rx_clear;
1648         u_int32_t rf_d = rf - ahp->ah_rx_frame;
1649         u_int32_t tf_d = tf - ahp->ah_tx_frame;
1650 
1651         if (cc_d != 0) {
1652             *rxc_pcnt = rc_d * 100 / cc_d;
1653             *rxf_pcnt = rf_d * 100 / cc_d;
1654             *txf_pcnt = tf_d * 100 / cc_d;
1655         } else {
1656             good = 0;
1657         }
1658     }
1659 
1660     ahp->ah_cycles = cc;
1661     ahp->ah_rx_frame = rf;
1662     ahp->ah_rx_clear = rc;
1663     ahp->ah_tx_frame = tf;
1664 
1665     return good;
1666 }
1667 
1668 /*
1669  * Return approximation of extension channel busy over an time interval
1670  * 0% (clear) -> 100% (busy)
1671  * -1 for invalid estimate
1672  */
1673 uint32_t
1674 ar9300_get_11n_ext_busy(struct ath_hal *ah)
1675 {
1676     /*
1677      * Overflow condition to check before multiplying to get %
1678      * (x * 100 > 0xFFFFFFFF ) => (x > 0x28F5C28)
1679      */
1680 #define OVERFLOW_LIMIT  0x28F5C28
1681 #define ERROR_CODE      -1
1682 
1683     struct ath_hal_9300 *ahp = AH9300(ah);
1684     u_int32_t busy = 0; /* percentage */
1685     int8_t busyper = 0;
1686     u_int32_t cycle_count, ctl_busy, ext_busy;
1687 
1688     /* cycle_count will always be the first to wrap; therefore, read it last
1689      * This sequence of reads is not atomic, and MIB counter wrap
1690      * could happen during it ?
1691      */
1692     ctl_busy = OS_REG_READ(ah, AR_RCCNT);
1693     ext_busy = OS_REG_READ(ah, AR_EXTRCCNT);
1694     cycle_count = OS_REG_READ(ah, AR_CCCNT);
1695 
1696     if ((ahp->ah_cycle_count == 0) || (ahp->ah_cycle_count > cycle_count) ||
1697         (ahp->ah_ctl_busy > ctl_busy) || (ahp->ah_ext_busy > ext_busy))
1698     {
1699         /*
1700          * Cycle counter wrap (or initial call); it's not possible
1701          * to accurately calculate a value because the registers
1702          * right shift rather than wrap--so punt and return 0.
1703          */
1704         busyper = ERROR_CODE;
1705         HALDEBUG(ah, HAL_DEBUG_CHANNEL,
1706             "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1707     } else {
1708         u_int32_t cycle_delta = cycle_count - ahp->ah_cycle_count;
1709         u_int32_t ext_busy_delta = ext_busy - ahp->ah_ext_busy;
1710 
1711         /*
1712          * Compute extension channel busy percentage
1713          * Overflow condition: 0xFFFFFFFF < ext_busy_delta * 100
1714          * Underflow condition/Divide-by-zero: check that cycle_delta >> 7 != 0
1715          * Will never happen, since (ext_busy_delta < cycle_delta) always,
1716          * and shift necessitated by large ext_busy_delta.
1717          * Due to timing difference to read the registers and counter overflow,
1718          * it may still happen that cycle_delta >> 7 = 0.
1719          *
1720          */
1721         if (cycle_delta) {
1722             if (ext_busy_delta > OVERFLOW_LIMIT) {
1723                 if (cycle_delta >> 7) {
1724                     busy = ((ext_busy_delta >> 7) * 100) / (cycle_delta  >> 7);
1725                 } else {
1726                     busyper = ERROR_CODE;
1727                 }
1728             } else {
1729                 busy = (ext_busy_delta * 100) / cycle_delta;
1730             }
1731         } else {
1732             busyper = ERROR_CODE;
1733         }
1734 
1735         if (busy > 100) {
1736             busy = 100;
1737         }
1738         if ( busyper != ERROR_CODE ) {
1739             busyper = busy;
1740         }
1741     }
1742 
1743     ahp->ah_cycle_count = cycle_count;
1744     ahp->ah_ctl_busy = ctl_busy;
1745     ahp->ah_ext_busy = ext_busy;
1746 
1747     return busyper;
1748 #undef OVERFLOW_LIMIT
1749 #undef ERROR_CODE
1750 }
1751 
1752 /* BB Panic Watchdog declarations */
1753 #define HAL_BB_PANIC_WD_HT20_FACTOR         74  /* 0.74 */
1754 #define HAL_BB_PANIC_WD_HT40_FACTOR         37  /* 0.37 */
1755 
1756 void
1757 ar9300_config_bb_panic_watchdog(struct ath_hal *ah)
1758 {
1759 #define HAL_BB_PANIC_IDLE_TIME_OUT 0x0a8c0000
1760     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1761     u_int32_t idle_tmo_ms = AH9300(ah)->ah_bb_panic_timeout_ms;
1762     u_int32_t val, idle_count;
1763 
1764     if (idle_tmo_ms != 0) {
1765         /* enable IRQ, disable chip-reset for BB panic */
1766         val = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1767             AR_PHY_BB_PANIC_CNTL2_MASK;
1768         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1769             (val | AR_PHY_BB_PANIC_IRQ_ENABLE) & ~AR_PHY_BB_PANIC_RST_ENABLE);
1770         /* bound limit to 10 secs */
1771         if (idle_tmo_ms > 10000) {
1772             idle_tmo_ms = 10000;
1773         }
1774         if (chan != AH_NULL && IEEE80211_IS_CHAN_HT40(chan)) {
1775             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT40_FACTOR;
1776         } else {
1777             idle_count = (100 * idle_tmo_ms) / HAL_BB_PANIC_WD_HT20_FACTOR;
1778         }
1779         /*
1780          * enable panic in non-IDLE mode,
1781          * disable in IDLE mode,
1782          * set idle time-out
1783          */
1784 
1785         // EV92527 : Enable IDLE mode panic
1786 
1787         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1788                      AR_PHY_BB_PANIC_NON_IDLE_ENABLE |
1789                      AR_PHY_BB_PANIC_IDLE_ENABLE |
1790                      (AR_PHY_BB_PANIC_IDLE_MASK & HAL_BB_PANIC_IDLE_TIME_OUT) |
1791                      (AR_PHY_BB_PANIC_NON_IDLE_MASK & (idle_count << 2)));
1792     } else {
1793         /* disable IRQ, disable chip-reset for BB panic */
1794         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_2,
1795             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2) &
1796             ~(AR_PHY_BB_PANIC_RST_ENABLE | AR_PHY_BB_PANIC_IRQ_ENABLE));
1797         /* disable panic in non-IDLE mode, disable in IDLE mode */
1798         OS_REG_WRITE(ah, AR_PHY_PANIC_WD_CTL_1,
1799             OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1) &
1800             ~(AR_PHY_BB_PANIC_NON_IDLE_ENABLE | AR_PHY_BB_PANIC_IDLE_ENABLE));
1801     }
1802 
1803     HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: %s BB Panic Watchdog tmo=%ums\n",
1804              __func__, idle_tmo_ms ? "Enabled" : "Disabled", idle_tmo_ms);
1805 #undef HAL_BB_PANIC_IDLE_TIME_OUT
1806 }
1807 
1808 
1809 void
1810 ar9300_handle_bb_panic(struct ath_hal *ah)
1811 {
1812     u_int32_t status;
1813     /*
1814      * we want to avoid printing in ISR context so we save
1815      * panic watchdog status to be printed later in DPC context
1816      */
1817     AH9300(ah)->ah_bb_panic_last_status = status =
1818         OS_REG_READ(ah, AR_PHY_PANIC_WD_STATUS);
1819     /*
1820      * panic watchdog timer should reset on status read
1821      * but to make sure we write 0 to the watchdog status bit
1822      */
1823     OS_REG_WRITE(ah, AR_PHY_PANIC_WD_STATUS, status & ~AR_PHY_BB_WD_STATUS_CLR);
1824 }
1825 
1826 int
1827 ar9300_get_bb_panic_info(struct ath_hal *ah, struct hal_bb_panic_info *bb_panic)
1828 {
1829     bb_panic->status = AH9300(ah)->ah_bb_panic_last_status;
1830 
1831     /*
1832      * For signature 04000539 do not print anything.
1833      * This is a very common occurence as a compromise between
1834      * BB Panic and AH_FALSE detects (EV71009). It indicates
1835      * radar hang, which can be cleared by reprogramming
1836      * radar related register and does not requre a chip reset
1837      */
1838 
1839     /* Suppress BB Status mesg following signature */
1840     switch (bb_panic->status) {
1841         case 0x04000539:
1842         case 0x04008009:
1843         case 0x04000b09:
1844         case 0x1300000a:
1845         return -1;
1846     }
1847 
1848     bb_panic->tsf = ar9300_get_tsf32(ah);
1849     bb_panic->wd = MS(bb_panic->status, AR_PHY_BB_WD_STATUS);
1850     bb_panic->det = MS(bb_panic->status, AR_PHY_BB_WD_DET_HANG);
1851     bb_panic->rdar = MS(bb_panic->status, AR_PHY_BB_WD_RADAR_SM);
1852     bb_panic->r_odfm = MS(bb_panic->status, AR_PHY_BB_WD_RX_OFDM_SM);
1853     bb_panic->r_cck = MS(bb_panic->status, AR_PHY_BB_WD_RX_CCK_SM);
1854     bb_panic->t_odfm = MS(bb_panic->status, AR_PHY_BB_WD_TX_OFDM_SM);
1855     bb_panic->t_cck = MS(bb_panic->status, AR_PHY_BB_WD_TX_CCK_SM);
1856     bb_panic->agc = MS(bb_panic->status, AR_PHY_BB_WD_AGC_SM);
1857     bb_panic->src = MS(bb_panic->status, AR_PHY_BB_WD_SRCH_SM);
1858     bb_panic->phy_panic_wd_ctl1 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_1);
1859     bb_panic->phy_panic_wd_ctl2 = OS_REG_READ(ah, AR_PHY_PANIC_WD_CTL_2);
1860     bb_panic->phy_gen_ctrl = OS_REG_READ(ah, AR_PHY_GEN_CTRL);
1861     bb_panic->rxc_pcnt = bb_panic->rxf_pcnt = bb_panic->txf_pcnt = 0;
1862     bb_panic->cycles = ar9300_get_mib_cycle_counts_pct(ah,
1863                                         &bb_panic->rxc_pcnt,
1864                                         &bb_panic->rxf_pcnt,
1865                                         &bb_panic->txf_pcnt);
1866 
1867     if (ah->ah_config.ath_hal_show_bb_panic) {
1868         ath_hal_printf(ah, "\n==== BB update: BB status=0x%08x, "
1869             "tsf=0x%08x ====\n", bb_panic->status, bb_panic->tsf);
1870         ath_hal_printf(ah, "** BB state: wd=%u det=%u rdar=%u rOFDM=%d "
1871             "rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1872             bb_panic->wd, bb_panic->det, bb_panic->rdar,
1873             bb_panic->r_odfm, bb_panic->r_cck, bb_panic->t_odfm,
1874             bb_panic->t_cck, bb_panic->agc, bb_panic->src);
1875         ath_hal_printf(ah, "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1876             bb_panic->phy_panic_wd_ctl1, bb_panic->phy_panic_wd_ctl2);
1877         ath_hal_printf(ah, "** BB mode: BB_gen_controls=0x%08x **\n",
1878             bb_panic->phy_gen_ctrl);
1879         if (bb_panic->cycles) {
1880             ath_hal_printf(ah, "** BB busy times: rx_clear=%d%%, "
1881                 "rx_frame=%d%%, tx_frame=%d%% **\n", bb_panic->rxc_pcnt,
1882                 bb_panic->rxf_pcnt, bb_panic->txf_pcnt);
1883         }
1884         ath_hal_printf(ah, "==== BB update: done ====\n\n");
1885     }
1886 
1887     return 0; //The returned data will be stored for athstats to retrieve it
1888 }
1889 
1890 /* set the reason for HAL reset */
1891 void
1892 ar9300_set_hal_reset_reason(struct ath_hal *ah, u_int8_t resetreason)
1893 {
1894     AH9300(ah)->ah_reset_reason = resetreason;
1895 }
1896 
1897 /*
1898  * Configure 20/40 operation
1899  *
1900  * 20/40 = joint rx clear (control and extension)
1901  * 20    = rx clear (control)
1902  *
1903  * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz
1904  *         when changing from 20/40 => 20 only
1905  */
1906 void
1907 ar9300_set_11n_mac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
1908 {
1909     u_int32_t macmode;
1910 
1911     /* Configure MAC for 20/40 operation */
1912     if (mode == HAL_HT_MACMODE_2040 &&
1913         !ah->ah_config.ath_hal_cwm_ignore_ext_cca) {
1914         macmode = AR_2040_JOINED_RX_CLEAR;
1915     } else {
1916         macmode = 0;
1917     }
1918     OS_REG_WRITE(ah, AR_2040_MODE, macmode);
1919 }
1920 
1921 /*
1922  * Get Rx clear (control/extension channel)
1923  *
1924  * Returns active low (busy) for ctrl/ext channel
1925  * Owl 2.0
1926  */
1927 HAL_HT_RXCLEAR
1928 ar9300_get_11n_rx_clear(struct ath_hal *ah)
1929 {
1930     HAL_HT_RXCLEAR rxclear = 0;
1931     u_int32_t val;
1932 
1933     val = OS_REG_READ(ah, AR_DIAG_SW);
1934 
1935     /* control channel */
1936     if (val & AR_DIAG_RX_CLEAR_CTL_LOW) {
1937         rxclear |= HAL_RX_CLEAR_CTL_LOW;
1938     }
1939     /* extension channel */
1940     if (val & AR_DIAG_RX_CLEAR_EXT_LOW) {
1941         rxclear |= HAL_RX_CLEAR_EXT_LOW;
1942     }
1943     return rxclear;
1944 }
1945 
1946 /*
1947  * Set Rx clear (control/extension channel)
1948  *
1949  * Useful for forcing the channel to appear busy for
1950  * debugging/diagnostics
1951  * Owl 2.0
1952  */
1953 void
1954 ar9300_set_11n_rx_clear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
1955 {
1956     /* control channel */
1957     if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
1958         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1959     } else {
1960         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_CTL_LOW);
1961     }
1962     /* extension channel */
1963     if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
1964         OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1965     } else {
1966         OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_CLEAR_EXT_LOW);
1967     }
1968 }
1969 
1970 
1971 /*
1972  * HAL support code for force ppm tracking workaround.
1973  */
1974 
1975 u_int32_t
1976 ar9300_ppm_get_rssi_dump(struct ath_hal *ah)
1977 {
1978     u_int32_t retval;
1979     u_int32_t off1;
1980     u_int32_t off2;
1981 
1982     if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
1983         off1 = 0x2000;
1984         off2 = 0x1000;
1985     } else {
1986         off1 = 0x1000;
1987         off2 = 0x2000;
1988     }
1989 
1990     retval = ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0       )) << 0) |
1991              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off1)) << 8) |
1992              ((0xff & OS_REG_READ(ah, AR_PHY_CHAN_INFO_GAIN_0 + off2)) << 16);
1993 
1994     return retval;
1995 }
1996 
1997 u_int32_t
1998 ar9300_ppm_force(struct ath_hal *ah)
1999 {
2000     u_int32_t data_fine;
2001     u_int32_t data4;
2002     //u_int32_t off1;
2003     //u_int32_t off2;
2004     HAL_BOOL signed_val = AH_FALSE;
2005 
2006 //    if (OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) & AR_PHY_SWAP_ALT_CHAIN) {
2007 //        off1 = 0x2000;
2008 //        off2 = 0x1000;
2009 //    } else {
2010 //        off1 = 0x1000;
2011 //        off2 = 0x2000;
2012 //    }
2013     data_fine =
2014         AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK &
2015         OS_REG_READ(ah, AR_PHY_CHNINFO_GAINDIFF);
2016 
2017     /*
2018      * bit [11-0] is new ppm value. bit 11 is the signed bit.
2019      * So check value from bit[10:0].
2020      * Now get the abs val of the ppm value read in bit[0:11].
2021      * After that do bound check on abs value.
2022      * if value is off limit, CAP the value and and restore signed bit.
2023      */
2024     if (data_fine & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_SIGNED_BIT)
2025     {
2026         /* get the positive value */
2027         data_fine = (~data_fine + 1) & AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2028         signed_val = AH_TRUE;
2029     }
2030     if (data_fine > AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT)
2031     {
2032         HALDEBUG(ah, HAL_DEBUG_REGIO,
2033             "%s Correcting ppm out of range %x\n",
2034             __func__, (data_fine & 0x7ff));
2035         data_fine = AR_PHY_CHAN_INFO_GAIN_DIFF_UPPER_LIMIT;
2036     }
2037     /*
2038      * Restore signed value if changed above.
2039      * Use typecast to avoid compilation errors
2040      */
2041     if (signed_val) {
2042         data_fine = (-(int32_t)data_fine) &
2043             AR_PHY_CHAN_INFO_GAIN_DIFF_PPM_MASK;
2044     }
2045 
2046     /* write value */
2047     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) &
2048         ~(AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2049     OS_REG_WRITE(ah, AR_PHY_TIMING2,
2050         data4 | data_fine | AR_PHY_TIMING2_USE_FORCE_PPM);
2051 
2052     return data_fine;
2053 }
2054 
2055 void
2056 ar9300_ppm_un_force(struct ath_hal *ah)
2057 {
2058     u_int32_t data4;
2059 
2060     data4 = OS_REG_READ(ah, AR_PHY_TIMING2) & ~AR_PHY_TIMING2_USE_FORCE_PPM;
2061     OS_REG_WRITE(ah, AR_PHY_TIMING2, data4);
2062 }
2063 
2064 u_int32_t
2065 ar9300_ppm_arm_trigger(struct ath_hal *ah)
2066 {
2067     u_int32_t val;
2068     u_int32_t ret;
2069 
2070     val = OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY);
2071     ret = OS_REG_READ(ah, AR_TSF_L32);
2072     OS_REG_WRITE(ah, AR_PHY_CHAN_INFO_MEMORY,
2073         val | AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK);
2074 
2075     /* return low word of TSF at arm time */
2076     return ret;
2077 }
2078 
2079 int
2080 ar9300_ppm_get_trigger(struct ath_hal *ah)
2081 {
2082     if (OS_REG_READ(ah, AR_PHY_CHAN_INFO_MEMORY) &
2083         AR_PHY_CHAN_INFO_MEMORY_CAPTURE_MASK)
2084     {
2085         /* has not triggered yet, return AH_FALSE */
2086         return 0;
2087     }
2088 
2089     /* else triggered, return AH_TRUE */
2090     return 1;
2091 }
2092 
2093 void
2094 ar9300_mark_phy_inactive(struct ath_hal *ah)
2095 {
2096     OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2097 }
2098 
2099 /* DEBUG */
2100 u_int32_t
2101 ar9300_ppm_get_force_state(struct ath_hal *ah)
2102 {
2103     return
2104         OS_REG_READ(ah, AR_PHY_TIMING2) &
2105         (AR_PHY_TIMING2_USE_FORCE_PPM | AR_PHY_TIMING2_FORCE_PPM_VAL);
2106 }
2107 
2108 /*
2109  * Return the Cycle counts for rx_frame, rx_clear, and tx_frame
2110  */
2111 HAL_BOOL
2112 ar9300_get_mib_cycle_counts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hs)
2113 {
2114     /*
2115      * XXX FreeBSD todo: reimplement this
2116      */
2117 #if 0
2118     p_cnts->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
2119     p_cnts->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
2120     p_cnts->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
2121     p_cnts->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
2122     p_cnts->is_tx_active   = (OS_REG_READ(ah, AR_TFCNT) ==
2123                            p_cnts->tx_frame_count) ? AH_FALSE : AH_TRUE;
2124     p_cnts->is_rx_active   = (OS_REG_READ(ah, AR_RFCNT) ==
2125                            p_cnts->rx_frame_count) ? AH_FALSE : AH_TRUE;
2126 #endif
2127     return AH_FALSE;
2128 }
2129 
2130 void
2131 ar9300_clear_mib_counters(struct ath_hal *ah)
2132 {
2133     u_int32_t reg_val;
2134 
2135     reg_val = OS_REG_READ(ah, AR_MIBC);
2136     OS_REG_WRITE(ah, AR_MIBC, reg_val | AR_MIBC_CMC);
2137     OS_REG_WRITE(ah, AR_MIBC, reg_val & ~AR_MIBC_CMC);
2138 }
2139 
2140 
2141 /* Enable or Disable RIFS Rx capability as part of SW WAR for Bug 31602 */
2142 HAL_BOOL
2143 ar9300_set_rifs_delay(struct ath_hal *ah, HAL_BOOL enable)
2144 {
2145     struct ath_hal_9300 *ahp = AH9300(ah);
2146     HAL_CHANNEL_INTERNAL *ichan =
2147       ath_hal_checkchannel(ah, AH_PRIVATE(ah)->ah_curchan);
2148     HAL_BOOL is_chan_2g = IS_CHAN_2GHZ(ichan);
2149     u_int32_t tmp = 0;
2150 
2151     if (enable) {
2152         if (ahp->ah_rifs_enabled == AH_TRUE) {
2153             return AH_TRUE;
2154         }
2155 
2156         OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, ahp->ah_rifs_reg[0]);
2157         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2158                      ahp->ah_rifs_reg[1]);
2159 
2160         ahp->ah_rifs_enabled = AH_TRUE;
2161         OS_MEMZERO(ahp->ah_rifs_reg, sizeof(ahp->ah_rifs_reg));
2162     } else {
2163         if (ahp->ah_rifs_enabled == AH_TRUE) {
2164             ahp->ah_rifs_reg[0] = OS_REG_READ(ah,
2165                                               AR_PHY_SEARCH_START_DELAY);
2166             ahp->ah_rifs_reg[1] = OS_REG_READ(ah, AR_PHY_RIFS_SRCH);
2167         }
2168         /* Change rifs init delay to 0 */
2169         OS_REG_WRITE(ah, AR_PHY_RIFS_SRCH,
2170                      (ahp->ah_rifs_reg[1] & ~(AR_PHY_RIFS_INIT_DELAY)));
2171         tmp = 0xfffff000 & OS_REG_READ(ah, AR_PHY_SEARCH_START_DELAY);
2172         if (is_chan_2g) {
2173             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2174                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 500);
2175             } else { /* Sowl 2G HT-20 default is 0x134 for search start delay */
2176                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 250);
2177             }
2178         } else {
2179             if (IEEE80211_IS_CHAN_HT40(AH_PRIVATE(ah)->ah_curchan)) {
2180                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x370);
2181             } else { /* Sowl 5G HT-20 default is 0x1b8 for search start delay */
2182                 OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, tmp | 0x1b8);
2183             }
2184         }
2185 
2186         ahp->ah_rifs_enabled = AH_FALSE;
2187     }
2188     return AH_TRUE;
2189 
2190 } /* ar9300_set_rifs_delay () */
2191 
2192 /* Set the current RIFS Rx setting */
2193 HAL_BOOL
2194 ar9300_set_11n_rx_rifs(struct ath_hal *ah, HAL_BOOL enable)
2195 {
2196     /* Non-Owl 11n chips */
2197     if ((ath_hal_getcapability(ah, HAL_CAP_RIFS_RX, 0, AH_NULL) == HAL_OK)) {
2198         if (ar9300_get_capability(ah, HAL_CAP_LDPCWAR, 0, AH_NULL) == HAL_OK) {
2199             return ar9300_set_rifs_delay(ah, enable);
2200         }
2201         return AH_FALSE;
2202     }
2203 
2204     return AH_TRUE;
2205 } /* ar9300_set_11n_rx_rifs () */
2206 
2207 static hal_mac_hangs_t
2208 ar9300_compare_dbg_hang(struct ath_hal *ah, mac_dbg_regs_t mac_dbg,
2209   hal_mac_hang_check_t hang_check, hal_mac_hangs_t hangs, u_int8_t *dcu_chain)
2210 {
2211     int i = 0;
2212     hal_mac_hangs_t found_hangs = 0;
2213 
2214     if (hangs & dcu_chain_state) {
2215         for (i = 0; i < 6; i++) {
2216             if (((mac_dbg.dma_dbg_4 >> (5 * i)) & 0x1f) ==
2217                  hang_check.dcu_chain_state)
2218             {
2219                 found_hangs |= dcu_chain_state;
2220                 *dcu_chain = i;
2221             }
2222         }
2223         for (i = 0; i < 4; i++) {
2224             if (((mac_dbg.dma_dbg_5 >> (5 * i)) & 0x1f) ==
2225                   hang_check.dcu_chain_state)
2226             {
2227                 found_hangs |= dcu_chain_state;
2228                 *dcu_chain = i + 6;
2229             }
2230         }
2231     }
2232 
2233     if (hangs & dcu_complete_state) {
2234         if ((mac_dbg.dma_dbg_6 & 0x3) == hang_check.dcu_complete_state) {
2235             found_hangs |= dcu_complete_state;
2236         }
2237     }
2238 
2239     return found_hangs;
2240 
2241 } /* end - ar9300_compare_dbg_hang */
2242 
2243 #define NUM_STATUS_READS 50
2244 HAL_BOOL
2245 ar9300_detect_mac_hang(struct ath_hal *ah)
2246 {
2247     struct ath_hal_9300 *ahp = AH9300(ah);
2248     mac_dbg_regs_t mac_dbg;
2249     hal_mac_hang_check_t hang_sig1_val = {0x6, 0x1, 0, 0, 0, 0, 0, 0};
2250     hal_mac_hangs_t      hang_sig1 = (dcu_chain_state | dcu_complete_state);
2251     int i = 0;
2252     u_int8_t dcu_chain = 0, current_dcu_chain_state, shift_val;
2253 
2254     if (!(ahp->ah_hang_wars & HAL_MAC_HANG_WAR)) {
2255         return AH_FALSE;
2256     }
2257 
2258     OS_MEMZERO(&mac_dbg, sizeof(mac_dbg));
2259 
2260     mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2261     mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2262     mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2263 
2264     HALDEBUG(ah, HAL_DEBUG_DFS, " dma regs: %X %X %X \n",
2265             mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
2266             mac_dbg.dma_dbg_6);
2267 
2268     if (hang_sig1 !=
2269             ar9300_compare_dbg_hang(ah, mac_dbg,
2270                  hang_sig1_val, hang_sig1, &dcu_chain))
2271     {
2272         HALDEBUG(ah, HAL_DEBUG_DFS, " hang sig1 not found \n");
2273         return AH_FALSE;
2274     }
2275 
2276     shift_val = (dcu_chain >= 6) ? (dcu_chain-6) : (dcu_chain);
2277     shift_val *= 5;
2278 
2279     for (i = 1; i <= NUM_STATUS_READS; i++) {
2280         if (dcu_chain < 6) {
2281             mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
2282             current_dcu_chain_state =
2283                      ((mac_dbg.dma_dbg_4 >> shift_val) & 0x1f);
2284         } else {
2285             mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
2286             current_dcu_chain_state = ((mac_dbg.dma_dbg_5 >> shift_val) & 0x1f);
2287         }
2288         mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
2289 
2290         if (((mac_dbg.dma_dbg_6 & 0x3) != hang_sig1_val.dcu_complete_state)
2291             || (current_dcu_chain_state != hang_sig1_val.dcu_chain_state)) {
2292             return AH_FALSE;
2293         }
2294     }
2295     HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig5count=%d sig6count=%d ", __func__,
2296              ahp->ah_hang[MAC_HANG_SIG1], ahp->ah_hang[MAC_HANG_SIG2]);
2297     ahp->ah_hang[MAC_HANG_SIG1]++;
2298     return AH_TRUE;
2299 
2300 } /* end - ar9300_detect_mac_hang */
2301 
2302 /* Determine if the baseband is hung by reading the Observation Bus Register */
2303 HAL_BOOL
2304 ar9300_detect_bb_hang(struct ath_hal *ah)
2305 {
2306 #define N(a) (sizeof(a) / sizeof(a[0]))
2307     struct ath_hal_9300 *ahp = AH9300(ah);
2308     u_int32_t hang_sig = 0;
2309     int i = 0;
2310     /* Check the PCU Observation Bus 1 register (0x806c) NUM_STATUS_READS times
2311      *
2312      * 4 known BB hang signatures -
2313      * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
2314      * [2] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x52
2315      * [3] bits 8,9 are 1, bit 11 is 0. State machine state (bits 25-31) is 0x18
2316      * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
2317      *     Rx State (bits 20-24) is 0x7.
2318      */
2319     hal_hw_hang_check_t hang_list [] =
2320     {
2321      /* Offset        Reg Value   Reg Mask    Hang Offset */
2322        {AR_OBS_BUS_1, 0x1E000000, 0x7E000B00, BB_HANG_SIG1},
2323        {AR_OBS_BUS_1, 0x52000B00, 0x7E000B00, BB_HANG_SIG2},
2324        {AR_OBS_BUS_1, 0x18000B00, 0x7E000B00, BB_HANG_SIG3},
2325        {AR_OBS_BUS_1, 0x00702400, 0x7E7FFFEF, BB_HANG_SIG4}
2326     };
2327 
2328     if (!(ahp->ah_hang_wars & (HAL_RIFS_BB_HANG_WAR |
2329                                HAL_DFS_BB_HANG_WAR |
2330                                HAL_RX_STUCK_LOW_BB_HANG_WAR))) {
2331         return AH_FALSE;
2332     }
2333 
2334     hang_sig = OS_REG_READ(ah, AR_OBS_BUS_1);
2335     for (i = 1; i <= NUM_STATUS_READS; i++) {
2336         if (hang_sig != OS_REG_READ(ah, AR_OBS_BUS_1)) {
2337             return AH_FALSE;
2338         }
2339     }
2340 
2341     for (i = 0; i < N(hang_list); i++) {
2342         if ((hang_sig & hang_list[i].hang_mask) == hang_list[i].hang_val) {
2343             ahp->ah_hang[hang_list[i].hang_offset]++;
2344             HALDEBUG(ah, HAL_DEBUG_DFS, "%s sig1count=%d sig2count=%d "
2345                      "sig3count=%d sig4count=%d\n", __func__,
2346                      ahp->ah_hang[BB_HANG_SIG1], ahp->ah_hang[BB_HANG_SIG2],
2347                      ahp->ah_hang[BB_HANG_SIG3], ahp->ah_hang[BB_HANG_SIG4]);
2348             return AH_TRUE;
2349         }
2350     }
2351 
2352     HALDEBUG(ah, HAL_DEBUG_DFS, "%s Found an unknown BB hang signature! "
2353                               "<0x806c>=0x%x\n", __func__, hang_sig);
2354 
2355     return AH_FALSE;
2356 
2357 #undef N
2358 } /* end - ar9300_detect_bb_hang () */
2359 
2360 #undef NUM_STATUS_READS
2361 
2362 HAL_STATUS
2363 ar9300_select_ant_config(struct ath_hal *ah, u_int32_t cfg)
2364 {
2365     struct ath_hal_9300     *ahp = AH9300(ah);
2366     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2367     HAL_CHANNEL_INTERNAL    *ichan = ath_hal_checkchannel(ah, chan);
2368     const HAL_CAPABILITIES  *p_cap = &AH_PRIVATE(ah)->ah_caps;
2369     u_int16_t               ant_config;
2370     u_int32_t               hal_num_ant_config;
2371 
2372     hal_num_ant_config = IS_CHAN_2GHZ(ichan) ?
2373         p_cap->halNumAntCfg2GHz: p_cap->halNumAntCfg5GHz;
2374 
2375     if (cfg < hal_num_ant_config) {
2376         if (HAL_OK == ar9300_eeprom_get_ant_cfg(ahp, chan, cfg, &ant_config)) {
2377             OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, ant_config);
2378             return HAL_OK;
2379         }
2380     }
2381 
2382     return HAL_EINVAL;
2383 }
2384 
2385 /*
2386  * Functions to get/set DCS mode
2387  */
2388 void
2389 ar9300_set_dcs_mode(struct ath_hal *ah, u_int32_t mode)
2390 {
2391     AH9300(ah)->ah_dcs_enable = mode;
2392 }
2393 
2394 u_int32_t
2395 ar9300_get_dcs_mode(struct ath_hal *ah)
2396 {
2397     return AH9300(ah)->ah_dcs_enable;
2398 }
2399 
2400 #if ATH_BT_COEX
2401 void
2402 ar9300_set_bt_coex_info(struct ath_hal *ah, HAL_BT_COEX_INFO *btinfo)
2403 {
2404     struct ath_hal_9300 *ahp = AH9300(ah);
2405 
2406     ahp->ah_bt_module = btinfo->bt_module;
2407     ahp->ah_bt_coex_config_type = btinfo->bt_coex_config;
2408     ahp->ah_bt_active_gpio_select = btinfo->bt_gpio_bt_active;
2409     ahp->ah_bt_priority_gpio_select = btinfo->bt_gpio_bt_priority;
2410     ahp->ah_wlan_active_gpio_select = btinfo->bt_gpio_wlan_active;
2411     ahp->ah_bt_active_polarity = btinfo->bt_active_polarity;
2412     ahp->ah_bt_coex_single_ant = btinfo->bt_single_ant;
2413     ahp->ah_bt_wlan_isolation = btinfo->bt_isolation;
2414 }
2415 
2416 void
2417 ar9300_bt_coex_config(struct ath_hal *ah, HAL_BT_COEX_CONFIG *btconf)
2418 {
2419     struct ath_hal_9300 *ahp = AH9300(ah);
2420     HAL_BOOL rx_clear_polarity;
2421 
2422     /*
2423      * For Kiwi and Osprey, the polarity of rx_clear is active high.
2424      * The bt_rxclear_polarity flag from ath_dev needs to be inverted.
2425      */
2426     rx_clear_polarity = !btconf->bt_rxclear_polarity;
2427 
2428     ahp->ah_bt_coex_mode = (ahp->ah_bt_coex_mode & AR_BT_QCU_THRESH) |
2429         SM(btconf->bt_time_extend, AR_BT_TIME_EXTEND) |
2430         SM(btconf->bt_txstate_extend, AR_BT_TXSTATE_EXTEND) |
2431         SM(btconf->bt_txframe_extend, AR_BT_TX_FRAME_EXTEND) |
2432         SM(btconf->bt_mode, AR_BT_MODE) |
2433         SM(btconf->bt_quiet_collision, AR_BT_QUIET) |
2434         SM(rx_clear_polarity, AR_BT_RX_CLEAR_POLARITY) |
2435         SM(btconf->bt_priority_time, AR_BT_PRIORITY_TIME) |
2436         SM(btconf->bt_first_slot_time, AR_BT_FIRST_SLOT_TIME);
2437 
2438     ahp->ah_bt_coex_mode2 |= SM(btconf->bt_hold_rxclear, AR_BT_HOLD_RX_CLEAR);
2439 
2440     if (ahp->ah_bt_coex_single_ant == AH_FALSE) {
2441         /* Enable ACK to go out even though BT has higher priority. */
2442         ahp->ah_bt_coex_mode2 |= AR_BT_DISABLE_BT_ANT;
2443     }
2444 }
2445 
2446 void
2447 ar9300_bt_coex_set_qcu_thresh(struct ath_hal *ah, int qnum)
2448 {
2449     struct ath_hal_9300 *ahp = AH9300(ah);
2450 
2451     /* clear the old value, then set the new value */
2452     ahp->ah_bt_coex_mode &= ~AR_BT_QCU_THRESH;
2453     ahp->ah_bt_coex_mode |= SM(qnum, AR_BT_QCU_THRESH);
2454 }
2455 
2456 void
2457 ar9300_bt_coex_set_weights(struct ath_hal *ah, u_int32_t stomp_type)
2458 {
2459     struct ath_hal_9300 *ahp = AH9300(ah);
2460 
2461     ahp->ah_bt_coex_bt_weight[0] = AR9300_BT_WGHT;
2462     ahp->ah_bt_coex_bt_weight[1] = AR9300_BT_WGHT;
2463     ahp->ah_bt_coex_bt_weight[2] = AR9300_BT_WGHT;
2464     ahp->ah_bt_coex_bt_weight[3] = AR9300_BT_WGHT;
2465 
2466     switch (stomp_type) {
2467     case HAL_BT_COEX_STOMP_ALL:
2468         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_WLAN_WGHT0;
2469         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_WLAN_WGHT1;
2470         break;
2471     case HAL_BT_COEX_STOMP_LOW:
2472         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_WLAN_WGHT0;
2473         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_WLAN_WGHT1;
2474         break;
2475     case HAL_BT_COEX_STOMP_ALL_FORCE:
2476         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT0;
2477         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_ALL_FORCE_WLAN_WGHT1;
2478         break;
2479     case HAL_BT_COEX_STOMP_LOW_FORCE:
2480         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT0;
2481         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_LOW_FORCE_WLAN_WGHT1;
2482         break;
2483     case HAL_BT_COEX_STOMP_NONE:
2484     case HAL_BT_COEX_NO_STOMP:
2485         ahp->ah_bt_coex_wlan_weight[0] = AR9300_STOMP_NONE_WLAN_WGHT0;
2486         ahp->ah_bt_coex_wlan_weight[1] = AR9300_STOMP_NONE_WLAN_WGHT1;
2487         break;
2488     default:
2489         /* There is a force_weight from registry */
2490         ahp->ah_bt_coex_wlan_weight[0] = stomp_type;
2491         ahp->ah_bt_coex_wlan_weight[1] = stomp_type;
2492         break;
2493     }
2494 }
2495 
2496 void
2497 ar9300_bt_coex_setup_bmiss_thresh(struct ath_hal *ah, u_int32_t thresh)
2498 {
2499     struct ath_hal_9300 *ahp = AH9300(ah);
2500 
2501     /* clear the old value, then set the new value */
2502     ahp->ah_bt_coex_mode2 &= ~AR_BT_BCN_MISS_THRESH;
2503     ahp->ah_bt_coex_mode2 |= SM(thresh, AR_BT_BCN_MISS_THRESH);
2504 }
2505 
2506 static void
2507 ar9300_bt_coex_antenna_diversity(struct ath_hal *ah, u_int32_t value)
2508 {
2509     struct ath_hal_9300 *ahp = AH9300(ah);
2510 #if ATH_ANT_DIV_COMB
2511     //struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2512     const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
2513 #endif
2514 
2515     HALDEBUG(ah, HAL_DEBUG_BT_COEX, "%s: called, value=%d\n", __func__, value);
2516 
2517     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_ANT_DIV_ALLOW)
2518     {
2519         if (ahp->ah_diversity_control == HAL_ANT_VARIABLE)
2520         {
2521             /* Config antenna diversity */
2522 #if ATH_ANT_DIV_COMB
2523             ar9300_ant_ctrl_set_lna_div_use_bt_ant(ah, value, chan);
2524 #endif
2525         }
2526     }
2527 }
2528 
2529 
2530 void
2531 ar9300_bt_coex_set_parameter(struct ath_hal *ah, u_int32_t type,
2532     u_int32_t value)
2533 {
2534     struct ath_hal_9300 *ahp = AH9300(ah);
2535     struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
2536 
2537     switch (type) {
2538         case HAL_BT_COEX_SET_ACK_PWR:
2539             if (value) {
2540                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2541             } else {
2542                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOW_ACK_PWR;
2543             }
2544             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2545                 ahpriv->ah_extraTxPow, 0);
2546             break;
2547 
2548         case HAL_BT_COEX_ANTENNA_DIVERSITY:
2549             if (AR_SREV_POSEIDON(ah) || AR_SREV_APHRODITE(ah)) {
2550                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ALLOW;
2551                 if (value) {
2552                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2553                 }
2554                 else {
2555                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_ANT_DIV_ENABLE;
2556                 }
2557                 ar9300_bt_coex_antenna_diversity(ah, value);
2558             }
2559             break;
2560         case HAL_BT_COEX_LOWER_TX_PWR:
2561             if (value) {
2562                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2563             }
2564             else {
2565                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_LOWER_TX_PWR;
2566             }
2567             ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2568                                       ahpriv->ah_extraTxPow, 0);
2569             break;
2570 #if ATH_SUPPORT_MCI
2571         case HAL_BT_COEX_MCI_MAX_TX_PWR:
2572             if ((ah->ah_config.ath_hal_mci_config &
2573                  ATH_MCI_CONFIG_CONCUR_TX) == ATH_MCI_CONCUR_TX_SHARED_CHN)
2574             {
2575                 if (value) {
2576                     ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2577                     ahp->ah_mci_concur_tx_en = AH_TRUE;
2578                 }
2579                 else {
2580                     ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR;
2581                     ahp->ah_mci_concur_tx_en = AH_FALSE;
2582                 }
2583                 ar9300_set_tx_power_limit(ah, ahpriv->ah_powerLimit,
2584                                           ahpriv->ah_extraTxPow, 0);
2585             }
2586             HALDEBUG(ah, HAL_DEBUG_BT_COEX, "(MCI) concur_tx_en = %d\n",
2587                      ahp->ah_mci_concur_tx_en);
2588             break;
2589         case HAL_BT_COEX_MCI_FTP_STOMP_RX:
2590             if (value) {
2591                 ahp->ah_bt_coex_flag |= HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2592             }
2593             else {
2594                 ahp->ah_bt_coex_flag &= ~HAL_BT_COEX_FLAG_MCI_FTP_STOMP_RX;
2595             }
2596             break;
2597 #endif
2598         default:
2599             break;
2600     }
2601 }
2602 
2603 void
2604 ar9300_bt_coex_disable(struct ath_hal *ah)
2605 {
2606     struct ath_hal_9300 *ahp = AH9300(ah);
2607 
2608     /* Always drive rx_clear_external output as 0 */
2609     ath_hal_gpioCfgOutput(ah, ahp->ah_wlan_active_gpio_select,
2610         HAL_GPIO_OUTPUT_MUX_AS_OUTPUT);
2611 
2612     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2613         OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2614         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2615     }
2616 
2617     OS_REG_WRITE(ah, AR_BT_COEX_MODE, AR_BT_QUIET | AR_BT_MODE);
2618     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, 0);
2619     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, 0);
2620     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, 0);
2621     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, 0);
2622     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, 0);
2623     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, 0);
2624     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, 0);
2625 
2626     ahp->ah_bt_coex_enabled = AH_FALSE;
2627 }
2628 
2629 int
2630 ar9300_bt_coex_enable(struct ath_hal *ah)
2631 {
2632     struct ath_hal_9300 *ahp = AH9300(ah);
2633 
2634     /* Program coex mode and weight registers to actually enable coex */
2635     OS_REG_WRITE(ah, AR_BT_COEX_MODE, ahp->ah_bt_coex_mode);
2636     OS_REG_WRITE(ah, AR_BT_COEX_MODE2, ahp->ah_bt_coex_mode2);
2637     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS0, ahp->ah_bt_coex_wlan_weight[0]);
2638     OS_REG_WRITE(ah, AR_BT_COEX_WL_WEIGHTS1, ahp->ah_bt_coex_wlan_weight[1]);
2639     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS0, ahp->ah_bt_coex_bt_weight[0]);
2640     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS1, ahp->ah_bt_coex_bt_weight[1]);
2641     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS2, ahp->ah_bt_coex_bt_weight[2]);
2642     OS_REG_WRITE(ah, AR_BT_COEX_BT_WEIGHTS3, ahp->ah_bt_coex_bt_weight[3]);
2643 
2644     if (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOW_ACK_PWR) {
2645         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_LOW_ACK_POWER);
2646     } else {
2647         OS_REG_WRITE(ah, AR_TPC, HAL_BT_COEX_HIGH_ACK_POWER);
2648     }
2649 
2650     OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
2651     if (ahp->ah_bt_coex_single_ant == AH_TRUE) {
2652         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 1);
2653     } else {
2654         OS_REG_RMW_FIELD(ah, AR_PCU_MISC, AR_PCU_BT_ANT_PREVENT_RX, 0);
2655     }
2656 
2657     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2658         /* For 3-wire, configure the desired GPIO port for rx_clear */
2659         ath_hal_gpioCfgOutput(ah,
2660             ahp->ah_wlan_active_gpio_select,
2661             HAL_GPIO_OUTPUT_MUX_AS_WLAN_ACTIVE);
2662     }
2663     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2664         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2665     {
2666         /* For 2-wire, configure the desired GPIO port for TX_FRAME output */
2667         ath_hal_gpioCfgOutput(ah,
2668             ahp->ah_wlan_active_gpio_select,
2669             HAL_GPIO_OUTPUT_MUX_AS_TX_FRAME);
2670     }
2671 
2672     /*
2673      * Enable a weak pull down on BT_ACTIVE.
2674      * When BT device is disabled, BT_ACTIVE might be floating.
2675      */
2676     OS_REG_RMW(ah, AR_HOSTIF_REG(ah, AR_GPIO_PDPU),
2677         (AR_GPIO_PULL_DOWN << (ahp->ah_bt_active_gpio_select * 2)),
2678         (AR_GPIO_PDPU_OPTION << (ahp->ah_bt_active_gpio_select * 2)));
2679 
2680     ahp->ah_bt_coex_enabled = AH_TRUE;
2681 
2682     return 0;
2683 }
2684 
2685 u_int32_t ar9300_get_bt_active_gpio(struct ath_hal *ah, u_int32_t reg)
2686 {
2687     return 0;
2688 }
2689 
2690 u_int32_t ar9300_get_wlan_active_gpio(struct ath_hal *ah, u_int32_t reg,u_int32_t bOn)
2691 {
2692     return bOn;
2693 }
2694 
2695 void
2696 ar9300_init_bt_coex(struct ath_hal *ah)
2697 {
2698     struct ath_hal_9300 *ahp = AH9300(ah);
2699 
2700     if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) {
2701         OS_REG_SET_BIT(ah, AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2702                    (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_BB |
2703                     AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB));
2704 
2705         /*
2706          * Set input mux for bt_prority_async and
2707          * bt_active_async to GPIO pins
2708          */
2709         OS_REG_RMW_FIELD(ah,
2710             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2711             AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2712             ahp->ah_bt_active_gpio_select);
2713         OS_REG_RMW_FIELD(ah,
2714             AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2715             AR_GPIO_INPUT_MUX1_BT_PRIORITY,
2716             ahp->ah_bt_priority_gpio_select);
2717 
2718         /* Configure the desired GPIO ports for input */
2719         ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2720         ath_hal_gpioCfgInput(ah, ahp->ah_bt_priority_gpio_select);
2721 
2722         if (ahp->ah_bt_coex_enabled) {
2723             ar9300_bt_coex_enable(ah);
2724         } else {
2725             ar9300_bt_coex_disable(ah);
2726         }
2727     }
2728     else if ((ahp->ah_bt_coex_config_type >= HAL_BT_COEX_CFG_2WIRE_2CH) &&
2729         (ahp->ah_bt_coex_config_type <= HAL_BT_COEX_CFG_2WIRE_CH0))
2730     {
2731         /* 2-wire */
2732         if (ahp->ah_bt_coex_enabled) {
2733             /* Connect bt_active_async to baseband */
2734             OS_REG_CLR_BIT(ah,
2735                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2736                 (AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
2737                  AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
2738             OS_REG_SET_BIT(ah,
2739                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_EN_VAL),
2740                 AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
2741 
2742             /*
2743              * Set input mux for bt_prority_async and
2744              * bt_active_async to GPIO pins
2745              */
2746             OS_REG_RMW_FIELD(ah,
2747                 AR_HOSTIF_REG(ah, AR_GPIO_INPUT_MUX1),
2748                 AR_GPIO_INPUT_MUX1_BT_ACTIVE,
2749                 ahp->ah_bt_active_gpio_select);
2750 
2751             /* Configure the desired GPIO ports for input */
2752             ath_hal_gpioCfgInput(ah, ahp->ah_bt_active_gpio_select);
2753 
2754             /* Enable coexistence on initialization */
2755             ar9300_bt_coex_enable(ah);
2756         }
2757     }
2758 #if ATH_SUPPORT_MCI
2759     else if (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI) {
2760         if (ahp->ah_bt_coex_enabled) {
2761             ar9300_mci_bt_coex_enable(ah);
2762         }
2763         else {
2764             ar9300_mci_bt_coex_disable(ah);
2765         }
2766     }
2767 #endif /* ATH_SUPPORT_MCI */
2768 }
2769 
2770 #endif /* ATH_BT_COEX */
2771 
2772 HAL_STATUS ar9300_set_proxy_sta(struct ath_hal *ah, HAL_BOOL enable)
2773 {
2774     u_int32_t val;
2775     int wasp_mm_rev;
2776 
2777 #define AR_SOC_RST_REVISION_ID      0xB8060090
2778 #define REG_READ(_reg)              *((volatile u_int32_t *)(_reg))
2779     wasp_mm_rev = (REG_READ(AR_SOC_RST_REVISION_ID) &
2780             AR_SREV_REVISION_WASP_MINOR_MINOR_MASK) >>
2781             AR_SREV_REVISION_WASP_MINOR_MINOR_SHIFT;
2782 #undef AR_SOC_RST_REVISION_ID
2783 #undef REG_READ
2784 
2785     /*
2786      * Azimuth (ProxySTA) Mode is only supported correctly by
2787      * Peacock or WASP 1.3.0.1 or later (hopefully) chips.
2788      *
2789      * Enable this feature for Scorpion at this time. The silicon
2790      * still needs to be validated.
2791      */
2792     if (!(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_AR9580) &&
2793         !(AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_SCORPION) &&
2794         !((AH_PRIVATE((ah))->ah_macVersion == AR_SREV_VERSION_WASP) &&
2795           ((AH_PRIVATE((ah))->ah_macRev > AR_SREV_REVISION_WASP_13) ||
2796            (AH_PRIVATE((ah))->ah_macRev == AR_SREV_REVISION_WASP_13 &&
2797             wasp_mm_rev >= 0 /* 1 */))))
2798     {
2799         HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "%s error: current chip (ver 0x%x, "
2800                 "rev 0x%x, minor minor rev 0x%x) cannot support Azimuth Mode\n",
2801                 __func__, AH_PRIVATE((ah))->ah_macVersion,
2802                 AH_PRIVATE((ah))->ah_macRev, wasp_mm_rev);
2803         return HAL_ENOTSUPP;
2804     }
2805 
2806     OS_REG_WRITE(ah,
2807         AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_PSTABUG75996);
2808 
2809     /* turn on mode bit[24] for proxy sta */
2810     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2,
2811         OS_REG_READ(ah, AR_PCU_MISC_MODE2) | AR_PCU_MISC_MODE2_PROXY_STA);
2812 
2813     val = OS_REG_READ(ah, AR_AZIMUTH_MODE);
2814     if (enable) {
2815         val |= AR_AZIMUTH_KEY_SEARCH_AD1 |
2816                AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2817                AR_AZIMUTH_BA_USES_AD1;
2818         /* turn off filter pass hold (bit 9) */
2819         val &= ~AR_AZIMUTH_FILTER_PASS_HOLD;
2820     } else {
2821         val &= ~(AR_AZIMUTH_KEY_SEARCH_AD1 |
2822                  AR_AZIMUTH_CTS_MATCH_TX_AD2 |
2823                  AR_AZIMUTH_BA_USES_AD1);
2824     }
2825     OS_REG_WRITE(ah, AR_AZIMUTH_MODE, val);
2826 
2827     /* enable promiscous mode */
2828     OS_REG_WRITE(ah, AR_RX_FILTER,
2829         OS_REG_READ(ah, AR_RX_FILTER) | HAL_RX_FILTER_PROM);
2830     /* enable promiscous in azimuth mode */
2831     OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_PROM_VC_MODE);
2832     OS_REG_WRITE(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_VC_MODE);
2833 
2834     /* turn on filter pass hold (bit 9) */
2835     OS_REG_WRITE(ah, AR_AZIMUTH_MODE,
2836         OS_REG_READ(ah, AR_AZIMUTH_MODE) | AR_AZIMUTH_FILTER_PASS_HOLD);
2837 
2838     return HAL_OK;
2839 }
2840 
2841 #if 0
2842 void ar9300_mat_enable(struct ath_hal *ah, int enable)
2843 {
2844     /*
2845      * MAT (s/w ProxySTA) implementation requires to turn off interrupt
2846      * mitigation and turn on key search always for better performance.
2847      */
2848     struct ath_hal_9300 *ahp = AH9300(ah);
2849     struct ath_hal_private *ap = AH_PRIVATE(ah);
2850 
2851     ahp->ah_intr_mitigation_rx = !enable;
2852     if (ahp->ah_intr_mitigation_rx) {
2853         /*
2854          * Enable Interrupt Mitigation for Rx.
2855          * If no build-specific limits for the rx interrupt mitigation
2856          * timer have been specified, use conservative defaults.
2857          */
2858         #ifndef AH_RIMT_VAL_LAST
2859             #define AH_RIMT_LAST_MICROSEC 500
2860         #endif
2861         #ifndef AH_RIMT_VAL_FIRST
2862             #define AH_RIMT_FIRST_MICROSEC 2000
2863         #endif
2864         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, AH_RIMT_LAST_MICROSEC);
2865         OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, AH_RIMT_FIRST_MICROSEC);
2866     } else {
2867         OS_REG_WRITE(ah, AR_RIMT, 0);
2868     }
2869 
2870     ahp->ah_enable_keysearch_always = !!enable;
2871     ar9300_enable_keysearch_always(ah, ahp->ah_enable_keysearch_always);
2872 }
2873 #endif
2874 
2875 void ar9300_enable_tpc(struct ath_hal *ah)
2876 {
2877     u_int32_t val = 0;
2878 
2879     ah->ah_config.ath_hal_desc_tpc = 1;
2880 
2881     /* Enable TPC */
2882     OS_REG_RMW_FIELD(ah, AR_PHY_PWRTX_MAX, AR_PHY_PER_PACKET_POWERTX_MAX, 1);
2883 
2884     /*
2885      * Disable per chain power reduction since we are already
2886      * accounting for this in our calculations
2887      */
2888     val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2889     if (AR_SREV_WASP(ah)) {
2890         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2891                          val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2892     } else {
2893         OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2894                          val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2895     }
2896 }
2897 
2898 
2899 /*
2900  * ar9300_force_tsf_sync
2901  * This function forces the TSF sync to the given bssid, this is implemented
2902  * as a temp hack to get the AoW demo, and is primarily used in the WDS client
2903  * mode of operation, where we sync the TSF to RootAP TSF values
2904  */
2905 void
2906 ar9300_force_tsf_sync(struct ath_hal *ah, const u_int8_t *bssid,
2907     u_int16_t assoc_id)
2908 {
2909     ar9300_set_operating_mode(ah, HAL_M_STA);
2910     ar9300_write_associd(ah, bssid, assoc_id);
2911 }
2912 
2913 void ar9300_chk_rssi_update_tx_pwr(struct ath_hal *ah, int rssi)
2914 {
2915     struct ath_hal_9300 *ahp = AH9300(ah);
2916     u_int32_t           temp_obdb_reg_val = 0, temp_tcp_reg_val;
2917     u_int32_t           temp_powertx_rate9_reg_val;
2918     int8_t              olpc_power_offset = 0;
2919     int8_t              tmp_olpc_val = 0;
2920     HAL_RSSI_TX_POWER   old_greentx_status;
2921     u_int8_t            target_power_val_t[ar9300_rate_size];
2922     int8_t              tmp_rss1_thr1, tmp_rss1_thr2;
2923 
2924     if ((AH_PRIVATE(ah)->ah_opmode != HAL_M_STA) ||
2925         !ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2926         return;
2927     }
2928 
2929     old_greentx_status = AH9300(ah)->green_tx_status;
2930     if (ahp->ah_hw_green_tx_enable) {
2931         tmp_rss1_thr1 = AR9485_HW_GREEN_TX_THRES1_DB;
2932         tmp_rss1_thr2 = AR9485_HW_GREEN_TX_THRES2_DB;
2933     } else {
2934         tmp_rss1_thr1 = WB225_SW_GREEN_TX_THRES1_DB;
2935         tmp_rss1_thr2 = WB225_SW_GREEN_TX_THRES2_DB;
2936     }
2937 
2938     if ((ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S1)
2939         && (rssi > tmp_rss1_thr1))
2940     {
2941         if (old_greentx_status != HAL_RSSI_TX_POWER_SHORT) {
2942             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_SHORT;
2943         }
2944     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S2
2945         && (rssi > tmp_rss1_thr2))
2946     {
2947         if (old_greentx_status != HAL_RSSI_TX_POWER_MIDDLE) {
2948             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_MIDDLE;
2949         }
2950     } else if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable_S3) {
2951         if (old_greentx_status != HAL_RSSI_TX_POWER_LONG) {
2952             AH9300(ah)->green_tx_status = HAL_RSSI_TX_POWER_LONG;
2953         }
2954     }
2955 
2956     /* If status is not change, don't do anything */
2957     if (old_greentx_status == AH9300(ah)->green_tx_status) {
2958         return;
2959     }
2960 
2961     /* for Poseidon which ath_hal_sta_update_tx_pwr_enable is enabled */
2962     if ((AH9300(ah)->green_tx_status != HAL_RSSI_TX_POWER_NONE)
2963         && AR_SREV_POSEIDON(ah))
2964     {
2965         if (ahp->ah_hw_green_tx_enable) {
2966             switch (AH9300(ah)->green_tx_status) {
2967             case HAL_RSSI_TX_POWER_SHORT:
2968                 /* 1. TxPower Config */
2969                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_short,
2970                     sizeof(target_power_val_t));
2971                 /* 1.1 Store OLPC Delta Calibration Offset*/
2972                 olpc_power_offset = 0;
2973                 /* 2. Store OB/DB */
2974                 /* 3. Store TPC settting */
2975                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
2976                                     SM(14, AR_TPC_CTS) |
2977                                     SM(14, AR_TPC_CHIRP) |
2978                                     SM(14, AR_TPC_RPT));
2979                 /* 4. Store BB_powertx_rate9 value */
2980                 temp_powertx_rate9_reg_val =
2981                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_SHORT_VALUE;
2982                 break;
2983             case HAL_RSSI_TX_POWER_MIDDLE:
2984                 /* 1. TxPower Config */
2985                 OS_MEMCPY(target_power_val_t, ar9485_hw_gtx_tp_distance_middle,
2986                     sizeof(target_power_val_t));
2987                 /* 1.1 Store OLPC Delta Calibration Offset*/
2988                 olpc_power_offset = 0;
2989                 /* 2. Store OB/DB */
2990                 /* 3. Store TPC settting */
2991                 temp_tcp_reg_val = (SM(18, AR_TPC_ACK) |
2992                                     SM(18, AR_TPC_CTS) |
2993                                     SM(18, AR_TPC_CHIRP) |
2994                                     SM(18, AR_TPC_RPT));
2995                 /* 4. Store BB_powertx_rate9 value */
2996                 temp_powertx_rate9_reg_val =
2997                     AR9485_BBPWRTXRATE9_HW_GREEN_TX_MIDDLE_VALUE;
2998                 break;
2999             case HAL_RSSI_TX_POWER_LONG:
3000             default:
3001                 /* 1. TxPower Config */
3002                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3003                     sizeof(target_power_val_t));
3004                 /* 1.1 Store OLPC Delta Calibration Offset*/
3005                 olpc_power_offset = 0;
3006                 /* 2. Store OB/DB1/DB2 */
3007                 /* 3. Store TPC settting */
3008                 temp_tcp_reg_val =
3009                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3010                 /* 4. Store BB_powertx_rate9 value */
3011                 temp_powertx_rate9_reg_val =
3012                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3013                 break;
3014             }
3015         } else {
3016             switch (AH9300(ah)->green_tx_status) {
3017             case HAL_RSSI_TX_POWER_SHORT:
3018                 /* 1. TxPower Config */
3019                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_short,
3020                     sizeof(target_power_val_t));
3021                 /* 1.1 Store OLPC Delta Calibration Offset*/
3022                 olpc_power_offset =
3023                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_SHORT_VALUE] -
3024                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3025                 /* 2. Store OB/DB */
3026                 temp_obdb_reg_val =
3027                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3028                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3029                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3030                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3031                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3032                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3033                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3034                     AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3035                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3036                     AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3037                 SM(WB225_OB_GREEN_TX_SHORT_VALUE,
3038                     AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3039                 /* 3. Store TPC settting */
3040                 temp_tcp_reg_val = (SM(6, AR_TPC_ACK) |
3041                                     SM(6, AR_TPC_CTS) |
3042                                     SM(6, AR_TPC_CHIRP) |
3043                                     SM(6, AR_TPC_RPT));
3044                 /* 4. Store BB_powertx_rate9 value */
3045                 temp_powertx_rate9_reg_val =
3046                     WB225_BBPWRTXRATE9_SW_GREEN_TX_SHORT_VALUE;
3047                 break;
3048             case HAL_RSSI_TX_POWER_MIDDLE:
3049                 /* 1. TxPower Config */
3050                 OS_MEMCPY(target_power_val_t, wb225_sw_gtx_tp_distance_middle,
3051                     sizeof(target_power_val_t));
3052                 /* 1.1 Store OLPC Delta Calibration Offset*/
3053                 olpc_power_offset =
3054                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_MIDDLE_VALUE] -
3055                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3056                 /* 2. Store OB/DB */
3057                 temp_obdb_reg_val =
3058                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3059                 temp_obdb_reg_val &= ~(AR_PHY_65NM_CH0_TXRF2_DB2G |
3060                                        AR_PHY_65NM_CH0_TXRF2_OB2G_CCK |
3061                                        AR_PHY_65NM_CH0_TXRF2_OB2G_PSK |
3062                                        AR_PHY_65NM_CH0_TXRF2_OB2G_QAM);
3063                 temp_obdb_reg_val |= (SM(5, AR_PHY_65NM_CH0_TXRF2_DB2G) |
3064                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3065                         AR_PHY_65NM_CH0_TXRF2_OB2G_CCK) |
3066                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3067                         AR_PHY_65NM_CH0_TXRF2_OB2G_PSK) |
3068                     SM(WB225_OB_GREEN_TX_MIDDLE_VALUE,
3069                         AR_PHY_65NM_CH0_TXRF2_OB2G_QAM));
3070                 /* 3. Store TPC settting */
3071                 temp_tcp_reg_val = (SM(14, AR_TPC_ACK) |
3072                                     SM(14, AR_TPC_CTS) |
3073                                     SM(14, AR_TPC_CHIRP) |
3074                                     SM(14, AR_TPC_RPT));
3075                 /* 4. Store BB_powertx_rate9 value */
3076                 temp_powertx_rate9_reg_val =
3077                     WB225_BBPWRTXRATE9_SW_GREEN_TX_MIDDLE_VALUE;
3078                 break;
3079             case HAL_RSSI_TX_POWER_LONG:
3080             default:
3081                 /* 1. TxPower Config */
3082                 OS_MEMCPY(target_power_val_t, ahp->ah_default_tx_power,
3083                     sizeof(target_power_val_t));
3084                 /* 1.1 Store OLPC Delta Calibration Offset*/
3085                 olpc_power_offset =
3086                     wb225_gtx_olpc_cal_offset[WB225_OB_GREEN_TX_LONG_VALUE] -
3087                     wb225_gtx_olpc_cal_offset[WB225_OB_CALIBRATION_VALUE];
3088                 /* 2. Store OB/DB1/DB2 */
3089                 temp_obdb_reg_val =
3090                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_OBDB];
3091                 /* 3. Store TPC settting */
3092                 temp_tcp_reg_val =
3093                     AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_TPC];
3094                 /* 4. Store BB_powertx_rate9 value */
3095                 temp_powertx_rate9_reg_val =
3096                   AH9300(ah)->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9];
3097                 break;
3098             }
3099         }
3100         /* 1.1 Do OLPC Delta Calibration Offset */
3101         tmp_olpc_val =
3102             (int8_t) AH9300(ah)->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET];
3103         tmp_olpc_val += olpc_power_offset;
3104         OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
3105             (tmp_olpc_val << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
3106             AR_PHY_TPC_OLPC_GAIN_DELTA);
3107 
3108         /* 1.2 TxPower Config */
3109         ar9300_transmit_power_reg_write(ah, target_power_val_t);
3110         /* 2. Config OB/DB */
3111         if (!ahp->ah_hw_green_tx_enable) {
3112             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2, temp_obdb_reg_val);
3113         }
3114         /* 3. config TPC settting */
3115         OS_REG_WRITE(ah, AR_TPC, temp_tcp_reg_val);
3116         /* 4. config BB_powertx_rate9 value */
3117         OS_REG_WRITE(ah, AR_PHY_BB_POWERTX_RATE9, temp_powertx_rate9_reg_val);
3118     }
3119 }
3120 
3121 #if 0
3122 void
3123 ar9300_get_vow_stats(
3124     struct ath_hal *ah, HAL_VOWSTATS* p_stats, u_int8_t vow_reg_flags)
3125 {
3126     if (vow_reg_flags & AR_REG_TX_FRM_CNT) {
3127         p_stats->tx_frame_count = OS_REG_READ(ah, AR_TFCNT);
3128     }
3129     if (vow_reg_flags & AR_REG_RX_FRM_CNT) {
3130         p_stats->rx_frame_count = OS_REG_READ(ah, AR_RFCNT);
3131     }
3132     if (vow_reg_flags & AR_REG_RX_CLR_CNT) {
3133         p_stats->rx_clear_count = OS_REG_READ(ah, AR_RCCNT);
3134     }
3135     if (vow_reg_flags & AR_REG_CYCLE_CNT) {
3136         p_stats->cycle_count   = OS_REG_READ(ah, AR_CCCNT);
3137     }
3138     if (vow_reg_flags & AR_REG_EXT_CYCLE_CNT) {
3139         p_stats->ext_cycle_count   = OS_REG_READ(ah, AR_EXTRCCNT);
3140     }
3141 }
3142 #endif
3143 
3144 /*
3145  * ar9300_is_skip_paprd_by_greentx
3146  *
3147  * This function check if we need to skip PAPRD tuning
3148  * when GreenTx in specific state.
3149  */
3150 HAL_BOOL
3151 ar9300_is_skip_paprd_by_greentx(struct ath_hal *ah)
3152 {
3153     if (AR_SREV_POSEIDON(ah) &&
3154         ah->ah_config.ath_hal_sta_update_tx_pwr_enable &&
3155         ((AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_SHORT) ||
3156          (AH9300(ah)->green_tx_status == HAL_RSSI_TX_POWER_MIDDLE)))
3157     {
3158         return AH_TRUE;
3159     }
3160     return AH_FALSE;
3161 }
3162 
3163 void
3164 ar9300_control_signals_for_green_tx_mode(struct ath_hal *ah)
3165 {
3166     unsigned int valid_obdb_0_b0 = 0x2d; // 5,5 - dB[0:2],oB[5:3]
3167     unsigned int valid_obdb_1_b0 = 0x25; // 4,5 - dB[0:2],oB[5:3]
3168     unsigned int valid_obdb_2_b0 = 0x1d; // 3,5 - dB[0:2],oB[5:3]
3169     unsigned int valid_obdb_3_b0 = 0x15; // 2,5 - dB[0:2],oB[5:3]
3170     unsigned int valid_obdb_4_b0 = 0xd;  // 1,5 - dB[0:2],oB[5:3]
3171     struct ath_hal_9300 *ahp = AH9300(ah);
3172 
3173     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3174         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3175                              AR_PHY_PAPRD_VALID_OBDB_0, valid_obdb_0_b0);
3176         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3177                              AR_PHY_PAPRD_VALID_OBDB_1, valid_obdb_1_b0);
3178         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3179                              AR_PHY_PAPRD_VALID_OBDB_2, valid_obdb_2_b0);
3180         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3181                              AR_PHY_PAPRD_VALID_OBDB_3, valid_obdb_3_b0);
3182         OS_REG_RMW_FIELD_ALT(ah, AR_PHY_PAPRD_VALID_OBDB_POSEIDON,
3183                              AR_PHY_PAPRD_VALID_OBDB_4, valid_obdb_4_b0);
3184     }
3185 }
3186 
3187 void ar9300_hwgreentx_set_pal_spare(struct ath_hal *ah, int value)
3188 {
3189     struct ath_hal_9300 *ahp = AH9300(ah);
3190 
3191     if (AR_SREV_POSEIDON(ah) && ahp->ah_hw_green_tx_enable) {
3192         if ((value == 0) || (value == 1)) {
3193             OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_TXRF3,
3194                              AR_PHY_65NM_CH0_TXRF3_OLD_PAL_SPARE, value);
3195         }
3196     }
3197 }
3198 
3199 void ar9300_reset_hw_beacon_proc_crc(struct ath_hal *ah)
3200 {
3201     OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_RESET_CRC);
3202 }
3203 
3204 int32_t ar9300_get_hw_beacon_rssi(struct ath_hal *ah)
3205 {
3206     int32_t val = OS_REG_READ_FIELD(ah, AR_BCN_RSSI_AVE, AR_BCN_RSSI_AVE_VAL);
3207 
3208     /* RSSI format is 8.4.  Ignore lowest four bits */
3209     val = val >> 4;
3210     return val;
3211 }
3212 
3213 void ar9300_set_hw_beacon_rssi_threshold(struct ath_hal *ah,
3214                                         u_int32_t rssi_threshold)
3215 {
3216     struct ath_hal_9300 *ahp = AH9300(ah);
3217 
3218     OS_REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_VAL, rssi_threshold);
3219 
3220     /* save value for restoring after chip reset */
3221     ahp->ah_beacon_rssi_threshold = rssi_threshold;
3222 }
3223 
3224 void ar9300_reset_hw_beacon_rssi(struct ath_hal *ah)
3225 {
3226     OS_REG_SET_BIT(ah, AR_RSSI_THR, AR_RSSI_BCN_RSSI_RST);
3227 }
3228 
3229 void ar9300_set_hw_beacon_proc(struct ath_hal *ah, HAL_BOOL on)
3230 {
3231     if (on) {
3232         OS_REG_SET_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3233                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3234     }
3235     else {
3236         OS_REG_CLR_BIT(ah, AR_HWBCNPROC1, AR_HWBCNPROC1_CRC_ENABLE |
3237                        AR_HWBCNPROC1_EXCLUDE_TIM_ELM);
3238     }
3239 }
3240 /*
3241  * Gets the contents of the specified key cache entry.
3242  */
3243 HAL_BOOL
3244 ar9300_print_keycache(struct ath_hal *ah)
3245 {
3246 
3247     const HAL_CAPABILITIES *p_cap = &AH_PRIVATE(ah)->ah_caps;
3248     u_int32_t key0, key1, key2, key3, key4;
3249     u_int32_t mac_hi, mac_lo;
3250     u_int16_t entry = 0;
3251     u_int32_t valid = 0;
3252     u_int32_t key_type;
3253 
3254     ath_hal_printf(ah, "Slot   Key\t\t\t          Valid  Type  Mac  \n");
3255 
3256     for (entry = 0 ; entry < p_cap->halKeyCacheSize; entry++) {
3257         key0 = OS_REG_READ(ah, AR_KEYTABLE_KEY0(entry));
3258         key1 = OS_REG_READ(ah, AR_KEYTABLE_KEY1(entry));
3259         key2 = OS_REG_READ(ah, AR_KEYTABLE_KEY2(entry));
3260         key3 = OS_REG_READ(ah, AR_KEYTABLE_KEY3(entry));
3261         key4 = OS_REG_READ(ah, AR_KEYTABLE_KEY4(entry));
3262 
3263         key_type = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
3264 
3265         mac_lo = OS_REG_READ(ah, AR_KEYTABLE_MAC0(entry));
3266         mac_hi = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
3267 
3268         if (mac_hi & AR_KEYTABLE_VALID) {
3269             valid = 1;
3270         } else {
3271             valid = 0;
3272         }
3273 
3274         if ((mac_hi != 0) && (mac_lo != 0)) {
3275             mac_hi &= ~0x8000;
3276             mac_hi <<= 1;
3277             mac_hi |= ((mac_lo & (1 << 31) )) >> 31;
3278             mac_lo <<= 1;
3279         }
3280 
3281         ath_hal_printf(ah,
3282             "%03d    "
3283             "%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x"
3284             "   %02d     %02d    "
3285             "%02x:%02x:%02x:%02x:%02x:%02x \n",
3286             entry,
3287             (key0 << 24) >> 24, (key0 << 16) >> 24,
3288             (key0 << 8) >> 24, key0 >> 24,
3289             (key1 << 24) >> 24, (key1 << 16) >> 24,
3290             //(key1 << 8) >> 24, key1 >> 24,
3291             (key2 << 24) >> 24, (key2 << 16) >> 24,
3292             (key2 << 8) >> 24, key2 >> 24,
3293             (key3 << 24) >> 24, (key3 << 16) >> 24,
3294             //(key3 << 8) >> 24, key3 >> 24,
3295             (key4 << 24) >> 24, (key4 << 16) >> 24,
3296             (key4 << 8) >> 24, key4 >> 24,
3297             valid, key_type,
3298             (mac_lo << 24) >> 24, (mac_lo << 16) >> 24, (mac_lo << 8) >> 24,
3299             (mac_lo) >> 24, (mac_hi << 24) >> 24, (mac_hi << 16) >> 24 );
3300     }
3301 
3302     return AH_TRUE;
3303 }
3304 
3305 /* enable/disable smart antenna mode */
3306 HAL_BOOL
3307 ar9300_set_smart_antenna(struct ath_hal *ah, HAL_BOOL enable)
3308 {
3309     struct ath_hal_9300 *ahp = AH9300(ah);
3310 
3311     if (enable) {
3312         OS_REG_SET_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3313     } else {
3314         OS_REG_CLR_BIT(ah, AR_XRTO, AR_ENABLE_SMARTANTENNA);
3315     }
3316 
3317     /* if scropion and smart antenna is enabled, write swcom1 with 0x440
3318      * and swcom2 with 0
3319      * FIXME Ideally these registers need to be made read from caldata.
3320      * Until the calibration team gets them, keep them along with board
3321      * configuration.
3322      */
3323     if (enable && AR_SREV_SCORPION(ah) &&
3324            (HAL_OK == ar9300_get_capability(ah, HAL_CAP_SMARTANTENNA, 0,0))) {
3325 
3326        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, 0x440);
3327        OS_REG_WRITE(ah, AR_PHY_SWITCH_COM_2, 0);
3328     }
3329 
3330     ahp->ah_smartantenna_enable = enable;
3331     return 1;
3332 }
3333 
3334 #ifdef ATH_TX99_DIAG
3335 #ifndef ATH_SUPPORT_HTC
3336 void
3337 ar9300_tx99_channel_pwr_update(struct ath_hal *ah, HAL_CHANNEL *c,
3338     u_int32_t txpower)
3339 {
3340 #define PWR_MAS(_r, _s)     (((_r) & 0x3f) << (_s))
3341     static int16_t p_pwr_array[ar9300_rate_size] = { 0 };
3342     int32_t i;
3343 
3344     /* The max power is limited to 63 */
3345     if (txpower <= AR9300_MAX_RATE_POWER) {
3346         for (i = 0; i < ar9300_rate_size; i++) {
3347             p_pwr_array[i] = txpower;
3348         }
3349     } else {
3350         for (i = 0; i < ar9300_rate_size; i++) {
3351             p_pwr_array[i] = AR9300_MAX_RATE_POWER;
3352         }
3353     }
3354 
3355     OS_REG_WRITE(ah, 0xa458, 0);
3356 
3357     /* Write the OFDM power per rate set */
3358     /* 6 (LSB), 9, 12, 18 (MSB) */
3359     OS_REG_WRITE(ah, 0xa3c0,
3360         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
3361           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
3362           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
3363           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3364     );
3365     /* 24 (LSB), 36, 48, 54 (MSB) */
3366     OS_REG_WRITE(ah, 0xa3c4,
3367         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
3368           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
3369           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
3370           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
3371     );
3372 
3373     /* Write the CCK power per rate set */
3374     /* 1L (LSB), reserved, 2L, 2S (MSB) */
3375     OS_REG_WRITE(ah, 0xa3c8,
3376         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
3377           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
3378           /* | PWR_MAS(txPowerTimes2,  8) */ /* this is reserved for Osprey */
3379           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
3380     );
3381     /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
3382     OS_REG_WRITE(ah, 0xa3cc,
3383         PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
3384           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
3385           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
3386           | PWR_MAS(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
3387     );
3388 
3389     /* Write the HT20 power per rate set */
3390     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3391     OS_REG_WRITE(ah, 0xa3d0,
3392         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_5], 24)
3393           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_4],  16)
3394           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
3395           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
3396     );
3397 
3398     /* 6 (LSB), 7, 12, 13 (MSB) */
3399     OS_REG_WRITE(ah, 0xa3d4,
3400         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_13], 24)
3401           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_12],  16)
3402           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_7],  8)
3403           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_6],   0)
3404     );
3405 
3406     /* 14 (LSB), 15, 20, 21 */
3407     OS_REG_WRITE(ah, 0xa3e4,
3408         PWR_MAS(p_pwr_array[ALL_TARGET_HT20_21], 24)
3409           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_20],  16)
3410           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_15],  8)
3411           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_14],   0)
3412     );
3413 
3414     /* Mixed HT20 and HT40 rates */
3415     /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
3416     OS_REG_WRITE(ah, 0xa3e8,
3417         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_23], 24)
3418           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_22],  16)
3419           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_23],  8)
3420           | PWR_MAS(p_pwr_array[ALL_TARGET_HT20_22],   0)
3421     );
3422 
3423     /* Write the HT40 power per rate set */
3424     /* correct PAR difference between HT40 and HT20/LEGACY */
3425     /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
3426     OS_REG_WRITE(ah, 0xa3d8,
3427         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_5], 24)
3428           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_4],  16)
3429           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
3430           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
3431     );
3432 
3433     /* 6 (LSB), 7, 12, 13 (MSB) */
3434     OS_REG_WRITE(ah, 0xa3dc,
3435         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_13], 24)
3436           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_12],  16)
3437           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_7], 8)
3438           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_6], 0)
3439     );
3440 
3441     /* 14 (LSB), 15, 20, 21 */
3442     OS_REG_WRITE(ah, 0xa3ec,
3443         PWR_MAS(p_pwr_array[ALL_TARGET_HT40_21], 24)
3444           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_20],  16)
3445           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_15],  8)
3446           | PWR_MAS(p_pwr_array[ALL_TARGET_HT40_14],   0)
3447     );
3448 #undef PWR_MAS
3449 }
3450 
3451 void
3452 ar9300_tx99_chainmsk_setup(struct ath_hal *ah, int tx_chainmask)
3453 {
3454     if (tx_chainmask == 0x5) {
3455         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3456             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3457     }
3458     OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, tx_chainmask);
3459     OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, tx_chainmask);
3460 
3461     OS_REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
3462     if (tx_chainmask == 0x5) {
3463         OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
3464             OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | AR_PHY_SWAP_ALT_CHAIN);
3465     }
3466 }
3467 
3468 void
3469 ar9300_tx99_set_single_carrier(struct ath_hal *ah, int tx_chain_mask,
3470     int chtype)
3471 {
3472     OS_REG_WRITE(ah, 0x98a4, OS_REG_READ(ah, 0x98a4) | (0x7ff << 11) | 0x7ff);
3473     OS_REG_WRITE(ah, 0xa364, OS_REG_READ(ah, 0xa364) | (1 << 7) | (1 << 1));
3474     OS_REG_WRITE(ah, 0xa350,
3475         (OS_REG_READ(ah, 0xa350) | (1 << 31) | (1 << 15)) & ~(1 << 13));
3476 
3477     /* 11G mode */
3478     if (!chtype) {
3479         OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3480             OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2) | (0x1 << 3) | (0x1 << 2));
3481         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3482             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3483                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3484             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3485                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3486                         | (0x1 << 26)  | (0x7 << 24))
3487                         & ~(0x1 << 22));
3488         } else {
3489             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3490                 OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3491             OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3492                 (OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3493                         | (0x1 << 26)  | (0x7 << 24))
3494                         & ~(0x1 << 22));
3495         }
3496 
3497         /* chain zero */
3498         if ((tx_chain_mask & 0x01) == 0x01) {
3499             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3500                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3501                       | (0x1 << 31) | (0x5 << 15)
3502                       | (0x3 << 9)) & ~(0x1 << 27)
3503                       & ~(0x1 << 12));
3504             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3505                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3506                       | (0x1 << 12) | (0x1 << 10)
3507                       | (0x1 << 9)  | (0x1 << 8)
3508                       | (0x1 << 7)) & ~(0x1 << 11));
3509             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3510                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3511                       | (0x1 << 29) | (0x1 << 25)
3512                       | (0x1 << 23) | (0x1 << 19)
3513                       | (0x1 << 10) | (0x1 << 9)
3514                       | (0x1 << 8)  | (0x1 << 3))
3515                       & ~(0x1 << 28)& ~(0x1 << 24)
3516                       & ~(0x1 << 22)& ~(0x1 << 7));
3517             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3518                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3519                       | (0x1 << 23))& ~(0x1 << 21));
3520             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3521                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3522                       | (0x1 << 12) | (0x1 << 10)
3523                       | (0x1 << 9)  | (0x1 << 8)
3524                       | (0x1 << 6)  | (0x1 << 5)
3525                       | (0x1 << 4)  | (0x1 << 3)
3526                       | (0x1 << 2));
3527             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3528                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3529         }
3530         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3531             /* chain one */
3532             if ((tx_chain_mask & 0x02) == 0x02 ) {
3533                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3534                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3535                           | (0x1 << 31) | (0x5 << 15)
3536                           | (0x3 << 9)) & ~(0x1 << 27)
3537                           & ~(0x1 << 12));
3538                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3539                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3540                           | (0x1 << 12) | (0x1 << 10)
3541                           | (0x1 << 9)  | (0x1 << 8)
3542                           | (0x1 << 7)) & ~(0x1 << 11));
3543                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3544                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3545                           | (0x1 << 29) | (0x1 << 25)
3546                           | (0x1 << 23) | (0x1 << 19)
3547                           | (0x1 << 10) | (0x1 << 9)
3548                           | (0x1 << 8)  | (0x1 << 3))
3549                           & ~(0x1 << 28)& ~(0x1 << 24)
3550                           & ~(0x1 << 22)& ~(0x1 << 7));
3551                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3552                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3553                           | (0x1 << 23))& ~(0x1 << 21));
3554                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3555                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3556                           | (0x1 << 12) | (0x1 << 10)
3557                           | (0x1 << 9)  | (0x1 << 8)
3558                           | (0x1 << 6)  | (0x1 << 5)
3559                           | (0x1 << 4)  | (0x1 << 3)
3560                           | (0x1 << 2));
3561                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3562                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3563             }
3564         }
3565         if (AR_SREV_OSPREY(ah)) {
3566             /* chain two */
3567             if ((tx_chain_mask & 0x04) == 0x04 ) {
3568                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3569                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3570                           | (0x1 << 31) | (0x5 << 15)
3571                           | (0x3 << 9)) & ~(0x1 << 27)
3572                           & ~(0x1 << 12));
3573                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3574                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3575                           | (0x1 << 12) | (0x1 << 10)
3576                           | (0x1 << 9)  | (0x1 << 8)
3577                           | (0x1 << 7)) & ~(0x1 << 11));
3578                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3579                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3580                           | (0x1 << 29) | (0x1 << 25)
3581                           | (0x1 << 23) | (0x1 << 19)
3582                           | (0x1 << 10) | (0x1 << 9)
3583                           | (0x1 << 8)  | (0x1 << 3))
3584                           & ~(0x1 << 28)& ~(0x1 << 24)
3585                           & ~(0x1 << 22)& ~(0x1 << 7));
3586                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3587                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3588                           | (0x1 << 23))& ~(0x1 << 21));
3589                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3590                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3591                           | (0x1 << 12) | (0x1 << 10)
3592                           | (0x1 << 9)  | (0x1 << 8)
3593                           | (0x1 << 6)  | (0x1 << 5)
3594                           | (0x1 << 4)  | (0x1 << 3)
3595                           | (0x1 << 2));
3596                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3597                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3598             }
3599         }
3600 
3601         OS_REG_WRITE(ah, 0xa28c, 0x11111);
3602         OS_REG_WRITE(ah, 0xa288, 0x111);
3603     } else {
3604         /* chain zero */
3605         if ((tx_chain_mask & 0x01) == 0x01) {
3606             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX1,
3607                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX1)
3608                       | (0x1 << 31) | (0x1 << 27)
3609                       | (0x3 << 23) | (0x1 << 19)
3610                       | (0x1 << 15) | (0x3 << 9))
3611                       & ~(0x1 << 12));
3612             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3613                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3614                       | (0x1 << 12) | (0x1 << 10)
3615                       | (0x1 << 9)  | (0x1 << 8)
3616                       | (0x1 << 7)  | (0x1 << 3)
3617                       | (0x1 << 2)  | (0x1 << 1))
3618                       & ~(0x1 << 11)& ~(0x1 << 0));
3619             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3620                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3621                       | (0x1 << 29) | (0x1 << 25)
3622                       | (0x1 << 23) | (0x1 << 19)
3623                       | (0x1 << 10) | (0x1 << 9)
3624                       | (0x1 << 8)  | (0x1 << 3))
3625                       & ~(0x1 << 28)& ~(0x1 << 24)
3626                       & ~(0x1 << 22)& ~(0x1 << 7));
3627             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3628                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1)
3629                       | (0x1 << 23))& ~(0x1 << 21));
3630             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF2,
3631                 OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2)
3632                       | (0x3 << 3)  | (0x3 << 0));
3633             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF3,
3634                 (OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF3)
3635                       | (0x3 << 29) | (0x3 << 26)
3636                       | (0x2 << 23) | (0x2 << 20)
3637                       | (0x2 << 17))& ~(0x1 << 14));
3638             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB1,
3639                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB1)
3640                       | (0x1 << 12) | (0x1 << 10)
3641                       | (0x1 << 9)  | (0x1 << 8)
3642                       | (0x1 << 6)  | (0x1 << 5)
3643                       | (0x1 << 4)  | (0x1 << 3)
3644                       | (0x1 << 2));
3645             OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BB2,
3646                 OS_REG_READ(ah, AR_PHY_65NM_CH0_BB2) | (0x1 << 31));
3647             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3648                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3649                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3650                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3651                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3652                           | (0x1 << 26) | (0x7 << 24)
3653                           | (0x3 << 22));
3654             } else {
3655                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3656                     OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3657                 OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3658                     OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3659                           | (0x1 << 26) | (0x7 << 24)
3660                           | (0x3 << 22));
3661             }
3662 
3663             if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3664                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3665                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3666                           | (0x1 << 3)  | (0x1 << 2)
3667                           | (0x1 << 1)) & ~(0x1 << 0));
3668                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3669                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3670                           | (0x1 << 19) | (0x1 << 3));
3671                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3672                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3673             }
3674             if (AR_SREV_OSPREY(ah)) {
3675                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3676                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3677                           | (0x1 << 3)  | (0x1 << 2)
3678                           | (0x1 << 1)) & ~(0x1 << 0));
3679                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3680                     OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3681                           | (0x1 << 19) | (0x1 << 3));
3682                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3683                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3684             }
3685         }
3686         if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3687             /* chain one */
3688             if ((tx_chain_mask & 0x02) == 0x02 ) {
3689                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3690                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3691                           | (0x1 << 3)  | (0x1 << 2)
3692                           | (0x1 << 1)) & ~(0x1 << 0));
3693                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3694                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3695                           | (0x1 << 19) | (0x1 << 3));
3696                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3697                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3698                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3699                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3700                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3701                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3702                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3703                               | (0x1 << 26) | (0x7 << 24)
3704                               | (0x3 << 22));
3705                 } else {
3706                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3707                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3708                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3709                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3710                               | (0x1 << 26) | (0x7 << 24)
3711                               | (0x3 << 22));
3712                 }
3713 
3714                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX1,
3715                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX1)
3716                           | (0x1 << 31) | (0x1 << 27)
3717                           | (0x3 << 23) | (0x1 << 19)
3718                           | (0x1 << 15) | (0x3 << 9))
3719                           & ~(0x1 << 12));
3720                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3721                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3722                           | (0x1 << 12) | (0x1 << 10)
3723                           | (0x1 << 9)  | (0x1 << 8)
3724                           | (0x1 << 7)  | (0x1 << 3)
3725                           | (0x1 << 2)  | (0x1 << 1))
3726                           & ~(0x1 << 11)& ~(0x1 << 0));
3727                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3728                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3729                           | (0x1 << 29) | (0x1 << 25)
3730                           | (0x1 << 23) | (0x1 << 19)
3731                           | (0x1 << 10) | (0x1 << 9)
3732                           | (0x1 << 8)  | (0x1 << 3))
3733                           & ~(0x1 << 28)& ~(0x1 << 24)
3734                           & ~(0x1 << 22)& ~(0x1 << 7));
3735                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3736                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1)
3737                           | (0x1 << 23))& ~(0x1 << 21));
3738                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF2,
3739                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF2)
3740                           | (0x3 << 3)  | (0x3 << 0));
3741                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF3,
3742                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF3)
3743                           | (0x3 << 29) | (0x3 << 26)
3744                           | (0x2 << 23) | (0x2 << 20)
3745                           | (0x2 << 17))& ~(0x1 << 14));
3746                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB1,
3747                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB1)
3748                           | (0x1 << 12) | (0x1 << 10)
3749                           | (0x1 << 9)  | (0x1 << 8)
3750                           | (0x1 << 6)  | (0x1 << 5)
3751                           | (0x1 << 4)  | (0x1 << 3)
3752                           | (0x1 << 2));
3753                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_BB2,
3754                     OS_REG_READ(ah, AR_PHY_65NM_CH1_BB2) | (0x1 << 31));
3755 
3756                 if (AR_SREV_OSPREY(ah)) {
3757                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3758                         (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3759                               | (0x1 << 3)  | (0x1 << 2)
3760                               | (0x1 << 1)) & ~(0x1 << 0));
3761                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3762                         OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3763                               | (0x1 << 19) | (0x1 << 3));
3764                     OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3765                         OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1) | (0x1 << 23));
3766                 }
3767             }
3768         }
3769         if (AR_SREV_OSPREY(ah)) {
3770             /* chain two */
3771             if ((tx_chain_mask & 0x04) == 0x04 ) {
3772                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX2,
3773                     (OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX2)
3774                           | (0x1 << 3)  | (0x1 << 2)
3775                           | (0x1 << 1)) & ~(0x1 << 0));
3776                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_RXTX3,
3777                     OS_REG_READ(ah, AR_PHY_65NM_CH0_RXTX3)
3778                           | (0x1 << 19) | (0x1 << 3));
3779                 OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TXRF1,
3780                     OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF1) | (0x1 << 23));
3781                 if (AR_SREV_OSPREY(ah) || AR_SREV_WASP(ah)) {
3782                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP,
3783                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP) & ~(0x1 << 4));
3784                     OS_REG_WRITE(ah, AR_PHY_65NM_CH0_TOP2,
3785                         OS_REG_READ(ah, AR_PHY_65NM_CH0_TOP2)
3786                               | (0x1 << 26) | (0x7 << 24)
3787                               | (0x3 << 22));
3788                 } else {
3789                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP,
3790                         OS_REG_READ(ah, AR_HORNET_CH0_TOP) & ~(0x1 << 4));
3791                     OS_REG_WRITE(ah, AR_HORNET_CH0_TOP2,
3792                         OS_REG_READ(ah, AR_HORNET_CH0_TOP2)
3793                               | (0x1 << 26) | (0x7 << 24)
3794                               | (0x3 << 22));
3795                 }
3796 
3797                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX2,
3798                     (OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX2)
3799                           | (0x1 << 3)  | (0x1 << 2)
3800                           | (0x1 << 1)) & ~(0x1 << 0));
3801                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_RXTX3,
3802                     OS_REG_READ(ah, AR_PHY_65NM_CH1_RXTX3)
3803                           | (0x1 << 19) | (0x1 << 3));
3804                 OS_REG_WRITE(ah, AR_PHY_65NM_CH1_TXRF1,
3805                     OS_REG_READ(ah, AR_PHY_65NM_CH1_TXRF1) | (0x1 << 23));
3806 
3807                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX1,
3808                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX1)
3809                           | (0x1 << 31) | (0x1 << 27)
3810                           | (0x3 << 23) | (0x1 << 19)
3811                           | (0x1 << 15) | (0x3 << 9))
3812                           & ~(0x1 << 12));
3813                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX2,
3814                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX2)
3815                           | (0x1 << 12) | (0x1 << 10)
3816                           | (0x1 << 9)  | (0x1 << 8)
3817                           | (0x1 << 7)  | (0x1 << 3)
3818                           | (0x1 << 2)  | (0x1 << 1))
3819                           & ~(0x1 << 11)& ~(0x1 << 0));
3820                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_RXTX3,
3821                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_RXTX3)
3822                           | (0x1 << 29) | (0x1 << 25)
3823                           | (0x1 << 23) | (0x1 << 19)
3824                           | (0x1 << 10) | (0x1 << 9)
3825                           | (0x1 << 8)  | (0x1 << 3))
3826                           & ~(0x1 << 28)& ~(0x1 << 24)
3827                           & ~(0x1 << 22)& ~(0x1 << 7));
3828                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF1,
3829                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF1)
3830                           | (0x1 << 23))& ~(0x1 << 21));
3831                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF2,
3832                     OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF2)
3833                           | (0x3 << 3)  | (0x3 << 0));
3834                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_TXRF3,
3835                     (OS_REG_READ(ah, AR_PHY_65NM_CH2_TXRF3)
3836                           | (0x3 << 29) | (0x3 << 26)
3837                           | (0x2 << 23) | (0x2 << 20)
3838                           | (0x2 << 17))& ~(0x1 << 14));
3839                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB1,
3840                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB1)
3841                           | (0x1 << 12) | (0x1 << 10)
3842                           | (0x1 << 9)  | (0x1 << 8)
3843                           | (0x1 << 6)  | (0x1 << 5)
3844                           | (0x1 << 4)  | (0x1 << 3)
3845                           | (0x1 << 2));
3846                 OS_REG_WRITE(ah, AR_PHY_65NM_CH2_BB2,
3847                     OS_REG_READ(ah, AR_PHY_65NM_CH2_BB2) | (0x1 << 31));
3848             }
3849         }
3850 
3851         OS_REG_WRITE(ah, 0xa28c, 0x22222);
3852         OS_REG_WRITE(ah, 0xa288, 0x222);
3853     }
3854 }
3855 
3856 void
3857 ar9300_tx99_start(struct ath_hal *ah, u_int8_t *data)
3858 {
3859     u_int32_t val;
3860     u_int32_t qnum = (u_int32_t)data;
3861 
3862     /* Disable AGC to A2 */
3863     OS_REG_WRITE(ah, AR_PHY_TEST, (OS_REG_READ(ah, AR_PHY_TEST) | PHY_AGC_CLR));
3864     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) &~ AR_DIAG_RX_DIS);
3865 
3866     OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);     /* set receive disable */
3867     /* set CW_MIN and CW_MAX both to 0, AIFS=2 */
3868     OS_REG_WRITE(ah, AR_DLCL_IFS(qnum), 0);
3869     OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, 20); /* 50 OK */
3870     OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, 20);
3871     /* 200 ok for HT20, 400 ok for HT40 */
3872     OS_REG_WRITE(ah, AR_TIME_OUT, 0x00000400);
3873     OS_REG_WRITE(ah, AR_DRETRY_LIMIT(qnum), 0xffffffff);
3874 
3875     /* set QCU modes to early termination */
3876     val = OS_REG_READ(ah, AR_QMISC(qnum));
3877     OS_REG_WRITE(ah, AR_QMISC(qnum), val | AR_Q_MISC_DCU_EARLY_TERM_REQ);
3878 }
3879 
3880 void
3881 ar9300_tx99_stop(struct ath_hal *ah)
3882 {
3883     /* this should follow the setting of start */
3884     OS_REG_WRITE(ah, AR_PHY_TEST, OS_REG_READ(ah, AR_PHY_TEST) &~ PHY_AGC_CLR);
3885     OS_REG_WRITE(ah, AR_DIAG_SW, OS_REG_READ(ah, AR_DIAG_SW) | AR_DIAG_RX_DIS);
3886 }
3887 #endif /* ATH_TX99_DIAG */
3888 #endif /* ATH_SUPPORT_HTC */
3889 
3890 HAL_BOOL
3891 ar9300Get3StreamSignature(struct ath_hal *ah)
3892 {
3893     return AH_FALSE;
3894 }
3895 
3896 HAL_BOOL
3897 ar9300ForceVCS(struct ath_hal *ah)
3898 {
3899    return AH_FALSE;
3900 }
3901 
3902 HAL_BOOL
3903 ar9300SetDfs3StreamFix(struct ath_hal *ah, u_int32_t val)
3904 {
3905    return AH_FALSE;
3906 }
3907 
3908 static u_int32_t
3909 ar9300_read_loc_timer(struct ath_hal *ah)
3910 {
3911 
3912     return OS_REG_READ(ah, AR_LOC_TIMER_REG);
3913 }
3914 
3915 HAL_BOOL
3916 ar9300_set_ctl_pwr(struct ath_hal *ah, u_int8_t *ctl_array)
3917 {
3918     struct ath_hal_9300 *ahp = AH9300(ah);
3919     ar9300_eeprom_t *p_eep_data = &ahp->ah_eeprom;
3920     u_int8_t *ctl_index;
3921     u_int32_t offset = 0;
3922 
3923     if (!ctl_array)
3924         return AH_FALSE;
3925 
3926     /* copy 2G ctl freqbin and power data */
3927     ctl_index = p_eep_data->ctl_index_2g;
3928     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_2G, ctl_array,
3929                 OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G +     /* ctl_freqbin_2G */
3930                 OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));  /* ctl_power_data_2g */
3931     offset = (OSPREY_NUM_CTLS_2G * OSPREY_NUM_BAND_EDGES_2G) +
3932             ( OSPREY_NUM_CTLS_2G * sizeof(OSP_CAL_CTL_DATA_2G));
3933 
3934 
3935     /* copy 2G ctl freqbin and power data */
3936     ctl_index = p_eep_data->ctl_index_5g;
3937     OS_MEMCPY(ctl_index + OSPREY_NUM_CTLS_5G, ctl_array + offset,
3938                 OSPREY_NUM_CTLS_5G * OSPREY_NUM_BAND_EDGES_5G +     /* ctl_freqbin_5G */
3939                 OSPREY_NUM_CTLS_5G * sizeof(OSP_CAL_CTL_DATA_5G));  /* ctl_power_data_5g */
3940 
3941     return AH_FALSE;
3942 }
3943 
3944 void
3945 ar9300_set_txchainmaskopt(struct ath_hal *ah, u_int8_t mask)
3946 {
3947     struct ath_hal_9300 *ahp = AH9300(ah);
3948 
3949     /* optional txchainmask should be subset of primary txchainmask */
3950     if ((mask & ahp->ah_tx_chainmask) != mask) {
3951         ahp->ah_tx_chainmaskopt = 0;
3952         ath_hal_printf(ah, "Error: ah_tx_chainmask=%d, mask=%d\n", ahp->ah_tx_chainmask, mask);
3953         return;
3954     }
3955 
3956     ahp->ah_tx_chainmaskopt = mask;
3957 }
3958